Science.gov

Sample records for e3 ligases trim32

  1. Lafora disease E3-ubiquitin ligase malin is related to TRIM32 at both the phylogenetic and functional level

    PubMed Central

    2011-01-01

    Background Malin is an E3-ubiquitin ligase that is mutated in Lafora disease, a fatal form of progressive myoclonus epilepsy. In order to perform its function, malin forms a functional complex with laforin, a glucan phosphatase that facilitates targeting of malin to its corresponding substrates. While laforin phylogeny has been studied, there are no data on the evolutionary lineage of malin. Results After an extensive search for malin orthologs, we found that malin is present in all vertebrate species and a cephalochordate, in contrast with the broader species distribution previously reported for laforin. These data suggest that in addition to forming a functional complex, laforin and perhaps malin may also have independent functions. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32, which belongs to the tripartite-motif containing family of proteins. We present experimental evidence that both malin and TRIM32 share some substrates for ubiquitination, although they produce ubiquitin chains with different topologies. However, TRIM32-specific substrates were not reciprocally ubiquitinated by the laforin-malin complex. Conclusions We found that malin and laforin are not conserved in the same genomes. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32. The latter result suggests a common origin for malin and TRIM32 and provides insights into possible functional relationships between both proteins. PMID:21798009

  2. TRIM32 Senses and Restricts Influenza A Virus by Ubiquitination of PB1 Polymerase

    PubMed Central

    Fu, Bishi; Wang, Lingyan; Ding, Hao; Schwamborn, Jens C.; Li, Shitao; Dorf, Martin E.

    2015-01-01

    Polymerase basic protein 1 (PB1) is the catalytic core of the influenza A virus (IAV) RNA polymerase complex essential for viral transcription and replication. Understanding the intrinsic mechanisms which block PB1 function could stimulate development of new anti-influenza therapeutics. Affinity purification coupled with mass spectrometry (AP-MS) was used to identify host factors interacting with PB1. Among PB1 interactors, the E3 ubiquitin ligase TRIM32 interacts with PB1 proteins derived from multiple IAV strains. TRIM32 senses IAV infection by interacting with PB1 and translocates with PB1 to the nucleus following influenza infection. Ectopic TRIM32 expression attenuates IAV infection. Conversely, RNAi depletion and knockout of TRIM32 increase susceptibility of tracheal and lung epithelial cells to IAV infection. Reconstitution of trim32-/- mouse embryonic fibroblasts with TRIM32, but not a catalytically inactive mutant, restores viral restriction. Furthermore, TRIM32 directly ubiquitinates PB1, leading to PB1 protein degradation and subsequent reduction of polymerase activity. Thus, TRIM32 is an intrinsic IAV restriction factor which senses and targets the PB1 polymerase for ubiquitination and protein degradation. TRIM32 represents a model of intrinsic immunity, in which a host protein directly senses and counters viral infection in a species specific fashion by directly limiting viral replication. PMID:26057645

  3. RBR E3-ligases at work.

    PubMed

    Smit, Judith J; Sixma, Titia K

    2014-02-01

    The RING-in-between-RING (RBR) E3s are a curious family of ubiquitin E3-ligases, whose mechanism of action is unusual in several ways. Their activities are auto-inhibited, causing a requirement for activation by protein-protein interactions or posttranslational modifications. They catalyse ubiquitin conjugation by a concerted RING/HECT-like mechanism in which the RING1 domain facilitates E2-discharge to directly form a thioester intermediate with a cysteine in RING2. This short-lived, HECT-like intermediate then modifies the target. Uniquely, the RBR ligase HOIP makes use of this mechanism to target the ubiquitin amino-terminus, by presenting the target ubiquitin for modification using its distinctive LDD region.

  4. TRIM32 promotes retinoic acid receptor {alpha}-mediated differentiation in human promyelogenous leukemic cell line HL60

    SciTech Connect

    Sato, Tomonobu; Okumura, Fumihiko; Iguchi, Akihiro; Ariga, Tadashi; Hatakeyama, Shigetsugu

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer TRIM32 enhanced RAR{alpha}-mediated transcriptional activity even in the absence of RA. Black-Right-Pointing-Pointer TRIM32 stabilized RAR{alpha} in the human promyelogenous leukemic cell line HL60. Black-Right-Pointing-Pointer Overexpression of TRIM32 in HL60 cells induced granulocytic differentiation. Black-Right-Pointing-Pointer TRIM32 may function as a coactivator for RAR{alpha}-mediated transcription in APL cells. -- Abstract: Ubiquitination, one of the posttranslational modifications, appears to be involved in the transcriptional activity of nuclear receptors including retinoic acid receptor {alpha} (RAR{alpha}). We previously reported that an E3 ubiquitin ligase, TRIM32, interacts with several important proteins including RAR{alpha} and enhances transcriptional activity of RAR{alpha} in mouse neuroblastoma cells and embryonal carcinoma cells. Retinoic acid (RA), which acts as a ligand to nuclear receptors including RAR{alpha}, plays crucial roles in development, differentiation, cell cycles and apoptosis. In this study, we found that TRIM32 enhances RAR{alpha}-mediated transcriptional activity even in the absence of RA and stabilizes RAR{alpha} in the human promyelogenous leukemic cell line HL60. Moreover, we found that overexpression of TRIM32 in HL60 cells suppresses cellular proliferation and induces granulocytic differentiation even in the absence of RA. These findings suggest that TRIM32 functions as one of the coactivators for RAR{alpha}-mediated transcription in acute promyelogenous leukemia (APL) cells, and thus TRIM32 may become a potentially therapeutic target for APL.

  5. SseK3 Is a Salmonella Effector That Binds TRIM32 and Modulates the Host’s NF-κB Signalling Activity

    PubMed Central

    Yang, Zhe; Soderholm, Amelia; Lung, Tania Wong Fok; Giogha, Cristina; Hill, Michelle M.; Brown, Nathaniel F.; Hartland, Elizabeth; Teasdale, Rohan D.

    2015-01-01

    Salmonella Typhimurium employs an array of type III secretion system effectors that facilitate intracellular survival and replication during infection. The Salmonella effector SseK3 was originally identified due to amino acid sequence similarity with NleB; an effector secreted by EPEC/EHEC that possesses N-acetylglucoasmine (GlcNAc) transferase activity and modifies death domain containing proteins to block extrinsic apoptosis. In this study, immunoprecipitation of SseK3 defined a novel molecular interaction between SseK3 and the host protein, TRIM32, an E3 ubiquitin ligase. The conserved DxD motif within SseK3, which is essential for the GlcNAc transferase activity of NleB, was required for TRIM32 binding and for the capacity of SseK3 to suppress TNF-stimulated activation of NF-κB pathway. However, we did not detect GlcNAc modification of TRIM32 by SseK3, nor did the SseK3-TRIM32 interaction impact on TRIM32 ubiquitination that is associated with its activation. In addition, lack of sseK3 in Salmonella had no effect on production of the NF-κB dependent cytokine, IL-8, in HeLa cells even though TRIM32 knockdown suppressed TNF-induced NF-κB activity. Ectopically expressed SseK3 partially co-localises with TRIM32 at the trans-Golgi network, but SseK3 is not recruited to Salmonella induced vacuoles or Salmonella induced filaments during Salmonella infection. Our study has identified a novel effector-host protein interaction and suggests that SseK3 may influence NF-κB activity. However, the lack of GlcNAc modification of TRIM32 suggests that SseK3 has further, as yet unidentified, host targets. PMID:26394407

  6. SseK3 Is a Salmonella Effector That Binds TRIM32 and Modulates the Host's NF-κB Signalling Activity.

    PubMed

    Yang, Zhe; Soderholm, Amelia; Lung, Tania Wong Fok; Giogha, Cristina; Hill, Michelle M; Brown, Nathaniel F; Hartland, Elizabeth; Teasdale, Rohan D

    2015-01-01

    Salmonella Typhimurium employs an array of type III secretion system effectors that facilitate intracellular survival and replication during infection. The Salmonella effector SseK3 was originally identified due to amino acid sequence similarity with NleB; an effector secreted by EPEC/EHEC that possesses N-acetylglucoasmine (GlcNAc) transferase activity and modifies death domain containing proteins to block extrinsic apoptosis. In this study, immunoprecipitation of SseK3 defined a novel molecular interaction between SseK3 and the host protein, TRIM32, an E3 ubiquitin ligase. The conserved DxD motif within SseK3, which is essential for the GlcNAc transferase activity of NleB, was required for TRIM32 binding and for the capacity of SseK3 to suppress TNF-stimulated activation of NF-κB pathway. However, we did not detect GlcNAc modification of TRIM32 by SseK3, nor did the SseK3-TRIM32 interaction impact on TRIM32 ubiquitination that is associated with its activation. In addition, lack of sseK3 in Salmonella had no effect on production of the NF-κB dependent cytokine, IL-8, in HeLa cells even though TRIM32 knockdown suppressed TNF-induced NF-κB activity. Ectopically expressed SseK3 partially co-localises with TRIM32 at the trans-Golgi network, but SseK3 is not recruited to Salmonella induced vacuoles or Salmonella induced filaments during Salmonella infection. Our study has identified a novel effector-host protein interaction and suggests that SseK3 may influence NF-κB activity. However, the lack of GlcNAc modification of TRIM32 suggests that SseK3 has further, as yet unidentified, host targets.

  7. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases

    PubMed Central

    Riley, B.E.; Lougheed, J.C.; Callaway, K.; Velasquez, M.; Brecht, E.; Nguyen, L.; Shaler, T.; Walker, D.; Yang, Y.; Regnstrom, K.; Diep, L.; Zhang, Z.; Chiou, S.; Bova, M.; Artis, D.R.; Yao, N.; Baker, J.; Yednock, T.; Johnston, J.A.

    2013-01-01

    Parkin is a RING-between-RING E3 ligase that functions in the covalent attachment of ubiquitin to specific substrates, and mutations in Parkin are linked to Parkinson’s disease, cancer and mycobacterial infection. The RING-between-RING family of E3 ligases are suggested to function with a canonical RING domain and a catalytic cysteine residue usually restricted to HECT E3 ligases, thus termed ‘RING/HECT hybrid’ enzymes. Here we present the 1.58 Å structure of Parkin-R0RBR, revealing the fold architecture for the four RING domains, and several unpredicted interfaces. Examination of the Parkin active site suggests a catalytic network consisting of C431 and H433. In cells, mutation of C431 eliminates Parkin-catalysed degradation of mitochondria, and capture of an ubiquitin oxyester confirms C431 as Parkin’s cellular active site. Our data confirm that Parkin is a RING/HECT hybrid, and provide the first crystal structure of an RING-between-RING E3 ligase at atomic resolution, providing insight into this disease-related protein. PMID:23770887

  8. Ubiquitin E3 ligase FIEL1 regulates fibrotic lung injury through SUMO-E3 ligase PIAS4.

    PubMed

    Lear, Travis; McKelvey, Alison C; Rajbhandari, Shristi; Dunn, Sarah R; Coon, Tiffany A; Connelly, William; Zhao, Joe Y; Kass, Daniel J; Zhang, Yingze; Liu, Yuan; Chen, Bill B

    2016-05-30

    The E3 small ubiquitin-like modifier (SUMO) protein ligase protein inhibitor of activated STAT 4 (PIAS4) is a pivotal protein in regulating the TGFβ pathway. In this study, we discovered a new protein isoform encoded by KIAA0317, termed fibrosis-inducing E3 ligase 1 (FIEL1), which potently stimulates the TGFβ signaling pathway through the site-specific ubiquitination of PIAS4. FIEL1 targets PIAS4 using a double locking mechanism that is facilitated by the kinases PKCζ and GSK3β. Specifically, PKCζ phosphorylation of PIAS4 and GSK3β phosphorylation of FIEL1 are both essential for the degradation of PIAS4. FIEL1 protein is highly expressed in lung tissues from patients with idiopathic pulmonary fibrosis (IPF), whereas PIAS4 protein levels are significantly reduced. FIEL1 overexpression significantly increases fibrosis in a bleomycin murine model, whereas FIEL1 knockdown attenuates fibrotic conditions. Further, we developed a first-in-class small molecule inhibitor toward FIEL1 that is highly effective in ameliorating fibrosis in mice. This study provides a basis for IPF therapeutic intervention by modulating PIAS4 protein abundance.

  9. Suramin inhibits cullin-RING E3 ubiquitin ligases

    PubMed Central

    Wu, Kenneth; Chong, Robert A.; Yu, Qing; Bai, Jin; Spratt, Donald E.; Ching, Kevin; Lee, Chan; Miao, Haibin; Tappin, Inger; Hurwitz, Jerard; Zheng, Ning; Shaw, Gary S.; Sun, Yi; Felsenfeld, Dan P.; Sanchez, Roberto; Zheng, Jun-nian; Pan, Zhen-Qiang

    2016-01-01

    Cullin-RING E3 ubiquitin ligases (CRL) control a myriad of biological processes by directing numerous protein substrates for proteasomal degradation. Key to CRL activity is the recruitment of the E2 ubiquitin-conjugating enzyme Cdc34 through electrostatic interactions between E3′s cullin conserved basic canyon and the acidic C terminus of the E2 enzyme. This report demonstrates that a small-molecule compound, suramin, can inhibit CRL activity by disrupting its ability to recruit Cdc34. Suramin, an antitrypansomal drug that also possesses antitumor activity, was identified here through a fluorescence-based high-throughput screen as an inhibitor of ubiquitination. Suramin was shown to target cullin 1’s conserved basic canyon and to block its binding to Cdc34. Suramin inhibits the activity of a variety of CRL complexes containing cullin 2, 3, and 4A. When introduced into cells, suramin induced accumulation of CRL substrates. These observations help develop a strategy of regulating ubiquitination by targeting an E2–E3 interface through small-molecule modulators. PMID:27001857

  10. Activation of the E3 ubiquitin ligase Parkin.

    PubMed

    Caulfield, Thomas R; Fiesel, Fabienne C; Springer, Wolfdieter

    2015-04-01

    The PINK1 (phosphatase and tensin homologue-induced putative kinase 1)/Parkin-dependent mitochondrial quality control pathway mediates the clearance of damaged organelles, but appears to be disrupted in Parkinson's disease (PD) [Springer and Kahle (2011) Autophagy 7, 266-278]. Upon mitochondrial stress, PINK1 activates the E3 ubiquitin (Ub) ligase Parkin through phosphorylation of the Ub-like (UBL) domain of Parkin and of the small modifier Ub itself at a conserved residue [Sauvé and Gehring (2014) Cell Res. 24, 1025-1026]. Recently resolved partial crystal structures of Parkin showed a 'closed', auto-inhibited conformation, consistent with its notoriously weak enzymatic activity at steady state [Wauer and Komander (2013) EMBO J. 32, 2099-2112; Riley et al. (2013) Nat. Commun. 4, 1982; Trempe et al. (2013) Science 340, 1451-1455; Spratt et al. (2013) Nat. Commun. 4, 1983]. It has thus become clear that Parkin must undergo major structural rearrangements in order to unleash its catalytic functions. Recent published findings derived from X-ray structures and molecular modelling present a complete structural model of human Parkin at an all-atom resolution [Caulfield et al. (2014) PLoS Comput. Biol. 10, e1003935]. The results of the combined in silico simulations-based and experimental assay-based study indicates that PINK1-dependent Ser65 phosphorylation of Parkin is required for its activation and triggering of 'opening' conformations. Indeed, the obtained structures showed a sequential release of Parkin's intertwined domains and allowed docking of an Ub-charged E2 coenzyme, which could enable its enzymatic activity. In addition, using cell-based screening, select E2 enzymes that redundantly, cooperatively or antagonistically regulate Parkin's activation and/or enzymatic functions at different stages of the mitochondrial autophagy (mitophagy) process were identified [Fiesel et al. (2014) J. Cell Sci. 127, 3488-3504]. Other work that aims to pin-point the particular

  11. A portrayal of E3 ubiquitin ligases and deubiquitylases in cancer.

    PubMed

    Satija, Yatendra Kumar; Bhardwaj, Abhishek; Das, Sanjeev

    2013-12-15

    E3 ubiquitin ligases and deubiquitylating enzymes (DUBs) are the key components of ubiquitin proteasome system which plays a critical role in cellular protein homeostasis. Any shortcoming in their biological roles can lead to various diseases including cancer. The dynamic interplay between ubiquitylation and deubiquitylation determines the level and activity of several proteins including p53, which is crucial for cellular stress response and tumor suppression pathways. In this review, we describe the different types of E3 ubiquitin ligases including those targeting tumor suppressor p53, SCF ligases and RING type ligases and accentuate on biological functions of few important E3 ligases in the cellular regulatory networks. Tumor suppressor p53 level is tightly regulated by multiple E3 ligases including Mdm2, COP1, Pirh2, etc. SCF ubiquitin ligase complexes are key regulators of cell cycle and signal transduction. BRCA1 and VHL RING type ligases function as tumor suppressors and play an important role in DNA repair and hypoxia response respectively. Further, we discuss the biological consequences of deregulation of the E3 ligases and the implications for cancer development. We also describe deubiquitylases which reverse the process of ubiquitylation and regulate diverse cellular pathways including metabolism, cell cycle control and chromatin remodelling. As the E3 ubiquitin ligases and DUBs work in a substrate specific manner, an improved understanding of them can lead to better therapeutics for cancer.

  12. UHRF2, another E3 ubiquitin ligase for p53

    SciTech Connect

    Bai, Lu; Wang, Xiaohui; Jin, Fangmin; Yang, Yan; Qian, Guanhua; Duan, Changzhu

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer UHRF2 associates with p53 in vivo and in vitro. Black-Right-Pointing-Pointer UHRF2 interacts with p53 through its SRA/YDG domain. Black-Right-Pointing-Pointer UHRF2 ubiquitinates p53 in vivo and in vitro. -- Abstract: UHRF2, ubiquitin-like with PHD and ring finger domains 2, is a nuclear E3 ubiquitin ligase, which is involved in cell cycle and epigenetic regulation. UHRF2 interacts with multiple cell cycle proteins, including cyclins (A2, B1, D1, and E1), CDK2, and pRb; moreover, UHRF2 could ubiquitinate cyclin D1 and cyclin E1. Also, UHRF2 has been shown to be implicated in epigenetic regulation by associating with DNMTs, G9a, HDAC1, H3K9me2/3 and hemi-methylated DNA. We found that UHRF2 associates with tumor suppressor protein p53, and p53 is ubiquitinated by UHRF2 in vivo and in vitro. Given that both UHRF2 and p53 are involved in cell cycle regulation, this study may suggest a novel signaling pathway on cell proliferation.

  13. Screening for E3-Ubiquitin ligase inhibitors: challenges and opportunities

    PubMed Central

    Landré, Vivien; Rotblat, Barak; Melino, Sonia; Bernassola, Francesca; Melino, Gerry

    2014-01-01

    The ubiquitin proteasome system (UPS) plays a role in the regulation of most cellular pathways, and its deregulation has been implicated in a wide range of human pathologies that include cancer, neurodegenerative and immunological disorders and viral infections. Targeting the UPS by small molecular regulators thus provides an opportunity for the development of therapeutics for the treatment of several diseases. The proteasome inhibitor Bortezomib was approved for treatment of hematologic malignancies by the FDA in 2003, becoming the first drug targeting the ubiquitin proteasome system in the clinic. Development of drugs targeting specific components of the ubiquitin proteasome system, however, has lagged behind, mainly due to the complexity of the ubiquitination reaction and its outcomes. However, significant advances have been made in recent years in understanding the molecular nature of the ubiquitination system and the vast variety of cellular signals that it produces. Additionally, improvement of screening methods, both in vitro and in silico, have led to the discovery of a number of compounds targeting components of the ubiquitin proteasome system, and some of these have now entered clinical trials. Here, we discuss the current state of drug discovery targeting E3 ligases and the opportunities and challenges that it provides. PMID:25237759

  14. Substrates of IAP ubiquitin ligases identified with a designed orthogonal E3 ligase, the NEDDylator

    PubMed Central

    Zhuang, Min; Guan, Shenheng; Wang, Haopeng; Burlingame, Alma L.; Wells, James A.

    2012-01-01

    SUMMARY Inhibitors of Apoptosis Proteins (IAPs) are guardian ubiquitin ligases that keep classic pro-apoptotic proteins in check. Systematic identification of additional IAP substrates is challenged by the heterogeneity and sheer number of ubiquitinated proteins (>5000). Here we report a powerful catalytic tagging tool, the NEDDylator, which fuses a NEDD8 E2 conjugating enzyme, Ubc12, to the ubiquitin ligase, XIAP or cIAP1. This permits transfer of the rare ubiquitin homolog NEDD8 to the ubiquitin E3 substrates allowing them to be efficiently purified for LC/MS/MS identification. We have identified >50 potential IAP substrates of both cytosolic and mitochondrial origin that bear hallmark N-terminal IAP binding motifs. These substrates include the recently discovered protein phosphatase, PGAM5, which we show is proteolytically processed, accumulates in cytosol during apoptosis, and sensitizes cells to death. These studies reveal mechanisms and antagonistic partners for specific IAPs, and provide a powerful technology for labeling binding partners in transient protein-protein complexes. PMID:23201124

  15. A design principle underlying the paradoxical roles of E3 ubiquitin ligases

    NASA Astrophysics Data System (ADS)

    Lee, Daewon; Kim, Minjin; Cho, Kwang-Hyun

    2014-07-01

    E3 ubiquitin ligases are important cellular components that determine the specificity of proteolysis in the ubiquitin-proteasome system. However, an increasing number of studies have indicated that E3 ubiquitin ligases also participate in transcription. Intrigued by the apparently paradoxical functions of E3 ubiquitin ligases in both proteolysis and transcriptional activation, we investigated the underlying design principles using mathematical modeling. We found that the antagonistic functions integrated in E3 ubiquitin ligases can prevent any undesirable sustained activation of downstream genes when E3 ubiquitin ligases are destabilized by unexpected perturbations. Interestingly, this design principle of the system is similar to the operational principle of a safety interlock device in engineering systems, which prevents a system from abnormal operation unless stability is guaranteed.

  16. RBR E3 ubiquitin ligases: new structures, new insights, new questions

    PubMed Central

    Spratt, Donald E.; Walden, Helen; Shaw, Gary S.

    2014-01-01

    The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology. PMID:24576094

  17. RBR E3 ubiquitin ligases: new structures, new insights, new questions.

    PubMed

    Spratt, Donald E; Walden, Helen; Shaw, Gary S

    2014-03-15

    The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology.

  18. E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity.

    PubMed

    Duplan, Vincent; Rivas, Susana

    2014-01-01

    Reversible protein ubiquitination plays a crucial role during the regulation of plant immune signaling. E3 ubiquitin (Ub)-ligase enzymes, which are classified into different families depending on their structural and functional features, confer the specificity of substrate and are the best characterized components of the ubiquitination cascade. E3 Ub-ligases of different families have been shown to be involved in all steps of plant immune responses. Indeed, they have been involved in the first steps of pathogen perception, as they appear to modulate perception of pathogen-associated molecular patterns by pattern-recognition receptors at the plasma membrane and to regulate the accumulation of nucleotide-binding leucine-rich repeat-type intracellular immune receptors. In addition, E3 Ub-ligase proteins are also involved in the regulation of the signaling responses downstream of pathogen perception through targeting vesicle trafficking components or nuclear transcription factors, for instance. Finally, we also discuss the case of microbial effector proteins that are able to target host E3 Ub-ligases, or to act themselves as E3 Ub-ligases, in their attempt to subvert the host proteasome to promote disease. PMID:24592270

  19. Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease.

    PubMed

    Lohr, Naomi J; Molleston, Jean P; Strauss, Kevin A; Torres-Martinez, Wilfredo; Sherman, Eric A; Squires, Robert H; Rider, Nicholas L; Chikwava, Kudakwashe R; Cummings, Oscar W; Morton, D Holmes; Puffenberger, Erik G

    2010-03-12

    Ubiquitin ligases play an important role in the regulation of the immune system. Absence of Itch E3 ubiquitin ligase in mice has been shown to cause severe autoimmune disease. Using autozygosity mapping in a large Amish kindred, we identified a linkage region on chromosome 20 and selected candidate genes for screening. We describe, in ten patients, identification of a mutation resulting in truncation of ITCH. These patients represent the first reported human phenotype associated with ITCH deficiency. These patients not only have multisystem autoimmune disease but also display morphologic and developmental abnormalities. This disorder underscores the importance of ITCH ubiquitin ligase in many cellular processes. PMID:20170897

  20. Human ITCH E3 Ubiquitin Ligase Deficiency Causes Syndromic Multisystem Autoimmune Disease

    PubMed Central

    Lohr, Naomi J.; Molleston, Jean P.; Strauss, Kevin A.; Torres-Martinez, Wilfredo; Sherman, Eric A.; Squires, Robert H.; Rider, Nicholas L.; Chikwava, Kudakwashe R.; Cummings, Oscar W.; Morton, D. Holmes; Puffenberger, Erik G.

    2010-01-01

    Ubiquitin ligases play an important role in the regulation of the immune system. Absence of Itch E3 ubiquitin ligase in mice has been shown to cause severe autoimmune disease. Using autozygosity mapping in a large Amish kindred, we identified a linkage region on chromosome 20 and selected candidate genes for screening. We describe, in ten patients, identification of a mutation resulting in truncation of ITCH. These patients represent the first reported human phenotype associated with ITCH deficiency. These patients not only have multisystem autoimmune disease but also display morphologic and developmental abnormalities. This disorder underscores the importance of ITCH ubiquitin ligase in many cellular processes. PMID:20170897

  1. Composition, Roles, and Regulation of Cullin-Based Ubiquitin E3 Ligases

    PubMed Central

    Choi, Christina M.; Gray, William M.; Mooney, Sutton; Hellmann, Hanjo

    2014-01-01

    Due to their sessile nature, plants depend on flexible regulatory systems that allow them to adequately regulate developmental and physiological processes in context with environmental cues. The ubiquitin proteasome pathway, which targets a great number of proteins for degradation, is cellular tool that provides the necessary flexibility to accomplish this task. Ubiquitin E3 ligases provide the needed specificity to the pathway by selectively binding to particular substrates and facilitating their ubiquitylation. The largest group of E3 ligases known in plants is represented by CULLIN-REALLY INTERESTING NEW GENE (RING) E3 ligases (CRLs). In recent years, a great amount of knowledge has been generated to reveal the critical roles of these enzymes across all aspects of plant life. This review provides an overview of the different classes of CRLs in plants, their specific complex compositions, the variety of biological processes they control, and the regulatory steps that can affect their activities. PMID:25505853

  2. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    PubMed Central

    Nielsen, Sofie V.; Lindorff-Larsen, Kresten; Hartmann-Petersen, Rasmus

    2016-01-01

    The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work indicates that San1 is

  3. Regulation of neuronal survival and morphology by the E3 ubiquitin ligase RNF157

    PubMed Central

    Matz, A; Lee, S-J; Schwedhelm-Domeyer, N; Zanini, D; Holubowska, A; Kannan, M; Farnworth, M; Jahn, O; Göpfert, M C; Stegmüller, J

    2015-01-01

    Neuronal health is essential for the long-term integrity of the brain. In this study, we characterized the novel E3 ubiquitin ligase ring finger protein 157 (RNF157), which displays a brain-dominant expression in mouse. RNF157 is a homolog of the E3 ligase mahogunin ring finger-1, which has been previously implicated in spongiform neurodegeneration. We identified RNF157 as a regulator of survival in cultured neurons and established that the ligase activity of RNF157 is crucial for this process. We also uncovered that independently of its ligase activity, RNF157 regulates dendrite growth and maintenance. We further identified the adaptor protein APBB1 (amyloid beta precursor protein-binding, family B, member 1 or Fe65) as an interactor and proteolytic substrate of RNF157 in the control of neuronal survival. Here, the nuclear localization of Fe65 together with its interaction partner RNA-binding protein SART3 (squamous cell carcinoma antigen recognized by T cells 3 or Tip110) is crucial to trigger apoptosis. In summary, we described that the E3 ligase RNF157 regulates important aspects of neuronal development. PMID:25342469

  4. Regulation of neuronal survival and morphology by the E3 ubiquitin ligase RNF157.

    PubMed

    Matz, A; Lee, S-J; Schwedhelm-Domeyer, N; Zanini, D; Holubowska, A; Kannan, M; Farnworth, M; Jahn, O; Göpfert, M C; Stegmüller, J

    2015-04-01

    Neuronal health is essential for the long-term integrity of the brain. In this study, we characterized the novel E3 ubiquitin ligase ring finger protein 157 (RNF157), which displays a brain-dominant expression in mouse. RNF157 is a homolog of the E3 ligase mahogunin ring finger-1, which has been previously implicated in spongiform neurodegeneration. We identified RNF157 as a regulator of survival in cultured neurons and established that the ligase activity of RNF157 is crucial for this process. We also uncovered that independently of its ligase activity, RNF157 regulates dendrite growth and maintenance. We further identified the adaptor protein APBB1 (amyloid beta precursor protein-binding, family B, member 1 or Fe65) as an interactor and proteolytic substrate of RNF157 in the control of neuronal survival. Here, the nuclear localization of Fe65 together with its interaction partner RNA-binding protein SART3 (squamous cell carcinoma antigen recognized by T cells 3 or Tip110) is crucial to trigger apoptosis. In summary, we described that the E3 ligase RNF157 regulates important aspects of neuronal development. PMID:25342469

  5. Endoplasmic Reticulum Exit of Golgi-resident Defective for SREBP Cleavage (Dsc) E3 Ligase Complex Requires Its Activity.

    PubMed

    Raychaudhuri, Sumana; Espenshade, Peter J

    2015-06-01

    Layers of quality control ensure proper protein folding and complex formation prior to exit from the endoplasmic reticulum. The fission yeast Dsc E3 ligase is a Golgi-localized complex required for sterol regulatory element-binding protein (SREBP) transcription factor activation that shows architectural similarity to endoplasmic reticulum-associated degradation E3 ligases. The Dsc E3 ligase consists of five integral membrane proteins (Dsc1-Dsc5) and functionally interacts with the conserved AAA-ATPase Cdc48. Utilizing an in vitro ubiquitination assay, we demonstrated that Dsc1 has ubiquitin E3 ligase activity that requires the E2 ubiquitin-conjugating enzyme Ubc4. Mutations that specifically block Dsc1-Ubc4 interaction prevent SREBP cleavage, indicating that SREBP activation requires Dsc E3 ligase activity. Surprisingly, Golgi localization of the Dsc E3 ligase complex also requires Dsc1 E3 ligase activity. Analysis of Dsc E3 ligase complex formation, glycosylation, and localization indicated that Dsc1 E3 ligase activity is specifically required for endoplasmic reticulum exit of the complex. These results define enzyme activity-dependent sorting as an autoregulatory mechanism for protein trafficking.

  6. Endoplasmic Reticulum Exit of Golgi-resident Defective for SREBP Cleavage (Dsc) E3 Ligase Complex Requires Its Activity*

    PubMed Central

    Raychaudhuri, Sumana; Espenshade, Peter J.

    2015-01-01

    Layers of quality control ensure proper protein folding and complex formation prior to exit from the endoplasmic reticulum. The fission yeast Dsc E3 ligase is a Golgi-localized complex required for sterol regulatory element-binding protein (SREBP) transcription factor activation that shows architectural similarity to endoplasmic reticulum-associated degradation E3 ligases. The Dsc E3 ligase consists of five integral membrane proteins (Dsc1–Dsc5) and functionally interacts with the conserved AAA-ATPase Cdc48. Utilizing an in vitro ubiquitination assay, we demonstrated that Dsc1 has ubiquitin E3 ligase activity that requires the E2 ubiquitin-conjugating enzyme Ubc4. Mutations that specifically block Dsc1-Ubc4 interaction prevent SREBP cleavage, indicating that SREBP activation requires Dsc E3 ligase activity. Surprisingly, Golgi localization of the Dsc E3 ligase complex also requires Dsc1 E3 ligase activity. Analysis of Dsc E3 ligase complex formation, glycosylation, and localization indicated that Dsc1 E3 ligase activity is specifically required for endoplasmic reticulum exit of the complex. These results define enzyme activity-dependent sorting as an autoregulatory mechanism for protein trafficking. PMID:25918164

  7. A Bacterial Inhibitor of Host Programmed Cell Death Defenses is an E3 Ubiquitin Ligase

    SciTech Connect

    Janjusevic,R.; Abramovitch, R.; Martin, G.; Stebbins, C.

    2005-01-01

    The Pseudomonas syringae protein AvrPtoB is translocated into plant cells, where it inhibits immunity-associated programmed cell death (PCD). The structure of a C-terminal domain of AvrPtoB that is essential for anti-PCD activity reveals an unexpected homology to the U-box and RING-finger components of eukaryotic E3 ubiquitin ligases, and we show that AvrPtoB has ubiquitin ligase activity. Mutation of conserved residues involved in the binding of E2 ubiquitin-conjugating enzymes abolishes this activity in vitro, as well as anti-PCD activity in tomato leaves, which dramatically decreases virulence. These results show that Pseudomonas syringae uses a mimic of host E3 ubiquitin ligases to inactivate plant defenses.

  8. THE ROLE OF E3 LIGASES IN THE UBIQUITIN-DEPENDENT REGULATION OF SPERMATOGENESIS*

    PubMed Central

    Richburg, John H.; Myers, Jessica L.; Bratton, Shawn B.

    2014-01-01

    The ubiquitination of proteins is a post-translational modification that was first described as a means to target misfolded or unwanted proteins for degradation by the proteasome. It is now appreciated that the ubiquitination of proteins also serves as a mechanism to modify protein function and cellular functions such as protein trafficking, cell signaling, DNA repair, chromatin modifications, cell-cycle progression and cell death. The ubiquitination of proteins occurs through the hierarchal transfer of ubiquitin from an E1 ubiquitin-activating enzyme to an E2 ubiquitin-conjugating enzyme and finally to an E3 ubiquitin ligase that transfers the ubiquitin to its target protein. It is the final E3 ubiquitin ligase that confers the substrate specificity for ubiquitination and is the focus of this review. Spermatogenesis is a complex and highly regulated process by which spermatogonial stem cells undergo mitotic proliferation and expansion of the diploid spermatogonial population, differentiate into spermatocytes and progress through two meiotic divisions to produce haploid spermatids that proceed through a final morphogenesis to generate mature spermatozoa. The ubiquitination of proteins in the cells of the testis occurs in many of the processes required for the progression of mature spermatozoa. Since it is the E3 ubiquitin ligase that recognizes the target protein and provides the specificity and selectivity for ubiquitination, this review highlights known examples of E3 ligases in the testis and the differing roles that they play in maintaining functional spermatogenesis. PMID:24632385

  9. Another tier for caspase regulation: IAPs as NEDD8 E3 ligases.

    PubMed

    Benjamin, Sigi; Steller, Hermann

    2010-12-14

    Many inhibitor of apoptosis proteins (IAPs) function as E3 ligases to ubiquitinate important cell death proteins, including caspases. Broemer et al. (2010) report recently in Molecular Cell that IAPs can also inhibit caspases by promoting conjugation of the UBL NEDD8.

  10. A novel Fbxo25 acts as an E3 ligase for destructing cardiac specific transcription factors.

    PubMed

    Jang, Jae-Woo; Lee, Won-Young; Lee, Jae-Ho; Moon, Sung-Hwan; Kim, Chang-Hoon; Chung, Hyung-Min

    2011-07-01

    Alterations in ubiquitin-proteasome system (UPS) have been implicated in the etiology of human cardiovascular diseases. Skp1/Cul1/F-box (SCF) ubiquitin E3 ligase complex plays a pivotal role in ubiquitination of cardiac proteins. However, a specific ubiquitin E3 ligase responsible for the destruction of cardiac transcription factors such as Nkx2-5, Isl1, Mef2C, and Tbx5 remains elusive to date. Here, we show that a novel F-box containing Fbxo25 is cardiac-specific and acts as an ubiquitin E3 ligase for cardiac transcription factors. Fbxo25 expression was nuclei-specific in vitro and cardiomyocytes. Expression level of Fbxo25 was higher in a fetal heart than an adult. Moreover, Fbxo25 expression was increased along with those of cardiac-specific genes during cardiomyocyte development from ESCs. Fbxo25 expression facilitated protein degradation of Nkx2-5, Isl1, Hand1, and Mef2C. Especially, Fbxo25 ubiquitinated Nkx2-5, Isl1, and Hand1. Altogether, Fbxo25 acts as an ubiquitin E3 ligase to target cardiac transcription factors including Nkx2-5, Isl1, and Hand1, indicating that cardiac protein homeostasis through Fbxo25 has a pivotal impact on cardiac development.

  11. Yeast SREBP cleavage activation requires the Golgi Dsc E3 ligase complex.

    PubMed

    Stewart, Emerson V; Nwosu, Christine C; Tong, Zongtian; Roguev, Assen; Cummins, Timothy D; Kim, Dong-Uk; Hayles, Jacqueline; Park, Han-Oh; Hoe, Kwang-Lae; Powell, David W; Krogan, Nevan J; Espenshade, Peter J

    2011-04-22

    Mammalian lipid homeostasis requires proteolytic activation of membrane-bound sterol regulatory element binding protein (SREBP) transcription factors through sequential action of the Golgi Site-1 and Site-2 proteases. Here we report that while SREBP function is conserved in fungi, fission yeast employs a different mechanism for SREBP cleavage. Using genetics and biochemistry, we identified four genes defective for SREBP cleavage, dsc1-4, encoding components of a transmembrane Golgi E3 ligase complex with structural homology to the Hrd1 E3 ligase complex involved in endoplasmic reticulum-associated degradation. The Dsc complex binds SREBP and cleavage requires components of the ubiquitin-proteasome pathway: the E2-conjugating enzyme Ubc4, the Dsc1 RING E3 ligase, and the proteasome. dsc mutants display conserved aggravating genetic interactions with components of the multivesicular body pathway in fission yeast and budding yeast, which lacks SREBP. Together, these data suggest that the Golgi Dsc E3 ligase complex functions in a post-ER pathway for protein degradation.

  12. ZRF1 mediates remodeling of E3 ligases at DNA lesion sites during nucleotide excision repair

    PubMed Central

    Gracheva, Ekaterina; Chitale, Shalaka; Wilhelm, Thomas; Rapp, Alexander; Byrne, Jonathan; Stadler, Jens; Medina, Rebeca; Cardoso, M. Cristina

    2016-01-01

    Faithful DNA repair is essential to maintain genome integrity. Ultraviolet (UV) irradiation elicits both the recruitment of DNA repair factors and the deposition of histone marks such as monoubiquitylation of histone H2A at lesion sites. Here, we report how a ubiquitin E3 ligase complex specific to DNA repair is remodeled at lesion sites in the global genome nucleotide excision repair (GG-NER) pathway. Monoubiquitylation of histone H2A (H2A-ubiquitin) is catalyzed predominantly by a novel E3 ligase complex consisting of DDB2, DDB1, CUL4B, and RING1B (UV–RING1B complex) that acts early during lesion recognition. The H2A-ubiquitin binding protein ZRF1 mediates remodeling of this E3 ligase complex directly at the DNA lesion site, causing the assembly of the UV–DDB–CUL4A E3 ligase complex (DDB1–DDB2–CUL4A-RBX1). ZRF1 is an essential factor in GG-NER, and its function at damaged chromatin sites is linked to damage recognition factor XPC. Overall, the results shed light on the interplay between epigenetic and DNA repair recognition factors at DNA lesion sites. PMID:27091446

  13. Ubiquitin-Activated Interaction Traps (UBAITs) identify E3 ligase binding partners.

    PubMed

    O'Connor, Hazel F; Lyon, Nancy; Leung, Justin W; Agarwal, Poonam; Swaim, Caleb D; Miller, Kyle M; Huibregtse, Jon M

    2015-12-01

    We describe a new class of reagents for identifying substrates, adaptors, and regulators of HECT and RING E3s. UBAITs (Ubiquitin-Activated Interaction Traps) are E3-ubiquitin fusion proteins and, in an E1- and E2-dependent manner, the C-terminal ubiquitin moiety forms an amide linkage to proteins that interact with the E3, enabling covalent co-purification of the E3 with partner proteins. We designed UBAITs for both HECT (Rsp5, Itch) and RING (Psh1, RNF126, RNF168) E3s. For HECT E3s, trapping of interacting proteins occurred in vitro either through an E3 thioester-linked lariat intermediate or through an E2 thioester intermediate, and both WT and active-site mutant UBAITs trapped known interacting proteins in yeast and human cells. Yeast Psh1 and human RNF126 and RNF168 UBAITs also trapped known interacting proteins when expressed in cells. Human RNF168 is a key mediator of ubiquitin signaling that promotes DNA double-strand break repair. Using the RNF168 UBAIT, we identify H2AZ--a histone protein involved in DNA repair--as a new target of this E3 ligase. These results demonstrate that UBAITs represent powerful tools for profiling a wide range of ubiquitin ligases.

  14. “Ubiquitylation: mechanism and functions“ Review series: RBR E3-ligases at work

    PubMed Central

    Smit, Judith J; Sixma, Titia K

    2014-01-01

    The RING-in-between-RING (RBR) E3s are a curious family of ubiquitin E3-ligases, whose mechanism of action is unusual in several ways. Their activities are auto-inhibited, causing a requirement for activation by protein-protein interactions or posttranslational modifications. They catalyse ubiquitin conjugation by a concerted RING/HECT-like mechanism in which the RING1 domain facilitates E2-discharge to directly form a thioester intermediate with a cysteine in RING2. This short-lived, HECT-like intermediate then modifies the target. Uniquely, the RBR ligase HOIP makes use of this mechanism to target the ubiquitin amino-terminus, by presenting the target ubiquitin for modification using its distinctive LDD region. PMID:24469331

  15. Inhibitor of apoptosis proteins as E3 ligases for ubiquitin and NEDD8.

    PubMed

    Kamada, Shinji

    2013-04-01

    The inhibitors of apoptosis proteins (IAPs) are endogenous inhibitors for apoptosis. Apoptosis is carried out by caspases, which are the family of cystein proteases. IAPs regulate caspases through two conserved regions, the baculovirus IAP repeats (BIRs) and the really interesting new gene (RING) domains. Although the BIRs are responsible for binding to caspases, the RING domain can act as a ubiquitin-E3 ligase, leading to ubiquitylation of IAPs themselves and their pro-apoptotic IAP counterparts such as caspases. Recently, it is reported that another ubiquitin-like protein, neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8), is also involved in the regulation of apoptosis through neddylation of caspases mediated by IAPs. On the contrary, the results against the function of IAPs as a NEDD8-E3 ligase are also suggested. This review presents the summary of IAPs, caspases, and the ubiquitin-proteasome system and how their interactions influence the regulation of apoptosis.

  16. IAPs as E3 ligases of Rac1: shaping the move.

    PubMed

    Oberoi-Khanuja, Tripat Kaur; Rajalingam, Krishnaraj

    2012-01-01

    Inhibitors of Apoptosis Proteins (IAPs) are well-studied E3 ubiquitin ligases predominantly known for regulation of apoptosis. We uncovered that IAPs can function as a direct E3 ubiquitin ligase of RhoGTPase Rac1. cIAP1 and XIAP directly conjugate polyubiquitin chains to Lysine 147 of activated Rac1 and target it for proteasomal degradation. Consistently, loss of these IAPs by various strategies led to stabilization of Rac1 and mesenchymal mode of migration in tumor cells. IAPs also regulate Rac1 degradation upon RhoGDI1 depletion and CNF1 toxin treatment. Our observations revealed an evolutionarily conserved role of IAPs in regulating Rac1 stability shedding light on to the mechanisms behind ubiquitination-dependent inactivation of Rac1 signaling.

  17. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast.

    PubMed

    Nakatsukasa, Kunio; Okumura, Fumihiko; Kamura, Takumi

    2015-01-01

    Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes. PMID:26362128

  18. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast.

    PubMed

    Nakatsukasa, Kunio; Okumura, Fumihiko; Kamura, Takumi

    2015-01-01

    Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.

  19. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation.

    PubMed

    Lechtenberg, Bernhard C; Rajput, Akhil; Sanishvili, Ruslan; Dobaczewska, Małgorzata K; Ware, Carl F; Mace, Peter D; Riedl, Stefan J

    2016-01-28

    Ubiquitination is a central process affecting all facets of cellular signalling and function. A critical step in ubiquitination is the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases. RING-type E3 ligases typically facilitate the transfer of ubiquitin from the E2 directly to the substrate. The RING-between-RING (RBR) family of RING-type E3 ligases, however, breaks this paradigm by forming a covalent intermediate with ubiquitin similarly to HECT-type E3 ligases. The RBR family includes Parkin and HOIP, the central catalytic factor of the LUBAC (linear ubiquitin chain assembly complex). While structural insights into the RBR E3 ligases Parkin and HHARI in their overall auto-inhibited forms are available, no structures exist of intact fully active RBR E3 ligases or any of their complexes. Thus, the RBR mechanism of action has remained largely unknown. Here we present the first structure, to our knowledge, of the fully active human HOIP RBR in its transfer complex with an E2~ubiquitin conjugate, which elucidates the intricate nature of RBR E3 ligases. The active HOIP RBR adopts a conformation markedly different from that of auto-inhibited RBRs. HOIP RBR binds the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centres ideally aligned for ubiquitin transfer, which structurally both requires and enables a HECT-like mechanism. In addition, three distinct helix-IBR-fold motifs inherent to RBRs form ubiquitin-binding regions that engage the activated ubiquitin of the E2~ubiquitin conjugate and, surprisingly, an additional regulatory ubiquitin molecule. The features uncovered reveal critical states of the HOIP RBR E3 ligase cycle, and comparison with Parkin and HHARI suggests a general mechanism for RBR E3 ligases. PMID:26789245

  20. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation

    PubMed Central

    Lechtenberg, Bernhard C.; Rajput, Akhil; Sanishvili, Ruslan; Dobaczewska, Małgorzata K.; Ware, Carl F.; Mace, Peter D.; Riedl, Stefan J.

    2015-01-01

    Ubiquitination is a central process affecting all facets of cellular signaling and function1. A critical step in ubiquitination is the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases. RING-type E3 ligases typically facilitate the transfer of ubiquitin from the E2 directly to the substrate2,3. The RBR family of RING-type E3 ligases, however, breaks this paradigm by forming a covalent intermediate with ubiquitin similarly to HECT-type E3 ligases4–6. The RBR family includes Parkin4 and HOIP, the central catalytic factor of the linear ubiquitin chain assembly complex (LUBAC)7. While structural insights into the RBR E3 ligases Parkin and HHARI in their overall autoinhibited forms are available8–13, no structures exist of intact fully active RBR E3 ligases or any of their complexes. Thus, the RBR mechanism of action has remained largely enigmatic. Here we present the first structure of the fully active HOIP-RBR in its transfer complex with an E2~ubiquitin conjugate, which elucidates the intricate nature of RBR E3 ligases. The active HOIP-RBR adopts a conformation markedly different from that of autoinhibited RBRs. HOIP-RBR binds the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centers ideally aligned for ubiquitin transfer, which structurally both requires and enables a HECT-like mechanism. In addition, surprisingly, three distinct helix–IBR-fold motifs inherent to RBRs form ubiquitin-binding regions that engage the activated ubiquitin of the E2~Ub conjugate as well as an additional regulatory ubiquitin molecule. The features uncovered reveal critical states of the HOIP-RBR E3 ligase cycle, and comparison with Parkin and HHARI suggests a general mechanism for RBR E3 ligases. PMID:26789245

  1. Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase

    PubMed Central

    Cappadocia, Laurent; Pichler, Andrea; Lima, Christopher D.

    2015-01-01

    E3 protein ligases enhance transfer of ubiquitin-like (Ubl) proteins from E2 conjugating enzymes to substrates by stabilizing the thioester-charged E2~Ubl in a closed configuration optimally aligned for nucleophilic attack. Here, we report biochemical and structural data that define the N-terminal domain of the Homo sapiens ZNF451 as the catalytic module for SUMO E3 ligase activity. ZNF451 catalytic module contains tandem SUMO interaction motifs (SIMs) bridged by a Proline-Leucine-Arginine-Proline (PLRP) motif. The first SIM and PLRP motif engage thioester charged E2~SUMO while the next SIM binds a second molecule of SUMO bound to the backside of E2. We show that ZNF451 is SUMO2 specific and that SUMO-modification of ZNF451 may contribute to activity by providing a second molecule of SUMO that interacts with E2. Our results are consistent with ZNF451 functioning as a bona fide SUMO E3 ligase. PMID:26524494

  2. E3 Ubiquitin Ligase RLIM Negatively Regulates c-Myc Transcriptional Activity and Restrains Cell Proliferation

    PubMed Central

    Wang, Lan; Cai, Hao; Zhu, Jingjing; Yu, Long

    2016-01-01

    RNF12/RLIM is a RING domain-containing E3 ubiquitin ligase whose function has only begun to be elucidated recently. Although RLIM was reported to play important roles in some biological processes such as imprinted X-chromosome inactivation and regulation of TGF-β pathway etc., other functions of RLIM are largely unknown. Here, we identified RLIM as a novel E3 ubiquitin ligase for c-Myc, one of the most frequently deregulated oncoproteins in human cancers. RLIM associates with c-Myc in vivo and in vitro independently of the E3 ligase activity of RLIM. Moreover, RLIM promotes the polyubiquitination of c-Myc protein independently of Ser62 and Thr58 phosphorylation of c-Myc. However, RLIM-mediated ubiquitination does not affect c-Myc stability. Instead, RLIM inhibits the transcriptional activity of c-Myc through which RLIM restrains cell proliferation. Our results suggest that RLIM may function as a tumor suppressor by controlling the activity of c-Myc oncoprotein. PMID:27684546

  3. Covalent ISG15 conjugation positively regulates the ubiquitin E3 ligase activity of parkin

    PubMed Central

    Im, Eunju; Yoo, Lang; Hyun, Minju; Shin, Woo Hyun

    2016-01-01

    Parkinson's disease (PD) is characterized by selective loss of dopaminergic neurons in the pars compacta of the substantia nigra and accumulation of ubiquitinated proteins in aggregates called Lewy bodies. Several mutated genes have been found in familial PD patients, including SNCA (α-synuclein), PARK2 (parkin), PINK1, PARK7 (DJ-1), LRRK2 and ATP13A2. Many pathogenic mutations of PARK2, which encodes the ubiquitin E3 ligase parkin, result in loss of function, leading to accumulation of parkin substrates and consequently contributing to dopaminergic cell death. ISG15 is a member of the ubiquitin-like modifier family and is induced by stimulation with type I interferons. Similar to ubiquitin and ubiquitination, covalent conjugation of ISG15 to target proteins (ISGylation) regulates their biochemical properties. In this study, we identified parkin as a novel target of ISGylation specifically mediated by the ISG15-E3 ligase HERC5. In addition, we identified two ISGylation sites, Lys-349 and Lys-369, in the in-between-ring domain of parkin. ISGylation of these sites promotes parkin's ubiquitin E3 ligase activity by suppressing the intramolecular interaction that maintains its autoinhibited conformation and increases its cytoprotective effect. In conclusion, covalent ISG15 conjugation is a novel mode of modulating parkin activity, and alteration in this pathway may be associated with PD pathogenesis. PMID:27534820

  4. Autoactivation of the MDM2 E3 Ligase by Intramolecular Interaction

    PubMed Central

    Cheng, Qian; Song, Tanjing; Chen, Lihong

    2014-01-01

    The RING domain ubiquitin E3 ligase MDM2 is a key regulator of p53 degradation and a mediator of signals that stabilize p53. The current understanding of the mechanisms by which MDM2 posttranslational modifications and protein binding cause p53 stabilization remains incomplete. Here we present evidence that the MDM2 central acidic region is critical for activating RING domain E3 ligase activity. A 30-amino-acid minimal region of the acidic domain binds to the RING domain through intramolecular interactions and stimulates the catalytic function of the RING domain in promoting ubiquitin release from charged E2. The minimal activation sequence is also the binding site for the ARF tumor suppressor, which inhibits ubiquitination of p53. The acidic domain-RING domain intramolecular interaction is modulated by ATM-mediated phosphorylation near the RING domain or by binding of ARF. These results suggest that MDM2 phosphorylation and association with protein regulators share a mechanism in inhibiting the E3 ligase function and stabilizing p53 and suggest that targeting the MDM2 autoactivation mechanism may be useful for therapeutic modulation of p53 levels. PMID:24842904

  5. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide.

    PubMed

    Fischer, Eric S; Böhm, Kerstin; Lydeard, John R; Yang, Haidi; Stadler, Michael B; Cavadini, Simone; Nagel, Jane; Serluca, Fabrizio; Acker, Vincent; Lingaraju, Gondichatnahalli M; Tichkule, Ritesh B; Schebesta, Michael; Forrester, William C; Schirle, Markus; Hassiepen, Ulrich; Ottl, Johannes; Hild, Marc; Beckwith, Rohan E J; Harper, J Wade; Jenkins, Jeremy L; Thomä, Nicolas H

    2014-08-01

    In the 1950s, the drug thalidomide, administered as a sedative to pregnant women, led to the birth of thousands of children with multiple defects. Despite the teratogenicity of thalidomide and its derivatives lenalidomide and pomalidomide, these immunomodulatory drugs (IMiDs) recently emerged as effective treatments for multiple myeloma and 5q-deletion-associated dysplasia. IMiDs target the E3 ubiquitin ligase CUL4-RBX1-DDB1-CRBN (known as CRL4(CRBN)) and promote the ubiquitination of the IKAROS family transcription factors IKZF1 and IKZF3 by CRL4(CRBN). Here we present crystal structures of the DDB1-CRBN complex bound to thalidomide, lenalidomide and pomalidomide. The structure establishes that CRBN is a substrate receptor within CRL4(CRBN) and enantioselectively binds IMiDs. Using an unbiased screen, we identified the homeobox transcription factor MEIS2 as an endogenous substrate of CRL4(CRBN). Our studies suggest that IMiDs block endogenous substrates (MEIS2) from binding to CRL4(CRBN) while the ligase complex is recruiting IKZF1 or IKZF3 for degradation. This dual activity implies that small molecules can modulate an E3 ubiquitin ligase and thereby upregulate or downregulate the ubiquitination of proteins.

  6. SIVA1 directs the E3 ubiquitin ligase RAD18 for PCNA monoubiquitination

    PubMed Central

    Han, Jinhua; Liu, Ting; Huen, Michael S.Y.; Hu, Lin; Chen, Zhiqiu

    2014-01-01

    Translesion DNA synthesis (TLS) is a universal DNA damage tolerance mechanism conserved from yeast to mammals. A key event in the regulation of TLS is the monoubiquitination of proliferating cell nuclear antigen (PCNA). Extensive evidence indicates that the RAD6–RAD18 ubiquitin-conjugating/ligase complex specifically monoubiquitinates PCNA and regulates TLS repair. However, the mechanism by which the RAD6–RAD18 complex is targeted to PCNA has remained elusive. In this study, we used an affinity purification approach to isolate the PCNA-containing complex and have identified SIVA1 as a critical regulator of PCNA monoubiquitination. We show that SIVA1 constitutively interacts with PCNA via a highly conserved PCNA-interacting peptide motif. Knockdown of SIVA1 compromised RAD18-dependent PCNA monoubiquitination and Polη focus formation, leading to elevated ultraviolet sensitivity and mutation. Furthermore, we demonstrate that SIVA1 interacts with RAD18 and serves as a molecular bridge between RAD18 and PCNA, thus targeting the E3 ligase activity of RAD18 onto PCNA. Collectively, our results provide evidence that the RAD18 E3 ligase requires an accessory protein for binding to its substrate PCNA. PMID:24958773

  7. Self-clearance mechanism of mitochondrial E3 ligase MARCH5 contributes to mitochondria quality control.

    PubMed

    Kim, Song-Hee; Park, Yong-Yea; Yoo, Young-Suk; Cho, Hyeseong

    2016-01-01

    MARCH5, a mitochondrial E3 ubiquitin ligase, controls mitochondrial dynamics proteins and misfolded proteins, and has been proposed to play a role in mitochondria quality control. However, it remains unclear how mutant MARCH5 found in cancer tissues is removed from cells. Here, we show that mutation in the MARCH5 ligase domain increased its half-life fourfold, resulting in a drastic increase in its protein level. Abnormal accumulation of the E3 ligase-defective MARCH5 mutants MARCH5(H43W) and MARCH5(C65/68S) was diminished by overexpression of active MARCH5(WT) ; the mutant proteins were degraded through the ubiquitin-proteasome pathway. Coimmunoprecipitation revealed that MARCH5 forms homodimers, and that substitution of Gly to Leu at the first putative GxxxG dimerization motif, but not the second, resulted in a loss of dimeric interaction. Moreover, overexpression of the dimerization-defective mutant MARCH5(4GL) could not decrease the level of accumulated MARCH5(H43W) , suggesting that dimerization of MARCH5 is necessary for self-clearance. Abnormal accumulation of MARCH5(H43W) and mitochondrial hyperfusion led to NF-ĸB activation, which was suppressed by overexpression of MARCH5(WT) . Together, the data reveal a self-protective mechanism involving MARCH5, which can target its own dysfunctional mutant for degradation in order to maintain mitochondrial homeostasis.

  8. Characterization of the mammalian family of DCN-type NEDD8 E3 ligases

    PubMed Central

    Keuss, Matthew J.; Thomas, Yann; Mcarthur, Robin; Wood, Nicola T.; Knebel, Axel; Kurz, Thimo

    2016-01-01

    ABSTRACT Cullin-RING ligases (CRL) are ubiquitin E3 enzymes that bind substrates through variable substrate receptor proteins and are activated by attachment of the ubiquitin-like protein NEDD8 to the cullin subunit. DCNs are NEDD8 E3 ligases that promote neddylation. Mammalian cells express five DCN-like (DCNL) proteins but little is known about their specific functions or interaction partners. We found that DCNLs form stable stoichiometric complexes with CAND1 and cullins that can only be neddylated in the presence of a substrate adaptor. These CAND–cullin–DCNL complexes might represent ‘reserve’ CRLs that can be rapidly activated when needed. We further found that all DCNLs interact with most cullin subtypes, but that they are probably responsible for the neddylation of different subpopulations of any given cullin. This is consistent with the fact that the subcellular localization of DCNLs in tissue culture cells differs and that they show unique tissue-specific expression patterns in mice. Thus, the specificity between DCNL-type NEDD8 E3 enzymes and their cullin substrates is only apparent in well-defined physiological contexts and related to their subcellular distribution and restricted expression. PMID:26906416

  9. UV-B induction of the E3 ligase ARIADNE12 depends on CONSTITUTIVELY PHOTOMORPHOGENIC 1

    PubMed Central

    Xie, Lisi; Lang-Mladek, Christina; Richter, Julia; Nigam, Neha; Hauser, Marie-Theres

    2015-01-01

    The UV-B inducible ARIADNE12 (ARI12) gene of Arabidopsis thaliana is a member of the RING-between-RING (RBR) family of E3 ubiquitin ligases for which a novel ubiquitination mechanism was identified in mammalian homologs. This RING-HECT hybrid mechanism needs a conserved cysteine which is replaced by serine in ARI12 and might affect the E3 ubiquitin ligase activity. We have shown that under photomorphogenic UV-B, ARI12 is a downstream target of the classical ultraviolet B (UV-B) UV RESISTANCE LOCUS 8 (UVR8) pathway. However, under high fluence rate of UV-B ARI12 was induced independently of UVR8 and the UV-A/blue light and red/far-red photoreceptors. A key component of several light signaling pathways is CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1). Upon UV-B COP1 is trapped in the nucleus through interaction with UVR8 permitting the activation of genes that regulate the biosynthesis of UV-B protective metabolites and growth adaptations. To clarify the role of COP1 in the regulation of ARI12 mRNA expression and ARI12 protein stability, localization and interaction with COP1 was assessed with and without UV-B. We found that COP1 controls ARI12 in white light, low and high fluence rate of UV-B. Furthermore we show that ARI12 is indeed an E3 ubiquitin ligase which is mono-ubiquitinated, a prerequisite for the RING-HECT hybrid mechanism. Finally, genetic analyses with transgenes expressing a genomic pmARI12:ARI12-GFP construct confirm the epistatic interaction between COP1 and ARI12 in growth responses to high fluence rate UV-B. PMID:25817546

  10. UV-B induction of the E3 ligase ARIADNE12 depends on CONSTITUTIVELY PHOTOMORPHOGENIC 1.

    PubMed

    Xie, Lisi; Lang-Mladek, Christina; Richter, Julia; Nigam, Neha; Hauser, Marie-Theres

    2015-08-01

    The UV-B inducible ARIADNE12 (ARI12) gene of Arabidopsis thaliana is a member of the RING-between-RING (RBR) family of E3 ubiquitin ligases for which a novel ubiquitination mechanism was identified in mammalian homologs. This RING-HECT hybrid mechanism needs a conserved cysteine which is replaced by serine in ARI12 and might affect the E3 ubiquitin ligase activity. We have shown that under photomorphogenic UV-B, ARI12 is a downstream target of the classical ultraviolet B (UV-B) UV Resistance Locus 8 (UVR8) pathway. However, under high fluence rate of UV-B ARI12 was induced independently of UVR8 and the UV-A/blue light and red/far-red photoreceptors. A key component of several light signaling pathways is Constitutively Photomorphogenic 1 (COP1). Upon UV-B COP1 is trapped in the nucleus through interaction with UVR8 permitting the activation of genes that regulate the biosynthesis of UV-B protective metabolites and growth adaptations. To clarify the role of COP1 in the regulation of ARI12 mRNA expression and ARI12 protein stability, localization and interaction with COP1 was assessed with and without UV-B. We found that COP1 controls ARI12 in white light, low and high fluence rate of UV-B. Furthermore we show that ARI12 is indeed an E3 ubiquitin ligase which is mono-ubiquitinated, a prerequisite for the RING-HECT hybrid mechanism. Finally, genetic analyses with transgenes expressing a genomic pmARI12:ARI12-GFP construct confirm the epistatic interaction between COP1 and ARI12 in growth responses to high fluence rate UV-B.

  11. Identification of HECT E3 ubiquitin ligase family genes involved in stem cell regulation and regeneration in planarians.

    PubMed

    Henderson, Jordana M; Nisperos, Sean V; Weeks, Joi; Ghulam, Mahjoobah; Marín, Ignacio; Zayas, Ricardo M

    2015-08-15

    E3 ubiquitin ligases constitute a large family of enzymes that modify specific proteins by covalently attaching ubiquitin polypeptides. This post-translational modification can serve to regulate protein function or longevity. In spite of their importance in cell physiology, the biological roles of most ubiquitin ligases remain poorly understood. Here, we analyzed the function of the HECT domain family of E3 ubiquitin ligases in stem cell biology and tissue regeneration in planarians. Using bioinformatic searches, we identified 17 HECT E3 genes that are expressed in the Schmidtea mediterranea genome. Whole-mount in situ hybridization experiments showed that HECT genes were expressed in diverse tissues and most were expressed in the stem cell population (neoblasts) or in their progeny. To investigate the function of all HECT E3 ligases, we inhibited their expression using RNA interference (RNAi) and determined that orthologs of huwe1, wwp1, and trip12 had roles in tissue regeneration. We show that huwe1 RNAi knockdown led to a significant expansion of the neoblast population and death by lysis. Further, our experiments showed that wwp1 was necessary for both neoblast and intestinal tissue homeostasis as well as uncovered an unexpected role of trip12 in posterior tissue specification. Taken together, our data provide insights into the roles of HECT E3 ligases in tissue regeneration and demonstrate that planarians will be a useful model to evaluate the functions of E3 ubiquitin ligases in stem cell regulation.

  12. E3 Ubiquitin Ligases Pellinos as Regulators of Pattern Recognition Receptor Signaling and Immune responses

    PubMed Central

    Medvedev, Andrei E.; Murphy, Michael; Zhou, Hao; Li, Xiaoxia

    2015-01-01

    SUMMARY Pellinos are a family of E3 ubiquitin ligases discovered for their role in catalyzing K63-linked polyubiquitination of Pelle, an IL-1 receptor-associated kinase homologue in the Drosophila Toll pathway. Subsequent studies have revealed the central and non-redundant roles of mammalian Pellino-1, Pellino-2 and Pelino-3 in signaling pathways emanating from IL-1 receptors, Toll-like receptors, NOD-like receptors, T- and B-cell receptors. While Pellinos ability to interact with many signaling intermediates suggested their scaffolding roles, recent findings in mice expressing ligase-inactive Pellinos demonstrated the importance of Pellino ubiquitin ligase activity. Cell-specific functions of Pellinos have emerged, e.g., Pellino-1 being a negative regulator in T-lymphocytes and a positive regulator in myeloid cells, and details of molecular regulation of receptor signaling by various members of the Pellino family have been revealed. In this review, we have summarized current information about Pellino-mediated regulation of signaling by pattern recognition receptors, T-cell and B-cell receptors and TNF receptors, and discuss Pellino’s role in sepsis and infectious diseases, as well as in autoimmune, inflammatory and allergic disorders. We also provide our perspective on the potential of targeting Pellinos with peptide- or small molecule-based drug compounds as a new therapeutic approach for septic shock and autoimmune pathologies. PMID:26085210

  13. E3 ubiquitin ligases Pellinos as regulators of pattern recognition receptor signaling and immune responses.

    PubMed

    Medvedev, Andrei E; Murphy, Michael; Zhou, Hao; Li, Xiaoxia

    2015-07-01

    Pellinos are a family of E3 ubiquitin ligases discovered for their role in catalyzing K63-linked polyubiquitination of Pelle, an interleukin-1 (IL-1) receptor-associated kinase homolog in the Drosophila Toll pathway. Subsequent studies have revealed the central and non-redundant roles of mammalian Pellino-1, Pellino-2, and Pelino-3 in signaling pathways emanating from IL-1 receptors, Toll-like receptors, NOD-like receptors, T- and B-cell receptors. While Pellinos ability to interact with many signaling intermediates suggested their scaffolding roles, recent findings in mice expressing ligase-inactive Pellinos demonstrated the importance of Pellino ubiquitin ligase activity. Cell-specific functions of Pellinos have emerged, e.g. Pellino-1 being a negative regulator in T lymphocytes and a positive regulator in myeloid cells, and details of molecular regulation of receptor signaling by various members of the Pellino family have been revealed. In this review, we summarize current information about Pellino-mediated regulation of signaling by pattern recognition receptors, T-cell and B-cell receptors and tumor necrosis factor receptors, and discuss Pellinos roles in sepsis and infectious diseases, as well as in autoimmune, inflammatory, and allergic disorders. We also provide our perspective on the potential of targeting Pellinos with peptide- or small molecule-based drug compounds as a new therapeutic approach for septic shock and autoimmune pathologies.

  14. Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation.

    PubMed

    Scott, Daniel C; Rhee, David Y; Duda, David M; Kelsall, Ian R; Olszewski, Jennifer L; Paulo, Joao A; de Jong, Annemieke; Ovaa, Huib; Alpi, Arno F; Harper, J Wade; Schulman, Brenda A

    2016-08-25

    Hundreds of human cullin-RING E3 ligases (CRLs) modify thousands of proteins with ubiquitin (UB) to achieve vast regulation. Current dogma posits that CRLs first catalyze UB transfer from an E2 to their client substrates and subsequent polyubiquitylation from various linkage-specific E2s. We report an alternative E3-E3 tagging cascade: many cellular NEDD8-modified CRLs associate with a mechanistically distinct thioester-forming RBR-type E3, ARIH1, and rely on ARIH1 to directly add the first UB and, in some cases, multiple additional individual monoubiquitin modifications onto CRL client substrates. Our data define ARIH1 as a component of the human CRL system, demonstrate that ARIH1 can efficiently and specifically mediate monoubiquitylation of several CRL substrates, and establish principles for how two distinctive E3s can reciprocally control each other for simultaneous and joint regulation of substrate ubiquitylation. These studies have broad implications for CRL-dependent proteostasis and mechanisms of E3-mediated UB ligation. PMID:27565346

  15. CREB SUMOylation by the E3 ligase PIAS1 enhances spatial memory.

    PubMed

    Chen, Yan-Chu; Hsu, Wei-Lun; Ma, Yun-Li; Tai, Derek J C; Lee, Eminy H Y

    2014-07-16

    cAMP-responsive element binding protein (CREB) phosphorylation and signaling plays an important role in long-term memory formation, but other posttranslational modifications of CREB are less known. Here, we found that CREB1Δ, the short isoform of CREB, could be sumoylated by the small ubiquitin-like modifier (SUMO) E3 ligase protein inhibitor of activated STAT1 (PIAS1) at Lys271 and Lys290 and PIAS1 SUMOylation of CREB1Δ increased the expression level of CREB1Δ. CREB1Δ could also be sumoylated by other PIAS family proteins, but not by the E3 ligases RanBP2 and Pc2 or by the E2 ligase Ubc9. Furthermore, water maze training increased the level of endogenous CREB SUMOylation in rat CA1 neurons determined by in vitro SUMOylation assay, but this effect was not observed in other brain areas. Moreover, transduction of Lenti-CREBWT to rat CA1 area facilitated, whereas transduction of Lenti-CREB double sumo-mutant (CREBK271RK290R) impaired, spatial learning and memory performance. Transduction of Lenti-CREBWT-SUMO1 fusion vector to rat CA1 area showed a more significant effect in enhancing spatial learning and memory and CREB SUMOylation. Lenti-CREBWT transduction increased, whereas Lenti-CREBK271RK290R transduction decreased, CREB DNA binding to the brain-derived neurotrophic factor (bdnf) promoter and decreased bdnf mRNA expression. Knock-down of PIAS1 expression in CA1 area by PIAS1 siRNA transfection impaired spatial learning and memory and decreased endogenous CREB SUMOylation. In addition, CREB SUMOylation was CREB phosphorylation dependent and lasted longer. Therefore, CREB phosphorylation may be responsible for signal transduction during the early phase of long-term memory formation, whereas CREB SUMOylation sustains long-term memory.

  16. E3 ubiquitin ligase SP1 regulates peroxisome biogenesis in Arabidopsis

    DOE PAGES

    Pan, Ronghui; Satkovich, John; Hu, Jianping

    2016-10-31

    Peroxisomes are ubiquitous eukaryotic organelles that play pivotal roles in a suite of metabolic processes and often act coordinately with other organelles, such as chloroplasts and mitochondria. Peroxisomes import proteins to the peroxisome matrix by peroxins (PEX proteins), but how the function of the PEX proteins is regulated is poorly understood. In this study, we identified the Arabidopsis RING (really interesting new gene) type E3 ubiquitin ligase SP1 [suppressor of plastid protein import locus 1 (ppi1) 1] as a peroxisome membrane protein with a regulatory role in peroxisome protein import. SP1 interacts physically with the two components of the peroxisomemore » protein docking complex PEX13–PEX14 and the (RING)-finger peroxin PEX2. Loss of SP1 function suppresses defects of the pex14-2 and pex13-1 mutants, and SP1 is involved in the degradation of PEX13 and possibly PEX14 and all three RING peroxins. An in vivo ubiquitination assay showed that SP1 has the ability to promote PEX13 ubiquitination. Our study has revealed that, in addition to its previously reported function in chloroplast biogenesis, SP1 plays a role in peroxisome biogenesis. The same E3 ubiquitin ligase promotes the destabilization of components of two distinct protein-import machineries, indicating that degradation of organelle biogenesis factors by the ubiquitin–proteasome system may constitute an important regulatory mechanism in coordinating the biogenesis of metabolically linked organelles in eukaryotes.« less

  17. Smurf E3 ubiquitin ligases at the cross roads of oncogenesis and tumor suppression.

    PubMed

    David, Diana; Nair, S Asha; Pillai, M Radhakrishna

    2013-01-01

    Smad ubiquitin regulatory factors (Smurfs) belong to the HECT- family of E3 ubiquitin ligases and comprise mainly of two members, Smurf1 and Smurf2. Initially, Smurfs have been implicated in determining the competence of cells to respond to TGF-β/BMP signaling pathway. Nevertheless, the intrinsic catalytic activity has extended the repertoire of Smurf substrates beyond the TGF-β/BMP super family expanding its realm further to epigenetic modifications of histones governing the chromatin landscape. Through regulation of a large number of proteins in multiple cellular compartments, Smurfs regulate diverse cellular processes, including cell-cycle progression, cell proliferation, differentiation, DNA damage response, maintenance of genomic stability, and metastasis. As the genomic ablation of Smurfs leads to global changes in histone modifications and predisposition to a wide spectrum of tumors, Smurfs are also considered to have a novel tumor suppressor function. This review focuses on regulation network and biological functions of Smurfs in connection with its role in cancer progression. By providing a portrait of their protein targets, we intend to link the substrate specificity of Smurfs with their contribution to tumorigenesis. Since the regulation and biological functions of Smurfs are quite complex, understanding the oncogenic potential of these E3 ubiquitin ligases may facilitate the development of mechanism-based drugs in cancer treatment.

  18. Degradation of host ubiquitin E3 ligase Itch by human cytomegalovirus UL42.

    PubMed

    Koshizuka, Tetsuo; Tanaka, Keiichiro; Suzutani, Tatsuo

    2016-01-01

    Human cytomegalovirus (HCMV) UL42 is classified as a CMV-specific but function-unknown gene. According to its amino acid sequence, UL42 has a C-terminal hydrophobic domain predicted to be a transmembrane domain and two PPxY (PY) motifs in its N terminus, but no N-terminal signal peptide. These features resemble those of herpes simplex virus (HSV) UL56 and varicella-zoster virus ORF0. HCMV UL42 interacts with Itch, a member of the Nedd4 family of ubiquitin E3 ligases, through its PY motifs as observed in HSV UL56. HCMV UL42 was partially colocalized with the trans-Golgi network and cytoplasmic vesicles in transfected fibroblasts. Itch was colocalized with HCMV UL42 and accumulated in a fine-speckled pattern in the cytoplasm. UL42 induced the ubiquitination and degradation of Itch in HCMV-infected fibroblasts, and was partially colocalized with p62, a ubiquitin-binding protein, and CD63, a marker of lysosome and multivesicular bodies. The electrophoretic pattern of Itch was altered by infection with HCMV and the amount of Itch was increased by the deletion of UL42. Our findings suggest that the regulatory function of the Nedd4 E3 ligase family and the structural features of HCMV UL42 are conserved characteristics in herpesviruses. PMID:26555021

  19. A specific E3 ligase/deubiquitinase pair modulates TBP protein levels during muscle differentiation.

    PubMed

    Li, Li; Martinez, Silvia Sanchez; Hu, Wenxin; Liu, Zhe; Tjian, Robert

    2015-01-01

    TFIID-a complex of TATA-binding protein (TBP) and TBP-associated factors (TAFs)-is a central component of the Pol II promoter recognition apparatus. Recent studies have revealed significant downregulation of TFIID subunits in terminally differentiated myocytes, hepatocytes and adipocytes. Here, we report that TBP protein levels are tightly regulated by the ubiquitin-proteasome system. Using an in vitro ubiquitination assay coupled with biochemical fractionation, we identified Huwe1 as an E3 ligase targeting TBP for K48-linked ubiquitination and proteasome-mediated degradation. Upregulation of Huwe1 expression during myogenesis induces TBP degradation and myotube differentiation. We found that Huwe1 activity on TBP is antagonized by the deubiquitinase USP10, which protects TBP from degradation. Thus, modulating the levels of both Huwe1 and USP10 appears to fine-tune the requisite degradation of TBP during myogenesis. Together, our study unmasks a previously unknown interplay between an E3 ligase and a deubiquitinating enzyme regulating TBP levels during cellular differentiation.

  20. A specific E3 ligase/deubiquitinase pair modulates TBP protein levels during muscle differentiation

    PubMed Central

    Li, Li; Martinez, Silvia Sanchez; Hu, Wenxin; Liu, Zhe; Tjian, Robert

    2015-01-01

    TFIID—a complex of TATA-binding protein (TBP) and TBP-associated factors (TAFs)—is a central component of the Pol II promoter recognition apparatus. Recent studies have revealed significant downregulation of TFIID subunits in terminally differentiated myocytes, hepatocytes and adipocytes. Here, we report that TBP protein levels are tightly regulated by the ubiquitin-proteasome system. Using an in vitro ubiquitination assay coupled with biochemical fractionation, we identified Huwe1 as an E3 ligase targeting TBP for K48-linked ubiquitination and proteasome-mediated degradation. Upregulation of Huwe1 expression during myogenesis induces TBP degradation and myotube differentiation. We found that Huwe1 activity on TBP is antagonized by the deubiquitinase USP10, which protects TBP from degradation. Thus, modulating the levels of both Huwe1 and USP10 appears to fine-tune the requisite degradation of TBP during myogenesis. Together, our study unmasks a previously unknown interplay between an E3 ligase and a deubiquitinating enzyme regulating TBP levels during cellular differentiation. DOI: http://dx.doi.org/10.7554/eLife.08536.001 PMID:26393420

  1. PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation.

    PubMed

    Sargent, Graeme; van Zutphen, Tim; Shatseva, Tatiana; Zhang, Ling; Di Giovanni, Valeria; Bandsma, Robert; Kim, Peter Kijun

    2016-09-12

    Peroxisomes are metabolic organelles necessary for anabolic and catabolic lipid reactions whose numbers are highly dynamic based on the metabolic need of the cells. One mechanism to regulate peroxisome numbers is through an autophagic process called pexophagy. In mammalian cells, ubiquitination of peroxisomal membrane proteins signals pexophagy; however, the E3 ligase responsible for mediating ubiquitination is not known. Here, we report that the peroxisomal E3 ubiquitin ligase peroxin 2 (PEX2) is the causative agent for mammalian pexophagy. Expression of PEX2 leads to gross ubiquitination of peroxisomes and degradation of peroxisomes in an NBR1-dependent autophagic process. We identify PEX5 and PMP70 as substrates of PEX2 that are ubiquitinated during amino acid starvation. We also find that PEX2 expression is up-regulated during both amino acid starvation and rapamycin treatment, suggesting that the mTORC1 pathway regulates pexophagy by regulating PEX2 expression levels. Finally, we validate our findings in vivo using an animal model. PMID:27597759

  2. RNF185, a Novel Mitochondrial Ubiquitin E3 Ligase, Regulates Autophagy through Interaction with BNIP1

    PubMed Central

    Tang, Fei; Wang, Bin; Li, Na; Wu, Yanfang; Jia, Junying; Suo, Talin; Chen, Quan; Liu, Yong-Jun; Tang, Jie

    2011-01-01

    Autophagy is an evolutionarily conserved catabolic process that allows recycling of cytoplasmic organelles, such as mitochondria, to offer a bioenergetically efficient pathway for cell survival. Considerable progress has been made in characterizing mitochondrial autophagy. However, the dedicated ubiquitin E3 ligases targeting mitochondria for autophagy have not been revealed. Here we show that human RNF185 is a mitochondrial ubiquitin E3 ligase that regulates selective mitochondrial autophagy in cultured cells. The two C-terminal transmembrane domains of human RNF185 mediate its localization to mitochondrial outer membrane. RNF185 stimulates LC3II accumulation and the formation of autophagolysosomes in human cell lines. We further identified the Bcl-2 family protein BNIP1 as one of the substrates for RNF185. Human BNIP1 colocalizes with RNF185 at mitochondria and is polyubiquitinated by RNF185 through K63-based ubiquitin linkage in vivo. The polyubiquitinated BNIP1 is capable of recruiting autophagy receptor p62, which simultaneously binds both ubiquitin and LC3 to link ubiquitination and autophagy. Our study might reveal a novel RNF185-mediated mechanism for modulating mitochondrial homeostasis through autophagy. PMID:21931693

  3. The E3 ubiquitin ligase Mib1 regulates Plk4 and centriole biogenesis.

    PubMed

    Čajánek, Lukas; Glatter, Timo; Nigg, Erich A

    2015-05-01

    Centrioles function as core components of centrosomes and as basal bodies for the formation of cilia and flagella. Thus, effective control of centriole numbers is essential for embryogenesis, tissue homeostasis and genome stability. In mammalian cells, the centriole duplication cycle is governed by Polo-like kinase 4 (Plk4). Here, we identify the E3 ubiquitin ligase Mind bomb (Mib1) as a new interaction partner of Plk4. We show that Mib1 localizes to centriolar satellites but redistributes to centrioles in response to conditions that induce centriole amplification. The E3 ligase activity of Mib1 triggers ubiquitylation of Plk4 on multiple sites, causing the formation of Lys11-, Lys29- and Lys48-ubiquitin linkages. These modifications control the abundance of Plk4 and its ability to interact with centrosomal proteins, thus counteracting centriole amplification induced by excess Plk4. Collectively, these results identify the interaction between Mib1 and Plk4 as a new and important element in the control of centriole homeostasis.

  4. A conserved role for the ARC1 E3 ligase in Brassicaceae self-incompatibility.

    PubMed

    Indriolo, Emily; Goring, Daphne R

    2014-01-01

    Ubiquitination plays essential roles in the regulation of many processes in plants including pollen rejection in self-incompatible species. In the Brassicaceae (mustard family), self-incompatibility drives the rejection of self-pollen by preventing pollen hydration following pollen contact with the stigmatic surface. Self-pollen is recognized by a ligand-receptor pair: the pollen S-locus cysteine rich/S-locus protein 11 (SCR/SP11) ligand and the pistil S receptor kinase (SRK). Following self-pollen contact, the SCR/SP11 ligand on the pollen surface binds to SRK on the pistil surface, and the SRK-activated signaling pathway is initiated. This pathway includes the armadillo repeat containing 1 (ARC1) protein, a member of the plant U-box (PUB) family of E3 ubiquitin ligases. ARC1 is a functional E3 ligase and is required downstream of SRK for the self-incompatibility response. This mini review highlights our recent progress in establishing ARC1's conserved role in self-pollen rejection in Brassica and Arabidopsis species and discusses future research directions in this field. PMID:24847339

  5. Genomic and functional analysis of the E3 ligase PARK2 in glioma

    PubMed Central

    Lin, De-Chen; Xu, Liang; Chen, Ye; Yan, Haiyan; Hazawa, Masaharu; Doan, Ngan; Said, Jonathan W.; Ding, Ling-Wen; Liu, Li-Zhen; Yang, Henry; Yu, Shizhu; Kahn, Michael; Yin, Dong; Koeffler, H. Phillip

    2015-01-01

    PARK2 (PARKIN) is an E3 ubiquitin ligase whose dysfunction has been associated with the progression of Parkinsonism and human malignancies, and its role in cancer remains to be explored. In this study, we report that PARK2 is frequently deleted and underexpressed in human glioma, and low PARK2 expression is associated with poor survival. Restoration of PARK2 significantly inhibited glioma cell growth both in vitro and in vivo, while depletion of PARK2 promoted cell proliferation. PARK2 attenuated both Wnt- and EGF-stimulated pathways through down-regulating the intracellular level of β-catenin and EGFR. Notably, PARK2 physically interacted with both β-catenin and EGFR. We further found that PARK2 promoted the ubiquitination of these two proteins in an E3 ligase activity dependent manner. Finally, inspired by these newly identified tumor suppressive functions of PARK2, we tested and proved that combination of small-molecule inhibitors targeting both Wnt-β-catenin and EGFR-AKT pathways synergistically impaired glioma cell viability. Together, our findings uncover novel cancer-associated functions of PARK2 and provide a potential therapeutic approach to treat glioma. PMID:25877876

  6. Probes of Ubiquitin E3 ligases distinguish different stages of Parkin activation

    PubMed Central

    Pao, Kuan-Chuan; Stanley, Mathew; Han, Cong; Lai, Yu-Chiang; Murphy, Paul; Balk, Kristin; Wood, Nicola T.; Corti, Olga; Corvol, Jean-Christophe; Muqit, Miratul M.K.; Virdee, Satpal

    2016-01-01

    E3 ligases represent an important class of enzymes, yet there are currently no chemical probes to profile their activity. We develop a new class of activity-based probe by reengineering of a ubiquitin-charged E2 conjugating enzyme and demonstrate their utility by profiling the transthiolation activity of the RING-in-between-RING (RBR) E3 ligase Parkin in vitro and in cellular extracts. Our study provides valuable insight into the roles, and cellular hierarchy, of distinct phosphorylation events in Parkin activation. We also profile Parkin patient disease-associated mutations and strikingly demonstrate that they largely mediate their effect by altering transthiolation activity. Furthermore, our probes enable direct and quantitative measurement of endogenous Parkin activity revealing that endogenous Parkin is activated in neuronal cell lines (≥75 %) in response to mitochondrial depolarization. This new technology also holds promise as a novel biomarker of PINK1-Parkin signalling as demonstrated by compatibility with Parkinson’s disease patient-derived samples. PMID:26928937

  7. Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase-polyubiquitin-binding domain fusions (ligase traps).

    PubMed

    Mark, Kevin G; Loveless, Theresa B; Toczyski, David P

    2016-02-01

    Ubiquitination is an essential protein modification that influences eukaryotic processes ranging from substrate degradation to nonproteolytic pathway alterations, including DNA repair and endocytosis. Previous attempts to analyze substrates via physical association with their respective ubiquitin ligases have had some success. However, because of the transient nature of enzyme-substrate interactions and rapid protein degradation, detection of substrates remains a challenge. Ligase trapping is an affinity purification approach in which ubiquitin ligases are fused to a polyubiquitin-binding domain, which allows the isolation of ubiquitinated substrates. Immunoprecipitation is first used to enrich for proteins that are bound to the ligase trap. Subsequently, affinity purification is used under denaturing conditions to capture proteins conjugated with hexahistidine-tagged ubiquitin. By using this protocol, ubiquitinated substrates that are specific for a given ligase can be isolated for mass spectrometry or western blot analysis. After cells have been collected, the described protocol can be completed in 2-3 d.

  8. Aβ-Induced Synaptic Alterations Require the E3 Ubiquitin Ligase Nedd4-1

    PubMed Central

    Rodrigues, Elizabeth M.; Scudder, Samantha L.; Goo, Marisa S.

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease in which patients experience progressive cognitive decline. A wealth of evidence suggests that this cognitive impairment results from synaptic dysfunction in affected brain regions caused by cleavage of amyloid precursor protein into the pathogenic peptide amyloid-β (Aβ). Specifically, it has been shown that Aβ decreases surface AMPARs, dendritic spine density, and synaptic strength, and also alters synaptic plasticity. The precise molecular mechanisms by which this occurs remain unclear. Here we demonstrate a role for ubiquitination in Aβ-induced synaptic dysfunction in cultured rat neurons. We find that Aβ promotes the ubiquitination of AMPARs, as well as the redistribution and recruitment of Nedd4-1, a HECT E3 ubiquitin ligase we previously demonstrated to target AMPARs for ubiquitination and degradation. Strikingly, we show that Nedd4-1 is required for Aβ-induced reductions in surface AMPARs, synaptic strength, and dendritic spine density. Our findings, therefore, indicate an important role for Nedd4-1 and ubiquitin in the synaptic alterations induced by Aβ. SIGNIFICANCE STATEMENT Synaptic changes in Alzheimer's disease (AD) include surface AMPAR loss, which can weaken synapses. In a cell culture model of AD, we found that AMPAR loss correlates with increased AMPAR ubiquitination. In addition, the ubiquitin ligase Nedd4-1, known to ubiquitinate AMPARs, is recruited to synapses in response to Aβ. Strikingly, reducing Nedd4-1 levels in this model prevented surface AMPAR loss and synaptic weakening. These findings suggest that, in AD, Nedd4-1 may ubiquitinate AMPARs to promote their internalization and weaken synaptic strength, similar to what occurs in Nedd4-1's established role in homeostatic synaptic scaling. This is the first demonstration of Aβ-mediated control of a ubiquitin ligase to regulate surface AMPAR expression. PMID:26843640

  9. Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome.

    PubMed

    Cavadini, Simone; Fischer, Eric S; Bunker, Richard D; Potenza, Alessandro; Lingaraju, Gondichatnahalli M; Goldie, Kenneth N; Mohamed, Weaam I; Faty, Mahamadou; Petzold, Georg; Beckwith, Rohan E J; Tichkule, Ritesh B; Hassiepen, Ulrich; Abdulrahman, Wassim; Pantelic, Radosav S; Matsumoto, Syota; Sugasawa, Kaoru; Stahlberg, Henning; Thomä, Nicolas H

    2016-03-31

    The cullin-RING ubiquitin E3 ligase (CRL) family comprises over 200 members in humans. The COP9 signalosome complex (CSN) regulates CRLs by removing their ubiquitin-like activator NEDD8. The CUL4A-RBX1-DDB1-DDB2 complex (CRL4A(DDB2)) monitors the genome for ultraviolet-light-induced DNA damage. CRL4A(DBB2) is inactive in the absence of damaged DNA and requires CSN to regulate the repair process. The structural basis of CSN binding to CRL4A(DDB2) and the principles of CSN activation are poorly understood. Here we present cryo-electron microscopy structures for CSN in complex with neddylated CRL4A ligases to 6.4 Å resolution. The CSN conformers defined by cryo-electron microscopy and a novel apo-CSN crystal structure indicate an induced-fit mechanism that drives CSN activation by neddylated CRLs. We find that CSN and a substrate cannot bind simultaneously to CRL4A, favouring a deneddylated, inactive state for substrate-free CRL4 complexes. These architectural and regulatory principles appear conserved across CRL families, allowing global regulation by CSN.

  10. Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome.

    PubMed

    Cavadini, Simone; Fischer, Eric S; Bunker, Richard D; Potenza, Alessandro; Lingaraju, Gondichatnahalli M; Goldie, Kenneth N; Mohamed, Weaam I; Faty, Mahamadou; Petzold, Georg; Beckwith, Rohan E J; Tichkule, Ritesh B; Hassiepen, Ulrich; Abdulrahman, Wassim; Pantelic, Radosav S; Matsumoto, Syota; Sugasawa, Kaoru; Stahlberg, Henning; Thomä, Nicolas H

    2016-03-31

    The cullin-RING ubiquitin E3 ligase (CRL) family comprises over 200 members in humans. The COP9 signalosome complex (CSN) regulates CRLs by removing their ubiquitin-like activator NEDD8. The CUL4A-RBX1-DDB1-DDB2 complex (CRL4A(DDB2)) monitors the genome for ultraviolet-light-induced DNA damage. CRL4A(DBB2) is inactive in the absence of damaged DNA and requires CSN to regulate the repair process. The structural basis of CSN binding to CRL4A(DDB2) and the principles of CSN activation are poorly understood. Here we present cryo-electron microscopy structures for CSN in complex with neddylated CRL4A ligases to 6.4 Å resolution. The CSN conformers defined by cryo-electron microscopy and a novel apo-CSN crystal structure indicate an induced-fit mechanism that drives CSN activation by neddylated CRLs. We find that CSN and a substrate cannot bind simultaneously to CRL4A, favouring a deneddylated, inactive state for substrate-free CRL4 complexes. These architectural and regulatory principles appear conserved across CRL families, allowing global regulation by CSN. PMID:27029275

  11. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide

    PubMed Central

    Fischer, Eric S.; Böhm, Kerstin; Lydeard, John R.; Yang, Haidi; Stadler, Michael B.; Cavadini, Simone; Nagel, Jane; Serluca, Fabrizio; Acker, Vincent; Lingaraju, Gondichatnahalli M.; Tichkule, Ritesh B.; Schebesta, Michael; Forrester, William C.; Schirle, Markus; Hassiepen, Ulrich; Ottl, Johannes; Hild, Marc; Beckwith, Rohan E. J.; Harper, J. Wade; Jenkins, Jeremy L.; Thomä, Nicolas H.

    2015-01-01

    In the 1950s the drug thalidomide administered as a sedative to pregnant women led to the birth of thousands of children with multiple defects. Despite its teratogenicity, thalidomide and its derivatives lenalidomide and pomalidomide (together known as Immunomodulatory Drugs: IMiDs) recently emerged as effective treatments for multiple myeloma and 5q-dysplasia. IMiDs target the CUL4-RBX1-DDB1-CRBN (CRL4CRBN) E3 ubiquitin ligase and promote the ubiquitination of Ikaros/Aiolos transcription factors by CRL4CRBN. Here we present the crystal structure of the DDB1-CRBN complex bound to thalidomide, lenalidomide and pomalidomide. The structure establishes CRBN as a CRL4CRBN substrate receptor, which enantioselectively binds IMiDs. Through an unbiased screen we identify the homeobox transcription factor MEIS2 as an endogenous substrate of CRL4CRBN. Our studies suggest that IMiDs block endogenous substrates (MEIS2) from binding to CRL4CRBN when recruiting Ikaros/Aiolos for degradation. This dual activity implies that small molecules can principally modulate a ligase to up- or down-regulate the ubiquitination of proteins. PMID:25043012

  12. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity

    PubMed Central

    Lin, Xiao-Li; Niu, De; Hu, Zi-Liang; Kim, Dae Heon; Jin, Yin Hua; Cai, Bin; Liu, Peng; Miura, Kenji; Yun, Dae-Jin; Kim, Woe-Yeon; Lin, Rongcheng

    2016-01-01

    COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants. PMID:27128446

  13. Cortical dynamics during cell motility are regulated by CRL3(KLHL21) E3 ubiquitin ligase.

    PubMed

    Courtheoux, Thibault; Enchev, Radoslav I; Lampert, Fabienne; Gerez, Juan; Beck, Jochen; Picotti, Paola; Sumara, Izabela; Peter, Matthias

    2016-01-01

    Directed cell movement involves spatial and temporal regulation of the cortical microtubule (Mt) and actin networks to allow focal adhesions (FAs) to assemble at the cell front and disassemble at the rear. Mts are known to associate with FAs, but the mechanisms coordinating their dynamic interactions remain unknown. Here we show that the CRL3(KLHL21) E3 ubiquitin ligase promotes cell migration by controlling Mt and FA dynamics at the cell cortex. Indeed, KLHL21 localizes to FA structures preferentially at the leading edge, and in complex with Cul3, ubiquitylates EB1 within its microtubule-interacting CH-domain. Cells lacking CRL3(KLHL21) activity or expressing a non-ubiquitylatable EB1 mutant protein are unable to migrate and exhibit strong defects in FA dynamics, lamellipodia formation and cortical plasticity. Our study thus reveals an important mechanism to regulate cortical dynamics during cell migration that involves ubiquitylation of EB1 at focal adhesions. PMID:27641145

  14. Structural and functional insights into the E3 ligase, RNF126

    PubMed Central

    Krysztofinska, Ewelina M.; Martínez-Lumbreras, Santiago; Thapaliya, Arjun; Evans, Nicola J.; High, Stephen; Isaacson, Rivka L.

    2016-01-01

    RNF126 is an E3 ubiquitin ligase that collaborates with the BAG6 sortase complex to ubiquitinate hydrophobic substrates in the cytoplasm that are destined for proteasomal recycling. Composed of a trimeric complex of BAG6, TRC35 and UBL4A the BAG6 sortase is also associated with SGTA, a co-chaperone from which it can obtain hydrophobic substrates. Here we solve the solution structure of the RNF126 zinc finger domain in complex with the BAG6 UBL domain. We also characterise an interaction between RNF126 and UBL4A and analyse the competition between SGTA and RNF126 for the N-terminal BAG6 binding site. This work sheds light on the sorting mechanism of the BAG6 complex and its accessory proteins which, together, decide the fate of stray hydrophobic proteins in the aqueous cytoplasm. PMID:27193484

  15. Cortical dynamics during cell motility are regulated by CRL3KLHL21 E3 ubiquitin ligase

    PubMed Central

    Courtheoux, Thibault; Enchev, Radoslav I.; Lampert, Fabienne; Gerez, Juan; Beck, Jochen; Picotti, Paola; Sumara, Izabela; Peter, Matthias

    2016-01-01

    Directed cell movement involves spatial and temporal regulation of the cortical microtubule (Mt) and actin networks to allow focal adhesions (FAs) to assemble at the cell front and disassemble at the rear. Mts are known to associate with FAs, but the mechanisms coordinating their dynamic interactions remain unknown. Here we show that the CRL3KLHL21 E3 ubiquitin ligase promotes cell migration by controlling Mt and FA dynamics at the cell cortex. Indeed, KLHL21 localizes to FA structures preferentially at the leading edge, and in complex with Cul3, ubiquitylates EB1 within its microtubule-interacting CH-domain. Cells lacking CRL3KLHL21 activity or expressing a non-ubiquitylatable EB1 mutant protein are unable to migrate and exhibit strong defects in FA dynamics, lamellipodia formation and cortical plasticity. Our study thus reveals an important mechanism to regulate cortical dynamics during cell migration that involves ubiquitylation of EB1 at focal adhesions. PMID:27641145

  16. Cortical dynamics during cell motility are regulated by CRL3(KLHL21) E3 ubiquitin ligase.

    PubMed

    Courtheoux, Thibault; Enchev, Radoslav I; Lampert, Fabienne; Gerez, Juan; Beck, Jochen; Picotti, Paola; Sumara, Izabela; Peter, Matthias

    2016-09-19

    Directed cell movement involves spatial and temporal regulation of the cortical microtubule (Mt) and actin networks to allow focal adhesions (FAs) to assemble at the cell front and disassemble at the rear. Mts are known to associate with FAs, but the mechanisms coordinating their dynamic interactions remain unknown. Here we show that the CRL3(KLHL21) E3 ubiquitin ligase promotes cell migration by controlling Mt and FA dynamics at the cell cortex. Indeed, KLHL21 localizes to FA structures preferentially at the leading edge, and in complex with Cul3, ubiquitylates EB1 within its microtubule-interacting CH-domain. Cells lacking CRL3(KLHL21) activity or expressing a non-ubiquitylatable EB1 mutant protein are unable to migrate and exhibit strong defects in FA dynamics, lamellipodia formation and cortical plasticity. Our study thus reveals an important mechanism to regulate cortical dynamics during cell migration that involves ubiquitylation of EB1 at focal adhesions.

  17. Novel roles of Skp2 E3 ligase in cellular senescence, cancer progression, and metastasis

    PubMed Central

    Wang, Guocan; Chan, Chia-Hsin; Gao, Yuan; Lin, Hui-Kuan

    2012-01-01

    S-phase kinase-associated protein 2 (Skp2) belongs to the F-box protein family. It is a component of the SCF E3 ubiquitin ligase complex. Skp2 has been shown to regulate cellular proliferation by targeting several cell cycle-regulated proteins for ubiquitination and degradation, including cyclin-dependent kinase inhibitor p27. Skp2 has also been demonstrated to display an oncogenic function since its overexpression has been observed in many human cancers. This review discusses the recent discoveries on the novel roles of Skp2 in regulating cellular senescence, cancer progression, and metastasis, as well as the therapeutic potential of targeting Skp2 for human cancer treatment. PMID:22200179

  18. The antiobesity factor WDTC1 suppresses adipogenesis via the CRL4WDTC1 E3 ligase.

    PubMed

    Groh, Beezly S; Yan, Feng; Smith, Matthew D; Yu, Yanbao; Chen, Xian; Xiong, Yue

    2016-05-01

    WDTC1/Adp encodes an evolutionarily conserved suppressor of lipid accumulation. While reduced WDTC1 expression is associated with obesity in mice and humans, its cellular function is unknown. Here, we demonstrate that WDTC1 is a component of a DDB1-CUL4-ROC1 (CRL4) E3 ligase. Using 3T3-L1 cell culture model of adipogenesis, we show that disrupting the interaction between WDTC1 and DDB1 leads to a loss of adipogenic suppression by WDTC1, increased triglyceride accumulation and adipogenic gene expression. We show that the CRL4(WDTC) (1) complex promotes histone H2AK119 monoubiquitylation, thus suggesting a role for this complex in transcriptional repression during adipogenesis. Our results identify a biochemical role for WDTC1 and extend the functional range of the CRL4 complex to the suppression of fat accumulation. PMID:27113764

  19. Release from myosin V via regulated recruitment of an E3 ubiquitin ligase controls organelle localization.

    PubMed

    Yau, Richard G; Peng, Yutian; Valiathan, Rajeshwari R; Birkeland, Shanda R; Wilson, Thomas E; Weisman, Lois S

    2014-03-10

    Molecular motors transport organelles to specific subcellular locations. Upon arrival at their correct locations, motors release organelles via unknown mechanisms. The yeast myosin V, Myo2, binds the vacuole-specific adaptor Vac17 to transport the vacuole from the mother cell to the bud. Here, we show that vacuole detachment from Myo2 occurs in multiple regulated steps along the entire pathway of vacuole transport. Detachment initiates in the mother cell with the phosphorylation of Vac17 that recruits the E3 ligase Dma1 to the vacuole. However, Dma1 recruitment also requires the assembly of the vacuole transport complex and is first observed after the vacuole enters the bud. Dma1 remains on the vacuole until the bud and mother vacuoles separate. Subsequently, Dma1 targets Vac17 for proteasomal degradation. Notably, we find that the termination of peroxisome transport also requires Dma1. We predict that this is a general mechanism that detaches myosin V from select cargoes.

  20. Merlin's tumor suppression linked to inhibition of the E3 ubiquitin ligase CRL4DCAF1

    PubMed Central

    Li, Wei

    2010-01-01

    The mechanism by which the FERM domain protein Merlin, encoded by the tumor suppressor NF2, restrains cell proliferation is poorly understood. Prior studies have suggested that Merlin exerts its antimitogenic effect by interacting with multiple signaling proteins located at or near the plasma membrane. We have recently observed that Merlin translocates into the nucleus and binds to and inhibits the E3 ubiquitin ligase CRL4DCAF1. Genetic evidence indicates that inactivation of Merlin induces oncogenic gene expression, hyperproliferation, and tumorigenicity by unleashing the activity of CRL4DCAF1. In addition to providing a potential explanation for the diverse effects that loss of Merlin exerts in multiple cell types, these findings suggest that compounds inhibiting CRL4DCAF1 may display therapeutic efficacy in Neurofibromatosis type 2 and other cancers driven by Merlin inactivation. PMID:21084862

  1. Further analysis of XBAT32, an Arabidopsis RING E3 ligase, involved in ethylene biosynthesis.

    PubMed

    Prasad, Madhulika E; Stone, Sophia L

    2010-11-01

    The Arabidopsis RING E3 ligase, XBAT32, was previously characterized as a regulator of lateral root initiation. However, how XBAT32 function to modulate lateral root initiation was unknown. In our recent paper, we demonstrated that XBAT32 is involved in ethylene biosynthesis and it is through this function that XBAT32 is able to regulate lateral root production. Here we discuss a few other findings, observed in the ethylene overproducing mutant, xbat32, that reflect the effect of elevated ethylene levels on plant growth and development. Ethylene signaling also regulates plant responses to adverse environmental conditions such as high salinity. Consistent with ethylene's role as a stress hormone, xbat32 exhibited increased sensitivity to salt stress during seed germination and postgerminative growth. Thus, XBAT32 may also play a role in ethylene mediated response to abiotic stresses.

  2. The E3 ligase ube3a is required for learning in Drosophila melanogaster.

    PubMed

    Chakraborty, Moumita; Paul, Blesson K; Nayak, Tanmoyita; Das, Aniruddha; Jana, Nihar R; Bhutani, Supriya

    2015-06-19

    Angelman syndrome and autism are neurodevelopmental disorders linked to mutations and duplications of an E3 ligase called ube3a respectively. Since cognitive deficits and learning disabilities are hallmark symptoms of both these disorders, we investigated a role for dube3a in the learning ability of flies using the aversive phototaxis suppression assay. We show that down and up-regulation of dube3a are both detrimental to learning in larvae and adults. Using conditional gene expression we found that dube3a is required for normal brain development and during adulthood. Furthermore, we suggest that dube3a could be interacting with other learning and memory genes such as derailed. Along with firmly establishing dube3a as a gene that is required for learning, our work also opens avenues for further understanding the role played by this gene in brain development and behavior. PMID:25935478

  3. The E3 ligase Itch and deubiquitinase Cyld co-operatively regulate Tak1 and inflammation

    PubMed Central

    Ahmed, Neesar; Zeng, Minghui; Sinha, Indrajit; Polin, Lisa; Wei, Wei-Zen; Rathinam, Chozhavendan; Flavell, Richard; Massoumi, Ramin; Venuprasad, K

    2011-01-01

    Chronic inflammation has been strongly associated with tumor progression, but the underlying mechanisms remain elusive. Here we demonstrate that E3 ligase Itch and deubiquitinase Cyld form a complex via the interaction through ‘WW-PPXY’ motifs. The Itch-Cyld complex sequentially cleaved K63-linked ubiquitin chains and catalyzed K48-linked ubiquitination on the kinase Tak1 to terminate inflammatory tumor necrosis factor signaling. Reconstitution of wild-type Cyld but not mutant Cyld(Y485A), which cannot associate with Itch, blocked the sustained Tak1 activation and proinflammatory cytokine production by Cyld−/− bone marrow-derived macrophages. Itch or Cyld deficiency resulted in chronic production of tumor-promoting cytokines by the tumor-associated macrophages and aggressive growth of lung carcinoma. Thus, we have uncovered an Itch-Cyld mediated regulatory mechanism in innate inflammatory cells. PMID:22057290

  4. Regulating the Regulators: Recent Revelations in the Control of E3 Ubiquitin Ligases*

    PubMed Central

    Vittal, Vinayak; Stewart, Mikaela D.; Brzovic, Peter S.; Klevit, Rachel E.

    2015-01-01

    Since its discovery as a post-translational signal for protein degradation, our understanding of ubiquitin (Ub) has vastly evolved. Today, we recognize that the role of Ub signaling is expansive and encompasses diverse processes including cell division, the DNA damage response, cellular immune signaling, and even organismal development. With such a wide range of functions comes a wide range of regulatory mechanisms that control the activity of the ubiquitylation machinery. Ub attachment to substrates occurs through the sequential action of three classes of enzymes, E1s, E2s, and E3s. In humans, there are 2 E1s, ∼35 E2s, and hundreds of E3s that work to attach Ub to thousands of cellular substrates. Regulation of ubiquitylation can occur at each stage of the stepwise Ub transfer process, and substrates can also impact their own modification. Recent studies have revealed elegant mechanisms that have evolved to control the activity of the enzymes involved. In this minireview, we highlight recent discoveries that define some of the various mechanisms by which the activities of E3-Ub ligases are regulated. PMID:26187467

  5. Enzymatic Analysis of PTEN Ubiquitylation by WWP2 and NEDD4-1 E3 Ligases.

    PubMed

    Chen, Zan; Thomas, Stefani N; Bolduc, David M; Jiang, Xuejun; Zhang, Xiangbin; Wolberger, Cynthia; Cole, Philip A

    2016-07-01

    PTEN is a lipid phosphatase that converts phosphatidylinositol 3,4,5-phosphate (PIP3) to phosphatidylinositol 4,5-phosphate (PIP2) and plays a critical role in the regulation of tumor growth. PTEN is subject to regulation by a variety of post-translational modifications, including phosphorylation on a C-terminal cluster of four Ser/Thr residues (380, 382, 383, and 385) and ubiquitylation by various E3 ligases, including NEDD4-1 and WWP2. It has previously been shown that C-terminal phosphorylation of PTEN can increase its cellular half-life. Using in vitro ubiquitin transfer assays, we show that WWP2 is more active than NEDD4-1 in ubiquitylating unphosphorylated PTEN. The mapping of ubiquitylation sites in PTEN by mass spectrometry showed that both NEDD4-1 and WWP2 can target a broad range of Lys residues in PTEN, although NEDD4-1 versus WWP2 showed a stronger preference for ubiquitylating PTEN's C2 domain. Whereas tetraphosphorylation of PTEN did not significantly affect its ubiquitylation by NEDD4-1, it inhibited PTEN ubiquitylation by WWP2. Single-turnover and pull-down experiments suggested that tetraphosphorylation of PTEN appears to weaken its interaction with WWP2. These studies reveal how the PTEN E3 ligases WWP2 and NEDD4-1 exhibit distinctive properties in Lys selectivity and sensitivity to PTEN phosphorylation. Our findings also provide a molecular mechanism for the connection between PTEN Ser/Thr phosphorylation and PTEN's cellular stability.

  6. An E3 ligase complex regulates SET-domain polycomb group protein activity in Arabidopsis thaliana

    PubMed Central

    Jeong, Cheol Woong; Roh, Hyungmin; Dang, Tuong Vi; Choi, Yang Do; Fischer, Robert L.; Lee, Jong Seob; Choi, Yeonhee

    2011-01-01

    Transcriptional repression via methylation of histone H3 lysine 27 (H3K27) by the polycomb repressive complex 2 (PRC2) is conserved in higher eukaryotes. The Arabidopsis PRC2 controls homeotic gene expression, flowering time, and gene imprinting. Although downstream target genes and the regulatory mechanism of PRC2 are well understood, much less is known about the significance of posttranslational regulation of PRC2 protein activity. Here, we show the posttranslational regulation of CURLY LEAF (CLF) SET-domain polycomb group (PcG) protein by the F-box protein, UPWARD CURLY LEAF1 (UCL1). Overexpression of UCL1 generates mutant phenotypes similar to those observed in plants with a loss-of-function mutation in the CLF gene. Leaf curling and early flowering phenotypes of UCL1 overexpression mutants, like clf mutants, are rescued by mutations in the AGAMOUS and FLOWERING LOCUS T genes, which is consistent with UCL1 and CLF functioning in the same genetic pathway. Overexpression of UCL1 reduces the level of CLF protein and alters expression and H3K27 methylation of CLF-target genes in transgenic plants, suggesting that UCL1 negatively regulates CLF. Interaction of UCL1 with CLF was detected in plant nuclei and in the yeast two-hybrid system. The UCL1 F-box binds in vivo to components of the E3 ligase complex, which ubiquitylate proteins that are subsequently degraded via the ubiquitin-26S proteasome pathway. Taken together, these results demonstrate the posttranslational regulation of the CLF SET-domain PcG activity by the UCL1 F-box protein in the E3 ligase complex. PMID:21518870

  7. SGR9, a RING type E3 ligase, modulates amyloplast dynamics important for gravity sensing.

    NASA Astrophysics Data System (ADS)

    Morita, Miyo T.; Nakamura, Moritaka; Tasaka, Masao

    Gravitropism is triggered when the directional change of gravity is sensed in the specific cells, called statocytes. In higher plants, statocytes contain sinking heavier amyloplasts which are particular plastids accumulating starch granules. The displacement of amyloplasts within the statocytes is thought to be the initial event of gravity perception. We have demonstrated that endodermal cells are most likely to be the statocytes in Arabidop-sis shoots. Live cell imaging of the endodermal cell of stem has shown that most amyloplasts are sediment to the direction of gravity but they are not static. Several amyloplasts move dynamically in an actin filament (F-actin) dependent manner. In the presence of actin poly-merization inhibitor, all amyloplasts become static and sediment to the direction of gravity. In addition, stems treated with the inhibitor can exhibit gravitropism. These results suggest that F-actin-dependent dynamic movement of amyloplasts is not essential for gravity sensing. sgr (shoot gravitropism) 9 mutant exhibits greatly reduced shoot gravitropism. In endodermal cells of sgr9, dynamic amyloplast movement was predominantly observed and amyloplasts did not sediment to the direction of gravity. Interestingly, inhibition of actin polymerization re-stored both gravitropism and amyloplast sedimentation in sgr9. The SGR9 encodes a novel RING finger protein, which is localized to amyloplasts in endodermal cells. SGR9 showed ubiq-uitin E3 ligase activity in vitro. Together with live cell imaging of amyloplasts and F-actin, our data suggest that SGR9 modulate interaction between amyloplasts and F-actin on amylo-plasts. SGR9 positively act on amyloplasts sedimentation, probably by releasing amyloplasts from F-actin. SGR9 that is localized to amyloplast, possibly degrades unknown substrates by its E3 ligase activity, and this might promote release of amyloplasts from F-actin.

  8. Copy number variation of E3 ubiquitin ligase genes in peripheral blood leukocyte and colorectal cancer

    PubMed Central

    Bi, Haoran; Tian, Tian; Zhu, Lin; Zhou, Haibo; Hu, Hanqing; Liu, Yanhong; Li, Xia; Hu, Fulan; Zhao, Yashuang; Wang, Guiyu

    2016-01-01

    Given that E3 ubiquitin ligases (E3) regulate specific protein degradation in many cancer-related biological processes. E3 copy number variation (CNV) may affect the development and prognosis of colorectal cancer (CRC). Therefore, we detected CNVs of five E3 genes in 518 CRC patients and 518 age, gender and residence matched controls in China, and estimated the association between E3 gene CNVs and CRC risk and prognosis. We also estimated their interactions with environmental factors and CRC risk. We find a significant association between the CNVs of MDM2 and CRC risk (amp v.s. wt: odds ratio = 14.37, 95% confidence interval: 1.27, 163.74, P = 0.032), while SKP2 CNVs may significantly decrease CRC risk (del v.s. wt: odds ratio = 0.32, 95% confidence interval: 0.10, 1.00, P = 0.050). However, we find no significant association between the CNVs of other genes and CRC risk. The only significant gene-environment interaction effects are between SKP2 CNVs and consumption of fish and/or fruit (P = 0.014 and P = 0.035) and between FBXW7 CNVs and pork intake (P = 0.040). Finally, we find marginally significant association between β-TRCP CNVs and CRC prognosis (amp v.s. wt, hazard ratio = 0.42, 95% confidence interval: 0.19, 0.97, P = 0.050). PMID:27417709

  9. Copy number variation of E3 ubiquitin ligase genes in peripheral blood leukocyte and colorectal cancer.

    PubMed

    Bi, Haoran; Tian, Tian; Zhu, Lin; Zhou, Haibo; Hu, Hanqing; Liu, Yanhong; Li, Xia; Hu, Fulan; Zhao, Yashuang; Wang, Guiyu

    2016-01-01

    Given that E3 ubiquitin ligases (E3) regulate specific protein degradation in many cancer-related biological processes. E3 copy number variation (CNV) may affect the development and prognosis of colorectal cancer (CRC). Therefore, we detected CNVs of five E3 genes in 518 CRC patients and 518 age, gender and residence matched controls in China, and estimated the association between E3 gene CNVs and CRC risk and prognosis. We also estimated their interactions with environmental factors and CRC risk. We find a significant association between the CNVs of MDM2 and CRC risk (amp v.s. wt: odds ratio = 14.37, 95% confidence interval: 1.27, 163.74, P = 0.032), while SKP2 CNVs may significantly decrease CRC risk (del v.s. wt: odds ratio = 0.32, 95% confidence interval: 0.10, 1.00, P = 0.050). However, we find no significant association between the CNVs of other genes and CRC risk. The only significant gene-environment interaction effects are between SKP2 CNVs and consumption of fish and/or fruit (P = 0.014 and P = 0.035) and between FBXW7 CNVs and pork intake (P = 0.040). Finally, we find marginally significant association between β-TRCP CNVs and CRC prognosis (amp v.s. wt, hazard ratio = 0.42, 95% confidence interval: 0.19, 0.97, P = 0.050). PMID:27417709

  10. Identification of an unconventional E3 binding surface on the UbcH5 Ub conjugate recognized by a pathogenic bacterial E3 ligase.

    SciTech Connect

    Levin, I.; Eakin, C.; Blanc, M. -P.; Klevit, R. E.; Miller, S. I.; Brzovic, P. S.

    2010-02-01

    Gram-negative bacteria deliver a cadre of virulence factors directly into the cytoplasm of eukaryotic host cells to promote pathogenesis and/or commensalism. Recently, families of virulence proteins have been recognized that function as E3 Ubiquitin-ligases. How these bacterial ligases integrate into the ubiquitin (Ub) signaling pathways of the host and how they differ functionally from endogenous eukaryotic E3s is not known. Here we show that the bacterial E3 SspH2 from S. typhimurium selectively binds the human UbcH5Ub conjugate recognizing regions of both UbcH5 and Ub subunits. The surface of the E2 UbcH5 involved in this interaction differs substantially from that defined for other E2/E3 complexes involving eukaryotic E3-ligases. In vitro, SspH2 directs the synthesis of K48-linked poly-Ub chains, suggesting that cellular protein targets of SspH2-catalyzed Ub transfer are destined for proteasomal destruction. Unexpectedly, we found that intermediates in SspH2-directed reactions are activated poly-Ub chains directly tethered to the UbcH5 active site (UbcH5Ubn). Rapid generation of UbcH5Ubn may allow for bacterially directed modification of eukaryotic target proteins with a completed poly-Ub chain, efficiently tagging host targets for destruction.

  11. Identification of an unconventional E3 binding surface on the UbcH5 ~ Ub conjugate recognized by a pathogenic bacterial E3 ligase.

    PubMed

    Levin, Itay; Eakin, Catherine; Blanc, Marie-Pierre; Klevit, Rachel E; Miller, Samuel I; Brzovic, Peter S

    2010-02-16

    Gram-negative bacteria deliver a cadre of virulence factors directly into the cytoplasm of eukaryotic host cells to promote pathogenesis and/or commensalism. Recently, families of virulence proteins have been recognized that function as E3 Ubiquitin-ligases. How these bacterial ligases integrate into the ubiquitin (Ub) signaling pathways of the host and how they differ functionally from endogenous eukaryotic E3s is not known. Here we show that the bacterial E3 SspH2 from S. typhimurium selectively binds the human UbcH5 ~ Ub conjugate recognizing regions of both UbcH5 and Ub subunits. The surface of the E2 UbcH5 involved in this interaction differs substantially from that defined for other E2/E3 complexes involving eukaryotic E3-ligases. In vitro, SspH2 directs the synthesis of K48-linked poly-Ub chains, suggesting that cellular protein targets of SspH2-catalyzed Ub transfer are destined for proteasomal destruction. Unexpectedly, we found that intermediates in SspH2-directed reactions are activated poly-Ub chains directly tethered to the UbcH5 active site (UbcH5 ~ Ub(n)). Rapid generation of UbcH5 ~ Ub(n) may allow for bacterially directed modification of eukaryotic target proteins with a completed poly-Ub chain, efficiently tagging host targets for destruction. PMID:20133640

  12. Characterization and identification of ubiquitin conjugation sites with E3 ligase recognition specificities

    PubMed Central

    2015-01-01

    Background In eukaryotes, ubiquitin-conjugation is an important mechanism underlying proteasome-mediated degradation of proteins, and as such, plays an essential role in the regulation of many cellular processes. In the ubiquitin-proteasome pathway, E3 ligases play important roles by recognizing a specific protein substrate and catalyzing the attachment of ubiquitin to a lysine (K) residue. As more and more experimental data on ubiquitin conjugation sites become available, it becomes possible to develop prediction models that can be scaled to big data. However, no development that focuses on the investigation of ubiquitinated substrate specificities has existed. Herein, we present an approach that exploits an iteratively statistical method to identify ubiquitin conjugation sites with substrate site specificities. Results In this investigation, totally 6259 experimentally validated ubiquitinated proteins were obtained from dbPTM. After having filtered out homologous fragments with 40% sequence identity, the training data set contained 2658 ubiquitination sites (positive data) and 5532 non-ubiquitinated sites (negative data). Due to the difficulty in characterizing the substrate site specificities of E3 ligases by conventional sequence logo analysis, a recursively statistical method has been applied to obtain significant conserved motifs. The profile hidden Markov model (profile HMM) was adopted to construct the predictive models learned from the identified substrate motifs. A five-fold cross validation was then used to evaluate the predictive model, achieving sensitivity, specificity, and accuracy of 73.07%, 65.46%, and 67.93%, respectively. Additionally, an independent testing set, completely blind to the training data of the predictive model, was used to demonstrate that the proposed method could provide a promising accuracy (76.13%) and outperform other ubiquitination site prediction tool. Conclusion A case study demonstrated the effectiveness of the

  13. A Human Ubiquitin Conjugating Enzyme (E2)-HECT E3 Ligase Structure-function Screen*

    PubMed Central

    Sheng, Yi; Hong, Jenny H.; Doherty, Ryan; Srikumar, Tharan; Shloush, Jonathan; Avvakumov, George V.; Walker, John R.; Xue, Sheng; Neculai, Dante; Wan, Janet W.; Kim, Sung K.; Arrowsmith, Cheryl H.; Raught, Brian; Dhe-Paganon, Sirano

    2012-01-01

    Here we describe a systematic structure-function analysis of the human ubiquitin (Ub) E2 conjugating proteins, consisting of the determination of 15 new high-resolution three-dimensional structures of E2 catalytic domains, and autoubiquitylation assays for 26 Ub-loading E2s screened against a panel of nine different HECT (homologous to E6-AP carboxyl terminus) E3 ligase domains. Integration of our structural and biochemical data revealed several E2 surface properties associated with Ub chain building activity; (1) net positive or neutral E2 charge, (2) an “acidic trough” located near the catalytic Cys, surrounded by an extensive basic region, and (3) similarity to the previously described HECT binding signature in UBE2L3 (UbcH7). Mass spectrometry was used to characterize the autoubiquitylation products of a number of functional E2-HECT pairs, and demonstrated that HECT domains from different subfamilies catalyze the formation of very different types of Ub chains, largely independent of the E2 in the reaction. Our data set represents the first comprehensive analysis of E2-HECT E3 interactions, and thus provides a framework for better understanding the molecular mechanisms of ubiquitylation. PMID:22496338

  14. Structural Insight into the Human Immunodeficiency Virus Vif SOCS Box and Its Role in Human E3 Ubiquitin Ligase Assembly

    SciTech Connect

    Stanley,B.; Ehrlich, E.; Short, L.; Yu, Y.; Xiao, Z.; Yu, X.; Xiong, Y.

    2008-01-01

    Human immunodeficiency virus (HIV) virion infectivity factor (Vif) causes the proteasome-mediated destruction of human antiviral protein APOBEC3G by tethering it to a cellular E3 ubiquitin ligase composed of ElonginB, ElonginC, Cullin5, and Rbx2. It has been proposed that HIV Vif hijacks the E3 ligase through two regions within its C-terminal domain: a BC box region that interacts with ElonginC and a novel zinc finger motif that interacts with Cullin5. We have determined the crystal structure of the HIV Vif BC box in complex with human ElonginB and ElonginC. This complex presents direct structural evidence of the recruitment of a human ubiquitin ligase by a viral BC box protein that mimics the conserved interactions of cellular ubiquitin ligases. We further mutated conserved hydrophobic residues in a region downstream of the Vif BC box. These mutations demonstrate that this region, the Vif Cullin box, composes a third E3-ligase recruiting site critical for interaction between Vif and Cullin5. Furthermore, our homology modeling reveals that the Vif Cullin box and zinc finger motif may be positioned adjacent to the N terminus of Cullin5 for interaction with loop regions in the first cullin repeat of Cullin5.

  15. Heterologous expression of rice SUMO E3 ligase (OsSIZ1) enhances drought and heat tolerance in transgenic cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arabidopsis gene AtSIZ1 encodes a SUMO E3 ligase that plays important roles in plant response to abiotic stresses such as drought, heat, cold, salt, and nutrient starvation. Loss of function in AtSIZ1 leads to increased sensitivity to drought, heat, and salt stresses, whereas overexpression of t...

  16. Characterization of a novel RING-type ubiquitin E3 ligase GhRING2 differentially expressed in cotton fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome proteolysis pathway is responsible for the degradation of abnormal and short-lived proteins to regulate many important biochemical activities in eukaryotes. By employing affymetrix microarray analysis, we have identified a novel ubiquitin ligase E3 gene GhRING2 that is diffe...

  17. Competing E3 Ubiquitin Ligases Determine Circadian Period by Regulated Degradation of CRY in Nucleus and Cytoplasm

    PubMed Central

    Yoo, Seung-Hee; Mohawk, Jennifer A.; Siepka, Sandra M.; Shan, Yongli; Huh, Seong Kwon; Hong, Hee-Kyung; Kornblum, Izabela; Kumar, Vivek; Koike, Nobuya; Xu, Ming; Nussbaum, Justin; Liu, Xinran; Chen, Zheng; Chen, Zhijian J.; Green, Carla B.; Takahashi, Joseph S.

    2013-01-01

    SUMMARY Period determination in the mammalian circadian clock involves the turnover rate of the repressors, CRY and PER. Here we show that CRY ubiquitination engages two competing E3 ligase complexes that either lengthen or shorten circadian period in mice. Cloning of a short-period circadian mutant, Past-time, revealed a glycine to glutamate (G149E) missense mutation in Fbxl21, an F-box protein gene that is a paralog of Fbxl3 that targets the CRY proteins for degradation. While loss-of-function of FBXL3 leads to period lengthening, mutation of Fbxl21 causes period shortening. FBXL21 forms an SCF E3 ligase complex that slowly degrades CRY in the cytoplasm, but antagonizes the stronger E3 ligase activity of FBXL3 in the nucleus. FBXL21 plays a dual role: protecting CRY from FBXL3 degradation in the nucleus and promoting CRY degradation within the cytoplasm. Thus, the balance and cellular compartmentalization of competing E3 ligases for CRY determine circadian period of the clock in mammals. PMID:23452855

  18. E3 Ligase Nedd4 Promotes Axon Branching by Downregulating PTEN

    PubMed Central

    Drinjakovic, Jovana; Jung, Hosung; Campbell, Douglas S.; Strochlic, Laure; Dwivedy, Asha; Holt, Christine E.

    2010-01-01

    Summary Regulated protein degradation via the ubiquitin-proteasome system (UPS) plays a central role in building synaptic connections, yet little is known about either which specific UPS components are involved or UPS targets in neurons. We report that inhibiting the UPS in developing Xenopus retinal ganglion cells (RGCs) with a dominant-negative ubiquitin mutant decreases terminal branching in the tectum but does not affect long-range navigation to the tectum. We identify Nedd4 as a prominently expressed E3 ligase in RGC axon growth cones and show that disrupting its function severely inhibits terminal branching. We further demonstrate that PTEN, a negative regulator of the PI3K pathway, is a key downstream target of Nedd4: not only does Nedd4 regulate PTEN levels in RGC growth cones, but also, the decrease of PTEN rescues the branching defect caused by Nedd4 inhibition. Together our data suggest that Nedd4-regulated PTEN is a key regulator of terminal arborization in vivo. PMID:20159448

  19. Structural Basis for Substrate Selectivity of the E3 Ligase COP1.

    PubMed

    Uljon, Sacha; Xu, Xiang; Durzynska, Izabela; Stein, Sarah; Adelmant, Guillaume; Marto, Jarrod A; Pear, Warren S; Blacklow, Stephen C

    2016-05-01

    COP1 proteins are E3 ubiquitin ligases that regulate phototropism in plants and target transcription factors for degradation in mammals. The substrate-binding region of COP1 resides within a WD40-repeat domain that also binds to Trib proteins, which are adaptors for C/EBPα degradation. Here we report structures of the human COP1 WD40 domain in isolation, and complexes of the human and Arabidopsis thaliana COP1 WD40 domains with the binding motif of Trib1. The human and Arabidopsis WD40 domains are seven-bladed β propellers with an inserted loop on the bottom face of the first blade. The Trib1 peptide binds in an extended conformation to a highly conserved surface on the top face of the β propeller, indicating a general mode for recognition of peptide motifs by COP1. Together, these studies identify the structural basis and key interactions for motif recognition by COP1, and hint at how Trib1 autoinhibition is overcome to target C/EBPα for degradation. PMID:27041596

  20. Regulation of autophagy by E3 ubiquitin ligase RNF216 through BECN1 ubiquitination

    PubMed Central

    Xu, Congfeng; Feng, Kuan; Zhao, Xiaonan; Huang, Shiqian; Cheng, Yiji; Qian, Liu; Wang, Yanan; Sun, Hongxing; Jin, Min; Chuang, Tsung-Hsien; Zhang, Yanyun

    2015-01-01

    Autophagy is an evolutionarily conserved biological process involved in an array of physiological and pathological events. Without proper control, autophagy contributes to various disorders, including cancer and autoimmune and inflammatory diseases. It is therefore of vital importance that autophagy is under careful balance. Thus, additional regulators undoubtedly deepen our understanding of the working network, and provide potential therapeutic targets for disorders. In this study, we found that RNF216 (ring finger protein 216), an E3 ubiquitin ligase, strongly inhibits autophagy in macrophages. Further exploration demonstrates that RNF216 interacts with BECN1, a key regulator in autophagy, and leads to ubiquitination of BECN1, thereby contributing to BECN1 degradation. RNF216 was involved in the ubiquitination of lysine 48 of BECN1 through direct interaction with the triad (2 RING fingers and a DRIL [double RING finger linked]) domain. We further showed that inhibition of autophagy through overexpression of RNF216 in alveolar macrophages promotes Listeria monocytogenes growth and distribution, while knockdown of RNF216 significantly inhibited these outcomes. These effects were confirmed in a mouse model of L. monocytogenes infection, suggesting that manipulating RNF216 expression could be a therapeutic approach. Thus, our study identifies a novel negative regulator of autophagy and suggests that RNF216 may be a target for treatment of inflammatory diseases. PMID:25484083

  1. Activation of Smurf E3 Ligase Promoted by Smoothened Regulates Hedgehog Signaling through Targeting Patched Turnover

    PubMed Central

    Zheng, Xiudeng; Chen, Zhenping; Sun, Liwei; Wang, Hailong; Zhu, Yuanxiang; Zhang, Jing; Yang, Shuyan; Lu, Yi; Sun, Qinmiao; Tao, Yi; Liu, Feng; Zhao, Yun; Chen, Dahua

    2013-01-01

    Hedgehog signaling plays conserved roles in controlling embryonic development; its dysregulation has been implicated in many human diseases including cancers. Hedgehog signaling has an unusual reception system consisting of two transmembrane proteins, Patched receptor and Smoothened signal transducer. Although activation of Smoothened and its downstream signal transduction have been intensively studied, less is known about how Patched receptor is regulated, and particularly how this regulation contributes to appropriate Hedgehog signal transduction. Here we identified a novel role of Smurf E3 ligase in regulating Hedgehog signaling by controlling Patched ubiquitination and turnover. Moreover, we showed that Smurf-mediated Patched ubiquitination depends on Smo activity in wing discs. Mechanistically, we found that Smo interacts with Smurf and promotes it to mediate Patched ubiquitination by targeting the K1261 site in Ptc. The further mathematic modeling analysis reveals that a bidirectional control of activation of Smo involving Smurf and Patched is important for signal-receiving cells to precisely interpret external signals, thereby maintaining Hedgehog signaling reliability. Finally, our data revealed an evolutionarily conserved role of Smurf proteins in controlling Hh signaling by targeting Ptc during development. PMID:24302888

  2. The Evolutionarily Conserved E3 Ubiquitin Ligase AtCHIP Contributes to Plant Immunity

    PubMed Central

    Copeland, Charles; Ao, Kevin; Huang, Yan; Tong, Meixuizi; Li, Xin

    2016-01-01

    Plants possess a sophisticated immune system to recognize and respond to microbial threats in their environment. The level of immune signaling must be tightly regulated so that immune responses can be quickly activated in the presence of pathogens, while avoiding autoimmunity. HSP90s, along with their diverse array of co-chaperones, forms chaperone complexes that have been shown to play both positive and negative roles in regulating the accumulation of immune receptors and regulators. In this study, we examined the role of AtCHIP, an evolutionarily conserved E3 ligase that was known to interact with chaperones including HSP90s in multicellular organisms including fruit fly, Caenorhabditis elegans, plants and human. Atchip knockout mutants display enhanced disease susceptibility to a virulent oomycete pathogen, and overexpression of AtCHIP causes enhanced disease resistance at low temperature. Although CHIP was reported to target HSP90 for ubiquitination and degradation, accumulation of HSP90.3 was not affected in Atchip plants. In addition, protein accumulation of nucleotide-binding, leucine-rich repeat domain immune receptor (NLR) SNC1 is not altered in Atchip mutant. Thus, while AtCHIP plays a role in immunity, it does not seem to regulate the turnover of HSP90 or SNC1. Further investigation is needed in order to determine the exact mechanism behind AtCHIP’s role in regulating plant immune responses. PMID:27014328

  3. Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells

    PubMed Central

    Choi, Seung H.; Wright, Jason B.; Gerber, Scott A.; Cole, Michael D.

    2010-01-01

    Rapid Myc protein turnover is critical for maintaining basal levels of Myc activity in normal cells and a prompt response to changing growth signals. We characterize a new Myc-interacting factor, TRPC4AP (transient receptor potential cation channel, subfamily C, member 4-associated protein)/TRUSS (tumor necrosis factor receptor-associated ubiquitous scaffolding and signaling protein), which is the receptor for a DDB1 (damage-specific DNA-binding protein 1)–CUL4 (Cullin 4) E3 ligase complex for selective Myc degradation through the proteasome. TRPC4AP/TRUSS binds specifically to the Myc C terminus and promotes its ubiquitination and destruction through the recognition of evolutionarily conserved domains in the Myc N terminus. TRPC4AP/TRUSS suppresses Myc-mediated transactivation and transformation in a dose-dependent manner. Finally, we found that TRPC4AP/TRUSS expression is strongly down-regulated in most cancer cell lines, leading to Myc protein stabilization. These studies identify a novel pathway targeting Myc degradation that is suppressed in cancer cells. PMID:20551172

  4. RING finger E3 ligase PPP1R11 regulates TLR2 signaling and innate immunity

    PubMed Central

    McKelvey, Alison C; Lear, Travis B; Dunn, Sarah R; Evankovich, John; Londino, James D; Bednash, Joseph S; Zhang, Yingze; McVerry, Bryan J; Liu, Yuan; Chen, Bill B

    2016-01-01

    Toll-like receptor 2 (TLR2) is a pattern recognition receptor that recognizes many types of PAMPs that originate from gram-positive bacteria. Here we describe a novel mechanism regulating TLR2 protein expression and subsequent cytokine release through the ubiquitination and degradation of the receptor in response to ligand stimulation. We show a new mechanism in which an uncharacterized RING finger E3 ligase, PPP1R11, directly ubiquitinates TLR2 both in vitro and in vivo, which leads to TLR2 degradation and disruption of the signaling cascade. Lentiviral gene transfer or knockdown of PPP1R11 in mouse lungs significantly affects lung inflammation and the clearance of Staphylococcus aureus. There is a negative correlation between PPP1R11 and TLR2 levels in white blood cell samples isolated from patients with Staphylococcus aureus infections. These results suggest that PPP1R11 plays an important role in regulating innate immunity and gram-positive bacterial clearance by functioning, in part, through the ubiquitination and degradation of TLR2. DOI: http://dx.doi.org/10.7554/eLife.18496.001 PMID:27805901

  5. The ubiquitin E3 ligase TRAF6 exacerbates pathological cardiac hypertrophy via TAK1-dependent signalling

    PubMed Central

    Ji, Yan-Xiao; Zhang, Peng; Zhang, Xiao-Jing; Zhao, Yi-Chao; Deng, Ke-Qiong; Jiang, Xi; Wang, Pi-Xiao; Huang, Zan; Li, Hongliang

    2016-01-01

    Tumour necrosis factor receptor-associated factor 6 (TRAF6) is a ubiquitin E3 ligase that regulates important biological processes. However, the role of TRAF6 in cardiac hypertrophy remains unknown. Here, we show that TRAF6 levels are increased in human and murine hypertrophied hearts, which is regulated by reactive oxygen species (ROS) production. Cardiac-specific Traf6 overexpression exacerbates cardiac hypertrophy in response to pressure overload or angiotensin II (Ang II) challenge, whereas Traf6 deficiency causes an alleviated hypertrophic phenotype in mice. Mechanistically, we show that ROS, generated during hypertrophic progression, triggers TRAF6 auto-ubiquitination that facilitates recruitment of TAB2 and its binding to transforming growth factor beta-activated kinase 1 (TAK1), which, in turn, enables the direct TRAF6–TAK1 interaction and promotes TAK1 ubiquitination. The binding of TRAF6 to TAK1 and the induction of TAK1 ubiquitination and activation are indispensable for TRAF6-regulated cardiac remodelling. Taken together, we define TRAF6 as an essential molecular switch leading to cardiac hypertrophy in a TAK1-dependent manner. PMID:27249171

  6. MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification

    PubMed Central

    Kwon, Duk-Hwa; Eom, Gwang Hyeon; Ko, Jeong Hyeon; Shin, Sera; Joung, Hosouk; Choe, Nakwon; Nam, Yoon Seok; Min, Hyun-Ki; Kook, Taewon; Yoon, Somy; Kang, Wanseok; Kim, Yong Sook; Kim, Hyung Seok; Choi, Hyuck; Koh, Jeong-Tae; Kim, Nacksung; Ahn, Youngkeun; Cho, Hyun-Jai; Lee, In-Kyu; Park, Dong Ho; Suk, Kyoungho; Seo, Sang Beom; Wissing, Erin R.; Mendrysa, Susan M.; Nam, Kwang-Il; Kook, Hyun

    2016-01-01

    Vascular calcification (VC) is often associated with cardiovascular and metabolic diseases. However, the molecular mechanisms linking VC to these diseases have yet to be elucidated. Here we report that MDM2-induced ubiquitination of histone deacetylase 1 (HDAC1) mediates VC. Loss of HDAC1 activity via either chemical inhibitor or genetic ablation enhances VC. HDAC1 protein, but not mRNA, is reduced in cell and animal calcification models and in human calcified coronary artery. Under calcification-inducing conditions, proteasomal degradation of HDAC1 precedes VC and it is mediated by MDM2 E3 ubiquitin ligase that initiates HDAC1 K74 ubiquitination. Overexpression of MDM2 enhances VC, whereas loss of MDM2 blunts it. Decoy peptide spanning HDAC1 K74 and RG 7112, an MDM2 inhibitor, prevent VC in vivo and in vitro. These results uncover a previously unappreciated ubiquitination pathway and suggest MDM2-mediated HDAC1 ubiquitination as a new therapeutic target in VC. PMID:26832969

  7. Transcription factor RFX1 is ubiquitinated by E3 ligase STUB1 in systemic lupus erythematosus.

    PubMed

    Guo, Yu; Zhao, Ming; Lu, Qianjin

    2016-08-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease caused by complex interactions between genes and the environment. The expression level of transcription factor regulatory factor X 1 (RFX1) is reduced in T cells from SLE patients. RFX1 can regulate epigenetic modifications of CD70 and CD11a and plays an important role in the development of SLE. However, the mechanisms that mediate reduction of RFX1 in SLE are unclear. Here, we demonstrate that RFX1 protein expression can be tightly regulated by polyubiquitination-mediated proteosomal degradation via STIP1 homology and U-box containing protein 1 (STUB1). The E3 ligase STUB1 is upregulated in CD4(+)T cells of SLE patients compared to healthy subjects. Overexpression of STUB1 in CD4(+)T cells leads to upregulation of levels of CD70 and CD11a in T cells. The modulation of STUB1 activity may provide a novel therapeutic approach for SLE. PMID:27283392

  8. Systematic in vivo RNAi analysis identifies IAPs as NEDD8-E3 ligases.

    PubMed

    Broemer, Meike; Tenev, Tencho; Rigbolt, Kristoffer T G; Hempel, Sophie; Blagoev, Blagoy; Silke, John; Ditzel, Mark; Meier, Pascal

    2010-12-10

    The intimate relationship between mediators of the ubiquitin (Ub)-signaling system and human diseases has sparked profound interest in how Ub influences cell death and survival. While the consequence of Ub attachment is intensely studied, little is known with regards to the effects of other Ub-like proteins (UBLs), and deconjugating enzymes that remove the Ub or UBL adduct. Systematic in vivo RNAi analysis identified three NEDD8-specific isopeptidases that, when knocked down, suppress apoptosis. Consistent with the notion that attachment of NEDD8 prevents cell death, genetic ablation of deneddylase 1 (DEN1) suppresses apoptosis. Unexpectedly, we find that Drosophila and human inhibitor of apoptosis (IAP) proteins can function as E3 ligases of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation. Finally, we demonstrate that DEN1 reverses this effect by removing the NEDD8 modification. Altogether, our findings indicate that IAPs not only modulate cellular processes via ubiquitylation but also through attachment of NEDD8, thereby extending the complexity of IAP-mediated signaling.

  9. New role of E3 ubiquitin ligase in the regulation of necroptosis

    PubMed Central

    Seo, Jinho; Lee, Eun-Woo; Song, Jaewhan

    2016-01-01

    Necroptosis is a well-known form of caspase-independent cell death. Necroptosis can be triggered by various extrinsic stimuli, including death ligands in the presence of receptorinteracting protein kinase 3 (RIPK3), a key mediator of necroptosis induction. Our recent studies have revealed that C-terminus HSC-70 interacting protein (CHIP), an E3 ligase, can function as an inhibitor of necroptosis. CHIP−/− mouse embryonic fibroblast showed higher sensitivity to necrotic stimuli than wild-type mouse embryonic fibroblast cells. Deleterious effects of CHIP knockout MEFs were retrieved by RIPK3 depletion. We found that CHIP negatively regulated RIPK3 and RIPK1 by ubiquitylation- and lysosome- dependent degradation. In addition, CHIP−/− mice showed postnatal lethality with intestinal defects that could be rescued by crossing with RIPK3−/− mice. These results suggest that CHIP is a negative regulator of RIPK1 and RIPK3, thus inhibiting necroptosis. [BMB Reports 2016; 49(5): 247-248] PMID:27099235

  10. E3 ubiquitin ligase RNF13 involves spatial learning and assembly of the SNARE complex.

    PubMed

    Zhang, Qiang; Li, Yanfeng; Zhang, Lei; Yang, Nan; Meng, Jiao; Zuo, Pingping; Zhang, Yong; Chen, Jie; Wang, Li; Gao, Xiang; Zhu, Dahai

    2013-01-01

    Changes in the structure and number of synapses modulate learning, memory and cognitive disorders. Ubiquitin-mediated protein modification is a key mechanism for regulating synaptic activity, though the precise control of this process remains poorly understood. RING finger protein 13 (RNF13) is a recently identified E3 ubiquitin ligase, and its in vivo function remains completely unknown. We show here that genetic deletion of RNF13 in mice leads to a significant deficit in spatial learning as determined by the Morris water maze test and Y-maze learning test. At the ultrastructral level, the synaptic vesicle density was decreased and the area of the active zone was increased at hippocampal synapses of RNF13-null mice compared with those of wild-type littermates. We found no change in the levels of SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) complex proteins in the hippocampus of RNF13-null mice, but impaired SNARE complex assembly. RNF13 directly interacted with snapin, a SNAP-25-interacting protein. Interestingly, snapin was ubiquitinated by RNF13 via the lysine-29 conjugated polyubiquitin chain, which in turn promoted the association of snapin with SNAP-25. Consistently, we found an attenuated interaction between snapin and SNAP-25 in the RNF13-null mice. Therefore, these results suggest that RNF13 is involved in the regulation of the SNARE complex, which thereby controls synaptic function.

  11. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis

    PubMed Central

    Kumar, Atul; Aguirre, Jacob D; Condos, Tara EC; Martinez-Torres, R Julio; Chaugule, Viduth K; Toth, Rachel; Sundaramoorthy, Ramasubramanian; Mercier, Pascal; Knebel, Axel; Spratt, Donald E; Barber, Kathryn R; Shaw, Gary S; Walden, Helen

    2015-01-01

    The PARK2 gene is mutated in 50% of autosomal recessive juvenile parkinsonism (ARJP) cases. It encodes parkin, an E3 ubiquitin ligase of the RBR family. Parkin exists in an autoinhibited state that is activated by phosphorylation of its N-terminal ubiquitin-like (Ubl) domain and binding of phosphoubiquitin. We describe the 1.8 Å crystal structure of human parkin in its fully inhibited state and identify the key interfaces to maintain parkin inhibition. We identify the phosphoubiquitin-binding interface, provide a model for the phosphoubiquitin–parkin complex and show how phosphorylation of the Ubl domain primes parkin for optimal phosphoubiquitin binding. Furthermore, we demonstrate that the addition of phosphoubiquitin leads to displacement of the Ubl domain through loss of structure, unveiling a ubiquitin-binding site used by the E2∼Ub conjugate, thus leading to active parkin. We find the role of the Ubl domain is to prevent parkin activity in the absence of the phosphorylation signals, and propose a model for parkin inhibition, optimization for phosphoubiquitin recruitment, release of inhibition by the Ubl domain and engagement with an E2∼Ub conjugate. Taken together, this model provides a mechanistic framework for activating parkin. PMID:26254304

  12. Regulation of autophagy by E3 ubiquitin ligase RNF216 through BECN1 ubiquitination.

    PubMed

    Xu, Congfeng; Feng, Kuan; Zhao, Xiaonan; Huang, Shiqian; Cheng, Yiji; Qian, Liu; Wang, Yanan; Sun, Hongxing; Jin, Min; Chuang, Tsung-Hsien; Zhang, Yanyun

    2014-01-01

    Autophagy is an evolutionarily conserved biological process involved in an array of physiological and pathological events. Without proper control, autophagy contributes to various disorders, including cancer and autoimmune and inflammatory diseases. It is therefore of vital importance that autophagy is under careful balance. Thus, additional regulators undoubtedly deepen our understanding of the working network, and provide potential therapeutic targets for disorders. In this study, we found that RNF216 (ring finger protein 216), an E3 ubiquitin ligase, strongly inhibits autophagy in macrophages. Further exploration demonstrates that RNF216 interacts with BECN1, a key regulator in autophagy, and leads to ubiquitination of BECN1, thereby contributing to BECN1 degradation. RNF216 was involved in the ubiquitination of lysine 48 of BECN1 through direct interaction with the triad (2 RING fingers and a DRIL [double RING finger linked]) domain. We further showed that inhibition of autophagy through overexpression of RNF216 in alveolar macrophages promotes Listeria monocytogenes growth and distribution, while knockdown of RNF216 significantly inhibited these outcomes. These effects were confirmed in a mouse model of L. monocytogenes infection, suggesting that manipulating RNF216 expression could be a therapeutic approach. Thus, our study identifies a novel negative regulator of autophagy and suggests that RNF216 may be a target for treatment of inflammatory diseases.

  13. E3 ubiquitin ligase RNF31 cooperates with DAX-1 in transcriptional repression of steroidogenesis.

    PubMed

    Ehrlund, Anna; Anthonisen, Elin Holter; Gustafsson, Nina; Venteclef, Nicolas; Robertson Remen, Kirsten; Damdimopoulos, Anastasios E; Galeeva, Anastasia; Pelto-Huikko, Markku; Lalli, Enzo; Steffensen, Knut R; Gustafsson, Jan-Ake; Treuter, Eckardt

    2009-04-01

    Genetic and experimental evidence points to a critical involvement of the atypical mammalian orphan receptor DAX-1 in reproductive development and steroidogenesis. Unlike conventional nuclear receptors, DAX-1 appears not to function as a DNA-bound transcription factor. Instead, it has acquired the capability to act as a transcriptional corepressor of steroidogenic factor 1 (SF-1). The interplay of DAX-1 and SF-1 is considered a central, presumably ligand-independent element of adrenogonadal development and function that requires tight regulation. This raises a substantial interest in identifying its modulators and the regulatory signals involved. Here, we uncover molecular mechanisms that link DAX-1 to the ubiquitin modification system via functional interaction with the E3 ubiquitin ligase RNF31. We demonstrate that RNF31 is coexpressed with DAX-1 in steroidogenic tissues and participates in repressing steroidogenic gene expression. We provide evidence for the in vivo existence of a corepressor complex containing RNF31 and DAX-1 at the promoters of the StAR and CYP19 genes. Our data suggest that RNF31 functions to stabilize DAX-1, which might be linked to DAX-1 monoubiquitination. In conclusion, RNF31 appears to be required for DAX-1 to repress transcription, provides means to regulate DAX-1 in ligand-independent ways, and emerges as a relevant coregulator of steroidogenic pathways governing physiology and disease. PMID:19237537

  14. Rines E3 ubiquitin ligase regulates MAO-A levels and emotional responses.

    PubMed

    Kabayama, Miyuki; Sakoori, Kazuto; Yamada, Kazuyuki; Ornthanalai, Veravej G; Ota, Maya; Morimura, Naoko; Katayama, Kei-ichi; Murphy, Niall P; Aruga, Jun

    2013-08-01

    Monoamine oxidase A (MAO-A), the catabolic enzyme of norepinephrine and serotonin, plays a critical role in emotional and social behavior. However, the control and impact of endogenous MAO-A levels in the brain remains unknown. Here we show that the RING finger-type E3 ubiquitin ligase Rines/RNF180 regulates brain MAO-A subset, monoamine levels, and emotional behavior. Rines interacted with MAO-A and promoted its ubiquitination and degradation. Rines knock-out mice displayed impaired stress responses, enhanced anxiety, and affiliative behavior. Norepinephrine and serotonin levels were altered in the locus ceruleus, prefrontal cortex, and amygdala in either stressed or resting conditions, and MAO-A enzymatic activity was enhanced in the locus ceruleus in Rines knock-out mice. Treatment of Rines knock-out mice with MAO inhibitors showed genotype-specific effects on some of the abnormal affective behaviors. These results indicated that the control of emotional behavior by Rines is partly due to the regulation of MAO-A levels. These findings verify that Rines is a critical regulator of the monoaminergic system and emotional behavior and identify a promising candidate drug target for treating diseases associated with emotion.

  15. Structural Basis for Cul3 Protein Assembly with the BTB-Kelch Family of E3 Ubiquitin Ligases*

    PubMed Central

    Canning, Peter; Cooper, Christopher D. O.; Krojer, Tobias; Murray, James W.; Pike, Ashley C. W.; Chaikuad, Apirat; Keates, Tracy; Thangaratnarajah, Chancievan; Hojzan, Viktorija; Marsden, Brian D.; Gileadi, Opher; Knapp, Stefan; von Delft, Frank; Bullock, Alex N.

    2013-01-01

    Cullin-RING ligases are multisubunit E3 ubiquitin ligases that recruit substrate-specific adaptors to catalyze protein ubiquitylation. Cul3-based Cullin-RING ligases are uniquely associated with BTB adaptors that incorporate homodimerization, Cul3 assembly, and substrate recognition into a single multidomain protein, of which the best known are BTB-BACK-Kelch domain proteins, including KEAP1. Cul3 assembly requires a BTB protein “3-box” motif, analogous to the F-box and SOCS box motifs of other Cullin-based E3s. To define the molecular basis for this assembly and the overall architecture of the E3, we determined the crystal structures of the BTB-BACK domains of KLHL11 both alone and in complex with Cul3, along with the Kelch domain structures of KLHL2 (Mayven), KLHL7, KLHL12, and KBTBD5. We show that Cul3 interaction is dependent on a unique N-terminal extension sequence that packs against the 3-box in a hydrophobic groove centrally located between the BTB and BACK domains. Deletion of this N-terminal region results in a 30-fold loss in affinity. The presented data offer a model for the quaternary assembly of this E3 class that supports the bivalent capture of Nrf2 and reveals potential new sites for E3 inhibitor design. PMID:23349464

  16. Redox regulation of E3 ubiquitin ligases and their role in skeletal muscle atrophy.

    PubMed

    Olaso-Gonzalez, Gloria; Ferrando, Beatriz; Derbre, Frederic; Salvador-Pascual, Andrea; Cabo, Helena; Pareja-Galeano, Helios; Sabater-Pastor, Frederic; Gomez-Cabrera, Mari Carmen; Vina, Jose

    2014-10-01

    Muscle atrophy is linked to reactive oxygen species (ROS) production during hindlimb-unloading due, at least in part, to the activation of xanthine oxidase (XO). The major aim of our study was to determine the mechanism by which ROS cause muscle atrophy and its possible prevention by allopurinol, a well-known inhibitor of XO widely used in clinical practice, and indomethacin, a nonsteroidal anti-inflammatory drug. We studied the activation of p38 MAP Kinase and NF-?B pathways, and the expression of two E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFb) and Muscle RING Finger-1 (MuRF-1). Male Wistar rats (3 mold) conditioned by 14 days of hindlimb unloading (n=18), with or without the treatment, were compared with freely ambulating controls (n=18). After the experimental intervention, soleus muscles were removed, weighted and analyzed to determine oxidative stress and inflammatory parameters. We found that hindlimb unloading induced a significant increase in XO activity in plasma (39%, p=0.001) and in the protein expression of CuZnSOD and Catalase in skeletal muscle. Inhibitionof XO partially prevented protein carbonylation, both in plasma and in soleus muscle, in the unloaded animals. The most relevant new fact reported is that allopurinol prevents soleus muscle atrophy by ~20% after hindlimb unloading. Combining allopurinol and indomethacin we found a further prevention in the atrophy process. This is mediated by the inhibition of the p38 MAPK-MAFbx and NF-?B -MuRF-1 pathways. Our data point out the potential benefit of allopurinol and indomethacin administration for bedridden, astronauts, sarcopenic and cachexic patients. PMID:26461377

  17. CHK2 stability is regulated by the E3 ubiquitin ligase SIAH2.

    PubMed

    García-Limones, C; Lara-Chica, M; Jiménez-Jiménez, C; Pérez, M; Moreno, P; Muñoz, E; Calzado, M A

    2016-08-18

    The serine threonine checkpoint kinase 2 (CHK2) is a critical protein involved in the DNA damage-response pathway, which is activated by phosphorylation inducing cellular response such as DNA repair, cell-cycle regulation or apoptosis. Although CHK2 activation mechanisms have been amply described, very little is known about degradation control processes. In the present study, we identify the ubiquitin E3 ligase SIAH2 as an interaction partner of CHK2, which mediates its ubiquitination and proteasomal degradation. CHK2 degradation is independent of both its activation and its kinase activity, but also of the phosphorylation in S456. We show that SIAH2-deficient cells present CHK2 accumulation together with lower ubiquitination levels. Accordingly, SIAH2 depletion by siRNA increases CHK2 levels. In response to DNA damage induced by etoposide, interaction between both proteins is disrupted, thus avoiding CHK2 degradation and promoting its stabilization. We also found that CHK2 phosphorylates SIAH2 at three residues (Thr26, Ser28 and Thr119), modifying its ability to regulate certain substrates. Cellular arrest in the G2/M phase induced by DNA damage is reverted by SIAH2 expression through the control of CHK2 levels. We observed that hypoxia decreases CHK2 levels in parallel to SIAH2 induction. Similarly, we provide evidence suggesting that resistance to apoptosis induced by genotoxic agents in cells subjected to hypoxia could be partly explained by the mutual regulation between both proteins. These results indicate that SIAH2 regulates CHK2 basal turnover, with important consequences on cell-cycle control and on the ability of hypoxia to alter the DNA damage-response pathway in cancer cells.

  18. TRIM32 modulates pluripotency entry and exit by directly regulating Oct4 stability

    PubMed Central

    Bahnassawy, Lamia’a; Perumal, Thanneer M.; Gonzalez-Cano, Laura; Hillje, Anna-Lena; Taher, Leila; Makalowski, Wojciech; Suzuki, Yutaka; Fuellen, Georg; Sol, Antonio del; Schwamborn, Jens Christian

    2015-01-01

    Induced pluripotent stem cells (iPSCs) have revolutionized the world of regenerative medicine; nevertheless, the exact molecular mechanisms underlying their generation and differentiation remain elusive. Here, we investigated the role of the cell fate determinant TRIM32 in modulating such processes. TRIM32 is essential for the induction of neuronal differentiation of neural stem cells by poly-ubiquitinating cMyc to target it for degradation resulting in inhibition of cell proliferation. To elucidate the role of TRIM32 in regulating somatic cell reprogramming we analysed the capacity of TRIM32-knock-out mouse embryonic fibroblasts (MEFs) in generating iPSC colonies. TRIM32 knock-out MEFs produced a higher number of iPSC colonies indicating a role for TRIM32 in inhibiting this cellular transition. Further characterization of the generated iPSCs indicated that the TRIM32 knock-out iPSCs show perturbed differentiation kinetics. Additionally, mathematical modelling of global gene expression data revealed that during differentiation an Oct4 centred network in the wild-type cells is replaced by an E2F1 centred network in the TRIM32 deficient cells. We show here that this might be caused by a TRIM32-dependent downregulation of Oct4. In summary, the data presented here reveal that TRIM32 directly regulates at least two of the four Yamanaka Factors (cMyc and Oct4), to modulate cell fate transitions. PMID:26307407

  19. A tail of two sites: a bipartite mechanism for recognition of notch ligands by mind bomb E3 ligases.

    PubMed

    McMillan, Brian J; Schnute, Björn; Ohlenhard, Nadja; Zimmerman, Brandon; Miles, Laura; Beglova, Natalia; Klein, Thomas; Blacklow, Stephen C

    2015-03-01

    Mind bomb (Mib) proteins are large, multi-domain E3 ligases that promote ubiquitination of the cytoplasmic tails of Notch ligands. This ubiquitination step marks the ligand proteins for epsin-dependent endocytosis, which is critical for in vivo Notch receptor activation. We present here crystal structures of the substrate recognition domains of Mib1, both in isolation and in complex with peptides derived from Notch ligands. The structures, in combination with biochemical, cellular, and in vivo assays, show that Mib1 contains two independent substrate recognition domains that engage two distinct epitopes from the cytoplasmic tail of the ligand Jagged1, one in the intracellular membrane proximal region and the other near the C terminus. Together, these studies provide insights into the mechanism of ubiquitin transfer by Mind bomb E3 ligases, illuminate a key event in ligand-induced activation of Notch receptors, and identify a potential target for therapeutic modulation of Notch signal transduction in disease.

  20. HIV-1 Vpr Protein Inhibits Telomerase Activity via the EDD-DDB1-VPRBP E3 Ligase Complex*

    PubMed Central

    Wang, Xin; Singh, Shailbala; Jung, Hae-Yun; Yang, Guojun; Jun, Sohee; Sastry, K. Jagannadha; Park, Jae-Il

    2013-01-01

    Viral pathogens utilize host cell machinery for their benefits. Herein, we identify that HIV-1 Vpr (viral protein R) negatively modulates telomerase activity. Telomerase enables stem and cancer cells to evade cell senescence by adding telomeric sequences to the ends of chromosomes. We found that Vpr inhibited telomerase activity by down-regulating TERT protein, a catalytic subunit of telomerase. As a molecular adaptor, Vpr enhanced the interaction between TERT and the VPRBP substrate receptor of the DYRK2-associated EDD-DDB1-VPRBP E3 ligase complex, resulting in increased ubiquitination of TERT. In contrast, the Vpr mutant identified in HIV-1-infected long-term nonprogressors failed to promote TERT destabilization. Our results suggest that Vpr inhibits telomerase activity by hijacking the host E3 ligase complex, and we propose the novel molecular mechanism of telomerase deregulation in possibly HIV-1 pathogenesis. PMID:23612978

  1. High throughput screening for inhibitors of the HECT ubiquitin E3 ligase ITCH identifies antidepressant drugs as regulators of autophagy

    PubMed Central

    Rossi, M; Rotblat, B; Ansell, K; Amelio, I; Caraglia, M; Misso, G; Bernassola, F; Cavasotto, C N; Knight, R A; Ciechanover, A; Melino, G

    2014-01-01

    Inhibition of distinct ubiquitin E3 ligases might represent a powerful therapeutic tool. ITCH is a HECT domain-containing E3 ligase that promotes the ubiquitylation and degradation of several proteins, including p73, p63, c-Jun, JunB, Notch and c-FLIP, thus affecting cell fate. Accordingly, ITCH depletion potentiates the effect of chemotherapeutic drugs, revealing ITCH as a potential pharmacological target in cancer therapy. Using high throughput screening of ITCH auto-ubiquitylation, we identified several putative ITCH inhibitors, one of which is clomipramine—a clinically useful antidepressant drug. Previously, we have shown that clomipramine inhibits autophagy by blocking autophagolysosomal fluxes and thus could potentiate chemotherapy in vitro. Here, we found that clomipramine specifically blocks ITCH auto-ubiquitylation, as well as p73 ubiquitylation. By screening structural homologs of clomipramine, we identified several ITCH inhibitors and putative molecular moieties that are essential for ITCH inhibition. Treating a panel of breast, prostate and bladder cancer cell lines with clomipramine, or its homologs, we found that they reduce cancer cell growth, and synergize with gemcitabine or mitomycin in killing cancer cells by blocking autophagy. We also discuss a potential mechanism of inhibition. Together, our study (i) demonstrates the feasibility of using high throughput screening to identify E3 ligase inhibitors and (ii) provides insight into how clomipramine and its structural homologs might interfere with ITCH and other HECT E3 ligase catalytic activity in (iii) potentiating chemotherapy by regulating autophagic fluxes. These results may have direct clinical applications. PMID:24787015

  2. Positive regulation of rice RING E3 ligase OsHIR1 in arsenic and cadmium uptakes.

    PubMed

    Lim, Sung Don; Hwang, Jin Gyu; Han, A Reum; Park, Yong Chan; Lee, Chanhui; Ok, Yong Sik; Jang, Cheol Seong

    2014-07-01

    The metalloid arsenic (As) and the heavy metal cadmium (Cd) are ubiquitously found at low concentrations in the earth. High concentrations of these elements in the soil and crops are severely dangerous to human health. We attempted to retrieve the RING E3 ubiquitin ligase gene for regulating As and Cd uptakes via the ubiquitin 26S proteasome system. Semi-quantitative reverse transcription polymerase chain reaction was conducted for a total of 47 Oryza sativa RING finger protein (OsRFP) genes to assess their expression patterns when exposed to As and Cd treatments. We identified one gene Oryza sativa heavy metal induced RING E3 ligase 1 (OsHIR1), which was significantly upregulated with both treatments. A yeast hybrid screen and a bimolecular fluorescence complementation assay showed that OsHIR1 clearly interacts with 5 substrate proteins, including tonoplast intrinsic protein 4;1 (OsTIP4;1) in the plasma membrane. In addition, OsHIR1 strongly degraded the protein level of OsTIP4;1 via the ubiquitin 26S proteasome system. Heterogeneous overexpression of OsHIR1 in Arabidopsis exhibited As- and Cd-insensitive phenotypes and resulted in decreased As and Cd accumulation in the shoots and roots, relative to the control. Herein, we report the novel finding that the OsHIR1 E3 ligase positively regulates OsTIP4;1 related to As and Cd uptakes. PMID:24664473

  3. The Kaposi's sarcoma-associated herpesvirus K5 E3 ubiquitin ligase modulates targets by multiple molecular mechanisms.

    PubMed

    Means, Robert E; Lang, Sabine M; Jung, Jae U

    2007-06-01

    Kaposi's sarcoma-associated herpesvirus encodes two highly related membrane-associated, RING-CH-containing (MARCH) family E3 ubiquitin ligases, K3 and K5, that can down regulate a variety of cell surface proteins through enhancement of their endocytosis and degradation. In this report we present data that while K5 modulation of major histocompatibility complex class I (MHC-I) closely mirrors the mechanisms used by K3, alternative molecular pathways are utilized by this E3 ligase in the down regulation of intercellular adhesion molecule 1 (ICAM-1) and B7.2. Internalization assays demonstrate that down regulation of each target can occur through increased endocytosis from the cell surface. However, mutation of a conserved tyrosine-based endocytosis motif in K5 resulted in a protein lacking the ability to direct an increased rate of MHC-I or ICAM-1 internalization but still able to down regulate B7.2 in a ubiquitin-dependent but endocytosis-independent manner. Further, mutation of two acidic clusters abolished K5-mediated MHC-I degradation while only slightly decreasing ICAM-1 or B7.2 protein destruction. This same mutant abolished detectable ubiquitylation of all targets. These data indicate that while K5 can act as an E3 ubiquitin ligase to directly mediate cell surface molecule destruction, regulation of its targets occurs through multiple pathways, including ubiquitin-independent mechanisms.

  4. The Kaposi's Sarcoma-Associated Herpesvirus K5 E3 Ubiquitin Ligase Modulates Targets by Multiple Molecular Mechanisms▿

    PubMed Central

    Means, Robert E.; Lang, Sabine M.; Jung, Jae U.

    2007-01-01

    Kaposi's sarcoma-associated herpesvirus encodes two highly related membrane-associated, RING-CH-containing (MARCH) family E3 ubiquitin ligases, K3 and K5, that can down regulate a variety of cell surface proteins through enhancement of their endocytosis and degradation. In this report we present data that while K5 modulation of major histocompatibility complex class I (MHC-I) closely mirrors the mechanisms used by K3, alternative molecular pathways are utilized by this E3 ligase in the down regulation of intercellular adhesion molecule 1 (ICAM-1) and B7.2. Internalization assays demonstrate that down regulation of each target can occur through increased endocytosis from the cell surface. However, mutation of a conserved tyrosine-based endocytosis motif in K5 resulted in a protein lacking the ability to direct an increased rate of MHC-I or ICAM-1 internalization but still able to down regulate B7.2 in a ubiquitin-dependent but endocytosis-independent manner. Further, mutation of two acidic clusters abolished K5-mediated MHC-I degradation while only slightly decreasing ICAM-1 or B7.2 protein destruction. This same mutant abolished detectable ubiquitylation of all targets. These data indicate that while K5 can act as an E3 ubiquitin ligase to directly mediate cell surface molecule destruction, regulation of its targets occurs through multiple pathways, including ubiquitin-independent mechanisms. PMID:17409151

  5. FERM-dependent E3 ligase recognition is a conserved mechanism for targeted degradation of lipoprotein receptors.

    PubMed

    Calkin, Anna C; Goult, Benjamin T; Zhang, Li; Fairall, Louise; Hong, Cynthia; Schwabe, John W R; Tontonoz, Peter

    2011-12-13

    The E3 ubiquitin ligase IDOL (inducible degrader of the LDL receptor) regulates LDL receptor (LDLR)-dependent cholesterol uptake, but its mechanism of action, including the molecular basis for its stringent specificity, is poorly understood. Here we show that IDOL uses a singular strategy among E3 ligases for target recognition. The IDOL FERM domain binds directly to a recognition sequence in the cytoplasmic tails of lipoprotein receptors. This physical interaction is independent of IDOL's really interesting new gene (RING) domain E3 ligase activity and its capacity for autoubiquitination. Furthermore, IDOL controls its own stability through autoubiquitination of a unique FERM subdomain fold not present in other FERM proteins. Key residues defining the IDOL-LDLR interaction and IDOL autoubiquitination are functionally conserved in their insect homologs. Finally, we demonstrate that target recognition by IDOL involves a tripartite interaction between the FERM domain, membrane phospholipids, and the lipoprotein receptor tail. Our data identify the IDOL-LDLR interaction as an evolutionarily conserved mechanism for the regulation of lipid uptake and suggest that this interaction could potentially be exploited for the pharmacologic modulation of lipid metabolism.

  6. FERM-dependent E3 ligase recognition is a conserved mechanism for targeted degradation of lipoprotein receptors

    PubMed Central

    Calkin, Anna C.; Goult, Benjamin T.; Zhang, Li; Fairall, Louise; Hong, Cynthia; Schwabe, John W. R.; Tontonoz, Peter

    2011-01-01

    The E3 ubiquitin ligase IDOL (inducible degrader of the LDL receptor) regulates LDL receptor (LDLR)-dependent cholesterol uptake, but its mechanism of action, including the molecular basis for its stringent specificity, is poorly understood. Here we show that IDOL uses a singular strategy among E3 ligases for target recognition. The IDOL FERM domain binds directly to a recognition sequence in the cytoplasmic tails of lipoprotein receptors. This physical interaction is independent of IDOL's really interesting new gene (RING) domain E3 ligase activity and its capacity for autoubiquitination. Furthermore, IDOL controls its own stability through autoubiquitination of a unique FERM subdomain fold not present in other FERM proteins. Key residues defining the IDOL–LDLR interaction and IDOL autoubiquitination are functionally conserved in their insect homologs. Finally, we demonstrate that target recognition by IDOL involves a tripartite interaction between the FERM domain, membrane phospholipids, and the lipoprotein receptor tail. Our data identify the IDOL–LDLR interaction as an evolutionarily conserved mechanism for the regulation of lipid uptake and suggest that this interaction could potentially be exploited for the pharmacologic modulation of lipid metabolism. PMID:22109552

  7. Hsp90-Dependent Assembly of the DBC2/RhoBTB2-Cullin3 E3-Ligase Complex

    PubMed Central

    Manjarrez, Jacob R.; Sun, Liang; Prince, Thomas; Matts, Robert L.

    2014-01-01

    The expression of the wild-type tumor-suppressor gene DBC2 (Deleted-in-Breast Cancer 2, a.k.a RhoBTB2) is suppressed in many cancers, in addition to breast cancer. In a screen for Cdc37-associated proteins, DBC2 was identified to be a potential client protein of the 90 kDa heat shock protein (Hsp90) chaperone machine. Pull down assays of ectopically expressed DBC2 confirmed that DBC2 associated with Hsp90 and its co-chaperone components in reticulocyte lysate and MCF7 cells. Similar to other atypical Rho GTPases, DBC2 was found to have retained the capacity to bind GTP. The ability of DBC2 to bind GTP was modulated by the Hsp90 ATPase cycle, as demonstrated through the use of the Hsp90 chemical inhibitors, geldanamycin and molybdate. The binding of full length DBC2 to GTP was suppressed in the presence of geldanamycin, while it was enhanced in the presence of molybdate. Furthermore, assembly of DBC2-Cullin3-COP9 E3 ligase complexes was Hsp90-dependent. The data suggest a new paradigm for Hsp90-modulated assembly of a Cul3/DBC2 E3 ubiquitin ligase complex that may extend to other E3 ligase complexes. PMID:24608665

  8. Allosteric Interactions by p53 mRNA Govern HDM2 E3 Ubiquitin Ligase Specificity under Different Conditions.

    PubMed

    Medina-Medina, Ixaura; García-Beltrán, Paola; de la Mora-de la Mora, Ignacio; Oria-Hernández, Jesús; Millot, Guy; Fahraeus, Robin; Reyes-Vivas, Horacio; Sampedro, José G; Olivares-Illana, Vanesa

    2016-08-15

    HDM2 and HDMX are key negative regulatory factors of the p53 tumor suppressor under normal conditions by promoting its degradation or preventing its trans activity, respectively. It has more recently been shown that both proteins can also act as positive regulators of p53 after DNA damage. This involves phosphorylation by ATM on serine residues HDM2(S395) and HDMX(S403), promoting their respective interaction with the p53 mRNA. However, the underlying molecular mechanisms of how these phosphorylation events switch HDM2 and HDMX from negative to positive regulators of p53 is not known. Our results show that these phosphorylation events reside within intrinsically disordered domains and change the conformation of the proteins. The modifications promote the exposition of N-terminal interfaces that support the formation of a new HDMX-HDM2 heterodimer independent of the C-terminal RING-RING interaction. The E3 ubiquitin ligase activity of this complex toward p53 is prevented by the p53 mRNA ligand but, interestingly, does not affect the capacity to ubiquitinate HDMX and HDM2. These results show how ATM-mediated modifications of HDMX and HDM2 switch HDM2 E3 ubiquitin ligase activity away from p53 but toward HDMX and itself and illustrate how the substrate specificity of HDM2 E3 ligase activity is regulated.

  9. Establishment of a Wheat Cell-Free Synthesized Protein Array Containing 250 Human and Mouse E3 Ubiquitin Ligases to Identify Novel Interaction between E3 Ligases and Substrate Proteins

    PubMed Central

    Takahashi, Hirotaka; Uematsu, Atsushi; Yamanaka, Satoshi; Imamura, Mei; Nakajima, Tatsuro; Doi, Kousuke; Yasuoka, Saki; Takahashi, Chikako; Takeda, Hiroyuki; Sawasaki, Tatsuya

    2016-01-01

    Ubiquitination is a key post-translational modification in the regulation of numerous biological processes in eukaryotes. The primary roles of ubiquitination are thought to be the triggering of protein degradation and the regulation of signal transduction. During protein ubiquitination, substrate specificity is mainly determined by E3 ubiquitin ligase (E3). Although more than 600 genes in the human genome encode E3, the E3s of many target proteins remain unidentified owing to E3 diversity and the instability of ubiquitinated proteins in cell. We demonstrate herein a novel biochemical analysis for the identification of E3s targeting specific proteins. Using wheat cell-free protein synthesis system, a protein array containing 227 human and 23 mouse recombinant E3s was synthesized. To establish the high-throughput binding assay using AlphaScreen technology, we selected MDM2 and p53 as the model combination of E3 and its target protein. The AlphaScreen assay specifically detected the binding of p53 and MDM2 in a crude translation mixture. Then, a comprehensive binding assay using the E3 protein array was performed. Eleven of the E3s showed high binding activity, including four previously reported E3s (e.g., MDM2, MDM4, and WWP1) targeting p53. This result demonstrated the reliability of the assay. Another interactors, RNF6 and DZIP3—which there have been no report to bind p53—were found to ubiquitinate p53 in vitro. Further analysis showed that RNF6 decreased the amount of p53 in H1299 cells in E3 activity-dependent manner. These results suggest the possibility that the RNF6 ubiquitinates and degrades p53 in cells. The novel in vitro screening system established herein is a powerful tool for finding novel E3s of a target protein. PMID:27249653

  10. Dyrk1A phosphorylates parkin at Ser-131 and negatively regulates its ubiquitin E3 ligase activity.

    PubMed

    Im, Eunju; Chung, Kwang Chul

    2015-08-01

    Mutations of parkin are associated with the occurrence of autosomal recessive familial Parkinson's disease (PD). Parkin acts an E3 ubiquitin ligase, which ubiquitinates target proteins and subsequently regulates either their steady-state levels through the ubiquitin-proteasome system or biochemical properties. In this study, we identify a novel regulatory mechanism of parkin by searching for new regulatory factors. After screening human fetal brain using a yeast two hybrid assay, we found dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (Dyrk1A) as a novel binding partner of parkin. We also observed that parkin interacts and co-localizes with Dyrk1A in mammalian cells. In addition, Dyrk1A directly phosphorylated parkin at Ser-131, causing the inhibition of its E3 ubiquitin ligase activity. Moreover, Dyrk1A-mediated phosphorylation reduced the binding affinity of parkin to its ubiquitin-conjugating E2 enzyme and substrate, which could be the underlying inhibitory mechanism of parkin activity. Furthermore, Dyrk1A-mediated phosphorylation inhibited the neuroprotective action of parkin against 6-hydroxydopamine toxicity in dopaminergic SH-SY5Y cells. These findings suggest that Dyrk1A acts as a novel functional modulator of parkin. Parkin phosphorylation by Dyrk1A suppresses its E3 ubiquitin ligase activity potentially contributing to the pathogenesis of PD under PD-inducing pathological conditions. Mutations of parkin are linked to autosomal recessive forms of familial Parkinson's disease (PD). According to its functional relevance in abnormal protein aggregation and neuronal cell death, a number of post-translational modifications regulate the ubiquitin E3 ligase activity of parkin. Here we propose a novel inhibitory mechanism of parkin E3 ubiquitin ligase through dual-specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A)-mediated phosphorylation as well as its neuroprotective action against 6-hydroxydopamine (6-OHDA)-induced cell death

  11. The Replisome-Coupled E3 Ubiquitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate Genotoxic Stress

    PubMed Central

    Melnik, Andre; Wilson-Zbinden, Caroline; Schellhaas, René; Kastner, Lisa; Piwko, Wojciech; Dees, Martina; Picotti, Paola; Maric, Marija; Labib, Karim; Luke, Brian; Peter, Matthias

    2016-01-01

    Faithful DNA replication and repair requires the activity of cullin 4-based E3 ubiquitin ligases (CRL4), but the underlying mechanisms remain poorly understood. The budding yeast Cul4 homologue, Rtt101, in complex with the linker Mms1 and the putative substrate adaptor Mms22 promotes progression of replication forks through damaged DNA. Here we characterized the interactome of Mms22 and found that the Rtt101Mms22 ligase associates with the replisome progression complex during S-phase via the amino-terminal WD40 domain of Ctf4. Moreover, genetic screening for suppressors of the genotoxic sensitivity of rtt101Δ cells identified a cluster of replication proteins, among them a component of the fork protection complex, Mrc1. In contrast to rtt101Δ and mms22Δ cells, mrc1Δ rtt101Δ and mrc1Δ mms22Δ double mutants complete DNA replication upon replication stress by facilitating the repair/restart of stalled replication forks using a Rad52-dependent mechanism. Our results suggest that the Rtt101Mms22 E3 ligase does not induce Mrc1 degradation, but specifically counteracts Mrc1’s replicative function, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS) complex at stalled forks. PMID:26849847

  12. RCAD/Ufl1, a Ufm1 E3 ligase, is essential for hematopoietic stem cell function and murine hematopoiesis.

    PubMed

    Zhang, M; Zhu, X; Zhang, Y; Cai, Y; Chen, J; Sivaprakasam, S; Gurav, A; Pi, W; Makala, L; Wu, J; Pace, B; Tuan-Lo, D; Ganapathy, V; Singh, N; Li, H

    2015-12-01

    The Ufm1 conjugation system is a novel ubiquitin-like modification system, consisting of Ufm1, Uba5 (E1), Ufc1 (E2) and poorly characterized E3 ligase(s). RCAD/Ufl1 (also known as KIAA0776, NLBP and Maxer) was reported to function as a Ufm1 E3 ligase in ufmylation (Ufm1-mediated conjugation) of DDRGK1 and ASC1 proteins. It has also been implicated in estrogen receptor signaling, unfolded protein response (UPR) and neurodegeneration, yet its physiological function remains completely unknown. In this study, we report that RCAD/Ufl1 is essential for embryonic development, hematopoietic stem cell (HSC) survival and erythroid differentiation. Both germ-line and somatic deletion of RCAD/Ufl1 impaired hematopoietic development, resulting in severe anemia, cytopenia and ultimately animal death. Depletion of RCAD/Ufl1 caused elevated endoplasmic reticulum stress and evoked UPR in bone marrow cells. In addition, loss of RCAD/Ufl1 blocked autophagic degradation, increased mitochondrial mass and reactive oxygen species, and led to DNA damage response, p53 activation and enhanced cell death of HSCs. Collectively, our study provides the first genetic evidence for the indispensable role of RCAD/Ufl1 in murine hematopoiesis and development. The finding of RCAD/Ufl1 as a key regulator of cellular stress response sheds a light into the role of a novel protein network including RCAD/Ufl1 and its associated proteins in regulating cellular homeostasis. PMID:25952549

  13. Shigella IpaH7.8 E3 ubiquitin ligase targets glomulin and activates inflammasomes to demolish macrophages

    PubMed Central

    Suzuki, Shiho; Mimuro, Hitomi; Kim, Minsoo; Ogawa, Michinaga; Ashida, Hiroshi; Toyotome, Takahito; Franchi, Luigi; Suzuki, Masato; Sanada, Takahito; Suzuki, Toshihiko; Tsutsui, Hiroko; Núñez, Gabriel; Sasakawa, Chihiro

    2014-01-01

    When nucleotide-binding oligomerization domain–like receptors (NLRs) sense cytosolic-invading bacteria, they induce the formation of inflammasomes and initiate an innate immune response. In quiescent cells, inflammasome activity is tightly regulated to prevent excess inflammation and cell death. Many bacterial pathogens provoke inflammasome activity and induce inflammatory responses, including cell death, by delivering type III secreted effectors, the rod component flagellin, and toxins. Recent studies indicated that Shigella deploy multiple mechanisms to stimulate NLR inflammasomes through type III secretion during infection. Here, we show that Shigella induces rapid macrophage cell death by delivering the invasion plasmid antigen H7.8 (IpaH7.8) enzyme 3 (E3) ubiquitin ligase effector via the type III secretion system, thereby activating the NLR family pyrin domain-containing 3 (NLRP3) and NLR family CARD domain-containing 4 (NLRC4) inflammasomes and caspase-1 and leading to macrophage cell death in an IpaH7.8 E3 ligase-dependent manner. Mice infected with Shigella possessing IpaH7.8, but not with Shigella possessing an IpaH7.8 E3 ligase-null mutant, exhibited enhanced bacterial multiplication. We defined glomulin/flagellar-associated protein 68 (GLMN) as an IpaH7.8 target involved in IpaH7.8 E3 ligase-dependent inflammasome activation. This protein originally was identified through its association with glomuvenous malformations and more recently was described as a member of a Cullin ring ligase inhibitor. Modifying GLMN levels through overexpression or knockdown led to reduced or augmented inflammasome activation, respectively. Macrophages stimulated with lipopolysaccharide/ATP induced GLMN puncta that localized with the active form of caspase-1. Macrophages from GLMN+/− mice were more responsive to inflammasome activation than those from GLMN+/+ mice. Together, these results highlight a unique bacterial adaptation that hijacks inflammasome activation via

  14. Structure of the Siz/PIAS SUMO E3 Ligase Siz1 and Determinants Required for SUMO Modification of PCNA

    SciTech Connect

    Yunus, Ali A.; Lima, Christopher D.

    2010-01-12

    Siz1 is a founding member of the Siz/PIAS RING family of SUMO E3 ligases. The X-ray structure of an active Siz1 ligase revealed an elongated tripartite architecture comprised of an N-terminal PINIT domain, a central zinc-containing RING-like SP-RING domain, and a C-terminal domain we term the SP-CTD. Structure-based mutational analysis and biochemical studies show that the SP-RING and SP-CTD are required for activation of the E2SUMO thioester, while the PINIT domain is essential for redirecting SUMO conjugation to the proliferating cell nuclear antigen (PCNA) at lysine 164, a nonconsensus lysine residue that is not modified by the SUMO E2 in the absence of Siz1. Mutational analysis of Siz1 and PCNA revealed surfaces on both proteins that are required for efficient SUMO modification of PCNA in vitro and in vivo.

  15. CUL4-DDB1-CDT2 E3 Ligase Regulates the Molecular Clock Activity by Promoting Ubiquitination-Dependent Degradation of the Mammalian CRY1.

    PubMed

    Tong, Xin; Zhang, Deqiang; Guha, Anirvan; Arthurs, Blake; Cazares, Victor; Gupta, Neil; Yin, Lei

    2015-01-01

    The CUL4-DDB1 E3 ligase complex serves as a critical regulator in various cellular processes, including cell proliferation, DNA damage repair, and cell cycle progression. However, whether this E3 ligase complex regulates clock protein turnover and the molecular clock activity in mammalian cells is unknown. Here we show that CUL4-DDB1-CDT2 E3 ligase ubiquitinates CRY1 and promotes its degradation both in vitro and in vivo. Depletion of the major components of this E3 ligase complex, including Ddb1, Cdt2, and Cdt2-cofactor Pcna, leads to CRY1 stabilization in cultured cells or in the mouse liver. CUL4A-DDB1-CDT2 E3 ligase targets lysine 585 within the C-terminal region of CRY1 protein, shown by the CRY1 585KA mutant's resistance to ubiquitination and degradation mediated by the CUL4A-DDB1 complex. Surprisingly, both depletion of Ddb1 and over-expression of Cry1-585KA mutant enhance the oscillatory amplitude of the Bmal1 promoter activity without altering its period length, suggesting that CUL4A-DDB1-CDT2 E3 targets CRY1 for degradation and reduces the circadian amplitude. All together, we uncovered a novel biological role for CUL4A-DDB1-CDT2 E3 ligase that regulates molecular circadian behaviors via promoting ubiquitination-dependent degradation of CRY1.

  16. Targeting Cullin–RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation

    PubMed Central

    Bulatov, Emil; Ciulli, Alessio

    2015-01-01

    In the last decade, the ubiquitin–proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin–RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs. PMID:25886174

  17. Ring finger protein 146/Iduna is a Poly (ADP-ribose) polymer binding and PARsylation dependent E3 ubiquitin ligase

    PubMed Central

    Zhou, Zhi-dong; Chan, Christine Hui-shan; Xiao, Zhi-cheng

    2011-01-01

    Recent findings suggest that Ring finger protein 146 (RNF146), also called Iduna, have neuroprotective property due to its inhibition of Parthanatos via binding with Poly(ADP-ribose) (PAR). The Parthanatos is a PAR dependent cell death that has been implicated in many human diseases. RNF146/Iduna acts as a PARsylation-directed E3 ubquitin ligase to mediate tankyrase-dependent degradation of axin, thereby positively regulates Wnt signaling. RNF146/Iduna can also facilitate DNA repair and protect against cell death induced by DNA damaging agents or γ-irradiation. It can translocate to the nucleus after cellular injury and promote the ubiquitination and degradation of various nuclear proteins involved in DNA damage repair. The PARsylation-directed ubquitination mediated by RNF146/Iduna is analogous to the phosphorylation-directed ubquitination catalyzed by Skp1-Cul1-F-box (SCF) E3 ubiquitin complex. RNF146/Iduna has been found to be implicated in neurodegenerative disease and cancer development. Therefore modulation of the PAR-binding and PARsylation dependent E3 ligase activity of RNF146/Iduna could have therapeutic significance for diseases, in which PAR and PAR-binding proteins play key pathophysiologic roles. PMID:22274711

  18. Disinhibition of the HECT E3 ubiquitin ligase WWP2 by polymerized Dishevelled

    PubMed Central

    Mund, Thomas; Graeb, Michael; Mieszczanek, Juliusz; Gammons, Melissa; Pelham, Hugh R. B.; Bienz, Mariann

    2015-01-01

    Dishevelled is a pivot in Wnt signal transduction, controlling both β-catenin-dependent transcription to specify proliferative cell fates, and cell polarity and other non-nuclear events in post-mitotic cells. In response to Wnt signals, or when present at high levels, Dishevelled forms signalosomes by dynamic polymerization. Its levels are controlled by ubiquitylation, mediated by various ubiquitin ligases, including NEDD4 family members that bind to a conserved PPxY motif in Dishevelled (mammalian Dvl1–3). Here, we show that Dvl2 binds to the ubiquitin ligase WWP2 and unlocks its ligase activity from autoinhibition. This disinhibition of WWP2 depends on several features of Dvl2 including its PPxY motif and to a lesser extent its DEP domain, but crucially on the ability of Dvl2 to polymerize, indicating that WWP2 is activated in Wnt signalosomes. We show that Notch intracellular domains are substrates for Dvl-activated WWP2 and their transcriptional activity is consequently reduced, providing a molecular mechanism for cross-talk between Wnt and Notch signalling. These regulatory interactions are conserved in Drosophila whose WWP2 orthologue, Suppressor-of-deltex, downregulates Notch signalling upon activation by Dishevelled in developing wing tissue. Attentuation of Notch signalling by Dishevelled signalosomes could be important during the transition of cells from the proliferative to the post-mitotic state. PMID:26701932

  19. The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96.

    PubMed

    Lee, Hong Gil; Seo, Pil Joon

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant responses to various environmental challenges. Controlled protein turnover is an important component of ABA signalling. Here we show that the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1) regulates ABA sensitivity by promoting MYB96 turnover in Arabidopsis. Germination of MIEL1-deficient mutant seeds is hypersensitive to ABA, whereas MIEL1-overexpressing transgenic seeds are less sensitive. MIEL1 can interact with MYB96, a regulator of ABA signalling, and stimulate its ubiquitination and degradation. Genetic analysis shows that MYB96 is epistatic to MIEL1 in the control of ABA sensitivity in seeds. While MIEL1 acts primarily via MYB96 in seed germination, MIEL1 regulates protein turnover of both MYB96 and MYB30 in vegetative tissues. We find that ABA regulates the expression of MYB30-responsive genes during pathogen infection and this regulation is partly dependent on MIEL1. These results suggest that MIEL1 may facilitate crosstalk between ABA and biotic stress signalling. PMID:27615387

  20. COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function through Its E3 Ubiquitin Ligase Activity

    PubMed Central

    Kim, Joo Y.; Jang, In-Cheol; Seo, Hak S.

    2016-01-01

    Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1) regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier) ligase AtSIZ1 through its E3 ubiquitin ligase activity. Yeast two hybrid analysis demonstrated that COP1 and AtSIZ1 directly interacted with one another, and subcellular localization assays indicated that COP1 and AtSIZ1 co-localized in nuclear bodies. Analysis of ubiquitination showed that AtSIZ1 was polyubiquitinated by COP1. The AtSIZ1 level was higher in cop1-4 mutants than in wild-type seedlings under light or dark conditions, and overexpression of a dominant-negative (DN)-COP1 mutant led to a substantial increase in AtSIZ1 accumulation. In addition, under drought, cold, and high salt conditions, SUMO-conjugate levels were elevated in DN-COP1-overexpressing plants and cop1-4 mutant plants compared to wild-type plants. Taken together, our results indicate that COP1 controls responses to abiotic stress by modulation of AtSIZ1 levels and activity. PMID:27536318

  1. Arabidopsis COP1 SUPPRESSOR 2 Represses COP1 E3 Ubiquitin Ligase Activity through Their Coiled-Coil Domains Association

    PubMed Central

    Jiang, Yan; Ling, Junjie; Hettiarachchi, Chamari; Tellgren-Roth, Christian; Wei, Ning; Deng, Xing Wang

    2015-01-01

    CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) functions as an E3 ubiquitin ligase and mediates a variety of developmental processes in Arabidopsis by targeting a number of key regulators for ubiquitination and degradation. Here, we identify a novel COP1 interacting protein, COP1 SUPPRESSOR 2 (CSU2). Loss of function mutations in CSU2 suppress the constitutive photomorphogenic phenotype of cop1-6 in darkness. CSU2 directly interacts with COP1 via their coiled-coil domains and is recruited by COP1 into nuclear speckles in living plant cells. Furthermore, CSU2 inhibits COP1 E3 ubiquitin ligase activity in vitro, and represses COP1 mediated turnover of HY5 in cell-free extracts. We propose that in csu2 cop1-6 mutants, the lack of CSU2’s repression of COP1 allows the low level of COP1 to exhibit higher activity that is sufficient to prevent accumulation of HY5 in the dark, thus restoring the etiolated phenotype. In addition, CSU2 is required for primary root development under normal light growth condition. PMID:26714275

  2. Insights into Cullin-RING E3 ubiquitin ligase recruitment: structure of the VHL-EloBC-Cul2 complex.

    PubMed

    Nguyen, Henry C; Yang, Haitao; Fribourgh, Jennifer L; Wolfe, Leslie S; Xiong, Yong

    2015-03-01

    The von Hippel-Lindau tumor suppressor protein (VHL) recruits a Cullin 2 (Cul2) E3 ubiquitin ligase to downregulate HIF-1α, an essential transcription factor for the hypoxia response. Mutations in VHL lead to VHL disease and renal cell carcinomas. Inhibition of this pathway to upregulate erythropoietin production is a promising new therapy to treat ischemia and chronic anemia. Here, we report the crystal structure of VHL bound to a Cul2 N-terminal domain, Elongin B, and Elongin C (EloC). Cul2 interacts with both the VHL BC box and cullin box and a novel EloC site. Comparison with other cullin E3 ligase structures shows that there is a conserved, yet flexible, cullin recognition module and that cullin selectivity is influenced by distinct electrostatic interactions. Our structure provides a structural basis for the study of the pathogenesis of VHL disease and rationale for the design of novel compounds that may modulate cullin-substrate receptor interactions.

  3. Negative Regulation of CARD11 Signaling and Lymphoma Cell Survival by the E3 Ubiquitin Ligase RNF181

    PubMed Central

    Pedersen, Sarah M.; Chan, Waipan; Jattani, Rakhi P.; Mackie, deMauri S.

    2015-01-01

    NF-κB activation downstream of antigen receptor engagement is a highly regulated event required for lymphocyte activation during the adaptive immune response. The pathway is often dysregulated in lymphoma, leading to constitutive NF-κB activity that supports the aberrant proliferation of transformed lymphocytes. To identify novel regulators of antigen receptor signaling to NF-κB, we developed bioluminescence resonance energy transfer-based interaction cloning (BRIC), a screening strategy that can detect protein-protein interactions in live mammalian cells in a high-throughput manner. Using this strategy, we identified the RING finger protein RNF181 as an interactor of CARD11, a key signaling scaffold in the antigen receptor pathway. We present evidence that RNF181 functions as an E3 ubiquitin ligase to inhibit antigen receptor signaling to NF-κB downstream of CARD11. The levels of the obligate signaling protein Bcl10 are reduced by RNF181 even prior to signaling, and Bcl10 can serve as a substrate for RNF181 E3 ligase activity in vitro. Furthermore, RNF181 limits the proliferation of human diffuse large B cell lymphoma cells that depend upon aberrant CARD11 signaling to NF-κB for growth and survival in culture. Our results define a new regulatory checkpoint that can modulate the output of CARD11 signaling to NF-κB in both normal and transformed lymphocytes. PMID:26711259

  4. A MARCH6 and IDOL E3 Ubiquitin Ligase Circuit Uncouples Cholesterol Synthesis from Lipoprotein Uptake in Hepatocytes

    PubMed Central

    Loregger, Anke; Cook, Emma Claire Laura; Nelson, Jessica Kristin; Moeton, Martina; Sharpe, Laura Jane; Engberg, Susanna; Karimova, Madina; Lambert, Gilles; Brown, Andrew John

    2015-01-01

    Cholesterol synthesis and lipoprotein uptake are tightly coordinated to ensure that the cellular level of cholesterol is adequately maintained. Hepatic dysregulation of these processes is associated with pathological conditions, most notably cardiovascular disease. Using a genetic approach, we have recently identified the E3 ubiquitin ligase MARCH6 as a regulator of cholesterol biosynthesis, owing to its ability to promote degradation of the rate-limiting enzymes 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) and squalene epoxidase (SQLE). Here, we present evidence for MARCH6 playing a multifaceted role in the control of cholesterol homeostasis in hepatocytes. We identify MARCH6 as an endogenous inhibitor of the sterol regulatory element binding protein (SREBP) transcriptional program. Accordingly, loss of MARCH6 increases expression of SREBP-regulated genes involved in cholesterol biosynthesis and lipoprotein uptake. Unexpectedly, this is associated with a decrease in cellular lipoprotein uptake, induced by enhanced lysosomal degradation of the low-density lipoprotein receptor (LDLR). Finally, we provide evidence that induction of the E3 ubiquitin ligase IDOL represents the molecular mechanism underlying this MARCH6-induced phenotype. Our study thus highlights a MARCH6-dependent mechanism to direct cellular cholesterol accretion that relies on uncoupling of cholesterol synthesis from lipoprotein uptake. PMID:26527619

  5. The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96

    PubMed Central

    Lee, Hong Gil; Seo, Pil Joon

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant responses to various environmental challenges. Controlled protein turnover is an important component of ABA signalling. Here we show that the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1) regulates ABA sensitivity by promoting MYB96 turnover in Arabidopsis. Germination of MIEL1-deficient mutant seeds is hypersensitive to ABA, whereas MIEL1-overexpressing transgenic seeds are less sensitive. MIEL1 can interact with MYB96, a regulator of ABA signalling, and stimulate its ubiquitination and degradation. Genetic analysis shows that MYB96 is epistatic to MIEL1 in the control of ABA sensitivity in seeds. While MIEL1 acts primarily via MYB96 in seed germination, MIEL1 regulates protein turnover of both MYB96 and MYB30 in vegetative tissues. We find that ABA regulates the expression of MYB30-responsive genes during pathogen infection and this regulation is partly dependent on MIEL1. These results suggest that MIEL1 may facilitate crosstalk between ABA and biotic stress signalling. PMID:27615387

  6. The Membrane Associated RING-CH Proteins: A Family of E3 Ligases with Diverse Roles through the Cell

    PubMed Central

    Means, Robert E.

    2014-01-01

    Since the discovery that conjugation of ubiquitin to proteins can drive proteolytic degradation, ubiquitination has been shown to perform a diverse range of functions in the cell. It plays an important role in endocytosis, signal transduction, trafficking of vesicles inside the cell, and even DNA repair. The process of ubiquitination-mediated control has turned out to be remarkably complex, involving a diverse array of proteins and many levels of control. This review focuses on a family of structurally related E3 ligases termed the membrane-associated RING-CH (MARCH) ubiquitin ligases, which were originally discovered as structural homologs to the virals E3s, K3, and K5 from Kaposi's sarcoma-associated herpesvirus (KSHV). These proteins contain a catalytic RING-CH finger and are typically membrane-bound, with some having up to 14 putative transmembrane domains. Despite several lines of evidence showing that the MARCH proteins play a complex and essential role in several cellular processes, this family remains understudied. PMID:27419207

  7. Impaired Neurite Contact Guidance in Ubiquitin Ligase E3a (Ube3a)-Deficient Hippocampal Neurons on Nanostructured Substrates.

    PubMed

    Tonazzini, I; Meucci, S; Van Woerden, G M; Elgersma, Y; Cecchini, M

    2016-04-01

    Recent discoveries indicate that during neuronal development the signaling processes that regulate extracellular sensing (e.g., adhesion, cytoskeletal dynamics) are important targets for ubiquitination-dependent regulation, in particular through E3 ubiquitin ligases. Among these, Ubiquitin E3a ligase (UBE3A) has a key role in brain functioning, but its function and how its deficiency results in the neurodevelopmental disorder Angelman syndrome is still unclear. Here, the role of UBE3A is investigated in neurite contact guidance during neuronal development, in vitro. The microtopography sensing of wild-type and Ube3a-deficient hippocampal neurons is studied by exploiting gratings with different topographical characteristics, with the aim to compare their capabilities to read and follow physical directional stimuli. It is shown that neuronal contact guidance is defective in Ube3a-deficient neurons, and this behavior is linked to an impaired activation of the focal adhesion signaling pathway. Taken together, the results suggest that the neuronal contact sensing machinery might be affected in Angelman syndrome. PMID:26845073

  8. The Salmonella Effector Protein SopA Modulates Innate Immune Responses by Targeting TRIM E3 Ligase Family Members

    PubMed Central

    Kamanova, Jana; Sun, Hui; Lara-Tejero, Maria; Galán, Jorge E.

    2016-01-01

    Salmonella Typhimurium stimulates inflammatory responses in the intestinal epithelium, which are essential for its ability to replicate within the intestinal tract. Stimulation of these responses is strictly dependent on the activity of a type III secretion system encoded within its pathogenicity island 1, which through the delivery of effector proteins, triggers signaling pathways leading to inflammation. One of these effectors is SopA, a HECT-type E3 ligase, which is required for the efficient stimulation of inflammation in an animal model of Salmonella Typhimurium infection. We show here that SopA contributes to the stimulation of innate immune responses by targeting two host E3 ubiquitin ligases, TRIM56 and TRIM65. We also found that TRIM65 interacts with the innate immune receptor MDA5 enhancing its ability to stimulate interferon-β signaling. Therefore, by targeting TRIM56 and TRIM65, SopA can stimulate signaling through two innate immune receptors, RIG-I and MDA5. These findings describe a Salmonella mechanism to modulate inflammatory responses by directly targeting innate immune signaling mechanisms. PMID:27058235

  9. The U-Box/ARM E3 ligase PUB13 regulates cell death, defense, and flowering time in Arabidopsis.

    PubMed

    Li, Wei; Ahn, Il-Pyung; Ning, Yuese; Park, Chan-Ho; Zeng, Lirong; Whitehill, Justin G A; Lu, Haibin; Zhao, Qingzhen; Ding, Bo; Xie, Qi; Zhou, Jian-Min; Dai, Liangying; Wang, Guo-Liang

    2012-05-01

    The components in plant signal transduction pathways are intertwined and affect each other to coordinate plant growth, development, and defenses to stresses. The role of ubiquitination in connecting these pathways, particularly plant innate immunity and flowering, is largely unknown. Here, we report the dual roles for the Arabidopsis (Arabidopsis thaliana) Plant U-box protein13 (PUB13) in defense and flowering time control. In vitro ubiquitination assays indicated that PUB13 is an active E3 ubiquitin ligase and that the intact U-box domain is required for the E3 ligase activity. Disruption of the PUB13 gene by T-DNA insertion results in spontaneous cell death, the accumulation of hydrogen peroxide and salicylic acid (SA), and elevated resistance to biotrophic pathogens but increased susceptibility to necrotrophic pathogens. The cell death, hydrogen peroxide accumulation, and resistance to necrotrophic pathogens in pub13 are enhanced when plants are pretreated with high humidity. Importantly, pub13 also shows early flowering under middle- and long-day conditions, in which the expression of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 and FLOWERING LOCUS T is induced while FLOWERING LOCUS C expression is suppressed. Finally, we found that two components involved in the SA-mediated signaling pathway, SID2 and PAD4, are required for the defense and flowering-time phenotypes caused by the loss of function of PUB13. Taken together, our data demonstrate that PUB13 acts as an important node connecting SA-dependent defense signaling and flowering time regulation in Arabidopsis.

  10. COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function through Its E3 Ubiquitin Ligase Activity.

    PubMed

    Kim, Joo Y; Jang, In-Cheol; Seo, Hak S

    2016-01-01

    Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1) regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier) ligase AtSIZ1 through its E3 ubiquitin ligase activity. Yeast two hybrid analysis demonstrated that COP1 and AtSIZ1 directly interacted with one another, and subcellular localization assays indicated that COP1 and AtSIZ1 co-localized in nuclear bodies. Analysis of ubiquitination showed that AtSIZ1 was polyubiquitinated by COP1. The AtSIZ1 level was higher in cop1-4 mutants than in wild-type seedlings under light or dark conditions, and overexpression of a dominant-negative (DN)-COP1 mutant led to a substantial increase in AtSIZ1 accumulation. In addition, under drought, cold, and high salt conditions, SUMO-conjugate levels were elevated in DN-COP1-overexpressing plants and cop1-4 mutant plants compared to wild-type plants. Taken together, our results indicate that COP1 controls responses to abiotic stress by modulation of AtSIZ1 levels and activity. PMID:27536318

  11. Subunit architecture of the Golgi Dsc E3 ligase required for sterol regulatory element-binding protein (SREBP) cleavage in fission yeast.

    PubMed

    Lloyd, S Julie-Ann; Raychaudhuri, Sumana; Espenshade, Peter J

    2013-07-19

    The membrane-bound sterol regulatory element-binding protein (SREBP) transcription factors regulate lipogenesis in mammalian cells and are activated through sequential cleavage by the Golgi-localized Site-1 and Site-2 proteases. The mechanism of fission yeast SREBP cleavage is less well defined and, in contrast, requires the Golgi-localized Dsc E3 ligase complex. The Dsc E3 ligase consists of five integral membrane subunits, Dsc1 through Dsc5, and resembles membrane E3 ligases that function in endoplasmic reticulum-associated degradation. Using immunoprecipitation assays and blue native electrophoresis, we determined the subunit architecture for the complex of Dsc1 through Dsc5, showing that the Dsc proteins form subcomplexes and display defined connectivity. Dsc2 is a rhomboid pseudoprotease family member homologous to mammalian UBAC2 and a central component of the Dsc E3 ligase. We identified conservation in the architecture of the Dsc E3 ligase and the multisubunit E3 ligase gp78 in mammals. Specifically, Dsc1-Dsc2-Dsc5 forms a complex resembling gp78-UBAC2-UBXD8. Further characterization of Dsc2 revealed that its C-terminal UBA domain can bind to ubiquitin chains but that the Dsc2 UBA domain is not essential for yeast SREBP cleavage. Based on the ability of rhomboid superfamily members to bind transmembrane proteins, we speculate that Dsc2 functions in SREBP recognition and binding. Homologs of Dsc1 through Dsc4 are required for SREBP cleavage and virulence in the human opportunistic pathogen Aspergillus fumigatus. Thus, these studies advance our organizational understanding of multisubunit E3 ligases involved in endoplasmic reticulum-associated degradation and fungal pathogenesis.

  12. Protein microarrays for the identification of praja1 e3 ubiquitin ligase substrates.

    PubMed

    Loch, Christian M; Eddins, Michael J; Strickler, James E

    2011-06-01

    Although they are the primary determinants of substrate specificity, few E3-substrate pairs have been positively identified, and few E3's profiled in a proteomic fashion. Praja1 is an E3 implicated in bone development and highly expressed in brain. Although it has been well studied relative to the majority of E3's, little is known concerning the repertoire of proteins it ubiquitylates. We sought to identify high confidence substrates for Praja1 from an unbiased proteomic profile of thousands of human proteins using protein microarrays. We first profiled Praja1 activity against a panel of E2's to identify its optimal partner in vitro. We then ubiquitylated multiple, identical protein arrays and detected putative substrates with reagents that vary in ubiquitin recognition according to the extent of chain formation. Gene ontology clustering identified putative substrates consistent with information previously known about Praja1 function, and provides clues into novel aspects of this enzyme's function.

  13. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling

    PubMed Central

    Chakraborty, Atanu; Diefenbacher, Markus E.; Mylona, Anastasia; Kassel, Olivier; Behrens, Axel

    2015-01-01

    The c-Jun/AP-1 transcription factor controls key cellular behaviours, including proliferation and apoptosis, in response to JNK and Ras/MAPK signalling. While the JNK pathway has been well characterised, the mechanism of activation by Ras was elusive. Here we identify the uncharacterised ubiquitin ligase Trim7 as a critical component of AP-1 activation via Ras. We found that MSK1 directly phosphorylates Trim7 in response to direct activation by the Ras–Raf–MEK–ERK pathway, and this modification stimulates Trim7 E3 ubiquitin ligase activity. Trim7 mediates Lys63-linked ubiquitination of the AP-1 coactivator RACO-1, leading to RACO-1 protein stabilisation. Consequently, Trim7 depletion reduces RACO-1 levels and AP-1-dependent gene expression. Moreover, transgenic overexpression of Trim7 increases lung tumour burden in a Ras-driven cancer model, and knockdown of Trim7 in established xenografts reduces tumour growth. Thus, phosphorylation-ubiquitination crosstalk between MSK1, Trim7 and RACO-1 completes the long sought-after mechanism linking growth factor signalling and AP-1 activation. PMID:25851810

  14. Actin Cytoskeletal Organization in Drosophila Germline Ring Canals Depends on Kelch Function in a Cullin-RING E3 Ligase.

    PubMed

    Hudson, Andrew M; Mannix, Katelynn M; Cooley, Lynn

    2015-11-01

    The Drosophila Kelch protein is required to organize the ovarian ring canal cytoskeleton. Kelch binds and cross-links F-actin in vitro, and it also functions with Cullin 3 (Cul3) as a component of a ubiquitin E3 ligase. How these two activities contribute to cytoskeletal remodeling in vivo is not known. We used targeted mutagenesis to investigate the mechanism of Kelch function. We tested a model in which Cul3-dependent degradation of Kelch is required for its function, but we found no evidence to support this hypothesis. However, we found that mutant Kelch deficient in its ability to interact with Cul3 failed to rescue the kelch cytoskeletal defects, suggesting that ubiquitin ligase activity is the principal activity required in vivo. We also determined that the proteasome is required with Kelch to promote the ordered growth of the ring canal cytoskeleton. These results indicate that Kelch organizes the cytoskeleton in vivo by targeting a protein substrate for degradation by the proteasome.

  15. E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3

    PubMed Central

    Chesarino, Nicholas M.; McMichael, Temet M.; Yount, Jacob S.

    2015-01-01

    Interferon (IFN)-induced transmembrane protein 3 (IFITM3) is a cell-intrinsic factor that limits influenza virus infections. We previously showed that IFITM3 degradation is increased by its ubiquitination, though the ubiquitin ligase responsible for this modification remained elusive. Here, we demonstrate that the E3 ubiquitin ligase NEDD4 ubiquitinates IFITM3 in cells and in vitro. This IFITM3 ubiquitination is dependent upon the presence of a PPxY motif within IFITM3 and the WW domain-containing region of NEDD4. In NEDD4 knockout mouse embryonic fibroblasts, we observed defective IFITM3 ubiquitination and accumulation of high levels of basal IFITM3 as compared to wild type cells. Heightened IFITM3 levels significantly protected NEDD4 knockout cells from infection by influenza A and B viruses. Similarly, knockdown of NEDD4 in human lung cells resulted in an increase in steady state IFITM3 and a decrease in influenza virus infection, demonstrating a conservation of this NEDD4-dependent IFITM3 regulatory mechanism in mouse and human cells. Consistent with the known association of NEDD4 with lysosomes, we demonstrate for the first time that steady state turnover of IFITM3 occurs through the lysosomal degradation pathway. Overall, this work identifies the enzyme NEDD4 as a new therapeutic target for the prevention of influenza virus infections, and introduces a new paradigm for up-regulating cellular levels of IFITM3 independently of IFN or infection. PMID:26263374

  16. The E3 ubiquitin ligase HOS1 is involved in ethylene regulation of leaf expansion in Arabidopsis.

    PubMed

    Lee, Kyounghee; Seo, Pil Joon

    2015-01-01

    Ethylene regulates a variety of physiological processes, such as flowering, senescence, abscission, and fruit ripening. In particular, leaf expansion is also controlled by ethylene in Arabidopsis. Exogenous treatment with ethylene inhibits leaf expansion, and consistently, ethylene insensitive mutants show increased leaf area. Here, we report that the RING finger-containing E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) regulates leaf expansion in an ethylene signaling pathway. The HOS1-deficient mutant showed reduced leaf area and was insensitive to ethylene perception inhibitor, silver thiosulfate (STS). Accordingly, genes encoding ethylene signaling components were significantly up-regulated in hos1-3. This study demonstrates that the HOS1 protein is involved in ethylene signal transduction for the proper regulation of leaf expansion possibly under environmentally stressful conditions. PMID:25848954

  17. PIASy, a nuclear matrix–associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies

    PubMed Central

    Sachdev, Shrikesh; Bruhn, Laurakay; Sieber, Heidemarie; Pichler, Andrea; Melchior, Frauke; Grosschedl, Rudolf

    2001-01-01

    The Wnt-responsive transcription factor LEF1 can activate transcription in association with β-catenin and repress transcription in association with Groucho. In search of additional regulatory mechanisms of LEF1 function, we identified the protein inhibitor of activated STAT, PIASy, as a novel interaction partner of LEF1. Coexpression of PIASy with LEF1 results in potent repression of LEF1 activity and in covalent modification of LEF1 with SUMO. PIASy markedly stimulates the sumoylation of LEF1 and multiple other proteins in vivo and functions as a SUMO E3 ligase for LEF1 in a reconstituted system in vitro. Moreover, PIASy binds to nuclear matrix–associated DNA sequences and targets LEF1 to nuclear bodies, suggesting that PIASy-mediated subnuclear sequestration accounts for the repression of LEF1 activity. PMID:11731474

  18. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1

    PubMed Central

    Baehr, Leslie M.

    2014-01-01

    Muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx)/atrogin-1 were identified more than 10 years ago as two muscle-specific E3 ubiquitin ligases that are increased transcriptionally in skeletal muscle under atrophy-inducing conditions, making them excellent markers of muscle atrophy. In the past 10 years much has been published about MuRF1 and MAFbx with respect to their mRNA expression patterns under atrophy-inducing conditions, their transcriptional regulation, and their putative substrates. However, much remains to be learned about the physiological role of both genes in the regulation of mass and other cellular functions in striated muscle. Although both MuRF1 and MAFbx are enriched in skeletal, cardiac, and smooth muscle, this review will focus on the current understanding of MuRF1 and MAFbx in skeletal muscle, highlighting the critical questions that remain to be answered. PMID:25096180

  19. Negative correlation of ITCH E3 ubiquitin ligase and miRNA-106b dictates metastatic progression in pancreatic cancer.

    PubMed

    Luo, Zhu-Lin; Luo, Hui-Jun; Fang, Chen; Cheng, Long; Huang, Zhu; Dai, Ruiwu; Li, Kun; Tian, Fu-Zhou; Wang, Tao; Tang, Li-Jun

    2016-01-12

    Pancreatic cancer is one of the major malignancies and cause for mortality across the world, with recurrence and metastatic progression remaining the single largest cause of pancreatic cancer mortality. Hence it is imperative to develop novel biomarkers of pancreatic cancer prognosis. The E3 ubiquitin ligase ITCH has been previously reported to inhibit the tumor suppressive Hippo signaling by suppressing LATS1/2 in breast cancer and chronic lymphocytic leukemia. However, the role of ITCH in pancreatic cancer progression has not been described. Here we report that ITCH transcript and protein expression mimic metastatic trait in pancreatic cancer patients and cell lines. Loss-of-function studies of ITCH showed that the gene product is responsible for inducing metastasis in vivo. We furthermore show that hsa-miR-106b, which itself is down regulated in metastatic pancreatic cancer, directly interacts and inhibit ITCH expression. ITCH and hsa-miR-106b are thus potential biomarkers for pancreatic cancer prognosis.

  20. The E3 ubiquitin ligase HOS1 is involved in ethylene regulation of leaf expansion in Arabidopsis.

    PubMed

    Lee, Kyounghee; Seo, Pil Joon

    2015-01-01

    Ethylene regulates a variety of physiological processes, such as flowering, senescence, abscission, and fruit ripening. In particular, leaf expansion is also controlled by ethylene in Arabidopsis. Exogenous treatment with ethylene inhibits leaf expansion, and consistently, ethylene insensitive mutants show increased leaf area. Here, we report that the RING finger-containing E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) regulates leaf expansion in an ethylene signaling pathway. The HOS1-deficient mutant showed reduced leaf area and was insensitive to ethylene perception inhibitor, silver thiosulfate (STS). Accordingly, genes encoding ethylene signaling components were significantly up-regulated in hos1-3. This study demonstrates that the HOS1 protein is involved in ethylene signal transduction for the proper regulation of leaf expansion possibly under environmentally stressful conditions.

  1. PUB13, a U-box/ARM E3 ligase, regulates plant defense, cell death, and flowering time.

    PubMed

    Li, Wei; Dai, Liangying; Wang, Guo-Liang

    2012-08-01

    The ubiquitination pathway is involved in a variety of cellular processes in plant growth, development, and immune responses. However, the function of this pathway in connecting plant development and innate immunity is still largely unknown. Recently, we characterized the U-box/ARM E3 ubiquitin ligase PUB13, which regulates both immune responses and flowering time in Arabidopsis. Here, we show that the rice Spl11 gene can complement the cell death and flowering functions of PUB13 in the pub13 mutant. In addition, HFR1, which functions mainly in photomorphogenesis, was identified as one of the PUB13-interacting proteins through yeast two-hybrid screening and pull-down assays. Because the flowering phenotype of pub13 depends on photoperiod, we propose that PUB13 may regulate HFR1 to fine-tune photomorphogenesis and flowering time in Arabidopsis.

  2. The Pallbearer E3 Ligase Promotes Actin Remodeling via RAC in Efferocytosis by Degrading the Ribosomal Protein S6

    PubMed Central

    Xiao, Hui; Wang, Hui; Silva, Elizabeth; Thompson, James; Guillou, Aurélien; Yates, John R.; Buchon, Nicolas; Franc, Nathalie C.

    2014-01-01

    Clearance of apoptotic cells (efferocytosis) is achieved through phagocytosis by professional or amateur phagocytes. It is critical for tissue homeostasis and remodeling in all animals. Failure in this process can contribute to the development of inflammatory autoimmune or neurodegenerative diseases. We previously found that the PALL-SCF E3-Ubiquitin ligase complex promotes apoptotic cell clearance, yet it remained unclear as to how it did so. Here, we show that the F-Box protein PALL interacts with phosphorylated Ribosomal protein S6 (RpS6) to promote its ubiquitylation and proteasomal degradation. This leads to RAC2 GTPase up-regulation and activation and F-actin remodeling that promotes efferocytosis. We further show that the specific role of PALL in efferocytosis is driven by its apoptotic cell-induced nuclear export. Finding a role for RpS6 in negatively regulating efferocytosis provides the opportunity to develop new strategies to regulate this process. PMID:25533207

  3. Molecular dynamics reveal the essential role of linker motions in the function of cullin-RING E3 ligases

    PubMed Central

    Liu, Jin; Nussinov, Ruth

    2010-01-01

    Tagging proteins by polyubiquitin is a key step in protein degradation. Cullin-RING E3 ubiquitin ligases (CRLs) facilitate ubiquitin transfer from the E2 conjugating enzyme to the substrate; yet, crystallography indicates a large distance between the E2 and the substrate, raising the question of how this distance is bridged in the ubiquitin transfer reaction. Here, we demonstrate that the linker motions in the substrate binding proteins can allosterically shorten this distance to facilitate this crucial ubiquitin transfer step, and increase this distance to allow polyubiquitination. We performed molecular dynamics simulations for five substrate binding proteins, Skp2, Fbw7, β-TrCP1, Cdc4, and pVHL, in two forms: bound to their substrates, and bound to both substrate and adaptor. The adaptor connects the substrate binding proteins to the cullin. In the bound-to-both forms of all cases, we observed rotations of the substrate binding domain, shortening the gap between the tip of the substrate peptide and the E2 active site by 7~12Å compared to the crystal structures. Overall, together with our earlier simulations of the unbound and the bound-to-adaptor forms, the emerging picture is that the maximum 51~73Å distance between the substrate binding domain and the E2 active site in the modeled unbound forms of these five proteins shrinks to a minimum of 39~49Å in the bound-to-both forms. This large distance range, the result of allosterically-controlled linker motions, facilitates the ubiquitin transfer and polyubiquitination, and as such argues that the cullin-RING E3 ubiquitin ligase is under conformational control. We further observed that substrate binding proteins with multiple substrate acceptor lysines have larger distance range between the substrate and the E2 as compared to β-TrCP1, with only one acceptor lysine. PMID:20083119

  4. UBR-5, a Conserved HECT-Type E3 Ubiquitin Ligase, Negatively Regulates Notch-Type Signaling in Caenorhabditis elegans

    PubMed Central

    Safdar, Komal; Gu, Anniya; Xu, Xia; Au, Vinci; Taylor, Jon; Flibotte, Stephane; Moerman, Donald G.; Maine, Eleanor M.

    2016-01-01

    Notch-type signaling mediates cell−cell interactions important for animal development. In humans, reduced or inappropriate Notch signaling activity is associated with various developmental defects and disease states, including cancers. Caenorhabditis elegans expresses two Notch-type receptors, GLP-1 and LIN-12. GLP-1 mediates several cell-signaling events in the embryo and promotes germline proliferation in the developing and adult gonad. LIN-12 acts redundantly with GLP-1 in certain inductive events in the embryo and mediates several cell−cell interactions during larval development. Recovery of genetic suppressors and enhancers of glp-1 or lin-12 loss- or gain-of-function mutations has identified numerous regulators of GLP-1 and LIN-12 signaling activity. Here, we report the molecular identification of sog-1, a gene identified in screens for recessive suppressors of conditional glp-1 loss-of-function mutations. The sog-1 gene encodes UBR-5, the sole C. elegans member of the UBR5/Hyd family of HECT-type E3 ubiquitin ligases. Molecular and genetic analyses indicate that the loss of ubr-5 function suppresses defects caused by reduced signaling via GLP-1 or LIN-12. In contrast, ubr-5 mutations do not suppress embryonic or larval lethality associated with mutations in a downstream transcription factor, LAG-1. In the gonad, ubr-5 acts in the receiving cells (germ cells) to limit GLP-1 signaling activity. SEL-10 is the F-box component of SCFSEL-10 E3 ubiquitin–ligase complex that promotes turnover of Notch intracellular domain. UBR-5 acts redundantly with SEL-10 to limit Notch signaling in certain tissues. We hypothesize that UBR-5 activity limits Notch-type signaling by promoting turnover of receptor or limiting its interaction with pathway components. PMID:27185398

  5. Mitochondrial E3 Ubiquitin Protein Ligase 1 Mediates Cigarette Smoke-Induced Endothelial Cell Death and Dysfunction.

    PubMed

    Kim, Sun-Yong; Kim, Hyo Jeong; Park, Mi Kyeong; Huh, Jin Won; Park, Hye Yun; Ha, Sang Yun; Shin, Joo-Ho; Lee, Yun-Song

    2016-02-01

    By virtue of the critical roles of Akt in vascular endothelial cell (EC) survival and function, cigarette smoke-induced Akt reduction may contribute to EC death and dysfunction in smokers' lungs. One of the negative Akt regulatory mechanisms is K48-linked Akt ubiquitination and subsequent proteasomal degradation. Here, we assessed the involvement of mitochondrial E3 ubiquitin protein ligase 1 (MUL1), recently revealed as a novel Akt ubiquitin E3 ligase, in cigarette smoke-induced Akt ubiquitination and its contribution to pulmonary EC death and dysfunction. In human lung microvascular ECs (HLMVECs), cigarette smoke extract (CSE) noticeably elevated MUL1 expression and K48-linked Akt ubiquitination, whereas Akt, p-Akt, eNOS, and p-eNOS levels were decreased. MUL1 knockdown suppressed CSE-induced Akt ubiquitination/degradation and cytoplasmic reductions of Akt and p-Akt. Furthermore, MUL1 knockdown attenuated reductions of eNOS and p-eNOS and alleviated EC survival, migration, and tube formation in the presence of CSE exposure. In addition, overexpression of K284R Akt, a mutant for a MUL1-ubiquitination site, produced similar effects. In HLMVECs exposed to CSE, Akt-MUL1 interaction was increased in coimmunoprecipitation and in situ proximity ligation assays. Similarly, the proximity ligation assay signals were elevated in rat lungs exposed to cigarette smoke for 3 months, during which Mul1 levels were noticeably increased. Finally, we found that CSE-mediated MUL1 induction in HLMVECs is mediated by retinoic acid receptor-related orphan receptor α. Taken together, these data suggest that cigarette smoke-induced MUL1 elevation mediates Akt ubiquitination/degradation, potentially leading to pulmonary EC death and functional impairment.

  6. Biochemical and Proteomic Analysis of Ubiquitination of Hsc70 and Hsp70 by the E3 Ligase CHIP

    PubMed Central

    Soss, Sarah E.; Rose, Kristie L.; Hill, Salisha; Jouan, Sophie; Chazin, Walter J.

    2015-01-01

    The E3 ubiquitin ligase CHIP is involved in protein triage, serving as a co-chaperone for refolding as well as catalyzing ubiquitination of substrates. CHIP functions with both the stress induced Hsp70 and constitutive Hsc70 chaperones, and also plays a role in maintaining their balance in the cell. When the chaperones carry no client proteins, CHIP catalyzes their polyubiquitination and subsequent proteasomal degradation. Although Hsp70 and Hsc70 are highly homologous in sequence and similar in structure, CHIP mediated ubiquitination promotes degradation of Hsp70 with a higher efficiency than for Hsc70. Here we report a detailed and systematic investigation to characterize if there are significant differences in the CHIP in vitro ubiquitination of human Hsp70 and Hsc70. Proteomic analysis by mass spectrometry revealed that only 12 of 39 detectable lysine residues were ubiquitinated by UbcH5a in Hsp70 and only 16 of 45 in Hsc70. The only conserved lysine identified as ubiquitinated in one but not the other heat shock protein was K159 in Hsc70. Ubiquitination assays with K-R ubiquitin mutants showed that multiple Ub chain types are formed and that the distribution is different for Hsp70 versus Hsc70. CHIP ubiquitination with the E2 enzyme Ube2W is predominantly directed to the N-terminal amine of the substrate; however, some internal lysine modifications were also detected. Together, our results provide a detailed view of the differences in CHIP ubiquitination of these two very similar proteins, and show a clear example where substantial differences in ubiquitination can be generated by a single E3 ligase in response to not only different E2 enzymes but subtle differences in the substrate. PMID:26010904

  7. The RING E3 Ligase KEEP ON GOING Modulates JASMONATE ZIM-DOMAIN12 Stability1[OPEN

    PubMed Central

    Pauwels, Laurens; Ritter, Andrés; Goossens, Jonas; Durand, Astrid Nagels; Liu, Hongxia; Gu, Yangnan; Geerinck, Jan; Boter, Marta; Vanden Bossche, Robin; De Clercq, Rebecca; Van Leene, Jelle; Gevaert, Kris; De Jaeger, Geert; Solano, Roberto; Stone, Sophia; Innes, Roger W.; Callis, Judy; Goossens, Alain

    2015-01-01

    Jasmonate (JA) signaling in plants is mediated by the JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the activity of several transcription factors regulating JA-inducible gene expression. The hormone JA-isoleucine triggers the interaction of JAZ repressor proteins with the F-box protein CORONATINE INSENSITIVE1 (COI1), part of an S-phase kinase-associated protein1/Cullin1/F-box protein COI1 (SCFCOI1) E3 ubiquitin ligase complex, and their degradation by the 26S proteasome. In Arabidopsis (Arabidopsis thaliana), the JAZ family consists of 13 members. The level of redundancy or specificity among these members is currently not well understood. Here, we characterized JAZ12, encoded by a highly expressed JAZ gene. JAZ12 interacted with the transcription factors MYC2, MYC3, and MYC4 in vivo and repressed MYC2 activity. Using tandem affinity purification, we found JAZ12 to interact with SCFCOI1 components, matching with observed in vivo ubiquitination and with rapid degradation after treatment with JA. In contrast to the other JAZ proteins, JAZ12 also interacted directly with the E3 RING ligase KEEP ON GOING (KEG), a known repressor of the ABSCISIC ACID INSENSITIVE5 transcription factor in abscisic acid signaling. To study the functional role of this interaction, we circumvented the lethality of keg loss-of-function mutants by silencing KEG using an artificial microRNA approach. Abscisic acid treatment promoted JAZ12 degradation, and KEG knockdown led to a decrease in JAZ12 protein levels. Correspondingly, KEG overexpression was capable of partially inhibiting COI1-mediated JAZ12 degradation. Our results provide additional evidence for KEG as an important factor in plant hormone signaling and a positive regulator of JAZ12 stability. PMID:26320228

  8. Structural model of ubiquitin transfer onto an artificial RING finger as an E3 ligase

    NASA Astrophysics Data System (ADS)

    Miyamoto, Kazuhide

    2014-10-01

    The artificial WSTF PHD_EL5 RING finger was designed via ``α-helical region substitution'', and its structural model for the attachment of activated ubiquitin has been demonstrated. Chemical modifications of Cys residues, the circular dichroism spectra, and substrate-independent ubiquitination assays illustrated that the WSTF PHD_EL5 RING finger has E3 activity, and it is ubiquitinated via Lys14. Homology modeling calculations revealed that the WSTF PHD_EL5 RING finger possesses a classical RING fold for specific E2-E3 binding. The docking poses of the WSTF PHD_EL5 RING finger with the UbcH5b-ubiquitin conjugate provided insight into its functional E2 interaction and development of ubiquitination at the atomic level. The structural model of the artificial WSTF PHD_EL5 RING finger proposed by the present work is useful and may help to extend the strategy of α-helical region substitution.

  9. RNAi-Based Suppressor Screens Reveal Genetic Interactions Between the CRL2LRR-1 E3-Ligase and the DNA Replication Machinery in Caenorhabditis elegans

    PubMed Central

    Ossareh-Nazari, Batool; Katsiarimpa, Anthi; Merlet, Jorge; Pintard, Lionel

    2016-01-01

    Cullin-RING E3-Ligases (CRLs), the largest family of E3 ubiquitin-Ligases, regulate diverse cellular processes by promoting ubiquitination of target proteins. The evolutionarily conserved Leucine Rich Repeat protein 1 (LRR-1) is a substrate-recognition subunit of a CRL2LRR-1 E3-ligase. Here we provide genetic evidence supporting a role of this E3-enzyme in the maintenance of DNA replication integrity in Caenorhabditis elegans. Through RNAi-based suppressor screens of lrr-1(0) and cul-2(or209ts) mutants, we identified two genes encoding components of the GINS complex, which is part of the Cdc45-MCM-GINS (CMG) replicative helicase, as well as CDC-7 and MUS-101, which drives the assembly of the CMG helicase during DNA replication. In addition, we identified the core components of the ATR/ATL-1 DNA replication checkpoint pathway (MUS-101, ATL-1, CLSP-1, CHK-1). These results suggest that the CRL2LRR-1 E3-ligase acts to modify or degrade factor(s) that would otherwise misregulate the replisome, eventually leading to the activation of the DNA replication checkpoint. PMID:27543292

  10. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass.

    PubMed

    Rom, Oren; Reznick, Abraham Z

    2016-09-01

    The ubiquitin-proteasome system (UPS) is the main regulatory mechanism of protein degradation in skeletal muscle. The ubiquitin-ligase enzymes (E3s) have a central role in determining the selectivity and specificity of the UPS. Since their identification in 2001, the muscle specific E3s, muscle RING finger-1 (MuRF-1) and muscle atrophy F-box (MAFbx), have been shown to be implicated in the regulation of skeletal muscle atrophy in various pathological and physiological conditions. This review aims to explore the involvement of MuRF-1 and MAFbx in catabolism of skeletal muscle during various pathologies, such as cancer cachexia, sarcopenia of aging, chronic kidney disease (CKD), diabetes, and chronic obstructive pulmonary disease (COPD). In addition, the effects of various lifestyle and modifiable factors (e.g. nutrition, exercise, cigarette smoking, and alcohol) on MuRF-1 and MAFbx regulation will be discussed. Finally, evidence of potential strategies to protect against skeletal muscle wasting through inhibition of MuRF-1 and MAFbx expression will be explored. PMID:26738803

  11. Control of Formin Distribution and Actin Cable Assembly by the E3 Ubiquitin Ligases Dma1 and Dma2.

    PubMed

    Juanes, M Angeles; Piatti, Simonetta

    2016-09-01

    Formins are widespread actin-polymerizing proteins that play pivotal roles in a number of processes, such as cell polarity, morphogenesis, cytokinesis, and cell migration. In agreement with their crucial function, formins are prone to a variety of regulatory mechanisms that include autoinhibition, post-translational modifications, and interaction with formin modulators. Furthermore, activation and function of formins is intimately linked to their ability to interact with membranes. In the budding yeast Saccharomyces cerevisiae, the two formins Bni1 and Bnr1 play both separate and overlapping functions in the organization of the actin cytoskeleton. In addition, they are controlled by both common and different regulatory mechanisms. Here we show that proper localization of both formins requires the redundant E3 ubiquitin ligases Dma1 and Dma2, which were previously involved in spindle positioning and septin organization. In dma1 dma2 double mutants, formin distribution at polarity sites is impaired, thus causing defects in the organization of the actin cable network and hypersensitivity to the actin depolymerizer latrunculin B. Expression of a hyperactive variant of Bni1 (Bni1-V360D) rescues these defects and partially restores proper spindle positioning in the mutant, suggesting that the failure of dma1 dma2 mutant cells to position the spindle is partly due to faulty formin activity. Strikingly, Dma1/2 interact physically with both formins, while their ubiquitin-ligase activity is required for formin function and polarized localization. Thus, ubiquitylation of formin or a formin interactor(s) could promote formin binding to membrane and its ability to nucleate actin. Altogether, our data highlight a novel level of formin regulation that further expands our knowledge of the complex and multilayered controls of these key cytoskeleton organizers.

  12. Phosphorylation by PINK1 Releases the UBL Domain and Initializes the Conformational Opening of the E3 Ubiquitin Ligase Parkin

    PubMed Central

    Moussaud-Lamodière, Elisabeth L.; Dourado, Daniel F. A. R.; Flores, Samuel C.; Springer, Wolfdieter

    2014-01-01

    Loss-of-function mutations in PINK1 or PARKIN are the most common causes of autosomal recessive Parkinson's disease. Both gene products, the Ser/Thr kinase PINK1 and the E3 Ubiquitin ligase Parkin, functionally cooperate in a mitochondrial quality control pathway. Upon stress, PINK1 activates Parkin and enables its translocation to and ubiquitination of damaged mitochondria to facilitate their clearance from the cell. Though PINK1-dependent phosphorylation of Ser65 is an important initial step, the molecular mechanisms underlying the activation of Parkin's enzymatic functions remain unclear. Using molecular modeling, we generated a complete structural model of human Parkin at all atom resolution. At steady state, the Ub ligase is maintained inactive in a closed, auto-inhibited conformation that results from intra-molecular interactions. Evidently, Parkin has to undergo major structural rearrangements in order to unleash its catalytic activity. As a spark, we have modeled PINK1-dependent Ser65 phosphorylation in silico and provide the first molecular dynamics simulation of Parkin conformations along a sequential unfolding pathway that could release its intertwined domains and enable its catalytic activity. We combined free (unbiased) molecular dynamics simulation, Monte Carlo algorithms, and minimal-biasing methods with cell-based high content imaging and biochemical assays. Phosphorylation of Ser65 results in widening of a newly defined cleft and dissociation of the regulatory N-terminal UBL domain. This motion propagates through further opening conformations that allow binding of an Ub-loaded E2 co-enzyme. Subsequent spatial reorientation of the catalytic centers of both enzymes might facilitate the transfer of the Ub moiety to charge Parkin. Our structure-function study provides the basis to elucidate regulatory mechanisms and activity of the neuroprotective Parkin. This may open up new avenues for the development of small molecule Parkin activators through

  13. The pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylic acid-dependent defense response.

    PubMed

    Lee, Dong Hyuk; Choi, Hyong Woo; Hwang, Byung Kook

    2011-08-01

    Ubiquitination is essential for ubiquitin/proteasome-mediated protein degradation in plant development and defense. Here, we identified a novel E3 ubiquitin ligase RING1 gene, CaRING1, from pepper (Capsicum annuum). In pepper, CaRING1 expression is induced by avirulent Xanthomonas campestris pv vesicatoria infection. CaRING1 contains an amino-terminal transmembrane domain and a carboxyl-terminal RING domain. In addition, it displays in vitro E3 ubiquitin ligase activity, and the RING domain is essential for E3 ubiquitin ligase activity in CaRING1. CaRING1 also localizes to the plasma membrane. In pepper plants, virus-induced gene silencing of CaRING1 confers enhanced susceptibility to avirulent X. campestris pv vesicatoria infection, which is accompanied by compromised hypersensitive cell death, reduced expression of PATHOGENESIS-RELATED1, and lowered salicylic acid levels in leaves. Transient expression of CaRING1 in pepper leaves induces cell death and the defense response that requires the E3 ubiquitin ligase activity of CaRING1. By contrast, overexpression of CaRING1 in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to hemibiotrophic Pseudomonas syringae pv tomato and biotrophic Hyaloperonospora arabidopsidis infections. Taken together, these results suggest that CaRING1 is involved in the induction of cell death and the regulation of ubiquitination during the defense response to microbial pathogens.

  14. The Cullin 4A/B-DDB1-Cereblon E3 Ubiquitin Ligase Complex Mediates the Degradation of CLC-1 Chloride Channels.

    PubMed

    Chen, Yi-An; Peng, Yi-Jheng; Hu, Meng-Chun; Huang, Jing-Jia; Chien, Yun-Chia; Wu, June-Tai; Chen, Tsung-Yu; Tang, Chih-Yung

    2015-01-01

    Voltage-gated CLC-1 chloride channels play a critical role in controlling the membrane excitability of skeletal muscles. Mutations in human CLC-1 channels have been linked to the hereditary muscle disorder myotonia congenita. We have previously demonstrated that disease-associated CLC-1 A531V mutant protein may fail to pass the endoplasmic reticulum quality control system and display enhanced protein degradation as well as defective membrane trafficking. Currently the molecular basis of protein degradation for CLC-1 channels is virtually unknown. Here we aim to identify the E3 ubiquitin ligase of CLC-1 channels. The protein abundance of CLC-1 was notably enhanced in the presence of MLN4924, a specific inhibitor of cullin-RING E3 ligases. Subsequent investigation with dominant-negative constructs against specific subtypes of cullin-RING E3 ligases suggested that CLC-1 seemed to serve as the substrate for cullin 4A (CUL4A) and 4B (CUL4B). Biochemical examinations further indicated that CUL4A/B, damage-specific DNA binding protein 1 (DDB1), and cereblon (CRBN) appeared to co-exist in the same protein complex with CLC-1. Moreover, suppression of CUL4A/B E3 ligase activity significantly enhanced the functional expression of the A531V mutant. Our data are consistent with the idea that the CUL4A/B-DDB1-CRBN complex catalyses the polyubiquitination and thus controls the degradation of CLC-1 channels.

  15. Crystal structures of two bacterial HECT-like E3 ligases in complex with a human E2 reveal atomic details of pathogen-host interactions

    SciTech Connect

    Lin, David Yin-wei; Diao, Jianbo; Chen, Jue

    2012-12-10

    In eukaryotes, ubiquitination is an important posttranslational process achieved through a cascade of ubiquitin-activating (E1), conjugating (E2), and ligase (E3) enzymes. Many pathogenic bacteria deliver virulence factors into the host cell that function as E3 ligases. How these bacterial 'Trojan horses' integrate into the eukaryotic ubiquitin system has remained a mystery. Here we report crystal structures of two bacterial E3s, Salmonella SopA and Escherichia coli NleL, both in complex with human E2 UbcH7. These structures represent two distinct conformational states of the bacterial E3s, supporting the necessary structural rearrangements associated with ubiquitin transfer. The E2-interacting surface of SopA and NleL has little similarity to those of eukaryotic E3s. However, both bacterial E3s bind to the canonical surface of E2 that normally interacts with eukaryotic E3s. Furthermore, we show that a glutamate residue on E3 is involved in catalyzing ubiquitin transfer from E3 to the substrate, but not from E2 to E3. Together, these results provide mechanistic insights into the ubiquitin pathway and a framework for understanding molecular mimicry in bacterial pathogenesis.

  16. The E3 Ubiquitin Ligase CRL4 Regulates Proliferation and Progression Through Meiosis in Chinese Mitten Crab Eriocheir sinensis.

    PubMed

    Wang, Yuan-Li; Li, Dan; Yang, Hong-Dan; He, Lin; Sun, Wen-Juan; Duan, Ze-Lin; Wang, Qun

    2016-03-01

    The Cullin-RING E3s are multisubunit ubiquitin ligases composed of a scaffold protein known as Cullin, a RING finger protein that regulates diverse cellular pathways; however, their contribution to male gonad development, especially the spermatogenesis of the Chinese mitten crab (Eriocheir sinensis), is not well understood. We identified five evolutionarily conserved Cullins from the transcriptome and genome ofE. sinensis that are potentially involved in regulating male gonad development. The aim of the current study was to determine the mechanisms of Cullin4's effects on spermatogenesis. We observed that Cullin4, p53, and proliferating cell nuclear antigen had a specific expression and localization in primary spermatocytes. We also investigated the accumulation of Cullin substrates by treatment with inhibitor of NEDD8-activating enzyme MLN4924 in vitro. Cell cycle inhibitors p27 and p21 accumulated significantly after 24 and 36 h, respectively. We speculated that p53-mediated spontaneous germ cell apoptosis acts as a quality control mechanism to eliminate defective germ cells and that the Cullin4 complex maintains p53, p21, and p27 homeostasis in primary spermatocytes to regulate spermatogenesis ofE. sinensis Given its widespread evolutionary conservation, Cullin4 may regulate germ line development similarly in other organisms.

  17. HIV-1 Vpr suppresses the cytomegalovirus promoter in a CRL4(DCAF1) E3 ligase independent manner.

    PubMed

    Liu, Xianjun; Guo, Haoran; Wang, Hong; Markham, Richard; Wei, Wei; Yu, Xiao-Fang

    2015-04-01

    Although the Vpr protein of human immunodeficiency virus type 1 (HIV-1) has been shown to act as a transcriptional activator of the HIV-1 LTR and certain host genes, the current study demonstrates that it can also function as a potent inhibitor of the cytomegalovirus (CMV) promoter. Previous studies have shown that the cell cycle arrest and apoptotic functions of Vpr required recruitment of the CRL4(DCAF1) E3 ligase, but this complex is shown not to be required for inhibition of the CMV promoter. We identified conserved sites (A30/V31) from diverse Vpr from HIV/SIV that were critical for blocking the CMV promoter activity. Interestingly, the Vpr mutant A30S/V31S protein also impaired the ability of Vpr to down-regulate transcription of the host UNG2 gene. Our findings shed light on the dual functions of Vpr on the transcription of HIV-1, other viruses and host genes which may contribute to viral replication and disease progression in vivo.

  18. Mitochondrial E3 ligase March5 maintains stemness of mouse ES cells via suppression of ERK signalling.

    PubMed

    Gu, Hao; Li, Qidong; Huang, Shan; Lu, Weiguang; Cheng, Fangyuan; Gao, Ping; Wang, Chen; Miao, Lin; Mei, Yide; Wu, Mian

    2015-01-01

    Embryonic stem cells (ESCs) possess pluripotency, which is the capacity of cells to differentiate into all lineages of the mature organism. Increasing evidence suggests that the pluripotent state of ESCs is regulated by a combination of extrinsic and intrinsic factors. The underlying mechanisms, however, are not completely understood. Here, we show that March5, an E3 ubiquitin ligase, is involved in maintaining mouse-ESC (mESC) pluripotency. Knockdown of March5 in mESCs led to differentiation from naive pluripotency. Mechanistically, as a transcriptional target of Klf4, March5 catalyses K63-linked polyubiquitination of Prkar1a, a negative regulatory subunit of PKA, to activate PKA, thereby inhibiting the Raf/MEK/ERK pathway. Moreover, March5 is able to replace a MEK/ERK inhibitor to maintain mESC pluripotency under serum-free culture conditions. In addition, March5 can partially replace the use of Klf4 for somatic cell reprogramming. Collectively, our study uncovers a role for the Klf4-March5-PKA-ERK pathway in maintaining the stemness properties of mESCs. PMID:26033541

  19. Human stanniocalcin-1 interacts with nuclear and cytoplasmic proteins and acts as a SUMO E3 ligase.

    PubMed

    dos Santos, Marcos Tadeu; Trindade, Daniel Maragno; Gonçalves, Kaliandra de Almeida; Bressan, Gustavo Costa; Anastassopoulos, Filipe; Yunes, José Andres; Kobarg, Jörg

    2011-01-01

    Human stanniocalcin-1 (STC1) is a glycoprotein that has been implicated in different physiological process, including angiogenesis, apoptosis and carcinogenesis. Here we identified STC1 as a putative molecular marker for the leukemic bone marrow microenvironment and identified new interacting protein partners for STC1. Seven selected interactions retrieved from yeast two-hybrid screens were confirmed by GST-pull down assays in vitro. The N-terminal region was mapped to be the region that mediates the interaction with cytoplasmic, mitochondrial and nuclear proteins. STC1 interacts with SUMO-1 and several proteins that have been shown to be SUMOylated and localized to SUMOylation related nuclear bodies. Although STC1 interacts with SUMO-1 and has a high theoretical prediction score for a SUMOylation site, endogenous co-immunoprecipitation and in vitro SUMOylation assays with the purified recombinant protein could not detect STC1 SUMOylation. However, when we tested STC1 for SUMO E3 ligase activity, we found in an in vitro assay, that it significantly increases the SUMOylation of two other proteins. Confocal microscopic subcellular localization studies using both transfected cells and specific antibodies for endogenous STC1 revealed a cytoplasmic and nuclear deposition, the latter in the form of some specific dot-like substructure resembling SUMOylation related nuclear bodies. Together, these findings suggest a new role for STC1 in SUMOylation pathways, in nuclear bodies.

  20. Structural and Functional Impact of Parkinson Disease-Associated Mutations in the E3 Ubiquitin Ligase Parkin.

    PubMed

    Fiesel, Fabienne C; Caulfield, Thomas R; Moussaud-Lamodière, Elisabeth L; Ogaki, Kotaro; Dourado, Daniel F A R; Flores, Samuel C; Ross, Owen A; Springer, Wolfdieter

    2015-08-01

    Mutations in the PARKIN/PARK2 gene that result in loss-of-function of the encoded, neuroprotective E3 ubiquitin ligase Parkin cause recessive, familial early-onset Parkinson disease. As an increasing number of rare Parkin sequence variants with unclear pathogenicity are identified, structure-function analyses will be critical to determine their disease relevance. Depending on the specific amino acids affected, several distinct pathomechanisms can result in loss of Parkin function. These include disruption of overall Parkin folding, decreased solubility, and protein aggregation. However pathogenic effects can also result from misregulation of Parkin autoinhibition and of its enzymatic functions. In addition, interference of binding to coenzymes, substrates, and adaptor proteins can affect its catalytic activity too. Herein, we have performed a comprehensive structural and functional analysis of 21 PARK2 missense mutations distributed across the individual protein domains. Using this combined approach, we were able to pinpoint some of the pathogenic mechanisms of individual sequence variants. Similar analyses will be critical in gaining a complete understanding of the complex regulations and enzymatic functions of Parkin. These studies will not only highlight the important residues, but will also help to develop novel therapeutics aimed at activating and preserving an active, neuroprotective form of Parkin.

  1. SOX9 is targeted for proteasomal degradation by the E3 ligase FBW7 in response to DNA damage

    PubMed Central

    Hong, Xuehui; Liu, Wenyu; Song, Ruipeng; Shah, Jamie J.; Feng, Xing; Tsang, Chi Kwan; Morgan, Katherine M.; Bunting, Samuel F.; Inuzuka, Hiroyuki; Zheng, X. F. Steven; Shen, Zhiyuan; Sabaawy, Hatem E.; Liu, LianXin; Pine, Sharon R.

    2016-01-01

    SOX9 encodes a transcription factor that governs cell fate specification throughout development and tissue homeostasis. Elevated SOX9 is implicated in the genesis and progression of human tumors by increasing cell proliferation and epithelial-mesenchymal transition. We found that in response to UV irradiation or genotoxic chemotherapeutics, SOX9 is actively degraded in various cancer types and in normal epithelial cells, through a pathway independent of p53, ATM, ATR and DNA-PK. SOX9 is phosphorylated by GSK3β, facilitating the binding of SOX9 to the F-box protein FBW7α, an E3 ligase that functions in the DNA damage response pathway. The binding of FBW7α to the SOX9 K2 domain at T236-T240 targets SOX9 for subsequent ubiquitination and proteasomal destruction. Exogenous overexpression of SOX9 after genotoxic stress increases cell survival. Our findings reveal a novel regulatory mechanism for SOX9 stability and uncover a unique function of SOX9 in the cellular response to DNA damage. This new mechanism underlying a FBW7-SOX9 axis in cancer could have implications in therapy resistance. PMID:27566146

  2. Presence of Not5 and ubiquitinated Rps7A in polysome fractions depends upon the Not4 E3 ligase.

    PubMed

    Panasenko, Olesya O; Collart, Martine A

    2012-02-01

    In this study, we determine that Saccharomyces cerevisiae Not4 E3 ligase ubiquitinates Rps7A in vivo and in vitro, but not its paralogue, Rps7B. Ubiquitinated Rps7A is detectable only in 80S and polysomes, but not in free 40S fractions. A different role of the Rps7 paralogues in vivo is supported by the observation that the deletion of Rps7A but not Rps7B is sensitive to translational inhibitors and leads to an accumulation of aggregated proteins. An important accumulation of aggregated proteins that include ribosomal proteins and ribosome-associated chaperones is also observed in cells lacking Not4. A contribution of Not4 to ribosomal function extending beyond Rps7A ubiquitination is supported by the observation that the deletion of Not4 displays a synthetic slow growth phenotype when combined with the deletion of either one of the two Rps7 paralogues. Not4 is detectable in polysome fractions, as are other subunits of the Ccr4-Not complex such as Not5. The optimal presence of Not5 in polysomes is dependent upon Not4 and the deletion of Not5 leads to a dramatic reduction of polysomes. These results lead us to suggest that Not4 contributes to normal polysome levels and is important for cellular protein solubility maybe in part by ubiquitination of Rps7A.

  3. TSGΔ154-1054 splice variant increases TSG101 oncogenicity by inhibiting its E3-ligase-mediated proteasomal degradation

    PubMed Central

    Weng, Pei-Lun; Yeh, Te-Huei

    2016-01-01

    Tumor susceptibility gene 101 (TSG101) elicits an array of cellular functions, including promoting cytokinesis, cell cycle progression and proliferation, as well as facilitating endosomal trafficking and viral budding. TSG101 protein is highly and aberrantly expressed in various human cancers. Specifically, a TSG101 splicing variant missing nucleotides 154 to 1054 (TSGΔ154-1054), which is linked to progressive tumor-stage and metastasis, has puzzled investigators for more than a decade. TSG101-associated E3 ligase (Tal)- and MDM2-mediated proteasomal degradation are the two major routes for posttranslational regulation of the total amount of TSG101. We reveal that overabundance of TSG101 results from TSGΔ154-1054 stabilizing the TSG101 protein by competitively binding to Tal, but not MDM2, thereby perturbing the Tal interaction with TSG101 and impeding subsequent polyubiquitination and proteasomal degradation of TSG101. TSGΔ154-1054 therefore specifically enhances TSG101-stimulated cell proliferation, clonogenicity, and tumor growth in nude mice. This finding shows the functional significance of TSGΔ154-1054 in preventing the ubiquitin-proteasome proteolysis of TSG101, which increases tumor malignancy and hints at its potential as a therapeutic target in cancer treatment. PMID:26811492

  4. The E3 ubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms.

    PubMed

    Paul, Pradyut K; Bhatnagar, Shephali; Mishra, Vivek; Srivastava, Sanjay; Darnay, Bryant G; Choi, Yongwon; Kumar, Ashok

    2012-04-01

    Starvation, like many other catabolic conditions, induces loss of skeletal muscle mass by promoting fiber atrophy. In addition to the canonical processes, the starvation-induced response employs many distinct pathways that make it a unique atrophic program. However, in the multiplex of the underlying mechanisms, several components of starvation-induced atrophy have yet to be fully understood and their roles and interplay remain to be elucidated. Here we unveiled the role of tumor necrosis factor receptor-associated factor 6 (TRAF6), a unique E3 ubiquitin ligase and adaptor protein, in starvation-induced muscle atrophy. Targeted ablation of TRAF6 suppresses the expression of key regulators of atrophy, including MAFBx, MuRF1, p62, LC3B, Beclin1, Atg12, and Fn14. Ablation of TRAF6 also improved the phosphorylation of Akt and FoxO3a and inhibited the activation of 5' AMP-activated protein kinase in skeletal muscle in response to starvation. In addition, our study provides the first evidence of the involvement of endoplasmic reticulum stress and unfolding protein response pathways in starvation-induced muscle atrophy and its regulation through TRAF6. Finally, our results also identify lysine 63-linked autoubiquitination of TRAF6 as a process essential for its regulatory role in starvation-induced muscle atrophy.

  5. SUMO E3 ligase AtMMS21 is required for normal meiosis and gametophyte development in Arabidopsis

    PubMed Central

    2014-01-01

    Background MMS21 is a SUMO E3 ligase that is conserved in eukaryotes, and has previously been shown to be required for DNA repair and maintenance of chromosome integrity. Loss of the Arabidopsis MMS21 causes defective meristems and dwarf phenotypes. Results Here, we show a role for AtMMS21 during gametophyte development. AtMMS21 deficient plants are semisterile with shorter mature siliques and abortive seeds. The mms21-1 mutant shows reduced pollen number, and viability, and germination and abnormal pollen tube growth. Embryo sac development is also compromised in the mutant. During meiosis, chromosome mis-segregation and fragmentation is observed, and the products of meiosis are frequently dyads or irregular tetrads. Several transcripts for meiotic genes related to chromosome maintenance and behavior are altered. Moreover, accumulation of SUMO-protein conjugates in the mms21-1 pollen grains is distinct from that in wild-type. Conclusions Thus, these results suggest that AtMMS21 mediated SUMOylation may stabilize the expression and accumulation of meiotic proteins and affect gametophyte development. PMID:24893774

  6. SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in Arabidopsis.

    PubMed

    Jia, Fengjuan; Wang, Chunyan; Huang, Jinguang; Yang, Guodong; Wu, Changai; Zheng, Chengchao

    2015-08-01

    Skp1-Cullin-F-box (SCF) E3 ligases are essential to the post-translational regulation of many important factors involved in cellular signal transduction. In this study, we identified an F-box protein from Arabidopsis thaliana, AtPP2-B11, which was remarkably induced with increased duration of salt treatment in terms of both transcript and protein levels. Transgenic Arabidopsis plants overexpressing AtPP2-B11 exhibited obvious tolerance to high salinity, whereas the RNA interference line was more sensitive to salt stress than wild-type plants. Isobaric tag for relative and absolute quantification analysis revealed that 4311 differentially expressed proteins were regulated by AtPP2-B11 under salt stress. AtPP2-B11 could upregulate the expression of annexin1 (AnnAt1) and function as a molecular link between salt stress and reactive oxygen species accumulation in Arabidopsis. Moreover, AtPP2-B11 influenced the expression of Na(+) homeostasis genes under salt stress, and the AtPP2-B11 overexpressing lines exhibited lower Na(+) accumulation. These results suggest that AtPP2-B11 functions as a positive regulator in response to salt stress in Arabidopsis.

  7. The E3 ubiquitin ligase WWP1 regulates {Delta}Np63-dependent transcription through Lys63 linkages

    SciTech Connect

    Peschiaroli, Angelo; Scialpi, Flavia; Bernassola, Francesca; Sherbini, El Said El; Melino, Gerry

    2010-11-12

    Research highlights: {yields} WWP1 ubiquitylates {Delta}Np63 through conjugation of Lys63-linked poly-ubiquitin chains. {yields} WWP1 does not control {Delta}Np63 protein stability. {yields} WWP1 regulates {Delta}Np63-dependent transcription. -- Abstract: The transcription factor p63, a member of the p53 family, plays a crucial role in epithelial development and tumorigenesis through the regulation of epithelial progenitor cell proliferation, differentiation and apoptosis. Similarly to p53, p63 activity is regulated by post-translational modifications, including ubiquitylation. Here, we report that the WWP1 E3 ubiquitin ligase binds specifically to {Delta}Np63 isoform but it does not trigger {Delta}Np63 proteasome-dependent degradation. Accordingly, we found that WWP1-dependent ubiquitylation of {Delta}Np63 occurs through the formation of Lys63-linked poly-ubiquitin chains. Importantly, we found that WWP1 is able to increase {Delta}Np63-dependent transcription and depletion of WWP1 in human primary keratinocytes induces cell cycle arrest. All together these results indicate that WWP1 regulates {Delta}Np63 transcriptional activity, acting thus as a potential regulator of the proliferation and survival of epithelial-derived cells.

  8. Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases

    PubMed Central

    Kong, Lingyao; Cheng, Jinkui; Zhu, Yujuan; Ding, Yanglin; Meng, Jingjing; Chen, Zhizhong; Xie, Qi; Guo, Yan; Li, Jigang; Yang, Shuhua; Gong, Zhizhong

    2015-01-01

    Clade A protein phosphatase 2Cs (PP2Cs) are abscisic acid (ABA) co-receptors that block ABA signalling by inhibiting the downstream protein kinases. ABA signalling is activated after PP2Cs are inhibited by ABA-bound PYR/PYL/RCAR ABA receptors (PYLs) in Arabidopsis. However, whether these PP2Cs are regulated by other factors remains unknown. Here, we report that ABI1 (ABA-INSENSITIVE 1) can interact with the U-box E3 ligases PUB12 and PUB13, but is ubiquitinated only when it interacts with ABA receptors in an in vitro assay. A mutant form of ABI1-1 that is unable to interact with PYLs is more stable than the wild-type protein. Both ABI1 degradation and all tested ABA responses are reduced in pub12 pub13 mutants compared with the wild type. Introducing the abi1-3 loss-of-function mutation into pub12 pub13 mutant recovers the ABA-insensitive phenotypes of the pub12 pub13 mutant. We thus uncover an important regulatory mechanism for regulating ABI1 levels by PUB12 and PUB13. PMID:26482222

  9. Red Light-Mediated Degradation of CONSTANS by the E3 Ubiquitin Ligase HOS1 Regulates Photoperiodic Flowering in Arabidopsis.

    PubMed

    Lazaro, Ana; Mouriz, Alfonso; Piñeiro, Manuel; Jarillo, José A

    2015-09-01

    The regulation of CONSTANS (CO) gene expression is crucial to accurately measure changes in daylength, which influences flowering time in Arabidopsis thaliana. CO expression is under both transcriptional and posttranslational control mechanisms. We previously showed that the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1) physically interacts with CO in Arabidopsis. This interaction is required to precisely modulate the timing of CO accumulation and, consequently, to maintain low levels of FLOWERING LOCUS T expression during the first part of the day. The data presented here demonstrate that HOS1 is involved in the red light-mediated degradation of CO that takes place in the early stages of the daylight period. Our results show that phytochrome B (phyB) is able to regulate flowering time, acting in the phloem companion cells, as previously described for CO and HOS1. Moreover, we reveal that phyB physically interacts with HOS1 and CO, indicating that the three proteins may be present in a complex in planta that is required to coordinate a correct photoperiodic response in Arabidopsis.

  10. Red Light-Mediated Degradation of CONSTANS by the E3 Ubiquitin Ligase HOS1 Regulates Photoperiodic Flowering in Arabidopsis

    PubMed Central

    Lazaro, Ana; Mouriz, Alfonso; Piñeiro, Manuel; Jarillo, José A.

    2015-01-01

    The regulation of CONSTANS (CO) gene expression is crucial to accurately measure changes in daylength, which influences flowering time in Arabidopsis thaliana. CO expression is under both transcriptional and posttranslational control mechanisms. We previously showed that the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1) physically interacts with CO in Arabidopsis. This interaction is required to precisely modulate the timing of CO accumulation and, consequently, to maintain low levels of FLOWERING LOCUS T expression during the first part of the day. The data presented here demonstrate that HOS1 is involved in the red light-mediated degradation of CO that takes place in the early stages of the daylight period. Our results show that phytochrome B (phyB) is able to regulate flowering time, acting in the phloem companion cells, as previously described for CO and HOS1. Moreover, we reveal that phyB physically interacts with HOS1 and CO, indicating that the three proteins may be present in a complex in planta that is required to coordinate a correct photoperiodic response in Arabidopsis. PMID:26373454

  11. The Arabidopsis E3 Ubiquitin Ligase HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of Flowering[W

    PubMed Central

    Lazaro, Ana; Valverde, Federico; Piñeiro, Manuel; Jarillo, Jose A.

    2012-01-01

    The Arabidopsis thaliana early in short days6 (esd6) mutant was isolated in a screen for mutations that accelerate flowering time. Among other developmental alterations, esd6 displays early flowering in both long- and short-day conditions. Fine mapping of the mutation showed that the esd6 phenotype is caused by a lesion in the HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1) locus, which encodes a RING finger–containing E3 ubiquitin ligase. The esd6/hos1 mutation causes decreased FLOWERING LOCUS C expression and requires CONSTANS (CO) protein for its early flowering phenotype under long days. Moreover, CO and HOS1 physically interact in vitro and in planta, and HOS1 regulates CO abundance, particularly during the daylight period. Accordingly, hos1 causes a shift in the regular long-day pattern of expression of FLOWERING LOCUS T (FT) transcript, starting to rise 4 h after dawn in the mutant. In addition, HOS1 interacts synergistically with CONSTITUTIVE PHOTOMORPHOGENIC1, another regulator of CO protein stability, in the regulation of flowering time. Taken together, these results indicate that HOS1 is involved in the control of CO abundance, ensuring that CO activation of FT occurs only when the light period reaches a certain length and preventing precocious flowering in Arabidopsis. PMID:22408073

  12. The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering.

    PubMed

    Lazaro, Ana; Valverde, Federico; Piñeiro, Manuel; Jarillo, Jose A

    2012-03-01

    The Arabidopsis thaliana early in short days6 (esd6) mutant was isolated in a screen for mutations that accelerate flowering time. Among other developmental alterations, esd6 displays early flowering in both long- and short-day conditions. Fine mapping of the mutation showed that the esd6 phenotype is caused by a lesion in the high expression of osmotically responsive genes1 (HOS1) locus, which encodes a RING finger-containing E3 ubiquitin ligase. The esd6/hos1 mutation causes decreased flowering locus C expression and requires CONSTANS (CO) protein for its early flowering phenotype under long days. Moreover, CO and HOS1 physically interact in vitro and in planta, and HOS1 regulates CO abundance, particularly during the daylight period. Accordingly, hos1 causes a shift in the regular long-day pattern of expression of flowering locus T (FT) transcript, starting to rise 4 h after dawn in the mutant. In addition, HOS1 interacts synergistically with constitutive photomorphogenic1, another regulator of CO protein stability, in the regulation of flowering time. Taken together, these results indicate that HOS1 is involved in the control of CO abundance, ensuring that CO activation of FT occurs only when the light period reaches a certain length and preventing precocious flowering in Arabidopsis.

  13. Synaptic E3 Ligase SCRAPPER in Contextual Fear Conditioning: Extensive Behavioral Phenotyping of Scrapper Heterozygote and Overexpressing Mutant Mice

    PubMed Central

    Yao, Ikuko; Takao, Keizo; Miyakawa, Tsuyoshi; Ito, Seiji; Setou, Mitsutoshi

    2011-01-01

    SCRAPPER, an F-box protein coded by FBXL20, is a subunit of SCF type E3 ubiquitin ligase. SCRAPPER localizes synapses and directly binds to Rab3-interacting molecule 1 (RIM1), an essential factor for synaptic vesicle release, thus it regulates neural transmission via RIM1 degradation. A defect in SCRAPPER leads to neurotransmission abnormalities, which could subsequently result in neurodegenerative phenotypes. Because it is likely that the alteration of neural transmission in Scrapper mutant mice affect their systemic condition, we have analyzed the behavioral phenotypes of mice with decreased or increased the amount of SCRAPPER. We carried out a series of behavioral test batteries for Scrapper mutant mice. Scrapper transgenic mice overexpressing SCRAPPER in the hippocampus did not show any significant difference in every test argued in this manuscript by comparison with wild-type mice. On the other hand, heterozygotes of Scrapper knockout [SCR (+/−)] mice showed significant difference in the contextual but not cued fear conditioning test. In addition, SCR (+/−) mice altered in some tests reflecting anxiety, which implies the loss of functions of SCRAPPER in the hippocampus. The behavioral phenotypes of Scrapper mutant mice suggest that molecular degradation conferred by SCRAPPER play important roles in hippocampal-dependent fear memory formation. PMID:21390313

  14. Mitochondrial E3 ligase March5 maintains stemness of mouse ES cells via suppression of ERK signalling

    PubMed Central

    Gu, Hao; Li, Qidong; Huang, Shan; Lu, Weiguang; Cheng, Fangyuan; Gao, Ping; Miao, Lin; Mei, Yide; Wu, Mian

    2015-01-01

    Embryonic stem cells (ESCs) possess pluripotency, which is the capacity of cells to differentiate into all lineages of the mature organism. Increasing evidence suggests that the pluripotent state of ESCs is regulated by a combination of extrinsic and intrinsic factors. The underlying mechanisms, however, are not completely understood. Here, we show that March5, an E3 ubiquitin ligase, is involved in maintaining mouse-ESC (mESC) pluripotency. Knockdown of March5 in mESCs led to differentiation from naive pluripotency. Mechanistically, as a transcriptional target of Klf4, March5 catalyses K63-linked polyubiquitination of Prkar1a, a negative regulatory subunit of PKA, to activate PKA, thereby inhibiting the Raf/MEK/ERK pathway. Moreover, March5 is able to replace a MEK/ERK inhibitor to maintain mESC pluripotency under serum-free culture conditions. In addition, March5 can partially replace the use of Klf4 for somatic cell reprogramming. Collectively, our study uncovers a role for the Klf4–March5–PKA–ERK pathway in maintaining the stemness properties of mESCs. PMID:26033541

  15. Degradation of p12 subunit by CRL4Cdt2 E3 ligase inhibits fork progression after DNA damage.

    PubMed

    Terai, Kenta; Shibata, Etsuko; Abbas, Tarek; Dutta, Anindya

    2013-10-18

    After acute DNA damage, the cell arrests S-phase progression by inhibiting origin initiation and fork progression to repair damaged DNA. The intra-S-phase checkpoint kinase Chk1 phosphorylates Cdc25A to target the latter for degradation by CRL1(β-TrCP) and so inhibit origin firing. The mechanism for inhibiting fork progression, however, has not been identified. Here, we show that degradation of p12, the fourth subunit of DNA polymerase δ, is critical for inhibiting fork progression. CRL4(Cdt2) is an E3 ligase that ubiquitinates and degrades p12 after UV treatment. Cells expressing a stable form of p12 exhibit UV-resistant DNA synthesis. DNA fiber assay and alkaline-sucrose gradient assay demonstrate that the impairment of fork progression after DNA damage requires p12 degradation. These results suggest that ubiquitination of p12 through CRL4(Cdt2) and subsequent degradation form one mechanism by which a cell responds to DNA damage to inhibit fork progression.

  16. Degradation of DNA damage-independently stalled RNA polymerase II is independent of the E3 ligase Elc1.

    PubMed

    Karakasili, Eleni; Burkert-Kautzsch, Cornelia; Kieser, Anja; Sträßer, Katja

    2014-01-01

    Transcription elongation is a highly dynamic and discontinuous process, which includes frequent pausing of RNA polymerase II (RNAPII). RNAPII complexes that stall persistently on a gene during transcription elongation block transcription and thus have to be removed. It has been proposed that the cellular pathway for removal of these DNA damage-independently stalled RNAPII complexes is similar or identical to the removal of RNAPII complexes stalled due to DNA damage. Here, we show that-consistent with previous data-DNA damage-independent stalling causes polyubiquitylation and proteasome-mediated degradation of Rpb1, the largest subunit of RNAPII, using Saccharomyces cerevisiae as model system. Moreover, recruitment of the proteasome to RNAPII and transcribed genes is increased when transcription elongation is impaired indicating that Rpb1 degradation takes place at the gene. Importantly, in contrast to the DNA damage-dependent pathway Rpb1 degradation of DNA damage-independently stalled RNAPII is independent of the E3 ligase Elc1. In addition, deubiquitylation of RNAPII is also independent of the Elc1-antagonizing deubiquitylase Ubp3. Thus, the pathway for degradation of DNA damage-independently stalled RNAPII is overlapping yet distinct from the previously described pathway for degradation of RNAPII stalled due to DNA damage. Taken together, we provide the first evidence that the cell discriminates between DNA damage-dependently and -independently stalled RNAPII.

  17. SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in Arabidopsis

    PubMed Central

    Jia, Fengjuan; Wang, Chunyan; Huang, Jinguang; Yang, Guodong; Wu, Changai; Zheng, Chengchao

    2015-01-01

    Skp1–Cullin–F-box (SCF) E3 ligases are essential to the post-translational regulation of many important factors involved in cellular signal transduction. In this study, we identified an F-box protein from Arabidopsis thaliana, AtPP2-B11, which was remarkably induced with increased duration of salt treatment in terms of both transcript and protein levels. Transgenic Arabidopsis plants overexpressing AtPP2-B11 exhibited obvious tolerance to high salinity, whereas the RNA interference line was more sensitive to salt stress than wild-type plants. Isobaric tag for relative and absolute quantification analysis revealed that 4311 differentially expressed proteins were regulated by AtPP2-B11 under salt stress. AtPP2-B11 could upregulate the expression of annexin1 (AnnAt1) and function as a molecular link between salt stress and reactive oxygen species accumulation in Arabidopsis. Moreover, AtPP2-B11 influenced the expression of Na+ homeostasis genes under salt stress, and the AtPP2-B11 overexpressing lines exhibited lower Na+ accumulation. These results suggest that AtPP2-B11 functions as a positive regulator in response to salt stress in Arabidopsis. PMID:26041321

  18. RAD6 gene product of Saccharomyces cerevisiae requires a putative ubiquitin protein ligase (E3) for the ubiquitination of certain proteins.

    PubMed

    Sharon, G; Raboy, B; Parag, H A; Dimitrovsky, D; Kulka, R G

    1991-08-25

    The RAD6 (UBC2) gene of Saccharomyces cerevisiae which is involved in DNA repair, induced mutagenesis, and sporulation, encodes a ubiquitin-conjugating enzyme (E2). Since the RAD6 gene product can transfer ubiquitin directly to histones in vitro without the participation of a ubiquitin protein ligase (E3), it has been suggested that in vivo it also acts by the unassisted conjugation of ubiquitin to histones or to other target proteins. Here we show that the RAD6 protein can ligate ubiquitin in vitro to a hitherto unknown set of exogenous target proteins (alpha-, beta-, and kappa-casein and beta-lactoglobulin) when supplemented by a putative ubiquitin protein ligase (E3-R) from S. cerevisiae. RAD6 supplemented with E3-R ligates 1 or, sometimes, 2 ubiquitin molecules to the target protein molecule. UBC3 (CDC34) protein in the presence of E3-R has barely detectable activity on the non-histone substrates. Other ubiquitin-conjugating enzymes tested (products of the UBC1 and UBC4 genes) do not cooperate with E3-R in conjugating ubiquitin to the same substrates. Thus, E3-R apparently interacts selectively with RAD6 protein. These findings suggest that some of the in vivo activities of the RAD6 gene may involve E3-R.

  19. A Novel Retinoblastoma Protein (RB) E3 Ubiquitin Ligase (NRBE3) Promotes RB Degradation and Is Transcriptionally Regulated by E2F1 Transcription Factor.

    PubMed

    Wang, Yingshuang; Zheng, Zongfang; Zhang, Jingyi; Wang, You; Kong, Ruirui; Liu, Jiangying; Zhang, Ying; Deng, Hongkui; Du, Xiaojuan; Ke, Yang

    2015-11-20

    Retinoblastoma protein (RB) plays critical roles in tumor suppression and is degraded through the proteasomal pathway. However, E3 ubiquitin ligases responsible for proteasome-mediated degradation of RB are largely unknown. Here we characterize a novel RB E3 ubiquitin ligase (NRBE3) that binds RB and promotes RB degradation. NRBE3 contains an LXCXE motif and bound RB in vitro. NRBE3 interacted with RB in cells when proteasome activity was inhibited. NRBE3 promoted RB ubiquitination and degradation via the ubiquitin-proteasome pathway. Importantly, purified NRBE3 ubiquitinated recombinant RB in vitro, and a U-box was identified as essential for its E3 activity. Surprisingly, NRBE3 was transcriptionally activated by E2F1/DP1. Consequently, NRBE3 affected the cell cycle by promoting G1/S transition. Moreover, NRBE3 was up-regulated in breast cancer tissues. Taken together, we identified NRBE3 as a novel ubiquitin E3 ligase for RB that might play a role as a potential oncoprotein in human cancers.

  20. The E3 Ubiquitin Protein Ligase HERC2 Modulates the Activity of Tumor Protein p53 by Regulating Its Oligomerization*

    PubMed Central

    Cubillos-Rojas, Monica; Amair-Pinedo, Fabiola; Peiró-Jordán, Roser; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2014-01-01

    The tumor suppressor p53 is a transcription factor that coordinates the cellular response to several kinds of stress. p53 inactivation is an important step in tumor progression. Oligomerization of p53 is critical for its posttranslational modification and its ability to regulate the transcription of target genes necessary to inhibit tumor growth. Here we report that the HECT E3 ubiquitin ligase HERC2 interacts with p53. This interaction involves the CPH domain of HERC2 (a conserved domain within Cul7, PARC, and HERC2 proteins) and the last 43 amino acid residues of p53. Through this interaction, HERC2 regulates p53 activity. RNA interference experiments showed how HERC2 depletion reduces the transcriptional activity of p53 without affecting its stability. This regulation of p53 activity by HERC2 is independent of proteasome or MDM2 activity. Under these conditions, up-regulation of cell growth and increased focus formation were observed, showing the functional relevance of the HERC2-p53 interaction. This interaction was maintained after DNA damage caused by the chemotherapeutic drug bleomycin. In these stressed cells, p53 phosphorylation was not impaired by HERC2 knockdown. Interestingly, p53 mutations that affect its tetramerization domain disrupted the HERC2-p53 interaction, suggesting a role for HERC2 in p53 oligomerization. This regulatory role was shown using cross-linking assays. Thus, the inhibition of p53 activity after HERC2 depletion can be attributed to a reduction in p53 oligomerization. Ectopic expression of HERC2 (residues 2292–2923) confirmed these observations. Together, these results identify HERC2 as a novel regulator of p53 signaling. PMID:24722987

  1. Mutations of E3 Ubiquitin Ligase Cbl Family Members Constitute a Novel Common Pathogenic Lesion in Myeloid Malignancies

    PubMed Central

    Makishima, Hideki; Cazzolli, Heather; Szpurka, Hadrian; Dunbar, Andrew; Tiu, Ramon; Huh, Jungwon; Muramatsu, Hideki; O'Keefe, Christine; Hsi, Eric; Paquette, Ronald L.; Kojima, Seiji; List, Alan F.; Sekeres, Mikkael A.; McDevitt, Michael A.; Maciejewski, Jaroslaw P.

    2009-01-01

    Purpose Acquired somatic uniparental disomy (UPD) is commonly observed in myelodysplastic syndromes (MDS), myelodysplastic/myeloproliferative neoplasms (MDS/MPN), or secondary acute myelogenous leukemia (sAML) and may point toward genes harboring mutations. Recurrent UPD11q led to identification of homozygous mutations in c-Cbl, an E3 ubiquitin ligase involved in attenuation of proliferative signals transduced by activated receptor tyrosine kinases. We examined the role and frequency of Cbl gene family mutations in MPN and related conditions. Methods We applied high-density SNP-A karyotyping to identify loss of heterozygosity of 11q in 442 patients with MDS, MDS/MPN, MPN, sAML evolved from these conditions, and primary AML. We sequenced c-Cbl, Cbl-b, and Cbl-c in patients with or without corresponding UPD or deletions and correlated mutational status with clinical features and outcomes. Results We identified c-Cbl mutations in 5% and 9% of patients with chronic myelomonocytic leukemia (CMML) and sAML, and also in CML blast crisis and juvenile myelomonocytic leukemia (JMML). Most mutations were homozygous and affected c-Cbl; mutations in Cbl-b were also found in patients with similar clinical features. Patients with Cbl family mutations showed poor prognosis, with a median survival of 5 months. Pathomorphologic features included monocytosis, monocytoid blasts, aberrant expression of phosphoSTAT5, and c-kit overexpression. Serial studies showed acquisition of c-Cbl mutations during malignant evolution. Conclusion Mutations in the Cbl family RING finger domain or linker sequence constitute important pathogenic lesions associated with not only preleukemic CMML, JMML, and other MPN, but also progression to AML, suggesting that impairment of degradation of activated tyrosine kinases constitutes an important cancer mechanism. PMID:19901108

  2. p53 E3 ubiquitin protein ligase homolog regulates p53 in vivo in the adult mouse eye lens

    PubMed Central

    Jaramillo-Rangel, Gilberto; Ortega-Martínez, Marta; Sepúlveda-Saavedra, Julio; Saucedo-Cárdenas, Odila; Montes-de-Oca-Luna, Roberto

    2013-01-01

    Purpose p53 is a transcription factor that plays an important role in preventing cancer development. p53 participates in relevant aspects of cell biology, including apoptosis and cell cycle control and must be strictly regulated to maintain normal tissue homeostasis. p53 E3 ubiquitin protein ligase homolog (Mdm2) is an important negative regulator of p53. The purpose of this study was to determine if Mdm2 regulates p53 in vivo in the adult lens. Methods We analyzed mice expressing human p53 transgene (Tgp53) selectively in the lens in the presence or absence of Mdm2. Mice with the required genotypes were obtained by crossing transgenic, mdm2+/−, and p53−/− mice. Eye phenotype and lens histology and ultrastructure were analyzed in adult mice. Results In a wild-type genetic background (mdm2+/+), lens damage and microphthalmia were observed only in mice homozygous for Tgp53 (t/t). However, in an mdm2 null background, just one allele of Tgp53 (mdm2−/−/Tgp53t/0 mice) was sufficient to cause lens damage and microphthalmia. Furthermore, Mdm2 in only one allele was sufficient to rescue these deleterious effects, since the mdm2+/−/Tgp53t/0 mice had eye size and lens morphology similar to the control mice. Conclusions Mdm2 regulates p53 in the adult lens in vivo. This information may have relevance for analyzing normal and pathological conditions of the lens, and designing cancer therapies targeting Mdm2–p53 interaction. PMID:24339722

  3. SUMOylation by the E3 Ligase TbSIZ1/PIAS1 Positively Regulates VSG Expression in Trypanosoma brucei

    PubMed Central

    López-Farfán, Diana; Bart, Jean-Mathieu; Rojas-Barros, Domingo I.; Navarro, Miguel

    2014-01-01

    Bloodstream form trypanosomes avoid the host immune response by switching the expression of their surface proteins between Variant Surface Glycoproteins (VSG), only one of which is expressed at any given time. Monoallelic transcription of the telomeric VSG Expression Site (ES) by RNA polymerase I (RNA pol I) localizes to a unique nuclear body named the ESB. Most work has focused on silencing mechanisms of inactive VSG-ESs, but the mechanisms involved in transcriptional activation of a single VSG-ES remain largely unknown. Here, we identify a highly SUMOylated focus (HSF) in the nucleus of the bloodstream form that partially colocalizes with the ESB and the active VSG-ES locus. SUMOylation of chromatin-associated proteins was enriched along the active VSG-ES transcriptional unit, in contrast to silent VSG-ES or rDNA, suggesting that it is a distinct feature of VSG-ES monoallelic expression. In addition, sequences upstream of the active VSG-ES promoter were highly enriched in SUMOylated proteins. We identified TbSIZ1/PIAS1 as the SUMO E3 ligase responsible for SUMOylation in the active VSG-ES chromatin. Reduction of SUMO-conjugated proteins by TbSIZ1 knockdown decreased the recruitment of RNA pol I to the VSG-ES and the VSG-ES-derived transcripts. Furthermore, cells depleted of SUMO conjugated proteins by TbUBC9 and TbSUMO knockdown confirmed the positive function of SUMO for VSG-ES expression. In addition, the largest subunit of RNA pol I TbRPA1 was SUMOylated in a TbSIZ-dependent manner. Our results show a positive mechanism associated with active VSG-ES expression via post-translational modification, and indicate that chromatin SUMOylation plays an important role in the regulation of VSG-ES. Thus, protein SUMOylation is linked to active gene expression in this protozoan parasite that diverged early in evolution. PMID:25474309

  4. The E3 ubiquitin ligase HOS1 regulates low ambient temperature-responsive flowering in Arabidopsis thaliana.

    PubMed

    Lee, Jeong Hwan; Kim, Jae Joon; Kim, Soo Hyun; Cho, Hyun Jung; Kim, Joonki; Ahn, Ji Hoon

    2012-10-01

    Ubiquitin-dependent proteolysis regulates multiple aspects of plant growth and development, but little is known about its role in ambient temperature-responsive flowering. In addition to being regulated by daylength, the onset of flowering in many plants can also be delayed by low ambient temperatures. Here, we show that HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1), which encodes an E3 ubiquitin ligase, controls flowering time in response to ambient temperatures (16 and 23°C) and intermittent cold. hos1 mutants flowered early, and were insensitive to ambient temperature, but responded normally to vernalization and gibberellic acid. Genetic analyses suggested that this ambient temperature-insensitive flowering was independent of FLOWERING LOCUS C (FLC). Also, FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) expression was up-regulated in hos1 mutants at both temperatures. The ft tsf mutation almost completely suppressed the early flowering of hos1 mutants at different temperatures, suggesting that FT and TSF are downstream of HOS1 in the ambient temperature response. A lesion in CONSTANS (CO) did not affect the ambient temperature-insensitive flowering phenotype of hos1-3 mutants. In silico analysis showed that FVE was spatiotemporally co-expressed with HOS1. A HOS1-green fluorescent protein (GFP) fusion co-localized with FVE-GFP in the nucleus at both 16 and 23°C. HOS1 physically interacted with FVE and FLK in yeast two-hybrid and co-immunoprecipitation assays. Moreover, hos1 mutants were insensitive to intermittent cold. Collectively, our results suggest that HOS1 acts as a common regulator in the signaling pathways that control flowering time in response to low ambient temperature.

  5. Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains.

    PubMed

    Yoshida, Yukiko; Tokunaga, Fuminori; Chiba, Tomoki; Iwai, Kazuhiro; Tanaka, Keiji; Tai, Tadashi

    2003-10-31

    F-box proteins are substrate recognition components of Skp1-Cullin1-F-box protein-Roc1 (SCF) E3 ubiquitin-protein ligases. We reported previously that Fbs1 (F-box protein that recognizes sugar chains; equivalent to Fbx2 or NFB42) binds specifically to proteins attached with high mannose oligosaccharides and subsequently contributes to elimination of N-glycoproteins in cytosol (Yoshida, Y., Chiba, T., Tokunaga, F., Kawasaki, H., Iwai, K., Suzuki, T., Ito, Y., Matsuoka, K., Yoshida, M., Tanaka, K., and Tai, T. (2002) Nature 418, 438-442). Here we report the identification of another F-box protein that recognizes N-glycan, Fbs2 (called Fbx6b or FBG2 previously). Although the expression of Fbs1 was restricted to the adult brain and testis, the Fbs2 transcript was widely expressed. The Fbs2 protein forms an SCFFbs2 ubiquitinligase complex that targets sugar chains in N-glycoproteins for ubiquitylation. Only glycoproteins bound to concanavalin A lectin and not to wheat germ agglutinin or Ricinus communis agglutinin interacted with Fbs2 in various tissues and cell lines. Pull-down analysis using various oligosaccharides revealed that Man3-9GlcNAc2 glycans were required for efficient Fbs2 binding, whereas modifications of mannose residues by other sugars or deletion of inner GlcNAc reduced Fbs2 binding. Fbs2 interacted with N-glycans of T-cell receptor alpha-subunit (TCRalpha), a typical substrate of the endoplasmic reticulum-associated degradation (ERAD) pathway, and the forced expression of mutant Fbs2DeltaF, which lacks the F-box domain essential for forming the SCF complex, and decrease of endogenous Fbs2 by small interfering RNA led to inhibition of TCRalpha degradation in cells. Thus, Fbs2 is a novel member of F-box protein family that recognizes N-glycans and plays a role in ERAD. PMID:12939278

  6. Upregulation of the E3 ligase NEDD4-1 by Oxidative Stress Degrades IGF-1 Receptor Protein in Neurodegeneration

    PubMed Central

    Kwak, Young-Don; Wang, Bin; Li, Jing Jing; Wang, Ruishan; Deng, Qiyue; Diao, Shiyong; Chen, Yaomin; Xu, Raymond; Masliah, Eliezer; Xu, Huaxi; Sung, Jung-Joon

    2012-01-01

    The importance of ubiquitin E3 ligases in neurodegeneration is being increasingly recognized. The crucial role of NEDD4-1 in neural development is well appreciated; however, its role in neurodegeneration remains unexplored. Herein, we report increased NEDD4-1 expression in the degenerated tissues of several major neurodegenerative diseases. Moreover, its expression is upregulated in cultured neurons in response to various neurotoxins, including zinc and hydrogen superoxide, via transcriptional activation likely mediated by the reactive oxygen species (ROS)-responsive FOXM1B. Reduced protein levels of the insulin-like growth factor receptor (IGF-1Rβ) were observed as a consequence of upregulated NEDD4-1 via the ubiquitin-proteasome system. Overexpression of a familial mutant form of superoxide dismutase 1 (SOD1) (G93A) in neuroblastoma cells resulted in a similar reduction of IGF-1Rβ protein. This inverse correlation between NEDD4-1 and IGF-1Rβ was also observed in the cortex and spinal cords of mutant (G93A) SOD1 transgenic mice at a presymptomatic age, which was similarly induced by in vivo-administered zinc in wild-type C57BL/6 mice. Furthermore, histochemistry reveals markedly increased NEDD4-1 immunoreactivity in the degenerating/degenerated motor neurons in the lumbar anterior horn of the spinal cord, suggesting a direct causative role for NEDD4-1 in neurodegeneration. Indeed, downregulation of NEDD4-1 by shRNA or overexpression of a catalytically inactive form rescued neurons from zinc-induced cell death. Similarly, neurons with a NEDD4-1 haplotype are more resistant to apoptosis, largely due to expression of higher levels of IGF-1Rβ.Together, our work identifies a novel molecular mechanism for ROS-upregulated NEDD4-1 and the subsequently reduced IGF-1Rβ signaling in neurodegeneration. PMID:22875931

  7. Regulation of Chloroplast Protein Import by the Ubiquitin E3 Ligase SP1 Is Important for Stress Tolerance in Plants.

    PubMed

    Ling, Qihua; Jarvis, Paul

    2015-10-01

    Chloroplasts are the organelles responsible for photosynthesis in plants [1, 2]. The chloroplast proteome comprises ∼3,000 different proteins, including components of the photosynthetic apparatus, which are highly abundant. Most chloroplast proteins are nucleus-encoded and imported following synthesis in the cytosol. Such import is mediated by multiprotein complexes in the envelope membranes that surround each organelle [3, 4]. The translocon at the outer envelope membrane of chloroplasts (TOC) mediates client protein recognition and early stages of import. The TOC apparatus is regulated by the ubiquitin-proteasome system (UPS) in a process controlled by the envelope-localized ubiquitin E3 ligase SUPPRESSOR OF PPI1 LOCUS1 (SP1) [5, 6]. Previous work showed that SP1-mediated regulation of chloroplast protein import contributes to the organellar proteome changes that occur during plant development (e.g., during de-etiolation). Here, we reveal a critical role for SP1 in plant responses to abiotic stress, which is a major and increasing cause of agricultural yield losses globally [7]. Arabidopsis plants lacking SP1 are hypersensitive to salt, osmotic, and oxidative stresses, whereas plants overexpressing SP1 are considerably more stress tolerant than wild-type. We present evidence that SP1 acts to deplete the TOC apparatus under stress conditions to limit the import of photosynthetic apparatus components, which may attenuate photosynthetic activity and reduce the potential for reactive oxygen species production and photo-oxidative damage. Our results indicate that chloroplast protein import is responsive to environmental cues, enabling dynamic regulation of the organellar proteome, and suggest new approaches for improving stress tolerance in crops.

  8. Overexpression of denticleless E3 ubiquitin protein ligase homolog (DTL) is related to poor outcome in gastric carcinoma

    PubMed Central

    Ichikawa, Daisuke; Kawaguchi, Tsutomu; Hirajima, Shoji; Miyamae, Mahito; Okajima, Wataru; Ohashi, Takuma; Kosuga, Toshiyuki; Konishi, Hirotaka; Shiozaki, Atsushi; Fujiwara, Hitoshi; Okamoto, Kazuma; Tsuda, Hitoshi; Otsuji, Eigo

    2015-01-01

    Background Denticleless E3 ubiquitin protein ligase homolog (DTL) has been identified in amplified region (1q32) of several cancers and has an oncogenic function. In this study, we tested whether DTL acts as a cancer-promoting gene through its activation/overexpression in gastric cancer (GC). Methods We analyzed 7 GC cell lines and 100 primary tumors that were curatively resected in our hospital between 2001 and 2003. Results Overexpression of the DTL protein was detected in GC cell lines (4/7 cell lines; 57%) and primary GC tumor samples (42/100 cases; 42%). Knockdown of DTL using several specific siRNAs inhibited the proliferation, migration and invasion in a TP53 mutation-independent manner. Overexpression of the DTL was significantly correlated with lymphatic invasion, deeper tumor depth and higher recurrence rate. Patients with DTL-overexpressing tumors had a worse survival rate than those with non-expressing tumors in overall survival (P = 0.0498, log-rank test) and disease-free survival (P = 0.0324, log-rank test). In a multivariate analysis, DTL positivity was independently associated with a worse overall survival (P = 0.0104, hazard ratio 3.7 [1.36–10.1]) and disease-free survival (P = 0.0070 (hazard ratio, 3.9 (1.45–10.46)) following radical gastrectomy. Conclusions These findings suggest that DTL overexpression plays a crucial role in tumor cell proliferation and highlights its usefulness as a prognosticator and potential therapeutic target in gastric cancer. PMID:26472028

  9. Insights into the conformational dynamics of the E3 ubiquitin ligase CHIP in complex with chaperones and E2 enzymes.

    PubMed

    Graf, Christian; Stankiewicz, Marta; Nikolay, Rainer; Mayer, Matthias P

    2010-03-16

    The dimeric E3 ubiquitin ligase CHIP binds with its tetratricopeptide repeat (TPR) domain the C-terminus of molecular chaperones Hsp70 and Hsp90 and with its U-box region E2 ubiquitin-conjugating enzymes. By ubiquitinating chaperone-bound polypeptides, CHIP thus links the chaperone machinery to the proteasomal degradation pathway. The molecular mechanism of how CHIP discriminates between folding and destruction of chaperone substrates is not yet understood. Two recently published crystal structures of mouse and zebrafish CHIP truncation constructs differ substantially, showing either an asymmetric assembly or a symmetric assembly with a highly ordered middle domain. To characterize the conformational properties of the intact full-length protein in solution, we performed amide hydrogen exchange mass spectrometry (HX-MS) with human CHIP. In addition, we monitored conformational changes in CHIP upon binding of Hsp70, Hsp90, and their respective C-terminal EEVD peptides, and in complex with the different E2 ubiquitin-conjugating enzymes UbcH5a and Ubc13. Solution HX-MS data suggest a symmetric dimer assembly with highly flexible parts in the middle domain contrasting both the asymmetric and the symmetric crystal structure. CHIP exhibited an extraordinary flexibility with a largely unprotected N-terminal TPR domain. Formation of a complex with intact Hsp70 and Hsp90 or their respective C-terminal octapeptides induced folding of the TPR domain to a defined, highly stabilized structure with protected amide hydrogens. Interaction of CHIP with two different E2 ubiquitin-conjugating enzymes, UbcH5a and Ubc13, had distinct effects on the conformational dynamics of CHIP, suggesting different roles of the CHIP-E2 interaction in the ubiquitination of substrates and interaction with chaperones.

  10. The Not4 E3 Ligase and CCR4 Deadenylase Play Distinct Roles in Protein Quality Control

    PubMed Central

    Halter, David; Collart, Martine A.; Panasenko, Olesya O.

    2014-01-01

    Eukaryotic cells control their proteome by regulating protein production and protein clearance. Protein production is determined to a large extent by mRNA levels, whereas protein degradation depends mostly upon the proteasome. Dysfunction of the proteasome leads to the accumulation of non-functional proteins that can aggregate, be toxic for the cell, and, in extreme cases, lead to cell death. mRNA levels are controlled by their rates of synthesis and degradation. Recent evidence indicates that these rates have oppositely co-evolved to ensure appropriate mRNA levels. This opposite co-evolution has been correlated with the mutations in the Ccr4-Not complex. Consistently, the deadenylation enzymes responsible for the rate-limiting step in eukaryotic mRNA degradation, Caf1 and Ccr4, are subunits of the Ccr4-Not complex. Another subunit of this complex is a RING E3 ligase, Not4. It is essential for cellular protein solubility and has been proposed to be involved in co-translational quality control. An open question has been whether this role of Not4 resides strictly in the regulation of the deadenylation module of the Ccr4-Not complex. However, Not4 is important for proper assembly of the proteasome, and the Ccr4-Not complex may have multiple functional modules that participate in protein quality control in different ways. In this work we studied how the functions of the Caf1/Ccr4 and Not4 modules are connected. We concluded that Not4 plays a role in protein quality control independently of the Ccr4 deadenylase, and that it is involved in clearance of aberrant proteins at least in part via the proteasome. PMID:24465968

  11. E3 ubiquitin ligase gene CMPG1-V from Haynaldia villosa L. contributes to powdery mildew resistance in common wheat (Triticum aestivum L.).

    PubMed

    Zhu, Yanfei; Li, Yingbo; Fei, Fei; Wang, Zongkuan; Wang, Wei; Cao, Aizhong; Liu, Yuan; Han, Shuang; Xing, Liping; Wang, Haiyan; Chen, Wei; Tang, Sanyuan; Huang, Xiahe; Shen, Qianhua; Xie, Qi; Wang, Xiue

    2015-10-01

    Powdery mildew is one of the most devastating wheat fungal diseases. A diploid wheat relative, Haynaldia villosa L., is highly resistant to powdery mildew, and its genetic resource of resistances, such as the Pm21 locus, is now widely used in wheat breeding. Here we report the cloning of a resistance gene from H. villosa, designated CMPG1-V, that encodes a U-box E3 ubiquitin ligase. Expression of the CMPG1-V gene was induced in the leaf and stem of H. villosa upon inoculation with Blumeria graminis f. sp. tritici (Bgt) fungus, and the presence of Pm21 is essential for its rapid induction of expression. CMPG1-V has conserved key residues for E3 ligase, and possesses E3 ligase activity in vitro and in vivo. CMPG1-V is localized in the nucleus, endoplasmic reticulum, plasma membrane and partially in trans-Golgi network/early endosome vesicles. Transgenic wheat over-expressing CMPG1-V showed improved broad-spectrum powdery mildew resistance at seedling and adult stages, associated with an increase in expression of salicylic acid-responsive genes, H2 O2 accumulation, and cell-wall protein cross-linking at the Bgt infection sites, and the expression of CMPG1-V in H. villosa was increased when treated with salicylic acid, abscisic acid and H2 O2 . These results indicate the involvement of E3 ligase in defense responses to Bgt fungus in wheat, particularly in broad-spectrum disease resistance, and suggest association of reactive oxidative species and the phytohormone pathway with CMPG1-V-mediated powdery mildew resistance.

  12. The E3 Ligase APC/C-Cdh1 Is Required for Associative Fear Memory and Long-Term Potentiation in the Amygdala of Adult Mice

    ERIC Educational Resources Information Center

    Pick, Joseph E.; Malumbres, Marcos; Klann, Eric

    2013-01-01

    The anaphase promoting complex/cyclosome (APC/C) is an E3 ligase regulated by Cdh1. Beyond its role in controlling cell cycle progression, APC/C-Cdh1 has been detected in neurons and plays a role in long-lasting synaptic plasticity and long-term memory. Herein, we further examined the role of Cdh1 in synaptic plasticity and memory by generating…

  13. Reconstruction of an active SOCS3-based E3 ubiquitin ligase complex in vitro: Identification of the active components and JAK2 and gp130 as substrates

    PubMed Central

    Kershaw, Nadia J.; Laktyushin, Artem; Nicola, Nicos A.; Babon, Jeffrey J.

    2014-01-01

    SOCS3 (Suppressor of Cytokine Signaling 3) inhibits the intracellular signaling cascade initiated by exposure of cells to cytokines. SOCS3 regulates signaling via two distinct mechanisms: directly inhibiting the catalytic activity of Janus Kinases (JAKs) that initiate the intracellular signaling cascade and catalysing the ubiquitination of signaling components by recruiting components of an E3 ubiquitin ligase complex. Here we investigate the latter mode-of-action biochemically by reconstructing a SOCS3-based E3 ubiquitin ligase complex in vitro using fully purified, recombinant components and examining its ability to promote the ubiquitination of molecules involved in the cytokine signaling cascade. We show that SOCS3 is an active substrate recruitment module for a Cullin5-based E3 ligase and have defined the core protein components required for ubiquitination. SOCS3-induced poly-ubiquitination was rapid and could proceed through a number of different ubiquitin lysines. SOCS3 catalysed the ubiquitination of both the IL-6 receptor common chain (gp130) and JAK2. PMID:24438103

  14. PARAQUAT TOLERANCE3 Is an E3 Ligase That Switches off Activated Oxidative Response by Targeting Histone-Modifying PROTEIN METHYLTRANSFERASE4b

    PubMed Central

    Du, Jin; Zhao, Tao-Lan; Wang, Peng-Fei; Zhao, Ping-Xia; Xie, Qi; Cao, Xiao-Feng; Xiang, Cheng-Bin

    2016-01-01

    Oxidative stress is unavoidable for aerobic organisms. When abiotic and biotic stresses are encountered, oxidative damage could occur in cells. To avoid this damage, defense mechanisms must be timely and efficiently modulated. While the response to oxidative stress has been extensively studied in plants, little is known about how the activated response is switched off when oxidative stress is diminished. By studying Arabidopsis mutant paraquat tolerance3, we identified the genetic locus PARAQUAT TOLERANCE3 (PQT3) as a major negative regulator of oxidative stress tolerance. PQT3, encoding an E3 ubiquitin ligase, is rapidly down-regulated by oxidative stress. PQT3 has E3 ubiquitin ligase activity in ubiquitination assay. Subsequently, we identified PRMT4b as a PQT3-interacting protein. By histone methylation, PRMT4b upregulates the expression of APX1 and GPX1, encoding two key enzymes against oxidative stress. On the other hand, PRMT4b is recognized by PQT3 for targeted degradation via 26S proteasome. Therefore, we have identified PQT3 as an E3 ligase that acts as a negative regulator of activated response to oxidative stress and found that histone modification by PRMT4b at APX1 and GPX1 loci plays an important role in oxidative stress tolerance. PMID:27676073

  15. BioID-based Identification of Skp Cullin F-box (SCF)β-TrCP1/2 E3 Ligase Substrates*

    PubMed Central

    Coyaud, Etienne; Mis, Monika; Laurent, Estelle M. N.; Dunham, Wade H.; Couzens, Amber L.; Robitaille, Melanie; Gingras, Anne-Claude; Angers, Stephane; Raught, Brian

    2015-01-01

    The identification of ubiquitin E3 ligase substrates has been challenging, due in part to low-affinity, transient interactions, the rapid degradation of targets and the inability to identify proteins from poorly soluble cellular compartments. SCFβ-TrCP1 and SCFβ-TrCP2 are well-studied ubiquitin E3 ligases that target substrates for proteasomal degradation, and play important roles in Wnt, Hippo, and NFκB signaling. Combining 26S proteasome inhibitor (MG132) treatment with proximity-dependent biotin labeling (BioID) and semiquantitative mass spectrometry, here we identify SCFβ-TrCP1/2 interacting partners. Based on their enrichment in the presence of MG132, our data identify over 50 new putative SCFβ-TrCP1/2 substrates. We validate 12 of these new substrates and reveal previously unsuspected roles for β-TrCP in the maintenance of nuclear membrane integrity, processing (P)-body turnover and translational control. Together, our data suggest that β-TrCP is an important hub in the cellular stress response. The technique presented here represents a complementary approach to more standard IP-MS methods and should be broadly applicable for the identification of substrates for many ubiquitin E3 ligases. PMID:25900982

  16. RNF185 is a novel E3 ligase of endoplasmic reticulum-associated degradation (ERAD) that targets cystic fibrosis transmembrane conductance regulator (CFTR).

    PubMed

    El Khouri, Elma; Le Pavec, Gwenaëlle; Toledano, Michel B; Delaunay-Moisan, Agnès

    2013-10-25

    In the endoplasmic reticulum (ER), misfolded or improperly assembled proteins are exported to the cytoplasm and degraded by the ubiquitin-proteasome pathway through a process called ER-associated degradation (ERAD). ER-associated E3 ligases, which coordinate substrate recognition, export, and proteasome targeting, are key components of ERAD. Cystic fibrosis transmembrane conductance regulator (CFTR) is one ERAD substrate targeted to co-translational degradation by the E3 ligase RNF5/RMA1. RNF185 is a RING domain-containing polypeptide homologous to RNF5. We show that RNF185 controls the stability of CFTR and of the CFTRΔF508 mutant in a RING- and proteasome-dependent manner but does not control that of other classical ERAD model substrates. Reciprocally, its silencing stabilizes CFTR proteins. Turnover analyses indicate that, as RNF5, RNF185 targets CFTR to co-translational degradation. Importantly, however, simultaneous depletion of RNF5 and RNF185 profoundly blocks CFTRΔF508 degradation not only during translation but also after synthesis is complete. Our data thus identify RNF185 and RNF5 as a novel E3 ligase module that is central to the control of CFTR degradation.

  17. GpDSR7, a Novel E3 Ubiquitin Ligase Gene in Grimmia pilifera Is Involved in Tolerance to Drought Stress in Arabidopsis.

    PubMed

    Li, Mengmeng; Li, Yihao; Zhao, Junyi; Liu, Hai; Jia, Shenghua; Li, Jie; Zhao, Heping; Han, Shengcheng; Wang, Yingdian

    2016-01-01

    The growth and development of plants under drought stress depends mainly on the expression levels of various genes and modification of proteins. To clarify the molecular mechanism of drought-tolerance of plants, suppression subtractive hybridisation cDNA libraries were screened to identify drought-stress-responsive unigenes in Grimmia pilifera, and a novel E3 ubiquitin ligase gene, GpDSR7, was identified among the 240 responsive unigenes. GpDSR7 expression was induced by various abiotic stresses, particularly by drought. GpDSR7 displayed E3 ubiquitin ligase activity in vitro and was exclusively localised on the ER membrane in Arabidopsis mesophyll protoplasts. GpDSR7-overexpressing transgenic Arabidopsis plants showed a high water content and survival ratio under drought stress. Moreover, the expression levels of some marker genes involved in drought stress were higher in the transgenic plants than in wild-type plants. These results suggest that GpDSR7, an E3 ubiquitin ligase, is involved in tolerance to drought stress at the protein modification level. PMID:27228205

  18. ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling.

    PubMed

    Seo, Kyoung-In; Lee, Jae-Hoon; Nezames, Cynthia D; Zhong, Shangwei; Song, Eunyoung; Byun, Myung-Ok; Deng, Xing Wang

    2014-02-01

    Members of the DDB1-CUL4-associated factors (DCAFs) family directly bind to DAMAGED DNA BINDING PROTEIN1 (DDB1) and function as the substrate receptors in CULLIN4-based E3 (CUL4) ubiquitin ligases, which regulate the selective ubiquitination of proteins. Here, we describe a DCAF protein, ABD1 (for ABA-hypersensitive DCAF1), that negatively regulates abscisic acid (ABA) signaling in Arabidopsis thaliana. ABD1 interacts with DDB1 in vitro and in vivo, indicating that it likely functions as a CUL4 E3 ligase substrate receptor. ABD1 expression is induced by ABA, and mutations in ABD1 result in ABA- and NaCl-hypersensitive phenotypes. Loss of ABD1 leads to hyperinduction of ABA-responsive genes and higher accumulation of the ABA-responsive transcription factor ABA INSENSITIVE5 (ABI5), hypersensitivity to ABA during seed germination and seedling growth, enhanced stomatal closure, reduced water loss, and, ultimately, increased drought tolerance. ABD1 directly interacts with ABI5 in yeast two-hybrid assays and associates with ABI5 in vivo by coimmunoprecipitation, and the interaction was found in the nucleus by bimolecular fluorescence complementation. Furthermore, loss of ABD1 results in a retardation of ABI5 degradation by the 26S proteasome. Taken together, these data suggest that the DCAF-CUL4 E3 ubiquitin ligase assembled with ABD1 is a negative regulator of ABA responses by directly binding to and affecting the stability of ABI5 in the nucleus. PMID:24563203

  19. GpDSR7, a Novel E3 Ubiquitin Ligase Gene in Grimmia pilifera Is Involved in Tolerance to Drought Stress in Arabidopsis

    PubMed Central

    Li, Mengmeng; Li, Yihao; Zhao, Junyi; Liu, Hai; Jia, Shenghua; Li, Jie; Zhao, Heping; Han, Shengcheng; Wang, Yingdian

    2016-01-01

    The growth and development of plants under drought stress depends mainly on the expression levels of various genes and modification of proteins. To clarify the molecular mechanism of drought-tolerance of plants, suppression subtractive hybridisation cDNA libraries were screened to identify drought-stress-responsive unigenes in Grimmia pilifera, and a novel E3 ubiquitin ligase gene, GpDSR7, was identified among the 240 responsive unigenes. GpDSR7 expression was induced by various abiotic stresses, particularly by drought. GpDSR7 displayed E3 ubiquitin ligase activity in vitro and was exclusively localised on the ER membrane in Arabidopsis mesophyll protoplasts. GpDSR7-overexpressing transgenic Arabidopsis plants showed a high water content and survival ratio under drought stress. Moreover, the expression levels of some marker genes involved in drought stress were higher in the transgenic plants than in wild-type plants. These results suggest that GpDSR7, an E3 ubiquitin ligase, is involved in tolerance to drought stress at the protein modification level. PMID:27228205

  20. Global functional profiling of human ubiquitome identifies E3 ubiquitin ligase DCST1 as a novel negative regulator of Type-I interferon signaling

    PubMed Central

    Nair, Sajith; Bist, Pradeep; Dikshit, Neha; Krishnan, Manoj N

    2016-01-01

    Type I interferon (IFN-I) mediated innate immune response controls virus infections by inducing the expression of interferon stimulated genes (ISGs). Although ubiquitination plays key roles in immune signaling regulation, a human genome-wide understanding of the role of E3 ubiquitin ligases in interferon mediated ISG induction is lacking. Here, we report a genome-wide profiling of the effect of ectopic expression of 521 E3 ubiquitin ligases and substrate recognition subunits encoded in the human genome (which constitutes 84.4% of all ubiquitination related genes encoded in the human genome, hereafter termed Human Ubiquitome) on IFNβ mediated induction of interferon stimulated DNA response element (ISRE) driven reporter activity. We identified 96 and 42 genes of the human ubiquitome as novel negative and positive regulators of interferon signaling respectively. Furthermore, we characterized DCST1 as a novel E3 ubiquitin ligase negatively regulating interferon response. Ectopic expression and gene silencing of DCST1 respectively attenuated and increased ISRE reporter activity. DCST1 regulated Type I interferon signaling by interacting with and promoting ubiquitination-mediated degradation of STAT2, an essential component of antiviral gene induction. In summary, this study provided a systems level view on the role of human ubiquitination associated genes in Type I interferon response. PMID:27782195

  1. Arabidopsis RZFP34/CHYR1, a Ubiquitin E3 Ligase, Regulates Stomatal Movement and Drought Tolerance via SnRK2.6-Mediated Phosphorylation[OPEN

    PubMed Central

    2015-01-01

    Abscisic acid (ABA) is a phytohormone that plays a fundamental role in plant development and stress response, especially in the regulation of stomatal closure in response to water deficit stress. The signal transduction that occurs in response to ABA and drought stress is mediated by protein phosphorylation and ubiquitination. This research identified Arabidopsis thaliana RING ZINC-FINGER PROTEIN34 (RZP34; renamed here as CHY ZINC-FINGER AND RING PROTEIN1 [CHYR1]) as an ubiquitin E3 ligase. CHYR1 expression was significantly induced by ABA and drought, and along with its corresponding protein, was expressed mainly in vascular tissues and stomata. Analysis of CHYR1 gain-of-function and loss-of-function plants revealed that CHYR1 promotes ABA-induced stomatal closure, reactive oxygen species production, and plant drought tolerance. Furthermore, CHYR1 interacted with SNF1-RELATED PROTEIN KINASE2 (SnRK2) kinases and could be phosphorylated by SnRK2.6 on the Thr-178 residue. Overexpression of CHYR1T178A, a phosphorylation-deficient mutant, interfered with the proper function of CHYR1, whereas CHYR1T178D phenocopied the gain of function of CHYR1. Thus, this study identified a RING-type ubiquitin E3 ligase that functions positively in ABA and drought responses and detailed how its ubiquitin E3 ligase activity is regulated by SnRK2.6-mediated protein phosphorylation. PMID:26508764

  2. E3 SUMO ligase AtSIZ1 positively regulates SLY1-mediated GA signalling and plant development.

    PubMed

    Kim, Sung-Il; Park, Bong Soo; Kim, Do Youn; Yeu, Song Yion; Song, Sang Ik; Song, Jong Tae; Seo, Hak Soo

    2015-07-15

    Gibberellins affect various plant development processes including germination, cell division and elongation, and flowering. A large number of studies have been carried out to address the molecular mechanisms that mediate gibberellin signalling effects on plant growth. However, such studies have been limited to DELLA protein degradation; the regulatory mechanisms controlling how the stability and function of SLEEPY1 (SLY1), a protein that interacts with target DELLA proteins as components of the Skp, Cullin, F-box (SCF)(SLY1) complex, are modulated at the post-translational level have not been addressed. In the present study, we show that the E3 SUMO (small ubiquitin-related modifier) ligase AtSIZ1 regulates gibberellic acid signalling in Arabidopsis species by sumoylating SLY1. SLY1 was less abundant in siz1-2 mutants than in wild-type plants, but the DELLA protein repressor of ga1-3 (RGA) was more abundant in siz1-2 mutants than in wild-type plants. SLY1 also accumulated to a high level in the SUMO protease mutant esd4. Transgenic sly1-13 mutants over-expressing SLY1 were phenotypically similar to wild-type plants; however, sly1-13 plants over-expressing a mutated mSLY1 protein (K122R, a mutation at the sumoylation site) retained the mutant dwarfing phenotype. Over-expression of SLY1 in sly1-13 mutants resulted in a return of RGA levels to wild-type levels, but RGA accumulated to high levels in mutants over-expressing mSLY1. RGA was clearly detected in Arabidopsis co-expressing AtSIZ1 and mSLY1, but not in plants co-expressing AtSIZ1 and SLY1. In addition, sumoylated SLY1 interacted with RGA and SLY1 sumoylation was significantly increased by GA. Taken together, our results indicate that, in Arabidopsis, AtSIZ1 positively controls GA signalling through SLY1 sumoylation.

  3. E3 ligase CHIP and Hsc70 regulate Kv1.5 protein expression and function in mammalian cells.

    PubMed

    Li, Peili; Kurata, Yasutaka; Maharani, Nani; Mahati, Endang; Higaki, Katsumi; Hasegawa, Akira; Shirayoshi, Yasuaki; Yoshida, Akio; Kondo, Tatehito; Kurozawa, Youichi; Yamamoto, Kazuhiro; Ninomiya, Haruaki; Hisatome, Ichiro

    2015-09-01

    Kv1.5 confers ultra-rapid delayed-rectifier potassium channel current (IKur) which contributes to repolarization of the atrial action potential. Kv1.5 proteins, degraded via the ubiquitin-proteasome pathway, decreased in some atrial fibrillation patients. Carboxyl-terminus heat shock cognate 70-interacting protein (CHIP), an E3 ubiquitin ligase, is known to ubiquitinate short-lived proteins. Here, we investigated the roles of CHIP in Kv1.5 degradation to provide insights into the mechanisms of Kv1.5 decreases and treatments targeting Kv1.5 for atrial fibrillation. Coexpression of CHIP with Kv1.5 in HEK293 cells increased Kv1.5 protein ubiquitination and decreased the protein level. Immunofluorescence revealed decreases of Kv1.5 proteins in the endoplasmic reticulum and on the cell membrane. A siRNA against CHIP suppressed Kv1.5 protein ubiquitination and increased its protein level. CHIP mutants, lacking either the N-terminal tetratricopeptide region domain or the C-terminal U-box domain, failed to exert these effects on Kv1.5 proteins. Immunoprecipitation showed that CHIP formed complexes with Kv1.5 proteins and heat shock cognate protein 70 (Hsc70). Effects of Hsc70 on Kv1.5 were similar to CHIP by altering interaction of CHIP with Kv1.5 protein. Coexpression of CHIP and Hsc70 with Kv1.5 additionally enhanced Kv1.5 ubiquitination. Kv1.5 currents were decreased by overexpression of CHIP or Hsc70 but were increased by knockdown of CHIP or Hsc70 in HEK 293 cells stably expressing Kv1.5. These effects of CHIP and Hsc70 were also observed on endogenous Kv1.5 in HL-1 mouse cardiomyocytes, decreasing IKur and prolonging action potential duration. These results indicate that CHIP decreases the Kv1.5 protein level and functional channel by facilitating its degradation in concert with chaperone Hsc70.

  4. A Family of Salmonella Virulence Factors Functions as a Distinct Class of Autoregulated E3 Ubiquitin Ligases

    SciTech Connect

    Quezada, C.; Hicks, S; Galan, J; Stebbins, C

    2009-01-01

    Processes as diverse as receptor binding and signaling, cytoskeletal dynamics, and programmed cell death are manipulated by mimics of host proteins encoded by pathogenic bacteria. We show here that the Salmonella virulence factor SspH2 belongs to a growing class of bacterial effector proteins that harness and subvert the eukaryotic ubiquitination pathway. This virulence protein possesses ubiquitination activity that depends on a conserved cysteine residue. A crystal structure of SspH2 reveals a canonical leucine-rich repeat (LRR) domain that interacts with a unique E{sub 3} ligase [which we have termed NEL for Novel E{sub 3} Ligase] C-terminal fold unrelated to previously observed HECT or RING-finger E{sub 3} ligases. Moreover, the LRR domain sequesters the catalytic cysteine residue contained in the NEL domain, and we suggest a mechanism for activation of the ligase requiring a substantial conformational change to release the catalytic domain for function. We also show that the N-terminal domain targets SspH2 to the apical plasma membrane of polarized epithelial cells and propose a model whereby binding of the LRR to proteins at the target site releases the ligase domain for site-specific function.

  5. The neural stem cell fate determinant TRIM32 regulates complex behavioral traits.

    PubMed

    Hillje, Anna-Lena; Beckmann, Elisabeth; Pavlou, Maria A S; Jaeger, Christian; Pacheco, Maria P; Sauter, Thomas; Schwamborn, Jens C; Lewejohann, Lars

    2015-01-01

    In mammals, new neurons are generated throughout the entire lifespan in two restricted areas of the brain, the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ)-olfactory bulb (OB) system. In both regions newborn neurons display unique properties that clearly distinguish them from mature neurons. Enhanced excitability and increased synaptic plasticity enables them to add specific properties to information processing by modulating the existing local circuitry of already established mature neurons. Hippocampal neurogenesis has been suggested to play a role in spatial-navigation learning, spatial memory, and spatial pattern separation. Cumulative evidences implicate that adult-born OB neurons contribute to learning processes and odor memory. We recently demonstrated that the cell fate determinant TRIM32 is upregulated in differentiating neuroblasts of the SVZ-OB system in the adult mouse brain. The absence of TRIM32 leads to increased progenitor cell proliferation and less cell death. Both effects accumulate in an overproduction of adult-generated OB neurons. Here, we present novel data from behavioral studies showing that such an enhancement of OB neurogenesis not necessarily leads to increased olfactory performance but in contrast even results in impaired olfactory capabilities. In addition, we show at the cellular level that TRIM32 protein levels increase during differentiation of neural stem cells (NSCs). At the molecular level, several metabolic intermediates that are connected to glycolysis, glycine, or cysteine metabolism are deregulated in TRIM32 knockout mice brain tissue. These metabolomics pathways are directly or indirectly linked to anxiety or depression like behavior. In summary, our study provides comprehensive data on how the impairment of neurogenesis caused by the loss of the cell fate determinant TRIM32 causes a decrease of olfactory performance as well as a deregulation of metabolomic pathways that are linked to mood disorders

  6. RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development.

    PubMed

    Pfirrmann, Thorsten; Villavicencio-Lorini, Pablo; Subudhi, Abinash K; Menssen, Ruth; Wolf, Dieter H; Hollemann, Thomas

    2015-01-01

    In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of the skin and its suppression results in malformations of the fore- and midbrain. We therefore suggest that Xenopus laevis Rmnd5, as a subunit of the CTLH complex, is a ubiquitin-ligase targeting an unknown factor for polyubiquitination and subsequent proteasomal degradation for proper fore- and midbrain development. PMID:25793641

  7. RMND5 from Xenopus laevis Is an E3 Ubiquitin-Ligase and Functions in Early Embryonic Forebrain Development

    PubMed Central

    Pfirrmann, Thorsten; Villavicencio-Lorini, Pablo; Subudhi, Abinash K.; Menssen, Ruth; Wolf, Dieter H.; Hollemann, Thomas

    2015-01-01

    In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of the skin and its suppression results in malformations of the fore- and midbrain. We therefore suggest that Xenopus laevis Rmnd5, as a subunit of the CTLH complex, is a ubiquitin-ligase targeting an unknown factor for polyubiquitination and subsequent proteasomal degradation for proper fore- and midbrain development. PMID:25793641

  8. Lotus japonicus E3 Ligase SEVEN IN ABSENTIA4 Destabilizes the Symbiosis Receptor-Like Kinase SYMRK and Negatively Regulates Rhizobial Infection[C][W

    PubMed Central

    Den Herder, Griet; Yoshida, Satoko; Antolín-Llovera, Meritxell; Ried, Martina K.; Parniske, Martin

    2012-01-01

    The Lotus japonicus SYMBIOSIS RECEPTOR-LIKE KINASE (SYMRK) is required for symbiotic signal transduction upon stimulation of root cells by microbial signaling molecules. Here, we identified members of the SEVEN IN ABSENTIA (SINA) E3 ubiquitin-ligase family as SYMRK interactors and confirmed their predicted ubiquitin-ligase activity. In Nicotiana benthamiana leaves, SYMRK–yellow fluorescent protein was localized at the plasma membrane, and interaction with SINAs, as determined by bimolecular fluorescence complementation, was observed in small punctae at the cytosolic interface of the plasma membrane. Moreover, fluorescence-tagged SINA4 partially colocalized with SYMRK and caused SYMRK relocalization as well as disappearance of SYMRK from the plasma membrane. Neither the localization nor the abundance of Nod-factor receptor1 was altered by the presence of SINA4. SINA4 was transcriptionally upregulated during root symbiosis, and rhizobia inoculated roots ectopically expressing SINA4 showed reduced SYMRK protein levels. In accordance with a negative regulatory role in symbiosis, infection thread development was impaired upon ectopic expression of SINA4. Our results implicate SINA4 E3 ubiquitin ligase in the turnover of SYMRK and provide a conceptual mechanism for its symbiosis-appropriate spatio-temporal containment. PMID:22534128

  9. Molecular Characterization, Tissue Distribution and Expression, and Potential Antiviral Effects of TRIM32 in the Common Carp (Cyprinus carpio)

    PubMed Central

    Wang, Yeda; Li, Zeming; Lu, Yuanan; Hu, Guangfu; Lin, Li; Zeng, Lingbing; Zhou, Yong; Liu, Xueqin

    2016-01-01

    Tripartite motif-containing protein 32 (TRIM32) belongs to the tripartite motif (TRIM) family, which consists of a large number of proteins containing a RING (Really Interesting New Gene) domain, one or two B-box domains, and coiled coil motif followed by different C-terminal domains. The TRIM family is known to be implicated in multiple cellular functions, including antiviral activity. However, it is presently unknown whether TRIM32 of common carp (Cyprinus carpio) has the antiviral effect. In this study, the sequence, expression, and antiviral function of TRIM32 homolog from common carp were analyzed. The full-length coding sequence region of trim32 was cloned from common carp. The results showed that the expression of TRIM32 (mRNA) was highest in the brain, remained stably expressed during embryonic development, and significantly increased following spring viraemia of carp virus (SVCV) infection. Transient overexpression of TRIM32 in affected Epithelioma papulosum cyprinid cells led to significant decrease of SVCV production as compared to the control group. These results suggested a potentially important role of common carp TRIM32 in enhancing host immune response during SVCV infection both in vivo and in vitro. PMID:27735853

  10. Structure of a Glomulin-RBX1-CUL1 Complex: Inhibition of a RING E3 Ligase through Masking of Its E2-Binding Surface

    SciTech Connect

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A.

    2012-11-01

    The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCF{sup FBW7} complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition.

  11. Structure of a Glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface

    PubMed Central

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A.

    2012-01-01

    Summary The ~300 human Cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1’s RING domain, regulates the RBX1-CUL1-containing SCFFBW7 complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN’s selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition. PMID:22748924

  12. Identification and functional expression of the pepper RING type E3 ligase, CaDTR1, involved in drought stress tolerance via ABA-mediated signalling

    PubMed Central

    Joo, Hyunhee; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Drought negatively affects plant growth and development, thereby leading to loss of crop productivity. Several plant E3 ubiquitin ligases act as positive or negative regulators of abscisic acid (ABA) and thus play important roles in the drought stress response. Here, we show that the C3HC4-type RING finger E3 ligase, CaDTR1, regulates the drought stress response via ABA-mediated signalling. CaDTR1 contains an amino-terminal RING finger motif and two carboxyl-terminal hydrophobic regions; the RING finger motif functions during attachment of ubiquitins to the target proteins, and the carboxyl-terminal hydrophobic regions function during subcellular localisation. The expression of CaDTR1 was induced by ABA, drought, and NaCl treatments. CaDTR1 localised in the nucleus and displayed in vitro E3 ubiquitin ligase activity. CaDTR1-silenced pepper plants exhibited a drought-sensitive phenotype characterised by high levels of transpirational water loss. On the other hand, CaDTR1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative and post-germinative growth stages. Moreover, in contrast to CaDTR1-silenced pepper plants, CaDTR1-OX plants exhibited a drought-tolerant phenotype characterised by low levels of transpirational water loss via increased stomatal closure and high leaf temperatures. Our data indicate that CaDTR1 functions as a positive regulator of the drought stress response via ABA-mediated signalling. PMID:27439598

  13. Identification and functional expression of the pepper RING type E3 ligase, CaDTR1, involved in drought stress tolerance via ABA-mediated signalling.

    PubMed

    Joo, Hyunhee; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Drought negatively affects plant growth and development, thereby leading to loss of crop productivity. Several plant E3 ubiquitin ligases act as positive or negative regulators of abscisic acid (ABA) and thus play important roles in the drought stress response. Here, we show that the C3HC4-type RING finger E3 ligase, CaDTR1, regulates the drought stress response via ABA-mediated signalling. CaDTR1 contains an amino-terminal RING finger motif and two carboxyl-terminal hydrophobic regions; the RING finger motif functions during attachment of ubiquitins to the target proteins, and the carboxyl-terminal hydrophobic regions function during subcellular localisation. The expression of CaDTR1 was induced by ABA, drought, and NaCl treatments. CaDTR1 localised in the nucleus and displayed in vitro E3 ubiquitin ligase activity. CaDTR1-silenced pepper plants exhibited a drought-sensitive phenotype characterised by high levels of transpirational water loss. On the other hand, CaDTR1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative and post-germinative growth stages. Moreover, in contrast to CaDTR1-silenced pepper plants, CaDTR1-OX plants exhibited a drought-tolerant phenotype characterised by low levels of transpirational water loss via increased stomatal closure and high leaf temperatures. Our data indicate that CaDTR1 functions as a positive regulator of the drought stress response via ABA-mediated signalling. PMID:27439598

  14. CD2AP/SHIP1 Complex Positively Regulates Plasmacytoid Dendritic Cell Receptor Signaling by Inhibiting the E3 Ubiquitin Ligase Cbl

    PubMed Central

    Bao, Musheng; Hanabuchi, Shino; Facchinetti, Valeria; Du, Qiumei; Bover, Laura; Plumas, Joel; Chaperot, Laurence; Cao, Wei; Qin, Jun; Sun, Shao-Cong

    2013-01-01

    The human plasmacytoid dendritic cell (pDC) receptor BDCA2 forms a complex with the adaptor FcεR1γ to activate an ITAM-signaling cascade. BDCA2 receptor signaling negatively regulates the TLR7/9-mediated type 1 IFN responses in pDCs, which may play a key role in controlling self-DNA/RNA–induced autoimmunity. We report in this article that CD2-associated adaptor protein (CD2AP), which is highly expressed in human pDCs, positively regulates BDCA2/FcεR1γ receptor signaling. By immunoprecipitation and mass spectrometry analyses, we found that CD2AP bound to SHIP1. Knockdown of CD2AP or SHIP1 reduced the BDCA2/FcεR1γ-mediated ITAM signaling and blocked its inhibition of TLR9-mediated type 1 IFN production. Knockdown of CD2AP or SHIP1 also enhanced the ubiquitination and degradation of Syk and FcεR1γ that was mediated by the E3 ubiquitin ligase Cbl. This led us to discover that, upon BDCA2 cross-linking, the CD2AP/SHIP1 complex associated with Cbl and inhibited its E3 ubiquitin ligase activity. In human primary pDCs, cross-linking of the BDCA2/FcεR1γ complex induced the recruitment of the CD2AP/SHIP1/Cbl complex to the plasma membrane of pDCs, where it colocalized with the BDCA2/FcεR1γ complex. Therefore, CD2AP positively regulates BDCA2/FcεR1γ signaling by forming a complex with SHIP1 to inhibit the E3 ubiquitin ligase Cbl. PMID:22706086

  15. The complex biology of autocrine motility factor/phosphoglucose isomerase (AMF/PGI) and its receptor, the gp78/AMFR E3 ubiquitin ligase.

    PubMed

    Fairbank, Maria; St-Pierre, Pascal; Nabi, Ivan R

    2009-08-01

    Phosphoglucose isomerase (PGI) is a glycolytic enzyme that exhibits a dual function as an extracellular cytokine, under the name autocrine motility factor (AMF). Its cell surface receptor, gp78/AMFR, is also localized to the endoplasmic reticulum where it functions as an E3 ubiquitin ligase. Expression of both AMF/PGI and gp78/AMFR is associated with cancer and, in this review, we will discuss various aspects of the biology of this ligand-receptor complex and its role in tumor progression.

  16. Haploid Genetic Screens Identify an Essential Role for PLP2 in the Downregulation of Novel Plasma Membrane Targets by Viral E3 Ubiquitin Ligases

    PubMed Central

    Timms, Richard T.; Duncan, Lidia M.; Tchasovnikarova, Iva A.; Antrobus, Robin; Smith, Duncan L.; Dougan, Gordon; Weekes, Michael P.; Lehner, Paul J.

    2013-01-01

    The Kaposi's sarcoma-associated herpesvirus gene products K3 and K5 are viral ubiquitin E3 ligases which downregulate MHC-I and additional cell surface immunoreceptors. To identify novel cellular genes required for K5 function we performed a forward genetic screen in near-haploid human KBM7 cells. The screen identified proteolipid protein 2 (PLP2), a MARVEL domain protein of unknown function, as essential for K5 activity. Genetic loss of PLP2 traps the viral ligase in the endoplasmic reticulum, where it is unable to ubiquitinate and degrade its substrates. Subsequent analysis of the plasma membrane proteome of K5-expressing KBM7 cells in the presence and absence of PLP2 revealed a wide range of novel K5 targets, all of which required PLP2 for their K5-mediated downregulation. This work ascribes a critical function to PLP2 for viral ligase activity and underlines the power of non-lethal haploid genetic screens in human cells to identify the genes involved in pathogen manipulation of the host immune system. PMID:24278019

  17. Control of the dynamics and homeostasis of the Drosophila Hedgehog receptor Patched by two C2-WW-HECT-E3 Ubiquitin ligases.

    PubMed

    Brigui, Amira; Hofmann, Line; Argüelles, Camilla; Sanial, Matthieu; Holmgren, Robert A; Plessis, Anne

    2015-10-01

    The conserved Hedgehog (HH) signals control animal development, adult stem cell maintenance and oncogenesis. In Drosophila, the HH co-receptor Patched (PTC) controls both HH gradient formation and signalling. PTC is post-translationally downregulated by HH, which promotes its endocytosis and destabilization, but the mechanisms of PTC trafficking and its importance in the control of PTC remain to be understood. PTC interacts with E3 Ubiquitin (UB)-ligases of the C2-WW-HECT family; two of them-SMURF and NEDD4-are known to regulate its levels. We demonstrate that mutation of the PTC PY motif, which mediates binding of C2-WW-HECT family members, inhibits its internalization but not its autonomous and non-autonomous signalling activities. In addition, we show that the two related UB-C2-WW-HECT ligases NEDD4 and SU(DX) regulate PTC trafficking and finely tune its accumulation through partially redundant but distinct functions. While both NEDD4 and SU(DX) promote PTC endocytosis, only SU(DX) is able to induce its lysosomal targeting and degradation. In conclusion, PTC trafficking and homeostasis are tightly regulated by a family of UB-ligases.

  18. Control of the dynamics and homeostasis of the Drosophila Hedgehog receptor Patched by two C2-WW-HECT-E3 Ubiquitin ligases

    PubMed Central

    Brigui, Amira; Hofmann, Line; Argüelles, Camilla; Sanial, Matthieu; Holmgren, Robert A.; Plessis, Anne

    2015-01-01

    The conserved Hedgehog (HH) signals control animal development, adult stem cell maintenance and oncogenesis. In Drosophila, the HH co-receptor Patched (PTC) controls both HH gradient formation and signalling. PTC is post-translationally downregulated by HH, which promotes its endocytosis and destabilization, but the mechanisms of PTC trafficking and its importance in the control of PTC remain to be understood. PTC interacts with E3 Ubiquitin (UB)-ligases of the C2-WW-HECT family; two of them—SMURF and NEDD4—are known to regulate its levels. We demonstrate that mutation of the PTC PY motif, which mediates binding of C2-WW-HECT family members, inhibits its internalization but not its autonomous and non-autonomous signalling activities. In addition, we show that the two related UB-C2-WW-HECT ligases NEDD4 and SU(DX) regulate PTC trafficking and finely tune its accumulation through partially redundant but distinct functions. While both NEDD4 and SU(DX) promote PTC endocytosis, only SU(DX) is able to induce its lysosomal targeting and degradation. In conclusion, PTC trafficking and homeostasis are tightly regulated by a family of UB-ligases. PMID:26446620

  19. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Enhances E1A Functional Activity.

    PubMed

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G Eric; Dobner, Thomas; Branton, Philip E; Blanchette, Paola

    2016-01-01

    Human adenovirus (Ad) E1A proteins have long been known as the central regulators of virus infection as well as the major source of adenovirus oncogenic potential. Not only do they activate expression of other early viral genes, they make viral replication possible in terminally differentiated cells, at least in part, by binding to the retinoblastoma (Rb) tumor suppressor family of proteins to activate E2F transcription factors and thus viral and cellular DNA synthesis. We demonstrate in an accompanying article (F. Dallaire et al., mSphere 1:00014-15, 2016) that the human adenovirus E3 ubiquitin ligase complex formed by the E4orf6 and E1B55K proteins is able to mimic E1A activation of E2F transactivation factors. Acting alone in the absence of E1A, the Ad5 E4orf6 protein in complex with E1B55K was shown to bind E2F, disrupt E2F/Rb complexes, and induce hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis, as well as stimulation of early and late viral gene expression and production of viral progeny. While these activities were significantly lower than those exhibited by E1A, we report here that this ligase complex appeared to enhance E1A activity in two ways. First, the E4orf6/E1B55K complex was shown to stabilize E1A proteins, leading to higher levels in infected cells. Second, the complex was demonstrated to enhance the activation of E2F by E1A products. These findings indicated a new role of the E4orf6/E1B55K ligase complex in promoting adenovirus replication. IMPORTANCE Following our demonstration that adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins is able to mimic the activation of E2F by E1A, we conducted a series of studies to determine if this complex might also promote the ability of E1A to do so. We found that the complex both significantly stabilizes E1A proteins and also enhances their ability to activate E2F. This finding is of significance because it represents an entirely new function for

  20. A lysine-to-arginine mutation on NEDD8 markedly reduces the activity of cullin RING E3 ligase through the impairment of neddylation cascades

    SciTech Connect

    Sui, Yiyan; Liu, Yaobin; Xu, Guoqiang

    2015-06-12

    Neural-precursor-cell-expressed developmentally down-regulated 8 (NEDD8) is a ubiquitin-like modifier, which forms covalent conjugates on lysines of its substrates. This post-translational modification, neddylation, plays important roles in tumor cell proliferation and viability. Ubiquitin can form diverse polyubiquitin chains, on its seven lysines, which play important functions in various biological processes. However, the roles of lysines in NEDD8 have not been explored. Here, we generated nine NEDD8 point mutants, each with one lysine replaced by an arginine, to study the putative function of lysines in NEDD8. Our experiments discover that Lys27 in NEDD8 is a critical residue for protein neddylation. Replacement of this residue with arginine almost completely eliminates the conjugation of NEDD8 to its substrates. Furthermore, we find that the K27R mutant impairs NEDD8 conjugation to the E2 enzyme, which normally forms thioester bonds for further transferring NEDD8 to its ligases and substrates. Therefore, this mutation completely inhibits global protein neddylation, including neddylation of cullin family proteins, resulting in decreased activity of cullin-RING E3 ligases. This work sheds new light on the roles of NEDD8 lysines on neddylation cascades and provides a dominant negative mutant for the study of neddylation and its biological functions. - Highlights: • Lys27 in NEDD8 is critical for protein neddylation. • NEDD8 K27R mutant impairs the NEDD8 conjugation. • NEDD8 K27R mutant significantly reduces the activity of cullin-RING E3 ligases.

  1. Tethering of an E3 ligase by PCM1 regulates the abundance of centrosomal KIAA0586/Talpid3 and promotes ciliogenesis

    PubMed Central

    Wang, Lei; Lee, Kwanwoo; Malonis, Ryan; Sanchez, Irma; Dynlacht, Brian D

    2016-01-01

    To elucidate the role of centriolar satellites in ciliogenesis, we deleted the gene encoding the PCM1 protein, an integral component of satellites. PCM1 null human cells show marked defects in ciliogenesis, precipitated by the loss of specific proteins from satellites and their relocation to centrioles. We find that an amino-terminal domain of PCM1 can restore ciliogenesis and satellite localization of certain proteins, but not others, pinpointing unique roles for PCM1 and a group of satellite proteins in cilium assembly. Remarkably, we find that PCM1 is essential for tethering the E3 ligase, Mindbomb1 (Mib1), to satellites. In the absence of PCM1, Mib1 destabilizes Talpid3 through poly-ubiquitylation and suppresses cilium assembly. Loss of PCM1 blocks ciliogenesis by abrogating recruitment of ciliary vesicles associated with the Talpid3-binding protein, Rab8, which can be reversed by inactivating Mib1. Thus, PCM1 promotes ciliogenesis by tethering a key E3 ligase to satellites and restricting it from centrioles. DOI: http://dx.doi.org/10.7554/eLife.12950.001 PMID:27146717

  2. Overexpression of GhSARP1 encoding a E3 ligase from cotton reduce the tolerance to salt in transgenic Arabidopsis.

    PubMed

    Liu, Yongchang; Zhang, Xinyu; Zhu, Shouhong; Zhang, Hao; Li, Yanjun; Zhang, Tao; Sun, Jie

    2016-09-30

    Ubiquitination plays a very important role in the response to abiotic stresses of plant. To identify key regulators of salt stress, a gene GhSARP1(Salt-Associated Ring finger Protein)encoding C3H2C3-type E3 ligase, was cloned from cotton. Transcription level of GhSARP1 was high in leaf, flower and fiber of 24,27 and 27DPA (Days Post-Anthesis), but low in root and stem. Except PEG6000 treatment, the expression of GhSARP1 was down-regulated by NaCl, cold and ABA after being treated for 1 h. GhSARP1-GFP fusion protein located on the plasma membrane, which was dependent on trans-membrane motif. In vitro ubiquitination assay showed that GhSARP1 had E3 ligase activity. Heterogeneous overexpression of GhSARP1reduced salt tolerance of transgenic Arabidopsis in germination and post-germination stage. Our results suggested that the GhSARP1 might negatively regulate the response to salt stress mediated by the ubiquitination in cotton. PMID:27402266

  3. Expression profile of a Caenorhabditis elegans model of adult neuronal ceroid lipofuscinosis reveals down regulation of ubiquitin E3 ligase components

    PubMed Central

    McCue, Hannah V.; Chen, Xi; Barclay, Jeff W.; Morgan, Alan; Burgoyne, Robert D.

    2015-01-01

    Cysteine string protein (CSP) is a chaperone of the Dnaj/Hsp40 family of proteins and is essential for synaptic maintenance. Mutations in the human gene encoding CSP, DNAJC5, cause adult neuronal ceroid lipofucinosis (ANCL) which is characterised by progressive dementia, movement disorders, seizures and premature death. CSP null models in mice, flies and worms have been shown to also exhibit similar neurodegenerative phenotypes. Here we have explored the mechanisms underlying ANCL disease progression using Caenorhaditis elegans mutant strains of dnj-14, the worm orthologue of DNAJC5. Transcriptional profiling of these mutants compared to control strains revealed a broad down-regulation of ubiquitin proteasome system (UPS)-related genes, in particular, components of multimeric RING E3 ubiquitin ligases including F-Box, SKR and BTB proteins. These data were supported by the observation that dnj-14 mutant worm strains expressing a GFP-tagged ubiquitin fusion degradation substrate exhibited decreased ubiquitylated protein degradation. The results indicate that disruption of an essential synaptic chaperone leads to changes in expression levels of UPS-related proteins which has a knock-on effect on overall protein degradation in C. elegans. The specific over-representation of E3 ubiquitin ligase components revealed in our study, suggests that proteins and complexes upstream of the proteasome itself may be beneficial therapeutic targets. PMID:26395859

  4. Patched-1 proapoptotic activity is downregulated by modification of K1413 by the E3 ubiquitin-protein ligase Itchy homolog.

    PubMed

    Chen, Xiaole L; Chinchilla, Pilar; Fombonne, Joanna; Ho, Lan; Guix, Catherine; Keen, James H; Mehlen, Patrick; Riobo, Natalia A

    2014-10-01

    The Hedgehog (Hh) receptor Patched-1 (PTCH1) opposes the activation of Gli transcription factors and induces cell death through a Gli-independent pathway. Here, we report that the C-terminal domain (CTD) of PTCH1 interacts with and is ubiquitylated on K1413 by the E3 ubiquitin-protein ligase Itchy homolog (Itch), a Nedd4 family member. Itch induces the ubiquitylation of K1413, the reduction of PTCH1 levels at the plasma membrane, and degradation, activating Gli transcriptional activity in the absence of Hh ligands. Silencing of Itch stabilizes PTCH1 and increases its level of retention at the plasma membrane. Itch is the preferential PTCH1 E3 ligase in the absence of Hh ligands, since of the other seven Nedd4 family members, only WW domain-containing protein 2 (WWP2) showed a minor redundant role. Like Itch depletion, mutation of the ubiquitylation site (K1314R) resulted in the accumulation of PTCH1 at the plasma membrane, prolongation of its half-life, and increased cell death by hyperactivation of caspase-9. Remarkably, Itch is the main determinant of PTCH1 stability under resting conditions but not in response to Sonic Hedgehog. In conclusion, our findings reveal that Itch is a key regulator of ligand-independent Gli activation and noncanonical Hh signaling by the governance of basal PTCH1 internalization and degradation. PMID:25092867

  5. The E3 Ligase APIP10 Connects the Effector AvrPiz-t to the NLR Receptor Piz-t in Rice

    PubMed Central

    Bellizzi, Maria; Chen, Songbiao; Songkumarn, Pattavipha; Xie, Xin; Shi, Xuetao; Ning, Yuese; Zhou, Bo; Suttiviriya, Pavinee; Wang, Mo; Umemura, Kenji; Wang, Guo-Liang

    2016-01-01

    Although nucleotide-binding domain, leucine-rich repeat (NLR) proteins are the major immune receptors in plants, the mechanism that controls their activation and immune signaling remains elusive. Here, we report that the avirulence effector AvrPiz-t from Magnaporthe oryzae targets the rice E3 ligase APIP10 for degradation, but that APIP10, in return, ubiquitinates AvrPiz-t and thereby causes its degradation. Silencing of APIP10 in the non-Piz-t background compromises the basal defense against M. oryzae. Conversely, silencing of APIP10 in the Piz-t background causes cell death, significant accumulation of Piz-t, and enhanced resistance to M. oryzae, suggesting that APIP10 is a negative regulator of Piz-t. We show that APIP10 promotes degradation of Piz-t via the 26S proteasome system. Furthermore, we demonstrate that AvrPiz-t stabilizes Piz-t during M. oryzae infection. Together, our results show that APIP10 is a novel E3 ligase that functionally connects the fungal effector AvrPiz-t to its NLR receptor Piz-t in rice. PMID:27031246

  6. Non-thermal plasma induces AKT degradation through turn-on the MUL1 E3 ligase in head and neck cancer

    PubMed Central

    Kim, Sun-Yong; Kim, Haeng-Jun; Kang, Sung Un; Kim, Yang Eun; Park, Ju Kyeong; Shin, Yoo Seob; Kim, Yeon Soo; Lee, Keunho; Kim, Chul-Ho

    2015-01-01

    Recent research on non-thermal plasma (NTP, an ionized gas) has identified it as a novel cancer therapeutic tool. However, the molecular mechanism remains unclear. In this study, we demonstrated NTP induced cell death of head and neck cancer (HNC) through the AKT ubiquitin–proteasome system. NTP increased the gene expression of mitochondrial E3 ubiquitin protein ligase 1 (MUL1), an E3 ligase for AKT, and NTP-induced HNC cell death was prevented by MUL1 siRNA. We also showed that MUL1 inhibited the level of AKT and p-AKT and MUL1 expression was increased by NTP-induced ROS. Furthermore, we optimized and manufactured a new type of NTP, a liquid type of NTP (LTP). In syngeneic and xenograft in vivo tumor models, LTP inhibited tumor progression by increasing the MUL1 level and reducing p-AKT levels, indicating that LTP also has an anti-cancer effect through the same mechanism as that of NTP. Taken together, our results suggest that NTP and LTP have great potential for HNC therapy. PMID:26450902

  7. The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes

    PubMed Central

    Ritterhoff, Tobias; Das, Hrishikesh; Hofhaus, Götz; Schröder, Rasmus R.; Flotho, Annette; Melchior, Frauke

    2016-01-01

    Continuous cycles of nucleocytoplasmic transport require disassembly of transport receptor/Ran-GTP complexes in the cytoplasm. A basic disassembly mechanism in all eukaryotes depends on soluble RanGAP and RanBP1. In vertebrates, a significant fraction of RanGAP1 stably interacts with the nucleoporin RanBP2 at a binding site that is flanked by FG-repeats and Ran-binding domains, and overlaps with RanBP2's SUMO E3 ligase region. Here, we show that the RanBP2/RanGAP1*SUMO1/Ubc9 complex functions as an autonomous disassembly machine with a preference for the export receptor Crm1. We describe three in vitro reconstituted disassembly intermediates, which show binding of a Crm1 export complex via two FG-repeat patches, cargo-release by RanBP2's Ran-binding domains and retention of free Crm1 at RanBP2 after Ran-GTP hydrolysis. Intriguingly, all intermediates are compatible with SUMO E3 ligase activity, suggesting that the RanBP2/RanGAP1*SUMO1/Ubc9 complex may link Crm1- and SUMO-dependent functions. PMID:27160050

  8. Stability of HIB-Cul3 E3 ligase adaptor HIB Is Regulated by Self-degradation and Availability of Its Substrates

    PubMed Central

    Zhou, Zizhang; Xu, Congyu; Chen, Ping; Liu, Chen; Pang, Shu; Yao, Xia; Zhang, Qing

    2015-01-01

    The HIB-Cul3 complex E3 ligase regulates physiological homeostasis through regulating its substrate stability and its activity can be modulated by changing HIB abundance. However, regulation of HIB remains elusive. Here we provide evidence that HIB is degraded through the proteasome by Cul3-mediated polyubiquitination in K48 manner in Drosophila. Strikingly, HIB is targeted for degradation by itself. We further identify that three degrons (52LKSS56T, 76LDEE80S and 117MESQ121R) and K185 and K198 of HIB are essential for its auto-degradation. Finally, we demonstrate that HIB-Cul3 substrates, Ci and Puc, can effectively protect HIB from HIB-Cul3-mediated degradation. Taken together, our study indicates that there is an exquisite equilibrium between the adaptor and targets to achieve the tight control of the HIB, which is essential for maintaining suitable Hh and JNK signaling. And the mechanism of adaptor self-degradation and reciprocal control of the abundance between adaptor and its substrates is also applied to BTB-Cul3 E3 ligase adaptor dKeap1, dDiablo and dKLHL18. PMID:26263855

  9. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas

    PubMed Central

    Kong, Sinyi; Yang, Yi; Xu, Yuanming; Wang, Yajun; Zhang, Yusi; Melo-Cardenas, Johanna; Xu, Xiangping; Gao, Beixue; Thorp, Edward B.; Zhang, Donna D.; Zhang, Bin; Song, Jianxun; Zhang, Kezhong; Zhang, Jianning; Zhang, Jinping; Li, Huabin; Fang, Deyu

    2016-01-01

    Humoral immunity involves multiple checkpoints during B-cell development, maturation, and activation. The cell death receptor CD95/Fas-mediated apoptosis plays a critical role in eliminating the unwanted activation of B cells by self-reactive antigens and in maintaining B-cell homeostasis through activation-induced B-cell death (AICD). The molecular mechanisms controlling AICD remain largely undefined. Herein, we show that the E3 ubiquitin ligase Hrd1 protected B cells from activation-induced cell death by degrading the death receptor Fas. Hrd1-null B cells exhibited high Fas expression during activation and rapidly underwent Fas-mediated apoptosis, which could be largely inhibited by FasL neutralization. Fas mutation in Hrd1 KO mice abrogated the increase in B-cell AICD. We identified Hrd1 as the first E3 ubiquitin ligase of the death receptor Fas and Hrd1-mediated Fas destruction as a molecular mechanism in regulating B-cell immunity. PMID:27573825

  10. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas.

    PubMed

    Kong, Sinyi; Yang, Yi; Xu, Yuanming; Wang, Yajun; Zhang, Yusi; Melo-Cardenas, Johanna; Xu, Xiangping; Gao, Beixue; Thorp, Edward B; Zhang, Donna D; Zhang, Bin; Song, Jianxun; Zhang, Kezhong; Zhang, Jianning; Zhang, Jinping; Li, Huabin; Fang, Deyu

    2016-09-13

    Humoral immunity involves multiple checkpoints during B-cell development, maturation, and activation. The cell death receptor CD95/Fas-mediated apoptosis plays a critical role in eliminating the unwanted activation of B cells by self-reactive antigens and in maintaining B-cell homeostasis through activation-induced B-cell death (AICD). The molecular mechanisms controlling AICD remain largely undefined. Herein, we show that the E3 ubiquitin ligase Hrd1 protected B cells from activation-induced cell death by degrading the death receptor Fas. Hrd1-null B cells exhibited high Fas expression during activation and rapidly underwent Fas-mediated apoptosis, which could be largely inhibited by FasL neutralization. Fas mutation in Hrd1 KO mice abrogated the increase in B-cell AICD. We identified Hrd1 as the first E3 ubiquitin ligase of the death receptor Fas and Hrd1-mediated Fas destruction as a molecular mechanism in regulating B-cell immunity. PMID:27573825

  11. Protein-Protein Interactions Modulate the Docking-Dependent E3-Ubiquitin Ligase Activity of Carboxy-Terminus of Hsc70-Interacting Protein (CHIP).

    PubMed

    Narayan, Vikram; Landré, Vivien; Ning, Jia; Hernychova, Lenka; Muller, Petr; Verma, Chandra; Walkinshaw, Malcolm D; Blackburn, Elizabeth A; Ball, Kathryn L

    2015-11-01

    CHIP is a tetratricopeptide repeat (TPR) domain protein that functions as an E3-ubiquitin ligase. As well as linking the molecular chaperones to the ubiquitin proteasome system, CHIP also has a docking-dependent mode where it ubiquitinates native substrates, thereby regulating their steady state levels and/or function. Here we explore the effect of Hsp70 on the docking-dependent E3-ligase activity of CHIP. The TPR-domain is revealed as a binding site for allosteric modulators involved in determining CHIP's dynamic conformation and activity. Biochemical, biophysical and modeling evidence demonstrate that Hsp70-binding to the TPR, or Hsp70-mimetic mutations, regulate CHIP-mediated ubiquitination of p53 and IRF-1 through effects on U-box activity and substrate binding. HDX-MS was used to establish that conformational-inhibition-signals extended from the TPR-domain to the U-box. This underscores inter-domain allosteric regulation of CHIP by the core molecular chaperones. Defining the chaperone-associated TPR-domain of CHIP as a manager of inter-domain communication highlights the potential for scaffolding modules to regulate, as well as assemble, complexes that are fundamental to protein homeostatic control. PMID:26330542

  12. TRIM4; a novel mitochondrial interacting RING E3 ligase, sensitizes the cells to hydrogen peroxide (H2O2) induced cell death.

    PubMed

    Tomar, Dhanendra; Prajapati, Paresh; Lavie, Julie; Singh, Kritarth; Lakshmi, Sripada; Bhatelia, Khyati; Roy, Milton; Singh, Rochika; Bénard, Giovanni; Singh, Rajesh

    2015-12-01

    The emerging evidences suggest that posttranslational modification of target protein by ubiquitin (Ub) not only regulate its turnover through ubiquitin proteasome system (UPS) but is a critical regulator of various signaling pathways. During ubiquitination, E3 ligase recognizes the target protein and determines the topology of ubiquitin chains. In current study, we studied the role of TRIM4, a member of the TRIM/RBCC protein family of RING E3 ligase, in regulation of hydrogen peroxide (H2O2) induced cell death. TRIM4 is expressed differentially in human tissues and expressed in most of the analyzed human cancer cell lines. The subcellular localization studies showed that TRIM4 forms distinct cytoplasmic speckle like structures which transiently interacts with mitochondria. The expression of TRIM4 induces mitochondrial aggregation and increased level of mitochondrial ROS in the presence of H2O2. It sensitizes the cells to H2O2 induced death whereas knockdown reversed the effect. TRIM4 potentiates the loss of mitochondrial transmembrane potential and cytochrome c release in the presence of H2O2. The analysis of TRIM4 interacting proteins showed its interaction with peroxiredoxin 1 (PRX1), including other proteins involved in regulation of mitochondrial and redox homeostasis. TRIM4 interaction with PRX1 is critical for the regulation of H2O2 induced cell death. Collectively, the evidences in the current study suggest the role of TRIM4 in regulation of oxidative stress induced cell death.

  13. The RNA-binding E3 ubiquitin ligase MEX-3C links ubiquitination with MHC-I mRNA degradation

    PubMed Central

    Cano, Florencia; Bye, Helen; Duncan, Lidia M; Buchet-Poyau, Karine; Billaud, Marc; Wills, Mark R; Lehner, Paul J

    2012-01-01

    RNA-binding E3 ubiquitin ligases were recently identified, though their function remains unclear. While studying the regulation of the MHC class I (MHC-I) pathway, we here characterize a novel role for ubiquitin in mRNA degradation. MHC-I molecules provide ligands for both cytotoxic T-lymphocytes as well as natural killer (NK) cells, and play a central role in innate and adaptive immunity. MHC-I cell-surface expression is closely monitored by NK cells, whose killer immunoglobulin-like receptors encode MHC-I-specific activatory and inhibitory receptors, implying that MHC-I expression needs to be tightly regulated. In a functional siRNA ubiquitome screen we identified MEX-3C, a novel RNA-binding ubiquitin E3 ligase, as responsible for the post-transcriptional, allotype-specific regulation of MHC-I. MEX-3C binds the 3′UTR of HLA-A2 mRNA, inducing its RING-dependent degradation. The RING domain of MEX-3C is not required for HLA-A2 cell-surface downregulation, but regulates the degradation of HLA-A2 mRNA. We have therefore uncovered a novel post-transcriptional pathway for regulation of HLA-A allotypes and provide a link between ubiquitination and mRNA degradation. PMID:22863774

  14. Patched-1 Proapoptotic Activity Is Downregulated by Modification of K1413 by the E3 Ubiquitin-Protein Ligase Itchy Homolog

    PubMed Central

    Chen, Xiaole L.; Chinchilla, Pilar; Fombonne, Joanna; Ho, Lan; Guix, Catherine; Keen, James H.; Mehlen, Patrick

    2014-01-01

    The Hedgehog (Hh) receptor Patched-1 (PTCH1) opposes the activation of Gli transcription factors and induces cell death through a Gli-independent pathway. Here, we report that the C-terminal domain (CTD) of PTCH1 interacts with and is ubiquitylated on K1413 by the E3 ubiquitin-protein ligase Itchy homolog (Itch), a Nedd4 family member. Itch induces the ubiquitylation of K1413, the reduction of PTCH1 levels at the plasma membrane, and degradation, activating Gli transcriptional activity in the absence of Hh ligands. Silencing of Itch stabilizes PTCH1 and increases its level of retention at the plasma membrane. Itch is the preferential PTCH1 E3 ligase in the absence of Hh ligands, since of the other seven Nedd4 family members, only WW domain-containing protein 2 (WWP2) showed a minor redundant role. Like Itch depletion, mutation of the ubiquitylation site (K1314R) resulted in the accumulation of PTCH1 at the plasma membrane, prolongation of its half-life, and increased cell death by hyperactivation of caspase-9. Remarkably, Itch is the main determinant of PTCH1 stability under resting conditions but not in response to Sonic Hedgehog. In conclusion, our findings reveal that Itch is a key regulator of ligand-independent Gli activation and noncanonical Hh signaling by the governance of basal PTCH1 internalization and degradation. PMID:25092867

  15. The Neddylation-Cullin 2-RBX1 E3 Ligase Axis Targets Tumor Suppressor RhoB for Degradation in Liver Cancer*

    PubMed Central

    Xu, Junfeng; Li, Lihui; Yu, Guangyang; Ying, Wantao; Gao, Qiang; Zhang, Wenjuan; Li, Xianyu; Ding, Chen; Jiang, Yanan; Wei, Dongping; Duan, Shengzhong; Lei, Qunying; Li, Peng; Shi, Tieliu; Qian, Xiaohong; Qin, Jun; Jia, Lijun

    2015-01-01

    The neddylation-cullin-RING E3 ligase (CRL) pathway has recently been identified as a potential oncogenic event and attractive anticancer target; however, its underlying mechanisms have not been well elucidated. In this study, RhoB, a well known tumor suppressor, was identified and validated with an iTRAQ-based quantitative proteomic approach as a new target of this pathway in liver cancer cells. Specifically, cullin 2-RBX1 E3 ligase, which requires NEDD8 conjugation for its activation, interacted with RhoB and promoted its ubiquitination and degradation. In human liver cancer tissues, the neddylation-CRL pathway was overactivated and reversely correlated with RhoB levels. Moreover, RhoB accumulation upon inhibition of the neddylation-CRL pathway for anticancer therapy contributed to the induction of tumor suppressors p21 and p27, apoptosis, and growth suppression. Our findings highlight the degradation of RhoB via the neddylation-CRL pathway as an important molecular event that drives liver carcinogenesis and RhoB itself as a pivotal effector for anticancer therapy targeting this oncogenic pathway. PMID:25540389

  16. Tethering of an E3 ligase by PCM1 regulates the abundance of centrosomal KIAA0586/Talpid3 and promotes ciliogenesis.

    PubMed

    Wang, Lei; Lee, Kwanwoo; Malonis, Ryan; Sanchez, Irma; Dynlacht, Brian D

    2016-01-01

    To elucidate the role of centriolar satellites in ciliogenesis, we deleted the gene encoding the PCM1 protein, an integral component of satellites. PCM1 null human cells show marked defects in ciliogenesis, precipitated by the loss of specific proteins from satellites and their relocation to centrioles. We find that an amino-terminal domain of PCM1 can restore ciliogenesis and satellite localization of certain proteins, but not others, pinpointing unique roles for PCM1 and a group of satellite proteins in cilium assembly. Remarkably, we find that PCM1 is essential for tethering the E3 ligase, Mindbomb1 (Mib1), to satellites. In the absence of PCM1, Mib1 destabilizes Talpid3 through poly-ubiquitylation and suppresses cilium assembly. Loss of PCM1 blocks ciliogenesis by abrogating recruitment of ciliary vesicles associated with the Talpid3-binding protein, Rab8, which can be reversed by inactivating Mib1. Thus, PCM1 promotes ciliogenesis by tethering a key E3 ligase to satellites and restricting it from centrioles. PMID:27146717

  17. Lack of Cul4b, an E3 Ubiquitin Ligase Component, Leads to Embryonic Lethality and Abnormal Placental Development

    PubMed Central

    Yuan, Jupeng; Qian, Yanyan; Sun, Wenjie; Zou, Yongxin; Guo, Chenhong; Chen, Bingxi; Shao, Changshun; Gong, Yaoqin

    2012-01-01

    Cullin-RING ligases (CRLs) complexes participate in the regulation of diverse cellular processes, including cell cycle progression, transcription, signal transduction and development. Serving as the scaffold protein, cullins are crucial for the assembly of ligase complexes, which recognize and target various substrates for proteosomal degradation. Mutations in human CUL4B, one of the eight members in cullin family, are one of the major causes of X-linked mental retardation. We here report the generation and characterization of Cul4b knockout mice, in which exons 3 to 5 were deleted. In contrast to the survival to adulthood of human hemizygous males with CUL4B null mutation, Cul4b null mouse embryos show severe developmental arrest and usually die before embryonic day 9.5 (E9.5). Accumulation of cyclin E, a CRL (CUL4B) substrate, was observed in Cul4b null embryos. Cul4b heterozygotes were recovered at a reduced ratio and exhibited a severe developmental delay. The placentas in Cul4b heterozygotes were disorganized and were impaired in vascularization, which may contribute to the developmental delay. As in human CUL4B heterozygotes, Cul4b null cells were selected against in Cul4b heterozygotes, leading to various degrees of skewed X-inactivation in different tissues. Together, our results showed that CUL4B is indispensable for embryonic development in the mouse. PMID:22606329

  18. Molecular phylogeny of a RING E3 ubiquitin ligase, conserved in eukaryotic cells and dominated by homologous components, the muskelin/RanBPM/CTLH complex.

    PubMed

    Francis, Ore; Han, Fujun; Adams, Josephine C

    2013-01-01

    Ubiquitination is an essential post-translational modification that regulates signalling and protein turnover in eukaryotic cells. Specificity of ubiquitination is driven by ubiquitin E3 ligases, many of which remain poorly understood. One such is the mammalian muskelin/RanBP9/CTLH complex that includes eight proteins, five of which (RanBP9/RanBPM, TWA1, MAEA, Rmnd5 and muskelin), share striking similarities of domain architecture and have been implicated in regulation of cell organisation. In budding yeast, the homologous GID complex acts to down-regulate gluconeogenesis. In both complexes, Rmnd5/GID2 corresponds to a RING ubiquitin ligase. To better understand this E3 ligase system, we conducted molecular phylogenetic and sequence analyses of the related components. TWA1, Rmnd5, MAEA and WDR26 are conserved throughout all eukaryotic supergroups, albeit WDR26 was not identified in Rhizaria. RanBPM is absent from Excavates and from some sub-lineages. Armc8 and c17orf39 were represented across unikonts but in bikonts were identified only in Viridiplantae and in O. trifallax within alveolates. Muskelin is present only in Opisthokonts. Phylogenetic and sequence analyses of the shared LisH and CTLH domains of RanBPM, TWA1, MAEA and Rmnd5 revealed closer relationships and profiles of conserved residues between, respectively, Rmnd5 and MAEA, and RanBPM and TWA1. Rmnd5 and MAEA are also related by the presence of conserved, variant RING domains. Examination of how N- or C-terminal domain deletions alter the sub-cellular localisation of each protein in mammalian cells identified distinct contributions of the LisH domains to protein localisation or folding/stability. In conclusion, all components except muskelin are inferred to have been present in the last eukaryotic common ancestor. Diversification of this ligase complex in different eukaryotic lineages may result from the apparently fast evolution of RanBPM, differing requirements for WDR26, Armc8 or c17orf39, and the

  19. Yeast sterol regulatory element-binding protein (SREBP) cleavage requires Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing subunit of the Golgi Dsc E3 ligase.

    PubMed

    Stewart, Emerson V; Lloyd, S Julie-Ann; Burg, John S; Nwosu, Christine C; Lintner, Robert E; Daza, Riza; Russ, Carsten; Ponchner, Karen; Nusbaum, Chad; Espenshade, Peter J

    2012-01-01

    Schizosaccharomyces pombe Sre1 is a membrane-bound transcription factor that controls adaptation to hypoxia. Like its mammalian homolog, sterol regulatory element-binding protein (SREBP), Sre1 activation requires release from the membrane. However, in fission yeast, this release occurs through a strikingly different mechanism that requires the Golgi Dsc E3 ubiquitin ligase complex and the proteasome. The mechanistic details of Sre1 cleavage, including the link between the Dsc E3 ligase complex and proteasome, are not well understood. Here, we present results of a genetic selection designed to identify additional components required for Sre1 cleavage. From the selection, we identified two new components of the fission yeast SREBP pathway: Dsc5 and Cdc48. The AAA (ATPase associated with diverse cellular activities) ATPase Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing protein, interact with known Dsc complex components and are required for SREBP cleavage. These findings provide a mechanistic link between the Dsc E3 ligase complex and the proteasome in SREBP cleavage and add to a growing list of similarities between the Dsc E3 ligase and membrane E3 ligases involved in endoplasmic reticulum-associated degradation.

  20. A non-proteolytic role for ubiquitin in deadenylation of MHC-I mRNA by the RNA-binding E3-ligase MEX-3C

    PubMed Central

    Cano, Florencia; Rapiteanu, Radu; Sebastiaan Winkler, G.; Lehner, Paul J.

    2015-01-01

    The regulation of protein and mRNA turnover is essential for many cellular processes. We recently showed that ubiquitin—traditionally linked to protein degradation—directly regulates the degradation of mRNAs through the action of a newly identified family of RNA-binding E3 ubiquitin ligases. How ubiquitin regulates mRNA decay remains unclear. Here, we identify a new role for ubiquitin in regulating deadenylation, the initial and often rate-limiting step in mRNA degradation. MEX-3C, a canonical member of this family of RNA-binding ubiquitin ligases, associates with the cytoplasmic deadenylation complexes and ubiquitinates CNOT7(Caf1), the main catalytic subunit of the CCR4-NOT deadenylation machinery. We establish a new role for ubiquitin in regulating MHC-I mRNA deadenylation as ubiquitination of CNOT7 by MEX-3C regulates its deadenylation activity and is required for MHC-I mRNA degradation. Since neither proteasome nor lysosome inhibitors rescued MEX-3C-mediated MHC-I mRNA degradation, our findings suggest a new non-proteolytic function for ubiquitin in the regulation of mRNA decay. PMID:26471122

  1. The LRR and RING Domain Protein LRSAM1 Is an E3 Ligase Crucial for Ubiquitin-Dependent Autophagy of Intracellular Salmonella Typhimurium

    PubMed Central

    Huett, Alan; Heath, Robert J.; Begun, Jakob; Sassi, Slim O.; Baxt, Leigh A.; Vyas, Jatin M.; Goldberg, Marcia B.; Xavier, Ramnik J.

    2013-01-01

    SUMMARY Several species of pathogenic bacteria replicate within an intracellular vacuolar niche. Bacteria that escape into the cytosol are captured by the autophagic pathway and targeted for lysosomal degradation, representing a defense against bacterial exploitation of the host cytosol. Autophagic capture of Salmonella Typhimurium occurs predominantly via generation of a polyubiquitin signal around cytosolic bacteria, binding of adaptor proteins, and recruitment of autophagic machinery. However, the components mediating bacterial target selection and ubiquitination remain obscure. We identify LRSAM1 as the E3 ligase responsible for anti-Salmonella autophagy-associated ubiquitination. LRSAM1 localizes to several intracellular bacterial pathogens and generates the bacteria-associated ubiquitin signal; these functions require LRSAM1’s leucine-rich repeat and RING domains, respectively. Using cells from LRSAM1-deficient individuals, we confirm that LRSAM1 is required for ubiquitination associated with intracellular bacteria but dispensable for ubiquitination of aggregated proteins. LRSAM1 is therefore a bacterial recognition protein and ubiquitin ligase that defends the cytoplasm from invasive pathogens. PMID:23245322

  2. The Arabidopsis F-box E3 ligase RIFP1 plays a negative role in abscisic acid signalling by facilitating ABA receptor RCAR3 degradation.

    PubMed

    Li, Ying; Zhang, Liang; Li, Dekuan; Liu, Zhibin; Wang, Jianmei; Li, Xufeng; Yang, Yi

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a vital role in plant growth and development. The function of ABA is mediated by a group of newly discovered ABA receptors, named PYRABACTIN RESISTANCE 1/PYR-LIKE/REGULATORY COMPONENTS OF ABA RECEPTORs (PYR1/PYLs/RCARs). Here, we report that an Arabidopsis thaliana F-box protein RCAR3 INTERACTING F-BOX PROTEIN 1 (RIFP1) interacts with ABA receptor (RCAR3) and SCF E3 ligase complex subunits Arabidopsis SKP1-LIKE PROTEINs (ASKs) in vitro and in vivo. The rifp1 mutant plants displayed increased ABA-mediated inhibition of seed germination and water loss of detached leaves, while the overexpression of RIFP1 in Arabidopsis led to plants being insensitive to ABA. Meanwhile, the rifp1 mutant plants showed greater tolerance to water deficit. In addition, the RCAR3 protein level was more stable in the rifp1 mutant plants than in the wild-type plants, indicating that RIFP1 facilitates the proteasome degradation of RCAR3. Accordingly, the loss of RIFP1 increased the transcript levels of several ABA-responsive genes. Taken together, these data indicate that RIFP1 plays a negative role in the RCAR3-mediated ABA signalling pathway and likely functions as an adaptor subunit of the SCF ubiquitin ligase complex to regulate ABA receptor RCAR3 stability. PMID:26386272

  3. Erbin is a novel substrate of the Sag-βTrCP E3 ligase that regulates KrasG12D-induced skin tumorigenesis

    PubMed Central

    Xie, Chuan-Ming; Wei, Dongping; Zhao, Lili; Marchetto, Sylvie; Mei, Lin; Borg, Jean-Paul

    2015-01-01

    SAG/RBX2 is the RING (really interesting new gene) component of Cullin-RING ligase, which is required for its activity. An organ-specific role of SAG in tumorigenesis is unknown. We recently showed that Sag/Rbx2, upon lung-targeted deletion, suppressed KrasG12D-induced tumorigenesis via inactivating NF-κB and mammalian target of rapamycin pathways. In contrast, we report here that, upon skin-targeted deletion, Sag significantly accelerated KrasG12D-induced papillomagenesis. In KrasG12D-expressing primary keratinocytes, Sag deletion promotes proliferation by inhibiting autophagy and senescence, by inactivating the Ras–Erk pathway, and by blocking reactive oxygen species (ROS) generation. This is achieved by accumulation of Erbin to block Ras activation of Raf and Nrf2 to scavenge ROS and can be rescued by knockdown of Nrf2 or Erbin. Simultaneous one-allele deletion of the Erbin-encoding gene Erbb2ip partially rescued the phenotypes. Finally, we characterized Erbin as a novel substrate of SAG-βTrCP E3 ligase. By degrading Erbin and Nrf2, Sag activates the Ras–Raf pathway and causes ROS accumulation to trigger autophagy and senescence, eventually delaying KrasG12D-induced papillomagenesis and thus acting as a skin-specific tumor suppressor. PMID:26056141

  4. Mice lacking the PSD-95-interacting E3 ligase, Dorfin/Rnf19a, display reduced adult neurogenesis, enhanced long-term potentiation, and impaired contextual fear conditioning.

    PubMed

    Park, Hanwool; Yang, Jinhee; Kim, Ryunhee; Li, Yan; Lee, Yeunkum; Lee, Chungwoo; Park, Jongil; Lee, Dongmin; Kim, Hyun; Kim, Eunjoon

    2015-11-10

    Protein ubiquitination has a significant influence on diverse aspects of neuronal development and function. Dorfin, also known as Rnf19a, is a RING finger E3 ubiquitin ligase implicated in amyotrophic lateral sclerosis and Parkinson's disease, but its in vivo functions have not been explored. We report here that Dorfin is a novel binding partner of the excitatory postsynaptic scaffolding protein PSD-95. Dorfin-mutant (Dorfin(-/-)) mice show reduced adult neurogenesis and enhanced long-term potentiation in the hippocampal dentate gyrus, but normal long-term potentiation in the CA1 region. Behaviorally, Dorfin(-/-) mice show impaired contextual fear conditioning, but normal levels of cued fear conditioning, fear extinction, spatial learning and memory, object recognition memory, spatial working memory, and pattern separation. Using a proteomic approach, we also identify a number of proteins whose ubiquitination levels are decreased in the Dorfin(-/-) brain. These results suggest that Dorfin may regulate adult neurogenesis, synaptic plasticity, and contextual fear memory.

  5. CRL4Cdt2 E3 ubiquitin ligase and proliferating cell nuclear antigen (PCNA) cooperate to degrade thymine DNA glycosylase in S phase.

    PubMed

    Shibata, Etsuko; Dar, Ashraf; Dutta, Anindya

    2014-08-15

    Thymine DNA glycosylase (TDG) is an essential enzyme playing multiple roles in base excision repair, transcription regulation, and DNA demethylation. TDG mediates the cytotoxicity of the anti-cancer chemotherapeutic drug 5-fluorouracil (5-FU) by prolonging S phase, generating DNA strand breaks, and inducing DNA damage signaling. During S phase of the cell cycle, TDG is degraded via the proteasomal pathway. Here we show that CRL4(Cdt2) E3 ubiquitin ligase promotes ubiquitination and proteasomal degradation of TDG in S phase in a reaction that is dependent on the interaction of TDG with proliferating cell nuclear antigen (PCNA). siRNA-mediated depletion of PCNA or components of CRL4(Cdt2), specifically cullin4A/B or substrate adaptor Cdt2, stabilizes TDG in human cells. Mutations in the PCNA-interacting peptide (PIP) motif of TDG that disrupt the interaction of TDG with PCNA or change critical basic residues essential for the action of the PIP degron prevent the ubiquitination and degradation of TDG. Thus physical interaction of TDG with PCNA through the PIP degron is required for targeting TDG to the CRL4(Cdt2) E3 ubiquitin ligase complex. Compared with forced expression of wild type TDG, CRL4(Cdt2)- resistant TDG (ΔPIP) slows cell proliferation and slightly increases the toxicity of 5-FU. Thus, CRL4(Cdt2)-dependent degradation of TDG occurs in S phase because of the requirement for TDG to interact with chromatin-loaded PCNA, and this degradation is important for preventing toxicity from excess TDG.

  6. Downregulation of E3 Ubiquitin Ligases and Mitophagy-Related Genes in Skeletal Muscle of Physically Inactive, Frail Older Women: A Cross-Sectional Comparison

    PubMed Central

    Addison, Odessa; Brunker, Lucille; Hopkins, Paul N.; McClain, Donald A.; LaStayo, Paul C.; Marcus, Robin L.

    2014-01-01

    Background and Objectives. Reduced lean mass and physical function is a characteristic of frailty. However, it is currently unknown if proteolysis through the E3 ubiquitin ligases and the autophagic lysosomal pathway is dysregulated in inactive frail older women. The purpose of this study was to determine the expression of key markers of ubiquitin-mediated and autophagic lysosomal proteolysis in inactive (N = 7) compared with active (N = 7) older women. Methods. Strength, mobility, leg lean mass, and physical activity assessment were used to characterize activity levels and frailty in older women. Vastus lateralis biopsies were collected after an overnight fast and were assessed for gene and protein targets related to E3 ubiquitin ligases and the autophagic lysosomal system. Results. We found that AMP-activated protein kinase alpha (Thr172) was increased (p = .045), and forkhead box O3A (FOXO3A) gene expression (p = .047) was lower in inactive frail older women. Foxo3a (Ser253), Beclin1 (Ser93/96), and class III phosphatidylinositol-3-kinase (VPS34) protein expression were not different between the groups (p > .05). Neural precursor cell-expressed developmentally downregulated protein 4, muscle ring finger 1, muscle atrophy F-box, and the autophagy/mitophagy gene expression markers, Beclin1, autophagy-related-7, BCL2/adenovirus E1B 19kDa interacting protein 3 (BNIP3), dynamin-related protein 1, and Parkinson protein 2 (PARKIN) were lower in inactive frail older women (p < .05). Autophagy/mitophagy markers were positively correlated with the 6-minute walk and leg lean mass (p < .05). Conclusions. We conclude that physical inactivity in frail older women is associated with a downregulation of ubiquitin-mediated and autophagic lysosomal skeletal muscle gene expression, perhaps related to low muscle mass and poor physical function. PMID:24526667

  7. Targeting the Oncogenic E3 Ligase Skp2 in Prostate and Breast Cancer Cells with a Novel Energy Restriction-Mimetic Agent

    PubMed Central

    Wei, Shuo; Chu, Po-Chen; Chuang, Hsiao-Ching; Hung, Wen-Chun; Kulp, Samuel K.; Chen, Ching-Shih

    2012-01-01

    Substantial evidence supports the oncogenic role of the E3 ubiquitin ligase S-phase kinase-associated protein 2 (Skp2) in many types of cancers through its ability to target a broad range of signaling effectors for ubiquitination. Thus, this oncogenic E3 ligase represents an important target for cancer drug discovery. In this study, we report a novel mechanism by which CG-12, a novel energy restriction-mimetic agent (ERMA), down-regulates the expression of Skp2 in prostate cancer cells. Pursuant to our previous finding that upregulation of β-transducin repeat-containing protein (β-TrCP) expression represents a cellular response in cancer cells to ERMAs, including CG-12 and 2-deoxyglucose, we demonstrated that this β-TrCP accumulation resulted from decreased Skp2 expression. Evidence indicates that Skp2 targets β-TrCP for degradation via the cyclin-dependent kinase 2-facilitated recognition of the proline-directed phosphorylation motif 412SP. This Skp2 downregulation was attributable to Sirt1-dependent suppression of COP9 signalosome (Csn)5 expression in response to CG-12, leading to increased cullin 1 neddylation in the Skp1-cullin1-F-box protein complex and consequent Skp2 destabilization. Moreover, we determined that Skp2 and β-TrCP are mutually regulated, providing a feedback mechanism that amplifies the suppressive effect of ERMAs on Skp2. Specifically, cellular accumulation of β-TrCP reduced the expression of Sp1, a β-TrCP substrate, which, in turn, reduced Skp2 gene expression. This Skp2-β-TrCP-Sp1 feedback loop represents a novel crosstalk mechanism between these two important F-box proteins in cancer cells with aberrant Skp2 expression under energy restriction, which provides a proof-of-concept that the oncogenic Csn5/Skp2 signaling axis represents a “druggable” target for this novel ERMA. PMID:23071779

  8. p38 MAP kinase-dependent phosphorylation of the Gp78 E3 ubiquitin ligase controls ER-mitochondria association and mitochondria motility.

    PubMed

    Li, Lei; Gao, Guang; Shankar, Jay; Joshi, Bharat; Foster, Leonard J; Nabi, Ivan R

    2015-11-01

    Gp78 is an ERAD-associated E3 ubiquitin ligase that induces degradation of the mitofusin mitochondrial fusion proteins and mitochondrial fission. Gp78 is localized throughout the ER; however, the anti-Gp78 3F3A monoclonal antibody (mAb) recognizes Gp78 selectively in mitochondria-associated ER domains. Epitope mapping localized the epitope of 3F3A and a commercial anti-Gp78 mAb to an 8-amino acid motif (533-541) in mouse Gp78 isoform 2 that forms part of a highly conserved 41-amino acid region containing 14-3-3- and WW-binding domains and a p38 MAP kinase (p38 MAPK) consensus site on Ser-538 (S538). 3F3A binds selectively to nonphosphorylated S538 Gp78. Using 3F3A as a reporter, we induced Gp78 S538 phosphorylation by serum starvation and showed it to be mediated by p38 MAPK. Mass spectroscopy analysis of Gp78 phosphopeptides confirmed S538 as a major p38 MAPK phosphorylation site on Gp78. Gp78 S538 phosphorylation limited its ability to induce mitochondrial fission and degrade MFN1 and MFN2 but did not affect in vitro Gp78 ubiquitin E3 ligase activity. Phosphomimetic Gp78 S538D mutation prevented Gp78 promotion of ER-mitochondria interaction, and SB203580 inhibition of p38 MAPK increased ER-mitochondria association. p38 MAPK phosphorylation of Gp78 S538 therefore regulates Gp78-dependent ER-mitochondria association and mitochondria motility.

  9. Mammalian α arrestins link activated seven transmembrane receptors to Nedd4 family e3 ubiquitin ligases and interact with β arrestins.

    PubMed

    Shea, Fortune F; Rowell, Jennie L; Li, Yechaowei; Chang, Tien-Hsien; Alvarez, Carlos E

    2012-01-01

    The complement of fungal cell surface proteins is widely regulated by ubiquitination of membrane proteins, which results in their endocytosis and vacuolar degradation. For diverse fungal transporters, the specificity of ubiquitination is conferred by alpha arrestin adaptors, which recruit the Nedd4 family E3 ubiquitin ligase Rsp5. A recent study showed that one mammalian alpha arrestin also mediates ubiquitination and lysosomal trafficking of an activated plasma membrane receptor. Here we first screen all five widely-expressed human alpha arrestins for subcellular localization in ligand-stimulated and -unstimulated cells overexpressing the seven transmembrane receptor vasopressin 2. We then characterize the effects of alpha arrestins ARRDC3 and ARRDC4 upon activation of the seven transmembrane receptors vasopressin 2 and beta adrenergic 2. Using biochemical and imaging approaches, we show that ligand-activated receptors interact with alpha arrestins, and this results in recruitment of Nedd4 family E3 ubiquitin ligases and receptor ubiquitination - which are known to result in lysosomal trafficking. Our time course studies show these effects occur in the first 1-5 minutes after ligand activation, the same time that beta arrestins are known to have roles in receptor endocytic trafficking and kinase signaling. We tested the possibility that alpha and beta arrestins function coordinately and found co-immunoprecipitation and colocalization evidence to support this. Others recently reported that Arrdc3 knockout mice are lean and resistant to obesity. In the course of breeding our own Arrdc3-deficient mice, we observed two novel phenotypes in homozygotes: skin abnormalities, and embryonic lethality on normal chow diet, but not on high fat diet. Our findings suggest that alpha and beta arrestins function coordinately to maintain the optimal complement and function of cell surface proteins according to cellular physiological context and external signals. We discuss the

  10. SDIR1 Is a RING Finger E3 Ligase That Positively Regulates Stress-Responsive Abscisic Acid Signaling in Arabidopsis[W

    PubMed Central

    Zhang, Yiyue; Yang, Chengwei; Li, Yin; Zheng, Nuoyan; Chen, Hao; Zhao, Qingzhen; Gao, Ting; Guo, Huishan; Xie, Qi

    2007-01-01

    Ubiquitination plays important roles in plant hormone signal transduction. We show that the RING finger E3 ligase, Arabidopsis thaliana SALT- AND DROUGHT-INDUCED RING FINGER1 (SDIR1), is involved in abscisic acid (ABA)-related stress signal transduction. SDIR1 is expressed in all tissues of Arabidopsis and is upregulated by drought and salt stress, but not by ABA. Plants expressing the ProSDIR1–β-glucuronidase (GUS) reporter construct confirmed strong induction of GUS expression in stomatal guard cells and leaf mesophyll cells under drought stress. The green fluorescent protein–SDIR1 fusion protein is colocalized with intracellular membranes. We demonstrate that SDIR1 is an E3 ubiquitin ligase and that the RING finger conservation region is required for its activity. Overexpression of SDIR1 leads to ABA hypersensitivity and ABA-associated phenotypes, such as salt hypersensitivity in germination, enhanced ABA-induced stomatal closing, and enhanced drought tolerance. The expression levels of a number of key ABA and stress marker genes are altered both in SDIR1 overexpression and sdir1-1 mutant plants. Cross-complementation experiments showed that the ABA-INSENSITIVE5 (ABI5), ABRE BINDING FACTOR3 (ABF3), and ABF4 genes can rescue the ABA-insensitive phenotype of the sdir1-1 mutant, whereas SDIR1 could not rescue the abi5-1 mutant. This suggests that SDIR1 acts upstream of those basic leucine zipper family genes. Our results indicate that SDIR1 is a positive regulator of ABA signaling. PMID:17573536

  11. Ubiquitination and degradation of CFTR by the E3 ubiquitin ligase MARCH2 through its association with adaptor proteins CAL and STX6.

    PubMed

    Cheng, Jie; Guggino, William

    2013-01-01

    Golgi-localized cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand (CAL) and syntaxin 6 (STX6) regulate the abundance of mature, post-ER CFTR by forming a CAL/STX6/CFTR complex (CAL complex) that promotes CFTR degradation in lysosomes. However, the molecular mechanism underlying this degradation is unknown. Here we investigated the interaction of a Golgi-localized, membrane-associated RING-CH E3 ubiquitin ligase, MARCH2, with the CAL complex and the consequent binding, ubiquitination, and degradation of mature CFTR. We found that MARCH2 not only co-immunoprecipitated and co-localized with CAL and STX6, but its binding to CAL was also enhanced by STX6, suggesting a synergistic interaction. In vivo ubiquitination assays demonstrated the ubiquitination of CFTR by MARCH2, and overexpression of MARCH2, like that of CAL and STX6, led to a dose-dependent degradation of mature CFTR that was blocked by bafilomycin A1 treatment. A catalytically dead MARCH2 RING mutant was unable to promote CFTR degradation. In addition, MARCH2 had no effect on a CFTR mutant lacking the PDZ motif, suggesting that binding to the PDZ domain of CAL is required for MARCH2-mediated degradation of CFTR. Indeed, silencing of endogenous CAL ablated the effect of MARCH2 on CFTR. Consistent with its Golgi localization, MARCH2 had no effect on ER-localized ΔF508-CFTR. Finally, siRNA-mediated silencing of endogenous MARCH2 in the CF epithelial cell line CFBE-CFTR increased the abundance of mature CFTR. Taken together, these data suggest that the recruitment of the E3 ubiquitin ligase MARCH2 to the CAL complex and subsequent ubiquitination of CFTR are responsible for the CAL-mediated lysosomal degradation of mature CFTR.

  12. The E3 ligase APC/C(Cdh1) promotes ubiquitylation-mediated proteolysis of PAX3 to suppress melanocyte proliferation and melanoma growth.

    PubMed

    Cao, Juxiang; Dai, Xiangpeng; Wan, Lixin; Wang, Hongshen; Zhang, Jinfang; Goff, Philip S; Sviderskaya, Elena V; Xuan, Zhenyu; Xu, Zhixiang; Xu, Xiaowei; Hinds, Philip; Flaherty, Keith T; Faller, Douglas V; Goding, Colin R; Wang, Yongjun; Wei, Wenyi; Cui, Rutao

    2015-09-01

    The anaphase-promoting complex or cyclosome with the subunit Cdh1 (APC/C(Cdh1)) is an E3 ubiquitin ligase involved in the control of the cell cycle. Here, we identified sporadic mutations occurring in the genes encoding APC components, including Cdh1, in human melanoma samples and found that loss of APC/C(Cdh1) may promote melanoma development and progression, but not by affecting cell cycle regulatory targets of APC/C. Most of the mutations we found in CDH1 were those associated with ultraviolet light (UV)-induced melanomagenesis. Compared with normal human skin tissue and human or mouse melanocytes, the abundance of Cdh1 was decreased and that of the transcription factor PAX3 was increased in human melanoma tissue and human or mouse melanoma cell lines, respectively; Cdh1 abundance was further decreased with advanced stages of human melanoma. PAX3 was a substrate of APC/C(Cdh1) in melanocytes, and APC/C(Cdh1)-mediated ubiquitylation marked PAX3 for proteolytic degradation in a manner dependent on the D-box motif in PAX3. Either mutating the D-box in PAX3 or knocking down Cdh1 prevented the ubiquitylation and degradation of PAX3 and increased proliferation and melanin production in melanocytes. Knocking down Cdh1 in melanoma cells in culture or before implantation in mice promoted doxorubicin resistance, whereas reexpressing wild-type Cdh1, but not E3 ligase-deficient Cdh1 or a mutant that could not interact with PAX3, restored doxorubicin sensitivity in melanoma cells both in culture and in xenografts. Thus, our findings suggest a tumor suppressor role for APC/C(Cdh1) in melanocytes and that targeting PAX3 may be a strategy for treating melanoma. PMID:26329581

  13. HECT E3 Ubiquitin Ligase Itch Functions as a Novel Negative Regulator of Gli-Similar 3 (Glis3) Transcriptional Activity

    PubMed Central

    ZeRuth, Gary T.; Williams, Jason G.; Cole, Yasemin C.; Jetten, Anton M.

    2015-01-01

    The transcription factor Gli-similar 3 (Glis3) plays a critical role in the generation of pancreatic ß cells and the regulation insulin gene transcription and has been implicated in the development of several pathologies, including type 1 and 2 diabetes and polycystic kidney disease. However, little is known about the proteins and posttranslational modifications that regulate or mediate Glis3 transcriptional activity. In this study, we identify by mass-spectrometry and yeast 2-hybrid analyses several proteins that interact with the N-terminal region of Glis3. These include the WW-domain-containing HECT E3 ubiquitin ligases, Itch, Smurf2, and Nedd4. The interaction between Glis3 and the HECT E3 ubiquitin ligases was verified by co-immunoprecipitation assays and mutation analysis. All three proteins interact through their WW-domains with a PPxY motif located in the Glis3 N-terminus. However, only Itch significantly contributed to Glis3 polyubiquitination and reduced Glis3 stability by enhancing its proteasomal degradation. Itch-mediated degradation of Glis3 required the PPxY motif-dependent interaction between Glis3 and the WW-domains of Itch as well as the presence of the Glis3 zinc finger domains. Transcription analyses demonstrated that Itch dramatically inhibited Glis3-mediated transactivation and endogenous Ins2 expression by increasing Glis3 protein turnover. Taken together, our study identifies Itch as a critical negative regulator of Glis3-mediated transcriptional activity. This regulation provides a novel mechanism to modulate Glis3-driven gene expression and suggests that it may play a role in a number of physiological processes controlled by Glis3, such as insulin transcription, as well as in Glis3-associated diseases. PMID:26147758

  14. Endoplasmic reticulum protein quality control is determined by cooperative interactions between Hsp/c70 protein and the CHIP E3 ligase.

    PubMed

    Matsumura, Yoshihiro; Sakai, Juro; Skach, William R

    2013-10-25

    The C terminus of Hsp70 interacting protein (CHIP) E3 ligase functions as a key regulator of protein quality control by binding the C-terminal (M/I)EEVD peptide motif of Hsp/c70(90) with its N-terminal tetratricopeptide repeat (TPR) domain and facilitating polyubiquitination of misfolded client proteins via its C-terminal catalytic U-box. Using CFTR as a model client, we recently showed that the duration of the Hsc70-client binding cycle is a primary determinant of stability. However, molecular features that control CHIP recruitment to Hsp/c70, and hence the fate of the Hsp/c70 client, remain unknown. To understand how CHIP recognizes Hsp/c70, we utilized a dominant negative mutant in which loss of a conserved proline in the U-box domain (P269A) eliminates E3 ligase activity. In a cell-free reconstituted ER-associated degradation system, P269A CHIP inhibited Hsc70-dependent CFTR ubiquitination and degradation in a dose-dependent manner. Optimal inhibition required both the TPR and the U-box, indicating cooperativity between the two domains. Neither the wild type nor the P269A mutant changed the extent of Hsc70 association with CFTR nor the dissociation rate of the Hsc70-CFTR complex. However, the U-box mutation stimulated CHIP binding to Hsc70 while promoting CHIP oligomerization. CHIP binding to Hsc70 binding was also stimulated by the presence of an Hsc70 client with a preference for the ADP-bound state. Thus, the Hsp/c70 (M/I)EEVD motif is not a simple anchor for the TPR domain. Rather CHIP recruitment involves reciprocal allosteric interactions between its TPR and U-box domains and the substrate-binding and C-terminal domains of Hsp/c70.

  15. The E3 Ubiquitin Ligases, HUWE1 and NEDD4-1, Are Involved in the Post-translational Regulation of the ABCG1 and ABCG4 Lipid Transporters*

    PubMed Central

    Aleidi, Shereen M.; Howe, Vicky; Sharpe, Laura J.; Yang, Alryel; Rao, Geetha; Brown, Andrew J.; Gelissen, Ingrid C.

    2015-01-01

    The ATP-binding cassette transporter ABCG1 has an essential role in cellular cholesterol homeostasis, and dysregulation has been associated with a number of high burden diseases. Previous studies reported that ABCG1 is ubiquitinated and degraded via the ubiquitin proteasome system. However, so far the molecular mechanism, including the identity of any of the rate-limiting ubiquitination enzymes, or E3 ligases, is unknown. Using liquid chromatography mass spectrometry, we identified two HECT domain E3 ligases associated with ABCG1, named HUWE1 (HECT, UBA, and WWE domain containing 1, E3 ubiquitin protein ligase) and NEDD4-1 (Neural precursor cell-expressed developmentally down regulated gene 4), of which the latter is the founding member of the NEDD4 family of ubiquitin ligases. Silencing both HUWE1 and NEDD4-1 in cells overexpressing human ABCG1 significantly increased levels of the ABCG1 monomeric and dimeric protein forms, however ABCA1 protein expression was unaffected. In addition, ligase silencing increased ABCG1-mediated cholesterol export to HDL in cells overexpressing the transporter as well as in THP-1 macrophages. Reciprocally, overexpression of both ligases resulted in a significant reduction in protein levels of both the ABCG1 monomeric and dimeric forms. Like ABCG1, ABCG4 protein levels and cholesterol export activity were significantly increased after silencing both HUWE1 and NEDD4-1 in cells overexpressing this closely related ABC half-transporter. In summary, we have identified for the first time two E3 ligases that are fundamental enzymes in the post-translational regulation of ABCG1 and ABCG4 protein levels and cellular cholesterol export activity. PMID:26296893

  16. Absence of Association between Polymorphisms in the RING E3 Ubiquitin Protein Ligase Gene and Ex Vivo Susceptibility to Conventional Antimalarial Drugs in Plasmodium falciparum Isolates from Dakar, Senegal.

    PubMed

    Gendrot, Mathieu; Fall, Bécaye; Madamet, Marylin; Fall, Mansour; Wade, Khalifa Ababacar; Amalvict, Rémy; Nakoulima, Aminata; Benoit, Nicolas; Diawara, Silman; Diémé, Yaya; Diatta, Bakary; Wade, Boubacar; Pradines, Bruno

    2016-08-01

    The RING E3 ubiquitin protein ligase is crucial for facilitating the transfer of ubiquitin. The only polymorphism identified in the E3 ubiquitin protein ligase gene was the D113N mutation (62.5%) but was not significantly associated with the 50% inhibitory concentration (IC50) of conventional antimalarial drugs. However, some mutated isolates (D113N) present a trend of reduced susceptibility to piperaquine (P = 0.0938). To evaluate the association of D113N polymorphism with susceptibility to antimalarials, more isolates are necessary. PMID:27185795

  17. Post-Transcriptional Coordination of the Arabidopsis Iron Deficiency Response is Partially Dependent on the E3 Ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2).

    PubMed

    Pan, I-Chun; Tsai, Huei-Hsuan; Cheng, Ya-Tan; Wen, Tuan-Nan; Buckhout, Thomas J; Schmidt, Wolfgang

    2015-10-01

    Acclimation to changing environmental conditions is mediated by proteins, the abundance of which is carefully tuned by an elaborate interplay of DNA-templated and post-transcriptional processes. To dissect the mechanisms that control and mediate cellular iron homeostasis, we conducted quantitative high-resolution iTRAQ proteomics and microarray-based transcriptomic profiling of iron-deficient Arabidopsis thaliana plants. A total of 13,706 and 12,124 proteins was identified with a quadrupole-Orbitrap hybrid mass spectrometer in roots and leaves, respectively. This deep proteomic coverage allowed accurate estimates of post-transcriptional regulation in response to iron deficiency. Similarly regulated transcripts were detected in only 13% (roots) and 11% (leaves) of the 886 proteins that differentially accumulated between iron-sufficient and iron-deficient plants, indicating that the majority of the iron-responsive proteins was post-transcriptionally regulated. Mutants harboring defects in the RING DOMAIN LIGASE1 (RGLG1)(1) and RING DOMAIN LIGASE2 (RGLG2) showed a pleiotropic phenotype that resembled iron-deficient plants with reduced trichome density and the formation of branched root hairs. Proteomic and transcriptomic profiling of rglg1 rglg2 double mutants revealed that the functional RGLG protein is required for the regulation of a large set of iron-responsive proteins including the coordinated expression of ribosomal proteins. This integrative analysis provides a detailed catalog of post-transcriptionally regulated proteins and allows the concept of a chiefly transcriptionally regulated iron deficiency response to be revisited. Protein data are available via ProteomeXchange with identifier PXD002126.

  18. Post-Transcriptional Coordination of the Arabidopsis Iron Deficiency Response is Partially Dependent on the E3 Ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2)*

    PubMed Central

    Pan, I-Chun; Tsai, Huei-Hsuan; Cheng, Ya-Tan; Wen, Tuan-Nan; Buckhout, Thomas J.; Schmidt, Wolfgang

    2015-01-01

    Acclimation to changing environmental conditions is mediated by proteins, the abundance of which is carefully tuned by an elaborate interplay of DNA-templated and post-transcriptional processes. To dissect the mechanisms that control and mediate cellular iron homeostasis, we conducted quantitative high-resolution iTRAQ proteomics and microarray-based transcriptomic profiling of iron-deficient Arabidopsis thaliana plants. A total of 13,706 and 12,124 proteins was identified with a quadrupole-Orbitrap hybrid mass spectrometer in roots and leaves, respectively. This deep proteomic coverage allowed accurate estimates of post-transcriptional regulation in response to iron deficiency. Similarly regulated transcripts were detected in only 13% (roots) and 11% (leaves) of the 886 proteins that differentially accumulated between iron-sufficient and iron-deficient plants, indicating that the majority of the iron-responsive proteins was post-transcriptionally regulated. Mutants harboring defects in the RING DOMAIN LIGASE1 (RGLG1)1 and RING DOMAIN LIGASE2 (RGLG2) showed a pleiotropic phenotype that resembled iron-deficient plants with reduced trichome density and the formation of branched root hairs. Proteomic and transcriptomic profiling of rglg1 rglg2 double mutants revealed that the functional RGLG protein is required for the regulation of a large set of iron-responsive proteins including the coordinated expression of ribosomal proteins. This integrative analysis provides a detailed catalog of post-transcriptionally regulated proteins and allows the concept of a chiefly transcriptionally regulated iron deficiency response to be revisited. Protein data are available via ProteomeXchange with identifier PXD002126. PMID:26253232

  19. The Ubiquitin E3 Ligase LOSS OF GDU2 Is Required for GLUTAMINE DUMPER1-Induced Amino Acid Secretion in Arabidopsis1[C][W][OA

    PubMed Central

    Pratelli, Réjane; Guerra, Damian D.; Yu, Shi; Wogulis, Mark; Kraft, Edward; Frommer, Wolf B.; Callis, Judy; Pilot, Guillaume

    2012-01-01

    Amino acids serve as transport forms for organic nitrogen in the plant, and multiple transport steps are involved in cellular import and export. While the nature of the export mechanism is unknown, overexpression of GLUTAMINE DUMPER1 (GDU1) in Arabidopsis (Arabidopsis thaliana) led to increased amino acid export. To gain insight into GDU1’s role, we searched for ethyl-methanesulfonate suppressor mutants and performed yeast-two-hybrid screens. Both methods uncovered the same gene, LOSS OF GDU2 (LOG2), which encodes a RING-type E3 ubiquitin ligase. The interaction between LOG2 and GDU1 was confirmed by glutathione S-transferase pull-down, in vitro ubiquitination, and in planta coimmunoprecipitation experiments. Confocal microscopy and subcellular fractionation indicated that LOG2 and GDU1 both localized to membranes and were enriched at the plasma membrane. LOG2 expression overlapped with GDU1 in the xylem and phloem tissues of Arabidopsis. The GDU1 protein encoded by the previously characterized intragenic suppressor mutant log1-1, with an arginine in place of a conserved glycine, failed to interact in the multiple assays, suggesting that the Gdu1D phenotype requires the interaction of GDU1 with LOG2. This hypothesis was supported by suppression of the Gdu1D phenotype after reduction of LOG2 expression using either artificial microRNAs or a LOG2 T-DNA insertion. Altogether, in accordance with the emerging bulk of data showing membrane protein regulation via ubiquitination, these data suggest that the interaction of GDU1 and the ubiquitin ligase LOG2 plays a significant role in the regulation of amino acid export from plant cells. PMID:22291198

  20. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Can Mimic E1A Effects on E2F

    PubMed Central

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G. Eric; Dobner, Thomas; Branton, Philip E.

    2015-01-01

    ABSTRACT The human adenovirus E4orf6/E1B55K E3 ubiquitin ligase is well known to promote viral replication by degrading an increasing number of cellular proteins that inhibit the efficient production of viral progeny. We report here a new function of the adenovirus 5 (Ad5) viral ligase complex that, although at lower levels, mimics effects of E1A products on E2F transcription factors. When expressed in the absence of E1A, the E4orf6 protein in complex with E1B55K binds E2F, disrupts E2F/retinoblastoma protein (Rb) complexes, and induces hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis as well as stimulation of early and late viral gene expression and production of viral progeny of E1/E3-defective adenovirus vectors. These new and previously undescribed functions of the E4orf6/E1B55K E3 ubiquitin ligase could play an important role in promoting the replication of wild-type viruses. IMPORTANCE During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication. PMID:27303679

  1. The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Can Mimic E1A Effects on E2F.

    PubMed

    Dallaire, Frédéric; Schreiner, Sabrina; Blair, G Eric; Dobner, Thomas; Branton, Philip E; Blanchette, Paola

    2016-01-01

    The human adenovirus E4orf6/E1B55K E3 ubiquitin ligase is well known to promote viral replication by degrading an increasing number of cellular proteins that inhibit the efficient production of viral progeny. We report here a new function of the adenovirus 5 (Ad5) viral ligase complex that, although at lower levels, mimics effects of E1A products on E2F transcription factors. When expressed in the absence of E1A, the E4orf6 protein in complex with E1B55K binds E2F, disrupts E2F/retinoblastoma protein (Rb) complexes, and induces hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis as well as stimulation of early and late viral gene expression and production of viral progeny of E1/E3-defective adenovirus vectors. These new and previously undescribed functions of the E4orf6/E1B55K E3 ubiquitin ligase could play an important role in promoting the replication of wild-type viruses. IMPORTANCE During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication. PMID:27303679

  2. The Arabidopsis RING E3 ubiquitin ligase AtAIRP2 plays combinatory roles with AtAIRP1 in abscisic acid-mediated drought stress responses.

    PubMed

    Cho, Seok Keun; Ryu, Moon Young; Seo, Dong Hye; Kang, Bin Goo; Kim, Woo Taek

    2011-12-01

    The ubiquitin (Ub)-26S proteasome pathway is implicated in various cellular processes in higher plants. AtAIRP1, a C3H2C3-type RING (for Really Interesting New Gene) E3 Ub ligase, is a positive regulator in the Arabidopsis (Arabidopsis thaliana) abscisic acid (ABA)-dependent drought response. Here, the AtAIRP2 (for Arabidopsis ABA-insensitive RING protein 2) gene was identified and characterized. AtAIRP2 encodes a cytosolic C3HC4-type RING E3 Ub ligase whose expression was markedly induced by ABA and dehydration stress. Thus, AtAIRP2 belongs to a different RING subclass than AtAIRP1 with a limited sequence identity. AtAIRP2-overexpressing transgenic (35S:AtAIRP2-sGFP) and atairp2 loss-of-function mutant plants exhibited hypersensitive and hyposensitive phenotypes, respectively, to ABA in terms of seed germination, root growth, and stomatal movement. 35S:AtAIRP2-sGFP plants were highly tolerant to severe drought stress, and atairp2 alleles were more susceptible to water stress than were wild-type plants. Higher levels of drought-induced hydrogen peroxide production were detected in 35S:AtAIRP2-sGFP as compared with atairp2 plants. ABA-inducible drought-related genes were up-regulated in 35S:AtAIRP2-sGFP and down-regulated in atairp2 progeny. The positive effects of AtAIRP2 on ABA-induced stress genes were dependent on SNF1-related protein kinases, key components of the ABA signaling pathway. Therefore, AtAIRP2 is involved in positive regulation of ABA-dependent drought stress responses. To address the functional relationship between AtAIRP1 and AtAIRP2, FLAG-AtAIRP1 and AtAIRP2-sGFP genes were ectopically expressed in atairp2-2 and atairp1 plants, respectively. Constitutive expression of FLAG-AtAIRP1 and AtAIRP2-sGFP in atairp2-2 and atairp1 plants, respectively, reciprocally rescued the loss-of-function ABA-insensitive phenotypes during germination. Additionally, atairp1/35S:AtAIRP2-sGFP and atairp2-2/35S:FLAG-AtAIRP1 complementation lines were more tolerant to

  3. Lysine 63-Linked TANK-Binding Kinase 1 Ubiquitination by Mindbomb E3 Ubiquitin Protein Ligase 2 Is Mediated by the Mitochondrial Antiviral Signaling Protein

    PubMed Central

    Ye, Jung Sook; Kim, Nari; Lee, Kyoung Jin; Nam, Young Ran; Lee, Uk

    2014-01-01

    ABSTRACT Beta interferon (IFN-β) is involved in a wide range of cellular functions, and its secretion must be tightly controlled to inhibit viral spreading while minimizing cellular damage. Intracellular viral replication triggers cellular signaling cascades leading to the activation of the transcription factors NF-κB and interferon regulatory factor 3 (IRF3) and IRF7 (IRF3/7), which synergistically bind to the IFN-β gene promoter to induce its expression. The mitochondrial antiviral signaling protein (MAVS) is a governing adaptor protein that mediates signaling communications between virus-sensing proteins and transcription factors. The activity of MAVS in the regulation of IFN-β secretion is affected by many cellular factors. However, the mechanism of MAVS-mediated IRF3/7 activation is not completely understood. Here, we identified a highly conserved DLAIS motif at amino acid positions 438 to 442 of MAVS that is indispensable for IRF3/7 activation. Specifically, the L439S and A440R mutations suppress IRF3/7 activation. Pulldown experiments using wild-type and mutant MAVS showed that mindbomb E3 ubiquitin protein ligase 2 (MIB2) binds to the DLAIS motif. Furthermore, the DLAIS motif was found to be critical for MIB2 binding, the ligation of K63-linked ubiquitin to TANK-binding kinase 1, and phosphorylation-mediated IRF3/7 activation. Our results suggest that MIB2 plays a putative role in MAVS-mediated interferon signaling. IMPORTANCE Mitochondrial antiviral signaling protein (MAVS) mediates signaling from virus-sensing proteins to transcription factors for the induction of beta interferon. However, the mechanism underlying activation of MAVS-mediated interferon regulatory factors 3 and 7 (IRF3/7) is not completely understood. We found a highly conserved DLAIS motif in MAVS that is indispensable for IRF3/7 activation through TANK-binding kinase 1 (TBK1) and identified it as the binding site for mindbomb E3 ubiquitin protein ligase 2 (MIB2). The mutations that

  4. Role of the C-terminus of Saccharomyces cerevisiae ubiquitin-conjugating enzyme (Rad6) in substrate and ubiquitin-protein-ligase (E3-R) interactions.

    PubMed

    Raboy, B; Kulka, R G

    1994-04-01

    The product of the RAD6 (UBC2) gene of Saccharomyces cerevisiae is a ubiquitin-conjugating enzyme (Rad6) which is implicated in DNA repair, induced mutagenesis, retrotransposition, sporulation and the degradation of proteins with destabilizing N-terminal amino acid residues. Deletion of the 23-residue acidic C-terminus of Rad6 impairs sporulation and N-end rule protein degradation in vivo but does not affect other functions such as DNA repair and induced mutagenesis. We have investigated the role of the C-terminus of Rad6 in in vitro interactions with various substrates and with a putative ubiquitin-protein ligase, E3-R. The removal of the Rad6 C-terminus had significant different effects on enzyme activity for individual substrates. Although the 23-residue truncated Rad6-149 protein had markedly impaired activity for histone H2B and micrococcal nuclease, the activity for cytochrome c was the same as that of the intact Rad6 protein. Similarly, truncation of Rad6 had no effect on its activity for several poor substrates, namely, beta-casein, beta-lactoglobulin and oxidized RNase. E3-R stimulated the activities of both Rad6 and Rad6-149 for the latter three substrates to similar degrees. E3-R appears to act by enhancing the low intrinsic affinity of Rad6 and Rad6-149 for these substrates. Thus Rad6 can act in three different modes in vitro depending on the substrate, namely unassisted C-terminus-dependent, unassisted C-terminus-independent and E3-R-assisted C-terminus-independent modes. We also examined the results of removing the C-terminal acidic region of Cdc34 (Ubc3), a ubiquitin-conjugating enzyme closely related to Rad6. Truncation of Cdc34 like that of Rad6 had no effect on activity for beta-casein, beta-lactoglobulin or oxidized RNase in the presence or absence of E3-R.

  5. X-linked Inhibitor of Apoptosis Protein (XIAP) Regulation of Cyclin D1 Protein Expression and Cancer Cell Anchorage-independent Growth via Its E3 Ligase-mediated Protein Phosphatase 2A/c-Jun Axis*

    PubMed Central

    Cao, Zipeng; Zhang, Ruowen; Li, Jingxia; Huang, Haishan; Zhang, Dongyun; Zhang, Jingjie; Gao, Jimin; Chen, Jingyuan; Huang, Chuanshu

    2013-01-01

    The X-linked inhibitor of apoptosis protein (XIAP) is a well known potent inhibitor of apoptosis; however, it is also involved in other cancer cell biological behavior. In the current study, we discovered that XIAP and its E3 ligase played a crucial role in regulation of cyclin D1 expression in cancer cells. We found that deficiency of XIAP expression resulted in a marked reduction in cyclin D1 expression. Consistently, cell cycle transition and anchorage-independent cell growth were also attenuated in XIAP-deficient cancer cells compared with those of the parental wild-type cells. Subsequent studies demonstrated that E3 ligase activity within the RING domain of XIAP is crucial for its ability to regulate cyclin D1 transcription, cell cycle transition, and anchorage-independent cell growth by up-regulating transactivation of c-Jun/AP-1. Moreover, we found that E3 ligase within RING domain was required for XIAP inhibition of phosphatase PP2A activity by up-regulation of PP2A phosphorylation at Tyr-307 in its catalytic subunit. Such PP2A phosphorylation and inactivation resulted in phosphorylation and activation of its downstream target c-Jun in turn leading to cyclin D1 expression. Collectively, our studies uncovered a novel function of E3 ligase activity of XIAP in the up-regulation of cyclin D1 expression, providing significant insight into the understanding of the biomedical significance of overexpressed XIAP in cancer development, further offering a new molecular basis for utilizing XIAP E3 ligase as a cancer therapeutic target. PMID:23720779

  6. Determinants of Small Ubiquitin-like Modifier 1 (SUMO1) Protein Specificity, E3 Ligase, and SUMO-RanGAP1 Binding Activities of Nucleoporin RanBP2

    SciTech Connect

    Gareau, Jaclyn R.; Reverter, David; Lima, Christopher D.

    2012-02-16

    The RanBP2 nucleoporin contains an internal repeat domain (IR1-M-IR2) that catalyzes E3 ligase activity and forms a stable complex with SUMO-modified RanGAP1 and UBC9 at the nuclear pore complex. RanBP2 exhibits specificity for SUMO1 as RanGAP1-SUMO1/UBC9 forms a more stable complex with RanBP2 compared with RanGAP1-SUMO2 that results in greater protection of RanGAP-SUMO1 from proteases. The IR1-M-IR2 SUMO E3 ligase activity also shows a similar preference for SUMO1. We utilized deletions and domain swap constructs in protease protection assays and automodification assays to define RanBP2 domains responsible for RanGAP1-SUMO1 protection and SUMO1-specific E3 ligase activity. Our data suggest that elements in both IR1 and IR2 exhibit specificity for SUMO1. IR1 protects RanGAP1-SUMO1/UBC9 and functions as the primary E3 ligase of RanBP2, whereas IR2 retains the ability to interact with SUMO1 to promote SUMO1-specific E3 ligase activity. To determine the structural basis for SUMO1 specificity, a hybrid IR1 construct and IR1 were used to determine three new structures for complexes containing UBC9 with RanGAP1-SUMO1/2. These structures show more extensive contacts among SUMO, UBC9, and RanBP2 in complexes containing SUMO1 compared with SUMO2 and suggest that differences in SUMO specificity may be achieved through these subtle conformational differences.

  7. The E3 Ubiquitin Ligase ARIH1 Protects against Genotoxic Stress by Initiating a 4EHP-Mediated mRNA Translation Arrest

    PubMed Central

    von Stechow, Louise; Typas, Dimitris; Carreras Puigvert, Jordi; Oort, Laurens; Siddappa, Ramakrishnaiah; Pines, Alex; Vrieling, Harry; van de Water, Bob

    2015-01-01

    DNA damage response signaling is crucial for genome maintenance in all organisms and is corrupted in cancer. In an RNA interference (RNAi) screen for (de)ubiquitinases and sumoylases modulating the apoptotic response of embryonic stem (ES) cells to DNA damage, we identified the E3 ubiquitin ligase/ISGylase, ariadne homologue 1 (ARIH1). Silencing ARIH1 sensitized ES and cancer cells to genotoxic compounds and ionizing radiation, irrespective of their p53 or caspase-3 status. Expression of wild-type but not ubiquitinase-defective ARIH1 constructs prevented sensitization caused by ARIH1 knockdown. ARIH1 protein abundance increased after DNA damage through attenuation of proteasomal degradation that required ATM signaling. Accumulated ARIH1 associated with 4EHP, and in turn, this competitive inhibitor of the eukaryotic translation initiation factor 4E (eIF4E) underwent increased nondegradative ubiquitination upon DNA damage. Genotoxic stress led to an enrichment of ARIH1 in perinuclear, ribosome-containing regions and triggered 4EHP association with the mRNA 5′ cap as well as mRNA translation arrest in an ARIH1-dependent manner. Finally, restoration of DNA damage-induced translation arrest in ARIH1-depleted cells by means of an eIF2 inhibitor was sufficient to reinstate resistance to genotoxic stress. These findings identify ARIH1 as a potent mediator of DNA damage-induced translation arrest that protects stem and cancer cells against genotoxic stress. PMID:25624349

  8. c-CBL E3 Ubiquitin Ligase is Over-Expressed in Cutaneous T-Cell Lymphoma: Its Inhibition Promotes Activation Induced Cell Death

    PubMed Central

    Wu, Jianqiang; Salva, Katrin A.; Wood, Gary S.

    2014-01-01

    Mycosis fungoides (MF) and Sezary syndrome (SS) are two major forms of cutaneous T-cell lymphoma (CTCL) characterized by resistance to apoptosis. A central pathway for T-cell apoptosis is activation-induced cell death (AICD) which is triggered through the T-cell receptor (TCR). This results in upregulation of FAS-ligand (FASL) and subsequent apoptosis through the FAS death receptor pathway. It has been known for more than a decade that TCR signaling is defective in CTCL; however, the underlying mechanism has not been apparent. In this report, we show that the E3 ubiquitin ligase, c-CBL, is over-expressed in CTCL and that its knockdown overcomes defective TCR signaling resulting in phosphorylation of PLCg1, calcium influx, ROS generation, up-regulation of FASL and extrinsic pathway apoptosis in CTCL cells expressing adequate FAS. In CTCL cells with suboptimal FAS expression, FAS can be upregulated epigenetically by derepression of the FAS promoter using methotrexate (MTX) which we showed previously has activity as a DNA methylation inhibitor. Using these combined strategies, FAS-low as well as FAS-high CTCL cells can be killed effectively. PMID:25140833

  9. Loss of the E3 ubiquitin ligase LRSAM1 sensitizes peripheral axons to degeneration in a mouse model of Charcot-Marie-Tooth disease

    PubMed Central

    Bogdanik, Laurent P.; Sleigh, James N.; Tian, Cong; Samuels, Mark E.; Bedard, Karen; Seburn, Kevin L.; Burgess, Robert W.

    2013-01-01

    SUMMARY Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous condition characterized by peripheral axon degeneration with subsequent motor and sensory deficits. Several CMT gene products function in endosomal sorting and trafficking to the lysosome, suggesting that defects in this cellular pathway might present a common pathogenic mechanism for these conditions. LRSAM1 is an E3 ubiquitin ligase that is implicated in this process, and mutations in LRSAM1 have recently been shown to cause CMT. We have generated mouse mutations in Lrsam1 to create an animal model of this form of CMT (CMT2P). Mouse Lrsam1 is abundantly expressed in the motor and sensory neurons of the peripheral nervous system. Both homozygous and heterozygous mice have largely normal neuromuscular performance and only a very mild neuropathy phenotype with age. However, Lrsam1 mutant mice are more sensitive to challenge with acrylamide, a neurotoxic agent that causes axon degeneration, indicating that the axons in the mutant mice are indeed compromised. In transfected cells, LRSAM1 primarily localizes in a perinuclear compartment immediately beyond the Golgi and shows little colocalization with components of the endosome to lysosome trafficking pathway, suggesting that other cellular mechanisms also merit consideration. PMID:23519028

  10. The pathway for IRP2 degradation involving 2-oxoglutarate-dependent oxygenase(s) does not require the E3 ubiquitin ligase activity of pVHL.

    PubMed

    Wang, Jian; Pantopoulos, Kostas

    2005-03-22

    Iron regulatory protein 2 (IRP2), a posttranscriptional regulator of iron metabolism, is subjected to iron-dependent degradation by the proteasome. Recent experiments proposed a mechanism involving 2-oxoglutarate-dependent oxygenases. Enzymes of this class, such as prolyl-4-hydroxylases, mediate the oxygen and iron-dependent degradation of the hypoxia inducible factor HIF-1alpha, which requires the E3 ubiquitin ligase activity of pVHL. Considering that the pathways for IRP2 and HIF-1alpha degradation share remarkable similarities, we investigated whether pVHL may also be involved in the degradation of IRP2. We show here that IRP2 can interact with pVHL in co-transfection/co-immunoprecipitation assays. Furthermore, pVHL is able to promote the ubiquitination and the decay of transfected IRP2. However, the iron-dependent degradation of endogenous IRP2 is not impaired in VHL-deficient cell lines, suggesting that pVHL is not a necessary component of this pathway.

  11. The ARC1 E3 ligase gene is frequently deleted in self-compatible Brassicaceae species and has a conserved role in Arabidopsis lyrata self-pollen rejection.

    PubMed

    Indriolo, Emily; Tharmapalan, Pirashaanthy; Wright, Stephen I; Goring, Daphne R

    2012-11-01

    Self-pollen rejection is an important reproductive regulator in flowering plants, and several different intercellular signaling systems have evolved to elicit this response. In the Brassicaceae, the self-incompatibility system is mediated by the pollen S-locus Cys-Rich/S-locus Protein11 (SCR/SP11) ligand and the pistil S Receptor Kinase (SRK). While the SCR/SP11-SRK recognition system has been identified in several species across the Brassicaceae, less is known about the conservation of the SRK-activated cellular responses in the stigma, following self-pollen contact. The ARM Repeat Containing1 (ARC1) E3 ubiquitin ligase functions downstream of SRK for the self-incompatibility response in Brassica, but it has been suggested that ARC1 is not required in Arabidopsis species. Here, we surveyed the presence of ARC1 orthologs in several recently sequenced genomes from Brassicaceae species that had diversified ∼20 to 40 million years ago. Surprisingly, the ARC1 gene was deleted in several species that had lost the self-incompatibility trait, suggesting that ARC1 may lose functionality in the transition to self-mating. To test the requirement of ARC1 in a self-incompatible Arabidopsis species, transgenic ARC1 RNA interference Arabidopsis lyrata plants were generated, and they exhibited reduced self-incompatibility responses resulting in successful fertilization. Thus, this study demonstrates a conserved role for ARC1 in the self-pollen rejection response within the Brassicaceae. PMID:23204404

  12. The ARC1 E3 ligase promotes a strong and stable self-incompatibility response in Arabidopsis species: response to the Nasrallah and Nasrallah commentary.

    PubMed

    Goring, Daphne R; Indriolo, Emily; Samuel, Marcus A

    2014-10-01

    Following the identification of the male (S-locus Cysteine Rich/S-locus Protein 11) and female (S Receptor kinase [SRK]) factors controlling self-incompatibility in the Brassicaceae, research in this field has focused on understanding the nature of the cellular responses activated by these regulators. We previously identified the ARM Repeat Containing1 (ARC1) E3 ligase as a component of the SRK signaling pathway and demonstrated ARC1's requirement in the stigma for self-incompatible pollen rejection in Brassica napus, Arabidopsis lyrata, and Arabidopsis thaliana. Here, we discuss our findings on the role of ARC1 in reconstructing a strong and stable A. thaliana self-incompatibility phenotype, in the context of the putative issues outlined in a commentary by Nasrallah and Nasrallah. Additionally, with their proposed standardized strategy for studying self-incompatibility in A. thaliana, we offer our perspective on what constitutes a strong and stable self-incompatibility phenotype in A. thaliana and how this should be investigated and reported to the greater community. PMID:25336510

  13. Overexpression of the human ubiquitin E3 ligase CUL4A alleviates hypoxia-reoxygenation injury in pheochromocytoma (PC12) cells

    SciTech Connect

    Tan, Can; Zhang, Li-Yang; Chen, Hong; Xiao, Ling; Liu, Xian-Peng; Zhang, Jian-Xiang

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Overexpression of human CUL4A (hCUL4A) in PC12 cells. Black-Right-Pointing-Pointer The effects of hCUL4A on hypoxia-reoxygenation injury were investigated. Black-Right-Pointing-Pointer hCUL4A suppresses apoptosis and DNA damage and thus promotes cell survival. Black-Right-Pointing-Pointer hCUL4A regulates apoptosis-related proteins and cell cycle regulators. -- Abstract: The ubiquitin E3 ligase CUL4A plays important roles in diverse cellular processes including carcinogenesis and proliferation. It has been reported that the expression of CUL4A can be induced by hypoxic-ischemic injury. However, the effect of elevated expression of CUL4A on hypoxia-reoxygenation injury is currently unclear. In this study, human CUL4A (hCUL4A) was expressed in rat pheochromocytoma (PC12) cells using adenoviral vector-mediated gene transfer, and the effects of hCUL4A expression on hypoxia-reoxygenation injury were investigated. In PC12 cells subjected to hypoxia and reoxygenation, we found that hCUL4A suppresses apoptosis and DNA damage by regulating apoptosis-related proteins and cell cycle regulators (Bcl-2, caspase-3, p53 and p27); consequently, hCUL4A promotes cell survival. Taken together, our results reveal the beneficial effects of hCUL4A in PC12 cells upon hypoxia-reoxygenation injury.

  14. Proteomic discovery of MNT as a novel interacting partner of E3 ubiquitin ligase E6AP and a key mediator of myeloid differentiation

    PubMed Central

    Kapoor, Isha; Kanaujiya, Jitendra; Kumar, Yogesh; Thota, Jagadeshwar Reddy; Bhatt, Madan L.B.; Chattopadhyay, Naibedya; Sanyal, Sabyasachi; Trivedi, Arun Kumar

    2016-01-01

    Perturbed stability of regulatory proteins is a major cause of transformations leading to cancer, including several leukemia subtypes. Here, for the first time we demonstrate that E6-associated protein (E6AP), an E3 ubiquitin ligase negatively targets MAX binding protein MNT for ubiquitin-mediated proteasome degradation and impedes ATRA mediated myeloid cell differentiation. MNT is a member of the Myc/Max/Mad network of transcription factor that regulates cell proliferation, differentiation, cellular transformation and tumorigenesis. Wild-type E6AP promoted proteasome dependent degradation of MNT, while catalytically inactive E6AP having cysteine replaced with alanine at amino-acid 843 position (E6APC843A) rather stabilized it. Further, these proteins physically associated with each other both in non-myeloid (HEK293T) and myeloid cells. MNT overexpression induced G0-G1 growth arrest and promoted myeloid differentiation while its knockdown mitigated even ATRA induced differentiation suggesting MNT to be crucial for myeloid differentiation. We further showed that ATRA inhibited E6AP and stabilized MNT expression by protecting it from E6AP mediated ubiquitin-proteasome degradation. Notably, E6AP knockdown in HL60 cells restored MNT expression and promoted myeloid differentiation. Taken together, our data demonstrated that E6AP negatively regulates granulocytic differentiation by targeting MNT for degradation which is required for growth arrest and subsequent myeloid differentiation by various differentiation inducing agents. PMID:26506232

  15. The p53–Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans

    PubMed Central

    Coffill, Cynthia R.; Lee, Alison P.; Siau, Jia Wei; Chee, Sharon M.; Joseph, Thomas L.; Tan, Yaw Sing; Madhumalar, Arumugam; Tay, Boon-Hui; Brenner, Sydney; Verma, Chandra S.; Ghadessy, Farid J.; Venkatesh, Byrappa; Lane, David P.

    2016-01-01

    The extant jawless vertebrates, represented by lampreys and hagfish, are the oldest group of vertebrates and provide an interesting genomic evolutionary pivot point between invertebrates and jawed vertebrates. Through genome analysis of one of these jawless vertebrates, the Japanese lamprey (Lethenteron japonicum), we identified all three members of the important p53 transcription factor family—Tp53, Tp63, and Tp73—as well as the Mdm2 and Mdm4 genes. These genes and their products are significant cellular regulators in human cancer, and further examination of their roles in this most distant vertebrate relative sheds light on their origin and coevolution. Their important role in response to DNA damage has been highlighted by the discovery of multiple copies of the Tp53 gene in elephants. Expression of lamprey p53, Mdm2, and Mdm4 proteins in mammalian cells reveals that the p53–Mdm2 interaction and the Mdm2/Mdm4 E3 ligase activity existed in the common ancestor of vertebrates and have been conserved for >500 million years of vertebrate evolution. Lamprey Mdm2 degrades human p53 with great efficiency, but this interaction is not blocked by currently available small molecule inhibitors of the human HDM2 protein, suggesting utility of lamprey Mdm2 in the study of the human p53 signaling pathway. PMID:26798135

  16. p21-Activated kinase 6 (PAK6) inhibits prostate cancer growth via phosphorylation of androgen receptor and tumorigenic E3 ligase murine double minute-2 (Mdm2).

    PubMed

    Liu, Tong; Li, Yang; Gu, Hui; Zhu, Ge; Li, Jiabin; Cao, Liu; Li, Feng

    2013-02-01

    The androgen receptor (AR) signaling pathway plays a crucial role in the development and growth of prostate malignancies. Regulation of AR homeostasis in prostate tumorigenesis has not yet been fully characterized. In this study, we demonstrate that p21-activated kinase 6 (PAK6) inhibits prostate tumorigenesis by regulating AR homeostasis. First, we demonstrated that in normal prostate epithelium, AR co-localizes with PAK6 in the cytoplasm and translocates into the nucleus in malignant prostate. Furthermore, AR phosphorylation at Ser-578 by PAK6 promotes AR-E3 ligase murine double minute-2 (Mdm2) association, causing AR degradation upon androgen stimuli. We also showed that PAK6 phosphorylates Mdm2 on Thr-158 and Ser-186, which is critical for AR ubiquitin-mediated degradation. Moreover, we found that Thr-158 collaborates with Ser-186 for AR-Mdm2 association and AR ubiquitin-mediated degradation as it facilitates PAK6-mediated AR homeostasis. PAK6 knockdown promotes prostate tumor growth in vivo. Interestingly, we found a strong inverse correlation between PAK6 and AR expression in the cytoplasm of prostate cancer cells. These observations indicate that PAK6 may be important for the maintenance of androgen-induced AR signaling homeostasis and in prostate malignancy, as well as being a possible new therapeutic target for AR-positive and hormone-sensitive prostate cancer.

  17. Novel deletion of the E3A ubiquitin protein ligase gene detected by multiplex ligation-dependent probe amplification in a patient with Angelman syndrome

    PubMed Central

    Calì, Francesco; Ragalmuto, Alda; Chiavetta, Valeria; Calabrese, Giuseppe; Fichera, Marco; Vinci, Mirella; Ruggeri, Giuseppa; Schinocca, Pietro; Sturnio, Maurizio; Romano, Salvatore; Elia, Maurizio

    2010-01-01

    Angelman syndrome (AS) is a severe neurobehavioural disorder caused by failure of expression of the maternal copy of the imprinted domain located on 15q11-q13. There are different mechanisms leading to AS: maternal microdeletion, uniparental disomy, defects in a putative imprinting centre, mutations of the E3 ubiquitin protein ligase (UBE3A) gene. However, some of suspected cases of AS are still scored negative to all the latter mutations. Recently, it has been shown that a proportion of negative cases bear large deletions overlapping one or more exons of the UBE3A gene. These deletions are difficult to detect by conventional gene-scanning methods due to the masking effect by the non-deleted allele. In this study, we have used for the first time multiplex ligation-dependent probe amplification (MLPA) and comparative multiplex dosage analysis (CMDA) to search for large deletions affecting the UBE3A gene. Using this approach, we identified a novel causative deletion involving exon 8 in an affected sibling. Based on our results, we propose the use of MLPA as a fast, accurate and inexpensive test to detect large deletions in the UBE3A gene in a small but significant percentage of AS patients. PMID:21072004

  18. Submicroscopic duplications of the hydroxysteroid dehydrogenase HSD17B10 and the E3 ubiquitin ligase HUWE1 are associated with mental retardation.

    PubMed

    Froyen, Guy; Corbett, Mark; Vandewalle, Joke; Jarvela, Irma; Lawrence, Owen; Meldrum, Cliff; Bauters, Marijke; Govaerts, Karen; Vandeleur, Lucianne; Van Esch, Hilde; Chelly, Jamel; Sanlaville, Damien; van Bokhoven, Hans; Ropers, Hans-Hilger; Laumonnier, Frederic; Ranieri, Enzo; Schwartz, Charles E; Abidi, Fatima; Tarpey, Patrick S; Futreal, P Andrew; Whibley, Annabel; Raymond, F Lucy; Stratton, Michael R; Fryns, Jean-Pierre; Scott, Rodney; Peippo, Maarit; Sipponen, Marjatta; Partington, Michael; Mowat, David; Field, Michael; Hackett, Anna; Marynen, Peter; Turner, Gillian; Gécz, Jozef

    2008-02-01

    Submicroscopic copy-number imbalances contribute significantly to the genetic etiology of human disease. Here, we report a novel microduplication hot spot at Xp11.22 identified in six unrelated families with predominantly nonsyndromic XLMR. All duplications segregate with the disease, including the large families MRX17 and MRX31. The minimal, commonly duplicated region contains three genes: RIBC1, HSD17B10, and HUWE1. RIBC1 could be excluded on the basis of its absence of expression in the brain and because it escapes X inactivation in females. For the other genes, expression array and quantitative PCR analysis in patient cell lines compared to controls showed a significant upregulation of HSD17B10 and HUWE1 as well as several important genes in their molecular pathways. Loss-of-function mutations of HSD17B10 have previously been associated with progressive neurological disease and XLMR. The E3 ubiquitin ligase HUWE1 has been implicated in TP53-associated regulation of the neuronal cell cycle. Here, we also report segregating sequence changes of highly conserved residues in HUWE1 in three XLMR families; these changes are possibly associated with the phenotype. Our findings demonstrate that an increased gene dosage of HSD17B10, HUWE1, or both contribute to the etiology of XLMR and suggest that point mutations in HUWE1 are associated with this disease too.

  19. Submicroscopic Duplications of the Hydroxysteroid Dehydrogenase HSD17B10 and the E3 Ubiquitin Ligase HUWE1 Are Associated with Mental Retardation

    PubMed Central

    Froyen, Guy; Corbett, Mark; Vandewalle, Joke; Jarvela, Irma; Lawrence, Owen; Meldrum, Cliff; Bauters, Marijke; Govaerts, Karen; Vandeleur, Lucianne; Van Esch, Hilde; Chelly, Jamel; Sanlaville, Damien; van Bokhoven, Hans; Ropers, Hans-Hilger; Laumonnier, Frederic; Ranieri, Enzo; Schwartz, Charles E.; Abidi, Fatima; Tarpey, Patrick S.; Futreal, P. Andrew; Whibley, Annabel; Raymond, F. Lucy; Stratton, Michael R.; Fryns, Jean-Pierre; Scott, Rodney; Peippo, Maarit; Sipponen, Marjatta; Partington, Michael; Mowat, David; Field, Michael; Hackett, Anna; Marynen, Peter; Turner, Gillian; Gécz, Jozef

    2008-01-01

    Submicroscopic copy-number imbalances contribute significantly to the genetic etiology of human disease. Here, we report a novel microduplication hot spot at Xp11.22 identified in six unrelated families with predominantly nonsyndromic XLMR. All duplications segregate with the disease, including the large families MRX17 and MRX31. The minimal, commonly duplicated region contains three genes: RIBC1, HSD17B10, and HUWE1. RIBC1 could be excluded on the basis of its absence of expression in the brain and because it escapes X inactivation in females. For the other genes, expression array and quantitative PCR analysis in patient cell lines compared to controls showed a significant upregulation of HSD17B10 and HUWE1 as well as several important genes in their molecular pathways. Loss-of-function mutations of HSD17B10 have previously been associated with progressive neurological disease and XLMR. The E3 ubiquitin ligase HUWE1 has been implicated in TP53-associated regulation of the neuronal cell cycle. Here, we also report segregating sequence changes of highly conserved residues in HUWE1 in three XLMR families; these changes are possibly associated with the phenotype. Our findings demonstrate that an increased gene dosage of HSD17B10, HUWE1, or both contribute to the etiology of XLMR and suggest that point mutations in HUWE1 are associated with this disease too. PMID:18252223

  20. E3 Ubiquitin Ligase, WWP1, Interacts with AMPKα2 and Down-regulates Its Expression in Skeletal Muscle C2C12 Cells*

    PubMed Central

    Lee, Jung Ok; Lee, Soo Kyung; Kim, Nami; Kim, Ji Hae; You, Ga Young; Moon, Ji Wook; Jie, Sha; Kim, Su Jin; Lee, Yong Woo; Kang, Ho Jin; Lim, Yongchul; Park, Sun Hwa; Kim, Hyeon Soo

    2013-01-01

    It is known that the activity of AMP-activated protein kinase (AMPKα2) was depressed under high glucose conditions. However, whether protein expression of AMPKα2 is also down-regulated or not remains unclear. In this study, we showed that the expression of AMPKα2 was down-regulated in cells cultured under high glucose conditions. Treatment of proteasome inhibitor, MG132, blocked high glucose-induced AMPKα2 down-regulation. Endogenous AMPKα2 ubiquitination was detected by immunoprecipitation of AMPKα2 followed by immunoblotting detection of ubiquitin. The yeast-two hybrid (YTH) approach identified WWP1, an E3 ubiquitin ligase, as the AMPKα2-interacting protein in skeletal muscle cells. Interaction between AMPKα2 and WWP1 was validated by co-immunoprecipitation. Knockdown of WWP1 blocked high glucose-induced AMPKα2 down-regulation. The overexpression of WWP1 down-regulated AMPKα2. In addition, the expression of WWP1 is increased under high glucose culture conditions in both mRNA and protein levels. The level of AMPKα2 was down-regulated in the quadriceps muscle of diabetic animal model db/db mice. Expression of WWP1 blocked metformin-induced glucose uptake. Taken together, our results demonstrated that WWP1 down-regulated AMPKα2 under high glucose culture conditions via the ubiquitin-proteasome pathway. PMID:23293026

  1. A high-coverage shRNA screen identifies TMEM129 as an E3 ligase involved in ER-associated protein degradation

    PubMed Central

    van de Weijer, Michael L.; Bassik, Michael C.; Luteijn, Rutger D.; Voorburg, Cornelia M.; Lohuis, Mirjam A.M.; Kremmer, Elisabeth; Hoeben, Rob C.; LeProust, Emily M.; Chen, Siyuan; Hoelen, Hanneke; Ressing, Maaike E.; Patena, Weronika; Weissman, Jonathan S.; McManus, Michael T.; Wiertz, Emmanuel J.H.J.; Lebbink, Robert Jan

    2014-01-01

    Misfolded ER proteins are retrotranslocated into the cytosol for degradation via the ubiquitin–proteasome system. The human cytomegalovirus protein US11 exploits this ER-associated protein degradation (ERAD) pathway to downregulate HLA class I molecules in virus-infected cells, thereby evading elimination by cytotoxic T-lymphocytes. US11-mediated degradation of HLA class I has been instrumental in the identification of key components of mammalian ERAD, including Derlin-1, p97, VIMP and SEL1L. Despite this, the process governing retrotranslocation of the substrate is still poorly understood. Here using a high-coverage genome-wide shRNA library, we identify the uncharacterized protein TMEM129 and the ubiquitin-conjugating E2 enzyme UBE2J2 to be essential for US11-mediated HLA class I downregulation. TMEM129 is an unconventional C4C4-type RING finger E3 ubiquitin ligase that resides within a complex containing various other ERAD components, including Derlin-1, Derlin-2, VIMP and p97, indicating that TMEM129 is an integral part of the ER-resident dislocation complex mediating US11-induced HLA class I degradation. PMID:24807418

  2. Genome-wide RNAi screening implicates the E3 ubiquitin ligase Sherpa in mediating innate immune signaling by Toll in Drosophila adults.

    PubMed

    Kanoh, Hirotaka; Tong, Li-Li; Kuraishi, Takayuki; Suda, Yamato; Momiuchi, Yoshiki; Shishido, Fumi; Kurata, Shoichiro

    2015-10-27

    The Drosophila Toll pathway plays important roles in innate immune responses against Gram-positive bacteria and fungi. To identify previously uncharacterized components of this pathway, we performed comparative, ex vivo, genome-wide RNA interference screening. In four screens, we overexpressed the Toll adaptor protein dMyd88, the downstream kinase Pelle, or the nuclear factor κB (NF-κB) homolog Dif, or we knocked down Cactus, the Drosophila homolog of mammalian inhibitor of NF-κB. On the basis of these screens, we identified the E3 ubiquitin ligase Sherpa as being necessary for the activation of Toll signaling. A loss-of-function sherpa mutant fly exhibited compromised production of antimicrobial peptides and enhanced susceptibility to infection by Gram-positive bacteria. In cultured cells, Sherpa mediated ubiquitylation of dMyd88 and Sherpa itself, and Sherpa and Drosophila SUMO (small ubiquitin-like modifier) were required for the proper membrane localization of an adaptor complex containing dMyd88. These findings highlight a role for Sherpa in Drosophila host defense and suggest the SUMOylation-mediated regulation of dMyd88 functions in Toll innate immune signaling. PMID:26508789

  3. SCF(JFK) is a bona fide E3 ligase for ING4 and a potent promoter of the angiogenesis and metastasis of breast cancer.

    PubMed

    Yan, Ruorong; He, Lin; Li, Zhongwu; Han, Xiao; Liang, Jing; Si, Wenzhe; Chen, Zhe; Li, Lei; Xie, Guojia; Li, Wanjin; Wang, Peiyan; Lei, Liandi; Zhang, Hongquan; Pei, Fei; Cao, Dengfeng; Sun, Luyang; Shang, Yongfeng

    2015-03-15

    Loss of function/dysregulation of inhibitor of growth 4 (ING4) and hyperactivation of NF-κB are frequent events in many types of human malignancies. However, the molecular mechanisms underlying these remarkable aberrations are not understood. Here, we report that ING4 is physically associated with JFK. We demonstrated that JFK targets ING4 for ubiquitination and degradation through assembly of an Skp1-Cul1-F-box (SCF) complex. We showed that JFK-mediated ING4 destabilization leads to the hyperactivation of the canonical NF-κB pathway and promotes angiogenesis and metastasis of breast cancer. Significantly, the expression of JFK is markedly up-regulated in breast cancer, and the level of JFK is negatively correlated with that of ING4 and positively correlated with an aggressive clinical behavior of breast carcinomas. Our study identified SCF(JFK) as a bona fide E3 ligase for ING4 and unraveled the JFK-ING4-NF-κB axis as an important player in the development and progression of breast cancer, supporting the pursuit of JFK as a potential target for breast cancer intervention. PMID:25792601

  4. The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance

    PubMed Central

    Lim, Sung Don; Cho, Hyun Yong; Park, Yong Chan; Ham, Deok Jae; Lee, Ju Kyong; Jang, Cheol Seong

    2013-01-01

    Thermotolerance is very important for plant survival when plants are subjected to lethally high temperature. However, thus far little is known about the functions of RING E3 ligase in response to heat shock in plants. This study found that one rice gene encoding the RING finger protein was specifically induced by heat and cold stress treatments but not by salinity or dehydration and named it OsHCI1 (Oryza sativa heat and cold induced 1). Subcellular localization results showed that OsHCI1 was mainly associated with the Golgi apparatus and moved rapidly and extensively along the cytoskeleton. In contrast, OsHCI1 may have accumulated in the nucleus under high temperatures. OsHCI1 physically interacted with nuclear substrate proteins including a basic helix-loop-helix transcription factor. Transient co-overexpression of OsHCI1 and each of three nuclear proteins showed that their fluorescent signals moved into the cytoplasm as punctuate formations. Heterogeneous overexpression of OsHCI1 in Arabidopsis highly increased survival rate through acquired thermotolerance. It is proposed that OsHCI1 mediates nuclear–cytoplasmic trafficking of nuclear substrate proteins via monoubiquitination and drives an inactivation device for the nuclear proteins under heat shock. PMID:23698632

  5. SCF(JFK) is a bona fide E3 ligase for ING4 and a potent promoter of the angiogenesis and metastasis of breast cancer.

    PubMed

    Yan, Ruorong; He, Lin; Li, Zhongwu; Han, Xiao; Liang, Jing; Si, Wenzhe; Chen, Zhe; Li, Lei; Xie, Guojia; Li, Wanjin; Wang, Peiyan; Lei, Liandi; Zhang, Hongquan; Pei, Fei; Cao, Dengfeng; Sun, Luyang; Shang, Yongfeng

    2015-03-15

    Loss of function/dysregulation of inhibitor of growth 4 (ING4) and hyperactivation of NF-κB are frequent events in many types of human malignancies. However, the molecular mechanisms underlying these remarkable aberrations are not understood. Here, we report that ING4 is physically associated with JFK. We demonstrated that JFK targets ING4 for ubiquitination and degradation through assembly of an Skp1-Cul1-F-box (SCF) complex. We showed that JFK-mediated ING4 destabilization leads to the hyperactivation of the canonical NF-κB pathway and promotes angiogenesis and metastasis of breast cancer. Significantly, the expression of JFK is markedly up-regulated in breast cancer, and the level of JFK is negatively correlated with that of ING4 and positively correlated with an aggressive clinical behavior of breast carcinomas. Our study identified SCF(JFK) as a bona fide E3 ligase for ING4 and unraveled the JFK-ING4-NF-κB axis as an important player in the development and progression of breast cancer, supporting the pursuit of JFK as a potential target for breast cancer intervention.

  6. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals

    PubMed Central

    Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J

    2016-01-01

    Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs. DOI: http://dx.doi.org/10.7554/eLife.15258.001 PMID:27331610

  7. Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development.

    PubMed

    Pfirrmann, Thorsten; Jandt, Enrico; Ranft, Swantje; Lokapally, Ashwin; Neuhaus, Herbert; Perron, Muriel; Hollemann, Thomas

    2016-09-01

    Pax6 is a key transcription factor involved in eye, brain, and pancreas development. Although pax6 is expressed in the whole prospective retinal field, subsequently its expression becomes restricted to the optic cup by reciprocal transcriptional repression of pax6 and pax2 However, it remains unclear how Pax6 protein is removed from the eyestalk territory on time. Here, we report that Mid1, a member of the RBCC/TRIM E3 ligase family, which was first identified in patients with the X-chromosome-linked Opitz BBB/G (OS) syndrome, interacts with Pax6. We found that the forming eyestalk is a major domain of mid1 expression, controlled by the morphogen Sonic hedgehog (Shh). Here, Mid1 regulates the ubiquitination and proteasomal degradation of Pax6 protein. Accordantly, when Mid1 levels are knocked down, Pax6 expression is expanded and eyes are enlarged. Our findings indicate that remaining or misaddressed Pax6 protein is cleared from the eyestalk region to properly set the border between the eyestalk territory and the retina via Mid1. Thus, we identified a posttranslational mechanism, regulated by Sonic hedgehog, which is important to suppress Pax6 activity and thus breaks pax6 autoregulation at defined steps during the formation of the visual system. PMID:27555585

  8. SCFJFK is a bona fide E3 ligase for ING4 and a potent promoter of the angiogenesis and metastasis of breast cancer

    PubMed Central

    Yan, Ruorong; He, Lin; Li, Zhongwu; Han, Xiao; Liang, Jing; Si, Wenzhe; Chen, Zhe; Li, Lei; Xie, Guojia; Li, Wanjin; Wang, Peiyan; Lei, Liandi; Zhang, Hongquan; Pei, Fei; Cao, Dengfeng

    2015-01-01

    Loss of function/dysregulation of inhibitor of growth 4 (ING4) and hyperactivation of NF-κB are frequent events in many types of human malignancies. However, the molecular mechanisms underlying these remarkable aberrations are not understood. Here, we report that ING4 is physically associated with JFK. We demonstrated that JFK targets ING4 for ubiquitination and degradation through assembly of an Skp1–Cul1–F-box (SCF) complex. We showed that JFK-mediated ING4 destabilization leads to the hyperactivation of the canonical NF-κB pathway and promotes angiogenesis and metastasis of breast cancer. Significantly, the expression of JFK is markedly up-regulated in breast cancer, and the level of JFK is negatively correlated with that of ING4 and positively correlated with an aggressive clinical behavior of breast carcinomas. Our study identified SCFJFK as a bona fide E3 ligase for ING4 and unraveled the JFK–ING4–NF-κB axis as an important player in the development and progression of breast cancer, supporting the pursuit of JFK as a potential target for breast cancer intervention. PMID:25792601

  9. E3 ubiquitin ligase CHIP interacts with C-type lectin-like receptor CLEC-2 and promotes its ubiquitin-proteasome degradation.

    PubMed

    Shao, Miaomiao; Li, Lili; Song, Shushu; Wu, Weicheng; Peng, Peike; Yang, Caiting; Zhang, Mingming; Duan, Fangfang; Jia, Dongwei; Zhang, Jie; Wu, Hao; Zhao, Ran; Wang, Lan; Ruan, Yuanyuan; Gu, Jianxin

    2016-10-01

    C-type lectin-like receptor 2 (CLEC-2) was originally identified as a member of non-classical C-type lectin-like receptors in platelets and immune cells. Activation of CLEC-2 is involved in thrombus formation, lymphatic/blood vessel separation, platelet-mediated tumor metastasis and immune response. Nevertheless, the regulation of CLEC-2 expression is little understood. In this study, we identified that the C terminus of Hsc70-interacting protein (CHIP) interacted with CLEC-2 by mass spectrometry analysis, and CHIP decreased the protein expression of CLEC-2 through lysine-48-linked ubiquitination and proteasomal degradation. Deleted and point mutation also revealed that CHIP controlled CLEC-2 protein expression via both tetratricopeptide repeats (TPR) domain and Ubox domain in a HSP70/90-independent manner. Moreover, reduced CHIP expression was associated with decreased CLEC-2 polyubiquitination and increased CLEC-2 protein levels in PMA-induced differentiation of THP-1 monocytes into macrophages. These results indicate that CLEC-2 is the target substrate of E3 ubiquitin ligase CHIP, and suggest that the CHIP/CLEC-2 axis may play an important role in the modulation of immune response.

  10. The autoantigen Ro52 is an E3 ligase resident in the cytoplasm but enters the nucleus upon cellular exposure to nitric oxide

    SciTech Connect

    Espinosa, Alexander; Oke, Vilija; Elfving, Ase; Nyberg, Filippa; Covacu, Ruxandra; Wahren-Herlenius, Marie

    2008-12-10

    Patients with the systemic autoimmune diseases Sjoegrens's syndrome and systemic lupus erythematosus often have autoantibodies against the intracellular protein Ro52. Ro52 is an E3 ligase dependent on the ubiquitin conjugation enzymes UBE2D1 and UBE2E1. While Ro52 and UBE2D1 are cytoplasmic proteins, UBE2E1 is localized to the nucleus. Here, we investigate how domains of human Ro52 regulate its intracellular localization. By expressing fluorescently labeled Ro52 and Ro52 mutants in HeLa cells, an intact coiled-coil domain was found to be necessary for the cytoplasmic localization of Ro52. The amino acids 381-470 of the B30.2 region were essential for translocation into the nucleus. Furthermore, after exposure of HeLa cells to the inflammatory mediator nitric oxide (NO), Ro52 translocated to the nucleus. A nuclear localization of Ro52 in inflamed tissue expressing inducible NO synthetase (iNOS) from cutaneous lupus patients was observed by immunohistochemistry and verified in NO-treated cultures of patient-derived primary keratinocytes. Our results show that the localization of Ro52 is regulated by endogenous sequences, and that nuclear translocation is induced by an inflammatory mediator. This suggests that Ro52 has both cytoplasmic and nuclear substrates, and that Ro52 mediates ubiquitination through UBE2D1 in the cytoplasm and through UBE2E1 in the nucleus.

  11. Exploring the structural requirements for inhibition of the ubiquitin E3 ligase breast cancer associated protein 2 (BCA2) as a treatment for breast cancer.

    PubMed

    Brahemi, Ghali; Kona, Fathima R; Fiasella, Annalisa; Buac, Daniela; Soukupová, Jitka; Brancale, Andrea; Burger, Angelika M; Westwell, Andrew D

    2010-04-01

    The zinc-ejecting aldehyde dehydrogenase (ALDH) inhibitory drug disulfiram (DSF) was found to be a breast cancer-associated protein 2 (BCA2) inhibitor with potent antitumor activity. We herein describe our work in the synthesis and evaluation of new series of zinc-affinic molecules to explore the structural requirements for selective BCA2-inhibitory antitumor activity. An N(C=S)S-S motif was found to be required, based on selective activity in BCA2-expressing breast cancer cell lines and against recombinant BCA2 protein. Notably, the DSF analogs (3a and 3c) and dithio(peroxo)thioate compounds (5d and 5f) were found to have potent activity (submicromolar IC(50)) in BCA2 positive MCF-7 and T47D cells but were inactive (IC(50) > 10 microM) in BCA2 negative MDA-MB-231 breast cancer cells and the normal breast epithelial cell line MCF10A. Testing in the isogenic BCA2 +ve MDA-MB-231/ER cell line restored antitumor activity for compounds that were inactive in the BCA2 -ve MDA-MB-231 cell line. In contrast, structurally related dithiocarbamates and benzisothiazolones (lacking the disulfide bond) were all inactive. Compounds 5d and 5f were additionally found to lack ALDH-inhibitory activity, suggestive of selective E3 ligase-inhibitory activity and worthy of further development. PMID:20222671

  12. Exploring the Structural Requirements for Inhibition of the Ubiquitin E3 Ligase Breast Cancer Associated Protein 2 (BCA2)a as a Treatment for Breast Cancer

    PubMed Central

    Brahemi, Ghali; Kona, Fathima R.; Fiasella, Annalisa; Buac, Daniela; Soukupová, Jitka; Brancale, Andrea; Burger, Angelika M.; Westwell, Andrew D.

    2010-01-01

    The zinc-ejecting aldehyde dehydrogenase (ALDH) inhibitory drug disulfiram (DSF) was found to be a breast cancer-associated protein 2 (BCA2) inhibitor with potent antitumor activity. We herein describe our work in the synthesis and evaluation of new series of zinc-affinic molecules to explore the structural requirements for selective BCA2-inhibitory antitumor activity. An N(C=S)S-S motif was found to be required, based on selective activity in BCA2-expressing breast cancer cell lines and against recombinant BCA2 protein. Notably, the DSF analogs (3a and 3c) and dithio(peroxo)thioate compounds (5d and 5f) were found to have potent activity (submicromolar IC50) in BCA2 positive MCF-7 and T47D cells but were inactive (IC50 >10 μM) in BCA2 negative MDA-MB-231 breast cancer cells and the normal breast epithelial cell line MCF10A. Testing in the isogenic BCA2 +ve MDA-MB-231/ER cell line restored antitumor activity for compounds that were inactive in the BCA2 negative MDA-MB-231 cell line. In contrast, structurally related dithiocarbamates and benzisothiazolones (lacking the disulfide bond) were all inactive. Compounds 5d and 5f were additionally found to lack ALDH-inhibitory activity, suggestive of selective E3 ligase-inhibitory activity and worthy of further development. PMID:20222671

  13. The E3 ligase APC/C-Cdh1 is required for associative fear memory and long-term potentiation in the amygdala of adult mice.

    PubMed

    Pick, Joseph E; Malumbres, Marcos; Klann, Eric

    2012-12-14

    The anaphase promoting complex/cyclosome (APC/C) is an E3 ligase regulated by Cdh1. Beyond its role in controlling cell cycle progression, APC/C-Cdh1 has been detected in neurons and plays a role in long-lasting synaptic plasticity and long-term memory. Herein, we further examined the role of Cdh1 in synaptic plasticity and memory by generating knockout mice where Cdh1 was conditionally eliminated from the forebrain post-developmentally. Although spatial learning and memory in the Morris water maze (MWM) was normal, the Cdh1 conditional knockout (cKO) mice displayed enhanced reversal learning in the MWM and in a water-based Y maze. In addition, we found that the Cdh1 cKO mice had impaired associative fear memory and exhibited impaired long-term potentiation (LTP) in amygdala slices. Finally, we observed increased expression of Shank1 and NR2A expression in amygdalar slices from the Cdh1 cKO mice following the induction of LTP, suggesting a possible molecular mechanism underlying the behavioral and synaptic plasticity impairments displayed in these mice. Our findings are consistent with a role for the APC/C-Cdh1 in fear memory and synaptic plasticity in the amygdala.

  14. The SCF-FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication.

    PubMed

    Puklowski, Anja; Homsi, Yahya; Keller, Debora; May, Martin; Chauhan, Sangeeta; Kossatz, Uta; Grünwald, Viktor; Kubicka, Stefan; Pich, Andreas; Manns, Michael P; Hoffmann, Ingrid; Gönczy, Pierre; Malek, Nisar P

    2011-08-01

    Deregulated centrosome duplication can result in genetic instability and contribute to tumorigenesis. Here, we show that centrosome duplication is regulated by the activity of an E3-ubiquitin ligase that employs the F-box protein FBXW5 (ref. 3) as its targeting subunit. Depletion of endogenous FBXW5 or overexpression of an F-box-deleted mutant version results in centrosome overduplication and formation of multipolar spindles. We identify the centriolar protein HsSAS-6 (refs 4,5) as a critical substrate of the SCF-FBXW5 complex. FBXW5 binds HsSAS-6 and promotes its ubiquitylation in vivo. The activity of SCF-FBXW5 is in turn negatively regulated by Polo-like kinase 4 (PLK4), which phosphorylates FBXW5 at Ser 151 to suppress its ability to ubiquitylate HsSAS-6. FBXW5 is a cell-cycle-regulated protein with expression levels peaking at the G1/S transition. We show that FBXW5 levels are controlled by the anaphase-promoting (APC/C) complex, which targets FBXW5 for degradation during mitosis and G1, thereby helping to reset the centrosome duplication machinery. In summary, we show that a cell-cycle-regulated SCF complex is regulated by the kinase PLK4, and that this in turn restricts centrosome re-duplication through degradation of the centriolar protein HsSAS-6. PMID:21725316

  15. CDK1-dependent inhibition of the E3 ubiquitin ligase CRL4CDT2 ensures robust transition from S Phase to Mitosis.

    PubMed

    Rizzardi, Lindsay F; Coleman, Kate E; Varma, Dileep; Matson, Jacob P; Oh, Seeun; Cook, Jeanette Gowen

    2015-01-01

    Replication-coupled destruction of a cohort of cell cycle proteins ensures efficient and precise genome duplication. Three proteins destroyed during replication via the CRL4(CDT2) ubiquitin E3 ligase, CDT1, p21, and SET8 (PR-SET7), are also essential or important during mitosis, making their reaccumulation after S phase a critical cell cycle event. During early and mid-S phase and during DNA repair, proliferating cell nuclear antigen (PCNA) loading onto DNA (PCNA(DNA)) triggers the interaction between CRL4(CDT2) and its substrates, resulting in their degradation. We have discovered that, beginning in late S phase, PCNA(DNA) is no longer sufficient to trigger CRL4(CDT2)-mediated degradation. A CDK1-dependent mechanism that blocks CRL4(CDT2) activity by interfering with CDT2 recruitment to chromatin actively protects CRL4(CDT2) substrates. We postulate that deliberate override of replication-coupled destruction allows anticipatory accumulation in late S phase. We further show that (as for CDT1) de novo SET8 reaccumulation is important for normal mitotic progression. In this manner, CDK1-dependent CRL4(CDT2) inactivation contributes to efficient transition from S phase to mitosis.

  16. U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans.

    PubMed

    He, Qin; McLellan, Hazel; Boevink, Petra C; Sadanandom, Ari; Xie, Conghua; Birch, Paul R J; Tian, Zhendong

    2015-06-01

    Ubiquitination regulates many processes in plants, including immunity. The E3 ubiquitin ligase PUB17 is a positive regulator of programmed cell death (PCD) triggered by resistance proteins CF4/9 in tomato. Its role in immunity to the potato late blight pathogen, Phytophthora infestans, was investigated here. Silencing StPUB17 in potato by RNAi and NbPUB17 in Nicotiana benthamiana by virus-induced gene silencing (VIGS) each enhanced P. infestans leaf colonization. PAMP-triggered immunity (PTI) transcriptional responses activated by flg22, and CF4/Avr4-mediated PCD were attenuated by silencing PUB17. However, silencing PUB17 did not compromise PCD triggered by P. infestans PAMP INF1, or co-expression of R3a/AVR3a, demonstrating that not all PTI- and PCD-associated responses require PUB17. PUB17 localizes to the plant nucleus and especially in the nucleolus. Transient over-expression of a dominant-negative StPUB17(V314I,V316I) mutant, which retained nucleolar localization, suppressed CF4-mediated cell death and enhanced P. infestans colonization. Exclusion of the StPUB17(V314I,V316I) mutant from the nucleus abolished its dominant-negative activity, demonstrating that StPUB17 functions in the nucleus. PUB17 is a positive regulator of immunity to late blight that acts in the nucleus to promote specific PTI and PCD pathways. PMID:25873665

  17. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains.

    PubMed

    Wang, Chong; Long, Wenying; Peng, Chao; Hu, Lin; Zhang, Qiong; Wu, Ailing; Zhang, Xiaoqing; Duan, Xiaotao; Wong, Catherine C L; Tanaka, Yuetsu; Xia, Zongping

    2016-04-01

    The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation.

  18. CRL4–DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation

    PubMed Central

    Yu, Chao; Ji, Shu-Yan; Sha, Qian-Qian; Sun, Qing-Yuan; Fan, Heng-Yu

    2015-01-01

    Oocyte meiosis is a specialized cell cycle that gives rise to fertilizable haploid gametes and is precisely controlled in various dimensions. We recently found that E3 ubiquitin ligase CRL4 is required for female fertility by regulating DNA hydroxymethylation to maintain oocyte survival and to promote zygotic genome reprogramming. However, not all phenotypes of CRL4-deleted oocytes could be explained by this mechanism. Here we show that CRL4 controls oocyte meiotic maturation by proteasomal degradation of protein phosphatase 2A scaffold subunit, PP2A-A. Oocyte-specific deletion of DDB1 or DCAF1 (also called VPRBP) results in delayed meiotic resumption and failure to complete meiosis I along with PP2A-A accumulation. DCAF1 directly binds to and results in the poly-ubiquitination of PP2A-A. Moreover, combined deletion of Ppp2r1a rescues the meiotic defects caused by DDB1/DCAF1 deficiency. These results provide in vivo evidence that CRL4-directed PP2A-A degradation is physiologically essential for regulating oocyte meiosis and female fertility. PMID:26281983

  19. The E3 Ubiquitin Ligase Mind Bomb-2 (MIB2) Protein Controls B-cell CLL/Lymphoma 10 (BCL10)-dependent NF-κB Activation*

    PubMed Central

    Stempin, Cinthia C.; Chi, Liying; Giraldo-Vela, Juan P.; High, Anthony A.; Häcker, Hans; Redecke, Vanessa

    2011-01-01

    B-cell CLL/lymphoma 10 (BCL10) is crucial for the activation of NF-κB in numerous immune receptor signaling pathways, including the T-cell receptor (TCR) and B-cell receptor signaling pathways. However, the molecular mechanisms that lead to signal transduction from BCL10 to downstream NF-κB effector kinases, such as TAK1 and components of the IKK complex, are not entirely understood. Here we used a proteomic approach and identified the E3 ligase MIB2 as a novel component of the activated BCL10 complex. In vitro translation and pulldown assays suggest direct interaction between BCL10 and MIB2. Overexpression experiments show that MIB2 controls BCL10-mediated activation of NF-κB by promoting autoubiquitination and ubiquitination of IKKγ/NEMO, as well as recruitment and activation of TAK1. Knockdown of MIB2 inhibited BCL10-dependent NF-κB activation. Together, our results identify MIB2 as a novel component of the activated BCL10 signaling complex and a missing link in the BCL10-dependent NF-κB signaling pathway. PMID:21896478

  20. Drosophila homeodomain-interacting protein kinase inhibits the Skp1-Cul1-F-box E3 ligase complex to dually promote Wingless and Hedgehog signaling.

    PubMed

    Swarup, Sharan; Verheyen, Esther M

    2011-06-14

    Drosophila Homeodomain-interacting protein kinase (Hipk) has been shown to regulate in vivo, the stability of Armadillo, the transcriptional effector of Wingless signaling. The Wingless pathway culminates in the stabilization of Armadillo that, in the absence of signaling, is sequentially phosphorylated, polyubiquitinated and degraded. Loss-of-function clones for hipk result in reduced stabilized Armadillo, whereas overexpression of hipk elevates Armadillo levels to promote Wingless-responsive target gene expression. Here, we show that overexpression of hipk can suppress the effects of negative regulators of Armadillo to prevent its degradation in the wing imaginal disc. Hipk acts to stabilize Armadillo by impeding the function of the E3 ubiquitin ligase Skp1-Cul1-F-box (SCF)(Slimb), thereby inhibiting Armadillo ubiquitination and subsequent degradation. Vertebrate Hipk2 displays a similar ability to prevent β-catenin ubiquitination in a functionally conserved mechanism. We find that Hipk's ability to inhibit SCF(Slimb)-mediated ubiquitination is not restricted to Armadillo and extends to other substrates of SCF(Slimb), including the Hedgehog signaling effector Ci. Thus, similar to casein kinase 1 and glycogen synthase kinase 3, Hipk dually regulates both Wingless and Hedgehog signaling by controlling the stability of their respective signaling effectors, but it is the first kinase to our knowledge identified that promotes the stability of both Armadillo and Ci.

  1. Rice root curling, a response to mechanosensing, is modulated by the rice E3-ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (OsHOS1).

    PubMed

    Lourenço, T F; Serra, T S; Cordeiro, A M; Swanson, S J; Gilroy, S; Saibo, N J M; Oliveira, M M

    2016-08-01

    Plant development depends on the perception of external cues, such as light, gravity, touch, wind or nutrients, among others. Nevertheless, little is known regarding signal transduction pathways integrating these stimuli. Recently, we have reported the involvement of a rice E3-ubiquitin ligase (OsHOS1, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1), previously associated with abiotic stress response, in root responses to mechanical stimuli. We showed that OsHOS1 is involved in the regulation of root curling after mechanosensing and that RNAi::OsHOS1 plants failed to exhibit the root curling phenotype observed in WT. Interestingly, the straight root phenotype of these transgenics correlated with the up-regulation of rice ROOT MEANDER CURLING (OsRMC, a negative regulator of rice root curling) and was reverted by the exogenous application of jasmonic acid. Altogether, our results highlight the role of the proteasome modulating plant responses to mechanical stimuli and suggest that OsHOS1 is a hub integrating environmental and hormonal signaling into plant growth and development. PMID:27467198

  2. The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis.

    PubMed

    Zhang, Huawei; Cui, Feng; Wu, Yaorong; Lou, Lijuan; Liu, Lijing; Tian, Miaomiao; Ning, Yuese; Shu, Kai; Tang, Sanyuan; Xie, Qi

    2015-01-01

    The plant hormone abscisic acid (ABA) regulates many aspects of plant development and the stress response. The intracellular E3 ligase SDIR1 (SALT- AND DROUGHT-INDUCED REALLY INTERESTING NEW GENE FINGER1) plays a key role in ABA signaling, regulating ABA-related seed germination and the stress response. In this study, we found that SDIR1 is localized on the endoplasmic reticulum membrane in Arabidopsis thaliana. Using cell biology, molecular biology, and biochemistry approaches, we demonstrated that SDIR1 interacts with and ubiquitinates its substrate, SDIRIP1 (SDIR1-INTERACTING PROTEIN1), to modulate SDIRIP1 stability through the 26S proteasome pathway. SDIRIP1 acts genetically downstream of SDIR1 in ABA and salt stress signaling. In detail, SDIRIP1 selectively regulates the expression of the downstream basic region/leucine zipper motif transcription factor gene ABA-INSENSITIVE5, rather than ABA-RESPONSIVE ELEMENTS BINDING FACTOR3 (ABF3) or ABF4, to regulate ABA-mediated seed germination and the plant salt response. Overall, the SDIR1/SDIRIP1 complex plays a vital role in ABA signaling through the ubiquitination pathway. PMID:25616872

  3. Combined walking exercise and alkali therapy in patients with CKD4-5 regulates intramuscular free amino acid pools and ubiquitin E3 ligase expression.

    PubMed

    Watson, Emma L; Kosmadakis, George C; Smith, Alice C; Viana, Joao L; Brown, Jeremy R; Molyneux, Karen; Pawluczyk, Izabella Z A; Mulheran, Michael; Bishop, Nicolette C; Shirreffs, Susan; Maughan, Ronald J; Owen, Paul J; John, Stephen G; McIntyre, Christopher W; Feehally, John; Bevington, Alan

    2013-08-01

    Muscle-wasting in chronic kidney disease (CKD) arises from several factors including sedentary behaviour and metabolic acidosis. Exercise is potentially beneficial but might worsen acidosis through exercise-induced lactic acidosis. We studied the chronic effects of exercise in CKD stage 4-5 patients (brisk walking, 30 min, 5 times/week), and non-exercising controls; each group receiving standard oral bicarbonate (STD), or additional bicarbonate (XS) (Total n = 26; Exercising + STD n = 9; Exercising +XS n = 6; Control + STD n = 8; Control + XS n = 3). Blood and vastus lateralis biopsies were drawn at baseline and 6 months. The rise in blood lactate in submaximal treadmill tests was suppressed in the Exercising + XS group. After 6 months, intramuscular free amino acids (including the branched chain amino acids) in the Exercising + STD group showed a striking chronic depletion. This did not occur in the Exercising + XS group. The effect in Exercising + XS patients was accompanied by reduced transcription of ubiquitin E3-ligase MuRF1 which activates proteolysis via the ubiquitin-proteasome pathway. Other anabolic indicators (Akt activation and suppression of the 14 kDa actin catabolic marker) were unaffected in Exercising + XS patients. Possibly because of this, overall suppression of myofibrillar proteolysis (3-methylhistidine output) was not observed. It is suggested that alkali effects in exercisers arose by countering exercise-induced acidosis. Whether further anabolic effects are attainable on combining alkali with enhanced exercise (e.g. resistance exercise) merits further investigation. PMID:23591985

  4. PHF23 (plant homeodomain finger protein 23) negatively regulates cell autophagy by promoting ubiquitination and degradation of E3 ligase LRSAM1

    PubMed Central

    Wang, Zhenda; Hu, Jia; Li, Ge; Qu, Liujing; He, Qihua; Lou, Yaxin; Song, Quansheng; Ma, Dalong; Chen, Yingyu

    2015-01-01

    Autophagy is a multistep process that involves the degradation and digestion of intracellular components by the lysosome. It has been proved that many core autophagy-related molecules participate in this event. However, new component proteins that regulate autophagy are still being discovered. At present, we report PHF23 (PHD finger protein 23) with a PHD-like zinc finger domain that can negatively regulate autophagy. Data from experiments indicated that the overexpression of PHF23 impaired autophagy, as characterized by decreased levels of LC3B-II and weakened degradation of endogenous and exogenous autophagic substrates. Conversely, knockdown of PHF23 resulted in opposite effects. Molecular mechanism studies suggested that PHF23 interacts with LRSAM1, which is an E3 ligase key for ubiquitin-dependent autophagy against invading bacteria. PHF23 promotes the ubiquitination and proteasome degradation of LRSAM1. We also show that the PHD finger of PHF23 is a functional domain needed for the interaction with LRSAM1. Altogether, our results indicate that PHF23 is a negative regulator associated in autophagy via the LRSAM1 signaling pathway. The physical and functional connection between the PHF23 and LRSAM1 needs further investigation. PMID:25484098

  5. The E3 ubiquitin ligase ZNRF2 is a substrate of mTORC1 and regulates its activation by amino acids

    PubMed Central

    Hoxhaj, Gerta; Caddye, Edward; Najafov, Ayaz; Houde, Vanessa P; Johnson, Catherine; Dissanayake, Kumara; Toth, Rachel; Campbell, David G; Prescott, Alan R; MacKintosh, Carol

    2016-01-01

    The mechanistic Target of Rapamycin complex 1 (mTORC1) senses intracellular amino acid levels through an intricate machinery, which includes the Rag GTPases, Ragulator and vacuolar ATPase (V-ATPase). The membrane-associated E3 ubiquitin ligase ZNRF2 is released into the cytosol upon its phosphorylation by Akt. In this study, we show that ZNRF2 interacts with mTOR on membranes, promoting the amino acid-stimulated translocation of mTORC1 to lysosomes and its activation in human cells. ZNRF2 also interacts with the V-ATPase and preserves lysosomal acidity. Moreover, knockdown of ZNRF2 decreases cell size and cell proliferation. Upon growth factor and amino acid stimulation, mTORC1 phosphorylates ZNRF2 on Ser145, and this phosphosite is dephosphorylated by protein phosphatase 6. Ser145 phosphorylation stimulates vesicle-to-cytosol translocation of ZNRF2 and forms a novel negative feedback on mTORC1. Our findings uncover ZNRF2 as a component of the amino acid sensing machinery that acts upstream of Rag-GTPases and the V-ATPase to activate mTORC1. DOI: http://dx.doi.org/10.7554/eLife.12278.001 PMID:27244671

  6. The p53-Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans.

    PubMed

    Coffill, Cynthia R; Lee, Alison P; Siau, Jia Wei; Chee, Sharon M; Joseph, Thomas L; Tan, Yaw Sing; Madhumalar, Arumugam; Tay, Boon-Hui; Brenner, Sydney; Verma, Chandra S; Ghadessy, Farid J; Venkatesh, Byrappa; Lane, David P

    2016-02-01

    The extant jawless vertebrates, represented by lampreys and hagfish, are the oldest group of vertebrates and provide an interesting genomic evolutionary pivot point between invertebrates and jawed vertebrates. Through genome analysis of one of these jawless vertebrates, the Japanese lamprey (Lethenteron japonicum), we identified all three members of the important p53 transcription factor family--Tp53, Tp63, and Tp73--as well as the Mdm2 and Mdm4 genes. These genes and their products are significant cellular regulators in human cancer, and further examination of their roles in this most distant vertebrate relative sheds light on their origin and coevolution. Their important role in response to DNA damage has been highlighted by the discovery of multiple copies of the Tp53 gene in elephants. Expression of lamprey p53, Mdm2, and Mdm4 proteins in mammalian cells reveals that the p53-Mdm2 interaction and the Mdm2/Mdm4 E3 ligase activity existed in the common ancestor of vertebrates and have been conserved for >500 million years of vertebrate evolution. Lamprey Mdm2 degrades human p53 with great efficiency, but this interaction is not blocked by currently available small molecule inhibitors of the human HDM2 protein, suggesting utility of lamprey Mdm2 in the study of the human p53 signaling pathway.

  7. Investigation of the molecular mechanism of δ-catenin ubiquitination: Implication of β-TrCP-1 as a potential E3 ligase.

    PubMed

    Shrestha, Hridaya; Yuan, Tingting; He, Yongfeng; Moon, Pyong-Gon; Shrestha, Nensi; Ryu, Taeyong; Park, So-Yeon; Cho, Young-Chang; Lee, Chan-Hyeong; Baek, Moon-Chang; Cho, Sayeon; Simkhada, Shishli; Kim, Hangun; Kim, Kwonseop

    2016-09-01

    Ubiquitination, a post-translational modification, involves the covalent attachment of ubiquitin to the target protein. The ubiquitin-proteasome pathway and the endosome-lysosome pathway control the degradation of the majority of eukaryotic proteins. Our previous study illustrated that δ-catenin ubiquitination occurs in a glycogen synthase kinase-3 (GSK-3) phosphorylation-dependent manner. However, the molecular mechanism of δ-catenin ubiquitination is still unknown. Here, we show that the lysine residues required for ubiquitination are located mainly in the C-terminal portion of δ-catenin. In addition, we provide evidence that β-TrCP-1 interacts with δ-catenin and functions as an E3 ligase, mediating δ-catenin ubiquitin-proteasome degradation. Furthermore, we prove that both the ubiquitin-proteasome pathway and the lysosome degradation pathway are involved in δ-catenin degradation. Our novel findings on the mechanism of δ-catenin ubiquitination will add a new perspective to δ-catenin degradation and the effects of δ-catenin on E-cadherin involved in epithelial cell-cell adhesion, which is implicated in prostate cancer progression.

  8. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains

    PubMed Central

    Wang, Chong; Long, Wenying; Peng, Chao; Hu, Lin; Zhang, Qiong; Wu, Ailing; Zhang, Xiaoqing; Duan, Xiaotao; Wong, Catherine C. L.; Tanaka, Yuetsu; Xia, Zongping

    2016-01-01

    The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation. PMID:27082114

  9. Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein

    PubMed Central

    Xu, Shan; Cherok, Edward; Das, Shweta; Li, Sunan; Roelofs, Brian A.; Ge, Shealinna X.; Polster, Brian M.; Boyman, Liron; Lederer, W. Jonathan; Wang, Chunxin; Karbowski, Mariusz

    2016-01-01

    Ubiquitin- and proteasome-dependent outer mitochondrial membrane (OMM)-associated degradation (OMMAD) is critical for mitochondrial and cellular homeostasis. However, the scope and molecular mechanisms of the OMMAD pathways are still not well understood. We report that the OMM-associated E3 ubiquitin ligase MARCH5 controls dynamin-related protein 1 (Drp1)-dependent mitochondrial fission and cell sensitivity to stress-induced apoptosis. MARCH5 knockout selectively inhibited ubiquitination and proteasomal degradation of MiD49, a mitochondrial receptor of Drp1, and consequently led to mitochondrial fragmentation. Mitochondrial fragmentation in MARCH5−/− cells was not associated with inhibition of mitochondrial fusion or bioenergetic defects, supporting the possibility that MARCH5 is a negative regulator of mitochondrial fission. Both MARCH5 re-expression and MiD49 knockout in MARCH5−/− cells reversed mitochondrial fragmentation and reduced sensitivity to stress-induced apoptosis. These findings and data showing MARCH5-dependent degradation of MiD49 upon stress support the possibility that MARCH5 regulation of MiD49 is a novel mechanism controlling mitochondrial fission and, consequently, the cellular response to stress. PMID:26564796

  10. The RING Finger Ubiquitin E3 Ligase SDIR1 Targets SDIR1-INTERACTING PROTEIN1 for Degradation to Modulate the Salt Stress Response and ABA Signaling in Arabidopsis

    PubMed Central

    Zhang, Huawei; Cui, Feng; Wu, Yaorong; Lou, Lijuan; Liu, Lijing; Tian, Miaomiao; Ning, Yuese; Shu, Kai; Tang, Sanyuan; Xie, Qi

    2015-01-01

    The plant hormone abscisic acid (ABA) regulates many aspects of plant development and the stress response. The intracellular E3 ligase SDIR1 (SALT- AND DROUGHT-INDUCED REALLY INTERESTING NEW GENE FINGER1) plays a key role in ABA signaling, regulating ABA-related seed germination and the stress response. In this study, we found that SDIR1 is localized on the endoplasmic reticulum membrane in Arabidopsis thaliana. Using cell biology, molecular biology, and biochemistry approaches, we demonstrated that SDIR1 interacts with and ubiquitinates its substrate, SDIRIP1 (SDIR1-INTERACTING PROTEIN1), to modulate SDIRIP1 stability through the 26S proteasome pathway. SDIRIP1 acts genetically downstream of SDIR1 in ABA and salt stress signaling. In detail, SDIRIP1 selectively regulates the expression of the downstream basic region/leucine zipper motif transcription factor gene ABA-INSENSITIVE5, rather than ABA-RESPONSIVE ELEMENTS BINDING FACTOR3 (ABF3) or ABF4, to regulate ABA-mediated seed germination and the plant salt response. Overall, the SDIR1/SDIRIP1 complex plays a vital role in ABA signaling through the ubiquitination pathway. PMID:25616872

  11. Several components of SKP1/Cullin/F-box E3 ubiquitin ligase complex and associated factors play a role in Agrobacterium-mediated plant transformation.

    PubMed

    Anand, Ajith; Rojas, Clemencia M; Tang, Yuhong; Mysore, Kirankumar S

    2012-07-01

    • Successful genetic transformation of plants by Agrobacterium tumefaciens requires the import of bacterial T-DNA and virulence proteins into the plant cell that eventually form a complex (T-complex). The essential components of the T-complex include the single stranded T-DNA, bacterial virulence proteins (VirD2, VirE2, VirE3 and VirF) and associated host proteins that facilitate the transfer and integration of T-DNA. The removal of the proteins from the T-complex is likely achieved by targeted proteolysis mediated by VirF and the plant ubiquitin proteasome complex. • We evaluated the involvement of the host SKP1/culin/F-box (SCF)-E3 ligase complex and its role in plant transformation. Gene silencing, mutant screening and gene expression studies suggested that the Arabidopsis homologs of yeast SKP1 (suppressor of kinetochore protein 1) protein, ASK1 and ASK2, are required for Agrobacterium-mediated plant transformation. • We identified the role for SGT1b (suppressor of the G2 allele of SKP1), an accessory protein that associates with SCF-complex, in plant transformation. We also report the differential expression of many genes that encode F-box motif containing SKP1-interacting proteins (SKIP) upon Agrobacterium infection. • We speculate that these SKIP genes could encode the plant specific F-box proteins that target the T-complex associated proteins for polyubiquitination and subsequent degradation by the 26S proteasome. PMID:22486382

  12. E3 ubiquitin ligase isolated by differential display regulates cervical cancer growth in vitro and in vivo via microRNA-143

    PubMed Central

    Li, Jibin; Wang, Xinling; Zhang, Yanshang; Zhang, Yan

    2016-01-01

    Cervical cancer is one of the most common gynecological cancers worldwide. Aberrant expression of E3 ubiquitin ligase isolated by differential display (EDD) has been detected in various types of tumor and has been demonstrated to have an important role in carcinogenesis, tumor growth and drug resistance. However, the role of EDD in cervical cancer and its underlying molecular mechanisms remains unknown. The present study aimed to investigate the role of EDD in the tumorigenicity of cervical cancer. EDD expression levels were measured using reverse transcription-quantitative polymerase chain reaction and western blotting in SiHa, HeLa, CaSki, c-41 and c-33A cervical cancer cell lines and cervical cancer tissue specimens. A functional study was performed using cell proliferation, colony formation, cell apoptosis assays in vitro and tumor growth assays in vivo with EDD either overexpressed or silenced. In the present study, EDD expression levels were significantly upregulated in cervical cancer cell lines and tissue samples. EDD knockdown significantly inhibited colony formation, cell proliferation and tumor growth and accelerated cell apoptosis in the cervical cancer cell lines and tissue samples. Furthermore, microRNA (miR)-143 expression levels were low in cervical cancer tissue samples and were negatively correlated with EDD expression. miR-143 silencing eliminated the effect of EDD on cell proliferation, colony formation and cell apoptosis in the cervical cancer cells, which suggested that miR-143 is critical for EDD-mediated regulation of cervical cancer cell growth. The results of the present study indicated that EDD may promote cervical cancer growth in vivo and in vitro by targeting miR-143. In conclusion, EDD may have an oncogenic role in cervical cancer and may serve as a potential therapeutic target for the treatment of patients with cervical cancer. PMID:27446260

  13. A pro-apoptotic function of iASPP by stabilizing p300 and CBP through inhibition of BRMS1 E3 ubiquitin ligase activity

    PubMed Central

    Kramer, D; Schön, M; Bayerlová, M; Bleckmann, A; Schön, M P; Zörnig, M; Dobbelstein, M

    2015-01-01

    The p53 family and its cofactors are potent inducers of apoptosis and form a barrier to cancer. Here, we investigated the impact of the supposedly inhibitory member of the apoptosis-stimulating protein of p53, iASPP, on the activity of the p53 homolog TAp73, and its cofactors p300 and CBP. We found that iASPP interacted with and stabilized the histone acetyltransferase p300 and its homolog CBP upon cisplatin treatment. Vice versa, iASPP depletion by shRNA resulted in decreased amounts of p300 and CBP, impaired binding of p300 and TAp73 to target site promoters, reduced induction of pro-apoptotic TAp73 target genes, and impaired apoptosis. Mechanistically, we observed that the p300-regulatory E3 ubiquitin ligase BRMS1 could rescue the degradation of p300 and CBP in cisplatin-treated, iASPP-depleted cells. This argues that iASPP stabilizes p300 and CBP by interfering with their BRMS1-mediated ubiquitination, thereby contributing to apoptotic susceptibility. In line, iASPP overexpression partially abolished the interaction of BRMS1 and CBP upon DNA damage. Reduced levels of iASPP mRNA and protein as well as CBP protein were observed in human melanoma compared with normal skin tissue and benign melanocytic nevi. In line with our findings, iASPP overexpression or knockdown of BRMS1 each augmented p300/CBP levels in melanoma cell lines, thereby enhancing apoptosis upon DNA damage. Taken together, destabilization of p300/CBP by downregulation of iASPP expression levels appears to represent a molecular mechanism that contributes to chemoresistance in melanoma cells. PMID:25675294

  14. Ubiquitin E3 Ligase Ring1b/Rnf2 of Polycomb Repressive Complex 1 Contributes to Stable Maintenance of Mouse Embryonic Stem Cells

    PubMed Central

    Hulsman, Danielle; Noback, Sonja; Heimerikx, Mike; Kerkhoven, Ron M.; Voncken, J. Willem; Wessels, Lodewyk F. A.; van Lohuizen, Maarten

    2008-01-01

    Background Polycomb repressive complex 1 (PRC1) core member Ring1b/Rnf2, with ubiquitin E3 ligase activity towards histone H2A at lysine 119, is essential for early embryogenesis. To obtain more insight into the role of Ring1b in early development, we studied its function in mouse embryonic stem (ES) cells. Methodology/Principal Findings We investigated the effects of Ring1b ablation on transcriptional regulation using Ring1b conditional knockout ES cells and large-scale gene expression analysis. The absence of Ring1b results in aberrant expression of key developmental genes and deregulation of specific differentiation-related pathways, including TGFbeta signaling, cell cycle regulation and cellular communication. Moreover, ES cell markers, including Zfp42/Rex-1 and Sox2, are downregulated. Importantly, retained expression of ES cell regulators Oct4, Nanog and alkaline phosphatase indicates that Ring1b-deficient ES cells retain important ES cell specific characteristics. Comparative analysis of our expression profiling data with previously published global binding studies shows that the genes that are bound by Ring1b in ES cells have bivalent histone marks, i.e. both active H3K4me3 and repressive H3K27me3, or the active H3K4me3 histone mark alone and are associated with CpG-‘rich’ promoters. However, deletion of Ring1b results in deregulation, mainly derepression, of only a subset of these genes, suggesting that additional silencing mechanisms are involved in repression of the other Ring1b bound genes in ES cells. Conclusions Ring1b is essential to stably maintain an undifferentiated state of mouse ES cells by repressing genes with important roles during differentiation and development. These genes are characterized by high CpG content promoters and bivalent histone marks or the active H3K4me3 histone mark alone. PMID:18493325

  15. The E3 Ubiquitin Ligase Adaptor Protein Skp1 Is Glycosylated by an Evolutionarily Conserved Pathway That Regulates Protist Growth and Development.

    PubMed

    Rahman, Kazi; Zhao, Peng; Mandalasi, Msano; van der Wel, Hanke; Wells, Lance; Blader, Ira J; West, Christopher M

    2016-02-26

    Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts. PMID:26719340

  16. RING Type E3 Ligase CaAIR1 in Pepper Acts in the Regulation of ABA Signaling and Drought Stress Response.

    PubMed

    Park, Chanmi; Lim, Chae Woo; Baek, Woonhee; Lee, Sung Chul

    2015-09-01

    Several E3 ubiquitin ligases have been associated with the response to abiotic and biotic stresses in higher plants. Here, we report that the hot pepper (Capsicum annuum) ABA-Insensitive RING protein 1 gene (CaAIR1) is essential for a hypersensitive response to drought stress. CaAIR1 contains a C3HC4-type RING finger motif, which plays a role for attachment of ubiquitins to the target protein, and a putative transmembrane domain. The expression levels of CaAIR1 are up-regulated in pepper leaves by ABA treatments, drought and NaCl, suggesting its role in the response to abiotic stress. Our analysis showed that CaAIR1 displays self-ubiquitination and is localized in the nucleus. We generated CaAIR1-silenced peppers via virus-induced gene silencing (VIGS) and CaAIR1-overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to ABA and drought. VIGS of CaAIR1 in pepper plants conferred an enhanced tolerance to drought stress, which was accompanied by low levels of transpirational water loss in the drought-treated leaves. CaAIR1-OX plants displayed an impaired sensitivity to ABA during seed germination, seedling and adult stages. Moreover, these plants showed enhanced sensitivity to drought stress because of reduced stomatal closure and decreased expression of stress-responsive genes. Thus, our data indicate that CaAIR1 is a negative regulator of the ABA-mediated drought stress tolerance mechanism.

  17. Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS6.

    PubMed

    Mendiondo, Guillermina M; Gibbs, Daniel J; Szurman-Zubrzycka, Miriam; Korn, Arnd; Marquez, Julietta; Szarejko, Iwona; Maluszynski, Miroslaw; King, John; Axcell, Barry; Smart, Katherine; Corbineau, Francoise; Holdsworth, Michael J

    2016-01-01

    Increased tolerance of crops to low oxygen (hypoxia) during flooding is a key target for food security. In Arabidopsis thaliana (L.) Heynh., the N-end rule pathway of targeted proteolysis controls plant responses to hypoxia by regulating the stability of group VII ethylene response factor (ERFVII) transcription factors, controlled by the oxidation status of amino terminal (Nt)-cysteine (Cys). Here, we show that the barley (Hordeum vulgare L.) ERFVII BERF1 is a substrate of the N-end rule pathway in vitro. Furthermore, we show that Nt-Cys acts as a sensor for hypoxia in vivo, as the stability of the oxygen-sensor reporter protein MCGGAIL-GUS increased in waterlogged transgenic plants. Transgenic RNAi barley plants, with reduced expression of the N-end rule pathway N-recognin E3 ligase PROTEOLYSIS6 (HvPRT6), showed increased expression of hypoxia-associated genes and altered seed germination phenotypes. In addition, in response to waterlogging, transgenic plants showed sustained biomass, enhanced yield, retention of chlorophyll, and enhanced induction of hypoxia-related genes. HvPRT6 RNAi plants also showed reduced chlorophyll degradation in response to continued darkness, often associated with waterlogged conditions. Barley Targeting Induced Local Lesions IN Genomes (TILLING) lines, containing mutant alleles of HvPRT6, also showed increased expression of hypoxia-related genes and phenotypes similar to RNAi lines. We conclude that the N-end rule pathway represents an important target for plant breeding to enhance tolerance to waterlogging in barley and other cereals. PMID:25657015

  18. Truncation of the E3 ubiquitin ligase component FBXO31 causes non-syndromic autosomal recessive intellectual disability in a Pakistani family.

    PubMed

    Mir, Asif; Sritharan, Kumudesh; Mittal, Kirti; Vasli, Nasim; Araujo, Carolina; Jamil, Talal; Rafiq, Muhammad Arshad; Anwar, Zubair; Mikhailov, Anna; Rauf, Sobiah; Mahmood, Huda; Shakoor, Abdul; Ali, Sabir; So, Joyce; Naeem, Farooq; Ayub, Muhammad; Vincent, John B

    2014-08-01

    In this study, we have performed autozygosity mapping on a large consanguineous Pakistani family segregating with intellectual disability. We identified two large regions of homozygosity-by-descent (HBD) on 16q12.2-q21 and 16q24.1-q24.3. Whole exome sequencing (WES) was performed on an affected individual from the family, but initially, no obvious mutation was detected. However, three genes within the HBD regions that were not fully captured during the WES were Sanger sequenced and we identified a five base pair deletion (actually six base pairs deleted plus one base pair inserted) in exon 7 of the gene FBXO31. The variant segregated completely in the family, in recessive fashion giving a LOD score of 3.95. This variant leads to a frameshift and a premature stop codon and truncation of the FBXO31 protein, p.(Cys283Asnfs*81). Quantification of mRNA and protein expression suggests that nonsense-mediated mRNA decay also contributes to the loss of FBXO31 protein in affected individuals. FBXO31 functions as a centrosomal E3 ubiquitin ligase, in association with SKP1 and Cullin-1, involved in ubiquitination of proteins targeted for degradation. The FBXO31/SKP1/Cullin1 complex is important for neuronal morphogenesis and axonal identity. FBXO31 also plays a role in dendrite growth and neuronal migration in developing cerebellar cortex. Our finding adds further evidence of the involvement of disruption of the protein ubiquitination pathway in intellectual disability.

  19. The E3 Ubiquitin Ligase Adaptor Protein Skp1 Is Glycosylated by an Evolutionarily Conserved Pathway That Regulates Protist Growth and Development.

    PubMed

    Rahman, Kazi; Zhao, Peng; Mandalasi, Msano; van der Wel, Hanke; Wells, Lance; Blader, Ira J; West, Christopher M

    2016-02-26

    Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts.

  20. The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses.

    PubMed

    Kim, Jong Hum; Kim, Woo Taek

    2013-07-01

    Really Interesting New Gene (RING) E3 ubiquitin ligases have been implicated in cellular responses to the stress hormone abscisic acid (ABA) as well as to environmental stresses in higher plants. Here, an ABA-insensitive RING protein3 (atairp3) loss-of-function mutant line in Arabidopsis (Arabidopsis thaliana) was isolated due to its hyposensitivity to ABA during its germination stage as compared with wild-type plants. AtAIRP3 contains a single C3HC4-type RING motif, a putative myristoylation site, and a domain associated with RING2 (DAR2) domain. Unexpectedly, AtAIRP3 was identified as LOSS OF GDU2 (LOG2), which was recently shown to participate in an amino acid export system via interaction with GLUTAMINE DUMPER1. Thus, AtAIRP3 was renamed as AtAIRP3/LOG2. Transcript levels of AtAIRP3/LOG2 were up-regulated by drought, high salinity, and ABA, suggesting a role for this factor in abiotic stress responses. The atairp3/log2-2 knockout mutant and 35S:AtAIRP3-RNAi knockdown transgenic plants displayed impaired ABA-mediated seed germination and stomata closure. Cosuppression and complementation studies further supported a positive role for AtAIRP3/LOG2 in ABA responses. Suppression of AtAIRP3/LOG2 resulted in marked hypersensitive phenotypes toward high salinity and water deficit relative to wild-type plants. These results suggest that Arabidopsis RING E3 AtAIRP3/LOG2 is a positive regulator of the ABA-mediated drought and salt stress tolerance mechanism. Using yeast (Saccharomyces cerevisiae) two-hybrid, in vitro, and in vivo immunoprecipitation, cell-free protein degradation, and in vitro ubiquitination assays, RESPONSIVE TO DEHYDRATION21 was identified as a substrate protein of AtAIRP3/LOG2. Collectively, our data suggest that AtAIRP3/LOG2 plays dual functions in ABA-mediated drought stress responses and in an amino acid export pathway in Arabidopsis.

  1. The Matrix Protein of Nipah Virus Targets the E3-Ubiquitin Ligase TRIM6 to Inhibit the IKKε Kinase-Mediated Type-I IFN Antiviral Response

    PubMed Central

    Dawes, Brian E.; Yun, Tatyana E.; Park, Arnold; Yen, Benjamin; Basler, Christopher F.; Freiberg, Alexander N.; Lee, Benhur; Rajsbaum, Ricardo

    2016-01-01

    For efficient replication, viruses have developed mechanisms to evade innate immune responses, including the antiviral type-I interferon (IFN-I) system. Nipah virus (NiV), a highly pathogenic member of the Paramyxoviridae family (genus Henipavirus), is known to encode for four P gene-derived viral proteins (P/C/W/V) with IFN-I antagonist functions. Here we report that NiV matrix protein (NiV-M), which is important for virus assembly and budding, can also inhibit IFN-I responses. IFN-I production requires activation of multiple signaling components including the IκB kinase epsilon (IKKε). We previously showed that the E3-ubiquitin ligase TRIM6 catalyzes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, and activate IKKε for induction of IFN-I mediated antiviral responses. Using co-immunoprecipitation assays and confocal microscopy we show here that the NiV-M protein interacts with TRIM6 and promotes TRIM6 degradation. Consequently, NiV-M expression results in reduced levels of unanchored K48-linked polyubiquitin chains associated with IKKε leading to impaired IKKε oligomerization, IKKε autophosphorylation and reduced IFN-mediated responses. This IFN antagonist function of NiV-M requires a conserved lysine residue (K258) in the bipartite nuclear localization signal that is found in divergent henipaviruses. Consistent with this, the matrix proteins of Ghana, Hendra and Cedar viruses were also able to inhibit IFNβ induction. Live NiV infection, but not a recombinant NiV lacking the M protein, reduced the levels of endogenous TRIM6 protein expression. To our knowledge, matrix proteins of paramyxoviruses have never been reported to be involved in innate immune antagonism. We report here a novel mechanism of viral innate immune evasion by targeting TRIM6, IKKε and unanchored polyubiquitin chains. These findings expand the universe of viral IFN antagonism strategies and provide a new potential target for

  2. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1.

    PubMed

    Ma-Lauer, Yue; Carbajo-Lozoya, Javier; Hein, Marco Y; Müller, Marcel A; Deng, Wen; Lei, Jian; Meyer, Benjamin; Kusov, Yuri; von Brunn, Brigitte; Bairad, Dev Raj; Hünten, Sabine; Drosten, Christian; Hermeking, Heiko; Leonhardt, Heinrich; Mann, Matthias; Hilgenfeld, Rolf; von Brunn, Albrecht

    2016-08-30

    Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PL(pro)), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95-144 of RCHY1 and 389-652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PL(pro)s from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD-PL(pro) fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PL(pro) alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes. PMID:27519799

  3. The kinin B1 receptor regulates muscle-specific E3 ligases expression and is involved in skeletal muscle mass control.

    PubMed

    Parreiras-E-Silva, Lucas T; Reis, Rosana I; Santos, Geisa A; Pires-Oliveira, Marcelo; Pesquero, João B; Gomes, Marcelo D; Godinho, Rosely O; Costa-Neto, Claudio M

    2014-08-01

    Regulation of muscle mass depends on the balance between synthesis and degradation of proteins, which is under the control of different signalling pathways regulated by hormonal, neural and nutritional stimuli. Such stimuli are altered in several pathologies, including COPD (chronic obstructive pulmonary disease), diabetes, AIDS and cancer (cachexia), as well as in some conditions such as immobilization and aging (sarcopenia), leading to muscle atrophy, which represents a significant contribution to patient morbidity. The KKS (kallikrein-kinin system) is composed of the enzymes kallikreins, which generate active peptides called kinins that activate two G-protein-coupled receptors, namely B1 and B2, which are expressed in a variety of tissues. The local modulation of the KKS may account for its participation in different diseases, such as those of the cardiovascular, renal and central nervous systems, cancer and many inflammatory processes, including pain. Owing to such pleiotropic actions of the KKS by local modulatory events and the probable fine-tuning of associated signalling cascades involved in skeletal muscle catabolic disorders [for example, NF-κB (nuclear factor κB) and PI3K (phosphoinositide 3-kinase)/Akt pathways], we hypothesized that KKS might contribute to the modulation of intracellular responses in atrophying skeletal muscle. Our results show that kinin B1 receptor activation induced a decrease in the diameter of C2C12 myotubes, activation of NF-κB, a decrease in Akt phosphorylation levels, and an increase in the mRNA levels of the ubiquitin E3 ligases atrogin-1 and MuRF-1 (muscle RING-finger protein-1). In vivo, we observed an increase in kinin B1 receptor mRNA levels in an androgen-sensitive model of muscle atrophy. In the same model, inhibition of the kinin B1 receptor with a selective antagonist resulted in an impairment of atrogin-1 and MuRF-1 expression and IκB (inhibitor of NF-κB) phosphorylation. Moreover, knockout of the kinin B1

  4. The Matrix Protein of Nipah Virus Targets the E3-Ubiquitin Ligase TRIM6 to Inhibit the IKKε Kinase-Mediated Type-I IFN Antiviral Response.

    PubMed

    Bharaj, Preeti; Wang, Yao E; Dawes, Brian E; Yun, Tatyana E; Park, Arnold; Yen, Benjamin; Basler, Christopher F; Freiberg, Alexander N; Lee, Benhur; Rajsbaum, Ricardo

    2016-09-01

    For efficient replication, viruses have developed mechanisms to evade innate immune responses, including the antiviral type-I interferon (IFN-I) system. Nipah virus (NiV), a highly pathogenic member of the Paramyxoviridae family (genus Henipavirus), is known to encode for four P gene-derived viral proteins (P/C/W/V) with IFN-I antagonist functions. Here we report that NiV matrix protein (NiV-M), which is important for virus assembly and budding, can also inhibit IFN-I responses. IFN-I production requires activation of multiple signaling components including the IκB kinase epsilon (IKKε). We previously showed that the E3-ubiquitin ligase TRIM6 catalyzes the synthesis of unanchored K48-linked polyubiquitin chains, which are not covalently attached to any protein, and activate IKKε for induction of IFN-I mediated antiviral responses. Using co-immunoprecipitation assays and confocal microscopy we show here that the NiV-M protein interacts with TRIM6 and promotes TRIM6 degradation. Consequently, NiV-M expression results in reduced levels of unanchored K48-linked polyubiquitin chains associated with IKKε leading to impaired IKKε oligomerization, IKKε autophosphorylation and reduced IFN-mediated responses. This IFN antagonist function of NiV-M requires a conserved lysine residue (K258) in the bipartite nuclear localization signal that is found in divergent henipaviruses. Consistent with this, the matrix proteins of Ghana, Hendra and Cedar viruses were also able to inhibit IFNβ induction. Live NiV infection, but not a recombinant NiV lacking the M protein, reduced the levels of endogenous TRIM6 protein expression. To our knowledge, matrix proteins of paramyxoviruses have never been reported to be involved in innate immune antagonism. We report here a novel mechanism of viral innate immune evasion by targeting TRIM6, IKKε and unanchored polyubiquitin chains. These findings expand the universe of viral IFN antagonism strategies and provide a new potential target for

  5. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1.

    PubMed

    Ma-Lauer, Yue; Carbajo-Lozoya, Javier; Hein, Marco Y; Müller, Marcel A; Deng, Wen; Lei, Jian; Meyer, Benjamin; Kusov, Yuri; von Brunn, Brigitte; Bairad, Dev Raj; Hünten, Sabine; Drosten, Christian; Hermeking, Heiko; Leonhardt, Heinrich; Mann, Matthias; Hilgenfeld, Rolf; von Brunn, Albrecht

    2016-08-30

    Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PL(pro)), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95-144 of RCHY1 and 389-652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PL(pro)s from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD-PL(pro) fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PL(pro) alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes.

  6. HTLV-1 Tax Stimulates Ubiquitin E3 Ligase, Ring Finger Protein 8, to Assemble Lysine 63-Linked Polyubiquitin Chains for TAK1 and IKK Activation.

    PubMed

    Ho, Yik-Khuan; Zhi, Huijun; Bowlin, Tara; Dorjbal, Batsukh; Philip, Subha; Zahoor, Muhammad Atif; Shih, Hsiu-Ming; Semmes, Oliver John; Schaefer, Brian; Glover, J N Mark; Giam, Chou-Zen

    2015-08-01

    Human T lymphotropic virus type 1 (HTLV-1) trans-activator/oncoprotein, Tax, impacts a multitude of cellular processes, including I-κB kinase (IKK)/NF-κB signaling, DNA damage repair, and mitosis. These activities of Tax have been implicated in the development of adult T-cell leukemia (ATL) in HTLV-1-infected individuals, but the underlying mechanisms remain obscure. IKK and its upstream kinase, TGFβ-activated kinase 1 (TAK1), contain ubiquitin-binding subunits, NEMO and TAB2/3 respectively, which interact with K63-linked polyubiquitin (K63-pUb) chains. Recruitment to K63-pUb allows cross auto-phosphorylation and activation of TAK1 to occur, followed by TAK1-catalyzed IKK phosphorylation and activation. Using cytosolic extracts of HeLa and Jurkat T cells supplemented with purified proteins we have identified ubiquitin E3 ligase, ring finger protein 8 (RNF8), and E2 conjugating enzymes, Ubc13:Uev1A and Ubc13:Uev2, to be the cellular factors utilized by Tax for TAK1 and IKK activation. In vitro, the combination of Tax and RNF8 greatly stimulated TAK1, IKK, IκBα and JNK phosphorylation. In vivo, RNF8 over-expression augmented while RNF8 ablation drastically reduced canonical NF-κB activation by Tax. Activation of the non-canonical NF-κB pathway by Tax, however, is unaffected by the loss of RNF8. Using purified components, we further demonstrated biochemically that Tax greatly stimulated RNF8 and Ubc13:Uev1A/Uev2 to assemble long K63-pUb chains. Finally, co-transfection of Tax with increasing amounts of RNF8 greatly induced K63-pUb assembly in a dose-dependent manner. Thus, Tax targets RNF8 and Ubc13:Uev1A/Uev2 to promote the assembly of K63-pUb chains, which signal the activation of TAK1 and multiple downstream kinases including IKK and JNK. Because of the roles RNF8 and K63-pUb chains play in DNA damage repair and cytokinesis, this mechanism may also explain the genomic instability of HTLV-1-transformed T cells and ATL cells.

  7. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1

    PubMed Central

    Ma-Lauer, Yue; Carbajo-Lozoya, Javier; Müller, Marcel A.; Deng, Wen; Lei, Jian; Meyer, Benjamin; Kusov, Yuri; von Brunn, Brigitte; Bairad, Dev Raj; Hünten, Sabine; Drosten, Christian; Hermeking, Heiko; Leonhardt, Heinrich; Mann, Matthias; Hilgenfeld, Rolf; von Brunn, Albrecht

    2016-01-01

    Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PLpro), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95–144 of RCHY1 and 389–652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PLpros from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD–PLpro fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PLpro alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes. PMID:27519799

  8. KCMF1 (potassium channel modulatory factor 1) Links RAD6 to UBR4 (ubiquitin N-recognin domain-containing E3 ligase 4) and Lysosome-Mediated Degradation*

    PubMed Central

    Hong, Jenny H.; Kaustov, Lilia; Coyaud, Etienne; Srikumar, Tharan; Wan, Janet; Arrowsmith, Cheryl; Raught, Brian

    2015-01-01

    RAD6 is a ubiquitin E2 protein with roles in a number of different biological processes. Here, using affinity purification coupled with mass spectrometry, we identify a number of new RAD6 binding partners, including the poorly characterized ubiquitin E3 ligases KCMF1 (potassium channel modulatory factor 1) and UBR4 (ubiquitin N-recognin domain-containing E3 ligase 4), a protein that can bind N-end rule substrates, and which was recently linked to lysosome-mediated degradation and autophagy. NMR, combined with in vivo and in vitro interaction mapping, demonstrate that the KCMF1 C terminus binds directly to RAD6, whereas N-terminal domains interact with UBR4 and other intracellular vesicle- and mitochondria-associated proteins. KCMF1 and RAD6 colocalize at late endosomes and lysosomes, and cells disrupted for KCMF1 or RAD6 function display defects in late endosome vesicle dynamics. Notably, we also find that two different RAD6A point mutants (R7W and R11Q) found in X-linked intellectual disability (XLID) patients specifically lose the interaction with KCMF1 and UBR4, but not with other previously identified RAD6 interactors. We propose that RAD6-KCMF1-UBR4 represents a unique new E2-E3 complex that targets unknown N-end rule substrates for lysosome-mediated degradation, and that disruption of this complex via RAD6A mutations could negatively affect neuronal function in XLID patients. PMID:25582440

  9. Genome-Wide Identification of Soybean U-Box E3 Ubiquitin Ligases and Roles of GmPUB8 in Negative Regulation of Drought Stress Response in Arabidopsis.

    PubMed

    Wang, Ning; Liu, Yaping; Cong, Yahui; Wang, Tingting; Zhong, Xiujuan; Yang, Shouping; Li, Yan; Gai, Junyi

    2016-06-01

    Plant U-box (PUB) E3 ubiquitin ligases play important roles in hormone signaling pathways and response to abiotic stresses, but little is known about them in soybean, Glycine max. Here, we identified and characterized 125 PUB genes from the soybean genome, which were classified into eight groups according to their protein domains. Soybean PUB genes (GmPUB genes) are broadly expressed in many tissues and are a little more abundant in the roots than in the other tissues. Nine GmPUB genes, GmPUB1-GmPUB9, showed induced expression patterns by drought, and the expression of GmPUB8 was also induced by exogenous ABA and NaCl. GmPUB8 was localized to post-Golgi compartments, interacting with GmE2 protein as demonstrated by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments, and showed E3 ubiquitin ligase activity by in vitro ubiquitination assay. Heterogeneous overexpression of GmPUB8 in Arabidopsis showed decreased drought tolerance, enhanced sensitivity with respect to osmotic and salt stress inhibition of seed germination and seedling growth, and inhibited ABA- and mannitol-mediated stomatal closure. Eight drought stress-related genes were less induced in GmPUB8-overexpressing Arabidopsis after drought treatment compared with the wild type and the pub23 mutant. Taken together, our results suggested that GmPUB8 might negatively regulate plant response to drought stress. In addition, Y2H and BiFC showed that GmPUB8 interacted with soybean COL (CONSTANS LIKE) protein. GmPUB8-overexpressing Arabidopsis flowered earlier under middle- and short-day conditions but later under long-day conditions, indicating that GmPUB8 might regulate flowering time in the photoperiod pathway. This study helps us to understand the functions of PUB E3 ubiquitin ligases in soybean.

  10. Nonhost resistance of tomato to the bean pathogen Pseudomonas syringae pv. syringae B728a is due to a defective E3 ubiquitin ligase domain in avrptobb728a.

    PubMed

    Chien, Ching-Fang; Mathieu, Johannes; Hsu, Chun-Hua; Boyle, Patrick; Martin, Gregory B; Lin, Nai-Chun

    2013-04-01

    The bean pathogen Pseudomonas syringae pv. syringae B728a expresses homologs of the type III effectors AvrPto and AvrPtoB, either of which can trigger resistance in tomato cultivars expressing Pto and Prf genes. We found that strain B728a also elicits nonhost resistance in tomato cultivars VFNT Cherry and Moneymaker that lack Pto but express other members of the Pto family (e.g., SlFen and SlPtoC). Here, we show that the AvrPtoB homolog from B728a, termed AvrPtoBB728a (also known as HopAB1), is recognized by 'VFNT Cherry' and 'Moneymaker' when the effector is expressed in P. syringae pv. syringae 61, a strain lacking the avrPto or avrPtoB homolog. Using a gene-silencing approach, this recognition was shown to involve one or more Pto family members and Prf. AvrPtoBB728a interacted with SlFen, SlPtoC, and SlPtoD, in addition to Pto, in a yeast two-hybrid assay. In P. syringae pv. tomato DC3000, the C-terminal domain of AvrPtoB is an E3 ubiquitin ligase that ubiquitinates Fen, causing its degradation and leading to disease susceptibility. Although the C-terminal domain of AvrPtoBB728a shares 69% amino acid identity with that of AvrPtoB, we found that it has greatly reduced E3 ligase activity and is unable to ubiquitinate Fen in an in vitro ubiquitination assay. Thus, the nonhost resistance of 'VFNT Cherry' and 'Moneymaker' to B728a appears to be due to recognition of AvrPtoBB728 as a result of the effector's reduced E3 ligase activity, which prevents it from facilitating degradation of a Pto family member. We speculate that the primary plant host of B728a lacks a Fen-like protein and that, therefore, the E3 ligase of AvrPtoBB728 was unnecessary for pathogenicity and has diverged and become ineffective. PMID:23252461

  11. Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor.

    PubMed

    Tarpey, Patrick S; Raymond, F Lucy; O'Meara, Sarah; Edkins, Sarah; Teague, Jon; Butler, Adam; Dicks, Ed; Stevens, Claire; Tofts, Calli; Avis, Tim; Barthorpe, Syd; Buck, Gemma; Cole, Jennifer; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Jenkinson, Andrew; Jones, David; Menzies, Andrew; Mironenko, Tatiana; Perry, Janet; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Varian, Jennifer; West, Sofie; Widaa, Sara; Mallya, Uma; Moon, Jenny; Luo, Ying; Holder, Susan; Smithson, Sarah F; Hurst, Jane A; Clayton-Smith, Jill; Kerr, Bronwyn; Boyle, Jackie; Shaw, Marie; Vandeleur, Lucianne; Rodriguez, Jayson; Slaugh, Rachel; Easton, Douglas F; Wooster, Richard; Bobrow, Martin; Srivastava, Anand K; Stevenson, Roger E; Schwartz, Charles E; Turner, Gillian; Gecz, Jozef; Futreal, P Andrew; Stratton, Michael R; Partington, Michael

    2007-02-01

    We have identified three truncating, two splice-site, and three missense variants at conserved amino acids in the CUL4B gene on Xq24 in 8 of 250 families with X-linked mental retardation (XLMR). During affected subjects' adolescence, a syndrome emerged with delayed puberty, hypogonadism, relative macrocephaly, moderate short stature, central obesity, unprovoked aggressive outbursts, fine intention tremor, pes cavus, and abnormalities of the toes. This syndrome was first described by Cazebas et al., in a family that was included in our study and that carried a CUL4B missense variant. CUL4B is a ubiquitin E3 ligase subunit implicated in the regulation of several biological processes, and CUL4B is the first XLMR gene that encodes an E3 ubiquitin ligase. The relatively high frequency of CUL4B mutations in this series indicates that it is one of the most commonly mutated genes underlying XLMR and suggests that its introduction into clinical diagnostics should be a high priority. PMID:17236139

  12. HIV-1 Vpr Protein Enhances Proteasomal Degradation of MCM10 DNA Replication Factor through the Cul4-DDB1[VprBP] E3 Ubiquitin Ligase to Induce G2/M Cell Cycle Arrest*

    PubMed Central

    Romani, Bizhan; Shaykh Baygloo, Nima; Aghasadeghi, Mohammad Reza; Allahbakhshi, Elham

    2015-01-01

    Human immunodeficiency virus type 1 Vpr is an accessory protein that induces G2/M cell cycle arrest. It is well documented that interaction of Vpr with the Cul4-DDB1[VprBP] E3 ubiquitin ligase is essential for the induction of G2/M arrest. In this study, we show that HIV-1 Vpr indirectly binds MCM10, a eukaryotic DNA replication factor, in a Vpr-binding protein (VprBP) (VprBP)-dependent manner. Binding of Vpr to MCM10 enhanced ubiquitination and proteasomal degradation of MCM10. G2/M-defective mutants of Vpr were not able to deplete MCM10, and we show that Vpr-induced depletion of MCM10 is related to the ability of Vpr to induce G2/M arrest. Our study demonstrates that MCM10 is the natural substrate of the Cul4-DDB1[VprBP] E3 ubiquitin ligase whose degradation is regulated by VprBP, but Vpr enhances the proteasomal degradation of MCM10 by interacting with VprBP. PMID:26032416

  13. HIV-1 Vpr Protein Enhances Proteasomal Degradation of MCM10 DNA Replication Factor through the Cul4-DDB1[VprBP] E3 Ubiquitin Ligase to Induce G2/M Cell Cycle Arrest.

    PubMed

    Romani, Bizhan; Shaykh Baygloo, Nima; Aghasadeghi, Mohammad Reza; Allahbakhshi, Elham

    2015-07-10

    Human immunodeficiency virus type 1 Vpr is an accessory protein that induces G2/M cell cycle arrest. It is well documented that interaction of Vpr with the Cul4-DDB1[VprBP] E3 ubiquitin ligase is essential for the induction of G2/M arrest. In this study, we show that HIV-1 Vpr indirectly binds MCM10, a eukaryotic DNA replication factor, in a Vpr-binding protein (VprBP) (VprBP)-dependent manner. Binding of Vpr to MCM10 enhanced ubiquitination and proteasomal degradation of MCM10. G2/M-defective mutants of Vpr were not able to deplete MCM10, and we show that Vpr-induced depletion of MCM10 is related to the ability of Vpr to induce G2/M arrest. Our study demonstrates that MCM10 is the natural substrate of the Cul4-DDB1[VprBP] E3 ubiquitin ligase whose degradation is regulated by VprBP, but Vpr enhances the proteasomal degradation of MCM10 by interacting with VprBP.

  14. A Non-Canonical Function of Gβ as a Subunit of E3 Ligase in Targeting GRK2 Ubiquitylation.

    PubMed

    Zha, Zhengyu; Han, Xiaoran; Smith, Matthew D; Liu, Yang; Giguère, Patrick M; Kopanja, Dragana; Raychaudhuri, Pradip; Siderovski, David P; Guan, Kun-Liang; Lei, Qun-Ying; Xiong, Yue

    2015-06-01

    G protein-coupled receptors (GPCRs) comprise the largest family of cell surface receptors, regulate a wide range of physiological processes, and are the major targets of pharmaceutical drugs. Canonical signaling from GPCRs is relayed to intracellular effector proteins by trimeric G proteins, composed of α, β, and γ subunits (Gαβγ). Here, we report that G protein β subunits (Gβ) bind to DDB1 and that Gβ2 targets GRK2 for ubiquitylation by the DDB1-CUL4A-ROC1 ubiquitin ligase. Activation of GPCR results in PKA-mediated phosphorylation of DDB1 at Ser645 and its dissociation from Gβ2, leading to increase of GRK2 protein. Deletion of Cul4a results in cardiac hypertrophy in male mice that can be partially rescued by the deletion of one Grk2 allele. These results reveal a non-canonical function of the Gβ protein as a ubiquitin ligase component and a mechanism of feedback regulation of GPCR signaling.

  15. Proteolytic Degradation of the Yap1 Transcription Factor Is Regulated by Subcellular Localization and the E3 Ubiquitin Ligase Not4*

    PubMed Central

    Gulshan, Kailash; Thommandru, Bernice; Moye-Rowley, W. Scott

    2012-01-01

    Saccharomyces cerevisiae Yap1 is a transcriptional regulatory protein that serves as a central determinant of oxidative stress tolerance. Activity of this factor is regulated in large part by control of its subcellular location. In the absence of oxidants, Yap1 is primarily located in the cytoplasm. Upon oxidant challenge, Yap1 accumulates rapidly in the nucleus where it activates expression of genes required for oxidative stress tolerance such as the thioredoxin TRX2. Here, we demonstrate that Yap1 degradation is accelerated in response to oxidative stress. Yap1 is folded differently depending on the oxidant used to induce its nuclear localization but is degraded similarly, irrespective of its folded status. Mutant forms of Yap1 that are constitutively trapped in the nucleus are degraded in the absence of an oxidant signal. Degradation requires the ability of the protein to bind DNA and a domain in the amino-terminal region of the factor. Inhibition of the proteasome prevents Yap1 turnover. Screening a variety of mutants involved in ubiquitin-mediated proteolysis demonstrated an important role for the nuclear ubiquitin ligase Not4 in Yap1 degradation. Not4 was found to bind to Yap1 in an oxidant-stimulated fashion. The Candida albicans Yap1 homologue (Cap1) also was degraded after oxidant challenge. These data uncover a new, conserved pathway for regulation of the oxidative stress response that serves to temporally limit the duration of Yap1-dependent transcriptional activation. PMID:22707721

  16. Targeted Disruption of Drosophila Roc1b Reveals Functional Differences in the Roc Subunit of Cullin-dependent E3 Ubiquitin Ligases

    PubMed Central

    Donaldson, Timothy D.; Noureddine, Maher A.; Reynolds, Patrick J.; Bradford, William; Duronio, Robert J.

    2004-01-01

    Cullin-dependent ubiquitin ligases regulate a variety of cellular and developmental processes by recruiting specific proteins for ubiquitin-mediated degradation. Cullin proteins form a scaffold for two functional modules: a catalytic module comprised of a small RING domain protein Roc1/Rbx1 and a ubiquitin-conjugating enzyme (E2), and a substrate recruitment module containing one or more proteins that bind to and bring the substrate in proximity to the catalytic module. Here, we present evidence that the three Drosophila Roc proteins are not functionally equivalent. Mutation of Roc1a causes lethality that cannot be rescued by expression of Roc1b or Roc2 by using the Roc1a promoter. Roc1a mutant cells hyperaccumulate Cubitus interruptus, a transcription factor that mediates Hedgehog signaling. This phenotype is not rescued by expression of Roc2 and only partially by expression of Roc1b. Targeted disruption of Roc1b causes male sterility that is partially rescued by expression of Roc1a by using the Roc1b promoter, but not by similar expression of Roc2. These data indicate that Roc proteins play nonredundant roles during development. Coimmunoprecipitation followed by Western or mass spectrometric analysis indicate that the three Roc proteins preferentially bind certain Cullins, providing a possible explanation for the distinct biological activities of each Drosophila Roc/Rbx. PMID:15331761

  17. Reciprocal regulation of very low density lipoprotein receptors (VLDLRs) in neurons by brain-derived neurotrophic factor (BDNF) and Reelin: involvement of the E3 ligase Mylip/Idol.

    PubMed

    Do, Hai Thi; Bruelle, Céline; Tselykh, Timofey; Jalonen, Pilvi; Korhonen, Laura; Lindholm, Dan

    2013-10-11

    BDNF positively influences various aspects of neuronal migration, maturation, and survival in the developing brain. Reelin in turn mediates inhibitory signals to migrating neuroblasts, which is crucial for brain development. The interplay between BDNF and Reelin signaling in neurodevelopment is not fully understood. We show here that BDNF increased the levels of the Reelin receptor (VLDL receptor (VLDLR)) in hippocampal neurons by increasing gene expression. In contrast, Reelin decreased VLDLRs, which was accompanied by an increase in the levels of the E3 ligase Mylip/Idol in neurons. Down-regulation of Mylip/Idol using shRNAs abrogated the decrease in VLDLRs induced by Reelin. These results show that VLDLRs are tightly regulated in hippocampal neurons by both transcriptional and post-transcriptional mechanisms. The regulation of VLDLR by BDNF and Reelin may affect the migration of neurons and contribute to neurodevelopmental disorders in the nervous system.

  18. A Death-associated Protein Kinase (DAPK)-interacting Protein, DIP-1, Is an E3 Ubiquitin Ligase That Promotes Tumor Necrosis Factor-induced Apoptosis and Regulates the Cellular Levels of DAPK*

    PubMed Central

    Jin, Yijun; Blue, Emily K.; Dixon, Shelley; Shao, Zhili; Gallagher, Patricia J.

    2010-01-01

    Death-associated protein kinase (DAPK) is a multi-domain Ser/Thr protein kinase with an important role in apoptosis regulation. In these studies we have identified a DAPK-interacting protein called DIP-1, which is a novel multi-RING finger protein. The RING finger motifs of DIP-1 have E3 ligase activity that can auto-ubiquitinate DIP-1 in vitro. In vivo, DIP-1 is detected as a polyubiquitinated protein, suggesting that the intracellular levels of DIP-1 are regulated by the ubiquitin-proteasome system. Transient expression of DIP-1 in HeLa cells antagonizes the anti-apoptotic function of DAPK to promote a caspase-dependent apoptosis. These studies also demonstrate that DAPK is an in vitro and in vivo target for ubiquitination by DIP-1, thereby providing a mechanism by which DAPK activities can be regulated through proteasomal degradation. PMID:12351649

  19. The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy.

    PubMed

    Assereto, Stefania; Piccirillo, Rosanna; Baratto, Serena; Scudieri, Paolo; Fiorillo, Chiara; Massacesi, Manuela; Traverso, Monica; Galietta, Luis J; Bruno, Claudio; Minetti, Carlo; Zara, Federico; Gazzerro, Elisabetta

    2016-08-01

    Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Piasγ) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients.

  20. The E3 ubiquitin ligase protein associated with Myc (Pam) regulates mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling in vivo through N- and C-terminal domains.

    PubMed

    Han, Sangyeul; Kim, Sun; Bahl, Samira; Li, Lin; Burande, Clara F; Smith, Nicole; James, Marianne; Beauchamp, Roberta L; Bhide, Pradeep; DiAntonio, Aaron; Ramesh, Vijaya

    2012-08-31

    Pam and its homologs (the PHR protein family) are large E3 ubiquitin ligases that function to regulate synapse formation and growth in mammals, zebrafish, Drosophila, and Caenorhabditis elegans. Phr1-deficient mouse models (Phr1(Δ8,9) and Phr1(Magellan), with deletions in the N-terminal putative guanine exchange factor region and the C-terminal ubiquitin ligase region, respectively) exhibit axon guidance/outgrowth defects and striking defects of major axon tracts in the CNS. Our earlier studies identified Pam to be associated with tuberous sclerosis complex (TSC) proteins, ubiquitinating TSC2 and regulating mammalian/mechanistic target of rapamycin (mTOR) signaling. Here, we examine the potential involvement of the TSC/mTOR complex 1(mTORC1) signaling pathway in Phr1-deficient mouse models. We observed attenuation of mTORC1 signaling in the brains of both Phr1(Δ8,9) and Phr1(Magellan) mouse models. Our results establish that Pam regulates TSC/mTOR signaling in vitro and in vivo through two distinct domains. To further address whether Pam regulates mTORC1 through two functionally independent domains, we undertook heterozygous mutant crossing between Phr1(Δ8,9) and Phr1(Magellan) mice to generate a compound heterozygous model to determine whether these two domains can complement each other. mTORC1 signaling was not attenuated in the brains of double mutants (Phr1(Δ8,9/Mag)), confirming that Pam displays dual regulation of the mTORC1 pathway through two functional domains. Our results also suggest that although dysregulation of mTORC1 signaling may be responsible for the corpus callosum defects, other neurodevelopmental defects observed with Phr1 deficiency are independent of mTORC1 signaling. The ubiquitin ligase complex containing Pam-Fbxo45 likely targets additional synaptic and axonal proteins, which may explain the overlapping neurodevelopmental defects observed in Phr1 and Fbxo45 deficiency.

  1. The E3 Ubiquitin Ligase Protein Associated with Myc (Pam) Regulates Mammalian/Mechanistic Target of Rapamycin Complex 1 (mTORC1) Signaling in Vivo through N- and C-terminal Domains*

    PubMed Central

    Han, Sangyeul; Kim, Sun; Bahl, Samira; Li, Lin; Burande, Clara F.; Smith, Nicole; James, Marianne; Beauchamp, Roberta L.; Bhide, Pradeep; DiAntonio, Aaron; Ramesh, Vijaya

    2012-01-01

    Pam and its homologs (the PHR protein family) are large E3 ubiquitin ligases that function to regulate synapse formation and growth in mammals, zebrafish, Drosophila, and Caenorhabditis elegans. Phr1-deficient mouse models (Phr1Δ8,9 and Phr1Magellan, with deletions in the N-terminal putative guanine exchange factor region and the C-terminal ubiquitin ligase region, respectively) exhibit axon guidance/outgrowth defects and striking defects of major axon tracts in the CNS. Our earlier studies identified Pam to be associated with tuberous sclerosis complex (TSC) proteins, ubiquitinating TSC2 and regulating mammalian/mechanistic target of rapamycin (mTOR) signaling. Here, we examine the potential involvement of the TSC/mTOR complex 1(mTORC1) signaling pathway in Phr1-deficient mouse models. We observed attenuation of mTORC1 signaling in the brains of both Phr1Δ8,9 and Phr1Magellan mouse models. Our results establish that Pam regulates TSC/mTOR signaling in vitro and in vivo through two distinct domains. To further address whether Pam regulates mTORC1 through two functionally independent domains, we undertook heterozygous mutant crossing between Phr1Δ8,9 and Phr1Magellan mice to generate a compound heterozygous model to determine whether these two domains can complement each other. mTORC1 signaling was not attenuated in the brains of double mutants (Phr1Δ8,9/Mag), confirming that Pam displays dual regulation of the mTORC1 pathway through two functional domains. Our results also suggest that although dysregulation of mTORC1 signaling may be responsible for the corpus callosum defects, other neurodevelopmental defects observed with Phr1 deficiency are independent of mTORC1 signaling. The ubiquitin ligase complex containing Pam-Fbxo45 likely targets additional synaptic and axonal proteins, which may explain the overlapping neurodevelopmental defects observed in Phr1 and Fbxo45 deficiency. PMID:22798074

  2. The E3 Ubiquitin Ligase- and Protein Phosphatase 2A (PP2A)-binding Domains of the Alpha4 Protein Are Both Required for Alpha4 to Inhibit PP2A Degradation

    SciTech Connect

    LeNoue-Newton, Michele; Watkins, Guy R.; Zou, Ping; Germane, Katherine L.; McCorvey, Lisa R.; Wadzinski, Brian E.; Spiller, Benjamin W.

    2012-04-30

    Protein phosphatase 2A (PP2A) is regulated through a variety of mechanisms, including post-translational modifications and association with regulatory proteins. Alpha4 is one such regulatory protein that binds the PP2A catalytic subunit (PP2Ac) and protects it from polyubiquitination and degradation. Alpha4 is a multidomain protein with a C-terminal domain that binds Mid1, a putative E3 ubiquitin ligase, and an N-terminal domain containing the PP2Ac-binding site. In this work, we present the structure of the N-terminal domain of mammalian Alpha4 determined by x-ray crystallography and use double electron-electron resonance spectroscopy to show that it is a flexible tetratricopeptide repeat-like protein. Structurally, Alpha4 differs from its yeast homolog, Tap42, in two important ways: (1) the position of the helix containing the PP2Ac-binding residues is in a more open conformation, showing flexibility in this region; and (2) Alpha4 contains a ubiquitin-interacting motif. The effects of wild-type and mutant Alpha4 on PP2Ac ubiquitination and stability were examined in mammalian cells by performing tandem ubiquitin-binding entity precipitations and cycloheximide chase experiments. Our results reveal that both the C-terminal Mid1-binding domain and the PP2Ac-binding determinants are required for Alpha4-mediated protection of PP2Ac from polyubiquitination and degradation.

  3. The rice RING E3 ligase, OsCTR1, inhibits trafficking to the chloroplasts of OsCP12 and OsRP1, and its overexpression confers drought tolerance in Arabidopsis.

    PubMed

    Lim, Sung Don; Lee, Chanhui; Jang, Cheol Seong

    2014-05-01

    Plant growth under low water availability adversely affects many key processes with morphological, physiological, biochemical and molecular consequences. Here, we found that a rice gene, OsCTR1, encoding the RING Ub E3 ligase plays an important role in drought tolerance. OsCTR1 was highly expressed in response to dehydration treatment and defense-related phytohormones, and its encoded protein was localized in both the chloroplasts and the cytosol. Intriguingly, the OsCTR1 protein was found predominantly targeted to the cytosol when rice protoplasts transfected with OsCTR1 were treated with abscisic acid (ABA). Several interacting partners were identified, which were mainly targeted to the chloroplasts, and interactions with OsCTR1 were confirmed by using biomolecular fluorescence complementation (BiFC). Interestingly, two chloroplast-localized proteins (OsCP12 and OsRP1) interacted with OsCTR1 in the cytosol, and ubiquitination by OsCTR1 led to protein degradation via the Ub 26S proteasome. Heterogeneous overexpression of OsCTR1 in Arabidopsis exhibited hypersensitive phenotypes with respect to ABA-responsive seed germination, seedling growth and stomatal closure. The ABA-sensitive transgenic plants also showed improvement in their tolerance against severe water deficits. Taken together, our findings lend support to the hypothesis that the molecular functions of OsCTR1 are related to tolerance to water-deficit stress via ABA-dependent regulation and related systems.

  4. Two Overlapping Regions within the N-Terminal Half of the Herpes Simplex Virus 1 E3 Ubiquitin Ligase ICP0 Facilitate the Degradation and Dissociation of PML and Dissociation of Sp100 from ND10

    PubMed Central

    Perusina Lanfranca, Mirna; Mostafa, Heba H.

    2013-01-01

    Herpes simplex virus 1 (HSV-1) establishes a lifelong latent infection in sensory neurons and can reactivate from latency under stress conditions. To promote lytic infection, the virus must interact with specific cellular factors to evade the host's antiviral defenses. The HSV-1 E3 ubiquitin ligase, infected cell protein 0 (ICP0), activates transcription of viral genes, in part, by mediating the degradation of certain cellular proteins that play a role in host antiviral mechanisms. One component of the cellular defenses that ICP0 disrupts is the suborganelle, nuclear domain 10 (ND10), by inducing the degradation and dissociation of the major organizer of ND10, a promyelocytic leukemia (PML) and ND10 constituent, Sp100. Because previously identified domains in ICP0 explain only partially how it directs the degradation and dissociation of PML and Sp100, we hypothesized that additional regions within ICP0 may contribute to these activities, which in turn facilitate efficient viral replication. To test this hypothesis, we used a series of ICP0 truncation mutants and examined PML protein levels and PML and Sp100 immunofluorescence staining in human embryonic lung cells. Our results demonstrate that two overlapping regions within the central N-terminal portion of ICP0 (residues 212 to 311) promoted the dissociation and degradation of PML and dissociation of Sp100 (residues 212 to 427). In conclusion, we have identified two additional regions in ICP0 involved in altering ND10 antiviral defenses in a cell culture model of HSV-1 infection. PMID:24089549

  5. Mice lacking the PSD-95–interacting E3 ligase, Dorfin/Rnf19a, display reduced adult neurogenesis, enhanced long-term potentiation, and impaired contextual fear conditioning

    PubMed Central

    Park, Hanwool; Yang, Jinhee; Kim, Ryunhee; Li, Yan; Lee, Yeunkum; Lee, Chungwoo; Park, Jongil; Lee, Dongmin; Kim, Hyun; Kim, Eunjoon

    2015-01-01

    Protein ubiquitination has a significant influence on diverse aspects of neuronal development and function. Dorfin, also known as Rnf19a, is a RING finger E3 ubiquitin ligase implicated in amyotrophic lateral sclerosis and Parkinson’s disease, but its in vivo functions have not been explored. We report here that Dorfin is a novel binding partner of the excitatory postsynaptic scaffolding protein PSD-95. Dorfin-mutant (Dorfin−/−) mice show reduced adult neurogenesis and enhanced long-term potentiation in the hippocampal dentate gyrus, but normal long-term potentiation in the CA1 region. Behaviorally, Dorfin−/− mice show impaired contextual fear conditioning, but normal levels of cued fear conditioning, fear extinction, spatial learning and memory, object recognition memory, spatial working memory, and pattern separation. Using a proteomic approach, we also identify a number of proteins whose ubiquitination levels are decreased in the Dorfin−/− brain. These results suggest that Dorfin may regulate adult neurogenesis, synaptic plasticity, and contextual fear memory. PMID:26553645

  6. Investigation of the Expression of Myogenic Transcription Factors, microRNAs and Muscle-Specific E3 Ubiquitin Ligases in the Medial Gastrocnemius and Soleus Muscles following Peripheral Nerve Injury.

    PubMed

    Wiberg, Rebecca; Jonsson, Samuel; Novikova, Liudmila N; Kingham, Paul J

    2015-01-01

    Despite surgical innovation, the sensory and motor outcome after a peripheral nerve injury remains incomplete. One contributing factor to the poor outcome is prolonged denervation of the target organ, leading to apoptosis of both mature myofibres and satellite cells with subsequent replacement of the muscle tissue with fibrotic scar and adipose tissue. In this study, we investigated the expression of myogenic transcription factors, muscle specific microRNAs and muscle-specific E3 ubiquitin ligases at several time points following denervation in two different muscles, the gastrocnemius (containing predominantly fast type fibres) and soleus (slow type) muscles, since these molecules may influence the degree of atrophy following denervation. Both muscles exhibited significant atrophy (compared with the contra-lateral sides) at 7 days following either a nerve transection or crush injury. In the crush model, the soleus muscle showed significantly increased muscle weights at days 14 and 28 which was not the case for the gastrocnemius muscle which continued to atrophy. There was a significantly more pronounced up-regulation of MyoD expression in the denervated soleus muscle compared with the gastrocnemius muscle. Conversely, myogenin was more markedly elevated in the gastrocnemius versus soleus muscles. The muscles also showed significantly contrasting transcriptional regulation of the microRNAs miR-1 and miR-206. MuRF1 and Atrogin-1 showed the highest levels of expression in the denervated gastrocnemius muscle. This study provides further insights regarding the intracellular regulatory molecules that generate and maintain distinct patterns of gene expression in different fibre types following peripheral nerve injury.

  7. Lys-63-linked Ubiquitination of γ-Aminobutyric Acid (GABA), Type B1, at Multiple Sites by the E3 Ligase Mind Bomb-2 Targets GABAB Receptors to Lysosomal Degradation*

    PubMed Central

    Zemoura, Khaled; Trümpler, Claudia; Benke, Dietmar

    2016-01-01

    GABAB receptors are heterodimeric G protein-coupled receptors, which control neuronal excitability by mediating prolonged inhibition. The magnitude of GABAB receptor-mediated inhibition essentially depends on the amount of receptors in the plasma membrane. However, the factors regulating cell surface expression of GABAB receptors are poorly characterized. Cell surface GABAB receptors are constitutively internalized and either recycled to the plasma membrane or degraded in lysosomes. The signal that sorts GABAB receptors to lysosomes is currently unknown. Here we show that Mind bomb-2 (MIB2)-mediated Lys-63-linked ubiquitination of the GABAB1 subunit at multiple sites is the lysosomal sorting signal for GABAB receptors. We found that inhibition of lysosomal activity in cultured rat cortical neurons increased the fraction of Lys-63-linked ubiquitinated GABAB receptors and enhanced the expression of total as well as cell surface GABAB receptors. Mutational inactivation of four putative ubiquitination sites in the GABAB1 subunit significantly diminished Lys-63-linked ubiquitination of GABAB receptors and prevented their lysosomal degradation. We identified MIB2 as the E3 ligase triggering Lys-63-linked ubiquitination and lysosomal degradation of GABAB receptors. Finally, we show that sustained activation of glutamate receptors, a condition occurring in brain ischemia that down-regulates GABAB receptors, considerably increased the expression of MIB2 and Lys-63-linked ubiquitination of GABAB receptors. Interfering with Lys-63-linked ubiquitination by overexpressing ubiquitin mutants or GABAB1 mutants deficient in Lys-63-linked ubiquitination prevented glutamate-induced down-regulation of the receptors. These findings indicate that Lys-63-linked ubiquitination of GABAB1 at multiple sites by MIB2 controls sorting of GABAB receptors to lysosomes for degradation under physiological and pathological conditions. PMID:27573246

  8. Human Immunodeficiency Virus Type 1 Vpr-Binding Protein VprBP, a WD40 Protein Associated with the DDB1-CUL4 E3 Ubiquitin Ligase, Is Essential for DNA Replication and Embryonic Development▿

    PubMed Central

    McCall, Chad M.; Miliani de Marval, Paula L.; Chastain, Paul D.; Jackson, Sarah C.; He, Yizhou J.; Kotake, Yojiro; Cook, Jeanette Gowen; Xiong, Yue

    2008-01-01

    Damaged DNA binding protein 1, DDB1, bridges an estimated 90 or more WD40 repeats (DDB1-binding WD40, or DWD proteins) to the CUL4-ROC1 catalytic core to constitute a potentially large number of E3 ligase complexes. Among these DWD proteins is the human immunodeficiency virus type 1 (HIV-1) Vpr-binding protein VprBP, whose cellular function has yet to be characterized but has recently been found to mediate Vpr-induced G2 cell cycle arrest. We demonstrate here that VprBP binds stoichiometrically with DDB1 through its WD40 domain and through DDB1 to CUL4A, subunits of the COP9/signalsome, and DDA1. The steady-state level of VprBP remains constant during interphase and decreases during mitosis. VprBP binds to chromatin in a DDB1-independent and cell cycle-dependent manner, increasing from early S through G2 before decreasing to undetectable levels in mitotic and G1 cells. Silencing VprBP reduced the rate of DNA replication, blocked cells from progressing through the S phase, and inhibited proliferation. VprBP ablation in mice results in early embryonic lethality. Conditional deletion of the VprBP gene in mouse embryonic fibroblasts results in severely defective progression through S phase and subsequent apoptosis. Our studies identify a previously unknown function of VprBP in S-phase progression and suggest the possibility that HIV-1 Vpr may divert an ongoing chromosomal replication activity to facilitate viral replication. PMID:18606781

  9. The S-Domain Receptor Kinase Arabidopsis Receptor Kinase2 and the U Box/Armadillo Repeat-Containing E3 Ubiquitin Ligase9 Module Mediates Lateral Root Development under Phosphate Starvation in Arabidopsis1[C][W][OPEN

    PubMed Central

    Deb, Srijani; Sankaranarayanan, Subramanian; Wewala, Gayathri; Widdup, Ellen; Samuel, Marcus A.

    2014-01-01

    When plants encounter nutrient-limiting conditions in the soil, the root architecture is redesigned to generate numerous lateral roots (LRs) that increase the surface area of roots, promoting efficient uptake of these deficient nutrients. Of the many essential nutrients, reduced availability of inorganic phosphate has a major impact on plant growth because of the requirement of inorganic phosphate for synthesis of organic molecules, such as nucleic acids, ATP, and phospholipids, that function in various crucial metabolic activities. In our screens to identify a potential role for the S-domain receptor kinase1-6 and its interacting downstream signaling partner, the Arabidopsis (Arabidopsis thaliana) plant U box/armadillo repeat-containing E3 ligase9 (AtPUB9), we identified a role for this module in regulating LR development under phosphate-starved conditions. Our results show that Arabidopsis double mutant plants lacking AtPUB9 and Arabidopsis Receptor Kinase2 (AtARK2; ark2-1/pub9-1) display severely reduced LRs when grown under phosphate-starved conditions. Under these starvation conditions, these plants accumulated very low to no auxin in their primary root and LR tips as observed through expression of the auxin reporter DR5::uidA transgene. Exogenous auxin was sufficient to rescue the LR developmental defects in the ark2-1/pub9-1 lines, indicating a requirement of auxin accumulation for this process. Our subcellular localization studies with tobacco (Nicotiana tabacum) suspension-cultured cells indicate that interaction between ARK2 and AtPUB9 results in accumulation of AtPUB9 in the autophagosomes. Inhibition of autophagy in wild-type plants resulted in reduction of LR development and auxin accumulation under phosphate-starved conditions, suggesting a role for autophagy in regulating LR development. Thus, our study has uncovered a previously unknown signaling module (ARK2-PUB9) that is required for auxin-mediated LR development under phosphate-starved conditions

  10. The S-Domain Receptor Kinase Arabidopsis Receptor Kinase2 and the U Box/Armadillo Repeat-Containing E3 Ubiquitin Ligase9 Module Mediates Lateral Root Development under Phosphate Starvation in Arabidopsis.

    PubMed

    Deb, Srijani; Sankaranarayanan, Subramanian; Wewala, Gayathri; Widdup, Ellen; Samuel, Marcus A

    2014-06-25

    When plants encounter nutrient-limiting conditions in the soil, the root architecture is redesigned to generate numerous lateral roots (LRs) that increase the surface area of roots, promoting efficient uptake of these deficient nutrients. Of the many essential nutrients, reduced availability of inorganic phosphate has a major impact on plant growth because of the requirement of inorganic phosphate for synthesis of organic molecules, such as nucleic acids, ATP, and phospholipids, that function in various crucial metabolic activities. In our screens to identify a potential role for the S-domain receptor kinase1-6 and its interacting downstream signaling partner, the Arabidopsis (Arabidopsis thaliana) plant U box/armadillo repeat-containing E3 ligase9 (AtPUB9), we identified a role for this module in regulating LR development under phosphate-starved conditions. Our results show that Arabidopsis double mutant plants lacking AtPUB9 and Arabidopsis Receptor Kinase2 (AtARK2; ark2-1/pub9-1) display severely reduced LRs when grown under phosphate-starved conditions. Under these starvation conditions, these plants accumulated very low to no auxin in their primary root and LR tips as observed through expression of the auxin reporter DR5::uidA transgene. Exogenous auxin was sufficient to rescue the LR developmental defects in the ark2-1/pub9-1 lines, indicating a requirement of auxin accumulation for this process. Our subcellular localization studies with tobacco (Nicotiana tabacum) suspension-cultured cells indicate that interaction between ARK2 and AtPUB9 results in accumulation of AtPUB9 in the autophagosomes. Inhibition of autophagy in wild-type plants resulted in reduction of LR development and auxin accumulation under phosphate-starved conditions, suggesting a role for autophagy in regulating LR development. Thus, our study has uncovered a previously unknown signaling module (ARK2-PUB9) that is required for auxin-mediated LR development under phosphate-starved conditions

  11. The auto-ubiquitylation of E3 ubiquitin-protein ligase Chfr at G2 phase is required for accumulation of polo-like kinase 1 and mitotic entry in mammalian cells.

    PubMed

    Kim, Jo-Sun; Park, Yong-Yea; Park, Sun-Yi; Cho, Hyeseon; Kang, Dongmin; Cho, Hyeseong

    2011-09-01

    The E3 ubiquitin-protein ligase Chfr is a mitotic stress checkpoint protein that delays mitotic entry in response to microtubule damage; however, the molecular mechanism by which Chfr accomplishes this remains elusive. Here, we show that Chfr levels are elevated in response to microtubule-damaging stress. Moreover, G(2)/M transition is associated with cell cycle-dependent turnover of Chfr accompanied by high autoubiquitylation activity, suggesting that regulation of Chfr levels and auto-ubiquitylation activity are functionally significant. To test this, we generated Chfr mutants Chfr-K2A and Chfr-K5A in which putative lysine target sites of auto-ubiquitylation were replaced with alanine. Chfr-K2A did not undergo cell cycle-dependent degradation, and its levels remained high during G(2)/M phase. The elevated levels of Chfr-K2A caused a significant reduction in phosphohistone H3 levels and cyclinB1/Cdk1 kinase activities, leading to mitotic entry delay. Notably, polo-like kinase 1 levels at G(2) phase, but not at S phase, were ∼2-3-fold lower in cells expressing Chfr-K2A than in wild-type Chfr-expressing cells. Consistent with this, ubiquitylation of Plk1 at G(2) phase was accelerated in Chfr-K2A-expressing cells. In contrast, Aurora A levels remained constant, indicating that Plk1 is a major target of Chfr in controlling the timing of mitotic entry. Indeed, overexpression of Plk1 in Chfr-K2A-expressing cells restored cyclin B1/Cdk1 kinase activity and promoted mitotic entry. Collectively, these data indicate that Chfr auto-ubiquitylation is required to allow Plk1 to accumulate to levels necessary for activation of cyclin B1/Cdk1 kinase and mitotic entry. Our results provide the first evidence that Chfr auto-ubiquitylation and degradation are important for the G(2)/M transition.

  12. Tripartite motif 32 prevents pathological cardiac hypertrophy

    PubMed Central

    Huang, Jia; Ji, Yanxiao; Zhang, Xiaojing; Wang, Pixiao; Deng, Keqiong; Jiang, Xi; Ma, Genshan

    2016-01-01

    TRIM32 (tripartite motif 32) is widely accepted to be an E3 ligase that interacts with and eventually ubiquitylates multiple substrates. TRIM32 mutants have been associated with LGMD-2H (limb girdle muscular dystrophy 2H). However, whether TRIM32 is involved in cardiac hypertrophy induced by biomechanical stresses and neurohumoral mediators remains unclear. We generated mice and isolated NRCMs (neonatal rat cardiomyocytes) that overexpressed or were deficient in TRIM32 to investigate the effect of TRIM32 on AB (aortic banding) or AngII (angiotensin II)-mediated cardiac hypertrophy. Echocardiography and both pathological and molecular analyses were used to determine the extent of cardiac hypertrophy and subsequent fibrosis. Our results showed that overexpression of TRIM32 in the heart significantly alleviated the hypertrophic response induced by pressure overload, whereas TRIM32 deficiency dramatically aggravated pathological cardiac remodelling. Similar results were also found in cultured NRCMs incubated with AngII. Mechanistically, the present study suggests that TRIM32 exerts cardioprotective action by interruption of Akt- but not MAPK (mitogen-dependent protein kinase)-dependent signalling pathways. Additionally, inactivation of Akt by LY294002 offset the exacerbated hypertrophic response induced by AB in TRIM32-deficient mice. In conclusion, the present study indicates that TRIM32 plays a protective role in AB-induced pathological cardiac remodelling by blocking Akt-dependent signalling. Therefore TRIM32 could be a novel therapeutic target for the prevention of cardiac hypertrophy and heart failure. PMID:26884348

  13. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis.

    PubMed

    Maier, Alexander; Schrader, Andrea; Kokkelink, Leonie; Falke, Christian; Welter, Bastian; Iniesto, Elisa; Rubio, Vicente; Uhrig, Joachim F; Hülskamp, Martin; Hoecker, Ute

    2013-05-01

    Anthocyanins are natural pigments that accumulate only in light-grown and not in dark-grown Arabidopsis plants. Repression of anthocyanin accumulation in darkness requires the CONSTITUTIVELY PHOTOMORPHOGENIC1/SUPPRESSOR OF PHYA-105 (COP1/SPA) ubiquitin ligase, as cop1 and spa mutants produce anthocyanins also in the dark. Here, we show that COP1 and SPA proteins interact with the myeloblastosis (MYB) transcription factors PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP)1 and PAP2, two members of a small protein family that is required for anthocyanin accumulation and for the expression of structural genes in the anthocyanin biosynthesis pathway. The increased anthocyanin levels in cop1 mutants requires the PAP1 gene family, indicating that COP1 functions upstream of the PAP1 gene family. PAP1 and PAP2 proteins are degraded in the dark and this degradation is dependent on the proteasome and on COP1. Hence, the light requirement for anthocyanin biosynthesis results, at least in part, from the light-mediated stabilization of PAP1 and PAP2. Consistent with this conclusion, moderate overexpression of PAP1 leads to an increase in anthocyanin levels only in the light and not in darkness. Here we show that SPA genes are also required for reducing PAP1 and PAP2 transcript levels in dark-grown seedlings. Taken together, these results indicate that the COP1/SPA complex affects PAP1 and PAP2 both transcriptionally and post-translationally. Thus, our findings have identified mechanisms via which the COP1/SPA complex controls anthocyanin levels in Arabidopsis that may be useful for applications in biotechnology directed towards increasing anthocyanin content in plants.

  14. Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes.

    PubMed

    Lionel, Anath C; Tammimies, Kristiina; Vaags, Andrea K; Rosenfeld, Jill A; Ahn, Joo Wook; Merico, Daniele; Noor, Abdul; Runke, Cassandra K; Pillalamarri, Vamsee K; Carter, Melissa T; Gazzellone, Matthew J; Thiruvahindrapuram, Bhooma; Fagerberg, Christina; Laulund, Lone W; Pellecchia, Giovanna; Lamoureux, Sylvia; Deshpande, Charu; Clayton-Smith, Jill; White, Ann C; Leather, Susan; Trounce, John; Melanie Bedford, H; Hatchwell, Eli; Eis, Peggy S; Yuen, Ryan K C; Walker, Susan; Uddin, Mohammed; Geraghty, Michael T; Nikkel, Sarah M; Tomiak, Eva M; Fernandez, Bridget A; Soreni, Noam; Crosbie, Jennifer; Arnold, Paul D; Schachar, Russell J; Roberts, Wendy; Paterson, Andrew D; So, Joyce; Szatmari, Peter; Chrysler, Christina; Woodbury-Smith, Marc; Brian Lowry, R; Zwaigenbaum, Lonnie; Mandyam, Divya; Wei, John; Macdonald, Jeffrey R; Howe, Jennifer L; Nalpathamkalam, Thomas; Wang, Zhuozhi; Tolson, Daniel; Cobb, David S; Wilks, Timothy M; Sorensen, Mark J; Bader, Patricia I; An, Yu; Wu, Bai-Lin; Musumeci, Sebastiano Antonino; Romano, Corrado; Postorivo, Diana; Nardone, Anna M; Monica, Matteo Della; Scarano, Gioacchino; Zoccante, Leonardo; Novara, Francesca; Zuffardi, Orsetta; Ciccone, Roberto; Antona, Vincenzo; Carella, Massimo; Zelante, Leopoldo; Cavalli, Pietro; Poggiani, Carlo; Cavallari, Ugo; Argiropoulos, Bob; Chernos, Judy; Brasch-Andersen, Charlotte; Speevak, Marsha; Fichera, Marco; Ogilvie, Caroline Mackie; Shen, Yiping; Hodge, Jennelle C; Talkowski, Michael E; Stavropoulos, Dimitri J; Marshall, Christian R; Scherer, Stephen W

    2014-05-15

    Rare copy number variants (CNVs) disrupting ASTN2 or both ASTN2 and TRIM32 have been reported at 9q33.1 by genome-wide studies in a few individuals with neurodevelopmental disorders (NDDs). The vertebrate-specific astrotactins, ASTN2 and its paralog ASTN1, have key roles in glial-guided neuronal migration during brain development. To determine the prevalence of astrotactin mutations and delineate their associated phenotypic spectrum, we screened ASTN2/TRIM32 and ASTN1 (1q25.2) for exonic CNVs in clinical microarray data from 89 985 individuals across 10 sites, including 64 114 NDD subjects. In this clinical dataset, we identified 46 deletions and 12 duplications affecting ASTN2. Deletions of ASTN1 were much rarer. Deletions near the 3' terminus of ASTN2, which would disrupt all transcript isoforms (a subset of these deletions also included TRIM32), were significantly enriched in the NDD subjects (P = 0.002) compared with 44 085 population-based controls. Frequent phenotypes observed in individuals with such deletions include autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), speech delay, anxiety and obsessive compulsive disorder (OCD). The 3'-terminal ASTN2 deletions were significantly enriched compared with controls in males with NDDs, but not in females. Upon quantifying ASTN2 human brain RNA, we observed shorter isoforms expressed from an alternative transcription start site of recent evolutionary origin near the 3' end. Spatiotemporal expression profiling in the human brain revealed consistently high ASTN1 expression while ASTN2 expression peaked in the early embryonic neocortex and postnatal cerebellar cortex. Our findings shed new light on the role of the astrotactins in psychopathology and their interplay in human neurodevelopment. PMID:24381304

  15. Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes

    PubMed Central

    Lionel, Anath C.; Tammimies, Kristiina; Vaags, Andrea K.; Rosenfeld, Jill A.; Ahn, Joo Wook; Merico, Daniele; Noor, Abdul; Runke, Cassandra K.; Pillalamarri, Vamsee K.; Carter, Melissa T.; Gazzellone, Matthew J.; Thiruvahindrapuram, Bhooma; Fagerberg, Christina; Laulund, Lone W.; Pellecchia, Giovanna; Lamoureux, Sylvia; Deshpande, Charu; Clayton-Smith, Jill; White, Ann C.; Leather, Susan; Trounce, John; Melanie Bedford, H.; Hatchwell, Eli; Eis, Peggy S.; Yuen, Ryan K.C.; Walker, Susan; Uddin, Mohammed; Geraghty, Michael T.; Nikkel, Sarah M.; Tomiak, Eva M.; Fernandez, Bridget A.; Soreni, Noam; Crosbie, Jennifer; Arnold, Paul D.; Schachar, Russell J.; Roberts, Wendy; Paterson, Andrew D.; So, Joyce; Szatmari, Peter; Chrysler, Christina; Woodbury-Smith, Marc; Brian Lowry, R.; Zwaigenbaum, Lonnie; Mandyam, Divya; Wei, John; MacDonald, Jeffrey R.; Howe, Jennifer L.; Nalpathamkalam, Thomas; Wang, Zhuozhi; Tolson, Daniel; Cobb, David S.; Wilks, Timothy M.; Sorensen, Mark J.; Bader, Patricia I.; An, Yu; Wu, Bai-Lin; Musumeci, Sebastiano Antonino; Romano, Corrado; Postorivo, Diana; Nardone, Anna M.; Monica, Matteo Della; Scarano, Gioacchino; Zoccante, Leonardo; Novara, Francesca; Zuffardi, Orsetta; Ciccone, Roberto; Antona, Vincenzo; Carella, Massimo; Zelante, Leopoldo; Cavalli, Pietro; Poggiani, Carlo; Cavallari, Ugo; Argiropoulos, Bob; Chernos, Judy; Brasch-Andersen, Charlotte; Speevak, Marsha; Fichera, Marco; Ogilvie, Caroline Mackie; Shen, Yiping; Hodge, Jennelle C.; Talkowski, Michael E.; Stavropoulos, Dimitri J.; Marshall, Christian R.; Scherer, Stephen W.

    2014-01-01

    Rare copy number variants (CNVs) disrupting ASTN2 or both ASTN2 and TRIM32 have been reported at 9q33.1 by genome-wide studies in a few individuals with neurodevelopmental disorders (NDDs). The vertebrate-specific astrotactins, ASTN2 and its paralog ASTN1, have key roles in glial-guided neuronal migration during brain development. To determine the prevalence of astrotactin mutations and delineate their associated phenotypic spectrum, we screened ASTN2/TRIM32 and ASTN1 (1q25.2) for exonic CNVs in clinical microarray data from 89 985 individuals across 10 sites, including 64 114 NDD subjects. In this clinical dataset, we identified 46 deletions and 12 duplications affecting ASTN2. Deletions of ASTN1 were much rarer. Deletions near the 3′ terminus of ASTN2, which would disrupt all transcript isoforms (a subset of these deletions also included TRIM32), were significantly enriched in the NDD subjects (P = 0.002) compared with 44 085 population-based controls. Frequent phenotypes observed in individuals with such deletions include autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), speech delay, anxiety and obsessive compulsive disorder (OCD). The 3′-terminal ASTN2 deletions were significantly enriched compared with controls in males with NDDs, but not in females. Upon quantifying ASTN2 human brain RNA, we observed shorter isoforms expressed from an alternative transcription start site of recent evolutionary origin near the 3′ end. Spatiotemporal expression profiling in the human brain revealed consistently high ASTN1 expression while ASTN2 expression peaked in the early embryonic neocortex and postnatal cerebellar cortex. Our findings shed new light on the role of the astrotactins in psychopathology and their interplay in human neurodevelopment. PMID:24381304

  16. Peptide Arrays for Binding Studies of E3 Ubiquitin Ligases.

    PubMed

    Klecker, Maria; Dissmeyer, Nico

    2016-01-01

    The automated SPOT (synthetic peptide arrays on membrane support technique) synthesis technology has entrenched as a rapid and robust method to generate peptide libraries on cellulose membrane supports. The synthesis method is based on conventional Fmoc chemistry building up peptides with free N-terminal amino acids starting at their cellulose-coupled C-termini. Several hundreds of peptide sequences can be assembled with this technique on one membrane comprising a strong binding potential due to high local peptide concentrations. Peptide orientation on SPOT membranes qualifies this array type for assaying substrate specificities of N-recognins, the recognition elements of the N-end rule pathway of targeted protein degradation (NERD). Pioneer studies described binding capability of mammalian and yeast enzymes depending on a peptide's N-terminus. SPOT arrays have been successfully used to describe substrate specificity of N-recognins which are the recognition elements of the N-end rule pathway of targeted protein degradation (NERD). Here, we describe the implementation of SPOT binding assays with focus on the identification of N-recognin substrates, applicable also for plant NERD enzymes. PMID:27424747

  17. [Ligase chain reaction (LCR)].

    PubMed

    Yamanishi, K; Yasuno, H

    1993-06-01

    Ligase chain reaction (LCR) is a ligation-mediated amplification technique of a target DNA sequence using oligonucleotides and thermostable ligase. LCR is useful for the detection of known DNA sequences and point mutations in a limited amount of DNA. We introduce the principle, development, and protocol of this simple and convenient technique for DNA analysis.

  18. DNA ligase I, the replicative DNA ligase

    PubMed Central

    Howes, Timothy R.L.; Tomkinson, Alan E.

    2013-01-01

    Multiple DNA ligation events are required to join the Okazaki fragments generated during lagging strand DNA synthesis. In eukaryotes, this is primarily carried out by members of the DNA ligase I family. The C-terminal catalytic region of these enzymes is composed of three domains: a DNA binding domain, an adenylation domain and an OB-fold domain. In the absence of DNA, these domains adopt an extended structure but transition into a compact ring structure when they engage a DNA nick, with each of the domains contacting the DNA. The non-catalytic N-terminal region of eukaryotic DNA ligase I is responsible for the specific participation of these enzymes in DNA replication. This proline-rich unstructured region contains the nuclear localization signal and a PCNA interaction motif that is critical for localization to replication foci and efficient joining of Okazaki fragments. DNA ligase I initially engages the PCNA trimer via this interaction motif which is located at the extreme N-terminus of this flexible region. It is likely that this facilitates an additional interaction between the DNA binding domain and the PCNA ring. The similar size and shape of the rings formed by the PCNA trimer and the DNA ligase I catalytic region when it engages a DNA nick suggest that these proteins interact to form a double-ring structure during the joining of Okazaki fragments. DNA ligase I also interacts with replication factor C, the factor that loads the PCNA trimeric ring onto DNA. This interaction, which is regulated by phosphorylation of the non-catalytic N-terminus of DNA ligase I, also appears to be critical for DNA replication. PMID:22918593

  19. Studies on the Contribution of Human Cytomegalovirus UL21a and UL97 to Viral Growth and Inactivation of the Anaphase-Promoting Complex/Cyclosome (APC/C) E3 Ubiquitin Ligase Reveal a Unique Cellular Mechanism for Downmodulation of the APC/C Subunits APC1, APC4, and APC5

    PubMed Central

    Clark, Elizabeth

    2015-01-01

    ABSTRACT Human cytomegalovirus (HCMV) deregulates the cell cycle by several means, including inactivation of the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. Viral proteins UL97 and UL21a, respectively, affect the APC/C by phosphorylation of APC/C coactivator Cdh1 and by inducing the degradation of subunits APC4 and APC5, which along with APC1 form the APC/C platform subcomplex. The aim of this study was to further characterize the mechanism of APC/C inactivation and define the relative contributions of UL21a and UL97 to APC/C substrate accumulation and to viral growth. We show that in uninfected cells, UL21a but not UL97 can disrupt APC/C function, leading to the accumulation of substrates. We find that UL21a is necessary and sufficient to induce the degradation of APC1, in addition to the previously reported APC4 and APC5. We also demonstrate that there is a previously unreported cellular mechanism for a specific decrease in the levels of all three platform subunits, APC1, APC4, and APC5, upon the depletion of any one of these subunits or of subunit APC8. Finally, we show that at a low multiplicity of infection, either UL97 or UL21a can partially complement a growth-defective mutant virus lacking both UL21a and UL97, with significantly greater benefit afforded by the expression of both proteins. This double mutant also can be partially rescued by inactivation of the APC/C using small interfering RNAs against specific subunits. These results further our understanding of HCMV's interaction with the cell cycle machinery and reveal a new cellular pattern of APC/C subunit downmodulation. IMPORTANCE HCMV lytic infection subverts the host cell cycle machinery in multiple ways. A major effect is inactivation of the APC/C, which plays a central role in the control of cell cycle progression. This study provides further insight into the mechanism of inactivation. We discovered that the APC1 subunit, which along with APC4 and APC5 form the platform

  20. Tag Team Ubiquitin Ligases.

    PubMed

    Kleiger, Gary; Deshaies, Raymond

    2016-08-25

    Cullin-RING (CRL) and RING1-IBR-RING2 (RBR) are two distinct types of ubiquitin ligases. In this issue, Scott et al. show that CRLs activate the RBR enzyme ARIH1 to initiate ubiquitin chains on CRL substrates, thereby marking an unexpected and important advance in our understanding of both enzymes. PMID:27565338

  1. The Role of Ubiquitin Ligases in Cardiac Disease

    PubMed Central

    Willis, Monte S.; Bevilacqua, Ariana; Pulinilkunnil, Thomas; Kienesberger, Petra; Tannu, Manasi; Patterson, Cam

    2014-01-01

    Rigorous surveillance of protein quality control is essential for the maintenance of normal cardiac function, while the dysregulation of protein turnover is present in a diverse array of common cardiac diseases. Central to the protein quality control found in all cells is the ubiquitin proteasome system (UPS). The UPS plays a critical role in protein trafficking, cellular signaling, and most prominently, protein degradation. As ubiquitin ligases (E3s) control the specificity of the UPS, their description in the cardiomyocyte has highlighted how ubiquitin ligases are critical to the turnover and function of the sarcomere complex, responsible for the heart’s required continuous contraction. In this review, we provide an overview of the UPS, highlighting a comprehensive overview of the cardiac ubiquitin ligases identified to date. We then focus on recent studies of new cardiac ubiquitin ligases outlining their novel roles in protein turnover, cellular signaling, and the regulation of mitochondrial dynamics and receptor turnover in the pathophysiology of cardiac hypertrophy, cardiac atrophy, myocardial infarction, and heart failure. PMID:24262338

  2. SCF ubiquitin ligase targeted therapies

    PubMed Central

    Skaar, Jeffrey R.; Pagan, Julia K.; Pagano, Michele

    2015-01-01

    Summary The recent clinical successes of inhibitors of the proteasome for the treatment of cancer have highlighted the therapeutic potential of this protein degradation system. Proteasome inhibitors prevent the degradation of numerous proteins, so increased specificity could be achieved by inhibiting the components of the ubiquitin-proteasome system that target specific subsets of proteins for degradation. F-box proteins are the substrate-targeting subunits of SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complexes. Through the degradation of a plethora of diverse substrates, SCF ubiquitin ligases control a large number of processes at the cellular and organismal levels, and their misregulation is implicated in many pathologies. SCF ligases are characterized by a high specificity for their substrates, so they represent promising drug targets. However, the potential for therapeutic manipulation of SCF complexes remains an underdeveloped area. This review will explore and discuss potential strategies to target SCF-mediated biology to treat human diseases. PMID:25394868

  3. Ataxin-3 and Its E3 Partners: Implications for Machado–Joseph Disease

    PubMed Central

    Durcan, Thomas M.; Fon, Edward A.

    2013-01-01

    Machado–Joseph disease (MJD) is the most common dominant inherited ataxia worldwide, caused by an unstable CAG trinucleotide expansion mutation within the SCA3 gene resulting in an expanded polyglutamine tract within the ataxin-3 protein. Ataxin-3 functions as a deubiquitinating enzyme (DUB), within the Ub system and whilst many DUBs are known to partner with and deubiquitinate specific E3-Ub ligases, ataxin-3 had no identified E3 partner until recent studies implicated parkin and CHIP, two neuroprotective E3 ligases. MJD often presents with symptoms of Parkinson disease (PD), which led to identification of parkin as a novel E3-Ub ligase whose activity was regulated by ataxin-3-mediated deubiquitination. Findings from these studies also revealed an unexpected convergence upon the E2-Ub-conjugating enzyme in the regulation of an E3/DUBenzyme pair. Moreover, mutant but not wild-type ataxin-3 promotes the clearance of parkin via the autophagy pathway, raising the intriguing possibility that increased turnover of parkin may contribute to the pathogenesis of MJD and help explain some of the Parkinsonian features in MJD. In addition to parkin, the U-box E3 ligase CHIP, a neuroprotective E3 implicated in protein quality control, was identified as a second E3 partner of ataxin-3, with ataxin-3 regulating the ability of CHIP to ubiquitinate itself. Indeed, ataxin-3 not only deubiquitinated CHIP, but also trimmed Ub conjugates on CHIP substrates, thereby regulating the length of Ub chains. Interestingly, when expanded ataxin-3 was present, CHIP levels were also reduced in the brains of MJD transgenic mice, raising the possibility that loss of one or both E3 partners may be a contributing factor in the pathogenesis of SCA3. In this review we discuss the implications from these studies and describe the importance of these findings in helping us understand the molecular processes involved in SCA3 and other neurodegenerative disorders. PMID:23653622

  4. Commentary on "the E3 ubiquitin ligase Siah2 contributes to castration-resistant prostate cancer by regulation of androgen receptor transcriptional activity." Qi J, Tripathi M, Mishra R, Sahgal N, Fazli L, Ettinger S, Placzek WJ, Claps G, Chung LW, Bowtell D, Gleave M, Bhowmick N, Ronai ZA, Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.: Cancer Cell 2013;23(6):332-46.

    PubMed

    Olumi, Aria F

    2014-02-01

    Understanding the mechanism underlying the regulation of the androgen receptor (AR), a central player in the development of castration-resistant prostate cancer (CRPC), holds promise for overcoming the challenge of treating CRPC. We demonstrate that the ubiquitin ligase Siah2 targets a select pool of NCOR1-bound, transcriptionally-inactive AR for ubiquitin-dependent degradation, thereby promoting expression of select AR target genes implicated in lipid metabolism, cell motility, and proliferation. Siah2 is required for prostate cancer cell growth under androgen-deprivation conditions in vitro and in vivo, and Siah2 inhibition promotes prostate cancer regression upon castration. Notably, Siah2 expression is markedly increased in human CRPCs. Collectively, we find that selective regulation of AR transcriptional activity by the ubiquitin ligase Siah2 is important for CRPC development.

  5. Overexpression of a Soybean Ariadne-Like Ubiquitin Ligase Gene GmARI1 Enhances Aluminum Tolerance in Arabidopsis

    PubMed Central

    Zhang, Xiaolian; Wang, Ning; Chen, Pei; Gao, Mengmeng; Liu, Juge; Wang, Yufeng; Zhao, Tuanjie; Li, Yan; Gai, Junyi

    2014-01-01

    Ariadne (ARI) subfamily of RBR (Ring Between Ring fingers) proteins have been found as a group of putative E3 ubiquitin ligases containing RING (Really Interesting New Gene) finger domains in fruitfly, mouse, human and Arabidopsis. Recent studies showed several RING-type E3 ubiquitin ligases play important roles in plant response to abiotic stresses, but the function of ARI in plants is largely unknown. In this study, an ariadne-like E3 ubiquitin ligase gene was isolated from soybean, Glycine max (L.) Merr., and designated as GmARI1. It encodes a predicted protein of 586 amino acids with a RBR supra-domain. Subcellular localization studies using Arabidopsis protoplast cells indicated GmARI protein was located in nucleus. The expression of GmARI1 in soybean roots was induced as early as 2–4 h after simulated stress treatments such as aluminum, which coincided with the fact of aluminum toxicity firstly and mainly acting on plant roots. In vitro ubiquitination assay showed GmARI1 protein has E3 ligase activity. Overexpression of GmARI1 significantly enhanced the aluminum tolerance of transgenic Arabidopsis. These findings suggest that GmARI1 encodes a RBR type E3 ligase, which may play important roles in plant tolerance to aluminum stress. PMID:25364908

  6. The prolific ATL family of RING-H2 ubiquitin ligases

    PubMed Central

    Guzmán, Plinio

    2012-01-01

    An abundant class of E3 ubiquitin ligases encodes the RING-finger domain. The RING finger binds to the E2 ubiquitin-conjugating enzyme and brings together both the E2 and substrate. It is predicted that 477 RING finger E3 ligases exist in Arabidopsis thaliana. A particular family among them, named Arabidopsis Tóxicos en Levadura (ATL), consists of 91 members that contain the RING-H2 variation and a hydrophobic domain located at the N-terminal end. Transmembrane E3 ligases are important in several biological processes. For instance, some transmembrane RING finger E3 ligases are main participants in the endoplasmic reticulum-associated degradation pathway that targets misfolded proteins. Functional analysis of a number of ATLs has shown that some of them regulate distinct pathways in plants. Several ATLs have been shown to participate in defense responses, while others play a role in the regulation of the carbon/nitrogen response during post-germinative seedling growth transition, in the regulation of cell death during root development, in endosperm development, or in the transition to flowering under short day conditions. The ATL family has also been instrumental in evolution studies for showing how gene families are expanded in plant genomes. PMID:22827943

  7. Cullin 3 Ubiquitin Ligases in Cancer Biology: Functions and Therapeutic Implications

    PubMed Central

    Chen, Hsin-Yi; Chen, Ruey-Hwa

    2016-01-01

    Cullin-RING ubiquitin ligases are the largest E3 ligase family in eukaryotes and are multiprotein complexes. In these complexes, the Cullin protein serves as a scaffold to connect two functional modules of the ligases, the catalytic subunit and substrate-binding subunit. To date, eight members of the Cullin family proteins have been identified. In the Cul3 ubiquitin ligases, Bric-a-brac/Tramtrack/Broad complex (BTB) domain-containing proteins function as a bridge to connect Cul3 and substrates. While the BTB domain is responsible for Cul3 binding, these proteins usually contain an additional domain for substrate interaction, such as MATH, kelch, Zn finger, and PAM, Highwire, and RPM-1 (PHR domain). With the existence of a large number of BTB proteins in human, the Cul3 ubiquitin ligases ubiquitinate a wide range of substrates involving in diverse cellular functions. In this review, we will discuss recent advances on the functions of Cul3 ubiquitin ligases in cancer development, progression, and therapeutic response and the dysregulation of Cul3-mediated ubiquitination events in human malignancies. In particular, we will focus on three Cul3 substrate adaptors, kelch-like ECH-associated protein (Keap1), kelch-like family member 20 (KLHL20), and speckle type BTB/POZ protein (SPOP), with the intent to highlight novel targets in cancer therapy. PMID:27200299

  8. A palmitoylated RING finger ubiquitin ligase and its homologue in the brain membranes.

    PubMed

    Araki, Kazuaki; Kawamura, Meiko; Suzuki, Toshiaki; Matsuda, Noriyuki; Kanbe, Daiji; Ishii, Kyoko; Ichikawa, Tomio; Kumanishi, Toshiro; Chiba, Tomoki; Tanaka, Keiji; Nawa, Hiroyuki

    2003-08-01

    Ubiquitin (Ub) ligation is implicated in active protein metabolism and subcellular trafficking and its impairment is involved in various neurologic diseases. In rat brain, we identified two novel Ub ligases, Momo and Sakura, carrying double zinc finger motif and RING finger domain. Momo expression is enriched in the brain gray matter and testis, and Sakura expression is more widely detected in the brain white matter as well as in many peripheral organs. Both proteins associate with the cell membranes of neuronal and/or glial cells. We examined their Ub ligase activity in vivo and in vitro using viral expression vectors carrying myc-tagged Momo and Sakura. Overexpression of either Momo or Sakura in mixed cortical cultures increased total polyubiquitination levels. In vitro ubiquitination assay revealed that the combination of Momo and UbcH4 and H5c, or of Sakura and UbcH4, H5c and H6 is required for the reaction. Deletion mutagenesis suggested that the E3 Ub ligase activity of Momo and Sakura depended on their C-terminal domains containing RING finger structure, while their N-terminal domains influenced their membrane association. In agreement, Sakura associating with the membrane was specifically palmitoylated. Although the molecular targets of their Ub ligation remain to be identified, these findings imply a novel function of the palmitoylated E3 Ub ligase(s).

  9. The role of the IAP E3 ubiquitin ligases in regulating pattern-recognition receptor signalling.

    PubMed

    Vandenabeele, Peter; Bertrand, Mathieu J M

    2012-12-01

    An inflammatory response is initiated when innate immune pattern-recognition receptors (PRRs) expressed by different cell types detect constituents of invading microorganisms and endogenous intracellular molecules released by dying cells. The intracellular cascades activated by PRRs induce the expression and maturation of inflammatory molecules that coordinate the removal of the infectious agents and of the infected or damaged cells. In this Review, we discuss the findings implicating members of the inhibitor of apoptosis protein (IAP) family in the ubiquitylation-dependent regulation of PRR signalling. Understanding the role of IAPs in innate immunity may open new therapeutic perspectives for the treatment of PRR-dependent inflammatory diseases.

  10. Small-Molecule Targeting of E3 Ligase Adaptor SPOP in Kidney Cancer.

    PubMed

    Guo, Zhong-Qiang; Zheng, Tong; Chen, Baoen; Luo, Cheng; Ouyang, Sisheng; Gong, Shouzhe; Li, Jiafei; Mao, Liu-Liang; Lian, Fulin; Yang, Yong; Huang, Yue; Li, Li; Lu, Jing; Zhang, Bidong; Zhou, Luming; Ding, Hong; Gao, Zhiwei; Zhou, Liqun; Li, Guoqiang; Zhou, Ran; Chen, Ke; Liu, Jingqiu; Wen, Yi; Gong, Likun; Ke, Yuwen; Yang, Shang-Dong; Qiu, Xiao-Bo; Zhang, Naixia; Ren, Jin; Zhong, Dafang; Yang, Cai-Guang; Liu, Jiang; Jiang, Hualiang

    2016-09-12

    In the cytoplasm of virtually all clear-cell renal cell carcinoma (ccRCC), speckle-type POZ protein (SPOP) is overexpressed and misallocated, which may induce proliferation and promote kidney tumorigenesis. In normal cells, however, SPOP is located in the nucleus and induces apoptosis. Here we show that a structure-based design and subsequent hit optimization yield small molecules that can inhibit the SPOP-substrate protein interaction and can suppress oncogenic SPOP-signaling pathways. These inhibitors kill human ccRCC cells that are dependent on oncogenic cytoplasmic SPOP. Notably, these inhibitors minimally affect the viability of other cells in which SPOP is not accumulated in the cytoplasm. Our findings validate the SPOP-substrate protein interaction as an attractive target specific to ccRCC that may yield novel drug discovery efforts. PMID:27622336

  11. Immunoprecipitation of Cullin-RING Ligases (CRLs) in Arabidopsis thaliana Seedlings.

    PubMed

    Franciosini, Anna; Serino, Giovanna

    2016-01-01

    CRL (Cullin-RING ubiquitin ligase) is the major class of plant E3 ubiquitin ligases. Immunoprecipitation-based methods are useful techniques for revealing interactions among Cullin-RING Ligase (CRL) subunits or between CRLs and other proteins, as well as for detecting poly-ubiquitin modifications of the CRLs themselves. Here, we describe two immunoprecipitation (IP) procedures suitable for CRLs in Arabidopsis: a procedure for IP analysis of CRL subunits and their interactors and a second procedure for in vivo ubiquitination analysis of the CRLs. Both protocols can be divided into two major steps: (1) preparation of cell extracts without disruption of protein interactions and (2) affinity purification of the protein complexes and subsequent detection. We provide a thorough description of all the steps, as well as advice on how to choose proper buffers for these analyses. We also suggest a series of negative controls that can be used to verify the specificity of the procedure. PMID:27424742

  12. RNF38 encodes a nuclear ubiquitin protein ligase that modifies p53

    SciTech Connect

    Sheren, Jamie E.; Kassenbrock, C. Kenneth

    2013-11-01

    Highlights: •RNF38 is shown to be a nuclear protein with a bipartite nuclear localization signal. •RNF38 protein is purified and shown to have ubiquitin protein ligase (E3) activity. •We show that RNF38 binds p53 and can ubiquitinate p53 in vitro. •Overexpression of RNF38 increases p53 ubiquitination in HEK293T cells. •Overexpression of RNF38 in HEK293T cells alters p53 localization. -- Abstract: The RNF38 gene encodes a RING finger protein of unknown function. Here we demonstrate that RNF38 is a functional ubiquitin protein ligase (E3). We show that RNF38 isoform 1 is localized to the nucleus by a bipartite nuclear localization sequence (NLS). We confirm that RNF38 is a binding partner of p53 and demonstrate that RNF38 can ubiquitinate p53 in vitro and in vivo. Finally, we show that overexpression of RNF38 in HEK293T cells results in relocalization of p53 to discrete foci associated with PML nuclear bodies. These results suggest RNF38 is an E3 ubiquitin ligase that may play a role in regulating p53.

  13. The Hypoxia-controlled FBXL14 Ubiquitin Ligase Targets SNAIL1 for Proteasome Degradation*

    PubMed Central

    Viñas-Castells, Rosa; Beltran, Manuel; Valls, Gabriela; Gómez, Irene; García, José Miguel; Montserrat-Sentís, Bàrbara; Baulida, Josep; Bonilla, Félix; de Herreros, Antonio García; Díaz, Víctor M.

    2010-01-01

    The transcription factor SNAIL1 is a master regulator of epithelial to mesenchymal transition. SNAIL1 is a very unstable protein, and its levels are regulated by the E3 ubiquitin ligase β-TrCP1 that interacts with SNAIL1 upon its phosphorylation by GSK-3β. Here we show that SNAIL1 polyubiquitylation and degradation may occur in conditions precluding SNAIL1 phosphorylation by GSK-3β, suggesting that additional E3 ligases participate in the control of SNAIL1 protein stability. In particular, we demonstrate that the F-box E3 ubiquitin ligase FBXl14 interacts with SNAIL1 and promotes its ubiquitylation and proteasome degradation independently of phosphorylation by GSK-3β. In vivo, inhibition of FBXl14 using short hairpin RNA stabilizes both ectopically expressed and endogenous SNAIL1. Moreover, the expression of FBXl14 is potently down-regulated during hypoxia, a condition that increases the levels of SNAIL1 protein but not SNAIL1 mRNA. FBXL14 mRNA is decreased in tumors with a high expression of two proteins up-regulated in hypoxia, carbonic anhydrase 9 and TWIST1. In addition, Twist1 small interfering RNA prevents hypoxia-induced Fbxl14 down-regulation and SNAIL1 stabilization in NMuMG cells. Altogether, these results demonstrate the existence of an alternative mechanism controlling SNAIL1 protein levels relevant for the induction of SNAIL1 during hypoxia. PMID:19955572

  14. DNA and RNA ligases: structural variations and shared mechanisms.

    PubMed

    Pascal, John M

    2008-02-01

    DNA and RNA ligases join 3' OH and 5' PO4 ends in polynucleotide substrates using a three-step reaction mechanism that involves covalent modification of both the ligase enzyme and the polynucleotide substrate with AMP. In the past three years, several polynucleotide ligases have been crystallized in complex with nucleic acid, providing the introductory views of ligase enzymes engaging their substrates. Crystal structures for two ATP-dependent DNA ligases, an NAD+-dependent DNA ligase, and an ATP-dependent RNA ligase demonstrate how ligases utilize the AMP group and their multi-domain architectures to manipulate nucleic acid structure and catalyze the end-joining reaction. Together with unliganded crystal structures of DNA and RNA ligases, a more comprehensive and dynamic understanding of the multi-step ligation reaction mechanism has emerged.

  15. DNA ligases in the repair and replication of DNA.

    PubMed

    Timson, D J; Singleton, M R; Wigley, D B

    2000-08-30

    DNA ligases are critical enzymes of DNA metabolism. The reaction they catalyse (the joining of nicked DNA) is required in DNA replication and in DNA repair pathways that require the re-synthesis of DNA. Most organisms express DNA ligases powered by ATP, but eubacteria appear to be unique in having ligases driven by NAD(+). Interestingly, despite protein sequence and biochemical differences between the two classes of ligase, the structure of the adenylation domain is remarkably similar. Higher organisms express a variety of different ligases, which appear to be targetted to specific functions. DNA ligase I is required for Okazaki fragment joining and some repair pathways; DNA ligase II appears to be a degradation product of ligase III; DNA ligase III has several isoforms, which are involved in repair and recombination and DNA ligase IV is necessary for V(D)J recombination and non-homologous end-joining. Sequence and structural analysis of DNA ligases has shown that these enzymes are built around a common catalytic core, which is likely to be similar in three-dimensional structure to that of T7-bacteriophage ligase. The differences between the various ligases are likely to be mediated by regions outside of this common core, the structures of which are not known. Therefore, the determination of these structures, along with the structures of ligases bound to substrate DNAs and partner proteins ought to be seen as a priority.

  16. Ubiquitin-protein ligases in muscle wasting: multiple parallel pathways?

    NASA Technical Reports Server (NTRS)

    Lecker, Stewart H.; Goldberg, A. L. (Principal Investigator)

    2003-01-01

    PURPOSE OF REVIEW: Studies in a wide variety of animal models of muscle wasting have led to the concept that increased protein breakdown via the ubiquitin-proteasome pathway is responsible for the loss of muscle mass seen as muscle atrophy. The complexity of the ubiquitination apparatus has hampered our understanding of how this pathway is activated in atrophying muscles and which ubiquitin-conjugating enzymes in muscle are responsible. RECENT FINDINGS: Recent experiments have shown that two newly identified ubiquitin-protein ligases (E3s), atrogin-1/MAFbx and MURF-1, are critical in the development of muscle atrophy. Other in-vitro studies also implicated E2(14k) and E3alpha, of the N-end rule pathway, as playing an important role in the process. SUMMARY: It seems likely that multiple pathways of ubiquitin conjugation are activated in parallel in atrophying muscle, perhaps to target for degradation specific classes of muscle proteins. The emerging challenge will be to define the protein targets for, as well as inhibitors of, these E3s.

  17. Substrate Trapping Proteomics Reveals Targets of the βTrCP2/FBXW11 Ubiquitin Ligase

    PubMed Central

    Kim, Tai Young; Siesser, Priscila F.; Rossman, Kent L.; Goldfarb, Dennis; Mackinnon, Kathryn; Yan, Feng; Yi, XianHua; MacCoss, Michael J.; Moon, Randall T.; Der, Channing J.

    2014-01-01

    Defining the full complement of substrates for each ubiquitin ligase remains an important challenge. Improvements in mass spectrometry instrumentation and computation and in protein biochemistry methods have resulted in several new methods for ubiquitin ligase substrate identification. Here we used the parallel adapter capture (PAC) proteomics approach to study βTrCP2/FBXW11, a substrate adaptor for the SKP1–CUL1–F-box (SCF) E3 ubiquitin ligase complex. The processivity of the ubiquitylation reaction necessitates transient physical interactions between FBXW11 and its substrates, thus making biochemical purification of FBXW11-bound substrates difficult. Using the PAC-based approach, we inhibited the proteasome to “trap” ubiquitylated substrates on the SCFFBXW11 E3 complex. Comparative mass spectrometry analysis of immunopurified FBXW11 protein complexes before and after proteasome inhibition revealed 21 known and 23 putatively novel substrates. In focused studies, we found that SCFFBXW11 bound, polyubiquitylated, and destabilized RAPGEF2, a guanine nucleotide exchange factor that activates the small GTPase RAP1. High RAPGEF2 protein levels promoted cell-cell fusion and, consequently, multinucleation. Surprisingly, this occurred independently of the guanine nucleotide exchange factor (GEF) catalytic activity and of the presence of RAP1. Our data establish new functions for RAPGEF2 that may contribute to aneuploidy in cancer. More broadly, this report supports the continued use of substrate trapping proteomics to comprehensively define targets for E3 ubiquitin ligases. All proteomic data are available via ProteomeXchange with identifier PXD001062. PMID:25332235

  18. Structure of the Human FANCL RING-Ube2T Complex Reveals Determinants of Cognate E3-E2 Selection

    PubMed Central

    Hodson, Charlotte; Purkiss, Andrew; Miles, Jennifer Anne; Walden, Helen

    2014-01-01

    Summary The combination of an E2 ubiquitin-conjugating enzyme with an E3 ubiquitin-ligase is essential for ubiquitin modification of a substrate. Moreover, the pairing dictates both the substrate choice and the modification type. The molecular details of generic E3-E2 interactions are well established. Nevertheless, the determinants of selective, specific E3-E2 recognition are not understood. There are ∼40 E2s and ∼600 E3s giving rise to a possible ∼24,000 E3-E2 pairs. Using the Fanconi Anemia pathway exclusive E3-E2 pair, FANCL-Ube2T, we report the atomic structure of the FANCL RING-Ube2T complex, revealing a specific and extensive network of additional electrostatic and hydrophobic interactions. Furthermore, we show that these specific interactions are required for selection of Ube2T over other E2s by FANCL. PMID:24389026

  19. Expansion and diversification of BTL ring-H2 ubiquitin ligases in angiosperms: putative Rabring7/BCA2 orthologs.

    PubMed

    Aguilar-Hernández, Victor; Medina, Juliana; Aguilar-Henonin, Laura; Guzmán, Plinio

    2013-01-01

    RING finger E3 ligases are components of the ubiquitin proteasome system (UPS) that mediate the transfer of ubiquitin to substrates. Single-subunit RING finger E3s binds the E2 ubiquitin-conjugating enzyme and contains recognition sequences for the substrate within the same polypeptide. Here we describe the characterization of a class of RING finger E3 ligases that is conserved among eukaryotes. This class encodes a RING-H2 domain related in sequence to the ATL RING-H2 domain, another class of E3 ligases, and a C2/C2 zing finger at the amino-terminus, formerly described as BZF. In viridiplantae (green algae and land plants), we designed this family as BTL for BZF ATLs. BTLs are putative orthologs of the mammalian Rabring7/BCA2 RING-H2 E3s that have expanded in angiosperms. They are found in numbers ranging from three to thirty-one, which is in contrast to the one to three members normally found in animals, fungi, and protists. Furthermore, the number of sequence LOGOs generated in angiosperms is four times greater than that in other eukaryotes. In contrast to ATLs, which show expansion by tandem duplication, tandemly duplicated BTLs are scarce. The mode of action of Rabring7/BCA2 and BTLs may be similar since both the Rabring7/BCA2 BZF and the ath|BTL4 BZF are likely to mediate the binding of ubiquitin. This study introduces valuable information on the evolution and domain structure of the Rabring7/BCA2/BTL class of E3 ligases which may be important for core eukaryotic genes.

  20. TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress

    PubMed Central

    Hoffmann, Saskia; Smedegaard, Stine; Nakamura, Kyosuke; Mortuza, Gulnahar B.; Räschle, Markus; Ibañez de Opakua, Alain; Oka, Yasuyoshi; Feng, Yunpeng; Blanco, Francisco J.; Mann, Matthias; Montoya, Guillermo; Groth, Anja; Bekker-Jensen, Simon

    2016-01-01

    Cellular genomes are highly vulnerable to perturbations to chromosomal DNA replication. Proliferating cell nuclear antigen (PCNA), the processivity factor for DNA replication, plays a central role as a platform for recruitment of genome surveillance and DNA repair factors to replication forks, allowing cells to mitigate the threats to genome stability posed by replication stress. We identify the E3 ubiquitin ligase TRAIP as a new factor at active and stressed replication forks that directly interacts with PCNA via a conserved PCNA-interacting peptide (PIP) box motif. We show that TRAIP promotes ATR-dependent checkpoint signaling in human cells by facilitating the generation of RPA-bound single-stranded DNA regions upon replication stress in a manner that critically requires its E3 ligase activity and is potentiated by the PIP box. Consequently, loss of TRAIP function leads to enhanced chromosomal instability and decreased cell survival after replication stress. These findings establish TRAIP as a PCNA-binding ubiquitin ligase with an important role in protecting genome integrity after obstacles to DNA replication. PMID:26711499

  1. Structure And Function of the Yeast U-Box-Containing Ubiquitin Ligase Ufd2p

    SciTech Connect

    Tu, D.; Li, W.; Ye, Y.; Brunger, A.T.

    2009-06-04

    Proteins conjugated by Lys-48-linked polyubiquitin chains are preferred substrates of the eukaryotic proteasome. Polyubiquitination requires an activating enzyme (E1), a conjugating enzyme (E2), and a ligase (E3). Occasionally, these enzymes only assemble short ubiquitin oligomers, and their extension to full length involves a ubiquitin elongating factor termed E4. Ufd2p, as the first E4 identified to date, is involved in the degradation of misfolded proteins of the endoplasmic reticulum and of a ubiquitin-{beta}-GAL fusion substrate in Saccharomyces cerevisiae. The mechanism of action of Ufd2p is unknown. Here we describe the crystal structure of the full-length yeast Ufd2p protein. Ufd2p has an elongated shape consisting of several irregular Armadillo-like repeats with two helical hairpins protruding from it and a U-box domain flexibly attached to its C terminus. The U-box of Ufd2p has a fold similar to that of the RING (Really Interesting New Gene) domain that is present in certain ubiquitin ligases. Accordingly, Ufd2p has all of the hallmarks of a RING finger-containing ubiquitin ligase: it associates with its cognate E2 Ubc4p via its U-box domain and catalyzes the transfer of ubiquitin from the E2 active site to Ufd2p itself or to an acceptor ubiquitin molecule to form unanchored diubiquitin oligomers. Thus, Ufd2p can function as a bona fide E3 ubiquitin ligase to promote ubiquitin chain elongation on a substrate.

  2. The MLLE Domain of the Ubiquitin Ligase UBR5 Binds to Its Catalytic Domain to Regulate Substrate Binding*

    PubMed Central

    Muñoz-Escobar, Juliana; Matta-Camacho, Edna; Kozlov, Guennadi; Gehring, Kalle

    2015-01-01

    E3 ubiquitin ligases catalyze the transfer of ubiquitin from an E2-conjugating enzyme to a substrate. UBR5, homologous to the E6AP C terminus (HECT)-type E3 ligase, mediates the ubiquitination of proteins involved in translation regulation, DNA damage response, and gluconeogenesis. In addition, UBR5 functions in a ligase-independent manner by prompting protein/protein interactions without ubiquitination of the binding partner. Despite recent functional studies, the mechanisms involved in substrate recognition and selective ubiquitination of its binding partners remain elusive. The C terminus of UBR5 harbors the HECT catalytic domain and an adjacent MLLE domain. MLLE domains mediate protein/protein interactions through the binding of a conserved peptide motif, termed PAM2. Here, we characterize the binding properties of the UBR5 MLLE domain to PAM2 peptides from Paip1 and GW182. The crystal structure with a Paip1 PAM2 peptide reveals the network of hydrophobic and ionic interactions that drive binding. In addition, we identify a novel interaction of the MLLE domain with the adjacent HECT domain mediated by a PAM2-like sequence. Our results confirm the role of the MLLE domain of UBR5 in substrate recruitment and suggest a potential role in regulating UBR5 ligase activity. PMID:26224628

  3. The MLLE domain of the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding.

    PubMed

    Muñoz-Escobar, Juliana; Matta-Camacho, Edna; Kozlov, Guennadi; Gehring, Kalle

    2015-09-11

    E3 ubiquitin ligases catalyze the transfer of ubiquitin from an E2-conjugating enzyme to a substrate. UBR5, homologous to the E6AP C terminus (HECT)-type E3 ligase, mediates the ubiquitination of proteins involved in translation regulation, DNA damage response, and gluconeogenesis. In addition, UBR5 functions in a ligase-independent manner by prompting protein/protein interactions without ubiquitination of the binding partner. Despite recent functional studies, the mechanisms involved in substrate recognition and selective ubiquitination of its binding partners remain elusive. The C terminus of UBR5 harbors the HECT catalytic domain and an adjacent MLLE domain. MLLE domains mediate protein/protein interactions through the binding of a conserved peptide motif, termed PAM2. Here, we characterize the binding properties of the UBR5 MLLE domain to PAM2 peptides from Paip1 and GW182. The crystal structure with a Paip1 PAM2 peptide reveals the network of hydrophobic and ionic interactions that drive binding. In addition, we identify a novel interaction of the MLLE domain with the adjacent HECT domain mediated by a PAM2-like sequence. Our results confirm the role of the MLLE domain of UBR5 in substrate recruitment and suggest a potential role in regulating UBR5 ligase activity.

  4. Structure-Odor Relationships of (E)-3-Alkenoic Acids, (E)-3-Alken-1-ols, and (E)-3-Alkenals.

    PubMed

    Lorber, Katja; Buettner, Andrea

    2015-08-01

    (E)-3-Unsaturated volatile acids, alcohols, and aldehydes are commonly found as odorants or pheromones in foods and other natural sources, playing a vital role in not only the attractiveness of foods but also chemo-communication in the animal kingdom. However, a systematic elucidation of their aroma properties, especially for humans, has not been carried out until today. To close this gap, the odor thresholds in air and odor qualities of homologous series of (E)-3-alkenoic acids, (E)-3-alken-1-ols, and (E)-3-alkenals were determined by gas chromatography-olfactometry. In the series of (E)-3-alkenoic acids the odor quality changed successively from sweaty via plastic-like to sweaty and waxy. On the other hand, the odor qualities in the series of (E)-3-alken-1-ols and (E)-3-alkenals changed from grassy, green to an overall citrus-like, fresh, soapy, and coriander-like odor with increasing chain length. With regard to their odor potencies, the lowest thresholds in air were found for (E)-3-heptenoic acid, (E)-3-hexenoic acid, and (E)-3-hexenal. PMID:26165743

  5. Genome-wide identification and gene expression profiling of ubiquitin ligases for endoplasmic reticulum protein degradation

    PubMed Central

    Kaneko, Masayuki; Iwase, Ikuko; Yamasaki, Yuki; Takai, Tomoko; Wu, Yan; Kanemoto, Soshi; Matsuhisa, Koji; Asada, Rie; Okuma, Yasunobu; Watanabe, Takeshi; Imaizumi, Kazunori; Nomura, Yausyuki

    2016-01-01

    Endoplasmic reticulum (ER)-associated degradation (ERAD) is a mechanism by which unfolded proteins that accumulate in the ER are transported to the cytosol for ubiquitin–proteasome-mediated degradation. Ubiquitin ligases (E3s) are a group of enzymes responsible for substrate selectivity and ubiquitin chain formation. The purpose of this study was to identify novel E3s involved in ERAD. Thirty-seven candidate genes were selected by searches for proteins with RING-finger motifs and transmembrane regions, which are the major features of ERAD E3s. We performed gene expression profiling for the identified E3s in human and mouse tissues. Several genes were specifically or selectively expressed in both tissues; the expression of four genes (RNFT1, RNF185, CGRRF1 and RNF19B) was significantly upregulated by ER stress. To determine the involvement of the ER stress-responsive genes in ERAD, we investigated their ER localisation, in vitro autoubiquitination activity and ER stress resistance. All were partially localised to the ER, whereas CGRRF1 did not possess E3 activity. RNFT1 and RNF185, but not CGRRF1 and RNF19B, exhibited significant resistance to ER stressor in an E3 activity-dependent manner. Thus, these genes are possible candidates for ERAD E3s. PMID:27485036

  6. The ubiquitin conjugating enzyme UbcH10 competes with UbcH3 for binding to the SCF complex, a ubiquitin ligase involved in cell cycle progression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ubiquitylation, which regulates most biological pathways, occurs through an enzymatic cascade involving a ubiquitin (ub) activating enzyme (E1), a ub conjugating enzyme (E2) and a ub ligase (E3). UbcH3 is the E2 that interacts with SCF (Skp1/Cul1/F-box protein) complex and ubiquitylates many protein...

  7. Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP

    PubMed Central

    Koliopoulos, Marios G.; Morris-Davies, Aylin C.; Schaeffer, Veronique; Christodoulou, Evangelos; Howell, Steven; Brown, Nicholas R.; Dikic, Ivan; Rittinger, Katrin

    2013-01-01

    Linear ubiquitin chains are important regulators of cellular signaling pathways that control innate immunity and inflammation through NF-κB activation and protection against TNFα-induced apoptosis1-5. They are synthesized by HOIP, which belongs to the RBR (RING-between-RING) family of E3 ligases and is the catalytic component of LUBAC (linear ubiquitin chain assembly complex), a multi-subunit E3 ligase6. RBR family members act as RING/HECT hybrids, employing RING1 to recognize ubiquitin-loaded E2 while a conserved cysteine in RING2 subsequently forms a thioester intermediate with the transferred or “donor” ubiquitin7. Here we report the crystal structure of the catalytic core of HOIP in its apo form and in complex with ubiquitin. The C-terminal portion of HOIP adopts a novel fold that, together with a zinc finger, forms an ubiquitin-binding platform which orients the acceptor ubiquitin and positions its α-amino group for nucleophilic attack on the E3~ubiquitin thioester. The carboxy-terminal tail of a second ubiquitin molecule is located in close proximity to the catalytic cysteine providing a unique snapshot of the ubiquitin transfer complex containing both donor and acceptor ubiquitin. These interactions are required for activation of the NF-kB pathway in vivo and explain the determinants of linear ubiquitin chain specificity by LUBAC. PMID:24141947

  8. Targeting Neddylation Pathways to Inactivate Cullin-RING Ligases for Anticancer Therapy

    PubMed Central

    Zhao, Yongchao; Morgan, Meredith A.

    2014-01-01

    Abstract Significance: Protein neddylation is catalyzed by an E1 NEDD8-activating enzyme (NAE), an E2 NEDD8-conjugating enzyme, and an E3 NEDD8 ligase. Known physiological substrates of neddylation are cullin family members. Cullin neddylation leads to activation of cullin-RING ligases (CRLs), the largest family of E3 ubiquitin ligases responsible for ubiquitylation and degradation of many key signaling/regulatory proteins. Thus, through modulating CRLs, neddylation regulates many biological processes, including cell cycle progression, signal transduction, and tumorigenesis. Given that NEDD8 is overexpressed and CRLs are abnormally activated in many human cancers, targeting protein neddylation, in general, and cullin neddylation, in particular, appears to be an attractive anticancer approach. Recent Advances: MLN4924, a small molecule inhibitor of NAE, was discovered that inactivates CRLs and causes accumulation of CRL substrates to suppress tumor cell growth both in vitro and in vivo. Promising preclinical results advanced MLN4924 to several clinical trials for anticancer therapy. Critical Issues: In preclinical settings, MLN4924 effectively suppresses tumor cell growth by inducing apoptosis, senescence, and autophagy, and causes sensitization to chemoradiation therapies in a cellular context-dependent manner. Signal molecules that determine the cell fate upon MLN4924 treatment, however, remain elusive. Cancer cells develop MLN4924 resistance by selecting target mutations. Future Directions: In the clinical side, several Phase 1b trials are under way to determine the safety and efficacy of MLN4924, acting alone or in combination with conventional chemotherapy, against human solid tumors. In the preclinical side, the efforts are being made to develop additional neddylation inhibitors by targeting NEDD8 E2s and E3s. Antioxid. Redox Signal. 21, 2383–2400. PMID:24410571

  9. Discovery and characterization of a thermostable bacteriophage RNA ligase homologous to T4 RNA ligase 1.

    PubMed

    Blondal, Thorarinn; Hjorleifsdottir, Sigridur H; Fridjonsson, Olafur F; Aevarsson, Arnthor; Skirnisdottir, Sigurlaug; Hermannsdottir, Anna Gudny; Hreggvidsson, Gudmundur O; Smith, Albert Vernon; Kristjansson, Jakob K

    2003-12-15

    Thermophilic viruses represent a novel source of genetic material and enzymes with great potential for use in biotechnology. We have isolated a number of thermophilic viruses from geothermal areas in Iceland, and by combining high throughput genome sequencing and state of the art bioinformatics we have identified a number of genes with potential use in biotechnology. We have also demonstrated the existence of thermostable counterparts of previously known bacteriophage enzymes. Here we describe a thermostable RNA ligase 1 from the thermophilic bacteriophage RM378 that infects the thermophilic eubacterium Rhodothermus marinus. The RM378 RNA ligase 1 has a temperature optimum of 60-64 degrees C and it ligates both RNA and single-stranded DNA. Its thermostability and ability to work under conditions of high temperature where nucleic acid secondary structures are removed makes it an ideal enzyme for RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE), and other RNA and DNA ligation applications.

  10. RING E3-Catalyzed E2 Self-Ubiquitination Attenuates the Activity of Ube2E Ubiquitin-Conjugating Enzymes.

    PubMed

    Banka, Prerana Agarwal; Behera, Adaitya Prasad; Sarkar, Sayani; Datta, Ajit B

    2015-07-01

    Ubiquitination of a target protein is accomplished through sequential actions of the E1, E2s, and the E3s. E2s dictate the modification topology while E3 ligases confer substrate specificity and recruit the cognate E2. Human genome codes for ~35 different E2 proteins; all of which contain the characteristic ubiquitin-conjugating UBC core domain sufficient for catalysis. Many of these E2 enzymes also have N- or C-terminal extensions; roles of which are not very well understood. We show that the N-terminal extension of Ube2E1 undergoes intramolecular auto-ubiquitination. This self-ubiquitination activity is enhanced in the presence of interacting RING E3 ligases and results in a progressive attenuation of the E2 activity toward substrate/E3 modification. We also find that the N-terminal ubiquitination sites are conserved in all the three Ube2Es and replacing them with arginine renders all three full-length Ube2Es equally active as their core UBC domains. Based on these results, we propose that E3-catalyzed self-ubiquitination acts as a key regulatory mechanism that controls the activity of Ube2E class of ubiquitin E2s.

  11. The ubiquitin ligase Mindbomb 1 coordinates gastrointestinal secretory cell maturation

    PubMed Central

    Capoccia, Benjamin J.; Jin, Ramon U.; Kong, Young-Yun; Peek, Richard M.; Fassan, Matteo; Rugge, Massimo; Mills, Jason C.

    2013-01-01

    After cell fate specification, differentiating cells must amplify the specific subcellular features required for their specialized function. How cells regulate such subcellular scaling is a fundamental unanswered question. Here, we show that the E3 ubiquitin ligase Mindbomb 1 (MIB1) is required for the apical secretory apparatus established by gastric zymogenic cells as they differentiate from their progenitors. When Mib1 was deleted, death-associated protein kinase–1 (DAPK1) was rerouted to the cell base, microtubule-associated protein 1B (MAP1B) was dephosphorylated, and the apical vesicles that normally support mature secretory granules were dispersed. Consequently, secretory granules did not mature. The transcription factor MIST1 bound the first intron of Mib1 and regulated its expression. We further showed that loss of MIB1 and dismantling of the apical secretory apparatus was the earliest quantifiable aberration in zymogenic cells undergoing transition to a precancerous metaplastic state in mouse and human stomach. Our results reveal a mechanistic pathway by which cells can scale up a specific, specialized subcellular compartment to alter function during differentiation and scale it down during disease. PMID:23478405

  12. Cloning, nucleotide sequence, and engineered expression of Thermus thermophilus DNA ligase, a homolog of Escherichia coli DNA ligase.

    PubMed Central

    Lauer, G; Rudd, E A; McKay, D L; Ally, A; Ally, D; Backman, K C

    1991-01-01

    We have cloned and sequenced the gene for DNA ligase from Thermus thermophilus. A comparison of this sequence and those of other ligases reveals significant homology only with that of Escherichia coli. The overall amino acid composition of the thermophilic ligase and the pattern of amino acid substitutions between the two proteins are consistent with compositional biases in other thermophilic enzymes. We have engineered the expression of the T. thermophilus gene in Escherichia coli, and we show that E. coli proteins may be substantially removed from the thermostable ligase by a simple heat precipitation step. Images PMID:1840584

  13. Yeast two-hybrid interactions between Arabidopsis lyrata S Receptor Kinase and the ARC1 E3 ligase.

    PubMed

    Indriolo, Emily; Goring, Daphne R

    2016-06-01

    Here we describe protein-protein interactions between signaling components in the conserved self-incompatibility pathway from Brassica spp. and Arabidopsis lyrata. Previously, we had demonstrated that ARC1 is necessary in A. lyrata for the rejection of self-pollen by the self-incompatibility pathway. The results described here demonstrate that A. lyrata ARC1 interacts with A. lyrata S Receptor Kinase (SRK1) in the yeast 2-hybrid system. A. lyrata ARC1 also interacted with B. napus SRK910 illustrating that interactions in this pathway are conserved across species. Finally, we discuss how the more widely occurring interactions between SRK and ARC1-related family members may be modulated in vivo by expression and subcellular localization patterns resulting in a particular response. PMID:27175603

  14. A novel effect of thalidomide and its analogs: suppression of cereblon ubiquitination enhances ubiquitin ligase function.

    PubMed

    Liu, Yaobin; Huang, Xiangao; He, Xian; Zhou, Yanqing; Jiang, Xiaogang; Chen-Kiang, Selina; Jaffrey, Samie R; Xu, Guoqiang

    2015-12-01

    The immunomodulatory drug (IMiD) thalidomide and its structural analogs lenalidomide and pomalidomide are highly effective in treating clinical indications. Thalidomide binds to cereblon (CRBN), a substrate receptor of the cullin-4 really interesting new gene (RING) E3 ligase complex. Here, we examine the effect of thalidomide and its analogs on CRBN ubiquitination and its functions in human cell lines. We find that the ubiquitin modification of CRBN includes K48-linked polyubiquitin chains and that thalidomide blocks the formation of CRBN-ubiquitin conjugates. Furthermore, we show that ubiquitinated CRBN is targeted for proteasomal degradation. Treatment of human myeloma cell lines such as MM1.S, OPM2, and U266 with thalidomide (100 μM) and its structural analog lenalidomide (10 μM) results in stabilization of CRBN and elevation of CRBN protein levels. This in turn leads to the reduced level of CRBN target proteins and enhances the sensitivity of human multiple myeloma cells to IMiDs. Our results reveal a novel mechanism by which thalidomide and its analogs modulate the CRBN function in cells. Through inhibition of CRBN ubiquitination, thalidomide and its analogs allow CRBN to accumulate, leading to the increased cullin-4 RING E3 ligase-mediated degradation of target proteins.

  15. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination

    PubMed Central

    Ahmed, M. Rafiuddin; Zhan, Xuanzhi; Song, Xiufeng; Kook, Seunghyi; Gurevich, Vsevolod V.; Gurevich, Eugenia V.

    2011-01-01

    Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmuno-precipitation of endogenous proteins from brain tissue, and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both non-visual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology. PMID:21466165

  16. Chromosome demise in the wake of ligase-deficient replication

    PubMed Central

    Kouzminova, Elena A.; Kuzminov, Andrei

    2012-01-01

    Summary Bacterial DNA ligases, NAD+-dependent enzymes, are distinct from eukaryotic ATP-dependent ligases, representing promising targets for broad-spectrum antimicrobials. Yet, the chromosomal consequences of ligase-deficient DNA replication, during which Okazaki fragments accumulate, are still unclear. Using ligA251(Ts), the strongest ligase mutant of Escherichia coli, we studied ligase-deficient DNA replication by genetic and physical approaches. Here we show that replication without ligase kills after a short resistance period. We found that double-strand break repair via RecA, RecBCD, RuvABC and RecG explains the transient resistance, whereas irreparable chromosomal fragmentation explains subsequent cell death. Remarkably, death is mostly prevented by elimination of linear DNA degradation activity of ExoV, suggesting that non-allelic double-strand breaks behind replication forks precipitate DNA degradation that enlarge them into allelic double-strand gaps. Marker frequency profiling of synchronized replication reveals stalling of ligase-deficient forks with subsequent degradation of the DNA synthesized without ligase. The mechanism that converts unsealed nicks behind replication forks first into repairable double-strand breaks and then into irreparable double-strand gaps may be behind lethality of any DNA damaging treatment. PMID:22582878

  17. KF-1 Ubiquitin Ligase: An Anxiety Suppressor

    PubMed Central

    Hashimoto-Gotoh, Tamotsu; Iwabe, Naoyuki; Tsujimura, Atsushi; Takao, Keizo; Miyakawa, Tsuyoshi

    2009-01-01

    Anxiety is an instinct that may have developed to promote adaptive survival by evading unnecessary danger. However, excessive anxiety is disruptive and can be a basic disorder of other psychiatric diseases such as depression. The KF-1, a ubiquitin ligase located on the endoplasmic reticulum (ER), may prevent excessive anxiety; kf-1−/− mice exhibit selectively elevated anxiety-like behavior against light or heights. It is surmised that KF-1 degrades some target proteins, responsible for promoting anxiety, through the ER-associated degradation pathway, similar to Parkin in Parkinson's disease (PD). Parkin, another ER-ubiquitin ligase, prevents the degeneration of dopaminergic neurons by degrading the target proteins responsible for PD. Molecular phylogenetic studies have revealed that the prototype of kf-1 appeared in the very early phase of animal evolution but was lost, unlike parkin, in the lineage leading up to Drosophila. Therefore, kf-1−/− mice may be a powerful tool for elucidating the molecular mechanisms involved in emotional regulation, and for screening novel anxiolytic/antidepressant compounds. PMID:19753093

  18. Dual Function of Phosphoubiquitin in E3 Activation of Parkin.

    PubMed

    Walinda, Erik; Morimoto, Daichi; Sugase, Kenji; Shirakawa, Masahiro

    2016-08-01

    Mutations in the gene encoding parkin, an auto-inhibited E3 ubiquitin ligase that functions in the clearance of damaged mitochondria, are the most common cause of autosomal recessive juvenile Parkinsonism. The mechanism regulating parkin activation remains poorly understood. Here we show, by using isothermal titration calorimetry, solution NMR, and fluorescence spectroscopy, that parkin can bind ubiquitin and phosphomimetic ubiquitin by recognizing the canonical hydrophobic patch and C terminus of ubiquitin. The affinity of parkin for both phosphomimetic and unmodified ubiquitin is markedly enhanced upon removal of the ubiquitin-like (UBL) domain of parkin. This suggests that the agonistic binding of ubiquitin to parkin in trans is counterbalanced by the antagonistic activity of the parkin UBL domain in cis Intriguingly, UBL binding is enthalpy-driven, whereas ubiquitin binding is driven by an increase in the total entropy of the system. These thermodynamic differences are explained by different chemistry in the ubiquitin- and UBL-binding pockets of parkin and, as shown by molecular dynamics simulations, are not a consequence of changes in protein conformational entropy. Indeed, comparison of conformational fluctuations reveals that the RING1-IBR element becomes considerably more rigid upon complex formation. A model of parkin activation is proposed in which E2∼Ub binding triggers large scale diffusional motion of the RING2 domain toward the ubiquitin-stabilized RING1-IBR assembly to complete formation of the active parkin-E2∼Ub transfer complex. Thus, ubiquitin plays a dual role in parkin activation by competing with the inhibitory UBL domain and stabilizing the active form of parkin. PMID:27284007

  19. Small ubiquitin-related modifier ligase activity of Mms21 is required for maintenance of chromosome integrity during the unperturbed mitotic cell division cycle in Saccharomyces cerevisiae.

    PubMed

    Rai, Ragini; Varma, Satya P M V; Shinde, Nikhil; Ghosh, Shilpa; Kumaran, Srikala P; Skariah, Geena; Laloraya, Shikha

    2011-04-22

    The SUMO ligase activity of Mms21/Nse2, a conserved member of the Smc5/6 complex, is required for resisting extrinsically induced genotoxic stress. We report that the Mms21 SUMO ligase activity is also required during the unchallenged mitotic cell cycle in Saccharomyces cerevisiae. SUMO ligase-defective cells were slow growing and spontaneously incurred DNA damage. These cells required caffeine-sensitive Mec1 kinase-dependent checkpoint signaling for survival even in the absence of extrinsically induced genotoxic stress. SUMO ligase-defective cells were sensitive to replication stress and displayed synthetic growth defects with DNA damage checkpoint-defective mutants such as mec1, rad9, and rad24. MMS21 SUMO ligase and mediator of replication checkpoint 1 gene (MRC1) were epistatic with respect to hydroxyurea-induced replication stress or methyl methanesulfonate-induced DNA damage sensitivity. Subjecting Mms21 SUMO ligase-deficient cells to transient replication stress resulted in enhancement of cell cycle progression defects such as mitotic delay and accumulation of hyperploid cells. Consistent with the spontaneous activation of the DNA damage checkpoint pathway observed in the Mms21-mediated sumoylation-deficient cells, enhanced frequency of chromosome breakage and loss was detected in these mutant cells. A mutation in the conserved cysteine 221 that is engaged in coordination of the zinc ion in Loop 2 of the Mms21 SPL-RING E3 ligase catalytic domain resulted in strong replication stress sensitivity and also conferred slow growth and Mec1 dependence to unchallenged mitotically dividing cells. Our findings establish Mms21-mediated sumoylation as a determinant of cell cycle progression and maintenance of chromosome integrity during the unperturbed mitotic cell division cycle in budding yeast. PMID:21324902

  20. MicroRNA-155 Reinforces HIV Latency*

    PubMed Central

    Ruelas, Debbie S.; Chan, Jonathan K.; Oh, Eugene; Heidersbach, Amy J.; Hebbeler, Andrew M.; Chavez, Leonard; Verdin, Eric; Rape, Michael; Greene, Warner C.

    2015-01-01

    The presence of a small number of infected but transcriptionally dormant cells currently thwarts a cure for the more than 35 million individuals infected with HIV. Reactivation of these latently infected cells may result in three fates: 1) cell death due to a viral cytopathic effect, 2) cell death due to immune clearance, or 3) a retreat into latency. Uncovering the dynamics of HIV gene expression and silencing in the latent reservoir will be crucial for developing an HIV-1 cure. Here we identify and characterize an intracellular circuit involving TRIM32, an HIV activator, and miR-155, a microRNA that may promote a return to latency in these transiently activated reservoir cells. Notably, we demonstrate that TRIM32, an E3 ubiquitin ligase, promotes reactivation from latency by directly modifying IκBα, leading to a novel mechanism of NF-κB induction not involving IκB kinase activation. PMID:25873391

  1. The tumour antigen PRAME is a subunit of a Cul2 ubiquitin ligase and associates with active NFY promoters

    PubMed Central

    Costessi, Adalberto; Mahrour, Nawel; Tijchon, Esther; Stunnenberg, Rieka; Stoel, Marieke A; Jansen, Pascal W; Sela, Dotan; Martin-Brown, Skylar; Washburn, Michael P; Florens, Laurence; Conaway, Joan W; Conaway, Ronald C; Stunnenberg, Hendrik G

    2011-01-01

    The human tumour antigen PRAME (preferentially expressed antigen of melanoma) is frequently overexpressed in tumours. High PRAME levels correlate with poor clinical outcome of several cancers, but the mechanisms by which PRAME could be involved in tumourigenesis remain largely elusive. We applied protein-complex purification strategies and identified PRAME as a substrate recognition subunit of a Cullin2-based E3 ubiquitin ligase. PRAME can be recruited to DNA in vitro, and genome-wide chromatin immunoprecipitation experiments revealed that PRAME is specifically enriched at transcriptionally active promoters that are also bound by NFY and at enhancers. Our results are consistent with a role for the PRAME ubiquitin ligase complex in NFY-mediated transcriptional regulation. PMID:21822215

  2. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis.

    PubMed Central

    Sudakin, V; Ganoth, D; Dahan, A; Heller, H; Hershko, J; Luca, F C; Ruderman, J V; Hershko, A

    1995-01-01

    The ubiquitin-mediated degradation of mitotic cyclins is required for cells to exit from mitosis. Previous work with cell-free systems has revealed four components required for cyclin-ubiquitin ligation and proteolysis: a nonspecific ubiquitin-activating enzyme E1, a soluble fraction containing a ubiquitin carrier protein activity called E2-C, a crude particulate fraction containing a ubiquitin ligase (E3) activity that is activated during M-phase, and a constitutively active 26S proteasome that degrades ubiquitinated proteins. Here, we identify a novel approximately 1500-kDa complex, termed the cyclosome, which contains a cyclin-selective ubiquitin ligase activity, E3-C. E3-C is present but inactive during interphase; it can be activated in vitro by the addition of cdc2, enabling the transfer of ubiquitin from E2-C to cyclin. The kinetics of E3-C activation suggest the existence of one or more intermediates between cdc2 and E3-C. Cyclosome-associated E3-C acts on both cyclin A and B, and requires the presence of wild-type N-terminal destruction box motifs in each cyclin. Ubiquitinated cyclins are then rapidly recognized and degraded by the proteasome. These results identify the cyclosome-associated E3-C as the component of the cyclin destruction machinery whose activity is ultimately regulated by cdc2 and, as such, the element directly responsible for setting mitotic cyclin levels during early embryonic cell cycles. Images PMID:7787245

  3. Characterization of Agrobacterium tumefaciens DNA ligases C and D.

    PubMed

    Zhu, Hui; Shuman, Stewart

    2007-01-01

    Agrobacterium tumefaciens encodes a single NAD+-dependent DNA ligase and six putative ATP-dependent ligases. Two of the ligases are homologs of LigD, a bacterial enzyme that catalyzes end-healing and end-sealing steps during nonhomologous end joining (NHEJ). Agrobacterium LigD1 and AtuLigD2 are composed of a central ligase domain fused to a C-terminal polymerase-like (POL) domain and an N-terminal 3'-phosphoesterase (PE) module. Both LigD proteins seal DNA nicks, albeit inefficiently. The LigD2 POL domain adds ribonucleotides or deoxyribonucleotides to a DNA primer-template, with rNTPs being the preferred substrates. The LigD1 POL domain has no detectable polymerase activity. The PE domains catalyze metal-dependent phosphodiesterase and phosphomonoesterase reactions at a primer-template with a 3'-terminal diribonucleotide to yield a primer-template with a monoribonucleotide 3'-OH end. The PE domains also have a 3'-phosphatase activity on an all-DNA primer-template that yields a 3'-OH DNA end. Agrobacterium ligases C2 and C3 are composed of a minimal ligase core domain, analogous to Mycobacterium LigC (another NHEJ ligase), and they display feeble nick-sealing activity. Ligation at DNA double-strand breaks in vitro by LigD2, LigC2 and LigC3 is stimulated by bacterial Ku, consistent with their proposed function in NHEJ.

  4. Inhibition of SCF ubiquitin ligases by engineered ubiquitin variants that target the Cul1 binding site on the Skp1–F-box interface

    PubMed Central

    Gorelik, Maryna; Orlicky, Stephen; Sartori, Maria A.; Tang, Xiaojing; Marcon, Edyta; Kurinov, Igor; Greenblatt, Jack F.; Tyers, Mike; Moffat, Jason; Sicheri, Frank; Sidhu, Sachdev S.

    2016-01-01

    Skp1–Cul1–F-box (SCF) E3 ligases play key roles in multiple cellular processes through ubiquitination and subsequent degradation of substrate proteins. Although Skp1 and Cul1 are invariant components of all SCF complexes, the 69 different human F-box proteins are variable substrate binding modules that determine specificity. SCF E3 ligases are activated in many cancers and inhibitors could have therapeutic potential. Here, we used phage display to develop specific ubiquitin-based inhibitors against two F-box proteins, Fbw7 and Fbw11. Unexpectedly, the ubiquitin variants bind at the interface of Skp1 and F-box proteins and inhibit ligase activity by preventing Cul1 binding to the same surface. Using structure-based design and phage display, we modified the initial inhibitors to generate broad-spectrum inhibitors that targeted many SCF ligases, or conversely, a highly specific inhibitor that discriminated between even the close homologs Fbw11 and Fbw1. We propose that most F-box proteins can be targeted by this approach for basic research and for potential cancer therapies. PMID:26976582

  5. Ubiquitin ligase gene neurl3 plays a role in spermatogenesis of half-smooth tongue sole (Cynoglossus semilaevis) by regulating testis protein ubiquitination.

    PubMed

    Xu, Wenteng; Li, Hailong; Dong, Zhongdian; Cui, Zhongkai; Zhang, Ning; Meng, Liang; Zhu, Ying; Liu, Yang; Li, Yangzhen; Guo, Hua; Ma, Jialu; Wei, Zhanfei; Zhang, Nianwei; Yang, Yingming; Chen, Songlin

    2016-10-30

    E3 ubiquitin ligases are a large gene family that plays a diversity of roles in spermatogenesis. In this study, the functional characterization of a neuralized E3 ubiquitin protein ligase 3 (neurl3) revealed its potential participation in spermatogenesis. Firstly, we found that neurl3 exhibited male-biased transcription and that its translation was predominant in testis germ cells. The knockdown of neurl3 by RNA interference caused increased transcription of spermatogenesis-related genes. These results corroborate previous studies indicating a role for neurl3 in spermatogenesis. Moreover, the levels of neurl3 transcription and testis protein ubiquitination were closely correlated. Based on these findings, we speculate that neurl3 modulates testis protein ubiquitination in a dosage-dependent manner and that this influences spermatogenesis. PMID:27480167

  6. Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III.

    PubMed

    Arakawa, Hiroshi; Iliakis, George

    2015-01-01

    Higher eukaryotes have three types of DNA ligases: DNA ligase 1 (Lig1), DNA ligase 3 (Lig3) and DNA ligase 4 (Lig4). While Lig1 and Lig4 are present in all eukaryotes from yeast to human, Lig3 appears sporadically in evolution and is uniformly present only in vertebrates. In the classical, textbook view, Lig1 catalyzes Okazaki-fragment ligation at the DNA replication fork and the ligation steps of long-patch base-excision repair (BER), homologous recombination repair (HRR) and nucleotide excision repair (NER). Lig4 is responsible for DNA ligation at DNA double strand breaks (DSBs) by the classical, DNA-PKcs-dependent pathway of non-homologous end joining (C-NHEJ). Lig3 is implicated in a short-patch base excision repair (BER) pathway, in single strand break repair in the nucleus, and in all ligation requirements of the DNA metabolism in mitochondria. In this scenario, Lig1 and Lig4 feature as the major DNA ligases serving the most essential ligation needs of the cell, while Lig3 serves in the cell nucleus only minor repair roles. Notably, recent systematic studies in the chicken B cell line, DT40, involving constitutive and conditional knockouts of all three DNA ligases individually, as well as of combinations thereof, demonstrate that the current view must be revised. Results demonstrate that Lig1 deficient cells proliferate efficiently. Even Lig1/Lig4 double knockout cells show long-term viability and proliferate actively, demonstrating that, at least in DT40, Lig3 can perform all ligation reactions of the cellular DNA metabolism as sole DNA ligase. Indeed, in the absence of Lig1, Lig3 can efficiently support semi-conservative DNA replication via an alternative Okazaki-fragment ligation pathway. In addition, Lig3 can back up NHEJ in the absence of Lig4, and can support NER and HRR in the absence of Lig1. Supporting observations are available in less elaborate genetic models in mouse cells. Collectively, these observations raise Lig3 from a niche-ligase to a

  7. Identification of a Protein Network Interacting with TdRF1, a Wheat RING Ubiquitin Ligase with a Protective Role against Cellular Dehydration1[C][W

    PubMed Central

    Guerra, Davide; Mastrangelo, Anna Maria; Lopez-Torrejon, Gema; Marzin, Stephan; Schweizer, Patrick; Stanca, Antonio Michele; del Pozo, Juan Carlos; Cattivelli, Luigi; Mazzucotelli, Elisabetta

    2012-01-01

    Plants exploit ubiquitination to modulate the proteome with the final aim to ensure environmental adaptation and developmental plasticity. Ubiquitination targets are specifically driven to degradation through the action of E3 ubiquitin ligases. Genetic analyses have indicated wide functions of ubiquitination in plant life; nevertheless, despite the large number of predicted E3s, only a few of them have been characterized so far, and only a few ubiquitination targets are known. In this work, we characterized durum wheat (Triticum durum) RING Finger1 (TdRF1) as a durum wheat nuclear ubiquitin ligase. Moreover, its barley (Hordeum vulgare) homolog was shown to protect cells from dehydration stress. A protein network interacting with TdRF1 has been defined. The transcription factor WHEAT BEL1-TYPE HOMEODOMAIN1 (WBLH1) was degraded in a TdRF1-dependent manner through the 26S proteasome in vivo, the mitogen-activated protein kinase TdWNK5 [for Triticum durum WITH NO LYSINE (K)5] was able to phosphorylate TdRF1 in vitro, and the RING-finger protein WHEAT VIVIPAROUS-INTERACTING PROTEIN2 (WVIP2) was shown to have a strong E3 ligase activity. The genes coding for the TdRF1 interactors were all responsive to cold and/or dehydration stress, and a negative regulative function in dehydration tolerance was observed for the barley homolog of WVIP2. A role in the control of plant development was previously known, or predictable based on homology, for wheat BEL1-type homeodomain1(WBLH1). Thus, TdRF1 E3 ligase might act regulating the response to abiotic stress and remodeling plant development in response to environmental constraints. PMID:22167118

  8. Chang'E-3 Science Exploration Progress

    NASA Astrophysics Data System (ADS)

    Zou, Yongliao; Ouyang, Ziyuan

    Chang’e-3 mission is the second phase of China Lunar Exploration Program which its main science objectives is to map the landing site and the rover path, determine its surface chemical composition and study the regional geological and geochemical characteristics, map the earth’s plasmasphere and study Earth’s plasmasphere responses to solar activity and plasma behaviors in the magnetosphere, monitor the variable stars, bright active galactic nuclei ( AGN ) and survey the sky. Eight scientific payloads onboard the CE-3 probe has obtained lots of data, and this paper will introduce their exploration progresses and some new scientific results. Key words: Chang’e-3 Mission, Science Exploration Progress, Scientific Payloads

  9. Reversible phosphorylation controls the activity of cyclosome-associated cyclin-ubiquitin ligase.

    PubMed Central

    Lahav-Baratz, S; Sudakin, V; Ruderman, J V; Hershko, A

    1995-01-01

    Cyclin B/cdc2 is responsible both for driving cells into mitosis and for activating the ubiquitin-dependent degradation of mitotic cyclins near the end of mitosis, an event required for the completion of mitosis and entry into interphase of the next cell cycle. Previous work with cell-free extracts of rapidly dividing clam embryos has identified two specific components required for the ubiquitination of mitotic cyclins: E2-C, a cyclin-selective ubiquitin carrier protein that is constitutively active during the cell cycle, and E3-C, a cyclin-selective ubiquitin ligase that purifies as part of a approximately 1500-kDa complex, termed the cyclosome, and which is active only near the end of mitosis. Here, we have separated the cyclosome from its ultimate upstream activator, cdc2. The mitotic, active form of the cyclosome can be inactivated by incubation with a partially purified, endogenous okadaic acid-sensitive phosphatase; addition of cdc2 restores activity to the cyclosome after a lag that reproduces that seen previously in intact cells and in crude extracts. These results demonstrate that activity of cyclin-ubiquitin ligase is controlled by reversible phosphorylation of the cyclosome complex. Images Fig. 3 PMID:7568122

  10. CUL4A ubiquitin ligase: a promising drug target for cancer and other human diseases

    PubMed Central

    Sharma, Puneet; Nag, Alo

    2014-01-01

    The ability of cullin 4A (CUL4A), a scaffold protein, to recruit a repertoire of substrate adaptors allows it to assemble into distinct E3 ligase complexes to mediate turnover of key regulatory proteins. In the past decade, a considerable wealth of information has been generated regarding its biology, regulation, assembly, molecular architecture and novel functions. Importantly, unravelling of its association with multiple tumours and modulation by viral proteins establishes it as one of the key proteins that may play an important role in cellular transformation. Considering the role of its substrate in regulating the cell cycle and maintenance of genomic stability, understanding the detailed aspects of these processes will have significant consequences for the treatment of cancer and related diseases. This review is an effort to provide a broad overview of this multifaceted ubiquitin ligase and addresses its critical role in regulation of important biological processes. More importantly, its tremendous potential to be exploited for therapeutic purposes has been discussed. PMID:24522884

  11. An E4 Ligase Facilitates Polyubiquitination of Plant Immune Receptor Resistance Proteins in Arabidopsis[W

    PubMed Central

    Huang, Yan; Minaker, Sean; Roth, Charlotte; Huang, Shuai; Hieter, Philip; Lipka, Volker; Wiermer, Marcel; Li, Xin

    2014-01-01

    Proteins with nucleotide binding and leucine-rich repeat domains (NLRs) serve as immune receptors in animals and plants that recognize pathogens and activate downstream defense responses. As high accumulation of NLRs can result in unwarranted autoimmune responses, their cellular concentrations must be tightly regulated. However, the molecular mechanisms of this process are poorly detailed. The F-box protein Constitutive expressor of PR genes 1 (CPR1) was previously identified as a component of a Skp1, Cullin1, F-box protein E3 complex that targets NLRs, including Suppressor of NPR1, Constitutive 1 (SNC1) and Resistance to Pseudomonas syringae 2 (RPS2), for ubiquitination and further protein degradation. From a forward genetic screen, we identified Mutant, snc1-enhancing 3 (MUSE3), an E4 ubiquitin ligase involved in polyubiquitination of its protein targets. Knocking out MUSE3 in Arabidopsis thaliana results in increased levels of NLRs, including SNC1 and RPS2, whereas overexpressing MUSE3 together with CPR1 enhances polyubiquitination and protein degradation of these immune receptors. This report on the functional role of an E4 ligase in plants provides insight into the scarcely understood NLR degradation pathway. PMID:24449689

  12. Dysregulation of ubiquitin ligases in cancer

    PubMed Central

    Ronai, Ze’ev A.

    2015-01-01

    Ubiquitin ligases are critical components of the ubiquitin proteasome system (UPS), which governs fundamental processes regulating normal cellular homeostasis, metabolism, and cell cycle in response to external stress signals and DNA damage. Among multiple steps of the UPS system required to regulate protein ubiquitination and stability, UBLs define specificity, as they recognize and interact with substrates in a temporally- and spatially-regulated manner. Such interactions are required for substrate modification by ubiquitin chains, which marks proteins for recognition and degradation by the proteasome, or alters their subcellular localization or assembly into functional complexes. UBLs are often deregulated in cancer, altering substrate availability or activity in a manner that can promote cellular transformation. Such deregulation can occur at the epigenetic, genomic, or post-translational levels. Alterations in UBL can be used to predict their contributions, affecting tumor suppressors or oncogenes in select tumors. Better understanding of mechanisms underlying UBL expression and activities is expected to drive the development of next generation modulators that can serve as novel therapeutic modalities. This review summarizes our current understanding of UBL deregulation in cancer and highlights novel opportunities for therapeutic interventions. PMID:26690337

  13. Mdm2 ligase dead mutants did not act in a dominant negative manner to re-activate p53, but promoted tumor cell growth.

    PubMed

    Swaroop, Manju; Sun, Yi

    2003-01-01

    Mdm2 (murine double minute 2) is an oncogene, first identified in BALB/c 3T3 cells. Over-expression and gene amplification of Mdm2 were found in a variety of human cancers. Recently, Mdm2 was found to be an E3 ubiquitin ligase that promotes degradation of p53, which contributes significantly to its oncogenic activity. In this study, we test a hypothesis that Mdm2 ligase dead mutants, which retained p53 binding activity but lost degradation activity, would act in a dominant negative manner to re-activate p53, especially upon stressed conditions. Five Mdm2 constructs expressing wild-type and E3 ligase-dead Mdm2 proteins were generated in a Tet-Off system and transfected into MCF-7 breast cancer cells (p53+/+ with Mdm2 overexpression) as well as MCF10A immortalized breast cells (p53+/+ without Mdm2 overexpression) as a normal control. We found that expression of Mdm2 mutants were tightly regulated by doxycycline. Withdrawal of doxycycline in culture medium triggered overexpression of Mdm2 mutants. However, expression of ligase dead mutants in MCF7 and MCF10A cells did not reactivate p53 as shown by a luciferase-reporter transcription assay and Western blot of p53 and its downstream target p21 under either unstressed condition or after exposure to DNA damaging agents. Biologically, over-expression of Mdm2 mutants had no effect on p53-induced apoptosis following DNA damage. Interestingly, over-expression of Mdm2 mutants promoted growth of MCF7 tumor cells probably via a p53-independent mechanism. Over-expression of Mdm2 mutants, however, had no effect on the growth of normal MCF10A cells and did not cause their transformation. Thus, ligase dead mutants of Mdm2 did not act in a dominant negative manner to reactivate p53 and they are not oncogenes in MCF10A cells.

  14. The ubiquitin ligase Phr1 regulates axon outgrowth through modulation of microtubule dynamics.

    PubMed

    Lewcock, Joseph W; Genoud, Nicolas; Lettieri, Karen; Pfaff, Samuel L

    2007-11-21

    To discover new genes involved in axon navigation, we conducted a forward genetic screen for recessive alleles affecting motor neuron pathfinding in GFP reporter mice mutagenized with ENU. In Magellan mutant embryos, motor axons were error prone and wandered inefficiently at choice points within embryos, but paradoxically responded to guidance cues with normal sensitivity in vitro. We mapped the Magellan mutation to the Phr1 gene encoding a large multidomain E3 ubiquitin ligase. Phr1 is associated with the microtubule cytoskeleton within neurons and selectively localizes to axons but is excluded from growth cones. Motor and sensory neurons from Magellan mutants display abnormal morphologies due to a breakdown in the polarized distribution of components that segregate between axons and growth cones. The Magellan phenotype can be reversed by stabilizing microtubules with taxol or inhibiting p38MAPK activity. Thus, efficacious pathfinding requires Phr1 activity for coordinating the cytoskeletal organization that distinguishes axons from growth cones.

  15. Characterization of Agrobacterium tumefaciens DNA ligases C and D

    PubMed Central

    Zhu, Hui; Shuman, Stewart

    2007-01-01

    Agrobacterium tumefaciens encodes a single NAD+-dependent DNA ligase and six putative ATP-dependent ligases. Two of the ligases are homologs of LigD, a bacterial enzyme that catalyzes end-healing and end-sealing steps during nonhomologous end joining (NHEJ). Agrobacterium LigD1 and AtuLigD2 are composed of a central ligase domain fused to a C-terminal polymerase-like (POL) domain and an N-terminal 3′-phosphoesterase (PE) module. Both LigD proteins seal DNA nicks, albeit inefficiently. The LigD2 POL domain adds ribonucleotides or deoxyribonucleotides to a DNA primer-template, with rNTPs being the preferred substrates. The LigD1 POL domain has no detectable polymerase activity. The PE domains catalyze metal-dependent phosphodiesterase and phosphomonoesterase reactions at a primer-template with a 3′-terminal diribonucleotide to yield a primer-template with a monoribonucleotide 3′-OH end. The PE domains also have a 3′-phosphatase activity on an all-DNA primer-template that yields a 3′-OH DNA end. Agrobacterium ligases C2 and C3 are composed of a minimal ligase core domain, analogous to Mycobacterium LigC (another NHEJ ligase), and they display feeble nick-sealing activity. Ligation at DNA double-strand breaks in vitro by LigD2, LigC2 and LigC3 is stimulated by bacterial Ku, consistent with their proposed function in NHEJ. PMID:17488851

  16. The Anaphase-Promoting Complex (APC) ubiquitin ligase affects chemosensory behavior in C. elegans.

    PubMed

    Wang, Julia; Jennings, Alexandra K; Kowalski, Jennifer R

    2016-01-01

    The regulation of fundamental aspects of neurobiological function has been linked to the ubiquitin signaling system (USS), which regulates the degradation and activity of proteins and is catalyzed by E1, E2, and E3 enzymes. The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that controls diverse developmental and signaling processes in post-mitotic neurons; however, potential roles for the APC in sensory function have yet to be explored. In this study, we examined the effect of the APC ubiquitin ligase on chemosensation in Caenorhabditis elegans by testing chemotaxis to the volatile odorants, diacetyl, pyrazine, and isoamyl alcohol, to which wild-type worms are attracted. Animals with loss of function mutations in either of two alleles (g48 and ye143) of the gene encoding the APC subunit EMB-27 APC6 showed increased chemotaxis towards diacetyl and pyrazine, odorants sensed by AWA neurons, but exhibited normal chemotaxis to isoamyl alcohol, which is sensed by AWC neurons. The statistically significant increase in chemotaxis in the emb-27 APC6 mutants suggests that the APC inhibits AWA-mediated chemosensation in C. elegans. Increased chemotaxis to pyrazine was also seen with mutants lacking another essential APC subunit, MAT-2 APC1; however, mat-2 APC1 mutants exhibited wild type responses to diacetyl. The difference in responsiveness of these two APC subunit mutants may be due to differential strength of these hypomorphic alleles or may indicate the presence of functional sub-complexes of the APC at work in this process. These findings are the first evidence for APC-mediated regulation of chemosensation and lay the groundwork for further studies aimed at identifying the expression levels, function, and targets of the APC in specific sensory neurons. Because of the similarity between human and C. elegans nervous systems, the role of the APC in sensory neurons may also advance our understanding of human sensory function and disease. PMID

  17. The Anaphase-Promoting Complex (APC) ubiquitin ligase affects chemosensory behavior in C. elegans

    PubMed Central

    Wang, Julia; Jennings, Alexandra K.

    2016-01-01

    The regulation of fundamental aspects of neurobiological function has been linked to the ubiquitin signaling system (USS), which regulates the degradation and activity of proteins and is catalyzed by E1, E2, and E3 enzymes. The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that controls diverse developmental and signaling processes in post-mitotic neurons; however, potential roles for the APC in sensory function have yet to be explored. In this study, we examined the effect of the APC ubiquitin ligase on chemosensation in Caenorhabditis elegans by testing chemotaxis to the volatile odorants, diacetyl, pyrazine, and isoamyl alcohol, to which wild-type worms are attracted. Animals with loss of function mutations in either of two alleles (g48 and ye143) of the gene encoding the APC subunit EMB-27 APC6 showed increased chemotaxis towards diacetyl and pyrazine, odorants sensed by AWA neurons, but exhibited normal chemotaxis to isoamyl alcohol, which is sensed by AWC neurons. The statistically significant increase in chemotaxis in the emb-27 APC6 mutants suggests that the APC inhibits AWA-mediated chemosensation in C. elegans. Increased chemotaxis to pyrazine was also seen with mutants lacking another essential APC subunit, MAT-2 APC1; however, mat-2 APC1 mutants exhibited wild type responses to diacetyl. The difference in responsiveness of these two APC subunit mutants may be due to differential strength of these hypomorphic alleles or may indicate the presence of functional sub-complexes of the APC at work in this process. These findings are the first evidence for APC-mediated regulation of chemosensation and lay the groundwork for further studies aimed at identifying the expression levels, function, and targets of the APC in specific sensory neurons. Because of the similarity between human and C. elegans nervous systems, the role of the APC in sensory neurons may also advance our understanding of human sensory function and disease. PMID

  18. Raft endocytosis of AMF regulates mitochondrial dynamics through Rac1 signaling and the Gp78 ubiquitin ligase.

    PubMed

    Shankar, Jay; Kojic, Liliana D; St-Pierre, Pascal; Wang, Peter T C; Fu, Min; Joshi, Bharat; Nabi, Ivan R

    2013-08-01

    Gp78 is a cell surface receptor that also functions as an E3 ubiquitin ligase in the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. The Gp78 ligand, the glycolytic enzyme phosphoglucose isomerase (PGI; also called autocrine motility factor, AMF), functions as a cytokine upon secretion by tumor cells. AMF is internalized through a PI3K- and dynamin-dependent raft endocytic pathway to the smooth ER; however, the relationship between AMF and Gp78 ubiquitin ligase activity remains unclear. AMF uptake to the smooth ER is inhibited by the dynamin inhibitor, dynasore, is reduced in Gp78 knockdown cells and induces the dynamin-dependent downregulation of its cell surface receptor. AMF uptake is Rac1-dependent and is inhibited by expression of dominant-negative Rac1 and the Rac1 inhibitor NSC23766, and is therefore distinct from Cdc42- and RhoA-dependent raft endocytic pathways. AMF stimulates Rac1 activation, but this is reduced by dynasore treatment and is absent in Gp78-knockdown cells; therefore, AMF activities require Gp78-mediated endocytosis. AMF also prevents Gp78-induced degradation of the mitochondrial fusion proteins, mitofusin 1 and 2 in a dynamin-, Rac1- and phosphoinositide 3-kinase (PI3K)-dependent manner. Gp78 induces mitochondrial clustering and fission in a manner dependent on GP78 ubiquitin ligase activity, and this is also reversed by uptake of AMF. The raft-dependent endocytosis of AMF, therefore, promotes Rac1-PI3K signaling that feeds back to promote AMF endocytosis and also inhibits the ability of Gp78 to target the mitofusins for degradation, thereby preventing Gp78-dependent mitochondrial fission. Through regulation of an ER-localized ubiquitin ligase, the raft-dependent endocytosis of AMF represents an extracellular regulator of mitochondrial fusion and dynamics.

  19. Fbxw5 suppresses nuclear c-Myb activity via DDB1-Cul4-Rbx1 ligase-mediated sumoylation

    SciTech Connect

    Kanei-Ishii, Chie; Nomura, Teruaki; Egoh, Ayako; Ishii, Shunsuke

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Fbxw5 enhances sumoylation of c-Myb. Black-Right-Pointing-Pointer The DDB1-Cul4A-Rbx1 complex mediates c-Myb sumoylation. Black-Right-Pointing-Pointer The Fbxw5-DDB1-Cul4A-Rdx1 complex is a dual SUMO/ubiquitin ligase. Black-Right-Pointing-Pointer Fbxw5 suppresses the c-Myb trans-activating capacity. -- Abstract: The c-myb proto-oncogene product (c-Myb) is degraded in response to Wnt-1 signaling. In this process, Fbxw7{alpha}, the F-box protein of the SCF complex, binds to c-Myb via its C-terminal WD40 domain, and induces the ubiquitination of c-Myb. Here, we report that Fbxw5, another F-box protein, enhances sumoylation of nuclear c-Myb. Fbxw5 enhanced c-Myb sumoylation via the DDB1-Cul4A-Rbx1 complex. Since the Fbxw5-DDB1-Cul4A-Rbx1 complex was shown to act as a ubiquitin ligase for tumor suppressor TSC2, our results suggest that this complex can function as a dual SUMO/ubiquitin ligase. Fbxw5, which is localized to both nucleus and cytosol, enhanced sumoylation of nuclear c-Myb and induced the localization of c-Myb to nuclear dot-like domains. Co-expression of Fbxw5 suppressed the trans-activation of c-myc promoter by wild-type c-Myb, but not by v-Myb, which lacks the sumoylation sites. These results suggest that multiple E3 ligases suppress c-Myb activity through sumoylation or ubiquitination, and that v-Myb is no longer subject to these negative regulations.

  20. The multidrug resistance pump ABCB1 is a substrate for the ubiquitin ligase NEDD4-1

    PubMed Central

    Akkaya, Begum G.; Zolnerciks, Joseph K.; Ritchie, Tasha K.; Bauer, Bjoern; Hartz, Anika M.S.; Sullivan, James A.; Linton, Kenneth J.

    2016-01-01

    The ATP Binding Cassette transporter ABCB1 can export the neurotoxic peptide β-amyloid from endothelial cells that line the blood-brain barrier (BBB). This has the potential to lower cerebral levels of β-amyloid, but ABCB1 expression in the BBB appears to be progressively reduced in patients with Alzheimer's disease. The surface density of many membrane proteins is regulated by ubiquitination catalysed by ubiquitin E3 ligases. In brain capillaries of mice challenged with β-amyloid ex vivo, we show that the level of the ubiquitin ligase Nedd4 increases concomitant with reduction in Abcb1. In vitro we show that human ABCB1 is a substrate for human NEDD4-1 ligase. Recombinant ABCB1 was purified from Sf21 insect cells and incubated with recombinant NEDD4-1 purified from E. coli. The treated ABCB1 had reduced mobility on SDS-PAGE, and mass spectrometry identified eight lysine residues, K271, K272, K575, K685, K877, K885, K887 and K1062 that were ubiquitinated by NEDD4-1. Molecular modelling showed that all of the residues are exposed on the surface of the intracellular domains of ABCB1. K877, K885 and K887 in particular, are located in the intracellular loop of transmembrane helix 10 (TMH10) in close proximity, in the tertiary fold, to a putative NEDD4-1 binding site in the intracellular helix extending from TMH12 (PxY motif, residues 996-998). Transient expression of NEDD4-1 in HEK293 Flp-In cells stably expressing ABCB1 was shown to reduce the surface density of the transporter. Together, the data identify this ubiquitin ligase as a potential target for intervention in the pathophysiology of Alzheimer's disease. PMID:26006083

  1. Mapping L1 Ligase ribozyme conformational switch

    PubMed Central

    Giambaşu, George M.; Lee, Tai-Sung; Scott, William G.; York, Darrin M.

    2012-01-01

    L1 Ligase (L1L)molecular switch is an in vitro optimized synthetic allosteric ribozyme that catalyzes the regioselective formation of a 5’-to-3’ phosphodiester bond, a reaction for which there is no known naturally occurring RNA catalyst. L1L serves as a proof of principle that RNA can catalyze a critical reaction for prebiotic RNA self-replication according to the RNA World hypothesis. L1L crystal structure captures two distinct conformations that differ by a re-orientation of one of the stems by around 80 Å and are presumed to correspond to the active and inactive state, respectively. It is of great interest to understand the nature of these two states in solution, and the pathway for their interconversion. In this study, we use explicit solvent molecular simulation together with a novel enhanced sampling method that utilizes concepts from network theory to map out the conformational transition between active and inactive states of L1L. We find that the overall switching mechanism can be described as a 3-state/2-step process. The first step involves a large-amplitude swing that re-orients stem C. The second step involves the allosteric activation of the catalytic site through distant contacts with stem C. Using a conformational space network representation of the L1L switch transition, it is shown that the connection between the three states follows different topographical patterns: the stem C swing step passes through a narrow region of the conformational space network, whereas the allosteric activation step covers a much wider region and a more diverse set of pathways through the network. PMID:22771572

  2. Genes of succinyl-CoA ligase from Saccharomyces cerevisiae.

    PubMed

    Przybyla-Zawislak, B; Dennis, R A; Zakharkin, S O; McCammon, M T

    1998-12-01

    Succinyl-CoA ligase (succinyl-CoA synthetase) catalyzes the nucleotide-dependent conversion of succinyl-CoA to succinate. This enzyme functions in the tricarboxylic acid (TCA) cycle and is also involved in ketone-body breakdown in animals. The enzyme is composed of alpha and beta subunits that are required for catalytic activity. Two genes, LSC1 (YOR142W) and LSC2 (YGR244C), with high similarity to succinyl-CoA ligase subunits from other species were isolated from Saccharomyces cerevisiae. The expression of these genes was repressed by growth on glucose and was induced threefold to sixfold during growth on nonfermentable carbon sources. The LSC genes were deleted singly and in combination. Unlike other yeast strains with defects in TCA cycle genes, strains lacking either or both LSC genes were able to grow with acetate as a carbon source. However, growth on glycerol or pyruvate was impaired. An antiserum against both subunits of the Escherichia coli enzyme was capable of recognizing the yeast succinyl-CoA ligase alpha subunit, and this band was absent in delta lsc1 deletion strains. Succinyl-CoA ligase activity was absent in mitochondria isolated from strains deleted for one or both LSC genes, but activity was restored by the presence of the appropriate LSC gene on a plasmid. The yeast succinyl-CoA ligase was shown to utilize ATP but not GTP for succinyl-CoA synthesis.

  3. Differential dependence on DNA ligase of type II restriction enzymes: a practical way toward ligase-free DNA automaton.

    PubMed

    Chen, Peng; Li, Jing; Zhao, Jian; He, Lin; Zhang, Zhizhou

    2007-02-16

    DNA computing study is a new paradigm in computer science and biological computing fields. As one of DNA computing approaches, DNA automaton is composed of the hardware, input DNA molecule and state transition molecules. By now restriction enzymes are key hardware for DNA computing automaton. It has been found that DNA computing efficiency may be independent on DNA ligases when type IIS restriction enzymes like FokI are used as hardware. In this study, we compared FokI with four other distinct enzymes HgaI, BsmFI, BbsI, and BseMII, and found their differential independence on T4 DNA ligase when performing automaton reactions. Since DNA automaton is a potential powerful tool to tackle gene relationship in genomic network scale, the feasible ligase-free DNA automaton may set an initial base to develop functional DNA automata for various DNA technology development and implications in genetics study in the near future.

  4. Targeting RING domains of Mdm2-MdmX E3 complex activates apoptotic arm of the p53 pathway in leukemia/lymphoma cells.

    PubMed

    Wu, W; Xu, C; Ling, X; Fan, C; Buckley, B P; Chernov, M V; Ellis, L; Li, F; Muñoz, I G; Wang, X

    2015-12-31

    Reactivation of tumor-suppressor p53 for targeted cancer therapy is an attractive strategy for cancers bearing wild-type (WT) p53. Targeting the Mdm2-p53 interface or MdmX ((MDM4), mouse double minute 4)-p53 interface or both has been a focus in the field. However, targeting the E3 ligase activity of Mdm2-MdmX really interesting new gene (RING)-RING interaction as a novel anticancer strategy has never been explored. In this report, we describe the identification and characterization of small molecule inhibitors targeting Mdm2-MdmX RING-RING interaction as a new class of E3 ligase inhibitors. With a fluorescence resonance energy transfer-based E3 activity assay in high-throughput screening of a chemical library, we identified inhibitors (designated as MMRis (Mdm2-MdmX RING domain inhibitors)) that specifically inhibit Mdm2-MdmX E3 ligase activity toward Mdm2 and p53 substrates. MMRi6 and its analog MMRi64 are capable of disrupting Mdm2-MdmX interactions in vitro and activating p53 in cells. In leukemia cells, MMRi64 potently induces downregulation of Mdm2 and MdmX. In contrast to Nutlin3a, MMRi64 only induces the expression of pro-apoptotic gene PUMA (p53 upregulated modulator of apoptosis) with minimal induction of growth-arresting gene p21. Consequently, MMRi64 selectively induces the apoptotic arm of the p53 pathway in leukemia/lymphoma cells. Owing to the distinct mechanisms of action of MMRi64 and Nutlin3a, their combination synergistically induces p53 and apoptosis. Taken together, this study reveals that Mdm2-MdmX has a critical role in apoptotic response of the p53 pathway and MMRi64 may serve as a new pharmacological tool for p53 studies and a platform for cancer drug development.

  5. The Chang'e 3 Mission Overview

    NASA Astrophysics Data System (ADS)

    Li, Chunlai; Liu, Jianjun; Ren, Xin; Zuo, Wei; Tan, Xu; Wen, Weibin; Li, Han; Mu, Lingli; Su, Yan; Zhang, Hongbo; Yan, Jun; Ouyang, Ziyuan

    2015-07-01

    The Chang'e 3 (CE-3) mission was implemented as the first lander/rover mission of the Chinese Lunar Exploration Program (CLEP). After its successful launch at 01:30 local time on December 2, 2013, CE-3 was inserted into an eccentric polar lunar orbit on December 6, and landed to the east of a 430 m crater in northwestern Mare Imbrium (19.51°W, 44.12°N) at 21:11 on December 14, 2013. The Yutu rover separated from the lander at 04:35, December 15, and traversed for a total of 0.114 km. Acquisition of science data began during the descent of the lander and will continue for 12 months during the nominal mission. The CE-3 lander and rover each carry four science instruments. Instruments on the lander are: Landing Camera (LCAM), Terrain Camera (TCAM), Extreme Ultraviolet Camera (EUVC), and Moon-based Ultraviolet Telescope (MUVT). The four instruments on the rover are: Panoramic Camera (PCAM), VIS-NIR Imaging Spectrometer (VNIS), Active Particle induced X-ray Spectrometer (APXS), and Lunar Penetrating Radar (LPR). The science objectives of the CE-3 mission include: (1) investigation of the morphological features and geological structures of and near the landing area; (2) integrated in-situ analysis of mineral and chemical composition of and near the landing area; and (3) exploration of the terrestrial-lunar space environment and lunar-based astronomical observations. This paper describes the CE-3 objectives and measurements that address the science objectives outlined by the Comprehensive Demonstration Report of Phase II of CLEP. The CE-3 team has archived the initial science data, and we describe data accessibility by the science community.

  6. Role of ubiquitin ligases in neural stem and progenitor cells.

    PubMed

    Naujokat, Cord

    2009-01-01

    Ubiquitin ligases are central components of the ubiquitin-proteasome system (UPS), the major machinery for regulated proteolysis in eukaryotic cells. Proteins essential for regulating development, differentiation, proliferation, cell cycling, apoptosis, gene transcription, and signal transduction undergo posttranslational processing via selection by ubiquitin ligases and subsequent controlled proteolysis by the 26S proteasome, the proteolytic unit of the UPS. Neural stem cells (NSCs) are self-renewing multipotent cells of the embryonic and adult mammalian central nervous system. In the last few years, NSCs have generated considerable interest because of their potential to repair neurological damage in preclinical models of stroke, spinal cord injury, and neurodegenerative disease. Recent evidence reveals a central role of ubiquitin ligases in controlling the development, survival, differentiation, and programming of neural stem and progenitor cells. Here the current knowledge of the role and function of ubiquitin ligases in neural stem and progenitor cells is reviewed and insight into an important mechanism of NSC homeostasis by regulated proteolysis is provided. PMID:19479207

  7. A wild-type DNA ligase I gene is expressed in Bloom's syndrome cells

    SciTech Connect

    Petrini, J.H.J.; Huwiler, K.G.; Weaver, D.T. )

    1991-09-01

    Alteration of DNA ligase I activity is a consistent biochemical feature of Bloom's syndrome (BS) cells. DNA ligase I activity in BS cells either is reduced and abnormally thermolabile or is present in an anomalously dimeric form. To assess the role of DNA ligase function in the etiology of BS, the authors have cloned the DNA ligase I cDNA from normal human cells by a PCR strategy using degenerate oligonucleotide primers based on conserved regions of the Saccharomyces cerevisiae and Schizosaccharomyces pombe DNA ligase genes. Human DNA ligase I cDNAs from normal and BS cells complemented a S. cerevisiae DNA ligase mutation, and protein extracts prepared from S. cerevisiae transformants expressing normal and BS cDNA contained comparable levels of DNA ligase I activity. DNA sequencing and Northern blot analysis of DNA ligase I expression in two BS human fibroblast lines representing each of the two aberrant DNA ligase I molecular phenotypes demonstrated that this gene was unchanged in BS cells. Thus, another factor may be responsible for the observed reduction in DNA ligase I activity associated with this chromosomal breakage syndrome.

  8. 42 CFR 52e.3 - Who is eligible to apply?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Who is eligible to apply? 52e.3 Section 52e.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL HEART, LUNG, AND BLOOD INSTITUTE GRANTS FOR PREVENTION AND CONTROL PROJECTS § 52e.3 Who is eligible to apply? To...

  9. 42 CFR 52e.3 - Who is eligible to apply?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Who is eligible to apply? 52e.3 Section 52e.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL HEART, LUNG, AND BLOOD INSTITUTE GRANTS FOR PREVENTION AND CONTROL PROJECTS § 52e.3 Who is eligible to apply? To...

  10. 42 CFR 52e.3 - Who is eligible to apply?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Who is eligible to apply? 52e.3 Section 52e.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL HEART, LUNG, AND BLOOD INSTITUTE GRANTS FOR PREVENTION AND CONTROL PROJECTS § 52e.3 Who is eligible to apply? To...

  11. 42 CFR 52e.3 - Who is eligible to apply?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Who is eligible to apply? 52e.3 Section 52e.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL HEART, LUNG, AND BLOOD INSTITUTE GRANTS FOR PREVENTION AND CONTROL PROJECTS § 52e.3 Who is eligible to apply? To...

  12. 42 CFR 52e.3 - Who is eligible to apply?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Who is eligible to apply? 52e.3 Section 52e.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL HEART, LUNG, AND BLOOD INSTITUTE GRANTS FOR PREVENTION AND CONTROL PROJECTS § 52e.3 Who is eligible to apply? To...

  13. Structural basis of lenalidomide-induced CK1α degradation by the CRL4(CRBN) ubiquitin ligase.

    PubMed

    Petzold, Georg; Fischer, Eric S; Thomä, Nicolas H

    2016-04-01

    Thalidomide and its derivatives, lenalidomide and pomalidomide, are immune modulatory drugs (IMiDs) used in the treatment of haematologic malignancies. IMiDs bind CRBN, the substrate receptor of the CUL4-RBX1-DDB1-CRBN (also known as CRL4(CRBN)) E3 ubiquitin ligase, and inhibit ubiquitination of endogenous CRL4(CRBN) substrates. Unexpectedly, IMiDs also repurpose the ligase to target new proteins for degradation. Lenalidomide induces degradation of the lymphoid transcription factors Ikaros and Aiolos (also known as IKZF1 and IKZF3), and casein kinase 1α (CK1α), which contributes to its clinical efficacy in the treatment of multiple myeloma and 5q-deletion associated myelodysplastic syndrome (del(5q) MDS), respectively. How lenalidomide alters the specificity of the ligase to degrade these proteins remains elusive. Here we present the 2.45 Å crystal structure of DDB1-CRBN bound to lenalidomide and CK1α. CRBN and lenalidomide jointly provide the binding interface for a CK1α β-hairpin-loop located in the kinase N-lobe. We show that CK1α binding to CRL4(CRBN) is strictly dependent on the presence of an IMiD. Binding of IKZF1 to CRBN similarly requires the compound and both, IKZF1 and CK1α, use a related binding mode. Our study provides a mechanistic explanation for the selective efficacy of lenalidomide in del(5q) MDS therapy. We anticipate that high-affinity protein-protein interactions induced by small molecules will provide opportunities for drug development, particularly for targeted protein degradation.

  14. Parkin and relatives: the RBR family of ubiquitin ligases.

    PubMed

    Marín, Ignacio; Lucas, J Ignasi; Gradilla, Ana-Citlali; Ferrús, Alberto

    2004-05-19

    Mutations in the parkin gene cause autosomal-recessive juvenile parkinsonism. Parkin encodes a ubiquitin-protein ligase characterized by having the RBR domain, composed of two RING fingers plus an IBR/DRIL domain. The RBR family is defined as the group of genes whose products contain an RBR domain. RBR family members exist in all eukaryotic species for which significant sequence data is available, including animals, plants, fungi, and several protists. The integration of comparative genomics with structural and functional data allows us to conclude that RBR proteins have multiple roles, not only in protein quality control mechanisms, but also as indirect regulators of transcription. A recently formulated hypothesis, based on a case of gene fusion, suggested that RBR proteins may be often part of cullin-containing ubiquitin ligase complexes. Recent data on Parkin protein agrees with that hypothesis. We discuss the involvement of RBR proteins in several neurodegenerative diseases and cancer.

  15. Structural Basis of Ubiquitin Recognition by the Ubiquitin-associated (UBA) Domain of the Ubiquitin Ligase EDD

    SciTech Connect

    Kozlov, G.; Nguyen, L; Lin, T; De Crescenzo, G; Park, M; Gehring, K

    2007-01-01

    EDD (or HYD) is an E3 ubiquitin ligase in the family of HECT (homologous to E6-AP C terminus) ligases. EDD contains an N-terminal ubiquitin-associated (UBA) domain, which is present in a variety of proteins involved in ubiquitin-mediated processes. Here, we use isothermal titration calorimetry (ITC), NMR titrations, and pull-down assays to show that the EDD UBA domain binds ubiquitin. The 1.85{angstrom} crystal structure of the complex with ubiquitin reveals the structural basis of ubiquitin recognition by UBA helices {alpha}1 and {alpha}3. The structure shows a larger number of intermolecular hydrogen bonds than observed in previous UBA/ubiquitin complexes. Two of these involve ordered water molecules. The functional importance of residues at the UBA/ubiquitin interface was confirmed using site-directed mutagenesis. Surface plasmon resonance (SPR) measurements show that the EDD UBA domain does not have a strong preference for polyubiquitin chains over monoubiquitin. This suggests that EDD binds to monoubiquitinated proteins, which is consistent with its involvement in DNA damage repair pathways.

  16. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes

    PubMed Central

    Gschweitl, Michaela; Ulbricht, Anna; Barnes, Christopher A; Enchev, Radoslav I; Stoffel-Studer, Ingrid; Meyer-Schaller, Nathalie; Huotari, Jatta; Yamauchi, Yohei; Greber, Urs F; Helenius, Ari; Peter, Matthias

    2016-01-01

    Cullin-3 (CUL3)-based ubiquitin ligases regulate endosome maturation and trafficking of endocytic cargo to lysosomes in mammalian cells. Here, we report that these functions depend on SPOPL, a substrate-specific CUL3 adaptor. We find that SPOPL associates with endosomes and is required for both the formation of multivesicular bodies (MVBs) and the endocytic host cell entry of influenza A virus. In SPOPL-depleted cells, endosomes are enlarged and fail to acquire intraluminal vesicles (ILVs). We identify a critical substrate ubiquitinated by CUL3-SPOPL as EPS15, an endocytic adaptor that also associates with the ESCRT-0 complex members HRS and STAM on endosomes. Indeed, EPS15 is ubiquitinated in a SPOPL-dependent manner, and accumulates with HRS in cells lacking SPOPL. Together, our data indicates that a CUL3-SPOPL E3 ubiquitin ligase complex regulates endocytic trafficking and MVB formation by ubiquitinating and degrading EPS15 at endosomes, thereby influencing influenza A virus infection as well as degradation of EGFR and other EPS15 targets. DOI: http://dx.doi.org/10.7554/eLife.13841.001 PMID:27008177