Sample records for e85 light-duty truck

  1. 40 CFR 86.1811-09 - Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles. 86.1811-09 Section 86.1811-09 Protection of... Vehicles § 86.1811-09 Emission standards for light-duty vehicles, light-duty trucks and medium-duty...

  2. 40 CFR 86.1811-10 - Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles. 86.1811-10 Section 86.1811-10 Protection of... Vehicles § 86.1811-10 Emission standards for light-duty vehicles, light-duty trucks and medium-duty...

  3. 40 CFR 86.1811-10 - Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles. 86.1811-10 Section 86.1811-10 Protection of... Vehicles § 86.1811-10 Emission standards for light-duty vehicles, light-duty trucks and medium-duty...

  4. 40 CFR 86.1811-09 - Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles. 86.1811-09 Section 86.1811-09 Protection of... Vehicles § 86.1811-09 Emission standards for light-duty vehicles, light-duty trucks and medium-duty...

  5. 75 FR 7426 - Tier 2 Light-Duty Vehicle and Light-Duty Truck Emission Standards and Gasoline Sulfur Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... 2060-AI23; 2060-AQ12 Tier 2 Light-Duty Vehicle and Light-Duty Truck Emission Standards and Gasoline... February 10, 2000 (65 FR 6698), EPA published emission standards for light-duty vehicles and light-duty... new passenger cars and light trucks, including pickup trucks, vans, minivans, and sport-utility...

  6. 40 CFR 86.1717-99 - Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks. 86.1717-99 Section 86.1717-99 Protection of... diagnostic system for 1999 and later light-duty vehicles and light-duty trucks. (a) The provisions of § 86...

  7. 40 CFR 86.1717-01 - Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks. 86.1717-01 Section 86.1717-01 Protection of... diagnostic system for 1999 and later light-duty vehicles and light-duty trucks. (a) The provisions of § 86...

  8. 40 CFR 86.1717-99 - Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks. 86.1717-99 Section 86.1717-99 Protection of... diagnostic system for 1999 and later light-duty vehicles and light-duty trucks. (a) The provisions of § 86...

  9. 40 CFR 86.1717-01 - Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks. 86.1717-01 Section 86.1717-01 Protection of... diagnostic system for 1999 and later light-duty vehicles and light-duty trucks. (a) The provisions of § 86...

  10. 40 CFR 86.1811-17 - Exhaust emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards that apply for model year 2017 and later light-duty vehicles, light-duty trucks, and medium-duty... standards. This section may apply to vehicles from model years earlier than 2017 as specified in paragraph... model year. (3) The FTP standards specified in this section apply for testing at low-altitude conditions...

  11. 40 CFR 86.1811-10 - Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles. 86.1811-10 Section 86.1811-10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND...

  12. 40 CFR 86.1811-10 - Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles. 86.1811-10 Section 86.1811-10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND...

  13. 40 CFR 86.097-9 - Emission standards for 1997 and later model year light-duty trucks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....097-9 Emission standards for 1997 and later model year light-duty trucks. (a)(1) Standards—(i) Light... standards. (ii) Heavy light-duty trucks. (A) Exhaust emissions from 1997 and later model year heavy light... model year light-duty trucks from compliance at low altitude with the emission standards set forth in...

  14. 40 CFR Appendix Xviii to Part 86 - Statistical Outlier Identification Procedure for Light-Duty Vehicles and Light Light-Duty Trucks...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Statistical Outlier Identification Procedure for Light-Duty Vehicles and Light Light-Duty Trucks Certifying to the Provisions of Part 86... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...

  15. 40 CFR Appendix Xviii to Part 86 - Statistical Outlier Identification Procedure for Light-Duty Vehicles and Light Light-Duty Trucks...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Statistical Outlier Identification Procedure for Light-Duty Vehicles and Light Light-Duty Trucks Certifying to the Provisions of Part 86... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...

  16. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-equivalent debits for a test group using an alternative N2O or CH4 standard; GWP = 25 if calculating CH4...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto...

  17. Light Duty Truck Characteristics, Historical Data Base

    DOT National Transportation Integrated Search

    1979-12-01

    The report is a collection of data concerning physical, operating, performance, and market characteristics of light duty trucks for the model years 1972 and 1975 thru 1977. The data is stored on tape in DOT/TSC DEC System 10 computer system. Informat...

  18. 40 CFR 86.1811-09 - Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., except as noted. Additionally, this section applies to hybrid electric vehicles (HEVs) and zero emission... vehicles, light-duty trucks and medium-duty passenger vehicles. 86.1811-09 Section 86.1811-09 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air...

  19. 40 CFR 86.099-17 - Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled... regulations shall be evaluated periodically, but no less frequently than once per Urban Dynamometer Driving...

  20. 40 CFR 88.104-94 - Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks. 88.104-94 Section 88.104-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Emission...

  1. 40 CFR 88.104-94 - Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks. 88.104-94 Section 88.104-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Emission...

  2. Behavioral distinctions : the use of light-duty trucks and passenger cars

    DOT National Transportation Integrated Search

    2000-12-01

    Pickup trucks, sport utility vehicles (SUVs), and minivans are classified as light duty trucks (LDTs) in the United States, resulting in a variety of regulatory protections. According to production and purchase trends, Americans have shifted toward a...

  3. 40 CFR 88.104-94 - Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks. 88.104-94 Section 88.104-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Emission Standards for Clean-Fuel Vehicles § 88.10...

  4. 40 CFR 88.104-94 - Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks. 88.104-94 Section 88.104-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Emission Standards for Clean-Fuel Vehicles § 88.10...

  5. 40 CFR 88.104-94 - Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks. 88.104-94 Section 88.104-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Emission Standards for Clean-Fuel Vehicles § 88.104...

  6. 40 CFR 86.709-94 - In-use emission standards for 1994 and later model year light-duty trucks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Model Year Light-Duty Vehicles and Light-Duty Trucks § 86.709-94 In-use emission standards for 1994 and... exhaust emissions from 1994 and later model year light light-duty trucks shall meet all standards in... standards in tables H94-9 and H94-10. (ii) For model years 1996 and 1997, a minimum of the percentages shown...

  7. 40 CFR 86.709-94 - In-use emission standards for 1994 and later model year light-duty trucks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Model Year Light-Duty Vehicles and Light-Duty Trucks § 86.709-94 In-use emission standards for 1994 and... exhaust emissions from 1994 and later model year light light-duty trucks shall meet all standards in... standards in tables H94-9 and H94-10. (ii) For model years 1996 and 1997, a minimum of the percentages shown...

  8. 40 CFR 86.709-94 - In-use emission standards for 1994 and later model year light-duty trucks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Model Year Light-Duty Vehicles and Light-Duty Trucks § 86.709-94 In-use emission standards for 1994 and... exhaust emissions from 1994 and later model year light light-duty trucks shall meet all standards in... standards in tables H94-9 and H94-10. (ii) For model years 1996 and 1997, a minimum of the percentages shown...

  9. 40 CFR 86.709-94 - In-use emission standards for 1994 and later model year light-duty trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Model Year Light-Duty Vehicles and Light-Duty Trucks § 86.709-94 In-use emission standards for 1994 and... exhaust emissions from 1994 and later model year light light-duty trucks shall meet all standards in... standards in tables H94-9 and H94-10. (ii) For model years 1996 and 1997, a minimum of the percentages shown...

  10. 40 CFR 86.099-9 - Emission standards for 1999 and later model year light-duty trucks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....099-9 Emission standards for 1999 and later model year light-duty trucks. (a)(1)(i)-(iii) [Reserved... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Emission standards for 1999 and later model year light-duty trucks. 86.099-9 Section 86.099-9 Protection of Environment ENVIRONMENTAL...

  11. 40 CFR 86.004-9 - Emission standards for 2004 and later model year light-duty trucks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....004-9 Emission standards for 2004 and later model year light-duty trucks. Section 86.004-9 includes... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Emission standards for 2004 and later model year light-duty trucks. 86.004-9 Section 86.004-9 Protection of Environment ENVIRONMENTAL...

  12. 40 CFR 86.004-9 - Emission standards for 2004 and later model year light-duty trucks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....004-9 Emission standards for 2004 and later model year light-duty trucks. Section 86.004-9 includes... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Emission standards for 2004 and later model year light-duty trucks. 86.004-9 Section 86.004-9 Protection of Environment ENVIRONMENTAL...

  13. 40 CFR 86.004-9 - Emission standards for 2004 and later model year light-duty trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....004-9 Emission standards for 2004 and later model year light-duty trucks. Section 86.004-9 includes... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Emission standards for 2004 and later model year light-duty trucks. 86.004-9 Section 86.004-9 Protection of Environment ENVIRONMENTAL...

  14. 40 CFR 86.004-9 - Emission standards for 2004 and later model year light-duty trucks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....004-9 Emission standards for 2004 and later model year light-duty trucks. Section 86.004-9 includes... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Emission standards for 2004 and later model year light-duty trucks. 86.004-9 Section 86.004-9 Protection of Environment ENVIRONMENTAL...

  15. 40 CFR 86.099-9 - Emission standards for 1999 and later model year light-duty trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....099-9 Emission standards for 1999 and later model year light-duty trucks. (a)(1)(i)-(iii) [Reserved... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Emission standards for 1999 and later model year light-duty trucks. 86.099-9 Section 86.099-9 Protection of Environment ENVIRONMENTAL...

  16. 40 CFR 86.1709-99 - Exhaust emission standards for 1999 and later light light-duty trucks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks § 86.1709-99 Exhaust emission standards for... not exceed the standards in Tables R99-8 and R99-9 in rows designated with the applicable vehicle...

  17. 40 CFR 86.000-9 - Emission standards for 2000 and later model year light-duty trucks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....000-9 Emission standards for 2000 and later model year light-duty trucks. Section 86.000-9 includes...) and CO Model year Percentage 2002 40 2003 80 2004 100 Table A00-6—Useful Life Standards (G/MI) for... applicable model year's heavy light-duty trucks shall not exceed the applicable SFTP standards in table A00-6...

  18. 40 CFR 86.000-9 - Emission standards for 2000 and later model year light-duty trucks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....000-9 Emission standards for 2000 and later model year light-duty trucks. Section 86.000-9 includes...) and CO Model year Percentage 2002 40 2003 80 2004 100 Table A00-6—Useful Life Standards (G/MI) for... applicable model year's heavy light-duty trucks shall not exceed the applicable SFTP standards in table A00-6...

  19. Application for certification, 1993 model-year light-duty trucks - Grumman Olson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. The report deals with light-duty trucks from Grumman Olson Company. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirementsmore » to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  20. 40 CFR 86.097-9 - Emission standards for 1997 and later model year light-duty trucks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards (g/mi) for Light Light-Duty Trucks Fuel LVW (lbs) THC NMHC THCE NMHCE CO NOX PM Gasoline 0-3750 0... LVW (lbs) THC 1 NMHC THCE 1 NMHCE CO NOX PM Gasoline 0-3750 0.80 0.31 4.2 0.6 0.10 Gasoline 3751-5750...—Intermediate Useful Life Standards (g/mi) for Heavy Light-Duty Trucks Fuel ALVW (lbs) THC NMHC THCE NMHCE CO...

  1. Proposed Rule for Modification of Federal On Board Diagnostic Regulations for: Light Duty Vehicles, Light Duty Trucks, Medium Duty Passenger Vehicles, Complete Heavy Duty Vehicles and Engines Intended for Use in Heavy Duty Vehicles Weighing 14,000 Pounds

    EPA Pesticide Factsheets

    Following is information for the proposed rule for the Modification of Federal On Board Diagnostic Regulations for Light-Duty Vehicles, Light-Duty Trucks, etc. Includes links to Federal Register and final rule.

  2. Wind tunnel measurements of the dilution of tailpipe emissions downstream of a car, a light-duty truck, and a heavy-duty truck tractor head.

    PubMed

    Chang, Victor W C; Hildemann, Lynn M; Chang, Cheng-hisn

    2009-06-01

    The particle and gaseous pollutants in vehicle exhaust emissions undergo rapid dilution with ambient air after exiting the tailpipe. The rate and extent of this dilution can greatly affect both the size evolution of primary exhaust particles and the potential for formation of ultrafine particles. Dilution ratios were measured inside of a wind tunnel in the region immediately downstream of the tailpipe using model vehicles (approximately one-fifth to one-seventh scale models) representing a light-duty truck, a passenger car, and a heavy-duty tractor head (without the trailer). A tracer gas (ethene) was released at a measured flow rate from the tailpipe, and 60 sampling probes placed downstream of the vehicle simultaneously sampled gas tracer concentrations in the near-wake (first few vehicle heights) and far-wake regions (beyond 10 vehicle heights). Tests using different tunnel wind speeds show the range of dilution ratios that can be expected as a function of vehicle type and downstream distance (i.e., time). The vehicle shape quite strongly influences dilution profiles in the near-wake region but is much less important in the far-wake region. The tractor generally produces higher dilution rates than the automobile and light-duty truck under comparable conditions.

  3. 40 CFR 86.709-99 - In-use emission standards for 1999 and later model year light-duty trucks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...—Intermediate Useful Life 1 Standards (g/mi) for Light Light-Duty Trucks Fuel LVW (lbs) THC NMHC THCE NMHCE CO... Fuel LVW (lbs) THC 2 NMHC 1 THCE 2 NMHCE 1 CO 1 NOX 1 PM 1 Gasoline 0-3750 0.80 0.31 4.2 0.6 0.10... 1 Standards (g/mi) for Heavy Light-Duty Trucks Fuel ALVW (lbs) THC NMHC THCE NMHCE CO NOX PM...

  4. 40 CFR 86.709-99 - In-use emission standards for 1999 and later model year light-duty trucks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...—Intermediate Useful Life 1 Standards (g/mi) for Light Light-Duty Trucks Fuel LVW (lbs) THC NMHC THCE NMHCE CO... Fuel LVW (lbs) THC 2 NMHC 1 THCE 2 NMHCE 1 CO 1 NOX 1 PM 1 Gasoline 0-3750 0.80 0.31 4.2 0.6 0.10... 1 Standards (g/mi) for Heavy Light-Duty Trucks Fuel ALVW (lbs) THC NMHC THCE NMHCE CO NOX PM...

  5. 40 CFR 86.709-99 - In-use emission standards for 1999 and later model year light-duty trucks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...—Intermediate Useful Life 1 Standards (g/mi) for Light Light-Duty Trucks Fuel LVW (lbs) THC NMHC THCE NMHCE CO... Fuel LVW (lbs) THC 2 NMHC 1 THCE 2 NMHCE 1 CO 1 NOX 1 PM 1 Gasoline 0-3750 0.80 0.31 4.2 0.6 0.10... 1 Standards (g/mi) for Heavy Light-Duty Trucks Fuel ALVW (lbs) THC NMHC THCE NMHCE CO NOX PM...

  6. 40 CFR 86.709-99 - In-use emission standards for 1999 and later model year light-duty trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...—Intermediate Useful Life 1 Standards (g/mi) for Light Light-Duty Trucks Fuel LVW (lbs) THC NMHC THCE NMHCE CO... Fuel LVW (lbs) THC 2 NMHC 1 THCE 2 NMHCE 1 CO 1 NOX 1 PM 1 Gasoline 0-3750 0.80 0.31 4.2 0.6 0.10... 1 Standards (g/mi) for Heavy Light-Duty Trucks Fuel ALVW (lbs) THC NMHC THCE NMHCE CO NOX PM...

  7. Demand for Light Duty Trucks : The Wharton EFA Motor Vehicle Demand Model (Mark II).

    DOT National Transportation Integrated Search

    1981-01-01

    A preliminary model of U.S. light-duty vehicle demand is presented which contains an integrated analysis of automobiles and light trucks (under 10,000 lbs. GVW). The model has been estimated using both cross-section and time-series data, and is a dev...

  8. Light Duty Truck Weight Reduction Evaluation

    DOT National Transportation Integrated Search

    1980-08-01

    This contract covers the identification of Types, Makes and Models which constitute the Light Truck world fleet. The attributes which describe the critical functional aspects of trucks of this size are established and specifications to define the att...

  9. 40 CFR Appendix X to Part 86 - Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks X Appendix X to Part 86 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. X Appendix X to Part 86—Sampling...

  10. 40 CFR Appendix X to Part 86 - Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks X Appendix X to Part 86 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. X Appendix X to Part 86—Sampling...

  11. 40 CFR Appendix X to Part 86 - Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks X Appendix X to Part 86 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. X Appendix X to Part 86—Sampling...

  12. 40 CFR Appendix X to Part 86 - Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks X Appendix X to Part 86 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. X Appendix X to Part 86—Sampling...

  13. 40 CFR Appendix X to Part 86 - Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks X Appendix X to Part 86 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES Pt. 86, App. X Appendix X to Part 86—Sampling Plans for...

  14. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., perfluorocarbons, and sulfur hexafluoride. This section applies to 2012 and later model year LDVs, LDTs and MDPVs... aftermarket conversion certifiers, as those terms are defined in 40 CFR 85.502, of all model year light-duty... business according to the requirements of § 86.1801-12(j) are exempt from the emission standards in this...

  15. 40 CFR 85.2101 - General applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Emissions Control System Performance Warranty Regulations and... through 85.2111 are applicable to all 1981 and later model year light-duty vehicles and light-duty trucks... apply to durability groups and test groups as applicable for manufacturers certifying new light-duty...

  16. Fabrication and testing of an enhanced ignition system to reduce cold-start emissions in an ethanol (E85) light-duty truck engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardiner, D; Mallory, R; Todesco, M

    This report describes an experimental investigation of the potential for an enhanced ignition system to lower the cold-start emissions of a light-duty vehicle engine using fuel ethanol (commonly referred to as E85). Plasma jet ignition and conventional inductive ignition were compared for a General Motors 4-cylinder, alcohol-compatible engine. Emission and combustion stability measurements were made over a range of air/fuel ratios and spark timing settings using a steady-state, cold-idle experimental technique in which the engine coolant was maintained at 25 C to simulate cold-running conditions. These tests were aimed at identifying the degree to which calibration strategies such as mixturemore » enleanment and retarded spark timing could lower engine-out hydrocarbon emissions and raise exhaust temperatures, as well as determining how such calibration changes would affect the combustion stability of the engine (as quantified by the coefficient of variation, or COV, of indicated mean effective pressure calculated from successive cylinder pressure measurements). 44 refs., 39 figs.« less

  17. 40 CFR 85.2204 - Short test standards for 1981 and later model year light-duty trucks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Control System Performance Warranty Short Tests § 85.2204 Short test standards for 1981 and later model... later model year trucks at high altitude to which high altitude certification standards of 2.0 g/mile HC... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Short test standards for 1981 and...

  18. 40 CFR 85.2204 - Short test standards for 1981 and later model year light-duty trucks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Control System Performance Warranty Short Tests § 85.2204 Short test standards for 1981 and later model... later model year trucks at high altitude to which high altitude certification standards of 2.0 g/mile HC... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Short test standards for 1981 and...

  19. 40 CFR 85.2204 - Short test standards for 1981 and later model year light-duty trucks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Control System Performance Warranty Short Tests § 85.2204 Short test standards for 1981 and later model... later model year trucks at high altitude to which high altitude certification standards of 2.0 g/mile HC... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Short test standards for 1981 and...

  20. 40 CFR 85.2204 - Short test standards for 1981 and later model year light-duty trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Control System Performance Warranty Short Tests § 85.2204 Short test standards for 1981 and later model... later model year trucks at high altitude to which high altitude certification standards of 2.0 g/mile HC... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Short test standards for 1981 and...

  1. Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shownmore » to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.« less

  2. Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies

    Science.gov Websites

    reduction technologies. Both DOE and the U.S. Environmental Protection Agency (EPA) provide information Heavy-Duty Truck Idle Reduction Technologies to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Facebook Tweet about Alternative Fuels Data

  3. EVALUATION OF FUEL CELL AUXILIARY POWER UNITS FOR HEAVY-DUTY DIESEL TRUCKS

    EPA Science Inventory

    A large number of heavy-duty trucks idle a significant amount. Heavy-duty line-haul truck engines idle about 30-50% of the time the engine is running. Drivers idle engines to power climate control devices (e.g., heaters and air conditioners) and sleeper compartment accessories (e...

  4. 40 CFR 86.001-9 - Emission standards for 2001 and later model year light-duty trucks

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....001-9 Emission standards for 2001 and later model year light-duty trucks Section 86.001-9 includes... for 2001 and later model years, and shall not exceed the standards described in paragraph (d)(1) of... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Emission standards for 2001 and later...

  5. 40 CFR 86.001-9 - Emission standards for 2001 and later model year light-duty trucks

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....001-9 Emission standards for 2001 and later model year light-duty trucks Section 86.001-9 includes... for 2001 and later model years, and shall not exceed the standards described in paragraph (d)(1) of... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Emission standards for 2001 and later...

  6. 40 CFR 86.001-9 - Emission standards for 2001 and later model year light-duty trucks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....001-9 Emission standards for 2001 and later model year light-duty trucks. Section 86.001-9 includes... for 2001 and later model years, and shall not exceed the standards described in paragraph (d)(1) of... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Emission standards for 2001 and later...

  7. 40 CFR 86.001-9 - Emission standards for 2001 and later model year light-duty trucks

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....001-9 Emission standards for 2001 and later model year light-duty trucks Section 86.001-9 includes... for 2001 and later model years, and shall not exceed the standards described in paragraph (d)(1) of... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Emission standards for 2001 and later...

  8. Environmentally friendly driving feedback systems research and development for heavy duty trucks.

    DOT National Transportation Integrated Search

    2016-03-31

    In this research project, the research team developed an environmentally-friendly driving feedback system for heavy-duty trucks, which was : adapted from a similar system previously developed for light-duty cars. The system consists of: 1) Eco-Routin...

  9. 40 CFR 52.2301 - Federal compliance date for automobile and light-duty truck coating. Texas Air Control Board...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Federal compliance date for automobile... PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2301 Federal compliance date for automobile and..., automobile and light-duty truck coating operations were to have complied with final control limits of § A115...

  10. 40 CFR 52.2301 - Federal compliance date for automobile and light-duty truck coating. Texas Air Control Board...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Federal compliance date for automobile... PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2301 Federal compliance date for automobile and..., automobile and light-duty truck coating operations were to have complied with final control limits of § A115...

  11. 40 CFR 52.2301 - Federal compliance date for automobile and light-duty truck coating. Texas Air Control Board...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Federal compliance date for automobile... PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2301 Federal compliance date for automobile and..., automobile and light-duty truck coating operations were to have complied with final control limits of § A115...

  12. 40 CFR 52.2301 - Federal compliance date for automobile and light-duty truck coating. Texas Air Control Board...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Federal compliance date for automobile... PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2301 Federal compliance date for automobile and..., automobile and light-duty truck coating operations were to have complied with final control limits of § A115...

  13. 40 CFR 52.2301 - Federal compliance date for automobile and light-duty truck coating. Texas Air Control Board...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Federal compliance date for automobile... PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2301 Federal compliance date for automobile and..., automobile and light-duty truck coating operations were to have complied with final control limits of § A115...

  14. Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks

    NASA Astrophysics Data System (ADS)

    Magnetto, D.; Vidiella, G.

    2012-06-01

    The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger, thermoelectric modules and DC/DC converter. The main objective of the project is to design, optimize and produce a prototype system to be tested on a 2.3l diesel truck. The base case is a Thermo Electric Generator (TEG) producing 1 KWel at 130 km/h. We present the system design and estimated output power from benchmark Bi2Te3 modules. We discuss key drivers for the optimization of the thermal-to-electric efficiency, such as materials, thermo-mechanical aspects and integration.

  15. 49 CFR 542.2 - Procedures for selecting low theft light duty truck lines with a majority of major parts...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Procedures for selecting low theft light duty truck lines with a majority of major parts interchangeable with those of a passenger motor vehicle line. 542.2 Section 542.2 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION,...

  16. Classification of energy-conserving engine oil for passenger cars, vans, sport utility vehicles, and light-duty trucks (revised May 97). (SAE standard)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-05-01

    This SAE Standard was developed cooperatively by SAE, ASTM, and API to define and identify energy conserving engine oils for passenger cars, vans, and light-duty (3856 kg (8500 lb) GVW or less) trucks.

  17. 49 CFR 542.2 - Procedures for selecting low theft light duty truck lines with a majority of major parts...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Procedures for selecting low theft light duty... TRUCK LINES TO BE COVERED BY THE THEFT PREVENTION STANDARD § 542.2 Procedures for selecting low theft... a low theft rate have major parts interchangeable with a majority of the covered major parts of a...

  18. 76 FR 48758 - 2017-2025 Model Year Light-Duty Vehicle GHG Emissions and CAFE Standards: Supplemental Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... Presidential Memorandum on May 21, 2010, concerning the development of a new generation of clean cars and... cars, light-duty trucks, and medium-duty passenger vehicles (light-duty vehicles) built in those model... and to reduce greenhouse gas emissions of passenger cars and light-duty trucks of model years 2017...

  19. 40 CFR 85.2222 - On-board diagnostic test procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false On-board diagnostic test procedures... Warranty Short Tests § 85.2222 On-board diagnostic test procedures. The test sequence for the inspection of on-board diagnostic systems on 1996 and newer light-duty vehicles and light-duty trucks shall consist...

  20. 40 CFR 85.2222 - On-board diagnostic test procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false On-board diagnostic test procedures... Warranty Short Tests § 85.2222 On-board diagnostic test procedures. The test sequence for the inspection of on-board diagnostic systems on 1996 and newer light-duty vehicles and light-duty trucks shall consist...

  1. 40 CFR 85.2222 - On-board diagnostic test procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false On-board diagnostic test procedures... Warranty Short Tests § 85.2222 On-board diagnostic test procedures. The test sequence for the inspection of on-board diagnostic systems on 1996 and newer light-duty vehicles and light-duty trucks shall consist...

  2. 49 CFR Appendix C to Part 541 - Criteria for Selecting Light Duty Truck Lines Likely To Have High Theft Rates

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Criteria for Selecting Light Duty Truck Lines Likely To Have High Theft Rates C Appendix C to Part 541 Transportation Other Regulations Relating to... MOTOR VEHICLE THEFT PREVENTION STANDARD Pt. 541, App. C Appendix C to Part 541—Criteria for Selecting...

  3. 49 CFR Appendix C to Part 541 - Criteria for Selecting Light Duty Truck Lines Likely To Have High Theft Rates

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Criteria for Selecting Light Duty Truck Lines Likely To Have High Theft Rates C Appendix C to Part 541 Transportation Other Regulations Relating to... MOTOR VEHICLE THEFT PREVENTION STANDARD Pt. 541, App. C Appendix C to Part 541—Criteria for Selecting...

  4. 49 CFR Appendix C to Part 541 - Criteria for Selecting Light Duty Truck Lines Likely To Have High Theft Rates

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Criteria for Selecting Light Duty Truck Lines Likely To Have High Theft Rates C Appendix C to Part 541 Transportation Other Regulations Relating to... MOTOR VEHICLE THEFT PREVENTION STANDARD Pt. 541, App. C Appendix C to Part 541—Criteria for Selecting...

  5. 49 CFR 542.1 - Procedures for selecting new light duty truck lines that are likely to have high or low theft rates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... lines that are likely to have high or low theft rates. 542.1 Section 542.1 Transportation Other... OF TRANSPORTATION PROCEDURES FOR SELECTING LIGHT DUTY TRUCK LINES TO BE COVERED BY THE THEFT... or low theft rates. (a) Scope. This section sets forth the procedures for motor vehicle manufacturers...

  6. Past and Future Trends in Light Truck Sales.

    DOT National Transportation Integrated Search

    1981-08-01

    This report uses the Wharton EFA Motor Vehicle Demand Model (Mark II) and its associated databases to discuss and analyze past and future trends in the Light Duty Truck market. The dynamic historical growth in this market and its implications for ene...

  7. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... group of six greenhouse gases: Carbon dioxide, nitrous oxide, methane, hydrofluorocarbons... for passenger automobiles and light trucks. (1) For a given individual model year's production of... production of that model type/footprint combination for the appropriate model year. (C) The resulting...

  8. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... group of six greenhouse gases: Carbon dioxide, nitrous oxide, methane, hydrofluorocarbons... passenger automobiles and light trucks. (1) For a given individual model year's production of passenger... multiplied by the total production of that model type/footprint combination for the appropriate model year...

  9. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... group of six greenhouse gases: Carbon dioxide, nitrous oxide, methane, hydrofluorocarbons... passenger automobiles and light trucks. (1) For a given individual model year's production of passenger... the total production of that model type/footprint combination for the appropriate model year. (C) The...

  10. 2010 Commitment Letters for MY2017-2025 Light-Duty and MY 2014-2018 Heavy-Duty Programs

    EPA Pesticide Factsheets

    The State of California and major automobile and truck manufacturers showed their support for a national heavy-duty GHG and fuel efficiency program as well as further light-duty GHG and CAFE standards by sending letters to the agencies in May 2010.

  11. 75 FR 34946 - Federal Motor Vehicle Theft Prevention Standard; Final Listing of 2011 Light Duty Truck Lines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ...This final rule announces NHTSA's determination that there are no new model year (MY) 2011 light duty truck lines subject to the parts-marking requirements of the Federal motor vehicle theft prevention standard because they have been determined by the agency to be high-theft or because they have a majority of interchangeable parts with those of a passenger motor vehicle line. This final rule also identifies those vehicle lines that have been granted an exemption from the parts-marking requirements because the vehicles are equipped with antitheft devices determined to meet certain statutory criteria.

  12. 76 FR 20251 - Federal Motor Vehicle Theft Prevention Standard; Final Listing of 2012 Light Duty Truck Lines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ...This final rule announces NHTSA's determination that there are no new model year (MY) 2012 light duty truck lines subject to the parts-marking requirements of the Federal motor vehicle theft prevention standard because they have been determined by the agency to be high-theft or because they have a majority of interchangeable parts with those of a passenger motor vehicle line. This final rule also identifies those vehicle lines that have been granted an exemption from the parts-marking requirements because the vehicles are equipped with antitheft devices determined to meet certain statutory criteria.

  13. 78 FR 44030 - Federal Motor Vehicle Theft Prevention Standard; Final Listing of 2014 Light Duty Truck Lines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ...This final rule announces NHTSA's determination that there are no new model year (MY) 2014 light duty truck lines subject to the parts-marking requirements of the Federal motor vehicle theft prevention standard because they have been determined by the agency to be high-theft or because they have a majority of interchangeable parts with those of a passenger motor vehicle line. This final rule also identifies those vehicle lines that have been granted an exemption from the parts-marking requirements because the vehicles are equipped with antitheft devices determined to meet certain statutory criteria.

  14. Effect of E85 on Tailpipe Emissions from Light-Duty Vehicles.

    PubMed

    Yanowitz, Janet; McCormick, Robert L

    2009-02-01

    E85, which consists of nominally 85% fuel grade ethanol and 15% gasoline, must be used in flexible-fuel (or "flex-fuel") vehicles (FFVs) that can operate on fuel with an ethanol content of 0-85%. Published studies include measurements of the effect of E85 on tailpipe emissions for Tier 1 and older vehicles. Car manufacturers have also supplied a large body of FFV certification data to the U.S. Environmental Protection Agency, primarily on Tier 2 vehicles. These studies and certification data reveal wide variability in the effects of E85 on emissions from different vehicles. Comparing Tier 1 FFVs running on E85 to similar non-FFVs running on gasoline showed, on average, significant reductions in emissions of oxides of nitrogen (NO x ; 54%), non-methane hydrocarbons (NMHCs; 27%), and carbon monoxide (CO; 18%) for E85. Comparing Tier 2 FFVs running on E85 and comparable non-FFVs running on gasoline shows, for E85 on average, a signifi-cant reduction in emissions of CO (20%), and no signifi-cant effect on emissions of non-methane organic gases (NMOGs). NO x emissions from Tier 2 FFVs averaged approximately 28% less than comparable non-FFVs. However, perhaps because of the wide range of Tier 2 NO x standards, the absolute difference in NO x emissions between Tier 2 FFVs and non-FFVs is not significant (P =0.28). It is interesting that Tier 2 FFVs operating on gasoline produced approximately 13% less NMOGs than non-FFVs operating on gasoline. The data for Tier 1 vehicles show that E85 will cause significant reductions in emissions of benzene and butadiene, and significant increases in emissions of formaldehyde and acetaldehyde, in comparison to emissions from gasoline in both FFVs and non-FFVs. The compound that makes up the largest proportion of organic emissions from E85-fueled FFVs is ethanol.

  15. 40 CFR 86.1708-99 - Exhaust emission standards for 1999 and later light-duty vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and later light-duty vehicles. 86.1708-99 Section 86.1708-99 Protection of Environment ENVIRONMENTAL... VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks § 86.1708-99 Exhaust emission standards for 1999 and...

  16. 77 FR 75257 - Proposed Collection of Information: Medium- and Heavy-Duty Truck Fleet Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ...-0170] Proposed Collection of Information: Medium- and Heavy-Duty Truck Fleet Survey AGENCY: National... collection of information will be in the form of a one-time survey of medium- and heavy-duty truck fleet... collection. OMB Control Number: To be issued at time of approval. Title: Medium- and Heavy-Duty Truck Fleet...

  17. 49 CFR Appendix B to Part 541 - Light Duty Truck Lines With Theft Rates Below the 1990/91 Median Theft Rate, Subject to the...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Light Duty Truck Lines With Theft Rates Below the 1990/91 Median Theft Rate, Subject to the Requirements of This Standard B Appendix B to Part 541... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE THEFT PREVENTION STANDARD Pt. 541, App. B...

  18. 49 CFR Appendix B to Part 541 - Light Duty Truck Lines With Theft Rates Below the 1990/91 Median Theft Rate, Subject to the...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 1990/91 Median Theft Rate, Subject to the Requirements of This Standard B Appendix B to Part 541... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE THEFT PREVENTION STANDARD Pt. 541, App. B Appendix B to Part 541—Light Duty Truck Lines With Theft Rates Below the 1990/91 Median Theft Rate, Subject...

  19. California heavy duty truck travel survey on selected sites.

    DOT National Transportation Integrated Search

    2001-12-01

    The overall goal of the Heavy Duty Truck Travel (HDT) Survey was to collect representative truck travel data for selected sites in California. An integral aspect of the project was a literature search and inventory study of freight data survey collec...

  20. Light-Duty Vehicle CO2 and Fuel Economy Trends

    EPA Pesticide Factsheets

    This report provides data on the fuel economy, carbon dioxide (CO2) emissions, and technology trends of new light-duty vehicles (cars, minivans, sport utility vehicles, and pickup trucks) for model years 1975 to present in the United States.

  1. The energy consumption and cost savings of truck electrification for heavy duty vocational applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Lin, Zhenhong; Franzese, Oscar

    This paper evaluates the application of battery electric vehicles (BEVs) and genset plug-in hybrid electric vehicles (PHEVs) to Class-7 local delivery trucks and genset PHEV for Class-8 utility bucket trucks over widely real-world driving data performed by conventional heavy-duty trucks. A simulation tool based on vehicle tractive energy methodology and component efficiency for addressing component and system performance was developed to evaluate the energy consumption and performance of the trucks. As part of this analysis, various battery sizes combined with different charging powers on the E-Trucks for local delivery and utility bucket applications were investigated. The results show that themore » E-Truck applications not only reduce energy consumption but also achieve significant energy cost savings. For delivery E-Trucks, the results show that periodic stops at delivery sites provide sufficient time for battery charging, and for this reason, a high-power charger is not necessary. For utility bucket PHEV trucks, energy consumption per mile of bucket truck operation is typically higher because of longer idling times and extra high idling load associated with heavy utility work. The availability of on-route charging is typically lacking at the work sites of bucket trucks; hence, the battery size of these trucks is somewhat larger than that of the delivery trucks studied.« less

  2. 75 FR 38168 - Federal Motor Vehicle Theft Prevention Standard; Final Listing of 2011 Light Duty Truck Lines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ...The National Highway Traffic Safety Administration (NHTSA) published a document in the Federal Register of June 21, 2010, announcing NHTSA's determination that there were no new model year (MY) 2011 light-duty truck lines subject to the requirements of the Federal motor vehicle theft prevention standard. The final rule also identified those vehicle lines that had been granted an exemption from the parts- marking requirements for the 2011 model year and those vehicle lines the agency removed because certain vehicle lines had been discontinued more than 5 years ago. This document corrects certain information published in the SUPPLEMENTARY INFORMATION section and Appendix A-I listing of the final rule. All previous information associated with the published notice remains the same.

  3. 40 CFR 86.094-13 - Light-duty exhaust durability programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements. (5) In-use verification. The Standard Self-Approval Durability Program includes no requirement... selection methods, durability data vehicle compliance requirements, in-use verification requirements... Accumulation Carryover. Light-duty Trucks Tier 1 & Tier 0 Standard Self-Approval Carryover. Alternative Service...

  4. Development and Implementation of a Battery-Electric Light-Duty Class 2a Truck including Hybrid Energy Storage

    NASA Astrophysics Data System (ADS)

    Kollmeyer, Phillip J.

    This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the

  5. 40 CFR 86.708-94 - In-use emission standards for 1994 and later model year light-duty vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Later Model Year Light-Duty Vehicles and Light-Duty Trucks § 86.708-94 In-use emission standards for... exhaust emissions from 1994 and later model year light-duty vehicles shall meet all standards in tables... applicable Tier 1I standards in table H94-3. (2) Particulates. For in-use exhaust emissions for model years...

  6. 40 CFR 86.708-94 - In-use emission standards for 1994 and later model year light-duty vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Later Model Year Light-Duty Vehicles and Light-Duty Trucks § 86.708-94 In-use emission standards for... exhaust emissions from 1994 and later model year light-duty vehicles shall meet all standards in tables... applicable Tier 1I standards in table H94-3. (2) Particulates. For in-use exhaust emissions for model years...

  7. 40 CFR 86.708-94 - In-use emission standards for 1994 and later model year light-duty vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Later Model Year Light-Duty Vehicles and Light-Duty Trucks § 86.708-94 In-use emission standards for... exhaust emissions from 1994 and later model year light-duty vehicles shall meet all standards in tables... applicable Tier 1I standards in table H94-3. (2) Particulates. For in-use exhaust emissions for model years...

  8. 40 CFR 86.708-94 - In-use emission standards for 1994 and later model year light-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Later Model Year Light-Duty Vehicles and Light-Duty Trucks § 86.708-94 In-use emission standards for... exhaust emissions from 1994 and later model year light-duty vehicles shall meet all standards in tables... applicable Tier 1I standards in table H94-3. (2) Particulates. For in-use exhaust emissions for model years...

  9. Light Duty Truck Weight Reduction Evaluation

    DOT National Transportation Integrated Search

    1980-10-01

    The objectives of this program were to identify the weight reduction potential of pickup trucks, vans, and utility vehicles less than or equal to 8500 lb. gross vehicle weight through design modification, redesign, and material substitution; and more...

  10. 40 CFR 85.501 - General applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... light-duty vehicles, light-duty trucks, medium-duty passenger vehicles, heavy-duty vehicles, and heavy-duty engines. This subpart F does not apply for highway motorcycles or for nonroad or stationary... fuel conversion manufacturer, which may also be called “conversion manufacturer” or “converter”. ...

  11. Medium Truck Duty Cycle Data from Real-World Driving Environments: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lascurain, Mary Beth; Franzese, Oscar; Capps, Gary J

    2012-11-01

    Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At present, nearly 80% of US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle research and is leading the 21st Century Truck Partnershipmore » and the SuperTruck development effort. Both of these efforts have the common goal of decreasing the fuel consumption of heavy vehicles. In the case of SuperTruck, a goal of improving the overall freight efficiency of a combination tractor-trailer has been established. This Medium Truck Duty Cycle (MTDC) project is a critical element in DOE s vision for improved heavy vehicle energy efficiency; it is unique in that there is no other existing national database of characteristic duty cycles for medium trucks based on collecting data from Class 6 and 7 vehicles. It involves the collection of real-world data on medium trucks for various situational characteristics (e.g., rural/urban, freeway/arterial, congested/free-flowing, good/bad weather) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips). This research provides a rich source of data that can contribute to the development of new tools for FE and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support energy efficiency research. The MTDC project involved a two-part field operational test (FOT). For the Part-1 FOT, three vehicles each from two vocations (urban

  12. Energy Consumption and Cost Savings of Truck Electrification for Heavy-Duty Vehicle Applications

    DOE PAGES

    Gao, Zhiming; Lin, Zhenhong; Franzese, Oscar

    2017-01-01

    Our paper evaluates the application of battery electric vehicles (BEVs) and genset plug-in hybrid electric vehicles (PHEVs) to Class-7 local delivery trucks and genset PHEV for Class-8 utility bucket trucks over widely real-world driving data performed by conventional heavy-duty trucks.

  13. Effect of Light Truck Design Variables on Top Speed, Performance, and Fuel Economy, 1981

    DOT National Transportation Integrated Search

    1981-11-01

    The effect of vehicle weight, rolling resistance, aerodynamic drag, and drive-line configuration on fuel economy and performance for light duty trucks is examined. The effect of lockup and extended gear ratio range is also investigated. The assessmen...

  14. Electrification Beyond Light Duty: Class 2b-3 Commercial Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birky, Alicia; Laughlin, Michael; Tartaglia, Katie

    The class 2b-3 truck market covers a wide range of commercial truck applications across a half-million vehicle sales annually. This report collected public information and stakeholder input to assess the opportunity for electrification in this market. Although class 2b-3 pickup truck and van bodies are very similar to personal light vehicles, their functional requirements are quite different due to the demands of the commercial market. These demands vary by application and often vary from day to day for a single application. Fleet customers purchase these vehicles to perform a particular job for their business and are concerned about the overallmore » cost of doing that job. Therefore, the vehicles must meet the job requirements cost effectively. Customers also are sensitive to initial cost. Electrification offers the potential to reduce vehicle operating costs and possibly improve vehicle functionality. However, the current market for class 2b-3 electrified trucks is very small, and the trucks are costly. Increased production volumes are key to cost reductions and may be assisted by sharing components with larger or smaller truck classes. Expanding demand is also crucial and stakeholders identified several niche markets with duty cycles that are likely well-suited to electrified class 2b-3 trucks. To expand beyond these niches, class 2b-3 electric solutions must be robust, flexible, and adaptable in order to cover a wide range of vocations, applications, and duty cycles.« less

  15. 40 CFR 85.1701 - General applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Exclusion and Exemption of Motor Vehicles and Motor Vehicle... test groups as applicable for manufacturers certifying new light-duty vehicles, light-duty trucks, and...

  16. Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyasato, Matt; Kosowski, Mark

    2015-10-01

    The Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program was sponsored by the United States Department of Energy (DOE) using American Recovery and Reinvestment Act of 2009 (ARRA) funding. The purpose of the program is to develop a path to migrate plug-in hybrid electric vehicle (PHEV) technology to medium-duty vehicles by demonstrating and evaluating vehicles in diverse applications. The program also provided three production-ready PHEV systems—Odyne Systems, Inc. (Odyne) Class 6 to 8 trucks, VIA Motors, Inc. (VIA) half-ton pickup trucks, and VIA three-quarter-ton vans. The vehicles were designed, developed, validated, produced, and deployed. Data were gathered and tests weremore » run to understand the performance improvements, allow cost reductions, and provide future design changes. A smart charging system was developed and produced during the program. The partnerships for funding included the DOE; the California Energy Commission (CEC); the South Coast Air Quality Management District (SCAQMD); the Electric Power Research Institute (EPRI); Odyne; VIA; Southern California Edison; and utility and municipal industry participants. The reference project numbers are DOE FOA-28 award number EE0002549 and SCAQMD contract number 10659.« less

  17. 40 CFR 85.524 - Legacy standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrocarbons. Light-duty vehicles must meet the Tier 0 hydrocarbon standard specified in 40 CFR 86.094-8. Light-duty trucks must meet the Tier 0 hydrocarbon standard specified in 40 CFR 86.094-9. Otto-cycle heavy-duty engines must meet the hydrocarbon standard specified in 40 CFR 86.096-10. Diesel heavy-duty...

  18. 75 FR 52326 - Agency Information Collection Activities; Proposed Collection; Comment Request; EPA's Light-Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... has an ongoing program to evaluate the emission performance of in-use light-duty (passenger car and... number'' of any class or category of vehicles or engines, although properly maintained and used, do not... selects approximately 50 classes of passenger cars and light trucks for in-use testing, at EPA's testing...

  19. Carbonaceous Aerosols Emitted from Light-Duty Vehicles Operating on Gasoline and Ethanol Fuel Blends

    EPA Science Inventory

    This study examines the chemical properties of carbonaceous aerosols emitted from three light-duty gasoline vehicles (LDVs) operating on gasoline (e0) and ethanol-gasoline fuel blends (e10 and e85). Vehicle road load simulations were performed on a chassis dynamometer using the t...

  20. In-use activity, fuel use, and emissions of heavy-duty diesel roll-off refuse trucks.

    PubMed

    Sandhu, Gurdas S; Frey, H Christopher; Bartelt-Hunt, Shannon; Jones, Elizabeth

    2015-03-01

    The objectives of this study were to quantify real-world activity, fuel use, and emissions for heavy duty diesel roll-off refuse trucks; evaluate the contribution of duty cycles and emissions controls to variability in cycle average fuel use and emission rates; quantify the effect of vehicle weight on fuel use and emission rates; and compare empirical cycle average emission rates with the U.S. Environmental Protection Agency's MOVES emission factor model predictions. Measurements were made at 1 Hz on six trucks of model years 2005 to 2012, using onboard systems. The trucks traveled 870 miles, had an average speed of 16 mph, and collected 165 tons of trash. The average fuel economy was 4.4 mpg, which is approximately twice previously reported values for residential trash collection trucks. On average, 50% of time is spent idling and about 58% of emissions occur in urban areas. Newer trucks with selective catalytic reduction and diesel particulate filter had NOx and PM cycle average emission rates that were 80% lower and 95% lower, respectively, compared to older trucks without. On average, the combined can and trash weight was about 55% of chassis weight. The marginal effect of vehicle weight on fuel use and emissions is highest at low loads and decreases as load increases. Among 36 cycle average rates (6 trucks×6 cycles), MOVES-predicted values and estimates based on real-world data have similar relative trends. MOVES-predicted CO2 emissions are similar to those of the real world, while NOx and PM emissions are, on average, 43% lower and 300% higher, respectively. The real-world data presented here can be used to estimate benefits of replacing old trucks with new trucks. Further, the data can be used to improve emission inventories and model predictions. In-use measurements of the real-world activity, fuel use, and emissions of heavy-duty diesel roll-off refuse trucks can be used to improve the accuracy of predictive models, such as MOVES, and emissions

  1. Effects of cold temperature and ethanol content on VOC emissions from light-duty gasoline vehicles

    EPA Science Inventory

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle...

  2. Application for certification 1988 model year light-duty vehicles - US Technical Research Company (Peugeot)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings that describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems, and exhaust and evaporative emission control systems.

  3. The effects of deterioration and technological levels on pollutant emission factors for gasoline light-duty trucks.

    PubMed

    Zhang, Qingyu; Fan, Juwang; Yang, Weidong; Chen, Bixin; Zhang, Lijuan; Liu, Jiaoyu; Wang, Jingling; Zhou, Chunyao; Chen, Xuan

    2017-07-01

    Vehicle deterioration and technological change influence emission factors (EFs). In this study, the impacts of vehicle deterioration and emission standards on EFs of regulated pollutants (carbon monoxide [CO], hydrocarbon [HC], and nitrogen oxides [NO x ]) for gasoline light-duty trucks (LDTs) were investigated according to the inspection and maintenance (I/M) data using a chassis dynamometer method. Pollutant EFs for LDTs markedly varied with accumulated mileages and emission standards, and the trends of EFs are associated with accumulated mileages. In addition, the study also found that in most cases, the median EFs of CO, HC, and NO x are higher than those of basic EFs in the International Vehicle Emissions (IVE) model; therefore, the present study provides correction factors for the IVE model relative to the corresponding emission standards and mileages. Currently, vehicle emissions are great contributors to air pollution in cities, especially in developing countries. Emission factors play a key role in creating emission inventory and estimating emissions. Deterioration represented by vehicle age and accumulated mileage and changes of emission standards markedly influence emission factors. In addition, the results provide collection factors for implication in the IVE model in the region levels.

  4. APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, C; Weber, P; Thornton,M

    2003-08-24

    The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT)more » or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified

  5. Medium Truck Duty Cycle Data from Real-World Driving Environments: Project Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franzese, Oscar; Lascurain, Mary Beth; Capps, Gary J

    2011-01-01

    Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At the present time, nearly 80% of the US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle truck research, and is leading themore » 21st Century Truck Partnership whose stretch goals involve a reduction by 50% of the fuel consumption of heavy vehicles on a ton-mile basis. This Medium Truck Duty Cycle (MTDC) Project is a critical element in DOE s vision for improved heavy vehicle energy efficiency and is unique in that there is no other national database of characteristic duty cycles for medium trucks. It involves the collection of real-world data for various situational characteristics (rural/urban, freeway/arterial, congested/free-flowing, good/bad weather, etc.) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips), to provide a rich source of data that can contribute to the development of new tools for fuel efficiency and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support heavy vehicle energy efficiency research. The MTDC project involves a two-part field operational test (FOT). For the Part-1 FOT, three vehicles, each from two vocations (urban transit and dry-box delivery) were instrumented for one year of data collection. The Part-2 FOT will involve the towing/recovery and utility vocations. The vehicles participating in the MTDC project are

  6. 40 CFR 86.1815-01 - Emission standards for light-duty trucks 4.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  7. 40 CFR 86.1813-01 - Emission standards for light-duty trucks 2.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  8. 40 CFR 86.1812-01 - Emission standards for light-duty trucks 1.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  9. 40 CFR 86.1815-02 - Emission standards for light-duty trucks 4.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  10. 40 CFR 86.1813-01 - Emission standards for light-duty trucks 2.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  11. 40 CFR 86.1814-01 - Emission standards for light-duty trucks 3.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  12. 40 CFR 86.1814-02 - Emission standards for light-duty trucks 3.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  13. 40 CFR 86.1812-01 - Emission standards for light-duty trucks 1.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  14. 40 CFR 86.1815-01 - Emission standards for light-duty trucks 4.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  15. 40 CFR 86.1815-01 - Emission standards for light-duty trucks 4.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  16. 40 CFR 86.1814-01 - Emission standards for light-duty trucks 3.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  17. 40 CFR 86.1813-01 - Emission standards for light-duty trucks 2.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  18. 40 CFR 86.1814-01 - Emission standards for light-duty trucks 3.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  19. 40 CFR 86.1814-02 - Emission standards for light-duty trucks 3.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  20. 40 CFR 86.1812-01 - Emission standards for light-duty trucks 1.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  1. 40 CFR 86.1815-02 - Emission standards for light-duty trucks 4.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  2. 40 CFR 86.1814-02 - Emission standards for light-duty trucks 3.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  3. 40 CFR 86.1814-01 - Emission standards for light-duty trucks 3.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  4. 40 CFR 86.1812-01 - Emission standards for light-duty trucks 1.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  5. 40 CFR 86.1813-01 - Emission standards for light-duty trucks 2.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  6. 40 CFR 86.1815-02 - Emission standards for light-duty trucks 4.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  7. 40 CFR 86.1814-02 - Emission standards for light-duty trucks 3.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  8. 40 CFR 86.1815-02 - Emission standards for light-duty trucks 4.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  9. 40 CFR 86.1815-01 - Emission standards for light-duty trucks 4.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  10. Cold Temperature Effects on Speciated VOC Emissions from modern GDI Light Duty Truck

    EPA Science Inventory

    Although gasoline direct injection (GDI) vehicles represent nearly half of the light-duty vehicle market share, few studies have reported speciated volatile organic compounds (VOCs) in GDI vehicle exhaust emissions. In this study, speciated VOC emissions were characterized from t...

  11. 40 CFR 86.004-40 - Heavy-duty engine rebuilding practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled... rebuilding practices. The provisions of this section are applicable to heavy-duty engines subject to model...

  12. Medium-Duty Plug-in Electric Delivery Truck Fleet Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prohaska, Robert; Ragatz, Adam; Simpson, Mike

    2016-06-29

    In this paper, the authors present an overview of medium-duty electric vehicle (EV) operating behavior based on in-use data collected from Smith Newton electric delivery vehicles and compare their performance and operation to conventional diesel trucks operating in the same fleet. The vehicles' drive cycles and operation are analyzed and compared to demonstrate the importance of matching specific EV technologies to the appropriate operational duty cycle. The results of this analysis show that the Smith Newton EVs demonstrated a 68% reduction in energy consumption over the data reporting period compared to the conventional diesel vehicles, as well as a 46.4%more » reduction in carbon dioxide equivalent emissions based on the local energy generation source.« less

  13. Medium-duty plug-in electric delivery truck fleet evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prohaska, Robert; Ragatz, Adam; Simpson, Mike

    2016-06-01

    In this paper, the authors present an overview of medium-duty electric vehicle (EV) operating behavior based on in-use data collected from Smith Newton electric delivery vehicles and compare their performance and operation to conventional diesel trucks operating in the same fleet. The vehicles' drive cycles and operation are analyzed and compared to demonstrate the importance of matching specific EV technologies to the appropriate operational duty cycle. The results of this analysis show that the Smith Newton EVs demonstrated a 68% reduction in energy consumption over the data reporting period compared to the conventional diesel vehicles, as well as a 46.4%more » reduction in carbon dioxide equivalent emissions based on the local energy generation source.« less

  14. 40 CFR Appendix Xii to Part 86 - Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks XII Appendix XII to... Appendix XII to Part 86—Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty...

  15. Driving an Industry: Medium and Heavy Duty Fuel Cell Electric Truck Component Sizing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kast, James; Marcinkoski, Jason; Vijayagopal, Ram

    Medium and heavy duty (MD and HD respectively) vehicles are responsible for 26 percent of the total U.S. transportation petroleum consumption [1]. Hydrogen fuel cells have demonstrated value as part of a portfolio of strategies for reducing petroleum use and emissions from MD and HD vehicles. [2] [3], but their performance and range capabilities, and associated component sizing remain less clear when compared to other powertrains. This paper examines the suitability of converting a representative sample of MD and HD diesel trucks into Fuel Cell Electric Trucks (FCETs), while ensuring the same truck performance, in terms of range, payload, acceleration,more » speed, gradeability and fuel economy.« less

  16. 40 CFR 86.1817-05 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Complete heavy-duty vehicle averaging...-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1817-05 Complete heavy-duty vehicle averaging, trading, and banking program. (a) General. (1) Complete heavy-duty...

  17. On-Road Diesel Truck Emissions Measurement and Inventory Development in Chengdu City of China

    NASA Astrophysics Data System (ADS)

    Chen, J.; Ye, H.

    2014-12-01

    Real-world emission tests of three diesel trucks were conducted using SEMTECH-EcoStar gas analyzer produced by the US Sensors Company and Mi2 particle analyzer produced by the Finland Pegasor Company. The test duration was one day for each truck and 8813, 10407 and 11102 sets of effective post-processed data were collected for analyzing. The influence of vehicle speed, driving mode and vehicle mass on emission was analyzed and emission rates were calculated. Light-duty and heavy-duty truck activities in Chengdu were studied by survey and statistical analysis. The population of trucks was acquired from the Public Security Department of Sichuan province. Based on the test data and local collected data, this paper calculated an emission inventory of diesel trucks in Chengdu, the economic center of southwestern china. Results showed that the emission rates of CO, NO, THC and PM for the selected vehicles were(0.95~7.54)g/km,(1.03~3.97)g/km,(0.64~0.81)g/km and (0.01~0.07)g/km respectively. The annual vehicle activities of light-duty and heavy-duty trucks in Chengdu were 30,000 km and 44,000 km. The emission inventory of CO, NO, THC and PM in Chengdu were 23,000t/a, 15,000t/a, 4,000t/a and 200t/a.

  18. Effects of After-Treatment Control Technologies on Heavy-Duty Diesel Truck Emissions

    NASA Astrophysics Data System (ADS)

    Preble, C.; Dallmann, T. R.; Kreisberg, N. M.; Hering, S. V.; Harley, R.; Kirchstetter, T.

    2015-12-01

    Diesel engines are major emitters of nitrogen oxides (NOx) and the black carbon (BC) fraction of particulate matter (PM). Diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have recently become standard on new heavy-duty diesel trucks (HDDT). There is concern that DPFs may increase ultrafine particle (UFP) and total particle number (PN) emissions while reducing PM mass emissions. Also, the deliberate catalytic oxidation of engine-out NO to NO2 in continuously regenerating DPFs may lead to increased tailpipe emission of NO2 and near-roadway concentrations that exceed the 1-hr national ambient air quality standard. Increased NO2 emissions can also promote formation of ozone and secondary PM. We report results from ongoing on-road studies of HDDT emissions at the Port of Oakland and the Caldecott Tunnel in California's San Francisco Bay Area. Emission factors (g pollutant per kg diesel) were linked via recorded license plates to each truck's engine model year and installed emission controls. At both sites, DPF use significantly increased the NO2/NOx emission ratio. DPFs also significantly increased NO2 emissions when installed as retrofits on older trucks with higher baseline NOx emissions. While SCR systems on new trucks effectively reduce total NOx emissions and mitigate these undesirable DPF-related NO2 emissions, they also lead to significant emission of N2O, a potent greenhouse gas. When expressed on a CO2-equivalent basis, the N2O emissions increase offsets the fuel economy gain (i.e., the CO2 emission reduction) associated with SCR use. At the Port, average NOx, BC and PN emission factors from new trucks equipped with DPF and SCR were 69 ± 15%, 92 ± 32% and 66 ± 35% lower, respectively, than modern trucks without these emission controls. In contrast, at the Tunnel, PN emissions from older trucks retrofit with DPFs were ~2 times greater than modern trucks without DPFs. The difference

  19. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result ofmore » the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  20. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result ofmore » the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  1. Light-Duty Diesel Vehicles: Efficiency and Emissions Attributes and Market Issues

    EIA Publications

    2009-01-01

    This report responds to a request from Senator Jeff Sessions for an analysis of the environmental and energy efficiency attributes of light-duty diesel vehicles. Specifically, the inquiry asked for a comparison of the characteristics of diesel-fueled vehicles with those of similar gasoline-fueled, E85-fueled, and hybrid vehicles, as well as a discussion of any technical, economic, regulatory, or other obstacles to increasing the use of diesel-fueled vehicles in the United States

  2. Medium-Duty Plug-In Electric Delivery Truck Fleet Evaluation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prohaska, Robert; Ragatz, Adam; Simpson, Mike

    2016-04-13

    In this paper, the authors present an overview of medium-duty electric vehicle (EV) operating behavior based on in-use data collected from Smith Newton electric delivery vehicles and compare their performance and operation to conventional diesel trucks operating in the same fleet. The vehicles' drive cycles and operation are analyzed and compared to demonstrate the importance of matching specific EV technologies to the appropriate operational duty cycle. The results of this analysis show that the Smith Newton EVs demonstrated a 68% reduction in energy consumption over the data reporting period compared to the conventional diesel vehicles, as well as a 46.4%more » reduction in carbon dioxide equivalent emissions based on the local energy generation source.« less

  3. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Complete heavy-duty vehicle averaging...-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1817-08 Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that...

  4. Study of emissions from light-duty vehicles in Denver. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-08-31

    A sample of 300 light-duty vehicles normally operated in the Denver metropolitan area was tested for emissions and fuel economy. The vehicles were from the 1978 through 1982 model years and included both passenger cars and light-duty trucks. One purpose of the program was to gather information for calculations and projections of ambient air quality. Another purpose was to assemble data on current model year vehicles for use in the support of Inspection/Maintenance and other regulatory programs. The vehicles were tested for exhaust emissions utilizing the Federal Test Procedure, the Highway Fuel Economy Test (HFET), and four short mode tests.more » 125 vehicles from the 1980-82 model years received an evaporative emission test using the sealed housing evaporative determination (SHED) technique. Other actions were taken in relation to each vehicle tested. These included an engine and emission control system maladjustment/disablement and status inspection, driveability evaluations, and owner interviews to obtain vehicle maintenance and usage data.« less

  5. Hennepin County`s experience with heavy-duty ethanol vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    From November 1993 to October 1996, Hennepin County, which includes Minneapolis, field-tested two heavy-duty snowplow/road maintenance trucks fueled by ethanol. The overall objective of this program was to collect data from original equipment manufacturer alternative fuel heavy-duty trucks, along with comparable data from a similarly configured diesel-powered vehicle, to establish economic, emissions, performance, and durability data for the alternative fuel technology. These ethanol trucks, along with an identical third truck equipped with a diesel engine, were operated year round to maintain the Hennepin county roads. In winter, the trucks were run in 8-hour shifts plowing and hauling snow from urbanmore » and suburban roads. For the rest of the year, the three trucks were used to repair and maintain these same roads. As a result of this project, a considerable amount of data was collected on E95 fuel use, as well as maintenance, repair, emissions, and operational characteristics. Maintenance and repair costs of the E95 trucks were considerably higher primarily due to fuel filter and fuel pump issues. From an emissions standpoint, the E95 trucks emitted less particulate matter and fewer oxides of nitrogen but more carbon monoxide and hydrocarbons. Overall, the E95 trucks operated as well as the diesel, as long as the fuel filters were changed frequently. This project was a success in that E95, a domestically produced fuel from a renewable energy source, was used in a heavy-duty truck application and performed the same rigorous tasks as the diesel counterparts. The drawbacks to E95 as a heavy-duty fuel take the form of higher operational costs, higher fuel costs, shorter range, and the lack of over-the-road infrastructure.« less

  6. 75 FR 25323 - Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ...EPA and NHTSA are issuing this joint Final Rule to establish a National Program consisting of new standards for light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. This joint Final Rule is consistent with the National Fuel Efficiency Policy announced by President Obama on May 19, 2009, responding to the country's critical need to address global climate change and to reduce oil consumption. EPA is finalizing greenhouse gas emissions standards under the Clean Air Act, and NHTSA is finalizing Corporate Average Fuel Economy standards under the Energy Policy and Conservation Act, as amended. These standards apply to passenger cars, light-duty trucks, and medium-duty passenger vehicles, covering model years 2012 through 2016, and represent a harmonized and consistent National Program. Under the National Program, automobile manufacturers will be able to build a single light-duty national fleet that satisfies all requirements under both programs while ensuring that consumers still have a full range of vehicle choices. NHTSA's final rule also constitutes the agency's Record of Decision for purposes of its National Environmental Policy Act (NEPA) analysis.

  7. Application for certification 1980 model year light-duty vehicles - Audi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems, and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  8. Application for certification, 1990 model-year light-duty vehicles - Audi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  9. Application for certification 1993 model year light-duty vehicles - Audi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  10. Application for certification, 1991 model-year light-duty vehicles - Audi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model-year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application containsmore » the results of emission testing, a statement of compliance to the regulations, production engine parameters and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  11. Application for certification 1981 model year light-duty vehicles - Audi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  12. Application for certification 1987 model year light-duty vehicles - Peugeot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. The engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. They also provide information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  13. Application for certification 1981 model year light-duty vehicles - Peugeot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  14. 40 CFR 86.007-15 - NOX and particulate averaging, trading, and banking for heavy-duty engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and banking for heavy-duty engines. 86.007-15 Section 86.007-15 Protection of Environment... Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles...

  15. Effect of turbulence intensity on PM emission of heavy duty diesel trucks - Wind tunnel studies

    NASA Astrophysics Data System (ADS)

    Littera, D.; Cozzolini, A.; Besch, M.; Carder, D.; Gautam, M.

    2017-08-01

    Stringent emission regulations have forced drastic technological improvements in diesel aftertreatment systems, particularly in reducing Particulate Matter (PM) emissions. The formation and evolution of PM from modern engines are more sensitive to overall changes in the dilution process, such as rapidity of mixing, background PM present in the air. These technological advancements were made in controlled laboratory environments compliant with measurement standards (i.e. Code of Federal Regulation CFR in the USA) and are not fully representative of real-world emissions from these engines or vehicles. In light of this, a specifically designed and built wind tunnel by West Virginia University (WVU) is used for the study of the exhaust plume of a heavy-duty diesel vehicle, providing a better insight in the dilution process and the representative nanoparticles emissions in a real-world scenario. The subsonic environmental wind tunnel is capable of accommodating a full-sized heavy-duty truck and generating wind speeds in excess of 50mph. A three-dimensional gantry system allows spanning the test section and sample regions in the plume with accuracy of less than 5 mm. The gantry system is equipped with engine exhaust gas analyzers and PM sizing instruments. The investigation involves three different heavy-duty Class-8 diesel vehicles representative of three emission regulation standards, namely a US-EPA 2007 compliant, a US-EPA 2010 compliant, and a baseline vehicle without any aftertreatment technologies as a pre US-EPA 2007, respectively. The testing procedure includes three different vehicle speeds: idling, 20mph, and 35mph. The vehicles were tested on WVU's medium-duty chassis dynamometer, with the load applied to the truck reflecting the road load equation at the corresponding vehicle test speeds. Wind tunnel wind speed and vehicle speed were maintained in close proximity to one another during the entire test. Results show that the cross-sectional plume area

  16. Particulate matters from diesel heavy duty trucks exhaust versus cigarettes emissions: a new educational antismoking instrument.

    PubMed

    De Marco, Cinzia; Ruprecht, Ario Alberto; Pozzi, Paolo; Munarini, Elena; Ogliari, Anna Chiara; Mazza, Roberto; Boffi, Roberto

    2015-01-01

    Indoor smoking in public places and workplaces is forbidden in Italy since 2003, but some health concerns are arising from outdoor secondhand smoke (SHS) exposure for non-smokers. One of the biggest Italian Steel Manufacturer, with several factories in Italy and abroad, the Marcegaglia Group, recently introduced the outdoor smoking ban within the perimeter of all their factories. In order to encourage their smoker employees to quit, the Marcegaglia management decided to set up an educational framework by measuring the PM1, PM2.5 and PM10 emissions from heavy duty trucks and to compare them with the emissions of cigarettes in an indoor controlled environment under the same conditions. The exhaust pipe of two trucks powered by a diesel engine of about 13.000/14.000 cc(3) were connected with a flexible hose to a hole in the window of a container of 36 m(3) volume used as field office. The trucks operated idling for 8 min and then, after adequate office ventilation, a smoker smoked a cigarette. Particulate matter emission was thereafter analyzed. Cigarette pollution was much higher than the heavy duty truck one. Mean of the two tests was: PM1 truck 125.0(47.0), cigarettes 231.7(90.9) p = 0.002; PM2.5 truck 250.8(98.7), cigarettes 591.8(306.1) p = 0.006; PM10 truck 255.8(52.4), cigarettes 624.0(321.6) p = 0.002. Our findings may be important for policies that aim reducing outdoor SHS exposure. They may also help smokers to quit tobacco dependence by giving them an educational perspective that rebuts the common alibi that traffic pollution is more dangerous than cigarettes pollution.

  17. Application for certification, 1991 model year light-duty vehicles - Sports Car America, Puma Division Inc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. The report deals with light-duty vehicles from Sports Car America, PUMA Division Incorporated. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, andmore » proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  18. Influence of methane emissions and vehicle efficiency on the climate implications of heavy-duty natural gas trucks.

    PubMed

    Camuzeaux, Jonathan R; Alvarez, Ramón A; Brooks, Susanne A; Browne, Joshua B; Sterner, Thomas

    2015-06-02

    While natural gas produces lower carbon dioxide emissions than diesel during combustion, if enough methane is emitted across the fuel cycle, then switching a heavy-duty truck fleet from diesel to natural gas can produce net climate damages (more radiative forcing) for decades. Using the Technology Warming Potential methodology, we assess the climate implications of a diesel to natural gas switch in heavy-duty trucks. We consider spark ignition (SI) and high-pressure direct injection (HPDI) natural gas engines and compressed and liquefied natural gas. Given uncertainty surrounding several key assumptions and the potential for technology to evolve, results are evaluated for a range of inputs for well-to-pump natural gas loss rates, vehicle efficiency, and pump-to-wheels (in-use) methane emissions. Using reference case assumptions reflecting currently available data, we find that converting heavy-duty truck fleets leads to damages to the climate for several decades: around 70-90 years for the SI cases, and 50 years for the more efficient HPDI. Our range of results indicates that these fuel switches have the potential to produce climate benefits on all time frames, but combinations of significant well-to-wheels methane emissions reductions and natural gas vehicle efficiency improvements would be required.

  19. Application for certification, 1988 model year light-duty vehicles - Volkswagen, Audi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems, and exhaust and evaporative emission-control systems. Information is also provided on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application containsmore » the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  20. Application for certification, 1986 model year light-duty vehicles - Volkswagen/Audi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  1. Application for certification, 1992 model-year light-duty vehicles - Grumman Olson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines that he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of themore » application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  2. Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends Data

    EPA Pesticide Factsheets

    The Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends report is the authoritative reference for carbon dioxide (CO2) emissions, fuel economy, and powertrain technology trends for new personal vehicles in the United States. The ??Trends?? report has been published annually since 1975 and covers all passenger cars, sport utility vehicles, minivans, and all but the largest pickup trucks and vans. This report does not provide formal compliance values for EPA CO2 emissions standards and NHTSA CAFE standards. The downloadable data are available in PDF or spreadsheet (XLS) formats.

  3. The benefits and costs of new fuels and engines for light-duty vehicles in the United States.

    PubMed

    Keefe, Ryan; Griffin, James P; Graham, John D

    2008-10-01

    Rising oil prices and concerns about energy security and climate change are spurring reconsideration of both automobile propulsion systems and the fuels that supply energy to them. In addition to the gasoline internal combustion engine, recent years have seen alternatives develop in the automotive marketplace. Currently, hybrid-electric vehicles, advanced diesels, and flex-fuel vehicles running on a high percentage mixture of ethanol and gasoline (E85) are appearing at auto shows and in driveways. We conduct a rigorous benefit-cost analysis from both the private and societal perspective of the marginal benefits and costs of each technology--using the conventional gasoline engine as a baseline. The private perspective considers only those factors that influence the decisions of individual consumers, while the societal perspective accounts for environmental, energy, and congestion externalities as well. Our analysis illustrates that both hybrids and diesels show promise for particular light-duty applications (sport utility vehicles and pickup trucks), but that vehicles running continuously on E85 consistently have greater costs than benefits. The results for diesels were particularly robust over a wide range of sensitivity analyses. The results from the societal analysis are qualitatively similar to the private analysis, demonstrating that the most relevant factors to the benefit-cost calculations are the factors that drive the individual consumer's decision. We conclude with a brief discussion of marketplace and public policy trends that will both illustrate and influence the relative adoption of these alternative technologies in the United States in the coming decade.

  4. EFFECTS OF ENGINE SPEED AND ACCESSORY LOAD ON IDLING EMISSIONS FROM HEAVY-DUTY DIESEL TRUCK ENGINES

    EPA Science Inventory

    A nontrivial portion of heavy-duty vehicle emissions of nitrogen oxides (NOx) and particulate matter (PM) occurs during idling. Regulators and the environmental community are interested in curtailing truck idling emissions, but current emissions models do not characterize them ac...

  5. Crash compatibility between cars and light trucks: benefits of lowering front-end energy-absorbing structure in SUVs and pickups.

    PubMed

    Baker, Bryan C; Nolan, Joseph M; O'Neill, Brian; Genetos, Alexander P

    2008-01-01

    Passenger vehicles are designed to absorb crash energy in frontal crashes through deformation or crush of energy-absorbing structures forward of the occupant compartment. In collisions between cars and light trucks (i.e., pickups and SUVs), however, the capacity of energy-absorption structures may not be fully utilized because mismatches often exist between the heights of these structures in the colliding vehicles. In 2003 automakers voluntarily committed to new design standards aimed at reducing the height mismatches between cars and light trucks. By September 2009 all new light trucks will have either the primary front structure (typically the frame rails) or a secondary structure connected to the primary structure low enough to interact with the primary structures in cars, which for most cars is about the height of the front bumper. To estimate the overall benefit of the voluntary commitment, the real-world crash experience of light trucks already meeting the height-matching criteria was compared with that of light trucks not meeting the criteria for 2000-2003 model light trucks in collisions with passenger cars during calendar years 2001-2004. The estimated benefits of lower front energy-absorbing structure were a 19 percent reduction (p<0.05) in fatality risk to belted car drivers in front-to-front crashes with light trucks and a 19 percent reduction (p<0.05) in fatality risk to car drivers in front-to-driver-side crashes with light trucks.

  6. Simulated Fuel Economy and Emissions Performance during City and Interstate Driving for a Heavy-Duty Hybrid Truck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, C. Stuart; Gao, Zhiming; Smith, David E.

    2013-04-08

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulatedmore » for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.« less

  7. Semivolatile organic compound emissions from heavy-duty trucks operating on diesel and bio-diesel fuel blends

    EPA Science Inventory

    This study measured semivolatile organic compounds (SVOCs) in particle matter (PM) emitted from three heavy-duty trucks equipped with modern after-treatment technologies. Emissions testing was conducted as described by the George et al. VOC study also presented as part of this se...

  8. Rolling Resistance of Light Truck Tires

    DOT National Transportation Integrated Search

    1981-01-01

    The supplement contains carpet plots of 44 light truck tires giving rolling resistance versus load and reciprocal of inflation pressure. The plots represent measured data. To avoid the expense of taking measurements at all points on the plots, an equ...

  9. Light Truck Characteristics, Historical Data Base

    DOT National Transportation Integrated Search

    1980-11-01

    The report is a description of the data about the physical, operating performance, and market characteristics of light trucks for the model years 1955 through 1977, which is stored on tape in DOT/TSC DEC System 10 computer system. Vehicles are report...

  10. Application for certification for 1979 model year for light-duty vehicles - Audi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles or heavy-duty engines submits to EPA an application for certification. The application consists of two parts. In the part I, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. The part I also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements tomore » be followed during testing. The part II application submitted after emission testing is completed, contains the results of emission testing, a statement of compliance to the regulations, and maintenance instructions to be followed by the ultimate owners of the vehicles.« less

  11. Application for certification for 1979 model year for light-duty vehicles - Peugeot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles or heavy-duty engines submits to EPA an application for certification. The application consists of two parts. In the part I, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. The part I also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements tomore » be followed during testing. The part II application, submitted after emission testing is completed, contains the results of emission testing, a statement of compliance to the regulations, and maintenance instructions to be followed by the ultimate owners of the vehicles.« less

  12. Designing Optimal LNG Station Network for U.S. Heavy-Duty Freight Trucks using Temporally and Spatially Explicit Supply Chain Optimization

    NASA Astrophysics Data System (ADS)

    Lee, Allen

    The recent natural gas boom has opened much discussion about the potential of natural gas and specifically Liquefied Natural Gas (LNG) in the United States transportation sector. The switch from diesel to natural gas vehicles would reduce foreign dependence on oil, spur domestic economic growth, and potentially reduce greenhouse gas emissions. LNG provides the most potential for the medium to heavy-duty vehicle market partially due to unstable oil prices and stagnant natural gas prices. As long as the abundance of unconventional gas in the United States remains cheap, fuel switching to natural gas could provide significant cost savings for long haul freight industry. Amid a growing LNG station network and ever increasing demand for freight movement, LNG heavy-duty truck sales are less than anticipated and the industry as a whole is less economic than expected. In spite of much existing and mature natural gas infrastructure, the supply chain for LNG is different and requires explicit and careful planning. This thesis proposes research to explore the claim that the largest obstacle to widespread LNG market penetration is sub-optimal infrastructure planning. No other study we are aware of has explicitly explored the LNG transportation fuel supply chain for heavy-duty freight trucks. This thesis presents a novel methodology that links a network infrastructure optimization model (represents supply side) with a vehicle stock and economic payback model (represents demand side). The model characterizes both a temporal and spatial optimization model of future LNG transportation fuel supply chains in the United States. The principal research goal is to assess the economic feasibility of the current LNG transportation fuel industry and to determine an optimal pathway to achieve ubiquitous commercialization of LNG vehicles in the heavy-duty transport sector. The results indicate that LNG is not economic as a heavy-duty truck fuel until 2030 under current market conditions

  13. N2O and NO2 Emissions from Heavy-Duty Diesel Trucks with Advanced Emission Controls

    NASA Astrophysics Data System (ADS)

    Preble, C.; Harley, R.; Kirchstetter, T.

    2014-12-01

    Diesel engines are the largest source of nitrogen oxides (NOx) emissions nationally, and also a major contributor to the black carbon (BC) fraction of fine particulate matter (PM). Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have become standard equipment on new heavy-duty diesel trucks. However, the deliberate catalytic oxidation of engine-out nitric oxide (NO) to nitrogen dioxide (NO2) in continuously regenerating DPFs leads to increased tailpipe emission of NO2. This is of potential concern due to the toxicity of NO2 and the resulting increases in atmospheric formation of other air pollutants such as ozone, nitric acid, and fine PM. While use of SCR reduces emissions of both NO and NO2, it may lead to increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Here we report results from on-road measurements of heavy-duty diesel truck emissions conducted at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Emission factors (g pollutant per kg of diesel) were linked via recorded license plates to individual truck attributes, including engine model year and installed emission control equipment. Between 2009 and 2013, the fraction of DPF-equipped trucks at the Port of Oakland increased from 2 to 99%, and median engine age decreased from 11 to 6 years. Over the same period, fleet-average emission factors for black carbon and NOx decreased by 76 ± 22% and 53 ± 8%, respectively. However, direct emissions of NO2 increased, and consequently the NO2/NOx emission ratio increased from 0.03 ± 0.02 to 0.18 ± 0.03. Older trucks retrofitted with DPFs emitted approximately 3.5 times more NO2 than newer trucks equipped with both DPF and SCR. Preliminary data from summer 2014 measurements at the Caldecott Tunnel suggest that some older trucks have negative emission factors for N2O, and that for newer trucks, N2O emission factors have changed sign and

  14. 76 FR 65971 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... duty vehicles will be restored, and the words ``for passenger automobiles, light trucks and medium-duty... ``Base tire'' to read as follows: Sec. 523.2 Definitions. * * * * * Base tire for passenger automobiles...

  15. A comparison of a mini-PEMS and a 1065 compliant PEMS for on-road gaseous and particulate emissions from a light duty diesel truck.

    PubMed

    Yang, Jiacheng; Durbin, Thomas D; Jiang, Yu; Tange, Takeshi; Karavalakis, Georgios; Cocker, David R; Johnson, Kent C

    2018-05-31

    The primary goal of this study was to compare emissions measurements between a 1065 compliant PEMS, and the NTK Compact Emissions Meter (NCEM) capable of measuring NOx, PM, and solid PN. Both units were equipped on a light-duty diesel truck and tested over local, highway, and downtown driving routes. The results indicate that the NOx measurements for the NCEM were within approximately ±10% of those the 1065 compliant PEMS, which suggests that the NCEM could be used as a screening tool for NOx emissions. The NCEM showed larger differences for PM emissions on an absolute level, but this was at PM levels well below the 1 mg/mi level. The NCEM differences ranged from -2% to +26% if the comparisons are based on a percentage of the 1.0 mg/mi standard. Larger differences were also seen for PN emissions, with the NCEM measuring higher PN emissions, which can primarily be attributed to a zero current offset that we observed for the NCEM, which has been subsequently improved in the latest generation of the NCEM system. The comparisons between the 1065 compliant PEMS and the NCEM suggest that there could be applications for the NCEM or other mini-PEMS for applications such as identification of potential issues by regulatory agencies, manufacturer evaluation and validation of emissions under in-use conditions, and potential use in inspection and maintenance (I/M) programs, especially for heavy-duty vehicles. Copyright © 2017. Published by Elsevier B.V.

  16. 76 FR 74853 - 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ...EPA and NHTSA, on behalf of the Department of Transportation, are issuing this joint proposal to further reduce greenhouse gas emissions and improve fuel economy for light-duty vehicles for model years 2017-2025. This proposal extends the National Program beyond the greenhouse gas and corporate average fuel economy standards set for model years 2012-2016. On May 21, 2010, President Obama issued a Presidential Memorandum requesting that NHTSA and EPA develop through notice and comment rulemaking a coordinated National Program to reduce greenhouse gas emissions of light-duty vehicles for model years 2017- 2025. This proposal, consistent with the President's request, responds to the country's critical need to address global climate change and to reduce oil consumption. NHTSA is proposing Corporate Average Fuel Economy standards under the Energy Policy and Conservation Act, as amended by the Energy Independence and Security Act, and EPA is proposing greenhouse gas emissions standards under the Clean Air Act. These standards apply to passenger cars, light-duty trucks, and medium- duty passenger vehicles, and represent a continued harmonized and consistent National Program. Under the National Program for model years 2017-2025, automobile manufacturers would be able to continue building a single light-duty national fleet that satisfies all requirements under both programs while ensuring that consumers still have a full range of vehicle choices. EPA is also proposing a minor change to the regulations applicable to MY 2012-2016, with respect to air conditioner performance and measurement of nitrous oxides.

  17. Truck Noise XI : Evaluation and Reduction of Heavy-Duty Truck Noise

    DOT National Transportation Integrated Search

    1976-09-01

    This report describes the work performed to examine the noise sources on two common truck configurations manufactured by this company, and to evaluate the noise reduction effectiveness of retrofit hardware. The two trucks selected were Cab-Over-Engin...

  18. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... Vehicles § 109-38.104 Fuel efficient passenger automobiles and light trucks. (a) [Reserved] (b) All requests to purchase passenger automobiles larger than class IA, IB, or II (small, subcompact, or compact...

  19. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... Vehicles § 109-38.104 Fuel efficient passenger automobiles and light trucks. (a) [Reserved] (b) All requests to purchase passenger automobiles larger than class IA, IB, or II (small, subcompact, or compact...

  20. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... Vehicles § 109-38.104 Fuel efficient passenger automobiles and light trucks. (a) [Reserved] (b) All requests to purchase passenger automobiles larger than class IA, IB, or II (small, subcompact, or compact...

  1. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... Vehicles § 109-38.104 Fuel efficient passenger automobiles and light trucks. (a) [Reserved] (b) All requests to purchase passenger automobiles larger than class IA, IB, or II (small, subcompact, or compact...

  2. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... Vehicles § 109-38.104 Fuel efficient passenger automobiles and light trucks. (a) [Reserved] (b) All requests to purchase passenger automobiles larger than class IA, IB, or II (small, subcompact, or compact...

  3. Fuel savings and emissions reductions from light duty fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Mark, J.; Ohi, J. M.; Hudson, D. V., Jr.

    1994-04-01

    Fuel cell vehicles (FCV's) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCV's has the potential to lessen U.S. dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCV's and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCV's will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCV's, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.

  4. Verify Module for Reporting A/C and Off-Cycle GHG Credits for Light-Duty Vehicle and Truck Manufacturers

    EPA Pesticide Factsheets

    This EPA presentation provides information on using the new Verify module, streamlining the process required to electronically submit annual reporting of air conditioning (A/C) and off-cycle GHG credits for light duty manufacturers.

  5. Application for certification, 1990 model-year light-duty vehicles - US Technical Research Company (Peugeot)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  6. Application for certification, 1989 model year light-duty vehicles - US Technical Research Company (Peugeot)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the applicationmore » contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.« less

  7. Field Evaluation of Medium-Duty Plug-in Electric Delivery Trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prohaska, Robert; Simpson, Mike; Ragatz, Adam

    2016-12-01

    This report focuses on medium-duty electric delivery vehicles operated by Frito-Lay North America (FLNA) at its Federal Way, Washington, distribution center. The 100% electric drive system is an alternative to conventional diesel delivery trucks and reduces both energy consumption and carbon dioxide (CO2) emissions. The vehicles' drive cycles and operation are analyzed and compared to demonstrate the importance of matching specific electric vehicle (EV) technologies to the appropriate operational duty cycle. The results of this analysis show that the Smith Newton EVs demonstrated a 68% reduction in energy consumption over the data reporting period compared to the conventional diesel vehicles,more » as well as a 46.4% reduction in CO 2 equivalent emissions based on the local energy generation source. In addition to characterizing the in-use performance of the EVs compared to the conventional diesels, detailed facility load data were collected at the main building power feed as well as from each of the 10 EV chargers to better understand the broader implications associated with commercial EV deployment. These facility loads were incorporated into several modeling scenarios to demonstrate the potential benefits of integrating onsite renewables.« less

  8. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaClair, Tim J; Verma, Rajeev; Norris, Sarah

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of manymore » hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.« less

  9. 40 CFR 86.1215-85 - EPA heavy-duty vehicle (HDV) urban dynamometer driving schedule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false EPA heavy-duty vehicle (HDV) urban..., Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1215-85 EPA heavy-duty vehicle (HDV) urban dynamometer driving schedule. (a)(1) The EPA dynamometer driving schedule for heavy-duty...

  10. Modified Light Duty AM2 Capability Assessment

    DTIC Science & Technology

    The Modified Light -Duty AM2 matting was designed specifically for lightweight, remote-piloted aircraft (RPA) applications. An in- depth study was... Ratio (CBR) of 6. To understand the full potential of the Modified Light -Duty AM2, a full- scale evaluation was performed with contingency C-17 and...stir welding for use in fabrication of the lightweight RPA matting in conjunction with a full- scale test on the Modified Light -Duty AM2 matting system

  11. Developing high-resolution urban scale heavy-duty truck emission inventory using the data-driven truck activity model output

    NASA Astrophysics Data System (ADS)

    Perugu, Harikishan; Wei, Heng; Yao, Zhuo

    2017-04-01

    Air quality modelers often rely on regional travel demand models to estimate the vehicle activity data for emission models, however, most of the current travel demand models can only output reliable person travel activity rather than goods/service specific travel activity. This paper presents the successful application of data-driven, Spatial Regression and output optimization Truck model (SPARE-Truck) to develop truck-related activity inputs for the mobile emission model, and eventually to produce truck specific gridded emissions. To validate the proposed methodology, the Cincinnati metropolitan area in United States was selected as a case study site. From the results, it is found that the truck miles traveled predicted using traditional methods tend to underestimate - overall 32% less than proposed model- truck miles traveled. The coefficient of determination values for different truck types range between 0.82 and 0.97, except the motor homes which showed least model fit with 0.51. Consequently, the emission inventories calculated from the traditional methods were also underestimated i.e. -37% for NOx, -35% for SO2, -43% for VOC, -43% for BC, -47% for OC and - 49% for PM2.5. Further, the proposed method also predicted within ∼7% of the national emission inventory for all pollutants. The bottom-up gridding methodology used in this paper could allocate the emissions to grid cell where more truck activity is expected, and it is verified against regional land-use data. Most importantly, using proposed method it is easy to segregate gridded emission inventory by truck type, which is of particular interest for decision makers, since currently there is no reliable method to test different truck-category specific travel-demand management strategies for air pollution control.

  12. Parametric Analysis of Light Truck and Automobile Maintenance

    DOT National Transportation Integrated Search

    1979-05-01

    Utilizing the Automotive and Light Truck Service and Repair Data Base developed in the campanion report, parametric analyses were made of the relationships between maintenance costs, schduled and unschduled, and vehicle parameters; body class, manufa...

  13. US Hybrid Bucket Truck APM Phase I Final Scientific Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodarzi, Abas

    Presently, there are approximately 166,000 medium- and heavy-duty (MD/HD) bucket trucks operating in the United States, the majority of which are diesel powered. These vehicles spend a significant amount of time idling at the work site to power the truck’s hydraulic boom, lights, auxiliary equipment, and cabin heating and cooling. Nationally, bucket trucks use 0.5 billion gallons of diesel fuel annually, representing 1.5 percent of the U.S.’s total diesel fuel consumption [ ]. Increasing fuel costs and environmental concerns are driving efforts to develop cleaner, quieter, more productive, and more energy efficient bucket trucks. The emissions of the bucket truckmore » have a direct effect on public health. Bucket trucks operation mode imposes heavy loads on the powertrain and results in very poor fuel efficiency and high emissions. Electric powertrains perform well in such conditions, and in recent years, a number of initiatives have been launched to explore the potential of fuel cell electric systems for bucket truck propulsion. The proposed fuel cell powered ePTO offers the best ROI and compatibility with the existing vehicles and operation and also minimized the infrastructure need. To address these problems, US Hybrid Corporation has teamed with Hawaii Center for Advanced Transportation Technologies (HCATT) and Hawaii Natural Energy Institute (HNEI) and Hawaiian Electric Company (HECO) to perform a Phase I analysis on the development and deployment of a fuel cell powered bucket truck (FCBT) for operation by HECO within the City and County of Honolulu. Based on preliminary modeling of a typical bucket truck operation, it is anticipated that the fuel cell powertrain will provide a 200% fuel economy improvement with zero emissions job-site operation and lower operating noise. The zero-emission ePTO bucket truck will also support the Greenhouse Gas (GHG) emission goals set forth by the federal government as well as the State of Hawaii. The operators within

  14. 49 CFR 523.6 - Heavy-duty vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.6 Heavy-duty vehicle. (a) A heavy-duty vehicle is any commercial medium- and heavy-duty on highway vehicle or a work truck, as defined in 49 U.S...; and (3) Truck tractors with a GVWR above 26,000 pounds. (b) The heavy-duty vehicle classification does...

  15. Characteristics of particle number and mass emissions during heavy-duty diesel truck parked active DPF regeneration in an ambient air dilution tunnel

    NASA Astrophysics Data System (ADS)

    Yoon, Seungju; Quiros, David C.; Dwyer, Harry A.; Collins, John F.; Burnitzki, Mark; Chernich, Donald; Herner, Jorn D.

    2015-12-01

    Diesel particle number and mass emissions were measured during parked active regeneration of diesel particulate filters (DPF) in two heavy-duty diesel trucks: one equipped with a DPF and one equipped with a DPF + SCR (selective catalytic reduction), and compliant with the 2007 and 2010 emission standards, respectively. The emission measurements were conducted using an ambient air dilution tunnel. During parked active regeneration, particulate matter (PM) mass emissions measured from a 2007 technology truck were significantly higher than the emissions from a 2010 technology truck. Particle number emissions from both trucks were dominated by nucleation mode particles having a diameter less than 50 nm; nucleation mode particles were orders of magnitude higher than accumulation mode particles having a diameter greater than 50 nm. Accumulation mode particles contributed 77.8 %-95.8 % of the 2007 truck PM mass, but only 7.3 %-28.2 % of the 2010 truck PM mass.

  16. PM₂.₅ emissions from light-duty gasoline vehicles in Beijing, China.

    PubMed

    Shen, Xianbao; Yao, Zhiliang; Huo, Hong; He, Kebin; Zhang, Yingzhi; Liu, Huan; Ye, Yu

    2014-07-15

    As stricter standards for diesel vehicles are implemented in China, and the use of diesel trucks is forbidden in urban areas, determining the contribution of light-duty gasoline vehicles (LDGVs) to on-road PM2.5 emissions in cities is important. Additionally, in terms of particle number and size, particulates emitted from LDGVs have a greater health impact than particulates emitted from diesel vehicles. In this work, we measured PM2.5 emissions from 20 LDGVs in Beijing, using an improved combined on-board emission measurement system. We compared these measurements with those reported in previous studies, and estimated the contribution of LDGVs to on-road PM2.5 emissions in Beijing. The results show that the PM2.5 emission factors for LDGVs, complying with European Emission Standards Euro-0 through Euro-4 were: 117.4 ± 142, 24.1 ± 20.4, 4.85 ± 7.86, 0.99 ± 1.32, 0.17 ± 0.15 mg/km, respectively. Our results show a significant decline in emissions with improving vehicle technology. However, this trend is not reflected in recent emission inventory studies. The daytime contributions of LDGVs to PM2.5 emissions on highways, arterials, residential roads, and within urban areas of Beijing were 44%, 62%, 57%, and 57%, respectively. The contribution of LDGVs to PM2.5 emissions varied both for different road types and for different times. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. 75 FR 43975 - California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Truck Idling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... Truck Idling Requirements apply to new California certified 2008 and subsequent model year heavy-duty diesel engines in heavy-duty diesel vehicles with a gross vehicle weight rating over 14,000 pounds, and... weight rating (GVWR) greater than 14,000 pounds (i.e., heavy-duty diesel vehicles or ``HDDV''s) be...

  18. Weight Reduction Potential of Automobiles and Light Trucks: 1980 Summary Source Document

    DOT National Transportation Integrated Search

    1981-06-01

    This report provides an assessment of the potential of weight reduction for passenger cars and light trucks (including pickup trucks, vans, and utility vehicles of GVWR up to 8500 pounds) in the post-1985 period. Vehicle characteristics and weight re...

  19. Comparisons of MOVES Light-duty Gasoline NOx Emission Rates with Real-world Measurements

    NASA Astrophysics Data System (ADS)

    Choi, D.; Sonntag, D.; Warila, J.

    2017-12-01

    Recent studies have shown differences between air quality model estimates and monitored values for nitrogen oxides. Several studies have suggested that the discrepancy between monitored and modeled values is due to an overestimation of NOx from mobile sources in EPA's emission inventory, particularly for light-duty gasoline vehicles. EPA's MOtor Vehicle Emission Simulator (MOVES) is an emission modeling system that estimates emissions for cars, trucks and other mobile sources at the national, county, and project level for criteria pollutants, greenhouse gases, and air toxics. Studies that directly measure vehicle emissions provide useful data for evaluating MOVES when the measurement conditions are properly accounted for in modeling. In this presentation, we show comparisons of MOVES2014 to thousands of real-world NOx emissions measurements from individual light-duty gasoline vehicles. The comparison studies include in-use vehicle emissions tests conducted on chassis dynamometer tests in support of Denver, Colorado's Vehicle Inspection & Maintenance Program and remote sensing data collected using road-side instruments in multiple locations and calendar years in the United States. In addition, we conduct comparisons of MOVES predictions to fleet-wide emissions measured from tunnels. We also present details on the methodology used to conduct the MOVES model runs in comparing to the independent data.

  20. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2014-05-01

    emitted by newer vehicles appears to be more efficient (higher yielding) in producing SOA than the emissions from older vehicles. About 30% of the nonmethane organic gas emissions from the newer (LEV1 and LEV2) vehicles could not be speciated, and the majority of the SOA formed from these vehicles appears to be associated with these unspeciated organics. By comparing this study with a companion study of diesel trucks, we conclude that both primary PM emissions and SOA production for light-duty gasoline vehicles are much greater than for late-model (2007 and later) on-road heavy-duty diesel trucks.

  1. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2013-09-01

    the emissions from older vehicles. About 30% of the non-methane organic gas emissions from the newer (LEV1 and LEV2) vehicles could not be speciated, and the majority of the SOA formed from these vehicles appears to be associated with these unspeciated organics. These results for light-duty gasoline vehicles contrast with the results from a companion study of on-road heavy-duty diesel trucks; in that study late model (2007 and later) diesel trucks equipped with catalyzed diesel particulate filters emitted very little primary PM, and the photo-oxidized emissions produced negligible amounts of SOA.

  2. 49 CFR 393.128 - What are the rules for securing automobiles, light trucks and vans?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false What are the rules for securing automobiles, light... automobiles, light trucks and vans? (a) Applicability. The rules in this section apply to the transportation of automobiles, light trucks, and vans which individually weigh 4,536 kg. (10,000 lb) or less...

  3. 49 CFR 393.128 - What are the rules for securing automobiles, light trucks and vans?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false What are the rules for securing automobiles, light... automobiles, light trucks and vans? (a) Applicability. The rules in this section apply to the transportation of automobiles, light trucks, and vans which individually weigh 4,536 kg. (10,000 lb) or less...

  4. 49 CFR 393.128 - What are the rules for securing automobiles, light trucks and vans?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false What are the rules for securing automobiles, light... automobiles, light trucks and vans? (a) Applicability. The rules in this section apply to the transportation of automobiles, light trucks, and vans which individually weigh 4,536 kg. (10,000 lb) or less...

  5. 49 CFR 393.128 - What are the rules for securing automobiles, light trucks and vans?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false What are the rules for securing automobiles, light... automobiles, light trucks and vans? (a) Applicability. The rules in this section apply to the transportation of automobiles, light trucks, and vans which individually weigh 4,536 kg. (10,000 lb) or less...

  6. 49 CFR 393.128 - What are the rules for securing automobiles, light trucks and vans?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false What are the rules for securing automobiles, light... automobiles, light trucks and vans? (a) Applicability. The rules in this section apply to the transportation of automobiles, light trucks, and vans which individually weigh 4,536 kg. (10,000 lb) or less...

  7. Weight Reduction Potential of Automobiles and Light Trucks, 1979 Summary Source Document

    DOT National Transportation Integrated Search

    1980-03-01

    The purpose of this report is to provide an assessment of the potential for weight reduction for passenger cars and light trucks (including pickup trucks, vans, and utility vehicles of GVWR up to 8500 pounds) in the 1980 to 2000 model year period. Va...

  8. Effects of Particle Filters and Selective Catalytic Reduction on In-Use Heavy-Duty Diesel Truck Emissions

    NASA Astrophysics Data System (ADS)

    Preble, C.; Cados, T.; Harley, R.; Kirchstetter, T.

    2016-12-01

    Heavy-duty diesel trucks (HDDT) are a major source of nitrogen oxides (NOx) and black carbon (BC) in urban environments, contributing to persistent ozone and particulate matter air quality problems. Diesel particle filters (DPFs) and selective catalytic reduction (SCR) systems that target PM and NOx emissions, respectively, have recently become standard equipment on new HDDT. DPFs can also be installed on older engines as a retrofit device. Previous work has shown that DPF and SCR systems can reduce NOx and BC emissions by up to 70% and 90%, respectively, compared to modern trucks without these after-treatment controls (Preble et al., ES&T 2015). DPFs can have the undesirable side-effect of increasing ultrafine particle (UFP) and nitrogen dioxide (NO2) emissions. While SCR systems can partially mitigate DPF-related NO2 increases, these systems can emit nitrous oxide (N2O), a potent greenhouse gas. We report new results from a study of HDDT emissions conducted in fall 2015 at the Port of Oakland and Caldecott Tunnel in California's San Francisco Bay Area. We report pollutant emission factors (g kg-1) for emitted NOx, NO2, BC, PM2.5, UFP, and N2O on a truck-by-truck basis. Using a roadside license plate recognition system, we categorize each truck by its engine model year and installed after-treatment controls. From this, we develop emissions profiles for trucks with and without DPF and SCR. We evaluate the effectiveness of these devices as a function of their age to determine whether degradation is an issue. We also compare the emission profiles of trucks traveling at low speeds along a level, arterial road en route to the port and at high speeds up a 4% grade highway approaching the tunnel. Given the climate impacts of BC and N2O, we also examine the global warming potential of emissions from trucks with and without DPF and SCR.

  9. Effect of truck operating weight on heavy-duty diesel emissions.

    PubMed

    Gajendran, Prakash; Clark, Nigel N

    2003-09-15

    Heavy-duty diesel vehicles are substantial contributors of oxides of nitrogen (NO(x)) and particulate matter (PM) while carbon monoxide and hydrocarbon (HC) emissions from diesel vehicles receive less attention. Truck emissions inventories have traditionally employed average fuel economy and engine efficiency factors to translate certification into distance-specific (g/mi) data, so that inventories do not take into account the real effects of truck operating weight on emissions. The objective of this research was to examine weight corrections for class 7 and 8 vehicles (over 26 000 lb (11 793 kg) gross vehicle weight) from a theoretical point of view and to present a collection of original data on the topic. It was found by combining an empirical equation with theoretical truck loads that the NO(x) emissions increased by approximately 54% for a doubling of test weight. Emissions data were gathered from specific tests performed using different test weights and using various test schedules, which can consist of cycles or routes. It was found experimentally that NO(x) emissions have a nearly linear correlation with vehicle weight and did not vary much from vehicle to vehicle. NO(x) emissions were also found to be insensitive to transient operation in the test schedule. The observed trends correlate well with the theory presented, and hence, the NO(x) emissions can be predicted reasonably accurately using the theory. If NO(x) data were considered in fuel-specific (g/gal) units, they did not vary with the test weight. HC emissions were found to be insensitive to the vehicle weight. CO and PM emissions were found to be a strong function of weight during transient operation. Under transient operation, the CO emissions value increased by 36% for an increase in test weight from 42 000 (19 051 kg) to 56 000 lb (25 401 kg). However, CO and PM were found to be insensitive to the vehicle weight during nearly steady-state operation.

  10. Impacts of Aging Emission Control Systems on In-Use Heavy-Duty Diesel Truck Emission Rates

    NASA Astrophysics Data System (ADS)

    Preble, C.; Cados, T.; Harley, R.; Kirchstetter, T.

    2017-12-01

    Heavy-duty diesel trucks are a major source of nitrogen oxides (NOx) and black carbon (BC) in urban environments, contributing to persistent ozone and particulate matter air quality problems. Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems have become standard equipment on new trucks. Particle filters can also be installed as a retrofit on older engines. Prior work has shown that exhaust filters and SCR systems effectively reduce BC and NOx emission rates by up to 90 and 80%, respectively (Preble et al., ES&T 2015). There is concern, however, that DPFs may promote the formation of ultrafine particles (UFP) and increase tailpipe emissions of nitrogen dioxide (NO2). Additionally, urea-based SCR systems for NOx control may form nitrous oxide (N2O), an important contributor to stratospheric ozone depletion. The effectiveness of these emission controls has been thoroughly evaluated in the laboratory, but the long-term durability of in-use systems and their impacts on co-emitted species have not been well characterized. To evaluate the in-use performance of DPF and SCR systems, pollutant emissions from thousands of diesel trucks were measured over several years at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Pollutants present in the exhaust plumes of individual trucks were measured at high time resolution (≥1 Hz) as trucks passed under a mobile lab stationed on an overpass. Fuel-based emission factors (g pollutant emitted per kg fuel burned) were calculated for individual trucks and linked via recorded license plates to vehicle attributes, including engine model year and installed emission control systems. Use of DPFs reduced the BC emission rate by up to 95% at both locations. SCR systems were more effective at reducing NOx emissions under the uphill, highway driving conditions at the Caldecott Tunnel. The emission rates of co-emitted species NO2, UFP, and N2O depended on driving

  11. 40 CFR 86.1840-01 - Special test procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks... those set forth in this part, for any light-duty vehicle, light-duty truck, or complete heavy-duty... special test procedures but the Administrator determines that a light-duty vehicle, light-duty truck, or...

  12. 76 FR 57105 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ...EPA and NHTSA, on behalf of the Department of Transportation, are each finalizing rules to establish a comprehensive Heavy-Duty National Program that will reduce greenhouse gas emissions and fuel consumption for on-road heavy-duty vehicles, responding to the President's directive on May 21, 2010, to take coordinated steps to produce a new generation of clean vehicles. NHTSA's final fuel consumption standards and EPA's final carbon dioxide (CO2) emissions standards are tailored to each of three regulatory categories of heavy-duty vehicles: Combination Tractors; Heavy-duty Pickup Trucks and Vans; and Vocational Vehicles. The rules include separate standards for the engines that power combination tractors and vocational vehicles. Certain rules are exclusive to the EPA program. These include EPA's final hydrofluorocarbon standards to control leakage from air conditioning systems in combination tractors, and pickup trucks and vans. These also include EPA's final nitrous oxide (N2O) and methane (CH4) emissions standards that apply to all heavy- duty engines, pickup trucks and vans. EPA's final greenhouse gas emission standards under the Clean Air Act will begin with model year 2014. NHTSA's final fuel consumption standards under the Energy Independence and Security Act of 2007 will be voluntary in model years 2014 and 2015, becoming mandatory with model year 2016 for most regulatory categories. Commercial trailers are not regulated in this phase of the Heavy-Duty National Program. The agencies estimate that the combined standards will reduce CO2 emissions by approximately 270 million metric tons and save 530 million barrels of oil over the life of vehicles sold during the 2014 through 2018 model years, providing over $7 billion in net societal benefits, and $49 billion in net societal benefits when private fuel savings are considered. EPA is also finalizing provisions allowing light-duty vehicle manufacturers to use CO2 credits to meet the light-duty vehicle N2O and

  13. Comparison of NOx emissions from China III and China IV in-use diesel trucks based on on-road measurements

    NASA Astrophysics Data System (ADS)

    Yao, Zhiliang; Wu, Bobo; Wu, Yunong; Cao, Xinyue; Jiang, Xi

    2015-12-01

    To mitigate NOx and other emissions from diesel vehicles, China I, China II, China III and China IV emissions standards for new vehicles have been implemented nationwide. However, recent on-road measurements using a portable emission measurement system (PEMS) have revealed no significant reductions in the NOx emissions factors of diesel trucks due to the change from China II emissions standards to the more stringent China III standards. Thus, it is important to understand the effect of the China IV emissions standard on NOx emissions. In this study, nine China III and nine China IV diesel trucks of three sizes (light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs)) were tested on real roads in Beijing using a PEMS. Compared to the tested China III diesel trucks, the China IV diesel trucks showed significant reductions of the average NOx emissions factors in terms of both distance travelled and fuel consumption. However, the driving conditions had an important impact on the reduction. Under non-highway driving (NHD), several of the tested China IV diesel trucks experienced no reduction or an increase in NOx emissions compared to their China III counterparts. The NOx emissions factors of the 18 tested diesel trucks under NHD were on average 1.5-times greater than those under highway driving (HD), and the effects on NOx emissions removal from China III to China IV diesel trucks were greater under HD than under NHD. In addition, no significant reduction of NOx based on fuel consumption for China IV diesel trucks was observed for MDDTs and HDDTs compared to the test results for similar China II vehicles reported in a previous study. To reduce NOx emissions in China, additional control measures of vehicular NOx emissions should be formulated.

  14. Medium- and Heavy-Duty Vehicle Duty Cycles for Electric Powertrains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Kenneth; Bennion, Kevin; Miller, Eric

    2016-03-02

    NREL's Fleet Test and Evaluation group has extensive in-use vehicle data demonstrating the importance of understanding the vocational duty cycle for appropriate sizing of electric vehicle (EV) and power electronics components for medium- and heavy-duty EV applications. This presentation includes an overview of recent EV fleet evaluation projects that have valuable in-use data that can be leveraged for sub-system research, analysis, and validation. Peak power and power distribution data from in-field EVs are presented for four different vocations, including class 3 delivery vans, class 6 delivery trucks, class 8 transit buses, and class 8 port drayage trucks, demonstrating the impactsmore » of duty cycle on performance requirements.« less

  15. Combined Aero and Underhood Thermal Analysis for Heavy Duty Trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vegendla, Prasad; Sofu, Tanju; Saha, Rohit

    2017-01-31

    Aerodynamic analysis of the medium-duty delivery truck was performed to achieve vehicle design optimization. Three dimensional CFD simulations were carried out for several improved designs, with a detailed external component analysis of wheel covers, side skirts, roof fairings, and rounded trailer corners. The overall averaged aerodynamics drag reduction through the design modifications were shown up to 22.3% through aerodynamic considerations alone, which is equivalent to 11.16% fuel savings. The main identified fuel efficiencies were based on second generation devices, including wheel covers, side skirts, roof fairings, and rounded trailer corners. The important findings of this work were; (i) the optimummore » curvature radius of the rounded trailer edges found to be 125 mm, with an arc length of 196.3 mm, (ii) aerodynamic drag reduction increases with dropping clearance of side skirts between wheels and ground, and (iii) aerodynamic drag reduction increases with an extension of front bumper towards the ground.« less

  16. SCR SYSTEMS FOR HEAVY DUTY TRUCKS: PROGRESS TOWARDS MEETING EURO 4 EMISSION STANDARDS IN 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, W; Huethwohl, G; Maurer, B

    2003-08-24

    Emissions of diesel engines contain some components, which support the generation of smog and which are classified hazardous. Exhaust gas aftertreatment is a powerful tool to reduce the NOx and Particulate emissions. The NOx-emission can be reduced by the SCR technology. SCR stands for Selective Catalytic Reduction. A reduction agent has to be injected into the exhaust upstream of a catalyst. On the catalyst the NOx is reduced to N2 (Nitrogen) and H2O (Water). This catalytic process was developed in Japan about 30 years ago to reduce the NOx emission of coal-fired power plants. The first reduction agent used wasmore » anhydrous ammonia (NH3). SCR technology was used with diesel engines starting mid of the 80s. First applications were stationary operating generator-sets. In 1991 a joint development between DaimlerChrysler, MAN, IVECO and Siemens was started to use SCR technology for the reduction of heavy duty trucks. Several fleet tests demonstrated the durability of the systems. To day, SCR technology is the most promising technology to fulfill the new European Regulations EURO 4 and EURO 5 being effective Oct. 2005 and Oct. 2008. The efficient NOx reduction of the catalyst allows an engine calibration for low fuel consumption. DaimlerChrysler decided to use the SCR technology on every heavy duty truck and bus in Europe and many other truck manufacturers will introduce SCR technology to fulfill the 2005 emission regulation. The truck manufacturers in Europe agreed to use aqueous solution of Urea as reducing agent. The product is called AdBlue. AdBlue is a non toxic, non smelling liquid. The consumption is about 5% of the diesel fuel consumption to reduce the NOx emissions. A small AdBlue tank has to be installed to the vehicle. With an electronically controlled dosing system the AdBlue is injected into the exhaust. The dosing system is simple and durable. It has proven its durability during winter and summer testing as well as in fleet tests. The infrastructure

  17. Effects of Cold Temperature and Ethanol Content on VOC Emissions from Light-Duty Gasoline Vehicles.

    PubMed

    George, Ingrid J; Hays, Michael D; Herrington, Jason S; Preston, William; Snow, Richard; Faircloth, James; George, Barbara Jane; Long, Thomas; Baldauf, Richard W

    2015-11-03

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle testing was conducted using a three-phase LA92 driving cycle in a temperature-controlled chassis dynamometer at two ambient temperatures (-7 and 24 °C). The cold start driving phase and cold ambient temperature increased VOC and MSAT emissions up to several orders of magnitude compared to emissions during other vehicle operation phases and warm ambient temperature testing, respectively. As a result, calculated ozone formation potentials (OFPs) were 7 to 21 times greater for the cold starts during cold temperature tests than comparable warm temperature tests. The use of E85 fuel generally led to substantial reductions in hydrocarbons and increases in oxygenates such as ethanol and acetaldehyde compared to E0 and E10 fuels. However, at the same ambient temperature, the VOC emissions from the E0 and E10 fuels and OFPs from all fuels were not significantly different. Cold temperature effects on cold start MSAT emissions varied by individual MSAT compound, but were consistent over a range of modern spark ignition vehicles.

  18. 40 CFR 600.501-85 - General applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Year 1978 Passenger Automobiles and for 1979 and Later Model Year Automobiles (Light Trucks and Passenger Automobiles)-Procedures for Determining Manufacturer's Average Fuel Economy § 600.501-85 General... applicable to 1985 and later model year gasoline-fueled and diesel automobiles. (b)(1) Manufacturers that...

  19. Screw expander for light duty diesel engines

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Preliminary selection and sizing of a positive displacement screw compressor-expander subsystem for a light-duty adiabatic diesel engine; development of a mathematical model to describe overall efficiencies for the screw compressor and expander; simulation of operation to establish overall efficiency for a range of design parameters and at given engine operating points; simulation to establish potential net power output at light-duty diesel operating points; analytical determination of mass moments of inertia for the rotors and inertia of the compressor-expander subsystem; and preparation of engineering layout drawings of the compressor and expander are discussed. As a result of this work, it was concluded that the screw compressor and expander designed for light-duty diesel engine applications are viable alternatives to turbo-compound systems, with acceptable efficiencies for both units, and only a moderate effect on the transient response.

  20. Light-Duty Vehicle Thermal Management | Transportation Research | NREL

    Science.gov Websites

    Light-Duty Vehicle Thermal Management Light-Duty Vehicle Thermal Management Image of a semi transportation options, the lab is working to optimize the thermal management of both electric-drive and fuel per year just to air-condition these LDVs. NREL evaluates the effectiveness of thermal management

  1. On-road emission characteristics of VOCs from diesel trucks in Beijing, China

    NASA Astrophysics Data System (ADS)

    Yao, Zhiliang; Shen, Xianbao; Ye, Yu; Cao, Xinyue; Jiang, Xi; Zhang, Yingzhi; He, Kebin

    2015-02-01

    This paper is the first in our series of papers aimed at understanding the volatile organic compound (VOC) emissions of vehicles in Beijing by conducting on-board emission measurements. This paper focuses on diesel vehicles. In this work, 18 China III diesel vehicles, including seven light-duty diesel trucks (LDDTs), four medium-duty diesel trucks (MDDTs) and seven heavy-duty diesel trucks (HDDTs), were examined when the vehicles were driven on predesigned fixed test routes in Beijing in China using a portable emissions measurement system (PEMS). Tedlar bag sampling and 2,4-dinitrophenyhydrazine (DNPH) cartridge sampling were used to collect VOC species, and gas chromatography-mass spectrometry (GC/MS) and high-performance liquid chromatography (HPLC) were used to analyze these samples. We obtained the VOC emission factors and relative compositions for diesel trucks of different sizes under different driving patterns. In total, 64 VOC species were quantified in this study, including 25 alkanes, four alkenes, 13 aromatics, 13 carbonyls and nine other compounds. The emission factors of the total VOCs based on mileage traveled for HDDTs were higher than those of LDDTs and MDDTs. Carbonyls, aromatics and alkanes were the dominant VOC species. Carbonyls accounted for 42.7%-69.2% of the total VOCs in the three types of tested diesel trucks. The total VOC emission factors of the tested vehicles that were driven on non-highway routes were 1.5-2.0 times higher than those of the vehicles driven on the highway. As for the OFP calculation results, with increased vehicle size, the ozone formation potential presented an increasing trend. Among the VOC components, carbonyls were the primary contributor to OFP. In addition, the OFPs under non-highway driving cycles were 1.3-1.7 times those under highway driving cycles. The results of this study will be helpful in improving our understanding of VOCs emitted from on-road diesel trucks in China.

  2. Light trucks and highway fatalities : the role of network effects.

    DOT National Transportation Integrated Search

    2012-12-01

    Light trucks, such as sport utility vehicles (SUVs) : and pickups, impose greater risks of injury and : death on other motorists than do cars, while at the : same time providing their occupants with increased : protection against these risks relative...

  3. 75 FR 74151 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ...EPA and NHTSA, on behalf of the Department of Transportation, are each proposing rules to establish a comprehensive Heavy-Duty National Program that will reduce greenhouse gas emissions and increase fuel efficiency for on-road heavy-duty vehicles, responding to the President's directive on May 21, 2010, to take coordinated steps to produce a new generation of clean vehicles. NHTSA's proposed fuel consumption standards and EPA's proposed carbon dioxide (CO2) emissions standards would be tailored to each of three regulatory categories of heavy-duty vehicles: Combination Tractors; Heavy-Duty Pickup Trucks and Vans; and Vocational Vehicles, as well as gasoline and diesel heavy-duty engines. EPA's proposed hydrofluorocarbon emissions standards would apply to air conditioning systems in tractors, pickup trucks, and vans, and EPA's proposed nitrous oxide (N2O) and methane (CH4) emissions standards would apply to all heavy-duty engines, pickup trucks, and vans. EPA is also requesting comment on possible alternative CO2-equivalent approaches for model year 2012-14 light-duty vehicles. EPA's proposed greenhouse gas emission standards under the Clean Air Act would begin with model year 2014. NHTSA's proposed fuel consumption standards under the Energy Independence and Security Act of 2007 would be voluntary in model years 2014 and 2015, becoming mandatory with model year 2016 for most regulatory categories. Commercial trailers would not be regulated in this phase of the Heavy- Duty National Program, although there is a discussion of the possibility of future action for trailers.

  4. Program Guide for Diesel Engine Mechanics 8742000 (IN47.060500) and Heavy Duty Truck and Bus Mechanics DIM0991 (IN47.060501).

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Coll. of Education.

    This competency-based program guide provides course content information and procedures for secondary schools, postsecondary vocational schools, and community colleges in Florida that conduct programs in diesel engine mechanics and heavy duty truck and bus mechanics. The first section is on legal authority, which applies to all vocational education…

  5. On-road emissions of light-duty vehicles in europe.

    PubMed

    Weiss, Martin; Bonnel, Pierre; Hummel, Rudolf; Provenza, Alessio; Manfredi, Urbano

    2011-10-01

    For obtaining type approval in the European Union, light-duty vehicles have to comply with emission limits during standardized laboratory emissions testing. Although emission limits have become more stringent in past decades, light-duty vehicles remain an important source of nitrogen oxides and carbon monoxide emissions in Europe. Furthermore, persisting air quality problems in many urban areas suggest that laboratory emissions testing may not accurately capture the on-road emissions of light-duty vehicles. To address this issue, we conduct the first comprehensive on-road emissions test of light-duty vehicles with state-of-the-art Portable Emission Measurement Systems. We find that nitrogen oxides emissions of gasoline vehicles as well as carbon monoxide and total hydrocarbon emissions of both diesel and gasoline vehicles generally remain below the respective emission limits. By contrast, nitrogen oxides emissions of diesel vehicles (0.93 ± 0.39 grams per kilometer [g/km]), including modern Euro 5 diesel vehicles (0.62 ± 0.19 g/km), exceed emission limits by 320 ± 90%. On-road carbon dioxide emissions surpass laboratory emission levels by 21 ± 9%, suggesting that the current laboratory emissions testing fails to accurately capture the on-road emissions of light-duty vehicles. Our findings provide the empirical foundation for the European Commission to establish a complementary emissions test procedure for light-duty vehicles. This procedure could be implemented together with more stringent Euro 6 emission limits in 2014. The envisaged measures should improve urban air quality and provide incentive for innovation in the automotive industry.

  6. Study of Technological Improvements to Optimize Truck Configurations for Fuel Economy

    DOT National Transportation Integrated Search

    1975-09-01

    The truck types that accounted for most of the fuel consumed were identified and modeled by computer analysis. Baseline fuel consumption was calculated for the major truck types over specific duty cycles. Design improvements in the truck were then mo...

  7. Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty

    Science.gov Websites

    -board equipment so trucks can plug into electrical outlets at the truck stop. To use dual-system electrification, trucks must be equipped with AC equipment or an inverter to convert 120-volt power, electrical equipment, and hardware to plug in to the electrical outlet. Necessary electrical equipment might include an

  8. Ethanol or bioelectricity? Life cycle assessment of lignocellulosic bioenergy use in light-duty vehicles.

    PubMed

    Luk, Jason M; Pourbafrani, Mohammad; Saville, Bradley A; MacLean, Heather L

    2013-09-17

    Our study evaluates life cycle energy use and GHG emissions of lignocellulosic ethanol and bioelectricity use in U.S. light-duty vehicles. The well-to-pump, pump-to-wheel, and vehicle cycle stages are modeled. All ethanol (E85) and bioelectricity pathways have similar life cycle fossil energy use (~ 100 MJ/100 vehicle kilometers traveled (VKT)) and net GHG emissions (~5 kg CO2eq./100 VKT), considerably lower (65-85%) than those of reference gasoline and U.S. grid-electricity pathways. E85 use in a hybrid vehicle and bioelectricity use in a fully electric vehicle also have similar life cycle biomass and total energy use (~ 350 and ~450 MJ/100 VKT, respectively); differences in well-to-pump and pump-to-wheel efficiencies can largely offset each other. Our energy use and net GHG emissions results contrast with findings in literature, which report better performance on these metrics for bioelectricity compared to ethanol. The primary source of differences in the studies is related to our development of pathways with comparable vehicle characteristics. Ethanol or vehicle electrification can reduce petroleum use, while bioelectricity may displace nonpetroleum energy sources. Regional characteristics may create conditions under which either ethanol or bioelectricity may be the superior option; however, neither has a clear advantage in terms of GHG emissions or energy use.

  9. Simultaneous determination of carbonyls and NO2 in exhausts of heavy-duty diesel trucks and transit buses by HPLC following 2,4-dinitrophenylhydrazine cartridge collection.

    PubMed

    Tang, Shida; Graham, Lisa; Shen, Ling; Zhou, Xianliang; Lanni, Thomas

    2004-11-15

    A method combining 2,4-dinitrophenylhydrazine (DNPH) cartridge sampling and high-performance liquid chromatography (HPLC) analysis has been used for the measurement of carbonyl and NO2 emissions from heavy-duty diesel trucks and transit buses. The reaction of NO2 with DNPH allows for the simultaneous and unambiguous determination of NO2 and carbonyl concentrations in exhaust samples. The potential coelution of the NO2-DNPH derivative with the formaldehyde-DNPH derivative under certain chromatographic conditions was investigated. Successful separation of these two species was achieved allowing for simultaneous determination of carbonyls and NO2 in the exhaust samples collected from heavy-duty diesel (HDD) trucks and diesel, diesel/electric hybrid, diesel equipped with the continuously regenerating technology (CRT) particle traps, and compressed natural gas (CNG) transit buses tested over various drive cycles. Elevated NO2 emissions from CRT-equipped buses were observed. The NO2/NOx volume ratios for HDD trucks and transit buses are discussed. A comparison of the DNPH derivatization with HPLC/UV-visible detection method with a chemiluminescence analyzer method for NO2 measurement is presented for a limited number of diesel/CRT and CNG buses.

  10. Natural gas as a future fuel for heavy-duty vehicles

    DOT National Transportation Integrated Search

    2001-06-21

    In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natur...

  11. Marine vessels as substitutes for heavy-duty trucks in Great Lakes freight transportation.

    PubMed

    Comer, Bryan; Corbett, James J; Hawker, J Scott; Korfmacher, Karl; Lee, Earl E; Prokop, Chris; Winebrake, James J

    2010-07-01

    This paper applies a geospatial network optimization model to explore environmental, economic, and time-of-delivery tradeoffs associated with the application of marine vessels as substitutes for heavy-duty trucks operating in the Great Lakes region. The geospatial model integrates U.S. and Canadian highway, rail, and waterway networks to create an intermodal network and characterizes this network using temporal, economic, and environmental attributes (including emissions of carbon dioxide, particulate matter, carbon monoxide, sulfur oxides, volatile organic compounds, and nitrogen oxides). A case study evaluates tradeoffs associated with containerized traffic flow in the Great Lakes region, demonstrating how choice of freight mode affects the environmental performance of movement of goods. These results suggest opportunities to improve the environmental performance of freight transport through infrastructure development, technology implementation, and economic incentives.

  12. 76 FR 55011 - Hand Trucks and Certain Parts Thereof From the People's Republic of China; Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-891] Hand Trucks and Certain... initiation of administrative review of the antidumping duty order on hand trucks and certain parts thereof... merchandise subject to this antidumping duty order consists of hand trucks manufactured from any material...

  13. Truck Thermoacoustic Generator and Chiller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keolian, Robert

    2011-03-31

    This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to bemore » tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.« less

  14. Emission characteristics of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons from diesel trucks based on on-road measurements

    NASA Astrophysics Data System (ADS)

    Cao, Xinyue; Hao, Xuewei; Shen, Xianbao; Jiang, Xi; Wu, Bobo; Yao, Zhiliang

    2017-01-01

    Polycyclic aromatic hydrocarbon (PAH) and nitro-polycyclic aromatic hydrocarbon (NPAH) emissions from 18 diesel trucks of different sizes and with different emission standards were tested in Beijing using a portable emission measurement system (PEMS). Both the gaseous- and particulate-phase PAHs and NPAHs were quantified by high-performance liquid chromatography (HPLC) in the laboratory. The emission factors (EFs) of the total PAHs from light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs) were 82229.11 ± 41906.06, 52867.43 ± 18946.47 and 93837.35 ± 32193.14 μg/km, respectively, much higher than the respective values of total NPAHs from their counterpart vehicles. The gaseous phase had an important contribution to the total PAHs and NPAHs, with a share rate of approximately 69% and 97% on average, respectively. The driving cycle had important impacts on the emissions of PAHs and NPAHs, especially for LDDTs and HDDTs. Higher emissions of PAHs and NPAHs were detected on non-highway roads compared to that on highways for these two types of vehicles. Compared to the results of different studies, the difference in the EFs of PAHs and NPAHs can reach several orders of magnitudes, which would introduce errors in the development of an emission inventory of PAHs and NPAHs.

  15. 75 FR 29314 - Hand Trucks and Parts Thereof from the People's Republic of China: Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-891] Hand Trucks and Parts... preliminary results of administrative review of the antidumping duty order on hand trucks and certain parts... review of the antidumping duty order on hand trucks and certain parts thereof from the People's Republic...

  16. 40 CFR 86.1848-01 - Certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and... the implementation schedule shall not be covered by the certificate. (4) For incomplete light-duty... new light-duty vehicles, light-duty trucks, and complete heavy-duty vehicles must obtain a certificate...

  17. Drag Optimization Of Light Trucks Using Computational Fluid Dynamics

    DTIC Science & Technology

    2003-09-01

    dimensional design case 19 study on the Lockheed C-141B aircraft wing, Cosentino and Holst [Ref. 10] reduced the number of design variables from 120 to 12... case letters) 6. AUTHOR(S) 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943...23 B. TWO DIMENSIONAL LIGHT TRUCK SHAPE STUDIES .................. 23 1. Canopies

  18. 77 FR 22224 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Amendments to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... of Volatile Organic Compounds Emissions; Automobile and Light-Duty Truck Coating Operations; Paper... compound (VOC) emissions from industrial cleaning solvents facilities; automobile and light-duty truck..., ``Automobile and Light-Duty Truck Coating Operations,'' section 16.0, ``Paper Coating,'' section 23.0...

  19. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...

  20. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...

  1. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...

  2. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...

  3. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...

  4. Ozone changes in response to the heavy-duty diesel truck control in the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Yuan, Zibing; Fung, J. C. H.; Xue, Jian; Li, Ying; Zheng, Junyu; Lau, A. K. H.

    2014-05-01

    In recent years, restricting heavy-duty diesel trucks from driving within urban areas during the daytime is implemented in major PRD cities (e.g. Guangzhou and Shenzhen). Potential effects of this traffic control policy on spatial and temporal variations of O3 concentrations are examined by CMAQ model system. Temporal profiles of mobile source emissions are modified to reflect the emission characteristics after the control. Our results show that: (1) with the updated mobile emission profile, there is a notable improvement in O3 simulation performance for urban sites, with reductions in both the nighttime O3 overestimation (up to 25 ppb) and the daytime underestimation on O3 peak values (up to 20 ppb); (2) although the control policies are only applied in urban locations, their effects may extend to much larger downwind areas. The results from this study provide basic information that is useful in understanding the effects of mobile control policies on ambient O3 in highly developing regions of China where similar strategies have been widely implemented.

  5. 40 CFR 86.1848-10 - Certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and... be covered by the certificate. (4) For incomplete light-duty trucks and incomplete heavy-duty...

  6. 49 CFR 523.8 - Heavy-duty vocational vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.8 Heavy-duty vocational vehicle. Heavy... excluding: (a) Heavy-duty pickup trucks and vans defined in § 523.7; (b) Medium duty passenger vehicles; and...

  7. DOE Light Truck Clean Diesel (LTCD) Program Final Caterpillar Public Report Light Truck Clean Diesel Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric Fluga

    The US Department of Energy and Caterpillar entered a Cooperative Agreement to develop compression ignition engine technology suitable for the light truck/SUV market. Caterpillar, in collaboration with a suitable commercialization partner, developed a new Compression Ignition Direct Injection (CIDI) engine technology to dramatically improve the emissions and performance of light truck engines. The overall program objective was to demonstrate engine prototypes by 2004, with an order of magnitude emission reduction while meeting challenging fuel consumption goals. Program emphasis was placed on developing and incorporating cutting edge technologies that could remove the current impediments to commercialization of CIDI power sources inmore » light truck applications. The major obstacle to commercialization is emissions regulations with secondary concerns of driveability and NVH (noise, vibration and harshness). The target emissions levels were 0.05 g/mile NOx and 0.01 g/mile PM to be compliant with the EPA Tier 2 fleet average requirements of 0.07 g/mile and the CARB LEV 2 of 0.05 g/mile for NOx, both have a PM requirement of 0.01 g/mile. The program team developed a combustion process that fundamentally shifted the classic NOx vs. PM behavior of CIDI engines. The NOx vs. PM shift was accomplished with a form of Homogeneous Charge Compression Ignition (HCCI). The HCCI concept centers on appropriate mixing of air and fuel in the compression process and controlling the inception and rate of combustion through various means such as variable valve timing, inlet charge temperature and pressure control. Caterpillar has adapted an existing Caterpillar design of a single injector that: (1) creates the appropriate fuel and air mixture for HCCI, (2) is capable of a more conventional injection to overcome the low power density problems of current HCCI implementations, (3) provides a mixed mode where both the HCCI and conventional combustion are functioning in the same

  8. 40 CFR 63.3081 - Am I subject to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... replacement parts for automobiles, light-duty trucks, or other motor vehicles; and the affected source is... Standards for Hazardous Air Pollutants: Surface Coating of Automobiles and Light-Duty Trucks What This... section, the source category to which this subpart applies is automobile and light-duty truck surface...

  9. 77 FR 68070 - 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 85, 86, and 600 DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Parts 523, 531, 533, 536, and 537 [EPA-HQ-OAR-2010-0799; FRL-9706-5; NHTSA-2010-0131] RIN 2060-AQ54; RIN 2127-AK79 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate...

  10. 40 CFR 86.1712-99 - Maintenance of records; submittal of information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks § 86.1712-99 Maintenance of records; submittal of information. (a) Maintenance of records. (1) The manufacturer producing any light-duty vehicles and/or light light-duty trucks...

  11. 40 CFR 86.1712-99 - Maintenance of records; submittal of information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks § 86.1712-99 Maintenance of records; submittal of information. (a) Maintenance of records. (1) The manufacturer producing any light-duty vehicles and/or light light-duty trucks...

  12. 40 CFR 60.390 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... to coat plastic body components or all-plastic automobile or light-duty truck bodies on separate...

  13. 40 CFR 60.390 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... to coat plastic body components or all-plastic automobile or light-duty truck bodies on separate...

  14. 40 CFR 60.390 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... to coat plastic body components or all-plastic automobile or light-duty truck bodies on separate...

  15. Light-duty automotive technology and fuel economy trends : 1975 through 2008

    DOT National Transportation Integrated Search

    2009-11-01

    This report summarizes key trends in carbon dioxide (CO2) emissions, fuel economy and technology usage related to model year (MY) 1975 through 2009 light-duty vehicles sold in the United States. Light-duty vehicles are those vehicles that EPA classif...

  16. Strategic Materials in the Automobile: A Comprehensive Assessment of Strategic and Minor Metals Use in Passenger Cars and Light Trucks.

    PubMed

    Field, Frank R; Wallington, Timothy J; Everson, Mark; Kirchain, Randolph E

    2017-12-19

    A comprehensive component-level assessment of several strategic and minor metals (SaMMs), including copper, manganese, magnesium, nickel, tin, niobium, light rare earth elements (LREEs; lanthanum, cerium, praseodymium, neodymium, promethium, and samarium), cobalt, silver, tungsten, heavy rare earth elements (yttrium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium), and gold, use in the 2013 model year Ford Fiesta, Focus, Fusion, and F-150 is presented. Representative material contents in cars and light-duty trucks are estimated using comprehensive, component-level data reported by suppliers. Statistical methods are used to accommodate possible errors within the database and provide estimate bounds. Results indicate that there is a high degree of variability in SaMM use and that SaMMs are concentrated in electrical, drivetrain, and suspension subsystems. Results suggest that trucks contain greater amounts of aluminum, nickel, niobium, and silver and significantly greater amounts of magnesium, manganese, gold, and LREEs. We find tin and tungsten use in automobiles to be 3-5 times higher than reported by previous studies which have focused on automotive electronics. Automotive use of strategic and minor metals is substantial, with 2013 vehicle production in the United States, Canada, EU15, and Japan alone accounting for approximately 20% of global production of Mg and Ta and approximately 5% of Al, Cu, and Sn. The data and analysis provide researchers, recyclers, and decision-makers additional insight into the vehicle content of strategic and minor metals of current interest.

  17. Optimizing freight routes and modes to minimize environmental impacts : integrating truck emissions cost in traffic assignment.

    DOT National Transportation Integrated Search

    2014-10-01

    Adverse impacts of greenhouse gasses (GHG) and the imperative for reducing the production are well established. The : transportation sector accounts for 28% of all U.S. GHG production. Heavy-duty vehicles (e.g., large freight trucks) account for : ne...

  18. 49 CFR 523.6 - Heavy-duty vehicle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Heavy-duty vehicle. 523.6 Section 523.6... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.6 Heavy-duty vehicle. (a) A heavy-duty vehicle is any commercial medium- and heavy-duty on highway vehicle or a work truck, as defined in 49 U.S...

  19. 49 CFR 523.6 - Heavy-duty vehicle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Heavy-duty vehicle. 523.6 Section 523.6... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.6 Heavy-duty vehicle. (a) A heavy-duty vehicle is any commercial medium- and heavy-duty on highway vehicle or a work truck, as defined in 49 U.S...

  20. Coca-Cola Hybrid Electric Delivery Truck Testing | Transportation Research

    Science.gov Websites

    other on-road performance data on five heavy-duty hybrid electric trucks and five conventional diesel the study, the hybrid vehicles demonstrated 13.7% higher fuel economy than their conventional information about the study. Project Startup: Evaluating Coca-Cola's Class 8 Hybrid Electric Delivery Trucks

  1. 3 CFR - Imports of Certain Passenger Vehicle and Light Truck Tires From the People's Republic of China

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Tires From the People's Republic of China Presidential Documents Other Presidential Documents... Truck Tires From the People's Republic of China Memorandum for the Secretary of Commerce[,] the... vehicle and light truck tires from the People's Republic of China (China) are being imported into the...

  2. 77 FR 42726 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Activities; Submission to OMB for Review and Approval; Comment Request; Nonconformance Penalties for Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks (Renewal) AGENCY: Environmental... Penalties for Heavy-Duty Engines and Heavy- Duty Vehicles, Including Light-Duty Trucks (Renewal). [[Page...

  3. 40 CFR 86.087-2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vehicle weight equal to or less than 3,750 lbs (LDDT1s) together in the particulate averaging program... light-duty truck production for those engine families with a loaded vehicle weight equal to or less than... light-duty truck particulate standard for diesel light-duty trucks with a loaded vehicle weight equal to...

  4. Light Truck Capabilities, Utility Requirements, and Uses : Implications for Fuel Economy. Final Report

    DOT National Transportation Integrated Search

    1996-04-01

    In April 1994, NHTSA issued an Advanced Notice of Proposed Rule Making (ANPRM) requesting information regarding light truck fuel economy capabilities for model years 1998 through 2006. Subsequently, in the Department of Transportation Appropriations ...

  5. Frito-Lay Electric Delivery Truck Testing | Transportation Research | NREL

    Science.gov Websites

    Frito-Lay Electric Delivery Truck Evaluation Frito-Lay Electric Delivery Truck Evaluation Photo of . The on-road portion of this 12-month evaluation, launched in 2013, focuses on collecting and analyzing . Publications The following documents provide more information about the study. Field Evaluation of Medium-Duty

  6. 40 CFR 86.201-11 - General applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... new gasoline-fueled and diesel-fueled light-duty vehicles and light-duty trucks. (b) All of the... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium...

  7. 21st Century Truck Partnership 2013 Fall Meeting Summary Report

    DTIC Science & Technology

    2014-01-14

    unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Medium - and heavy-duty vehicles serve as the backbone of America?s economy playing a vital role in moving...related to medium -duty and heavy-duty truck efficiency safety, and emissions by pursuing collaborative research and development among government and...Statement A. Approved for public release. 2   ACKNOWLEDGEMENTS Medium - and heavy-duty vehicles serve as the backbone of America’s economy

  8. An Analysis of the Diesel Truck Mechanic Occupation.

    ERIC Educational Resources Information Center

    Kilo, Joseph L.

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the diesel truck mechanic occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Thirteen duties are broken down into a…

  9. Truck side guard specifications : recommended standard

    DOT National Transportation Integrated Search

    2016-09-01

    This document is intended to be used by (1) public or private medium/heavy-duty truck fleets considering adding side guards; (2) jurisdictions or customers that require side guards through policy or procurement; (3) manufacturers of side guards; and ...

  10. 26 CFR 48.4063-2 - Tax-free sales of parts or accessories sold for resale on or in connection with the first retail...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... resale on or in connection with the first retail sale of a light-duty truck. 48.4063-2 Section 48.4063-2... or in connection with the first retail sale of a light-duty truck. (a) In general. Under section 4063... resold by the purchaser on or in connection with the first retail sale of a light-duty truck as defined...

  11. 26 CFR 48.4063-2 - Tax-free sales of parts or accessories sold for resale on or in connection with the first retail...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... resale on or in connection with the first retail sale of a light-duty truck. 48.4063-2 Section 48.4063-2... or in connection with the first retail sale of a light-duty truck. (a) In general. Under section 4063... resold by the purchaser on or in connection with the first retail sale of a light-duty truck as defined...

  12. 26 CFR 48.4063-2 - Tax-free sales of parts or accessories sold for resale on or in connection with the first retail...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... resale on or in connection with the first retail sale of a light-duty truck. 48.4063-2 Section 48.4063-2... or in connection with the first retail sale of a light-duty truck. (a) In general. Under section 4063... resold by the purchaser on or in connection with the first retail sale of a light-duty truck as defined...

  13. 26 CFR 48.4063-2 - Tax-free sales of parts or accessories sold for resale on or in connection with the first retail...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... resale on or in connection with the first retail sale of a light-duty truck. 48.4063-2 Section 48.4063-2... or in connection with the first retail sale of a light-duty truck. (a) In general. Under section 4063... resold by the purchaser on or in connection with the first retail sale of a light-duty truck as defined...

  14. 40 CFR 86.084-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for... light-duty trucks, the engine speed with the transmission in neutral or with the clutch disengaged and...

  15. 40 CFR 86.084-2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for... light-duty trucks, the engine speed with the transmission in neutral or with the clutch disengaged and...

  16. 40 CFR 86.084-2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for... light-duty trucks, the engine speed with the transmission in neutral or with the clutch disengaged and...

  17. 40 CFR 86.084-2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for... light-duty trucks, the engine speed with the transmission in neutral or with the clutch disengaged and...

  18. 40 CFR 86.084-2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for... light-duty trucks, the engine speed with the transmission in neutral or with the clutch disengaged and...

  19. Effects of angles and offsets in crash simulations of automobiles with light trucks

    DOT National Transportation Integrated Search

    2001-06-06

    Two series of finite element and lumped parameter model vehicle-to-vehicle frontal crash simulations were conducted. The vehicles modeled are the 1994 Chevrolet C-1500 light truck and the 1997 Ford Crown Victoria. The first set of simulations involve...

  20. Alternative Fuels Data Center

    Science.gov Websites

    (HEVs). FFVs are defined as automobiles or light trucks that operate on either gasoline or 85% ethanol (E85) fuel. Fuel-efficient HEVs are defined as automobiles or light trucks that use a gasoline or

  1. 10 CFR 490.304 - Which new light duty motor vehicles are covered.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Which new light duty motor vehicles are covered. 490.304 Section 490.304 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.304 Which new light duty motor vehicles are...

  2. 10 CFR 490.304 - Which new light duty motor vehicles are covered.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Which new light duty motor vehicles are covered. 490.304 Section 490.304 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.304 Which new light duty motor vehicles are...

  3. 10 CFR 490.304 - Which new light duty motor vehicles are covered.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Which new light duty motor vehicles are covered. 490.304 Section 490.304 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.304 Which new light duty motor vehicles are...

  4. 10 CFR 490.304 - Which new light duty motor vehicles are covered.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Which new light duty motor vehicles are covered. 490.304 Section 490.304 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.304 Which new light duty motor vehicles are...

  5. 10 CFR 490.304 - Which new light duty motor vehicles are covered.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Which new light duty motor vehicles are covered. 490.304 Section 490.304 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.304 Which new light duty motor vehicles are...

  6. Heavy truck casualty collisions, 2001-2005

    DOT National Transportation Integrated Search

    2010-04-01

    This document reviews casualty collisions (fatalities and injuries) involving heavy trucks in Canada : from 2001 to 2005. Collisions involving heavy trucks include all vehicles in these collisions, such as : passenger cars, light trucks and vans, hea...

  7. 78 FR 36771 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... Activities; Submission to OMB for Review and Approval; Comment Request; NSPS for Automobile and Light Duty... www.regulations.gov . Title: NSPS for Automobile and Light Duty Truck Surface Coating Operations.../Affected Entities: Owners or operators of facilities that conduct automobile and light duty truck surface...

  8. Design and evaluation of impact of traffic light priority for trucks on traffic flow.

    DOT National Transportation Integrated Search

    2015-06-01

    Current traffic light control systems treat all vehicles the same. Trucks however have : different dynamics than passenger vehicles. They take a longer distance to stop, have : lower acceleration rates, have bigger turning rates that cause bigger tra...

  9. Carbonaceous aerosols emitted from light-duty vehicles operating on gasoline and ethanol fuel blends.

    PubMed

    Hays, Michael D; Preston, William; George, Barbara J; Schmid, Judy; Baldauf, Richard; Snow, Richard; Robinson, James R; Long, Thomas; Faircloth, James

    2013-12-17

    This study examines the chemical properties of carbonaceous aerosols emitted from three light-duty gasoline vehicles (LDVs) operating on gasoline (e0) and ethanol-gasoline fuel blends (e10 and e85). Vehicle road load simulations were performed on a chassis dynamometer using the three-phase LA-92 unified driving cycle (UDC). Effects of LDV operating conditions and ambient temperature (-7 and 24 °C) on particle-phase semivolatile organic compounds (SVOCs) and organic and elemental carbon (OC and EC) emissions were investigated. SVOC concentrations and OC and EC fractions were determined with thermal extraction-gas chromatography-mass spectrometry (TE-GC-MS) and thermal-optical analysis (TOA), respectively. LDV aerosol emissions were predominantly carbonaceous, and EC/PM (w/w) decreased linearly with increasing fuel ethanol content. TE-GC-MS analysis accounted for up to 4% of the fine particle (PM2.5) mass, showing the UDC phase-integrated sum of identified SVOC emissions ranging from 0.703 μg km(-1) to 18.8 μg km(-1). Generally, higher SVOC emissions were associated with low temperature (-7 °C) and engine ignition; mixed regression models suggest these emissions rate differences are significant. Use of e85 significantly reduced the emissions of lower molecular weight PAH. However, a reduction in higher molecular weight PAH entities in PM was not observed. Individual SVOC emissions from the Tier 2 LDVs and fuel technologies tested are substantially lower and distributed differently than those values populating the United States emissions inventories currently. Hence, this study is likely to influence future apportionment, climate, and air quality model predictions that rely on source combustion measurements of SVOCs in PM.

  10. 75 FR 11120 - Hand Trucks and Certain Parts Thereof from the People's Republic of China: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... specifically to transport golf bags; and wheels and tires used in the manufacture of hand trucks. The written... DEPARTMENT OF COMMERCE International Trade Administration [A-570-891] Hand Trucks and Certain... sunset review of the antidumping duty order on hand trucks and certain parts thereof (hand trucks) from...

  11. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...

  12. 40 CFR 86.1514 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...

  13. 40 CFR 86.1519 - CVS calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...

  14. 40 CFR 86.1542 - Information required.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...

  15. 40 CFR 86.1501 - Scope; applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...

  16. 40 CFR 86.1513 - Fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...

  17. The GREET Model Expansion for Well-to-Wheels Analysis of Heavy-Duty Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Hao; Burnham, Andrew; Wang, Michael

    2015-05-01

    Heavy-duty vehicles (HDVs) account for a significant portion of the U.S. transportation sector’s fuel consumption, greenhouse gas (GHG) emissions, and air pollutant emissions. In our most recent efforts, we expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model to include life-cycle analysis of HDVs. In particular, the GREET expansion includes the fuel consumption, GHG emissions, and air pollutant emissions of a variety of conventional (i.e., diesel and/or gasoline) HDV types, including Class 8b combination long-haul freight trucks, Class 8b combination short-haul freight trucks, Class 8b dump trucks, Class 8a refuse trucks, Class 8a transit buses, Classmore » 8a intercity buses, Class 6 school buses, Class 6 single-unit delivery trucks, Class 4 single-unit delivery trucks, and Class 2b heavy-duty pickup trucks and vans. These vehicle types were selected to represent the diversity in the U.S. HDV market, and specific weight classes and body types were chosen on the basis of their fuel consumption using the 2002 Vehicle Inventory and Use Survey (VIUS) database. VIUS was also used to estimate the fuel consumption and payload carried for most of the HDV types. In addition, fuel economy projections from the U.S. Energy Information Administration, transit databases, and the literature were examined. The U.S. Environmental Protection Agency’s latest Motor Vehicle Emission Simulator was employed to generate tailpipe air pollutant emissions of diesel and gasoline HDV types.« less

  18. 75 FR 44238 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Automobile and Light- Duty... electronic docket, go to http://www.regulations.gov . Title: NESHAP for Automobile and Light-duty Truck... Hazardous Air Pollutants (NESHAP) for Automobile and Light-duty Truck Surface Coating (40 CFR Part 63...

  19. Occupational Fatalities Among Driver/Sales Workers and Truck Drivers in the United States, 2003–2008

    PubMed Central

    Chen, Guang X.; Amandus, Harlan E.; Wu, Nan

    2015-01-01

    Background This study provides a national profile of occupational fatalities among truck drivers and driver-sales workers. Methods Data from the 2003–2008 Census of Fatal Occupational Injuries were used. Cases were extracted specifically for occupational subcategories included in the Driver/Sales Workers and Truck Drivers occupational category: Driver/Sales Workers, Heavy and Tractor-Trailer Truck Drivers, and Light Truck or Delivery Services Drivers. Results In 2003–2008, the group Driver/Sales Workers and Truck Drivers had 5,568 occupational fatalities, representing 17% of all occupational fatalities in the United States. The majority of these fatalities were in the subgroup Heavy and Tractor-Trailer Truck Drivers (85%) and due to transportation incidents (80%). Older and male drivers had higher fatality rates than their counterparts. Conclusions Findings suggest a need for targeted interventions to reduce highway fatalities among heavy truck drivers. Better employment data are needed to separate the three occupational subcategories by worker characteristic and employment history for use in research and prevention efforts. PMID:24811905

  20. 40 CFR 86.1516 - Calibration; frequency and overview.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  1. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  2. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  3. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  4. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  5. 40 CFR 86.1516 - Calibration; frequency and overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  6. 40 CFR 86.1516 - Calibration; frequency and overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  7. 40 CFR 86.1516 - Calibration; frequency and overview.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  8. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  9. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  10. 40 CFR 86.1522 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  11. 40 CFR 86.1516 - Calibration; frequency and overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  12. 40 CFR 86.1524 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  13. 40 CFR 86.1506 - Equipment required and specifications; overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  14. 40 CFR 86.1540 - Idle exhaust sample analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  15. 40 CFR 86.1530 - Test sequence; general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  16. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  17. 40 CFR 86.1526 - Calibration of other equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  18. 40 CFR 86.1527 - Idle test procedure; overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  19. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  20. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  1. 40 CFR 86.1505 - Introduction; structure of subpart.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  2. 77 FR 50502 - California State Nonroad Engine Pollution Control Standards; In-Use Heavy-Duty Vehicles (As...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL 9716-9] California State Nonroad Engine Pollution Control Standards; In- Use Heavy-Duty Vehicles (As Applicable to Yard Trucks and Two-Engine Sweepers); Opportunity... from In-Use Heavy-Duty Diesel-Fueled Vehicles'' (commonly referred to as the ``Truck and Bus Regulation...

  3. 75 FR 22399 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... Activities; Submission to OMB for Review and Approval; Comment Request; NSPS for Automobile and Light Duty... electronic docket, go to http://www.regulations.gov . Title: NSPS for Automobile and Light Duty Truck Surface... Standards (NSPS) for Automobile and Light Duty Truck Surface Coating Operations (40 CFR part 60, subpart MM...

  4. Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.

    The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel withmore » a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.« less

  5. Truck Traffic Iowa : 2010

    DOT National Transportation Integrated Search

    2011-01-01

    Truck volumes represented on this map are Annual Average Daily Traffic Volumes between major traffic generators: i.e., Highway Junctions and Cities. : Truck volumes include 6-Tire and 3 Axle single unit trucks, buses and all multiple unit trucks.

  6. 40 CFR 86.1 - Reference materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles and Engines (OBD-II), IBR approved for § 86.1806... Requirements for 2004 and Subsequent Model-Year Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles and....1311-94. (2) SAE J1634, Electric Vehicle Energy Consumption and Range Test Procedure, Cancelled October...

  7. Michigan E85 Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandstrom, Matthew M.

    2012-03-30

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The firstmore » quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and

  8. Future heavy duty trucking engine requirements

    NASA Technical Reports Server (NTRS)

    Strawhorn, L. W.; Suski, V. A.

    1985-01-01

    Developers of advanced heavy duty diesel engines are engaged in probing the opportunities presented by new materials and techniques. This process is technology driven, but there is neither assurance that the eventual users of the engines so developed will be comfortable with them nor, indeed, that those consumers will continue to exist in either the same form, or numbers as they do today. To ensure maximum payoff of research dollars, the equipment development process must consider user needs. This study defines motor carrier concerns, cost tolerances, and the engine parameters which match the future projected industry needs. The approach taken to do that is to be explained and the results presented. The material to be given comes basically from a survey of motor carrier fleets. It provides indications of the role of heavy duty vehicles in the 1998 period and their desired maintenance and engine performance parameters.

  9. A Reassessment of Heavy-Duty Truck Aerodynamic Design Features and Priorities

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Meyer, Robert R., Jr.

    1999-01-01

    Between 1973 and 1982, the NASA Dryden Flight Research Center conducted "coast-down" tests demonstrating means for reducing the drag of trucks, buses, and motor homes. Numerous configurations were evaluated using a box-shaped test van, a two-axle truck, and a tractor-semitrailer combination. Results from three configurations of the test van are of interest now in view of a trucking industry goal of a 0.25 drag coefficient for tractor-semitrailer combinations. Two test van configurations with blunt-base geometry, similar to present day trucks (one configuration has square front comers and the other has rounded front comers), quantify the base drag increase associated with reduced forebody drag. Hoemer's equations predict this trend; however, test van results, reinforced by large-scale air vehicle data, indicate that Hoemer's formula greatly underestimates this dependence of base drag on forebody efficiency. The demonstrated increase in base drag associated with forebody refinement indicates that the goal of a 0.25 drag coefficient will not be achieved without also reducing afterbody drag. A third configuration of the test van had a truncated boattail to reduce afterbody drag and achieved a drag coefficient of 0.242. These results are included here and references are identified for other means of reducing afterbody drag.

  10. Salmonella enteritidis infections associated with foods purchased from mobile lunch trucks--Alberta, Canada, October 2010-February 2011.

    PubMed

    2013-07-19

    During October 2010-February 2011, an outbreak of 91 Salmonella Enteritidis (SE) infections in Alberta, Canada, was investigated by a local public health department (Alberta Health Services, Calgary Zone). Index cases initially were linked through a common history of consumption of food purchased from mobile food-vending vehicles (lunch trucks) operating at worksites in Alberta. Further investigation implicated one catering company that supplied items for the lunch trucks and other vendors. In 85 cases, patients reported consumption of food prepared by the catering company in the 7 days before illness. Six patients were employees of the catering company, and two food samples collected from the catering company were positive for SE. Foods likely were contaminated directly or indirectly through the use of illegally sourced, SE-contaminated eggs at the implicated catering facility and by catering employees who were infected with SE. Public health interventions put into place to control the outbreak included screening employees for Salmonella, excluding those infected from food-handling duties, and training employees in safe food-handling procedures. No further outbreak cases were identified after full implementation of the interventions. This investigation highlights the potential for lunch trucks to be a source of foodborne illness and the need for robust regulatory compliance monitoring of lunch trucks and their food suppliers.

  11. An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2000-2007 Light-Duty Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenzel, Tom

    2012-08-01

    NHTSA recently completed a logistic regression analysis (Kahane 2012) updating its 2003 and 2010 studies of the relationship between vehicle mass and US fatality risk per vehicle mile traveled (VMT). The new study updates the previous analyses in several ways: updated FARS data for 2002 to 2008 involving MY00 to MY07 vehicles are used; induced exposure data from police reported crashes in several additional states are added; a new vehicle category for car-based crossover utility vehicles (CUVs) and minivans is created; crashes with other light-duty vehicles are divided into two groups based on the crash partner vehicle’s weight, and amore » category for all other fatal crashes is added; and new control variables for new safety technologies and designs, such as electronic stability controls (ESC), side airbags, and methods to meet voluntary agreement to improve light truck compatibility with cars, are included.« less

  12. Real-time black carbon emission factor measurements from light duty vehicles.

    PubMed

    Forestieri, Sara D; Collier, Sonya; Kuwayama, Toshihiro; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D

    2013-11-19

    Eight light-duty gasoline low emission vehicles (LEV I) were tested on a Chassis dynamometer using the California Unified Cycle (UC) at the Haagen-Smit vehicle test facility at the California Air Resources Board in El Monte, CA during September 2011. The UC includes a cold start phase followed by a hot stabilized running phase. In addition, a light-duty gasoline LEV vehicle and ultralow emission vehicle (ULEV), and a light-duty diesel passenger vehicle and gasoline direct injection (GDI) vehicle were tested on a constant velocity driving cycle. A variety of instruments with response times ≥0.1 Hz were used to characterize how the emissions of the major particulate matter components varied for the LEVs during a typical driving cycle. This study focuses primarily on emissions of black carbon (BC). These measurements allowed for the determination of BC emission factors throughout the driving cycle, providing insights into the temporal variability of BC emission factors during different phases of a typical driving cycle.

  13. 78 FR 60275 - Alternative Method for Calculating Off-Cycle Credits for Mercedes-Benz Vehicles Under the Light...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ...., small/mid-size/large cars and light-duty trucks) (See Section II-III of Mercedes-Benz Application...-start effectiveness unless the vehicle possesses an electric heater circulation pump, or equivalent...-start system includes an electric [[Page 60278

  14. 76 FR 36083 - Hand Trucks and Certain Parts Thereof From the People's Republic of China: Final Results and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-891] Hand Trucks and Certain... review of the antidumping duty order on hand trucks and certain parts thereof from the People's Republic of China (PRC). See Hand Trucks and Certain Parts Thereof from the People's Republic of China...

  15. Development of Advanced Light-Duty Powertrain and Hybrid Analysis Tool (SAE 2013-01-0808)

    EPA Science Inventory

    The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by Environmental Protection Agency to evaluate the Greenhouse gas emissions and fuel efficiency from light-duty vehicles. It is a physics-based, forward-looking, full vehicle computer simulator, which is cap...

  16. 40 CFR 86.1807-01 - Vehicle labeling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... XXX-Fueled 20XX Model Year New Motor Vehicles.” (B) For light-duty trucks, the statement: “This Vehicle Conforms to U.S. EPA Regulations Applicable to XXX-Fueled 20XX Model Year New Light-Duty Trucks... Applicable to XXX-fueled 20XX Model Year New Medium-Duty Passenger Vehicles.” (D) For heavy-duty vehicles...

  17. 40 CFR 86.1503 - Abbreviations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1503...

  18. 40 CFR 86.1502 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1502...

  19. Design criteria for the light duty utility arm system end effectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardini, A.F.; Kiebel, G.R.

    1995-12-01

    The purpose of this document is to provide criteria for the design of end effectors that will be used as part of the Light Duty Utility Arm (LDUA) System. Actual component design, fabrication, testing, and inspection will be performed by various DOE laboratories, industry, and academia. This document augments WHC-SD-TD-FRD-003, `Functions and Requirements for the Light Duty Utility Arm Integrated System` (F). All requirements dictated in the F shall also be applicable in this document. Whenever conflicts arise between this document and the F, this document shall take precedence.

  20. Contributions of Diesel Truck Emissions to Indoor Elemental Carbon Concentrations in Home Proximate to Ambassador Bridge

    EPA Science Inventory

    Ambassador Bridge, connecting Detroit, Michigan and Windsor, Ontario, is the busiest international commercial vehicle crossing in North America, with a large percentage of heavy duty diesel trucks. This study seeks to examine the contribution of diesel truck traffic across Ambass...

  1. 40 CFR 86.1537 - Idle test run.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1537 Idle...

  2. 40 CFR 86.1537 - Idle test run.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1537 Idle...

  3. 40 CFR 86.1537 - Idle test run.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1537 Idle...

  4. Light-duty vehicle CO2 targets consistent with 450 ppm CO2 stabilization.

    PubMed

    Winkler, Sandra L; Wallington, Timothy J; Maas, Heiko; Hass, Heinz

    2014-06-03

    We present a global analysis of CO2 emission reductions from the light-duty vehicle (LDV) fleet consistent with stabilization of atmospheric CO2 concentration at 450 ppm. The CO2 emission reductions are described by g CO2/km emission targets for average new light-duty vehicles on a tank-to-wheel basis between 2010 and 2050 that we call CO2 glide paths. The analysis accounts for growth of the vehicle fleet, changing patterns in driving distance, regional availability of biofuels, and the changing composition of fossil fuels. New light-duty vehicle fuel economy and CO2 regulations in the U.S. through 2025 and in the EU through 2020 are broadly consistent with the CO2 glide paths. The glide path is at the upper end of the discussed 2025 EU range of 68-78 g CO2/km. The proposed China regulation for 2020 is more stringent than the glide path, while the 2017 Brazil regulation is less stringent. Existing regulations through 2025 are broadly consistent with the light-duty vehicle sector contributing to stabilizing CO2 at approximately 450 ppm. The glide paths provide long-term guidance for LDV powertrain/fuel development.

  5. 40 CFR Appendix Xiii to Part 86 - State Requirements Incorporated by Reference in Part 86 of the Code of Federal Regulations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. XIII Appendix XIII to Part 86—State...-Line Test Procedures for 1983 Through 1997 Model-Year Passenger Cars, Light-Duty Trucks and Medium-Duty...: California Assembly-Line Test Procedures for 1998 and Subsequent Model-Year Passenger Cars, Light-Duty Trucks...

  6. 40 CFR Appendix Xiii to Part 86 - State Requirements Incorporated by Reference in Part 86 of the Code of Federal Regulations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. XIII Appendix XIII to Part 86—State...-Line Test Procedures for 1983 Through 1997 Model-Year Passenger Cars, Light-Duty Trucks and Medium-Duty...: California Assembly-Line Test Procedures for 1998 and Subsequent Model-Year Passenger Cars, Light-Duty Trucks...

  7. 40 CFR Appendix Xiii to Part 86 - State Requirements Incorporated by Reference in Part 86 of the Code of Federal Regulations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. XIII Appendix XIII to Part 86—State...-Line Test Procedures for 1983 Through 1997 Model-Year Passenger Cars, Light-Duty Trucks and Medium-Duty...: California Assembly-Line Test Procedures for 1998 and Subsequent Model-Year Passenger Cars, Light-Duty Trucks...

  8. EXHAUST EMISSION PATTERNS FROM TWO LIGHT-DUTY DIESEL AUTOMOBILES

    EPA Science Inventory

    Particulate and gaseous emissions from two light-duty diesel automobiles were examined over six operating cycles. Particulate characterizations included mass emission rate, soluble organic content, and trace element content determinations. The particulate matter was sampled using...

  9. CHARACTERIZATION OF HEAVY-DUTY MOTOR VEHICLE EMISSIONS UNDER TRANSIENT DRIVING CONDITIONS

    EPA Science Inventory

    The objective of this program was to characterize heavy-duty diesel truck and bus emissions produced during transient driving cycles. In the initial phase of the program an improved road-load simulation method was developed for use in operating large trucks on a chassis dynamomet...

  10. 77 FR 5240 - Light-Walled Welded Rectangular Carbon Steel Tubing From Taiwan: Continuation of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-803] Light-Walled Welded... revocation of the antidumping duty order on light-walled welded rectangular carbon steel tubing from Taiwan..., and the ITC instituted, the sunset review of the antidumping duty order \\1\\ on light-walled welded...

  11. Case Study: Natural Gas Regional Transport Trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laughlin, M.; Burnham, A.

    2016-08-01

    Learn about Ryder System, Inc.'s experience in deploying nearly 200 CNG and LNG heavy-duty trucks and construction and operation of L/CNG stations using ARRA funds. Using natural gas in its fleet, Ryder mitigated the effects of volatile fuel pricing and reduced lifecycle GHGs by 20% and petroleum by 99%.

  12. SPECIATED VOC EMISSIONS FROM MODERN GDI LIGHT DUTY VEHICLES

    EPA Science Inventory

    Chassis dynamometer emissions testing was conducted to characterize speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs) and ozone precursors, in exhaust emissions from three modern gasoline direct injection (GDI) light-duty vehicles. Each GDI v...

  13. Idling Reduction for Long-Haul Trucks: An Economic Comparison of On-Board and Wayside Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaines, Linda; Weikersheimer, Patricia

    Reducing the idling of long-haul heavy-duty trucks has long been recognized as a particularly low-hanging fruit of fuel efficiency and emissions reduction. The displacement of about 10 hours of diesel idling every day, for most days of the year, for as many as a million long-haul trucks has very clear benefits. This report considers the costs and return on investment (ROI) for idling reduction (IR) equipment for both truck owners and electrified parking space (EPS) equipment owners. For the truck owners, the key variables examined are idling hours to be displaced (generally 1,000 to 2,000 hours per year) and themore » price of fuel ($0 to $5/gal). The ideal IR option would provide complete services in varied climates in any location and offer the best ROI on trucks that log many idling hours. For trucks that have fewer idling hours, options with a fixed cost per hour (i.e., EPS) might be most attractive if they were available to all, or even most, truck drivers. EPS, however, is particularly cost effective for trucks on prescribed routes with a need for regular, extended stops at terminals. (EPS is also called truck stop electrification, or TSE.) The analysis shows that all IR options save money when fuel costs more than $2/gal. For trucks requiring bunk heat, a simple heater (plug-in or diesel) is almost always the most costeffective way to provide heat, even if the truck is equipped with an auxiliary power unit (APU) or is parked at a single-system EPS location. For trucks requiring bunk air-conditioning, the use of single-system EPS is most cost effective for those logging fewer idling hours. Even for trucks with higher idling hours, the cost of EPS may be about the same as that for on-board air-conditioning. Clearly, trucks’ locations and seasonal factors—and the availability of EPS— are significant in the choice of “best fit” IR equipment for truck owners. This report also considers costs and payback for owners of EPS infrastructure. An industry

  14. 2016 Vehicle Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Stacy Cagle; Williams, Susan E.; Boundy, Robert Gary

    This is the seventh edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energymore » and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 27 through 69 offer snapshots of major light-duty vehicle brands in the United States and Figures 73 through 85 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 94 through 98) and fuel use (Figures 101 through 104). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 109 through 123), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 135 through 142). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets. Suggestions for future expansion, additional information, or other improvements are most welcome.« less

  15. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of the...

  16. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of the...

  17. SVOC emissions from diesel trucks operating on biodiesel fuels

    EPA Science Inventory

    This study measured semivolatile organic compounds (SVOCs) in particle matter (PM) emitted from three heavy-duty trucks equipped with modern after-treatment technologies. Emissions testing was conducted as described by the George et al. VOC study also presented as part of this se...

  18. Data Base Development of Automobile and Light Truck Maintenance : Volume I. Test and Appendixes A-D

    DOT National Transportation Integrated Search

    1978-08-01

    The volume describes the development of the life cycle maintenance costs for 212 sales-leading 1970 through 1975 passenger cars and light trucks. These costs provide a data base for the Department of Transportation, which describes the costs for part...

  19. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  20. AMMONIA EMISSIONS FROM THE EPA'S LIGHT DUTY TEST VEHICLE

    EPA Science Inventory

    The paper discusses measurements of ammonia (NH3) emissions from EPA's light duty test vehicle while operated on a dynamometer. The vehicle's (1993 Chevrolet equipped with a three-way catalyst) emissions were measured for three transient (urban driving, highway fuel economy, and ...

  1. Adult Competency Education Kit. Basic Skills in Speaking, Math, and Reading for Employment. Part Q. ACE Competency Based Job Descriptions: #91--Meat Cutter; #92--Shipping Clerk; #93--Long Haul Truck Driver; #94--Truck Driver--Light.

    ERIC Educational Resources Information Center

    San Mateo County Office of Education, Redwood City, CA. Career Preparation Centers.

    This fourteenth of fifteen sets of Adult Competency Education (ACE) Based Job Descriptions in the ACE kit contains job descriptions for Meat Cutter, Shipping Clerk, Long Haul Truck Driver, and Truck Driver--Light. Each begins with a fact sheet that includes this information: occupational title, D.O.T. code, ACE number, career ladder, D.O.T.…

  2. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less

  3. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    DOE PAGES

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; ...

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less

  4. 77 FR 5207 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Amendments to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... compound (VOC) emissions from industrial cleaning solvents facilities, automobile and light-duty truck... Organic Compounds,'' section 13.0, ``Automobile and Light-Duty Truck Coating Operations,'' section 16.0... requirements based on EPA CTGs. Amendments to section 13.0 establish (1) applicability for specific automobile...

  5. 40 CFR 60.390 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... affected facility. 60.390 Section 60.390 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and...

  6. 40 CFR 60.390 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... affected facility. 60.390 Section 60.390 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and...

  7. Contribution of Lubricating Oil to Particulate Matter Emissions from Light-Duty Gasoline Vehicles in Kansas City

    EPA Science Inventory

    The contribution of lubricating oil to particulate matter (PM) emissions representative of the in-use 2004 light-duty gasoline vehicles fleet is estimated from the Kansas City Light-Duty Vehicle Emissions Study (KCVES). PM emissions are apportioned to lubricating oil and gasoline...

  8. Contribution of Lubricating Oil to Particulate Matter Emissions from Light-duty Gasoline Vehicles in Kansas City

    EPA Science Inventory

    The contribution of lubricating oil to particulate matter (PM) emissions representative of the in-use 2004 light-duty gasoline vehicles fleet is estimated from the Kansas City Light-Duty Vehicle Emissions Study (KCVES). PM emissions are apportioned to lubricating oil and gasoline...

  9. Vehicle lightweighting energy use impacts in U.S. light-duty vehicle fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Sujit; Graziano, Diane; Upadhyayula, Venkata K. K.

    In this article, we estimate the potential energy benefits of lightweighting the light-duty vehicle fleet from both vehicle manufacturing and use perspectives using plausible lightweight vehicle designs involving several alternative lightweight materials, low- and high-end estimates of vehicle manufacturing energy, conventional and alternative powertrains, and two different market penetration scenarios for alternative powertrain light-duty vehicles at the fleet level. Cumulative life cycle energy savings (through 2050) across the nine material scenarios based on the conventional powertrain in the U.S. vehicle fleet range from -29 to 94 billion GJ, with the greatest savings achieved by multi-material vehicles that select different lightweightmore » materials to meet specific design purposes. Lightweighting alternative-powertrain vehicles could produce significant energy savings in the U.S. vehicle fleet, although their improved powertrain efficiencies lessen the energy savings opportunities for lightweighting. A maximum level of cumulative energy savings of lightweighting the U.S. light-duty vehicle through 2050 is estimated to be 66.1billion GJ under the conventional-vehicle dominated business-as-usual penetration scenario.« less

  10. 40 CFR 86.000-9 - Emission standards for 2000 and later model year light-duty trucks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86... leanest air to fuel mixture required to obtain maximum torque (lean best torque), plus a tolerance of six... fuel ratio shall not be richer at any time than the leanest air to fuel mixture required to obtain...

  11. 40 CFR 86.000-9 - Emission standards for 2000 and later model year light-duty trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86... leanest air to fuel mixture required to obtain maximum torque (lean best torque), plus a tolerance of six... fuel ratio shall not be richer at any time than the leanest air to fuel mixture required to obtain...

  12. 78 FR 24373 - Approval and Promulgation of Air Quality Implementation Plans; Wisconsin; Amendments to Vehicle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... cars and light trucks have been inspected by scanning the vehicle's computerized second generation on... technology (MY 1995 and earlier cars and light trucks and MY 2006 and earlier heavy trucks). III. What... light duty vehicles and trucks up to 8,500 pounds GVWR, and includes vehicles operating on all fuel...

  13. 40 CFR 86.1771-99 - Fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and Light-Duty... following exceptions and additions. (1) For light-duty vehicles and light light-duty trucks, gasoline having...

  14. 40 CFR 86.1771-99 - Fuel specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and Light-Duty... following exceptions and additions. (1) For light-duty vehicles and light light-duty trucks, gasoline having...

  15. Relationship Between Vehicle Size and Fatality Risk in Model Year 1985-93 Passenger Cars and Light Trucks

    DOT National Transportation Integrated Search

    1997-01-01

    Fatality rates per million exposure years are computed by make, model and model year, : based on the crash experience of model year 1985-93 passenger cars and light trucks (pickups) vans : and sport utility vehicles) in the United States during calen...

  16. HEAVY-DUTY GREENHOUSE GAS EMISSIONS MODEL ...

    EPA Pesticide Factsheets

    Class 2b-8 vocational truck manufacturers and Class 7/8 tractor manufacturers would be subject to vehicle-based fuel economy and emission standards that would use a truck simulation model to evaluate the impact of the truck tires and/or tractor cab design on vehicle compliance with any new standards. The EPA has created a model called “GHG Emissions Model (GEM)”, which is specifically tailored to predict truck GHG emissions. As the model is designed for the express purpose of vehicle compliance demonstration, it is less configurable than similar commercial products and its only outputs are GHG emissions and fuel consumption. This approach gives a simple and compact tool for vehicle compliance without the overhead and costs of a more sophisticated model. Evaluation of both fuel consumption and CO2 emissions from heavy-duty highway vehicles through a whole-vehicle operation simulation model.

  17. Observation of coherent backscattering of light in ultracold ^85Rb

    NASA Astrophysics Data System (ADS)

    Kulatunga, P.; Sukenik, C. I.; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.

    2002-05-01

    We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and our measurements of atomic coherent backscattering. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider scattering orders up to 8 and a Gaussian atom distribution in the MOT. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes.

  18. PM2.5 emissions from different types of heavy-duty truck: a case study and meta-analysis of the Beijing-Tianjin-Hebei region.

    PubMed

    Song, Liying; Song, Hongqing; Lin, Jingyi; Wang, Cheng; Yu, Mingxu; Huang, Xiaoxia; Guan, Yu; Wang, Xing; Du, Li

    2017-04-01

    Beijing-Tianjin-Hebei (BTH) region in China is affected seriously by the hazy weather that has a large impact on human health. PM 2.5 is one of the most important reasons for hazy weather. Understanding the PM 2.5 emission characteristics from different types of heavy-duty trucks (HDTs) is valuable in policies and regulations to improve urban air quality and mitigate vehicle emission in China. The investigation and analysis on HDT population and PM 2.5 emission in BTH region are carried out. The results show that the population and PM 2.5 emission of HDTs in BTH has risen for the last four consecutive years, from 404 thousand and 1795 tons in 2012 to 551 thousand and 2303 tons in 2015. The PM 2.5 emission from HDTs in Hebei is about 10 times more than that of Beijing and 9 times more than that of Tianjin. The proportion of natural gas HDTs is about 5%; however, its PM 2.5 emission only accounts for 0.94% in 2015, which indicates the utilization of HDTs powered by natural gas facilitate PM 2.5 mitigation more than diesel in BTH. The tractor and pickup trucks are the main source of PM 2.5 emission from different types of HDT, while special and dump trucks are relatively clean. This study has provided insights for management method and policy-making of vehicle in terms of environmental demand.

  19. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    DOE PAGES

    Gao, Zhiming; Finney, Charles; Daw, Charles; ...

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energymore » (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH 3 emissions could be slipped from the Urea SCR, but the average NH 3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.« less

  20. 76 FR 28731 - Hand Trucks and Certain Parts Thereof From the People's Republic of China; Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... Parts Thereof From the People's Republic of China; Extension of Time Limit for Final Results of...- 2009 administrative review of the antidumping duty order on hand trucks and certain parts thereof from the People's Republic of China. See Hand Trucks and Certain Parts Thereof from the People's Republic...

  1. 40 CFR 86.129-00 - Road load power, test weight, and inertia weight class determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Road load power, test weight, and... Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.129-00 Road load... running loss testing. Paragraphs (e) and (f) of this section are applicable to vehicles from engine...

  2. 40 CFR 86.129-00 - Road load power, test weight, and inertia weight class determination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Road load power, test weight, and... Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.129-00 Road load... running loss testing. Paragraphs (e) and (f) of this section are applicable to vehicles from engine...

  3. 40 CFR 86.129-00 - Road load power, test weight, and inertia weight class determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Road load power, test weight, and... Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.129-00 Road load... running loss testing. Paragraphs (e) and (f) of this section are applicable to vehicles from engine...

  4. 40 CFR 86.129-00 - Road load power, test weight, and inertia weight class determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Road load power, test weight, and... Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.129-00 Road load... running loss testing. Paragraphs (e) and (f) of this section are applicable to vehicles from engine...

  5. 40 CFR 86.129-00 - Road load power, test weight, and inertia weight class determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Road load power, test weight, and... Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.129-00 Road load... running loss testing. Paragraphs (e) and (f) of this section are applicable to vehicles from engine...

  6. Heavy Duty Diesel Truck and Bus Hybrid Powertrain Study

    DTIC Science & Technology

    2012-03-01

    electric 22 ft. bus that offers greater range than battery-electric buses can provide. Designed to seat 22 passengers plus standees, this Ebus model...system that has both parallel and series operating modes. The relatively low volume of many truck and bus designs has inhibited the development of...that battery packs need to be designed for 50,000 lifetime energy storage cycles in a hybrid transit bus vs. just 3,600 cycles in the typical

  7. 40 CFR 86.096-8 - Emission standards for 1996 and later model year light-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....096-8 Emission standards for 1996 and later model year light-duty vehicles. (a)(1) Standards. (i... tested with the procedures in subpart B indicated for 1996 model year, and shall not exceed the standards... subpart B of this part for 1995 model year light-duty vehicles and be subject to the standards described...

  8. 40 CFR 86.096-8 - Emission standards for 1996 and later model year light-duty vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....096-8 Emission standards for 1996 and later model year light-duty vehicles. (a)(1) Standards. (i... tested with the procedures in subpart B indicated for 1996 model year, and shall not exceed the standards... subpart B of this part for 1995 model year light-duty vehicles and be subject to the standards described...

  9. 40 CFR 86.000-8 - Emission standards for 2000 and later model year light-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....000-8 Emission standards for 2000 and later model year light-duty vehicles. Section 86.000-8 includes... later model year light-duty vehicles shall meet the additional SFTP standards of table A00-2 (defined by...=NOX) and CO Model year Percentage 2000 40 2001 80 2002 100 Table A00-2—Useful Life Standards (G/MI...

  10. 40 CFR 86.000-8 - Emission standards for 2000 and later model year light-duty vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....000-8 Emission standards for 2000 and later model year light-duty vehicles. Section 86.000-8 includes... later model year light-duty vehicles shall meet the additional SFTP standards of table A00-2 (defined by...=NOX) and CO Model year Percentage 2000 40 2001 80 2002 100 Table A00-2—Useful Life Standards (G/MI...

  11. 40 CFR 86.1860-04 - How to comply with the Tier 2 and interim non-Tier 2 fleet average NOX standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles...

  12. Exhaust Emission Rates for Heavy-Duty On road Vehicles in MOVES201X

    EPA Science Inventory

    Updated running exhaust gaseous emission rates (THC, CO, NOx, CO2) for heavy-duty diesel trucks model year 2010 and later based on portable emission measurements from the manufacturer-run, heavy-duty in-use testing (HDIUT) program. Updated cold start emission rates and soak adjus...

  13. Final Rule for Standards for Emissions From Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Motor Vehicles and Motor Vehicle Engines, and Certification Procedures for Aftermarket Conversions

    EPA Pesticide Factsheets

    This rule provides emission standards and test procedures for the certification of new natural gasfueled, and liquefied petroleum gasfueled light-duty vehicles, light-duty trucks, heavy-duty engines and vehicles, and motorcycles.

  14. 40 CFR Appendix Xi to Part 86 - Sampling Plans for Selective Enforcement Auditing of Light-Duty Vehicles

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Sampling Plans for Selective Enforcement Auditing of Light-Duty Vehicles XI Appendix XI to Part 86 Protection of Environment ENVIRONMENTAL... Enforcement Auditing of Light-Duty Vehicles 40% AQL Table 1—Sampling Plan Code Letter Annual sales of...

  15. 40 CFR 86.1831-01 - Mileage accumulation requirements for test vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1831-01 Mileage accumulation...

  16. 40 CFR 86.1836-01 - Manufacturer-supplied production vehicles for testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1836-01 Manufacturer...

  17. 40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... later model year light-duty vehicles at low altitude and 1982 and later model year vehicles at high altitude to which high altitude certification standards of 1.5 gpm HC and 15 gpm CO or less apply), short... model year light-duty trucks at low altitude and 1982 and later model year trucks at high altitude to...

  18. Temperature effects on particulate emissions from DPF-equipped diesel trucks operating on conventional and biodiesel fuels.

    PubMed

    Book, Emily K; Snow, Richard; Long, Thomas; Fang, Tiegang; Baldauf, Richard

    2015-06-01

    Emissions tests were conducted on two medium heavy-duty diesel trucks equipped with a particulate filter (DPF), with one vehicle using a NOx absorber and the other a selective catalytic reduction (SCR) system for control of nitrogen oxides (NOx). Both vehicles were tested with two different fuels (ultra-low-sulfur diesel [ULSD] and biodiesel [B20]) and ambient temperatures (70ºF and 20ºF), while the truck with the NOx absorber was also operated at two loads (a heavy weight and a light weight). The test procedure included three driving cycles, a cold start with low transients (CSLT), the federal heavy-duty urban dynamometer driving schedule (UDDS), and a warm start with low transients (WSLT). Particulate matter (PM) emissions were measured second-by-second using an Aethalometer for black carbon (BC) concentrations and an engine exhaust particle sizer (EEPS) for particle count measurements between 5.6 and 560 nm. The DPF/NOx absorber vehicle experienced increased BC and particle number concentrations during cold starts under cold ambient conditions, with concentrations two to three times higher than under warm starts at higher ambient temperatures. The average particle count for the UDDS showed an opposite trend, with an approximately 27% decrease when ambient temperatures decreased from 70ºF to 20ºF. This vehicle experienced decreased emissions when going from ULSD to B20. The DPF/SCR vehicle tested had much lower emissions, with many of the BC and particle number measurements below detectable limits. However, both vehicles did experience elevated emissions caused by DPF regeneration. All regeneration events occurred during the UDDS cycle. Slight increases in emissions were measured during the WSLT cycles after the regeneration. However, the day after a regeneration occurred, both vehicles showed significant increases in particle number and BC for the CSLT drive cycle, with increases from 93 to 1380% for PM number emissions compared with tests following a day

  19. 40 CFR 86.097-9 - Emission standards for 1997 and later model year light-duty trucks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86... 0.32 4.4 0.08 Methanol 0-3750 0.25 3.4 0.4 0.08 Methanol 3751-5750 0.32 4.4 0.7 0.08 Natural Gas 0....10 Methanol 0-3750 0.80 0.31 4.2 0.6 0.10 Methanol 3751-5750 0.80 0.40 5.5 0.97 0.10 Natural Gas 0...

  20. 40 CFR 86.097-9 - Emission standards for 1997 and later model year light-duty trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86... 0.32 4.4 0.08 Methanol 0-3750 0.25 3.4 0.4 0.08 Methanol 3751-5750 0.32 4.4 0.7 0.08 Natural Gas 0....10 Methanol 0-3750 0.80 0.31 4.2 0.6 0.10 Methanol 3751-5750 0.80 0.40 5.5 0.97 0.10 Natural Gas 0...

  1. Grumman electric truck development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessler, J.C.; Ferdman, S.

    1981-11-01

    An electric truck development was undertaken to prepare for the markets of the 1980's. Grumman is using its aluminum truck bodies technology to create a light weight vehicle. A redesigned unitized, all aluminum body and a new propulsion system resulted in the desired vehicle. The vehicle meets the requirements of the US Postal Service and the DOE Demonstration program. The unitized chassisless structure is designed to take major driving loads. Design features and performance characteristics are enumerated. Safety and service considerations have been incorporated into the vehicle.

  2. 40 CFR 86.1841-01 - Compliance with emission standards for the purpose of certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1841-01...

  3. 40 CFR 86.1824-07 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1824-07...

  4. 40 CFR Appendix I to Subpart S of... - Vehicle Procurement Methodology

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles Pt. 86, Subpt. S, App. I Appendix...

  5. Anti-Idling Battery for Truck Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keith Kelly

    2011-09-30

    In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will delivermore » test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).« less

  6. 75 FR 51980 - Hand Trucks and Certain Parts Thereof from the People's Republic of China; Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... Parts Thereof from the People's Republic of China; Extension of Time Limit for Preliminary Results of... review of the antidumping duty order on hand trucks and certain parts thereof from the People's Republic... Antidumping and Countervailing Duty Administrative Reviews and Request for Revocation in Part, and Deferral of...

  7. Plug-In Hybrid Urban Delivery Truck Technology Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyasato, Matt; Impllitti, Joseph; Pascal, Amar

    The I-710 and CA-60 highways are key transportation corridors in the Southern California region that are heavily used on a daily basis by heavy duty drayage trucks that transport the cargo from the ports to the inland transportation terminals. These terminals, which include store/warehouses, inland-railways, are anywhere from 5 to 50 miles in distance from the ports. The concentrated operation of these drayage vehicles in these corridors has had and will continue to have a significant impact on the air quality in this region whereby significantly impacting the quality of life in the communities surrounding these corridors. To reduce thesemore » negative impacts it is critical that zero and near-zero emission technologies be developed and deployed in the region. A potential local market size of up to 46,000 trucks exists in the South Coast Air Basin, based on near- dock drayage trucks and trucks operating on the I-710 freeway. The South Coast Air Quality Management District (SCAQMD), California Air Resources Board (CARB) and Southern California Association of Governments (SCAG) — the agencies responsible for preparing the State Implementation Plan required under the federal Clean Air Act — have stated that to attain federal air quality standards the region will need to transition to broad use of zero and near zero emission energy sources in cars, trucks and other equipment (Southern California Association of Governments et al, 2011). SCAQMD partnered with Volvo Trucks to develop, build and demonstrate a prototype Class 8 heavy-duty plug-in hybrid drayage truck with significantly reduced emissions and fuel use. Volvo’s approach leveraged the group’s global knowledge and experience in designing and deploying electromobility products. The proprietary hybrid driveline selected for this proof of concept was integrated with multiple enhancements to the complete vehicle in order to maximize the emission and energy impact of electrification. A detailed review of

  8. 40 CFR 86.1852-01 - Waivers for good in-use emission performance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1852-01 Waivers for good in...

  9. 75 FR 1110 - WTO Dispute Settlement Proceeding Regarding United States-Certain Measures Affecting Imports of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... Light Truck Tires From China AGENCY: Office of the United States Trade Representative. ACTION: Notice... light truck tires from China. The request may be found at http://www.wto.org in document WT/DS399/2... duties imposed by the United States on certain passenger vehicle and light truck tires from China...

  10. 75 FR 33565 - Notice of Intent To Prepare an Environmental Impact Statement for New Medium- and Heavy-Duty Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ...- and Heavy-Duty Fuel Efficiency Improvement Program AGENCY: National Highway Traffic Safety... efficiency improvement program for commercial medium- and heavy-duty on-highway vehicles and work trucks... efficiency standards starting with model year (MY) 2016 commercial medium- and heavy-duty on-highway vehicles...

  11. 19 CFR 103.31a - Advance electronic information for air, truck, and rail cargo; Importer Security Filing...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Advance electronic information for air, truck, and rail cargo; Importer Security Filing information for vessel cargo. 103.31a Section 103.31a Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AVAILABILITY OF INFORMATION Other Information...

  12. 40 CFR 86.708-98 - In-use emission standards for 1998 and later model year light-duty vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards (g/mi) for Light-Duty Vehicles Fuel THC NMHC THCE NMHCE CO NOX PM Gasoline 0.41 0.25 3.4 0.4 0.08... H98-2—Full Useful Life 1 Standards (g/mi) for Light-Duty Vehicles Fuel THC NMHC THCE NMHCE CO NOX PM...

  13. 40 CFR 86.708-98 - In-use emission standards for 1998 and later model year light-duty vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards (g/mi) for Light-Duty Vehicles Fuel THC NMHC THCE NMHCE CO NOX PM Gasoline 0.41 0.25 3.4 0.4 0.08... H98-2—Full Useful Life 1 Standards (g/mi) for Light-Duty Vehicles Fuel THC NMHC THCE NMHCE CO NOX PM...

  14. 40 CFR 86.708-98 - In-use emission standards for 1998 and later model year light-duty vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards (g/mi) for Light-Duty Vehicles Fuel THC NMHC THCE NMHCE CO NOX PM Gasoline 0.41 0.25 3.4 0.4 0.08... H98-2—Full Useful Life 1 Standards (g/mi) for Light-Duty Vehicles Fuel THC NMHC THCE NMHCE CO NOX PM...

  15. 40 CFR 86.708-98 - In-use emission standards for 1998 and later model year light-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards (g/mi) for Light-Duty Vehicles Fuel THC NMHC THCE NMHCE CO NOX PM Gasoline 0.41 0.25 3.4 0.4 0.08... H98-2—Full Useful Life 1 Standards (g/mi) for Light-Duty Vehicles Fuel THC NMHC THCE NMHCE CO NOX PM...

  16. 77 FR 55455 - Light-Walled Rectangular Pipe and Tube From Turkey: Notice of Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... Pipe and Tube From Turkey: Notice of Final Results of Antidumping Duty Administrative Review AGENCY... administrative review of the antidumping duty order on light-walled rectangular pipe and tube from Turkey.\\1\\ The... entitled ``Final Results of Review'' below. \\1\\ See Light-Walled Rectangular Pipe and Tube from Turkey...

  17. An In-Depth Cost Analysis for New Light-Duty Vehicle Technologies

    EPA Science Inventory

    Within the transportation sector, light-duty vehicles are the predominant source of greenhouse gas (GHG) emissions, principally exhaust CO2 and refrigerant leakage from vehicle air conditioners. EPA has contracted with FEV to estimate the costs of technologies that may be employ...

  18. Investigation of diesel-powered vehicle emissions. Part VII. Final report Jun 74--Nov 76

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, K.J.

    Five light duty diesel vehicles and five heavy duty diesel engines were tested over various test cycles for both regulated and unregulated emissions. A Mercedes 220 D, Mercedes 240 D, Mercedes 300 D, Peugeot 2040, and an International Harvester pick-up truck with a Perkins 6-247 engine were the light duty diesel vehicles tested. The heavy duty diesels included a Detroit Diesel 6V-71 city bus engine with two injector designs, a Cummins NTC-290 truck engine operated with and without variable timing, and a Detroit Diesel 8V-71TA truck engine. Emissions measured included HC, CO, NOx, CO2, smoke, aldehydes, exhaust odor, benzo (a)more » pyrene, sulfate, sulfur dioxide, and particulate mass.« less

  19. Evaluation of light-emitting diode beacon light fixtures.

    DOT National Transportation Integrated Search

    2009-12-01

    Rotating beacons containing filament light sources have long been used on highway maintenance trucks : to indicate the presence of the truck to other drivers. Because of advances in light-emitting diode (LED) : technologies, flashing lights containin...

  20. [Real world instantaneous emission simulation for light-duty diesel vehicle].

    PubMed

    Huang, Cheng; Chen, Chang-Hong; Dai, Pu; Li, Li; Huang, Hai-Ying; Cheng, Zhen; Jia, Ji-Hong

    2008-10-01

    Core architecture and input parameters of CMEM model were introduced to simulation the second by second vehicle emission rate on real world by taking a light-duty diesel car as a case. On-board test data by a portable emission measurement system were then used to validate the simulation results. Test emission factors of CO, THC, NO(x) and CO2 were respectively 0.81, 0.61, 2.09, and 193 g x km(-1), while calculated emission factors were 0.75, 0.47, 2.47, and 212 g x km(-1). The correlation coefficients reached 0.69, 0.69, 0.75, and 0.72. Simulated instantaneous emissions of the light duty diesel vehicle by CMEM model were strongly coherent with the transient driving cycle. By analysis, CO, THC, NO(x), and CO2 emissions would be reduced by 50%, 47%, 45%, and 44% after improving the traffic situation at the intersection. The result indicated that it is necessary and feasible to simulate the instantaneous emissions of mixed vehicle fleet in some typical traffic areas by the micro-scale vehicle emission model.

  1. Vehicle, driver and atmospheric factors in light-duty vehicle particle number emissions.

    DOT National Transportation Integrated Search

    2014-06-01

    Made possible by the collection of on-board tailpipe emissions data, this research identifies road : and driver factors that are associated with a relatively understudied tailpipe pollutant from light-duty vehicles: ultrafine particle number emission...

  2. HEAVY-DUTY DIESEL VEHICLE MODAL EMISSION MODEL (HDDV-MEM): VOLUME I: MODAL EMISSION MODELING FRAMEWORK; VOLUME II: MODAL COMPONENTS AND OUTPUTS

    EPA Science Inventory

    This research outlines a proposed Heavy-Duty Diesel Vehicle Modal Emission Modeling Framework (HDDV-MEMF) for heavy-duty diesel-powered trucks and buses. The heavy-duty vehicle modal modules being developed under this research effort, although different, should be compatible wi...

  3. Using fixed-parameter and random-parameter ordered regression models to identify significant factors that affect the severity of drivers' injuries in vehicle-train collisions.

    PubMed

    Dabbour, Essam; Easa, Said; Haider, Murtaza

    2017-10-01

    This study attempts to identify significant factors that affect the severity of drivers' injuries when colliding with trains at railroad-grade crossings by analyzing the individual-specific heterogeneity related to those factors over a period of 15 years. Both fixed-parameter and random-parameter ordered regression models were used to analyze records of all vehicle-train collisions that occurred in the United States from January 1, 2001 to December 31, 2015. For fixed-parameter ordered models, both probit and negative log-log link functions were used. The latter function accounts for the fact that lower injury severity levels are more probable than higher ones. Separate models were developed for heavy and light-duty vehicles. Higher train and vehicle speeds, female, and young drivers (below the age of 21 years) were found to be consistently associated with higher severity of drivers' injuries for both heavy and light-duty vehicles. Furthermore, favorable weather, light-duty trucks (including pickup trucks, panel trucks, mini-vans, vans, and sports-utility vehicles), and senior drivers (above the age of 65 years) were found be consistently associated with higher severity of drivers' injuries for light-duty vehicles only. All other factors (e.g. air temperature, the type of warning devices, darkness conditions, and highway pavement type) were found to be temporally unstable, which may explain the conflicting findings of previous studies related to those factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 40 CFR 86.1811-01 - Emission standards for light-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  5. 40 CFR 86.1811-01 - Emission standards for light-duty vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  6. 40 CFR 86.1811-01 - Emission standards for light-duty vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  7. 40 CFR 86.1811-01 - Emission standards for light-duty vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  8. 76 FR 9547 - Light-Walled Rectangular Pipe and Tube From Mexico; Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... preliminary results of the administrative review of the antidumping duty order on light-walled rectangular... light-walled rectangular pipe and tube from Mexico. See Light-Walled Rectangular Pipe and Tube From...

  9. Emissions During and Real-world Frequency of Heavy-duty Diesel Particulate Filter Regeneration.

    PubMed

    Ruehl, Chris; Smith, Jeremy D; Ma, Yilin; Shields, Jennifer Erin; Burnitzki, Mark; Sobieralski, Wayne; Ianni, Robert; Chernich, Donald J; Chang, M-C Oliver; Collins, John Francis; Yoon, Seungju; Quiros, David; Hu, Shaohua; Dwyer, Harry

    2018-05-15

    Recent tightening of particulate matter (PM) emission standards for heavy-duty engines has spurred the widespread adoption of diesel particulate filters (DPFs), which need to be regenerated periodically to remove trapped PM. The total impact of DPFs therefore depends not only on their filtering efficiency during normal operation, but also on the emissions during and the frequency of regeneration events. We performed active (parked and driving) and passive regenerations on two heavy-duty diesel vehicles (HDDVs), and report the chemical composition of emissions during these events, as well as the efficiency with which trapped PM is converted to gas-phase products. We also collected activity data from 85 HDDVs to determine how often regeneration occurs during real-world operation. PM emitted during regeneration ranged from 0.2 to 16.3 g, and the average time and distance between real-world active regenerations was 28.0 h and 599 miles. These results indicate that regeneration of real-world DPFs does not substantially offset the reduction of PM by DPFs during normal operation. The broad ranges of regeneration frequency per truck (3-100 h and 23-4078 miles) underscore the challenges in designing engines and associated aftertreatments that reduce emissions for all real-world duty cycles.

  10. Wisconsin large truck safety and enforcement study.

    DOT National Transportation Integrated Search

    2011-07-01

    The Wisconsin Large Truck Safety and Enforcement Study (LTS&E) focused on a system-wide evaluation of large truck safety in the : state of Wisconsin. This study analyzes crash data related to large trucks that are close to the following criteria: gre...

  11. 40 CFR 86.1108-87 - Maintenance of records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks... requirements specified in 40 CFR part 1065, subparts B and C; (ii) If testing heavy-duty diesel engines, the... heavy-duty diesel engines, the record requirements specified in 40 CFR 1065.695; (C) If testing light...

  12. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles.

    PubMed

    Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L

    2015-06-16

    The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks.

  13. Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.

    Gasoline- and diesel-powered vehicles are known to contribute appreciable amounts of inhalable fine particulate matter to the atmosphere in urban areas. Internal combustion engines burning gasoline and diesel fuel contribute more than 21% of the primary fine particulate organic carbon emitted to the Los Angeles atmosphere. In the present study, particulate (d[sub p] [le] 2 [mu]m) exhaust emissions from six noncatalyst automobiles, seven catalyst-equipped automobiles, and two heavy-duty diesel trucks are examined by gas chromatography/mass spectrometry. The purposes of this study are as follows: (a) to search for conservative marker compounds suitable for tracing the presence of vehicular particulate exhaustmore » emissions in the urban atmosphere, (b) to compile quantitative source profiles, and (c) to study the contributions of fine organic particulate vehicular exhaust to the Los Angeles atmosphere. More than 100 organic compounds are quantified, including n-alkanes, n-alkanoic acids, benzoic acids, benzaldehydes, PAH, oxy-PAH, steranes, pentacyclic triterpanes, azanaphthalenes, and others. Although fossil fuel markers such as steranes and pentacyclic triterpanes can be emitted from other sources, it can be shown that their ambient concentrations measured in the Los Angeles atmosphere are attributable mainly to vehicular exhaust emissions. 102 refs., 9 figs., 6 tabs.« less

  14. 40 CFR 86.1774-99 - Vehicle preconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., with the following additional requirements: (1) The UDDS performed prior to a non-regeneration emission test shall not contain a regeneration (diesel light-duty vehicles and light-duty trucks equipped with...

  15. 40 CFR 86.1774-99 - Vehicle preconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., with the following additional requirements: (1) The UDDS performed prior to a non-regeneration emission test shall not contain a regeneration (diesel light-duty vehicles and light-duty trucks equipped with...

  16. 40 CFR 86.1774-99 - Vehicle preconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., with the following additional requirements: (1) The UDDS performed prior to a non-regeneration emission test shall not contain a regeneration (diesel light-duty vehicles and light-duty trucks equipped with...

  17. 40 CFR 86.1774-99 - Vehicle preconditioning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., with the following additional requirements: (1) The UDDS performed prior to a non-regeneration emission test shall not contain a regeneration (diesel light-duty vehicles and light-duty trucks equipped with...

  18. 40 CFR 86.612-97 - Suspension and revocation of certificates of conformity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENGINES (CONTINUED) Selective Enforcement Auditing of New Light-Duty Vehicles, Light-Duty Trucks, and... control and/or quality assurance measures to be taken by the manufacturer to prevent the future occurrence...

  19. 40 CFR 88.103-94 - Abbreviations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Vehicle LDT—Light-Duty Truck LDV—Light-Duty Vehicle NMHC—Non-Methane Hydrocarbon NMHCE—Non-Methane Hydrocarbon Equivalent NMOG—Non-Methane Organic Gas NOx—Nitrogen Oxides PM—Particulate Matter GVWR—Gross...

  20. 40 CFR 88.103-94 - Abbreviations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Vehicle LDT—Light-Duty Truck LDV—Light-Duty Vehicle NMHC—Non-Methane Hydrocarbon NMHCE—Non-Methane Hydrocarbon Equivalent NMOG—Non-Methane Organic Gas NOx—Nitrogen Oxides PM—Particulate Matter GVWR—Gross...

  1. 40 CFR 88.103-94 - Abbreviations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicle LDT—Light-Duty Truck LDV—Light-Duty Vehicle NMHC—Non-Methane Hydrocarbon NMHCE—Non-Methane Hydrocarbon Equivalent NMOG—Non-Methane Organic Gas NOx—Nitrogen Oxides PM—Particulate Matter GVWR—Gross...

  2. 40 CFR 88.103-94 - Abbreviations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vehicle LDT—Light-Duty Truck LDV—Light-Duty Vehicle NMHC—Non-Methane Hydrocarbon NMHCE—Non-Methane Hydrocarbon Equivalent NMOG—Non-Methane Organic Gas NOx—Nitrogen Oxides PM—Particulate Matter GVWR—Gross...

  3. 40 CFR 88.103-94 - Abbreviations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Vehicle LDT—Light-Duty Truck LDV—Light-Duty Vehicle NMHC—Non-Methane Hydrocarbon NMHCE—Non-Methane Hydrocarbon Equivalent NMOG—Non-Methane Organic Gas NOx—Nitrogen Oxides PM—Particulate Matter GVWR—Gross...

  4. Effects of Particle Filters and Accelerated Engine Replacement on Heavy-Duty Diesel Vehicle Emissions of Black Carbon, Nitrogen Oxides, and Ultrafine Particles

    NASA Astrophysics Data System (ADS)

    Kirchstetter, T.; Preble, C.; Dallmann, T. R.; DeMartini, S. J.; Tang, N. W.; Kreisberg, N. M.; Hering, S. V.; Harley, R. A.

    2013-12-01

    Diesel particle filters have become widely used in the United States since the introduction in 2007 of a more stringent exhaust particulate matter emission standard for new heavy-duty diesel vehicle engines. California has instituted additional regulations requiring retrofit or replacement of older in-use engines to accelerate emission reductions and air quality improvements. This presentation summarizes pollutant emission changes measured over several field campaigns at the Port of Oakland in the San Francisco Bay Area associated with diesel particulate filter use and accelerated modernization of the heavy-duty truck fleet. Pollutants in the exhaust plumes of hundreds of heavy-duty trucks en route to the Port were measured in 2009, 2010, 2011, and 2013. Ultrafine particle number, black carbon (BC), nitrogen oxides (NOx), and nitrogen dioxide (NO2) concentrations were measured at a frequency ≤ 1 Hz and normalized to measured carbon dioxide concentrations to quantify fuel-based emission factors (grams of pollutant emitted per kilogram of diesel consumed). The size distribution of particles in truck exhaust plumes was also measured at 1 Hz. In the two most recent campaigns, emissions were linked on a truck-by-truck basis to installed emission control equipment via the matching of transcribed license plates to a Port truck database. Accelerated replacement of older engines with newer engines and retrofit of trucks with diesel particle filters reduced fleet-average emissions of BC and NOx. Preliminary results from the two most recent field campaigns indicate that trucks without diesel particle filters emit 4 times more BC than filter-equipped trucks. Diesel particle filters increase emissions of NO2, however, and filter-equipped trucks have NO2/NOx ratios that are 4 to 7 times greater than trucks without filters. Preliminary findings related to particle size distribution indicate that (a) most trucks emitted particles characterized by a single mode of approximately

  5. 40 CFR 86.245-94 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.245-94 [Reserved] ...

  6. 40 CFR 86.220-94 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.220-94 [Reserved] ...

  7. 40 CFR 86.243-94 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.243-94 [Reserved] ...

  8. 40 CFR 86.207-94 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.207-94 [Reserved] ...

  9. 40 CFR 86.225-94 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.225-94 [Reserved] ...

  10. 40 CFR 86.217-94 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.217-94 [Reserved] ...

  11. 40 CFR 86.241-94 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.241-94 [Reserved] ...

  12. 40 CFR 86.210-94 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.210-94 [Reserved] ...

  13. 40 CFR 86.212-94 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.212-94 [Reserved] ...

  14. DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakim, Nabil Balnaves, Mike

    2003-05-27

    DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuelmore » economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.« less

  15. 40 CFR 86.1403 - Abbreviations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification...

  16. 40 CFR 86.1402 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification...

  17. 40 CFR 86.1404 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification...

  18. 40 CFR 86.118-00 - Dynamometer calibrations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete... required. (b) For large single roll electric dynamometers or equivalent dynamometer configurations, the...

  19. Comparison of real-world and certification emission rates for light duty gasoline vehicles.

    PubMed

    Khan, Tanzila; Frey, H Christopher

    2018-05-01

    U.S. light duty vehicles are subject to the U.S. Environmental Protection Agency (EPA) emission standards. Emission compliance is determined by certification testing of selected emissions from representative vehicles on standard driving cycles using chassis dynamometers. Test results are also used in many emission inventories. The dynamometer based emission rates are adjusted to provide the certification levels (CL), which must be lower than the standards for compliance. Although standard driving cycles are based on specific observations of real-world driving, they are not necessarily real-world representative. A systematic comparison of the real-world emission rates of U.S. light duty gasoline vehicles (LDGVs) versus CL, and emission standards has not been previously reported. The purpose of this work is to compare regulatory limits (both CLs and emission standards) and the real-world emissions of LDGVs. The sensitivity of the comparisons to cold start emission was assessed. Portable Emission Measurement Systems (PEMS) were used to measure hot stabilized exhaust emissions of 122 LDGVs on a specified 110 mile test route. Cold start emissions were measured with PEMS for a selected vehicle sample of 32 vehicles. Emissions were measured for carbon dioxide (CO 2 ), carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NO x ). For each vehicle, a Vehicle Specific Power (VSP) modal emission rate model was developed. The VSP modal rates were weighted by the standard driving cycles and real-world driving cycles to estimate the respective cycle average emission rates (CAERs). Measured vehicles were matched with certification test vehicles for comparison. For systematic trends in comparison, vehicles were classified into four groups based on the Tier 1 and Tier 2 emission regulation, and the vehicle type such as passenger car and passenger truck. Depending on the cycle-pollutant and the vehicle groups, hot stabilized CAERs are on average either statistically

  20. 40 CFR 86.005-1 - General applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied... this subpart generally apply to 2005 and later model year new Otto-cycle heavy-duty engines used in...

  1. Evaluation of light-emitting diode beacon light fixtures : final report.

    DOT National Transportation Integrated Search

    2009-12-01

    Rotating beacons containing filament light sources have long been used on highway maintenance trucks : to indicate the presence of the truck to other drivers. Because of advances in light-emitting diode (LED) : technologies, flashing lights containin...

  2. Biodiesel and Cold Temperature Effects on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  3. Biodiesel and Cold Temperature Effect on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  4. 49 CFR 393.61 - Truck and truck tractor window construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Truck and truck tractor window construction. 393... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Glazing and Window Construction § 393.61 Truck and truck tractor window construction. Each truck and truck tractor (except trucks engaged in armored...

  5. Colorado SIP: Reg 11, Motor Vehicle Emissions Inspection Program—Part F, Maximum Allowable Emissions Limits for Motor Vehicle Exhaust, Evaporative and Visible Emissions for Light-Duty and Heavy-Duty Vehicles

    EPA Pesticide Factsheets

    Colorado SIP: Reg 11, Motor Vehicle Emissions Inspection Program—Part F, Maximum Allowable Emissions Limits for Motor Vehicle Exhaust, Evaporative and Visible Emissions for Light-Duty and Heavy-Duty Vehicles

  6. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...

  7. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...

  8. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...

  9. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...

  10. 40 CFR 86.092-2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for... Methanol-Fueled Heavy-Duty Vehicles § 86.092-2 Definitions. The definitions of § 86.091-2 remain effective...

  11. 40 CFR 86.092-2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for... Methanol-Fueled Heavy-Duty Vehicles § 86.092-2 Definitions. The definitions of § 86.091-2 remain effective...

  12. 40 CFR 86.101 - General applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... model year new Otto-cycle heavy-duty vehicles and engines certified under the provisions of subpart S of... standards under the provisions of subpart S of this part. (4) For fuel economy testing according to part 600... certifying new light-duty vehicles, light-duty trucks, and heavy-duty vehicles under the provisions of...

  13. 77 FR 1915 - Light-Walled Rectangular Pipe and Tube From Mexico; Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... preliminary results of the administrative review of the antidumping duty order on light-walled rectangular... period of review (POR) from August 1, 2009, through July 31, 2010. \\1\\ See Light-Walled Rectangular Pipe...

  14. 40 CFR 86.1810-09 - General standards; increase in emissions; unsafe condition; waivers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... light-duty vehicles and light-duty trucks fueled by gasoline, diesel, methanol, ethanol, natural gas and... applicable to methanol fueled vehicles are also applicable to Tier 2 and interim non-Tier 2 ethanol fueled...

  15. 40 CFR 86.1810-09 - General standards; increase in emissions; unsafe condition; waivers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... light-duty vehicles and light-duty trucks fueled by gasoline, diesel, methanol, ethanol, natural gas and... applicable to methanol fueled vehicles are also applicable to Tier 2 and interim non-Tier 2 ethanol fueled...

  16. Using Extractive FTIR to Measure N2O from Medium Heavy Duty Vehicles Powered with Diesel and Biodiesel Fuels

    EPA Science Inventory

    A Fourier Transform Infrared (FTIR) spectrometer was used to measure N2O and other pollutant gases during an evaluation of two medium heavy-duty diesel trucks equipped with a Diesel Particulate Filter (DPF). The emissions of these trucks were characterized under a variety of oper...

  17. EPA Presentation Regarding the Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) Tool

    EPA Pesticide Factsheets

    This page contains a selection of the presentations that EPA has publicly presented about our work on the Midterm Evaluation (MTE). It highlights EPA's benchmarking and modeling activities relating to light duty greenhouse gas (GHG) emissions.

  18. 40 CFR 86.246-94 - Intermediate temperature testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.246-94 Intermediate...

  19. 40 CFR 86.216-94 - Calibrations, frequency and overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.216-94 Calibrations...

  20. 40 CFR 86.085-37 - Production vehicles and engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.085-37 Production vehicles and engines. (a) Any manufacturer obtaining certification under this part shall supply to the Administrator... light-duty vehicles or light-duty trucks obtaining certification under this part shall notify the...