Science.gov

Sample records for e7 oncoprotein induces

  1. The human papillomavirus E7 oncoprotein

    SciTech Connect

    McLaughlin-Drubin, Margaret E. Muenger, Karl

    2009-02-20

    The human papillomavirus (HPV) E7 oncoprotein shares functional similarities with such proteins as adenovirus E1A and SV40 large tumor antigen. As one of only two viral proteins always expressed in HPV-associated cancers, E7 plays a central role in both the viral life cycle and carcinogenic transformation. In the HPV viral life cycle, E7 disrupts the intimate association between cellular differentiation and proliferation in normal epithelium, allowing for viral replication in cells that would no longer be in the dividing population. This function is directly reflected in the transforming activities of E7, including tumor initiation and induction of genomic instability.

  2. Functional Roles of E6 and E7 Oncoproteins in HPV-Induced Malignancies at Diverse Anatomical Sites

    PubMed Central

    Tomaić, Vjekoslav

    2016-01-01

    Approximately 200 human papillomaviruses (HPVs) infect human epithelial cells, of which the alpha and beta types have been the most extensively studied. Alpha HPV types mainly infect mucosal epithelia and a small group of these causes over 600,000 cancers per year worldwide at various anatomical sites, especially anogenital and head-and-neck cancers. Of these the most important is cervical cancer, which is the leading cause of cancer-related death in women in many parts of the world. Beta HPV types infect cutaneous epithelia and may contribute towards the initiation of non-melanoma skin cancers. HPVs encode two oncoproteins, E6 and E7, which are directly responsible for the development of HPV-induced carcinogenesis. They do this cooperatively by targeting diverse cellular pathways involved in the regulation of cell cycle control, of apoptosis and of cell polarity control networks. In this review, the biological consequences of papillomavirus targeting of various cellular substrates at diverse anatomical sites in the development of HPV-induced malignancies are highlighted. PMID:27775564

  3. The HPV16 E7 Oncoprotein Disrupts Dendritic Cell Function and Induces the Systemic Expansion of CD11b+Gr1+ Cells in a Transgenic Mouse Model

    PubMed Central

    Damian-Morales, Gabriela; Serafín-Higuera, Nicolás; Moreno-Eutimio, Mario Adán; Cortés-Malagón, Enoc M.; Bonilla-Delgado, José; Rodríguez-Uribe, Genaro; Ocadiz-Delgado, Rodolfo; Lambert, Paul F.

    2016-01-01

    Objective. The aim of this study was to analyze the effects of the HPV16 E7 oncoprotein on dendritic cells (DCs) and CD11b+Gr1+ cells using the K14E7 transgenic mouse model. Materials and Methods. The morphology of DCs was analyzed in male mouse skin on epidermal sheets using immunofluorescence and confocal microscopy. Flow cytometry was used to determine the percentages of DCs and CD11b+Gr1+ cells in different tissues and to evaluate the migration of DCs. Results. In the K14E7 mouse model, the morphology of Langerhans cells and the migratory activity of dendritic cells were abnormal. An increase in CD11b+Gr1+ cells was observed in the blood and skin of K14E7 mice, and molecules related to CD11b+Gr1+ chemoattraction (MCP1 and S100A9) were upregulated. Conclusions. These data suggest that the HPV16 E7 oncoprotein impairs the function and morphology of DCs and induces the systemic accumulation of CD11b+Gr1+ cells. PMID:27478837

  4. The HPV16 E7 Oncoprotein Disrupts Dendritic Cell Function and Induces the Systemic Expansion of CD11b(+)Gr1(+) Cells in a Transgenic Mouse Model.

    PubMed

    Damian-Morales, Gabriela; Serafín-Higuera, Nicolás; Moreno-Eutimio, Mario Adán; Cortés-Malagón, Enoc M; Bonilla-Delgado, José; Rodríguez-Uribe, Genaro; Ocadiz-Delgado, Rodolfo; Lambert, Paul F; Gariglio, Patricio

    2016-01-01

    Objective. The aim of this study was to analyze the effects of the HPV16 E7 oncoprotein on dendritic cells (DCs) and CD11b(+)Gr1(+) cells using the K14E7 transgenic mouse model. Materials and Methods. The morphology of DCs was analyzed in male mouse skin on epidermal sheets using immunofluorescence and confocal microscopy. Flow cytometry was used to determine the percentages of DCs and CD11b(+)Gr1(+) cells in different tissues and to evaluate the migration of DCs. Results. In the K14E7 mouse model, the morphology of Langerhans cells and the migratory activity of dendritic cells were abnormal. An increase in CD11b(+)Gr1(+) cells was observed in the blood and skin of K14E7 mice, and molecules related to CD11b(+)Gr1(+) chemoattraction (MCP1 and S100A9) were upregulated. Conclusions. These data suggest that the HPV16 E7 oncoprotein impairs the function and morphology of DCs and induces the systemic accumulation of CD11b(+)Gr1(+) cells. PMID:27478837

  5. Curcumin suppresses human papillomavirus oncoproteins, restores p53, Rb, and PTPN13 proteins and inhibits benzo[a]pyrene-induced upregulation of HPV E7.

    PubMed

    Maher, Diane M; Bell, Maria C; O'Donnell, Emmylu A; Gupta, Brij K; Jaggi, Meena; Chauhan, Subhash C

    2011-01-01

    Curcumin has great potential as a chemopreventive and chemotherapeutic agent; however, its effects on human papillomavirus (HPV)-associated molecular events are inadequately explored. This study examined the effects of curcumin on HPV-associated pathways involved in developing cervical cancer. We demonstrate for the first time that curcumin treatment suppresses cervical cancer cell growth in a three-dimensional raft culture system. Curcumin also inhibits tumorigenic characteristics as shown by decreases in both clonogenic potential and cell motility. Additionally, our findings show that curcumin treatment inhibits the transcription of HPV16 E6/E7 as early as 6 h posttreatment and restores the expression of tumor suppressor proteins p53, retinoblastoma protein, and PTPN13. While smoking is a recognized risk factor for cervical cancer, the molecular effects of smoke carcinogens on the expression of HPV E6/E7 oncogenes are not well known. We show for the first time that exposure to benzo[a]pyrene (BaP), a tobacco carcinogen, increases the expression of HPV E7 oncoprotein suggesting a molecular link between smoking and cervical cancer. Importantly, curcumin decreases the BaP induced increase in the expression of HPV E7 oncoprotein. The results of this study clearly demonstrate that curcumin alters HPV-associated molecular pathways in cervical cancer cells. These novel findings imply that curcumin may be an effective chemopreventive and therapeutic agent for cervical cancer prevention and treatment.

  6. Human papillomavirus type 16 E7 oncoprotein mediates CCNA1 promoter methylation

    PubMed Central

    Chalertpet, Kanwalat; Pakdeechaidan, Watcharapong; Patel, Vyomesh; Mutirangura, Apiwat; Yanatatsaneejit, Pattamawadee

    2015-01-01

    Human papillomavirus (HPV) oncoproteins drive distinctive promoter methylation patterns in cancer. However, the underlying mechanism remains to be elucidated. Cyclin A1 (CCNA1) promoter methylation is strongly associated with HPV-associated cancer. CCNA1 methylation is found in HPV-associated cervical cancers, as well as in head and neck squamous cell cancer. Numerous pieces of evidence suggest that E7 may drive CCNA1 methylation. First, the CCNA1 promoter is methylated in HPV-positive epithelial lesions after transformation. Second, the CCNA1 promoter is methylated at a high level when HPV is integrated into the human genome. Finally, E7 has been shown to interact with DNA methyltransferase 1 (Dnmt1). Here, we sought to determine the mechanism by which E7 increases methylation in cervical cancer by using CCNA1 as a gene model. We investigated whether E7 induces CCNA1 promoter methylation, resulting in the loss of expression. Using both E7 knockdown and overexpression approaches in SiHa and C33a cells, our data showed that CCNA1 promoter methylation decreases with a corresponding increase in expression in E7 siRNA-transfected cells. By contrast, CCNA1 promoter methylation was augmented with a corresponding reduction in expression in E7-overexpressing cells. To confirm whether the binding of the E7–Dnmt1 complex to the CCNA1 promoter induced methylation and loss of expression, ChIP assays were carried out in E7-, del CR3-E7 and vector control-overexpressing C33a cells. The data showed that E7 induced CCNA1 methylation by forming a complex with Dnmt1 at the CCNA1 promoter, resulting in the subsequent reduction of expression in cancers. It is interesting to further explore the genome-wide mechanism of E7 oncoprotein-mediated DNA methylation. PMID:26250467

  7. Human papillomavirus type 16 E7 oncoprotein mediates CCNA1 promoter methylation.

    PubMed

    Chalertpet, Kanwalat; Pakdeechaidan, Watcharapong; Patel, Vyomesh; Mutirangura, Apiwat; Yanatatsaneejit, Pattamawadee

    2015-10-01

    Human papillomavirus (HPV) oncoproteins drive distinctive promoter methylation patterns in cancer. However, the underlying mechanism remains to be elucidated. Cyclin A1 (CCNA1) promoter methylation is strongly associated with HPV-associated cancer. CCNA1 methylation is found in HPV-associated cervical cancers, as well as in head and neck squamous cell cancer. Numerous pieces of evidence suggest that E7 may drive CCNA1 methylation. First, the CCNA1 promoter is methylated in HPV-positive epithelial lesions after transformation. Second, the CCNA1 promoter is methylated at a high level when HPV is integrated into the human genome. Finally, E7 has been shown to interact with DNA methyltransferase 1 (Dnmt1). Here, we sought to determine the mechanism by which E7 increases methylation in cervical cancer by using CCNA1 as a gene model. We investigated whether E7 induces CCNA1 promoter methylation, resulting in the loss of expression. Using both E7 knockdown and overexpression approaches in SiHa and C33a cells, our data showed that CCNA1 promoter methylation decreases with a corresponding increase in expression in E7 siRNA-transfected cells. By contrast, CCNA1 promoter methylation was augmented with a corresponding reduction in expression in E7-overexpressing cells. To confirm whether the binding of the E7-Dnmt1 complex to the CCNA1 promoter induced methylation and loss of expression, ChIP assays were carried out in E7-, del CR3-E7 and vector control-overexpressing C33a cells. The data showed that E7 induced CCNA1 methylation by forming a complex with Dnmt1 at the CCNA1 promoter, resulting in the subsequent reduction of expression in cancers. It is interesting to further explore the genome-wide mechanism of E7 oncoprotein-mediated DNA methylation. PMID:26250467

  8. Human papillomavirus type 16 E7 oncoprotein upregulates the retinoic acid receptor-beta expression in cervical cancer cell lines and K14E7 transgenic mice.

    PubMed

    Gutiérrez, Jorge; García-Villa, Enrique; Ocadiz-Delgado, Rodolfo; Cortés-Malagón, Enoc M; Vázquez, Juan; Roman-Rosales, Alejandra; Alvarez-Rios, Elizabeth; Celik, Haydar; Romano, Marta C; Üren, Aykut; Lambert, Paul F; Gariglio, Patricio

    2015-10-01

    Persistent infection with high-risk human papillomaviruses is the main etiological factor in cervical cancer (CC). The human papillomavirus type 16 (HPV16) E7 oncoprotein alters several cellular processes, regulating the expression of many genes in order to avoid cell cycle control. Retinoic acid receptor beta (RARB) blocks cell growth, inducing differentiation and apoptosis. This tumor suppressor gene is gradually silenced in late passages of foreskin keratinocytes immortalized with HPV16 and in various tumors, including CC, mainly by epigenetic modifications. We investigated the effect of E7 oncoprotein on RARB gene expression. We found that HPV16 E7 increases RARB mRNA and RAR-beta protein expression both in vitro and in the cervix of young K14E7 transgenic mice. In E7-expressing cells, RARB overexpression is further increased in the presence of the tumor suppressor p53 (TP53) R273C mutant. This effect does not change when either C33-A or E7-expressing C33-A cell line is treated with Trichostatin A, suggesting that E7 enhances RARB expression independently of histone deacetylases inhibition. These findings indicate that RARB overexpression is part of the early molecular events induced by the E7 oncoprotein.

  9. E7 Oncoprotein of Novel Human Papillomavirus Type 108 Lacking the E6 Gene Induces Dysplasia in Organotypic Keratinocyte Cultures ▿

    PubMed Central

    Nobre, Rui Jorge; Herráez-Hernández, Elsa; Fei, Jian-Wei; Langbein, Lutz; Kaden, Sylvia; Gröne, Hermann-Josef; de Villiers, Ethel-Michele

    2009-01-01

    The genome organization of the novel human papillomavirus type 108 (HPV108), isolated from a low-grade cervical lesion, deviates from those of other HPVs in lacking an E6 gene. The three related HPV types HPV103, HPV108, and HPV101 were isolated from cervicovaginal cells taken from normal genital mucosa (HPV103) and low-grade (HPV108) and high-grade cervical (HPV101) intraepithelial neoplasia (Z. Chen, M. Schiffman, R. Herrero, R. DeSalle, and R. D. Burk, Virology 360:447-453, 2007, and this report). Their unusual genome organization, against the background of considerable phylogenetic distance from the other HPV types usually associated with lesions of the genital tract, prompted us to investigate whether HPV108 E7 per se is sufficient to induce the above-mentioned clinical lesions. Expression of HPV108 E7 in organotypic keratinocyte cultures increases proliferation and apoptosis, focal nuclear polymorphism, and polychromasia. This is associated with irregular intra- and extracellular lipid accumulation and loss of the epithelial barrier. These alterations are linked to HPV108 E7 binding to pRb and inducing its decrease, an increase in PCNA expression, and BrdU incorporation, as well as increased p53 and p21CIP1 protein levels. A delay in keratin K10 expression, increased expression of keratins K14 and K16, and loss of the corneal proteins involucrin and loricrin have also been noted. These modifications are suggestive of infection by a high-risk papillomavirus. PMID:19153227

  10. Identification of the nuclear localization and export signals of high risk HPV16 E7 oncoprotein

    SciTech Connect

    Knapp, Alixandra A.; McManus, Patrick M.; Bockstall, Katy; Moroianu, Junona

    2009-01-05

    The E7 oncoprotein of high risk human papillomavirus type 16 (HPV16) binds and inactivates the retinoblastoma (RB) family of proteins. Our previous studies suggested that HPV16 E7 enters the nucleus via a novel Ran-dependent pathway independent of the nuclear import receptors (Angeline, M., Merle, E., and Moroianu, J. (2003). The E7 oncoprotein of high-risk human papillomavirus type 16 enters the nucleus via a nonclassical Ran-dependent pathway. Virology 317(1), 13-23.). Here, analysis of the localization of specific E7 mutants revealed that the nuclear localization of E7 is independent of its interaction with pRB or of its phosphorylation by CKII. Fluorescence microscopy analysis of enhanced green fluorescent protein (EGFP) and 2xEGFP fusions with E7 and E7 domains in HeLa cells revealed that E7 contains a novel nuclear localization signal (NLS) in the N-terminal domain (aa 1-37). Interestingly, treatment of transfected HeLa cells with two specific nuclear export inhibitors, Leptomycin B and ratjadone, changed the localization of 2xEGFP-E7{sub 38-98} from cytoplasmic to mostly nuclear. These data suggest the presence of a leucine-rich nuclear export signal (NES) and a second NLS in the C-terminal domain of E7 (aa 38-98). Mutagenesis of critical amino acids in the putative NES sequence ({sub 76}IRTLEDLLM{sub 84}) changed the localization of 2xEGFP-E7{sub 38-98} from cytoplasmic to mostly nuclear suggesting that this is a functional NES. The presence of both NLSs and an NES suggests that HPV16 E7 shuttles between the cytoplasm and nucleus which is consistent with E7 having functions in both of these cell compartments.

  11. Expression of the human papillomavirus type 16 E7 oncoprotein induces an autophagy-related process and sensitizes normal human keratinocytes to cell death in response to growth factor deprivation

    SciTech Connect

    Zhou Xiaobo; Muenger, Karl

    2009-03-01

    Expression of oncogenes, such as the human papillomavirus type 16 (HPV16) E7 oncoprotein, promotes aberrant cell proliferation. In the absence of concurrent mitogenic stimuli, this triggers a cell-intrinsic defense mechanism, the 'trophic sentinel response', which eliminates such aberrant cells. The molecular pathways that elicit this response, however, remain obscure. We set up an experimental system to investigate the trophic sentinel pathway triggered by HPV16 E7 expression in normal human keratinocytes, the natural host cells of HPVs. Keratinocytes expressing HPV16 E7 cultured in E-medium undergo cell death and show increased sub-G1 DNA content when grown to confluence or under conditions of serum deprivation. Moreover, HPV16 E7 expressing human keratinocytes express higher levels of the autophagy marker, LC3-II, which can be abrogated by 3-methyladenine, an autophagy inhibitor. These findings indicate that even under normal culture conditions, HPV16 E7 expression triggers metabolic stress that may result in autophagy, a pathway implicated in carcinogenesis.

  12. Phylogenetic and functional analysis of sequence variation of human papillomavirus type 31 E6 and E7 oncoproteins.

    PubMed

    Ferenczi, Annamária; Gyöngyösi, Eszter; Szalmás, Anita; László, Brigitta; Kónya, József; Veress, György

    2016-09-01

    High-risk human papillomaviruses (HPV) are the causative agents of cervical and other anogenital cancers as well as a subset of head and neck cancers. The E6 and E7 oncoproteins of HPV contribute to oncogenesis by associating with the tumour suppressor protein p53 and pRb, respectively. For HPV types 16 and 18, intratypic sequence variation was shown to have biological and clinical significance. The functional significance of sequence variation among HPV 31 variants was studied less intensively. HPV 31 variants belonging to different variant lineages were found to have differences in persistence and in the ability to cause high grade cervical intraepithelial neoplasia. In the present study, we started to explore the functional effects of natural sequence variation of HPV 31 E6 and E7 oncoproteins. The E6 variants were tested for their effects on p53 protein stability and transcriptional activity, while the E7 variants were tested for their effects on pRb protein level and also on the transcriptional activity of E2F transcription factors. HPV 31 E7 variants displayed uniform effects on pRb stability and also on the activity of E2F transcription factors. HPV 31 E6 variants had remarkable differences in the ability to inhibit the trans-activation function of p53 but not in the ability to induce the in vivo degradation of p53. Our results indicate that natural sequence variation of the HPV 31 E6 protein may be involved in the observed differences in the oncogenic potential between HPV 31 variants. PMID:27197052

  13. Indoleamine 2,3-dioxygenase Activity Contributes to Local Immune Suppression in the Skin Expressing Human Papillomavirus Oncoprotein E7

    PubMed Central

    Mittal, D; Kassianos, AJ; Tran, LS; Bergot, AS; Gosmann, C; Hofmann, J; Blumenthal, A; Leggatt, GR; Frazer, IH

    2013-01-01

    Chronic infection of anogenital epithelium with human papillomavirus (HPV) promotes development of cancer. Many pathogens evoke immunosuppressive mechanisms to enable persistent infection. We have previously shown that grafted skin expressing HPV16 E7 oncoprotein from a keratin-14 promoter (K14E7) is not rejected by a syngeneic, immunocompetent host. In this study we show that indoleamine 2, 3-dioxygenase (IDO) 1, an IFN-γ inducible immunoregulatory molecule, is more highly expressed by langerin−ve dermal dendritic cells from K14E7 skin than nontransgenic control skin. Furthermore, inhibiting IDO activity using 1-D/L-methyl tryptophan promotes K14E7 skin graft rejection. Increased IDO1 expression and activity in K14E7 skin requires IFN-γ and iNKT cells, both of which have been shown to negatively regulate T-cell effector function and suppress K14E7 graft rejection. Further, dendritic cells from K14E7 skin express higher level of IFN-γ receptor (IFN-γR) than dendritic cells from control skin. K14E7 transgenic skin recruits significantly higher number of dendritic cells, independent of IFN-γ and IFN-γR expression. Consistent with these observations in a murine model, we found higher expression of IDO1 and IFN-γ but not IDO2 in the cervical epithelium of patients with HPV-associated cervical intraepithelial neoplasia (CIN) 2/3. Our data support a hypothesis that induction of IDO1 in HPV infected skin contributes to evasion of host immunity. PMID:23652797

  14. Construction and characterization of recombinant fowlpox viruses expressing human papilloma virus E6 and E7 oncoproteins.

    PubMed

    Pozzi, Eleana; Basavecchia, Valeria; Zanotto, Carlo; Pacchioni, Sole; Morghen, Carlo De Giuli; Radaelli, Antonia

    2009-06-01

    Human papilloma virus (HPV)-16 is the most prevalent high-risk mucosal genotype and the expression of the E6 and E7 proteins, which can bind to the p53 and p105Rb host cell-cycle regulatory proteins, is related to its tumorigenicity. Virus-like-particle (VLP)-based immunogens developed recently are successful as prophylactic HPV vaccines. However, given the high number of individuals infected already with HPV and the absence of expression of the L1 structural protein in HPV-infected or HPV-transformed cells, an efficient therapeutic vaccine targeting the non-structural E6 and E7 oncoproteins is required. In this study, two new fowlpox virus (FPV) recombinants encoding the HPV-16 E6 and E7 proteins were engineered and evaluated for their correct expression in vitro, with the final aim of developing a therapeutic vaccine against HPV-related cervical tumors. Although vaccinia viruses expressing the HPV-16 and HPV-18 E6 and E7 oncoproteins have already been studied, due to their natural host-range restriction to avian species and their ability to elicit a complete immune response, FPV recombinants may represent efficient and safer vectors also for immunocompromised hosts. The results indicate that FPV recombinants can express correctly the E6 and E7 oncoproteins, and they should represent appropriate vectors for the expression of these oncoproteins in human cells.

  15. Regulation of the Wnt/β-Catenin Signaling Pathway by Human Papillomavirus E6 and E7 Oncoproteins

    PubMed Central

    Muñoz Bello, Jesus Omar; Olmedo Nieva, Leslie; Contreras Paredes, Adriana; Fuentes Gonzalez, Alma Mariana; Rocha Zavaleta, Leticia; Lizano, Marcela

    2015-01-01

    Cell signaling pathways are the mechanisms by which cells transduce external stimuli, which control the transcription of genes, to regulate diverse biological effects. In cancer, distinct signaling pathways, such as the Wnt/β-catenin pathway, have been implicated in the deregulation of critical molecular processes that affect cell proliferation and differentiation. For example, changes in β-catenin localization have been identified in Human Papillomavirus (HPV)-related cancers as the lesion progresses. Specifically, β-catenin relocates from the membrane/cytoplasm to the nucleus, suggesting that this transcription regulator participates in cervical carcinogenesis. The E6 and E7 oncoproteins are responsible for the transforming activity of HPV, and some studies have implicated these viral oncoproteins in the regulation of the Wnt/β-catenin pathway. Nevertheless, new interactions of HPV oncoproteins with cellular proteins are emerging, and the study of the biological effects of such interactions will help to understand HPV-related carcinogenesis. This review addresses the accumulated evidence of the involvement of the HPV E6 and E7 oncoproteins in the activation of the Wnt/β-catenin pathway. PMID:26295406

  16. Human papillomavirus type 16 E7 oncoprotein engages but does not abrogate the mitotic spindle assembly checkpoint

    SciTech Connect

    Yu, Yueyang; Munger, Karl

    2012-10-10

    The mitotic spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during mitosis by censoring kinetochore-microtubule interactions. It is frequently rendered dysfunctional during carcinogenesis causing chromosome missegregation and genomic instability. There are conflicting reports whether the HPV16 E7 oncoprotein drives chromosomal instability by abolishing the SAC. Here we report that degradation of mitotic cyclins is impaired in cells with HPV16 E7 expression. RNAi-mediated depletion of Mad2 or BubR1 indicated the involvement of the SAC, suggesting that HPV16 E7 expression causes sustained SAC engagement. Mutational analyses revealed that HPV16 E7 sequences that are necessary for retinoblastoma tumor suppressor protein binding as well as sequences previously implicated in binding the nuclear and mitotic apparatus (NuMA) protein and in delocalizing dynein from the mitotic spindle contribute to SAC engagement. Importantly, however, HPV16 E7 does not markedly compromise the SAC response to microtubule poisons.

  17. Immunoexpression of HPV 16/18 E6 and E7 oncoproteins in high-grade cervical squamous intraepithelial lesions in HIV-positive women.

    PubMed

    Rodrigues, L C; Speck, N M de Gois; Focchi, G R de Azevedo; Schimidt, M A; Marques, R M; Ribalta, J C Lascasas

    2016-01-01

    The aim of this study was to assess the immunoexpression of human papillomavirus genotypes 16 and 18 (E6 and E7) oncoproteins in cervical high-grade squamous intraepithelial lesions (HSIL) of human immunodeficiency virus (HIV)-positive women. These results were also compared to the persistence and/or recurrence of lesions after loop electrosurgical excision procedure. Cervical samples from 158 patients were divided into three groups according to the presence or absence of HSIL in women who were or were not HIV-positive. By using the tissue microarray technique, immunohistochemistry was performed to analyze the expression of HPV 16/18 E6 and E7 oncoproteins. Cervical samples from 95 HIV-positive women and 63 HIV-negative women were studied. A statistically significant difference was found in the immunoexpression of E6 and E7 oncoproteins in samples from HIV-positive women with HSIL and that of women with non-neoplastic tissue (P < 0.001). There was also a statistically significant correlation between the immunoexpression of E6 (P = 0.012) and E7 (P < 0.001) oncoproteins in lesion persistence among HIV-positive women. Within the limitations of this study, the immunoexpression of HPV 16/18 E6 and E7 oncoproteins may have prognostic value regarding lesion persistence in HIV-positive women. PMID:26909984

  18. Immunoexpression of HPV 16/18 E6 and E7 oncoproteins in high-grade cervical squamous intraepithelial lesions in HIV-positive women.

    PubMed

    Rodrigues, L C; Speck, N M de Gois; Focchi, G R de Azevedo; Schimidt, M A; Marques, R M; Ribalta, J C Lascasas

    2016-02-19

    The aim of this study was to assess the immunoexpression of human papillomavirus genotypes 16 and 18 (E6 and E7) oncoproteins in cervical high-grade squamous intraepithelial lesions (HSIL) of human immunodeficiency virus (HIV)-positive women. These results were also compared to the persistence and/or recurrence of lesions after loop electrosurgical excision procedure. Cervical samples from 158 patients were divided into three groups according to the presence or absence of HSIL in women who were or were not HIV-positive. By using the tissue microarray technique, immunohistochemistry was performed to analyze the expression of HPV 16/18 E6 and E7 oncoproteins. Cervical samples from 95 HIV-positive women and 63 HIV-negative women were studied. A statistically significant difference was found in the immunoexpression of E6 and E7 oncoproteins in samples from HIV-positive women with HSIL and that of women with non-neoplastic tissue (P < 0.001). There was also a statistically significant correlation between the immunoexpression of E6 (P = 0.012) and E7 (P < 0.001) oncoproteins in lesion persistence among HIV-positive women. Within the limitations of this study, the immunoexpression of HPV 16/18 E6 and E7 oncoproteins may have prognostic value regarding lesion persistence in HIV-positive women.

  19. Nuclear export of cutaneous HPV8 E7 oncoprotein is mediated by a leucine-rich nuclear export signal via a CRM1 pathway

    SciTech Connect

    Onder, Zeynep; Chang, Vivian; Moroianu, Junona

    2015-01-01

    We recently determined that the nuclear import of cutaneous beta genus HPV8 E7 oncoprotein it is mediated by its zinc-binding domain via direct hydrophobic interactions with the FG nucleoporins Nup62 and Nup153 (Onder and Moroianu, 2014). Here we investigated the nuclear export of HPV8 E7 oncoprotein using confocal microscopy after transfections of HeLa cells with EGFP–8cE7 and mutant plasmids and treatment with Ratjadone A nuclear export inhibitor. We determined that HPV8 E7 contains a leucine-rich nuclear export signal (NES), {sub 76}IRTFQELLF{sub 84}, within its zinc-binding domain that mediates its nuclear export via a CRM1 pathway. We found that HPV8 E7 interacts with CRM1 and that the hydrophobic amino acid residues I76, F79 and L82 of the NES are essential for this interaction and for nuclear export of HPV8 E7 oncoprotein. - Highlights: • HPV8 E7 has a leucine-rich NES within its zinc-binding domain that mediates its nuclear export. • CRM1 nuclear export receptor interacts with HPV8 E7 and mediates its export. • Identification of the critical hydrophobic amino acids of the NES of HPV8 E7.

  20. [Human papillomavirus E7 oncoprotein and its role in the cell transformation].

    PubMed

    Vallejo-Ruiz, Verónica; Velázquez-Márquez, Noé; Sánchez-Alonso, Patricia; Santos-López, Gerardo; Reyes-Leyva, Julio

    2015-01-01

    Human papillomavirus (HPV) genome codifies proteins with oncogenic activity, such as E7. Due to its structural characteristics, the E7 protein may interact with a great variety of cellular proteins. Some of these proteins act as cell-cycle regulators and other proteins function as transcription factors. These interactions play an important role in the induction of mitogenic pathways, in G1/S progression, and the inhibition of cellular differentiation, which increases chromosomal instability. The aim of this study is to describe the interactions of HPV E7 protein with different cellular proteins, and their contribution in the development of cervical cancer.

  1. E6/E7 oncoproteins of high risk HPV-16 upregulate MT1-MMP, MMP-2 and MMP-9 and promote the migration of cervical cancer cells

    PubMed Central

    Zhu, Dingjun; Ye, Mei; Zhang, Wei

    2015-01-01

    Background: E6 and E7 of high risk human papillomavirus 16 (HPV16) were reported to correlate with the cervical cancer (CC). And the presence of matrix metalloproteinases (MMPs) has also been indicated to be associated with CC. Methods: The present study investigated the expression of MMPs (MT1-MMP, MMP-2 and MMP-9) in CC cells with HPV16-E6/E7 oncoprotein(s) negative or positive, and then determined the regulation of HPV16-E6/E7 oncoproteins on the expression of MMPs (MT1-MMP, MMP-2 and MMP-9) and the migration of cervical cancer Caski and SiHa cells with RNAi technology. Results: It was demonstrated that the overexpression or the knockdown of HPV16-E6/E7 promoted or reduced MT1-MMP, MMP-2 and MMP-9 in CC cells. And the HPV16-E6, -E7 or -E6E7 influenced the migration of CC cells. The overexpression or the knockdown of them promoted or inhibited the migration of C33A or Caski/SiHa cells. Moreover, the chemical inhibition of MMP-2 or MMP-9 significantly reduced the migration of CC Caski or SiHa cells. Conclusions: Our results demonstrated that the E6-HPV16 or E7-HPV16 promoted the activity of MMP-2/9, and contributed to the migration of cervical cells. PMID:26191191

  2. The expression of miR-21 and miR-143 is deregulated by the HPV16 E7 oncoprotein and 17β-estradiol.

    PubMed

    Gómez-Gómez, Yazmín; Organista-Nava, Jorge; Ocadiz-Delgado, Rodolfo; García-Villa, Enrique; Leyva-Vazquez, Marco Antonio; Illades-Aguiar, Berenice; Lambert, Paul F; García-Carrancá, Alejandro; Gariglio, Patricio

    2016-08-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs that negatively regulate their target mRNAs at a posttranscriptional level, thereby affecting crucial processes in cancer development. However, little is known about the molecular events that control expression of miRNAs in cervical cancer (CC). HPV16 E7 oncoprotein in conjunction with estrogen are sufficient to produce high grade cervical dysplasia and invasive cervical malignancies in a mouse model. In the present study, we determined the potential role that the E7 oncoprotein and 17β-estradiol (E2) play in the deregulation of miR-21 and miR-143 expression levels by these two risk factors. We found that, while the expression of miR-21 was upregulated and the expression of miR-143 was downregulated by the HPV16 E7 oncoprotein in vivo, and in vitro and that E2 treatment is also implicated in the deregulation of these important miRNAs in vivo. Sustained upregulation of miR-21 resulted in suppression of PTEN expression, and repression of miR-143 increased the mRNA and protein levels from Bcl-2. These results suggested that HPV type 16 E7 oncoprotein and E2 play an important role in regulating miR-21 and miR-143 expression. We have observed similar results in CC patients containing HPV16 sequences, suggesting that these miRNAs could serve as diagnostic biomarkers in CC. The present study highlights the roles of miRNAs in cervical tissue and implicates these important molecules in cervical carcinogenesis. PMID:27278606

  3. Nuclear import of cutaneous beta genus HPV8 E7 oncoprotein is mediated by hydrophobic interactions between its zinc-binding domain and FG nucleoporins

    SciTech Connect

    Onder, Zeynep; Moroianu, Junona

    2014-01-20

    We have previously discovered and characterized the nuclear import pathways for the E7 oncoproteins of mucosal alpha genus HPVs, type 16 and 11. Here we investigated the nuclear import of cutaneous beta genus HPV8 E7 protein using confocal microscopy after transfections of HeLa cells with EGFP-8E7 and mutant plasmids and nuclear import assays in digitonin-permeabilized HeLa cells. We determined that HPV8 E7 contains a nuclear localization signal (NLS) within its zinc-binding domain that mediates its nuclear import. Furthermore, we discovered that a mostly hydrophobic patch {sub 65}LRLFV{sub 69} within the zinc-binding domain is essential for the nuclear import and localization of HPV8 E7 via hydrophobic interactions with the FG nucleoporins Nup62 and Nup153. Substitution of the hydrophobic residues within the {sub 65}LRLFV{sub 69} patch to alanines, and not R66A mutation, disrupt the interactions between the 8E7 zinc-binding domain and Nup62 and Nup153 and consequently inhibit nuclear import of HPV8 E7. - Highlights: • HPV8 E7 has a cNLS within its zinc-binding domain that mediates its nuclear import. • Discovery of a hydrophobic patch that is critical for the nuclear import of HPV8 E7. • HPV8 E7 nuclear import is mediated by hydrophobic interactions with FG-Nups, Nup62 and Nup153.

  4. Human Papillomavirus Type 16 E7 oncoprotein inhibits the anaphase promoting complex/cyclosome activity by dysregulating EMI1 expression in mitosis

    PubMed Central

    Yu, Yueyang; Munger, Karl

    2013-01-01

    The anaphase promoting complex/cyclosome (APC/C) is a ubiquitin ligase complex that orchestrates mitotic progression by targeting key mitotic regulators for proteasomal degradation. APC/C dysfunction is a frequent event during cancer development and can give rise to genomic instability. Here we report that the HPV16 E7 oncoprotein interferes with the degradation of APC/C substrates and that the APC/C inhibitor, EMI1, is expressed at higher levels in HPV16 E7-expressing mitotic cells. HPV16 E7 expression causes increased EMI1 mRNA expression and also inhibits EMI1 degradation. The resulting abnormally high EMI1 levels in HPV16 E7-expressing mitotic cells may inhibit degradation of APC/C substrates and cause the prometaphase delay that we have previously observed in such cells. PMID:24074588

  5. The high-risk HPV16 E7 oncoprotein mediates interaction between the transcriptional coactivator CBP and the retinoblastoma protein pRb.

    PubMed

    Jansma, Ariane L; Martinez-Yamout, Maria A; Liao, Rong; Sun, Peiqing; Dyson, H Jane; Wright, Peter E

    2014-12-12

    The oncoprotein E7 from human papillomavirus (HPV) strains that confer high cancer risk mediates cell transformation by deregulating host cellular processes and activating viral gene expression through recruitment of cellular proteins such as the retinoblastoma protein (pRb) and the cyclic-AMP response element binding binding protein (CBP) and its paralog p300. Here we show that the intrinsically disordered N-terminal region of E7 from high-risk HPV16 binds the TAZ2 domain of CBP with greater affinity than E7 from low-risk HPV6b. HPV E7 and the tumor suppressor p53 compete for binding to TAZ2. The TAZ2 binding site in E7 overlaps the LxCxE motif that is crucial for interaction with pRb. While TAZ2 and pRb compete for binding to a monomeric E7 polypeptide, the full-length E7 dimer mediates an interaction between TAZ2 and pRb by promoting formation of a ternary complex. Cell-based assays show that expression of full-length HPV16 E7 promotes increased pRb acetylation and that this response depends both on the presence of CBP/p300 and on the ability of E7 to form a dimer. These observations suggest a model for the oncogenic effect of high-risk HPV16 E7. The disordered region of one E7 molecule in the homodimer interacts with the pocket domain of pRb, while the same region of the other E7 molecule binds the TAZ2 domain of CBP/p300. Through its ability to dimerize, E7 recruits CBP/p300 and pRb into a ternary complex, bringing the histone acetyltransferase domain of CBP/p300 into proximity to pRb and promoting acetylation, leading to disruption of cell cycle control.

  6. The high-risk HPV16 E7 oncoprotein mediates interaction between the transcriptional coactivator CBP and the retinoblastoma protein pRb

    PubMed Central

    Jansma, Ariane L.; Martinez-Yamout, Maria A.; Liao, Rong; Sun, Peiqing; Dyson, H. Jane; Wright, Peter E.

    2014-01-01

    The oncoprotein E7 from human papillomavirus (HPV) strains that confer high cancer risk mediates cell transformation by deregulating host cellular processes and activating viral gene expression through recruitment of cellular proteins such as the retinoblastoma protein (pRb) and the CREB-binding protein (CBP) and its paralog p300. Here we show that the intrinsically disordered N-terminal region of E7 from high risk HPV16 binds the TAZ2 domain of CBP with greater affinity than E7 from low risk HPV6b. HPV E7 and the tumor suppressor p53 compete for binding to TAZ2. The TAZ2 binding site in E7 overlaps the LxCxE motif that is crucial for interaction with pRb. While TAZ2 and pRb compete for binding to a monomeric E7 polypeptide, the full-length E7 dimer mediates an interaction between TAZ2 and pRb by promoting formation of a ternary complex. Cell-based assays show that expression of full-length HPV16 E7 promotes increased pRb acetylation and that this response depends both on the presence of CBP/p300 and the ability of E7 to form a dimer. These observations suggest a model for the oncogenic effect of high risk HPV16-E7. The disordered region of one E7 molecule in the homodimer interacts with the pocket domain of pRb, while the same region of the other E7 molecule binds the TAZ2 domain of CBP/p300. Through its ability to dimerize, E7 recruits CBP/p300 and pRb into a ternary complex, bringing the histone acetyltransferase domain of CBP/p300 into proximity to pRb and promoting acetylation, leading to disruption of cell cycle control. PMID:25451029

  7. Functional Interaction between Human Papillomavirus Type 16 E6 and E7 Oncoproteins and Cigarette Smoke Components in Lung Epithelial Cells

    PubMed Central

    Muñoz, Juan Pablo; González, Carolina; Parra, Bárbara; Corvalán, Alejandro H.; Tornesello, Maria Lina; Eizuru, Yoshito; Aguayo, Francisco

    2012-01-01

    The smoking habit is the most important, but not a sufficient cause for lung cancer development. Several studies have reported the human papillomavirus type 16 (HPV16) presence and E6 and E7 transcripts expression in lung carcinoma cases from different geographical regions. The possible interaction between HPV infection and smoke carcinogens, however, remains unclear. In this study we address a potential cooperation between tobacco smoke and HPV16 E6 and E7 oncoproteins for alterations in proliferative and tumorigenic properties of lung epithelial cells. A549 (alveolar, tumoral) and BEAS-2B (bronchial, non-tumoral) cell lines were stably transfected with recombinant pLXSN vectors expressing HPV16 E6 and E7 oncoproteins and exposed to cigarette smoke condensate (CSC) at different concentrations. HPV16 E6 and E7 expression was associated with loss of p53 stability, telomerase (hTERT) and p16INK4A overexpression in BEAS-2B cells as demonstrated by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB). In A549 cells we observed downregulation of p53 but not a significant increase of hTERT transcripts. In addition, the HPV16 E6/E7 transfected cell lines showed an increased proliferation rate and anchorage-independent growth in a HPV16 E6 and E7 expression-dependent manner. Moreover, both HPV16 E6/E7 and mock transfected cells showed an increased proliferation rate and anchorage-independent growth in the presence of 0.1 and 10 µg/mL CSC. However, this increase was significantly greater in HPV16 E6/E7 transfected cells (p<0.001). Data were confirmed by FCSE proliferation assay. The results obtained in this study are suggestive of a functional interaction between tobacco smoke and HPV16 E6/E7 oncoproteins for malignant transformation and tumorigenesis of lung epithelial cells. More studies are warranted in order to dissect the molecular mechanisms involved in this cooperation. PMID:22662279

  8. Transcriptional regulation of E-cadherin and oncoprotein E7 by valproic acid in HPV positive cell lines

    PubMed Central

    Faghihloo, Ebrahim; Akbari, Abolfazl; Adjaminezhad-Fard, Fatemeh; Mokhtari-Azad, Talat

    2016-01-01

    Objective(s): Valproic acid (VPA) has proven to be as one of the most promising useful drug with anticancer properties. In this study, we investigate the VPA effects on E-cadherin expression in HeLa, TC1, MKN45, and HCT116 cell lines. This study assesses the effects of VPA on human papillomavirus E7 expression in HPV positive cell lines. Materials and Methods: Cell lines were treated by 2 mmol/l VPA and expression of E-cadherin and E7 was analyzed by quantitative real-time PCR. Student’s t test and ANOVA were used to determine changes in expression levels. Results: The results revealed that mean of E-cadherin expression is increased by VPA 1.8 times in HCT116 and MKN45 cell lines, also the mean of E-cadherin mRNA levels is up-regulated 2.9 times in HeLa and TC1 cell lines. So, E-cadherin augmentation induced by VPA in HeLa and TC-1, HPV positive cell lines, is higher than HPV negative cell lines MKN45 and HCT116. The mean of HPV E7 expression is decreased by VPA, 4.6 times in in HeLa and TC-1 cell lines. Conclusion: This study demonstrates that re-expression of E-cadherin by VPA in HPV positive cell lines is more than HPV negative cell lines. Whereas, HPV E7 reduces the expression of E-cadherin, reduction of HPV E7 expression by VPA is related to more augmentation of E-cadherin in HPV positive cell lines. So, this study demonstrates that VPA has more anticancer properties in HPV positive cell lines, and could potentially be a promising candidate for cervical cancer treatment. PMID:27482340

  9. The human papillomavirus type 58 E7 oncoprotein modulates cell cycle regulatory proteins and abrogates cell cycle checkpoints

    SciTech Connect

    Zhang Weifang; Li Jing; Kanginakudru, Sriramana; Zhao Weiming; Yu Xiuping; Chen, Jason J.

    2010-02-05

    HPV type 58 (HPV-58) is the third most common HPV type in cervical cancer from Eastern Asia, yet little is known about how it promotes carcinogenesis. In this study, we demonstrate that HPV-58 E7 significantly promoted the proliferation and extended the lifespan of primary human keratinocytes (PHKs). HPV-58 E7 abrogated the G1 and the postmitotic checkpoints, although less efficiently than HPV-16 E7. Consistent with these observations, HPV-58 E7 down-regulated the cellular tumor suppressor pRb to a lesser extent than HPV-16 E7. Similar to HPV-16 E7 expressing PHKs, Cdk2 remained active in HPV-58 E7 expressing PHKs despite the presence of elevated levels of p53 and p21. Interestingly, HPV-58 E7 down-regulated p130 more efficiently than HPV-16 E7. Our study demonstrates a correlation between the ability of down-regulating pRb/p130 and abrogating cell cycle checkpoints by HPV-58 E7, which also correlates with the biological risks of cervical cancer progression associated with HPV-58 infection.

  10. An improved rearranged Human Papillomavirus Type 16 E7 DNA vaccine candidate (HPV-16 E7SH) induces an E7 wildtype-specific T cell response.

    PubMed

    Ohlschläger, Peter; Pes, Michaela; Osen, Wolfram; Dürst, Matthias; Schneider, Achim; Gissmann, Lutz; Kaufmann, Andreas M

    2006-04-01

    A new and very promising approach in vaccine development is the application of naked DNA. In comparison to conventional vaccines it offers several advantages, especially if there is a need for the development of low cost vaccines. Infection with high-risk human papillomaviruses (hr-HPVs) is the major risk factor for the development of cervical cancer (cc), the third most common cancer in women worldwide. The HPV E7 oncogene is constitutively expressed in HPV-infected cells and represents an excellent target for immune therapy of HPV-related disease. Therefore, we chose the HPV-16 E7 as model antigen in the development of a therapeutic DNA vaccine candidate. For safety reasons the use of a transforming gene like the HPV-16 E7 for DNA vaccination is not feasible in humans. In consequence we have generated an artificial ("shuffled") HPV-16 E7-gene (HPV-16 E7SH), containing all putative cytotoxic T-lymphocyte (CTLs) epitopes and exhibiting high safety features. Here, we show the induction of a strong E7-wildtype (E7WT) directed cellular and humoral immune response including tumor protection and regression after in vivo immunization in the murine system. Moreover, the vaccine candidate demonstrated immunogenicity in humans, demonstrated by priming of antigen-specific T cells in vitro. Importantly, the artificial HPV-gene has completely lost its transforming properties as measured in soft agar transformation assays. These results may be of importance for the development of vaccines based on oncogenes or oncoproteins. PMID:16472545

  11. The human papillomavirus (HPV) E7 protein antagonises an Imiquimod-induced inflammatory pathway in primary human keratinocytes

    PubMed Central

    Richards, Kathryn H.; Wasson, Christopher W.; Watherston, Oliver; Doble, Rosella; Eric Blair, G.; Wittmann, Miriam; Macdonald, Andrew

    2015-01-01

    High-risk human papillomaviruses (HPV) are the etiological pathogen of cervical and a number of ano-genital cancers. How HPVs overcome the significant barriers of the skin immune system has been the topic of intensive research. The E6 and E7 oncoproteins have emerged as key players in the deregulation of host innate immune pathways that are required for the recruitment of effector cells of the immune response. Here we demonstrate that E7, and to a lesser extend E6, strongly reduce NFκB activation in response to the inflammatory mediator imiquimod. Moreover, we establish that undifferentiated keratinocytes do not express the putative receptor for imiquimod, TLR7, and as such are stimulated by imiquimod through a novel pathway. Inhibition of imiquimod induced cytokine production required residues in the CR1 and CR3 regions of E7 and resulted in reduced nuclear translocation and acetylation of the p65 sub-unit of NFκB. The results provide further evidence for a TLR7-independent role of imiquimod in the epithelial immune response and reinforce the ability of the HPV oncoproteins to disrupt the innate immune response, which may have important consequences for establishment of a chronic infection. PMID:26268216

  12. The human papillomavirus (HPV) E7 protein antagonises an Imiquimod-induced inflammatory pathway in primary human keratinocytes.

    PubMed

    Richards, Kathryn H; Wasson, Christopher W; Watherston, Oliver; Doble, Rosella; Blair, G Eric; Wittmann, Miriam; Macdonald, Andrew

    2015-08-13

    High-risk human papillomaviruses (HPV) are the etiological pathogen of cervical and a number of ano-genital cancers. How HPVs overcome the significant barriers of the skin immune system has been the topic of intensive research. The E6 and E7 oncoproteins have emerged as key players in the deregulation of host innate immune pathways that are required for the recruitment of effector cells of the immune response. Here we demonstrate that E7, and to a lesser extend E6, strongly reduce NFκB activation in response to the inflammatory mediator imiquimod. Moreover, we establish that undifferentiated keratinocytes do not express the putative receptor for imiquimod, TLR7, and as such are stimulated by imiquimod through a novel pathway. Inhibition of imiquimod induced cytokine production required residues in the CR1 and CR3 regions of E7 and resulted in reduced nuclear translocation and acetylation of the p65 sub-unit of NFκB. The results provide further evidence for a TLR7-independent role of imiquimod in the epithelial immune response and reinforce the ability of the HPV oncoproteins to disrupt the innate immune response, which may have important consequences for establishment of a chronic infection.

  13. HUMAN PAPILLOMAVIRUS E7 ENHANCES HYPOXIA-INDUCIBLE FACTOR 1 MEDIATED TRANSCRIPTION BY INHIBITING BINDING OF HISTONE DEACETYLASES

    PubMed Central

    Bodily, Jason M.; Mehta, Kavi P. M.; Laimins, Laimonis A.

    2010-01-01

    Infection by human papillomaviruses (HPVs) leads to the formation of benign lesions, warts, and in some cases, cervical cancer. The formation of these lesions is dependent upon increased expression of pro-angiogenic factors. Angiogenesis is linked to tissue hypoxia through the activity of the oxygen sensitive hypoxia inducible factor 1α (HIF-1α). Our studies indicate that the HPV E7 protein enhances HIF-1 transcriptional activity while E6 functions to counteract the repressive effects of p53. Both high and low risk HPV E7 proteins were found to bind to HIF-1α through a domain located in the the N terminus. Importantly, the ability of E7 to enhance HIF-1 activity mapped to the C terminus and correlated with the displacement of the histone deacetylases HDAC1, HDAC4, and HDAC7 from HIF-1α by E7. Our findings describe a novel role of the E7 oncoprotein in activating the function of a key transcription factor mediating hypoxic responses by blocking the binding of HDACs. PMID:21148070

  14. mTOR inhibition prevents rapid-onset of carcinogen-induced malignancies in a novel inducible HPV-16 E6/E7 mouse model.

    PubMed

    Callejas-Valera, Juan Luis; Iglesias-Bartolome, Ramiro; Amornphimoltham, Panomwat; Palacios-Garcia, Julia; Martin, Daniel; Califano, Joseph A; Molinolo, Alfredo A; Gutkind, J Silvio

    2016-10-01

    The rising incidence of human papillomavirus (HPV)-associated malignancies, especially for oropharyngeal cancers, has highlighted the urgent need to understand how the interplay between high-risk HPV oncogenes and carcinogenic exposure results in squamous cell carcinoma (SCC) development. Here, we describe an inducible mouse model expressing high risk HPV-16 E6/E7 oncoproteins in adults, bypassing the impact of these viral genes during development. HPV-16 E6/E7 genes were targeted to the basal squamous epithelia in transgenic mice using a doxycycline inducible cytokeratin 5 promoter (cK5-rtTA) system. After doxycycline induction, both E6 and E7 were highly expressed, resulting in rapid epidermal hyperplasia with a remarkable expansion of the proliferative cell compartment to the suprabasal layers. Surprisingly, in spite of the massive growth of epithelial cells and their stem cell progenitors, HPV-E6/E7 expression was not sufficient to trigger mTOR activation, a key oncogenic driver in HPV-associated malignancies, and malignant progression to SCC. However, these mice develop SCC rapidly after a single exposure to a skin carcinogen, DMBA, which was increased by the prolonged exposure to a tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA). Thus, only few oncogenic hits may be sufficient to induce cancer in E6/E7 expressing cells. All HPV-E6/E7 expressing SCC lesions exhibited increased mTOR activation. Remarkably, rapamycin, an mTOR inhibitor, abolished tumor development when administered to HPV-E6/E7 mice prior to DMBA exposure. Our findings revealed that mTOR inhibition protects HPV-E6/E7 expressing tissues form SCC development upon carcinogen exposure, thus supporting the potential clinical use of mTOR inhibitors as a molecular targeted approach for prevention of HPV-associated malignancies.

  15. Nuclear import of high risk HPV16 E7 oncoprotein is mediated by its zinc-binding domain via hydrophobic interactions with Nup62

    SciTech Connect

    Eberhard, Jeremy; Onder, Zeynep; Moroianu, Junona

    2013-11-15

    We previously discovered that nuclear import of high risk HPV16 E7 is mediated by a cNLS located within the zinc-binding domain via a pathway that is independent of karyopherins/importins (Angeline et al., 2003; Knapp et al., 2009). In this study we continued our characterization of the cNLS and nuclear import pathway of HPV16 E7. We find that an intact zinc-binding domain is essential for the cNLS function in mediating nuclear import of HPV16 E7. Mutagenesis of cysteine residues to alanine in each of the two CysXXCys motifs involved in zinc-binding changes the nuclear localization of the EGFP-16E7 and 2xEGFP-16E7 mutants. We further discover that a patch of hydrophobic residues, {sub 65}LRLCV{sub 69}, within the zinc-binding domain of HPV16 E7 mediates its nuclear import via hydrophobic interactions with the FG domain of the central channel nucleoporin Nup62. - Highlights: • An intact zinc-binding domain is essential for the nuclear localization of HPV16 E7. • Identification of a hydrophobic patch that is critical for the nuclear import of HPV16 E7. • HPV16 E7 interacts via its zinc-binding domain with the FG domain of Nup62.

  16. Initiation of DNA synthesis by human papillomavirus E7 oncoproteins is resistant to p21-mediated inhibition of cyclin E-cdk2 activity.

    PubMed Central

    Ruesch, M N; Laimins, L A

    1997-01-01

    The E6 and E7 proteins from the high-risk human papillomaviruses (HPVs) bind and inactivate the tumor suppressor proteins p53 and Rb, respectively. In HPV-positive cells, expression of E6 proteins from high-risk types results in increased turnover of p53, which leads to an abrogation of p21-mediated G1/S arrest in response to DNA-damaging agents. In contrast, keratinocytes which express E7 alone have increased levels of p53 but, interestingly, also fail to undergo a G1/S arrest. We investigated the mechanism by which E7 bypasses this p21 arrest by using both keratinocytes which stably express E7 as well as U20S cells which stably or transiently express E7. We observed that E7 does not affect the induction of p21 synthesis by p53. While glutathione S-transferase (GST)-E7 bound a low level of in vitro-translated p21, we were unable to detect E7 and p21 in the same complex by GST-E7 binding assays or immunoprecipitations from cell extracts. Furthermore, E7 did not prevent p21-mediated inhibition of cyclin E kinase activity. In keratinocytes expressing E7, increased levels of p53, p21, and cyclin E, as well as increased cyclin E kinase activity, were observed. To determine if this increase in cyclin E activity was necessary for E7's ability to overcome p21-mediated G1/S arrest, we examined U20S cells in which cyclin E levels are not increased in response to E7 expression. U20S cells which stably express E7 were found to initiate DNA synthesis in the presence of DNA-damaging agents despite the inhibition of cyclin E activity by p21. In transient assays, cotransfection of E7 or E2F-1 along with p21 into U20S cells rescued G1 arrest and resulted in S-phase entry, as measured by the ability to incorporate bromodeoxyuridine. These data indicate that E7 is able to overcome G1/S arrest without directly affecting p21 function and likely acts through deregulation of E2F activity. PMID:9188631

  17. The involvement of MCT-1 oncoprotein in inducing mitotic catastrophe and nuclear abnormalities.

    PubMed

    Shih, Hung-Ju; Chu, Kang-Lin; Wu, Meng-Hsun; Wu, Pei-Hsuan; Chang, Wei-Wen; Chu, Jan-Show; Wang, Lily Hui-Ching; Takeuchi, Hideki; Ouchi, Toru; Hsu, Hsin-Ling

    2012-03-01

    Centrosome amplification and chromosome abnormality are frequently identified in neoplasia and tumorigenesis. However, the mechanisms underlying these defects remain unclear. We here identify that MCT-1 is a centrosomal oncoprotein involved in mitosis. Knockdown of MCT-1 protein results in intercellular bridging, chromosome mis-congregation, cytokinesis delay, and mitotic death. Introduction of MCT-1 oncogene into the p53 deficient cells (MCT-1-p53), the mitotic checkpoint kinases and proteins are deregulated synergistically. These biochemical alterations are accompanied with increased frequencies of cytokinesis failure, multi-nucleation, and centrosome amplification in subsequent cell cycle. As a result, the incidences of polyploidy and aneuploidy are progressively induced by prolonged cell cultivation or further promoted by sustained spindle damage on MCT-1-p53 background. These data show that the oncoprotein perturbs centrosome structure and mitotic progression, which provide the molecular aspect of chromsomal abnormality in vitro and the information for understanding the stepwise progression of tumors under oncogenic stress.

  18. Human papillomavirus type 16 E6 and E7 oncogenes abrogate radiation-induced DNA damage responses in vivo through p53-dependent and p53-independent pathways.

    PubMed

    Song, S; Gulliver, G A; Lambert, P F

    1998-03-01

    E6 and E7 oncoproteins from high risk human papillomaviruses (HPVs) transform cells in tissue culture and induce tumors in vivo. Both E6, which inhibits p53 functions, and E7, which inhibits pRb, can also abrogate growth arrest induced by DNA-damaging agents in cultured cells. In this study, we have used transgenic mice that express HPV-16 E6 or E7 in the epidermis to determine how these two proteins modulate DNA damage responses in vivo. Our results demonstrate that both E6 and E7 abrogate the inhibition of DNA synthesis in the epidermis after treatment with ionizing radiation. Increases in the levels of p53 and p21 proteins after irradiation were suppressed by E6 but not by E7. Through the study of p53-null mice, we found that radiation-induced growth arrest in the epidermis is mediated through both p53-dependent and p53-independent pathways. The abrogation of radiation responses in both E6 and E7 transgenic mice was more complete than was seen in the p53-null epidermis. We conclude that E6 and E7 each have the capacity to modulate p53-dependent as well as p53-independent cellular responses to radiation. Additionally, we found that the conserved region (CR) 1 and CR2 domains in E7 protein, which are involved in the inactivation of pRb function and required for E7's transforming function, were also required for E7 to modulate DNA damage responses in vivo. Thus pRb and/or pRb-like proteins likely mediate both p53-dependent and p53-independent responses to radiation.

  19. Purified herpes simplex type 1 glycoprotein D (gD) genetically fused with the type 16 human papillomavirus E7 oncoprotein enhances antigen-specific CD8+ T cell responses and confers protective antitumor immunity.

    PubMed

    Porchia, Bruna F M M; Diniz, Mariana O; Cariri, Francisco A M O; Santana, Vinícius C; Amorim, Jaime H; Balan, Andrea; Braga, Catarina J M; Ferreira, Luís Carlos S

    2011-12-01

    Type 1 herpes virus (HSV-1) glycoprotein D (gD) enhances antigen-specific immune responses, particularly CD8(+) T cell responses, in mice immunized with DNA vaccines encoding hybrid proteins genetically fused with the target antigen at a site near the C-terminal end. These effects are attributed to the interaction of gD with the herpes virus entry mediator (HVEM) and the concomitant blockade of a coinhibitory mechanism mediated by the B- and T-lymphocyte attenuator (BTLA). However, questions concerning the requirement for endogenous synthesis of the antigen or the adjuvant/antigen fusion itself have not been addressed so far. In the present study, we investigated these points using purified recombinant gDs, genetically fused or not with type 16 papilloma virus (HPV-16) E7 oncoprotein. Soluble recombinant gDs, but not denatured forms, retained the ability to bind surface-exposed cellular receptors of HVEM-expressing U937 cells. In addition, in vivo administration of the recombinant proteins, particularly gD genetically fused with E7 (gDE7), promoted the activation of dendritic cells (DC) and antigen-specific cytotoxic CD8(+) T cells. More relevantly, mice immunized with the gDE7 protein developed complete preventive and partial therapeutic antitumor protection, as measured in mice following the implantation of TC-1 cells expressing HPV-16 oncoproteins. Collectively, these results demonstrate that the T cell adjuvant effects of the HSV-1 gD protein did not require endogenous synthesis and could be demonstrated in mice immunized with purified recombinant proteins.

  20. Human papillomavirus oncoproteins and apoptosis (Review)

    PubMed Central

    JIANG, PEIYUE; YUE, YING

    2014-01-01

    The aim of this study was to review the literature and identify the association between human papillomavirus (HPV) oncoproteins and apoptosis. HPV-associated apoptosis may be primarily blocked by a number of oncoproteins, including E5, E6 and E7. E5 protein protects cells from tumor necrosis factor-associated apoptosis; the oncoprotein E6 predominantly inhibits apoptosis through the p53 pathway; and oncoprotein E7 is involved in apoptosis activation and inhibition. In addition, HPV oncoproteins are involved in activating or repressing the transcription of E6/E7. In conclusion, HPV oncoproteins, including E5, E6 and E7 protein, may interfere with apoptosis via certain regulatory principles. PMID:24348754

  1. High levels of p105 (NFKB1) and p100 (NFKB2) proteins in HPV16-transformed keratinocytes: role of E6 and E7 oncoproteins

    SciTech Connect

    Havard, L.; Rahmouni, S.; Boniver, J.; Delvenne, P. . E-mail: P.Delvenne@ulg.ac.be

    2005-01-20

    We have previously shown that functional components of the NF-{kappa}B signaling pathway are up-regulated and sequestered in the cytoplasm of human papillomavirus 16 (HPV16)-transformed cell lines leading to a reduced activity of NF-{kappa}B. In this study, we examined the expression of the NF-{kappa}B precursors p100 and p105 in keratinocytes transformed or not by HPV16. Western immunoblotting experiments demonstrated high levels of p100 and p105 proteins not only in HPV16{sup +} cervical carcinoma-derived keratinocytes but also in keratinocytes stably transfected by HPV16 E6 or E7 oncogenes. Moreover, p100 and p105 proteins were predominantly cytoplasmic and nuclear in keratinocytes expressing E7 and E6, respectively. A predominantly cytoplasmic localization of E7 protein was also detected in all keratinocytes expressing E7. Our results suggest that HPV16 E6 and E7 proteins modulate the expression and the subcellular localization of p100 and p105 NF-{kappa}B precursors.

  2. Efficacy of DNA vaccines forming e7 recombinant retroviral virus-like particles for the treatment of human papillomavirus-induced cancers.

    PubMed

    Lescaille, Geraldine; Pitoiset, Fabien; Macedo, Rodney; Baillou, Claude; Huret, Christophe; Klatzmann, David; Tartour, Eric; Lemoine, François M; Bellier, Bertrand

    2013-05-01

    Human papillomavirus (HPV) is involved in the development of anogenital tumors and also in the development of oropharyngeal head and neck carcinomas, where HPV-16, expressing the E6 and E7 oncoproteins, is the most frequent serotype. Although vaccines encoding L1 and L2 capsid HPV proteins are efficient for the prevention of HPV infection, they are inadequate for treating established tumors. Hence, development of innovative vaccine therapies targeting E6/E7 is important for controlling HPV-induced cancers. We have engineered a nononcogenic mutated E7-specific plasmo-retroVLP vaccine (pVLP-E7), consisting of plasmid DNA, that is able to form recombinant retrovirus-based virus-like particles (VLPs) that display E7 antigen into murine leukemia virus Gag proteins pseudotyped with vesicular stomatitis virus envelope glycoprotein (VSV-G). pVLP-E7 vaccinations were studied for their ability to generate specific immune responses and for induction of protective immunity against tumor cell challenge in preventive and therapeutic models. The produced VLPs induce the maturation of human dendritic cells in vitro and mount specific E7 T cell responses. Intradermic vaccinations of mice with pVLP-E7 show their efficacy to generate antigen-specific T cell responses, to prevent and protect animals from early TC-1 tumor development compared with standard DNA or VLP immunizations. The vaccine efficacy was also evaluated for advanced tumors in mice vaccinated at various time after the injection of TC-1 cells. Data show that pVLP-E7 vaccination can cure mice with already established tumors only when combined with Toll-like receptor-7 (TLR7) and TLR9 agonists. Our findings provide evidence that pVLPs, combining the advantages of DNA and VLP vaccines, appear to be a promising strategy for the treatment of HPV-induced cancers. PMID:23521528

  3. HPV16 Oncoproteins Induce MMPs/RECK-TIMP-2 Imbalance in Primary Keratinocytes: Possible Implications in Cervical Carcinogenesis

    PubMed Central

    Cardeal, Laura Beatriz da Silva; Boccardo, Enrique; Termini, Lara; Rabachini, Tatiana; Andreoli, Maria Antonieta; di Loreto, Celso; Filho, Adhemar Longatto; Villa, Luisa Lina; Maria-Engler, Silvya Stuchi

    2012-01-01

    Cervical cancer is the third most common cancer in women worldwide. Persistent infection with high-risk HPV types, principally HPV16 and 18 is the main risk factor for the development of this malignancy. However, the onset of invasive tumor occurs many years after initial exposure in a minority of infected women. This suggests that other factors beyond viral infection are necessary for tumor establishment and progression. Tumor progression is characterized by an increase in secretion and activation of matrix metalloproteinases (MMPs) produced by either the tumor cells themselves or tumor-associated fibroblasts or macrophages. Increased MMPs expression, including MMP-2, MMP-9 and MT1-MMP, has been observed during cervical carcinoma progression. These proteins have been associated with degradation of ECM components, tumor invasion, metastasis and recurrence. However, few studies have evaluated the interplay between HPV infection and the expression and activity of MMPs and their regulators in cervical cancer. We analyzed the effect of HPV16 oncoproteins on the expression and activity of MMP-2, MMP-9, MT1-MMP, and their inhibitors TIMP-2 and RECK in cultures of human keratinocytes. We observed that E7 expression is associated with increased pro-MMP-9 activity in the epithelial component of organotypic cultures, while E6 and E7 oncoproteins co-expression down-regulates RECK and TIMP-2 levels in organotypic and monolayers cultures. Finally, a study conducted in human cervical tissues showed a decrease in RECK expression levels in precancer and cancer lesions. Our results indicate that HPV oncoproteins promote MMPs/RECK-TIMP-2 imbalance which may be involved in HPV-associated lesions outcome. PMID:22438955

  4. HPV16 oncoproteins induce MMPs/RECK-TIMP-2 imbalance in primary keratinocytes: possible implications in cervical carcinogenesis.

    PubMed

    Cardeal, Laura Beatriz da Silva; Boccardo, Enrique; Termini, Lara; Rabachini, Tatiana; Andreoli, Maria Antonieta; di Loreto, Celso; Longatto Filho, Adhemar; Villa, Luisa Lina; Maria-Engler, Silvya Stuchi

    2012-01-01

    Cervical cancer is the third most common cancer in women worldwide. Persistent infection with high-risk HPV types, principally HPV16 and 18 is the main risk factor for the development of this malignancy. However, the onset of invasive tumor occurs many years after initial exposure in a minority of infected women. This suggests that other factors beyond viral infection are necessary for tumor establishment and progression. Tumor progression is characterized by an increase in secretion and activation of matrix metalloproteinases (MMPs) produced by either the tumor cells themselves or tumor-associated fibroblasts or macrophages. Increased MMPs expression, including MMP-2, MMP-9 and MT1-MMP, has been observed during cervical carcinoma progression. These proteins have been associated with degradation of ECM components, tumor invasion, metastasis and recurrence. However, few studies have evaluated the interplay between HPV infection and the expression and activity of MMPs and their regulators in cervical cancer. We analyzed the effect of HPV16 oncoproteins on the expression and activity of MMP-2, MMP-9, MT1-MMP, and their inhibitors TIMP-2 and RECK in cultures of human keratinocytes. We observed that E7 expression is associated with increased pro-MMP-9 activity in the epithelial component of organotypic cultures, while E6 and E7 oncoproteins co-expression down-regulates RECK and TIMP-2 levels in organotypic and monolayers cultures. Finally, a study conducted in human cervical tissues showed a decrease in RECK expression levels in precancer and cancer lesions. Our results indicate that HPV oncoproteins promote MMPs/RECK-TIMP-2 imbalance which may be involved in HPV-associated lesions outcome.

  5. The HPV-16 E7 oncogene sensitizes malignant cells to IFN-alpha-induced apoptosis

    SciTech Connect

    Wang, Yisong

    2005-10-01

    Interferons (IFNs) exert antitumor effects in several human malignancies, but their mechanism of action is unclear. There is a great variability in sensitivity to IFN treatment depending on both tumor type and the individual patient. The reason for this variable sensitivity is not known. The fact that several IFN-induced anticellular effects are exerted through modulation of proto-oncogenes and tumor suppressor genes may indicate that the malignant genotype may be decisive in the cell's sensitivity to IFN. To determine if a deregulated oncogene could alter the cellular response to IFN, a mouse lymphoma cell line (J3D) was stably transfected with the viral human papillomavirus-16 (HPV-16) E7 oncogene. The E7-transfected cells and their respective mock-transfected sister clones were treated with IFN-{alpha} and examined for possible IFN-induced anticellular effects. We found that the E7-transfected clones were greatly sensitized to IFN-{alpha}-induced apoptosis compared with their mock-transfected counterparts. Induction of apoptosis in the transfected cells correlated with the ability of IFN to activate parts of the proapoptotic machinery specifically in these cells, including activation of caspases and the proapoptotic protein Bak. In summary, our data suggest that transfection of malignant cells with the E7 oncogene can sensitize them to IFN-{alpha}-induced apoptosis. This demonstrates that an oncogenic event may alter the cellular sensitivity to IFN and might also have implications for treatment of HPV related diseases with IFN.

  6. HPV16-E7 Expression in skin induces TSLP secretion, type 2 ILC infiltration and atopic dermatitis-like lesions

    PubMed Central

    Bergot, Anne-Sophie; Monnet, Nastasia; Tran, Le Son; Mittal, Deepak; Al-Kouba, Jane; Steptoe, Raymond J.; Grimbaldeston, Michele A.; Frazer, Ian H.; Wells, James W.

    2014-01-01

    Atopic dermatitis is a common pruritic and inflammatory skin disorder with unknown etiology. Most commonly occurring during early childhood, atopic dermatitis is associated with eczematous lesions and lichenification, in which the epidermis becomes hypertrophied resulting in thickening of the skin. In this study, we report an atopic dermatitis-like pathophysiology results in a murine model following the expression of the high-risk Human Papillomavirus (HPV) 16 oncoprotein E7 in keratinocytes under the Keratin 14 promoter. We show that HPV 16 E7 expression in the skin is associated with skin thickening, acanthosis and light spongiosis. Locally, HPV 16 E7 expressing skin secreted high levels of TSLP and contained increased numbers of ILCs. High levels of circulating IgE were associated with increased susceptibility to skin allergy in a model of cutaneous challenge, and to airway bronchiolar inflammation, enhanced airway goblet cell metaplasia and mucus production in a model of atopic march. Surprisingly, skin pathology occurred independently of T-cells and mast cells. Thus, our findings suggest that the expression of a single HPV oncogene in the skin can drive the onset of atopic dermatitis-like pathology through the induction of TSLP and type 2 ILC infiltration. PMID:25601274

  7. Reprogrammed CRISPR-Cas9 targeting the conserved regions of HPV6/11 E7 genes inhibits proliferation and induces apoptosis in E7-transformed keratinocytes.

    PubMed

    Liu, Yu-Chen; Cai, Zhi-Ming; Zhang, Xue-Jun

    2016-01-01

    The persistence infection of low-risk type (type 6 or type 11) of human papillomavirus (HPV) is the main cause of genital warts. Given the high rate of recurrence after treatment, the use of a new molecular agent is certain to be of value. The aim of this study was to achieve targeted inactivation of viral E 7 gene in keratinocytes using the reprogrammed clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system. To accomplish this, a universal CRISPR-Cas9 system for targeting both HPV6/11 E 7 genes was constructed by using a dual guide RNA vector. After transfection of the vector into E 7-transformed keratinocytes, the expression level of E 7 protein was measured using western-blot analysis and the sequence of the E 7 gene was determined using Sanger sequencing. Cell proliferation was analyzed by CCK-8 assay, and cell apoptosis was evaluated by Hoechst 33258 staining, flow cytometry analysis and ELISA assay. The results indicated that both HPV6/11 E 7 genes can be inactivated by the single CRISPR-Cas9 system. Furthermore, silencing of E 7 led to inhibition of cell proliferation and induction of apoptosis in E 7-transformed keratinocytes but not in normal keratinocytes. Our data suggested that the reprogrammed CRISPR-Cas9 system has the potential for the development of an adjuvant therapy for genital warts.

  8. Codon Optimization of the Human Papillomavirus E7 Oncogene Induces a CD8+ T Cell Response to a Cryptic Epitope Not Harbored by Wild-Type E7

    PubMed Central

    Lorenz, Felix K. M.; Wilde, Susanne; Voigt, Katrin; Kieback, Elisa; Mosetter, Barbara; Schendel, Dolores J.; Uckert, Wolfgang

    2015-01-01

    Codon optimization of nucleotide sequences is a widely used method to achieve high levels of transgene expression for basic and clinical research. Until now, immunological side effects have not been described. To trigger T cell responses against human papillomavirus, we incubated T cells with dendritic cells that were pulsed with RNA encoding the codon-optimized E7 oncogene. All T cell receptors isolated from responding T cell clones recognized target cells expressing the codon-optimized E7 gene but not the wild type E7 sequence. Epitope mapping revealed recognition of a cryptic epitope from the +3 alternative reading frame of codon-optimized E7, which is not encoded by the wild type E7 sequence. The introduction of a stop codon into the +3 alternative reading frame protected the transgene product from recognition by T cell receptor gene-modified T cells. This is the first experimental study demonstrating that codon optimization can render a transgene artificially immunogenic through generation of a dominant cryptic epitope. This finding may be of great importance for the clinical field of gene therapy to avoid rejection of gene-corrected cells and for the design of DNA- and RNA-based vaccines, where codon optimization may artificially add a strong immunogenic component to the vaccine. PMID:25799237

  9. Codon optimization of the human papillomavirus E7 oncogene induces a CD8+ T cell response to a cryptic epitope not harbored by wild-type E7.

    PubMed

    Lorenz, Felix K M; Wilde, Susanne; Voigt, Katrin; Kieback, Elisa; Mosetter, Barbara; Schendel, Dolores J; Uckert, Wolfgang

    2015-01-01

    Codon optimization of nucleotide sequences is a widely used method to achieve high levels of transgene expression for basic and clinical research. Until now, immunological side effects have not been described. To trigger T cell responses against human papillomavirus, we incubated T cells with dendritic cells that were pulsed with RNA encoding the codon-optimized E7 oncogene. All T cell receptors isolated from responding T cell clones recognized target cells expressing the codon-optimized E7 gene but not the wild type E7 sequence. Epitope mapping revealed recognition of a cryptic epitope from the +3 alternative reading frame of codon-optimized E7, which is not encoded by the wild type E7 sequence. The introduction of a stop codon into the +3 alternative reading frame protected the transgene product from recognition by T cell receptor gene-modified T cells. This is the first experimental study demonstrating that codon optimization can render a transgene artificially immunogenic through generation of a dominant cryptic epitope. This finding may be of great importance for the clinical field of gene therapy to avoid rejection of gene-corrected cells and for the design of DNA- and RNA-based vaccines, where codon optimization may artificially add a strong immunogenic component to the vaccine.

  10. Papillomavirus E6 oncoproteins

    PubMed Central

    Vande Pol, Scott B.; Klingelhutz, Aloysius J.

    2013-01-01

    Papillomaviruses induce benign and malignant epithelial tumors, and the viral E6 oncoprotein is essential for full transformation. E6 contributes to transformation by associating with cellular proteins, docking on specific acidic LXXLL peptide motifs found on the associated cellular proteins. This review examines insights from recent studies of human and animal E6 proteins that determine the three-dimensional structure of E6 when bound to acidic LXXLL peptides. The structure of E6 is related to recent advances in the purification and identification of E6 associated protein complexes. These E6 protein-complexes, together with other proteins that bind to E6, alter a broad array of biological outcomes including modulation of cell survival, cellular transcription, host cell differentiation, growth factor dependence, DNA damage responses, and cell cycle progression. PMID:23711382

  11. Reprogramming of plant cells induced by 6b oncoproteins from the plant pathogen Agrobacterium.

    PubMed

    Ito, Masaki; Machida, Yasunori

    2015-05-01

    Reprogramming of plant cells is an event characterized by dedifferentiation, reacquisition of totipotency, and enhanced cell proliferation, and is typically observed during formation of the callus, which is dependent on plant hormones. The callus-like cell mass, called a crown gall tumor, is induced at the sites of infection by Agrobacterium species through the expression of hormone-synthesizing genes encoded in the T-DNA region, which probably involves a similar reprogramming process. One of the T-DNA genes, 6b, can also by itself induce reprogramming of differentiated cells to generate tumors and is therefore recognized as an oncogene acting in plant cells. The 6b genes belong to a group of Agrobacterium T-DNA genes, which include rolB, rolC, and orf13. These genes encode proteins with weakly conserved sequences and may be derived from a common evolutionary origin. Most of these members can modify plant growth and morphogenesis in various ways, in most cases without affecting the levels of plant hormones. Recent studies have suggested that the molecular function of 6b might be to modify the patterns of transcription in the host nuclei, particularly by directly targeting the host transcription factors or by changing the epigenetic status of the host chromatin through intrinsic histone chaperone activity. In light of the recent findings on zygotic resetting of nucleosomal histone variants in Arabidopsis thaliana, one attractive idea is that acquisition of totipotency might be facilitated by global changes of epigenetic status, which might be induced by replacement of histone variants in the zygote after fertilization and in differentiated cells upon stimulation by plant hormones as well as by expression of the 6b gene. PMID:25694001

  12. The E5 oncoprotein of human papillomavirus type 16 enhances endothelin-1-induced keratinocyte growth.

    PubMed

    Venuti, A; Salani, D; Poggiali, F; Manni, V; Bagnato, A

    1998-08-15

    Human keratinocytes express ETA receptors and produce endothelin-1 (ET-1), which stimulates growth response. Previously, we reported that a twofold increase in ETA receptors is present in human papillomavirus type 16 (HPV16) immortalized keratinocytes and that ET-1 induces enhanced proliferative response in these cell lines compared to normal cells. The present studies examine whether the E5 gene of HPV16 is responsible for the enhanced activity of ET-1 in HPV-transfected keratinocytes. The presence of the E5 gene in growth factor-starved keratinocytes induced the DNA synthesis and enhanced the mitogenic activity of ET-1 or epidermal growth factor. The selection of primary keratinocytes in growth factor-free medium with the addition of ET-1 as a growth factor showed that E5-transfected keratinocytes were able to grow and to form a higher number of larger colonies with respect to untransfected cells. This effect seems to be related to the interaction of E5 with the mitogenic signaling pathway of ET-1 rather than to an increase in the expression of the receptors for ET-1. In conclusion, our data demonstrate that E5 enhances ligand signaling in keratinocytes outside the EGF pathway by the amplification of the proliferative effect of ET-1/ETA receptor signaling.

  13. Down-regulation of lipid raft-associated onco-proteins via cholesterol-dependent lipid raft internalization in docosahexaenoic acid-induced apoptosis.

    PubMed

    Lee, Eun Jeong; Yun, Un-Jung; Koo, Kyung Hee; Sung, Jee Young; Shim, Jaegal; Ye, Sang-Kyu; Hong, Kyeong-Man; Kim, Yong-Nyun

    2014-01-01

    Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function.

  14. E1B and E4 oncoproteins of adenovirus antagonize the effect of apoptosis inducing factor

    SciTech Connect

    Turner, Roberta L.; Wilkinson, John C.; Ornelles, David A.

    2014-05-15

    Adenovirus inundates the productively infected cell with linear, double-stranded DNA and an abundance of single-stranded DNA. The cellular response to this stimulus is antagonized by the adenoviral E1B and E4 early genes. A mutant group C adenovirus that fails to express the E1B-55K and E4ORF3 genes is unable to suppress the DNA-damage response. Cells infected with this double-mutant virus display significant morphological heterogeneity at late times of infection and frequently contain fragmented nuclei. Nuclear fragmentation was due to the translocation of apoptosis inducing factor (AIF) from the mitochondria into the nucleus. The release of AIF was dependent on active poly(ADP-ribose) polymerase-1 (PARP-1), which appeared to be activated by viral DNA replication. Nuclear fragmentation did not occur in AIF-deficient cells or in cells treated with a PARP-1 inhibitor. The E1B-55K or E4ORF3 proteins independently prevented nuclear fragmentation subsequent to PARP-1 activation, possibly by altering the intracellular distribution of PAR-modified proteins. - Highlights: • E1B-55K or E4orf3 prevents nuclear fragmentation. • Nuclear fragmentation requires AIF and PARP-1 activity. • Adenovirus DNA replication activates PARP-1. • E1B-55K or E4orf3 proteins alter the distribution of PAR.

  15. DNA vaccine encoding HPV-16 E7 with mutation in L-Y-C-Y-E pRb-binding motif induces potent anti-tumor responses in mice.

    PubMed

    Bahrami, Armina Alagheband; Ghaemi, Amir; Tabarraei, Alijan; Sajadian, Azadeh; Gorji, Ali; Soleimanjahi, Hoorieh

    2014-09-01

    Cervical cancer is the second most common cancer among women worldwide and remains a clinical problem despite improvements in early detection and therapy. The human papillomavirus (HPV) type 16 (HPV16) E7 oncoprotein expressed in cervical carcinoma cells are considered as attractive tumor-specific antigen targets for immunotherapy. Since the transformation potential of the oncogenes, vaccination based of these oncogenes is not safe. In present study, DNA vaccine expressing the modified variant with mutation in pRb-binding motif of the HPV-16 E7 oncoprotein was generated. A novel modified E7 gene with mutation in LYCYE motif was designed and constructed and the immunogenicity and antitumor effect of therapeutic DNA vaccines encoding the mutant and wild type of E7 gene were investigated. The L-Y-C-Y-E pRb-binding motif of E7 proteins has been involved in the immortalization and transformation of the host cell. The results showed that the mutant and wild type HPV-16 E7 vectors expressed the desired protein. Furthermore, the immunological mechanism behind mutant E7 DNA vaccine can be attributed at least partially to increased cytotoxic T lymphocyte, accompanied by the up-regulation of Th1-cytokine IFN-γ and TNF-β and down-regulation of Th3-cytokine TGF-β. Immunized mice with mutant plasmid demonstrated significantly stronger cell immune responses and higher levels of tumor protection than wild-type E7 DNA vaccine. The results exhibit that modified E7 DNA vaccine may be a promising candidate for development of therapeutic vaccine against HPV-16 cancers.

  16. Study of immortalization and malignant transformation of human embryonic esophageal epithelial cells induced by HPV18 E6E7.

    PubMed

    Shen, Z; Cen, S; Shen, J; Cai, W; Xu, J; Teng, Z; Hu, Z; Zeng, Y

    2000-10-01

    In order to study the effect of viruses and tumor promoters on the tumorigenicity of the esophagus, human embryonic esophageal epithelial cells were infected with human papilloma virus HPV18 E6E7-AAV in synergy with 12-O-tetradecanoylphorbol 13-acetate (TPA) to observe their malignant transformation. The cultured esophageal epithelial cells incubated with HPV18 E6E7-AAV were divided into two groups: the SHEEC1 group was exposed to TPA (5 ng/ml) for 4 weeks at the 5th passage of the cells; the SHEE group served as the control and was cultured in the same medium without TPA. The morphological phenotype, the DNA content during the cell cycle and the chromosomes were analyzed. The tumorigenicity was assessed by colony formation after cultivation in soft agar and transplanting the cells into nude mice. HPV18 E6E7 DNA was assayed by fluorescent in situ hybridization (FISH) and the polymerase chain reaction (PCR). The SHEE group, at its 20th passage, grew as a monolayer with the cells showing anchorage dependence and contact inhibition. The chromosome analysis showed diploidy, and soft-agar cultivation and injection into nude mice showed the cells to be non-tumorigenic. They were therefore immortalized cells. In contrast, the SHEEC1 group (TPA group) showed increased DNA synthesis and a proliferative index that was higher (45%) than that of the SHEE group (34%). The number of large colonies of dense multilayer cells (positively transformed foci) in soft agar was high in SHEEC1 group (4.0%) but low in the SHEE group (0.1%). Tumors resulting from transplantation were observed in all six nude mice injected subcutaneously with cells of the SHEEC1 group but no tumor developed in mice receiving cells of the SHEE group. In both groups of cells, HPV18 E6E7 DNA was positively detected by FISH and PCR. The malignant transformation of human embryonic epithelial cells was induced in vitro by HPV18 E6E7 in synergy with TPA. This is a good evidence for the close relationship between

  17. Examination of the pRb-dependent and pRb-independent functions of E7 in vivo.

    PubMed

    Balsitis, Scott; Dick, Fred; Lee, Denis; Farrell, Linda; Hyde, R Katherine; Griep, Anne E; Dyson, Nicholas; Lambert, Paul F

    2005-09-01

    High-risk human papillomaviruses encode two oncogenes, E6 and E7, expressed in nearly all cervical cancers. Although E7 protein is best known for its ability to inactivate the retinoblastoma tumor suppressor protein, pRb, many other activities for E7 have been proposed in in vitro studies. Herein, we describe studies that allowed us to define unambiguously the pRb-dependent and -independent activities of E7 for the first time in vivo. In these studies, we crossed mice transgenic for human papillomavirus 16 E7 to knock-in mice genetically engineered to express a mutant form of pRb (pRb(DeltaLXCXE)) that is selectively defective for binding E7. pRb inactivation was necessary for E7 to induce DNA synthesis and to overcome differentiation-dependent cell cycle withdrawal and DNA damage-induced cell cycle arrest. While most of E7's effects on epidermal differentiation were found to require pRb inactivation, a modest delay in terminal differentiation with resulting hyperplasia was observed in E7 mice on the Rb(DeltaLXCXE) mutant background. E7-induced p21 upregulation was also pRb dependent, and genetic Rb inactivation was sufficient to reproduce this effect. While E7-mediated p21 induction was partially p53 dependent, neither p53 nor p21 induction by E7 required p19(ARF). These data show that E7 upregulates the expression of p53 and p21 via pRb-dependent mechanisms distinct from the proposed p19-Mdm2 pathway. These results extend our appreciation of the importance of pRb as a relevant target for high-risk E7 oncoproteins. PMID:16103190

  18. HPV E7 contributes to the telomerase activity of immortalized and tumorigenic cells and augments E6-induced hTERT promoter function

    PubMed Central

    Liu, Xuefeng; Roberts, Jeffrey; Dakic, Aleksandra; Zhang, Yiyu; Schlegel, Richard

    2009-01-01

    The E6 and E7 proteins of high-risk HPVs are both required for the immortalization of primary human keratinocytes and the maintenance of the malignant phenotype of HPV-positive cancer cell lines. Our previous studies have shown that E6 protein binds Myc protein and that both E6 and Myc associate with and cooperatively activate the hTERT promoter, thereby increasing cellular telomerase activity. In this study, we evaluated the role of E7 in the maintenance and activation of telomerase in immortalized and tumorigenic cells. siRNA knockdown of either E6 or E7 (or both) in HPV-immortalized cells or an HPV-positive cancer cell line reduced hTERT transcription and telomerase activity. Since telomerase was inhibited by E7 siRNA in cells that independently expressed the E6 and E7 genes, our results reveal an independent role for E7 in the maintenance of telomerase activity. However, E7 alone was insufficient to increase endogenous hTERT mRNA or telomerase activity, although it significantly augmented E6-induced hTERT transcription and telomerase activity. To further explore this apparent E7-induced promoter augmentation, we analyzed an exogenous hTERT core promoter in transduced keratinocytes. E7 alone induced the wt hTERT promoter and augmented E6-induced hTERT promoter activity. Mutation of the E2F site in the hTERT promoter abrogated the ability of E7 to induce the hTERT promoter or to enhance the ability of E6 to induce the promoter. Correspondingly, keratinocytes expressing E6 and a mutant E7 (defective for binding pRb pocket proteins) showed lower telomerase activity than cells expressing wt E6 and wt E7. Thus, HPV E7 plays a role in the maintenance of telomerase activity in stable cell lines and augments acute, E6-induced hTERT promoter activity. PMID:18367227

  19. Chronic morphine induces up-regulation of the pro-apoptotic Fas receptor and down-regulation of the anti-apoptotic Bcl-2 oncoprotein in rat brain

    PubMed Central

    Boronat, M Assumpció; García-Fuster, M Julia; García-Sevilla, Jesús A

    2001-01-01

    This study was designed to assess the influence of activation and blockade of the endogenous opioid system in the brain on two key proteins involved in the regulation of programmed cell death: the pro-apoptotic Fas receptor and the anti-apoptotic Bcl-2 oncoprotein. The acute treatment of rats with the μ-opioid receptor agonist morphine (3 – 30 mg kg−1, i.p., 2 h) did not modify the immunodensity of Fas or Bcl-2 proteins in the cerebral cortex. Similarly, the acute treatment with low and high doses of the antagonist naloxone (1 and 100 mg kg−1, i.p., 2 h) did not alter Fas or Bcl-2 protein expression in brain cortex. These results discounted a tonic regulation through opioid receptors on Fas and Bcl-2 proteins in rat brain. Chronic morphine (10 – 100 mg kg−1, 5 days, and 10 mg kg−1, 13 days) induced marked increases (47 – 123%) in the immunodensity of Fas receptor in the cerebral cortex. In contrast, chronic morphine (5 and 13 days) decreased the immunodensity of Bcl-2 protein (15 – 30%) in brain cortex. Chronic naloxone (10 mg kg−1, 13 days) did not alter the immunodensities of Fas and Bcl-2 proteins in the cerebral cortex. The concurrent chronic treatment (13 days) of naloxone (10 mg kg−1) and morphine (10 mg kg−1) completely prevented the morphine-induced increase in Fas receptor and decrease in Bcl-2 protein immunoreactivities in the cerebral cortex. The results indicate that morphine, through the sustained activation of opioid receptors, can promote abnormal programmed cell death by enhancing the expression of pro-apoptotic Fas receptor protein and damping the expression of anti-apoptotic Bcl-2 oncoprotein. PMID:11704646

  20. miR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes

    SciTech Connect

    McKenna, Declan J.; Patel, Daksha; McCance, Dennis J.

    2014-01-05

    A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miR-24 and miR-205. We investigated how expression of Human Papilloma Virus Type-16 (HPV16) onco-proteins E6 and E7 affected expression of miR-24 and miR-205 during proliferation and differentiation of HFKs. We show that the induction of both miR-24 and miR-205 observed during differentiation of HFKs is lost in HFKs expressing E6 and E7. We demonstrate that the effect on miR-205 is due to E7 activity, as miR-205 expression is dependent on pRb expression. Finally, we provide evidence that miR-24 effects in the cell may be due to targeting of cyclin dependent kinase inhibitor p27. In summary, these results indicate that expression of both miR-24 and miR-205 are impacted by E6 and/or E7 expression, which may be one mechanism by which HPV onco-proteins can disrupt the balance between proliferation and differentiation in keratinocytes. - Highlights: • miR-24 and miR-205 are induced during keratinocyte differentiation. • This induction is lost in keratinocytes expressing HPV onco-proteins E6 and E7. • miR-205 is dependent upon pRb expression. • miR-24 targets p27 in cycling keratinocytes.

  1. Carboxyl-terminal fusion of E7 into Flagellin shifts TLR5 activation to NLRC4/NAIP5 activation and induces TLR5-independent anti-tumor immunity

    PubMed Central

    Lin, Kuo-Hsing; Chang, Li-Sheng; Tian, Chun-Yuan; Yeh, Yi-Chen; Chen, Yu-Jie; Chuang, Tsung-Hsien; Liu, Shih-Jen; Leng, Chih-Hsiang

    2016-01-01

    Flagellin has the capacity to activate both Toll-like receptor 5 (TLR5) and Nod-like receptor C4 (NLRC4)/neuronal apoptosis inhibitory protein 5 (NAIP5) inflammasome signaling. We fused E7m (the inactivated E7 of human papillomavirus) to either end of the flagellin protein, and the resulting recombinant flagellin-E7m proteins (rFliCE7m and rE7mFliC) were used as immunogens. Both fusion proteins activated receptor signaling to different degrees. rE7mFliC-induced TLR5 activity was 10-fold higher than that of rFliCE7m, whereas rFliCE7m activated the NLRC4/NAIP5 pathway more strongly. Therefore, these recombinant proteins provided a tool to investigate which signaling pathway is critical for the induction of antigen-specific T cell responses and anti-tumor immunity. We demonstrated that rFliCE7m induced higher levels of E7-specific IFN-gamma-secreting cells and cytotoxic T lymphocytes (CTLs) than rE7mFliC, and a single injection with rFliCE7m but not rE7mFliC inhibited E7-expressing tumor growth in vivo. Furthermore, we confirmed that CD8+ T cells played a major role in the anti-tumor immunity induced by rFliCE7m. These findings suggested that the NLRC4/NAIP5 intracellular signaling pathway was critical for the induction of anti-tumor immunity. These observations provide important information for the rational design of flagellin-based immunotherapy. PMID:27063435

  2. E6 and E7 gene silencing results in decreased methylation of tumor suppressor genes and induces phenotype transformation of human cervical carcinoma cell lines

    PubMed Central

    Long, Jia; Shen, Danbei; Zhou, Wuqing; Zhou, Qiyan; Yang, Jia; Jiang, Mingjun

    2015-01-01

    In SiHa and CaSki cells, E6 and E7-targeting shRNA specifically and effectively knocked down human papillomavirus (HPV) 16 E6 and E7 at the transcriptional level, reduced the E6 and E7 mRNA levels by more than 80% compared with control cells that expressed a scrambled-sequence shRNA. E6 and E7 repression resulted in down-regulation of DNA methyltransferase mRNA and protein expression, decreased DNA methylation and increased mRNA expression levels of tumor suppressor genes, induced a certain apoptosis and inhibited proliferation in E6 and E7 shRNA-infected SiHa and CaSki cells compared with the uninfected cells. Repression of E6 and E7 oncogenes resulted in restoration of DNA methyltransferase suppressor pathways and induced apoptosis in HPV16-positive cervical carcinoma cell lines. Our findings suggest that the potential carcinogenic mechanism of HPV16 through influencing DNA methylation pathway to activate the development of cervical cancer exist, and maybe as a candidate therapeutic strategy for cervical and other HPV-associated cancers. PMID:26329329

  3. Human papillomavirus type 16/18 oncoproteins: potential therapeutic targets in non-smoking associated lung cancer.

    PubMed

    Zhang, Er-Ying; Tang, Xu-Dong

    2012-01-01

    High-risk human papillomavirus (HPV) especially HPV-16 and HPV-18 types are speculated to be important risk factors in non-smoking associated lung cancer in Asia. Increasing evidence has demonstrated that HPV oncoproteins may contribute to lung tumorigenesis and cell transformation. Importantly, HPV 16/18 E6 and E7 oncoproteins can mediate expression of multiple target genes and proteins, such as p53/pRb, VEGF, HIF-1α, cIAP-2, and hTERT, and contribute to cell proliferation, angiogenesis and cell immortalization through different signaling pathways in lung cancer. This article provides an overview of experiment data on HPV-associated lung cancer, describes the main targets on which HPV E6/E7 oncoproteins act, and further discusses the potential signaling pathways in which HPV E6/E7 oncoproteins are involved. In addition, we also raise questions regarding existing problems with the study of HPV-associated lung cancer.

  4. HTLV-1 Tax oncoprotein inhibits the estrogen-induced-ER α-Mediated BRCA1 expression by interaction with CBP/p300 cofactors.

    PubMed

    Shukrun, Meital; Jabareen, Azhar; Abou-Kandil, Ammar; Chamias, Rachel; Aboud, Mordechai; Huleihel, Mahmoud

    2014-01-01

    BRCA1 is a multifunctional tumor suppressor, whose expression is activated by the estrogen (E2)-liganded ERα receptor and regulated by certain recruited transcriptional co-activators. Interference with BRCA1 expression and/or functions leads to high risk of breast or/and ovarian cancer. Another multifunctional protein, HTLV-1Tax oncoprotein, is widely regarded as crucial for developing adult T-cell leukemia and other clinical disorders. Tax profile reveals that it can antagonize BRCA1 expression and/or functionality. Therefore, we hypothesize that Tax expression in breast cells can sensitize them to malignant transformation by environmental carcinogens. Here we examined Tax effect on BRCA1 expression by testing its influence on E2-induced expression of BRCA1 promoter-driven luciferase reporter (BRCA1-Luc). We found that E2 strongly stimulated this reporter expression by liganding to ERα, which consequently associated with BRCA1 promoter, while ERα concomitantly recruited CBP/p300 to this complex for co-operative enhancement of BRCA1 expression. Introducing Tax into these cells strongly blocked this E2-ERα-mediated activation of BRCA1 expression. We noted, also, that Tax exerted this inhibition by binding to CBP/p300 without releasing them from their complex with ERα. Chip assay revealed that the binding of Tax to the CBP/p300-ERα complex, prevented its link to AP1 site. Interestingly, we noted that elevating the intracellular pool of CBP or p300 to excessive levels dramatically reduced the Tax-mediated inhibition of BRCA1 expression. Exploring the mechanism of this reduction revealed that the excessive co-factors were sufficient to bind separately the free Tax molecules, thus lowering their amount in the CBP/p300-ERα complex and relieving, thereby, the inhibition of BRCA1 expression.

  5. Mechanistic analysis of the role of bromodomain-containing protein 4 (BRD4) in BRD4-NUT oncoprotein-induced transcriptional activation.

    PubMed

    Wang, Ranran; You, Jianxin

    2015-01-30

    NUT midline carcinoma (NMC) is a rare but highly aggressive cancer typically caused by the translocation t(15;19), which results in the formation of the BRD4-NUT fusion oncoprotein. Previous studies have demonstrated that fusion of the NUT protein with the double bromodomains of BRD4 may significantly alter the cellular gene expression profile to contribute to NMC tumorigenesis. However, the mechanistic details of this BRD4-NUT function remain poorly understood. In this study, we examined the NUT function in transcriptional regulation by targeting it to a LacO transgene array integrated in U2OS 2-6-3 cells, which allow us to visualize how NUT alters the in situ gene transcription dynamic. Using this system, we demonstrated that the NUT protein tethered to the LacO locus recruits p300/CREB-binding protein (CBP), induces histone hyperacetylation, and enriches BRD4 to the transgene array chromatin foci. We also discovered that, in BRD4-NUT expressed in NMC cells, the NUT moiety of the fusion protein anchored to chromatin by the double bromodomains also stimulates histone hyperacetylation, which causes BRD4 to bind tighter to chromatin. Consequently, multiple BRD4-interacting factors are recruited to the NUT-associated chromatin locus to activate in situ transgene expression. This gene transcription function was repressed by either expression of a dominant negative inhibitor of the p300-NUT interaction or treatment with (+)-JQ1, which dissociates BRD4 from the LacO chromatin locus. Our data support a model in which BRD4-NUT-stimulated histone hyperacetylation recruits additional BRD4 and interacting partners to support transcriptional activation, which underlies the BRD4-NUT oncogenic mechanism in NMC.

  6. Oncoprotein mdig contributes to silica-induced pulmonary fibrosis by altering balance between Th17 and Treg T cells

    PubMed Central

    Sun, Jiaying; Zhang, Yadong; Lu, Yongju; Battelli, Lori; Porter, Dale W.; Chen, Fei

    2015-01-01

    Mineral dust-induced gene (mdig, also named Mina53) was first identified from alveolar macrophages of the coal miners with chronic lung inflammation or fibrosis, but how this gene is involved in lung diseases is poorly understood. Here we show that heterozygotic knockout of mdig (mdig+/−) ameliorates silica-induced lung fibrosis by altering the balance between Th17 cells and Treg cells. Relative to the wild type (WT) mice, infiltration of the macrophages and Th17 cells was reduced in lungs from silica-exposed mdig+/− mice. In contrast, an increased infiltration of the T regulatory (Treg) cells to the lung intestitium was observed in the mdig+/− mice treated with silica. Both the number of Th17 cells in the lung lymph nodes and the level of IL-17 in the bronchoalveolar lavage fluids were decreased in the mdig+/− mice in response to silica. Thus, these results suggest that mdig may contribute to silica-induced lung fibrosis by altering the balance between Th17 and Treg cells. Genetic deficiency of mdig impairs Th17 cell infiltration and function, but favors infiltration of the Treg cells, the immune suppressive T cells that are able to limit the inflammatory responses by repressing the Th17 cells and macrophages. PMID:25669985

  7. Histopathological changes induced by selective inactivation of menin on the thyroid gland in RET÷PTC3 and E7 transgenic mice. A study of 77 cases.

    PubMed

    Căpraru, Oana Maria; Berger, Nicole; Gadot, Nicolas; Decaussin-Petrucci, Myriam; Zhang, Chang; Borda, Angela; Szilágyi, Tibor; Borson-Chazot, Françoise; Selmi-Ruby, Samia

    2016-01-01

    Multiple Endocrine Neoplasia Type 1 (MEN1) does not involve the thyroid gland, but animal studies have shown that mice with inactivation of menin could develop thyroid pathologies. The objective was to evaluate if the selective inactivation of menin in murine thyroid glands expressing RET÷PTC3 and E7 oncogenes, might induce an increased index of proliferation and a more rapid development of thyroid hyperplasia and÷or tumors. The thyroid glands of 77 mice aged 4-18 months (31 expressing the E7 oncogene and 25 the RET÷PTC3 oncogene) were analyzed for histological changes and Ki67 proliferation index. Fifty-two mice had selective inactivation of menin in the thyroid gland (16 mice with RET÷PTC3 oncogene and 19 mice with E7 oncogene). As compared to wild type, mice with inactivation of menin presented an increased Ki67 proliferation index. Mice presenting the E7 oncogene showed larger thyroid glands with a pattern of diffuse hyperplasia. Mice expressing the RET÷PTC3 oncogene presented larger thyroid glands compared to the wild type mice but smaller compared to E7 mice. The lesions in the RET÷PTC3 group were "proliferative papillary cystic changes" (60%), "cribriform" (16%), "solid" (8%) and a combination of these patterns in the rest of the thyroid glands. The inactivation of menin in the thyroid gland of young mice does not seem to change the histological pattern, but it influences the proliferation of follicular cells. Further molecular studies especially in aged mice are needed to better understand the correlation between certain oncogenes and the inactive status of menin.

  8. Novel Functions of the Human Papillomavirus E6 Oncoproteins.

    PubMed

    Wallace, Nicholas A; Galloway, Denise A

    2015-11-01

    Human papillomaviruses (HPVs) infect the epidermis as well as mucous membranes of humans. They are the causative agents of anogenital tract and some oropharyngeal cancers. Infections begin in the basal epithelia, where the viral genome replicates slowly along with its host cell. As infected cells begin to differentiate and progress toward the periphery, the virus drives proliferation in cells that would otherwise be quiescent. To uncouple differentiation from continued cellular propagation, HPVs express two oncoproteins, HPV E6 and E7. This review focuses on high-risk α-HPV E6, which in addition to supporting viral replication has transforming properties. HPV E6 promotes p53 degradation and activates telomerase, but the multifaceted oncoprotein has numerous other functions that are highlighted here. PMID:26958922

  9. Molecular screening of compounds to the predicted Protein-Protein Interaction site of Rb1-E7 with p53- E6 in HPV

    PubMed Central

    Shaikh, Faraz; Sanehi, Parvish; Rawal, Rakesh

    2012-01-01

    Cervical cancer is malignant neoplasm of the cervix uteri or cervical area. Human Papillomaviruses (HPVs) which are heterogeneous groups of small double stranded DNA viruses are considered as the primary cause of cervical cancer, involved in 90% of all Cervical Cancers. Two early HPV genes, E6 and E7, are known to play crucial role in tumor formation. E6 binds with p53 and prevents its translocation and thereby inhibit the ability of p53 to activate or repress target genes. E7 binds to hypophosphorylated Rb and thereby induces cells to enter into premature S-phase by disrupting Rb-E2F complexes. The strategy of the research work was to target the site of interaction of Rb1 -E7 & p53-E6. A total of 88 compounds were selected for molecular screening, based on comprehensive literature survey for natural compounds with anti-cancer activity. Molecular docking analysis was carried out with Molegro Virtual Docker, to screen the 88 chosen compounds and rank them according to their binding affinity towards the site of interaction of the viral oncoproteins and human tumor suppressor proteins. The docking result revealed that Nicandrenone a member of Withanolides family of chemical compounds as the most likely molecule that can be used as a candidate drug against HPV induced cervical cancer. Abbreviations HPV - Human Papiloma Virus, HTSP - Human Tumor Suppressor Proteins, VOP - Viral oncoproteins. PMID:22829740

  10. Characterization of Epithelial Progenitors in Normal Human Palatine Tonsils and Their HPV16 E6/E7-Induced Perturbation

    PubMed Central

    Kang, Sung Yoon Catherine; Kannan, Nagarajan; Zhang, Lewei; Martinez, Victor; Rosin, Miriam P.; Eaves, Connie J.

    2015-01-01

    Summary Human palatine tonsils are oropharyngeal lymphoid tissues containing multiple invaginations (crypts) in which the continuity of the outer surface epithelium is disrupted and the isolated epithelial cells intermingle with other cell types. We now show that primitive epithelial cells detectable in vitro in 2D colony assays and in a 3D culture system are CD44+NGFR+ and present in both surface and crypt regions. Transcriptome analysis indicated a high similarity between CD44+NGFR+ cells in both regions, although those isolated from the crypt contained a higher proportion of the most primitive (holo)clonogenic cells. Lentiviral transduction of CD44+NGFR+ cells from both regions with human papillomavirus 16-encoded E6/E7 prolonged their growth in 2D cultures and caused aberrant differentiation in 3D cultures. Our findings therefore reveal a shared, site-independent, hierarchical organization, differentiation potential, and transcriptional profile of normal human tonsillar epithelial progenitor cells. They also introduce a new model for investigating the mechanisms of their transformation. PMID:26527383

  11. Oncogenic viral protein HPV E7 up-regulates the SIRT1 longevity protein in human cervical cancer cells.

    PubMed

    Allison, Simon J; Jiang, Ming; Milner, Jo

    2009-03-02

    Senescence is blocked in human cervical keratinocytes infected with high risk human papillomavirus (e.g. HPV type16). Viral oncoproteins HPV E6 and HPV E7 access the cell cycle via cellular p53 and retinoblastoma proteins respectively. Previously we have shown that HPV E7, not HPV E6, is also responsible for cervical cancer cell survival (SiHa cells; HPV type16). We now present evidence that SIRT1, an aging-related NAD-dependent deacetylase, mediates HPV E7 survival function in SiHa cervical cancer cells. Moreover, HPV E7 up-regulates SIRT1 protein when expressed in primary human keratinocytes. Conversely, SIRT1 levels decrease following RNAi-mediated silencing of HPV E7 in SiHa cells. Silencing HPV E6 has no effect on SIRT1 but, as expected, causes marked accumulation of p53 protein accompanied by p53-mediated up-regulation of p21. However, p53 acetylation (K382Ac) was barely detectable. Since p53 is a known SIRT1 substrate we propose that elevated SIRT1 levels (induced by HPV E7) attenuate p53 pro-apoptotic capacity via its de-acetylation. Our discovery that HPV E7 up-regulates SIRT1 links a clinically important oncogenic virus with the multi-functional SIRT1 protein. This link may open the way for a more in-depth understanding of the process of HPV-induced malignant transformation and also of the inter-relationships between aging and cancer.

  12. Conserved region 3 of human papillomavirus 16 E7 contributes to deregulation of the retinoblastoma tumor suppressor.

    PubMed

    Todorovic, Biljana; Hung, Katherine; Massimi, Paola; Avvakumov, Nikita; Dick, Frederick A; Shaw, Gary S; Banks, Lawrence; Mymryk, Joe S

    2012-12-01

    The human papillomavirus (HPV) E7 oncoprotein binds cellular factors, preventing or retargeting their function and thereby making the infected cell conducive for viral replication. A key target of E7 is the product of the retinoblastoma susceptibility locus (pRb). This interaction results in the release of E2F transcription factors and drives the host cell into the S phase of the cell cycle. E7 binds pRb via a high-affinity binding site in conserved region 2 (CR2) and also targets a portion of cellular pRb for degradation via the proteasome. Evidence suggests that a secondary binding site exists in CR3, and that this interaction influences pRb deregulation. Additionally, evidence suggests that CR3 also participates in the degradation of pRb. We have systematically analyzed the molecular mechanisms by which CR3 contributes to deregulation of the pRb pathway by utilizing a comprehensive series of mutations in residues predicted to be exposed on the surface of HPV16 E7 CR3. Despite differences in the ability to interact with cullin 2, all CR3 mutants degrade pRb comparably to wild-type E7. We identified two specific patches of residues on the surface of CR3 that contribute to pRb binding independently of the high-affinity CR2 binding site. Mutants within CR3 that affect pRb binding are less effective than the wild-type E7 in overcoming pRb-induced cell cycle arrest. This demonstrates that the interaction between HPV16 E7 CR3 and pRb is functionally important for alteration of the cell cycle. PMID:23015707

  13. Papillomavirus E5: the smallest oncoprotein with many functions

    PubMed Central

    2011-01-01

    Papillomaviruses (PVs) are established agents of human and animal cancers. They infect cutaneous and mucous epithelia. High Risk (HR) Human PVs (HPVs) are consistently associated with cancer of the uterine cervix, but are also involved in the etiopathogenesis of other cancer types. The early oncoproteins of PVs: E5, E6 and E7 are known to contribute to tumour progression. While the oncogenic activities of E6 and E7 are well characterised, the role of E5 is still rather nebulous. The widespread causal association of PVs with cancer makes their study worthwhile not only in humans but also in animal model systems. The Bovine PV (BPV) system has been the most useful animal model in understanding the oncogenic potential of PVs due to the pivotal role of its E5 oncoprotein in cell transformation. This review will highlight the differences between HPV-16 E5 (16E5) and E5 from other PVs, primarily from BPV. It will discuss the targeting of E5 as a possible therapeutic agent. PMID:22078316

  14. Identification of Unusual E6 and E7 Proteins within Avian Papillomaviruses: Cellular Localization, Biophysical Characterization, and Phylogenetic Analysis▿ §

    PubMed Central

    Van Doorslaer, Koenraad; Ould M'hamed Ould Sidi, Abdellahi; Zanier, Katia; Rybin, Vladimir; Deryckère, François; Rector, Annabel; Burk, Robert D.; Lienau, E. Kurt; van Ranst, Marc; Travé, Gilles

    2009-01-01

    Papillomaviruses (PVs) are a large family of small DNA viruses infecting mammals, reptiles, and birds. PV infection induces cell proliferation that may lead to the formation of orogenital or skin tumors. PV-induced cell proliferation has been related mainly to the expression of two small oncoproteins, E6 and E7. In mammalian PVs, E6 contains two 70-residue zinc-binding repeats, whereas E7 consists of a natively unfolded N-terminal region followed by a zinc-binding domain which folds as an obligate homodimer. Here, we show that both the novel francolin bird PV Francolinus leucoscepus PV type 1 (FlPV-1) and the chaffinch bird PV Fringilla coelebs PV contain unusual E6 and E7 proteins. The avian E7 proteins contain an extended unfolded N terminus and a zinc-binding domain of reduced size, whereas the avian E6 proteins consist of a single zinc-binding domain. A comparable single-domain E6 protein may have existed in a common ancestor of mammalian and avian PVs. Mammalian E6 C-terminal domains are phylogenetically related to those of single-domain avian E6, whereas mammalian E6 N-terminal domains seem to have emerged by duplication and subsequently diverged from the original ancestral domain. In avian and mammalian cells, both FlPV-1 E6 and FlPV-1 E7 were evenly expressed in the cytoplasm and the nucleus. Finally, samples of full-length FlPV-1 E6 and the FlPV-1 E7 C-terminal zinc-binding domain were prepared for biophysical analysis. Both constructs were highly soluble and well folded, according to nuclear magnetic resonance spectroscopy measurements. PMID:19553340

  15. Metronomic cyclophosphamide enhances HPV16E7 peptide vaccine induced antigen-specific and cytotoxic T-cell mediated antitumor immune response

    PubMed Central

    Weir, Genevieve M; Hrytsenko, Olga; Stanford, Marianne M; Berinstein, Neil L; Karkada, Mohan; Liwski, Robert S; Mansour, Marc

    2014-01-01

    In clinical trials, metronomic cyclophosphamide (CPA) is increasingly being combined with vaccines to reduce tumor-induced immune suppression. Previous strategies to modulate the immune system during vaccination have involved continuous administration of low dose chemotherapy, studies that have posed unique considerations for clinical trial design. Here, we evaluated metronomic CPA in combination with a peptide vaccine targeting HPV16E7 in an HPV16-induced tumor model, focusing on the cytotoxic T-cell response and timing of low dose metronomic CPA (mCPA) treatment relative to vaccination. Mice bearing C3 tumors were given metronomic CPA on alternating weeks in combination with immunization with a DepoVax vaccine containing HPV16E749–57 peptide antigen every 3 weeks. Only the combination therapy provided significant long-term control of tumor growth. The efficacy of the vaccine was uncompromised if given at the beginning or end of a cycle of metronomic CPA. Metronomic CPA had a pronounced lymphodepletive effect on the vaccine draining lymph node, yet did not reduce the development of antigen-specific CD8+ T cells induced by vaccination. This enrichment correlated with increased cytotoxic activity in the spleen and increased expression of cytotoxic gene signatures in the tumor. Immunity could be passively transferred through CD8+ T cells isolated from tumor-bearing mice treated with the combinatorial treatment regimen. A comprehensive survey of splenocytes indicated that metronomic CPA, in the absence of vaccination, induced transient lymphodepletion marked by a selective expansion of myeloid-derived suppressor cells. These results provide important insights into the multiple mechanisms of metronomic CPA induced immune modulation in the context of a peptide cancer vaccine that may be translated into more effective clinical trial designs. PMID:25960932

  16. High-Risk Human Papillomavirus E7 Proteins Target PTPN14 for Degradation

    PubMed Central

    Münger, Karl; Howley, Peter M.

    2016-01-01

    ABSTRACT The major transformation activity of the high-risk human papillomaviruses (HPV) is associated with the E7 oncoprotein. The interaction of HPV E7 with retinoblastoma family proteins is important for several E7 activities; however, this interaction does not fully account for the high-risk E7-specific cellular immortalization and transformation activities. We have determined that the cellular non-receptor protein tyrosine phosphatase PTPN14 interacts with HPV E7 from many genus alpha and beta HPV types. We find that high-risk genus alpha HPV E7, but not low-risk genus alpha or beta HPV E7, is necessary and sufficient to reduce the steady-state level of PTPN14 in cells. High-risk E7 proteins target PTPN14 for proteasome-mediated degradation, which requires the ubiquitin ligase UBR4, and PTPN14 is degraded by the proteasome in HPV-positive cervical cancer cell lines. Residues in the C terminus of E7 interact with the C-terminal phosphatase domain of PTPN14, and interference with the E7-PTPN14 interaction restores PTPN14 levels in cells. Finally, PTPN14 degradation correlates with the retinoblastoma-independent transforming activity of high-risk HPV E7. PMID:27651363

  17. HPV16 Oncoproteins Promote Cervical Cancer Invasiveness by Upregulating Specific Matrix Metalloproteinases

    PubMed Central

    Kaewprag, Jittranan; Umnajvijit, Wareerat; Ngamkham, Jarunya; Ponglikitmongkol, Mathurose

    2013-01-01

    Production of matrix metalloproteinases (MMPs) for degradation of extracellular matrix is a vital step in cancer metastasis. We investigated the effects of HPV16 oncoproteins (16E6, 16E6*I and 16E7), either individually or combined, on the transcription of 7 MMPs implicated in cervical cancer invasiveness. The levels of 7 MMPs reported to be increased in cervical cancer were determined in C33A stably expressing different HPV16 oncoproteins using quantitative RT-PCR and compared with invasion ability of cell lines using in vitro invasion and wound healing assays. Overexpression of MMP-2 and MT1-MMP was detected in HPV16E6E7 expressing cells which correlated with increased cell invasion. Combination of HPV oncoproteins always showed greater effects than its individual form. Inhibition of cell invasion using a specific MMP-2 inhibitor, OA-Hy, and anti-MT1-MMP antibody confirmed that invasion in these cells was dependent on both MMP-2 and MT1-MMP expression. Depletion of HPV16E6E7 by shRNA-mediated knock-down experiments resulted in decreased MMP-2 and MT1-MMP expression levels as well as reduced invasion ability which strongly suggested specific effects of HPV oncoproteins on both MMPs and on cell invasion. Immunohistochemistry study in invasive cervical cancers confirmed the enhanced in vivo expression of these two MMPs in HPV16-infected cells. In addition, possible sites required by HPV16E6E7 on the MMP-2 and MT1-MMP promoters were investigated and PEA3 (at −552/−540 for MMP-2, −303 for MT1-MMP) and Sp1 (at −91 for MMP-2, −102 for MT1-MMP) binding sites were shown to be essential for mediating their transactivation activity. In conclusion, our study demonstrated that HPV16E6 and E7 oncoproteins cooperate in promoting cervical cancer invasiveness by specifically upregulating MMP-2 and MT1-MMP transcription in a similar manner. PMID:23967226

  18. HPV16 oncoproteins promote cervical cancer invasiveness by upregulating specific matrix metalloproteinases.

    PubMed

    Kaewprag, Jittranan; Umnajvijit, Wareerat; Ngamkham, Jarunya; Ponglikitmongkol, Mathurose

    2013-01-01

    Production of matrix metalloproteinases (MMPs) for degradation of extracellular matrix is a vital step in cancer metastasis. We investigated the effects of HPV16 oncoproteins (16E6, 16E6*I and 16E7), either individually or combined, on the transcription of 7 MMPs implicated in cervical cancer invasiveness. The levels of 7 MMPs reported to be increased in cervical cancer were determined in C33A stably expressing different HPV16 oncoproteins using quantitative RT-PCR and compared with invasion ability of cell lines using in vitro invasion and wound healing assays. Overexpression of MMP-2 and MT1-MMP was detected in HPV16E6E7 expressing cells which correlated with increased cell invasion. Combination of HPV oncoproteins always showed greater effects than its individual form. Inhibition of cell invasion using a specific MMP-2 inhibitor, OA-Hy, and anti-MT1-MMP antibody confirmed that invasion in these cells was dependent on both MMP-2 and MT1-MMP expression. Depletion of HPV16E6E7 by shRNA-mediated knock-down experiments resulted in decreased MMP-2 and MT1-MMP expression levels as well as reduced invasion ability which strongly suggested specific effects of HPV oncoproteins on both MMPs and on cell invasion. Immunohistochemistry study in invasive cervical cancers confirmed the enhanced in vivo expression of these two MMPs in HPV16-infected cells. In addition, possible sites required by HPV16E6E7 on the MMP-2 and MT1-MMP promoters were investigated and PEA3 (at -552/-540 for MMP-2, -303 for MT1-MMP) and Sp1 (at -91 for MMP-2, -102 for MT1-MMP) binding sites were shown to be essential for mediating their transactivation activity. In conclusion, our study demonstrated that HPV16E6 and E7 oncoproteins cooperate in promoting cervical cancer invasiveness by specifically upregulating MMP-2 and MT1-MMP transcription in a similar manner.

  19. Mutational analysis of human papillomavirus type 16 E7 functions.

    PubMed Central

    Watanabe, S; Kanda, T; Sato, H; Furuno, A; Yoshiike, K

    1990-01-01

    The human papillomavirus type 16 E7 gene encodes a nuclear oncoprotein (98 amino acids [AAs] long) consisting of three regions: regions 1 (AAs 1 to 20) and 2 (AAs 21 to 40), which show high homology to the sequences of conserved domains 1 and 2, respectively, of adenovirus E1A; and region 3 (AAs 41 to 98) containing two metal-binding motifs Cys-X-X-Cys (AAs 58 and 91 to 94). We constructed AA deletion (substitution) mutants and single-AA substitution mutants of E7 placed under the control of the simian virus 40 promoter and examined their biological functions. Stable expression of E7 protein in monkey COS-1 cells required almost the entire length of E7 and was markedly lowered by the mutations in region 3. Transactivation of the adenovirus E2 promoter in monkey CV-1 cells was lowered by the mutations. It was abolished by changing Cys-24 to Gly and markedly decreased by a mutation at His-2 or at the metal-binding motifs in region 3. Focal transformation of rat 3Y1 cells by E7 was eliminated by changing His-2 to Asp or Cys-24 to Gly and was greatly impaired by changing Cys-61 or Cys-94 to Gly. The transforming function survived mutations at Leu-13 and Cys-68 and deletion of Asp-Ser-Ser (AAs 30 to 32). The data suggest that regions 1 to 3 are required for its functions and that the meta-binding motifs in region 3 are required to maintain a stable or functional structure of the E7 protein. Images PMID:2152813

  20. Attenuated Recombinant Influenza A Virus Expressing HPV16 E6 and E7 as a Novel Therapeutic Vaccine Approach

    PubMed Central

    Jindra, Christoph; Huber, Bettina; Shafti-Keramat, Saeed; Wolschek, Markus; Ferko, Boris; Muster, Thomas; Brandt, Sabine; Kirnbauer, Reinhard

    2015-01-01

    Persistent infection with high-risk human papillomavirus (HPV) types, most often HPV16 and HPV18, causes all cervical and most anal cancers, and a subset of vulvar, vaginal, penile and oropharyngeal carcinomas. Two prophylactic virus-like particle (VLPs)-based vaccines, are available that protect against vaccine type-associated persistent infection and associated disease, yet have no therapeutic effect on existing lesions or infections. We have generated recombinant live-attenuated influenza A viruses expressing the HPV16 oncogenes E6 and E7 as experimental immunotherapeutic vaccine candidates. The influenza A virus life cycle lacks DNA intermediates as important safety feature. Different serotypes were generated to ensure efficient prime and boost immunizations. The immune response to vaccination in C57BL/6 mice was characterized by peptide ELISA and IFN-γ ELISpot, demonstrating induction of cell-mediated immunity to HPV16 E6 and E7 oncoproteins. Prophylactic and therapeutic vaccine efficacy was analyzed in the murine HPV16-positive TC-1 tumor challenge model. Subcutaneous (s.c.) prime and boost vaccinations of mice with recombinant influenza A serotypes H1N1 and H3N2, followed by challenge with TC-1 cells resulted in complete protection or significantly reduced tumor growth as compared to control animals. In a therapeutic setting, s.c. vaccination of mice with established TC-1 tumors decelerated tumor growth and significantly prolonged survival. Importantly, intralesional vaccine administration induced complete tumor regression in 25% of animals, and significantly reduced tumor growth in 50% of mice. These results suggest recombinant E6E7 influenza viruses as a promising new approach for the development of a therapeutic vaccine against HPV-induced disease. PMID:26381401

  1. The epithelial-mesenchymal transition induced by keratinocyte growth conditions is overcome by E6 and E7 from HPV16, but not HPV8 and HPV38: Characterization of global transcription profiles

    SciTech Connect

    Azzimonti, Barbara; Dell'Oste, Valentina; Borgogna, Cinzia; Mondini, Michele; Gugliesi, Francesca; De Andrea, Marco; Chiorino, Giovanna; Scatolini, Maria; Ghimenti, Chiara; Landolfo, Santo; Gariglio, Marisa

    2009-06-05

    The aim of this study was to evaluate the growth properties of primary human keratinocytes expressing E6 and E7 proteins, which are from either the beta- or alpha-genotypes, under different culture conditions. We demonstrated that keratinocytes expressing E6 and E7, from both HPV8 and 38, irreversibly underwent the epithelial-mesenchymal transition (EMT) when grown on plastic with FAD medium (F12/DMEM/5%FBS). Expression of E6/E7 from HPV16 was capable of fully overcoming the FAD-induced EMT. Immortalization was only observed in HPV16-transduced cell lines, while the more proliferating phenotype of both KerHPV8 and 38 was mainly related to FAD-induced EMT. Microarray analysis of exponentially growing cells identified 146 cellular genes that were differentially regulated in HPV16 compared to HPV8- and 38-transduced cells. A large accumulation of transcripts associated with epidermal development and differentiation was observed in HPV16-transduced cells, whereas transcripts of genes involved in the extracellular matrix, multicellular organismal processes, and inflammatory response were affected in HPV8 and 38-transduced cells.

  2. The Gfi-1 proto-oncoprotein contains a novel transcriptional repressor domain, SNAG, and inhibits G1 arrest induced by interleukin-2 withdrawal.

    PubMed Central

    Grimes, H L; Chan, T O; Zweidler-McKay, P A; Tong, B; Tsichlis, P N

    1996-01-01

    The Gfi-1 proto-oncogene is activated by provirus insertion in T-cell lymphoma lines selected for interleukin-2 (IL-2) independence in culture and in primary retrovirus-induced thymomas and encodes a nuclear, sequence-specific DNA-binding protein. Here we show that Gfi-1 is a position- and orientation-independent active transcriptional repressor, whose activity depends on a 20-amino-acid N-terminal repressor domain, coincident with a nuclear localization motif. The sequence of the Gfi-1 repressor domain is related to the sequence of the repressor domain of Gfi-1B, a Gfi-1-related protein, and to sequences at the N termini of the insulinoma-associated protein, IA-1, the homeobox protein Gsh-1, and the vertebrate but not the Drosophila members of the Snail-Slug protein family (Snail/Gfi-1, SNAG domain). Although not functionally characterized, these SNAG-related sequences are also likely to mediate transcriptional repression. Therefore, the Gfi-1 SNAG domain may be the prototype of a novel family of evolutionarily conserved repressor domains that operate in multiple cell lineages. Gfi-1 overexpression in IL-2-dependent T-cell lines allows the cells to escape from the G1 arrest induced by IL-2 withdrawal. Since a single point mutation in the SNAG domain (P2A) inhibits both the Gfi-1-mediated transcriptional repression and the G1 arrest induced by IL-2 starvation, we conclude that the latter depends on the repressor activity of the SNAG domain. Induction of Gfi-1 may therefore contribute to T-cell activation and tumor progression by repressing the expression of genes that inhibit cellular proliferation. PMID:8887656

  3. Molecular Targeting of the Oncoprotein PLK1 in Pediatric Acute Myeloid Leukemia: RO3280, a Novel PLK1 Inhibitor, Induces Apoptosis in Leukemia Cells

    PubMed Central

    Wang, Na-Na; Li, Zhi-Heng; Zhao, He; Tao, Yan-Fang; Xu, Li-Xiao; Lu, Jun; Cao, Lan; Du, Xiao-Juan; Sun, Li-Chao; Zhao, Wen-Li; Xiao, Pei-Fang; Fang, Fang; Su, Guang-Hao; Li, Yan-Hong; Li, Gang; Li, Yi-Ping; Xu, Yun-Yun; Zhou, Hui-Ting; Wu, Yi; Jin, Mei-Fang; Liu, Lin; Ni, Jian; Wang, Jian; Hu, Shao-Yan; Zhu, Xue-Ming; Feng, Xing; Pan, Jian

    2015-01-01

    Polo-like kinase 1 (PLK1) is highly expressed in many cancers and therefore a biomarker of transformation and potential target for the development of cancer-specific small molecule drugs. RO3280 was recently identified as a novel PLK1 inhibitor; however its therapeutic effects in leukemia treatment are still unknown. We found that the PLK1 protein was highly expressed in leukemia cell lines as well as 73.3% (11/15) of pediatric acute myeloid leukemia (AML) samples. PLK1 mRNA expression was significantly higher in AML samples compared with control samples (82.95 ± 110.28 vs. 6.36 ± 6.35; p < 0.001). Kaplan-Meier survival analysis revealed that shorter survival time correlated with high tumor PLK1 expression (p = 0.002). The 50% inhibitory concentration (IC50) of RO3280 for acute leukemia cells was between 74 and 797 nM. The IC50 of RO3280 in primary acute lymphocytic leukemia (ALL) and AML cells was between 35.49 and 110.76 nM and 52.80 and 147.50 nM, respectively. RO3280 induced apoptosis and cell cycle disorder in leukemia cells. RO3280 treatment regulated several apoptosis-associated genes. The regulation of DCC, CDKN1A, BTK, and SOCS2 was verified by western blot. These results provide insights into the potential use of RO3280 for AML therapy; however, the underlying mechanisms remain to be determined. PMID:25574601

  4. Interleukin-12-secreting human papillomavirus type 16-transformed cells provide a potent cancer vaccine that generates E7-directed immunity.

    PubMed

    Hallez, S; Detremmerie, O; Giannouli, C; Thielemans, K; Gajewski, T F; Burny, A; Leo, O

    1999-05-01

    The development of a vaccine that would be capable of preventing or curing the (pre)cancerous lesions induced by genital oncogenic human papillomaviruses (HPVs) is the focus of much research. Many studies are presently evaluating vaccines based on the viral E6 and E7 oncoproteins, both of which are continually expressed by tumor cells. The success of a cancer vaccine relies, in large part, on the induction of a tumor-specific Th1-type immunity. In this study, we have evaluated the ability of B7-related and/or interleukin-12 (IL-12)-expressing, non-immunogenic murine HPV16-transformed BMK-16/myc cells, to achieve this goal. BMK-16/myc cells engineered to express surface B7-1 or B7-2 molecules remain tumorigenic in syngeneic BALB/c mice, suggesting that expression of these molecules alone is not sufficient to induce tumor regression. In contrast, mice injected with tumor cells engineered to secrete IL-12 remained tumor-free, demonstrating that IL-12 expression is sufficient to induce tumor rejection. IL-12-secreting BMK-16/myc cells were further shown to induce potent and specific long-term tumor resistance, even after irradiation. B7-1 was found to slightly but systematically improve anti-tumor immunity elicited by IL-12-secreting BMK-16/myc cells. Injection of irradiated B7-1/IL-12+ BMK-16/myc cells generates long-lasting, Th1-type, BMK-16/myc-directed immunity in tumor-resistant mice. These mice display a memory-type, E7-specific, cell-mediated immune response, which is potentially significant for clinical applications. PMID:10209958

  5. A LONGITUDINAL STUDY OF HPV16 L1, E6 AND E7 SEROPOSITIVITY AND ORAL HPV16 INFECTION

    PubMed Central

    Beachler, Daniel C.; Viscidi, Raphael; Sugar, Elizabeth A.; Minkoff, Howard; Strickler, Howard D.; Cranston, Ross D.; Wiley, Dorothy J.; Jacobson, Lisa P.; Weber, Kathleen M.; Margolick, Joseph B.; Reddy, Susheel; Gillison, Maura L.; D’Souza, Gypsyamber

    2014-01-01

    Background Individuals with HPV infections can develop IgG antibodies to HPV proteins including the L1 capsid and E6 and E7 oncoproteins. Evidence on whether L1 antibodies reduce the risk of cervical HPV infection is mixed, but this has not been explored for oral HPV infections. Antibodies to HPV16’s E6 oncoprotein have been detected in some oropharyngeal cancer cases years prior to cancer diagnosis, but it is unknown if these antibodies are associated with oral HPV16 DNA. Methods Enzyme linked immunosorbent assays tested for serum antibodies to HPV16’s L1 capsid in 463 HIV-infected and 293 HIV-uninfected adults, and for antibodies to recombinantly expressed E6 and E7 oncoproteins to HPV16 in 195 HIV-infected and 69 HIV-uninfected cancer-free participants at baseline. Oral rinse samples were collected semi-annually for up to three years and tested for HPV DNA using PGMY 09/11 primers. Adjusted Poisson, logistic, and Wei-Lin-Weissfeld regression models were utilized. Results HPV16 L1 seroreactivity did not reduce the subsequent risk of incident oral HPV16 infection in unadjusted (HR=1.4, 95%CI=0.59–3.3) or adjusted (aHR=1.1, 95%CI=0.41–3.0) analysis. Antibodies to HPV16 E6 and E7 oncoproteins were detected in 7.6% and 3.4% of participants respectively, but they were not associated with baseline oral HPV16 DNA prevalence or oral HPV16 persistence (each p-value>0.40). Conclusions Naturally acquired HPV16 L1 antibodies did not reduce the risk of subsequent oral HPV16 infection. HPV16 E6 and E7 seropositivity was not a marker for oral HPV16 infection in this population without HPV-related cancer. PMID:25585068

  6. The human papillomavirus E7-E2 interaction mechanism in vitro reveals a finely tuned system for modulating available E7 and E2 proteins.

    PubMed

    Smal, Clara; Wetzler, Diana E; Dantur, Karina I; Chemes, Lucia B; Garcia-Alai, María M; Dellarole, Mariano; Alonso, Leonardo G; Gaston, Kevin; de Prat-Gay, Gonzalo

    2009-12-22

    Transcription of the human papillomavirus E7 oncoprotein is negatively controlled by the viral E2 protein, and loss of this repression leads to irreversible transformation and carcinogenesis. Here we show that interaction of the HPV16 E7 protein with the DNA binding domain of the E2 protein (E2C) leads to ionic strength-dependent hetero-oligomerization even at the lowest concentrations measurable. Titration experiments followed by light scattering and native gel electrophoresis show insoluble oligomeric complexes with a >or=2000 nm diameter and intermediate soluble complexes 40 and 115 nm in diameter, respectively, formed in excess of E2C. A discrete oligomeric soluble complex formed in excess of E7 displays a diameter of 12 nm. The N-terminal domain of E7 interacts with E2C with a K(D) of 0.1 muM, where the stretch of residues 25-40 of E7, encompassing both a PEST motif and phosphorylation sites, is sufficient for the interaction. Displacement of the soluble E7-E2C complex by an E2 site DNA duplex and site-directed mutagenesis indicate that the protein-protein interface involves the DNA binding helix of E2. The formation of complexes of different sizes and properties in excess of either of the viral proteins reveals a finely tuned mechanism that could regulate the intracellular levels of both proteins as infection and transformation progress. Sequestering E2 into E7-E2 oligomers provides a possible additional route to uncontrolled E7 expression, in addition and prior to the disruption of the E2 gene during viral integration into the host genome.

  7. E5 and E6/E7 of high-risk HPVs cooperate to enhance cancer progression through EMT initiation.

    PubMed

    Al Moustafa, Ala-Eddin

    2015-01-01

    It is estimated that 10-20% of human carcinogenesis is linked to virus infection including papillomaviruses (HPVs). Moreover, since metastatic cancer disease is a major cause of morbidity and mortality in cancer patients, the role of onco-viruses in cancer progression to a metastatic form is of particular interest. Recent studies reported that E5 and E6/E7 onco-proteins of high-risk HPVs could enhance cancer progression via the initiation of the epithelial-mesenchymal transition (EMT) event. Herein, we discuss the association between E5 as well as E6/E7 of high-risk HPV and cancer progression. PMID:26177717

  8. Enhanced Cytotoxic CD8 T Cell Priming Using Dendritic Cell-Expressing Human Papillomavirus-16 E6/E7-p16INK4 Fusion Protein with Sequenced Anti-Programmed Death-1.

    PubMed

    Garcia-Bates, Tatiana M; Kim, Eun; Concha-Benavente, Fernando; Trivedi, Sumita; Mailliard, Robbie B; Gambotto, Andrea; Ferris, Robert L

    2016-03-15

    The incidence of human papillomavirus (HPV)-related head and neck squamous cell carcinoma has increased in recent decades, though HPV prevention vaccines may reduce this rise in the future. HPV-related cancers express the viral oncoproteins E6 and E7. The latter inactivates the tumor suppressor protein retinoblastoma (Rb), which leads to the overexpression of p16(INK4) protein, providing unique Ags for therapeutic HPV-specific cancer vaccination. We developed potential adenoviral vaccines that express a fusion protein of HPV-16 E6 and E7 (Ad.E6E7) alone or fused with p16 (Ad.E6E7p16) and also encoding an anti-programmed death (PD)-1 Ab. Human monocyte-derived dendritic cells (DC) transduced with Ad.E6E7 or Ad.E6E7p16 with or without Ad.αPD1 were used to activate autologous CD8 CTL in vitro. CTL responses were tested against naturally HPV-infected head and neck squamous cell carcinoma cells using IFN-γ ELISPOT and [(51)Cr]release assay. Surprisingly, stimulation and antitumor activity of CTL were increased after incubation with Ad.E6E7p16-transduced DC (DC.E6E7p16) compared with Ad.E6E7 (DC.E6E7), a result that may be due to an effect of p16 on cyclin-dependent kinase 4 levels and IL-12 secretion by DC. Moreover, the beneficial effect was most prominent when anti-PD-1 was introduced during the second round of stimulation (after initial priming). These data suggest that careful sequencing of Ad.E6E7.p16 with Ad.αPD1 could improve antitumor immunity against HPV-related tumors and that p16 may enhance the immunogenicity of DC, through cyclin-dependent pathways, Th1 cytokine secretion, and by adding a nonviral Ag highly overexpressed in HPV-induced cancers. PMID:26851223

  9. The hepatitis B virus encoded oncoprotein pX amplifies TGF-beta family signaling through direct interaction with Smad4: potential mechanism of hepatitis B virus-induced liver fibrosis.

    PubMed

    Lee, D K; Park, S H; Yi, Y; Choi, S G; Lee, C; Parks, W T; Cho, H; de Caestecker, M P; Shaul, Y; Roberts, A B; Kim, S J

    2001-02-15

    Hepatitis B, one of the most common infectious diseases in the world, is closely associated with acute and chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Many clinical investigations have revealed that hepatic fibrosis is an important component of these liver diseases caused by chronic hepatitis B. TGF-beta signaling plays an important role in the pathogenesis of fibrosis in chronic hepatitis and cirrhosis. As these diseases are associated with hepatitis B virus (HBV) infection, we examined the possibility that the HBV-encoded pX oncoprotein regulates TGF-beta signaling. We show that pX enhances transcriptional activity in response to TGF-beta, BMP-2, and activin by stabilizing the complex of Smad4 with components of the basic transcriptional machinery. Additionally, confocal microscopic studies suggest that pX facilitates and potentiates the nuclear translocation of Smads, further enhancing TGF-beta signaling. Our studies suggest a new paradigm for amplification of Smad-mediated signaling by an oncoprotein and suggest that enhanced Smad-mediated signaling may contribute to HBV-associated liver fibrosis.

  10. Structural Insights into a Wildtype Domain of the Oncoprotein E6 and Its Interaction with a PDZ Domain

    PubMed Central

    Mischo, André; Ohlenschläger, Oliver; Hortschansky, Peter; Ramachandran, Ramadurai; Görlach, Matthias

    2013-01-01

    The high-risk human papilloma virus (HPV) oncoproteins E6 and E7 interact with key cellular regulators and are etiological agents for tumorigenesis and tumor maintenance in cervical cancer and other malignant conditions. E6 induces degradation of the tumor suppressor p53, activates telomerase and deregulates cell polarity. Analysis of E6 derived from a number of high risk HPV finally yielded the first structure of a wild-type HPV E6 domain (PDB 2M3L) representing the second zinc-binding domain of HPV 51 E6 (termed 51Z2) determined by NMR spectroscopy. The 51Z2 structure provides clues about HPV-type specific structural differences between E6 proteins. The observed temperature sensitivity of the well-folded wild-type E6 domain implies a significant malleability of the oncoprotein in vivo. Hence, the structural differences between individual E6 and their malleability appear, together with HPV type-specific surface exposed side-chains, to provide the structural basis for the different interaction networks reported for individual E6 proteins. Furthermore, the interaction of 51Z2 with a PDZ domain of hDlg was analyzed. Human Dlg constitutes a prototypic representative of the large family of PDZ proteins regulating cell polarity, which are common targets of high-risk HPV E6. Nine C-terminal residues of 51Z2 interact with the second PDZ domain of hDlg2. Surface plasmon resonance in conjunction with the NMR spectroscopy derived complex structure (PDB 2M3M) indicate that E6 residues N-terminal to the canonical PDZ-BM of E6 significantly contribute to this interaction and increase affinity. The structure of the complex reveals how residues outside of the classical PDZ-BM enhance the affinity of E6 towards PDZ domains. Such mechanism facilitates successful competition of E6 with cellular PDZ-binding proteins and may apply to PDZ-binding proteins of other viruses as well. PMID:23638119

  11. Immunization with an HPV-16 L1-based chimeric virus-like particle containing HPV-16 E6 and E7 epitopes elicits long-lasting prophylactic and therapeutic efficacy in an HPV-16 tumor mice model.

    PubMed

    Monroy-García, Alberto; Gómez-Lim, Miguel Angel; Weiss-Steider, Benny; Hernández-Montes, Jorge; Huerta-Yepez, Sara; Rangel-Santiago, Jesús F; Santiago-Osorio, Edelmiro; Mora García, María de Lourdes

    2014-02-01

    HPV L1-based virus-like particles vaccines (VLPs) efficiently induce temporary prophylactic activity through the induction of neutralizing antibodies; however, VLPs that can provide prophylactic as well as therapeutic properties for longer periods of time are needed. For this purpose, we generated a novel HPV 16 L1-based chimeric virus-like particle (cVLP) produced in plants that contains a string of T-cell epitopes from HPV 16 E6 and E7 fused to its C-terminus. In the present study, we analyzed the persistence of specific IgG antibodies with neutralizing activity induced by immunization with these cVLPs, as well as their therapeutic potential in a tumor model of C57BL/6 mice. We observed that these cVLPs induced persistent IgG antibodies for over 12 months, with reactivity and neutralizing activity for VLPs composed of only the HPV-16 L1 protein. Efficient protection for long periods of time and inhibition of tumor growth induced by TC-1 tumor cells expressing HPV-16 E6/E7 oncoproteins, as well as significant tumor reduction (57 %), were observed in mice immunized with these cVLPs. Finally, we discuss the possibility that chimeric particles of the type described in this work may be the basis for developing HPV prophylactic and therapeutic vaccines with high efficacy.

  12. Identification and characterization of small molecule antagonists of pRb inactivation by viral oncoproteins.

    PubMed

    Fera, Daniela; Schultz, David C; Hodawadekar, Santosh; Reichman, Melvin; Donover, Preston Scott; Melvin, Jason; Troutman, Scott; Kissil, Joseph L; Huryn, Donna M; Marmorstein, Ronen

    2012-04-20

    The retinoblastoma protein pRb is essential for regulating many cellular activities through its binding and inhibition of E2F transcription activators, and pRb inactivation leads to many cancers. pRb activity can be perturbed by viral oncoproteins including human papillomavirus (HPV) that share an LxCxE motif. Because there are no treatments for existing HPV infection leading to nearly all cervical cancers and other cancers to a lesser extent, we screened for compounds that inhibit the ability of HPV-E7 to disrupt pRb/E2F complexes. This lead to the identification of thiadiazolidinedione compounds that bind to pRb with mid-high nanomolar dissociation constants, are competitive with the binding of viral oncoproteins containing an LxCxE motif, and are selectively cytotoxic in HPV-positive cells alone and in mice. These inhibitors provide a promising scaffold for the development of therapies to treat HPV-mediated pathologies.

  13. Characterization of humoral immune responses against p16, p53, HPV16 E6 and HPV16 E7 in patients with HPV-associated cancers.

    PubMed

    Reuschenbach, Miriam; Waterboer, Tim; Wallin, Keng-Ling; Einenkel, Jens; Dillner, Joakim; Hamsikova, Eva; Eschenbach, Denise; Zimmer, Heike; Heilig, Bernhard; Kopitz, Jürgen; Pawlita, Michael; Doeberitz, Magnus von Knebel; Wentzensen, Nicolas

    2008-12-01

    The cellular tumor suppressor p16 is strongly overexpressed in cervical cancers and precancers. We have previously demonstrated that infiltrating T lymphocytes reactive against p16 can be found in cervical cancer patients. Here, we analyzed whether p16 induces humoral immune responses. Sera of patients with cervical cancer, oropharyngeal cancer, colorectal cancer and autoimmune disease were included. A total of 919 sera were analyzed, including 486 matched sera from a cervical cancer case control study. p16 antibodies were analyzed in Western blot and a newly developed peptide ELISA covering the complete p16 protein. In addition, a Luminex-based multiplex assay was used for simultaneous detection of antibodies directed against p16, p53, HPV16 E6 and HPV16 E7. In all entities, only low p16 antibody reactivity was observed. Epitope mapping revealed 2 predominant epitope regions of the p16 protein. No significant difference in p16 antibody frequency (OR = 0.9; 95% CI = 0.6-1.3) and p53 antibody frequency (OR = 0.6; 95% CI = 0.3-1.2) was found between patients and healthy controls in the cervical cancer case control study. Antibodies against the HPV16 oncoproteins E6 and E7 were detected more frequently in cervical cancer patients when compared with healthy controls (E6 OR = 27.8; 95% CI = 11.1-69.7, E7 OR = 5.7; 95% CI = 2.9-11.1). In conclusion, despite the strong expression of p16 and the observed induction of cellular immune responses, antibody reactivity against p16 was observed only at very low levels independent of the disease background.

  14. A prime/boost strategy by DNA/fowlpox recombinants expressing a mutant E7 protein for the immunotherapy of HPV-associated cancers.

    PubMed

    Radaelli, Antonia; De Giuli Morghen, Carlo; Zanotto, Carlo; Pacchioni, Sole; Bissa, Massimiliano; Franconi, Rosella; Massa, Silvia; Paolini, Francesca; Muller, Antonio; Venuti, Aldo

    2012-12-01

    Development of effective therapeutic vaccines against human papilloma virus (HPV) infections remains a priority, considering the high number of new cases of cervical cancer each year by high-risk HPVs, in particular by HPV-16. Vaccines expressing the E7 oncoprotein, which is detectable in all HPV-positive pre-cancerous and cancer cells, might clear already established tumors and support the treatment of HPV-related lesions. In this study, DNA or fowlpox virus recombinants expressing the harmless variant E7GGG of the HPV-16 E7 oncoprotein (DNA(E7GGG) and FP(E7GGG)) were generated. Two immunization regimens were tested in a pre-clinical mouse model by homologous (FP/FP) or heterologous (DNA/FP) prime-boost protocols to evaluate the immune response and therapeutic efficacy of the proposed HPV-16 vaccine. Low levels of anti-E7-specific antibodies were elicited after immunization, and in vivo experiments resulted in a higher number of tumor-free mice after the heterologous immunization. These results establish a preliminary indication for therapy of HPV-related tumors by the combined use of DNA and avipox recombinants, which might represent safer immunogens than vaccinia-based vaccines.

  15. Karyopherin {beta}3: A new cellular target for the HPV-16 E5 oncoprotein

    SciTech Connect

    Krawczyk, Ewa; Hanover, John A.; Schlegel, Richard; Suprynowicz, Frank A.

    2008-07-11

    Epidemiological and experimental studies have shown that high-risk human papillomaviruses (HPVs) are the causative agents of cervical cancer worldwide, and that HPV-16 is associated with more than half of these cases. In addition to the well-characterized E6 and E7 oncoproteins of HPV-16, recent evidence increasingly has implicated the HPV-16 E5 protein (16E5) as an important mediator of oncogenic transformation. Since 16E5 has no known intrinsic enzymatic activity, its effects on infected cells are most likely mediated by interactions with various cellular proteins and/or its documented association with lipid rafts. In the present study, we describe a new cellular target that binds to 16E5 in COS cells and in stable human ectocervical cell lines. This target is karyopherin {beta}3, a member of the nuclear import receptor family with critical roles in the nuclear import of ribosomal proteins and in the secretory pathway.

  16. Identification of host transcriptional networks showing concentration-dependent regulation by HPV16 E6 and E7 proteins in basal cervical squamous epithelial cells

    PubMed Central

    Smith, Stephen P.; Scarpini, Cinzia G.; Groves, Ian J.; Odle, Richard I.; Coleman, Nicholas

    2016-01-01

    Development of cervical squamous cell carcinoma requires increased expression of the major high-risk human-papillomavirus (HPV) oncogenes E6 and E7 in basal cervical epithelial cells. We used a systems biology approach to identify host transcriptional networks in such cells and study the concentration-dependent changes produced by HPV16-E6 and -E7 oncoproteins. We investigated sample sets derived from the W12 model of cervical neoplastic progression, for which high quality phenotype/genotype data were available. We defined a gene co-expression matrix containing a small number of highly-connected hub nodes that controlled large numbers of downstream genes (regulons), indicating the scale-free nature of host gene co-expression in W12. We identified a small number of ‘master regulators’ for which downstream effector genes were significantly associated with protein levels of HPV16 E6 (n = 7) or HPV16 E7 (n = 5). We validated our data by depleting E6/E7 in relevant cells and by functional analysis of selected genes in vitro. We conclude that the network of transcriptional interactions in HPV16-infected basal-type cervical epithelium is regulated in a concentration-dependent manner by E6/E7, via a limited number of central master-regulators. These effects are likely to be significant in cervical carcinogenesis, where there is competitive selection of cells with elevated expression of virus oncoproteins. PMID:27457222

  17. MicroRNA-331-3p Suppresses Cervical Cancer Cell Proliferation and E6/E7 Expression by Targeting NRP2.

    PubMed

    Fujii, Tomomi; Shimada, Keiji; Asano, Aya; Tatsumi, Yoshihiro; Yamaguchi, Naoko; Yamazaki, Masaharu; Konishi, Noboru

    2016-01-01

    Aberrant expression of microRNAs (miRNAs) is involved in the development and progression of various types of cancers. In this study, we investigated the role of miR-331-3p in cell proliferation and the expression of keratinocyte differentiation markers of uterine cervical cancer cells. Moreover, we evaluated whether neuropilin 2 (NRP2) are putative target molecules that regulate the human papillomavirus (HPV) related oncoproteins E6 and E7. Cell proliferation in the human cervical cancer cell lines SKG-II, HCS-2, and HeLa was assessed using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. Cellular apoptosis was measured using the TdT-mediated dUTP nick end labeling (TUNEL) and Annexin V assays. Quantitative RT-PCR was used to measure the messenger RNA (mRNA) expression of the NRP2, E6, E7, p63, and involucrin (IVL) genes. A functional assay for cell growth was performed using cell cycle analyses. Overexpression of miR-331-3p inhibited cell proliferation, and induced G2/M phase arrest and apoptosis in SKG-II, HCS-2 and HeLa cells. The luciferase reporter assay of the NRP2 3'-untranslated region revealed the direct regulation of NRP2 by miR-331-3p. Gene expression analyses using quantitative RT-PCR in SKG-II, HCS-2, and HeLa cells overexpressing miR-331-3p or suppressing NRP2 revealed down-regulation of E6, E7, and p63 mRNA and up-regulation of IVL mRNA. Moreover, miR-331-3p overexpression was suppressed NRP2 expression in protein level. We showed that miR-331-3p and NRP2 were key effectors of cell proliferation by regulating the cell cycle, apoptosis. NRP-2 also regulates the expression of E6/E7 and keratinocyte differentiation markers. Our findings suggest that miR-331-3p has an important role in regulating cervical cancer cell proliferation, and that miR-331-3p may contribute to keratinocyte differentiation through NRP2 suppression. miR-331-3p and NRP2 may contribute to anti-cancer effects. PMID

  18. MicroRNA-331-3p Suppresses Cervical Cancer Cell Proliferation and E6/E7 Expression by Targeting NRP2

    PubMed Central

    Fujii, Tomomi; Shimada, Keiji; Asano, Aya; Tatsumi, Yoshihiro; Yamaguchi, Naoko; Yamazaki, Masaharu; Konishi, Noboru

    2016-01-01

    Aberrant expression of microRNAs (miRNAs) is involved in the development and progression of various types of cancers. In this study, we investigated the role of miR-331-3p in cell proliferation and the expression of keratinocyte differentiation markers of uterine cervical cancer cells. Moreover, we evaluated whether neuropilin 2 (NRP2) are putative target molecules that regulate the human papillomavirus (HPV) related oncoproteins E6 and E7. Cell proliferation in the human cervical cancer cell lines SKG-II, HCS-2, and HeLa was assessed using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. Cellular apoptosis was measured using the TdT-mediated dUTP nick end labeling (TUNEL) and Annexin V assays. Quantitative RT-PCR was used to measure the messenger RNA (mRNA) expression of the NRP2, E6, E7, p63, and involucrin (IVL) genes. A functional assay for cell growth was performed using cell cycle analyses. Overexpression of miR-331-3p inhibited cell proliferation, and induced G2/M phase arrest and apoptosis in SKG-II, HCS-2 and HeLa cells. The luciferase reporter assay of the NRP2 3′-untranslated region revealed the direct regulation of NRP2 by miR-331-3p. Gene expression analyses using quantitative RT-PCR in SKG-II, HCS-2, and HeLa cells overexpressing miR-331-3p or suppressing NRP2 revealed down-regulation of E6, E7, and p63 mRNA and up-regulation of IVL mRNA. Moreover, miR-331-3p overexpression was suppressed NRP2 expression in protein level. We showed that miR-331-3p and NRP2 were key effectors of cell proliferation by regulating the cell cycle, apoptosis. NRP-2 also regulates the expression of E6/E7 and keratinocyte differentiation markers. Our findings suggest that miR-331-3p has an important role in regulating cervical cancer cell proliferation, and that miR-331-3p may contribute to keratinocyte differentiation through NRP2 suppression. miR-331-3p and NRP2 may contribute to anti-cancer effects

  19. Systematic Analysis of the Amino Acid Residues of Human Papillomavirus Type 16 E7 Conserved Region 3 Involved in Dimerization and Transformation ▿

    PubMed Central

    Todorovic, Biljana; Massimi, Paola; Hung, Katherine; Shaw, Gary S.; Banks, Lawrence; Mymryk, Joe S.

    2011-01-01

    The human papillomavirus (HPV) E7 oncoprotein exists as a dimer and acts by binding to many cellular factors, preventing or retargeting their function and thereby making the infected cell conducive for viral replication. Dimerization of E7 is attributed primarily to the C-terminal domain, referred to as conserved region 3 (CR3). CR3 is highly structured and is necessary for E7's transformation ability. It is also required for binding of numerous E7 cellular targets. To systematically analyze the molecular mechanisms by which HPV16 E7 CR3 contributes to carcinogenesis, we created a comprehensive panel of mutations in residues predicted to be exposed on the surface of CR3. We analyzed our novel collection of mutants, as well as mutants targeting predicted hydrophobic core residues of the dimer, for the ability to dimerize. The same set of mutants was also assessed functionally for transformation capability in a baby rat kidney cell assay in conjugation with activated ras. We show that some mutants of HPV16 E7 CR3 failed to dimerize yet were still able to transform baby rat kidney cells. Our results identify several novel E7 mutants that abrogate transformation and also indicate that E7 does not need to exist as a stable dimer in order to transform cells. PMID:21775462

  20. E7 properties of mucosal human papillomavirus types 26, 53 and 66 correlate with their intermediate risk for cervical cancer development

    SciTech Connect

    Mansour, Mariam; Touka, Majid; Hasan, Uzma; Bellopede, Angelica; Smet, Anouk; Accardi, Rosita; Gabet, Anne-Sophie; Sylla, Bakary S.; Tommasino, Massimo

    2007-10-10

    Epidemiological studies have demonstrated that 15 different mucosal human papillomavirus (HPV) types of the genus alpha of the HPV phylogetic tree are classified as high risk for cervical cancer development. Three additional HPV types of the same genus, HPV26, 53 and 66, are classified as probable high-risk types. In this study, we have characterized the biological properties of the E7 oncoproteins from these three HPV types. All of the corresponding E7 proteins were able to associate with retinoblastoma protein (pRb) and up-regulated the expression of several positive cell cycle regulators, i.e. CDK2, cyclin A and cylin E. However, HPV26 E7 appears to be more efficient than HPV53 and 66 E7 in up-regulating the transcription of cyclin A. Unlike E7 from the high-risk type HPV16 protein, HPV26, 53 and 66 did not efficiently promote pRb degradation. In addition, E7 from these viruses was able to promote proliferation of primary human keratinocytes and circumvent G1 arrest imposed by overexpression of p16{sup INK4a}, but with less efficiency than the high-risk HPV16 E7. Together, our data show that in vitro properties of these E7 proteins correlate with the epidemiological classification of HPV26, 53 and 66 as HPV types with an intermediate risk for cervical cancer development.

  1. Intravaginal HPV DNA vaccination with electroporation induces local CD8+ T-cell immune responses and antitumor effects against cervicovaginal tumors.

    PubMed

    Sun, Y; Peng, S; Qiu, J; Miao, J; Yang, B; Jeang, J; Hung, C-F; Wu, T-C

    2015-07-01

    Therapeutic human papillomavirus (HPV) vaccines have the potential to inhibit the progression of an established HPV infection to precancer and cancer lesions by targeting HPV oncoproteins. We have previously developed a therapeutic DNA vaccine encoding calreticulin (CRT) linked to E7, CRT/E7 DNA vaccine, for use in the treatment of HPV-associated lesions. Since the transfection efficiency of DNA vaccines administered in vivo is typically low, we examined the use of electroporation as well as different routes of administration to enhance antigen-specific tumor control. We tested the effects of the CRT/E7 DNA vaccine administered intramuscularly or intravaginally, with or without electroporation, on the generation of CD8+ T-cell immunity and therapeutic antitumor effects in HPV16 E7-expressing cervicovaginal tumor-bearing mice. We found that intravaginal vaccination of CRT/E7 DNA followed by electroporation-induced potent E7-specific CD8(+) T-cell responses in the cervicovaginal tract, compared with intramuscular injection followed by electroporation. Furthermore, tumor-bearing mice vaccinated intravaginally followed by electroporation had an enhanced survival, antitumor effects and local production of IFN-γ+CD8+ T cells compared with those vaccinated intramuscularly with electroporation. Thus, we show that intravaginal CRT/E7 DNA vaccination followed by electroporation generates the most potent therapeutic antitumor effects against an orthotopic E7-expressing tumor model. The current study will have significant clinical implications once a clinically applicable electroporation device for intravaginal use becomes available.

  2. Critical roles for non-pRb targets of human papillomavirus type 16 E7 in cervical carcinogenesis.

    PubMed

    Balsitis, Scott; Dick, Fred; Dyson, Nicholas; Lambert, Paul F

    2006-10-01

    High-risk human papillomaviruses (HPV) encode two oncogenes, E6 and E7, expressed in nearly all cervical cancers. In vivo, HPV-16 E7 has been shown to induce multiple phenotypes in the context of transgenic mice, including cervical cancer. E7 is a multifunctional protein known best for its ability to inactivate the tumor suppressor pRb. To determine the importance of pRb inactivation by E7 in cervical cancer, we pursued studies with genetically engineered mice. E7 expression in estrogen-treated murine cervix induced dysplasia and invasive cancers as reported previously, but targeted Rb inactivation in cervical epithelium was not sufficient to induce any cervical dysplasia or neoplasia. Furthermore, E7 induced cervical cancer formation even when the E7-pRb interaction was disrupted by the use of a knock-in mouse carrying an E7-resistant mutant Rb allele. pRb inactivation was necessary but not sufficient for E7 to overcome differentiation-induced or DNA damage-induced cell cycle arrest, and expression patterns of the E2F-responsive genes Mcm7 and cyclin E indicate that other E2F regulators besides pRb are important targets of E7. Together, these data indicate that non-pRb targets of E7 play critical roles in cervical carcinogenesis. PMID:17018593

  3. The association of mammalian DREAM complex and HPV16 E7 proteins

    PubMed Central

    Rashid, Nurshamimi Nor; Rothan, Hussin A; Yusoff, Mohd Shahrizal Mohd

    2015-01-01

    The mammalian DREAM (Drosophila, RB, E2F, and Myb) complex was discovered in 2004 by several research groups. It was initially identified in Drosophila followed by Caenorhaditis elegans and later in mammalian cells. The composition of DREAM is temporally regulated during cell cycle; being associated with E2F-4 and either p107 or p130 in G0/G1 (repressive DREAM complexes) and with B-myb transcription factor in S/G2 (activator DREAM complex). High risk human papillomavirus (HPV) E6 and E7 oncoproteins expression are important for malignant transformation of cervical cancer cells. In particular, the E7 of high risk HPV binds to pRB family members (pRB, p107 and p130) for degradation. It has recently been discovered that the p107 and p130 ‘pocket proteins’ are members of mammalian DREAM complexes. With this understanding, we would like to hypothesise the mammalian DREAM complex could plays a critical role for malignant transformation in cervical cancer cells. PMID:26885443

  4. Synergistic antitumor effect of a human papillomavirus DNA vaccine harboring E6E7 fusion gene and vascular endothelial growth factor receptor 2 gene.

    PubMed

    Gao, Jie; Fan, Lei; Ma, Wei; Xiao, Huan

    2016-09-01

    Human papillomavirus (HPV) has been identified as the primary etiological factor in cervical cancer as well as in subsets of anogenital and oropharyngeal cancers. The two HPV viral oncoproteins, E6 and E7, are uniquely and consistently expressed in all HPV-infected cells and are therefore promising targets for therapeutic vaccination. In order to achieve a synergistic antitumor and anti-angiogenesis effect, we designed and constructed a novel DNA vaccine that can express the HPV 16 E6E7 fusion protein and VEGFR2 in the same reading frame. A series of DNA plasmids encoding E6E7, VEGFR2 and their conjugates were constructed and injected into mice. The resultant humoral and cellular immune responses were detected by ELISA and enzyme-linked immunospot (ELISPOT), respectively. To evaluate the antitumor efficacy of these plasmids, tumor-bearing mice expressing the E6E7 fusion protein were constructed. After injection into the tumor-bearing mouse model, the plasmid harboring the E6E7 fusion gene and VEGFR2 showed stronger inhibition of tumor growth than the plasmid expressing E6E7 or VEGFR2 alone, which indicated that the combination of E6E7 and VEGFR2 could exert a synergistic antitumor effect. These observations emphasize the potential of a synergistic antitumor and anti-angiogenesis strategy using a DNA vaccine, which could be a promising approach for tumor immunotherapy. PMID:27515281

  5. How do oncoprotein mutations rewire protein-protein interaction networks?

    PubMed

    Bowler, Emily H; Wang, Zhenghe; Ewing, Rob M

    2015-01-01

    The acquisition of mutations that activate oncogenes or inactivate tumor suppressors is a primary feature of most cancers. Mutations that directly alter protein sequence and structure drive the development of tumors through aberrant expression and modification of proteins, in many cases directly impacting components of signal transduction pathways and cellular architecture. Cancer-associated mutations may have direct or indirect effects on proteins and their interactions and while the effects of mutations on signaling pathways have been widely studied, how mutations alter underlying protein-protein interaction networks is much less well understood. Systematic mapping of oncoprotein protein interactions using proteomics techniques as well as computational network analyses is revealing how oncoprotein mutations perturb protein-protein interaction networks and drive the cancer phenotype. PMID:26325016

  6. Human T-cell leukemia virus type 1 (HTLV-1) Tax1 oncoprotein but not HTLV-2 Tax2 induces the expression of OX40 ligand by interacting with p52/p100 and RelB.

    PubMed

    Motai, Yosuke; Takahashi, Masahiko; Takachi, Takayuki; Higuchi, Masaya; Hara, Toshifumi; Mizuguchi, Mariko; Aoyagi, Yutaka; Terai, Shuji; Tanaka, Yuetsu; Fujii, Masahiro

    2016-02-01

    Human T-cell leukemia virus type 1 (HTLV-1) is a causative retrovirus of adult T-cell leukemia and HTLV-1-associated myelopathy. Unlike HTLV-1, the same group of retrovirus HTLV-2 has not been found to be associated with these diseases. HTLV-1 and HTLV-2 encode transforming proteins Tax1 and Tax2, and a few distinct activities of Tax1 from those of Tax2 have been proposed to contribute to the HTLV-1-specific pathogenesis of disease. One significant difference of Tax1 from Tax2 is the activation of transcription factor NF-κB2/p100/p52. We found that Tax1 but not Tax2 induces the expression of OX40 ligand (OX40L) in a human T-cell line. To induce the OX40L expression, Tax1 but not Tax2 was observed to interact with NF-κB2/p100/p52 and RelB and the distinct interaction activity was mediated by the Tax1 amino acid region of 225-232. In addition, Tax1 but not Tax2 or Tax1/225-232 interacted with p65, p50, and c-Rel; however, the interactions were much less than those noted with NF-κB2/p100/p52 and RelB. OX40L is a T-cell costimulatory molecule of the tumor necrosis factor family, and its signal plays a critical role in establishing adaptive immunity by inducing the polarized differentiation of T-cells to cells such as T helper type 2 and T follicular helper cells. Therefore, the present findings suggest that Tax1 might alter the immune response to HTLV-1 and/or differentiation of HTLV-1-infected T-cells via OX40L induction, thereby acting as a factor mediating the distinct phenotypes and pathogenesis of HTLV-1 from that of HTLV-2. PMID:26739459

  7. Tumorigenicity by human papillomavirus type 16 E6 and E7 in transgenic mice correlates with alterations in epithelial cell growth and differentiation.

    PubMed Central

    Griep, A E; Herber, R; Jeon, S; Lohse, J K; Dubielzig, R R; Lambert, P F

    1993-01-01

    The human papillomavirus type 16 (HPV-16) E6 and E7 oncogenes are thought to play a role in the development of most human cervical cancers. These E6 and E7 oncoproteins affect cell growth control at least in part through their association with and inactivation of the cellular tumor suppressor gene products, p53 and Rb. To study the biological activities of the HPV-16 E6 and E7 genes in epithelial cells in vivo, transgenic mice were generated in which expression of E6 and E7 was targeted to the ocular lens. Expression of the transgenes correlated with bilateral microphthalmia and cataracts (100% penetrance) resulting from an efficient impairment of lens fiber cell differentiation and coincident induction of cell proliferation. Lens tumors formed in 40% of adult mice from the mouse lineage with the highest level of E6 and E7 expression. Additionally, when lens cells from neonatal transgenic animals were placed in tissue culture, immortalized cell populations grew out and acquired a tumorigenic phenotype with continuous passage. These observations indicate that genetic changes in addition to the transgenes are likely necessary for tumor formation. These transgenic mice and cell lines provide the basis for further studies into the mechanism of action of E6 and E7 in eliciting the observed pathology and into the genetic alterations required for HPV-16-associated tumor progression. Images PMID:8382301

  8. IGF2 is critical for tumorigenesis by synovial sarcoma oncoprotein SYT-SSX1.

    PubMed

    Sun, Y; Gao, D; Liu, Y; Huang, J; Lessnick, S; Tanaka, S

    2006-02-16

    Synovial sarcoma is an aggressive soft tissue tumor characterized by a specific chromosomal translocation between chromosome 18 and X. This translocation can generate a fusion transcript encoding SYT-SSX1, a transforming oncoprotein. We present evidence that SYT-SSX1 induces insulin-like growth factor II expression in fibroblast cells. SYT-SSX2, a fusion also frequently found in synovial sarcoma, is necessary for maintaining Igf2 expression in the synovial sarcoma cell line, and the increased IGF2 synthesis protects cells from anoikis and is required for tumor formation in vivo. We also found a loss of imprinting (LOI) for Igf2 in a limited number of primary synovial sarcomas despite demethylation of CpG dinucleotides critical for maintaining imprinting. These findings suggest that inhibition of the IGF2/IGF1-R signaling pathway may represent a significant therapeutic modality for treating synovial sarcoma. PMID:16247461

  9. NSD3-NUT Fusion Oncoprotein in NUT Midline Carcinoma: Implications for a Novel Oncogenic Mechanism

    PubMed Central

    French, Christopher A.; Rahman, Shaila; Walsh, Erica M.; Kühnle, Simone; Grayson, Adlai R.; Lemieux, Madeleine E.; Grunfeld, Noam; Rubin, Brian P.; Antonescu, Cristina R.; Zhang, Songlin; Venkatramani, Rajkumar; Cin, Paola Dal; Howley, Peter M.

    2014-01-01

    NUT midline carcinoma (NMC) is an aggressive subtype of squamous cell carcinoma that typically harbors BRD4/3-NUT fusion oncoproteins that block differentiation and maintain tumor growth. In 20% of cases NUT is fused to uncharacterized non-BRD gene(s). We established a new patient-derived NMC cell line (1221) and demonstrated that it harbors a novel NSD3-NUT fusion oncogene. We find that NSD3-NUT is both necessary and sufficient for the blockade of differentiation and maintenance of proliferation in NMC cells. NSD3-NUT binds to BRD4, and BRD bromodomain inhibitors induce differentiation and arrest proliferation of 1221 cells. We find further that NSD3 is required for the blockade of differentiation in BRD4-NUT-expressing NMCs. These findings identify NSD3 as a novel critical oncogenic component and potential therapeutic target in NMC. PMID:24875858

  10. Preclinical safety evaluation of DNA vaccines encoding modified HPV16 E6 and E7.

    PubMed

    Henken, F E; Oosterhuis, K; Öhlschläger, P; Bosch, L; Hooijberg, E; Haanen, J B A G; Steenbergen, R D M

    2012-06-13

    Persistent infection with high-risk human papillomaviruses (hrHPV) can result in the formation of anogenital cancers. As hrHPV proteins E6 and E7 are required for cancer initiation and maintenance, they are ideal targets for immunotherapeutic interventions. Previously, we have described the development of DNA vaccines for the induction of HPV16 E6 and E7 specific T cell immunity. These vaccines consist of 'gene-shuffled' (SH) versions of HPV16 E6 and E7 that were fused to Tetanus Toxin Fragment C domain 1 (TTFC) and were named TTFC-E6SH and TTFC-E7SH. Gene-shuffling was performed to avoid the risk of inducing malignant transformation at the vaccination site. Here, we describe the preclinical safety evaluation of these candidate vaccines by analysis of their transforming capacity in vitro using established murine fibroblasts (NIH 3T3 cells) and primary human foreskin keratinocytes (HFKs). We demonstrate that neither ectopic expression of TTFC-E6SH and TTFC-E7SH alone or in combination enabled NIH 3T3 cells to form colonies in soft agar. In contrast, expression of HPV16 E6WT and E7WT alone or in combination resulted in effective transformation. Similarly, retroviral transduction of HFKs from three independent donors with both TTFC-E6SH and TTFC-E7SH alone or in combination did not show any signs of immortalization. In contrast, the combined expression of E6WT and E7WT induced immortalization in HFKs from all donors. Based on these results we consider it justified to proceed to clinical evaluation of DNA vaccines encoding TTFC-E6SH and TTFC-E7SH in patients with HPV16 associated (pre)malignancies.

  11. TAZ and YAP are frequently activated oncoproteins in sarcomas

    PubMed Central

    Fullenkamp, Colleen A.; Hall, Sarah L.; Jaber, Omar I.; Pakalniskis, Brittany L.; Savage, Erica C.; Savage, Johanna M.; Ofori-Amanfo, Georgina K.; Lambertz, Allyn M.; Ivins, Stephanie D.; Stipp, Christopher S.; Miller, Benjamin J.; Milhem, Mohammed M.; Tanas, Munir R.

    2016-01-01

    TAZ (WWTR1) and YAP are transcriptional coactivators and oncoproteins inhibited by the Hippo pathway. Herein we evaluate 159 sarcomas representing the most prevalent sarcoma types by immunohistochemistry for expression and activation (nuclear localization) of TAZ and YAP. We show that 50% of sarcomas demonstrate activation of YAP while 66% of sarcomas demonstrate activated TAZ. Differential activation of TAZ and YAP are identified in various sarcoma types. At an RNA level, expression of WWTR1 or YAP1 predicts overall survival in undifferentiated pleomorphic sarcoma and dedifferentiated liposarcoma. Immunohistochemistry demonstrates that TAZ and YAP expression and activation are positively correlated with grade in the well-differentiated liposarcoma to dedifferentiated liposarcoma tumor progression sequence as well as conventional chondrosarcomas. TAZ and YAP are constitutively activated oncoproteins in sarcoma cell lines. Knock-down of TAZ and YAP demonstrate differential activity for the two proteins. Verteporfin decreases colony formation in soft agar as well as CTGF expression in sarcoma cell lines harboring activated TAZ and YAP. PMID:27129148

  12. Cell Cycle Regulatory Functions of the KSHV Oncoprotein LANA

    PubMed Central

    Wei, Fang; Gan, Jin; Wang, Chong; Zhu, Caixia; Cai, Qiliang

    2016-01-01

    Manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment during infection. Kaposi’s sarcoma-associated herpesvirus (KSHV), the primary etiological agent of several human malignancies including Kaposi’s sarcoma, and primary effusion lymphoma, encodes several oncoproteins that deregulate normal physiology of cell cycle machinery to persist with endothelial cells and B cells and subsequently establish a latent infection. During latency, only a small subset of viral proteins is expressed. Latency-associated nuclear antigen (LANA) is one of the latent antigens shown to be essential for transformation of endothelial cells in vitro. It has been well demonstrated that LANA is critical for the maintenance of latency, episome DNA replication, segregation and gene transcription. In this review, we summarize recent studies and address how LANA functions as an oncoprotein to steer host cell cycle-related events including proliferation and apoptosis by interacting with various cellular and viral factors, and highlight the potential therapeutic strategy of disrupting LANA-dependent signaling as targets in KSHV-associated cancers. PMID:27065950

  13. Interaction of the Human Papillomavirus E6 Oncoprotein with Sorting Nexin 27 Modulates Endocytic Cargo Transport Pathways.

    PubMed

    Ganti, Ketaki; Massimi, Paola; Manzo-Merino, Joaquin; Tomaić, Vjekoslav; Pim, David; Playford, Martin P; Lizano, Marcela; Roberts, Sally; Kranjec, Christian; Doorbar, John; Banks, Lawrence

    2016-09-01

    A subset of high-risk Human Papillomaviruses (HPVs) are the causative agents of a large number of human cancers, of which cervical is the most common. Two viral oncoproteins, E6 and E7, contribute directly towards the development and maintenance of malignancy. A characteristic feature of the E6 oncoproteins from cancer-causing HPV types is the presence of a PDZ binding motif (PBM) at its C-terminus, which confers interaction with cellular proteins harbouring PDZ domains. Here we show that this motif allows E6 interaction with Sorting Nexin 27 (SNX27), an essential component of endosomal recycling pathways. This interaction is highly conserved across E6 proteins from multiple high-risk HPV types and is mediated by a classical PBM-PDZ interaction but unlike many E6 targets, SNX27 is not targeted for degradation by E6. Rather, in HPV-18 positive cell lines the association of SNX27 with components of the retromer complex and the endocytic transport machinery is altered in an E6 PBM-dependent manner. Analysis of a SNX27 cargo, the glucose transporter GLUT1, reveals an E6-dependent maintenance of GLUT1 expression and alteration in its association with components of the endocytic transport machinery. Furthermore, knockdown of E6 in HPV-18 positive cervical cancer cells phenocopies the loss of SNX27, both in terms of GLUT1 expression levels and its vesicular localization, with a concomitant marked reduction in glucose uptake, whilst loss of SNX27 results in slower cell proliferation in low nutrient conditions. These results demonstrate that E6 interaction with SNX27 can alter the recycling of cargo molecules, one consequence of which is modulation of nutrient availability in HPV transformed tumour cells. PMID:27649450

  14. Interaction of the Human Papillomavirus E6 Oncoprotein with Sorting Nexin 27 Modulates Endocytic Cargo Transport Pathways.

    PubMed

    Ganti, Ketaki; Massimi, Paola; Manzo-Merino, Joaquin; Tomaić, Vjekoslav; Pim, David; Playford, Martin P; Lizano, Marcela; Roberts, Sally; Kranjec, Christian; Doorbar, John; Banks, Lawrence

    2016-09-01

    A subset of high-risk Human Papillomaviruses (HPVs) are the causative agents of a large number of human cancers, of which cervical is the most common. Two viral oncoproteins, E6 and E7, contribute directly towards the development and maintenance of malignancy. A characteristic feature of the E6 oncoproteins from cancer-causing HPV types is the presence of a PDZ binding motif (PBM) at its C-terminus, which confers interaction with cellular proteins harbouring PDZ domains. Here we show that this motif allows E6 interaction with Sorting Nexin 27 (SNX27), an essential component of endosomal recycling pathways. This interaction is highly conserved across E6 proteins from multiple high-risk HPV types and is mediated by a classical PBM-PDZ interaction but unlike many E6 targets, SNX27 is not targeted for degradation by E6. Rather, in HPV-18 positive cell lines the association of SNX27 with components of the retromer complex and the endocytic transport machinery is altered in an E6 PBM-dependent manner. Analysis of a SNX27 cargo, the glucose transporter GLUT1, reveals an E6-dependent maintenance of GLUT1 expression and alteration in its association with components of the endocytic transport machinery. Furthermore, knockdown of E6 in HPV-18 positive cervical cancer cells phenocopies the loss of SNX27, both in terms of GLUT1 expression levels and its vesicular localization, with a concomitant marked reduction in glucose uptake, whilst loss of SNX27 results in slower cell proliferation in low nutrient conditions. These results demonstrate that E6 interaction with SNX27 can alter the recycling of cargo molecules, one consequence of which is modulation of nutrient availability in HPV transformed tumour cells.

  15. Interaction of the Human Papillomavirus E6 Oncoprotein with Sorting Nexin 27 Modulates Endocytic Cargo Transport Pathways

    PubMed Central

    Ganti, Ketaki; Massimi, Paola; Manzo-Merino, Joaquin; Tomaić, Vjekoslav; Pim, David; Playford, Martin P.; Lizano, Marcela; Roberts, Sally; Kranjec, Christian; Doorbar, John; Banks, Lawrence

    2016-01-01

    A subset of high-risk Human Papillomaviruses (HPVs) are the causative agents of a large number of human cancers, of which cervical is the most common. Two viral oncoproteins, E6 and E7, contribute directly towards the development and maintenance of malignancy. A characteristic feature of the E6 oncoproteins from cancer-causing HPV types is the presence of a PDZ binding motif (PBM) at its C-terminus, which confers interaction with cellular proteins harbouring PDZ domains. Here we show that this motif allows E6 interaction with Sorting Nexin 27 (SNX27), an essential component of endosomal recycling pathways. This interaction is highly conserved across E6 proteins from multiple high-risk HPV types and is mediated by a classical PBM-PDZ interaction but unlike many E6 targets, SNX27 is not targeted for degradation by E6. Rather, in HPV-18 positive cell lines the association of SNX27 with components of the retromer complex and the endocytic transport machinery is altered in an E6 PBM-dependent manner. Analysis of a SNX27 cargo, the glucose transporter GLUT1, reveals an E6-dependent maintenance of GLUT1 expression and alteration in its association with components of the endocytic transport machinery. Furthermore, knockdown of E6 in HPV-18 positive cervical cancer cells phenocopies the loss of SNX27, both in terms of GLUT1 expression levels and its vesicular localization, with a concomitant marked reduction in glucose uptake, whilst loss of SNX27 results in slower cell proliferation in low nutrient conditions. These results demonstrate that E6 interaction with SNX27 can alter the recycling of cargo molecules, one consequence of which is modulation of nutrient availability in HPV transformed tumour cells. PMID:27649450

  16. MUC1 oncoprotein suppresses activation of the ARF-MDM2-p53 pathway

    PubMed Central

    Raina, Deepak; Ahmad, Rehan; Chen, Dongshu; Kumar, Shailendra; Kharbanda, Surender; Kufe, Donald

    2011-01-01

    The MUC1 oncoprotein interacts with the c-Abl tyrosine kinase and blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage. Mutation of the MUC1 cytoplasmic domain at Tyr-60 disrupts the MUC1-c-Abl interaction. The present results demonstrate that the MUC1(Y60F) mutant is a potent inducer of the ARF tumor suppressor. MUC1(Y60F) induces transcription of the ARF locus by a c-Abl-dependent mechanism that promotes CUL-4A-mediated nuclear export of the replication protein Cdc6. The functional significance of these findings is that MUC1(Y60F)-induced ARF expression and thereby inhibition of MDM2 results in the upregulation of p53 and the homeodomain interacting protein kinase 2 (HIPK2) serine/threonine kinase. HIPK2-mediated phosphorylation of p53 on Ser-46 was further associated with a shift from expression of the cell cycle arrest-related p21 gene to the apoptosis-related PUMA gene. We also show that the MUC1(Y60F) mutant functions as dominant negative inhibitor of tumorigenicity. These findings indicate that the oncogenic function of MUC1 is conferred by suppressing activation of the ARF-MDM2-p53 pathway. PMID:18981727

  17. TRIP-Br1 oncoprotein inhibits autophagy, apoptosis, and necroptosis under nutrient/serum-deprived condition

    PubMed Central

    Duan, Jingjing; Lee, Soonduck; Kim, Kyeri; Park, Yeonji; Yang, Young; Kim, Keun-Il; Lim, Jong-Seok; Cheon, Chung-Il; Kang, Young-Sook; Lee, Myeong-Sok

    2015-01-01

    TRIP-Br1 oncogenic protein has been shown to have multiple biological functions in cells. In this study, we demonstrate that TRIP-Br1 functions as an oncoprotein by inhibiting autophagy, apoptosis, and necroptosis of cancer cells and eventually helping them to survive under the nutrient/serum starved condition. TRIP-Br1 expression level was significantly increased in conditions with low levels of nutrients. Nutrient depleted conditions were induced by culturing cancer cells until they were overcrowded with high cell density or in media deprived of glucose, amino acids, or serum. Among them, serum starvation significantly enhanced the expression of TRIP-Br1 only in all tested breast cancer cell lines (MCF7, MDA-MB-231, T47D, MDA-MB-435, Hs578D, BT549, and MDA-MB-435) but not in the three normal cell lines (MCF10A, HfCH8, and NIH3T3). As compared with the control cells, the introduction of TRIP-Br1 silencing siRNA into MCF7 and MDA-MB-231 cells accelerated cell death by inducing apoptosis and necroptosis. In this process, TRIP-Br1 confers resistance to serum starvation-induced cell deaths by stabilizing the XIAP protein and inhibiting cellular ROS production. Moreover, our data also show that the intracellular increase of TRIP-Br1 protein resulting from serum starvation seems to occur in part through the blockage of PI3K/AKT signaling pathway. PMID:26334958

  18. TRIP-Br1 oncoprotein inhibits autophagy, apoptosis, and necroptosis under nutrient/serum-deprived condition.

    PubMed

    Jung, Samil; Li, Chengping; Duan, Jingjing; Lee, Soonduck; Kim, Kyeri; Park, Yeonji; Yang, Young; Kim, Keun-Il; Lim, Jong-Seok; Cheon, Chung-Il; Kang, Young-Sook; Lee, Myeong-Sok

    2015-10-01

    TRIP-Br1 oncogenic protein has been shown to have multiple biological functions in cells. In this study, we demonstrate that TRIP-Br1 functions as an oncoprotein by inhibiting autophagy, apoptosis, and necroptosis of cancer cells and eventually helping them to survive under the nutrient/serum starved condition. TRIP-Br1 expression level was significantly increased in conditions with low levels of nutrients. Nutrient depleted conditions were induced by culturing cancer cells until they were overcrowded with high cell density or in media deprived of glucose, amino acids, or serum. Among them, serum starvation significantly enhanced the expression of TRIP-Br1 only in all tested breast cancer cell lines (MCF7, MDA-MB-231, T47D, MDA-MB-435, Hs578D, BT549, and MDA-MB-435) but not in the three normal cell lines (MCF10A, HfCH8, and NIH3T3). As compared with the control cells, the introduction of TRIP-Br1 silencing siRNA into MCF7 and MDA-MB-231 cells accelerated cell death by inducing apoptosis and necroptosis. In this process, TRIP-Br1 confers resistance to serum starvation-induced cell deaths by stabilizing the XIAP protein and inhibiting cellular ROS production. Moreover, our data also show that the intracellular increase of TRIP-Br1 protein resulting from serum starvation seems to occur in part through the blockage of PI3K/AKT signaling pathway.

  19. The oncoprotein HBXIP promotes migration of breast cancer cells via GCN5-mediated microtubule acetylation.

    PubMed

    Li, Leilei; Liu, Bowen; Zhang, Xiaodong; Ye, Lihong

    2015-03-13

    We have documented that the oncoprotein hepatitis B X-interacting protein (HBXIP) is able to promote migration of breast cancer cells. A subset of acetylated microtubules that accumulates in the cell leading edge is necessary for cell polarization and directional migration. In this study, we explored the hypothesis that HBXIP contributes to migration of breast cancer cells by supporting microtubule acetylation in breast cancer cells. We found that HBXIP could induce acetylated microtubules accumulating into the leading protrusion in wound-induced directional migration in breast cancer cells by immunofluorescence staining analysis. Interestingly, HBXIP was able to increase the acetylation of α-tubulin in the cells by immunofluorescence staining and Western blot analysis. Furthermore, we observed that acetyltransferase GCN5 was involved in the event that HBXIP induced increase of acetylated microtubules and their expansion in protrusions in breast cancer cells by Western blot analysis and immunofluorescence staining. Moreover, GCN5 was required for the HBXIP-enhanced migration of breast cancer cells by wound healing assay. Thus, we conclude that HBXIP promotes the migration of breast cancer cells through modulating microtubule acetylation mediated by GCN5. Therapeutically, HBXIP may serve as a novel target in breast cancer.

  20. Fusion of CTLA-4 with HPV16 E7 and E6 Enhanced the Potency of Therapeutic HPV DNA Vaccine

    PubMed Central

    Gan, Lili; Jia, Rong; Zhou, Lili; Guo, Jihua; Fan, Mingwen

    2014-01-01

    Preventive anti-HPV vaccines are effective against HPV infection but not against existing HPV-associated diseases, including cervical cancer and other malignant diseases. Therefore, the development of therapeutic vaccines is urgently needed. To improve anti-tumor effects of therapeutic vaccine, we fused cytotoxic T-lymphocyte antigen 4 (CTLA-4) with HPV16 E7 and E6 as a fusion therapeutic DNA vaccine (pCTLA4-E7E6). pCTLA4-E7E6 induced significantly higher anti-E7E6 specific antibodies and relatively stronger specific CTL responses than the nonfusion DNA vaccine pE7E6 in C57BL/6 mice bearing with TC-1 tumors. pCTLA4-E7E6 showed relatively stronger anti-tumor effects than pE7E6 in therapeutic immunization. These results suggest that fusing CTLA-4 with E7E6 is a useful strategy to develop therapeutic HPV DNA vaccines. In addition, fusing the C-terminal of E7 with the N-terminal of E6 impaired the functions of both E7 and E6. PMID:25265018

  1. Disruption of the G1/S transition in human papillomavirus type 16 E7-expressing human cells is associated with altered regulation of cyclin E.

    PubMed

    Martin, L G; Demers, G W; Galloway, D A

    1998-02-01

    The development of neoplasia frequently involves inactivation of the p53 and retinoblastoma (Rb) tumor suppressor pathways and disruption of cell cycle checkpoints that monitor the integrity of replication and cell division. The human papillomavirus type 16 (HPV-16) oncoproteins, E6 and E7, have been shown to bind p53 and Rb, respectively. To further delineate the mechanisms by which E6 and E7 affect cell cycle control, we examined various aspects of the cell cycle machinery. The low-risk HPV-6 E6 and E7 proteins did not cause any significant change in the levels of cell cycle proteins analyzed. HPV-16 E6 resulted in very low levels of p53 and p21 and globally elevated cyclin-dependent kinase (CDK) activity. In contrast, HPV-16 E7 had a profound effect on several aspects of the cell cycle machinery. A number of cyclins and CDKs were elevated, and despite the elevation of the levels of at least two CDK inhibitors, p21 and p16, CDK activity was globally increased. Most strikingly, cyclin E expression was deregulated both transcriptionally and posttranscriptionally and persisted at high levels in S and G2/M. Transit through G1 was shortened by the premature activation of cyclin E-associated kinase activity. Elevation of cyclin E levels required both the CR1 and CR2 domains of E7. These data suggest that cyclin E may be a critical target of HPV-16 E7 in the disruption of G1/S cell cycle progression and that the ability of E7 to regulate cyclin E involves activities in addition to the release of E2F. PMID:9444990

  2. Influence of single-walled carbon nanotubes (< 0.001 wt %) and/or zwitter-ionic phospholipid (SOPC) surface layer on the behaviour of the gradient flexoelectric and surface induced polarization domains arising in a homeotropic E7 (a mixture of 5CB, 7CB, 8OCB and 5CT) nematic layer

    NASA Astrophysics Data System (ADS)

    Hinov, H. P.; Pavlič, J. I.; Marinov, Y. G.; Petrov, A. G.; Sridevi, S.; Rafailov, P. M.; Dettlaff-Weglikowska, U.

    2010-11-01

    The influence has been studied of single-walled carbon nanotubes with a concentration between 0.0001 and 0.001 wt % and a dried zwitter-ionic phospholipid (SOPC: l-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine) layer of thickness, smaller than 0.5 μm, deposited only on a half of one of the two glass plates, on the behaviour of the gradient flexoelectric and surface polarization induced domains arising in a homeotropic nematic E7 (a mixture of 5CB, 7CB, 8OCB and 5CT) layer. We have observed for the first time different polar on/off formation of the surface polarization induced domains in the region of the liquid crystal cell without surface deposited lipid SOPC layer. On the other hand, the SOPC layer strongly decreases the gradient of the electric field thus leading to less-pronounced flexoelectric domains. However, the SOPC layer does not influence the creation of surface polarization induced domains and of injection induced domains arising at voltages above 4V. Appropriate dynamic light transmitted curves have been recorded and typical microphotographs have been taken.

  3. Fowlpox virus recombinants expressing HPV-16 E6 and E7 oncogenes for the therapy of cervical carcinoma elicit humoral and cell-mediated responses in rabbits

    PubMed Central

    2010-01-01

    Background Around half million new cases of cervical cancer arise each year, making the development of an effective therapeutic vaccine against HPV a high priority. As the E6 and E7 oncoproteins are expressed in all HPV-16 tumour cells, vaccines expressing these proteins might clear an already established tumour and support the treatment of HPV-related precancerous lesions. Methods Three different immunisation regimens were tested in a pre-clinical trial in rabbits to evaluate the humoral and cell-mediated responses of a putative HPV-16 vaccine. Fowlpoxvirus (FP) recombinants separately expressing the HPV-16 E6 (FPE6) and E7 (FPE7) transgenes were used for priming, followed by E7 protein boosting. Results All of the protocols were effective in eliciting a high antibody response. This was also confirmed by interleukin-4 production, which increased after simultaneous priming with both FPE6 and FPE7 and after E7 protein boost. A cell-mediated immune response was also detected in most of the animals. Conclusion These results establish a preliminary profile for the therapy with the combined use of avipox recombinants, which may represent safer immunogens than vaccinia-based vectors in immuno-compromised individuals, as they express the transgenes in most mammalian cells in the absence of a productive replication. PMID:20409340

  4. A Humanized Mouse Model of HPV-Associated Pathology Driven by E7 Expression

    PubMed Central

    Buitrago-Pérez, Águeda; Hachimi, Mariam; Dueñas, Marta; Lloveras, Belén; Santos, Almudena; Holguín, Almudena; Duarte, Blanca; Santiago, Juan Luis; Akgül, Baki; Rodríguez-Peralto, José L.; Storey, Alan; Ribas, Catalina; Larcher, Fernando; del Rio, Marcela; Paramio, Jesús M.; García-Escudero, Ramón

    2012-01-01

    Human papillomavirus (HPV) is the causative agent of human cervical cancer and has been associated with oropharyngeal squamous cell carcinoma development. Although prophylactic vaccines have been developed, there is a need to develop new targeted therapies for individuals affected with malignant infected lesions in these locations, which must be tested in appropriate models. Cutaneous beta HPV types appear to be involved in skin carcinogenesis. Virus oncogenicity is partly achieved by inactivation of retinoblastoma protein family members by the viral E7 gene. Here we show that the E7 protein of cutaneous beta HPV5 binds pRb and promotes its degradation. In addition, we described an in vivo model of HPV-associated disease in which artificial human skin prepared using primary keratinocytes engineered to express the E7 protein is engrafted onto nude mice. Expression of E7 in the transplants was stably maintained for up to 6 months, inducing the appearance of lesions that, in the case of HPV16 E7, histologically resembled human anogenital lesions caused by oncogenic HPVs. Moreover, it was confirmed through biomarker expression analysis via immunodetection and/or quantitative PCR from mRNA and miRNA that the 16E7-modified engrafted skin shares molecular features with human HPV-associated pretumoral and tumoral lesions. Finally, our findings indicate a decrease of the in vitro capacity of HPV5 E7 to reduce pRb levels in vivo, possibly explaining the phenotypical differences when compared with 16E7-grafts. Our model seems to be a valuable platform for basic research into HPV oncogenesis and preclinical testing of HPV-associated antitumor therapies. PMID:22911850

  5. Therapeutic bispecific T-cell engager antibody targeting the intracellular oncoprotein WT1.

    PubMed

    Dao, Tao; Pankov, Dmitry; Scott, Andrew; Korontsvit, Tatyana; Zakhaleva, Victoriya; Xu, Yiyang; Xiang, Jingyi; Yan, Su; de Morais Guerreiro, Manuel Direito; Veomett, Nicholas; Dubrovsky, Leonid; Curcio, Michael; Doubrovina, Ekaterina; Ponomarev, Vladimir; Liu, Cheng; O'Reilly, Richard J; Scheinberg, David A

    2015-10-01

    Intracellular tumor antigens presented on the cell surface in the context of human leukocyte antigen (HLA) molecules have been targeted by T cell-based therapies, but there has been little progress in developing small-molecule drugs or antibodies directed to these antigens. Here we describe a bispecific T-cell engager (BiTE) antibody derived from a T-cell receptor (TCR)-mimic monoclonal antibody (mAb) ESK1, which binds a peptide derived from the intracellular oncoprotein WT1 presented on HLA-A*02:01. Despite the very low density of the complexes at the cell surface, ESK1-BiTE selectively activated and induced proliferation of cytolytic human T cells that killed cells from multiple leukemias and solid tumors in vitro and in mice. We also discovered that in an autologous in vitro setting, ESK1-BiTE induced a robust secondary CD8 T-cell response specific for tumor-associated antigens other than WT1. Our study provides an approach that targets tumor-specific intracellular antigens without using cell therapy and suggests that epitope spreading could contribute to the therapeutic efficacy of this BiTE.

  6. Therapeutic bispecific T-cell engager antibody targeting the intracellular oncoprotein WT1.

    PubMed

    Dao, Tao; Pankov, Dmitry; Scott, Andrew; Korontsvit, Tatyana; Zakhaleva, Victoriya; Xu, Yiyang; Xiang, Jingyi; Yan, Su; de Morais Guerreiro, Manuel Direito; Veomett, Nicholas; Dubrovsky, Leonid; Curcio, Michael; Doubrovina, Ekaterina; Ponomarev, Vladimir; Liu, Cheng; O'Reilly, Richard J; Scheinberg, David A

    2015-10-01

    Intracellular tumor antigens presented on the cell surface in the context of human leukocyte antigen (HLA) molecules have been targeted by T cell-based therapies, but there has been little progress in developing small-molecule drugs or antibodies directed to these antigens. Here we describe a bispecific T-cell engager (BiTE) antibody derived from a T-cell receptor (TCR)-mimic monoclonal antibody (mAb) ESK1, which binds a peptide derived from the intracellular oncoprotein WT1 presented on HLA-A*02:01. Despite the very low density of the complexes at the cell surface, ESK1-BiTE selectively activated and induced proliferation of cytolytic human T cells that killed cells from multiple leukemias and solid tumors in vitro and in mice. We also discovered that in an autologous in vitro setting, ESK1-BiTE induced a robust secondary CD8 T-cell response specific for tumor-associated antigens other than WT1. Our study provides an approach that targets tumor-specific intracellular antigens without using cell therapy and suggests that epitope spreading could contribute to the therapeutic efficacy of this BiTE. PMID:26389576

  7. Therapeutic bispecific T-cell engager antibody targeting the intracellular oncoprotein WT1

    PubMed Central

    Dao, Tao; Pankov, Dmitry; Scott, Andrew; Korontsvit, Tatyana; Zakhaleva, Victoriya; Xu, Yiyang; Xiang, Jingyi; Yan, Su; de Morais Guerreiro, Manuel Direito; Veomett, Nicholas; Dubrovsky, Leonid; Curcio, Michael; Doubrovina, Ekaterina; Ponomarev, Vladimir; Liu, Cheng; O’Reilly, Richard J; Scheinberg, David A

    2015-01-01

    Intracellular tumor antigens presented on the cell surface in the context of human leukocyte antigen (HLA) molecules have been targeted by T cell–based therapies, but there has been little progress in developing small-molecule drugs or antibodies directed to these antigens. Here we describe a bispecific T-cell engager (BiTE) antibody derived from a T-cell receptor (TCR)-mimic monoclonal antibody (mAb) ESK1, which binds a peptide derived from the intracellular oncoprotein WT1 presented on HLA-A*02:01. Despite the very low density of the complexes at the cell surface, ESK1-BiTE selectively activated and induced proliferation of cytolytic human T cells that killed cells from multiple leukemias and solid tumors in vitro and in mice. We also discovered that in an autologous in vitro setting, ESK1-BiTE induced a robust secondary CD8 T-cell response specific for tumor-associated antigens other than WT1. Our study provides an approach that targets tumor-specific intracellular antigens without using cell therapy and suggests that epitope spreading could contribute to the therapeutic efficacy of this BiTE. PMID:26389576

  8. c-erbB-2 oncoprotein assay in ovarian carcinoma and its clinical correlation with prognostic factors.

    PubMed

    Kim, Y T; Kim, J W; Lee, J W

    1998-10-23

    Overexpression of the c-erbB-2 oncoprotein has been detected in human adenocarcinoma of the breast, cervix and salivary gland, in all of which an association between the overexpression of the c-erbB-2 and a poor prognosis of the disease has been reported. However, the prognostic role of c-erbB-2 oncoprotein in ovarian carcinoma remains controversial. We measured c-erbB-2 oncoprotein with an enzyme-linked immunosorbent assay (ELISA). Patients with invasive ovarian cancer were found to have significantly higher median c-erbB-2 oncoprotein expression than patients with either benign ovarian cyst (P = 0.002) or control groups (P = 0.001). Overexpression of c-erbB-2 oncoprotein was found in seven (21.9%) of 32 epithelial ovarian cancers. Our results suggest that quantitative analysis of c-erbB-2 oncoprotein may be used to define the prognostic significance of ovarian carcinoma.

  9. LMO2 Oncoprotein Stability in T-Cell Leukemia Requires Direct LDB1 Binding

    PubMed Central

    Layer, Justin H.; Alford, Catherine E.; McDonald, W. Hayes

    2015-01-01

    LMO2 is a component of multisubunit DNA-binding transcription factor complexes that regulate gene expression in hematopoietic stem and progenitor cell development. Enforced expression of LMO2 causes leukemia by inducing hematopoietic stem cell-like features in T-cell progenitor cells, but the biochemical mechanisms of LMO2 function have not been fully elucidated. In this study, we systematically dissected the LMO2/LDB1-binding interface to investigate the role of this interaction in T-cell leukemia. Alanine scanning mutagenesis of the LIM interaction domain of LDB1 revealed a discrete motif, R320LITR, required for LMO2 binding. Most strikingly, coexpression of full-length, wild-type LDB1 increased LMO2 steady-state abundance, whereas coexpression of mutant proteins deficient in LMO2 binding compromised LMO2 stability. These mutant LDB1 proteins also exerted dominant negative effects on growth and transcription in diverse leukemic cell lines. Mass spectrometric analysis of LDB1 binding partners in leukemic lines supports the notion that LMO2/LDB1 function in leukemia occurs in the context of multisubunit complexes, which also protect the LMO2 oncoprotein from degradation. Collectively, these data suggest that the assembly of LMO2 into complexes, via direct LDB1 interaction, is a potential molecular target that could be exploited in LMO2-driven leukemias resistant to existing chemotherapy regimens. PMID:26598604

  10. MUC1-C oncoprotein promotes FLT3 receptor activation in acute myeloid leukemia cells

    PubMed Central

    Liu, Suiyang; Yin, Li; Stroopinsky, Dina; Rajabi, Hasan; Puissant, Alexandre; Stegmaier, Kimberly; Avigan, David; Kharbanda, Surender; Kufe, Donald

    2014-01-01

    Blasts from approximately one-third of patients with acute myeloid leukemia (AML) harbor activating mutations in the FMS-like tyrosine kinase 3 (FLT3) receptor tyrosine kinase that confer a poor prognosis. The Mucin 1-C-terminal subunit (MUC1-C) oncoprotein is aberrantly expressed in AML blasts and stem cells; however, there is no known interaction between MUC1-C and FLT3. The present studies demonstrate that MUC1-C associates with wild-type and mutant FLT3 in AML cells. Targeting MUC1-C with the cell-penetrating peptide inhibitor GO-203 disrupts MUC1-C/FLT3 complexes and downregulates FLT3 activation. GO-203 treatment of AML cells was also associated with inhibition of the FLT3 downstream effectors AKT, extracellular signal-regulated kinase, and STAT5. The results further show that AML cells with FLT3-activating mutations and resistant to the FLT3 inhibitor midostaurin/PKC412 are sensitive to GO-203–induced growth arrest and death. Moreover, GO-203 increases sensitivity of mutant FLT3 AML cells to FLT3 inhibitor treatment. These results indicate that MUC1-C contributes to FLT3 activation in AML cells and that targeting MUC1-C inhibits the FLT3 signaling pathway. Our findings support the development of MUC1-C inhibitors alone and in combination with agents that target FLT3 for the treatment of wild-type and mutant FLT3 AML. PMID:24282218

  11. Bovine papillomavirus type 1 DNA and E5 oncoprotein expression in water buffalo fibropapillomas.

    PubMed

    Silvestre, O; Borzacchiello, G; Nava, D; Iovane, G; Russo, V; Vecchio, D; D'Ausilio, F; Gault, E A; Campo, M S; Paciello, O

    2009-07-01

    Papillomas and fibropapillomas may occur in the skin and in different organs in animals. Ten different genotypes of bovine papillomavirus (BPV) have been identified. BPV-1 through BPV-10 are all strictly species-specific, but BPV-1/2 may also infect other species such as equids, inducing fibroblastic tumors. BPV-1 and BPV-2 are associated with fibropapillomas in cattle; these tumors are formed by excessive proliferation of virus-infected dermal fibroblasts and epidermal keratinocytes. Nine water buffalo (Bubalus bubalis) were examined for the presence of multiple cutaneous and perivulvar tumors. Cutaneous and perivulvar fibropapillomatosis were confirmed histologically. Negative-stain transmission electron microscopic examination revealed papillomavirus-like particles in the fibropapillomas, and papillomaviral DNA was also detected by the polymerase chain reaction. The amplified long control region (LCR) DNA sequence was identical to that of BPV-1. The BPV-1 E5 oncoprotein was strongly expressed in the tumor cells thus confirming a causal role of the virus. This article represents the first report of cutaneous, perivulvar, and vulvar fibropapilloma associated with BPV-1 infection in the water buffalo and describes another example of cross-species infection by BPV-1.

  12. Cross-talk between Human Papillomavirus Oncoproteins and Hedgehog Signaling Synergistically Promotes Stemness in Cervical Cancer Cells

    PubMed Central

    Vishnoi, Kanchan; Mahata, Sutapa; Tyagi, Abhishek; Pandey, Arvind; Verma, Gaurav; Jadli, Mohit; Singh, Tejveer; Singh, Sukh Mahendra; Bharti, Alok C.

    2016-01-01

    Viral oncoproteins E6/E7 play key oncogenic role in human papillomavirus (HPV)-mediated cervical carcinogenesis in conjunction with aberrant activation of cellular signaling events. GLI-signaling has been implicated in metastasis and tumor recurrence of cervical cancer. However, the interaction of GLI-signaling with HPV oncogenes is unknown. We examined this relationship in established HPV-positive and HPV-negative cervical cancer cell lines using specific GLI inhibitor, cyclopamine and HPVE6/E7 siRNAs. Cervical cancer cell lines showed variable expression of GLI-signaling components. HPV16-positive SiHa cells, overexpressed GLI1, Smo and Patch. Inhibition by cyclopamine resulted in dose-dependent reduction of Smo and GLI1 and loss of cell viability with a higher magnitude in HPV-positive cells. Cyclopamine selectively downregulated HPVE6 expression and resulted in p53 accumulation, whereas HPVE7 and pRb level remained unaffected. siRNA-mediated silencing of HPV16E6 demonstrated reduced GLI1 transcripts in SiHa cells. Cervical cancer stem-like cells isolated by side population analysis, displayed retention of E6 and GLI1 expression. Fraction of SP cells was reduced in cyclopamine-treated cultures. When combined with E6-silencing cyclopamine resulted in loss of SP cell’s sphere-forming ability. Co-inhibition of GLI1 and E6 in cervical cancer cells showed additive anti-cancer effects. Overall, our data show existence of a cooperative interaction between GLI signaling and HPVE6. PMID:27678330

  13. Small-Molecule Inhibitors of the Myc Oncoprotein

    PubMed Central

    Fletcher, Steven; Prochownik, Edward V.

    2014-01-01

    The c-Myc (Myc) oncoprotein is among the most attractive of cancer targets given that is deregulated in the majority of tumors and that its inhibition profoundly affects their growth and/or survival. However, its role as a seldom-mutated transcription factor, its lack of enzymatic activity for which suitable pharmaceutical inhibitors could be crafted and its expression by normal cells have largely been responsible for its being viewed as “undruggable”. Work over the past several years, however, has begun to reverse this idea by allowing us to view Myc within the larger context of global gene regulatory control. Thus, Myc and its obligate heterodimeric partner, Max, are integral to the coordinated recruitment and post-translational modification of components of the core transcriptional machinery. Moreover, Myc over-expression re-programs numerous critical cellular functions and alters the cell’s susceptibility to their inhibition. This new knowledge has therefore served as a framework upon which to develop new pharmaceutical approaches. These include the continuing development of small molecules which act directly to inhibit the critical Myc-Max interaction, those which act indirectly to prevent Myc-directed post-translational modifications necessary to initiate productive transcription and those which inhibit vital pathways upon which the Myc-transformed cell is particularly reliant. PMID:24657798

  14. [Inactivation of failsafe programs by Twist oncoproteins and tumor progression].

    PubMed

    Puisieux, A

    2008-01-01

    Multicellular organisms have developed innate defense mechanisms to prevent the expansion of abnormal cells with significant proliferative potential. The two major safeguard mechanisms are premature senescence, which is characterized by definitive cell cycle arrest, and apoptosis, the most common form of programmed cell death. In normal and premalignant cells, the control of these processes is coupled to the regulation of cell proliferation, mainly through the p16 (Ink4A) -Rb and ARF-p53 intracellular signaling pathways. Hence, in benign tumors, aberrant mitogenic activity is counterbalanced by the induction of these oncosuppressive pathways, leading to either apoptosis or senescence which both limit tumor outgrowth. Progression towards malignant and potentially metastatic tumors requires the inhibition of these failsafe programs. Based on our work on Twist oncoproteins, we propose a presentation of recent data on cellular mechanisms by which cancer cells override the surveillance machinery and escape senescence and apoptosis, and we will describe the biological impact of this process on tumor metastasis. PMID:19061727

  15. Recruitment of the oncoprotein v-ErbA to aggresomes.

    PubMed

    Bondzi, Cornelius; Brunner, Abigail M; Munyikwa, Michelle R; Connor, Crystal D; Simmons, Alicia N; Stephens, Stephanie L; Belt, Patricia A; Roggero, Vincent R; Mavinakere, Manohara S; Hinton, Shantá D; Allison, Lizabeth A

    2011-01-30

    Aggresome formation, a cellular response to misfolded protein aggregates, is linked to cancer and neurodegenerative disorders. Previously we showed that Gag-v-ErbA (v-ErbA), a retroviral variant of the thyroid hormone receptor (TRα1), accumulates in and sequesters TRα1 into cytoplasmic foci. Here, we show that foci represent v-ErbA targeting to aggresomes. v-ErbA colocalizes with aggresomal markers, proteasomes, hsp70, HDAC6, and mitochondria. Foci have hallmark characteristics of aggresomes: formation is microtubule-dependent, accelerated by proteasome inhibitors, and they disrupt intermediate filaments. Proteasome-mediated degradation is critical for clearance of v-ErbA and T(3)-dependent TRα1 clearance. Our studies highlight v-ErbA's complex mode of action: the oncoprotein is highly mobile and trafficks between the nucleus, cytoplasm, and aggresome, carrying out distinct activities within each compartment. Dynamic trafficking to aggresomes contributes to the dominant negative activity of v-ErbA and may be enhanced by the viral Gag sequence. These studies provide insight into novel modes of oncogenesis across multiple cellular compartments.

  16. Papillomavirus E7 protein binding to the retinoblastoma protein is not required for viral induction of warts.

    PubMed Central

    Defeo-Jones, D; Vuocolo, G A; Haskell, K M; Hanobik, M G; Kiefer, D M; McAvoy, E M; Ivey-Hoyle, M; Brandsma, J L; Oliff, A; Jones, R E

    1993-01-01

    Human papillomaviruses (HPVs) are the etiologic agents responsible for benign epithelial proliferative disorders including genital warts and are a contributory factor in the pathogenesis of cervical cancer. HPVs demonstrate strict species and cell-type specificity, which is manifested by the inability of these viruses to induce disease in any species other than humans. The natural history of HPV infection in humans is closely mimicked by cottontail rabbit papillomavirus (CRPV) infection in domestic laboratory rabbits. The CRPV E7 gene is known to play an essential role in virus-mediated induction of papillomas. We now show by mutational analysis that the CRPV E7 protein's biochemical and biological properties, including binding to the retinoblastoma suppressor protein (pRB), transcription factor E2F transactivation of the adenovirus E2 promoter, disruption of pRB-E2F complexes, and cellular transformation as measured by growth in soft agar, mimic those of the HPV E7 protein. Intradermal injection of CRPV DNA lacking E7 gene sequences critical for the binding of the CRPV E7 protein to pRB induced papillomas in rabbits. These studies indicate that E7 protein binding to pRB is not required in the molecular pathogenesis of virally induced warts and suggest that other properties intrinsic to the E7 protein are necessary for papilloma formation. Images PMID:8380462

  17. The human papillomavirus type 16 E7 gene product interacts with and trans-activates the AP1 family of transcription factors.

    PubMed Central

    Antinore, M J; Birrer, M J; Patel, D; Nader, L; McCance, D J

    1996-01-01

    The E7 gene product of human papillomavirus type 16 (HPV16) binds to the retinoblastoma gene product (pRb) and dissociates pRb-E2F complexes. However, the observation that the ability of E7 to bind pRb is not required for the HPV16-induced immortalization of primary keratinocytes prompted a search for other cellular factors bound by E7. Using a glutathione-S-transferase (GST) fusion protein system, we show that E7 complexes with AP1 transcription factors including c-Jun, JunB, JunD and c-Fos. The ability of E7 to complex with c-Jun in vivo is demonstrated by co-immunoprecipitation and the yeast two-hybrid system. An analysis of E7 point mutants in the GST system indicates that the E7 zinc-finger motif, but not the pRb binding domain, is involved in these interactions. Using c-Jun deletion mutants, E7 binding maps between amino acids 224 and 286 of c-Jun. E7 trans-activates c-Jun-induced transcription from a Jun responsive promoter, and this activity correlates with the ability of E7 mutants to bind Jun proteins. Finally, a transcriptionally inactive c-Jun deletion, which can bind E7, interferes with the E7-induced transformation of rat embryo fibroblasts in cooperation with an activated ras, indicating that the Jun-E7 interaction is physiologically relevant and that Jun factors may be targeted in the E7 transformation pathway. Images PMID:8617242

  18. Unique potential of 4-1BB agonist antibody to promote durable regression of HPV+ tumors when combined with an E6/E7 peptide vaccine.

    PubMed

    Bartkowiak, Todd; Singh, Shailbala; Yang, Guojun; Galvan, Gloria; Haria, Dhwani; Ai, Midan; Allison, James P; Sastry, K Jagannadha; Curran, Michael A

    2015-09-22

    Antibody modulation of T-cell coinhibitory (e.g., CTLA-4) or costimulatory (e.g., 4-1BB) receptors promotes clinical responses to a variety of cancers. Therapeutic cancer vaccination, in contrast, has produced limited clinical benefit and no curative therapies. The E6 and E7 oncoproteins of human papilloma virus (HPV) drive the majority of genital cancers, and many oropharyngeal tumors. We discovered 15-19 amino acid peptides from HPV-16 E6/E7 for which induction of T-cell immunity correlates with disease-free survival in patients treated for high-grade cervical neoplasia. We report here that intranasal vaccination with these peptides and the adjuvant alpha-galactosylceramide elicits systemic and mucosal T-cell responses leading to reduced HPV(+) TC-1 tumor growth and prolonged survival in mice. We hypothesized that the inability of these T cells to fully reject established tumors resulted from suppression in the tumor microenvironment which could be ameliorated through checkpoint modulation. Combining this E6/E7 peptide vaccine with checkpoint blockade produced only modest benefit; however, coadministration with a 4-1BB agonist antibody promoted durable regression of established genital TC-1 tumors. Relative to other therapies tested, this combination of vaccine and α4-1BB promoted the highest CD8(+) versus regulatory FoxP3(+) T-cell ratios, elicited 2- to 5-fold higher infiltration by E7-specific CTL, and evoked higher densities of highly cytotoxic TcEO (T cytotoxic Eomesodermin) CD8 (>70-fold) and ThEO (T helper Eomesodermin) CD4 (>17-fold) T cells. These findings have immediate clinical relevance both in terms of the direct clinical utility of the vaccine studied and in illustrating the potential of 4-1BB antibody to convert therapeutic E6/E7 vaccines already in clinical trials into curative therapies.

  19. Unique potential of 4-1BB agonist antibody to promote durable regression of HPV+ tumors when combined with an E6/E7 peptide vaccine

    PubMed Central

    Bartkowiak, Todd; Singh, Shailbala; Yang, Guojun; Galvan, Gloria; Haria, Dhwani; Ai, Midan; Allison, James P.; Sastry, K. Jagannadha; Curran, Michael A.

    2015-01-01

    Antibody modulation of T-cell coinhibitory (e.g., CTLA-4) or costimulatory (e.g., 4-1BB) receptors promotes clinical responses to a variety of cancers. Therapeutic cancer vaccination, in contrast, has produced limited clinical benefit and no curative therapies. The E6 and E7 oncoproteins of human papilloma virus (HPV) drive the majority of genital cancers, and many oropharyngeal tumors. We discovered 15–19 amino acid peptides from HPV-16 E6/E7 for which induction of T-cell immunity correlates with disease-free survival in patients treated for high-grade cervical neoplasia. We report here that intranasal vaccination with these peptides and the adjuvant alpha-galactosylceramide elicits systemic and mucosal T-cell responses leading to reduced HPV+ TC-1 tumor growth and prolonged survival in mice. We hypothesized that the inability of these T cells to fully reject established tumors resulted from suppression in the tumor microenvironment which could be ameliorated through checkpoint modulation. Combining this E6/E7 peptide vaccine with checkpoint blockade produced only modest benefit; however, coadministration with a 4-1BB agonist antibody promoted durable regression of established genital TC-1 tumors. Relative to other therapies tested, this combination of vaccine and α4-1BB promoted the highest CD8+ versus regulatory FoxP3+ T-cell ratios, elicited 2- to 5-fold higher infiltration by E7-specific CTL, and evoked higher densities of highly cytotoxic TcEO (T cytotoxic Eomesodermin) CD8 (>70-fold) and ThEO (T helper Eomesodermin) CD4 (>17-fold) T cells. These findings have immediate clinical relevance both in terms of the direct clinical utility of the vaccine studied and in illustrating the potential of 4-1BB antibody to convert therapeutic E6/E7 vaccines already in clinical trials into curative therapies. PMID:26351680

  20. Targeting the MUC1-C oncoprotein inhibits self-renewal capacity of breast cancer cells.

    PubMed

    Alam, Maroof; Rajabi, Hasan; Ahmad, Rehan; Jin, Caining; Kufe, Donald

    2014-05-15

    The capacity of breast cancer cells to form mammospheres in non-adherent serum-free culture is used as a functional characteristic of the self-renewing stem-like cell population. The present studies demonstrate that silencing expression of the MUC1-C oncoprotein inhibits growth of luminal MCF-7 and HER2-overexpressing SKBR3 breast cancer cells as mammospheres. We also show that triple-negative MDA-MB-468 breast cancer cells are dependent on MUC1-C for growth as mammospheres and tumor xenografts. Similar results were obtained when MUC1-C function was inhibited by expression of a MUC1-C(CQCAQA) mutant. Moreover, treatment with the MUC1-C inhibitor GO-203, a cell penetrating peptide that binds to the MUC1-C cytoplasmic domain and blocks MUC1-C function, confirmed the importance of this target for self-renewal. The mechanistic basis for these findings is supported by the demonstration that MUC1-C activates NF-κB, occupies the IL-8 promoter with NF-κB, and induces IL-8 transcription. MUC1-C also induces NF-κB-dependent expression of the IL-8 receptor, CXCR1. In concert with these results, targeting MUC1-C with GO-203 suppresses IL-8/CXCR1 expression and disrupts the formation of established mammospheres. Our findings indicate that MUC1-C contributes to the self-renewal of breast cancer cells by activating the NF-κBIL-8/CXCR1 pathway and that targeting MUC1-C represents a potential approach for the treatment of this population.

  1. Mutual reinforcement of inflammation and carcinogenesis by the Helicobacter pylori CagA oncoprotein

    PubMed Central

    Suzuki, Nobumi; Murata-Kamiya, Naoko; Yanagiya, Kohei; Suda, Wataru; Hattori, Masahira; Kanda, Hiroaki; Bingo, Atsuhiro; Fujii, Yumiko; Maeda, Shin; Koike, Kazuhiko; Hatakeyama, Masanori

    2015-01-01

    Helicobacter pylori cagA-positive strain delivers the CagA oncoprotein into gastric epithelial cells and at the same time elicits stomach inflammation. To experimentally investigate the pathophysiological interplay between CagA and inflammation, transgenic mice systemically expressing the bacterial cagA gene were treated with a colitis inducer, dextran sulfate sodium (DSS). Compared with control mice, DSS-induced colitis was markedly deteriorated in cagA-transgenic mice. In the colonic epithelia of cagA-transgenic mice, there was a substantial decrease in the level of IκB, which binds and sequesters NF-κB in the cytoplasm. This IκB reduction was due to CagA-mediated inhibition of PAR1, which may stimulate IκB degradation by perturbing microtubule stability. Whereas the CagA-mediated IκB reduction did not automatically activate NF-κB, it lowered the threshold of NF-κB activation by inflammogenic insults, thereby contributing to colitis exacerbation in cagA-transgenic mice. CagA also activates inflammasomes independently of NF-κB signaling, which further potentiates inflammation. The incidence of colonic dysplasia was elevated in DSS-treated cagA-transgenic mice due to a robust increase in the number of pre-cancerous flat-type dysplasias. Thus, CagA deteriorated inflammation, whereas inflammation strengthened the oncogenic potential of CagA. This work revealed that H. pylori CagA and inflammation reinforce each other in creating a downward spiral that instigates neoplastic transformation. PMID:25944120

  2. The Subcellular Localisation of the Human Papillomavirus (HPV) 16 E7 Protein in Cervical Cancer Cells and Its Perturbation by RNA Aptamers

    PubMed Central

    Cesur, Özlem; Nicol, Clare; Groves, Helen; Mankouri, Jamel; Blair, George Eric; Stonehouse, Nicola J.

    2015-01-01

    Human papillomavirus (HPV) is the most common viral infection of the reproductive tract, affecting both men and women. High-risk oncogenic types are responsible for almost 90% of anogenital and oropharyngeal cancers including cervical cancer. Some of the HPV “early” genes, particularly E6 and E7, are known to act as oncogenes that promote tumour growth and malignant transformation. Most notably, HPV-16 E7 interacts with the tumour suppressor protein pRb, promoting its degradation, leading to cell cycle dysregulation in infected cells. We have previously shown that an RNA aptamer (termed A2) selectively binds to HPV16 E7 and is able to induce apoptosis in HPV16-transformed cervical carcinoma cell lines (SiHa) through reduction of E7 levels. In this study, we investigated the effects of the A2 aptamer on E7 localisation in order to define its effects on E7 activity. We demonstrate for the first time that E7 localised to the plasma membrane. In addition, we show that A2 enhanced E7 localisation in the ER and that the A2-mediated reduction of E7 was not associated with proteasomal degradation. These data suggest that A2 perturbs normal E7 trafficking through promoting E7 ER retention. PMID:26131956

  3. ERG oncoprotein expression in prostate carcinoma patients of different ethnicities

    PubMed Central

    KELLY, GREGORY M.; KONG, YINK HEAY; DOBI, ALBERT; SRIVASTAVA, SHIV; SESTERHENN, ISABELL A.; PATHMANATHAN, RAJADURAI; TAN, HUI MENG; TAN, SHYH-HAN; CHEONG, SOK CHING

    2015-01-01

    Overexpression of the erythroblast transformation-specific-related gene (ERG) oncoprotein due to transmembrane protease, serine 2 (TMPRSS2)-ERG fusion, the most prevalent genomic alteration in prostate cancer (CaP), is more frequently observed among Caucasian patients compared to patients of African or Asian descent. To the best of our knowledge, this is the first study to investigate the prevalence of ERG alterations in a multiethnic cohort of CaP patients. A total of 191 formalin-fixed paraffin-embedded sections of transrectal ultrasound-guided prostate biopsy specimens, collected from 120 patients treated at the Sime Darby Medical Centre, Subang Jaya, Malaysia, were analyzed for ERG protein expression by immunohistochemistry using the anti-ERG monoclonal antibody 9FY as a surrogate for the detection of ERG fusion events. The overall frequency of ERG protein expression in the population evaluated in this study was 39.2%. Although seemingly similar to rates reported in other Asian communities, the expression of ERG was distinct amongst different ethnic groups (P=0.004). Malaysian Indian (MI) patients exhibited exceedingly high expression of ERG in their tumors, almost doubling that of Malaysian Chinese (MC) patients, whereas ERG expression was very low amongst Malay patients (12.5%). When collectively analyzing data, we observed a significant correlation between younger patients and higher ERG expression (P=0.04). The prevalence of ERG expression was significantly different amongst CaP patients of different ethnicities. The higher number of ERG-expressing tumors among MI patients suggested that the TMPRSS2-ERG fusion may be particularly important in the pathogenesis of CaP amongst this group of patients. Furthermore, the more frequent expression of ERG among the younger patients analyzed suggested an involvement of ERG in the early onset of CaP. The results of this study underline the value of using ERG status to better understand the differences in the etiology

  4. ERG oncoprotein expression in prostate carcinoma patients of different ethnicities.

    PubMed

    Kelly, Gregory M; Kong, Yink Heay; Dobi, Albert; Srivastava, Shiv; Sesterhenn, Isabell A; Pathmanathan, Rajadurai; Tan, Hui Meng; Tan, Shyh-Han; Cheong, Sok Ching

    2015-01-01

    Overexpression of the erythroblast transformation-specific-related gene (ERG) oncoprotein due to transmembrane protease, serine 2 (TMPRSS2)-ERG fusion, the most prevalent genomic alteration in prostate cancer (CaP), is more frequently observed among Caucasian patients compared to patients of African or Asian descent. To the best of our knowledge, this is the first study to investigate the prevalence of ERG alterations in a multiethnic cohort of CaP patients. A total of 191 formalin-fixed paraffin-embedded sections of transrectal ultrasound-guided prostate biopsy specimens, collected from 120 patients treated at the Sime Darby Medical Centre, Subang Jaya, Malaysia, were analyzed for ERG protein expression by immunohistochemistry using the anti-ERG monoclonal antibody 9FY as a surrogate for the detection of ERG fusion events. The overall frequency of ERG protein expression in the population evaluated in this study was 39.2%. Although seemingly similar to rates reported in other Asian communities, the expression of ERG was distinct amongst different ethnic groups (P=0.004). Malaysian Indian (MI) patients exhibited exceedingly high expression of ERG in their tumors, almost doubling that of Malaysian Chinese (MC) patients, whereas ERG expression was very low amongst Malay patients (12.5%). When collectively analyzing data, we observed a significant correlation between younger patients and higher ERG expression (P=0.04). The prevalence of ERG expression was significantly different amongst CaP patients of different ethnicities. The higher number of ERG-expressing tumors among MI patients suggested that the TMPRSS2-ERG fusion may be particularly important in the pathogenesis of CaP amongst this group of patients. Furthermore, the more frequent expression of ERG among the younger patients analyzed suggested an involvement of ERG in the early onset of CaP. The results of this study underline the value of using ERG status to better understand the differences in the etiology

  5. Problem-Solving Test: The Mechanism of Action of a Human Papilloma Virus Oncoprotein

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    Terms to be familiar with before you start to solve the test: human papilloma virus; cervical cancer; oncoproteins; malignant transformation; retinoblastoma protein; cell cycle; quiescent and cycling cells; cyclin/cyclin-dependent kinase (Cdk) complexes; E2F; S-phase genes; enhancer element; proto-oncogenes; tumor suppressor genes; radioactive…

  6. Peptide-DNA conjugates as tailored bivalent binders of the oncoprotein c-Jun.

    PubMed

    Pazos, Elena; Portela, Cecilia; Penas, Cristina; Vázquez, M Eugenio; Mascareñas, José L

    2015-05-21

    We describe a ds-oligonucleotide-peptide conjugate that is able to efficiently dismount preformed DNA complexes of the bZIP regions of oncoproteins c-Fos and c-Jun (AP-1), and therefore might be useful as disrupters of AP-1-mediated gene expression pathways.

  7. Ordered Self-Assembly Mechanism of a Spherical Oncoprotein Oligomer Triggered by Zinc Removal and Stabilized by an Intrinsically Disordered Domain

    PubMed Central

    Smal, Clara; Alonso, Leonardo G.; Wetzler, Diana E.; Heer, Angeles; de Prat Gay, Gonzalo

    2012-01-01

    Background Self-assembly is a common theme in proteins of unrelated sequences or functions. The human papillomavirus E7 oncoprotein is an extended dimer with an intrinsically disordered domain, that can form large spherical oligomers. These are the major species in the cytosol of HPV transformed and cancerous cells. E7 binds to a large number of targets, some of which lead to cell transformation. Thus, the assembly process not only is of biological relevance, but represents a model system to investigate a widely distributed mechanism. Methodology/Principal Findings Using various techniques, we monitored changes in secondary, tertiary and quaternary structure in a time course manner. By applying a robust kinetic model developed by Zlotnik, we determined the slow formation of a monomeric “Z-nucleus” after zinc removal, followed by an elongation phase consisting of sequential second-order events whereby one monomer is added at a time. This elongation process takes place at a strikingly slow overall average rate of one monomer added every 28 seconds at 20 µM protein concentration, strongly suggesting either a rearrangement of the growing complex after binding of each monomer or the existence of a “conformation editing” mechanism through which the monomer binds and releases until the appropriate conformation is adopted. The oligomerization determinant lies within its small 5 kDa C-terminal globular domain and, remarkably, the E7 N-terminal intrinsically disordered domain stabilizes the oligomer, preventing an insoluble amyloid route. Conclusion We described a controlled ordered mechanism with features in common with soluble amyloid precursors, chaperones, and other spherical oligomers, thus sharing determining factors for symmetry, size and shape. In addition, such a controlled and discrete polymerization reaction provides a valuable tool for nanotechnological applications. Finally, its increased immunogenicity related to its supramolecular structure is the

  8. The high-risk HPV E6 oncoprotein preferentially targets phosphorylated nuclear forms of hDlg

    SciTech Connect

    Narayan, Nisha; Subbaiah, Vanitha Krishna; Banks, Lawrence

    2009-04-25

    High-risk mucosal HPV E6 oncoproteins target a number of PDZ domain-containing substrates for proteasome mediated degradation. One of these, Discs Large (Dlg), is involved in the regulation of cell polarity and proliferation control. Previous studies had suggested that Dlg when hyperphosphorylated by osmotic shock, or when present in the nucleus could be preferentially targeted by E6. In this study we use phospho-specific antibodies directed against Dlg phosphorylated at residues S158 and S442 to show that these two observations are, in fact, linked. Dlg, when phosphorylated on S158 and S442 by CDK1 or CDK2, shows a preferential nuclear accumulation. However, these forms of Dlg are absent in cells derived from HPV-induced cervical cancers. Upon either proteasome inhibition or siRNA ablation of E6 expression, we see specific rescue of these phosphorylated forms of Dlg. These results demonstrate that nuclear forms of Dlg phosphorylated on its CDK phospho-acceptor sites has enhanced susceptibility to E6-induced degradation and place previous studies on the stress-induced phosphorylation of Dlg into a relevant biological context.

  9. Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by protein palmitoylation

    SciTech Connect

    Kong, Chen; Lange, Jeffrey J.; Samovski, Dmitri; Su, Xiong; Liu, Jialiu; Sundaresan, Sinju; Stahl, Philip D.

    2013-05-03

    Highlights: •Hominoid-specific oncogene TBC1D3 is targeted to plasma membrane by palmitoylation. •TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. •TBC1D3 palmitoylation governs growth factors-induced TBC1D3 degradation. •Post-translational modifications may regulate oncogenic properties of TBC1D3. -- Abstract: Expression of the hominoid-specific oncoprotein TBC1D3 promotes enhanced cell growth and proliferation by increased activation of signal transduction through several growth factors. Recently we documented the role of CUL7 E3 ligase in growth factors-induced ubiquitination and degradation of TBC1D3. Here we expanded our study to discover additional molecular mechanisms that control TBC1D3 protein turnover. We report that TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. The expression of double palmitoylation mutant TBC1D3:C318/325S resulted in protein mislocalization and enhanced growth factors-induced TBC1D3 degradation. Moreover, ubiquitination of TBC1D3 via CUL7 E3 ligase complex was increased by mutating the palmitoylation sites, suggesting that depalmitoylation of TBC1D3 makes the protein more available for ubiquitination and degradation. The results reported here provide novel insights into the molecular mechanisms that govern TBC1D3 protein degradation. Dysregulation of these mechanisms in vivo could potentially result in aberrant TBC1D3 expression and promote oncogenesis.

  10. HTLV-1 Tax oncoprotein stimulates ROS production and apoptosis in T cells by interacting with USP10.

    PubMed

    Takahashi, Masahiko; Higuchi, Masaya; Makokha, Grace Naswa; Matsuki, Hideaki; Yoshita, Manami; Tanaka, Yuetsu; Fujii, Masahiro

    2013-08-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia (ATL), and the viral oncoprotein Tax plays key roles in the immortalization of human T cells, lifelong persistent infection, and leukemogenesis. We herein identify the ubiquitin-specific protease 10 (USP10) as a Tax-interactor in HTLV-1-infected T cells. USP10 is an antistress factor against various environmental stresses, including viral infections and oxidative stress. On exposure to arsenic, an oxidative stress inducer, USP10 is recruited into stress granules (SGs), and USP10-containing SGs reduce reactive oxygen species (ROS) production and inhibit ROS-dependent apoptosis. We found that interaction of Tax with USP10 inhibits arsenic-induced SG formation, stimulates ROS production, and augments ROS-dependent apoptosis in HTLV-1-infected T cells. These findings suggest that USP10 is a host factor that inhibits stress-induced ROS production and apoptosis in HTLV-1-infected T cells; however, its activities are attenuated by Tax. A clinical study showed that combination therapy containing arsenic is effective against some forms of ATL. Therefore, these findings may be relevant to chemotherapy against ATL.

  11. The levels of epithelial anchor proteins β-catenin and zona occludens-1 are altered by E7 of human papillomaviruses 5 and 8.

    PubMed

    Heuser, Sandra; Hufbauer, Martin; Marx, Benjamin; Tok, Ali; Majewski, Slawomir; Pfister, Herbert; Akgül, Baki

    2016-02-01

    Infection with viruses of the genus Betapapillomavirus, β-human papillomaviruses (β-HPV), is implicated in the development of non-melanoma skin cancer. This was first evidenced for HPV5 and HPV8 in patients with the skin disease epidermodysplasia verruciformis (EV). The relocalization of the junctional bridging proteins β-catenin and zona occludens-1 (ZO-1) from the adherens and tight junctions are common processes of the epithelial-mesenchymal transition (EMT) associated with tumour invasion. Here, we report that β-catenin and ZO-1 are strongly upregulated by the E7 oncoproteins of HPV5 and HPV8 in keratinocytes grown in organotypic skin cultures. Although the membrane-tethered form of β-catenin was elevated, no signs of β-catenin activity within the canonical Wnt signalling pathway could be detected. The upregulation of β-catenin and ZO-1 could also be confirmed in the skin of HPV8 transgenic mice as well as in cutaneous squamous cell carcinomas of EV patients. These data provide the first evidence that β-catenin and ZO-1 are direct targets of E7 of the oncogenic β-HPV types 5 and 8. The ability to deregulate these epithelial junction proteins may contribute to the oncogenic potential of these viruses in human skin. PMID:26645068

  12. The levels of epithelial anchor proteins β-catenin and zona occludens-1 are altered by E7 of human papillomaviruses 5 and 8.

    PubMed

    Heuser, Sandra; Hufbauer, Martin; Marx, Benjamin; Tok, Ali; Majewski, Slawomir; Pfister, Herbert; Akgül, Baki

    2016-02-01

    Infection with viruses of the genus Betapapillomavirus, β-human papillomaviruses (β-HPV), is implicated in the development of non-melanoma skin cancer. This was first evidenced for HPV5 and HPV8 in patients with the skin disease epidermodysplasia verruciformis (EV). The relocalization of the junctional bridging proteins β-catenin and zona occludens-1 (ZO-1) from the adherens and tight junctions are common processes of the epithelial-mesenchymal transition (EMT) associated with tumour invasion. Here, we report that β-catenin and ZO-1 are strongly upregulated by the E7 oncoproteins of HPV5 and HPV8 in keratinocytes grown in organotypic skin cultures. Although the membrane-tethered form of β-catenin was elevated, no signs of β-catenin activity within the canonical Wnt signalling pathway could be detected. The upregulation of β-catenin and ZO-1 could also be confirmed in the skin of HPV8 transgenic mice as well as in cutaneous squamous cell carcinomas of EV patients. These data provide the first evidence that β-catenin and ZO-1 are direct targets of E7 of the oncogenic β-HPV types 5 and 8. The ability to deregulate these epithelial junction proteins may contribute to the oncogenic potential of these viruses in human skin.

  13. The human papillomavirus (HPV) E6 oncoproteins promotes nuclear localization of active caspase 8

    SciTech Connect

    Manzo-Merino, Joaquin; Lizano, Marcela

    2014-02-15

    The HPV-16 E6 and E6{sup ⁎} proteins have been shown previously to be capable of regulating caspase 8 activity. We now show that the capacity of E6 to interact with caspase 8 is common to diverse HPV types, being also seen with HPV-11 E6, HPV-18 E6 and HPV-18 E6{sup ⁎}. Unlike most E6-interacting partners, caspase 8 does not appear to be a major proteasomal target of E6, but instead E6 appears able to stimulate caspase 8 activation, without affecting the overall apoptotic activity. This would appear to be mediated in part by the ability of the HPV E6 oncoproteins to recruit active caspase 8 to the nucleus. - Highlights: • Multiple HPV E6 oncoproteins interact with the caspase 8 DED domain. • HPV E6 stimulates activation of caspase 8. • HPV E6 promotes nuclear accumulation of caspase 8.

  14. Identification of cytotoxic agents disrupting synovial sarcoma oncoprotein interactions by proximity ligation assay

    PubMed Central

    Laporte, Aimée N.; Ji, Jennifer X.; Ma, Limin; Nielsen, Torsten O.; Brodin, Bertha A.

    2016-01-01

    Conventional cytotoxic therapies for synovial sarcoma provide limited benefit. Drugs specifically targeting the product of its driver translocation are currently unavailable, in part because the SS18-SSX oncoprotein functions via aberrant interactions within multiprotein complexes. Proximity ligation assay is a recently-developed method that assesses protein-protein interactions in situ. Here we report use of the proximity ligation assay to confirm the oncogenic association of SS18-SSX with its co-factor TLE1 in multiple human synovial sarcoma cell lines and in surgically-excised human tumor tissue. SS18-SSX/TLE1 interactions are disrupted by class I HDAC inhibitors and novel small molecule inhibitors. This assay can be applied in a high-throughput format for drug discovery in fusion-oncoprotein associated cancers where key effector partners are known. PMID:27120803

  15. Problem-solving test: The mechanism of action of a human papilloma virus oncoprotein.

    PubMed

    Szeberényi, József

    2009-03-01

    Terms to be familiar with before you start to solve the test: human papilloma virus; cervical cancer; oncoproteins; malignant transformation; retinoblastoma protein; cell cycle; quiescent and cycling cells; cyclin/cyclin-dependent kinase (Cdk) complexes; E2F; S-phase genes; enhancer element; proto-oncogenes; tumor suppressor genes; radioactive labeling; immunoprecipitation; SDS-polyacrylamide gel electrophoresis; autoradiography; protein phosphorylation and dephosphorylation; gene induction; agarose beads; centrifugation; Western blot analysis; phases of cell cycle; generation time.

  16. Autoxidation of oxymyoglobin with the distal (E7) glutamine.

    PubMed

    Suzuki, T

    1987-08-01

    We reported previously that the distal(E7) histidine is replaced by glutamine in myoglobin from the shark, Galeorhinus japonicus. The amino-acid sequence of myoglobin from another shark, Heterodontus japonicus, has been determined. The myoglobin is composed of 148 residues, is acetylated at the N-terminus, and contains the distal(E7) histidine at position 59. Although the sequence homologies between G. japonicus, H. japonicus, and sperm-whale myoglobins were about 40-55%, their hydropathy profiles were very similar, indicating that they have a similar geometry in their globin folding. The autoxidation rates of the two shark oxymyoglobins were examined in 0.1 M buffer at 25 degrees C over pH range 4.5-11.5. The pH dependence for the autoxidation of H. japonicus myoglobin was very similar to that of sperm-whale myoglobin, although the rate was about 10-times higher over the pH range examined. In both myoglobins, autoxidation was largely accelerated by H+. On the other hand, the pH dependence of G. japonicus myoglobin, which has the distal glutamine in the place of histidine, was quite different from those of sperm-whale and H. japonicus myoglobins. One of the most remarkable features is the fact that the autoxidation rate is not enhanced with an increase in the concentration of H+ in the acidic range of pH, where the autoxidation of sperm-whale and H. japonicus myoglobins is most accelerated. This finding suggests that the distal(E7) histidine participates in the autoxidation reaction as a catalytic residue facilitating the movement of a catalytic proton.

  17. Identification and genetic definition of a bovine papillomavirus type 1 E7 protein and absence of a low-copy-number phenotype exhibited by E5, E6, or E7 viral mutants.

    PubMed Central

    Jareborg, N; Alderborn, A; Burnett, S

    1992-01-01

    The bovine papillomavirus type 1 (BPV-1) genome replicates as a multiple-copy plasmid in murine C127 cells transformed to neoplasia by virus infection or by transfection with BPV-1 DNA. It was reported previously that BPV-1 genomes harboring frameshift mutations in the E6 or E7 open reading frame (ORF) replicated in C127 cells transformed by these mutants at a low copy number. Furthermore, the characterization of a BPV-1 mRNA in which the E6 and E7 ORFs were spliced together in frame has led to the assumption that an E6/7 fusion protein is expressed in virus-transformed C127 cells. To define the number and nature of the E6 and E7 gene products expressed in BPV-1-transformed cells, we performed immunoprecipitation experiments with antisera raised to bacterially expressed BPV-1 E6 and E7 fusion proteins. By employing cell culture conditions which induce BPV-1 E2 transactivator expression and viral early region transcription in virus-transformed C127 cell lines, we detected a single immunoprecipitated E6 protein species with an apparent molecular mass of 17 kDa and a single E7 protein species with an apparent molecular mass of 15 kDa. To characterize further these E6 and E7 proteins, C127 cells were transformed by transfection with BPV-1 genomes containing mutations predicted to prevent expression of specific E6 or E7 gene products, and the transformed cells were subjected to immunoprecipitation analysis with the E6 or E7 antiserum. The results of these experiments confirmed that the E6 and E7 ORFs encode distinct proteins and failed to establish the existence of an E6/7 fusion protein. We did not find a significant difference in the viral genome copy number between clonal C127 cell lines transformed by wild-type BPV-1 or by mutant viral genomes unable to express the E6 or the E7 protein. Furthermore, in contrast to two previous reports suggesting that expression of the BPV-1 E5 gene was required for the establishment or maintenance of a high viral plasmid copy number

  18. Polo-like kinase 4 transcription is activated via CRE and NRF1 elements, repressed by DREAM through CDE/CHR sites and deregulated by HPV E7 protein

    PubMed Central

    Fischer, Martin; Quaas, Marianne; Wintsche, Axel; Müller, Gerd A.; Engeland, Kurt

    2014-01-01

    Infection by oncogenic viruses is a frequent cause for tumor formation as observed in cervical cancer. Viral oncoproteins cause inactivation of p53 function and false transcriptional regulation of central cell cycle genes. Here we analyze the regulation of Plk4, serving as an example of many cell cycle- and p53-regulated genes. Cell cycle genes are often repressed via CDE and CHR elements in their promoters and activated by NF-Y binding to CCAAT-boxes. In contrast, general activation of Plk4 depends on NRF1 and CRE sites. Bioinformatic analyses imply that NRF1 and CRE are central elements of the transcriptional network controlling cell cycle genes. We identify CDE and CHR sites in the Plk4 promoter, which are necessary for binding of the DREAM (DP, RB-like, E2F4 and MuvB) complex and for mediating repression in G0/G1. When cells progress to G2 and mitosis, DREAM is replaced by the MMB (Myb-MuvB) complex that only requires the CHR element for binding. Plk4 expression is downregulated by the p53-p21WAF1/CIP1-DREAM signaling pathway through the CDE and CHR sites. Cell cycle- and p53-dependent repression is abrogated by HPV E7 oncoprotein. Together with genome-wide analyses our results imply that many cell cycle genes upregulated in tumors by viral infection are bound by DREAM through CDE/CHR sites. PMID:24071582

  19. Amino-functionalized poly(l-lactide) lamellar single crystals as a valuable substrate for delivery of HPV16-E7 tumor antigen in vaccine development

    PubMed Central

    Di Bonito, Paola; Petrone, Linda; Casini, Gabriele; Francolini, Iolanda; Ammendolia, Maria Grazia; Accardi, Luisa; Piozzi, Antonella; D’Ilario, Lucio; Martinelli, Andrea

    2015-01-01

    Background Poly(l-lactide) (PLLA) is a biodegradable polymer currently used in many biomedical applications, including the production of resorbable surgical devices, porous scaffolds for tissue engineering, nanoparticles and microparticles for the controlled release of drugs or antigens. The surfaces of lamellar PLLA single crystals (PLLAsc) were provided with amino groups by reaction with a multifunctional amine and used to adsorb an Escherichia coli-produced human papillomavirus (HPV)16-E7 protein to evaluate its possible use in antigen delivery for vaccine development. Methods PLLA single crystals were made to react with tetraethylenepentamine to obtain amino-functionalized PLLA single crystals (APLLAsc). Pristine and amino-functionalized PLLAsc showed a two-dimensional microsized and one-dimensional nanosized lamellar morphology, with a lateral dimension of about 15–20 μm, a thickness of about 12 nm, and a surface specific area of about 130 m2/g. Both particles were characterized and loaded with HPV16-E7 before being administered to C57BL/6 mice for immunogenicity studies. The E7-specific humoral-mediated and cell-mediated immune response as well as tumor protective immunity were analyzed in mice challenged with TC-1 cancer cells. Results Pristine and amino-functionalized PLLAsc adsorbed similar amounts of E7 protein, but in protein-release experiments E7-PLLAsc released a higher amount of protein than E7-APLLAsc. When the complexes were dried for observation by scanning electron microscopy, both samples showed a compact layer, but E7-APLLAsc showed greater roughness than E7-PLLAsc. Immunization experiments in mice showed that E7-APLLAsc induced a stronger E7-specific immune response when compared with E7-PLLAsc. Immunoglobulin G isotyping and interferon gamma analysis suggested a mixed Th1/Th2 immune response in both E7-PLLAsc-immunized and E7-APLLAsc-immunized mice. However, only the mice receiving E7-APLLAsc were fully protected from TC-1 tumor growth

  20. Eradication of B-ALL using chimeric antigen receptor–expressing T cells targeting the TSLPR oncoprotein

    PubMed Central

    Qin, Haiying; Cho, Monica; Haso, Waleed; Zhang, Ling; Tasian, Sarah K.; Oo, Htoo Zarni; Negri, Gian Luca; Lin, Yongshun; Zou, Jizhong; Mallon, Barbara S.; Maude, Shannon; Teachey, David T.; Barrett, David M.; Orentas, Rimas J.; Daugaard, Mads; Sorensen, Poul H. B.; Grupp, Stephan A.

    2015-01-01

    Adoptive transfer of T cells genetically modified to express chimeric antigen receptors (CARs) targeting the CD19 B cell–associated protein have demonstrated potent activity against relapsed/refractory B-lineage acute lymphoblastic leukemia (B-ALL). Not all patients respond, and CD19-negative relapses have been observed. Overexpression of the thymic stromal lymphopoietin receptor (TSLPR; encoded by CRLF2) occurs in a subset of adults and children with B-ALL and confers a high risk of relapse. Recent data suggest the TSLPR signaling axis is functionally important, suggesting that TSLPR would be an ideal immunotherapeutic target. We constructed short and long CARs targeting TSLPR and tested efficacy against CRLF2-overexpressing B-ALL. Both CARs demonstrated activity in vitro, but only short TSLPR CAR T cells mediated leukemia regression. In vivo activity of the short CAR was also associated with long-term persistence of CAR-expressing T cells. Short TSLPR CAR treatment of mice engrafted with a TSLPR-expressing ALL cell line induced leukemia cytotoxicity with efficacy comparable with that of CD19 CAR T cells. Short TSLPR CAR T cells also eradicated leukemia in 4 xenograft models of human CRLF2-overexpressing ALL. Finally, TSLPR has limited surface expression on normal tissues. TSLPR-targeted CAR T cells thus represent a potent oncoprotein-targeted immunotherapy for high-risk ALL. PMID:26041741

  1. DAX1, a direct target of EWS/FLI1 oncoprotein, is a principal regulator of cell-cycle progression in Ewing's tumor cells.

    PubMed

    García-Aragoncillo, E; Carrillo, J; Lalli, E; Agra, N; Gómez-López, G; Pestaña, A; Alonso, J

    2008-10-01

    The molecular hallmark of the Ewing's family of tumors is the presence of balanced chromosomal translocations, leading to the formation of chimerical transcription factors (that is, EWS/FLI1) that play a pivotal role in the pathogenesis of Ewing's tumors by deregulating gene expression. We have recently demonstrated that DAX1 (NR0B1), an orphan nuclear receptor that was not previously implicated in cancer, is induced by the EWS/FLI1 oncoprotein and is highly expressed in Ewing's tumors, suggesting that DAX1 is a biologically relevant target of EWS/FLI1-mediated oncogenesis. In this study we demonstrate that DAX1 is a direct transcriptional target of the EWS/FLI1 oncoprotein through its binding to a GGAA-rich region in the DAX1 promoter and show that DAX1 is a key player of EWS/FLI1-mediated oncogenesis. DAX1 silencing using an inducible model of RNA interference induces growth arrest in the A673 Ewing's cell line and severely impairs its capability to grow in semisolid medium and form tumors in immunodeficient mice. Gene expression profile analysis demonstrated that about 10% of the genes regulated by EWS/FLI1 in Ewing's cells are DAX1 targets, confirming the importance of DAX1 in Ewing's oncogenesis. Functional genomic analysis, validated by quantitative RT-PCR, showed that genes implicated in cell-cycle progression, such as CDK2, CDC6, MCM10 or SKP2 were similarly regulated by EWS/FLI1 and DAX1. These findings indicate that DAX1 is important in the pathogenesis of the Ewing's family of tumors, identify new functions for DAX1 as a cell-cycle progression regulator and open the possibility to new therapeutic approaches based on DAX1 function interference.

  2. DAX1, a direct target of EWS/FLI1 oncoprotein, is a principal regulator of cell-cycle progression in Ewing's tumor cells.

    PubMed

    García-Aragoncillo, E; Carrillo, J; Lalli, E; Agra, N; Gómez-López, G; Pestaña, A; Alonso, J

    2008-10-01

    The molecular hallmark of the Ewing's family of tumors is the presence of balanced chromosomal translocations, leading to the formation of chimerical transcription factors (that is, EWS/FLI1) that play a pivotal role in the pathogenesis of Ewing's tumors by deregulating gene expression. We have recently demonstrated that DAX1 (NR0B1), an orphan nuclear receptor that was not previously implicated in cancer, is induced by the EWS/FLI1 oncoprotein and is highly expressed in Ewing's tumors, suggesting that DAX1 is a biologically relevant target of EWS/FLI1-mediated oncogenesis. In this study we demonstrate that DAX1 is a direct transcriptional target of the EWS/FLI1 oncoprotein through its binding to a GGAA-rich region in the DAX1 promoter and show that DAX1 is a key player of EWS/FLI1-mediated oncogenesis. DAX1 silencing using an inducible model of RNA interference induces growth arrest in the A673 Ewing's cell line and severely impairs its capability to grow in semisolid medium and form tumors in immunodeficient mice. Gene expression profile analysis demonstrated that about 10% of the genes regulated by EWS/FLI1 in Ewing's cells are DAX1 targets, confirming the importance of DAX1 in Ewing's oncogenesis. Functional genomic analysis, validated by quantitative RT-PCR, showed that genes implicated in cell-cycle progression, such as CDK2, CDC6, MCM10 or SKP2 were similarly regulated by EWS/FLI1 and DAX1. These findings indicate that DAX1 is important in the pathogenesis of the Ewing's family of tumors, identify new functions for DAX1 as a cell-cycle progression regulator and open the possibility to new therapeutic approaches based on DAX1 function interference. PMID:18591936

  3. [RNA extraction, in vitro translation and two-dimensional analysis of oncoproteins in cancers of the upper respiratory and digestive tracts].

    PubMed

    Bessède, J P; Najid, A; Coignoux, Y; Sauvage, J P; Rigaud, M

    1992-01-01

    After a review of the literature concerning oncogenes expression of in head and neck carcinomas, the authors studied RAN extraction, in vitro transduction and two dimensional analysis of oncoproteins in head and neck carcinomas. The results between the tumoral tissue and normal tissue were compared significantly more oncoproteins spots were found in the tumoral tissue analysis.

  4. Role of ubiquitin and the HPV E6 oncoprotein in E6AP-mediated ubiquitination.

    PubMed

    Mortensen, Franziska; Schneider, Daniel; Barbic, Tanja; Sladewska-Marquardt, Anna; Kühnle, Simone; Marx, Andreas; Scheffner, Martin

    2015-08-11

    Deregulation of the ubiquitin ligase E6 associated protein (E6AP) encoded by the UBE3A gene has been associated with three different clinical pictures. Hijacking of E6AP by the E6 oncoprotein of distinct human papillomaviruses (HPV) contributes to the development of cervical cancer, whereas loss of E6AP expression or function is the cause of Angelman syndrome, a neurodevelopmental disorder, and increased expression of E6AP has been involved in autism spectrum disorders. Although these observations indicate that the activity of E6AP has to be tightly controlled, only little is known about how E6AP is regulated at the posttranslational level. Here, we provide evidence that the hydrophobic patch of ubiquitin comprising Leu-8 and Ile-44 is important for E6AP-mediated ubiquitination, whereas it does not affect the catalytic properties of the isolated catalytic HECT domain of E6AP. Furthermore, we show that the HPV E6 oncoprotein rescues the disability of full-length E6AP to use a respective hydrophobic patch mutant of ubiquitin for ubiquitination and that it stimulates E6AP-mediated ubiquitination of Ring1B, a known substrate of E6AP, in vitro and in cells. Based on these data, we propose that E6AP exists in at least two different states, an active and a less active or latent one, and that the activity of E6AP is controlled by noncovalent interactions with ubiquitin and allosteric activators such as the HPV E6 oncoprotein. PMID:26216987

  5. Expression and in Silico analysis of the recombinant bovine papillomavirus E6 protein as a model for viral oncoproteins studies.

    PubMed

    Mazzuchelli-de-Souza, J; Carvalho, R F; Ruiz, R M; Melo, T C; Araldi, R P; Carvalho, E; Thompson, C E; Sircili, M P; Beçak, W; Stocco, R C

    2013-01-01

    Bovine papillomaviruses (BPVs) are recognized as the causal agents of economical relevant diseases in cattle, associated with the development of tumors in skin and mucosa. The oncogenesis process is mainly associated with different viral oncoprotein expressions, which are involved in cell transformation. The expression and characterization of recombinant viral oncoproteins represent an attractive strategy to obtain biotechnological products as antibodies and potential vaccines, Thus, the aim of this work was to clone and express the BPV-1 and BPV-2 E6 recombinant proteins and perform in silico analysis in order to develop a strategy for the systematic study of other papillomaviruses oncoproteins. The results demonstrated that BPV-1 and BPV-2 E6 recombinant proteins were expressed and purified from bacterial system as well as its in silico analysis was performed in order to explore and predict biological characteristics of these proteins.

  6. Human papillomavirus type 16 E6/E7-specific cytotoxic T lymphocytes for adoptive immunotherapy of HPV-associated malignancies.

    PubMed

    Ramos, Carlos A; Narala, Neeharika; Vyas, Gayatri M; Leen, Ann M; Gerdemann, Ulrike; Sturgis, Erich M; Anderson, Matthew L; Savoldo, Barbara; Heslop, Helen E; Brenner, Malcolm K; Rooney, Cliona M

    2013-01-01

    Vaccines prevent human papillomavirus (HPV)-associated cancer but, although these tumors express foreign, viral antigens (E6 and E7 proteins), they have little benefit in established malignancies, likely due to negative environmental cues that block tumor recognition and induce T-cell anergy in vivo. We postulated that we could identify mechanisms by which ex vivo stimulation of T cells could reactivate and expand tumor-directed T-cell lines from HPV cancer patients for subsequent adoptive immunotherapy. A total of 68 patients with HPV-associated cancers were studied. Peripheral blood T cells were stimulated with monocyte-derived dendritic cells loaded with pepmixes [peptide libraries of 15-mers overlapping by 11 amino acids (aa)] spanning E6/E7, in the presence or absence of specific accessory cytokines. The resulting T-cell lines were further expanded with pepmix-loaded activated B-cell blasts. Interferon-γ release and cytotoxic responses to E6/E7 were assessed. We successfully reactivated and expanded (>1200-fold) E6-specific/E7-specific T cells from 8/16 cervical and 33/52 oropharyngeal cancer patients. The presence of the cytokines interleukin (IL)-6, IL-7, IL-12, and IL-15 is critical for this process. These T-cell lines possess the desirable characteristics of polyclonality, multiple T-cell subset representation (including the memory compartment) and a TH1 bias, and may eliminate E6/E7 targets. In conclusion, we have shown it is possible to robustly generate HPV16 E6/E7-directed T-cell lines from patients with HPV16-associated cancers. Because our technique is scalable and good-manufacturing procedures-compliant, these lines could be used for adoptive cellular immunotherapy of patients with HPV16 cancers.

  7. A Drosophila Model of HPV E6-Induced Malignancy Reveals Essential Roles for Magi and the Insulin Receptor.

    PubMed

    Padash Barmchi, Mojgan; Gilbert, Mary; Thomas, Miranda; Banks, Lawrence; Zhang, Bing; Auld, Vanessa J

    2016-08-01

    Cervical cancer is one of the leading causes of cancer death in women worldwide. The causative agents of cervical cancers, high-risk human papillomaviruses (HPVs), cause cancer through the action of two oncoproteins, E6 and E7. The E6 oncoprotein cooperates with an E3 ubiquitin ligase (UBE3A) to target the p53 tumour suppressor and important polarity and junctional PDZ proteins for proteasomal degradation, activities that are believed to contribute towards malignancy. However, the causative link between degradation of PDZ proteins and E6-mediated malignancy is largely unknown. We have developed an in vivo model of HPV E6-mediated cellular transformation using the genetic model organism, Drosophila melanogaster. Co-expression of E6 and human UBE3A in wing and eye epithelia results in severe morphological abnormalities. Furthermore, E6, via its PDZ-binding motif and in cooperation with UBE3A, targets a suite of PDZ proteins that are conserved in human and Drosophila, including Magi, Dlg and Scribble. Similar to human epithelia, Drosophila Magi is a major degradation target. Magi overexpression rescues the cellular abnormalities caused by E6+UBE3A coexpression and this activity of Magi is PDZ domain-dependent. Drosophila p53 was not targeted by E6+UBE3A, and E6+UBE3A activity alone is not sufficient to induce tumorigenesis, which only occurs when E6+UBE3A are expressed in conjunction with activated/oncogenic forms of Ras or Notch. Finally, through a genetic screen we have identified the insulin receptor signaling pathway as being required for E6+UBE3A induced hyperplasia. Our results suggest a highly conserved mechanism of HPV E6 mediated cellular transformation, and establish a powerful genetic model to identify and understand the cellular mechanisms that underlie HPV E6-induced malignancy. PMID:27537218

  8. A Drosophila Model of HPV E6-Induced Malignancy Reveals Essential Roles for Magi and the Insulin Receptor

    PubMed Central

    Padash Barmchi, Mojgan; Gilbert, Mary; Thomas, Miranda; Banks, Lawrence; Zhang, Bing; Auld, Vanessa J.

    2016-01-01

    Cervical cancer is one of the leading causes of cancer death in women worldwide. The causative agents of cervical cancers, high-risk human papillomaviruses (HPVs), cause cancer through the action of two oncoproteins, E6 and E7. The E6 oncoprotein cooperates with an E3 ubiquitin ligase (UBE3A) to target the p53 tumour suppressor and important polarity and junctional PDZ proteins for proteasomal degradation, activities that are believed to contribute towards malignancy. However, the causative link between degradation of PDZ proteins and E6-mediated malignancy is largely unknown. We have developed an in vivo model of HPV E6-mediated cellular transformation using the genetic model organism, Drosophila melanogaster. Co-expression of E6 and human UBE3A in wing and eye epithelia results in severe morphological abnormalities. Furthermore, E6, via its PDZ-binding motif and in cooperation with UBE3A, targets a suite of PDZ proteins that are conserved in human and Drosophila, including Magi, Dlg and Scribble. Similar to human epithelia, Drosophila Magi is a major degradation target. Magi overexpression rescues the cellular abnormalities caused by E6+UBE3A coexpression and this activity of Magi is PDZ domain-dependent. Drosophila p53 was not targeted by E6+UBE3A, and E6+UBE3A activity alone is not sufficient to induce tumorigenesis, which only occurs when E6+UBE3A are expressed in conjunction with activated/oncogenic forms of Ras or Notch. Finally, through a genetic screen we have identified the insulin receptor signaling pathway as being required for E6+UBE3A induced hyperplasia. Our results suggest a highly conserved mechanism of HPV E6 mediated cellular transformation, and establish a powerful genetic model to identify and understand the cellular mechanisms that underlie HPV E6-induced malignancy. PMID:27537218

  9. Plasma Asp13-Ki-ras oncoprotein expression in vinyl chloride monomer workers in Taiwan.

    PubMed

    Luo, J C; Liu, H T; Cheng, T J; Du, C L; Wang, J D

    1998-12-01

    Vinyl chloride (VC) workers are known to be at risk for development of liver angiosarcoma, a rare tumor. Previously, more than 80% of VC workers with liver angiosarcoma have been found to have an Asp-13 c-Ki-ras oncogene mutation, and more than 50% of VC-exposed workers without liver tumors were found to have Asp13-Ki-ras oncoprotein in their plasma. Some workers in Taiwan had also been exposed to VC, and some have contracted liver tumors. In this study, we used enhanced chemiluminescence Western blotting to detect Asp13-p21-Ki-ras in the sera of VC-exposed workers in Taiwan. There were 14 of 113 (12.4%) VC workers positive for the Asp13-Ki-ras oncoprotein in plasma, but 0 of 18 controls were positive. There were 10 of 69 (14.5%) plasma-positives among the more highly exposed (> 1000 ppm-months) workers and 4 of 48 (9.1%) plasma-positives among the lesser exposed (< or = 1000 ppm-months). Compared with the unexposed controls, the odds ratios (and 95% confidence intervals [CI]) for plasma-positivity were 4.11 (95% CI = 0.21, 80.4) in the lower-exposed workers and 6.53 (95% CI = 0.37, 116.9) in the higher-exposed workers, and there was a linear trend between exposure and plasma-positivity (P = 0.073). After adjusting for age and drinking status, the odds ratios (and 95% CIs) were 1.64 (95% CI = 0.17, 15.8), and 2.65 (95% CI = 0.42, 16.8), respectively, and there was a significant linear trend between exposure and plasma-positivity (P = 0.048). In summary, Asp13-Ki-ras oncoprotein can be found in the plasma of VC workers in Taiwan, and a significant dose-response relationship exists between plasma oncoprotein expression and VC exposure.

  10. Intracellular Analysis of the Interaction between the Human Papillomavirus Type 16 E6 Oncoprotein and Inhibitory Peptides

    PubMed Central

    Stutz, Christina; Reinz, Eileen; Honegger, Anja; Bulkescher, Julia; Schweizer, Johannes; Zanier, Katia; Travé, Gilles; Lohrey, Claudia; Hoppe-Seyler, Karin; Hoppe-Seyler, Felix

    2015-01-01

    Oncogenic types of human papillomaviruses (HPVs) cause cervical cancer and other malignancies in humans. The HPV E6 oncoprotein is considered to be an attractive therapeutic target since its inhibition can lead to the apoptotic cell death of HPV-positive cancer cells. The HPV type 16 (HPV16) E6-binding peptide pep11, and variants thereof, induce cell death specifically in HPV16-positive cancer cells. Although they do not encompass the LxxLL binding motif found in cellular HPV16 E6 interaction partners, such as E6AP, the pep11 variants strongly bind to HPV16 E6 by contacting the recently identified E6AP binding pocket. Thus, these peptides can serve as prototype E6-inhibitory molecules which target the E6AP pocket. We here analyzed their intracellular interaction with HPV16 E6. By comprehensive intracellular binding studies and GST pull-down assays, we show that E6-binding competent pep11 variants induce the formation of a trimeric complex, consisting of pep11, HPV16 E6 and p53. These findings indicate that peptides, which do not contain the LxxLL motif, can reshape E6 to enable its interaction with p53. The formation of the trimeric HPV16 E6 / peptide / p53 complex was associated with an increase of endogenous HPV16 E6 protein amounts. Yet, total cellular p53 amounts were also increased, indicating that the E6 / E6AP-mediated degradation of p53 is blocked. These findings suggest that inhibition of oncogenic activities by targeting the E6AP pocket on HPV16 E6 could be a strategy for therapeutic intervention. PMID:26151636

  11. Comparison of the properties of the E6 and E7 genes of low- and high-risk cutaneous papillomaviruses reveals strongly transforming and high Rb-binding activity for the E7 protein of the low-risk human papillomavirus type 1.

    PubMed Central

    Schmitt, A; Harry, J B; Rapp, B; Wettstein, F O; Iftner, T

    1994-01-01

    A comparative analysis of different properties of the E6 and E7 proteins of high-risk and low-risk cutaneous papillomaviruses was performed. The corresponding genomic regions of human papillomavirus types 1 and 8 (HPV1 and HPV8) and of the cottontail rabbit papillomavirus (CRPV) were cloned into the eucaryotic expression vector pZipNeo-SV(X)-1 and into vectors for in vitro transcription and translation. With the help of these vectors, the individual proteins were investigated for their ability to transform C127 and NIH 3T3 rodent fibroblasts, bind the Rb protein in vitro, transactivate the adenovirus E2 promoter, and cooperate in the immortalization of primary human keratinocytes. Expression vectors for HPV16 E6 and E7 were used as a positive control. A highly transformed phenotype could be observed with rodent cell lines expressing HPV8 E6, HPV16 E6 and E7, and, surprisingly, HPV1 E7. In contrast, no transformation was detected with CRPV long E6 and HPV8 E7, whereas cells expressing HPV1 E6 and CRPV short E6 exhibited a weakly transformed phenotype. Although neither CRPV E6 nor CRPV E7 caused morphological transformation of C127 cells, CRPV E6 was able to induce anchorage-independent growth in both rodent cell lines, whereas CRPV E7 led to high cloning efficiencies only in NIH 3T3 cells. The in vitro Rb-binding affinities relative to that of HPV 16 E7 were 66% for HPV1 E7, 34% for HPV8 E7, and 11% for CRPV E7. In spite of its high Rb-binding affinity, HPV1 E7 did not trans activate the adenovirus E2 promoter, whereas HPV8 E7 and CRPV E7 showed low activities. Complementation studies in primary human keratinocytes revealed a weak immortalizing potential for HPV8 E7 and indicated a low degree of cooperativity between CRPV E7 and CRPV or HPV16 E6. Images PMID:7933087

  12. Transformation properties of the E2a-Pbx1 chimeric oncoprotein: fusion with E2a is essential, but the Pbx1 homeodomain is dispensable.

    PubMed Central

    Monica, K; LeBrun, D P; Dedera, D A; Brown, R; Cleary, M L

    1994-01-01

    The t(1;19) chromosomal translocation in acute lymphoblastic leukemias creates chimeric E2a-Pbx1 oncoproteins that can act as DNA-binding activators of transcription. A structural analysis of the functional domains of E2a-Pbx1 showed that portions of both E2a and Pbx1 were essential for transformation of NIH 3T3 cells and transcriptional activation of synthetic reporter genes containing PBX1 consensus binding sites. Hyperexpression of wild-type or experimentally truncated Pbx1 proteins was insufficient for transformation, consistent with their inability to activate transcription. When fused with E2a, the Pbx-related proteins Pbx2 and Pbx3 were also transformation competent, demonstrating that all known members of this highly similar subfamily of homeodomain proteins have latent oncogenic potential. The oncogenic contributions of E2a to the chimeras were localized to transactivation motifs AD1 and AD2, as their mutation significantly impaired transformation. Either the homeodomain or Pbx1 amino acids flanking this region could mediate transformation when fused to E2a. However, the homeodomain was not essential for transformation, since a mutant E2a-Pbx1 protein (E2a-Pbx delta HD) lacking the homeodomain efficiently transformed fibroblasts and induced malignant lymphomas in transgenic mice. Thus, transformation mediated by the chimeric oncoprotein E2a-Pbx1 is absolutely dependent on motifs acquired from E2a but the Pbx1 homeodomain is optional. The latter finding suggests that E2a-Pbx1 may interact with cellular proteins that assist or mediate alterations in gene expression responsible for oncogenesis even in the absence of homeodomain-DNA interactions. Images PMID:7969166

  13. Role of dual specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1B) in S-phase entry of HPV E7 expressing cells from quiescence

    PubMed Central

    Zhou, Na; Yuan, Shoudao; Wang, Rongchun; Zhang, Weifang; Chen, Jason J.

    2015-01-01

    The high-risk human papillomavirus (HPV) is the causative agent for cervical cancer. The HPV E7 oncogene promotes S-phase entry from quiescent state in the presence of elevated cell cycle inhibitor p27Kip1, a function that may contribute to carcinogenesis. However, the mechanism by which HPV E7 induces quiescent cells to entry into S-phase is not fully understood. Interestingly, we found that Dyrk1B, a dual-specificity kinase and negative regulator of cell proliferation in quiescent cells, was upregulated in E7 expressing cells. Surprisingly and in contrast to what was previously reported, Dyrk1B played a positive role in S-phase entry of quiescent HPV E7 expressing cells. Mechanistically, Dyrk1B contributed to p27 phosphorylation (at serine 10 and threonine 198), which was important for the proliferation of HPV E7 expressing cells. Moreover, Dyrk1B up-regulated HPV E7. Taken together, our studies uncovered a novel function of Dyrk1B in high-risk HPV E7-mediated cell proliferation. Dyrk1B may serve as a target for therapy in HPV-associated cancers. PMID:26307683

  14. Elucidating Molecular Interactions of Natural Inhibitors with HPV-16 E6 Oncoprotein through Docking Analysis.

    PubMed

    Kumar, Satish; Jena, Lingaraja; Galande, Sneha; Daf, Sangeeta; Mohod, Kanchan; Varma, Ashok K

    2014-06-01

    Human papillomavirus (HPV) infection is the leading cause of cancer mortality among women worldwide. The life-threatening infection caused by HPV demands the need for designing anticancerous drugs. In the recent years, different compounds from natural origins, such as carrageenan, curcumin, epigallocatechin gallate, indole-3-carbinol, jaceosidin, and withaferin, have been used as a hopeful source of anticancer therapy. These compounds have been shown to suppress HPV infection by different researchers. In the present study, we explored these natural inhibitors against E6 oncoprotein of high-risk HPV-16, which is known to inactivate the p53 tumor suppressor protein. A robust homology model of HPV-16 E6 was built to anticipate the interaction mechanism of E6 oncoprotein with natural inhibitory molecules using a structure-based drug designing approach. Docking analysis showed the interaction of these natural compounds with the p53-binding site of E6 protein residues 113-122 (CQKPLCPEEK) and helped the restoration of p53 functioning. Docking analysis, besides helping in silico validation of natural compounds, also helps understand molecular mechanisms of protein-ligand interactions.

  15. Elucidating Molecular Interactions of Natural Inhibitors with HPV-16 E6 Oncoprotein through Docking Analysis

    PubMed Central

    Jena, Lingaraja; Galande, Sneha; Daf, Sangeeta; Mohod, Kanchan; Varma, Ashok K.

    2014-01-01

    Human papillomavirus (HPV) infection is the leading cause of cancer mortality among women worldwide. The life-threatening infection caused by HPV demands the need for designing anticancerous drugs. In the recent years, different compounds from natural origins, such as carrageenan, curcumin, epigallocatechin gallate, indole-3-carbinol, jaceosidin, and withaferin, have been used as a hopeful source of anticancer therapy. These compounds have been shown to suppress HPV infection by different researchers. In the present study, we explored these natural inhibitors against E6 oncoprotein of high-risk HPV-16, which is known to inactivate the p53 tumor suppressor protein. A robust homology model of HPV-16 E6 was built to anticipate the interaction mechanism of E6 oncoprotein with natural inhibitory molecules using a structure-based drug designing approach. Docking analysis showed the interaction of these natural compounds with the p53-binding site of E6 protein residues 113-122 (CQKPLCPEEK) and helped the restoration of p53 functioning. Docking analysis, besides helping in silico validation of natural compounds, also helps understand molecular mechanisms of protein-ligand interactions. PMID:25031569

  16. Clinicopathological correlation of Bcl-2 oncoprotein expression in oral precancer and cancer

    PubMed Central

    Arya, Vandana; Singh, Subash; Daniel, M. Jonathan

    2016-01-01

    Oral squamous cell carcinoma is the most common malignant tumor of the oral cavity. Normally the death of cell and the growth are active processes and depend not only on external factors but also on the expression of genes such as Bcl-2, which activate and inhibit apoptosis. The term Bcl-2 is an acronym for B-cell lymphoma/leukemia-2 genes. It has been reported that there is deregulation of Bcl-2 expression during progression from oral epithelial dysplasia to squamous cell carcinoma. Expression of this oncoprotein can be detected by immunohistochemistry. Aims and objectives An attempt was made to evaluate Bcl-2 oncoprotein expression in patients with oral precancer and cancer. Materials and methods A selective prospective clinical and immunohistochemical study. Clinicopathological examination was correlated with immunohistochemical findings. The immunolocalization of Bcl-2 protein was performed using the labeled streptavidin biotin method. To visualize the reaction, 3,3-diaminobenzidine was used. Results Bcl-2 expression was positive in 11 [36.66%, low Bcl-2 expression 3 (10.00%), moderate Bcl-2 expression 7 (23.33%), and high Bcl-2 expression 1 (3.33%)] oral cancer cases and 14 [87.50%, low expression 8 (50%), moderate expression 6 (37.50%)] precancer cases. Conclusion On the basis of the results of our study, we conclude that positive Bcl-2 expression may be an indicator of poor prognosis in oral cancer and precancer. PMID:26937364

  17. Eradication of large tumors expressing human papillomavirus E7 protein by therapeutic vaccination with E7 fused to the extra domain a from fibronectin.

    PubMed

    Mansilla, Cristina; Berraondo, Pedro; Durantez, Maika; Martínez, Marta; Casares, Noelia; Arribillaga, Laura; Rudilla, Francesc; Fioravanti, Jessica; Lozano, Teresa; Villanueva, Lorea; Sarobe, Pablo; Borrás, Francisco; Leclerc, Claude; Prieto, Jesús; Lasarte, Juan José

    2012-08-01

    Cervical carcinoma is one of the most common cancers in women worldwide. It is well established that chronic infection of the genital tract by various mucosatropic human papillomavirus (HPV) types causes cervical cancer. Cellular immunity to E7 protein from HPV (HPVE7) has been associated with clinical and cytologic resolution of HPV-induced lesions. Thus, we decided to test if targeting of HPVE7 to dendritic cells using a fusion protein containing the extra domain A (EDA) from fibronectin, a natural ligand for TLR4, and HPVE7 (EDA-HPVE7) might be an efficient vaccine for the treatment of cervical carcinoma. We found that EDA-HPVE7 fusion protein was efficiently captured by bone marrow derived dendritic cells in vitro and induced their maturation, with the upregulation of maturation markers and the production of IL-12. Immunization of mice with EDA-HPVE7 fusion protein induced antitumor CD8(+) T cell responses in the absence of additional adjuvants. Repeated intratumoral administration of EDA-HPVE7 in saline was able to cure established TC-1 tumors of 5-7 mm in diameter. More importantly, intravenous injection with EDA-HPVE7 in combination with the TLR ligand polyinosinic-polycytidylic acid (pIC), or with low doses of cyclophosphamide and the TLR9 ligand CpG-B complexed in cationic lipids, were able to eradicate large established TC-1 tumors (1.2 cm in diameter). Thus, therapeutic vaccination with EDA-HPVE7 fusion protein may be effective in the treatment of human cervical carcinoma. PMID:21898393

  18. HPV-E7 Delivered by Engineered Exosomes Elicits a Protective CD8+ T Cell-Mediated Immune Response

    PubMed Central

    Di Bonito, Paola; Ridolfi, Barbara; Columba-Cabezas, Sandra; Giovannelli, Andrea; Chiozzini, Chiara; Manfredi, Francesco; Anticoli, Simona; Arenaccio, Claudia; Federico, Maurizio

    2015-01-01

    We developed an innovative strategy to induce a cytotoxic T cell (CTL) immune response against protein antigens of choice. It relies on the production of exosomes, i.e., nanovesicles spontaneously released by all cell types. We engineered the upload of huge amounts of protein antigens upon fusion with an anchoring protein (i.e., HIV-1 Nefmut), which is an inactive protein incorporating in exosomes at high levels also when fused with foreign proteins. We compared the immunogenicity of engineered exosomes uploading human papillomavirus (HPV)-E7 with that of lentiviral virus-like particles (VLPs) incorporating equivalent amounts of the same antigen. These exosomes, whose limiting membrane was decorated with VSV-G, i.e., an envelope protein inducing pH-dependent endosomal fusion, proved to be as immunogenic as the cognate VLPs. It is noteworthy that the immunogenicity of the engineered exosomes remained unaltered in the absence of VSV-G. Most important, we provide evidence that the inoculation in mouse of exosomes uploading HPV-E7 induces production of anti-HPV E7 CTLs, blocks the growth of syngeneic tumor cells inoculated after immunization, and controls the development of tumor cells inoculated before the exosome challenge. These results represent the proof-of-concept about both feasibility and efficacy of the Nefmut-based exosome platform for the induction of CD8+ T cell immunity. PMID:25760140

  19. Identification of multiple SNT-binding sites on NPM-ALK oncoprotein and their involvement in cell transformation.

    PubMed

    Chikamori, M; Fujimoto, J; Tokai-Nishizumi, N; Yamamoto, T

    2007-05-01

    The t(2;5) chromosomal translocation occurs in anaplastic large-cell lymphoma arising from activated T lymphocytes. This genomic rearrangement generates the nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) oncoprotein that is a chimeric protein consisting of parts of the nuclear protein NPM and ALK receptor protein-tyrosine kinase. We used yeast two-hybrid screening to identify an adaptor protein Suc1-associated neurotrophic factor-induced tyrosine-phosphorylated target (SNT)-2 as a new partner that interacted with the cytoplasmic domain of ALK. Immunoprecipitation assay revealed that SNT-1 and SNT-2 interacted with NPM-ALK and kinase-negative NPM-ALK mutant. Y156, Y567 and a 19-amino-acid sequence (aa 631-649) of NPM-ALK were essential for this interaction. The interaction through Y156 and Y567 was dependent on phosphorylation of these tyrosines, whereas the interaction through the 19-amino-acid sequence was independent of phosphorylation. NPM-ALK mutant protein mutated at these three binding sites showed significantly reduced transforming activity. This transformation-defective NPM-ALK mutant still interacted with signal transducing proteins such as phospholipase C-gamma and phosphatidylinositol 3-kinase, which were previously reported to be relevant to NPM-ALK-dependent tumorigenesis. These observations indicate that the three SNT-binding sites of NPM-ALK are important for its transforming activity. This raises a possibility that SNT family proteins play significant roles in cellular transformation triggered by NPM-ALK, which though remains to be verified.

  20. Expression of the stress response oncoprotein LEDGF/p75 in human cancer: a study of 21 tumor types.

    PubMed

    Basu, Anamika; Rojas, Heather; Banerjee, Hiya; Cabrera, Irena B; Perez, Kayla Y; De León, Marino; Casiano, Carlos A

    2012-01-01

    Oxidative stress-modulated signaling pathways have been implicated in carcinogenesis and therapy resistance. The lens epithelium derived growth factor p75 (LEDGF/p75) is a transcription co-activator that promotes resistance to stress-induced cell death. This protein has been implicated in inflammatory and autoimmune conditions, HIV-AIDS, and cancer. Although LEDGF/p75 is emerging as a stress survival oncoprotein, there is scarce information on its expression in human tumors. The present study was performed to evaluate its expression in a comprehensive panel of human cancers. Transcript expression was examined in the Oncomine cancer gene microarray database and in a TissueScan Cancer Survey Panel quantitative polymerase chain reaction (Q-PCR) array. Protein expression was assessed by immunohistochemistry (IHC) in cancer tissue microarrays (TMAs) containing 1735 tissues representing single or replicate cores from 1220 individual cases (985 tumor and 235 normal tissues). A total of 21 major cancer types were analyzed. Analysis of LEDGF/p75 transcript expression in Oncomine datasets revealed significant upregulation (tumor vs. normal) in 15 out of 17 tumor types. The TissueScan Cancer Q-PCR array revealed significantly elevated LEDGF/p75 transcript expression in prostate, colon, thyroid, and breast cancers. IHC analysis of TMAs revealed significant increased levels of LEDGF/p75 protein in prostate, colon, thyroid, liver and uterine tumors, relative to corresponding normal tissues. Elevated transcript or protein expression of LEDGF/p75 was observed in several tumor types. These results further establish LEDGF/p75 as a cancer-related protein, and provide a rationale for ongoing studies aimed at understanding the clinical significance of its expression in specific human cancers.

  1. Oxymatrine Downregulates HPV16E7 Expression and Inhibits Cell Proliferation in Laryngeal Squamous Cell Carcinoma Hep-2 Cells In Vitro

    PubMed Central

    Ying, Xin-Jiang; Jin, Bin; Chen, Xin-Wei; Xie, Jin; Xu, Hong-Ming; Dong, Pin

    2015-01-01

    Objective. To investigate the possible mechanisms of oxymatrine's role in anti laryngeal squamous cell carcinoma. Methods. We examined the effects of oxymatrine on the proliferation, cell cycle phase distribution, apoptosis, and the protein and mRNA expression levels of HPV16E7 gene in laryngeal carcinoma Hep-2 cells in vitro. The HPV16E7 siRNA inhibition was also done to confirm the effect of downregulating HPV16E7 on the proliferation in Hep-2 cells. Results. Oxymatrine significantly inhibited the growth and proliferation of Hep-2 cells in a dose-dependence and time-dependence manner. Oxymatrine blocked Hep-2 cells in G0/G1 phase, resulting in an obvious accumulation of G0/G1 phase cells while decreasing S phase cells. Oxymatrine induced apoptosis of Hep-2 cells, whose apoptotic rate amounted to about 42% after treatment with 7 mg/mL oxymatrine for 72 h. Oxymatrine also downregulated the expression of HPV16E7 gene, as determined by the western blotting and reverse transcription-polymerase chain reaction analysis. Knockdown of HPV16E7 effectively inhibited the proliferation of Hep-2 cells. Conclusions. Oxymatrine inhibits the proliferation and induces apoptosis of laryngeal carcinoma Hep-2 cells, which might be mediated by a significant cell cycle arrest in G0/G1 phase and downregulation of HPV16E7 gene. Oxymatrine is considered to be a likely preventive and curative candidate for laryngeal cancer. PMID:25811021

  2. Low- and high-risk human papillomavirus E7 proteins regulate p130 differently

    SciTech Connect

    Barrow-Laing, Lisa; Chen Wei; Roman, Ann

    2010-05-10

    The E7 protein of high-risk human papillomaviruses (HR HPVs) targets pRb family members (pRb, p107 and p130) for degradation; low-risk (LR) HPV E7 only targets p130 for degradation. The effect of HR HPV 16 E7 and LR HPV 6 E7 on p130 intracellular localization and half-life was examined. Nuclear/cytoplasmic fractionation and immunofluorescence showed that, in contrast to control and HPV 6 E7-expressing cells, a greater amount of p130 was present in the cytoplasm in the presence of HPV 16 E7. The half-life of p130, relative to control cells, was decreased in the cytoplasm in the presence of HPV 6 E7 or HPV 16 E7, but only decreased by HPV 6 E7 in the nucleus. Inhibition of proteasomal degradation extended the half-life of p130, regardless of intracellular localization. These results suggest that there may be divergent mechanisms by which LR and HR HPV E7 target p130 for degradation.

  3. Oncoprotein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2001-02-27

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  4. Truncated ERG Oncoproteins from TMPRSS2-ERG Fusions Are Resistant to SPOP-Mediated Proteasome Degradation.

    PubMed

    An, Jian; Ren, Shancheng; Murphy, Stephen J; Dalangood, Sumiya; Chang, Cunjie; Pang, Xiaodong; Cui, Yangyan; Wang, Liguo; Pan, Yunqian; Zhang, Xiaowei; Zhu, Yasheng; Wang, Chenji; Halling, Geoffrey C; Cheng, Liang; Sukov, William R; Karnes, R Jeffrey; Vasmatzis, George; Zhang, Qing; Zhang, Jun; Cheville, John C; Yan, Jun; Sun, Yinghao; Huang, Haojie

    2015-09-17

    SPOP mutations and TMPRSS2-ERG rearrangements occur collectively in up to 65% of human prostate cancers. Although the two events are mutually exclusive, it is unclear whether they are functionally interrelated. Here, we demonstrate that SPOP, functioning as an E3 ubiquitin ligase substrate-binding protein, promotes ubiquitination and proteasome degradation of wild-type ERG by recognizing a degron motif at the N terminus of ERG. Prostate cancer-associated SPOP mutations abrogate the SPOP-mediated degradation function on the ERG oncoprotein. Conversely, the majority of TMPRSS2-ERG fusions encode N-terminal-truncated ERG proteins that are resistant to the SPOP-mediated degradation because of degron impairment. Our findings reveal degradation resistance as a previously uncharacterized mechanism that contributes to elevation of truncated ERG proteins in prostate cancer. They also suggest that overcoming ERG resistance to SPOP-mediated degradation represents a viable strategy for treatment of prostate cancers expressing either mutated SPOP or truncated ERG.

  5. DNA tumor virus oncoproteins and retinoblastoma gene mutations share the ability to relieve the cell's requirement for cyclin D1 function in G1

    PubMed Central

    1994-01-01

    The retinoblastoma gene product (pRB) participates in the regulation of the cell division cycle through complex formation with numerous cellular regulatory proteins including the potentially oncogenic cyclin D1. Extending the current view of the emerging functional interplay between pRB and D-type cyclins, we now report that cyclin D1 expression is positively regulated by pRB. Cyclin D1 mRNA and protein is specifically downregulated in cells expressing SV40 large T antigen, adenovirus E1A, and papillomavirus E7/E6 oncogene products and this effect requires intact RB-binding, CR2 domain of E1A. Exceptionally low expression of cyclin D1 is also seen in genetically RB-deficient cell lines, in which ectopically expressed wild-type pRB results in specific induction of this G1 cyclin. At the functional level, antibody-mediated cyclin D1 knockout experiments demonstrate that the cyclin D1 protein, normally required for G1 progression, is dispensable for passage through the cell cycle in cell lines whose pRB is inactivated through complex formation with T antigen, E1A, or E7 oncoproteins as well as in cells which have suffered loss-of-function mutations of the RB gene. The requirement for cyclin D1 function is not regained upon experimental elevation of cyclin D1 expression in cells with mutant RB, while reintroduction of wild-type RB into RB-deficient cells leads to restoration of the cyclin D1 checkpoint. These results strongly suggest that pRB serves as a major target of cyclin D1 whose cell cycle regulatory function becomes dispensable in cells lacking functional RB. Based on available data including this study, we propose a model for an autoregulatory feedback loop mechanism that regulates both the expression of the cyclin D1 gene and the activity of pRB, thereby contributing to a G1 phase checkpoint control in cycling mammalian cells. PMID:8175885

  6. DNA tumor virus oncoproteins and retinoblastoma gene mutations share the ability to relieve the cell's requirement for cyclin D1 function in G1.

    PubMed

    Lukas, J; Müller, H; Bartkova, J; Spitkovsky, D; Kjerulff, A A; Jansen-Dürr, P; Strauss, M; Bartek, J

    1994-05-01

    The retinoblastoma gene product (pRB) participates in the regulation of the cell division cycle through complex formation with numerous cellular regulatory proteins including the potentially oncogenic cyclin D1. Extending the current view of the emerging functional interplay between pRB and D-type cyclins, we now report that cyclin D1 expression is positively regulated by pRB. Cyclin D1 mRNA and protein is specifically downregulated in cells expressing SV40 large T antigen, adenovirus E1A, and papillomavirus E7/E6 oncogene products and this effect requires intact RB-binding, CR2 domain of E1A. Exceptionally low expression of cyclin D1 is also seen in genetically RB-deficient cell lines, in which ectopically expressed wild-type pRB results in specific induction of this G1 cyclin. At the functional level, antibody-mediated cyclin D1 knockout experiments demonstrate that the cyclin D1 protein, normally required for G1 progression, is dispensable for passage through the cell cycle in cell lines whose pRB is inactivated through complex formation with T antigen, E1A, or E7 oncoproteins as well as in cells which have suffered loss-of-function mutations of the RB gene. The requirement for cyclin D1 function is not regained upon experimental elevation of cyclin D1 expression in cells with mutant RB, while reintroduction of wild-type RB into RB-deficient cells leads to restoration of the cyclin D1 checkpoint. These results strongly suggest that pRB serves as a major target of cyclin D1 whose cell cycle regulatory function becomes dispensable in cells lacking functional RB. Based on available data including this study, we propose a model for an autoregulatory feedback loop mechanism that regulates both the expression of the cyclin D1 gene and the activity of pRB, thereby contributing to a G1 phase checkpoint control in cycling mammalian cells. PMID:8175885

  7. Inactivation of the Human Papillomavirus E6 or E7 Gene in Cervical Carcinoma Cells by Using a Bacterial CRISPR/Cas RNA-Guided Endonuclease

    PubMed Central

    Kennedy, Edward M.; Kornepati, Anand V. R.; Goldstein, Michael; Bogerd, Hal P.; Poling, Brigid C.; Whisnant, Adam W.; Kastan, Michael B.

    2014-01-01

    ABSTRACT High-risk human papillomaviruses (HPVs), including HPV-16 and HPV-18, are the causative agents of cervical carcinomas and are linked to several other tumors of the anogenital and oropharyngeal regions. The majority of HPV-induced tumors contain integrated copies of the normally episomal HPV genome that invariably retain intact forms of the two HPV oncogenes E6 and E7. E6 induces degradation of the cellular tumor suppressor p53, while E7 destabilizes the retinoblastoma (Rb) protein. Previous work has shown that loss of E6 function in cervical cancer cells induces p53 expression as well as downstream effectors that induce apoptosis and cell cycle arrest. Similarly, loss of E7 allows increased Rb expression, leading to cell cycle arrest and senescence. Here, we demonstrate that expression of a bacterial Cas9 RNA-guided endonuclease, together with single guide RNAs (sgRNAs) specific for E6 or E7, is able to induce cleavage of the HPV genome, resulting in the introduction of inactivating deletion and insertion mutations into the E6 or E7 gene. This results in the induction of p53 or Rb, leading to cell cycle arrest and eventual cell death. Both HPV-16- and HPV-18-transformed cells were found to be responsive to targeted HPV genome-specific DNA cleavage. These data provide a proof of principle for the idea that vector-delivered Cas9/sgRNA combinations could represent effective treatment modalities for HPV-induced cancers. IMPORTANCE Human papillomaviruses (HPVs) are the causative agents of almost all cervical carcinomas and many other tumors, including many head and neck cancers. In these cancer cells, the HPV DNA genome is integrated into the cellular genome, where it expresses high levels of two viral oncogenes, called E6 and E7, that are required for cancer cell growth and viability. Here, we demonstrate that the recently described bacterial CRISPR/Cas RNA-guided endonuclease can be reprogrammed to target and destroy the E6 or E7 gene in cervical carcinoma

  8. Human papillomavirus type 18 E6 and E7 antibodies in human sera: increased anti-E7 prevalence in cervical cancer patients.

    PubMed Central

    Bleul, C; Müller, M; Frank, R; Gausepohl, H; Koldovsky, U; Mgaya, H N; Luande, J; Pawlita, M; ter Meulen, J; Viscidi, R

    1991-01-01

    Antibody-reactive regions on the human papillomavirus type 18 (HPV-18) E6 and E7 proteins were identified with rabbit polyclonal anti-fusion protein sera by screening of an fd phage expression library containing subgenomic HPV-18 DNA fragments and by testing of overlapping decapeptides representing the E6 and E7 open reading frames. Peptides comprising the delineated regions (designated E6/1 to E6/4 and E7/1) were synthesized and used in an enzyme-linked immunosorbent assay (ELISA) to detect anti-HPV-18 antibodies in human sera. A total of 232 human serum samples (identical numbers of cervical cancer patients and age-matched controls) collected in Tanzania were tested. Similar prevalences (between 0.8 and 4.3%) of antibodies recognizing the different E6 peptides were found in the sera from tumor patients and controls. With a synthetic 28-mer peptide (designated pepE701) comprising the E7/1 region, a significant difference was found: 10 of 116 tumor serum samples but 0 of 116 control serum samples showed a specific reaction (P less than 0.001). This observation confirms earlier results with HPV-16 E7 fusion proteins (I. Jochmus-Kudielka, A. Schneider, R. Braun, R. Kimmig, U. Koldovsky, K. E. Schneweis, K. Seedorf, and L. Gissmann, J. Natl. Cancer Inst. 81:1698-1704, 1989). A lower prevalence of anti-HPV-18 E7 antibodies was observed when 188 human serum samples collected in Germany from tumor patients and controls were tested (3 of 94 positive in the cancer group; 0 of 94 positive in the control group). The type specificity of anti-HPV-18 E7 antibodies was demonstrated when the HPV type found by Southern hybridization in the cervical cancer biopsies was compared with seroreactivity: 4 of 8 serum samples obtained from HPV-18 DNA-positive but 0 of 16 serum samples from HPV-18 DNA-negative tumor patients reacted in the HPV-18 E7 ELISA. In addition, HPV-18-positive sera failed to react in a peptide ELISA with the homologous HPV-16 E7 region (M. Müller, H. Gausepohl, G

  9. Prevention and Inhibition of TC-1 Cell Growth in Tumor Bearing Mice by HPV16 E7 Protein in Fusion with Shiga Toxin B-Subunit from shigella dysenteriae

    PubMed Central

    Sadraeian, Mohammad; Khoshnood Mansoorkhani, Mohammad Javad; Mohkam, Milad; Rasoul-Amini, Sara; Hesaraki, Mahdi; Ghasemi, Younes

    2013-01-01

    Objective: For immunotherapy of human papillomavirus (HPV) -16-associated cervical cancers the E7 protein is considered a prime candidate. However it is a poor inducer of cytotoxic T-cell response, when being used as a singular antigen in protein vaccination. Hence, in this study we focused on the utilization of a vaccine delivery system for prevention or treatment of cervical cancer. Materials and Methods: In this experimental study, we designed and evaluated a novel fusion protein comprising HPV16 E7 antigen fused to Shiga toxin B-subunit (STxB) as both an antigen vector and an adjuvant. Then we designed two preventive and therapeutic tumor models to investigate the prevention and inhibition of TC-1 cell growth in female C57BL/6 mice, respectively. In each model, mice were immunized with the recombinant protein of E7-STxB or E7 without any adjuvant. Results: We demonstrated that prophylactic immunization of E7-STxB protected mice against TC-1 cells. Also in the therapeutic model, E7-STxB inhibited TC-1 tumor growth inlungs. The results were significant when compared with the immunization of E7 singularly. Conclusion: We concluded that immunization with the E7-STxB protein without any adjuvant could generate anti-tumor effect in mice challenged with TC-1 cells.This research verifies the clinical applications and the future prospects of developing HPV16 E7 therapeutic vaccines fused to immunoadjuvants. PMID:23862120

  10. MYB3Rs, plant homologs of Myb oncoproteins, control cell cycle-regulated transcription and form DREAM-like complexes.

    PubMed

    Kobayashi, Kosuke; Suzuki, Toshiya; Iwata, Eriko; Magyar, Zoltán; Bögre, László; Ito, Masaki

    2015-01-01

    Plant MYB3R transcription factors, homologous to Myb oncoproteins, regulate the genes expressed at G2 and M phases in the cell cycle. Recent studies showed that MYB3Rs constitute multiprotein complexes that may correspond to animal complexes known as DREAM or dREAM. Discovery of the putative homologous complex in plants uncovered their significant varieties in structure, function, dynamics, and heterogeneity, providing insight into conserved and diversified aspects of cell cycle-regulated gene transcription.

  11. In Silico Profiling of the Potentiality of Curcumin and Conventional Drugs for CagA Oncoprotein Inactivation.

    PubMed

    Srivastava, Akhileshwar K; Tewari, Mallika; Shukla, Hari S; Roy, Bijoy K

    2015-08-01

    The oncoprotein cytotoxic associated gene A (CagA) of Helicobacter pylori plays a pivotal role in the development of gastric cancer, so it has been an important target for anti-H. pylori drugs. Conventional drugs are currently being implemented against H. pylori. The inhibitory role of plant metabolites like curcumin against H. pylori is still a major scientific challenge. Curcumin may represent a novel promising drug against H. pylori infection without producing side effects. In the present study, a comparative analysis between curcumin and conventional drugs (clarithromycin, amoxicillin, pantoprazole, and metronidazole) was carried out using databases to investigate the potential of curcumin against H. pylori targeting the CagA oncoprotein. Curcumin was filtered using Lipinski's rule of five and the druglikeness property for evaluation of pharmacological properties. Subsequently, molecular docking was employed to determine the binding affinities of curcumin and conventional drugs to the CagA oncoprotein. According to the results obtained from FireDock, the binding energy of curcumin was higher than those of amoxicillin, pantoprazole, and metronidazole, except for clarithromycin, which had the highest binding energy. Accordingly, curcumin may become a promising lead compound against CagA+ H. pylori infection. PMID:25996140

  12. Flat cells come full sphere: Are mutant cytoskeletal-related proteins oncoprotein-monsters or useful immunogens?

    PubMed

    Parry, Michele L; Blanck, George

    2016-01-01

    Osteogenesis imperfecta is inherited as a dominant disease because if one allele is mutated, it contributes a mutant, destructive subunit polypeptide to collagen, which requires many subunits to form normal, polymeric, collagenous structures. Recent cancer genome atlas (TCGA) data indicate that cytoskeletal-related proteins are among the most commonly mutated proteins in human cancers, in distinct mutation frequency groups, i.e., including low mutation frequency groups. Part of the explanation for this observation is likely to be the fact that many of the coding regions for these proteins are very large, and indeed, it is likely these coding regions are mutated in many cells that never become cancerous. However, it would not be surprising if mutations in cytoskeletal proteins, when combined with oncoprotein or tumor suppressor protein mutations, had significant impacts on cancer development, for a number of reasons, including results obtained almost 5 decades ago indicating that well-spread cells in tissue culture, with well-formed cytoskeletons, were less tumorigenic than spherical cells with disrupted cytoskeletons. This raises the question, are mutant cytoskeletal proteins, which would likely interfere with polymer formation, a new class of oncoproteins, in particular, dominant negative oncoproteins? If these proteins are so commonly mutant, could they be the bases for common cancer vaccines?

  13. Flat cells come full sphere: Are mutant cytoskeletal-related proteins oncoprotein-monsters or useful immunogens?

    PubMed Central

    Parry, Michele L; Blanck, George

    2016-01-01

    Osteogenesis imperfecta is inherited as a dominant disease because if one allele is mutated, it contributes a mutant, destructive subunit polypeptide to collagen, which requires many subunits to form normal, polymeric, collagenous structures. Recent cancer genome atlas (TCGA) data indicate that cytoskeletal-related proteins are among the most commonly mutated proteins in human cancers, in distinct mutation frequency groups, i.e., including low mutation frequency groups. Part of the explanation for this observation is likely to be the fact that many of the coding regions for these proteins are very large, and indeed, it is likely these coding regions are mutated in many cells that never become cancerous. However, it would not be surprising if mutations in cytoskeletal proteins, when combined with oncoprotein or tumor suppressor protein mutations, had significant impacts on cancer development, for a number of reasons, including results obtained almost 5 decades ago indicating that well-spread cells in tissue culture, with well-formed cytoskeletons, were less tumorigenic than spherical cells with disrupted cytoskeletons. This raises the question, are mutant cytoskeletal proteins, which would likely interfere with polymer formation, a new class of oncoproteins, in particular, dominant negative oncoproteins? If these proteins are so commonly mutant, could they be the bases for common cancer vaccines? PMID:26225584

  14. Inhibitors of differentiation-1 promotes nitrosopyrrolidine-induced transformation of HPV 16-immortalized cervical epithelial cell

    PubMed Central

    Xie, Lingxia; Li, Jinke; Zhang, Yi; Liu, Bao; Peng, Xue; Lin, Yong; Xu, Wenming; Hu, Lina

    2014-01-01

    Our previous study implied a correlation between inhibitors of differentiation-1 (Id-1) and cervical cancer development. However, how Id-1 contributes to cervical carcinogenesis is unknown. In the present study, we used an in vitro transformation model to investigate the role of Id-1 in the transformation of cervical cells. Human papillomavirus (HPV)-immortalized cervical epithelial cells (H8) were successfully transformed by exposure to the carcinogen N-nitrosopyrrolidine (NPYR). The expression of both Id-1 RNA and protein was significantly increased in transformed H8 cells, suggesting a possible role of Id-1 in cervical cell transformation. Ectopic expression of Id-1 in H8 cells potentiated NPYR-induced cell transformation. In contrast, silencing of Id-1 suppressed NPYR-induced H8 cell transformation. In addition, the expression of HPV E6 and E7 oncoproteins was upregulated while that of the tumor suppressors p53 and pRb was suppressed after H8 cell transformation. Our results suggest that Id-1 plays an oncogenic role in HPV-related cervical carcinogenesis, which sheds light on cervical cancer development mechanisms and implies that Id-1 is a potential target for cervical cancer prevention and therapy. PMID:24628854

  15. Quercetin, E7 and p53 in papillomavirus oncogenic cell transformation.

    PubMed

    Beniston, R G; Morgan, I M; O'Brien, V; Campo, M S

    2001-07-01

    Bovine papillomavirus type 4 (BPV-4) infects the upper alimentary canal of cattle causing benign papillomas which can progress to squamous carcinomas in cattle grazing on bracken fern (BF). We have previously shown that quercetin, a well characterized and potent mutagen found in BF, causes cell cycle arrest of primary bovine cells (PalF), but that a single exposure to quercetin can cause full oncogenic transformation of PalF cells partially transformed by BPV-4. Here we show that cell cycle arrest correlates with an increase in p53 protein levels and transcriptional activity. However, in cells transformed but non-tumorigenic, p53 protein is elevated and transcriptionally activated in response to quercetin or other DNA damaging stimuli, but the cells bypass quercetin-induced G1 arrest likely due to E7 expression. In transformed tumorigenic cells, p53 is elevated in response to quercetin but its transcriptional activity is inhibited due to mutation, and the cells fail to stop in G1 in the presence of quercetin.

  16. An HPV-E6/E7 immunotherapy plus PD-1 checkpoint inhibition results in tumor regression and reduction in PD-L1 expression.

    PubMed

    Rice, A E; Latchman, Y E; Balint, J P; Lee, J H; Gabitzsch, E S; Jones, F R

    2015-09-01

    We have investigated if immunotherapy against human papilloma virus (HPV) using a viral gene delivery platform to immunize against HPV 16 genes E6 and E7 (Ad5 [E1-, E2b-]-E6/E7) combined with programmed death-ligand 1 (PD-1) blockade could increase therapeutic effect as compared to the vaccine alone. Ad5 [E1-, E2b-]-E6/E7 as a single agent induced HPV-E6/E7 cell-mediated immunity. Immunotherapy using Ad5 [E1-, E2b-]-E6/E7 resulted in clearance of small tumors and an overall survival benefit in mice with larger established tumors. When immunotherapy was combined with immune checkpoint blockade, an increased level of anti-tumor activity against large tumors was observed. Analysis of the tumor microenvironment in Ad5 [E1-, E2b-]-E6/E7 treated mice revealed elevated CD8(+) tumor infiltrating lymphocytes (TILs); however, we observed induction of suppressive mechanisms such as programmed death-ligand 1 (PD-L1) expression on tumor cells and an increase in PD-1(+) TILs. When Ad5 [E1-, E2b-]-E6/E7 immunotherapy was combined with anti-PD-1 antibody, we observed CD8(+) TILs at the same level but a reduction in tumor PD-L1 expression on tumor cells and reduced PD-1(+) TILs providing a mechanism by which combination therapy favors a tumor clearance state and a rationale for pairing antigen-specific vaccines with checkpoint inhibitors in future clinical trials.

  17. Inhibition of HPV-16 E6/E7 immortalization of normal keratinocytes by hairpin ribozymes

    PubMed Central

    Alvarez-Salas, Luis M.; Cullinan, Amy E.; Siwkowski, Andrew; Hampel, Arnold; DiPaolo, Joseph A.

    1998-01-01

    HPV-16 E6 and E7 genes are required to efficiently immortalize a broad spectrum of cell types including cervical keratinocytes. Therefore, the E6/E7 genes can be considered relevant targets for anti-cancer therapy. We produced several engineered hairpin (HP) ribozymes to specifically disrupt HPV-16 E6/E7 mRNA. After extensive biochemical characterization, one anti-E6 HP ribozyme (R434) was selected for in vivo testing because of its superior catalytic capabilities. When expressed in cis, R434 efficiently inhibited E6 in vitro translation. Cis-expression of the HP ribozyme with HPV-16 E6/E7 genes in normal human keratinocytes reduced the growth rate and prevented immortalization. RNA analysis by reverse transcription-PCR showed that E6/E7 transcripts were cleaved in post-transfected cells and virtually were eliminated after long term expression. Of interest, an inactive version of the HP also was able to significantly affect the immortalizing ability of E6/E7, probably through passive hybridization. The combination of passive and cleaving antisense RNA therefore is established as an effective inhibitor of HPV-16 E6/E7 immortalization. PMID:9448307

  18. Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells

    PubMed Central

    Hasegawa, Masanori; Takahashi, Hidekazu; Rajabi, Hasan; Alam, Maroof; Suzuki, Yozo; Yin, Li; Tagde, Ashujit; Maeda, Takahiro; Hiraki, Masayuki; Sukhatme, Vikas P.; Kufe, Donald

    2016-01-01

    The xCT light chain of the cystine/glutamate transporter (system XC−) is of importance for the survival of triple-negative breast cancer (TNBC) cells. The MUC1-C transmembrane oncoprotein is aberrantly overexpressed in TNBC and, like xCT, has been linked to maintaining glutathione (GSH) levels and redox balance. However, there is no known interaction between MUC1-C and xCT. Here we show that silencing MUC1-C is associated with decreases in xCT expression in TNBC cells. The results demonstrate that MUC1-C forms a complex with xCT and the CD44 variant (CD44v), which interacts with xCT and thereby controls GSH levels. MUC1-C binds directly with CD44v and in turn promotes stability of xCT in the cell membrane. The interaction between MUC1-C and xCT is further supported by the demonstration that targeting xCT with silencing or the inhibitor sulfasalazine suppresses MUC1 gene transcription by increasing histone and DNA methylation on the MUC1 promoter. In terms of the functional significance of the MUC1-C/xCT interaction, we show that MUC1-C protects against treatment with erastin, an inhibitor of XC− and inducer of ferroptosis, a form of non-apoptotic cell death. These findings indicate that targeting this novel MUC1-C/xCT pathway could represent a potential therapeutic approach for promoting TNBC cell death. PMID:26930718

  19. Acetylation of the c-MYC oncoprotein is required for cooperation with the HTLV-1 p30{sup II} accessory protein and the induction of oncogenic cellular transformation by p30{sup II}/c-MYC

    SciTech Connect

    Romeo, Megan M.; Ko, Bookyung; Kim, Janice; Brady, Rebecca; Heatley, Hayley C.; He, Jeffrey; Harrod, Carolyn K.; Barnett, Braden; Ratner, Lee; Lairmore, Michael D.; Martinez, Ernest; Lüscher, Bernhard; Robson, Craig N.; Henriksson, Marie; Harrod, Robert

    2015-02-15

    The human T-cell leukemia retrovirus type-1 (HTLV-1) p30{sup II} protein is a multifunctional latency-maintenance factor that negatively regulates viral gene expression and deregulates host signaling pathways involved in aberrant T-cell growth and proliferation. We have previously demonstrated that p30{sup II} interacts with the c-MYC oncoprotein and enhances c-MYC-dependent transcriptional and oncogenic functions. However, the molecular and biochemical events that mediate the cooperation between p30{sup II} and c-MYC remain to be completely understood. Herein we demonstrate that p30{sup II} induces lysine-acetylation of the c-MYC oncoprotein. Acetylation-defective c-MYC Lys→Arg substitution mutants are impaired for oncogenic transformation with p30{sup II} in c-myc{sup −/−} HO15.19 fibroblasts. Using dual-chromatin-immunoprecipitations (dual-ChIPs), we further demonstrate that p30{sup II} is present in c-MYC-containing nucleoprotein complexes in HTLV-1-transformed HuT-102 T-lymphocytes. Moreover, p30{sup II} inhibits apoptosis in proliferating cells expressing c-MYC under conditions of genotoxic stress. These findings suggest that c-MYC-acetylation is required for the cooperation between p30{sup II}/c-MYC which could promote proviral replication and contribute to HTLV-1-induced carcinogenesis. - Highlights: • Acetylation of c-MYC is required for oncogenic transformation by HTLV-1 p30{sup II}/c-MYC. • Acetylation-defective c-MYC mutants are impaired for foci-formation by p30{sup II}/c-MYC. • The HTLV-1 p30{sup II} protein induces lysine-acetylation of c-MYC. • p30{sup II} is present in c-MYC nucleoprotein complexes in HTLV-1-transformed T-cells. • HTLV-1 p30{sup II} inhibits apoptosis in c-MYC-expressing proliferating cells.

  20. Structural role of the conserved cysteines in the dimerization of the viral transmembrane oncoprotein E5.

    PubMed

    Windisch, Dirk; Hoffmann, Silke; Afonin, Sergii; Vollmer, Stefanie; Benamira, Soraya; Langer, Birgid; Bürck, Jochen; Muhle-Goll, Claudia; Ulrich, Anne S

    2010-09-22

    The E5 oncoprotein is the major transforming protein of bovine papillomavirus type 1. This 44-residue transmembrane protein can interact with the platelet-derived growth factor receptor β, leading to ligand-independent activation and cell transformation. For productive interaction, E5 needs to dimerize via a C-terminal pair of cysteines, though a recent study suggested that its truncated transmembrane segment can dimerize on its own. To analyze the structure of the full protein in a membrane environment and elucidate the role of the Cys-Ser-Cys motif, we produced recombinantly the wild-type protein and four cysteine mutants. Comparison by circular dichroism in detergent micelles and lipid vesicular dispersion and by NMR in trifluoroethanol demonstrates that the absence of one or both cysteines does not influence the highly α-helical secondary structure, nor does it impair the ability of E5 to dimerize, observations that are further supported by sodium dodecylsulfate polyacrylamide gel electrophoresis. We also observed assemblies of higher order. Oriented circular dichroism in lipid bilayers shows that E5 is aligned as a transmembrane helix with a slight tilt angle, and that this membrane alignment is also independent of any cysteines. We conclude that the Cys-containing motif represents a disordered region of the protein that serves as an extra covalent connection for stabilization.

  1. Functional and Structural Mimicry of Cellular Protein Kinase A Anchoring Proteins by a Viral Oncoprotein

    PubMed Central

    King, Cason R.; Cohen, Michael J.; Fonseca, Gregory J.; Dirk, Brennan S.; Dikeakos, Jimmy D.; Mymryk, Joe S.

    2016-01-01

    The oncoproteins of the small DNA tumor viruses interact with a plethora of cellular regulators to commandeer control of the infected cell. During infection, adenovirus E1A deregulates cAMP signalling and repurposes it for activation of viral gene expression. We show that E1A structurally and functionally mimics a cellular A-kinase anchoring protein (AKAP). E1A interacts with and relocalizes protein kinase A (PKA) to the nucleus, likely to virus replication centres, via an interaction with the regulatory subunits of PKA. Binding to PKA requires the N-terminus of E1A, which bears striking similarity to the amphipathic α-helical domain present in cellular AKAPs. E1A also targets the same docking-dimerization domain of PKA normally bound by cellular AKAPs. In addition, the AKAP like motif within E1A could restore PKA interaction to a cellular AKAP in which its normal interaction motif was deleted. During infection, E1A successfully competes with endogenous cellular AKAPs for PKA interaction. E1A’s role as a viral AKAP contributes to viral transcription, protein expression and progeny production. These data establish HAdV E1A as the first known viral AKAP. This represents a unique example of viral subversion of a crucial cellular regulatory pathway via structural mimicry of the PKA interaction domain of cellular AKAPs. PMID:27137912

  2. The footprint of E7(7) in amplitudes of Script N = 8 supergravity

    NASA Astrophysics Data System (ADS)

    Kallosh, Renata; Kugo, Taichiro

    2009-01-01

    We study the low energy theorems associated with the non-linearly realized continuous E7(7)(Bbb R) symmetry of the on-shell Script N = 8 supergravity. For Nambu-Goldstone bosons we evaluate the one-soft-scalar-boson emission amplitudes by computing the E7(7) current matrix element on the one-particle external lines. We use the explicit form of the conserved E7(7) Noether current and prove that all such matrix elements vanish in the soft momentum limit, assuming the SU(8) symmetry of the S-matrix. This implies that all tree amplitudes vanish in the one-soft-boson limit. We also discuss the implications of unbroken E7(7)(Bbb R) symmetry for higher-order amplitudes.

  3. 42 CFR 52e.7 - What are the terms and conditions of awards?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... by subpart Q of 45 CFR part 74. (b) The Director may permit unobligated grant funds remaining in the... HEART, LUNG, AND BLOOD INSTITUTE GRANTS FOR PREVENTION AND CONTROL PROJECTS § 52e.7 What are the...

  4. 42 CFR 52e.7 - What are the terms and conditions of awards?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... by subpart Q of 45 CFR part 74. (b) The Director may permit unobligated grant funds remaining in the... HEART, LUNG, AND BLOOD INSTITUTE GRANTS FOR PREVENTION AND CONTROL PROJECTS § 52e.7 What are the...

  5. 42 CFR 52e.7 - What are the terms and conditions of awards?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... by subpart Q of 45 CFR part 74. (b) The Director may permit unobligated grant funds remaining in the... HEART, LUNG, AND BLOOD INSTITUTE GRANTS FOR PREVENTION AND CONTROL PROJECTS § 52e.7 What are the...

  6. 42 CFR 52e.7 - What are the terms and conditions of awards?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... by subpart Q of 45 CFR part 74. (b) The Director may permit unobligated grant funds remaining in the... HEART, LUNG, AND BLOOD INSTITUTE GRANTS FOR PREVENTION AND CONTROL PROJECTS § 52e.7 What are the...

  7. 42 CFR 52e.7 - What are the terms and conditions of awards?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... by subpart Q of 45 CFR part 74. (b) The Director may permit unobligated grant funds remaining in the... HEART, LUNG, AND BLOOD INSTITUTE GRANTS FOR PREVENTION AND CONTROL PROJECTS § 52e.7 What are the...

  8. Repression of MHC class I transcription by HPV16E7 through interaction with a putative RXRbeta motif and NF-kappaB cytoplasmic sequestration.

    PubMed

    Li, Hui; Zhan, Tailan; Li, Chang; Liu, Mugen; Wang, Qing K

    2009-10-16

    Down-regulation of transcription of the MHC class I genes in HPV16 tumorigenic cells is partly due to HPV16E7 associated with the MHC class I promoter and repressed chromatin activation. In this study, we further demonstrated that HPV16E7 is physically associated with a putative RXRbeta binding motif (GGTCA) of the proximal promoter of the MHC class I genes by using reporter transcriptional assays and chromatin immunoprecipitation assays. Our data also provide evidence that HPV16E7 inhibits TNF-alpha-induced up-regulation of MHC class I transcription by impaired nuclear translocation of NF-kappaB. More importantly, CaSki tumor cells treated with TSA and transfected with the constitutively active mutant form of IKK-alpha (which can activate NF-kappaB directly) showed a maximal level of up-regulation of MHC-I expression. Taken together, our results suggest that HPV16E7 may employ two independent mechanisms to ensure that either the constitutive or inducible transcription of MHC class I genes is down-regulated. PMID:19665994

  9. The human T-cell leukemia/lymphotropic virus type I p12I protein cooperates with the E5 oncoprotein of bovine papillomavirus in cell transformation and binds the 16-kilodalton subunit of the vacuolar H+ ATPase.

    PubMed Central

    Franchini, G; Mulloy, J C; Koralnik, I J; Lo Monico, A; Sparkowski, J J; Andresson, T; Goldstein, D J; Schlegel, R

    1993-01-01

    The human T-cell leukemia/lymphotropic virus type I (HTLV-I) induces T-cell leukemia and transforms human T cells in vitro. A recently identified protein with a molecular weight of 12,000 (12K) (p12I), encoded by single- and double-spliced mRNAs transcribed from the 3' end of the HTLV-I genome, has been shown to localize in the perinuclear compartment and in the cellular endomembranes. The p12I protein exhibits significant amino acid sequence similarity to the E5 oncoprotein of bovine papillomavirus type 1 (BPV-1). Both proteins are very hydrophobic, contain a glutamine residue in the middle of a potential transmembrane region(s), and are localized in similar cellular compartments. Because of these observations, we investigated whether the p12I resemblance to E5 correlated with a similarity in their biological behavior. We expressed the p12I protein to evaluate its ability to functionally cooperate with the BPV-1 E5 oncoprotein and to bind to a cellular target of the E5 protein, the 16K component of the vacuolar H+ ATPase. Cotransfection of the mouse C127 cell line with the p12I and E5 cDNAs showed that although p12I alone could not induce focus formation, it strongly potentiated the transforming activity of E5. In addition, the p12I protein bound to the 16K protein as efficiently as the E5 protein. These findings might provide new insight for potential mechanisms of HTLV-I transformation and suggest that p12I and E5 represent an example of convergent evolution between RNA and DNA viruses. Images PMID:8230493

  10. Combined stimulation of IL-2 and 4-1BB receptors augments the antitumor activity of E7 DNA vaccines by increasing Ag-specific CTL responses.

    PubMed

    Kim, Ha; Kwon, Byungsuk; Sin, Jeong-Im

    2013-01-01

    Human papillomavirus (HPV) infection is a major cause of cervical cancer. Here, we investigate whether concurrent therapy using HPV E7 DNA vaccines (pE7) plus IL-2 vs. IL-15 cDNA and anti-4-1BB Abs might augment antitumor activity against established tumors. IL-2 cDNA was slightly better than IL-15 cDNA as a pE7 adjuvant. Co-delivery of pE7+IL-2 cDNA increased tumor cure rates from 7% to 27%, whereas co-delivery of pE7+IL-2 cDNA with anti-4-1BB Abs increased tumor cure rates from 27% to 67% and elicited long-term memory responses. This increased activity was concomitant with increased induction of Ag-specific CTL activity and IFN-γ responses, but not with Ag-specific IgG production. Moreover, the combined stimulation of IL-2 and 4-1BB receptors with rIL-2 and anti-4-1BB Abs resulted in enhanced production of IFN-γ from Ag-specific CD8+ T cells. However, this effect was abolished by treatment with anti-IL-2 Abs and 4-1BB-Fc, suggesting that the observed effect was IL-2- and anti-4-1BB Ab-specific. A similar result was also obtained for Ag-specific CTL activity. Thus, these studies demonstrate that combined stimulation through the IL-2 and 4-1BB receptors augments the Ag-specific CD8+ CTL responses induced by pE7, increasing tumor cure rates and long-term antitumor immune memory. These findings may have implications for the design of DNA-based therapeutic vaccines against cancer. PMID:24391824

  11. Immunohistochemical determination of ETS-1 oncoprotein expression in urothelial carcinomas of the urinary bladder.

    PubMed

    Sari, Aysegul; Calli, Aylin; Gorgel, Sacit Nuri; Altinboga, Aysegul Aksoy; Kara, Cengiz; Dincel, Cetin; Cakalagaoglu, Fulya

    2012-03-01

    ETS-1 protooncogene is an important transcription factor that plays a role in the regulation of physiological processes, such as cell proliferation and differentiation. ETS-1 is thought to be related to the growth of carcinoma cells by its regulation of the transcription of matrix metalloproteinases and urokinase-type plasminogen activator. In this study, we aimed to investigate the expression pattern of ETS-1 oncoprotein in urothelial carcinomas of the urinary bladder and determine its relationship with histopathologic parameters, including tumor grade and stage. One hundred six specimens of urothelial carcinoma and a total of 14 normal urothelium were analyzed immunohistochemically with anti-ETS-1 monoclonal antibody. The normal urothelium showed positive ETS-1 immunostaining. ETS-1 expression remained high in low-grade and noninvasive tumors, whereas it frequently decreased in high-grade or invasive carcinomas. Interestingly, ETS-1 was highly expressed in the basal cell layer of the noninvasive urothelial carcinomas. ETS-1 expression showed a strong negative correlation with the tumor grade (P<0.001; r, -0.67) and stage (P<0.001; r, -0.75). The nonmuscle-invasive tumors (pTa+pT1) and noninvasive tumors (pTa) had significantly higher ETS-1 expression than the muscle-invasive tumors (pT2; P<0.001) and invasive tumors (pT1+pT2; P<0.001), respectively. Results of our study show that decreased ETS-1 expression is significantly associated with high grade and advanced stage in urothelial carcinomas of the urinary bladder, and that the downregulation of ETS-1 expression may be a marker of the aggressiveness of such malignancies.

  12. The Canine Papillomavirus and Gamma HPV E7 Proteins Use an Alternative Domain to Bind and Destabilize the Retinoblastoma Protein

    PubMed Central

    Wang, Jingang; Zhou, Dan; Prabhu, Anjali; Schlegel, Richard; Yuan, Hang

    2010-01-01

    The high-risk HPV E6 and E7 proteins cooperate to immortalize primary human cervical cells and the E7 protein can independently transform fibroblasts in vitro, primarily due to its ability to associate with and degrade the retinoblastoma tumor suppressor protein, pRb. The binding of E7 to pRb is mediated by a conserved Leu-X-Cys-X-Glu (LXCXE) motif in the conserved region 2 (CR2) of E7 and this domain is both necessary and sufficient for E7/pRb association. In the current study, we report that the E7 protein of the malignancy-associated canine papillomavirus type 2 encodes an E7 protein that has serine substituted for cysteine in the LXCXE motif. In HPV, this substitution in E7 abrogates pRb binding and degradation. However, despite variation at this critical site, the canine papillomavirus E7 protein still bound and degraded pRb. Even complete deletion of the LXSXE domain of canine E7 failed to interfere with binding to pRb in vitro and in vivo. Rather, the dominant binding site for pRb mapped to the C-terminal domain of canine E7. Finally, while the CR1 and CR2 domains of HPV E7 are sufficient for degradation of pRb, the C-terminal region of canine E7 was also required for pRb degradation. Screening of HPV genome sequences revealed that the LXSXE motif of the canine E7 protein was also present in the gamma HPVs and we demonstrate that the gamma HPV-4 E7 protein also binds pRb in a similar way. It appears, therefore, that the type 2 canine PV and gamma-type HPVs not only share similar properties with respect to tissue specificity and association with immunosuppression, but also the mechanism by which their E7 proteins interact with pRb. PMID:20824099

  13. Human T-cell leukemia virus-I tax oncoprotein functionally targets a subnuclear complex involved in cellular DNA damage-response.

    PubMed

    Haoudi, Abdelali; Daniels, Rodney C; Wong, Eric; Kupfer, Gary; Semmes, O John

    2003-09-26

    The virally encoded oncoprotein Tax has been implicated in HTLV-1-mediated cellular transformation. The exact mechanism by which this protein contributes to the oncogenic process is not known. However, it has been hypothesized that Tax induces genomic instability via repression of cellular DNA repair. We examined the effect of de novo Tax expression upon the cell cycle, because appropriate activation of cell cycle checkpoints is essential to a robust damage-repair response. Upon induction of tax expression, Jurkat T-cells displayed a pronounced accumulation in G2/M that was reversible by caffeine. We examined the G2-specific checkpoint signaling response in these cells and found activation of the ATM/chk2-mediated pathway, whereas the ATR/chk1-mediated response was unaffected. Immunoprecipitation with anti-chk2 antibody results in co-precipitation of Tax demonstrating a direct interaction of Tax with a chk2-containing complex. We also show that Tax targets a discrete nuclear site and co-localizes with chk2 and not chk1. This nuclear site, previously identified as Tax Speckled Structures (TSS), also contains the early damage response factor 53BP1. The recruitment of 53BP1 to TSS is dependent upon ATM signaling and requires expression of Tax. Specifically, Tax expression induces redistribution of diffuse nuclear 53BP1 to the TSS foci. Taken together these data suggest that the TSS describe a unique nuclear site involved in DNA damage recognition, repair response, and cell cycle checkpoint activation. We suggest that association of Tax with this multifunctional subnuclear site results in disruption of a subset of the site-specific activities and contributes to cellular genomic instability. PMID:12842897

  14. A novel intracellular antibody against the E6 oncoprotein impairs growth of human papillomavirus 16-positive tumor cells in mouse models.

    PubMed

    Amici, Carla; Visintin, Michela; Verachi, Francesca; Paolini, Francesca; Percario, Zulema; Di Bonito, Paola; Mandarino, Angela; Affabris, Elisabetta; Venuti, Aldo; Accardi, Luisa

    2016-03-29

    Single-chain variable fragments (scFvs) expressed as "intracellular antibodies" (intrabodies) can target intracellular antigens to hamper their function efficaciously and specifically. Here we use an intrabody targeting the E6 oncoprotein of Human papillomavirus 16 (HPV16) to address the issue of a non-invasive therapy for HPV cancer patients.A scFv against the HPV16 E6 was selected by Intracellular Antibody Capture Technology and expressed as I7nuc in the nucleus of HPV16-positive SiHa, HPV-negative C33A and 293T cells. Colocalization of I7nuc and recombinant E6 was observed in different cell compartments, obtaining evidence of E6 delocalization ascribable to I7nuc. In SiHa cells, I7nuc expressed by pLNCX retroviral vector was able to partially inhibit degradation of the main E6 target p53, and induced p53 accumulation in nucleus. When analyzing in vitro activity on cell proliferation and survival, I7nuc was able to decrease growth inducing late apoptosis and necrosis of SiHa cells.Finally, I7nuc antitumor activity was demonstrated in two pre-clinical models of HPV tumors. C57BL/6 mice were injected subcutaneously with HPV16-positive TC-1 or C3 tumor cells, infected with pLNCX retroviral vector expressing or non-expressing I7nuc. All the mice injected with I7nuc-expressing cells showed a clear delay in tumor onset; 60% and 40% of mice receiving TC-1 and C3 cells, respectively, remained tumor-free for 17 weeks of follow-up, whereas 100% of the controls were tumor-bearing 20 days post-inoculum. Our data support the therapeutic potential of E6-targeted I7nuc against HPV tumors. PMID:26788990

  15. Vaccination trial with HPV16 L1E7 chimeric virus-like particles in women suffering from high grade cervical intraepithelial neoplasia (CIN 2/3).

    PubMed

    Kaufmann, Andreas M; Nieland, John D; Jochmus, Ingrid; Baur, Siegfried; Friese, Klaus; Gabelsberger, Joseph; Gieseking, Friederike; Gissmann, Lutz; Glasschröder, Birgit; Grubert, Thomas; Hillemanns, Peter; Höpfl, Reinhard; Ikenberg, Hans; Schwarz, Jörg; Karrasch, Matthias; Knoll, Anette; Küppers, Volkmar; Lechmann, Martin; Lelle, Ralph J; Meissner, Harald; Müller, Rainer T; Pawlita, Michael; Petry, Karl Ulrich; Pilch, Henryk; Walek, Elke; Schneider, Achim

    2007-12-15

    Persistent infection with human papillomaviruses (HPV) is a prerequisite for the development of cervical cancer. Vaccination with virus-like particles (VLP) has demonstrated efficacy in prophylaxis but lacks therapeutic potential. HPV16 L1E7 chimeric virus-like particles (CVLP) consist of a carboxy-terminally truncated HPV16L1 protein fused to the amino-terminal part of the HPV16 E7 protein and self-assemble by recombinant expression of the fusion protein. The CVLP are able to induce L1- and E7-specific cytotoxic T lymphocytes. We have performed a first clinical trial to gain information about the safety and to generate preliminary data on the therapeutic potential of the CVLP in humans. A randomized, double blind, placebo-controlled clinical trial has been conducted in 39 HPV16 mono-infected high grade cervical intraepithelial neoplasia (CIN) patients (CIN 2/3). Two doses (75 mug or 250 mug) of CVLP were applied. The duration of the study was 24 weeks with 2 optional visits after another 12 and 24 weeks. The vaccine showed a very good safety profile with only minor adverse events attributable to the immunization. Antibodies with high titers against HPV16 L1 and low titers against HPV16 E7 as well as cellular immune responses against both proteins were induced. Responses were equivalent for both vaccine concentrations. A trend for histological improvement to CIN 1 or normal was seen in 39% of the patients receiving the vaccine and only 25% of the placebo recipients. Fifty-six percent of the responders were also HPV16 DNA-negative by the end of the study. Therefore, we demonstrated evidence for safety and a nonsignificant trend for the clinical efficacy of the HPV16 L1E7 CVLP vaccine.

  16. Chaperonin TRiC/CCT Modulates the Folding and Activity of Leukemogenic Fusion Oncoprotein AML1-ETO.

    PubMed

    Roh, Soung-Hun; Kasembeli, Moses; Galaz-Montoya, Jesús G; Trnka, Mike; Lau, Wilson Chun-Yu; Burlingame, Alma; Chiu, Wah; Tweardy, David J

    2016-02-26

    AML1-ETO is the most common fusion oncoprotein causing acute myeloid leukemia (AML), a disease with a 5-year survival rate of only 24%. AML1-ETO functions as a rogue transcription factor, altering the expression of genes critical for myeloid cell development and differentiation. Currently, there are no specific therapies for AML1-ETO-positive AML. While known for decades to be the translational product of a chimeric gene created by the stable chromosome translocation t(8;21)(q22;q22), it is not known how AML1-ETO achieves its native and functional conformation or whether this process can be targeted for therapeutic benefit. Here, we show that the biosynthesis and folding of the AML1-ETO protein is facilitated by interaction with the essential eukaryotic chaperonin TRiC (or CCT). We demonstrate that a folding intermediate of AML1-ETO binds to TRiC directly, mainly through its β-strand rich, DNA-binding domain (AML-(1-175)), with the assistance of HSP70. Our results suggest that TRiC contributes to AML1-ETO proteostasis through specific interactions between the oncoprotein's DNA-binding domain, which may be targeted for therapeutic benefit.

  17. Simian virus 40 sequences and expression of the viral large T antigen oncoprotein in human pleomorphic adenomas of parotid glands.

    PubMed

    Martinelli, Marcella; Martini, Fernanda; Rinaldi, Eliana; Caramanico, Laura; Magri, Eros; Grandi, Enrico; Carinci, Francesco; Pastore, Antonio; Tognon, Mauro

    2002-10-01

    Simian virus 40 (SV40) sequences of the early region coding for the large T antigen (Tag) oncoprotein were investigated in DNA samples from human pleomorphic adenoma (PA) of parotid glands. Specific SV40 sequences were detected, by PCR and filter hybridization with an internal oligoprobe, in 28 of 45 (62%) human PA specimens. None of the DNA samples from 11 normal salivary gland tissues was SV40-positive. DNA sequence analysis, carried out in all PCR amplified products from SV40-positive PA specimens, confirmed the SV40 specificity and indicated that PCR products had a sequence not distinguishable from SV40 DNA wild-type strain 776. SV40 Tag expression was revealed by immunohistochemistry with the specific monoclonal antibody Pab 101 in PA thin sections with a highly sensitive technical approach which retrieved the nuclear viral oncoprotein in 26 out of 28 (93%) samples previously found SV40-positive by PCR. Detection of SV40 sequences and Tag expression in human PA suggests that this oncogenic virus may play a role as a cofactor in the onset and/or progression of this benign neoplasm, or that SV40 DNA could replicate and express the Tag in PA cells.

  18. Novel DNA binding specificities of a putative herpesvirus bZIP oncoprotein.

    PubMed Central

    Qian, Z; Brunovskis, P; Lee, L; Vogt, P K; Kung, H J

    1996-01-01

    Marek's disease virus is a highly oncogenic herpesvirus that can cause T lymphomas and peripheral nerve demyelination in chickens. meq, a candidate oncogene of Marek's disease virus, encodes a basic leucine zipper (bZIP) transcription factor which contains a large proline-rich domain in its C terminus. On the basis of its bZIP structural homology, meq is perhaps the only member of the jun-fos gene family completely viral in origin. We previously showed that Meq's C-terminal domain has potent transactivation activity and that its bZIP domain can dimerize with itself and with c-Jun also. In an effort to identify viral and cellular targets of Meq, we have determined the optimal binding sites for Meq-Jun heterodimers and Meq-Meq homodimers. By a PCR-based approach using cyclic amplification of selected targets, Meq-Jun heterodimers were found to optimally bind tetradecanoylphorbol acetate response element (TRE) and cyclic AMP response element (CRE) consensus sequences. This result was consistent with the results of our previous functional analysis implicating Meq-Jun heterodimers in the transactivation of the Meq promoter through a TRE- or CRE-like sequence. Interestingly, Meq-Meq homodimers were found to bind two distinct motif elements. The first [GAGTGATG AC(G)TCATC] has a consensus which includes a TRE or CRE core flanked by additional nucleotides critical for tight binding. Methylation interference and mutational analyses confirmed the importance of the flanking residues. The sequences of a subset of TRE and CRE sites selected by Meq-Meq are closely related to the binding motif of Maf, another bZIP oncoprotein. The second putative Meq binding site (RACACACAY) bears a completely different consensus not shared by other bZIP proteins. Binding to this consensus sequence also requires secondary structure characteristics associated with DNA bending. CACA motifs are known to promote DNA curvature and function in a number of special biological processes. Our results lend

  19. Recapitulation of the effects of the human papillomavirus type 16 E7 oncogene on mouse epithelium by somatic Rb deletion and detection of pRb-independent effects of E7 in vivo.

    PubMed

    Balsitis, Scott J; Sage, Julien; Duensing, Stefan; Münger, Karl; Jacks, Tyler; Lambert, Paul F

    2003-12-01

    Although the human papillomavirus (HPV) E7 oncogene is known to contribute to the development of human cervical cancer, the mechanisms of its carcinogenesis are poorly understood. The first identified and most recognized function of E7 is its binding to and inactivation of the retinoblastoma tumor suppressor (pRb), but at least 18 other biological activities have also been reported for E7. Thus, it remains unclear which of these many activities contribute to the oncogenic potential of E7. We used a Cre-lox system to abolish pRb expression in the epidermis of transgenic mice and compared the outcome with the effects of E7 expression in the same tissue at early ages. Mice lacking pRb in epidermis showed epithelial hyperplasia, aberrant DNA synthesis, and improper differentiation. In addition, Rb-deleted epidermis (i.e., epidermis composed of cells with Rb deleted) exhibited centrosomal abnormalities and failed to arrest the cell cycle in response to ionizing radiation. Transgenic mice expressing E7 in skin display the same range of phenotypes. In sum, few differences were detected between Rb-deleted epidermis and E7-expressing epidermis in young mice. However, when both E7 was expressed and Rb was deleted in the same tissue, increased hyperplasia and dysplasia were observed. These findings indicate that inactivation of the Rb pathway can largely account for E7's phenotypes at an early age, but that pRb-independent activities of E7 are detectable in vivo.

  20. Lysyl Oxidase Is Downregulated by the EWS/FLI1 Oncoprotein and Its Propeptide Domain Displays Tumor Supressor Activities in Ewing Sarcoma Cells

    PubMed Central

    García-García, Laura; de la Parra, Juan; Alonso, Javier

    2013-01-01

    Ewing sarcoma is the second most common bone malignancy in children and young adults. It is driven by oncogenic fusion proteins (i.e. EWS/FLI1) acting as aberrant transcription factors that upregulate and downregulate target genes, leading to cellular transformation. Thus, identificating these target genes and understanding their contribution to Ewing sarcoma tumorigenesis are key for the development of new therapeutic strategies. In this study we show that lysyl oxidase (LOX), an enzyme involved in maintaining structural integrity of the extracellular matrix, is downregulated by the EWS/FLI1 oncoprotein and in consequence it is not expressed in Ewing sarcoma cells and primary tumors. Using a doxycycline inducible system to restore LOX expression in an Ewing sarcoma derived cell line, we showed that LOX displays tumor suppressor activities. Interestingly, we showed that the tumor suppressor activity resides in the propeptide domain of LOX (LOX-PP), an N-terminal domain produced by proteolytic cleavage during the physiological processing of LOX. Expression of LOX-PP reduced cell proliferation, cell migration, anchorage-independent growth in soft agar and formation of tumors in immunodeficient mice. By contrast, the C-terminal domain of LOX, which contains the enzymatic activity, had the opposite effects, corroborating that the tumor suppressor activity of LOX is mediated exclusively by its propeptide domain. Finally, we showed that LOX-PP inhibits ERK/MAPK signalling pathway, and that many pathways involved in cell cycle progression were significantly deregulated by LOX-PP, providing a mechanistic explanation to the cell proliferation inhibition observed upon LOX-PP expression. In summary, our observations indicate that deregulation of the LOX gene participates in Ewing sarcoma development and identify LOX-PP as a new therapeutic target for one of the most aggressive paediatric malignancies. These findings suggest that therapeutic strategies based on the

  1. Lysyl oxidase is downregulated by the EWS/FLI1 oncoprotein and its propeptide domain displays tumor supressor activities in Ewing sarcoma cells.

    PubMed

    Agra, Noelia; Cidre, Florencia; García-García, Laura; de la Parra, Juan; Alonso, Javier

    2013-01-01

    Ewing sarcoma is the second most common bone malignancy in children and young adults. It is driven by oncogenic fusion proteins (i.e. EWS/FLI1) acting as aberrant transcription factors that upregulate and downregulate target genes, leading to cellular transformation. Thus, identificating these target genes and understanding their contribution to Ewing sarcoma tumorigenesis are key for the development of new therapeutic strategies. In this study we show that lysyl oxidase (LOX), an enzyme involved in maintaining structural integrity of the extracellular matrix, is downregulated by the EWS/FLI1 oncoprotein and in consequence it is not expressed in Ewing sarcoma cells and primary tumors. Using a doxycycline inducible system to restore LOX expression in an Ewing sarcoma derived cell line, we showed that LOX displays tumor suppressor activities. Interestingly, we showed that the tumor suppressor activity resides in the propeptide domain of LOX (LOX-PP), an N-terminal domain produced by proteolytic cleavage during the physiological processing of LOX. Expression of LOX-PP reduced cell proliferation, cell migration, anchorage-independent growth in soft agar and formation of tumors in immunodeficient mice. By contrast, the C-terminal domain of LOX, which contains the enzymatic activity, had the opposite effects, corroborating that the tumor suppressor activity of LOX is mediated exclusively by its propeptide domain. Finally, we showed that LOX-PP inhibits ERK/MAPK signalling pathway, and that many pathways involved in cell cycle progression were significantly deregulated by LOX-PP, providing a mechanistic explanation to the cell proliferation inhibition observed upon LOX-PP expression. In summary, our observations indicate that deregulation of the LOX gene participates in Ewing sarcoma development and identify LOX-PP as a new therapeutic target for one of the most aggressive paediatric malignancies. These findings suggest that therapeutic strategies based on the

  2. MIR125B1 represses the degradation of the PML-RARA oncoprotein by an autophagy-lysosomal pathway in acute promyelocytic leukemia.

    PubMed

    Zeng, Cheng-Wu; Chen, Zhen-Hua; Zhang, Xing-Ju; Han, Bo-Wei; Lin, Kang-Yu; Li, Xiao-Juan; Wei, Pan-Pan; Zhang, Hua; Li, Yangqiu; Chen, Yue-Qin

    2014-10-01

    Acute promyelocytic leukemia (APL) is characterized by the t(15;17)-associated PML-RARA fusion gene. We have previously found that MIR125B1 is highly expressed in patients with APL and may be associated with disease pathogenesis; however, the mechanism by which MIR125B1 exerts its oncogenic potential has not been fully elucidated. Here, we demonstrated that MIR125B1 abundance correlates with the PML-RARA status. MIR125B1 overexpression enhanced PML-RARA expression and inhibited the ATRA-induced degradation of the PML-RARA oncoprotein. RNA-seq analysis revealed a direct link between the PML-RARA degradation pathway and MIR125B1-arrested differentiation. We further demonstrated that the MIR125B1-mediated blockade of PML-RARA proteolysis was regulated via an autophagy-lysosomal pathway, contributing to the inhibition of APL differentiation. Furthermore, we identified DRAM2 (DNA-damage regulated autophagy modulator 2), a critical regulator of autophagy, as a novel target that was at least partly responsible for the function of MIR125B1 involved in autophagy. Importantly, the knockdown phenotypes for DRAM2 are similar to the effects of overexpressing MIR125B1 as impairment of PML-RARA degradation, inhibition of autophagy, and myeloid cell differentiation arrest. These effects of MIR125B1 and its target DRAM2 were further confirmed in an APL mouse model. Thus, MIR125B1 dysregulation may interfere with the effectiveness of ATRA-mediated differentiation through an autophagy-dependent pathway, representing a novel potential APL therapeutic target.

  3. Up-Regulation of FOXM1 by E6 Oncoprotein through the MZF1/NKX2-1 Axis Is Required for Human Papillomavirus–Associated Tumorigenesis12

    PubMed Central

    Chen, Po-Ming; Cheng, Ya-Wen; Wang, Yao-Chen; Wu, Tzu-Chin; Chen, Chih-Yi; Lee, Huei

    2014-01-01

    PURPOSE: Foxhead box M1 (FOXM1) expression has been shown to be linked with human papillomavirus (HPV) 16/18–infected cervical cancer. However, the mechanism underlying the induction of FOXM1 in HPV 16/18–infected cancers remains elusive. EXPERIMENTAL DESIGN: The mechanistic actions of FOXM1 induced by the E6/NKX2-1 axis in tumor aggressiveness were elucidated in cellular and animal models. The prognostic value of FOXM1 for overall survival (OS) and relapse-free survival (RFS) in HPV-positive oral and lung cancers was assessed using Kaplan-Meier and Cox regression models. RESULTS: Herein, FOXM1 expression is upregulated by E6-mediated NKX2-1 in HPV-positive cervical, oral, and lung cancer cells. Induction of FOXM1 by E6 through the MZF1/NKX2-1 axis is responsible for HPV-mediated soft agar growth, invasiveness, and stemness through activating Wnt/β-catenin signaling pathway. In a nude mice model, metastatic lung tumor nodules in HPV 18 E6-positive GNM or HPV 16 E6-positive TL-1–injected nude mice were markedly decreased in both cell types with E6 knockdown, FOXM1 knockdown, or treatment with FOXM1 inhibitor (thiostrepton). Among the four subgroup patients, the worst FOXM1 prognostic value for OS and RFS was observed in HPV 16/18–positive patients with tumors with high-expressing FOXM1. CONCLUSIONS: Induction of FOXM1 by E6 oncoprotein through the MZF1/NKX2-1 axis may be responsible for HPV 16/18–mediated tumor progression and poor outcomes in HPV-positive patients. PMID:25425970

  4. The HPV16 E6 oncoprotein and UVB irradiation inhibit the tumor suppressor TGFβ pathway in the epidermis of the K14E6 transgenic mouse.

    PubMed

    Popoca-Cuaya, Marco; Diaz-Chavez, Jose; Hernandez-Monge, Jesus; Alvarez-Rios, Elizabeth; Lambert, Paul F; Gariglio, Patricio

    2015-06-01

    High-risk human papillomaviruses (HR-HPVs) are the causative agents of cervical cancer, and they are also associated with a subset of head and neck squamous cell carcinomas. In addition, HPVs have also been postulated in the development of non-melanoma skin cancers (NMSC). In these cancers, the oncogene E6 is best known for its ability to inactivate the tumor suppressor p53 protein. Interestingly, in transgenic mice for HPV16 E6 (K14E6), it was reported that E6 alone induced epithelial hyperplasia and delay in differentiation in skin epidermis independently of p53 inactivation. Transforming growth factor β (TGFβ) is an important regulator of cell growth/differentiation and apoptosis, and this pathway is often lost during tumorigenesis. Ultraviolet radiation B (UVB) exposure activates diverse cellular responses, including DNA damage and apoptosis. In this study, we investigated whether the E6 oncogene alone or in combination with UVB dysregulate some components of the TGFβ pathway in the epidermis of K14E6 mice. We used 8-day-old K14E6 and non-transgenic mice irradiated and unirradiated with a single dose of UVB. We found that the E6 oncogene and UVB irradiation impair the TGFβ pathway in epidermis of K14E6 mice by downregulation of the TGFβ type II receptor (TβRII). This loss of TβRII prevents downstream activation of Smad2 and target genes as p15, an important regulator of cell cycle progression. In summary, the TGFβ signalling in cells of the epidermis is downregulated in our mouse model by both the E6 oncoprotein and the UVB irradiation.

  5. The Transactivation Domain of Marek's Disease Virus (MDV) Meq Oncoprotein Does Not Affect Tumor Incidence But Plays a Role in Tumor Phenotype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus encoded oncoprotein, Meq, is responsible for the tumorigenic phenotype of the virus. We have previously shown that replacement of the meq gene in the very virulent strain Md5 with that of vaccine strain CVI988/Rispens results in virus attenuation in chickens. To determine the...

  6. Alteration of a single amino acid in the basic domain of Marek's disease virus Meq oncoprotein plays an important role in T-cell transformation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus encoded oncoprotein, Meq, has been shown to play a major role in transformation of T-lymphocytes. We have earlier shown that replacement of the meq gene in the very virulent strain Md5 with that of vaccine strain CVI988/Rispens resulted in virus attenuation in chickens. To dete...

  7. NF-κB Protects Human Papillomavirus Type 38 E6/E7-Immortalized Human Keratinocytes against Tumor Necrosis Factor Alpha and UV-Mediated Apoptosis▿

    PubMed Central

    Hussain, Ishraq; Fathallah, Ikbal; Accardi, Rosita; Yue, Jiping; Saidj, Djamel; Shukla, Ruchi; Hasan, Uzma; Gheit, Tarik; Niu, Yamei; Tommasino, Massimo; Sylla, Bakary S.

    2011-01-01

    Constitutive activation of NF-κB signaling is a key event in virus- and non-virus-induced carcinogenesis. We have previously reported that cutaneous human papillomavirus type 38 (HPV38) displays transforming properties in in vitro and in vivo experimental models. However, the involvement of NF-κB signaling in HPV38-induced cell growth transformation remains to be determined. In this study, we showed that HPV38 E6 and E7 activate NF-κB and that inhibition of the pathway with the IκBα superrepressor sensitizes HPV38E6E7-immortalized human keratinocytes to tumor necrosis factor alpha (TNF-α)- and UVB radiation-mediated apoptosis. Accordingly, inhibition of NF-κB signaling resulted in the downregulation of NF-κB-regulated antiapoptotic genes, including cIAP1, cIAP2, and xIAP genes. These findings demonstrate a critical role of NF-κB activity in the survival of HPV38E6E7-immortalized human keratinocytes exposed to cytokine or UV radiation. Our data provide additional evidence for cooperation between beta HPV infection and UV irradiation in skin carcinogenesis. PMID:21715489

  8. Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice

    PubMed Central

    Park, Soyeong; Park, Jung Wook; Pitot, Henry C.

    2016-01-01

    ABSTRACT   Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative. Importance   Fanconi anemia (FA) patients are at high risk for developing squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) frequently cause cancer. Yet these SCCs are often HPV negative. FA patients have a genetic defect in their capacity to repair damaged DNA. HPV oncogenes cause an

  9. Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice.

    PubMed

    Park, Soyeong; Park, Jung Wook; Pitot, Henry C; Lambert, Paul F

    2016-01-01

    Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative. IMPORTANCE  : Fanconi anemia (FA) patients are at high risk for developing squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) frequently cause cancer. Yet these SCCs are often HPV negative. FA patients have a genetic defect in their capacity to repair damaged DNA. HPV oncogenes cause an accumulation of DNA

  10. Generating HPV specific T helper cells for the treatment of HPV induced malignancies using TCR gene transfer

    PubMed Central

    2011-01-01

    Background Infection with high risk Human Papilloma Virus (HPV) is associated with cancer of the cervix, vagina, penis, vulva, anus and some cases of head and neck carcinomas. The HPV derived oncoproteins E6 and E7 are constitutively expressed in tumor cells and therefore potential targets for T cell mediated adoptive immunotherapy. Effective immunotherapy is dependent on the presence of both CD4+ and CD8+ T cells. However, low precursor frequencies of HPV16 specific T cells in patients and healthy donors hampers routine isolation of these cells for adoptive transfer purposes. An alternative to generate HPV specific CD4+ and CD8+ T cells is TCR gene transfer. Methods HPV specific CD4+ T cells were generated using either a MHC class I or MHC class II restricted TCR (from clones A9 and 24.101 respectively) directed against HPV16 antigens. Functional analysis was performed by interferon-γ secretion, proliferation and cytokine production assays. Results Introduction of HPV16 specific TCRs into blood derived CD4+ recipient T cells resulted in recognition of the relevant HPV16 epitope as determined by IFN-γ secretion. Importantly, we also show recognition of the endogenously processed and HLA-DP1 presented HPV16E6 epitope by 24.101 TCR transgenic CD4+ T cells and recognition of the HLA-A2 presented HPV16E7 epitope by A9 TCR transgenic CD4+ T cells. Conclusion Our data indicate that TCR transfer is feasible as an alternative strategy to generate human HPV16 specific CD4+ T helper cells for the treatment of patients suffering from cervical cancer and other HPV16 induced malignancies. PMID:21892941

  11. The DEK Oncoprotein Is a Critical Component of the EKLF/KLF1 Enhancer in Erythroid Cells

    PubMed Central

    Lohmann, Felix; Dangeti, Mohan; Soni, Shefali; Chen, Xiaoyong; Planutis, Antanas; Baron, Margaret H.; Choi, Kyunghee

    2015-01-01

    Understanding how transcriptional regulators are themselves controlled is important in attaining a complete picture of the intracellular effects that follow signaling cascades during early development and cell-restricted differentiation. We have addressed this issue by focusing on the regulation of EKLF/KLF1, a zinc finger transcription factor that plays a necessary role in the global regulation of erythroid gene expression. Using biochemical affinity purification, we have identified the DEK oncoprotein as a critical factor that interacts with an essential upstream enhancer element of the EKLF promoter and exerts a positive effect on EKLF levels. This element also binds a core set of erythroid transcription factors, suggesting that DEK is part of a tissue-restricted enhanceosome that contains BMP4-dependent and -independent components. Together with local enrichment of properly coded histones and an open chromatin domain, optimal transcriptional activation of the EKLF locus can be established. PMID:26303528

  12. Tyrosine B10 triggers a heme propionate hydrogen bonding network loop with glutamine E7 moiety

    SciTech Connect

    Ramos-Santana, Brenda J.; Lopez-Garriga, Juan

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer H-bonding network loop by PheB10Tyr mutation is proposed. Black-Right-Pointing-Pointer The propionate group H-bonding network restricted the flexibility of the heme. Black-Right-Pointing-Pointer The hydrogen bonding interaction modulates the electron density of the iron. Black-Right-Pointing-Pointer Propionate H-bonding network loop explains the heme-ligand stabilization. -- Abstract: Propionates, as peripheral groups of the heme active center in hemeproteins have been described to contribute in the modulation of heme reactivity and ligand selection. These electronic characteristics prompted the question of whether the presence of hydrogen bonding networks between propionates and distal amino acids present in the heme ligand moiety can modulate physiological relevant events, like ligand binding association and dissociation activities. Here, the role of these networks was evaluated by NMR spectroscopy using the hemoglobin I PheB10Tyr mutant from Lucina pectinata as model for TyrB10 and GlnE7 hemeproteins. {sup 1}H-NMR results for the rHbICN PheB10Tyr derivative showed chemical shifts of TyrB10 OH{eta} at 31.00 ppm, GlnE7 N{sub {epsilon}1}H/N{sub {epsilon}2}H at 10.66 ppm/-3.27 ppm, and PheE11 C{sub {delta}}H at 11.75 ppm, indicating the presence of a crowded, collapsed, and constrained distal pocket. Strong dipolar contacts and inter-residues crosspeaks between GlnE7/6-propionate group, GlnE7/TyrB10 and TyrB10/CN suggest that this hydrogen bonding network loop between GlnE7, TyrB10, 6-propionate group, and the heme ligand contribute significantly to the modulation of the heme iron electron density as well as the ligand stabilization mechanism. Therefore, the network loop presented here support the fact that the electron withdrawing character of the hydrogen bonding is controlled by the interaction of the propionates and the nearby electronic environments contributing to the modulation of the heme electron density state. Thus

  13. Enhanced anti-tumor effect of a gene gun-delivered DNA vaccine encoding the human papillomavirus type 16 oncoproteins genetically fused to the herpes simplex virus glycoprotein D.

    PubMed

    Diniz, M O; Ferreira, L C S

    2011-05-01

    Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5) expressing three proteins (E7, E6, and E5) of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id) route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose) induced a strong activation of E7-specific interferon-γ (INF-γ)-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.

  14. A novel dithiocarbamate derivative induces cell apoptosis through p53-dependent intrinsic pathway and suppresses the expression of the E6 oncogene of human papillomavirus 18 in HeLa cells.

    PubMed

    Li, Yanhong; Qi, Hongxue; Li, Xiaobo; Hou, Xueling; Lu, Xueying; Xiao, Xiangwen

    2015-06-01

    Dithiocarbamates (DTCs) exhibit a broad spectrum of antitumor activities, however, their molecular mechanisms of antitumor have not yet been elucidated. Previously, we have synthesized a series of novel dithiocarbamate derivatives. These DTCs were examined for cytotoxic activities against five human cancer cell lines. In this study, one of dithiocarbamate (DTC1) with higher potential for HeLa cells was chosen to investigate molecular mechanisms for its anti-tumor activities. DTC1 could inhibit proliferation, and highly induce apoptosis in HeLa cells by activating caspase-3, -6 and -9; moreover, activities of caspase-3, -6 and -9 were inhibited by pan-caspase inhibitor, Z-VAD-FMK. Furthermore, DTC1 decreased the levels of Bcl-2 and Bcl-xL, and increased expression of cytosol cytochrome c, Bak, Bax and p53 in a time-dependent manner but had no effect on the level of Rb. It was shown that DTC1 induced HeLa cells apoptosis through a p53-dependent pathway as tested by the wild type p53 inhibitor, pifithrin-α. Additionally, the relative expression of E6 and E7 were evaluated in HPV18-positive (HeLa cells) by real-time PCR and western blotting. The results firstly demonstrated that DTC1 suppressed both expression of E6 mRNA and E6 oncoprotein, but had no effect on the expression of E7 mRNA and protein in HPV18. Our results suggested that DTC1 may serve as novel chemotherapeutic agents in the treatment of cervical cancer and potential anti-HPV virus candidates that merit further studies. PMID:25772545

  15. A novel dithiocarbamate derivative induces cell apoptosis through p53-dependent intrinsic pathway and suppresses the expression of the E6 oncogene of human papillomavirus 18 in HeLa cells.

    PubMed

    Li, Yanhong; Qi, Hongxue; Li, Xiaobo; Hou, Xueling; Lu, Xueying; Xiao, Xiangwen

    2015-06-01

    Dithiocarbamates (DTCs) exhibit a broad spectrum of antitumor activities, however, their molecular mechanisms of antitumor have not yet been elucidated. Previously, we have synthesized a series of novel dithiocarbamate derivatives. These DTCs were examined for cytotoxic activities against five human cancer cell lines. In this study, one of dithiocarbamate (DTC1) with higher potential for HeLa cells was chosen to investigate molecular mechanisms for its anti-tumor activities. DTC1 could inhibit proliferation, and highly induce apoptosis in HeLa cells by activating caspase-3, -6 and -9; moreover, activities of caspase-3, -6 and -9 were inhibited by pan-caspase inhibitor, Z-VAD-FMK. Furthermore, DTC1 decreased the levels of Bcl-2 and Bcl-xL, and increased expression of cytosol cytochrome c, Bak, Bax and p53 in a time-dependent manner but had no effect on the level of Rb. It was shown that DTC1 induced HeLa cells apoptosis through a p53-dependent pathway as tested by the wild type p53 inhibitor, pifithrin-α. Additionally, the relative expression of E6 and E7 were evaluated in HPV18-positive (HeLa cells) by real-time PCR and western blotting. The results firstly demonstrated that DTC1 suppressed both expression of E6 mRNA and E6 oncoprotein, but had no effect on the expression of E7 mRNA and protein in HPV18. Our results suggested that DTC1 may serve as novel chemotherapeutic agents in the treatment of cervical cancer and potential anti-HPV virus candidates that merit further studies.

  16. Characterization of the transport signals that mediate the nucleocytoplasmic traffic of low risk HPV11 E7

    SciTech Connect

    McKee, Courtney H.; Onder, Zeynep; Ashok, Aditya; Cardoso, Rebeca; Moroianu, Junona

    2013-08-15

    We previously discovered that nuclear import of low risk HPV11 E7 is mediated by its zinc-binding domain via a pathway that is independent of karyopherins/importins (Piccioli et al., 2010. Virology 407, 100–109). In this study we mapped and characterized a leucine-rich nuclear export signal (NES), {sub 76}IRQLQDLLL{sub 84}, within the zinc-binding domain that mediates the nuclear export of HPV11 E7 in a CRM1-dependent manner. We also identified a mostly hydrophobic patch {sub 65}VRLVV{sub 69} within the zinc-binding domain that mediates nuclear import of HPV11 E7 via hydrophobic interactions with the FG-repeats domain of Nup62. Substitutions of hydrophobic residues to alanine within the {sub 65}VRLVV{sub 69} sequence disrupt the nuclear localization of 11E7, whereas the R66A mutation has no effect. Overall the data support a model of nuclear entry of HPV11 E7 protein via hydrophobic interactions with FG nucleoporins at the nuclear pore complex. - Highlights: • HPV11 E7 has a leucine-rich nuclear export signal that mediates its nuclear export via CRM1. • HPV11 E7 interacts via its unique cNLS with the FG domain of Nup62. • Identification of a hydrophobic patch essential for nuclear localization of HPV11 E7.

  17. Identification of the murine H-2D(b) and human HLA-A*0201 MHC class I-restricted HPV6 E7-specific cytotoxic T lymphocyte epitopes.

    PubMed

    Peng, Shiwen; Mattox, Austin; Best, Simon R; Barbu, Anca M; Burns, James A; Akpeng, Belinda; Jeang, Jessica; Yang, Benjamin; Ishida, Eiichi; Hung, Chien-Fu; Wu, Tzyy-Choou; Pai, Sara I

    2016-03-01

    Recurrent respiratory papillomatosis is caused by human papillomavirus (HPV) infection, most commonly types 6 (HPV-6) and 11 (HPV-11). Due to failed host immune responses, HPV is unable to be cleared from the host, resulting in recurrent growth of HPV-related lesions that can obstruct the lumen of the airway within the upper aerodigestive tract. In our murine model, the HPV-6b and HPV-11 E7 antigens are not innately immunogenic. In order to enhance the host immune responses against the HPV E7 antigen, we linked calreticulin (CRT) to HPV-6b E7 and found that vaccinating C57BL/6 mice with the HPV-6b CRT/E7 DNA vaccine is able to induce a CD8+ T cell response that recognizes an H-2D(b)-restricted E7aa21-29 epitope. Additionally, vaccination of HLA-A*0201 transgenic mice with HPV-6b CRT/E7 DNA generated a CD8+ T cell response against the E7aa82-90 epitope that was not observed in the wild-type C57BL/6 mice, indicating this T cell response is restricted to HLA-A*0201. In vivo cytotoxic T cell killing assays demonstrated that the vaccine-induced CD8+ T cells are able to efficiently kill target cells. Interestingly, the H-2D(b)-restricted E7aa21-29 sequence and the HLA-A*0201-restricted E7aa82-90 sequence are conserved between HPV-6b and HPV-11 and may represent shared immunogenic epitopes. The identification of the HPV-6b/HPV-11 CD8+ T cell epitopes facilitates the evaluation of various immunomodulatory strategies in preclinical models. More importantly, the identified HLA-A*0201-restricted T cell epitope may serve as a peptide vaccination strategy, as well as facilitate the monitoring of vaccine-induced HPV-specific immunologic responses in future human clinical trials.

  18. Identification of the murine H-2D(b) and human HLA-A*0201 MHC class I-restricted HPV6 E7-specific cytotoxic T lymphocyte epitopes.

    PubMed

    Peng, Shiwen; Mattox, Austin; Best, Simon R; Barbu, Anca M; Burns, James A; Akpeng, Belinda; Jeang, Jessica; Yang, Benjamin; Ishida, Eiichi; Hung, Chien-Fu; Wu, Tzyy-Choou; Pai, Sara I

    2016-03-01

    Recurrent respiratory papillomatosis is caused by human papillomavirus (HPV) infection, most commonly types 6 (HPV-6) and 11 (HPV-11). Due to failed host immune responses, HPV is unable to be cleared from the host, resulting in recurrent growth of HPV-related lesions that can obstruct the lumen of the airway within the upper aerodigestive tract. In our murine model, the HPV-6b and HPV-11 E7 antigens are not innately immunogenic. In order to enhance the host immune responses against the HPV E7 antigen, we linked calreticulin (CRT) to HPV-6b E7 and found that vaccinating C57BL/6 mice with the HPV-6b CRT/E7 DNA vaccine is able to induce a CD8+ T cell response that recognizes an H-2D(b)-restricted E7aa21-29 epitope. Additionally, vaccination of HLA-A*0201 transgenic mice with HPV-6b CRT/E7 DNA generated a CD8+ T cell response against the E7aa82-90 epitope that was not observed in the wild-type C57BL/6 mice, indicating this T cell response is restricted to HLA-A*0201. In vivo cytotoxic T cell killing assays demonstrated that the vaccine-induced CD8+ T cells are able to efficiently kill target cells. Interestingly, the H-2D(b)-restricted E7aa21-29 sequence and the HLA-A*0201-restricted E7aa82-90 sequence are conserved between HPV-6b and HPV-11 and may represent shared immunogenic epitopes. The identification of the HPV-6b/HPV-11 CD8+ T cell epitopes facilitates the evaluation of various immunomodulatory strategies in preclinical models. More importantly, the identified HLA-A*0201-restricted T cell epitope may serve as a peptide vaccination strategy, as well as facilitate the monitoring of vaccine-induced HPV-specific immunologic responses in future human clinical trials. PMID:26759151

  19. Increase of human papillomavirus-16 E7-specific T helper type 1 response in peripheral blood of cervical cancer patients after radiotherapy

    PubMed Central

    Delgado, Félix Giovanni; Martínez, Elizabeth; Céspedes, María Angélica; Bravo, María Mercedes; Navas, María Cristina; Rojas, Alba Lucía Cómbita

    2009-01-01

    It has been suggested that tumour cell lysis by gamma-radiation induces a tumoral antigen release eliciting an immune response. It is not clear how a specific immune response in cervical cancer patients is developed after radiotherapy. This study is an attempt to investigate the role of the human papillomavirus type 16 (HPV-16) E7-specific T helper response before and after radiotherapy. Lymphocytes were isolated from 32 cervical cancer patients before and after radiotherapy and from 16 healthy women. They were stimulated for 12 hr with autologous HPV-16 E7-pulsed monocyte-derived dendritic cells or directly with HPV-16 E7 synthetic peptides: E751–70, E765–84 and E779–98. The cells were stained for CD4, CD69, intracellular interferon-γ (IFN-γ) and interleukin-4 (IL-4) cytokines and analysed by flow cytometry. A specific CD4+ CD69+ IFN-γ+ immune response against HPV-16 E779–98 peptide was observed in 10 of 14 patients (71·4%) after treatment, compared with 4 of 14 (28·5%) before radiotherapy (P = 0·039); however, this response was not associated with a successful clinical response. Before treatment, 5 of 31 patients showed a HPV-16 E779–98-specific T helper type 2 (Th2) response. Interestingly, this response was significantly associated with a decrease in disease-free survival (P = 0·027). These results suggest that a Th2-type cellular response could be useful as a predictor of recurrence and poor prognosis. An increase of the HPV-specific immune response was observed after radiotherapy; however, it is not enough to control completely the disease after treatment. Our results support that the E7-specific T-cell IFN-γ response in cervical cancer patients, rather than reflecting the host’s capability of controlling tumour growth, might be an indicator for disease severity. PMID:18778290

  20. Aptamer-hybrid nanoparticle bioconjugate efficiently delivers miRNA-29b to non-small-cell lung cancer cells and inhibits growth by downregulating essential oncoproteins

    PubMed Central

    Perepelyuk, Maryna; Maher, Christina; Lakshmikuttyamma, Ashakumary; Shoyele, Sunday A

    2016-01-01

    MicroRNAs (miRNAs) are potentially attractive candidates for cancer therapy. However, their therapeutic application is limited by lack of availability of an efficient delivery system to stably deliver these potent molecules intracellularly to cancer cells while avoiding healthy cells. We developed a novel aptamer-hybrid nanoparticle bioconjugate delivery system to selectively deliver miRNA-29b to MUC1-expressing cancer cells. Significant downregulation of oncoproteins DNMT3b and MCL1 was demonstrated by these MUC1 aptamer-functionalized hybrid nanoparticles in A549 cells. Furthermore, downregulation of these oncoproteins led to antiproliferative effect and induction of apoptosis in a superior version when compared with Lipofectamine 2000. This novel aptamer-hybrid nanoparticle bioconjugate delivery system could potentially serve as a platform for intracellular delivery of miRNAs to cancer cells, hence improving the therapeutic outcome of lung cancer. PMID:27555773

  1. Aptamer-hybrid nanoparticle bioconjugate efficiently delivers miRNA-29b to non-small-cell lung cancer cells and inhibits growth by downregulating essential oncoproteins.

    PubMed

    Perepelyuk, Maryna; Maher, Christina; Lakshmikuttyamma, Ashakumary; Shoyele, Sunday A

    2016-01-01

    MicroRNAs (miRNAs) are potentially attractive candidates for cancer therapy. However, their therapeutic application is limited by lack of availability of an efficient delivery system to stably deliver these potent molecules intracellularly to cancer cells while avoiding healthy cells. We developed a novel aptamer-hybrid nanoparticle bioconjugate delivery system to selectively deliver miRNA-29b to MUC1-expressing cancer cells. Significant downregulation of oncoproteins DNMT3b and MCL1 was demonstrated by these MUC1 aptamer-functionalized hybrid nanoparticles in A549 cells. Furthermore, downregulation of these oncoproteins led to antiproliferative effect and induction of apoptosis in a superior version when compared with Lipofectamine 2000. This novel aptamer-hybrid nanoparticle bioconjugate delivery system could potentially serve as a platform for intracellular delivery of miRNAs to cancer cells, hence improving the therapeutic outcome of lung cancer. PMID:27555773

  2. HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial

    PubMed Central

    2013-01-01

    Background Human papilloma virus type 16 (HPV16)-induced gynecological cancers, in particular cervical cancers, are found in many women worldwide. The HPV16 encoded oncoproteins E6 and E7 are tumor-specific targets for the adaptive immune system permitting the development of an HPV16-synthetic long peptide (SLP) vaccine with an excellent treatment profile in animal models. Here, we determined the toxicity, safety, immunogenicity and efficacy of the HPV16 SLP vaccine in patients with advanced or recurrent HPV16-induced gynecological carcinoma. Methods Patients with HPV16-positive advanced or recurrent gynecological carcinoma (n = 20) were subcutaneously vaccinated with an HPV16-SLP vaccine consisting of a mix of 13 HPV16 E6 and HPV16 E7 overlapping long peptides in Montanide ISA-51 adjuvant. The primary endpoints were safety, toxicity and tumor regression as determined by RECIST. In addition, the vaccine-induced T-cell response was assessed by proliferation and associated cytokine production as well as IFNγ-ELISPOT. Results No systemic toxicity beyond CTCAE grade II was observed. In a few patients transient flu-like symptoms were observed. In 9 out of 16 tested patients vaccine-induced HPV16-specific proliferative responses were detected which were associated with the production of IFNγ, TNFα, IL-5 and/or IL-10. ELISPOT analysis revealed a vaccine-induced immune response in 11 of the 13 tested patients. The capacity to respond to the vaccine was positively correlated to the patient’s immune status as reflected by their response to common recall antigens at the start of the trial. Median survival was 12.6 ± 9.1 months. No regression of tumors was observed among the 12 evaluable patients. Nineteen patients died of progressive disease. Conclusions The HPV16-SLP vaccine was well tolerated and induced a broad IFNγ-associated T-cell response in patients with advanced or recurrent HPV16-induced gynecological carcinoma but neither induced tumor regression nor

  3. Arsenic Trioxide Amplifies Cisplatin Toxicity in Human Tubular Cells Transformed by HPV-16 E6/E7 for Further Therapeutic Directions in Renal Cell Carcinoma

    PubMed Central

    Dogra, Samriti; Bandi, Sriram; Viswanathan, Preeti; Gupta, Sanjeev

    2014-01-01

    Human papillomavirus (HPV) DNA integrations may affect therapeutic responses in cancers through ATM network-related DNA damage response (DDR). We studied whether cisplatin-induced DDR was altered in human HK-2 renal tubular cells immortalized by HPV16 E6/E7 genes. Cytotoxicity assays utilized thiazolyl blue dye and DDR was identified by gene expression differences, double-strand DNA breaks, ATM promoter activity, and analysis of cell cycling and side population cells. After cisplatin, HK-2 cells showed greater ATM promoter activity indicating activation of this network, but DDR was muted, since little γH2AX was expressed, DNA strand breaks were absent and cells continued cycling. When HK-2 cells were treated with the MDM2 antagonist inducing p53, nutlin-3, or p53 transcriptional activator, tenovin-1, cell growth decreased but cisplatin toxicity was unaffected. By contrast, arsenic trioxide, which by inhibiting wild-type p53-induced phosphatase-1 that serves responses downstream of p53, and by depolymerizing tubulin, synergistically enhanced cisplatin cytotoxicity including loss of SP cells. Our findings demonstrated that HPV16 E6/E7 altered DDR through p53-mediated cell growth controls, which may be overcome by targeting of WIP1 and other processes, and thus should be relevant for treating renal cell carcinoma. PMID:25444910

  4. The aqueous extract of Ficus religiosa induces cell cycle arrest in human cervical cancer cell lines SiHa (HPV-16 Positive) and apoptosis in HeLa (HPV-18 positive).

    PubMed

    Choudhari, Amit S; Suryavanshi, Snehal A; Kaul-Ghanekar, Ruchika

    2013-01-01

    Natural products are being extensively explored for their potential to prevent as well as treat cancer due to their ability to target multiple molecular pathways. Ficus religiosa has been shown to exert diverse biological activities including apoptosis in breast cancer cell lines. In the present study, we report the anti-neoplastic potential of aqueous extract of F. religiosa (FRaq) bark in human cervical cancer cell lines, SiHa and HeLa. FRaq altered the growth kinetics of SiHa (HPV-16 positive) and HeLa (HPV-18 positive) cells in a dose-dependent manner. It blocked the cell cycle progression at G1/S phase in SiHa that was characterized by an increase in the expression of p53, p21 and pRb proteins with a simultaneous decrease in the expression of phospho Rb (ppRb) protein. On the other hand, in HeLa, FRaq induced apoptosis through an increase in intracellular Ca(2+) leading to loss of mitochondrial membrane potential, release of cytochrome-c and increase in the expression of caspase-3. Moreover, FRaq reduced the migration as well as invasion capability of both the cervical cancer cell lines accompanied with downregulation of MMP-2 and Her-2 expression. Interestingly, FRaq reduced the expression of viral oncoproteins E6 and E7 in both the cervical cancer cell lines. All these data suggest that F. religiosa could be explored for its chemopreventive potential in cervical cancer. PMID:23922932

  5. The Aqueous Extract of Ficus religiosa Induces Cell Cycle Arrest in Human Cervical Cancer Cell Lines SiHa (HPV-16 Positive) and Apoptosis in HeLa (HPV-18 Positive)

    PubMed Central

    Choudhari, Amit S.; Suryavanshi, Snehal A.; Kaul-Ghanekar, Ruchika

    2013-01-01

    Natural products are being extensively explored for their potential to prevent as well as treat cancer due to their ability to target multiple molecular pathways. Ficus religiosa has been shown to exert diverse biological activities including apoptosis in breast cancer cell lines. In the present study, we report the anti-neoplastic potential of aqueous extract of F. religiosa (FRaq) bark in human cervical cancer cell lines, SiHa and HeLa. FRaq altered the growth kinetics of SiHa (HPV-16 positive) and HeLa (HPV-18 positive) cells in a dose-dependent manner. It blocked the cell cycle progression at G1/S phase in SiHa that was characterized by an increase in the expression of p53, p21 and pRb proteins with a simultaneous decrease in the expression of phospho Rb (ppRb) protein. On the other hand, in HeLa, FRaq induced apoptosis through an increase in intracellular Ca2+ leading to loss of mitochondrial membrane potential, release of cytochrome-c and increase in the expression of caspase-3. Moreover, FRaq reduced the migration as well as invasion capability of both the cervical cancer cell lines accompanied with downregulation of MMP-2 and Her-2 expression. Interestingly, FRaq reduced the expression of viral oncoproteins E6 and E7 in both the cervical cancer cell lines. All these data suggest that F. religiosa could be explored for its chemopreventive potential in cervical cancer. PMID:23922932

  6. Adjuvant effect of docetaxel on HPV16 L2E6E7 fusion protein vaccine in a mouse model.

    PubMed

    Su, Xiaoyan; Xu, Wei; Guan, Ran; Wang, Yunhao; Wu, Jie; Zhai, Lijuan; Chen, Gang; Hu, Songhua

    2016-09-01

    We previously demonstrated that the antineoplastic agent docetaxel enhanced the immune response to an influenza vaccine. This study evaluated the adjuvant effect of docetaxel (DOC) on the therapeutic efficacy of HPV16 L2E6E7 fusion protein (HPV-LFP) in mice inoculated with TC-1 cells. The results demonstrated that docetaxel significantly enhanced the therapeutic effect of HPV-LFP on TC-1 cell-induced tumors in mice. The injection of HPV-LFP in combination with docetaxel in TC-1 tumor-bearing mice significantly reduced tumor volume and weight, and a greater percent survival was detected than mice treated with HPV-LFP alone. The inhibition of tumors was associated with significantly increased serum antigen-specific IgG and isotypes, activated CTLs, increased IFN-γ-secreting T cells, and decreased Treg cells and IL-10-secreting cells in spleen. In addition, down-regulation of IL-10, VEGF and STAT3, up-regulation of IFN-γ and decreased Treg cells in the tumor microenvironment may also important contributing factors to the antitumor effect. It may be valuable to use a DOC-containing water to dilute HPV-LFP powder before injection in patients because of its excellent adjuvant effect on HPV-LFP and solubility in water. PMID:27233002

  7. Mutagenic Potential ofBos taurus Papillomavirus Type 1 E6 Recombinant Protein: First Description

    PubMed Central

    Araldi, Rodrigo Pinheiro; Mazzuchelli-de-Souza, Jacqueline; Modolo, Diego Grando; de Souza, Edislane Barreiros; de Melo, Thatiana Corrêa; Spadacci-Morena, Diva Denelle; Magnelli, Roberta Fiusa; de Carvalho, Márcio Augusto Caldas Rocha; de Sá Júnior, Paulo Luis; de Carvalho, Rodrigo Franco; Beçak, Willy; Stocco, Rita de Cassia

    2015-01-01

    Bovine papillomavirus (BPV) is considered a useful model to study HPV oncogenic process. BPV interacts with the host chromatin, resulting in DNA damage, which is attributed to E5, E6, and E7 viral oncoproteins activity. However, the oncogenic mechanisms of BPV E6 oncoprotein per se remain unknown. This study aimed to evaluate the mutagenic potential of Bos taurus papillomavirus type 1 (BPV-1) E6 recombinant oncoprotein by the cytokinesis-block micronucleus assay (CBMNA) and comet assay (CA). Peripheral blood samples of five calves were collected. Samples were subjected to molecular diagnosis, which did not reveal presence of BPV sequences. Samples were treated with 1 μg/mL of BPV-1 E6 oncoprotein and 50 μg/mL of cyclophosphamide (positive control). Negative controls were not submitted to any treatment. The samples were submitted to the CBMNA and CA. The results showed that BPV E6 oncoprotein induces clastogenesis per se, which is indicative of genomic instability. These results allowed better understanding the mechanism of cancer promotion associated with the BPV E6 oncoprotein and revealed that this oncoprotein can induce carcinogenesis per se. E6 recombinant oncoprotein has been suggested as a possible vaccine candidate. Results pointed out that BPV E6 recombinant oncoprotein modifications are required to use it as vaccine. PMID:26783529

  8. Discovery of a small-molecule binder of the oncoprotein gankyrin that modulates gankyrin activity in the cell

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Anasuya; O’Connor, Cornelius J.; Zhang, Fengzhi; Galvagnion, Celine; Galloway, Warren R. J. D.; Tan, Yaw Sing; Stokes, Jamie E.; Rahman, Taufiq; Verma, Chandra; Spring, David R.; Itzhaki, Laura S.

    2016-04-01

    Gankyrin is an ankyrin-repeat oncoprotein whose overexpression has been implicated in the development of many cancer types. Elevated gankyrin levels are linked to aberrant cellular events including enhanced degradation of tumour suppressor protein p53, and inhibition of gankyrin activity has therefore been identified as an attractive anticancer strategy. Gankyrin interacts with several partner proteins, and a number of these protein-protein interactions (PPIs) are of relevance to cancer. Thus, molecules that bind the PPI interface of gankyrin and interrupt these interactions are of considerable interest. Herein, we report the discovery of a small molecule termed cjoc42 that is capable of binding to gankyrin. Cell-based experiments demonstrate that cjoc42 can inhibit gankyrin activity in a dose-dependent manner: cjoc42 prevents the decrease in p53 protein levels normally associated with high amounts of gankyrin, and it restores p53-dependent transcription and sensitivity to DNA damage. The results represent the first evidence that gankyrin is a “druggable” target with small molecules.

  9. Interplay Between Oncoproteins and Antioxidant Enzymes in Esophageal Carcinoma Treated Without and With Chemoradiotherapy: A Prospective Study

    SciTech Connect

    Kaur, Tranum; Gupta, Rajesh; Vaiphei, Kim; Kapoor, Rakesh; Gupta, N.M.; Khanduja, K.L.

    2008-02-01

    Purpose: To analyze p53, bcl-2, c-myc, and cyclooxygenase-2 protein expression changes and examine their relationship with various antioxidant enzymes in esophageal carcinoma patients. Methods and Materials: Patients in Group 1 underwent transhiatal esophagectomy and those in Group 2 were administered chemoradiotherapy followed by surgery after 4 weeks of neoadjuvant therapy. Results: The relationship analysis among the various protein markers and antioxidant enzymes showed an inverse correlation between bcl-2 and superoxide dismutase/catalase in tumor tissues, irrespective of the treatment arm followed. An important positive association was observed between bcl-2 and reduced glutathione levels in the tumor tissue of patients receiving neoadjuvant therapy. Another apoptosis-modulating marker, c-myc, in the tumor tissue of Group 2 patients showed similar pattern levels (high and low) as that of superoxide dismutase/catalase. The association of cyclooxygenase-2 and p53 with various antioxidant enzymes showed a significant positive correlation between cyclooxygenase-2 expression and catalase activity and an inverse trend between p53 expression and superoxide dismutase and catalase activity in the tumor tissue of patients given neoadjuvant therapy. In addition, patients with overexpressed p53 protein levels had lower glutathione peroxidase enzyme levels and vice versa in the tumor tissue of patients who had undergone surgery as their main mode of treatment. Conclusion: The results of this study broaden the insight into the relationships shared among oncoproteins and the antioxidant defense system, and this could be helpful in the clinical management of esophageal carcinoma.

  10. The BRAF oncoprotein functions through the transcriptional repressor MAFG to mediate the CpG Island Methylator phenotype.

    PubMed

    Fang, Minggang; Ou, Jianhong; Hutchinson, Lloyd; Green, Michael R

    2014-09-18

    Most colorectal cancers (CRCs) containing activated BRAF (BRAF[V600E]) have a CpG island methylator phenotype (CIMP) characterized by aberrant hypermethylation of many genes, including the mismatch repair gene MLH1. MLH1 silencing results in microsatellite instability and a hypermutable phenotype. Through an RNAi screen, here we identify the transcriptional repressor MAFG as the pivotal factor required for MLH1 silencing and CIMP in CRCs containing BRAF(V600E). In BRAF-positive human CRC cell lines and tumors, MAFG is bound at the promoters of MLH1 and other CIMP genes, and recruits a corepressor complex that includes its heterodimeric partner BACH1, the chromatin remodeling factor CHD8, and the DNA methyltransferase DNMT3B, resulting in hypermethylation and transcriptional silencing. BRAF(V600E) increases BRAF/MEK/ERK signaling resulting in phosphorylation and elevated levels of MAFG, which drives DNA binding. Analysis of transcriptionally silenced CIMP genes in KRAS-positive CRCs indicates that different oncoproteins direct the assembly of distinct repressor complexes on common promoters.

  11. Oncogenic nexus of cancerous inhibitor of protein phosphatase 2A (CIP2A): An oncoprotein with many hands

    PubMed Central

    De, Pradip; Carlson, Jennifer; Leyland-Jones, Brian; Dey, Nandini

    2014-01-01

    Oncoprotein CIP2A a Cancerous Inhibitor of PP2A forms an “oncogenic nexus” by virtue of its control on PP2A and MYC stabilization in cancer cells. The expression and prognostic function of CIP2A in different solid tumors including colorectal carcinoma, head & neck cancers, gastric cancers, lung carcinoma, cholangiocarcinoma, esophageal cancers, pancreatic carcinoma, brain cancers, breast carcinoma, bladder cancers, ovarian carcinoma, renal cell carcinomas, tongue cancers, cervical carcinoma, prostate cancers, and oral carcinoma as well as a number of hematological malignancies are just beginning to emerge. Herein, we reviewed the recent progress in our understanding of (1) how an “oncogenic nexus” of CIP2A participates in the tumorigenic transformation of cells and (2) how we can prospect/view the clinical relevance of CIP2A in the context of cancer therapy. The review will try to understand the role of CIP2A (a) as a biomarker in cancers and evaluate the prognostic value of CIP2A in different cancers (b) as a therapeutic target in cancers and (c) in drug response and developing chemo-resistance in cancers. PMID:25015035

  12. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control

    PubMed Central

    Zhao, Bin; Wei, Xiaomu; Li, Weiquan; Udan, Ryan S.; Yang, Qian; Kim, Joungmok; Xie, Joe; Ikenoue, Tsuneo; Yu, Jindan; Li, Li; Zheng, Pan; Ye, Keqiang; Chinnaiyan, Arul; Halder, Georg; Lai, Zhi-Chun; Guan, Kun-Liang

    2007-01-01

    The Hippo pathway plays a key role in organ size control by regulating cell proliferation and apoptosis in Drosophila. Although recent genetic studies have shown that the Hippo pathway is regulated by the NF2 and Fat tumor suppressors, the physiological regulations of this pathway are unknown. Here we show that in mammalian cells, the transcription coactivator YAP (Yes-associated protein), is inhibited by cell density via the Hippo pathway. Phosphorylation by the Lats tumor suppressor kinase leads to cytoplasmic translocation and inactivation of the YAP oncoprotein. Furthermore, attenuation of this phosphorylation of YAP or Yorkie (Yki), the Drosophila homolog of YAP, potentiates their growth-promoting function in vivo. Moreover, YAP overexpression regulates gene expression in a manner opposite to cell density, and is able to overcome cell contact inhibition. Inhibition of YAP function restores contact inhibition in a human cancer cell line bearing deletion of Salvador (Sav), a Hippo pathway component. Interestingly, we observed that YAP protein is elevated and nuclear localized in some human liver and prostate cancers. Our observations demonstrate that YAP plays a key role in the Hippo pathway to control cell proliferation in response to cell contact. PMID:17974916

  13. Discovery of a small-molecule binder of the oncoprotein gankyrin that modulates gankyrin activity in the cell

    PubMed Central

    Chattopadhyay, Anasuya; O’Connor, Cornelius J.; Zhang, Fengzhi; Galvagnion, Celine; Galloway, Warren R. J. D.; Tan, Yaw Sing; Stokes, Jamie E.; Rahman, Taufiq; Verma, Chandra; Spring, David R.; Itzhaki, Laura S.

    2016-01-01

    Gankyrin is an ankyrin-repeat oncoprotein whose overexpression has been implicated in the development of many cancer types. Elevated gankyrin levels are linked to aberrant cellular events including enhanced degradation of tumour suppressor protein p53, and inhibition of gankyrin activity has therefore been identified as an attractive anticancer strategy. Gankyrin interacts with several partner proteins, and a number of these protein-protein interactions (PPIs) are of relevance to cancer. Thus, molecules that bind the PPI interface of gankyrin and interrupt these interactions are of considerable interest. Herein, we report the discovery of a small molecule termed cjoc42 that is capable of binding to gankyrin. Cell-based experiments demonstrate that cjoc42 can inhibit gankyrin activity in a dose-dependent manner: cjoc42 prevents the decrease in p53 protein levels normally associated with high amounts of gankyrin, and it restores p53-dependent transcription and sensitivity to DNA damage. The results represent the first evidence that gankyrin is a “druggable” target with small molecules. PMID:27046077

  14. A plant alkaloid, veratridine, potentiates cancer chemosensitivity by UBXN2A-dependent inhibition of an oncoprotein, mortalin-2

    PubMed Central

    Abdullah, Ammara; Sane, Sanam; Branick, Kate A.; Freeling, Jessica L.; Wang, Hongmin; Zhang, Dong; Rezvani, Khosrow

    2015-01-01

    Veratridine (VTD), an alkaloid derived from the Liliaceae plant shows anti-tumor effects; however, its molecular targets have not been thoroughly studied. Using a high-throughput drug screen, we found that VTD enhances transactivation of UBXN2A, resulting in upregulation of UBXN2A in the cytoplasm, where UBXN2A binds and inhibits the oncoprotein mortalin-2 (mot-2). VTD-treated cancer cells undergo cell death in UBXN2A- and mot-2-dependent manners. The cytotoxic function of VTD is grade-dependent, and the combined treatment with a sub-optimal dose of the standard chemotherapy, 5-Fluorouracil (5-FU) and etoposide, demonstrated a synergistic effect, resulting in higher therapeutic efficacy. VTD influences the CD44+ stem cells, possibly through UBXN2A-dependent inhibition of mot-2. The VTD-dependent expression of UBXN2A is a potential candidate for designing novel strategies for colon cancer treatment because: 1) In 50% of colon cancer patients, UBXN2A protein levels in tumor tissues are significantly lower than those in the adjacent normal tissues. 2) Cytoplasmic expression of the mot-2 protein is very low in non-cancerous cells; thus, VTD can produce tumor-specific toxicity while normal cells remain intact. 3) Finally, VTD or its modified analogs offer a valuable adjuvant chemotherapy strategy to improve the efficacy of 5-FU-based chemotherapy for colon cancer patients harboring WT-p53. PMID:26188124

  15. The role of oncoprotein NM23 gene from Exopalaemon carinicauda is response to pathogens challenge and ammonia-N stress.

    PubMed

    Duan, Yafei; Li, Jitao; Zhang, Zhe; Li, Jian; Ge, Qianqian; Liu, Ping

    2015-12-01

    Oncoprotein NM23, as a family of genes encoding the nucleoside diphosphate (NDP) kinase, plays important roles in bioenergetics, DNA replication, differentiation and tumor metastasis. In this study, a full-length cDNA of NM23 (designated EcNM23) was cloned from Exopalaemon carinicauda by using rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of EcNM23 was 755 bp, which contains an open reading frame (ORF) of 518 bp, encoding a 175 amino-acid polypeptide with the predicted molecular weight of 19.60 kDa and estimated isoelectric point of 7.67. The deduced amino acid sequence of EcNM23 shared high identity (86%-93%) with that of other crustaceans. a NDP kinase super family signature was identified in E. carinicauda EcNM23. Quantitative real-time RT-qPCR analysis indicated that EcNM23 was expressed in all the examined tissues with the high expression level in hemocytes and ovary. The EcNM23 expression in immune-related tissues changed rapidly and reached peak at different time after pathogens (Vibrio parahaemolyticus and WSSV) challenge and ammonia-N stress treatment. The results suggested that EcNM23 might be associated with the immune defenses to pathogens infection and ammonia-N stress in E. carinicauda. PMID:26314522

  16. Control of microtubule dynamics by oncoprotein 18: dissection of the regulatory role of multisite phosphorylation during mitosis.

    PubMed Central

    Larsson, N; Marklund, U; Gradin, H M; Brattsand, G; Gullberg, M

    1997-01-01

    Oncoprotein 18 (Op18; also termed p19, 19K, metablastin, stathmin, and prosolin) is a conserved protein that regulates microtubule (MT) dynamics. Op18 is multisite phosphorylated on four Ser residues during mitosis; two of these Ser residues, Ser-25 and Ser-38, are targets for cyclin-dependent protein kinases (CDKs), and the other two Ser residues, Ser-16 and Ser-63, are targets for an unidentified protein kinase. Mutations of the two CDK sites have recently been shown to result in a mitotic block caused by destabilization of MTs. To understand the role of Op18 in regulation of MT dynamics during mitosis, in this study we dissected the functions of all four phosphorylation sites of Op18 by combining genetic, morphological, and biochemical analyses. The data show that all four phosphorylation sites are involved in switching off Op18 activity during mitosis, an event that appears to be essential for formation of the spindle during metaphase. However, the mechanisms by which specific sites down-regulate Op18 activity differ. Hence, dual phosphorylation on the CDK sites Ser-25 and Ser-38 appears to be required for phosphorylation of Ser-16 and Ser-63; however, by themselves, the CDK sites are of only minor importance in direct regulation of Op18 activity. Subsequent phosphorylation of either Ser-16, Ser-63, or both efficiently switches off Op18 activity. PMID:9271428

  17. Dysregulating IRES-dependent translation contributes to over-expression of the Aurora A kinase onco-protein

    PubMed Central

    Dobson, Tara; Chen, Juan; Krushel, Les A.

    2014-01-01

    Over-expression of the oncoprotein, Aurora A kinase occurs in multiple types of carcinomas, often early during cell transformation. To identify mechanism(s) contributing to enhanced Aurora A protein expression, we examined normal human lung fibroblast and breast epithelial cells and compared them to non-tumorigenic breast (MCF10A and MCF12A) and tumorigenic breast and cervical epithelial cell lines (MCF-7 and HeLa S3, respectively). A subset of these immortalized lines (MCF10, MCF12A, and HeLa S3) exhibited increased levels of Aurora A protein, independent of tumorigenicity. The increase in Aurora A protein expression in these immortalized cells was not due to increased transcription/RNA stability, protein half-life or cap-dependent translation. Assays utilizing monocistronic and dicistronic RNA constructs revealed that the Aurora A 5′ leader contains an internal ribosomal entry site (IRES), which is regulated through the cell cycle, peaking in G2/M phase. Moreover, IRES activity was increased in the immortalized cell lines in which Aurora A protein expression was also enhanced. Additional assays indicated that the increased internal initiation is specific to the Aurora A IRES and may be an early event during cancer progression. Taken together, these results identify a novel mechanism contributing to Aurora A kinase over-expression and possibly to immortalization leading to carcinogenesis. PMID:23661421

  18. Altered nuclear co-factor switching in retinoic resistant variants of the PML-RARα oncoprotein of acute promyelocytic leukemia†

    PubMed Central

    Farris, Mindy; Lague, Astrid; Manuelyan, Zara; Statnekov, Jacob; Francklyn, Christopher

    2011-01-01

    Acute Promyelocytic Leukemia (APL) results from a reciprocal translocation that fuses the gene for the PML tumor suppressor to that encoding the retinoic acid receptor alpha (RARα). The resulting PML-RARα oncogene product interferes with multiple regulatory pathways associated with myeloid differentiation, including normal PML and RARα functions. The standard treatment for APL includes anthracycline-based chemotherapeutic agents plus the RARα agonist all-trans retinoic acid (ATRA). Relapse, which is often accompanied by ATRA resistance, occurs in an appreciable frequency of treated patients. One potential mechanism suggested by model experiments featuring the selection of ATRA resistant APL cell lines involves ATRA resistant versions of the PML-RARα oncogene, where the relevant mutations localize to the RARα ligand-binding domain (LBD). Such mutations may act by compromising agonist binding, but other mechanisms are possible. Here, we studied the molecular consequence of ATRA resistance by use of circular dichroism, protease resistance, and fluorescence anisotropy assays employing peptides derived from the NCOR nuclear co-repressor and the ACTR nuclear co-activator. The consequences of the mutations on global structure and co-factor interaction functions were assessed quantitatively, providing insights into the basis of agonist resistance. Attenuated co-factor switching and increased protease resistance represent features of the LBDs of ATRA-resistant PML-RARα, and these properties may be recapitulated in the full-length oncoproteins. PMID:22228505

  19. The oncoprotein HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote the proliferation of breast cancer cells

    SciTech Connect

    Zhang, Yingyi; Zhao, Yu; Li, Leilei; Shen, Yu; Cai, Xiaoli; Zhang, Xiaodong; Ye, Lihong

    2013-05-03

    Highlights: •HBXIP is able to upregulate the expression of PDGFB in breast cancer cells. •HBXIP serves as a coactivator of activating transcription factor Sp1. •HBXIP stimulates the PDGFB promoter via activating transcription factor Sp1. •HBXIP promotes the proliferation of breast cancer cell via upregulating PDGFB. -- Abstract: We have reported that the oncoprotein hepatitis B virus X-interacting protein (HBXIP) acts as a novel transcriptional coactivator to promote proliferation and migration of breast cancer cells. Previously, we showed that HBXIP was able to activate nuclear factor-κB (NF-κB) in breast cancer cells. As an oncogene, the platelet-derived growth factor beta polypeptide (PDGFB) plays crucial roles in carcinogenesis. In the present study, we found that both HBXIP and PDGFB were highly expressed in breast cancer cell lines. Interestingly, HBXIP was able to increase transcriptional activity of NF-κB through PDGFB, suggesting that HBXIP is associated with PDGFB in the cells. Moreover, HBXIP was able to upregulate PDGFB at the levels of mRNA, protein and promoter in the cells. Then, we identified that HBXIP stimulated the promoter of PDGFB through activating transcription factor Sp1. In function, HBXIP enhanced the proliferation of breast cancer cells through PDGFB in vitro. Thus, we conclude that HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote proliferation of breast cancer cells.

  20. The role of oncoprotein NM23 gene from Exopalaemon carinicauda is response to pathogens challenge and ammonia-N stress.

    PubMed

    Duan, Yafei; Li, Jitao; Zhang, Zhe; Li, Jian; Ge, Qianqian; Liu, Ping

    2015-12-01

    Oncoprotein NM23, as a family of genes encoding the nucleoside diphosphate (NDP) kinase, plays important roles in bioenergetics, DNA replication, differentiation and tumor metastasis. In this study, a full-length cDNA of NM23 (designated EcNM23) was cloned from Exopalaemon carinicauda by using rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of EcNM23 was 755 bp, which contains an open reading frame (ORF) of 518 bp, encoding a 175 amino-acid polypeptide with the predicted molecular weight of 19.60 kDa and estimated isoelectric point of 7.67. The deduced amino acid sequence of EcNM23 shared high identity (86%-93%) with that of other crustaceans. a NDP kinase super family signature was identified in E. carinicauda EcNM23. Quantitative real-time RT-qPCR analysis indicated that EcNM23 was expressed in all the examined tissues with the high expression level in hemocytes and ovary. The EcNM23 expression in immune-related tissues changed rapidly and reached peak at different time after pathogens (Vibrio parahaemolyticus and WSSV) challenge and ammonia-N stress treatment. The results suggested that EcNM23 might be associated with the immune defenses to pathogens infection and ammonia-N stress in E. carinicauda.

  1. Detection of Immunoglobulin G against E7 of Human Papillomavirus in Non-Small-Cell Lung Cancer.

    PubMed

    Storey, Raul; Joh, Joongho; Kwon, Amy; Jenson, A Bennett; Ghim, Shin-Je; Kloecker, Goetz H

    2013-01-01

    Background. A significant number of non-small-cell lung cancers (NSCLC) have human papillomavirus (HPV) DNA integrated in their genome. This study sought to further establish HPV's possible etiologic link to NSCLC by evaluating an immune response to HPV's oncogene, E7, in patients with NSCLC. Patients and Methods. Antibodies (IgG) in serum against E7 for HPV 16 and 18 in 100 patients with NSCLC were examined by enzyme-linked immunosorbent assay (ELISA). Results. Sixteen NSCLC patients were found to have a high titration of IgG for HPV oncogenic E7 protein. 23.5% of adenocarcinomas (AC,) and 15.4% of squamous cell carcinomas (SCC) were positive for IgG against HPV E7. HPV-18 (11%) had a slightly higher frequency than HPV-16 (6%). Of the six positive cases for HPV-16, 3 were AC, 2 SCC, and 1 NOS (not otherwise specified). For the 11 HPV-18 positives, 7 were AC, and 4 SCC. The one case with IgG against HPV 16 and 18 was AC. One case had high cross-reactive levels against E7 of HPV 16 and 18. Two (28%) of 7 patients who reported never smoking were positive for HPV, and 12 (13.6%) of 88 smokers were HPV positive. Conclusions. The study detected high levels of IgG against E7 in 16% of NSCLC patients. This adds evidence to a potential role of HPV in the pathogenesis of NSCLC.

  2. Detection of Immunoglobulin G against E7 of Human Papillomavirus in Non-Small-Cell Lung Cancer

    PubMed Central

    Joh, Joongho; Kwon, Amy; Jenson, A. Bennett; Ghim, Shin-je; Kloecker, Goetz H.

    2013-01-01

    Background. A significant number of non-small-cell lung cancers (NSCLC) have human papillomavirus (HPV) DNA integrated in their genome. This study sought to further establish HPV's possible etiologic link to NSCLC by evaluating an immune response to HPV's oncogene, E7, in patients with NSCLC. Patients and Methods. Antibodies (IgG) in serum against E7 for HPV 16 and 18 in 100 patients with NSCLC were examined by enzyme-linked immunosorbent assay (ELISA). Results. Sixteen NSCLC patients were found to have a high titration of IgG for HPV oncogenic E7 protein. 23.5% of adenocarcinomas (AC,) and 15.4% of squamous cell carcinomas (SCC) were positive for IgG against HPV E7. HPV-18 (11%) had a slightly higher frequency than HPV-16 (6%). Of the six positive cases for HPV-16, 3 were AC, 2 SCC, and 1 NOS (not otherwise specified). For the 11 HPV-18 positives, 7 were AC, and 4 SCC. The one case with IgG against HPV 16 and 18 was AC. One case had high cross-reactive levels against E7 of HPV 16 and 18. Two (28%) of 7 patients who reported never smoking were positive for HPV, and 12 (13.6%) of 88 smokers were HPV positive. Conclusions. The study detected high levels of IgG against E7 in 16% of NSCLC patients. This adds evidence to a potential role of HPV in the pathogenesis of NSCLC. PMID:23533408

  3. Transforming properties of the cottontail rabbit papillomavirus oncoproteins Le6 and SE6 and of the E8 protein.

    PubMed Central

    Harry, J B; Wettstein, F O

    1996-01-01

    Cottontail rabbit papillomavirus induces on cottontail and domestic rabbits papillomas which progress at a high frequency to carcinoma. The virus encodes three transforming proteins; one is translated from open reading frame (ORF) E7 and binds the retinoblastoma protein, and two, LE6 and SE6, are translated from the first and second ATGs of ORF E6, respectively. Here we show that neither of the E6 proteins coprecipitated with p53 in vitro, nor did they bind to a recently identified E6-binding protein (J. J. Chen, C. E. Reid, V. Band, and E. Androphy, Science 269:529-531, 1995). This protein was shown to bind to the E6 proteins of the high-risk human papillomairus types 16 and 18 but not to the low-risk human papillomavirus types VI and II. In-frame deletions cloned into the pZipNeo vector were used to identify structural features of SE6 and LE6 important for transformation of NIH 3T3 cells. Three deletions covering the amino-terminal half of SE6 did not transform cells. In two of the three deletions, two Cys-X-X-Cys motifs were deleted, each deletion preventing the formation of one of the potential small Zn fingers of SE6. Among the LE6 deletions, only one had a reduced transformation efficiency, while seven transformed cells at least as efficiently as wild-type LE6. In each of three of these seven mutants, two Cys-X-X-Cys motifs were deleted. None of the three amino acid deletions which abolished transformation by SE6 reduced transformation by LE6. Furthermore, transformation did not correlate with the level of SE6 or LE6 proteins detectable. ORF E8 colinear with ORF E6, which could generate a 50-amino-acid protein with a hydrophobic segment, did not transform cells when cloned into the pZipNeo vector. However, mutation of the E8 ATG, which did not alter the amino acid sequence of LE6, increased transformation by LE6 without affecting the level of LE6 expression. The data suggest that transformation by the E6 proteins is not mediated by interfering with p53

  4. Activation of dendritic cells and induction of T cell responses by HPV 16 L1/E7 chimeric virus-like particles are enhanced by CpG ODN or sorbitol.

    PubMed

    Freyschmidt, Eva-Jasmin; Alonso, Angel; Hartmann, Gunther; Gissmann, Lutz

    2004-08-01

    Chimeric human papillomavirus-like particles, consisting of human papillomavirus (HPV) 16 L1-E7 fusion proteins [HPV 16 L1/E7 chimeric virus-like particles (CVLP)], are a vaccine candidate for treatment and prevention of cervical cancer. Although in preclinical studies CVLPs were shown to induce neutralizing antibodies and L1- and E7-specific T cell responses, the results of a recent clinical trial emphasized the need of improved immunogenicity of CVLPs. Here we studied the interaction of HPV 16 L1/E7 CVLPs with mouse bone marrow-derived dendritic cells (BMDCs) activated with different immune adjuvants. We found that lipopolysaccharides (LPS), unmethylated CpG motifs (CpG ODN) and sorbitol enhanced CVLP-induced stimulation of C57BL/6 mouse BMDCs as revealed by increased levels of CD40, CD80, MHC II and CD54 at the cell surface. CpG ODN and sorbitol also enhanced the presentation of Db-restricted cytotoxic T lymphocyte epitopes to HPV 16 L1- or E7-specific T lymphocytes after loading of CVLPs onto BMDCs. Treatment of BMDCs with CpG ODN in combination with CVLPs improved in vitro priming of naive T lymphocytes by CVLP-loaded BMDCs. In vivo, CVLP-loaded BMDCs were more immunogenic as compared with injection of CVLPs alone. CpG ODN and sorbitol further enhanced priming of antigen-specific T cell responses. Our data demonstrate that CpG ODN- or sorbitol-activated BMDCs substantially increase the immunogenicity of CVLPs. Implementing our results in clinical trial protocols may lead to improved activity of therapeutic HPV vaccines for the treatment of HPV-induced cancer. PMID:15456078

  5. Cassini Plasma Spectrometer Ion Observations Close to Enceladus: E3, E5 and E7

    NASA Astrophysics Data System (ADS)

    Tokar, R. L.; Johnson, R. E.; Thomsen, M. F.; Wilson, R. J.; Crary, F. J.; Young, D. T.; Goldstein, R.; Reisenfeld, D. B.; Sittler, E. C.; Coates, A. J.; Paty, C. S.; Jia, Y.; Omidi, N.; Russell, C.

    2009-12-01

    The Cassini Plasma Spectrometer (CAPS) detected freshly-produced water-group ions (O+, OH+, H2O+, H3O+) and heavier water dimer ions (HxO2)+ very close to Enceladus where the plasma begins to emerge from the south polar plume (1). The data were obtained during two close (52 and 25 km) flybys of Enceladus in 2008 (E3 and E5) and are consistent with measurements from the Cassini Ion Neutral Mass Spectrometer (INMS). The ions are observed in CAPS detectors looking in the Cassini ram direction close to the ram kinetic energy, indicative of a nearly stagnant plasma flow in the plume. North of Enceladus the plasma slowing commences about 4 to 6 Enceladus radii away, while south of Enceladus signatures of the plasma interaction with the plume are detected 22 Enceladus radii away. Here we review and contrast these observations including the E7 flyby (anticipated Nov. 2, 2009). E7 is planned for a closest approach ~103 km south of Enceladus and CAPS should detect ions at rest with respect to Enceladus and over a broad range of gyrophase angles. Plasma fluid parameters both upstream and downstream of these encounters are extracted from the CAPS data. In addition, we compare the CAPS ion measurements with both fluid and 3D hybrid simulations. The MHD simulations (BATSRUS) are tuned to agree with Cassini Magnetometer (MAG) observations during the encounters then compared with CAPS observations. For example, for the E3 encounter the CAPS/BATSRUS comparison is striking, with features reproduced such as: the overall spatial scale of the interaction, the slowing of the ion flow within the dust plume to less than 5 km/s with respect to Enceladus, the temperature, flow and density signature of the geometric wake, and the flow perturbation along the magnetic field due to wake expansion. For E5, BATSRUS tuned against MAG suggests a 15 km/s bulk plasma flow toward Saturn during the encounter. We search for signatures of this flow in the CAPS ion data. 1.) Tokar,R.L. et al. Geophys. Res

  6. Diagnostic validity of human papillomavirus E6/E7 mRNA test in cervical cytological samples.

    PubMed

    Liu, Tong-Yu; Xie, Rong; Luo, Li; Reilly, Kathleen H; He, Cheng; Lin, Yu-Zhen; Chen, Gang; Zheng, Xiong-Wei; Zhang, Lu-Lu; Wang, Hai-Bo

    2014-02-01

    Human papillomavirus (HPV) DNA tests tend to show high sensitivity, but poor specificity in detecting high-grade cervical lesions. This study aimed to explore the clinical performance of QuantiVirus(®) HPV E6/E7 mRNA in identifying ≥Grade 2 cervical intraepithelial neoplasia. Thin-prep(®) liquid based cytology test (LBC) samples were collected from October 2009 to October 2011 from women who underwent outpatient hospital-based gynecological screening. LBC samples were processed for E6/E7 mRNA detection and HPV DNA detection. Of 335 patients, 135 (40.3%) were HPV E6/E7 mRNA positive for high-risk HPV subtypes. The positivity rate of HPV E6/E7 mRNA increased with the severity of cytological and histological evaluation. An optimal cut-off value of ≥567copies/ml was determined using receiver operating characteristic (ROC) curve, and positive predictive value and negative predictive value of cut-off value (≥567copies/ml) were higher than those of E6/E7 mRNA positivity only, but not significant. QuantiVirus(®) HPV E6/E7 mRNA testing may be a valuable tool in triage for identifying ≥Grade 2 cervical intraepithelial neoplasia. A high specificity and a low positivity rate of E6/E7mRNA testing as a triage test in HPV DNA-positive women can be translated into a low referral for colposcopy. Studies composed of large population-based samples of women and with rigorous disease ascertainment, are needed to establish the optimal cut-off point based on ROC curve analysis.

  7. DEPTOR promotes survival of cervical squamous cell carcinoma cells and its silencing induces apoptosis through downregulating PI3K/AKT and by up-regulating p38 MAP kinase

    PubMed Central

    Srinivas, Kalanghad Puthankalam; Viji, Remadevi; Dan, Vipin Mohan; Sajitha, Indira Sukumaran; Prakash, Rajappan; Rahul, Puthan Valappil; Santhoshkumar, Thankayyan R.; Lakshmi, Subhadra; Pillai, Madhavan Radhakrishna

    2016-01-01

    DEPTOR is an endogenous inhibitor of mTOR complexes, de-regulated in cancers. The present study reveals a vital role for DEPTOR in survival of cervical squamous cell carcinoma (SCC). DEPTOR was found to be overexpressed in both cervical SCC cells and tissues and it's silencing in cervical SCC cells induced apoptosis, mainly by up-regulation of p38 MAPK and by inhibiting PI3K/AKT pathway via a feed-back inhibition from mTORC1-S6K. DEPTOR silencing resulted in reduced expression of the nitric oxide synthases iNOS and eNOS, as well as increased activation of ERK1/2 and p38 MAP kinases. Activation of AKT signaling by overexpression of constitutively active-AKT (CA-AKT) failed to overcome the apoptosis caused by DEPTOR silencing. Similarly pharmacological inhibition of ERK also failed to control apoptosis. However pharmacological inhibition of p38 MAPK rescued the cells from apoptosis, indicating the major role of p38 MAPK in cell death induced by DEPTOR silencing. DEPTOR was also found to regulate ERK1/2 in an AKT dependent manner. DEPTOR knockdown induced cell death in SiHa cells overexpressing the anti-apoptotic Bcl-2 and Bcl-xL, indicating strong survival role of DEPTOR in these cells. DEPTOR overexpression activated PI3K/AKT by relieving the negative feed-back inhibition from mTORC1-S6K. DEPTOR regulation was also observed to be independent of HPV E6/E7 oncoproteins, but it might be a molecular co-factor contributing to cervical carcinogenesis. In summary, DEPTOR is found to promote survival of cervical SCC cells and its reduction induced apoptosis via differential effects on PI3K/AKT and p38 MAPK and can be a potential target in cervical SCC. PMID:26992219

  8. Suppression of HPV E6 and E7 expression by BAF53 depletion in cervical cancer cells

    SciTech Connect

    Lee, Kiwon; Lee, Ah-Young; Kwon, Yunhee Kim; Kwon, Hyockman

    2011-08-26

    Highlights: {yields} Integration of HPV into host genome critical for activation of E6 and E7 oncogenes. {yields} BAF53 is essential for higher-order chromatin structure. {yields} BAF53 knockdown suppresses E6 and E7 from HPV integrants, but not from episomal HPVs. {yields} BAF53 knockdown decreases H3K9Ac and H4K12Ac on P105 promoter of integrated HPV 18. {yields} BAF53 knockdown restores the p53-dependent signaling pathway in HeLa and SiHa cells. -- Abstract: Deregulation of the expression of human papillomavirus (HPV) oncogenes E6 and E7 plays a pivotal role in cervical carcinogenesis because the E6 and E7 proteins neutralize p53 and Rb tumor suppressor pathways, respectively. In approximately 90% of all cervical carcinomas, HPVs are found to be integrated into the host genome. Following integration, the core-enhancer element and P105 promoter that control expression of E6 and E7 adopt a chromatin structure that is different from that of episomal HPV, and this has been proposed to contribute to activation of E6 and E7 expression. However, the molecular basis underlying this chromatin structural change remains unknown. Previously, BAF53 has been shown to be essential for the integrity of higher-order chromatin structure and interchromosomal interactions. Here, we examined whether BAF53 is required for activated expression of E6 and E7 genes. We found that BAF53 knockdown led to suppression of expression of E6 and E7 genes from HPV integrants in cervical carcinoma cell lines HeLa and SiHa. Conversely, expression of transiently transfected HPV18-LCR-Luciferase was not suppressed by BAF53 knockdown. The level of the active histone marks H3K9Ac and H4K12Ac on the P105 promoter of integrated HPV 18 was decreased in BAF53 knockdown cells. BAF53 knockdown restored the p53-dependent signaling pathway in HeLa and SiHa cells. These results suggest that activated expression of the E6 and E7 genes of integrated HPV is dependent on BAF53-dependent higher-order chromatin

  9. Identification of target genes of synovial sarcoma-associated fusion oncoprotein using human pluripotent stem cells

    SciTech Connect

    Hayakawa, Kazuo; Ikeya, Makoto; Fukuta, Makoto; Woltjen, Knut; Tamaki, Sakura; Takahara, Naoko; Kato, Tomohisa; Sato, Shingo; Otsuka, Takanobu; Toguchida, Junya

    2013-03-22

    Highlights: ► We tried to identify targets of synovial sarcoma (SS)-associated SYT–SSX fusion gene. ► We established pluripotent stem cell (PSC) lines with inducible SYT–SSX gene. ► SYT–SSX responsive genes were identified by the induction of SYT–SSX in PSC. ► SS-related genes were selected from database by in silico analyses. ► 51 genes were finally identified among SS-related genes as targets of SYT–SSX in PSC. -- Abstract: Synovial sarcoma (SS) is a malignant soft tissue tumor harboring chromosomal translocation t(X; 18)(p11.2; q11.2), which produces SS-specific fusion gene, SYT–SSX. Although precise function of SYT–SSX remains to be investigated, accumulating evidences suggest its role in gene regulation via epigenetic mechanisms, and the product of SYT–SSX target genes may serve as biomarkers of SS. Lack of knowledge about the cell-of-origin of SS, however, has placed obstacle in the way of target identification. Here we report a novel approach to identify SYT–SSX2 target genes using human pluripotent stem cells (hPSCs) containing a doxycycline-inducible SYT–SSX2 gene. SYT–SSX2 was efficiently induced both at mRNA and protein levels within three hours after doxycycline administration, while no morphological change of hPSCs was observed until 24 h. Serial microarray analyses identified genes of which the expression level changed more than twofold within 24 h. Surprisingly, the majority (297/312, 95.2%) were up-regulated genes and a result inconsistent with the current concept of SYT–SSX as a transcriptional repressor. Comparing these genes with SS-related genes which were selected by a series of in silico analyses, 49 and 2 genes were finally identified as candidates of up- and down-regulated target of SYT–SSX, respectively. Association of these genes with SYT–SSX in SS cells was confirmed by knockdown experiments. Expression profiles of SS-related genes in hPSCs and human mesenchymal stem cells (hMSCs) were strikingly

  10. c-Myc Oncoprotein: A Dual Pathogenic Role in Neoplasia and Cardiovascular Diseases?

    PubMed Central

    Napoli, Claudio; Lerman, Lilach O; de Nigris, Filomena; Sica, Vincenzo

    2002-01-01

    Abstract A growing body of evidence indicates that c-Myc can play a pivotal role both in neoplasia and cardiovascular diseases. Indeed, alterations of the basal machinery of the cell and perturbations of c-Myc-dependent signaling network are involved in the pathogenesis of certain cardiovascular disorders. Down-regulation of c-Myc induced by intervention with antioxidants or by antisense technology may protect the integrity of the arterial wall as well as neoplastic tissues. Further intervention studies are necessary to investigate the effects of tissue-specific block of c-Myc overexpression in the development of cardiovascular diseases. PMID:11988837

  11. The crystal structure of the immunity protein of colicin E7 suggests a possible colicin-interacting surface.

    PubMed Central

    Chak, K F; Safo, M K; Ku, W Y; Hsieh, S Y; Yuan, H S

    1996-01-01

    The immunity protein of colicin E7 (ImmE7) can bind specifically to the DNase-type colicin E7 and inhibit its bactericidal activity. Here we report the 1.8-angstrom crystal structure of the ImmE7 protein. This is the first x-ray structure determined in the superfamily of colicin immunity proteins. The ImmE7 protein consists of four antiparallel alpha-helices, folded in a topology similar to the architecture of a four-helix bundle structure. A region rich in acidic residues is identified. This negatively charged area has the greatest variability within the family of DNase-type immunity proteins; thus, it seems likely that this area is involved in specific binding to colicin. Based on structural, genetic, and kinetic data, we suggest that all the DNase-type immunity proteins, as well as colicins, share a "homologous-structural framework" and that specific interaction between a colicin and its cognate immunity protein relies upon how well these two proteins' charged residues match on the interaction surface, thus leading to specific immunity of the colicin. Images Fig. 1 Fig. 2 Fig. 5 PMID:8692833

  12. Regulation of the Abundance of Kaposi’s Sarcoma-Associated Herpesvirus ORF50 Protein by Oncoprotein MDM2

    PubMed Central

    Chang, Tzu-Hsuan; Chen, Lee-Wen; Shih, Ying-Ju; Chang, Li-Kwan; Liu, Shih-Tung; Chang, Pey-Jium

    2016-01-01

    The switch between latency and the lytic cycle of Kaposi’s sarcoma-associated herpesvirus (KSHV) is controlled by the expression of virally encoded ORF50 protein. Thus far, the regulatory mechanism underlying the protein stability of ORF50 is unknown. Our earlier studies have demonstrated that a protein abundance regulatory signal (PARS) at the ORF50 C-terminal region modulates its protein abundance. The PARS region consists of PARS-I (aa 490–535) and PARS-II (aa 590–650), and mutations in either component result in abundant expression of ORF50. Here, we show that ORF50 protein is polyubiquitinated and its abundance is controlled through the proteasomal degradation pathway. The PARS-I motif mainly functions as a nuclear localization signal in the control of ORF50 abundance, whereas the PARS-II motif is required for the binding of ubiquitin enzymes in the nucleus. We find that human oncoprotein MDM2, an ubiquitin E3 ligase, is capable of interacting with ORF50 and promoting ORF50 degradation in cells. The interaction domains between both proteins are mapped to the PARS region of ORF50 and the N-terminal 220-aa region of MDM2. Additionally, we identify lysine residues at positions 152 and 154 in the N-terminal domain of ORF50 critically involved in MDM2-mediated downregulation of ORF50 levels. Within KSHV-infected cells, the levels of MDM2 were greatly reduced during viral lytic cycle and genetic knockdown of MDM2 in these cells favored the enhancement of ORF50 expression, supporting that MDM2 is a negative regulator of ORF50 expression. Collectively, the study elucidates the regulatory mechanism of ORF50 stability and implicates that MDM2 may have a significant role in the maintenance of viral latency by lowering basal level of ORF50. PMID:27698494

  13. The proto-oncoprotein KR-POK represses transcriptional activation of CDKN1A by MIZ-1 through competitive binding.

    PubMed

    Lee, K M; Choi, W I; Koh, D I; Kim, Y J; Jeon, B N; Yoon, J H; Lee, C E; Kim, S H; Oh, J; Hur, M W

    2012-03-15

    The BTB/POZ family of proteins has been implicated in multiple biological processes, including tumourigenesis, DNA damage responses and cell cycle progression and development. MIZ-1 (Myc-interacting zinc-finger protein 1) is known to activate transcription of CDKN1A. We recently found that a kidney cancer-related POK transcription factor, KR-POK, is highly expressed in kidney, brain and bone marrow cancer tissues and is a potential proto-oncoprotein. Mouse Kr-pok represses transcription of the CDKN1A by acting on the proximal promoter. The BiFC/FRET assay, co-immunoprecipitation and glutathione S-transferase-fusion protein pull-down assay indicate that MIZ-1 and Kr-pok interact via their POZ domains. Oligoucleotide pull-down assays and chromatin immunoprecipitation assays revealed that MIZ-1 binds to the proximal GC-box#3 (bp, -55 to -63) and the MIZ-1-binding elements, MRE-A (bp, -90 to -64) and MRE-B (bp, -27 to -17). Interestingly, MIZ-1 also binds to the distal p53-binding elements. Kr-pok binds to the proximal GC-box#1 (bp, -95 to -100) and #3 (bp, -55 to -63) relatively strongly. It also shows weak binding to the MREs and the distal p53-binding elements. Kr-pok competes with MIZ-1 in binding to these elements and represses transcription by inhibiting MIZ-1/p300 recruitment, which decreases the acetylation of histones H3 and H4. Our data indicate that Kr-pok stimulates cell proliferation by interfering with the function of MIZ-1 in CDKN1A gene transcription using a mechanism that is radically different from other MIZ-1-interacting proteins, such as B-cell lymphoma 6, c-Myc and Gfi-1.

  14. Effect of 60 Hz magnetic fields on the activation of hsp70 promoter in cultured INER-37 and RMA E7 cells.

    PubMed

    Heredia-Rojas, J Antonio; Rodríguez de la Fuente, Abraham Octavio; Alcocer González, Juan Manuel; Rodríguez-Flores, Laura E; Rodríguez-Padilla, Cristina; Santoyo-Stephano, Martha A; Castañeda-Garza, Esperanza; Taméz-Guerra, Reyes S

    2010-10-01

    It has been reported that 50-60 Hz magnetic fields (MF) with flux densities ranging from microtesla to millitesla are able to induce heat shock factor or heat shock proteins in various cells. In this study, we investigated the effect of 60 Hz sinusoidal MF at 8 and 80 μT on the expression of the luciferase gene contained in a plasmid labeled as electromagnetic field-plasmid (pEMF). This gene construct contains the specific sequences previously described for the induction of hsp70 expression by MF, as well as the reporter for the luciferase gene. The pEMF vector was transfected into INER-37 and RMA E7 cell lines that were later exposed to either MF or thermal shock (TS). Cells that received the MF or TS treatments and their controls were processed according to the luciferase assay system for evaluate luciferase activity. An increased luciferase gene expression was observed in INER-37 cells exposed to MF and TS compared with controls (p < 0.05), but MF exposure had no effect on the RMA E7 cell line.

  15. Characterization of Intra-Type Variants of Oncogenic Human Papillomaviruses by Next-Generation Deep Sequencing of the E6/E7 Region

    PubMed Central

    Lavezzo, Enrico; Masi, Giulia; Toppo, Stefano; Franchin, Elisa; Gazzola, Valentina; Sinigaglia, Alessandro; Masiero, Serena; Trevisan, Marta; Pagni, Silvana; Palù, Giorgio; Barzon, Luisa

    2016-01-01

    Different human papillomavirus (HPV) types are characterized by differences in tissue tropism and ability to promote cell proliferation and transformation. In addition, clinical and experimental studies have shown that some genetic variants/lineages of high-risk HPV (HR-HPV) types are characterized by increased oncogenic activity and probability to induce cancer. In this study, we designed and validated a new method based on multiplex PCR-deep sequencing of the E6/E7 region of HR-HPV types to characterize HPV intra-type variants in clinical specimens. Validation experiments demonstrated that this method allowed reliable identification of the different lineages of oncogenic HPV types. Advantages of this method over other published methods were represented by its ability to detect variants of all HR-HPV types in a single reaction, to detect variants of HR-HPV types in clinical specimens with multiple infections, and, being based on sequencing of the full E6/E7 region, to detect amino acid changes in these oncogenes potentially associated with increased transforming activity. PMID:26985902

  16. Characterization of Intra-Type Variants of Oncogenic Human Papillomaviruses by Next-Generation Deep Sequencing of the E6/E7 Region.

    PubMed

    Lavezzo, Enrico; Masi, Giulia; Toppo, Stefano; Franchin, Elisa; Gazzola, Valentina; Sinigaglia, Alessandro; Masiero, Serena; Trevisan, Marta; Pagni, Silvana; Palù, Giorgio; Barzon, Luisa

    2016-03-14

    Different human papillomavirus (HPV) types are characterized by differences in tissue tropism and ability to promote cell proliferation and transformation. In addition, clinical and experimental studies have shown that some genetic variants/lineages of high-risk HPV (HR-HPV) types are characterized by increased oncogenic activity and probability to induce cancer. In this study, we designed and validated a new method based on multiplex PCR-deep sequencing of the E6/E7 region of HR-HPV types to characterize HPV intra-type variants in clinical specimens. Validation experiments demonstrated that this method allowed reliable identification of the different lineages of oncogenic HPV types. Advantages of this method over other published methods were represented by its ability to detect variants of all HR-HPV types in a single reaction, to detect variants of HR-HPV types in clinical specimens with multiple infections, and, being based on sequencing of the full E6/E7 region, to detect amino acid changes in these oncogenes potentially associated with increased transforming activity.

  17. Characterization of Intra-Type Variants of Oncogenic Human Papillomaviruses by Next-Generation Deep Sequencing of the E6/E7 Region.

    PubMed

    Lavezzo, Enrico; Masi, Giulia; Toppo, Stefano; Franchin, Elisa; Gazzola, Valentina; Sinigaglia, Alessandro; Masiero, Serena; Trevisan, Marta; Pagni, Silvana; Palù, Giorgio; Barzon, Luisa

    2016-03-01

    Different human papillomavirus (HPV) types are characterized by differences in tissue tropism and ability to promote cell proliferation and transformation. In addition, clinical and experimental studies have shown that some genetic variants/lineages of high-risk HPV (HR-HPV) types are characterized by increased oncogenic activity and probability to induce cancer. In this study, we designed and validated a new method based on multiplex PCR-deep sequencing of the E6/E7 region of HR-HPV types to characterize HPV intra-type variants in clinical specimens. Validation experiments demonstrated that this method allowed reliable identification of the different lineages of oncogenic HPV types. Advantages of this method over other published methods were represented by its ability to detect variants of all HR-HPV types in a single reaction, to detect variants of HR-HPV types in clinical specimens with multiple infections, and, being based on sequencing of the full E6/E7 region, to detect amino acid changes in these oncogenes potentially associated with increased transforming activity. PMID:26985902

  18. Why There Are No Elliptical Galaxies More Flattened Than E7. Thirty Years Later

    NASA Astrophysics Data System (ADS)

    Caimmi, R.

    2006-12-01

    Elliptical galaxies are modelled as homeoidally striated Jacobi ellipsoids (Caimmi and Marmo 2005) where the peculiar velocity distribution is anisotropic, or equivalently as their adjoint configurations i.e. classical Jacobi ellipsoids of equal mass and axes, in real or imaginary rotation (Caimmi 2006). Reasons for the coincidence of bifurcation points from axisymmetric to triaxial configurations in both the sequences (Caimmi 2006), contrary to earlier findings (Wiegandt 1982a,b, Caimmi and Marmo 2005) are presented and discussed. The effect of centrifugal support at the ends of the major equatorial axis is briefly outlined. The existence of a lower limit to the flattening of elliptical galaxies is investigated in dealing with a number of limiting situations. More specifically, (i) elliptical galaxies are considered as isolated systems, and an allowed region within Ellipsoidland (Hunter and de Zeeuw 1997), related to the occurrence of bifurcation points from ellipsoidal to pear-shaped configurations, is shown to be consistent with observations; (ii) elliptical galaxies are considered as embedded within dark matter haloes and, under reasonable assumptions, it is shown that tidal effects from hosting haloes have little influence on the above mentioned results; (iii) dark matter haloes and embedded elliptical galaxies, idealized as a single homeoidally striated Jacobi ellipsoid, are considered in connection with the cosmological transition from expansion to relaxation, by generalizing an earlier model (Thuan and Gott 1975), and the existence of a lower limit to the flattening of relaxed (oblate-like) configurations, is established. On the other hand, no lower limit is found to the elongation of relaxed (prolate-like) configurations, and the existence of some sort of instability is predicted, owing to the observed lack of elliptical galaxies more flattened or elongated than E7.

  19. Human Papillomavirus Type 18 E6 and E7 Genes Integrate into Human Hepatoma Derived Cell Line Hep G2

    PubMed Central

    Ma, Tianzhong; Su, Zhongjing; Chen, Ling; Liu, Shuyan; Zhu, Ningxia; Wen, Lifeng; Yuan, Yan; Lv, Leili; Chen, Xiancai; Huang, Jianmin; Chen, Haibin

    2012-01-01

    Background and Objectives Human papillomaviruses have been linked causally to some human cancers such as cervical carcinoma, but there is very little research addressing the effect of HPV infection on human liver cells. We chose the human hepatoma derived cell line Hep G2 to investigate whether HPV gene integration took place in liver cells as well. Methods We applied PCR to detect the possible integration of HPV genes in Hep G2 cells. We also investigated the expression of the integrated E6 and E7 genes by using RT-PCR and Western blotting. Then, we silenced E6 and E7 expression and checked the cell proliferation and apoptosis in Hep G2 cells. Furthermore, we analyzed the potential genes involved in cell cycle and apoptosis regulatory pathways. Finally, we used in situ hybridization to detect HPV 16/18 in hepatocellular carcinoma samples. Results Hep G2 cell line contains integrated HPV 18 DNA, leading to the expression of the E6 and E7 oncogenic proteins. Knockdown of the E7 and E6 genes expression reduced cell proliferation, caused the cell cycle arrest at the S phase, and increased apoptosis. The human cell cycle and apoptosis real-time PCR arrays analysis demonstrated E6 and E7-mediated regulation of some genes such as Cyclin H, UBA1, E2F4, p53, p107, FASLG, NOL3 and CASP14. HPV16/18 was found in only 9% (9/100) of patients with hepatocellular carcinoma. Conclusion Our investigations showed that HPV 18 E6 and E7 genes can be integrated into the Hep G2, and we observed a low prevalence of HPV 16/18 in hepatocellular carcinoma samples. However, the precise risk of HPV as causative agent of hepatocellular carcinoma needs further study. PMID:22655088

  20. Characterization of human aortic smooth muscle cells expressing HPV16 E6 and E7 open reading frames.

    PubMed Central

    Conroy, S. C.; Hart, C. E.; Perez-Reyes, N.; Giachelli, C. M.; Schwartz, S. M.; McDougall, J. K.

    1995-01-01

    A comparative study of human papillomavirus type 16 E6E7-transfected and normal human aortic smooth muscle cells by morphological, electron microscopic, immunofluorescent, and biochemical analyses demonstrated that the E6E7-expressing cells retained much of the phenotype of normal aortic smooth muscle cells, including expression of smooth muscle markers and appropriate growth responses to PDGF and heparin. These cells differed from normal vascular smooth muscle cells in that they had slightly altered morphology and a higher growth rate that was not due to an autocrine response to secreted PDGF, and they contained more polyribosomes than normal smooth muscle cells. Images Figure 2 Figure 4 Figure 5 PMID:7677186

  1. E6 and E7 variants of human papillomavirus-16 and -52 in Japan, the Philippines, and Vietnam.

    PubMed

    Ishizaki, Azumi; Matsushita, Kaori; Hoang, Huyen Thi Thanh; Agdamag, Dorothy M; Nguyen, Cuong Hung; Tran, Vuong Thi; Sasagawa, Toshiyuki; Saikawa, Kunikazu; Lihana, Raphael; Pham, Hung Viet; Bi, Xiuqiong; Ta, Van Thanh; Van Pham, Thuc; Ichimura, Hiroshi

    2013-06-01

    Human papillomavirus (HPV) has several intragenotypic variants with different geographical and ethnic distributions. This study aimed to elucidate the distribution patterns of E6 and E7 (E6/E7) intragenotypic variants of HPV type 16 (HPV-16), which is most common worldwide, and HPV-52, which is common in Asian countries such as Japan, the Philippines, and Vietnam. In previous studies, genomic DNA samples extracted from cervical swabs were collected from female sex workers in these three countries and found to be positive for HPV-16 or HPV-52. Samples were amplified further for their E6/E7 genes using type-specific primers and analyzed genetically. Seventy-nine HPV-16 E6/E7 genes were analyzed successfully and grouped into three lineages: European (Prototype), European (Asian), and African-2. The prevalences of HPV-16 European (Prototype)/European (Asian) lineages were 19.4%/80.6% (n = 31) in Japan, 75.0%/20.8% (n = 24) in the Philippines, and 0%/95.8% (n = 24) in Vietnam. The 109 HPV-52 E6/E7 genes analyzed successfully were grouped into four lineages, A-D; the prevalences of lineages A/B/C/D were, respectively, 5.1%/92.3%/0%/2.6% in Japan (n = 39), 34.4%/62.5%/0%/3.1% in the Philippines (n = 32), and 15.8%/73.7%/7.9%/2.6% in Vietnam (n = 38). The distribution patterns of HPV-16 and HPV-52 lineages in these countries differed significantly (P < 0.000001 and P = 0.0048, respectively). There was no significant relationship between abnormal cervical cytology and either HPV-16 E6/E7 lineages or specific amino acid mutations, such as E6 D25E, E6 L83V, and E7 N29S. Analysis of HPV-16 and HPV-52 E6/E7 genes can be a useful molecular-epidemiological tool to distinguish geographical diffusion routes of these HPV types in Asia.

  2. The E7 protein of the cottontail rabbit papillomavirus immortalizes normal rabbit keratinocytes and reduces pRb levels, while E6 cooperates in immortalization but neither degrades p53 nor binds E6AP

    SciTech Connect

    Ganzenmueller, Tina; Matthaei, Markus; Muench, Peter; Scheible, Michael; Iftner, Angelika; Hiller, Thomas; Leiprecht, Natalie; Probst, Sonja; Stubenrauch, Frank; Iftner, Thomas

    2008-03-15

    Human papillomaviruses (HPVs) cause cervical cancer and are associated with the development of non-melanoma skin cancer. A suitable animal model for papillomavirus-associated skin carcinogenesis is the infection of domestic rabbits with the cottontail rabbit papillomavirus (CRPV). As the immortalizing activity of CRPV genes in the natural target cells remains unknown, we investigated the properties of CRPV E6 and E7 in rabbit keratinocytes (RK) and their influence on the cell cycle. Interestingly, CRPV E7 immortalized RK after a cellular crisis but showed no such activity in human keratinocytes. Co-expressed CRPV E6 prevented cellular crisis. The HPV16 or CRPV E7 protein reduced rabbit pRb levels thereby causing rabbit p19{sup ARF} induction and accumulation of p53 without affecting cellular proliferation. Both CRPV E6 proteins failed to degrade rabbit p53 in vitro or to bind E6AP; however, p53 was still inducible by mitomycin C. In summary, CRPV E7 immortalizes rabbit keratinocytes in a species-specific manner and E6 contributes to immortalization without directly affecting p53.

  3. TRRAP-Dependent and TRRAP-Independent Transcriptional Activation by Myc Family Oncoproteins

    PubMed Central

    Nikiforov, Mikhail A.; Chandriani, Sanjay; Park, Jeonghyeon; Kotenko, Iulia; Matheos, Dina; Johnsson, Anna; McMahon, Steven B.; Cole, Michael D.

    2002-01-01

    We demonstrate that transformation-transactivation domain-associated protein (TRRAP) binding and the recruitment of histone H3 and H4 acetyltransferase activities are required for the transactivation of a silent telomerase reverse transcriptase (TERT) gene in exponentially growing human fibroblasts by c-Myc or N-Myc protein. However, recruitment of TRRAP by c- or N-Myc is dispensable for the partial induction of several basally expressed genes in exponentially growing primary and immortalized fibroblasts. Furthermore, recruitment of TRRAP is required for c-Myc- or N-Myc-mediated oncogenic transformation but not for the partial restoration of the growth defect in myc-null fibroblasts. A segment of the adenovirus E1A protein fused to a transformation-defective N-Myc protein carrying a small deletion in the transactivation domain specifically restores interaction with TRRAP, activates the silent TERT gene, induces acetylation of histones H3 and H4 at the TERT promoter, and transforms primary cells. Accordingly, wild-type L-Myc is much less efficient in TRRAP binding, activation of the silent TERT gene, and transformation of primary fibroblasts. Nevertheless, L-Myc is a potent activator of several basally expressed genes and can fully restore the growth defect of myc-null cells. These results suggest a differential requirement for TRRAP for several Myc-mediated activities. PMID:12077335

  4. The c-Cbl proto-oncoprotein downregulates EBV LMP2A signaling

    PubMed Central

    Ikeda, Masato; Longnecker, Richard

    2009-01-01

    Latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV) plays a key role in regulating viral latency and EBV pathogenesis by functionally mimicking signals induced by the B-cell receptor (BCR) altering normal B cell development. As c-Cbl ubiquitin ligase (E3) is a critical negative regulator in the BCR signal pathway, the role of c-Cbl in the function and formation of the LMP2A signalsome was examined. c-Cbl promoted LMP2A degradation through ubiquitination, specifically degraded the Syk protein tyrosine kinase in the presence of LMP2A, and inhibited LMP2A induction of the EBV lytic cycle. Our earlier studies indicated that LMP2A-dependent Lyn degradation was mediated by Nedd4-family E3s in LMP2A expressing cells. Combine with these new findings, we propose a model in which c-Cbl and Nedd4-family E3s cooperate to degrade target proteins at discrete steps in the function of the LMP2A signalosome. PMID:19081591

  5. Differential transforming activity of the retroviral Tax oncoproteins in human T lymphocytes.

    PubMed

    Ren, Tong; Cheng, Hua

    2013-01-01

    Human T cell leukemia virus type 1 and type 2 (HTLV-1 and -2) are two closely related retroviruses. HTLV-1 causes adult T cell leukemia and lymphoma, whereas HTLV-2 infection is not etiologically linked to human disease. The viral genomes of HTLV-1 and -2 encode highly homologous transforming proteins, Tax-1 and Tax-2, respectively. Tax-1 is thought to play a central role in transforming CD4+ T lymphocytes. Expression of Tax-1 is crucial for promoting survival and proliferation of virally infected human T lymphocytes and is necessary for initiating HTLV-1-mediated oncogenesis. In transgenic mice and humanized mouse model, Tax-1 has proven to be leukemogenic. Although Tax-1 is able to efficiently transform rodent fibroblasts and to induce lymphoma in mouse model, it rarely transforms primary human CD4+ T lymphocytes. In contrast, Tax-2 efficiently immortalizes human CD4+ T cells though it exhibits a lower transforming activity in rodent cells as compared to Tax-1. We here discuss our recent observation and views on the differential transforming activity of Tax-1 and Tax-2 in human T cells.

  6. Expression of the MOZ-TIF2 oncoprotein in mice represses senescence

    PubMed Central

    Largeot, Anne; Perez-Campo, Flor Maria; Marinopoulou, Elli; Lie-a-Ling, Michael; Kouskoff, Valerie; Lacaud, Georges

    2016-01-01

    The MOZ-TIF2 translocation, which fuses monocytic leukemia zinc finger protein (MOZ) histone acetyltransferase (HAT) with the nuclear co-activator TIF2, is associated with the development of acute myeloid leukemia. We recently found that in the absence of MOZ HAT activity, p16INK4a transcriptional levels are significantly increased, triggering an early entrance into replicative senescence. Because oncogenic fusion proteins must bypass cellular safeguard mechanisms, such as senescence and apoptosis, to induce leukemia, we hypothesized that this repressive activity of MOZ over p16INK4a transcription could be preserved, or even reinforced, in MOZ leukemogenic fusion proteins, such as MOZ-TIF2. We describe here that, indeed, MOZ-TIF2 silences expression of the CDKN2A locus (p16INK4a and p19ARF), inhibits the triggering of senescence and enhances proliferation, providing conditions favorable to the development of leukemia. Furthermore, we describe that abolishing the MOZ HAT activity of the fusion protein leads to a significant increase in expression of the CDKN2A locus and the number of hematopoietic progenitors undergoing senescence. Finally, we report that inhibition of senescence by MOZ-TIF2 is associated with increased apoptosis, suggesting a role for the fusion protein in p53 apoptosis-versus-senescence balance. Our results underscore the importance of the HAT activity of MOZ, preserved in the fusion protein, for repression of the CDKN2A locus transcription and the subsequent block of senescence, a necessary step for the survival of leukemic cells. PMID:26854485

  7. Radiosensitization of Oropharyngeal Squamous Cell Carcinoma Cells by Human Papillomavirus 16 Oncoprotein E6*I

    SciTech Connect

    Pang, Ervinna; Delic, Naomi C.; Hong, Angela; Zhang Mei; Rose, Barbara R.; Lyons, J. Guy

    2011-03-01

    Purpose: Patients with oropharyngeal squamous cell carcinoma (OSCC) whose disease is associated with high-risk human papillomavirus (HPV) infection have a significantly better outcome than those with HPV-negative disease, but the reasons for the better outcome are not known. We postulated that they might relate to an ability of HPV proteins to confer a better response to radiotherapy, a commonly used treatment for OSCC. Methods and Materials: We stably expressed the specific splicing-derived isoforms, E6*I and E6*II, or the entire E6 open reading frame (E6total), which gives rise to both full length and E6*I isoforms, in OSCC cell lines. Radiation resistance was measured in clonogenicity assays, p53 activity was measured using transfected reporter genes, and flow cytometry was used to analyze cell cycle and apoptosis. Results: E6*I and E6total sensitized the OSCC cells to irradiation, E6*I giving the greatest degree of radiosensitization (approximately eightfold lower surviving cell fraction at 10 Gy), whereas E6*II had no effect. In contrast to radiosensitivity, E6*I was a weaker inhibitor than E6total of tumor suppressor p53 transactivator activity in the same cells. Flow cytometric analyses showed that irradiated E6*I expressing cells had a much higher G2M:G1 ratio than control cells, indicating that, after G2, cells were diverted from the cell cycle to programmed cell death. Conclusion: This study supports a role for E6*I in the enhanced responsiveness of HPV-positive oropharyngeal carcinomas to p53-independent radiation-induced death.

  8. The nuclear localization of low risk HPV11 E7 protein mediated by its zinc binding domain is independent of nuclear import receptors

    SciTech Connect

    Piccioli, Zachary; McKee, Courtney H.; Leszczynski, Anna; Onder, Zeynep; Hannah, Erin C.; Mamoor, Shahan; Crosby, Lauren; Moroianu, Junona

    2010-11-10

    We investigated the nuclear import of low risk HPV11 E7 protein using 1) transfection assays in HeLa cells with EGFP fusion plasmids containing 11E7 and its domains and 2) nuclear import assays in digitonin-permeabilized HeLa cells with GST fusion proteins containing 11E7 and its domains. The EGFP-11E7 and EGFP-11cE7{sub 39-98} localized mostly to the nucleus. The GST-11E7 and GST-11cE7{sub 39-98} were imported into the nuclei in the presence of either Ran-GDP or RanG19V-GTP mutant and in the absence of nuclear import receptors. This suggests that 11E7 enters the nucleus via a Ran-dependent pathway, independent of nuclear import receptors, mediated by a nuclear localization signal located in its C-terminal domain (cNLS). This cNLS contains the zinc binding domain consisting of two copies of Cys-X-X-Cys motif. Mutagenesis of Cys residues in these motifs changed the localization of the EGFP-11cE7/-11E7 mutants to cytoplasmic, suggesting that the zinc binding domain is essential for nuclear localization of 11E7.

  9. Increased Growth of a Newly Established Mouse Epithelial Cell Line Transformed with HPV-16 E7 in Diabetic Mice

    PubMed Central

    He, Lan; Law, Priscilla T. Y.; Boon, Siaw Shi; Zhang, Chuqing; Ho, Wendy C. S.; Banks, Lawrence; Wong, C. K.; Chan, Juliana C. N.; Chan, Paul K. S.

    2016-01-01

    Epidemiological evidence supports that infection with high-risk types of human papillomavirus (HPV) can interact with host and environmental risk factors to contribute to the development of cervical, oropharyngeal, and other anogenital cancers. In this study, we established a mouse epithelial cancer cell line, designated as Chinese University Papillomavirus-1 (CUP-1), from C57BL/KsJ mice through persistent expression of HPV-16 E7 oncogene. After continuous culturing of up to 200 days with over 60 passages, we showed that CUP-1 became an immortalized and transformed epithelial cell line with continuous E7 expression and persistent reduction of retinoblastoma protein (a known target of E7). This model allowed in-vivo study of interaction between HPV and co-factors of tumorigenesis in syngeneic mice. Diabetes has been shown to increase HPV pathogenicity in different pathological context. Herein, with this newly-established cell line, we uncovered that diabetes promoted CUP-1 xenograft growth in syngeneic db/db mice. In sum, we successfully established a HPV-16 E7 transformed mouse epithelial cell line, which allowed subsequent studies of co-factors in multistep HPV carcinogenesis in an immunocompetent host. More importantly, this study is the very first to demonstrate the promoting effect of diabetes on HPV-associated carcinogenesis in vivo, implicating the importance of cancer surveillance in diabetic environment. PMID:27749912

  10. The human papillomavirus18 E7 protein inhibits CENP-C binding to α-satellite DNA.

    PubMed

    Yaginuma, Yuji; Yoshimoto, Masafumi; Eguchi, Ayami; Tokuda, Aoi; Takahashi, Shoko

    2015-07-01

    Human papillomavirus (HPV) infection leads to aneuploidy, a numerical chromosomal aberration that is caused by dysregulation of chromosomal segregation. We previously found that the E7 proteins of high-risk HPVs, but not of low-risk HPVs, could bind to centromere protein-C (CENP-C). In this study, we first found that CENP-C could bind centromere α-satellite DNAs using ChIP analysis and HA-tagged CENP-C/nuc transfected 293T cells. We then investigated if HA-CENP-C/nuc binding to α-satellite DNAs was affected by the E7 proteins of high- or low-risk HPVs. We found that transfection of the FLAG tagged HPV18 E7 inhibited the binding of HA-CENP-C/nuc to α-satellite DNAs. This finding was confirmed in HeLa S3 cells transfected with siRNA targeted to HPV18 E7 expression. We therefore speculate that altered function of kinetochores as a result of inhibition of CENP-C and α-satellite DNAs binding may be associated with the chromosomal abnormalities observed in HPV18-positive cancers.

  11. Overexpression of PP2A inhibitor SET oncoprotein is associated with tumor progression and poor prognosis in human non-small cell lung cancer

    PubMed Central

    Liu, Hao; Gu, Yixue; Wang, Hongsheng; Yin, Jiang; Zheng, Guopei; Zhang, Zhijie; Lu, Minyin; Wang, Chenkun; He, Zhimin

    2015-01-01

    SET oncoprotein is an endogenous inhibitor of protein phosphatase 2A (PP2A), and SET-mediated PP2A inhibition is an important regulatory mechanism for promoting cancer initiation and progression of several types of human leukemia disease. However, its potential relevance in solid tumors as non-small cell lung cancer (NSCLC) remains mostly unknown. In this study, we showed that SET was evidently overexpressed in human NSCLC cell lines and NSCLC tissues. Clinicopathologic analysis showed that SET expression was significantly correlated with clinical stage (p < 0.001), and lymph node metastasis (p < 0.05). Kaplan-Meier analysis revealed that patients with high SET expression had poorer overall survival rates than those with low SET expression. Moreover, knockdown of SET in NSCLC cells resulted in attenuated proliferative and invasive abilities. The biological effect of SET on proliferation and invasion was mediated by the inhibition of the PP2A, which in turn, activation of AKT and ERK, increased the expression of cyclin D1 and MMP9, and decreased the expression of p27. Furthermore, we observed that restoration of PP2A using SET antagonist FTY720 impaired proliferative and invasive potential in vitro, as well as inhibited tumor growth in vivo of NSCLC cells. Taken together, SET oncoprotein plays an important role in NSCLC progression, which could serve as a potential prognosis marker and a novel therapeutic target for NSCLC patients. PMID:25945834

  12. Bcl-2 anti-apoptotic oncoprotein suppresses angiogenesis in non-small cell lung cancer: implications in resistance to photodynamic treatment?

    NASA Astrophysics Data System (ADS)

    Koukourakis, M. I.; Giatromanolaki, A.; Skarlatos, J.; Kosma, L.; Apostolikas, N.; Beroukas, K.

    1998-07-01

    PDT cytotoxicity is likely to occur through photooxidative reactions. In that way mechanisms that define poor oxygenation should be involved in defining resistance to photo-dynamic treatment (PDT). On the other hand bcl-2 anti- apoptotic protein has been shown to delay cell death and protect cells from toxic oxidative products. We examined 134 specimens from T1,2-NO,1 staged patients treated with surgery alone. Specimens were immunohistochemically examined for vascular grade using the JC70 MoAb, and bcl-2 oncoprotein expression. Bcl-2 expression correlated with low vascular grade. Only 3/27 of bcl2+ case had high angiogenesis vs. 34/107 of cases without bcl-2 expression. In the present study we provide evidence that bcl-2 overexpression directly suppresses angiogenesis in non-small cell lung cancer, which obviously results in decreased blood supply and oxygenation. This finding implies that reduced intratumoral angiogenesis and immortalizing oncoprotein overexpression are linked to each other and may have a role in defining tumors resistant to PDT.

  13. High affinity interaction of poly(ADP-ribose) and the human DEK oncoprotein depends upon chain length†

    PubMed Central

    Fahrer, Jörg; Popp, Oliver; Malanga, Maria; Beneke, Sascha; Markovitz, David M.; Ferrando-May, Elisa; Bürkle, Alexander; Kappes, Ferdinand

    2010-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a molecular DNA damage sensor that catalyzes the synthesis of the complex biopolymer poly(ADP-ribose) [PAR] under consumption of NAD+. PAR engages in fundamental cellular processes such as DNA metabolism and transcription, and interacts non-covalently with specific binding proteins involved in DNA repair and regulation of chromatin structure. A factor implicated in DNA repair and chromatin organization is the DEK oncoprotein, an abundant and conserved constituent of metazoan chromatin, and the only member of its protein class. We have recently demonstrated that DEK, under stress conditions, is covalently modified with PAR by PARP-1, leading to a partial release of DEK into the cytoplasm. Additionally, we have also observed a non-covalent interaction between DEK and PAR, which we detail in the present work. Using sequence alignment, we identify three functional PAR-binding sites in the DEK primary sequence and confirm their functionality in PAR binding studies. Furthermore, we show that the non-covalent binding to DEK is dependent on PAR chain length as revealed by an overlay blot technique and PAR EMSA. Intriguingly, DEK promotes the formation of a defined complex with a 54mer PAR (KD=6 × 10−8 M), whereas no specific interaction is detected with a short PAR chain (18mer). In stark contrast to covalent poly(ADP-ribosyl)ation of DEK, the non-covalent interaction does not affect the overall ability of DEK to bind to DNA. Instead the non-covalent interaction interferes with subsequent DNA-dependent multimerization activities of DEK, as seen in South-Western, EMSA, topology and aggregation assays. In particular, non-covalent attachment of PAR to DEK promotes the formation of DEK-DEK complexes by competing with DNA binding. This was seen by the reduced affinity of PAR-bound DEK for DNA templates in solution. Taken together, our findings deepen the molecular understanding of the DEK-PAR interplay and support the existence of a

  14. Chemo-immunotherapy using saffron and its ingredients followed by E7-NT (gp96) DNA vaccine generates different anti-tumor effects against tumors expressing the E7 protein of human papillomavirus.

    PubMed

    Khavari, Afshin; Bolhassani, Azam; Alizadeh, Fatemeh; Bathaie, S Zahra; Balaram, Prabha; Agi, Elnaz; Vahabpour, Rouhollah

    2015-02-01

    Saffron and its components have been suggested as promising candidates for cancer prevention. Carotenoids and monoterpene aldehydes are two potent ingredients of saffron. The goal of the current study was to investigate the anti-tumor effect of chemo-immunotherapy using saffron and its ingredients followed by E7-NT (gp96) DNA vaccine against tumors expressing the E7 protein of human papillomavirus. The in vitro cytotoxic and apoptotic effects of aqueous saffron extract and its components were evaluated in malignant TC-1 and non-malignant COS-7 cell lines. Then, multimodality treatments using E7-NT (gp96) DNA vaccine combined with saffron extract and its ingredients as well as single-modality treatments were tested for their efficacy in inhibiting large and bulky tumor growth. Saffron and its components exerted a considerable anti-tumor effect through prevention of cell growth and stimulation of programmed cell death. Furthermore, 100 % of mice treated with crocin were tumor-free, in contrast to DNA vaccine alone (~66.7 %) and DNA + crocin (~33.3 %) indicating the high potency of crocin as a chemotherapeutic agent. Interestingly, the multimodality treatment using DNA vaccine along with picrocrocin augmented the anti-tumor effects of picrocrocin. Thus, the combination of DNA vaccine with saffron extract and crocin at certain concentrations did not potentiate protective and therapeutic effects compared to mono-therapies for the control of TC-1 tumors. PMID:25395243

  15. Chemo-immunotherapy using saffron and its ingredients followed by E7-NT (gp96) DNA vaccine generates different anti-tumor effects against tumors expressing the E7 protein of human papillomavirus.

    PubMed

    Khavari, Afshin; Bolhassani, Azam; Alizadeh, Fatemeh; Bathaie, S Zahra; Balaram, Prabha; Agi, Elnaz; Vahabpour, Rouhollah

    2015-02-01

    Saffron and its components have been suggested as promising candidates for cancer prevention. Carotenoids and monoterpene aldehydes are two potent ingredients of saffron. The goal of the current study was to investigate the anti-tumor effect of chemo-immunotherapy using saffron and its ingredients followed by E7-NT (gp96) DNA vaccine against tumors expressing the E7 protein of human papillomavirus. The in vitro cytotoxic and apoptotic effects of aqueous saffron extract and its components were evaluated in malignant TC-1 and non-malignant COS-7 cell lines. Then, multimodality treatments using E7-NT (gp96) DNA vaccine combined with saffron extract and its ingredients as well as single-modality treatments were tested for their efficacy in inhibiting large and bulky tumor growth. Saffron and its components exerted a considerable anti-tumor effect through prevention of cell growth and stimulation of programmed cell death. Furthermore, 100 % of mice treated with crocin were tumor-free, in contrast to DNA vaccine alone (~66.7 %) and DNA + crocin (~33.3 %) indicating the high potency of crocin as a chemotherapeutic agent. Interestingly, the multimodality treatment using DNA vaccine along with picrocrocin augmented the anti-tumor effects of picrocrocin. Thus, the combination of DNA vaccine with saffron extract and crocin at certain concentrations did not potentiate protective and therapeutic effects compared to mono-therapies for the control of TC-1 tumors.

  16. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Linn, Anning

    1996-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK.

  17. Oncoprotein protein kinase

    DOEpatents

    Karin, M.; Hibi, M.; Lin, A.

    1997-02-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE is disclosed. The polypeptide has serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences. The method of detection of JNK is also provided. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites. 44 figs.

  18. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2004-03-16

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  19. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  20. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1998-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  1. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1999-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  2. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2005-03-08

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  3. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  4. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  5. Oncoprotein protein kinase

    DOEpatents

    Davis, Roger; Derijard, Benoit; Karin, Michael; Hibi, Masahiko; Lin, Anning

    2005-01-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  6. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Lin, Anning

    1999-11-30

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  7. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2002-01-29

    The present invention provides an isolated polynucleotide encoding a c-Jun peptide consisting of about amino acid residues 33 to 79 as set fort in SEQ ID NO: 10 or conservative variations thereof. The invention also provides a method for producing a peptide of SEQ ID NO:1 comprising (a) culturing a host cell containing a polynucleotide encoding a c-Jun peptide consisting of about amino acid residues 33 to 79 as set forth in SEQ ID NO: 10 under conditions which allow expression of the polynucleotide; and (b) obtaining the peptide of SEQ ID NO:1.

  8. Genetic variability in E6, E7, and L1 genes of human papillomavirus genotype 52 from Southwest China.

    PubMed

    Zhang, Yiwen; Cao, Man; Wang, Mengting; Ding, Xianping; Jing, Yaling; Chen, Zuyi; Ma, Tengjiao; Chen, Honghan

    2016-07-01

    Human papillomavirus (HPV) is the major causative agent of cervical cancer, which accounts for the second highest cancer burden in women worldwide. HPV-52, the prevalent subtype in Asia, especially in southwest China, was analyzed in this study. To analyze polymorphisms, intratypic variants, and genetic variability in the E6-E7 (n=26) and L1 (n=53) genes of HPV-52, these genes were sequenced and the sequences were submitted to GenBank. Phylogenetic trees were constructed using the neighbor-joining and Kimura 2-parameters methods, followed by analysis of the diversity of secondary structure. Finally, we estimated the selection pressures acting on the E6-E7 and L1 genes. Fifty-one novel variants of HPV-52 L1, and two novel variants of HPV-52 E6-E7 were identified in this study. Thirty single nucleotide changes were observed in HPV-52 E6-E7 sequences with 19/30 non-synonymous mutations and 11/30 synonymous mutations (five in the alpha helix and five in the beta sheet). Fifty-five single nucleotide changes were observed in HPV-52 L1 sequences with 17/55 non-synonymous mutations (seven in the alpha helix and fourteen in the beta sheet) and 38/55 synonymous mutations. Selective pressure analysis predicted that most of these mutations reflect positive selection. Identifying new variants in HPV-52 may inform the rational design of new vaccines specifically for women in southwest China. Knowledge of genetic variation in HPV may be useful as an epidemiologic correlate of cervical cancer risk, or may even provide critical information for developing diagnostic probes. PMID:26968892

  9. Induction of focal epithelial hyperplasia in tongue of young bk6-E6/E7 HPV16 transgenic mice.

    PubMed

    Ocadiz-Delgado, Rodolfo; Marroquin-Chavira, Alberto; Hernandez-Mote, Ruth; Valencia, Concepción; Manjarrez-Zavala, M Eugenia; Covarrubias, Luis; Gariglio, Patricio

    2009-08-01

    Squamous cell carcinoma (SCC) of the oral cavity is one of the most common neoplasms in the world. During the past 2 decades, the role of high-risk human papilloma virus (HR-HPV) has been studied and the data supporting HPV as a one of the causative agents in the development and progression of a sub-set of head and neck squamous cell carcinomas (HNSCC) has accumulated. In order to investigate the role of HR-HPV oncogene expression in early epithelial alterations in vivo, we produced transgenic mice expressing HPV16 early region genes from the promoter of the bovine keratin 6 gene (Tg[bK6-E6/E7]). In this article, we demonstrate that E6/E7 transgene was abundantly expressed and cellular proliferation was increased in the middle tongue epithelia of transgenic mice, and that in the same region young (27 weeks old) Tg[bK6-E6/E7] mice spontaneously developed histological alterations, mainly focal epithelial hyperplasia (FEH).

  10. Primary human cervical carcinoma cells require human papillomavirus E6 and E7 expression for ongoing proliferation

    SciTech Connect

    Magaldi, Thomas G.; Almstead, Laura L.; Bellone, Stefania; Prevatt, Edward G.; Santin, Alessandro D.; DiMaio, Daniel

    2012-01-05

    Repression of human papillomavirus (HPV) E6 and E7 oncogenes in established cervical carcinoma cell lines causes senescence due to reactivation of cellular tumor suppressor pathways. Here, we determined whether ongoing expression of HPV16 or HPV18 oncogenes is required for the proliferation of primary human cervical carcinoma cells in serum-free conditions at low passage number after isolation from patients. We used an SV40 viral vector expressing the bovine papillomavirus E2 protein to repress E6 and E7 in these cells. To enable efficient SV40 infection and E2 gene delivery, we first incubated the primary cervical cancer cells with the ganglioside GM1, a cell-surface receptor for SV40 that is limiting in these cells. Repression of HPV in primary cervical carcinoma cells caused them to undergo senescence, but the E2 protein had little effect on HPV-negative primary cells. These data suggest that E6 and E7 dependence is an inherent property of human cervical cancer cells.

  11. Consideration of Epstein-Barr Virus-Encoded Noncoding RNAs EBER1 and EBER2 as a Functional Backup of Viral Oncoprotein Latent Membrane Protein 1.

    PubMed

    Herbert, Kristina M; Pimienta, Genaro

    2016-01-19

    The Epstein-Barr virus (EBV)-encoded noncoding RNAs EBER1 and EBER2 are highly abundant through all four latency stages of EBV infection (III-II-I-0) and have been associated with an oncogenic phenotype when expressed in cell lines cultured in vitro. In vivo, EBV-infected B cells derived from freshly isolated lymphocytes show that EBER1/2 deletion does not impair viral latency. Based on published quantitative proteomics data from BJAB cells expressing EBER1 and EBER2, we propose that the EBERs, through their activation of AKT in a B-cell-specific manner, are a functionally redundant backup of latent membrane protein 1 (LMP1)-an essential oncoprotein in EBV-associated malignancies, with a main role in AKT activation. Our proposed model may explain the lack of effect on viral latency establishment in EBER-minus EBV infection.

  12. Consideration of Epstein-Barr Virus-Encoded Noncoding RNAs EBER1 and EBER2 as a Functional Backup of Viral Oncoprotein Latent Membrane Protein 1

    PubMed Central

    2016-01-01

    ABSTRACT The Epstein-Barr virus (EBV)-encoded noncoding RNAs EBER1 and EBER2 are highly abundant through all four latency stages of EBV infection (III-II-I-0) and have been associated with an oncogenic phenotype when expressed in cell lines cultured in vitro. In vivo, EBV-infected B cells derived from freshly isolated lymphocytes show that EBER1/2 deletion does not impair viral latency. Based on published quantitative proteomics data from BJAB cells expressing EBER1 and EBER2, we propose that the EBERs, through their activation of AKT in a B-cell-specific manner, are a functionally redundant backup of latent membrane protein 1 (LMP1)—an essential oncoprotein in EBV-associated malignancies, with a main role in AKT activation. Our proposed model may explain the lack of effect on viral latency establishment in EBER-minus EBV infection. PMID:26787829

  13. Abnormal centrosome amplification in cells through the targeting of Ran-binding protein-1 by the human T cell leukemia virus type-1 Tax oncoprotein

    PubMed Central

    Peloponese, Jean-Marie; Haller, Kerstin; Miyazato, Akiko; Jeang, Kuan-Teh

    2005-01-01

    Human T cell leukemia virus type-1 (HTLV-1) is an oncogenic retrovirus etiologically causal of adult T cell leukemia. The virus encodes a Tax oncoprotein that functions in transcriptional regulation, cell cycle control, and transformation. Because adult T cell leukemia like many other human cancers is a disease of genomic instability with frequent gains and losses of chromosomes, to understand this disease it is important to comprehend how HTLV-1 engenders aneuploidy in host cells. In this regard, loss of cell cycle checkpoints permits tolerance of aneuploidy but does not explain how aneuploidy is created. We show here that HTLV-1 Tax causes abnormal centrosome fragmentation in the mitotic phase of the cell cycle. We report that Tax directly binds Ran and Ran-binding protein-1, locates to centrosomes/spindle poles, and causes supernumerary centrosomes. PMID:16365316

  14. Systemic delivery of siRNA by actively targeted polyion complex micelles for silencing the E6 and E7 human papillomavirus oncogenes.

    PubMed

    Nishida, Haruka; Matsumoto, Yoko; Kawana, Kei; Christie, R James; Naito, Mitsuru; Kim, Beob Soo; Toh, Kazuko; Min, Hyun Su; Yi, Yu; Matsumoto, Yu; Kim, Hyun Jin; Miyata, Kanjiro; Taguchi, Ayumi; Tomio, Kensuke; Yamashita, Aki; Inoue, Tomoko; Nakamura, Hiroe; Fujimoto, Asaha; Sato, Masakazu; Yoshida, Mitsuyo; Adachi, Katsuyuki; Arimoto, Takahide; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Nishiyama, Nobuhiro; Kataoka, Kazunori; Osuga, Yutaka; Fujii, Tomoyuki

    2016-06-10

    Human papillomavirus (HPV) E6 and E7 oncogenes are essential for the immortalization and maintenance of HPV-associated cancer and are ubiquitously expressed in cervical cancer lesions. Small interfering RNA (siRNA) coding for E6 and E7 oncogenes is a promising approach for precise treatment of cervical cancer, yet a delivery system is required for systemic delivery to solid tumors. Here, an actively targeted polyion complex (PIC) micelle was applied to deliver siRNAs coding for HPV E6/E7 to HPV cervical cancer cell tumors in immune-incompetent tumor-bearing mice. A cell viability assay revealed that both HPV type 16 and 18 E6/E7 siRNAs (si16E6/E7 and si18E6/E7, respectively) interfered with proliferation of cervical cancer cell lines in an HPV type-specific manner. A fluorescence imaging biodistribution analysis further revealed that fluorescence dye-labeled siRNA-loaded PIC micelles efficiently accumulated within the tumor mass after systemic administration. Ultimately, intravenous injection of si16E6/E7 and si18E6/E7-loaded PIC micelles was found to significantly suppress the growth of subcutaneous SiHa and HeLa tumors, respectively. The specific activity of siRNA treatment was confirmed by the observation that p53 protein expression was restored in the tumors excised from the mice treated with si16E6/E7- and si18E6/E7-loaded PIC micelles for SiHa and HeLa tumors, respectively. Therefore, the actively targeted PIC micelle incorporating HPV E6/E7-coding siRNAs demonstrated its therapeutic potential against HPV-associated cancer. PMID:26979870

  15. A functional interaction of E7 with B-Myb-MuvB complex promotes acute cooperative transcriptional activation of both S- and M-phase genes. (129 c).

    PubMed

    Pang, C L; Toh, S Y; He, P; Teissier, S; Ben Khalifa, Y; Xue, Y; Thierry, F

    2014-07-31

    High-risk human papillomaviruses are causative agents of cervical cancer. Viral protein E7 is required to establish and maintain the pro-oncogenic phenotype in infected cells, but the molecular mechanisms by which E7 promotes carcinogenesis are only partially understood. Our transcriptome analyses in primary human fibroblasts transduced with the viral protein revealed that E7 activates a group of mitotic genes via the activator B-Myb-MuvB complex. We show that E7 interacts with the B-Myb, FoxM1 and LIN9 components of this activator complex, leading to cooperative transcriptional activation of mitotic genes in primary cells and E7 recruitment to the corresponding promoters. E7 interaction with LIN9 and FoxM1 depended on the LXCXE motif, which is also required for pocket protein interaction and degradation. Using E7 mutants for the degradation of pocket proteins but intact for the LXCXE motif, we demonstrate that E7 functional interaction with the B-Myb-MuvB complex and pocket protein degradation are two discrete functions of the viral protein that cooperate to promote acute transcriptional activation of mitotic genes. Transcriptional level of E7 in patient's cervical lesions at different stages of progression was shown to correlate with those of B-Myb and FoxM1 as well as other mitotic gene transcripts, thereby linking E7 with cellular proliferation and progression in cervical cancer in vivo. E7 thus can directly activate the transcriptional levels of cell cycle genes independently of pocket protein stability.

  16. Human papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization

    SciTech Connect

    Vandermark, Erik R.; Deluca, Krysta A.; Gardner, Courtney R.; Marker, Daniel F.; Schreiner, Cynthia N.; Strickland, David A.; Wilton, Katelynn M.; Mondal, Sumona; Woodworth, Craig D.

    2012-03-30

    The NF-kB family of transcription factors regulates important biological functions including cell growth, survival and the immune response. We found that Human Papillomavirus type 16 (HPV-16) E7 and E6/E7 proteins inhibited basal and TNF-alpha-inducible NF-kB activity in human epithelial cells cultured from the cervical transformation zone, the anatomic region where most cervical cancers develop. In contrast, HPV-16 E6 regulated NF-kB in a cell type- and cell growth-dependent manner. NF-kB influenced immortalization of cervical cells by HPV16. Inhibition of NF-kB by an IkB alpha repressor mutant increased colony formation and immortalization by HPV-16. In contrast, activation of NF-kB by constitutive expression of p65 inhibited proliferation and immortalization. Our results suggest that inhibition of NF-kB by HPV-16 E6/E7 contributes to immortalization of cells from the cervical transformation zone.

  17. Nonradioactive RNA in situ hybridization detection of human papillomavirus 16-E7 transcripts in squamous cell carcinomas of the uterine cervix using confocal laser scan microscopy.

    PubMed Central

    van den Brule, A. J.; Cromme, F. V.; Snijders, P. J.; Smit, L.; Oudejans, C. B.; Baak, J. P.; Meijer, C. J.; Walboomers, J. M.

    1991-01-01

    Paraffin-embedded squamous cell carcinomas of the uterine cervix selected for the presence of human papillomavirus (HPV) genotype 16 (n = 19) by polymerase chain reaction, were studied for transcription of the early open reading frame E7 (ORF E7). Nonradioactive RNA in situ hybridization (RISH) was performed using in vitro generated biotinylated probes. Hybrids were visualized by streptavidin gold and silver enhancement staining in combination with confocal laser scan microscopy. Quality of mRNA was verified by detection of beta-actin gene transcripts before E7 expression was studied. In all carcinomas containing HPV 16 DNA and showing beta-actin mRNA signals (n = 13), clear E7 ORF transcription could be found. Additional RNA-PCR on purified cytoplasmic RNA of snapfrozen tissue of identical carcinomas (n = 7) showed E6-E7 specific transcripts in all E7 RISH positive samples. These results indicate continuous expression of E7 ORF in all cervical carcinomas containing HPV 16 DNA and support an active role of the E7 ORF in the pathogenesis of cervical cancer. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1719818

  18. Methylation-specific digital karyotyping of HPV16E6E7-expressing human keratinocytes identifies novel methylation events in cervical carcinogenesis.

    PubMed

    Steenbergen, Renske D M; Ongenaert, Maté; Snellenberg, Suzanne; Trooskens, Geert; van der Meide, Wendy F; Pandey, Deeksha; Bloushtain-Qimron, Noga; Polyak, Kornelia; Meijer, Chris J L M; Snijders, Peter J F; Van Criekinge, Wim

    2013-09-01

    Transformation of epithelial cells by high-risk human papillomavirus (hrHPV) types can lead to anogenital carcinomas, particularly cervical cancer, and oropharyngeal cancers. This process is associated with DNA methylation alterations, often affecting tumour suppressor gene expression. This study aimed to comprehensively unravel genome-wide DNA methylation events linked to a transforming hrHPV-infection, which is driven by deregulated expression of the viral oncogenes E6 and E7 in dividing cells. Primary human keratinocytes transduced with HPV16E6E7 and their untransduced counterparts were subjected to methylation-specific digital karyotyping (MSDK) to screen for genome-wide DNA-methylation changes at different stages of HPV-induced transformation. Integration of the obtained methylation profiles with genome-wide gene expression patterns of cervical carcinomas identified 34 genes with increased methylation in HPV-transformed cells and reduced expression in cervical carcinomas. For 12 genes (CLIC3, CREB3L1, FAM19A4, LFNG, LHX1, MRC2, NKX2-8, NPTX-1, PHACTR3, PRDM14, SOST and TNFSF13) specific methylation in HPV-containing cell lines was confirmed by semi-quantitative methylation-specific PCR. Subsequent analysis of FAM19A4, LHX1, NKX2-8, NPTX-1, PHACTR3 and PRDM14 in cervical tissue specimens showed increasing methylation levels for all genes with disease progression. All six genes were frequently methylated in cervical carcinomas, with highest frequencies (up to 100%) seen for FAM19A4, PHACTR3 and PRDM14. Analysis of hrHPV-positive cervical scrapes revealed significantly increased methylation levels of the latter three genes in women with high-grade cervical disease compared to controls. In conclusion, MSDK analysis of HPV16-transduced keratinocytes at different stages of HPV-induced transformation resulted in the identification of novel DNA methylation events, involving FAM19A4, LHX1, NKX2-8, PHACTR3 and PRDM14 genes in cervical carcinogenesis. These genes may

  19. Methylation-specific digital karyotyping of HPV16E6E7-expressing human keratinocytes identifies novel methylation events in cervical carcinogenesis.

    PubMed

    Steenbergen, Renske D M; Ongenaert, Maté; Snellenberg, Suzanne; Trooskens, Geert; van der Meide, Wendy F; Pandey, Deeksha; Bloushtain-Qimron, Noga; Polyak, Kornelia; Meijer, Chris J L M; Snijders, Peter J F; Van Criekinge, Wim

    2013-09-01

    Transformation of epithelial cells by high-risk human papillomavirus (hrHPV) types can lead to anogenital carcinomas, particularly cervical cancer, and oropharyngeal cancers. This process is associated with DNA methylation alterations, often affecting tumour suppressor gene expression. This study aimed to comprehensively unravel genome-wide DNA methylation events linked to a transforming hrHPV-infection, which is driven by deregulated expression of the viral oncogenes E6 and E7 in dividing cells. Primary human keratinocytes transduced with HPV16E6E7 and their untransduced counterparts were subjected to methylation-specific digital karyotyping (MSDK) to screen for genome-wide DNA-methylation changes at different stages of HPV-induced transformation. Integration of the obtained methylation profiles with genome-wide gene expression patterns of cervical carcinomas identified 34 genes with increased methylation in HPV-transformed cells and reduced expression in cervical carcinomas. For 12 genes (CLIC3, CREB3L1, FAM19A4, LFNG, LHX1, MRC2, NKX2-8, NPTX-1, PHACTR3, PRDM14, SOST and TNFSF13) specific methylation in HPV-containing cell lines was confirmed by semi-quantitative methylation-specific PCR. Subsequent analysis of FAM19A4, LHX1, NKX2-8, NPTX-1, PHACTR3 and PRDM14 in cervical tissue specimens showed increasing methylation levels for all genes with disease progression. All six genes were frequently methylated in cervical carcinomas, with highest frequencies (up to 100%) seen for FAM19A4, PHACTR3 and PRDM14. Analysis of hrHPV-positive cervical scrapes revealed significantly increased methylation levels of the latter three genes in women with high-grade cervical disease compared to controls. In conclusion, MSDK analysis of HPV16-transduced keratinocytes at different stages of HPV-induced transformation resulted in the identification of novel DNA methylation events, involving FAM19A4, LHX1, NKX2-8, PHACTR3 and PRDM14 genes in cervical carcinogenesis. These genes may

  20. HPV 16 E7 inhibits OSCC cell proliferation, invasion, and metastasis by upregulating the expression of miR-20a.

    PubMed

    Hu, Jun; Ge, Weili; Xu, Junfeng

    2016-07-01

    The aim of this research was to study how HPV-16 E7 affects the proliferation, invasion, and metastasis of oral squamous cell carcinoma (OSCC) cells by upregulating the expression of miR-20a. A total of 60 OSCC patients were included in this study. SiRNA-198 was used to inhibit HPV-16 E7, and the constructed plasmid of HPV-16 E7 was transfected into Cal27 cells. Then, HPV-16 E7 protein was detected by Western blot and RT-PCR was performed to measure miR-20a expression in OSCC cells. Either HPV-16 E7 or the combination of HPV-16 E7 and miR-20a inhibitors was transfected into Cal27 cells separately. And then, the effect of miR-20a on OSCC cells proliferation was evaluated by CCK-8. Moreover, transwell assay and wound healing assay were used to assess the impact of miR-20a on OSCC cell invasion migration. MiR-20a was significantly higher in OSCC tissues compared with para-carcinoma tissues. RT-PCR results indicated that miR-20a was downregulated after silencing HPV-16 E7. By contrast, miR-20a was upregulated after the overexpression of HPV-16 E7. Upregulation of miR-20a by transfected plasmid HPV-16 E7 can significantly inhibit Cal27 cell proliferation, invasion, and migration. The expression of MiR-20a upregulated by HPV-16 E7 inhibits the proliferation, invasion, and migration of OSCC cells.

  1. Optimization of supercoiled HPV-16 E6/E7 plasmid DNA purification with arginine monolith using design of experiments.

    PubMed

    Almeida, A M; Queiroz, J A; Sousa, F; Sousa, A

    2015-01-26

    The progress of DNA vaccines is dependent on the development of suitable chromatographic procedures to successfully purify genetic vectors, such as plasmid DNA. Human Papillomavirus is associated with the development of tumours due to the oncogenic power of E6 and E7 proteins, produced by this virus. The supercoiled HPV-16 E6/E7 plasmid-based vaccine was recently purified with the arginine monolith, with 100% of purity, but only 39% of recovery was achieved. Therefore, the present study describes the application of experimental design tools, a newly explored methodology in preparative chromatography, in order to improve the supercoiled plasmid DNA recovery with the arginine monolith, maintaining the high purity degree. In addition, the importance and influence of pH in the pDNA retention to the arginine ligand was also demonstrated. The Composite Central Face design was validated and the recovery of the target molecule was successfully improved from 39% to 83.5%, with an outstanding increase of more than double, while maintaining 100% of purity.

  2. Suppression of the CD8 T cell response by human papillomavirus type 16 E7 occurs in Langerhans cell-depleted mice

    PubMed Central

    Jemon, K.; Leong, C.-M.; Ly, K.; Young, S. L.; McLellan, A. D.; Hibma, M. H.

    2016-01-01

    Human papillomavirus (HPV) is an epitheliotropic virus that is the primary causal agent for cervical cancer. Langerhans cells (LC) are skin antigen presenting cells that are reduced in number in HPV-infected skin. The aim of this study was to understand the immune-modulatory effects of HPV16 E7 on LC and on the CD8 T cell response to a skin-expressed antigen. To test this, HPV16 E7 was expressed in mouse skin keratinocytes with the model antigen ovalbumin (Ova). Similar to what is observed in HPV-infected human skin, LC numbers were significantly reduced in E7-expressing mouse skin. This shows that expression of the E7 protein alone is sufficient to mediate LC depletion. Expression of E7 with Ova in keratinocytes strongly suppressed the Ova-specific CD8+ T cell response in the skin draining lymph node. When tested in LC-ablated mice, the CD8 T cell response to skin-expressed Ova in control mice was not affected, nor was the T cell response to Ova restored in E7-expressing skin. These data indicate a role for E7 in regulation of LC homeostasis in the skin and in suppression of antigen specific CD8 T cell expansion, but suggest that these two effects occur independent of each other. PMID:27708419

  3. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells

    PubMed Central

    2011-01-01

    Background- Specific types of high risk Human papillomaviruses (HR-HPVs) particularly, HPV types 16 and 18 cause cervical cancer and while the two recently developed vaccines against these HPV types are prophylactic in nature, therapeutic options for treatment and management of already existing HPV infection are not available as yet. Because transcription factor, Activator Protein-1 (AP-1) plays a central role in HPV-mediated cervical carcinogenesis, we explored the possibility of its therapeutic targeting by berberine, a natural alkaloid derived from a medicinal plant species, Berberis which has been shown to possess anti-inflammatory and anti-cancer properties with no known toxicity; however, the effect of berberine against HPV has not been elucidated. Results- We studied the effect of berberine on HPV16-positive cervical cancer cell line, SiHa and HPV18-positive cervical cancer cell line, HeLa using electrophoretic mobility gel shift assays, western and northern blotting which showed that berberine could selectively inhibit constitutively activated AP-1 in a dose- and time-dependent manner and downregulates HPV oncogenes expression. Inhibition of AP-1 was also accompanied by changes in the composition of their DNA-binding complex. Berberine specifically downregulated expression of oncogenic c-Fos which was also absent in the AP-1 binding complex. Treatment with berberine resulted in repression of E6 and E7 levels and concomitant increase in p53 and Rb expression in both cell types. Berberine also suppressed expression of telomerase protein, hTERT, which translated into growth inhibition of cervical cancer cells. Interestingly, a higher concentration of berberine was found to reduce the cell viability through mitochondria-mediated pathway and induce apoptosis by activating caspase-3. Conclusion- These results indicate that berberine can effectively target both the host and viral factors responsible for development of cervical cancer through inhibition of AP-1 and

  4. Intron definition and a branch site adenosine at nt 385 control RNA splicing of HPV16 E6*I and E7 expression.

    PubMed

    Ajiro, Masahiko; Jia, Rong; Zhang, Lifang; Liu, Xuefeng; Zheng, Zhi-Ming

    2012-01-01

    HPV16 E6 and E7, two viral oncogenes, are expressed from a single bicistronic pre-mRNA. In this report, we provide the evidence that the bicistronic pre-mRNA intron 1 contains three 5' splice sites (5' ss) and three 3' splice sites (3' ss) normally used in HPV16(+) cervical cancer and its derived cell lines. The choice of two novel alternative 5' ss (nt 221 5' ss and nt 191 5' ss) produces two novel isoforms of E6E7 mRNAs (E6*V and E6*VI). The nt 226 5' ss and nt 409 3' ss is preferentially selected over the other splice sites crossing over the intron to excise a minimal length of the intron in RNA splicing. We identified AACAAAC as the preferred branch point sequence (BPS) and an adenosine at nt 385 (underlined) in the BPS as a branch site to dictate the selection of the nt 409 3' ss for E6*I splicing and E7 expression. Introduction of point mutations into the mapped BPS led to reduced U2 binding to the BPS and thereby inhibition of the second step of E6E7 splicing at the nt 409 3' ss. Importantly, the E6E7 bicistronic RNA with a mutant BPS and inefficient splicing makes little or no E7 and the resulted E6 with mutations of (91)QYNK(94) to (91)PSFW(94) displays attenuate activity on p53 degradation. Together, our data provide structural basis of the E6E7 intron 1 for better understanding of how viral E6 and E7 expression is regulated by alternative RNA splicing. This study elucidates for the first time a mapped branch point in HPV16 genome involved in viral oncogene expression.

  5. A C-terminal Hydrophobic, Solvent-protected Core and a Flexible N-terminus are Potentially Required for Human Papillomavirus 18 E7 Protein Functionality

    SciTech Connect

    Liu, S.; Tian, Y; Greenaway, F; Sun, M

    2010-01-01

    The oncogenic potential of the high-risk human papillomavirus (HPV) relies on the expression of genes specifying the E7 and E6 proteins. To investigate further the variation in oligomeric structure that has been reported for different E7 proteins, an HPV-18 E7 cloned from a Hispanic woman with cervical intraepithelial neoplasia was purified to homogeneity most probably as a stable monomeric protein in aqueous solution. We determined that one zinc ion is present per HPV-18 E7 monomer by amino acid and inductively coupled plasma-atomic emission spectroscopy analysis. Intrinsic fluorescence and circular dichroism spectroscopic results indicate that the zinc ion is important for the correct folding and thermal stability of HPV-18 E7. Hydroxyl radical mediated protein footprinting coupled to mass spectrometry and other biochemical and biophysical data indicate that near the C-terminus, the four cysteines of the two Cys-X{sub 2}-Cys motifs that are coordinated to the zinc ion form a solvent inaccessible core. The N-terminal LXCXE pRb binding motif region is hydroxyl radical accessible and conformationally flexible. Both factors, the relative flexibility of the pRb binding motif at the N-terminus and the C-terminal metal-binding hydrophobic solvent-protected core, combine together and facilitate the biological functions of HPV-18 E7.

  6. The transcription elongation factor ELL2 is specifically upregulated in HTLV-1-infected T-cells and is dependent on the viral oncoprotein Tax

    SciTech Connect

    Mann, Melanie C. Strobel, Sarah Fleckenstein, Bernhard Kress, Andrea K.

    2014-09-15

    The oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) is a potent transactivator of viral and cellular transcription. Here, we identified ELL2 as the sole transcription elongation factor to be specifically upregulated in HTLV-1-/Tax-transformed T-cells. Tax contributes to regulation of ELL2, since transient transfection of Tax increases ELL2 mRNA, Tax transactivates the ELL2 promoter, and repression of Tax results in decrease of ELL2 in transformed T-lymphocytes. However, we also measured upregulation of ELL2 in HTLV-1-transformed cells exhibiting undetectable amounts of Tax, suggesting that ELL2 can still be maintained independent of continuous Tax expression. We further show that Tax and ELL2 synergistically activate the HTLV-1 promoter, indicating that ELL2 cooperates with Tax in viral transactivation. This is supported by our findings that Tax and ELL2 accumulate in nuclear fractions and that they co-precipitate upon co-expression in transiently-transfected cells. Thus, upregulation of ELL2 could contribute to HTLV-1 gene regulation. - Highlights: • ELL2, a transcription elongation factor, is upregulated in HTLV-1-positive T-cells. • Tax transactivates the ELL2 promoter. • Tax and ELL2 synergistically activate the HTLV-1 promoter. • Tax and ELL2 interact in vivo.

  7. E6* oncoprotein expression of human papillomavirus type-16 determines different ultraviolet sensitivity related to glutathione and glutathione peroxidase antioxidant defence.

    PubMed

    Mouret, Stéphane; Sauvaigo, Sylvie; Peinnequin, André; Favier, Alain; Beani, Jean-Claude; Leccia, Marie-Thérèse

    2005-06-01

    Clinical observations of non-melanoma skin cancer in immunocompromised patients, such as organ transplant recipients, suggest co-operative effects of human papillomavirus (HPV) and ultraviolet (UV) radiation. The aim of the present study is to evaluate UV sensitivity and DNA damage formation according to antioxidant status in HPV16-infected keratinocytes. We used SKv cell lines, infected with HPV16 and well characterized for their proliferative and tumorigenic capacities. We showed that SKv cell lines presented various E6* (a truncated form of E6) RNA levels. We demonstrated that the higher oncoprotein RNA expression level was associated with a higher resistance to solar-simulated radiation, more specifically to UVB radiation and to hydrogen peroxide. Moreover, this high resistance was associated with a low oxidative DNA damage formation after UV radiation and was related to high glutathione content and glutathione peroxidase activities. Therefore, the results of our study suggest that E6* levels could modulate the glutathione/glutathione peroxidase pathway providing a mechanism to protect HPV-infected keratinocytes against an environmental oxidative stress, such as UV radiation.

  8. Impact of structural polymorphism for the Helicobacter pylori CagA oncoprotein on binding to polarity-regulating kinase PAR1b

    PubMed Central

    Nishikawa, Hiroko; Hayashi, Takeru; Arisaka, Fumio; Senda, Toshiya; Hatakeyama, Masanori

    2016-01-01

    Chronic infection with cagA-positive Helicobacter pylori is the strongest risk factor for atrophic gastritis, peptic ulcers, and gastric cancer. CagA, the product of the cagA gene, is a bacterial oncoprotein, which, upon delivery into gastric epithelial cells, binds to and inhibits the polarity-regulating kinase, partitioning-defective 1b (PAR1b) [also known as microtubule affinity-regulating kinase 2 (MARK2)], via its CagA multimerization (CM) motif. The inhibition of PAR1b elicits junctional and polarity defects, rendering cells susceptible to oncogenesis. Notably, the polymorphism in the CM motif has been identified among geographic variants of CagA, differing in either the copy number or the sequence composition. In this study, through quantitative analysis of the complex formation between CagA and PAR1b, we found that several CagA species have acquired elevated PAR1b-binding activity via duplication of the CM motifs, while others have lost their PAR1b-binding activity. We also found that strength of CagA-PAR1b interaction was proportional to the degrees of stress fiber formation and tight junctional disruption by CagA in gastric epithelial cells. These results indicate that the CM polymorphism is a determinant for the magnitude of CagA-mediated deregulation of the cytoskeletal system and thereby possibly affects disease outcome of cagA-positive H. pylori infection, including gastric cancer. PMID:27445265

  9. The transcription elongation factor ELL2 is specifically upregulated in HTLV-1-infected T-cells and is dependent on the viral oncoprotein Tax.

    PubMed

    Mann, Melanie C; Strobel, Sarah; Fleckenstein, Bernhard; Kress, Andrea K

    2014-09-01

    The oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) is a potent transactivator of viral and cellular transcription. Here, we identified ELL2 as the sole transcription elongation factor to be specifically upregulated in HTLV-1-/Tax-transformed T-cells. Tax contributes to regulation of ELL2, since transient transfection of Tax increases ELL2 mRNA, Tax transactivates the ELL2 promoter, and repression of Tax results in decrease of ELL2 in transformed T-lymphocytes. However, we also measured upregulation of ELL2 in HTLV-1-transformed cells exhibiting undetectable amounts of Tax, suggesting that ELL2 can still be maintained independent of continuous Tax expression. We further show that Tax and ELL2 synergistically activate the HTLV-1 promoter, indicating that ELL2 cooperates with Tax in viral transactivation. This is supported by our findings that Tax and ELL2 accumulate in nuclear fractions and that they co-precipitate upon co-expression in transiently-transfected cells. Thus, upregulation of ELL2 could contribute to HTLV-1 gene regulation.

  10. A Transgenic Drosophila melanogaster Model To Study Human T-Lymphotropic Virus Oncoprotein Tax-1-Driven Transformation In Vivo.

    PubMed

    Shirinian, Margret; Kambris, Zakaria; Hamadeh, Lama; Grabbe, Caroline; Journo, Chloé; Mahieux, Renaud; Bazarbachi, Ali

    2015-08-01

    Human T-cell lymphotropic virus type 1 (HTLV-1)-induced adult T-cell leukemia/lymphoma is an aggressive malignancy. HTLV-2 is genetically related to HTLV-1 but does not cause any malignant disease. HTLV-1 Tax transactivator (Tax-1) contributes to leukemogenesis via NF-κB. We describe transgenic Drosophila models expressing Tax in the compound eye and plasmatocytes. We demonstrate that Tax-1 but not Tax-2 induces ommatidial perturbation and increased plasmatocyte proliferation and that the eye phenotype is dependent on Kenny (IKKγ/NEMO), thus validating this new in vivo model.

  11. Enzyme immunoassay detection of induction of MHC class I expression by synthetic peptides from the E6 and E7 regions of human papillomavirus type 16.

    PubMed

    Dillner, J

    1994-01-01

    Viral antigens are presented to cytotoxic T cells (CTL) in the form of endogenously processed peptides bound to major histocompatibility complex (MHC) class I molecules. A variety of different methods for measuring the ability of peptides to bind to MHC class I have been described. Several of these methods use the murine lymphoma mutant cell line RMA-S, which has a peptide loading defect resulting in a low expression of surface class I molecules that can be upregulated if a synthetic binding peptide with class I binding ability is added to the culture medium. In order to be able to screen for peptides with MHC class I binding ability, we developed an enzyme immunoassay for quantitation of MHC class I expression on RMA-S cells. 107 synthetic peptides derived from the E6 and E7 regions of human papillomavirus type 16 were screened for ability to upregulate class I expression of Kb or Db alleles. At a concentration of about 300 microM, 9/107 peptides were found to restore expression of Db to equal or greater levels than found in the RMA-S parental cell line RMA, while 35/107 peptides were able to partially restore Db expression. For Kb, 16/107 peptides were able to restore expression and 40/107 peptides induced partial upregulation. Titration experiments showed that upregulation of class I expression by these peptides was dependent on a high peptide concentration, since consistent upregulation could in no case be detected at concentrations below 10 microM. The class I binding peptides identified in the present study may be useful in the study of the CTL response to HPV in mouse model systems. The enzyme immunoassay used could facilitate the rapid search for class I binding peptides.

  12. Development of a Multiplex PCR Test with Automated Genotyping Targeting E7 for Detection of Six High-Risk Human Papillomaviruses.

    PubMed

    Paes, Eliana Ferreira; de Assis, Angela Maria; Teixeira, Cirbia S Campos; Aoki, Francisco Hideo; Teixeira, Julio Cesar

    2015-01-01

    Cervical cancer is caused by high-risk human papillomaviruses (HPV) and viral detection tests aid in the diagnosis of precursor lesions. In the present study, a molecular test for detection of high-risk HPV DNA, called E7-HPV, was standardized and assessed in samples from women with pre-cancerous lesions. The development of the E7-HPV test for detection and genotyping of six high-risk HPV (types 16, 18, 31, 33, 45 and 52), consisted of evaluating primer quality and adjusting the multiplex PCR conditions. Primer design was based on the E7 region of each HPV, and the fluorochrome 6-FAM was added to PCR primers. Viral detection was performed by capillary electrophoresis in automated sequencer in samples obtained from 60 women (55 with ASC-H/HSIL cytology) from August to September 2013. A non-inferiority analysis was conducted with the cobas HPV test as a reference and following international guidelines for the development of new tests. The two tests had a high concordance rate in HPV16 detection (kappa=0.972), with only one discordant case (cervical intraepithelial neoplasia grade 3, negative with cobas and positive for HPV16 by E7-HPV) and complete agreement in HPV18 detection. When comparing detection of all high-risk HPV, three cases were positive with cobas but negative with E7-HPV, and another three cases were negative with cobas but positive with E7-HPV (HPV16, 31 and 52). When we evaluate the cases initially suspected by cytology, the two tests had the same sensitivity in detection CIN2 or worse. In conclusion, the E7-HPV test has satisfactory initial results, and its development can be continued.

  13. Heme oxygenase-1 inhibits phosphorylation of the Helicobacter pylori oncoprotein CagA in gastric epithelial cells

    PubMed Central

    Gobert, Alain P.; Verriere, Thomas; de Sablet, Thibaut; Peek, Richard M.; Chaturvedi, Rupesh; Wilson, Keith T.

    2012-01-01

    Summary The cytotoxin-associated gene A protein (CagA) plays a pivotal role in the etiology of Helicobacter (H.) pylori-associated gastric diseases. CagA is injected into the cytoplasm of host cells by a type IV secretion system, and is phosphorylated on tyrosine residues by the host enzyme c-Src. We previously reported that the enzyme heme oxygenase-1 (HO-1) inhibits IL-8 secretion by H. pylori-infected cells. However, the cellular mechanism by which HO-1 regulates the innate immune function of infected cells remains unknown. We now show that nitric oxide and hemin, two inducers of HO-1, decrease the level of phosphorylated CagA (p-CagA) in H. pylori-infected gastric epithelial cells and this is blocked by either pharmacologic inhibition of HO-1 or siRNA knockdown of hmox-1. Moreover, forced expression of HO-1 by transfection of a plasmid expressing hmox-1 also results in a strong attenuation of CagA phosphorylation. This occurs through the inhibition of H. pylori-induced c-Src phosphorylation/activation by HO-1. Consequently, H. pylori-induced cytoskeletal rearrangements and activation of the pro-inflammatory response mediated by p-CagA are inhibited in HO-1-expressing cells. These data highlight a mechanism by which the innate immune response of the host can restrict the pathogenicity of H. pylori by attenuating CagA phosphorylation in gastric epithelial cells. PMID:23051580

  14. Rearrangement of the distal pocket accompanying E7 His yields Gln substitution in elephant carbonmonoxy- and oxymyoglobin: sup 1 H NMR identification of a new aromatic residue in the heme pocket

    SciTech Connect

    Yu, L.P.; La Mar, G.N. ); Mizukami, H. )

    1990-03-13

    Two-dimensional {sup 1}H NMR methods have been used to assign side-chain resonances for the residues in the distal heme pocket of elephant carbonmonoxymyoglobin (MbCO) and oxymyoglobin (MbO{sub 2}). It is shown that, while the other residues in the heme pocket are minimally perturbed, the Phe CD4 residue in elephant MbCO and MbO{sub 2} resonates considerably upfield compared to the corresponding residue in sperm whale MbCO. The new NOE connectivities to Val E11 and heme-induced ring current calculations indicate that Phe CD4 has been inserted into the distal heme pocket by reorienting the aromatic side chain and moving the CD corner closer to the heme. The C{zeta}H proton of the Phe CD4 was found to move toward the iron of the heme by {approximately}4 {angstrom} relative to the position in sperm whale MbCO, requiring minimally a 3-{angstrom} movement of the CD helical backbone. The significantly altered distal conformation in elephant myoglobin, rather than the single distal E7 substitution, forms a plausible basis for its altered functional properties of lower autoxidation rate, higher redox potential, and increased affinity for CO ligand. These results demonstrate that one-to-one interpretation of amino acid residue substitution (E7 His {yields} Gln) is oversimplified and that conformational changes of substituted proteins which are not readily predicted have to be considered for interpretation of their functional properties.

  15. Enhanced growth of primary tumors in cancer-prone mice after immunization against the mutant region of an inherited oncoprotein.

    PubMed

    Siegel, C T; Schreiber, K; Meredith, S C; Beck-Engeser, G B; Lancki, D W; Lazarski, C A; Fu, Y X; Rowley, D A; Schreiber, H

    2000-06-01

    One major objective of tumor immunologists is to prevent cancer development in individuals at high risk. (TG.AC x C57BL/6)F1 mice serve as a model for testing the feasibility of this objective. The mice carry in the germline a mutant ras oncogene that has an arginine at codon 12 instead of glycine present in the wild-type, and after physical (wounding) or chemical promotion, these mice have a high probability for developing papillomas that progress to cancer. Furthermore, F1 mice immunized with Arg(12) mutant ras peptide in complete Freund's adjuvant (CFA) develop T cells within 10 d that proliferate in vitro on stimulation with the Arg(12) mutant ras peptide. Within 14 d, these mice have delayed-type hypersensitivity to the peptide. Immunization with CFA alone or with a different Arg(12) mutant ras peptide in CFA induced neither response. To determine the effect of immunization on development of tumors, mice immunized 3 wk earlier were painted on the back with phorbol 12-myristate 13-acetate every 3 d for 8 wk. The time of appearance and the number of papillomas were about the same in immunized and control mice, but the tumors grew faster and became much larger in the mice immunized with the Arg(12) mutant ras peptide. Thus, the immunization failed to protect against growth of papillomas. The peptide-induced CD4(+) T cells preferentially recognized the peptide but not the native mutant ras protein. On the other hand, mice immunized with Arg(12) mutant ras peptide and bearing papillomas had serum antibodies that did bind native mutant ras protein. Together, these studies indicate that active immunization of cancer-prone individuals may result in immune responses that fail to eradicate mutant oncogene-expressing tumor cells, but rather induce a remarkable enhancement of tumor growth.

  16. The early region 1B 55-kilodalton oncoprotein of adenovirus relieves growth restrictions imposed on viral replication by the cell cycle.

    PubMed Central

    Goodrum, F D; Ornelles, D A

    1997-01-01

    The E1B 55-kDa oncoprotein of adenovirus enables the virus to overcome restrictions imposed on viral replication by the cell cycle. Approximately 20% of HeLa cells infected with an E1B 55-kDa mutant adenovirus produced virus when evaluated by electron microscopy or by assays for infectious centers. By contrast, all HeLa cells infected with a wild-type adenovirus produced virus. The yield of E1B mutant virus from randomly cycling HeLa cells correlated with the fraction of cells in S phase at the time of infection. In synchronously growing HeLa cells, approximately 75% of the cells infected during S phase with the E1B mutant virus produced virus, whereas only 10% of the cells infected during G1 produced virus. The yield of E1B mutant virus from HeLa cells infected during S phase was sevenfold greater than that of cells infected during G1 and threefold greater than that of cells infected during asynchronous growth. Cells infected during S phase with the E1B mutant virus exhibited severe cytopathic effects, whereas cells infected with the E1B mutant virus during G1 exhibited a mild cytopathic effect. Viral DNA synthesis appeared independent of the cell cycle because equivalent amounts of viral DNA were synthesized in cells infected with either wild-type or E1B mutant virus. The inability of the E1B mutant virus to replicate was not mediated by the status of p53. These results define a novel property of the large tumor antigen of adenovirus in relieving growth restrictions imposed on viral replication by the cell cycle. PMID:8985383

  17. Human T-cell leukemia virus type 1 Tax oncoprotein represses the expression of the BCL11B tumor suppressor in T-cells.

    PubMed

    Takachi, Takayuki; Takahashi, Masahiko; Takahashi-Yoshita, Manami; Higuchi, Masaya; Obata, Miki; Mishima, Yukio; Okuda, Shujiro; Tanaka, Yuetsu; Matsuoka, Masao; Saitoh, Akihiko; Green, Patrick L; Fujii, Masahiro

    2015-04-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia (ATL), which is an aggressive form of T-cell malignancy. HTLV-1 oncoproteins, Tax and HBZ, play crucial roles in the immortalization of T-cells and/or leukemogenesis by dysregulating the cellular functions in the host. Recent studies show that HTLV-1-infected T-cells have reduced expression of the BCL11B tumor suppressor protein. In the present study, we explored whether Tax and/or HBZ play a role in downregulating BCL11B in HTLV-1-infected T-cells. Lentiviral transduction of Tax in a human T-cell line repressed the expression of BCL11B at both the protein and mRNA levels, whereas the transduction of HBZ had little effect on the expression. Tax mutants with a decreased activity for the NF-κB, CREB or PDZ protein pathways still showed a reduced expression of the BCL11B protein, thereby implicating a different function of Tax in BCL11B downregulation. In addition, the HTLV-2 Tax2 protein reduced the BCL11B protein expression in T-cells. Seven HTLV-1-infected T-cell lines, including three ATL-derived cell lines, showed reduced BCL11B mRNA and protein expression relative to an uninfected T-cell line, and the greatest reductions were in the cells expressing Tax. Collectively, these results indicate that Tax is responsible for suppressing BCL11B protein expression in HTLV-1-infected T-cells; Tax-mediated repression of BCL11B is another mechanism that Tax uses to promote oncogenesis of HTLV-1-infected T-cells.

  18. c-erbB-2 oncoprotein detected by automated quantitative immunocytochemistry in breast carcinomas correlates with patients' overall and disease-free survival.

    PubMed Central

    Charpin, C.; Garcia, S.; Bouvier, C.; Martini, F.; Lavaut, M. N.; Allasia, C.; Bonnier, P.; Andrac, L.

    1997-01-01

    The prognostic significance of c-erbB-2 oncoprotein overexpression detected in tumours by immunocytochemical assays (ICAs) was investigated in 148 breast carcinomas. ICAs were performed under optimal technical conditions with frozen tissue sections and included automated immunoperoxidase technique and computer-assisted analysis (densitometry) of digitized coloured microscopic images. Results of quantitative ICAs (expressed in percentages of c-erbB-2-positive surfaces and mean optical densities) were correlated with the patients' follow-up in axillary lymph node-positive (N+) and node-negative (N-) subgroups of patients. Patients' follow-up ranged from 9 months (for the first death) to 101 months (for the 121 alive patients) with a 62.5 months mean overall follow-up. It was shown that marked c-erbB-2 immunocytochemical expression in tumours (cut-off point 35%) significantly correlated with the patients' poor overall survival in N+ and in N- patients (Kaplan-Meier, log-rank test, P = 0.045 and P = 0.015). Also, marked c-erbB-2 immunohistochemical expression correlates with short disease-free (P = 0.005), recurrence-free (P = 0.048) and metastasis-free survival (P = 0.05) (Kaplan-Meier, log-rank test) in N+, but not in N- subgroups. It is concluded that in optimal conditions (automated and quantitative ICAs on frozen sections) c-erbB immunohistochemical expression is a significant prognostic indicator in terms of overall and disease-free survival. The c-erbB-2 protein prognostic significance is independent of node status in terms of overall survival, but not of disease-free survival. Images Figure 1 PMID:9184184

  19. Potentiation of human papilloma vaccine candidate using naloxone/alum mixture as an adjuvant: increasing immunogenicity of HPV-16E7d vaccine

    PubMed Central

    Yasaghi, Mahsa; Mahdavi, Mehdi

    2016-01-01

    Objective(s): Many types of human papillomaviruses (HPVs) have been identified, with some leading to cancer and others to skin lesions such as anogenital warts. Studies have demonstrated an association between oncogenic HPV and cervical cancer and many researchers have focused on therapeutic vaccines development. At present, the modulatory effect of opioids on the innate and acquired immune system is characterized. Antagonists of opioid receptors such as naloxone (NLX) can contribute to the shifting Th2 response toward Th1. Herein; we studied the adjuvant activity of NLX/Alum mixture for improvement of the immunogenicity of HPV-16E7d vaccine. Materials and Methods: The mice were administered different regimens of vaccine; E7d, E7d-NLX, E7d-Alum, E7d-NLX-Alum, NLX, alum and PBS via subcutaneous route for three times with two weeks interval. Two weeks after the last immunization, the sera were assessed for total antibody, IgG1 and IgG2a with an optimized ELISA method. The splenocytes culture supernatant was analyzed by ELISA for the presence of IL-4, IFN-γ and IL-17 cytokines and lymphocyte proliferation was evaluated with Brdu method. Results: Immunization of mice with HPV-16 E7d vaccine formulated in NLX/Alum mixture significantly increased lymphocyte proliferation and Th1 and Th17 cytokines responses compared to other experimental groups. Analysis of humoral immune responses revealed that administration of vaccine with NLX/Alum mixture significantly increased specific IgG responses and also isotypes compared to control groups. Conclusion: NLX/Alum mixture as an adjuvant could improve cellular and humoral immune responses and the adjuvant maybe useful for HPV vaccines model for further studies in human clinical trial. PMID:27803788

  20. Bovine Papillomavirus Type 2 (BPV-2) E5 Oncoprotein Binds to the Subunit D of the V1-ATPase Proton Pump in Naturally Occurring Urothelial Tumors of the Urinary Bladder of Cattle

    PubMed Central

    Roperto, Sante; Russo, Valeria; Borzacchiello, Giuseppe; Urraro, Chiara; Lucà, Roberta; Esposito, Iolanda; Riccardi, Marita Georgia; Raso, Cinzia; Gaspari, Marco; Ceccarelli, Dora Maria; Galasso, Rocco; Roperto, Franco

    2014-01-01

    Background Active infection by bovine papillomavirus type 2 (BPV-2) was documented for fifteen urinary bladder tumors in cattle. Two were diagnosed as papillary urothelial neoplasm of low malignant potential (PUNLMP), nine as papillary and four as invasive urothelial cancers. Methods and Findings In all cancer samples, PCR analysis revealed a BPV-2-specific 503 bp DNA fragment. E5 protein, the major oncoprotein of the virus, was shown both by immunoprecipitation and immunohistochemical analysis. E5 was found to bind to the activated (phosphorylated) form of the platelet derived growth factor β receptor. PDGFβR immunoprecipitation from bladder tumor samples and from normal bladder tissue used as control revealed a protein band which was present in the pull-down from bladder cancer samples only. The protein was identified with mass spectrometry as “V1-ATPase subunit D”, a component of the central stalk of the V1-ATPase vacuolar pump. The subunit D was confirmed in this complex by coimmunoprecipitation investigations and it was found to colocalize with the receptor. The subunit D was also shown to be overexpressed by Western blot, RT-PCR and immunofluorescence analyses. Immunoprecipitation and immunofluorescence also revealed that E5 oncoprotein was bound to the subunit D. Conclusion For the first time, a tri-component complex composed of E5/PDGFβR/subunit D has been documented in vivo. Previous in vitro studies have shown that the BPV-2 E5 oncoprotein binds to the proteolipid c ring of the V0-ATPase sector. We suggest that the E5/PDGFβR/subunit D complex may perturb proteostasis, organelle and cytosol homeostasis, which can result in altered protein degradation and in autophagic responses. PMID:24586417

  1. Distribution of human papilloma virus type 16 E6/E7 gene mutation in cervical precancer or cancer: A case control study in Guizhou Province, China.

    PubMed

    Yang, Yingjie; Ren, Jie; Zhang, Qizhu

    2016-02-01

    HPV-16 varies geographically and is correlated with cervical cancer genesis and progression. This study aimed to determine the distribution of HPV-16 E6/E7 genetic variation in patients with invasive cervical cancer or precancer in Guizhou Province, China. A case-control study was designed, and the distribution of HPV-16 E6/E7 genetic variation was compared among women with cervical cancer, precancer, and sexually active without cervical lesion. HPV infection was detected through flow-through hybridization and gene chip techniques to determine the prevalence of HPV 16 E6/E7 genetic variation. Among 90 specimens (30 cervical cancer, 30 precancer, 30 controls), 81 were subjected to HPV-16 E6/E7 gene sequencing. The rates of DNA sequence mutation and amino acid mutation were 76.5% (62/81) and 66.7% (54/81), respectively. Both E6 and E7 genes showed higher mutation rate than their prototypes. The prevalence of E6/E7 mutation significantly differed between the cervical cancer and the controls (P < 0.05) and between the cervical precancer and the controls (P < 0.05). Mutations were simultaneously detected at the E6-D32E (T96A) and E7-M28V (A82G)/L94P (T281C) sites of the amino acid sequence. The most common genetic variation was D32E/M28V/L94P, which accounted for 35.8% of the cases (29/81). D32E/M28V/L94P mutation was higher in the cervical cancer and precancer compared with the prototype. HPV-16 E6/E7 genetic variations, such as D32E/M28V/L94P, are more prevalent in cervical cancer or precancer than those in the controls. The possible correlation between genetic variation and cancerigenesis may be used to design an HPV vaccine for cervical carcinoma.

  2. Overexpression of gankyrin in mouse hepatocytes induces hemangioma by suppressing factor inhibiting hypoxia-inducible factor-1 (FIH-1) and activating hypoxia-inducible factor-1.

    PubMed

    Liu, Yu; Higashitsuji, Hiroaki; Higashitsuji, Hisako; Itoh, Katsuhiko; Sakurai, Toshiharu; Koike, Kazuhiko; Hirota, Kiichi; Fukumoto, Manabu; Fujita, Jun

    2013-03-01

    Gankyrin (also called p28 or PSMD10) is an oncoprotein commonly overexpressed in hepatocellular carcinomas. It consists of 7 ankyrin repeats and interacts with multiple proteins including Rb, Cdk4, MDM2 and NF-κB. To assess the oncogenic activity in vivo, we produced transgenic mice that overexpress gankyrin specifically in the hepatocytes. Unexpectedly, 5 of 7 F2 transgenic mice overexpressing hepatitis B virus X protein (HBX) promoter-driven gankyrin, and one of 3 founder mice overexpressing serum amyloid P component (SAP) promoter-driven gankyrin developed hepatic vascular neoplasms (hemangioma/hemangiosarcomas) whereas none of the wild-type mice did. Endothelial overgrowth was more frequent in the livers of diethylnitrosamine-treated transgenic mice than wild-type mice. Mouse hepatoma Hepa1-6 cells overexpressing gankyrin formed tumors with more vascularity than parental Hepa1-6 cells in the transplanted mouse skin. We found that gankyrin binds to and sequester factor inhibiting hypoxia-inducible factor-1 (FIH-1), which results in decreased interaction between FIH-1 and hypoxia-inducible factor-1α (HIF-1α) and increased activity of HIF-1 to promote VEGF production. The effects of gankyrin were more prominent under 3% O2 than 1% or 20% O2 conditions. Thus, the present study clarified, at least partly, mechanisms of vascular tumorigenesis, and suggests that gankyrin might play a physiological role in hypoxic responses besides its roles as an oncoprotein. PMID:23376718

  3. Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun.

    PubMed Central

    Kataoka, K; Noda, M; Nishizawa, M

    1994-01-01

    The v-maf oncogene, identified from AS42 avian retrovirus, encodes a nuclear bZip protein. To elucidate the molecular mechanism of cell transformation induced by this oncogene, we determined the specific binding sequences of its product. Maf protein recognized two types of relatively long palindromic consensus sequences, TGCTGACTCAGCA and TGCTGACGTCAGCA, at roughly equal efficiency. The middle parts of these Maf-binding sequences completely match with two binding sequences for AP-1 transcription factor, i.e., phorbol 12-O-tetradecanoate-13-acetate (TPA)-responsive element (TRE) and cyclic AMP responsive element, suggesting partial overlapping of the target genes for Maf and AP-1. Furthermore, Maf efficiently formed heterodimers with the components of AP-1, Fos and Jun, through their leucine zipper structures, and these heterodimers show binding specificities distinct from those for Maf-Maf and Jun-Jun homodimers. Thus, a multiple combination of the dimers should generate a greatly expanded repertoire of transcriptional regulatory potential. DNA data base search for the Maf-binding consensus sequences suggested that some of the TRE-like cis elements reported previously may actually be the targets for Maf family proteins or their heterodimers with other bZip proteins. Images PMID:8264639

  4. Human T-Lymphotropic Virus Type 1 Oncoprotein Tax Promotes S-Phase Entry but Blocks Mitosis

    PubMed Central

    Liang, Min-Hui; Geisbert, Thomas; Yao, Yao; Hinrichs, Steven H.; Giam, Chou-Zen

    2002-01-01

    Human T-lymphotropic virus type 1 (HTLV-1) Tax exerts pleiotropic effects on multiple cellular regulatory processes to bring about NF-κB activation, aberrant cell cycle progression, and cell transformation. Here we report that Tax stimulates cellular G1/S entry but blocks mitosis. Tax expression in naive cells transduced with a retroviral vector, pBabe-Tax, leads to a significant increase in the number of cells in the S phase, with an accompanying rise in the population of cells with a DNA content of 4N or more. In all cell types tested, including BHK-21, mouse NIH 3T3, and human diploid fibroblast WI-38, Tax causes an uncoupling of DNA synthesis from cell division, resulting in the formation of multinucleated giant cells and cells with decondensed, highly convoluted and lobulated nuclei that are reminiscent of the large lymphocytes with cleaved or cerebriform nuclei seen in HTLV-1-positive individuals. This contrasts with the Tax-transformed cell lines, PX1 (fibroblast) and MT4 (lymphocyte), which produce Tax at high levels, but without the accompanying late-stage cell cycle abnormalities. PX1 and MT4 may have been selected to harbor somatic mutations that allow a bypass of the Tax-induced block in mitosis. PMID:11907241

  5. The Hippo/YAP pathway interacts with EGFR signaling and HPV oncoproteins to regulate cervical cancer progression

    PubMed Central

    He, Chunbo; Mao, Dagan; Hua, Guohua; Lv, Xiangmin; Chen, Xingcheng; Angeletti, Peter C; Dong, Jixin; Remmenga, Steven W; Rodabaugh, Kerry J; Zhou, Jin; Lambert, Paul F; Yang, Peixin; Davis, John S; Wang, Cheng

    2015-01-01

    The Hippo signaling pathway controls organ size and tumorigenesis through a kinase cascade that inactivates Yes-associated protein (YAP). Here, we show that YAP plays a central role in controlling the progression of cervical cancer. Our results suggest that YAP expression is associated with a poor prognosis for cervical cancer. TGF-α and amphiregulin (AREG), via EGFR, inhibit the Hippo signaling pathway and activate YAP to induce cervical cancer cell proliferation and migration. Activated YAP allows for up-regulation of TGF-α, AREG, and EGFR, forming a positive signaling loop to drive cervical cancer cell proliferation. HPV E6 protein, a major etiological molecule of cervical cancer, maintains high YAP protein levels in cervical cancer cells by preventing proteasome-dependent YAP degradation to drive cervical cancer cell proliferation. Results from human cervical cancer genomic databases and an accepted transgenic mouse model strongly support the clinical relevance of the discovered feed-forward signaling loop. Our study indicates that combined targeting of the Hippo and the ERBB signaling pathways represents a novel therapeutic strategy for prevention and treatment of cervical cancer. PMID:26417066

  6. The PIM family of oncoproteins: small kinases with huge implications in myeloid leukemogenesis and as therapeutic targets.

    PubMed

    Saurabh, Kumar; Scherzer, Michael T; Shah, Parag P; Mims, Alice S; Lockwood, William W; Kraft, Andrew S; Beverly, Levi J

    2014-09-30

    PIM kinases are a family of serine/threonine kinases involved in cell survival and proliferation. There is significant structural similarity between the three PIM kinases (PIM1, PIM2 and PIM3) and only few amino acid differences. Although, several studies have specifically monitored the role of PIM1 in tumorigenesis, much less is known about PIM2 and PIM3. Therefore, in this study we have used in vitro cell culture models and in vivo bone marrow infection/transplantation to assess the comparative signaling and oncogenic potential of each of the three PIM kinases. All three PIM kinases were able to protect FL5.12 cells from IL3 withdrawal induced death. Interestingly, the downstream signaling cascades were indistinguishable between the three kinases. Transplantation of murine bone marrow co-expressing MYC and PIM1, PIM2 or PIM3 caused rapid and uniformly lethal myeloid leukemia. De-induction of MYC 18 days following transplantation significantly increased the survival of mice, even with continual expression of PIM kinases. Alternatively, mice treated at the pre-leukemic stage with a PIM kinase inhibitor increased the lifespan of the mice, even with continual expression of the MYC transgene. These data demonstrate the role of PIM kinases in driving myeloid leukemia, and as candidate molecules for therapy against human malignancies. PMID:25238262

  7. Human papillomavirus E5 oncoproteins bind the A4 endoplasmic reticulum protein to regulate proliferative ability upon differentiation

    SciTech Connect

    Kotnik Halavaty, Katarina; Regan, Jennifer; Mehta, Kavi; Laimins, Laimonis

    2014-03-15

    Human papillomaviruses (HPV) infect stratified epithelia and link their life cycles to epithelial differentiation. The HPV E5 protein plays a role in the productive phase of the HPV life cycle but its mechanism of action is still unclear. We identify a new binding partner of E5, A4, using a membrane-associated yeast-two hybrid system. The A4 protein co-localizes with HPV 31 E5 in perinuclear regions and forms complexes with E5 and Bap31. In normal keratinocytes, A4 is found primarily in basal cells while in HPV positive cells high levels of A4 are seen in both undifferentiated and differentiated cells. Reduction of A4 expression by shRNAs, enhanced HPV genome amplification and increased cell proliferation ability following differentiation but this was not seen in cells lacking E5. Our studies suggest that the A4 protein is an important E5 binding partner that plays a role in regulating cell proliferation ability upon differentiation. - Highlights: • A4 associates with HPV 31 E5 proteins. • A4 is localized to endoplasmic reticulum. • HPV proteins induce A4 expression in suprabasal layers of stratified epithelium. • E5 is important for proliferation ability of differentiating HPV positive cells.

  8. Influence of chromosomal integration on glucocorticoid-regulated transcription of growth-stimulating papillomavirus genes E6 and E7 in cervical carcinoma cells

    SciTech Connect

    Von Knebel Doeberitz, M.; Bauknecht, T.; Bartsch, D.; Zur Hausen, H. )

    1991-02-15

    In most cervical carcinoma cells the E6 and E7 genes of specific human papillomaviruses are transcribed from viral sequences integrated into host cell chromosomes. Glucocorticoids activate the promoter elements of various human papillomaviruses in transient-expression assays. The authors have analyzed the effect of dexamethasone on the transcription rate of human papillomaviruses 18 E6 and E7 genes integrated at different chromosomal sites in four cervical cancer cell lines. Dexamethasone led to an increase in the transcription rate of the integrated E6-E7 sequences in C4-1 and C4-2 cells but led to a decrease in SW 756 cells and did not affect the transcription rate in HeLa cells. It thus appears that dominant regulatory mechanisms presumably depending on the chromosomal integration site are able to override the response of the viral promoter to steroid hormones. The growth rate of all dexamethasone-treated cell lines correlated consistently with the expression of the papillomavirus E6 and E7 genes, supporting their role in the maintenance of the proliferative phenotype of cervical carcinoma cells. Since human papillomaviruses are integrated into the host cell genome at variable, presumably randomly selected chromosomal loci, regulatory mechanisms that influence viral gene expression, and hence cell growth, may differ among cancers of independent clonal origin.

  9. Correlation of E6 and E7 levels in high-risk HPV16 type cervical lesions with CCL20 and Langerhans cells.

    PubMed

    Jiang, B; Xue, M

    2015-09-08

    The human papillomavirus (HPV)16 E6 and E7 correlation with chemokine ligand (CCL)20 expression and Langerhans cells (LCs) in cervical lesions was investigated. We enrolled 43 patients with surgically treated cervical lesions from the Department of Gynecology in our hospital, and 20 controls without cervical lesions. Subjects were divided by pathology: HPV16(-) and HPV16(+) normal cervical groups (N = 10 each), and HPV16(+) cervical intraepithelial neoplasia (CIN), cervical invasive carcinoma (N = 15 each), and in situ carcinoma (N = 13) groups. E6, E7, the LC surface marker CD1a, and CCL20 were analyzed by immunohistochemistry. E6 and E7 in HPV16-type lesions were correlated with CCL20 and LCs. The average high power field cell numbers of CD1a+ LCs in the HPV(-) and HPV(+) normal cervix groups, and the CINI-II, CINIII in situ and cervical carcinoma groups were 22.89 ± 4.84, 13.7 ± 2.26, 9.2 ± 1.68, 5.9 ± 1.59, and 5.5 ± 1.58, respectively. Significant between-group differences existed except between cervical carcinoma and CINIII groups (P < 0.05). CCL20+ rates in each group were 70, 60, 60, 15.38, and 13.33%, respectively. E6/E7-positive expression rates in each group were 20/20, 66.7/66.7, 76.9/69.2, and 86.67/73.3%, respectively. CCL20 was positively correlated with CD1a (r = 0.649), and negatively correlated with E7 (r = -0.946) and E6 (r = -0.949). CD1a was negatively correlated with E6 (r = -0.632) and E7 (r = -0.632). Downregulation of CCL20 leading to LC decline is a key factor in cervical lesions. High-risk HPV-type lesions might inhibit the chemokine CCL20 through E6 and E7 to escape the immune response.

  10. IgG antibodies against human papillomavirus type 16 E7 proteins in cervicovaginal washing fluid from patients with cervical neoplasia.

    PubMed

    Tjiong, M. Y.; Schegget, J. Ter; Tjiong-A-Hung, S. P.; Out, T. A.; Van Der Vange, N.; Burger, M. P. M.; Struyk, L.

    2000-07-01

    Little information is available about the cervicovaginal mucosal antibodies against human papillomavirus (HPV) proteins. In this study specific IgG antibodies against HPV 16 E7 protein were determined in paired samples of cervicovaginal washing fluid and serum from patients with cervical cancer (n = 22), cervical intraepithelial neoplasia (CIN) (n = 38), healthy individuals (n = 22), and serum from children (n = 41) by a radioactive immunoprecipitation assay (RIPA). HPV 16 E7 specific IgG antibodies were found in cervicovaginal washings (n = 8) and in sera (n = 8) of the patients with cervical cancer. About 60% of the patients with HPV 16 positive cervical cancer had HPV 16 E7 specific IgG antibodies. Titration studies showed that the IgG antibody reactivity in cervicovaginal washings was higher than in the paired serum samples of six patients with cervical cancer (P < 0.001). In the CIN group we found no IgG reactivity in the serum, but in five patients we found a low IgG reactivity in the cervicovaginal washings. No IgG reactivity was found in cervicovaginal washings and sera from healthy individuals and sera from children. HPV 16 E7 specific IgG antibodies seem to be locally produced in a number of patients with HPV 16 positive (pre)malignant cervical lesions. For more definitive evidence for the local production of these antibodies immunostaining should be performed to demonstrate the presence of specific anti-HPV 16 E7 IgG producing plasma cells in the cervical epithelium.

  11. Immortalization of Human Fetal Hepatocyte by Ectopic Expression of Human Telomerase Reverse Transcriptase, Human Papilloma Virus (E7) and Simian Virus 40 Large T (SV40 T) Antigen Towards Bioartificial Liver Support

    PubMed Central

    Giri, Shibashish; Bader, Augustinus

    2014-01-01

    Background Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Methods Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. Results After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5–7 days. The remaining transfected hepatocytes persisted for 2–4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose

  12. Ψ and Υ Production in p-p Collisions at E = 5, 14 TeV; and Comparison with Experiment at E = 7 TeV

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard S.; Das, Debasish

    2016-10-01

    This brief report is an extension of our recent studies of Ψ and Υ production cross sections in proton-proton collisions with E =√ {s}=13 TeV to E = 5 and E =14 TeV, using the mixed heavy quark hybrid theory in which the Ψ(2 S) and Υ(3 S) are 50 % hybrid states. Also, comparison with recent experiments at E = 7 TeV are used to test the mixed heavy hybrid theory.

  13. HPV16 E2 is an immediate early marker of viral infection, preceding E7 expression in precursor structures of cervical carcinoma.

    PubMed

    Xue, Yuezhen; Bellanger, Sophie; Zhang, Wenying; Lim, Diana; Low, Jeffrey; Lunny, Declan; Thierry, Françoise

    2010-07-01

    The viral E2 gene product plays a crucial role in the human papillomavirus (HPV) vegetative cycle by regulating both transcription and replication of the viral genome. E2 is a transcriptional repressor of the E6 and E7 viral oncogenes for HPV types 16 and 18, which are involved in cervical cancers. Using new polyclonal antibodies against the HPV16 E2 protein, we showed that E2 is expressed at various precursor stages of cervical carcinoma by immunohistochemistry on paraffin-embedded clinical samples. E2 was found to be highly expressed in the nuclei and cytoplasm of cells forming the intermediate and upper layers of cervical intraepithelial neoplasia (CIN). We could show that the expressions of E2 and p16(INK4a) (surrogate marker for oncogenic E7 expression) were exclusive in most of the cases, thus implying that E2 is not expressed together with high levels of E7. Moreover, we found that E2 is expressed in a subset of columnar cells adjacent to the CIN. We could show that expression of E2 is topologically distinct from the proliferation markers p63 and Ki67, whereas it coincides with the expression of cytokeratin K13, a marker of squamous cell differentiation. Expression of E2 also topologically coincides with episomal amplification of viral genomes in the upper layers of CIN1. These in vivo data thus validate previous assumptions of the crucial role of E2 in the early steps of HPV infection and of its negative link with expression of the viral E6 and E7 oncogenes.

  14. PreTect HPV-Proofer: real-time detection and typing of E6/E7 mRNA from carcinogenic human papillomaviruses.

    PubMed

    Molden, Tor; Kraus, Irene; Skomedal, Hanne; Nordstrøm, Trine; Karlsen, Frank

    2007-06-01

    Monitoring human papillomavirus (HPV) E6/E7 mRNA expression may provide an accurate and informative diagnostic approach for detection of oncogene activity related to the development of severe dysplasia or cervical carcinoma. A multiplex nucleic acid sequence based amplification (NASBA) assay, utilizing molecular beacon probes for real-time detection was developed for the identification of E6/E7 mRNA from HPV types 16, 18, 31, 33 and 45. The assay is called PreTect HPV-Proofer and this report describes the development and the analytical performance of the assay. The reproducibility of PreTect HPV-Proofer with regard to a positive result was found to be between 96 and 100%, depending on HPV type. The melting temperature for the different molecular beacons was in the range of 48-55 degrees C, indicating conformational stability, i.e. the molecular beacons will not get activated by the 41 degrees C annealing temperature, but will be activated by the annealing to the target itself. The limit of detection for HPV 16 was ten SiHa or CaSki cells and for HPV 18 one HeLa cell. No cross reactivity was observed with E6/E7 mRNA from the other tested HPV types. mRNA from cervical cells was also successfully amplified after more than one year of storage. In conclusion, the PreTect HPV-Proofer assay, individually identifying E6/E7 mRNA expression from five carcinogenic HPV types, is a reproducible assay that may serve as a valuable tool in monitoring HPV infections producing proteins with a transforming potential.

  15. Genetic variability and lineage phylogeny of human papillomavirus type-16 and -53 based on the E6, E7, and L1 genes in Southwest China.

    PubMed

    Cao, Man; Chenzhang, Yuwei; Ding, Xianping; Zhang, Yiwen; Jing, Yaling; Chen, Zuyi

    2016-10-30

    Human papillomaviruses (HPVs) are circular double-stranded DNA viruses that are highly prevalent in the general population, and account for the cervical cancer burden in women worldwide. In this study, we analyzed HPV-16, the most prevalent type worldwide, and HPV-53, a possible high-risk type from infected women in Southwest China. To characterize mutations, intratypic variants, and genetic variability in the E6, E7, and L1 genes of HPV-16 (n=97) and HPV-53 (n=15), these genes were sequenced and submitted to GenBank. Phylogenetic trees were constructed using Bayesian trees, followed by secondary structure analysis and B-cell epitope prediction. Moreover, the selection pressures of the E6, E7, and L1 genes were estimated. In total, 27 novel variants of HPV-16 and 11 novel variants of HPV-53 were identified. In the HPV-16 E6-E7-L1 sequences, 73 nucleotide changes were observed with 40/73 being non-synonymous mutations (two in the alpha helix and five in the beta sheet) and 33/73 being synonymous. In the HPV-53 E6-E7-L1 sequences, 64 nucleotide changes were observed with 26/64 being non-synonymous mutations (three in the alpha helix and one in the beta sheet) and 38/64 being synonymous. Selective pressure analysis showed that most of these mutations did not reflect positive selection. The maximal divergence between any two variants within each gene of these two HPV types ranging from 0.94%(HPV-16 L1 gene)to 2.80%(HPV-53 E6 gene). Identifying new variants of HPV-16 and -53 from women in Southwest China may be helpful to design vaccines specifically for women in Southwest China and testing methods specifically for this region. The results of our study may contribute to future researches in diagnostic probes, vaccines improvement, or screening methods for a particular population. PMID:27450917

  16. Stereoselective chemo-enzymatic oxidation routes for (1R,3E,7E,11S,12S)-3,7,18-dolabellatriene

    PubMed Central

    Görner, Christian; Hirte, Max; Huber, Stephanie; Schrepfer, Patrick; Brück, Thomas

    2015-01-01

    The diterpene (1R,3E,7E,11S,12S)-3,7,18-dolabellatriene from the marine brown alga Dilophus spiralis belongs to the dolabellanes natural product family and has antimicrobial activity against multi-drug resistant Staphylococcus aureus. Recently, we generated a CotB2 diterpene synthase mutant (W288G), which instead of its native product cyclooctat-9-en-7-ol, generates (1R,3E,7E,11S,12S)-3,7,18-dolabellatriene. In vivo CotB2 W288G reconstitution in an Escherichia coli based terpene production system, allowed efficient production of this olefinic macrocycle. To diversify the 3,7,18-dolabellatriene bioactivity we evaluated chemical and enzymatic methods for selective oxidation. Epoxidation by acetic peracid, which was formed in situ by a lipase catalyzed reaction of acetic acid with H2O2, provided efficient access to two monooxidized dolabellanes and to a novel di-epoxidated dolabellane species. These compounds could act as synthons en-route to new dolabellanes with diversified bioactivities. Furthermore, we demonstrate the almost quantitative 3,7,18-dolabellatriene conversion into the new, non-natural compound (1R,3E,7E,11S,12S,18R)-dolabella-3,7-diene-20-ol by hydroboration–oxidation with an enantiomeric excess of 94%, for the first time. PMID:26528263

  17. Oncoprotein protein kinase antibody kit

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  18. E6 and E7 oncogene expression by human papilloma virus (HPV) and the aggressive behavior of recurrent laryngeal papillomatosis (RLP).

    PubMed

    Shehata, Bahig M; Otto, Kristen J; Sobol, Steven E; Stockwell, Christina A; Foulks, Cora; Lancaster, Wayne; Gregoire, Lucie; Hill, Charles E

    2008-01-01

    Recurrent laryngeal papillomatosis (RLP), a chronic disease associated with human papilloma virus (HPV), requires serial surgical procedures for debulking, resulting in debilitating long-term dysphonia, laryngeal scarring, and rarely malignant degeneration. Human papilloma virus 11 tumors have been widely accepted as more aggressive than HPV 6 tumors; however, the clinical course has been difficult to predict at disease onset, and the biologic mediators of proliferation have not been well characterized. A retrospective case review of 43 patients (4 months to 10 years at diagnosis) was performed on children treated for recurrent laryngeal papillomatosis. Patient charts were reviewed for demographic information, age at RLP diagnosis, approximate frequency of surgical intervention, and absolute number of surgical procedures performed. Human papilloma virus subtyping was performed. Expression analysis of the HPV-encoded E6 and E7 oncogenes was performed by reverse-transcriptase polymerase chain reaction. Fourteen patients had subtype 11 (33%) and 29 patients had subtype 6 (67%). As expected, HPV 11 patients showed a more aggressive clinical course than HPV 6 patients. However, 38% of patients with subtype 6 (11 patients) followed a clinical course that mirrored the more severe subtype 11 patients. These patients expressed the disease at a younger age (P < 0.0002) and showed higher levels of E6 and E7 oncogenes compared to the patients with the more indolent course. Although HPV subtype and early onset of RLP are well characterized prognostic factors, our study documents the significance of E6 and E7 oncogene expression as potential biologic mediators of proliferation and thereby clinical behavior.

  19. Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes.

    PubMed

    Takeuchi, Masao; Takeuchi, Kikuko; Kohara, Arihiro; Satoh, Motonobu; Shioda, Setsuko; Ozawa, Yutaka; Ohtani, Azusa; Morita, Keiko; Hirano, Takashi; Terai, Masanori; Umezawa, Akihiro; Mizusawa, Hiroshi

    2007-01-01

    Human mesenchymal stem cells (hMSCs) are expected to be an enormous potential source for future cell therapy, because of their self-renewing divisions and also because of their multiple-lineage differentiation. The finite lifespan of these cells, however, is a hurdle for clinical application. Recently, several hMSC lines have been established by immortalized human telomerase reverse transcriptase gene (hTERT) alone or with hTERT in combination with human papillomavirus type 16 E6/E7 genes (E6/E7) and human proto-oncogene, Bmi-1, but have not so much been characterized their karyotypic stability in detail during extended lifespan under in vitro conditions. In this report, the cells immortalized with the hTERT gene alone exhibited little change in karyotype, whereas the cells immortalized with E6/E7 plus hTERT genes or Bmi-1, E6 plus hTERT genes were unstable regarding chromosome numbers, which altered markedly during prolonged culture. Interestingly, one unique chromosomal alteration was the preferential loss of chromosome 13 in three cell lines, observed by fluorescence in situ hybridization (FISH) and comparative-genomic hybridization (CGH) analysis. The four cell lines all maintained the ability to differentiate into both osteogenic and adipogenic lineages, and two cell lines underwent neuroblastic differentiation. Thus, our results were able to provide a step forward toward fulfilling the need for a sufficient number of cells for new therapeutic applications, and substantiate that these cell lines are a useful model for understanding the mechanisms of chromosomal instability and differentiation of hMSCs. PMID:17514511

  20. Chimeric HBcAg virus-like particles presenting a HPV 16 E7 epitope significantly suppressed tumor progression through preventive or therapeutic immunization in a TC-1-grafted mouse model

    PubMed Central

    Chu, Xiaojie; Li, Yang; Long, Qiong; Xia, Ye; Yao, Yufeng; Sun, Wenjia; Huang, Weiwei; Yang, Xu; Liu, Cunbao; Ma, Yanbing

    2016-01-01

    Background Therapeutic human papillomavirus (HPV) vaccines are currently being developed. However, no therapeutic efficacy has been achieved in clinical trials for the treatment of cervical intraepithelial neoplasia or cancer. One of the important issues in increasing vaccine efficacy is determining the best way to enhance tumor antigen-specific cellular immune responses. This study aimed to explore the virus-like particles (VLPs) of hepatitis B core antigen (HBcAg) as potential therapeutic vaccine carriers and to assess its immunological characteristics. Methods Chimeric VLPs presenting a HPV 16 cytotoxic T lymphocytes epitope E749–57 (amino acid 49–57 of the E7 protein) were prepared using recombinant genes. C57BL/6 mice were immunized with VLPs and grafted with tumor cells TC-1 which is an E7-expressing tumorigenic cell line. The dynamic tumor growth was monitored and anti-tumor immune responses were investigated. Results Using a preventive strategy, immunization with VLPs resulted in nearly complete suppression of tumor growth. In treatment studies, VLP immunization significantly suppressed the tumor progression in mice carrying 2–3 mm tumors and in those bearing even larger tumors with diameters up to 8–9 mm. The VLP structure was shown to be important to induce vigorous antitumor immunity and effects. In immunized mice, enhanced E749–57-specific cellular immune responses were evidenced by increased interferon (IFN)-γ expression and decreased interleukin (IL)-4 expression in splenic lymphocytes, as well as an elevated number of effector cells expressing IFN-γ in response to the in vitro stimulation of the specific peptide E749–57. In addition, effective immune memory after VLP immunization was maintained for at least 16 weeks, preventing significant tumor growth after subsequent TC-1 challenge. Conclusion While VLPs were highly immunogenic in stimulating humoral immunity, our results strongly indicated that VLPs, such as HBcAg particles, might

  1. Regulation of the tumor marker Fascin by the viral oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) depends on promoter activation and on a promoter-independent mechanism.

    PubMed

    Mohr, Caroline F; Gross, Christine; Bros, Matthias; Reske-Kunz, Angelika B; Biesinger, Brigitte; Thoma-Kress, Andrea K

    2015-11-01

    Adult T-cell leukemia/lymphoma is a highly infiltrative neoplasia of CD4(+) T-lymphocytes that occurs in about 5% of carriers infected with the deltaretrovirus human T-cell leukemia virus type 1 (HTLV-1). The viral oncoprotein Tax perturbs cellular signaling pathways leading to upregulation of host cell factors, amongst them the actin-bundling protein Fascin, an invasion marker of several types of cancer. However, transcriptional regulation of Fascin by Tax is poorly understood. In this study, we identified a triple mode of transcriptional induction of Fascin by Tax, which requires (1) NF-κB-dependent promoter activation, (2) a Tax-responsive region in the Fascin promoter, and (3) a promoter-independent mechanism sensitive to the Src family kinase inhibitor PP2. Thus, Tax regulates Fascin by a multitude of signals. Beyond, using Tax-expressing and virus-transformed lymphocytes as a model system, our study is the first to identify the invasion marker Fascin as a novel target of PP2, an inhibitor of metastasis.

  2. HPV E6/E7 RNA In Situ Hybridization Signal Patterns as Biomarkers of Three-Tier Cervical Intraepithelial Neoplasia Grade

    PubMed Central

    Evans, Mark F.; Peng, Zhihua; Clark, Kelli M.; Adamson, Christine S.-C.; Ma, Xiao-Jun; Wu, Xingyong; Wang, Hongwei; Luo, Yuling; Cooper, Kumarasen

    2014-01-01

    Cervical lesion grading is critical for effective patient management. A three-tier classification (cervical intraepithelial neoplasia [CIN] grade 1, 2 or 3) based on H&E slide review is widely used. However, for reasons of considerable inter-observer variation in CIN grade assignment and for want of a biomarker validating a three-fold stratification, CAP-ASCCP LAST consensus guidelines recommend a two-tier system: low- or high-grade squamous intraepithelial lesions (LSIL or HSIL). In this study, high-risk HPV E6/E7 and p16 mRNA expression patterns in eighty-six CIN lesions were investigated by RNAscope chromogenic in situ hybridization (CISH). Specimens were also screened by immunohistochemistry for p16INK4a (clone E6H4), and by tyramide-based CISH for HPV DNA. HPV genotyping was performed by GP5+/6+ PCR combined with cycle-sequencing. Abundant high-risk HPV RNA CISH signals were detected in 26/32 (81.3%) CIN 1, 22/22 (100%) CIN 2 and in 32/32 (100%) CIN 3 lesions. CIN 1 staining patterns were typified (67.7% specimens) by abundant diffusely staining nuclei in the upper epithelial layers; CIN 2 lesions mostly (66.7%) showed a combination of superficial diffuse-stained nuclei and multiple dot-like nuclear and cytoplasmic signals throughout the epithelium; CIN 3 lesions were characterized (87.5%) by multiple dot-like nuclear and cytoplasmic signals throughout the epithelial thickness and absence/scarcity of diffusely staining nuclei (trend across CIN grades: P<0.0001). These data are consistent with productive phase HPV infections exemplifying CIN 1, transformative phase infections CIN 3, whereas CIN 2 shows both productive and transformative phase elements. Three-tier data correlation was not found for the other assays examined. The dual discernment of diffuse and/or dot-like signals together with the assay’s high sensitivity for HPV support the use of HPV E6/E7 RNA CISH as an adjunct test for deciding lesion grade when CIN 2 grading may be beneficial (e.g. among

  3. Therapeutic uterine-cervix cancer vaccines in humans.

    PubMed

    Gariglio, P; Benitez-Bribiesca, L; Berumen, J; Alcocer, J M; Tamez, R; Madrid, V

    1998-01-01

    Infection with high-risk human papillomavirus (HPV) types is involved in early stages of uterine=cervix cancer development. The virally encoded E6 and E7 oncoproteins behave as tumor-specific antigens and represent targets for a vaccine designed to control HPV-induced tumors. Using either proteins or peptides based on E6 and E7 oncoproteins of HPV16 and 18, phase I clinical trials of therapeutic vaccines against HPV-associated cervical cancers have recently been reported. Although the effectiveness of these vaccines cannot be evaluated in such small studies, they constitute an important step toward the development of therapeutic uterine=cervix cancer vaccines. A polytope DNA vaccination approach combined with immunomodulatory cytokines may offer an excellent strategy to reduce the risk of relapse and metastasis following conventional therapies. PMID:9887543

  4. The role of human papillomaviruses in oncogenesis.

    PubMed

    Mighty, Kristen K; Laimins, Laimonis A

    2014-01-01

    Human papillomaviruses (HPVs) are the causative agents of cervical and other anogenital as well as oral cancers. Approximately fifty percent of virally induced cancers in the USA are associated with HPV infections. HPVs infect stratified epithelia and link productive replication with differentiation. The viral oncoproteins, E6, E7, and E5, play important roles in regulating viral functions during the viral life cycle and also contribute to the development of cancers. p53 and Rb are two major targets of the E6 and E7 oncoproteins, but additional cellular proteins also play important roles. E5 plays an auxiliary role in contributing to the development of cancers. This review will discuss the various targets of these viral proteins and what roles they play in viral pathogenesis.

  5. Integrated analyses of genome-wide DNA occupancy and expression profiling identify key genes and pathways involved in cellular transformation by the Marek's disease virus oncoprotein Meq

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease (MD) is an economically significant disease in chickens caused by the highly oncogenic Marek’s disease virus (MDV). A major unanswered question is the mechanism of MDV-induced tumor formation. Meq, a bZIP transcription factor discovered in the 1990s, is largely attributed for viral o...

  6. A comparative study of three different nucleic acid amplification techniques combined with microchip electrophoresis for HPV16 E6/E7 mRNA detection.

    PubMed

    Liu, Quanli; Lin, Xuexia; Lin, Luyao; Yi, Linglu; Li, Haifang; Lin, Jin-Ming

    2015-10-01

    Research towards nucleic acid amplification technologies for detection of human papillomavirus (HPV) 16 E6/E7 mRNA was carried out in combination with microchip electrophoresis (MCE). The approaches of nucleic acid sequence based amplification (NASBA), one-step RT-PCR and two-step RT-PCR were successfully developed. NASBA was a simple enzymatic reaction, which directly amplified HPV16 mRNA by isothermal amplification, leaving out the complex and tedious operation. One-step RT-PCR simplified the amplification step, while two-step RT-PCR was more sensitive and less vulnerable to the interference. Furthermore, instead of gel electrophoresis, microchip electrophoresis (MCE) for RNA assay was employed to realize high-throughput and rapid analysis. Finally, the results show that PCR-based or NASBA-based mRNA tests are valuable for HPV mRNA assay, which can be potentially applied for clinical diagnosis and prognosis of cervical and other anogenital carcinoma. PMID:26332096

  7. Posttranscriptional repression of the cel gene of the ColE7 operon by the RNA-binding protein CsrA of Escherichia coli

    PubMed Central

    Yang, Tsung-Yeh; Sung, Yun-Min; Lei, Guang-Sheng; Romeo, Tony; Chak, Kin-Fu

    2010-01-01

    Carbon storage regulator (CsrA) is a eubacterial RNA-binding protein that acts as a global regulator of many functionally diverse chromosomal genes. Here, we reveal that CsrA represses expression from an extrachromosomal element of Escherichia coli, the lysis gene (cel) of the ColE7 operon (cea-cei-cel). This operon and colicin expression are activated upon SOS response. Disruption of csrA caused ∼5-fold increase of the lysis protein. Gel mobility shift assays established that both the single-stranded loop of the T1 stem–loop distal to cei, and the putative CsrA binding site overlapping the Shine–Dalgarno sequence (SD) of the cel gene are important for CsrA binding. Substitution mutations at SD relieved CsrA-dependent repression of the cel gene in vivo. Steady-state levels and half-life of the cel mRNA were not affected by CsrA, implying that regulation is mediated at the translational level. Levels of CsrB and CsrC sRNAs, which bind to and antagonize CsrA, were drastically reduced upon induction of the SOS response, while the CsrA protein itself remained unaffected. Thus, CsrA is a trans-acting modulator that downregulates the expression of lysis protein, which may confer a survival advantage on colicinogenic E. coli under environment stress conditions. PMID:20378712

  8. A comparative study of three different nucleic acid amplification techniques combined with microchip electrophoresis for HPV16 E6/E7 mRNA detection.

    PubMed

    Liu, Quanli; Lin, Xuexia; Lin, Luyao; Yi, Linglu; Li, Haifang; Lin, Jin-Ming

    2015-10-01

    Research towards nucleic acid amplification technologies for detection of human papillomavirus (HPV) 16 E6/E7 mRNA was carried out in combination with microchip electrophoresis (MCE). The approaches of nucleic acid sequence based amplification (NASBA), one-step RT-PCR and two-step RT-PCR were successfully developed. NASBA was a simple enzymatic reaction, which directly amplified HPV16 mRNA by isothermal amplification, leaving out the complex and tedious operation. One-step RT-PCR simplified the amplification step, while two-step RT-PCR was more sensitive and less vulnerable to the interference. Furthermore, instead of gel electrophoresis, microchip electrophoresis (MCE) for RNA assay was employed to realize high-throughput and rapid analysis. Finally, the results show that PCR-based or NASBA-based mRNA tests are valuable for HPV mRNA assay, which can be potentially applied for clinical diagnosis and prognosis of cervical and other anogenital carcinoma.

  9. Behavioral and electrophysiological activity of (Z,E)-7,9,11-dodecatrienyl formate, a mimic of the major sex pheromone component of carob moth,Ectomyelois ceratoniae.

    PubMed

    Todd, J L; Millar, J G; Vetter, R S; Baker, T C

    1992-12-01

    The behavioral and electrophysiological activity of a mimic [(Z,E)7,9,11-dodecatrienyl formate] of the major sex pheromone component [(Z,E) 9,11,13-tetradecatrienal] of carob moth was assessed. Wind-tunnel bioassays demonstrated that the formate was as effective as natural gland extracts, and significantly more effective than the trienal alone or than the trienal blended with two minor pheromone components, in evoking source contact. Dispensers containing the formate were as effective as trienal-containing blend lures in attracting males when placed at the same dosage in traps in date gardens. Single-cell recordings showed that at least two olfactory neurons, differentiated by spike amplitude, are located in the long trichoid hairs on male carob moth antennae. Dose-response relationships indicated that puffs from cartridges loaded with at least 0.1 μg of the formate or of the trienal were necessary to elicit spiking by either the small or the large-spiking cell within a sensillum. Cross-adaptation studies demonstrated that both compounds stimulated the same large-spiking cell. The frequencies of spikes evoked from the large cell when stimulated by emissions from 0.1-μg, 1-μg, or 10-μg cartridges of either the formate or the trienal were not significantly different, suggesting that the formate is an effective mimic of the trienal at the antennal receptor cell level.

  10. Epitomics: IgG-epitome decoding of E6, E7 and L1 proteins from oncogenic human papillomavirus type 58

    PubMed Central

    Xu, Wan-Xiang; Wang, Jian; Tang, Hai-Ping; He, Ya-Ping; Zhu, Qian-Xi; Gupta, Satish K.; Gu, Shao-Hua; Huang, Qiang; Ji, Chao-Neng; Liu, Ling-Feng; Li, Gui-Ling; Xu, Cong-Jian; Xie, Yi

    2016-01-01

    To enable rational multi-epitope vaccine and diagnostic antigen design, it is imperative to delineate complete IgG-epitome of the protein. Here, we describe results of IgG-epitome decoding of three proteins from high-risk (HR-) oncogenic human papillomavirus type 58 (HPV58). To reveal their entire epitomes, employing peptide biosynthetic approach, 30 precise linear B-cell epitopes (BCEs) were mapped on E6, E7 and L1 proteins using rabbits antisera to the respective recombinant proteins. Using sequence alignment based on BCE minimal motif, the specificity and conservativeness of each mapped BCE were delineated mainly among known HR-HPVs, including finding 3 broadly antibody cross-reactive BCEs of L1 that each covers almost all HR-HPVs. Western blots revealed that 13 of the 18 BCEs within L1-epitome were recognized by murine antisera to HPV58 virus-like particles, suggesting that these are antibody accessible BCEs. Also, a highly conserved epitope (YGD/XTL) of E6 was found to exist only in known common HR-HPVs, which could be used as the first peptide reference marker for judging HR-HPVs. Altogether, this study provides systemic and exhaustive information on linear BCEs of HR-HPV58 that will facilitate development of novel multi-epitope diagnostic reagents/chips for testing viral antibodies and ‘universal’ preventive HPV peptide vaccine based on L1 conserved BCEs. PMID:27708433

  11. Epstein–Barr virus nuclear antigen 3C interact with p73: Interplay between a viral oncoprotein and cellular tumor suppressor

    SciTech Connect

    Sahu, Sushil Kumar; Mohanty, Suchitra; Kumar, Amit; Kundu, Chanakya N.; Verma, Subhash C.; Choudhuri, Tathagata

    2014-01-05

    The p73 protein has structural and functional homology with the tumor suppressor p53, which plays an important role in cell cycle regulation, apoptosis, and DNA repair. The p73 locus encodes both a tumor suppressor (TAp73) and a putative oncogene (ΔNp73). p73 May play a significant role in p53-deficient lymphomas infected with Epstein–Barr virus (EBV). EBV produces an asymptomatic infection in the majority of the global population, but it is associated with several human B-cell malignancies. The EBV-encoded Epstein–Barr virus nuclear antigen 3C (EBNA3C) is thought to disrupt the cell cycle checkpoint by interacting directly with p53 family proteins. Doxorubicin, a commonly used chemotherapeutic agent, induces apoptosis through p53 and p73 signaling such that the lowΔNp73 level promotes the p73-mediated intrinsic pathway of apoptosis. In this report, we investigated the mechanism by which EBV infection counters p73α-induced apoptosis through EBNA3C. - Highlights: • EBV-encoded EBNA3C suppresses doxorubicin-induced apoptosis in B-cell lymphomas. • EBNA3C binds to p73 to suppress its apoptotic effect. • EBNA3C maintains latency by regulating downstream mitochondrial pathways.

  12. Protection of Rabbits from Viral Challenge by Gene Gun-Based Intracutaneous Vaccination with a Combination of Cottontail Rabbit Papillomavirus E1, E2, E6, and E7 Genes

    PubMed Central

    Han, Ricai; Cladel, Nancy M.; Reed, Cynthia A.; Peng, Xuwen; Christensen, Neil D.

    1999-01-01

    In this study, cottontail rabbit papillomavirus infection of domestic rabbits was used as an animal model to develop papillomavirus early gene-based vaccines. Groups of rabbits were intracutaneously vaccinated with single papillomavirus early genes E1, E2, E6, and E7 or with a combination of these four genes. Only a fraction of rabbits were protected from subsequent viral challenge when vaccinated with the E1 or E6 gene. Viral tumor growth in those rabbits vaccinated with the E1 or E2 gene was suppressed compared to that in controls. In contrast, seven of nine rabbits vaccinated with the combination of the E1, E2, E6, and E7 genes were completely protected against viral challenge. These data indicated that intracutaneous genetic vaccination with the combination of the E1, E2, E6, and E7 genes can be an effective strategy for immunoprophylaxis of papillomavirus infection. PMID:10400806

  13. Crystal Diagnostics Xpress™ E7 STEC Kit for the Rapid Multiplex Detection of E. coli O157 and non-O157 Shiga toxin-producing E. coli.

    PubMed

    Zhao, Weidong; Stumpf, Curtis H; Bullard, Brian; Kuzenko, Stephanie; Niehaus, Gary D

    2015-01-01

    The Crystal Diagnostics (CDx) Xpress E7 STEC kit is a rapid and sensitive detection assay for the detection of Escherichia coli O157 and six non-O157 Shiga toxin-producing E. coli (serogroups O26, O45, O1O3, O111, O121, and O145, collectively referred to as STEC) at 1 CFU/325 g of raw ground beef and raw beef trim, or 200 g of spinach. The system comprises an automatic Crystal Diagnostics Xpress System Reader that integrates immunochemical and optical processes for the liquid crystal-based detection of microorganisms, a CDx BioCassette that incorporates antibody-coupled microspheres and liquid crystal for selective identification of the intended microbe, and additional commercially available components. The Crystal Diagnostics Xpress System(TM) combines proprietary liquid crystal technology with antibody-coated paramagnetic microspheres to selectively capture and detect STEC from food matrixes. The Xpress System expeditiously (9.5 h enrichment) provides the sensitivity and specificity of the U. S. Department of Agriculture Food Safety and Inspection Service and the U. S. Food and Drug Administration reference methods in screening as low as 1 STEC CFU/test portion. The inclusivity validation demonstrated detection of 53 of 54 STEC test strains. Shelf life testing of the antibody-coated microspheres and other Crystal Diagnostic consumables indicated that all materials were stable for a minimum of 3 months (ongoing), and lot-to-lot testing demonstrated consistent results between lots (data not shown). The internal and independent laboratory tests demonstrate that the method is rapid and sensitive for screening of the target STEC. PMID:26651567

  14. Molecular variants of human papilloma virus 16 E2, E4, E5, E6 and E7 genes associated with cervical neoplasia in Romanian patients.

    PubMed

    Plesa, Adriana; Anton, Gabriela; Iancu, Iulia V; Diaconu, Carmen C; Huica, Irina; Stanescu, Anca D; Socolov, Demetra; Nistor, Elena; Popa, Elena; Stoian, Mihai; Botezatu, Anca

    2014-12-01

    The aim of this study was to identify and associate the sequence variations of human Papillomavirus 16 (HPV16) genes from women who live in two different areas of Romania and associate them with malignant progression. One hundred twenty-four HPV16-positive cervical isolates were collected, and the E2, E4, E5, E6 and E7 viral genes were sequenced. Two new missense mutations in the E6 gene (C279G and A305C) were found (together or alone, in association with other mutations) in 44 of 124 cases. The most frequently simultaneously mutated genes were E4/E2 hinge, E5 and E6 (p = 0.0004) in squamous cell carcinoma (SCC) samples. Also, for SCC patients, the best-correlated mutation patterns were obtained for E4/E2 hinge-E5 (r = 0.7984; p < 0.0001). No sample was found to have all of the investigated viral genes concurrently mutated. Phylogenetic analysis was performed to characterize the viral variants. Similar results were found for SCC and cervical intraepithelial neoplasia III (CINIII) cases. After all of the target gene sequences were assembled, all patients were found to be infected with viruses of the HPV16- European-German (EG) lineage, and two clusters were identified, the first (55/96 variants) from Moldavia and the second (41/96 variants) from Bucharest. The distinct cluster derived from EG in Moldavia could partially explain the increased frequency of SCC in this area. This study has generated a comprehensive set of sequence variation data on HPV16 circulating in Romania to join the existing data and highlight the important role of HPV16 variants during cervical carcinogenesis. PMID:25143263

  15. Performance of the HPV-16 L1 methylation assay and HPV E6/E7 mRNA test for the detection of squamous intraepithelial lesions in cervical cytological samples.

    PubMed

    Qiu, Cui; Zhi, Yanfang; Shen, Yong; Gong, Jiaomei; Li, Ya; Rong, Shouhua; Okunieff, Paul; Zhang, Lulu; Li, Xiaofu

    2015-11-01

    HPV-16 L1 methylation and E6/E7 mRNA have suggested that they had close relationship with cervical neoplastic progression. This study aimed to evaluate the clinical performance of the HPV-16 L1 methylation assay and E6/E7 mRNA test for detecting high-grade cervical lesions (CIN2+). A total of 81 women with liquid-based cytology (LBC) samples, histological results, and positive HPV-DNA test for HPV type 16 only were included in this study. HPV-16 L1 methylation and E6/E7 mRNA levels were measured using methylation-sensitive high resolution melting (MS-HRM) analysis and Quantivirus®HPV E6/E7 RNA 3.0 assay (bDNA), respectively, in the same residue of LBC samples. The current date showed a positive correlation between the HPV-16 L1 methylation and the E6/E7 mRNA levels. The L1 methylation and mRNA levels both increased with disease severity. The mRNA test method showed higher sensitivity and NPV (98.0 and 91.7% vs. 89.8 and 80.8%), while lower specificity and PPV (34.4 and 69.6% vs. 65.6 and 80.0%), than the L1 methylation assay for detecting histology-confirmed CIN2+. When using the detection method of mRNA test combined with L1 methylation assay, we obtained a sensitivity of 89.8% and a specificity of 71.9%. These findings suggest that assessment of HPV-16 L1 methylation testing combined with E6/E7 mRNA testing may be a promising method for the triage of women with HPV type 16 only. PMID:26297960

  16. Comparison of Two Widely Used Human Papillomavirus Detection and Genotyping Methods, GP5+/6+-Based PCR Followed by Reverse Line Blot Hybridization and Multiplex Type-Specific E7-Based PCR.

    PubMed

    Clifford, Gary M; Vaccarella, Salvatore; Franceschi, Silvia; Tenet, Vanessa; Umulisa, M Chantal; Tshomo, Ugyen; Dondog, Bolormaa; Vorsters, Alex; Tommasino, Massimo; Heideman, Daniëlle A M; Snijders, Peter J F; Gheit, Tarik

    2016-08-01

    GP5+/6+-based PCR followed by reverse line blot hybridization (GP5+/6+RLB) and multiplex type-specific PCR (E7-MPG) are two human papillomavirus (HPV) genotyping methodologies widely applied in epidemiological research. We investigated their relative analytical performance in 4,662 samples derived from five studies in Bhutan, Rwanda, and Mongolia coordinated by the International Agency for Research on Cancer (IARC). A total of 630 samples were positive by E7-MPG only (13.5%), 24 were positive by GP5+/6+RLB only (0.5%), and 1,014 were positive (21.8%) by both methods. Ratios of HPV type-specific positivity of the two tests (E7-MPG:GP5+/6+RLB ratio) were calculated among 1,668 samples that were HPV positive by one or both tests. E7-MPG:GP5+/6+RLB ratios were >1 for all types and highly reproducible across populations and sample types. E7-MPG:GP5+/6+RLB ratios were highest for HPV53 (7.5) and HPV68 (7.1). HPV16 (1.6) and HPV18 (1.7) had lower than average E7-MPG:GP5+/6+RLB ratios. Among E7-MPG positive infections, median mean fluorescence intensity (MFI; a semiquantitative measure of viral load) tended to be higher among samples positive for the same virus type by GP5+/6+RLB than for those negative for the same type by GP5+/6+RLB. Exceptions, however, included HPV53, -59, and -82, for which the chances of being undetected by GP5+/6+RLB appeared to be MFI independent. Furthermore, the probability of detecting an additional type by E7-MPG was higher when another type was already detected by GP5+/6+RLB, suggesting the existence of masking effects due to competition for GP5+/6+ PCR primers. In conclusion, this analysis is not an evaluation of clinical performance but may inform choices for HPV genotyping methods in epidemiological studies, when the relative merits and dangers of sensitivity versus specificity for individual types should be considered, as well as the potential to unmask nonvaccine types following HPV vaccination. PMID:27225411

  17. Induced Mesophase in Mixtures of Photopolymerizable Hyperbranched Polyester and Liquid Crystal Mesogen

    NASA Astrophysics Data System (ADS)

    Kim, Namil; Kyu, Thein; Nosaka, Mami; Kudo, Hiroto; Nishikubo, Tadatomi

    2008-03-01

    Phase behavior of a mixture of eutectic liquid crystals (E7) and hyperbranched polyester (HBPEAc-COOH) has been investigated using polarized optical microscopy and differential scanning calorimetry. The observed phase diagram is an upper azeotrope, exhibiting the coexistence of nematic + isotropic phase in the vicinity of 90˜110^oC above the clearing temperature of neat E7 (60^oC). With decreasing temperature a focal-conic fan shaped texture develops in the composition range of 70˜90 wt% of E7, suggestive of induced smectic Sm-A phase in the mixture containing no known smectic phase in their neat forms. Wide angle x-ray diffraction (WAXD) technique revealed the existence of higher order mesophase(s). The phenomenon of induced mesophase in the hyperbranched polyester/E7 system will be discussed.

  18. Niclosamide, an anti-helminthic molecule, downregulates the retroviral oncoprotein Tax and pro-survival Bcl-2 proteins in HTLV-1-transformed T lymphocytes

    SciTech Connect

    Xiang, Di; Yuan, Yunsheng; Chen, Li; Liu, Xin; Belani, Chandra; Cheng, Hua

    2015-08-14

    Adult T cell leukemia and lymphoma (ATL) is a highly aggressive form of hematological malignancy and is caused by chronic infection of human T cell leukemia virus type 1 (HTLV-1). The viral genome encodes an oncogenic protein, Tax, which plays a key role in transactivating viral gene transcription and in deregulating cellular oncogenic signaling to promote survival, proliferation and transformation of virally infected T cells. Hence, Tax is a desirable therapeutic target, particularly at early stage of HTLV-1-mediated oncogenesis. We here show that niclosamide, an anti-helminthic molecule, induced apoptosis of HTLV-1-transformed T cells. Niclosamide facilitated degradation of the Tax protein in proteasome. Consistent with niclosamide-mediated Tax degradation, this compound inhibited activities of MAPK/ERK1/2 and IκB kinases. In addition, niclosamide downregulated Stat3 and pro-survival Bcl-2 family members such as Mcl-1 and repressed the viral gene transcription of HTLV-1 through induction of Tax degradation. Since Tax, Stat3 and Mcl-1 are crucial molecules for promoting survival and growth of HTLV-1-transformed T cells, our findings demonstrate a novel mechanism of niclosamide in inducing Tax degradation and downregulating various cellular pro-survival molecules, thereby promoting apoptosis of HTLV-1-associated leukemia cells. - Highlights: • Niclosamide is a promising therapeutic candidate for adult T cell leukemia. • Niclosamide employs a novel mechanism through proteasomal degradation of Tax. • Niclosamide downregulates certain cellular pro-survival molecules.

  19. Niclosamide, an anti-helminthic molecule, downregulates the retroviral oncoprotein Tax and pro-survival Bcl-2 proteins in HTLV-1-transformed T lymphocytes.

    PubMed

    Xiang, Di; Yuan, Yunsheng; Chen, Li; Liu, Xin; Belani, Chandra; Cheng, Hua

    2015-08-14

    Adult T cell leukemia and lymphoma (ATL) is a highly aggressive form of hematological malignancy and is caused by chronic infection of human T cell leukemia virus type 1 (HTLV-1). The viral genome encodes an oncogenic protein, Tax, which plays a key role in transactivating viral gene transcription and in deregulating cellular oncogenic signaling to promote survival, proliferation and transformation of virally infected T cells. Hence, Tax is a desirable therapeutic target, particularly at early stage of HTLV-1-mediated oncogenesis. We here show that niclosamide, an anti-helminthic molecule, induced apoptosis of HTLV-1-transformed T cells. Niclosamide facilitated degradation of the Tax protein in proteasome. Consistent with niclosamide-mediated Tax degradation, this compound inhibited activities of MAPK/ERK1/2 and IκB kinases. In addition, niclosamide downregulated Stat3 and pro-survival Bcl-2 family members such as Mcl-1 and repressed the viral gene transcription of HTLV-1 through induction of Tax degradation. Since Tax, Stat3 and Mcl-1 are crucial molecules for promoting survival and growth of HTLV-1-transformed T cells, our findings demonstrate a novel mechanism of niclosamide in inducing Tax degradation and downregulating various cellular pro-survival molecules, thereby promoting apoptosis of HTLV-1-associated leukemia cells.

  20. Niclosamide, an anti-helminthic molecule, downregulates the retroviral oncoprotein Tax and pro-survival Bcl-2 proteins in HTLV-1-transformed T lymphocytes

    PubMed Central

    Chen, Li; Liu, Xin; Belani, Chandra; Cheng, Hua

    2015-01-01

    Adult T cell leukemia and lymphoma (ATL) is a highly aggressive form of hematological malignancy and is caused by chronic infection of human T cell leukemia virus type 1 (HTLV-1). The viral genome encodes an oncogenic protein, Tax, which plays a key role in transactivating viral gene transcription and in deregulating cellular oncogenic signaling to promote survival, proliferation and transformation of virally infected T cells. Hence, Tax is a desirable therapeutic target, particularly at early stage of HTLV-1-mediated oncogenesis. We here show that niclosamide, an anti-helminthic molecule, induced apoptosis of HTLV-1-transformed T cells. Niclosamide facilitated degradation of the Tax protein in proteasome. Consistent with niclosamide-mediated Tax degradation, this compound inhibited activities of MAPK/ERK1/2 and IκB kinases. In addition, niclosamide downregulated Stat3 and pro-survival Bcl-2 family members such as Mcl-1 and repressed the viral gene transcription of HTLV-1 through induction of Tax degradation. Since Tax, Stat3 and Mcl-1 are crucial molecules for promoting survival and growth of HTLV-1-transformed T cells, our findings demonstrate a novel mechanism of niclosamide in inducing Tax degradation and downregulating various cellular pro-survival molecules, thereby promoting apoptosis of HTLV-1-associated leukemia cells. PMID:26116531

  1. Niclosamide, an anti-helminthic molecule, downregulates the retroviral oncoprotein Tax and pro-survival Bcl-2 proteins in HTLV-1-transformed T lymphocytes.

    PubMed

    Xiang, Di; Yuan, Yunsheng; Chen, Li; Liu, Xin; Belani, Chandra; Cheng, Hua

    2015-08-14

    Adult T cell leukemia and lymphoma (ATL) is a highly aggressive form of hematological malignancy and is caused by chronic infection of human T cell leukemia virus type 1 (HTLV-1). The viral genome encodes an oncogenic protein, Tax, which plays a key role in transactivating viral gene transcription and in deregulating cellular oncogenic signaling to promote survival, proliferation and transformation of virally infected T cells. Hence, Tax is a desirable therapeutic target, particularly at early stage of HTLV-1-mediated oncogenesis. We here show that niclosamide, an anti-helminthic molecule, induced apoptosis of HTLV-1-transformed T cells. Niclosamide facilitated degradation of the Tax protein in proteasome. Consistent with niclosamide-mediated Tax degradation, this compound inhibited activities of MAPK/ERK1/2 and IκB kinases. In addition, niclosamide downregulated Stat3 and pro-survival Bcl-2 family members such as Mcl-1 and repressed the viral gene transcription of HTLV-1 through induction of Tax degradation. Since Tax, Stat3 and Mcl-1 are crucial molecules for promoting survival and growth of HTLV-1-transformed T cells, our findings demonstrate a novel mechanism of niclosamide in inducing Tax degradation and downregulating various cellular pro-survival molecules, thereby promoting apoptosis of HTLV-1-associated leukemia cells. PMID:26116531

  2. Integrated Analyses of Genome-Wide DNA Occupancy and Expression Profiling Identify Key Genes and Pathways Involved in Cellular Transformation by a Marek's Disease Virus Oncoprotein, Meq

    PubMed Central

    Subramaniam, Sugalesini; Johnston, John; Preeyanon, Likit; Brown, C. Titus; Kung, Hsing-Jien

    2013-01-01

    Marek's disease (MD) is an economically significant disease in chickens that is caused by the highly oncogenic Marek's disease virus (MDV). A major unanswered question is the mechanism of MDV-induced tumor formation. Meq, a bZIP transcription factor discovered in the 1990s, is critically involved in viral oncogenicity, but only a few of its host target genes have been described, impeding our understanding of MDV-induced tumorigenesis. Using chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray analysis, a high-confidence list of Meq binding sites in the chicken genome and a global transcriptome of Meq-responsive genes were generated. Meq binding sites were found to be enriched in the promoter regions of upregulated genes but not in those of downregulated genes. ChIP-seq was also performed for c-Jun, a known heterodimeric partner of Meq. The close location of binding sites of Meq and c-Jun was noted, suggesting cooperativity between these two factors in modulating transcription. Pathway analysis indicated that Meq transcriptionally regulates many genes that are part of several signaling pathways including the extracellular signal-regulated kinase /mitogen-activated protein kinase (ERK/MAPK), Jak-STAT, and ErbB pathways, which are critical for oncogenesis and/or include signaling mediators involved in apoptosis. Meq activates oncogenic signaling cascades by transcriptionally activating major kinases in the ERK/MAPK pathway and simultaneously repressing phosphatases, as verified using inhibitors of MEK and ERK1/2 in a cell proliferation assay. This study provides significant insights into the mechanistic basis of Meq-dependent cell transformation. PMID:23740999

  3. Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme.

    PubMed

    Jørgensen, Kirsten; Morant, Anne Vinther; Morant, Marc; Jensen, Niels Bjerg; Olsen, Carl Erik; Kannangara, Rubini; Motawia, Mohammed Saddik; Møller, Birger Lindberg; Bak, Søren

    2011-01-01

    Cassava (Manihot esculenta) is a eudicotyledonous plant that produces the valine- and isoleucine-derived cyanogenic glucosides linamarin and lotaustralin with the corresponding oximes and cyanohydrins as key intermediates. CYP79 enzymes catalyzing amino acid-to-oxime conversion in cyanogenic glucoside biosynthesis are known from several plants including cassava. The enzyme system converting oxime into cyanohydrin has previously only been identified in the monocotyledonous plant great millet (Sorghum bicolor). Using this great millet CYP71E1 sequence as a query in a Basic Local Alignment Search Tool-p search, a putative functional homolog that exhibited an approximately 50% amino acid sequence identity was found in cassava. The corresponding full-length cDNA clone was obtained from a plasmid library prepared from cassava shoot tips and was assigned CYP71E7. Heterologous expression of CYP71E7 in yeast afforded microsomes converting 2-methylpropanal oxime (valine-derived oxime) and 2-methylbutanal oxime (isoleucine-derived oxime) to the corresponding cyanohydrins, which dissociate into acetone and 2-butanone, respectively, and hydrogen cyanide. The volatile ketones were detected as 2.4-dinitrophenylhydrazone derivatives by liquid chromatography-mass spectrometry. A K(S) of approximately 0.9 μm was determined for 2-methylbutanal oxime based on substrate-binding spectra. CYP71E7 exhibits low specificity for the side chain of the substrate and catalyzes the conversion of aliphatic and aromatic oximes with turnovers of approximately 21, 17, 8, and 1 min(-1) for the oximes derived from valine, isoleucine, tyrosine, and phenylalanine, respectively. A second paralog of CYP71E7 was identified by database searches and showed approximately 90% amino acid sequence identity. In tube in situ polymerase chain reaction showed that in nearly unfolded leaves, the CYP71E7 paralogs are preferentially expressed in specific cells in the endodermis and in most cells in the first cortex

  4. Biosynthesis of the Cyanogenic Glucosides Linamarin and Lotaustralin in Cassava: Isolation, Biochemical Characterization, and Expression Pattern of CYP71E7, the Oxime-Metabolizing Cytochrome P450 Enzyme1[OA

    PubMed Central

    Jørgensen, Kirsten; Morant, Anne Vinther; Morant, Marc; Jensen, Niels Bjerg; Olsen, Carl Erik; Kannangara, Rubini; Motawia, Mohammed Saddik; Møller, Birger Lindberg; Bak, Søren

    2011-01-01

    Cassava (Manihot esculenta) is a eudicotyledonous plant that produces the valine- and isoleucine-derived cyanogenic glucosides linamarin and lotaustralin with the corresponding oximes and cyanohydrins as key intermediates. CYP79 enzymes catalyzing amino acid-to-oxime conversion in cyanogenic glucoside biosynthesis are known from several plants including cassava. The enzyme system converting oxime into cyanohydrin has previously only been identified in the monocotyledonous plant great millet (Sorghum bicolor). Using this great millet CYP71E1 sequence as a query in a Basic Local Alignment Search Tool-p search, a putative functional homolog that exhibited an approximately 50% amino acid sequence identity was found in cassava. The corresponding full-length cDNA clone was obtained from a plasmid library prepared from cassava shoot tips and was assigned CYP71E7. Heterologous expression of CYP71E7 in yeast afforded microsomes converting 2-methylpropanal oxime (valine-derived oxime) and 2-methylbutanal oxime (isoleucine-derived oxime) to the corresponding cyanohydrins, which dissociate into acetone and 2-butanone, respectively, and hydrogen cyanide. The volatile ketones were detected as 2.4-dinitrophenylhydrazone derivatives by liquid chromatography-mass spectrometry. A KS of approximately 0.9 μm was determined for 2-methylbutanal oxime based on substrate-binding spectra. CYP71E7 exhibits low specificity for the side chain of the substrate and catalyzes the conversion of aliphatic and aromatic oximes with turnovers of approximately 21, 17, 8, and 1 min−1 for the oximes derived from valine, isoleucine, tyrosine, and phenylalanine, respectively. A second paralog of CYP71E7 was identified by database searches and showed approximately 90% amino acid sequence identity. In tube in situ polymerase chain reaction showed that in nearly unfolded leaves, the CYP71E7 paralogs are preferentially expressed in specific cells in the endodermis and in most cells in the first cortex cell

  5. Fusion tyrosine kinase NPM-ALK Deregulates MSH2 and suppresses DNA mismatch repair function novel insights into a potent oncoprotein.

    PubMed

    Young, Leah C; Bone, Kathleen M; Wang, Peng; Wu, Fang; Adam, Benjamin A; Hegazy, Samar; Gelebart, Pascal; Holovati, Jelena; Li, Liang; Andrew, Susan E; Lai, Raymond

    2011-07-01

    The fusion tyrosine kinase NPM-ALK is central to the pathogenesis of ALK-positive anaplastic large cell lymphoma (ALK(+)ALCL). We recently identified that MSH2, a key DNA mismatch repair (MMR) protein integral to the suppression of tumorigenesis, is an NPM-ALK-interacting protein. In this study, we found in vitro evidence that enforced expression of NPM-ALK in HEK293 cells suppressed MMR function. Correlating with these findings, six of nine ALK(+)ALCL tumors displayed evidence of microsatellite instability, as opposed to none of the eight normal DNA control samples (P = 0.007, Student's t-test). Using co-immunoprecipitation, we found that increasing levels of NPM-ALK expression in HEK293 cells resulted in decreased levels of MSH6 bound to MSH2, whereas MSH2·NPM-ALK binding was increased. The NPM-ALK·MSH2 interaction was dependent on the activation/autophosphorylation of NPM-ALK, and the Y191 residue of NPM-ALK was a crucial site for this interaction and NPM-ALK-mediated MMR suppression. MSH2 was found to be tyrosine phosphorylated in the presence of NPM-ALK. Finally, NPM-ALK impeded the expected DNA damage-induced translocation of MSH2 out of the cytoplasm. To conclude, our data support a model in which the suppression of MMR by NPM-ALK is attributed to its ability to interfere with normal MSH2 biochemistry and function.

  6. Crystal structure of SV40 large T-antigen bound to p53: interplay between a viral oncoprotein and a cellular tumor suppressor

    PubMed Central

    Lilyestrom, Wayne; Klein, Michael G.; Zhang, Rongguang; Joachimiak, Andrzej; Chen, Xiaojiang S.

    2006-01-01

    The transformation potential of Simian Virus 40 depends on the activities of large T-antigen (LTag), which interacts with several cellular tumor suppressors including the important “guardian” of the genome, p53. Inhibition of p53 function by LTag is necessary for both efficient viral replication and cellular transformation. We determined the crystal structure of LTag in complex with p53. The structure reveals an unexpected hexameric complex of LTag binding six p53 monomers. Structure-guided mutagenesis of LTag and p53 residues supported the p53–LTag interface defined by the complex structure. The structure also shows that LTag binding induces dramatic conformational changes at the DNA-binding area of p53, which is achieved partially through an unusual “methionine switch” within p53. In the complex structure, LTag occupies the whole p53 DNA-binding surface and likely interferes with formation of a functional p53 tetramer. In addition, we showed that p53 inhibited LTag helicase function through direct complex formation. PMID:16951253

  7. The adaptor protein DCAF7 mediates the interaction of the adenovirus E1A oncoprotein with the protein kinases DYRK1A and HIPK2

    PubMed Central

    Glenewinkel, Florian; Cohen, Michael J.; King, Cason R.; Kaspar, Sophie; Bamberg-Lemper, Simone; Mymryk, Joe S.; Becker, Walter

    2016-01-01

    DYRK1A is a constitutively active protein kinase that has a critical role in growth and development which functions by regulating cell proliferation, differentiation and survival. DCAF7 (also termed WDR68 or HAN11) is a cellular binding partner of DYRK1A and also regulates signalling by the protein kinase HIPK2. DCAF7 is an evolutionarily conserved protein with a single WD40 repeat domain and has no catalytic activity. We have defined a DCAF7 binding motif of 12 amino acids in the N-terminal domain of class 1 DYRKs that is functionally conserved in DYRK1 orthologs from Xenopus, Danio rerio and the slime mold Dictyostelium discoideum. A similar sequence was essential for DCAF7 binding to HIPK2, whereas the closely related HIPK1 family member did not bind DCAF7. Immunoprecipitation and pulldown experiments identified DCAF7 as an adaptor for the association of the adenovirus E1A protein with DYRK1A and HIPK2. Furthermore, DCAF7 was required for the hyperphosphorylation of E1A in DYRK1A or HIPK2 overexpressing cells. Our results characterize DCAF7 as a substrate recruiting subunit of DYRK1A and HIPK2 and suggest that it is required for the negative effect of DYRK1A on E1A-induced oncogenic transformation. PMID:27307198

  8. The adaptor protein DCAF7 mediates the interaction of the adenovirus E1A oncoprotein with the protein kinases DYRK1A and HIPK2.

    PubMed

    Glenewinkel, Florian; Cohen, Michael J; King, Cason R; Kaspar, Sophie; Bamberg-Lemper, Simone; Mymryk, Joe S; Becker, Walter

    2016-01-01

    DYRK1A is a constitutively active protein kinase that has a critical role in growth and development which functions by regulating cell proliferation, differentiation and survival. DCAF7 (also termed WDR68 or HAN11) is a cellular binding partner of DYRK1A and also regulates signalling by the protein kinase HIPK2. DCAF7 is an evolutionarily conserved protein with a single WD40 repeat domain and has no catalytic activity. We have defined a DCAF7 binding motif of 12 amino acids in the N-terminal domain of class 1 DYRKs that is functionally conserved in DYRK1 orthologs from Xenopus, Danio rerio and the slime mold Dictyostelium discoideum. A similar sequence was essential for DCAF7 binding to HIPK2, whereas the closely related HIPK1 family member did not bind DCAF7. Immunoprecipitation and pulldown experiments identified DCAF7 as an adaptor for the association of the adenovirus E1A protein with DYRK1A and HIPK2. Furthermore, DCAF7 was required for the hyperphosphorylation of E1A in DYRK1A or HIPK2 overexpressing cells. Our results characterize DCAF7 as a substrate recruiting subunit of DYRK1A and HIPK2 and suggest that it is required for the negative effect of DYRK1A on E1A-induced oncogenic transformation. PMID:27307198

  9. Sequential Cisplatin Therapy and Vaccination with HPV16 E6E7L2 Fusion Protein in Saponin Adjuvant GPI-0100 for the Treatment of a Model HPV16+ Cancer

    PubMed Central

    Peng, Shiwen; Wang, Joshua W.; Karanam, Balasubramanyam; Wang, Chenguang; Huh, Warner K.; Alvarez, Ronald D.; Pai, Sara I.; Hung, Chien-fu; Wu, T. -C.; Roden, Richard B. S.

    2015-01-01

    Clinical studies suggest that responses to HPV16 E6E7L2 fusion protein (TA-CIN) vaccination alone are modest, and GPI-0100 is a well-tolerated, potent adjuvant. Here we sought to optimize both the immunogenicity of TA-CIN via formulation with GPI-0100 and treatment of HPV16+ cancer by vaccination after cisplatin chemotherapy. HPV16 neutralizing serum antibody titers, CD4+ T cell proliferative and E6/E7-specific CD8+ T cell responses were significantly enhanced when mice were vaccinated subcutaneously (s.c.) or intramuscularly (i.m.) with TA-CIN formulated with GPI-0100. Vaccination was tested for therapy of mice bearing syngeneic HPV16 E6/E7+ tumors (TC-1) either in the lung or subcutaneously. Mice treated with TA-CIN/GPI-0100 vaccination exhibited robust E7-specific CD8+ T cell responses, which were associated with reduced tumor burden in the lung, whereas mice receiving either component alone were similar to controls. Since vaccination alone was not sufficient for cure, mice bearing s.c. TC-1 tumor were first treated with two doses of cisplatin and then vaccinated. Vaccination with TA-CIN/GPI-0100 i.m. substantially retarded tumor growth and extended survival after cisplatin therapy. Injection of TA-CIN alone, but not GPI-0100, into the tumor (i.t.) was similarly efficacious after cisplatin therapy, but the mice eventually succumbed. However, tumor regression and extended remission was observed in 80% of the mice treated with cisplatin and then intra-tumoral TA-CIN/GPI-0100 vaccination. These mice also exhibited robust E7-specific CD8+ T cell and HPV16 neutralizing antibody responses. Thus formulation of TA-CIN with GPI-0100 and intra-tumoral delivery after cisplatin treatment elicits potent therapeutic responses in a murine model of HPV16+ cancer. PMID:25560237

  10. Comprehensive immunohistochemical analysis of Her-2/neu oncoprotein overexpression in breast cancer: HercepTest (Dako) for manual testing and Her-2/neuTest 4B5 (Ventana) for Ventana BenchMark automatic staining system with correlation to results of fluorescence in situ hybridization (FISH).

    PubMed

    Mayr, Doris; Heim, Sibylle; Werhan, Cedric; Zeindl-Eberhart, Evelyn; Kirchner, Thomas

    2009-03-01

    Overexpression of Her-2/neu-oncoprotein is used as marker for Herceptin therapy. To investigate the sensitivity and specificity of automatic immunohistochemistry (Benchmark, Ventana), we compared the results to the manual testing (Dako) in 130 breast carcinomas and validated the results by fluorescence in situ hybridization (FISH). Manual and automatic immunohistochemistry of Her-2/neu-oncoprotein using two different antibodies (HercepTest, Her-2/neuTest 4B5) was analyzed. FISH was performed in all cases with uncertain or strong overexpression in either immunohistochemical stainings or with different immunohistochemical results. Same immunohistochemical results were seen in 73.8%. Two cases with overexpression, detected with Her-2/neuTest 4B5 and confirmed by FISH, showed no overexpression using HercepTest. From 21 cases with 2+ by Her-2/neuTest 4B5, 15 cases had no gene amplification (two of them with 3+ HercepTest); three cases showed a gene amplification (one of them with failing overexpression by HercepTest); two other cases were polysomic; one could not be analyzed. Ventana immunohistochemistry seems to be of same reliability like Dako with a little better concordance to FISH in our study.

  11. Oncogenicity of human papillomavirus- or adenovirus-transformed cells correlates with resistance to lysis by natural killer cells.

    PubMed Central

    Routes, J M; Ryan, S

    1995-01-01

    The reasons for the dissimilar oncogenicities of human adenoviruses and human papillomaviruses (HPV) in humans are unknown but may relate to differences in the capacities of the E1A and E7 proteins to target cells for rejection by the host natural killer (NK) cell response. As one test of this hypothesis, we compared the abilities of E1A- and E7-expressing human fibroblastic or keratinocyte-derived human cells to be selectively killed by either unstimulated or interferon (IFN)-activated NK cells. Cells expressing the E1A oncoprotein were selectively killed by unstimulated NK cells, while the same parental cells but expressing the HPV type 16 (HPV-16) or HPV-18 E7 oncoprotein were resistant to NK cell lysis. The ability of IFN-activated NK cells to selectively kill virally transformed cells depends on IFN's ability to induce resistance to NK cell lysis in normal (i.e., non-viral oncogene-expressing) but not virally transformed cells. E1A blocked IFN's induction of cytolytic resistance, resulting in the selective lysis of adenovirus-transformed cells by IFN-activated NK cells. The extent of IFN-induced NK cell killing of E1A-expressing cells was proportional to the level of E1A expression and correlated with the ability of E1A to block IFN-stimulated gene expression in target cells. In contrast, E7 blocked neither IFN-stimulated gene expression nor IFN's induction of cytolytic resistance, thereby precluding the selective lysis of HPV-transformed cells by IFN-activated NK cells. In conclusion, E1A expression marks cells for destruction by the host NK cell response, whereas the E7 oncoprotein lacks this activity. PMID:7494272

  12. The oncoprotein NPM-ALK of anaplastic large-cell lymphoma induces JUNB transcription via ERK1/2 and JunB translation via mTOR signaling.

    PubMed

    Staber, Philipp B; Vesely, Paul; Haq, Naznin; Ott, Rene G; Funato, Kotaro; Bambach, Isabella; Fuchs, Claudia; Schauer, Silvia; Linkesch, Werner; Hrzenjak, Andelko; Dirks, Wilhelm G; Sexl, Veronika; Bergler, Helmut; Kadin, Marshall E; Sternberg, David W; Kenner, Lukas; Hoefler, Gerald

    2007-11-01

    Anaplastic large cell lymphomas (ALCLs) are highly proliferating tumors that commonly express the AP-1 transcription factor JunB. ALK fusions occur in approximately 50% of ALCLs, and among these, 80% have the t(2;5) translocation with NPM-ALK expression. We report greater activity of JunB in NPM-ALK-positive than in NPM-ALK-negative ALCLs. Specific knockdown of JUNB mRNA using small interfering RNA and small hairpin RNA in NPM-ALK-expressing cells decreases cellular proliferation as evidenced by a reduced cell count in the G2/M phase of the cell cycle. Expression of NPM-ALK results in ERK1/2 activation and transcriptional up-regulation of JUNB. Both NPM-ALK-positive and -negative ALCL tumors demonstrate active ERK1/2 signaling. In contrast to NPM-ALK-negative ALCL, the mTOR pathway is active in NPM-ALK-positive lymphomas. Pharmacological inhibition of mTOR in NPM-ALK-positive cells down-regulates JunB protein levels by shifting JUNB mRNA translation from large polysomes to monosomes and ribonucleic particles (RNPs), and decreases cellular proliferation. Thus, JunB is a critical target of mTOR and is translationally regulated in NPM-ALK-positive lymphomas. This is the first study demonstrating translational control of AP-1 transcription factors in human neoplasia. In conjunction with NPM-ALK, JunB enhances cell cycle progression and may therefore represent a therapeutic target.

  13. Diagnostic performance of HPV E6/E7, hTERT, and Ki67 mRNA RT-qPCR assays on formalin-fixed paraffin-embedded cervical tissue specimens from women with cervical cancer.

    PubMed

    Wang, Hye-Young; Kim, Geehyuk; Cho, Hyemi; Kim, Sunghyun; Lee, Dongsup; Park, Sunyoung; Park, Kwang Hwa; Lee, Hyeyoung

    2015-06-01

    Human papillomavirus (HPV) is a major cause of cervical cancer, which is the third most common cancer in women. Human telomerase reverse transcriptase (hTERT) and Ki67 are tumor cell markers indicating cancer cell proliferation in cancer patients, and activation of hTERT and Ki67 leads to progressive cervical carcinogenesis. In the present study, we evaluated the CervicGen HPVE6/E7 mRNA RT-qDx assay, which detects 16 HPV high-risk (HR) genotypes (HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68 and 69), and the CervicGen hTERT and Ki67 mRNA RT-qDx assay using 117 formalin-fixed paraffin-embedded (FFPE) cervical cancer tissue samples. The diagnostic validity of the CervicGen HPV RT-qDx assay for detecting histologically proven prevalent squamous cell carcinoma (SCC) was 94% sensitivity, 100% specificity, 77.8% positive predictive value (PPV), and 78.9% negative predictive value (NPV). The most common HPV genotypes detected in FFPE cervical cancer tissue samples were HPV 16 (56%) and HPV 18 (10%). The positivity rate of hTERT and Ki67 mRNA expressions in FFPE cervical cancer tissue samples on RT-qPCR was 65% and 93% respectively. Moreover, the positivity rates were 92% for a combination of HPV E6/E7 and hTERT mRNA expressions, 97% for HPV E6/E7 and Ki67 mRNA expressions, and 99% (99/100) for the combination of HPV E6/E7, hTERT, and Ki67 mRNA expressions. These data showed that SSC FFPE cervical cancer tissue samples correlated more strongly with high Ki67 mRNA expressions than with hTERT mRNA expressions. Notably, hTERT and Ki67 mRNA expression level was increased in high-grade cervical lesions, but was very low in normal samples. Our findings suggest that the combination of HPV E6/E7, hTERT, and Ki67 mRNA expression levels could be used in a complementary manner in diagnosing high-grade cervical lesions. Further studies are required to evaluate these assays as a useful predictive tool for screening low-grade cervical lesions.

  14. A novel Hsp90 inhibitor AT13387 induces senescence in EBV-positive nasopharyngeal carcinoma cells and suppresses tumor formation

    PubMed Central

    2013-01-01

    Background Nasopharyngeal carcinoma (NPC) is an epithelial malignancy strongly associated with Epstein-Barr virus (EBV). AT13387 is a novel heat shock protein 90 (Hsp90) inhibitor, which inhibits the chaperone function of Hsp90 and reduces expression of Hsp90-dependent client oncoproteins. This study aimed to evaluate both the in vitro and in vivo antitumor effects of AT13387 in the EBV-positive NPC cell line C666-1. Results Our results showed that AT13387 inhibited C666-1 cell growth and induced cellular senescence with the downregulation of multiple Hsp90 client oncoproteins EGFR, AKT, CDK4, and restored the protein expression of negative cell cycle regulator p27. We also studied the ability of AT13387 to restore p27 expression by downregulation of AKT and the p27 ubiquitin mediator, Skp2, using AKT inhibitor and Skp2 siRNA. In the functional study, AT13387 inhibited cell migration with downregulation of a cell migration regulator, HDAC6, and increased the acetylation and stabilization of α-tubulin. We also examined the effect of AT13387 on putative cancer stem cells (CSC) by 3-D tumor sphere formation assay. AT13387 effectively reduced both the number and size of C666-1 tumor spheres with decreased expression of NPC CSC-like markers CD44 and SOX2. In the in vivo study, AT13387 significantly suppressed tumor formation in C666-1 NPC xenografts. Conclusion AT13387 suppressed cell growth, cell migration, tumor sphere formation and induced cellular senescence on EBV-positive NPC cell line C666-1. Also, the antitumor effect of AT13387 was demonstrated in an in vivo model. This study provided experimental evidence for the preclinical value of using AT13387 as an effective antitumor agent in treatment of NPC. PMID:24156782

  15. Transcriptional regulation of the human papillomavirus-16 E6-E7 promoter by a keratinocyte-dependent enhancer, and by viral E2 trans-activator and repressor gene products: implications for cervical carcinogenesis.

    PubMed

    Cripe, T P; Haugen, T H; Turk, J P; Tabatabai, F; Schmid, P G; Dürst, M; Gissmann, L; Roman, A; Turek, L P

    1987-12-01

    The transcriptional promoter of the candidate E6-E7 transforming gene region of human papillomavirus (HPV)-16 (P97) was active in transiently transfected cervical carcinoma cells when linked to the HSV-1 tk or bacterial cat genes. Sequences 5' to P97 contain a short enhancer element responding to cellular factor(s) in uninfected human foreskin keratinocytes and in cervical carcinoma cells, but not in human or animal fibroblasts. The E2 trans-activator products of HPV-16 or of the related bovine papillomavirus (BPV)-1 further elevated HPV-16-driven transcripts in co-transfections, and required the presence of E2-binding ACC(N)6GGT cores in cis. A 'short E2' C-terminal repressor gene product (sE2) of HPV-16 or the BPV-1 sE2 repressor not only inhibited viral E2 trans-activation, but also suppressed enhancer response to keratinocytic factors. Suppression by the sE2 products was abolished by deletion of the E2-binding cores in cis or by a mutation in the sE2 DNA binding domain. The keratinocyte-dependent enhancer is likely to contribute to the epithelial cell tropism of HPV-16, and may direct persistent E6-E7 gene transcription in response to cellular factors in cervical carcinoma cells in which the viral E2 genes are inactive. PMID:2448139

  16. Loss of p53 induces epidermal growth factor receptor promoter activity in normal human keratinocytes

    PubMed Central

    Bheda, A; Creek, KE; Pirisi, L

    2008-01-01

    Overexpression of the epidermal growth factor receptor (EGFR) in human papillomavirus type 16-immortalized human keratinocytes (HKc) is caused by the viral oncoprotein E6, which targets p53 for degradation. We have previously observed that expression of p53 RNAi in normal HKc is associated with an increase in EGFR mRNA and protein. We now report that p53 RNAi induces EGFR promoter activity up to approximately 10-fold in normal HKc, and this effect does not require intact p53 binding sites on the EGFR promoter. Exogenous wild-type p53 inhibits the EGFR promoter at low levels, and activates it at higher concentrations. Yin Yang 1 (YY1), which negatively regulates p53, induces EGFR promoter activity, and this effect is augmented by p53 RNAi. Intact p53 binding sites on the EGFR promoter are not required for activation by YY1. In addition, Sp1 and YY1 synergistically induce the EGFR promoter in normal HKc, indicating that Sp1 may recruit YY1 as a co-activator. Wild-type p53 suppressed Sp1- and YY1-mediated induction of the EGFR promoter. We conclude that acute loss of p53 in normal HKc induces EGFR expression bya mechanism that involves YY1 and Sp1 and does not require p53 binding to the EGFR promoter. PMID:18391986

  17. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells.

    PubMed

    Kumar, Devbrat; Basu, Soumya; Parija, Lucy; Rout, Deeptimayee; Manna, Sanjeet; Dandapat, Jagneshwar; Debata, Priya Ranjan

    2016-07-01

    Cervical cancer and precancerous lesions of the cervix continue to be a global health issue, and the medication for the treatment for chronic HPV infection so far has not been effective. Potential anticancer and anti HPV activities of two known phytochemicals, Curcumin and Ellagic acid were evaluated in HeLa cervical cancer cells. Curcumin is a natural compound found in the root of Curcuma longa plant and Ellagic acid a polyphenol found in fruits of strawberries, raspberries and walnuts. The combination of Curcumin and Ellagic acid at various concentrations showed better anticancer properties than either of the drug when used alone as evidenced by MTT assay. Besides this, Curcumin and Ellagic acid also restore p53, induce ROS formation and DNA damage. Mechanistic study further indicated that Curcumin and Ellagic acid show anti-HPV activity as evidenced by decrease in the HPV E6 oncoprotein on HeLa cells. PMID:27261574

  18. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells.

    PubMed

    Kumar, Devbrat; Basu, Soumya; Parija, Lucy; Rout, Deeptimayee; Manna, Sanjeet; Dandapat, Jagneshwar; Debata, Priya Ranjan

    2016-07-01

    Cervical cancer and precancerous lesions of the cervix continue to be a global health issue, and the medication for the treatment for chronic HPV infection so far has not been effective. Potential anticancer and anti HPV activities of two known phytochemicals, Curcumin and Ellagic acid were evaluated in HeLa cervical cancer cells. Curcumin is a natural compound found in the root of Curcuma longa plant and Ellagic acid a polyphenol found in fruits of strawberries, raspberries and walnuts. The combination of Curcumin and Ellagic acid at various concentrations showed better anticancer properties than either of the drug when used alone as evidenced by MTT assay. Besides this, Curcumin and Ellagic acid also restore p53, induce ROS formation and DNA damage. Mechanistic study further indicated that Curcumin and Ellagic acid show anti-HPV activity as evidenced by decrease in the HPV E6 oncoprotein on HeLa cells.

  19. Targeting MUC1-C is synergistic with bortezomib in downregulating TIGAR and inducing ROS-mediated myeloma cell death

    PubMed Central

    Yin, Li; Kufe, Turner; Avigan, David

    2014-01-01

    The proteosome inhibitor bortezomib (BTZ) induces endoplasmic reticulum and oxidative stress in multiple myeloma (MM) cells. The mucin 1 C-terminal subunit (MUC1-C) oncoprotein is aberrantly expressed in most MM cells, and targeting MUC1-C with GO-203, a cell-penetrating peptide inhibitor of MUC1-C homodimerization, is effective in inducing reactive oxygen species (ROS)-mediated MM cell death. The present results demonstrate that GO-203 and BTZ synergistically downregulate expression of the p53-inducible regulator of glycolysis and apoptosis (TIGAR), which promotes shunting of glucose-6-phosphate into the pentose phosphate pathway to generate reduced glutathione (GSH). In turn, GO-203 blocks BTZ-induced increases in GSH and results in synergistic increases in ROS and MM cell death. The results also demonstrate that GO-203 is effective against BTZ-resistant MM cells. We show that BTZ resistance is associated with BTZ-induced increases in TIGAR and GSH levels, and that GO-203 resensitizes BTZ-resistant cells to BTZ treatment by synergistically downregulating TIGAR and GSH. The GO-203/BTZ combination is thus highly effective in killing BTZ-resistant MM cells. These findings support a model in which targeting MUC1-C is synergistic with BTZ in suppressing TIGAR-mediated regulation of ROS levels and provide an experimental rationale for combining GO-203 with BTZ in certain settings of BTZ resistance. PMID:24632713

  20. Bcl-3, induced by Tax and HTLV-1, inhibits NF-κB activation and promotes autophagy.

    PubMed

    Wang, Jinheng; Niu, Zhiguo; Shi, Ying; Gao, Cai; Wang, Xia; Han, Jingxian; Li, Junying; Gao, Zhitao; Zhu, Xiaofei; Song, Xiangfeng; Qin, Zhihai; Wang, Hui

    2013-12-01

    The human T cell leukemia virus type 1 (HTLV-1) is a complex human retrovirus that causes an aggressive leukemia known as adult T cell leukemia (ATL). The HTLV-1-encoded oncoprotein Tax induces persistent activation of the nuclear factor-κB (NF-κB) pathway, which is perceived as the primary cause of ATL. Bcl-3, a member of the NF-κB inhibitor (IκB) family, is highly expressed in many HTLV-1-infected T cell lines and ATL cells. However, the role of Bcl-3 in Tax-induced NF-κB activation has not been fully elucidated. Here, we show that Tax induces Bcl-3 expression, which in turn negatively regulates the Tax-induced NF-κB activation. Interestingly, both Bcl-3 up-regulation and NF-κB inhibition promote the autophagy process in HTLV-1-infected cells. Consistent with this, over-expression of Bcl-3 also results in enhancement of rapamycin-, pifithrin-α- or starvation-induced autophagy in control cells. Together, these data demonstrate that Bcl-3 acts as a negative regulator of NF-κB activation and promotes autophagy in HTLV-1-infected cells.

  1. SH4-domain-induced plasma membrane dynamization promotes bleb-associated cell motility.

    PubMed

    Tournaviti, Stella; Hannemann, Sebastian; Terjung, Stefan; Kitzing, Thomas M; Stegmayer, Carolin; Ritzerfeld, Julia; Walther, Paul; Grosse, Robert; Nickel, Walter; Fackler, Oliver T

    2007-11-01

    SH4 domains provide bipartite membrane-targeting signals for oncogenic Src family kinases. Here we report the induction of non-apoptotic plasma membrane (PM) blebbing as a novel and conserved activity of SH4 domains derived from the prototypic Src kinases Src, Fyn, Yes and Lck as well as the HASPB protein of Leishmania parasites. SH4-domain-induced blebbing is highly dynamic, with bleb formation and collapse displaying distinct kinetics. These reorganizations of the PM are controlled by Rho but not Rac or Cdc42 GTPase signalling pathways. SH4-induced membrane blebbing requires the membrane association of the SH4 domain, is regulated by the activities of Rock kinase and myosin II ATPase, and depends on the integrity of F-actin as well as microtubules. Endogenous Src kinase activity is crucial for PM blebbing in SH4-domain-expressing cells, active Src and Rock kinases are enriched in SH4-domain-induced PM blebs, and PM blebbing correlates with enhanced cell invasion in 3D matrices. These results establish a novel link between SH4 domains, Src activity and Rho signalling, and implicate SH4-domain-mediated PM dynamization as a mechanism that influences invasiveness of cells transformed by SH4-domain-containing oncoproteins. PMID:17959630

  2. Metformin induces differentiation in acute promyelocytic leukemia by activating the MEK/ERK signaling pathway

    SciTech Connect

    Huai, Lei; Wang, Cuicui; Zhang, Cuiping; Li, Qihui; Chen, Yirui; Jia, Yujiao; Li, Yan; Xing, Haiyan; Tian, Zheng; Rao, Qing; Wang, Min; Wang, Jianxiang

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Metformin induces differentiation in NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces activation of the MEK/ERK signaling pathway in APL cells. Black-Right-Pointing-Pointer Metformin synergizes with ATRA to trigger maturation of NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces the relocalization and degradation of the PML-RAR{alpha} fusion protein. Black-Right-Pointing-Pointer The study may be applicable for new differentiation therapy in cancer treatment. -- Abstract: Recent studies have shown that metformin, a widely used antidiabetic agent, may reduce the risk of cancer development. In this study, we investigated the antitumoral effect of metformin on both acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL) cells. Metformin induced apoptosis with partial differentiation in an APL cell line, NB4, but only displayed a proapoptotic effect on several non-M3 AML cell lines. Further analysis revealed that a strong synergistic effect existed between metformin and all-trans retinoic acid (ATRA) during APL cell maturation and that metformin induced the hyperphosphorylation of extracellular signal-regulated kinase (ERK) in APL cells. U0126, a specific MEK/ERK activation inhibitor, abrogated metformin-induced differentiation. Finally, we found that metformin induced the degradation of the oncoproteins PML-RAR{alpha} and c-Myc and activated caspase-3. In conclusion, these results suggest that metformin treatment may contribute to the enhancement of ATRA-induced differentiation in APL, which may deepen the understanding of APL maturation and thus provide insight for new therapy strategies.

  3. Human papillomavirus types detected in skin warts and cancer differ in their transforming properties but commonly counteract UVB induced protective responses in human keratinocytes

    SciTech Connect

    Shterzer, Naama; Heyman, Dariya; Shapiro, Beny; Yaniv, Abraham; Jackman, Anna; Serour, Francis; Chaouat, Malka; Gonen, Pinhas; Tommasino, Massimo; Sherman, Levana

    2014-11-15

    In the present study, E6E7 and E6 proteins of human papillomaviruses (HPVs) associated with skin warts and cancer were compared for their transforming and carcinogenic abilities in primary human keratinocytes (PHKs). We show that E6E7 of cancer associated beta HPV types, notably 49 and 24, were able to extend the life span and enhance the clonogenic efficiency of PHKs when maintained in serum free/low calcium medium. Activities of the beta HPV E6E7 were lower than those of HPV16 E6E7. In contrast, E6 proteins from HPV types detected in skin warts or cancer, notably 10, 49 and 38, attenuated UVB induced protective responses in PHKs including cell death, proliferation arrest and accumulation of the proapoptotic proteins, p53, bax or bak. Together, this investigation revealed functional differences and commonalities between HPVs associated with skin warts and cancer, and allowed the identification of specific properties of beta HPVs supporting their involvement in skin carcinogenesis. - Highlights: • Primary keratinocytes were used to evaluate transforming and carcinogenic abilities of cutaneous HPVs. • E6E7 of cancer associated β HPV types transform primary human keratinocytes. • E6 proteins of cancer and wart associated HPVs inhibit UVB induced cell death. • E6s of cancer and wart associated HPVs attenuate UVB induced proliferation arrest. • E6s of cancer and wart associated HPVs attenuate UVB induced apoptosis signaling.

  4. Induced smectic phase in mixtures of hyperbranched polyester and liquid crystal mesogens.

    PubMed

    Kim, Namil; Huang, Tsang-Min; Kyu, Thein; Nosaka, Mami; Kudo, Hiroto; Nishikubo, Tadatomi

    2008-10-23

    The phase diagram of a mixture consisting of hyperbranched polyester (HBPEAc-COOH) and eutectic nematic liquid crystals (E7) has been established experimentally by means of differential scanning calorimetry and polarized optical microscopy subjected to prolonged annealing. The observed phase diagram is an upper azeotrope, exhibiting the coexistence of nematic + isotropic phase in the vicinity of 90 approximately 110 degrees C above the clearing temperature of neat E7 (60 degrees C). With decreasing temperature, a focal-conic fan shaped texture develops in the composition range of 63 approximately 93 wt % of the annealed E7/HBPEAc-COOH blends, suggestive of induced smectic phase in the mixture. Wide angle X-ray diffraction (WAXD) technique revealed the existence of higher order mesophase(s).

  5. Induced Abortion

    MedlinePlus

    ... Induced Abortion Patient Education FAQs Induced Abortion Patient Education Pamphlets - Spanish Induced Abortion FAQ043, May 2015 PDF Format Induced ... Your Practice Patient Safety & Quality Payment Reform (MACRA) Education & Events Annual ... Pamphlets Teen Health About ACOG About Us Leadership & ...

  6. Enhancement of suicidal DNA vaccine potency by delaying suicidal DNA-induced cell death.

    PubMed

    Kim, T W; Hung, C-F; Juang, J; He, L; Hardwick, J M; Wu, T-C

    2004-02-01

    DNA-based alphaviral RNA replicon vectors, also called suicidal DNA vectors, alleviate the concerns of integration or transformation related to conventional DNA vectors since suicidal DNA vectors eventually cause apoptosis of transfected cells. However, the expression of inserted genes in these vectors is transient and the potency of suicidal DNA vaccines may be compromised because of apoptotic cell death. Therefore, to enhance the immune response to the human papillomavirus type 16 (HPV-16) E7 antigen, we generated a DNA-based Semliki Forest virus vector, pSCA1, encoding E7 fused with BCL-xL, an antiapoptotic member of the BCL-2 family. Our results indicated that pSCA1 encoding E7/BCL-xL fusion protein delayed cell death in the pSCA1-transfected dendritic cell line and generated significantly higher E7-specific CD8(+) T-cell-mediated immune responses and better antitumor effects than pSCA1 encoding wild-type E7 gene in vaccinated mice. The antiapoptotic function of BCL-xL is important for the enhancement of antigen-specific CD8(+) T-cell responses in vaccinated mice, because a point mutant of BCL-xL lacking antiapoptotic function was ineffective. These results suggest that strategies to delay suicidal DNA-induced cell death using antiapoptotic proteins may greatly enhance the potency of suicidal DNA.

  7. Methylated arsenic metabolites bind to PML protein but do not induce cellular differentiation and PML-RARα protein degradation.

    PubMed

    Wang, Qian Qian; Zhou, Xin Yi; Zhang, Yan Fang; Bu, Na; Zhou, Jin; Cao, Feng Lin; Naranmandura, Hua

    2015-09-22

    Arsenic trioxide (As2O3) is one of the most effective therapeutic agents used for patients with acute promyelocytic leukemia (APL). The probable explanation for As2O3-induced cell differentiation is the direct targeting of PML-RARα oncoprotein by As2O3, which results in initiation of PML-RARα degradation. However, after injection, As2O3 is rapidly methylated in body to different intermediate metabolites such as trivalent monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III)), therefore, it remains unknown that which arsenic specie is actually responsible for the therapeutic effects against APL. Here we have shown the role of As2O3 (as iAs(III)) and its intermediate metabolites (i.e., MMA(III)/DMA(III)) in NB4 cells. Inorganic iAs(III) predominantly showed induction of cell differentiation, while MMA(III) and DMA(III) specifically showed to induce mitochondria and endoplasmic reticulum-mediated apoptosis, respectively. On the other hand, in contrast to iAs(III), MMA(III) showed stronger binding affinity for ring domain of PML recombinant protein, however, could not induce PML protein SUMOylation and ubiquitin/proteasome degradation. In summary, our results suggest that the binding of arsenicals to the ring domain of PML proteins is not associated with the degradation of PML-RARα fusion protein. Moreover, methylated arsenicals can efficiently lead to cellular apoptosis, however, they are incapable of inducing NB4 cell differentiation. PMID:26213848

  8. IER3 is a crucial mediator of TAp73β-induced apoptosis in cervical cancer and confers etoposide sensitivity

    PubMed Central

    Jin, Hanyong; Suh, Dae-Shik; Kim, Tae-Hyoung; Yeom, Ji-Hyun; Lee, Kangseok; Bae, Jeehyeon

    2015-01-01

    Infection with high-risk human papillomaviruses (HPVs) causes cervical cancer. E6 oncoprotein, an HPV gene product, inactivates the major gatekeeper p53. In contrast, its isoform, TAp73β, has become increasingly important, as it is resistant to E6. However, the intracellular signaling mechanisms that account for TAp73β tumor suppressor activity in cervix are poorly understood. Here, we identified that IER3 is a novel target gene of TAp73β. In particular, TAp73β exclusively transactivated IER3 in cervical cancer cells, whereas p53 and TAp63 failed to do. IER3 efficiently induced apoptosis, and its knockdown promoted survival of HeLa cells. In addition, TAp73β-induced cell death, but not p53-induced cell death, was inhibited upon IER3 silencing. Moreover, etoposide, a DNA-damaging chemotherapeutics, upregulated TAp73β and IER3 in a c-Abl tyrosine kinase-dependent manner, and the etoposide chemosensitivity of HeLa cells was largely determined by TAp73β-induced IER3. Of interest, cervical carcinomas from patients express no observable levels of two proteins. Thus, our findings suggest that IER3 is a putative tumor suppressor in the cervix, and the c-Ab1/p73β/IER3 axis is a novel and crucial signaling pathway that confers etoposide chemosensitivity. Therefore, TAp73β and IER3 induction would be a valuable checkpoint for successful therapeutic intervention of cervical carcinoma patients. PMID:25666857

  9. Functional inactivation of Rb sensitizes cancer cells to TSC2 inactivation induced cell Death

    PubMed Central

    Danos, Arpad M.; Liao, Yang; Li, Xuan; Du, Wei

    2012-01-01

    We showed previously that inactivation of TSC2 induces death in cancer cells lacking the Retinoblastoma (Rb) tumor suppressor under stress conditions, suggesting that inactivation of TSC2 can potentially be used as an approach to specifically kill cancers that have lost WT Rb. As Rb is often inactivated in cancers by overexpression of cyclin D1, loss of p16ink4a cdk inhibitor, or expression of viral oncoproteins, it will be interesting to determine if such functional inactivation of Rb would similarly sensitize cancer cells to TSC2 inactivation induced cell death. In addition, many cancers lack functional Pten, resulting in increased PI3K/Akt signaling that has been shown to modulate E2F-induced cell death. Therefore it will be interesting to test whether loss of Pten will affect TSC2 inactivation induced killing of Rb mutant cancer cells. Here, we show that overexpression of Cyclin D1 or the viral oncogene E1a sensitizes cancer cells to TSC2 knockdown induced cell death and growth inhibition. On the other hand, knockdown of p16ink4a sensitizes cancer cells to TSC2 knockdown induced cell death in a manner that is likely dependant on serum induction of Cyclin D1 to inactivate the Rb function. Additionally, we demonstrate that loss of Pten does not interfere with TSC2 knockdown induced cell death in Rb mutant cancer cells. Together, these results suggest that TSC2 is potentially a useful target for a large spectrum of cancer types with an inactivated Rb pathway. PMID:23022476

  10. Sensitivity, Specificity, and Clinical Value of Human Papillomavirus (HPV) E6/E7 mRNA Assay as a Triage Test for Cervical Cytology and HPV DNA Test ▿

    PubMed Central

    Benevolo, Maria; Vocaturo, Amina; Caraceni, Donatella; French, Deborah; Rosini, Sandra; Zappacosta, Roberta; Terrenato, Irene; Ciccocioppo, Lucia; Frega, Antonio; Rossi, Paolo Giorgi

    2011-01-01

    There is evidence that testing for human papillomavirus (HPV) E6/E7 mRNA is more specific than testing for HPV DNA. A retrospective study was carried out to evaluate the performance of the PreTect HPV-Proofer E6/E7 mRNA assay (Norchip) as a triage test for cytology and HPV DNA testing. This study analyzed 1,201 women, 688 of whom had a colposcopy follow-up and 195 of whom had histology-confirmed high-grade intraepithelial neoplasia or worse (CIN2+). The proportion of positive results and the sensitivity and specificity for CIN2+ were determined for HPV mRNA in comparison to HPV DNA and cytology. All data were adjusted for follow-up completeness. Stratified by cytological grades, the HPV mRNA sensitivity was 83% (95% confidence interval [CI] = 63 to 94%) in ASC-US (atypical squamous cells of undetermined significance), 62% (95% CI = 47 to 75%) in L-SIL (low-grade squamous intraepithelial lesion), and 67% (95% CI = 57 to 76%) in H-SIL (high-grade squamous intraepithelial lesion). The corresponding figures were 99, 91, and 96%, respectively, for HPV DNA. The specificities were 82, 76, and 45%, respectively, for HPV mRNA and 29, 13, and 4%, respectively, for HPV DNA. Used as a triage test for ASC-US and L-SIL, mRNA reduced colposcopies by 79% (95% CI = 74 to 83%) and 69% (95% CI = 65 to 74%), respectively, while HPV DNA reduced colposcopies by 38% (95% CI = 32 to 44%) and by 15% (95% CI = 12 to 19%), respectively. As a HPV DNA positivity triage test, mRNA reduced colposcopies by 63% (95% CI = 60 to 66%), having 68% sensitivity (95% CI = 61 to 75%), whereas cytology at the ASC-US+ threshold reduced colposcopies by 23% (95% CI = 20 to 26%), showing 92% sensitivity (95% CI = 87 to 95%). In conclusion, PreTect HPV-Proofer mRNA can serve as a better triage test than HPV DNA to reduce colposcopy referral in both ASC-US and L-SIL. It is also more efficient than cytology for the triage of HPV DNA-positive women. Nevertheless, its low sensitivity demands a strict follow-up of

  11. Late intervention with anti-BRAF(V600E) therapy induces tumor regression in an orthotopic mouse model of human anaplastic thyroid cancer.

    PubMed

    Nehs, Matthew A; Nucera, Carmelo; Nagarkatti, Sushruta S; Sadow, Peter M; Morales-Garcia, Dieter; Hodin, Richard A; Parangi, Sareh

    2012-02-01

    Human anaplastic thyroid cancer (ATC) is a lethal disease with an advanced clinical presentation and median survival of 3 months. The BRAF(V600E) oncoprotein is a potent transforming factor that causes human thyroid cancer cell progression in vitro and in vivo; therefore, we sought to target this oncoprotein in a late intervention model of ATC in vivo. We used the human ATC cell line 8505c, which harbors the BRAF(V600E) and TP53(R248G) mutations. Immunocompromised mice were randomized to receive the selective anti-BRAF(V600E) inhibitor, PLX4720, or vehicle by oral gavage 28 d after tumor implantation, 1 wk before all animals typically die due to widespread metastatic lung disease and neck compressive symptoms in this model. Mice were euthanized weekly to evaluate tumor volume and metastases. Control mice showed progressive tumor growth and lung metastases by 35 d after tumor implantation. At that time, all control mice had large tumors, were cachectic, and were euthanized due to their tumor-related weight loss. PLX4720-treated mice, however, showed a significant decrease in tumor volume and lung metastases in addition to a reversal of tumor-related weight loss. Mouse survival was extended to 49 d in PLX4720-treated animals. PLX4720 treatment inhibited cell cycle progression from 28 d to 49 d in vivo. PLX4720 induces striking tumor regression and reversal of cachexia in an in vivo model of advanced thyroid cancer that harbors the BRAF(V600E) mutation.

  12. Sensitivity of APTIMA HPV E6/E7 mRNA test in comparison with hybrid capture 2 HPV DNA test for detection of high risk oncogenic human papillomavirus in 396 biopsy confirmed cervical cancers.

    PubMed

    Basu, Partha; Banerjee, Dipanwita; Mittal, Srabani; Dutta, Sankhadeep; Ghosh, Ishita; Chowdhury, Nilarun; Abraham, Priya; Chandna, Puneet; Ratnam, Sam

    2016-07-01

    The sensitivity of E6/E7 mRNA-based Aptima HPV test (AHPV; Hologic, Inc.) for detection of cervical cancer has been reported based on only a small number of cases. We determined the sensitivity of AHPV in comparison with the DNA-based Hybrid Capture 2 HPV test (HC2; Qiagen) for the detection of oncogenic HPV in a large number of cervical cancers at the time of diagnosis using cervical samples obtained in ThinPrep (Hologic). Samples yielding discordant results were genotyped using Linear Array assay (LA; Roche). Of 396 cases tested, AHPV detected 377 (sensitivity, 95.2%; 95%CI: 93.1-97.3), and HC2 376 (sensitivity, 94.9%; 95%CI: 92.7-97.1) with an agreement of 97.2% (kappa 0.7; 95%CI: 0.54-0.87). Among six AHPV+/HC2- cases, LA identified oncogenic HPV types in four including a type 73 and was negative in two. Among five AHPV-/HC2+ cases, LA detected oncogenic HPV types in two including a type 73 and was negative in three. Of 14 AHPV-/HC2- cases, 13 were genotyped. LA detected oncogenic HPV types in six, non-oncogenic types in three, and was negative in four. This is the largest study to demonstrate the sensitivity of AHPV for the detection of invasive cervical cancer and this assay showed equal sensitivity to HC2.

  13. Synthesis of 4-((1E, 6E)-7-(4-hydroxy-3-methoxyphenyl)-3, 5-dioxohepta-1, 6-dienyl)-2-methoxyphenyl 4-fluorobenzoate, a novel monoester derivative of curcumin, its experimental and theoretical (DFT) studies

    NASA Astrophysics Data System (ADS)

    Srivastava, Sangeeta; Gupta, Preeti; Amandeep; Singh, Ranvijay Pratap

    2016-04-01

    Curcumin (1), isolated as a major component from the chloroform extract of Curcuma longa was converted to its ester derivative 4-((1E, 6E)-7-(4-hydroxy-3-methoxyphenyl)-3,5-dioxohepta-1,6-dienyl)-2-methoxyphenyl 4-fluorobenzoate (2). The compound has been characterized with the help of 1H, 13C NMR, UV, IR and mass spectrometry. The molecular geometry of synthesized compound was calculated in ground state by Density functional theory (DFT/B3LYP) using 6-31G (d,p) basis set. 1H and 13C NMR chemical shifts were calculated in ground state by using Gauge-Including Atomic Orbital (GIAO) approach and these values were correlated with experimental observations. The electronic properties such as HOMO and LUMO energies were calculated using time dependent Density Functional Theory (TD-DFT). Stability of the molecule as a result of hyper conjugative interactions and electron delocalization were analysed using Natural bond orbital (NBO) analysis. Intramolecular interactions were analysed by AIM (Atom in molecule) approach. Global reactivity descriptors were calculated to study the reactive site within molecule. The vibrational wavenumbers were calculated using DFT method and assigned with the help of potential energy distribution (PED). First hyperpolarizability values have been calculated to describe the nonlinear optical (NLO) property of the synthesized compounds. Molecular electrostatic potential (MEP) analysis has also been carried out.

  14. Pokemon (FBI-1) interacts with Smad4 to repress TGF-β-induced transcriptional responses.

    PubMed

    Yang, Yutao; Cui, Jiajun; Xue, Feng; Zhang, Chuanfu; Mei, Zhu; Wang, Yue; Bi, Mingjun; Shan, Dapeng; Meredith, Alex; Li, Hui; Xu, Zhi-Qing David

    2015-03-01

    Pokemon, an important proto-oncoprotein, is a transcriptional repressor that belongs to the POK (POZ and Krüppel) family. Smad4, a key component of TGF-β pathway, plays an essential role in TGF-β-induced transcriptional responses. In this study, we show that Pokemon can interact directly with Smad4 both in vitro and in vivo. Overexpression of Pokemon decreases TGF-β-induced transcriptional activities, whereas knockdown of Pokemon increases these activities. Interestingly, Pokemon does not affect activation of Smad2/3, formation of Smads complex, or DNA binding activity of Smad4. TGF-β1 treatment increases the interaction between Pokemon and Smad4, and also enhances the recruitment of Pokemon to Smad4-DNA complex. In addition, we also find that Pokemon recruits HDAC1 to Smad4 complex but decreases the interaction between Smad4 and p300/CBP. Taken together, all these data suggest that Pokemon is a new partner of Smad4 and plays a negative role in TGF-β pathway. PMID:25514493

  15. The NFκB Signaling Pathway in Papillomavirus-induced Lesions: Friend or Foe?

    PubMed

    DA Costa, Rui M Gil; Bastos, Margarida M S M; Medeiros, Rui; Oliveira, Paula A

    2016-05-01

    Papillomaviruses induce a range of benign and malignant lesions in their hosts, including cervical cancer, that is associated with high-risk human papillomavirus (HPV) types. The nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB) plays a pivotal role in HPV-infected cells, and its expression and activity are modulated by several viral oncoproteins. NFκB modulation seems to first facilitate viral persistence and immune evasion, and later to drive tumour progression, but the many conflicting results and the complexity of its signaling networks require great prudence while interpreting the role of NFκB in papillomaviral lesions. Accordingly, the pharmacological targeting of the NFκB pathway in HPV-induced lesions is a complex and currently unmet challenge. This review deals with recent findings concerning NFκB activation in HPV-infected cells, its role in viral persistence, cell transformation and tumour progression, and with current efforts to target this pathway for cancer prevention and therapy. PMID:27127107

  16. Pokemon (FBI-1) interacts with Smad4 to repress TGF-β-induced transcriptional responses.

    PubMed

    Yang, Yutao; Cui, Jiajun; Xue, Feng; Zhang, Chuanfu; Mei, Zhu; Wang, Yue; Bi, Mingjun; Shan, Dapeng; Meredith, Alex; Li, Hui; Xu, Zhi-Qing David

    2015-03-01

    Pokemon, an important proto-oncoprotein, is a transcriptional repressor that belongs to the POK (POZ and Krüppel) family. Smad4, a key component of TGF-β pathway, plays an essential role in TGF-β-induced transcriptional responses. In this study, we show that Pokemon can interact directly with Smad4 both in vitro and in vivo. Overexpression of Pokemon decreases TGF-β-induced transcriptional activities, whereas knockdown of Pokemon increases these activities. Interestingly, Pokemon does not affect activation of Smad2/3, formation of Smads complex, or DNA binding activity of Smad4. TGF-β1 treatment increases the interaction between Pokemon and Smad4, and also enhances the recruitment of Pokemon to Smad4-DNA complex. In addition, we also find that Pokemon recruits HDAC1 to Smad4 complex but decreases the interaction between Smad4 and p300/CBP. Taken together, all these data suggest that Pokemon is a new partner of Smad4 and plays a negative role in TGF-β pathway.

  17. Devazepide, a nonpeptide antagonist of CCK receptors, induces apoptosis and inhibits Ewing tumor growth.

    PubMed

    Carrillo, Jaime; Agra, Noelia; Fernández, Noemí; Pestaña, Angel; Alonso, Javier

    2009-08-01

    The Ewing family of tumors is a group of highly malignant tumors that mainly arise in bone and most often affect children and young adults in the first two decades of life. Despite the use of multimodal therapy, the long-term disease-free survival rate of patients with Ewing tumors is still disappointingly low, making the discovery of innovative therapeutic strategies all the more necessary. We have recently shown that cholecystokinin (CCK), a neuroendocrine peptide, involved in many biological functions, including cell growth and proliferation, is a relevant target of the EWS/FLI1 oncoprotein characteristic of Ewing tumors. CCK silencing inhibits cell proliferation and tumor growth in vivo, suggesting that CCK acts as an autocrine growth factor for Ewing cells. Here, we analyzed the impact of two CCK receptor antagonists, devazepide (a CCK1-R antagonist) and L365 260 (a CCK2-R antagonist), on the growth of Ewing tumor cells. Devazepide (10 micromol/l) inhibited cell growth of four different Ewing tumor cells in vitro (range 85-88%), whereas the effect of the CCK2-R antagonist on cell growth was negligible. In a mouse tumor xenograft model, devazepide reduced tumor growth by 40%. Flow cytometry experiments showed that devazepide, but not L365 260, induced apoptosis of Ewing tumor cells. In summary, devazepide induces cell death of Ewing tumor cells, suggesting that it could represent a new therapeutic approach in the management of Ewing's tumor patients.

  18. Acetylshikonin induces apoptosis of hepatitis B virus X protein-expressing human hepatocellular carcinoma cells via endoplasmic reticulum stress.

    PubMed

    Moon, Jeong; Koh, Sang Seok; Malilas, Waraporn; Cho, Il-Rae; Kaewpiboon, Chutima; Kaowinn, Sirichat; Lee, Keesook; Jhun, Byung Hak; Choi, Young Whan; Chung, Young-Hwa

    2014-07-15

    Since it has been known that shikonin derived from a medicinal plant possesses anti-cancer activity, we wonder whether acetylshikonin (ASK), a derivate of shikonin, can be used to treat hepatocellular carcinoma cells expressing hepatitis B virus X protein (HBX), an oncoprotein from hepatitis B virus. When ASK was added to Hep3B cells stably expressing HBX, it induced apoptosis in a dose-dependent manner. ASK induced upregulation and export of Nur77 to the cytoplasm and activation of JNK. Likewise, suppression of Nur77 and JNK inactivation protected the cells from ASK-induced apoptosis, indicating that Nur77 upregulation and JNK activation were required for ASK-mediated apoptosis. Furthermore, ASK increased the expression of Bip and ubiquitination levels of cellular proteins, features of endoplasmic reticulum (ER) stress, via the production of reactive oxygen species in a dose-dependent manner. Suppression of reactive oxygen species with N-acetylcysteine reduced levels of Bip protein and ubiquitination levels of cellular proteins during ASK treatment, leading to protection of cells from apoptosis. Cycloheximide treatment reduced ASK-induced ER stress, suggesting that protein synthesis is involved in ASK-induced ER stress. Moreover, we showed using salubrinal, an ER stress inhibitor that reactive oxygen species production, JNK activation, and Nur77 upregulation and its translocation to cytoplasm are necessary for ER-induced stress. Interestingly, we found that JNK inactivation suppresses ASK-induced ER stress, whereas Nur77 siRNA treatment does not, indicating that JNK is required for ASK-induced ER stress. Accordingly, we report that ASK induces ER stress, which is prerequisite for apoptosis of HBX-expressing hepatocellular carcinoma cells. PMID:24769509

  19. Bcl-3 suppresses Tax-induced NF-κB activation through p65 nuclear translocation blockage in HTLV-1-infected cells.

    PubMed

    Wang, Jinheng; Li, Junying; Huang, Yanmei; Song, Xiangfeng; Niu, Zhiguo; Gao, Zhitao; Wang, Hui

    2013-01-01

    Human T cell leukemia virus type 1 (HTLV-1) Tax-induced persistent activation of the NF-κB pathway is perceived as the primary cause of adult T cell leukemia (ATL), an aggressive leukemia caused by HTLV-1. Although elevated oncoprotein Bcl-3 levels are found in many HTLV-1-infected T cell lines and ATL cells, the role of Bcl-3 in the malignant progression caused by HTLV-1 retrovirus remains poorly understood. We confirmed, in the present study, that the Tax-induced NF-κB activation involves the regulation of Bcl-3. Both knockdown and overexpression of Bcl-3 inhibit the Tax-induced NF-κB activation. Similarly, excessive Bcl-3 inhibits the NF-κB/DNA binding activity and significantly decreases Tax-induced p65 nuclear translocation. The present results demonstrate the pleiotropic roles of Bcl-3 in Tax-induced NF-κB activation and indicate that a balance in the aberrant Bcl-3 expression may be established to play an important role in the maintenance of proliferation and inhibition of apoptosis in HTLV-1-infected and ATL cells.

  20. Selection of a recombinant Marek's disease virus in vivo through expression of the Marek's EcoRI-Q (Meq)-encoded oncoprotein: characterization of an rMd5-based mutant expressing the Meq of strain RB-1B.

    PubMed

    Kumar, Pankaj; Dong, Huimin; Lenihan, Dawn; Gaddamanugu, Syamsundar; Katneni, Upendra; Shaikh, Shireen; Tavlarides-Hontz, Phaedra; Reddy, Sanjay M; Peters, Wachen; Parcells, Mark S

    2012-06-01

    Marek's disease (MD) is a highly contagious viral disease of chickens (Gallus gallus domesticus) caused by MD virus (MDV), characterized by paralysis, neurologic signs, and the rapid onset of T-cell lymphomas. MDV-induced T-cell transformation requires a basic leucine zipper protein called Marek's EcoRI-Q-encoded protein (Meq). We have identified mutations in the coding sequence of Meq that correlated with virus pathotype (virulent, very virulent, and very virulent plus). The aim of this study was to determine whether recombinant viruses could be isolated based on Meq expression through in vivo selection. Chicken embryo fibroblasts (CEFs) were cotransfected with an rMd5 strain-based Meq deletion virus (rMd5deltaMeq) and meq loci from strains representing different pathotypes of MDV. Transfected CEFs were inoculated into chickens in two independent studies. We were able to isolate a single recombinant virus, rMDV-1137, in a contact-exposed chicken. rMDV-1137 had recombined two copies of the meq gene of RB-1B and was found to have pathogenicity similar to both RB-1B and rMd5 parental strains. We found the RB-1B- and rMd5-induced lymphomas showed differences in composition and that rMDV-1137-induced lymphomas were intermediate in their composition. We were able to establish cell lines from both RB-1B- (MDCC-UD35, -UD37) and rMDV-1137 (MDCC-UD36, -UD38)-induced, but not rMd5-induced, lymphomas. To date, no rMd5- or parent Md5-transformed T-cell lines have been reported. Our results suggest that 1) a recombinant MDV can be selected on the basis of oncogenicity; 2) changes in Meq sequence seem to affect tumor composition and the ability to establish cell lines; and 3) in addition to meq, other genomic loci affect MDV pathogenicity and oncogenicity.

  1. Interferon-γ-induced p27KIP1 binds to and targets MYC for proteasome-mediated degradation

    PubMed Central

    Zakaria, Siti Mariam; Frings, Oliver; Fahlén, Sara; Nilsson, Helén; Goodwin, Jacob; von der Lehr, Natalie; Su, Yingtao; Lüscher, Bernhard; Castell, Alina; Larsson, Lars-Gunnar

    2016-01-01

    The Myc oncoprotein is tightly regulated at multiple levels including ubiquitin-mediated protein turnover. We recently demonstrated that inhibition of Cdk2-mediated phosphorylation of Myc at Ser-62 pharmacologically or through interferon (IFN)-γ-induced expression of p27Kip1 (p27) repressed Myc's activity to suppress cellular senescence and differentiation. In this study we identified an additional activity of p27 to interfere with Myc independent of Ser-62 phosphorylation. p27 is required and sufficient for IFN-γ-induced turnover of Myc. p27 interacted with Myc in the nucleus involving the C-termini of the two proteins, including Myc box 4 of Myc. The C-terminus but not the Cdk2 binding fragment of p27 was sufficient for inducing Myc degradation. Protein expression data of The Cancer Genome Atlas breast invasive carcinoma set revealed significantly lower Myc protein levels in tumors with highly expressed p27 lacking phosphorylation at Thr-157 - a marker for active p27 localized in the nucleus. Further, these conditions correlated with favorable tumor stage and patient outcome. This novel regulation of Myc by IFN-γ/p27KIP1 potentially offers new possibilities for therapeutic intervention in tumors with deregulated Myc. PMID:26701207

  2. The presence of high-risk human papillomavirus (HPV) E6/E7 mRNA transcripts in a subset of sinonasal carcinomas is evidence of involvement of HPV in its etiopathogenesis.

    PubMed

    Laco, Jan; Sieglová, Kateřina; Vošmiková, Hana; Dundr, Pavel; Němejcová, Kristýna; Michálek, Jaroslav; Čelakovský, Petr; Chrobok, Viktor; Mottl, Radovan; Mottlová, Alena; Tuček, Luboš; Slezák, Radovan; Chmelařová, Marcela; Sirák, Igor; Vošmik, Milan; Ryška, Aleš

    2015-10-01

    The aim of the study was to investigate prevalence of high-risk human papillomavirus (HR-HPV) infection in sinonasal carcinomas by immunohistochemistry, in situ hybridization, and polymerase chain reaction, detecting p16(INK4a) protein (p16) expression and presence of both HPV DNA and HPV E6/E7 messenger RNA (mRNA). The study comprised 47 males and 26 females, aged 23-83 years (median 62 years), mostly (67 %) with a squamous cell carcinoma (SCC). Of the tumors, 53 % arose in the nasal cavity, 42 % in the maxillary sinus, and 5 % in the ethmoid complex. The follow-up period ranged 1-241 months (median 19 months). HPV16, HPV18, or HPV35 were detected in 18/73 (25 %) tumors, 17 SCCs, and 1 small cell neuroendocrine carcinoma. There was a strong correlation between results of HPV detection methods and p16 expression (p < 0.005). HPV-positive SCCs occurred more frequently in smokers (p = 0.04) and were more frequently p16-positive (p < 0.0001) and nonkeratinizing (p = 0.02), the latter occurring more commonly in nasal cavity (p = 0.025). Median survival for HPV-positive SCC patients was 30 months, while for HPV-negative SCC patients was 14 months (p = 0.23). In summary, we confirm that HR-HPV is actively involved in the etiopathogenesis of a significant subset of sinonasal SCCs. p16 may be used as a reliable surrogate marker for determination of HPV status also in sinonasal SCCs. Although we observed a trend toward better overall survival in HPV-positive SCCs, the prognostic impact of HPV status in sinonasal carcinomas needs to be elucidated by further studies.

  3. CD4+ T cell-mediated antigen-specific immunotherapy in a mouse model of cervical cancer.

    PubMed

    Daniel, Dylan; Chiu, Christopher; Giraudo, Enrico; Inoue, Masahiro; Mizzen, Lee A; Chu, N Randall; Hanahan, Douglas

    2005-03-01

    A major agenda for tumor immunology is the generation of specific immune responses leading to the destruction of incipient and frank neoplasia. In this report, we show that a novel HPV16 E7 fusion protein can produce objective therapeutic responses against incipient cervical cancer in genetically engineered mice that express in the cervix the HPV16 early region genes implicated as causative agents in human cervical cancer. Although nonresponsive toward the HPV16 E7 oncoprotein in the CD8+ T-cell compartment by virtue of MHC haplotype, the mice were capable of mounting an induced CD4+ T-cell response against E7, and in addition developed spontaneous anti-E7 antibodies. HPV16/CD4-/- mice showed increased tumor burden indicative of CD4-mediated immune surveillance. Seeking to enhance the CD4 response, we immunized mice bearing incipient cervical cancer with a recombinant protein fusing E7 with a mycobacterial heat shock protein. The incidences of cervical carcinoma and of high-grade dysplasia (CIN 3) were consequently reduced by comparison to control mice. Thus, an HPV16 E7 immunogen holds promise for noninvasive treatment and prevention of human cervical cancer.

  4. Clinical validation of the HPV-risk assay, a novel real-time PCR assay for detection of high-risk human papillomavirus DNA by targeting the E7 region.

    PubMed

    Hesselink, A T; Berkhof, J; van der Salm, M L; van Splunter, A P; Geelen, T H; van Kemenade, F J; Bleeker, M G B; Heideman, D A M

    2014-03-01

    The HPV-Risk assay is a novel real-time PCR assay targeting the E7 region of 15 high-risk human papillomavirus (HPV) types (i.e., HPV16, -18, -31, -33, -35, -39, -45, -51, -52, -56, -58, -59, -66, -67, and -68), and provides additional genotype information for HPV16 and HPV18. This study evaluated the clinical performance and reproducibility of the HPV-Risk assay with cervical scraping specimens and its utility with self-collected (cervico)vaginal specimens. The clinical performance of the HPV-Risk assay for cervical intraepithelial neoplasia of grade 2 or worse (CIN2+) with cervical scraping specimens was evaluated by a noninferiority analysis, relative to high-risk HPV GP5+/6+ PCR, following international guidelines for HPV test requirements for cervical cancer screening. The HPV-Risk assay showed clinical sensitivity for CIN2+ of 97.1% (95% confidence interval [CI], 89.1 to 99.3%; 67/69 samples) and a clinical specificity for CIN2+ of 94.3% (95% CI, 92.5 to 95.7%; 777/824 samples). The clinical sensitivity and specificity were noninferior to those of GP5+/6+ PCR (noninferiority score test, P=0.006 and 0.0003, respectively). Intralaboratory reproducibility over time (99.5% [95% CI, 98.6 to 99.8%]; 544/547 samples, kappa=0.99) and interlaboratory agreement (99.2% [95% CI, 98.6 to 99.8%]; 527/531 samples, kappa=0.98) for the HPV-Risk assay with cervical scraping specimens were high. The agreement of the HPV-Risk assay results for self-collected (cervico)vaginal specimens and clinician-obtained cervical scraping specimens was also high, i.e., 95.9% (95% CI, 85.1 to 99.0%; 47/49 samples, kappa=0.90) for self-collected lavage samples and 91.6% (95% CI, 84.6 to 95.6%; 98/107 samples, kappa=0.82) for self-collected brush samples. In conclusion, the HPV-Risk assay meets the cross-sectional clinical and reproducibility criteria of the international guidelines for HPV test requirements and can be considered clinically validated for cervical screening purposes. The

  5. Parenteral is more efficient than mucosal immunization to induce regression of human papillomavirus-associated genital tumors.

    PubMed

    Decrausaz, Loane; Domingos-Pereira, Sonia; Duc, Mélanie; Bobst, Martine; Romero, Pedro; Schiller, John T; Jichlinski, Patrice; Nardelli-Haefliger, Denise

    2011-08-01

    Cervical cancer is a public health concern as it represents the second cause of cancer death in women worldwide. High-risk human papillomaviruses (HPV) are the etiologic agents, and HPV E6 and/or E7 oncogene-specific therapeutic vaccines are under development to treat HPV-related lesions in women. Whether the use of mucosal routes of immunization may be preferable for inducing cell-mediated immune responses able to eradicate genital tumors is still debated because of the uniqueness of the female genital mucosa (GM) and the limited experimentation. Here, we compared the protective activity resulting from immunization of mice via intranasal (i.n.), intravaginal (IVAG) or subcutaneous (s.c.) routes with an adjuvanted HPV type 16 E7 polypeptide vaccine. Our data show that s.c. and i.n. immunizations elicited similar frequencies and avidity of TetE71CD81 and E7-specific Interferon-gamma-secreting cells in the GM, whereas slightly lower immune responses were induced by IVAG immunization. In a novel orthotopic murine model, both s.c. and i.n. immunizations allowed for complete long-term protection against genital E7-expressing tumor challenge. However, only s.c. immunization induced complete regression of already established genital tumors. This suggests that the higher E7-specific systemic response observed after s.c. immunization may contribute to the regression of growing genital tumors, whereas local immune responses may be sufficient to impede genital challenges. Thus, our data show that for an efficiently adjuvanted protein-based vaccine, parenteral vaccination route is superior to mucosal vaccination route for inducing regression of established genital tumors in a murine model of HPV-associated genital cancer.

  6. MYC-nick promotes cell migration by inducing fascin expression and Cdc42 activation

    PubMed Central

    Anderson, Sarah; Poudel, Kumud Raj; Roh-Johnson, Minna; Brabletz, Thomas; Yu, Ming; Borenstein-Auerbach, Nofit; Grady, William N.; Bai, Jihong; Moens, Cecilia B.; Eisenman, Robert N.; Conacci-Sorrell, Maralice

    2016-01-01

    MYC-nick is a cytoplasmic, transcriptionally inactive member of the MYC oncoprotein family, generated by a proteolytic cleavage of full-length MYC. MYC-nick promotes migration and survival of cells in response to chemotherapeutic agents or withdrawal of glucose. Here we report that MYC-nick is abundant in colonic and intestinal tumors derived from mouse models with mutations in the Wnt, TGF-β, and PI3K pathways. Moreover, MYC-nick is elevated in colon cancer cells deleted for FBWX7, which encodes the major E3 ligase of full-length MYC frequently mutated in colorectal cancers. MYC-nick promotes the migration of colon cancer cells assayed in 3D cultures or grown as xenografts in a zebrafish metastasis model. MYC-nick accelerates migration by activating the Rho GTPase Cdc42 and inducing fascin expression. MYC-nick, fascin, and Cdc42 are frequently up-regulated in cells present at the invasive front of human colorectal tumors, suggesting a coordinated role for these proteins in tumor migration. PMID:27566402

  7. XB130 deficiency enhances lipopolysaccharide-induced septic response and acute lung injury

    PubMed Central

    Toba, Hiroaki; Tomankova, Tereza; Wang, Yingchun; Bai, Xiaohui; Cho, Hae-Ra; Guan, Zhehong; Adeyi, Oyedele A.; Tian, Feng; Keshavjee, Shaf; Liu, Mingyao

    2016-01-01

    XB130 is a novel oncoprotein that promotes cancer cell survival, proliferation and migration. Its physiological function in vivo is largely unknown. The objective of this study was to determine the role of XB130 in lipopolysaccharide (LPS)-induced septic responses and acute lung injury. LPS was intraperitoneally administrated to Xb130 knockout (KO) and wild type (WT) mice. There was a significant weight loss in KO mice at Day 2 and significantly higher disease scores during the 7 days of observation. The levels of tumor necrosis factor-alpha, monocyte chemoattractant protein-1, interleukin-6 and interleukin-10 in the serum were significantly higher in KO mice at Day 2. In KO mice there were a significantly higher lung injury score, higher wet/dry lung weight ratio, more apoptotic cells and less proliferative cells in the lung. Macrophage infiltration was significantly elevated in the lung of KO mice. There was significantly increased number of p-GSK-3β positive cells in KO mice, which were mainly neutrophils and macrophages. XB130 is expressed in alveolar type I and type II cells in the lung. The expression in these cells was significantly reduced after LPS challenge. XB130 deficiency delayed the recovery from systemic septic responses, and the presence of XB130 in the alveolar epithelial cells may provide protective mechanisms by reducing cell death and promoting cell proliferation, and reducing pulmonary permeability. PMID:27029000

  8. MYC-nick promotes cell migration by inducing fascin expression and Cdc42 activation.

    PubMed

    Anderson, Sarah; Poudel, Kumud Raj; Roh-Johnson, Minna; Brabletz, Thomas; Yu, Ming; Borenstein-Auerbach, Nofit; Grady, William N; Bai, Jihong; Moens, Cecilia B; Eisenman, Robert N; Conacci-Sorrell, Maralice

    2016-09-13

    MYC-nick is a cytoplasmic, transcriptionally inactive member of the MYC oncoprotein family, generated by a proteolytic cleavage of full-length MYC. MYC-nick promotes migration and survival of cells in response to chemotherapeutic agents or withdrawal of glucose. Here we report that MYC-nick is abundant in colonic and intestinal tumors derived from mouse models with mutations in the Wnt, TGF-β, and PI3K pathways. Moreover, MYC-nick is elevated in colon cancer cells deleted for FBWX7, which encodes the major E3 ligase of full-length MYC frequently mutated in colorectal cancers. MYC-nick promotes the migration of colon cancer cells assayed in 3D cultures or grown as xenografts in a zebrafish metastasis model. MYC-nick accelerates migration by activating the Rho GTPase Cdc42 and inducing fascin expression. MYC-nick, fascin, and Cdc42 are frequently up-regulated in cells present at the invasive front of human colorectal tumors, suggesting a coordinated role for these proteins in tumor migration. PMID:27566402

  9. The anticancer effect of (1S,2S,3E,7E,11E)-3,7,11, 15-cembratetraen-17,2-olide(LS-1) through the activation of TGF-β signaling in SNU-C5/5-FU, fluorouracil-resistant human colon cancer cells.

    PubMed

    Kim, Eun-Ji; Kang, Jung-Il; Kwak, Jeon-Won; Jeon, Chan-Hee; Tung, Nguyen-Huu; Kim, Young-Ho; Choi, Cheol-Hee; Hyun, Jin-Won; Koh, Young-Sang; Yoo, Eun-Sook; Kang, Hee-Kyoung

    2015-03-16

    The anticancer effect of (1S,2S,3E,7E,11E)-3,7,11,15-cembratetraen-17,2-olide (LS-1) from Lobophytum sp. has been already reported in HT-29 human colorectal cancer cells. In this study, we examined the effect of LS-1 on the apoptosis induction of SNU-C5/5-FU, fluorouracil-resistant human colon cancer cells. Furthermore, we investigated whether the apoptosis-induction effect of LS-1 could arise from the activation of the TGF-β pathway. In SNU-C5/5-FU treated with LS-1 of 7.1 μM (IC50), we could observe the various apoptotic characteristics, such as the increase of apoptotic bodies, the increase of the sub-G1 hypodiploid cell population, the decrease of the Bcl-2 level, the increase of procaspase-9 cleavage, the increase of procaspase-3 cleavage and the increase of poly(ADP-ribose) polymerase cleavage. Interestingly, the apoptosis-induction effect of LS-1 was also accompanied by the increase of Smad-3 phosphorylation and the downregulation of c-Myc in SNU-C5/5-FU. LS-1 also increased the nuclear localization of phospho-Smad-3 and Smad-4. We examined whether LS-1 could downregulate the expression of carcinoembryonic antigen (CEA), a direct inhibitor of TGF-β signaling. LS-1 decreased the CEA level, as well as the direct interaction between CEA and TGF-βR1 in the apoptosis-induction condition of SNU-C5/5-FU. To examine whether LS-1 can induce apoptosis via the activation of TGF-β signaling, the SNU-C5/5-FU cells were treated with LS-1 in the presence or absence of SB525334, a TGF-βRI kinase inhibitor. SB525334 inhibited the effect of LS-1 on the apoptosis induction. These findings provide evidence demonstrating that the apoptosis-induction effect of LS-1 results from the activation of the TGF-β pathway via the downregulation of CEA in SNU-C5/5-FU.

  10. Humoral and cellular responses raised against the human HER2 oncoprotein are cross-reactive with the homologous product of the new proto-oncogene, but do not protect rats against B104 tumors expressing mutated neu.

    PubMed

    Taylor, P; Gerder, M; Moros, Z; Feldmann, M

    1996-03-01

    The neu proto-oncogene encodes a plasma membrane protein belonging to the epidermal growth factor receptor family. The cell line B104, derived from BDIX rat neuroblastoma, carries a point mutation in neu, and forms a tumor when injected into these rats. The human homologue of the neu oncogene (here called HER2) is overexpressed in certain types of cancer. Rats were immunized with HER2 protein (HER2) to investigate a possible cross-reaction between the homologous proteins which could protect them against subsequent inoculation with B104. Specific antibody in the serum was measured by cell-based enzyme-linked immunoabsorbent assay and fluorescence immunocytochemistry, and delayed-type hypersensitivity by an ear assay. Sera from animals immunized with the HER2 extracellular domain (HER2-ECD) reacted with both HER2- and neu-expressing cells. In the ear assay, a significant cellular response to both HER-ECD (P < 0.05) and neu protein (P < 0.001) was observed in HER2-ECD-immunized rats. However, the growth of B104 tumors in rats was not affected by preimmunization with HER2-ECD. The results indicate that an autoreactive immune response to neu was induced by immunization with HER2-ECD, but was too weak to affect the growth of the neu-bearing tumor.

  11. The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth

    PubMed Central

    Secombe, Julie; Li, Ling; Carlos, Leni; Eisenman, Robert N.

    2007-01-01

    The Myc oncoprotein is a potent inducer of cell growth, cell cycle progression, and apoptosis. While many direct Myc target genes have been identified, the molecular determinants of Myc’s transcriptional specificity remain elusive. We have carried out a genetic screen in Drosophila and identified the Trithorax group protein Little imaginal discs (Lid) as a regulator of dMyc-induced cell growth. Lid binds to dMyc and is required for dMyc-induced expression of the growth regulatory gene Nop60B. The mammalian Lid orthologs, Rbp-2 (JARID1A) and Plu-1 (JARID1B), also bind to c-Myc, indicating that Lid–Myc function is conserved. We demonstrate that Lid is a JmjC-dependent trimethyl H3K4 demethylase in vivo and that this enzymatic activity is negatively regulated by dMyc, which binds to Lid’s JmjC domain. Because Myc binding is associated with high levels of trimethylated H3K4, we propose that the Lid–dMyc complex facilitates Myc binding to, or maintenance of, this chromatin context. PMID:17311883

  12. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion

    SciTech Connect

    Hu Lulin; Plafker, Kendra; Vorozhko, Valeriya; Zuna, Rosemary E.; Hanigan, Marie H.; Gorbsky, Gary J.; Plafker, Scott M.; Angeletti, Peter C.; Ceresa, Brian P.

    2009-02-05

    Human papillomaviruses (HPV) 16 is a DNA virus encoding three oncogenes - E5, E6, and E7. The E6 and E7 proteins have well-established roles as inhibitors of tumor suppression, but the contribution of E5 to malignant transformation is controversial. Using spontaneously immortalized human keratinocytes (HaCaT cells), we demonstrate that expression of HPV16 E5 is necessary and sufficient for the formation of bi-nucleated cells, a common characteristic of precancerous cervical lesions. Expression of E5 from non-carcinogenic HPV6b does not produce bi-nucleate cells. Video microscopy and biochemical analyses reveal that bi-nucleates arise through cell-cell fusion. Although most E5-induced bi-nucleates fail to propagate, co-expression of HPV16 E6/E7 enhances the proliferation of these cells. Expression of HPV16 E6/E7 also increases bi-nucleated cell colony formation. These findings identify a new role for HPV16 E5 and support a model in which complementary roles of the HPV16 oncogenes lead to the induction of carcinogenesis.

  13. B-Raf inhibitors induce epithelial differentiation in BRAF-mutant colorectal cancer cells.

    PubMed

    Herr, Ricarda; Köhler, Martin; Andrlová, Hana; Weinberg, Florian; Möller, Yvonne; Halbach, Sebastian; Lutz, Lisa; Mastroianni, Justin; Klose, Martin; Bittermann, Nicola; Kowar, Silke; Zeiser, Robert; Olayioye, Monilola A; Lassmann, Silke; Busch, Hauke; Boerries, Melanie; Brummer, Tilman

    2015-01-01

    BRAF mutations are associated with aggressive, less-differentiated and therapy-resistant colorectal carcinoma. However, the underlying mechanisms for these correlations remain unknown. To understand how oncogenic B-Raf contributes to carcinogenesis, in particular to aspects other than cellular proliferation and survival, we generated three isogenic human colorectal carcinoma cell line models in which we can dynamically modulate the expression of the B-Raf(V600E) oncoprotein. Doxycyclin-inducible knockdown of endogenous B-Raf(V600E) decreases cellular motility and invasion in conventional and three-dimensional (3D) culture, whereas it promotes cell-cell contacts and induces various hallmarks of differentiated epithelia. Importantly, all these effects are recapitulated by B-Raf (PLX4720, vemurafenib, and dabrafenib) or MEK inhibitors (trametinib). Surprisingly, loss of B-Raf(V600E) in HT29 xenografts does not only stall tumor growth, but also induces glandular structures with marked expression of CDX2, a tumor-suppressor and master transcription factor of intestinal differentiation. By performing the first transcriptome profiles of PLX4720-treated 3D cultures of HT29 and Colo-205 cells, we identify several upregulated genes linked to epithelial differentiation and effector functions, such as claudin-1, a Cdx-2 target gene encoding a critical tight junction component. Thereby, we provide a mechanism for the clinically observed correlation between mutant BRAF and the loss of Cdx-2 and claudin-1. PLX4720 also suppressed several metastasis-associated transcripts that have not been implicated as targets, effectors or potential biomarkers of oncogenic B-Raf signaling so far. Together, we identify a novel facet of clinically applied B-Raf or MEK inhibitors by showing that they promote cellular adhesion and differentiation of colorectal carcinoma cells. PMID:25381152

  14. Merkel Cell Polyomavirus Small T Antigen Induces Cancer and Embryonic Merkel Cell Proliferation in a Transgenic Mouse Model

    PubMed Central

    Geng, Xuehui; Shuda, Yoko; Ostrowski, Stephen M.; Lukianov, Stefan; Jenkins, Frank J.; Honda, Kord; Maricich, Stephen M.; Moore, Patrick S.; Chang, Yuan

    2015-01-01

    Merkel cell polyomavirus (MCV) causes the majority of human Merkel cell carcinomas (MCC) and encodes a small T (sT) antigen that transforms immortalized rodent fibroblasts in vitro. To develop a mouse model for MCV sT-induced carcinogenesis, we generated transgenic mice with a flox-stop-flox MCV sT sequence homologously recombined at the ROSA locus (ROSAsT), allowing Cre-mediated, conditional MCV sT expression. Standard tamoxifen (TMX) administration to adult UbcCreERT2; ROSAsT mice, in which Cre is ubiquitously expressed, resulted in MCV sT expression in multiple organs that was uniformly lethal within 5 days. Conversely, most adult UbcCreERT2; ROSAsT mice survived low-dose tamoxifen administration but developed ear lobe dermal hyperkeratosis and hypergranulosis. Simultaneous MCV sT expression and conditional homozygous p53 deletion generated multi-focal, poorly-differentiated, highly anaplastic tumors in the spleens and livers of mice after 60 days of TMX treatment. Mouse embryonic fibroblasts from these mice induced to express MCV sT exhibited anchorage-independent cell growth. To examine Merkel cell pathology, MCV sT expression was also induced during mid-embryogenesis in Merkel cells of Atoh1CreERT2/+; ROSAsT mice, which lead to significantly increased Merkel cell numbers in touch domes at late embryonic ages that normalized postnatally. Tamoxifen administration to adult Atoh1CreERT2/+; ROSAsT and Atoh1CreERT2/+; ROSAsT; p53flox/flox mice had no effects on Merkel cell numbers and did not induce tumor formation. Taken together, these results show that MCV sT stimulates progenitor Merkel cell proliferation in embryonic mice and is a bona fide viral oncoprotein that induces full cancer cell transformation in the p53-null setting. PMID:26544690

  15. Silencing of AP-4 inhibits proliferation, induces cell cycle arrest and promotes apoptosis in human lung cancer cells

    PubMed Central

    HU, XUANYU; GUO, WEI; CHEN, SHANSHAN; XU, YIZHUO; LI, PING; WANG, HUAQI; CHU, HEYING; LI, JUAN; DU, YUWEN; CHEN, XIAONAN; ZHANG, GUOJUN; ZHAO, GUOQIANG

    2016-01-01

    Activating enhancer-binding protein (AP)-4 is a member of the basic helix-loop-helix transcription factors, and is involved in tumor biology. However, the role of AP-4 in human lung cancer remains to be fully elucidated. In the present study, the expression of AP-4 in human lung cancer tissues and cells was investigated by reverse transcription-quantitative polymerase chain reaction, and it was observed that the level of AP-4 was increased in tumor tissues and cells compared with their normal counterparts. AP-4 expression was knocked down by transfection with a specific small interfering RNA (siRNA) in lung cancer cells, and this indicated that siRNA-mediated silencing of AP-4 inhibited cell proliferation, arrested the cell cycle at the G0/G1 phase and induced apoptosis by modulating the expression of p21 and cyclin D1. The results of the present study suggest that AP-4 may be an oncoprotein that has a significant role in lung cancer, and that siRNA-mediated silencing of AP-4 may have therapeutic potential as a strategy for the treatment of lung cancer. PMID:27313685

  16. The BPV-4 co-carcinogen quercetin induces cell cycle arrest and up-regulates transcription from the LCR of BPV-4.

    PubMed

    Connolly, J A; Morgan, I M; Jackson, M E; Campo, M S

    1998-05-28

    Bracken fern is the environmental co-carcinogen of BPV-4 in the induction of neoplasias of the upper alimentary canal of cattle. The flavonoid quercetin is one of the most potent and best characterised mutagens present in the fern. We have shown that transfection with BPV-4 DNA and exposure to a single dose of quercetin leads to tumorigenic transformation of primary bovine cells. We now show that quercetin induces cell cycle arrest and up-regulates transcription from the BPV-4 long control region (LCR). This up-regulation is mediated by a 21 nucleotide-long cis-element in the LCR, designated QRE-1, which is located immediately downstream of the TATA box. Cellular proteins bind to QRE-1 and removal or substitution of QRE-1 lead to the abrogation of the response to quercetin. As expression of the viral oncogenes is controlled by the LCR, perturbation in this control and increased oncoprotein expression are likely to contribute to fully malignant cell transformation by overcoming the cell cycle arrest induced by quercetin, thus forcing damaged cells to proliferate.

  17. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells

    PubMed Central

    Song, Li-Bing; Li, Jun; Liao, Wen-Ting; Feng, Yan; Yu, Chun-Ping; Hu, Li-Juan; Kong, Qing-Li; Xu, Li-Hua; Zhang, Xing; Liu, Wan-Li; Li, Man-Zhi; Zhang, Ling; Kang, Tie-Bang; Fu, Li-Wu; Huang, Wen-Lin; Xia, Yun-Fei; Tsao, Sai Wah; Li, Mengfeng; Band, Vimla; Band, Hamid; Shi, Qing-Hua; Zeng, Yi-Xin; Zeng, Mu-Sheng

    2009-01-01

    The polycomb group protein B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1) is dysregulated in various cancers, and its upregulation strongly correlates with an invasive phenotype and poor prognosis in patients with nasopharyngeal carcinomas. However, the underlying mechanism of Bmi-1–mediated invasiveness remains unknown. In the current study, we found that upregulation of Bmi-1 induced epithelial-mesenchymal transition (EMT) and enhanced the motility and invasiveness of human nasopharyngeal epithelial cells, whereas silencing endogenous Bmi-1 expression reversed EMT and reduced motility. Furthermore, upregulation of Bmi-1 led to the stabilization of Snail, a transcriptional repressor associated with EMT, via modulation of PI3K/Akt/GSK-3β signaling. Chromatin immunoprecipitation assays revealed that Bmi-1 transcriptionally downregulated expression of the tumor suppressor PTEN in tumor cells through direct association with the PTEN locus. This in vitro analysis was consistent with the statistical inverse correlation detected between Bmi-1 and PTEN expression in a cohort of human nasopharyngeal carcinoma biopsies. Moreover, ablation of PTEN expression partially rescued the migratory/invasive phenotype of Bmi-1–silenced cells, indicating that PTEN might be a major mediator of Bmi-1–induced EMT. Our results provide functional and mechanistic links between the oncoprotein Bmi-1 and the tumor suppressor PTEN in the development and progression of cancer. PMID:19884659

  18. Ras Modifies Proliferation and Invasiveness of Cells Expressing Human Papillomavirus Oncoproteins▿

    PubMed Central

    Yoshida, Satoshi; Kajitani, Naoko; Satsuka, Ayano; Nakamura, Hiroyasu; Sakai, Hiroyuki

    2008-01-01

    Infection by human papillomavirus (HPV) is a major risk factor for human cervical carcinoma. However, the HPV infection alone is not sufficient for cancer formation. Cervical carcinogenesis is considered a multistep process accompanied by genetic alterations of the cell. Ras is activated in approximately 20% of human cancers, and it is related to the metastatic conversion of tumor cells. We investigated how Ras activation was involved in the malignant conversion of HPV-infected lesions. The active form of H-ras was introduced into human primary keratinocytes expressing the HPV type 18 (HPV18) oncoproteins E6 and/or E7. We analyzed the keratinocytes’ growth potentials and found that the activation of the Ras pathway induced senescence-like growth arrest. Senescence could be eliminated by high-risk E7 expression, suggesting that the pRb pathway was important for Ras-induced senescence. Then we analyzed the effect of Ras activation on epidermis development by using an organotypic “raft” culture and found that the E7 and H-ras coexpressions conferred invasive potential on the epidermis. This invasiveness resulted from the upregulation of MT1-MMP and MMP9 by H-ras and E7, respectively, in which the activation of the MEK/extracellular signal-regulated kinase pathway was involved. These results indicated that the activation of Ras or the related signal pathways promoted the malignant conversion of HPV-infected cells. PMID:18579583

  19. Human papillomavirus causes an angiogenic switch in keratinocytes which is sufficient to alter endothelial cell behavior

    SciTech Connect

    Chen, W.; Li, F.; Mead, L.; White, H.; Walker, J.; Ingram, D.A.; Roman, A.

    2007-10-10

    One of the requirements for tumor growth is the ability to recruit a blood supply, a process known as angiogenesis. Angiogenesis begins early in the progression of cervical disease from mild to severe dysplasia and on to invasive cancer. We have previously reported that expression of human papillomavirus type 16 E6 and E7 (HPV16 E6E7) proteins in primary foreskin keratinocytes (HFKs) decreases expression of two inhibitors and increases expression of two angiogenic inducers [Toussaint-Smith, E., Donner, D.B., Roman, A., 2004. Expression of human papillomavirus type 16 E6 and E7 oncoproteins in primary foreskin keratinocytes is sufficient to alter the expression of angiogenic factors. Oncogene 23, 2988-2995]. Here we report that HPV-induced early changes in the keratinocyte phenotype are sufficient to alter endothelial cell behavior both in vitro and in vivo. Conditioned media from HPV16 E6E7 expressing HFKs as well as from human cervical keratinocytes containing the intact HPV16 were able to stimulate proliferation and migration of human microvascular endothelial cells. In addition, introduction of the conditioned media into immunocompetent mice using a Matrigel plug model resulted in a clear angiogenic response. These novel data support the hypothesis that HPV proteins contribute not only to the uncontrolled keratinocyte growth seen following HPV infection but also to the angiogenic response needed for tumor formation.

  20. Induced Probabilities.

    ERIC Educational Resources Information Center

    Neel, John H.

    Induced probabilities have been largely ignored by educational researchers. Simply stated, if a new or random variable is defined in terms of a first random variable, then induced probability is the probability or density of the new random variable that can be found by summation or integration over the appropriate domains of the original random…

  1. Fulvestrant-Induced Cell Death and Proteasomal Degradation of Estrogen Receptor α Protein in MCF-7 Cells Require the CSK c-Src Tyrosine Kinase

    PubMed Central

    Yeh, Wei-Lan; Shioda, Keiko; Coser, Kathryn R.; Rivizzigno, Danielle; McSweeney, Kristen R.; Shioda, Toshi

    2013-01-01

    Fulvestrant is a representative pure antiestrogen and a Selective Estrogen Receptor Down-regulator (SERD). In contrast to the Selective Estrogen Receptor Modulators (SERMs) such as 4-hydroxytamoxifen that bind to estrogen receptor α (ERα) as antagonists or partial agonists, fulvestrant causes proteasomal degradation of ERα protein, shutting down the estrogen signaling to induce proliferation arrest and apoptosis of estrogen-dependent breast cancer cells. We performed genome-wide RNAi knockdown screenings for protein kinases required for fulvestrant-induced apoptosis of the MCF-7 estrogen-dependent human breast caner cells and identified the c-Src tyrosine kinase (CSK), a negative regulator of the oncoprotein c-Src and related protein tyrosine kinases, as one of the necessary molecules. Whereas RNAi knockdown of CSK in MCF-7 cells by shRNA-expressing lentiviruses strongly suppressed fulvestrant-induced cell death, CSK knockdown did not affect cytocidal actions of 4-hydroxytamoxifen or paclitaxel, a chemotherapeutic agent. In the absence of CSK, fulvestrant-induced proteasomal degradation of ERα protein was suppressed in both MCF-7 and T47D estrogen-dependent breast cancer cells whereas the TP53-mutated T47D cells were resistant to the cytocidal action of fulvestrant in the presence or absence of CSK. MCF-7 cell sensitivities to fulvestrant-induced cell death or ERα protein degradation was not affected by small-molecular-weight inhibitors of the tyrosine kinase activity of c-Src, suggesting possible involvement of other signaling molecules in CSK-dependent MCF-7 cell death induced by fulvestrant. Our observations suggest the importance of CSK in the determination of cellular sensitivity to the cytocidal action of fulvestrant. PMID:23593342

  2. The Oncoprotein BRD4-NUT Generates Aberrant Histone Modification Patterns

    PubMed Central

    Zee, Barry M.; Dibona, Amy B.; Alekseyenko, Artyom A.; French, Christopher A.; Kuroda, Mitzi I.

    2016-01-01

    Defects in chromatin proteins frequently manifest in diseases. A striking case of a chromatin-centric disease is NUT-midline carcinoma (NMC), which is characterized by expression of NUT as a fusion partner most frequently with BRD4. ChIP-sequencing studies from NMC patients revealed that BRD4-NUT (B4N) covers large genomic regions and elevates transcription within these domains. To investigate how B4N modulates chromatin, we performed affinity purification of B4N when ectopically expressed in 293-TREx cells and quantified the associated histone posttranslational modifications (PTM) using proteomics. We observed significant enrichment of acetylation particularly on H3 K18 and of combinatorial patterns such as H3 K27 acetylation paired with K36 methylation. We postulate that B4N complexes override the preexisting histone code with new PTM patterns that reflect aberrant transcription and that epigenetically modulate the nucleosome environment toward the NMC state. PMID:27698495

  3. Biomarkers of gene expression: growth factors and oncoproteins.

    PubMed Central

    Brandt-Rauf, P W

    1997-01-01

    This article reviews the literature on the application of methods for the detection of growth factors, oncogene proteins, and tumor-suppressor gene proteins in the blood of humans with cancer or who are at risk for the development of cancer. The research summarized here suggests that many of these biomarker assays can be used to distinguish between diseased and nondiseased states and in some instances may be able to predict susceptibility for future disease. Thus, these biomarkers could be valuable tools for monitoring at-risk populations for purposes of disease prevention and control. PMID:9255565

  4. MYCN: from oncoprotein to tumor-associated antigen.

    PubMed

    Pistoia, Vito; Morandi, Fabio; Pezzolo, Annalisa; Raffaghello, Lizzia; Prigione, Ignazia

    2012-01-01

    MYCN is a well-known oncogene over-expressed in different human malignancies including neuroblastoma (NB), rhabdomyosarcoma, medulloblastoma, astrocytoma, Wilms' tumor, and small cell lung cancer. In the case of NB, MYCN amplification is an established biomarker of poor-prognosis. MYCN belongs to a family of transcription factors (the most important of which is C-MYC) that show a high degree of homology. Down-regulation of MYC protein expression leads to tumor regression in animal models, indicating that MYC proteins represent interesting therapeutic targets. Pre-requisites for a candidate tumor-associated antigen (TAA) to be targeted by immunotherapeutic approaches are the following, (i) expression should be tumor-restricted, (ii) the putative TAA should be up-regulated in cancer cells, and (iii) protein should be processed into immunogenic peptides capable of associating to major histocompatibility complex molecules with high affinity. Indeed, the MYCN protein is not expressed in human adult tissues and up-regulated variably in NB cells, and MYCN peptides capable of associating to HLA-A1 or HLA-A2 molecules with high affinity have been identified. Thus the MYCN protein qualifies as putative TAA in NB. Additional issues that determine the feasibility of targeting a putative TAA with cytotoxic T lymphocytes (CTLs) and will be here discussed are the following, (i) the inadequacy of tumor cells per se to act as antigen-presenting cells witnessed, in the case of NB cells, by the low to absent expression of HLA class I molecules, the lack of co-stimulatory molecules and multiple defects in the HLA class I related antigen processing machinery, and (ii) the immune evasion mechanisms operated by cancer cells to fool the host immune system, such as up-regulation of soluble immunosuppressive molecules (e.g., soluble MICA and HLA-G in the case of NB) or generation of immunosuppressive cells in the tumor microenvironment. A final issue that deserves consideration is the strategy used to generate CTL.

  5. Shrimp oncoprotein nm23 is a functional nucleoside diphosphate kinase.

    PubMed

    Quintero-Reyes, Idania E; Garcia-Orozco, Karina D; Sugich-Miranda, Rocio; Arvizu-Flores, Aldo A; Velazquez-Contreras, Enrique F; Castillo-Yañez, Francisco J; Sotelo-Mundo, Rogerio R

    2012-06-01

    Biosynthesis of nucleoside triphosphates is critical for bioenergetics and nucleic acid replication, and this is achieved by nucleoside diphosphate kinase (NDK). As an emerging biological model and the global importance of shrimp culture, we have addressed the study of the Pacific whiteleg shrimp (Litopenaeus vannamei) NDK. We demonstrated its activity and affinity towards deoxynucleoside diphosphates. Also, the quaternary structure obtained by gel filtration chromatography showed that shrimp NDK is a trimer. Affinity was in the micro-molar range for dADP, dGDP, dTDP and except for dCDP, which presented no detectable interaction by isothermal titration calorimetry, as described previously for Plasmodium falciparum NDK. This information is particularly important, as this enzyme could be used to test nucleotide analogs that can block white spot syndrome virus (WSSV) viral replication and to study its bioenergetics role during hypoxia and fasting.

  6. RNA splicing factors as oncoproteins and tumor suppressors

    PubMed Central

    Dvinge, Heidi; Kim, Eunhee; Abdel-Wahab, Omar; Bradley, Robert K.

    2016-01-01

    Preface The recent genomic characterization of cancers has revealed recurrent somatic point mutations and copy number changes affecting genes encoding RNA splicing factors. Initial studies of these ‘spliceosomal mutations’ suggest that the proteins bearing these mutations exhibit altered splice site and/or exon recognition preferences relative to their wild-type counterparts, resulting in cancer-specific mis-splicing. Such changes in the splicing machinery may create novel vulnerabilities in cancer cells that can be therapeutically exploited using compounds that can influence the splicing process. Further studies to dissect the biochemical, genomic, and biological effects of spliceosomal mutations are critical for the development of cancer therapies targeted to these mutations. PMID:27282250

  7. Selective modulation of MHC class II chaperons by a novel IFN-γ-inducible class II transactivator variant in lung adenocarcinoma A549 cells.

    PubMed

    Chiu, Bau-Lin; Li, Chia-Hsuan; Chang, Chien-Chung

    2013-10-11

    Class II transactivator (CIITA) plays a critical role in controlling major histocompatibility complex (MHC) class II gene expression. In this study, two novel alternatively spliced variants of human interferon (IFN)-γ-inducible CIITA, one missing exon 7 (CIITAΔE7), the other with TAG inserted at exon 4/5 junction (CIITA-TAG), were identified and characterized. Both variants are naturally occurring since they are present in primary cells. Unlike CIITA-TAG, CIITAΔE7 is expressed more abundantly in lung adenocarcinoma A549 cells than in the non-transformed counterpart BEAS-2B cells following IFN-γ stimulation. Transfection experiments showed that CIITAΔE7 induced a markedly lower level of surface HLA-DR, -DP, -DQ expression than CIITA-TAG in A549 cells but not in BEAS-2B cells, although both variants elicited similar amounts of total DR, DP, and DQ proteins. This differential effect was correlated with, in A549 cells, decreased expression of Ii and HLA-DM genes, along with increased expression of HLA-DO genes. Ii and HLA-DM are chaperons assisting in HLA class II assembly, while HLA-DO functions to inhibit endosomal peptide loading and HLA class II membrane transport. These findings raise the possibility that CIITAΔE7 interacts with unknown cancer-associated factors to selectively modulate genes involved in the assembly and transport of HLA class II molecules.

  8. Inducing Metaassociations and Induced Relationships

    NASA Astrophysics Data System (ADS)

    Burgués, Xavier; Franch, Xavier; Ribó, Josep M.

    In the last years, UML has been tailored to be used as a domain-specific modelling notation in several contexts. Extending UML with this purpose entails several advantages: the integration of the domain in a standard framework; its potential usage by the software engineering community; and the existence of supporting tools. In previous work, we explored one particular issue of heavyweight extensions, namely, the definition of inducing meta-associations in metamodels as a way to induce the presence of specific relation-ships in their instances. Those relationships were intended by the metamodel specifier but not forced by the metamodel itself. However, our work was restricted to the case of induced associations. This paper proposes an extension to the general case in which inducing metaassociations may force the existence of arbitrary relationships at M1. To attain this goal, we provide a general defini-tion of inducing metaassociation that covers all the possible cases. After revisi-ting induced associations, we show the inducement of the other relationship types defined in UML: association classes, generalization and dependencies.

  9. Downregulation of the Spi-1/PU.1 oncogene induces the expression of TRIM10/HERF1, a key factor required for terminal erythroid cell differentiation and survival.

    PubMed

    Blaybel, Rand; Théoleyre, Orianne; Douablin, Alexandre; Baklouti, Faouzi

    2008-08-01

    Sustained expression of the Spi-1/PU.1 and Fli-1 oncoproteins blocks globin gene activation in mouse erythroleukemia cells; however, only Spi-1/PU.1 expression inhibits the inclusion of exon 16 in the mature 4.1R mRNA. This splicing event is crucial for a functional 4.1R protein and, therefore, for red blood cell membrane integrity. This report demonstrates that Spi-1/PU.1 downregulation induces the activation of TRIM10/hematopoietic RING finger 1 (HERF1), a member of the tripartite motif (TRIM)/RBCC protein family needed for globin gene transcription. Additionally, we demonstrate that TRIM10/HERF1 is required for the regulated splicing of exon 16 during late erythroid differentiation. Using inducible overexpression and silencing approaches, we found that: (1) TRIM10/HERF1 knockdown inhibits hemoglobin production and exon splicing and triggers cell apoptosis in dimethylsulfoxide (DMSO)-induced cells; (2) TRIM10/HERF1 upregulation is required but is insufficient on its own to activate exon retention; (3) Fli-1 has no effect on TRIM10/HERF1 expression, whereas either DMSO-induced downregulation or shRNA-knockdown of Spi-1/PU.1 expression is sufficient to activate TRIM10/HERF1 expression; and (4) Spi-1/PU.1 knockdown triggers both the transcription and the splicing events independently of the chemical induction. Altogether, these data indicate that primary Spi-1/PU.1 downregulation acts on late erythroid differentiation through at least two pathways, one of which requires TRIM10/HERF1 upregulation and parallels the Spi-1/PU.1-induced Fli-1 shutoff regulatory cascade.

  10. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses.

    PubMed

    Zhang, Lifang; Wu, Jianhong; Ling, Ming Tat; Zhao, Liang; Zhao, Kong-Nan

    2015-01-01

    Infection with Human papillomaviruses (HPVs) leads to the development of a wide-range of cancers, accounting for 5% of all human cancers. A prominent example is cervical cancer, one of the leading causes of cancer death in women worldwide. It has been well established that tumor development and progression induced by HPV infection is driven by the sustained expression of two oncogenes E6 and E7. The expression of E6 and E7 not only inhibits the tumor suppressors p53 and Rb, but also alters additional signalling pathways that may be equally important for transformation. Among these pathways, the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signalling cascade plays a very important role in HPV-induced carcinogenesis by acting through multiple cellular and molecular events. In this review, we summarize the frequent amplification of PI3K/Akt/mTOR signals in HPV-induced cancers and discuss how HPV oncogenes E6/E7/E5 activate the PI3K/Akt/mTOR signalling pathway to modulate tumor initiation and progression and affect patient outcome. Improvement of our understanding of the mechanism by which the PI3K/Akt/mTOR signalling pathway contributes to the immortalization and carcinogenesis of HPV-transduced cells will assist in devising novel strategies for preventing and treating HPV-induced cancers. PMID:26022660

  11. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses.

    PubMed

    Zhang, Lifang; Wu, Jianhong; Ling, Ming Tat; Zhao, Liang; Zhao, Kong-Nan

    2015-04-17

    Infection with Human papillomaviruses (HPVs) leads to the development of a wide-range of cancers, accounting for 5% of all human cancers. A prominent example is cervical cancer, one of the leading causes of cancer death in women worldwide. It has been well established that tumor development and progression induced by HPV infection is driven by the sustained expression of two oncogenes E6 and E7. The expression of E6 and E7 not only inhibits the tumor suppressors p53 and Rb, but also alters additional signalling pathways that may be equally important for transformation. Among these pathways, the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signalling cascade plays a very important role in HPV-induced carcinogenesis by acting through multiple cellular and molecular events. In this review, we summarize the frequent amplification of PI3K/Akt/mTOR signals in HPV-induced cancers and discuss how HPV oncogenes E6/E7/E5 activate the PI3K/Akt/mTOR signalling pathway to modulate tumor initiation and progression and affect patient outcome. Improvement of our understanding of the mechanism by which the PI3K/Akt/mTOR signalling pathway contributes to the immortalization and carcinogenesis of HPV-transduced cells will assist in devising novel strategies for preventing and treating HPV-induced cancers.

  12. Fangchinoline induces G0/G1 arrest by modulating the expression of CDKN1A and CCND2 in K562 human chronic myelogenous leukemia cells.

    PubMed

    Wang, Yuping; Chen, Jie; Wang, Lin; Huang, Yuji; Leng, Ye; Wang, Guiying

    2013-04-01

    Chronic myeloid leukemia (CML) is a hematopoietic stem cell disease caused by the oncoprotein BCR-ABL, which exhibits a constitutive tyrosine kinase activity. Imatinib mesylate (IM), an inhibitor of the tyrosine kinase activity of BCR-ABL, has been used as a first-line therapy for CML. However, IM is less effective in the accelerated phase and blastic phases of CML and certain patients develop IM resistance due to the mutation and amplification of the BCR-ABL gene. Fangchinoline, an important chemical constituent from the dried roots of Stephaniae tetrandrae S. Moore, exhibits significant antitumor activity in various types of cancers, including breast, prostate and hepatocellular carcinoma. However, the effects and the underlying mechanisms of fangchinoline in CML remain unclear. In the present study, we identified that fangchinoline inhibits cell proliferation in a dose- and time-dependent manner in K562 cells derived from the blast crisis of CML. Additional experiments revealed that fangchinoline induces cell cycle arrest at the G0/G1 phase and has no effect on apoptosis, which is mediated through the upregulation of cyclin-dependent kinase (CDK)-N1A and MCL-1 mRNA levels, as well as the downregulation of cyclin D2 (CCND2) mRNA levels. These findings suggest the potential of fangchinoline as an effective antitumor agent in CML. PMID:23596478

  13. Fangchinoline induces G0/G1 arrest by modulating the expression of CDKN1A and CCND2 in K562 human chronic myelogenous leukemia cells

    PubMed Central

    WANG, YUPING; CHEN, JIE; WANG, LIN; HUANG, YUJI; LENG, YE; WANG, GUIYING

    2013-01-01

    Chronic myeloid leukemia (CML) is a hematopoietic stem cell disease