Jafarzadeh, Abdollah; Azizi, Sayyed-Vahab; Nemati, Maryam; Khoramdel-Azad, Hossain; Shamsizadeh, Ali; Ayoobi, Fatemeh; Taghipour, Zahra; Hassan, Zuhair Mohammad
2015-12-01
IL-17/IL-23 axis plays an important role in the pathogenesis of several autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS). The immunomodulatory properties of ginger are reported in previous studies. To evaluate the effects of ginger extract on the expression of IL-17 and IL-23 in a model of EAE. EAE was induced in C57BL/6 mice by immunization with myelin oligodendroglial glycoprotein and then treated with PBS or ginger extracts, from day +3 to +30. At day 31, mice were scarificed and the expression of IL-17 and IL-23 mRNA in spinal cord were determined by using real time-PCR. The serum levels of cytokines were measured by ELISA. The mRNA expression of IL-17, IL-23 P19 and IL-23 P40 in CNS and serum levels of IL-17 and IL-23 were significantly higher in PBS-treated EAE mice than non-EAE group (p<0.003, p<0.001, p<0.001, p<0.05 and p<0.01, respectively). In 200 mg/kg ginger-treated EAE mice the mRNA expression of IL-17, P19 and P40 in CNS and serum IL-23 levels were significantly decreased as compared to PBS-treated EAE mice (p<0.05, p<0.001, p<0.001 and p<0.05, respectively). Moreover, 300 mg/kg ginger-treated EAE group had significantly lower expression of IL-17, P19 and P40 in CNS and lower serum IL-17 and IL-23 levels than PBS-treated EAE group (p<0.02, p<0.001, p<0.001, p<0.03 and p<0.004, respectively). Ginger extract reduces the expression of IL-17 and IL-23 in EAE mice. The therapeutic potential of ginger for treatment of MS could be considered in further studies.
Jafarzadeh, A; Mohammadi-Kordkhayli, M; Ahangar-Parvin, R; Azizi, V; Khoramdel-Azad, H; Shamsizadeh, A; Ayoobi, A; Nemati, M; Hassan, Z M; Moazeni, S M; Khaksari, M
2014-11-15
The immunomodulatory effects of the IL-27 and IL-33 and the anti-inflammatory effects of ginger have been reported in some studies. The aim was to evaluate the effects of the ginger extract on the expression of IL-27 and IL-33 in a model of experimental autoimmune encephalomyelitis (EAE). In PBS-treated EAE mice the expression of IL-27 P28 was significantly lower whereas the expression of IL-33 was significantly higher than unimmunized control mice. In 200 and 300 mg/kg ginger-treated EAE groups the expression of IL-27 P28 and IL-27 EBI3 was significantly higher whereas the expression of IL-33 was significantly lower than PBS-treated EAE mice. The EAE clinical symptoms and the pathological scores were significantly lower in ginger-treated EAE groups. These results showed that the ginger extract modulates the expression of the IL-27 and IL-33 in the spinal cord of EAE mice and ameliorates the clinical symptoms of disease. Copyright © 2014 Elsevier B.V. All rights reserved.
Jafarzadeh, Abdollah; Arabi, Zahra; Ahangar-Parvin, Rayhaneh; Mohammadi-Kordkhayli, Marziyeh; Nemati, Maryam
2017-11-01
Background Chemokines facilitate the leukocytes infiltration into the central nervous system (CNS) which is an essential step in the pathogenesis of multiple sclerosis. Ginger has also a broad anti-inflammatory properties. The aim was to evaluate the effects of ginger extract on the expression of CCL20 and CCL22 and their receptors (CCR6 and CCR4, respectively) in experimental autoimmune encephalomyelitis (EAE). Material and Methods Female C57BL/6 mice used for EAE induction by immunization with myelin oligodendroglial glycoprotein. Then, the EAE mice were treated with PBS or ginger extract, from day +3 to +30. At day 31, mice were scarified and the expression of CCL20 and CCL22 and their receptors in the spinal cord measured using real time-PCR. Results The expression of CCL20, CCL22 and CCR4 in the spinal cord of PBS-administrated EAE mice was significantly higher than healthy group (P<0.04, P<0.05 and P<0.02, respectively). In 200- and 300 mg/kg ginger extract-treated EAE mice, the expression of CCL20, CCL22 and CCR4 were significantly reduced as compared with PBS-administrated EAE group (P<0.04, P<0.01 and P<0.002 for 200 mg/kg ginger extract and P<0.01, P<0.005 and P<0.004 for 300 mg/kg ginger extract, respectively). The CCR6 expression in EAE mice treated with 200- or 300 mg/kg ginger extracts was lower than PBS-administrated EAE mice (P<0.01 and P=0.07, respectively). Conclusion Treatment of EAE mice with ginger extract down-regulate the expression of CCL20 and CCL22 and their receptors in EAE mice. The possible therapeutic potential of ginger for treatment of MS can be considered in future investigations. © Georg Thieme Verlag KG Stuttgart · New York.
Wang, Jueqiong; Zhao, Congying; Kong, Peng; Sun, Huanhuan; Sun, Zhe; Bian, Guanyun; Sun, Yafei; Guo, Li
2016-10-01
Nicotinamide adenine dinucleotide (NAD(+)) plays vital roles in mitochondrial functions, cellular energy metabolism and calcium homeostasis. In this study, we investigated the effect of NAD(+) administration for the treatment of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. EAE, a classical animal model of multiple sclerosis (MS), was induced by subcutaneous injection of myelin oligodendrocyteglycoprotein (MOG). The mice were treated with 250mg/kg (body weight) NAD(+) in PBS administered intraperitoneally once daily. We observed that NAD(+) treatment could lessen the severity of EAE. Additionally, NAD(+) treatment attenuated pathological injuries of EAE mice. We also found that the AMP-activated protein kinase (AMPK)/silent mating-type information regulation 2 homolog 1(SIRT1) pathway was activated in the NAD(+)-treated mice and NAD(+) treatment suppressed pro-inflammatory T cell responses. Our findings demonstrated that NAD(+) could be an effective and promising agent to treat multiple sclerosis and its effects on other autoimmune diseases should be explored. Copyright © 2016 Elsevier B.V. All rights reserved.
Mao, Peizhong; Manczak, Maria; Shirendeb, Ulziibat P.; Reddy, P. Hemachandra
2013-01-01
Oxidative stress and mitochondrial dysfunction are involved in the progression and pathogenesis of multiple sclerosis (MS). MitoQ is a mitochondria-targeted antioxidant that has a neuroprotective role in several mitochondrial and neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Here we sought to determine the possible effects of a systematic administration of MitoQ as a therapy, using an experimental autoimmune encephalomyelitis (EAE) mouse model. We studied the beneficial effects of MitoQ in EAE mice that mimic MS like symptoms by treating EAE mice with MitoQ and pretreated C57BL6 mice MitoQ plus EAE induction. We found that pretreatment and treatment of EAE mice with MitoQ reduced neurological disabilities associated with EAE. We also found that both pretreatment and treatment of the EAE mice with MitoQ significantly suppressed inflammatory markers of EAE, including the inhibition of inflammatory cytokines and chemokines. MitoQ treatments reduced neuronal cell loss in the spinal cord, a factor underlying motor disability in EAE mice. The neuroprotective role of MitoQ was confirmed by a neuron-glia co-culture system designed to mimic the mechanism of MS and EAE in vitro. We found that axonal inflammation and oxidative stress are associated with impaired behavioral functions in the EAE mouse model and that treatment with MitoQ can exert protective effects on neurons and reduce axonal inflammation and oxidative stress. These protective effects are likely via multiple mechanisms, including the attenuation of the robust immune response. These results suggest that MitoQ may be a new candidate for the treatment of MS. PMID:24055980
Mao, Peizhong; Manczak, Maria; Shirendeb, Ulziibat P; Reddy, P Hemachandra
2013-12-01
Oxidative stress and mitochondrial dysfunction are involved in the progression and pathogenesis of multiple sclerosis (MS). MitoQ is a mitochondria-targeted antioxidant that has a neuroprotective role in several mitochondrial and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Here we sought to determine the possible effects of a systematic administration of MitoQ as a therapy, using an experimental autoimmune encephalomyelitis (EAE) mouse model. We studied the beneficial effects of MitoQ in EAE mice that mimic MS like symptoms by treating EAE mice with MitoQ and pretreated C57BL6 mice with MitoQ plus EAE induction. We found that pretreatment and treatment of EAE mice with MitoQ reduced neurological disabilities associated with EAE. We also found that both pretreatment and treatment of the EAE mice with MitoQ significantly suppressed inflammatory markers of EAE, including the inhibition of inflammatory cytokines and chemokines. MitoQ treatments reduced neuronal cell loss in the spinal cord, a factor underlying motor disability in EAE mice. The neuroprotective role of MitoQ was confirmed by a neuron-glia co-culture system designed to mimic the mechanism of MS and EAE in vitro. We found that axonal inflammation and oxidative stress are associated with impaired behavioral functions in the EAE mouse model and that treatment with MitoQ can exert protective effects on neurons and reduce axonal inflammation and oxidative stress. These protective effects are likely via multiple mechanisms, including the attenuation of the robust immune response. These results suggest that MitoQ may be a new candidate for the treatment of MS. © 2013.
CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery
2012-01-01
Background Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). In the murine experimental autoimmune encephalomyelitis (EAE) model of MS, T regulatory (Treg) cell therapy has proved to be beneficial, but generation of stable CNS-targeting Tregs needs further development. Here, we propose gene engineering to achieve CNS-targeting Tregs from naïve CD4 cells and demonstrate their efficacy in the EAE model. Methods CD4+ T cells were modified utilizing a lentiviral vector system to express a chimeric antigen receptor (CAR) targeting myelin oligodendrocyte glycoprotein (MOG) in trans with the murine FoxP3 gene that drives Treg differentiation. The cells were evaluated in vitro for suppressive capacity and in C57BL/6 mice to treat EAE. Cells were administered by intranasal (i.n.) cell delivery. Results The engineered Tregs demonstrated suppressive capacity in vitro and could efficiently access various regions in the brain via i.n cell delivery. Clinical score 3 EAE mice were treated and the engineered Tregs suppressed ongoing encephalomyelitis as demonstrated by reduced disease symptoms as well as decreased IL-12 and IFNgamma mRNAs in brain tissue. Immunohistochemical markers for myelination (MBP) and reactive astrogliosis (GFAP) confirmed recovery in mice treated with engineered Tregs compared to controls. Symptom-free mice were rechallenged with a second EAE-inducing inoculum but remained healthy, demonstrating the sustained effect of engineered Tregs. Conclusion CNS-targeting Tregs delivered i.n. localized to the CNS and efficiently suppressed ongoing inflammation leading to diminished disease symptoms. PMID:22647574
Rahn, Kristen A; McLaughlin, Patricia J; Zagon, Ian S
2011-03-24
Endogenous opioids inhibit the onset and progression of experimental autoimmune encephalomyelitis (EAE) with 30days of treatment. This study examined the long term effects of the opioid growth factor (OGF, [Met(5)]-enkephalin) and a low dose of the opioid antagonist naltrexone (LDN) on expression of myelin oligodendrocyte glycoprotein (MOG)-induced EAE. C57BL/6 mice began receiving daily injections of 10mg/kg OGF (MOG+OGF), 0.1mg/kg naltrexone (MOG+LDN), or saline (MOG+Vehicle) at the time of EAE induction and continuing for 60days. In contrast to 100% of the MOG+Vehicle group with behavioral symptoms of EAE, 63% and 68% of the MOG+OGF and MOG+LDN mice expressed disease. Both severity and disease indices of EAE in OGF- and LDN-treated mice were notably decreased from MOG+Vehicle cohorts. By day 60, 6- and 3-fold more animals in the MOG+OGF and MOG+LDN groups, respectively, had a remission compared to MOG+Vehicle mice. Neuropathological studies revealed i) astrocyte activation and neuronal damage as early as day 10 (prior to behavioral symptoms) in all MOG-injected groups, ii) a significant reduction of activated astrocytes in MOG+OGF and MOG+LDN groups compared to MOG+Vehicle mice at day 30, and iii) no demyelination on day 60 in mice treated with OGF or LDN and not displaying disease symptoms. These results indicate that treatment with OGF or LDN had no deleterious long-term repercussions and did not exacerbate EAE, but i) halted progression of disease, ii) reversed neurological deficits, and iii) prevented the onset of neurological dysfunction across a considerable span of time. Copyright © 2011 Elsevier B.V. All rights reserved.
Xanthine Oxidase Mediates Axonal and Myelin Loss in a Murine Model of Multiple Sclerosis
Okuno, Tatsusada; Takata, Kazushiro; Koda, Toru; Tada, Satoru; Shirakura, Takashi; Fujimura, Harutoshi; Mochizuki, Hideki; Sakoda, Saburo; Nakatsuji, Yuji
2013-01-01
Objectives Oxidative stress plays an important role in the pathogenesis of multiple sclerosis (MS). Though reactive oxygen species (ROS) are produced by various mechanisms, xanthine oxidase (XO) is a major enzyme generating ROS in the context of inflammation. The objectives of this study were to investigate the involvement of XO in the pathogenesis of MS and to develop a potent new therapy for MS based on the inhibition of ROS. Methods XO were assessed in a model of MS: experimental autoimmune encephalomyelitis (EAE). The contribution of XO-generated ROS to the pathogenesis of EAE was assessed by treating EAE mice with a novel XO inhibitor, febuxostat. The efficacy of febuxostat was also examined in in vitro studies. Results We showed for the first time that the expression and the activity of XO were increased dramatically within the central nervous system of EAE mice as compared to naïve mice. Furthermore, prophylactic administration of febuxostat, a XO inhibitor, markedly reduced the clinical signs of EAE. Both in vivo and in vitro studies showed infiltrating macrophages and microglia as the major sources of excess XO production, and febuxostat significantly suppressed ROS generation from these cells. Inflammatory cellular infiltration and glial activation in the spinal cord of EAE mice were inhibited by the treatment with febuxostat. Importantly, therapeutic efficacy was observed not only in mice with relapsing-remitting EAE but also in mice with secondary progressive EAE by preventing axonal loss and demyelination. Conclusion These results highlight the implication of XO in EAE pathogenesis and suggest XO as a target for MS treatment and febuxostat as a promising therapeutic option for MS neuropathology. PMID:23951137
Kviecinski, Maicon Roberto; David, Isabela Machado Barbosa; Fernandes, Flávia de Souza; Correa, Marina Dos Reis; Clarinda, Morgana Miranda; Freitas, Amanda Fernandes; Silva, Jane da; Gava, Marta; Müller, Simony Davet; Florentino, Drielly; Petronilho, Fabrícia; Moterle, Diego; Kanis, Luiz Alberto; Pedrosa, Rozangela Curi
2017-12-01
Dillenia indica Linn. (Dilleniaceae) is traditionally used to treat skin inflammation. This study evaluated the healing effect of Dillenia indica fruit extracts on induced psoriasis-like wounds in Wistar rats. Extracts were standardized to betulinic acid, including an aqueous ethanolic extract (AEE), ethyl acetate extract (EAE) and petroleum ether extract. Effects against lipid peroxidation were assessed in vitro. Wounds were created at rat tails (n = 12). Topical treatments were applied once daily for 7 days (1 mL of AEE or EAE at 5 or 50 mg/mL). Maximal dose was defined by the extract solubility. A 10-fold lower dose was also tested. Positive and negative controls were treated with clobetasol (0.5 mg/mL) or excipient. Half of each group was euthanized for histology. The remaining animals were observed for 20 days for wound measurements. Yields of AEE and EAE were 4.3 and 0.7%, respectively. Betulinic acid concentrations in AEE and EAE were 4.6 and 107.6 mg/g. Extracts neutralized lipid peroxidation in vitro at 0.02 μg/mL, accelerating healing at 50 mg/mL. Complete healing in mice treated with AEE occurred 16 days after wound induction. This time was 14 and 12 days in mice treated with EAE and clobetasol. Compared to orthokeratosis, parakeratosis was reduced by AEE (25%), EAE (45%) and clobetasol (55%). EAE caused superior protection against biomolecules oxidation of skin compared to AEE. EAE exhibited activity closer to that of clobetasol. Betulinic acid may be an active constituent, which should be assessed in future studies.
Hahn, Jennifer N; Kaushik, Deepak K; Mishra, Manoj K; Wang, Jianxiong; Silva, Claudia; Yong, V Wee
2016-11-15
Extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is a transmembrane glycoprotein that is upregulated on leukocytes in active lesions in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Administration of anti-EMMPRIN Abs reduces the severity of EAE. Minocycline is a tetracycline antibiotic with immune-modulatory properties that decreases the severity of EAE; it was recently found to attenuate the conversion from a first demyelinating event to clinically definite MS in a phase III trial. We investigated whether and how minocycline affects the expression of EMMPRIN on T cells in culture and in mice afflicted with EAE. EMMPRIN expression in cultures of mouse splenocytes or human PBMCs was elevated upon polyclonal T cell activation, and this was reduced by minocycline correspondent with decreased P-Akt levels. An established MS medication, IFN-β, also diminished EMMPRIN levels on human cells whereas this was not readily observed for fingolimod or monomethylfumarate. In EAE-afflicted mice, minocycline treatment significantly reduced EMMPRIN levels on splenic lymphocytes at the presymptomatic (day 7) phase, and prevented the development of disease. Day 7 spleen transcripts from minocycline-treated EAE mice had a significantly lower MMP-9/TIMP-1 ratio, and significantly lower MCT-1 and CD98 levels, factors associated with EMMPRIN function. Day 16 (peak clinical severity) CNS samples from EAE mice had prominent representation of inflammatory perivascular cuffs, inflammatory molecules and EMMPRIN, and these were abrogated by minocycline. Overall, minocycline attenuated the activation-induced elevation of EMMPRIN on T cells in culture and in EAE mice, correspondent with reduced immune function and EAE CNS pathology. Copyright © 2016 by The American Association of Immunologists, Inc.
Link, Jason M; Rich, Cathleen M; Korat, Maya; Burrows, Gregory G; Offner, Halina; Vandenbark, Arthur A
2007-04-01
Treatment of human autoimmune diseases such as multiple sclerosis (MS) will likely require agents that can prevent or reverse the inflammatory process that results in clinical relapses and disease progression. We evaluated the ability of a newly designed monomeric recombinant TCR ligand (RTL342M) containing HLA-DR2 peptide-binding domains covalently linked to MOG-35-55 peptide to prevent and treat both the initial episode and subsequent relapses of experimental autoimmune encephalomyelitis (EAE) in HLA-DR2 transgenic mice. Single doses of RTL342M given either i.v. or s.c. to HLA-DR2 mice produced a rapid (within 24 h) and dose-dependent reversal of clinical signs of paralytic EAE, and even a single dose < or = 2 microg could produce a significant treatment effect. Multiple daily doses were even more effective than the same total amount of RTL given as a single dose. By establishing the minimal effective dose, we determined that RTLs may be 50 times more potent than molar equivalent doses of myelin peptide alone. RTL342M given prior to induction of EAE prevented disease in most mice, and the remainder could be successfully retreated with RTL. Most important for clinical application, RTL342M was highly effective for treating EAE relapses when given periodically prior to the relapse or even after relapses had occurred. These data demonstrate the rapid and potent clinical effects of RTL342M at disease onset and during relapses in EAE and establish important principles governing the application of this novel approach as a possible therapy for patients with MS.
Fan, Hong-cui; Ren, Xiao-rong; Yu, Jie-zhong; Guo, Min-fang; Ji, Ning; Sun, Yong-sheng; Liang, Li-yun; Ma, Cun-gen
2009-03-01
To explore the therapeutic effectivity and the possible mechanism of triptolide (Tri) on experimental autoimmune encephalomyelitis (EAE). All female C57BL/6 mice were randomly divided into EAE group (28), Tri treated group (20) and adjuvant group (18). Mice in EAE and treated groups were immunized with myelin oligodendrocyte glycoprotein peptides 35-55 (MOG(35-55);), adjuvant group was injected at the same time, but instead of MOG(35-55); with normal saline. Tri was intraperitoneally injected in the dosage of 100 microg/(kg.d) in treated group on day 5 post-immunization (p.i.), and mice in EAE and adjuvant group injected with normal saline as control. The clinical feature and pathological changes were observed and the splenic lymphocytes were prepared on days 18-20 p.i. The cell cultures were divided into the control group (only 200 microL of cell suspension) and the experimental group (cell suspension in the presence of 10 mg/L MOG(35-55);). Then all of them were inoculated in 96-well flat-bottom plates under 37 degrees Celsius, 50 mL/L CO(2);. After 48 h, the proliferation assay was determined by MTT, and the supernatants were harvested for the detection of INF-gamma, IL-17, IL-10 and IL-4 by ELISA. Tri treatment showed an significantly protective action on EAE. After the intervention of Tri, the levels of IL-10 were increased (P<0.05), but the secretion of INF-gamma and proliferation response of splenic lymphocytes induced by MOG(35-55); were statistically significantly inhibited(P<0.05 and P<0.01, respectively). There were no influences on the amount of IL-17 and IL-4 by Tri. Tri is an effective drug in suppressing murine EAE. This suppression is supposed to be related to downregulation of INF-gamma and upregulation of IL-10 secretion in splenic lymphocytes.
NASA Astrophysics Data System (ADS)
Hunt, David W. C.; Leong, Simon; Levy, Julia G.; Chan, Agnes H.
1995-03-01
Photodynamic therapy (PDT) using benzoporphyrin derivative (BPD, Verteporfin) and whole body irradiation, can affect the course of adoptively transferred experimental allergic (autoimmune) encephalomyelitis (EAE) in PL mice. Murine EAE is a T cell-mediated autoimmune disease which serves as a model for human multiple sclerosis. Using a novel disease induction protocol, we found that mice characteristically developed EAE within 3 weeks of receipt of myelin basic protein (MBP)-sensitized, in vitro-cultured spleen or lymph node cells. However, if animals were treated with PDT (1 mg BPD/kg bodyweight and exposed to whole body 15 Joules cm2 of LED light) 24 hours after receiving these cells, disease onset time was significantly delayed. PDT-treated mice developed disease symptoms 45 +/- 3 days following cell administration whereas untreated controls were affected within 23 +/- 2 days. In contrast, application of PDT 48 or 120 hours following injection of the pathogenic cells had no significant effect upon the development of EAE. Experiments are in progress to account for the protective effect of PDT in this animal model. These studies should provide evidence on the feasibility of PDT as a treatment for human autoimmune disease.
Axonal transport rate decreased at the onset of optic neuritis in EAE mice
Lin, Tsen-Hsuan; Kim, Joong Hee; Perez-Torres, Carlos; Chiang, Chia-Wen; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei
2014-01-01
Optic neuritis is frequently the first symptom of multiple sclerosis (MS), an inflammatory demyelinating neurodegenerative disease. Impaired axonal transport has been considered as an early event of neurodegenerative diseases. However, few studies have assessed the integrity of axonal transport in MS or its animal models. We hypothesize that axonal transport impairment occurs at the onset of optic neuritis in experimental autoimmune encephalomyelitis (EAE) mice. In this study, we employed manganese-enhanced MRI (MEMRI) to assess axonal transport in optic nerves in EAE mice at the onset of optic neuritis. Axonal transport was assessed as (a) optic nerve Mn2+ accumulation rate (in % signal change/hour) by measuring the rate of increased total optic nerve signal enhancement, and (b) Mn2+ transport rate (in mm/hour) by measuring the rate of change in optic nerve length enhanced by Mn2+. Compared to sham-treated healthy mice, Mn2+ accumulation rate was significantly decreased by 19% and 38% for EAE mice with moderate and severe optic neuritis, respectively. The axonal transport rate of Mn2+ was significantly decreased by 43% and 65% for EAE mice with moderate and severe optic neuritis, respectively. The degree of axonal transport deficit correlated with the extent of impaired visual function and diminished microtubule-associated tubulins, as well as the severity of inflammation, demyelination, and axonal injury at the onset of optic neuritis. PMID:24936685
Hasan, Mahbub; Seo, Ji-Eun; Rahaman, Khandoker Asiqur; Min, Hophil; Kim, Ki Hun; Park, Ju-Hyung; Sung, Changmin; Son, Junghyun; Kang, Min-Jung; Jung, Byung Hwa; Park, Won Sang; Kwon, Oh-Seung
2017-02-20
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory autoimmune disease of the central nervous system resulting from degeneration of the myelin sheath. This study is aimed to identify differentially expressed genes (DEGs) in the brain of EAE-induced normal diet (ND) mice and high-fat diet (HFD)-induced obese mice, and to identify novel genes responsible for elucidating the mechanism of the disease. Purified mRNA samples from the brain tissue were analyzed for gene microarray and validated by real-time RT-PCR. DEGs were identified if significant changes greater than 1.5-fold or less than 0.66-fold were observed (p<0.05). Pathway construction and functional categorization were performed using the Kyoto encyclopedia of genes and genomes pathways and gene ontology (GO) analysis. HFD-EAE mice showed more severe disease symptoms than ND-EAE mice. From GO study, fold changes of HFD-EAE to ND-EAE genes indicated that the genes were significantly associated to the pathways related with the immune response, antigen presentation, and complement activation. The genes related with metal ion-binding proteins were upregulated in HFD-EAE and ND-EAE mice. Upregulation of Cul9, Mast2, and C4b expression is significantly higher in HFD-EAE mice than ND-EAE mice. Cul9, Mast2, C4b, Psmb8, Ly86, and Ms4a6d were significantly upregulated in both ND- and HFD-EAE mice. Fcgr4, S3-12, Gca, and Zdhhc4 were upregulated only in ND-EAE, and Xlr4b was upregulated only in HFD-EAE mice. And significant upregulated genes of metal ion-binding proteins (Cul9 and Mast2) were observed in HFD-EAE mice. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Soundara Rajan, Thangavelu; Giacoppo, Sabrina; Diomede, Francesca; Bramanti, Placido; Trubiani, Oriana; Mazzon, Emanuela
2017-01-01
Research in recent years has largely explored the immunomodulatory effects of mesenchymal stem cells (MSCs) and their secretory products, called “secretome,” in the treatment of neuroinflammatory diseases. Here, we examined whether such immunosuppressive effects might be elicited due to inflammasome inactivation. To this end, we treated experimental autoimmune encephalomyelitis (EAE) mice model of multiple sclerosis (MS) with the conditioned medium or purified exosomes/microvesicles (EMVs) obtained from relapsing-remitting-MS patients human periodontal ligament stem cells (hPDLSCs) and investigated the regulation of NALP3 inflammasome. We noticed enhanced expression of NALP3, Cleaved Caspase 1, interleukin (IL)-1β, and IL-18 in EAE mouse spinal cord. Conversely, hPDLSCs-conditioned medium and EMVs significantly blocked NALP3 inflammasome activation and provided protection from EAE. Reduction in NALP3, Cleaved Caspase 1, IL-1β, and IL-18 level was noticed in conditioned medium and EMVs-treated EAE mice. Pro-inflammatory Toll-like receptor (TLR)-4 and nuclear factor (NF)-κB were elevated in EAE, while hPDLSCs-conditioned medium and EMVs treatment reduced their expression and increased IκB-α expression. Characterization of hPDLSCs-conditioned medium showed substantial level of anti-inflammatory IL-10, transforming growth factor (TGF)-β, and stromal cell–derived factor 1α (SDF-1α). We propose that the immunosuppressive role of hPDLSCs-derived conditioned medium and EMVs in EAE mice may partly attribute to the presence of soluble immunomodulatory factors, NALP3 inflammasome inactivation, and NF-κB reduction. PMID:28764573
Lourbopoulos, Athanasios; Grigoriadis, Nikolaos; Lagoudaki, Roza; Touloumi, Olga; Polyzoidou, Eleni; Mavromatis, Ioannis; Tascos, Nikolaos; Breuer, Aviva; Ovadia, Haim; Karussis, Dimitris; Shohami, Ester; Mechoulam, Raphael; Simeonidou, Constantina
2011-05-16
Experimental autoimmune encephalomyelitis (EAE) is a widely used model of multiple sclerosis (MS) and both conditions have been reported to exhibit reduced endocannabinoid activity. The purpose of this study was to address the effect of exogenously administered 2-arachidonoylglycerol (2AG), an endocannabinoid receptor ligand, on acute phase and chronic disability in EAE. Acute and chronic EAE models were induced in susceptible mice and 2AG-treatment was applied for 14 days from day of disease induction. 2AG-treatment ameliorated acute phase of disease with delay of disease onset in both EAE models and reduced disease mortality and long-term (70 days post-induction) clinical disability in chronic EAE. Reduced axonal pathology in the chronic EAE- (p<0.0001) and increased activation and ramification of microglia in the 2AG-treated acute EAE- (p<0.05) model were noticed. The latter was accompanied by a 2- to 4-fold increase of the M2-macrophages in the perivascular infiltrations (p<0.001) of the 2AG-treated animals in the acute (day 22), although not the chronic (day 70), EAE model. Expression of cannabinoid receptors 1 (CB1R) and 2 (CB2R) was increased in 2AG-treated animals of acute EAE vs. controls (p<0.05). In addition, ex vivo viability assays exhibited reduced proliferation of activated lymph node cells when extracted from 2AG-treated EAE animals, whereas a dose-dependent response of activated lymphocytes to 2AG-treatment in vitro was noticed. Our data indicate for the first time that 2AG treatment may provide direct (via CBRs) and immune (via M2 macrophages) mediated neuroprotection in EAE. Copyright © 2011 Elsevier B.V. All rights reserved.
Kinoshita, Makoto; Sumi-Akamaru, Hisae; Sasaki, Tsutomu; Takata, Kazushiro; Koda, Toru; Namba, Akiko; Yamashita, Kazuya; Sanda, Eri; Sakaguchi, Manabu; Kumanogoh, Atsushi; Shirakura, Takashi; Tamura, Mizuho; Sakoda, Saburo; Mochizuki, Hideki
2017-01-01
Oxidative stress and mitochondrial dysfunction are important determinants of neurodegeneration in secondary progressive multiple sclerosis (SPMS). We previously showed that febuxostat, a xanthine oxidase inhibitor, ameliorated both relapsing-remitting and secondary progressive experimental autoimmune encephalomyelitis (EAE) by preventing neurodegeneration in mice. In this study, we investigated how febuxostat protects neuron in secondary progressive EAE. A DNA microarray analysis revealed that febuxostat treatment increased the CNS expression of several mitochondria-related genes in EAE mice, most notably including GOT2, which encodes glutamate oxaloacetate transaminase 2 (GOT2). GOT2 is a mitochondrial enzyme that oxidizes glutamate to produce α-ketoglutarate for the Krebs cycle, eventually leading to the production of adenosine triphosphate (ATP). Whereas GOT2 expression was decreased in the spinal cord during the chronic progressive phase of EAE, febuxostat-treated EAE mice showed increased GOT2 expression. Moreover, febuxostat treatment of Neuro2a cells in vitro ameliorated ATP exhaustion induced by rotenone application. The ability of febuxostat to preserve ATP production in the presence of rotenone was significantly reduced by GOT2 siRNA. GOT2-mediated ATP synthesis may be a pivotal mechanism underlying the protective effect of febuxostat against neurodegeneration in EAE. Accordingly, febuxostat may also have clinical utility as a disease-modifying drug in SPMS. PMID:29107957
Honorat, Josephe A; Nakatsuji, Yuji; Shimizu, Mikito; Kinoshita, Makoto; Sumi-Akamaru, Hisae; Sasaki, Tsutomu; Takata, Kazushiro; Koda, Toru; Namba, Akiko; Yamashita, Kazuya; Sanda, Eri; Sakaguchi, Manabu; Kumanogoh, Atsushi; Shirakura, Takashi; Tamura, Mizuho; Sakoda, Saburo; Mochizuki, Hideki; Okuno, Tatsusada
2017-01-01
Oxidative stress and mitochondrial dysfunction are important determinants of neurodegeneration in secondary progressive multiple sclerosis (SPMS). We previously showed that febuxostat, a xanthine oxidase inhibitor, ameliorated both relapsing-remitting and secondary progressive experimental autoimmune encephalomyelitis (EAE) by preventing neurodegeneration in mice. In this study, we investigated how febuxostat protects neuron in secondary progressive EAE. A DNA microarray analysis revealed that febuxostat treatment increased the CNS expression of several mitochondria-related genes in EAE mice, most notably including GOT2, which encodes glutamate oxaloacetate transaminase 2 (GOT2). GOT2 is a mitochondrial enzyme that oxidizes glutamate to produce α-ketoglutarate for the Krebs cycle, eventually leading to the production of adenosine triphosphate (ATP). Whereas GOT2 expression was decreased in the spinal cord during the chronic progressive phase of EAE, febuxostat-treated EAE mice showed increased GOT2 expression. Moreover, febuxostat treatment of Neuro2a cells in vitro ameliorated ATP exhaustion induced by rotenone application. The ability of febuxostat to preserve ATP production in the presence of rotenone was significantly reduced by GOT2 siRNA. GOT2-mediated ATP synthesis may be a pivotal mechanism underlying the protective effect of febuxostat against neurodegeneration in EAE. Accordingly, febuxostat may also have clinical utility as a disease-modifying drug in SPMS.
Mondal, Susanta; Pahan, Kalipada
2015-01-01
Upregulation and/or maintenance of regulatory T cells (Tregs) during an autoimmune insult may have therapeutic efficacy in autoimmune diseases. Although several immunomodulatory drugs and molecules are available, most present significant side effects over long-term use. Cinnamon is a commonly used natural spice and flavoring material used for centuries throughout the world. Here, we have explored a novel use of cinnamon powder in protecting Tregs and treating the disease process of experimental allergic encephalomyelitis (EAE), an animal model of MS. Oral feeding of cinnamon (Cinnamonum verum) powder suppresses clinical symptoms of relapsing-remitting EAE in female PLP-TCR transgenic mice and adoptive transfer mouse model. Cinnamon also inhibited clinical symptoms of chronic EAE in male C57/BL6 mice. Dose-dependent study shows that cinnamon powder at a dose of 50 mg/kg body wt/d or higher significantly suppresses clinical symptoms of EAE in mice. Accordingly, oral administration of cinnamon also inhibited perivascular cuffing, maintained the integrity of blood-brain barrier and blood-spinal cord barrier, suppressed inflammation, normalized the expression of myelin genes, and blocked demyelination in the central nervous system of EAE mice. Interestingly, cinnamon treatment upregulated Tregs via reduction of nitric oxide production. Furthermore, we demonstrate that blocking of Tregs by neutralizing antibodies against CD25 abrogates cinnamon-mediated protection of EAE. Taken together, our results suggest that oral administration of cinnamon powder may be beneficial in MS patients and that no other existing anti-MS therapies could be so economical and trouble-free as this approach. PMID:25569428
2012-01-01
Background DNA vaccines represent promising therapeutic strategies in autoimmune disorders such as multiple sclerosis (MS). However, the precise mechanisms by which DNA vaccines induce immune regulation remain largely unknown. Here, we aimed to expand previous knowledge existing on the mechanisms of action of DNA vaccines in the animal model of MS, experimental autoimmune encephalomyelitis (EAE), by treating EAE mice with a DNA vaccine encoding the myelin oligodendrocyte glycoprotein (MOG), and exploring the therapeutic effects on the disease-induced inflammatory and neurodegenerative changes. Methods EAE was induced in C57BL6/J mice by immunization with MOG35-55 peptide. Mice were intramuscularly treated with a MOG-DNA vaccine or vehicle in prophylactic and therapeutic approaches. Histological studies were performed in central nervous system (CNS) tissue. Cytokine production and regulatory T cell (Treg) quantification were achieved by flow cytometry. Gene expression patterns were determined using microarrays, and the main findings were validated by real-time PCR. Results MOG-DNA treatment reduced the clinical and histopathological signs of EAE when administered in both prophylactic and therapeutic settings. Suppression of clinical EAE was associated with dampening of antigen (Ag)-specific proinflammatory Th1 and Th17 immune responses and, interestingly, expansion of Treg in the periphery and upregulation in the CNS of genes encoding neurotrophic factors and proteins involved in remyelination. Conclusions These results suggest for the first time that the beneficial effects of DNA vaccines in EAE are not limited to anti-inflammatory mechanisms, and DNA vaccines may also exert positive effects through hitherto unknown neuroprotective mechanisms. PMID:22727044
Li, Wen; Zhang, Zhihui; Zhang, Kai; Xue, Zhenyi; Li, Yan; Zhang, Zimu; Zhang, Lijuan; Gu, Chao; Zhang, Qi; Hao, Junwei; Da, Yurong; Yao, Zhi; Kong, Ying; Zhang, Rongxin
2016-10-01
Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases.
Wright, Erik; Rahgozar, Kusha; Hallworth, Nicholas; Lanker, Stefan; Carrithers, Michael D.
2013-01-01
Natalizumab inhibits the transmigration of activated T lymphocytes into the brain and is highly efficacious in multiple sclerosis (MS). However, from a pharmacogenomic perspective, its efficacy and safety in specific patients remain unclear. Here our goal was to analyze the effects of epithelial V-like antigen (EVA) on anti-alpha4 integrin (VLA4) efficacy in a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). EVA has been previously characterized in human CD4 T lymphocytes, mouse thymic development, and choroid plexus epithelial cells. Further analysis here demonstrated expression in B lymphocytes and an increase in EVA+ lymphocytes following immunization. Following active induction of EAE using the MOG35–55 active immunization model, EVA deficient mice developed more severe EAE and white matter tissue injury as compared to wild type controls. This severe EAE phenotype did not respond to anti-VLA4 treatment. In both the control antibody and anti-VLA4 conditions, these mice demonstrated persistent CNS invasion of mature B lymphocyte (CD19+, CD21+, sIgG+), increased serum autoantibody levels, and extensive complement and IgG deposition within lesions containing CD5+IgG+ cells. Wild type mice treated with control antibody also demonstrated the presence of CD19+, CD21+, sIgG+ cells within the CNS during peak EAE disease severity and detectable serum autoantibody. In contrast, wild type mice treated with anti-VLA4 demonstrated reduced serum autoantibody levels as compared to wild type controls and EVA-knockout mice. As expected, anti-VLA4 treatment in wild type mice reduced the total numbers of all CNS mononuclear cells and markedly decreased CD4 T lymphocyte invasion. Treatment also reduced the frequency of CD19+, CD21+, sIgG+ cells in the CNS. These results suggest that anti-VLA4 treatment may reduce B lymphocyte associated autoimmunity in some individuals and that EVA expression is necessary for an optimal therapeutic response. We postulate that these findings could optimize the selection of treatment responders. PMID:23951051
Binyamin, Orli; Larush, Liraz; Frid, Kati; Keller, Guy; Friedman-Levi, Yael; Ovadia, Haim; Abramsky, Oded; Magdassi, Shlomo; Gabizon, Ruth
2015-01-01
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system and is associated with demyelination, neurodegeneration, and sensitivity to oxidative stress. In this work, we administered a nanodroplet formulation of pomegranate seed oil (PSO), denominated Nano-PSO, to mice induced for experimental autoimmune encephalomyelitis (EAE), an established model of MS. PSO comprises high levels of punicic acid, a unique polyunsaturated fatty acid considered as one of the strongest natural antioxidants. We show here that while EAE-induced mice treated with natural PSO presented some reduction in disease burden, this beneficial effect increased significantly when EAE mice were treated with Nano-PSO of specific size nanodroplets at much lower concentrations of the oil. Pathological examinations revealed that Nano-PSO administration dramatically reduced demyelination and oxidation of lipids in the brains of the affected animals, which are hallmarks of this severe neurological disease. We propose that novel formulations of natural antioxidants such as Nano-PSO may be considered for the treatment of patients suffering from demyelinating diseases. On the mechanistic side, our results demonstrate that lipid oxidation may be a seminal feature in both demyelination and neurodegeneration. PMID:26648720
Einstein, Ofira; Fainstein, Nina; Touloumi, Olga; Lagoudaki, Roza; Hanya, Ester; Grigoriadis, Nikolaos; Katz, Abram; Ben-Hur, Tamir
2018-01-01
Conflicting results exist on the effects of exercise training (ET) on Experimental Autoimmune Encephalomyelitis (EAE), nor is it known how exercise impacts on disease progression. We examined whether ET ameliorates the development of EAE by modulating the systemic immune system or exerting direct neuroprotective effects on the CNS. Healthy mice were subjected to 6weeks of motorized treadmill running. The Proteolipid protein (PLP)-induced transfer EAE model in mice was utilized. To assess effects of ET on systemic autoimmunity, lymph-node (LN)-T cells from trained- vs. sedentary donor mice were transferred to naïve recipients. To assess direct neuroprotective effects of ET, PLP-reactive LN-T cells were transferred into recipient mice that were trained prior to EAE transfer or to sedentary mice. EAE severity was assessed in vivo and the characteristics of encephalitogenic LN-T cells derived from PLP-immunized mice were evaluated in vitro. LN-T cells obtained from trained mice induced an attenuated clinical and pathological EAE in recipient mice vs. cells derived from sedentary animals. Training inhibited the activation, proliferation and cytokine gene expression of PLP-reactive T cells in response to CNS-derived autoantigen, but strongly enhanced their proliferation in response to Concanavalin A, a non-specific stimulus. However, there was no difference in EAE severity when autoreactive encephalitogenic T cells were transferred to trained vs. sedentary recipient mice. ET inhibits immune system responses to an auto-antigen to attenuate EAE, rather than generally suppressing the immune system, but does not induce a direct neuro-protective effect against EAE. Copyright © 2017 Elsevier Inc. All rights reserved.
Maricic, Igor; Halder, Ramesh; Bischof, Felix; Kumar, Vipin
2014-01-01
CD1d-restricted NKT cells can be divided into two groups: type I NKT cells utilize a semi-invariant TCR whereas type II express a relatively diverse set of TCRs. A major subset of type II NKT cells recognizes myelin-derived sulfatides and is selectively enriched in the central nervous system tissue during experimental autoimmune encephalomyelitis (EAE). We have shown that activation of sulfatide-reactive type II NKT cells by sulfatide prevents induction of EAE. Here we have addressed the mechanism of regulation as well as whether a single immunodominant form of synthetic sulfatide can treat ongoing chronic and relapsing EAE in SJL/J mice. We have shown that the activation of sulfatide-reactive type II NKT cells leads to a significant reduction in the frequency and effector function of PLP139-151/I-As–tetramer+ cells in lymphoid and CNS tissues. In addition, type I NKT cells and dendritic cells in the periphery as well as CNS-resident microglia are inactivated following sulfatide administration, and mice deficient in type I NKT cells are not protected from disease. Moreover tolerized DCs from sulfatide-treated animals can adoptively transfer protection into naive mice. Treatment of SJL/J mice with a synthetic cis-tetracosenoyl sulfatide, but not αGalCer, reverses ongoing chronic and relapsing EAE. Our data highlight a novel immune regulatory pathway involving NKT subset interactions leading to inactivation of type I NKT cells, DCs, and microglial cells in suppression of autoimmunity. Since CD1 molecules are non-polymorphic, the sulfatide-mediated immune regulatory pathway can be targeted for development of non-HLA-dependent therapeutic approaches to T cell-mediated autoimmune diseases. PMID:24973441
Exacerbated experimental autoimmune encephalomyelitis in mast-cell-deficient Kit W-sh/W-sh mice.
Piconese, Silvia; Costanza, Massimo; Musio, Silvia; Tripodo, Claudio; Poliani, Pietro L; Gri, Giorgia; Burocchi, Alessia; Pittoni, Paola; Gorzanelli, Andrea; Colombo, Mario P; Pedotti, Rosetta
2011-04-01
Mast cell (MC)-deficient c-Kit mutant Kit(W/W-v) mice are protected against experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, suggesting a detrimental role for MCs in this disease. To further investigate the role of MCs in EAE, we took advantage of a recently characterized model of MC deficiency, Kit(W-sh/W-sh). Surprisingly, we observed that myelin oligodendrocyte glycoprotein (MOG)(35-55)-induced chronic EAE was exacerbated in Kit(W-sh/W-sh) compared with Kit(+/+) mice. Kit(W-sh/W-sh) mice showed more inflammatory foci in the central nervous system (CNS) and increased T-cell response against myelin. To understand whether the discrepant results obtained in Kit(W-sh/W-sh) and in Kit(W/W-v) mice were because of the different immunization protocols, we induced EAE in these two strains with varying doses of MOG(35-55) and adjuvants. Although Kit(W-sh/W-sh) mice exhibited exacerbated EAE under all immunization protocols, Kit(W/W-v) mice were protected from EAE only when immunized with high, but not low, doses of antigen and adjuvants. Kit(W-sh/W-sh) mice reconstituted systemically, but not in the CNS, with bone marrow-derived MCs still developed exacerbated EAE, indicating that protection from disease could be exerted by MCs mainly in the CNS, and/or by other cells possibly dysregulated in Kit(W-sh/W-sh) mice. In summary, these data suggest to reconsider MC contribution to EAE, taking into account the variables of using different experimental models and immunization protocols.
Sefia, Eseberuo; Pryce, Gareth; Meier, Ute-Christiane; Giovannoni, Gavin; Baker, David
2017-05-01
Multiple sclerosis (MS) is often considered to be a CD4, T cell-mediated disease. This is largely based on the capacity of CD4 T cells to induce relapsing experimental autoimmune encephalomyelitis (EAE) in rodents. However, CD4-depletion using a monoclonal antibody was considered unsuccessful and relapsing MS responds well to B cell depletion via CD20 B cell depleting antibodies. The influence of CD20 B cell depletion in relapsing EAE was assessed. Relapsing EAE was induced in Biozzi ABH mice. These were treated with CD20-specific (18B12) antibody and the influence on CD45RA-B220 B cell depletion and clinical course was analysed. Relapsing EAE in Biozzi ABH failed to respond to the marked B cell depletion induced with a CD20-specific antibody. In contrast to CD20 and CD8-specific antibodies, CD4 T cell depletion inhibited EAE. Spinal cord antigen-induced disease in ABH mice is CD4 T cell-dependent. The lack of influence of CD20 B cell depletion in relapsing EAE, coupled with the relatively marginal and inconsistent results obtained in other mouse studies, suggests that rodents may have limited value in understanding the mechanism occurring following CD20 B cell depletion in humans. Copyright © 2017 Elsevier B.V. All rights reserved.
Colpitts, Sara L; Kasper, Eli J; Keever, Abigail; Liljenberg, Caleb; Kirby, Trevor; Magori, Krisztian; Kasper, Lloyd H; Ochoa-Repáraz, Javier
2017-11-02
The gut microbiome plays an important role in the development of inflammatory disease as shown using experimental models of central nervous system (CNS) demyelination. Gut microbes influence the response of regulatory immune cell populations in the gut-associated lymphoid tissue (GALT), which drive protection in acute and chronic experimental autoimmune encephalomyelitis (EAE). Recent observations suggest that communication between the host and the gut microbiome is bidirectional. We hypothesized that the gut microbiota differs between the acute inflammatory and chronic progressive stages of a murine model of secondary-progressive multiple sclerosis (SP-MS). This non-obese diabetic (NOD) model of EAE develops a biphasic pattern of disease that more closely resembles the human condition when transitioning from relapsing-remitting (RR)-MS to SP-MS. We compared the gut microbiome of NOD mice with either mild or severe disease to that of non-immunized control mice. We found that the mice which developed a severe secondary form of EAE harbored a dysbiotic gut microbiome when compared with the healthy control mice. Furthermore, we evaluated whether treatment with a cocktail of broad-spectrum antibiotics would modify the outcome of the progressive stage of EAE in the NOD model. Our results indicated reduced mortality and clinical disease severity in mice treated with antibiotics compared with untreated mice. Our findings support the hypothesis that there are reciprocal effects between experimental CNS inflammatory demyelination and modification of the microbiome providing a foundation for the establishment of early therapeutic interventions targeting the gut microbiome that could potentially limit disease progression.
Ginwala, Rashida; McTish, Emily; Raman, Chander; Singh, Narendra; Nagarkatti, Mitzi; Nagarkatti, Prakash; Sagar, Divya; Jain, Pooja; Khan, Zafar K
2016-03-01
Apigenin, a natural flavonoid, found in several plants, fruits, vegetables, herbs, and spices, is known to have anti-oxidant and anti-inflammatory properties that are evident in the use of these substances for centuries as medicinal approaches to treat asthma, insomnia, Parkinson's disease, neuralgia, and shingles. However, there is a considerable dearth of information regarding its effect on immune cells, especially dendritic cells (DC) that maintain the critical balance between an immunogenic and tolerogenic immune response, in an immunospecialized location like the central nervous system (CNS). In this paper we looked at the anti-inflammatory properties of Apigenin in restoration of immune function and the resultant decrease in neuroinflammation. In vivo, a significant reduction in severity of experimental autoimmune encephalomyelitis (EAE) progression and relapse was observed in C57BL/6 (progressive) and SJL/J (relapse-remitting) mouse models of multiple sclerosis upon treatment with Apigenin. Apigenin treated EAE mice show decreased expression of α4 integrin and CLEC12A on splenic DCs and an increased retention of immune cells in the periphery compared to untreated EAE mice. This correlated consequently with immunohistochemistry findings of decreased immune cell infiltration and reduced demyelination in the CNS. These results indicate a protective role of Apigenin against the neurodegenerative effects resulting from the entry of DC stimulated pathogenic T cells into the CNS thus implicating a potential therapy for neuroinflammatory disease.
SAP Suppresses the Development of Experimental Autoimmune Encephalomyelitis in C57BL6 Mice
Ji, Zhe; Ke, Zun-Ji; Geng, Jian-Guo
2012-01-01
Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell-mediated disease of the CNS. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report SAP transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35–55 in CFA, SAP transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However in SAP-KO mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild-type to SAP transgenic mice or transfer of SAP transgenic Ag-restimulated T cells to control mice induced milder EAE. T cells from MOG-primed SAP transgenic mice showed weak proliferative responses. Furthermore, in SAP transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of IL-2 stimulated by P-selectin, and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin. PMID:21647172
Pfeiffer, Friederike; Schäfer, Julia; Lyck, Ruth; Makrides, Victoria; Brunner, Sarah; Schaeren-Wiemers, Nicole; Deutsch, Urban; Engelhardt, Britta
2011-11-01
In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS), loss of the blood-brain barrier (BBB) tight junction (TJ) protein claudin-3 correlates with immune cell infiltration into the CNS and BBB leakiness. Here we show that sealing BBB TJs by ectopic tetracycline-regulated expression of the TJ protein claudin-1 in Tie-2 tTA//TRE-claudin-1 double transgenic C57BL/6 mice had no influence on immune cell trafficking across the BBB during EAE and furthermore did not influence the onset and severity of the first clinical disease episode. However, expression of claudin-1 did significantly reduce BBB leakiness for both blood borne tracers and endogenous plasma proteins specifically around vessels expressing claudin-1. In addition, mice expressing claudin-1 exhibited a reduced disease burden during the chronic phase of EAE as compared to control littermates. Our study identifies BBB TJs as the critical structure regulating BBB permeability but not immune cell trafficking into CNS during EAE, and indicates BBB dysfunction is a potential key event contributing to disease burden in the chronic phase of EAE. Our observations suggest that stabilizing BBB barrier function by therapeutic targeting of TJs may be beneficial in treating MS, especially when anti-inflammatory treatments have failed.
Kurte, Mónica; Bravo-Alegría, Javiera; Torres, Alexander; Carrasco, Vania; Ibáñez, Cristina; Vega-Letter, Ana María; Fernández-O'Ryan, Catalina; Irarrázabal, Carlos E; Figueroa, Fernando E; Fuentealba, Rodrigo A; Riedel, Claudia; Carrión, Flavio
2015-01-01
Potent immunosuppressive and regenerative properties of mesenchymal stem cells (MSCs) position them as a novel therapy for autoimmune diseases. This research examines the therapeutic effect of MSCs administration at different disease stages in experimental autoimmune encephalomyelitis (EAE). Classical and atypical scores of EAE, associated with Th1 and Th17 response, respectively, and also Treg lymphocytes, were evaluated. MSCs administration at the onset (EAE+MSConset) induced an important amelioration of the clinical signs and less lasting effect at the peak of EAE (EAE+MSCpeak). No effect was observed when MSCs were applied after EAE stabilization (EAE+MSClate). Surprisingly, EAE atypical signs were detected in EAE+MSCpeak and EAE+MSClate mice. However, no correlation was found in Th17/Th1 ratio. Interestingly, regardless of time administration, MSCs significantly reduced IL-6 and also T-bet, RORγT, and Foxp3 mRNA levels in brain samples of EAE mice. The downregulation of IL-6 could restore the well-functioning of the blood-brain barrier of EAE mice, correlated with a decreased number of brain infiltrating leukocytes. These results suggest that the inflammatory status is important to be considered for administering MSCs in autoimmune pathologies, leading to a further research to clarify the effect of MSCs for multiple sclerosis.
Kurte, Mónica; Bravo-Alegría, Javiera; Torres, Alexander; Carrasco, Vania; Ibáñez, Cristina; Vega-Letter, Ana María; Fernández-O'Ryan, Catalina; Irarrázabal, Carlos E.; Figueroa, Fernando E.; Fuentealba, Rodrigo A.; Riedel, Claudia; Carrión, Flavio
2015-01-01
Potent immunosuppressive and regenerative properties of mesenchymal stem cells (MSCs) position them as a novel therapy for autoimmune diseases. This research examines the therapeutic effect of MSCs administration at different disease stages in experimental autoimmune encephalomyelitis (EAE). Classical and atypical scores of EAE, associated with Th1 and Th17 response, respectively, and also Treg lymphocytes, were evaluated. MSCs administration at the onset (EAE+MSConset) induced an important amelioration of the clinical signs and less lasting effect at the peak of EAE (EAE+MSCpeak). No effect was observed when MSCs were applied after EAE stabilization (EAE+MSClate). Surprisingly, EAE atypical signs were detected in EAE+MSCpeak and EAE+MSClate mice. However, no correlation was found in Th17/Th1 ratio. Interestingly, regardless of time administration, MSCs significantly reduced IL-6 and also T-bet, RORγT, and Foxp3 mRNA levels in brain samples of EAE mice. The downregulation of IL-6 could restore the well-functioning of the blood-brain barrier of EAE mice, correlated with a decreased number of brain infiltrating leukocytes. These results suggest that the inflammatory status is important to be considered for administering MSCs in autoimmune pathologies, leading to a further research to clarify the effect of MSCs for multiple sclerosis. PMID:25838828
Wu, Muzhou; Tsirka, Stella E
2009-08-15
Multiple sclerosis (MS) is a demyelinating autoimmune disease characterized by infiltration of T cells into the central nervous system (CNS) after compromise of the blood-brain barrier. A model used to mimic the disease in mice is experimental autoimmune encephalomyelitis (EAE). In this report, we examine the clinical and histopathological course of EAE in eNOS-deficient (eNOS-/-) mice to determine the role of nitric oxide (NO) derived from this enzyme in the disease progression. We find that eNOS-/- mice exhibit a delayed onset of EAE that correlates with delayed BBB breakdown, thus suggesting that NO production by eNOS underlies the T cell infiltration into the CNS. However, the eNOS-/- mice also eventually exhibit more severe EAE and delayed recovery, indicating that NO undertakes dual roles in MS/EAE, one proinflammatory that triggers disease onset, and the other neuroprotective that promotes recovery from disease exacerbation events.
Estrogen protection against EAE modulates the microbiota and mucosal-associated regulatory cells.
Benedek, Gil; Zhang, Jun; Nguyen, Ha; Kent, Gail; Seifert, Hilary A; Davin, Sean; Stauffer, Patrick; Vandenbark, Arthur A; Karstens, Lisa; Asquith, Mark; Offner, Halina
2017-09-15
Sex hormones promote immunoregulatory effects on multiple sclerosis. In the current study we evaluated the composition of the gut microbiota and the mucosal-associated regulatory cells in estrogen or sham treated female mice before and after autoimmune encephalomyelitis (EAE) induction. Treatment with pregnancy levels of estrogen induces changes in the composition and diversity of gut microbiota. Additionally, estrogen prevents EAE-associated changes in the gut microbiota and might promote the enrichment of bacteria that are associated with immune regulation. Our results point to a possible cross-talk between the sex hormones and the gut microbiota, which could promote neuroprotection. Copyright © 2017 Elsevier B.V. All rights reserved.
Lin, Wensheng; Lin, Yifeng; Li, Jin; Fenstermaker, Ali G; Way, Sharon W; Clayton, Benjamin; Jamison, Stephanie; Harding, Heather P; Ron, David; Popko, Brian
2013-04-03
There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.
2012-01-01
Background Extracellular matrix metalloproteinase inducer (EMMPRIN; CD147, basigin) is an inducer of the expression of several matrix metalloproteinases (MMPs). We reported previously that blocking EMMPRIN activity reduced neuroinflammation and severity of disease in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Methods To improve upon EMMPRIN blockade, and to help unravel the biological functions of EMMPRIN in inflammatory disorders, we have developed several anti-EMMPRIN monoclonal antibodies. Results Of these monoclonal antibodies, a particular one, clone 10, was efficient in binding mouse and human cells using several methods of detection. The specificity of clone 10 was demonstrated by its lack of staining of EMMPRIN-null embryos compared to heterozygous and wild-type mouse samples. Functionally, human T cells activated with anti-CD3 and anti-CD28 elevated their expression of EMMPRIN and the treatment of these T cells with clone 10 resulted in decreased proliferation and matrix metalloproteinase- 9 (MMP-9) production. Activated human T cells were toxic to human neurons in culture and clone 10 pretreatment reduced T cell cytotoxicity correspondent with decrease of granzyme B levels within T cells. In vivo, EAE mice treated with clone 10 had a markedly reduced disease score compared to mice treated with IgM isotype control. Conclusions We have produced a novel anti-EMMPRIN monoclonal antibody that blocks several aspects of T cell activity, thus highlighting the multiple roles of EMMPRIN in T cell biology. Moreover, clone 10 reduces EAE scores in mice compared to controls, and has activity on human cells, potentially allowing for the testing of anti-EMMPRIN treatment not only in EAE, but conceivably also in MS. PMID:22480370
Agrawal, Smriti M; Silva, Claudia; Wang, Janet; Tong, Jade Pui-Wai; Yong, V Wee
2012-04-05
Extracellular matrix metalloproteinase inducer (EMMPRIN; CD147, basigin) is an inducer of the expression of several matrix metalloproteinases (MMPs). We reported previously that blocking EMMPRIN activity reduced neuroinflammation and severity of disease in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). To improve upon EMMPRIN blockade, and to help unravel the biological functions of EMMPRIN in inflammatory disorders, we have developed several anti-EMMPRIN monoclonal antibodies. Of these monoclonal antibodies, a particular one, clone 10, was efficient in binding mouse and human cells using several methods of detection. The specificity of clone 10 was demonstrated by its lack of staining of EMMPRIN-null embryos compared to heterozygous and wild-type mouse samples. Functionally, human T cells activated with anti-CD3 and anti-CD28 elevated their expression of EMMPRIN and the treatment of these T cells with clone 10 resulted in decreased proliferation and matrix metalloproteinase- 9 (MMP-9) production. Activated human T cells were toxic to human neurons in culture and clone 10 pretreatment reduced T cell cytotoxicity correspondent with decrease of granzyme B levels within T cells. In vivo, EAE mice treated with clone 10 had a markedly reduced disease score compared to mice treated with IgM isotype control. We have produced a novel anti-EMMPRIN monoclonal antibody that blocks several aspects of T cell activity, thus highlighting the multiple roles of EMMPRIN in T cell biology. Moreover, clone 10 reduces EAE scores in mice compared to controls, and has activity on human cells, potentially allowing for the testing of anti-EMMPRIN treatment not only in EAE, but conceivably also in MS.
Ginwala, Rashida; McTish, Emily; Raman, Chander; Singh, Narendra; Nagarkatti, Mitzi; Nagarkatti, Prakash; Sagar, Divya
2016-01-01
Apigenin, a natural flavonoid, found in several plants, fruits, vegetables, herbs, and spices, is known to have anti-oxidant and anti-inflammatory properties that are evident in the use of these substances for centuries as medicinal approaches to treat asthma, insomnia, Parkinson’s disease, neuralgia, and shingles. However, there is a considerable dearth of information regarding its effect on immune cells, especially dendritic cells (DC) that maintain the critical balance between an immunogenic and tolerogenic immune response, in an immunospecialized location like the central nervous system (CNS). In this paper we looked at the anti-inflammatory properties of Apigenin in restoration of immune function and the resultant decrease in neuroinflammation. In vivo, a significant reduction in severity of experimental autoimmune encephalomyelitis (EAE) progression and relapse was observed in C57BL/6 (progressive) and SJL/J (relapse-remitting) mouse models of multiple sclerosis upon treatment with Apigenin. Apigenin treated EAE mice show decreased expression of α4 integrin and CLEC12A on splenic DCs and an increased retention of immune cells in the periphery compared to untreated EAE mice. This correlated consequently with immunohistochemistry findings of decreased immune cell infiltration and reduced demyelination in the CNS. These results indicate a protective role of Apigenin against the neurodegenerative effects resulting from the entry of DC stimulated pathogenic T cells into the CNS thus implicating a potential therapy for neuroinflammatory disease. PMID:26040501
Thakker, Paresh; Leach, Michael W; Kuang, Wen; Benoit, Stephen E; Leonard, John P; Marusic, Suzana
2007-02-15
Experimental autoimmune encephalomyelitis (EAE), a T cell-mediated inflammatory disease of the CNS, is a rodent model of human multiple sclerosis. IL-23 is one of the critical cytokines in EAE development and is currently believed to be involved in the maintenance of encephalitogenic responses during the tissue damage effector phase of the disease. In this study, we show that encephalitogenic T cells from myelin oligodendrocyte glycopeptide (MOG)-immunized wild-type (WT) mice caused indistinguishable disease when adoptively transferred to WT or IL-23-deficient (p19 knockout (KO)) recipient mice, demonstrating that once encephalitogenic cells have been generated, EAE can develop in the complete absence of IL-23. Furthermore, IL-12/23 double-deficient (p35/p19 double KO) recipient mice developed EAE that was indistinguishable from WT recipients, indicating that IL-12 did not compensate for IL-23 deficiency during the effector phase of EAE. In contrast, MOG-specific T cells from p19KO mice induced EAE with delayed onset and much lower severity when transferred to WT recipient mice as compared with the EAE that was induced by cells from WT controls. MOG-specific T cells from p19KO mice were highly deficient in the production of IFN-gamma, IL-17A, and TNF, indicating that IL-23 plays a critical role in development of encephalitogenic T cells and facilitates the development of T cells toward both Th1 and Th17 pathways.
Melanocortin-1 receptor activation is neuroprotective in mouse models of neuroinflammatory disease.
Mykicki, Nadine; Herrmann, Alexander M; Schwab, Nicholas; Deenen, René; Sparwasser, Tim; Limmer, Andreas; Wachsmuth, Lydia; Klotz, Luisa; Köhrer, Karl; Faber, Cornelius; Wiendl, Heinz; Luger, Thomas A; Meuth, Sven G; Loser, Karin
2016-10-26
In inflammation-associated progressive neuroinflammatory disorders, such as multiple sclerosis (MS), inflammatory infiltrates containing T helper 1 (T H 1) and T H 17 cells cause demyelination and neuronal degeneration. Regulatory T cells (T reg ) control the activation and infiltration of autoreactive T cells into the central nervous system (CNS). In MS and experimental autoimmune encephalomyelitis (EAE) in mice, T reg function is impaired. We show that a recently approved drug, Nle 4 -d-Phe 7 -α-melanocyte-stimulating hormone (NDP-MSH), induced functional T reg , resulting in amelioration of EAE progression in mice. NDP-MSH also prevented immune cell infiltration into the CNS by restoring the integrity of the blood-brain barrier. NDP-MSH exerted long-lasting neuroprotective effects in mice with EAE and prevented excitotoxic death and reestablished action potential firing in mouse and human neurons in vitro. Neuroprotection by NDP-MSH was mediated via signaling through the melanocortin-1 and orphan nuclear 4 receptors in mouse and human neurons. NDP-MSH may be of benefit in treating neuroinflammatory diseases such as relapsing-remitting MS and related disorders. Copyright © 2016, American Association for the Advancement of Science.
Inflammation Subverts Hippocampal Synaptic Plasticity in Experimental Multiple Sclerosis
Mandolesi, Georgia; Piccinin, Sonia; Berretta, Nicola; Pignatelli, Marco; Feligioni, Marco; Musella, Alessandra; Gentile, Antonietta; Mori, Francesco; Bernardi, Giorgio; Nicoletti, Ferdinando; Mercuri, Nicola B.; Centonze, Diego
2013-01-01
Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE). In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP) induction was favored over long-term depression (LTD) in EAE, as shown by a significant rightward shift in the frequency–synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β) perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC) without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS. PMID:23355887
Stevanovic, Ivana; Ninkovic, Milica; Stojanovic, Ivana; Ljubisavljevic, Srdjan; Stojnev, Slavica; Bokonjic, Dubravko
2013-11-25
The aim of the study was to investigate the hypothesis that agmatine (AGM) provides protection against oxidative stress in experimental autoimmune encephalomyelitis (EAE). Wild-type (WT) and knockout (KO) CBA/H iNOS-/- 3 months old (15 ± 5 g) mice, were used for EAE induction by myelin basic protein (MBP), dissolved in Complete Freund's Adjuvant (CFA). The animals were divided into control, EAE, CFA, EAE+AGM and AGM groups. After the development of full clinical remission, animals were decapitated and oxidative stress parameters were determined in whole encephalitic mass (WEM) and cerebellum homogenates. The EAE clinical expression manifested to greater extent in WT than KO mice, was significantly decreased during AGM treatment. We demonstrated significant elevations of superoxide dismutase activity in WT and KO EAE animals, in WEM and cerebellum tissues, which were decreased during AGM treatment in both groups. Superoxide anion content was increased in WEM of both study groups, with a decrease during AGM treatment. The observed changes were more pronounced in WT than in KO animals. Also, the increased expressions of transferrin receptor and glial fibrillary acidic protein observed in WT and KO EAE mice were significantly decreased during AGM treatment. The results suggest potentially beneficial AGM effects in EAE, which might be used for a modified antioxidative approach in MS therapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Lee, JangEun; Reinke, Emily K.; Zozulya, Alla L.; Sandor, Matyas; Fabry, Zsuzsanna
2009-01-01
Multiple sclerosis (MS) and an animal model resembling MS, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating diseases of the central nervous system (CNS) that are suppressed by systemic mycobacterial infection in mice and BCG vaccination in humans. Host defense responses against Mycobacterium in mice are influenced by T lymphocytes and their cytokine products, particularly IFN-γ, which plays a protective regulatory role in EAE. To analyze the counter-regulatory role of mycobacterial infection-induced IFN-γ in the CNS on the function of the pathological Th17 cells and the clinical outcome of EAE, we induced EAE in mice that were intracerebrally infected with Mycobacterium bovis bacille Calmette-Guerin (BCG). Here we demonstrate that intracerebral (i.c.) BCG infection prevented inflammatory cell recruitment to the spinal cord and suppressed the development of EAE. Concomitantly, there was a significant decrease in the frequency of MOG-specific IFN-γ-producing CD4+ T cells in the CNS. IL-17+CD4+ T cell responses were significantly suppressed in i.c. BCG-infected mice following EAE induction regardless of T cell specificity. The frequency of Foxp3+CD4+ T cells in these mice was equivalent to that of control mice. The i.c. BCG infection-induced protection of EAE and suppression of MOG-specific IL-17+CD4+ T cell responses were similar in both wild type (WT) and IFN-γ deficient mice. These data show that live BCG infection in the brain suppresses CNS autoimmunity. These findings also reveal that the regulation of Th17-mediated autoimmunity in the CNS can be independent of IFN-γ-mediated mechanisms. PMID:18941210
Merega, Elisa; Di Prisco, Silvia; Padolecchia, Cristina; Grilli, Massimo; Milanese, Marco; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Bonanno, Giambattista; Marchi, Mario
2017-01-01
Fingolimod, the first oral, disease-modifying therapy for MS, has been recently proposed to modulate glutamate transmission in the central nervous system (CNS) of mice suffering from Experimental Autoimmune Encephalomyelitis (EAE) and in MS patients. Our study aims at investigating whether oral fingolimod recovers presynaptic defects that occur at different stages of disease in the CNS of EAE mice. In vivo prophylactic (0.3 mg/kg for 14 days, from the 7th day post immunization, d.p.i, the drug dissolved in the drinking water) fingolimod significantly reduced the clinical symptoms and the anxiety-related behaviour in EAE mice. Spinal cord inflammation, demyelination and glial cell activation are markers of EAE progression. These signs were ameliorated following oral fingolimod administration. Glutamate exocytosis was shown to be impaired in cortical and spinal cord terminals isolated from EAE mice at 21 ± 1 d.p.i., while GABA alteration emerged only at the spinal cord level. Prophylactic fingolimod recovered these presynaptic defects, restoring altered glutamate and GABA release efficiency. The beneficial effect occurred in a dose-dependent, region-specific manner, since lower (0.1–0.03 mg/kg) doses restored, although to a different extent, synaptic defects in cortical but not spinal cord terminals. A delayed reduction of glutamate, but not of GABA, exocytosis was observed in hippocampal terminals of EAE mice at 35 d.p.i. Therapeutic (0.3 mg/kg, from 21 d.p.i. for 14 days) fingolimod restored glutamate exocytosis in the cortex and in the hippocampus of EAE mice at 35 ± 1 d.p.i. but not in the spinal cord, where also GABAergic defects remained unmodified. These results improve our knowledge of the molecular events accounting for the beneficial effects elicited by fingolimod in demyelinating disorders. PMID:28125677
Giacoppo, Sabrina; Galuppo, Maria; Pollastro, Federica; Grassi, Gianpaolo; Bramanti, Placido; Mazzon, Emanuela
2015-10-21
The present study was designed to investigate the efficacy of a new formulation of alone, purified cannabidiol (CBD) (>98 %), the main non-psychotropic cannabinoid of Cannabis sativa, as a topical treatment in an experimental model of autoimmune encephalomyelitis (EAE), the most commonly used model for multiple sclerosis (MS). Particularly, we evaluated whether administration of a topical 1 % CBD-cream, given at the time of symptomatic disease onset, could affect the EAE progression and if this treatment could also recover paralysis of hind limbs, qualifying topical-CBD for the symptomatic treatment of MS. In order to have a preparation of 1 % of CBD-cream, pure CBD have been solubilized in propylene glycoland basic dense cream O/A. EAE was induced by immunization with myelin oligodendroglial glycoprotein peptide (MOG35-55) in C57BL/6 mice. After EAE onset, mice were allocated into several experimental groups (Naïve, EAE, EAE-1 % CBD-cream, EAE-vehicle cream, CTRL-1 % CBD-cream, CTRL-vehicle cream). Mice were observed daily for signs of EAE and weight loss. At the sacrifice of the animals, which occurred at the 28(th) day from EAE-induction, spinal cord and spleen tissues were collected in order to perform histological evaluation, immunohistochemistry and western blotting analysis. Achieved results surprisingly show that daily treatment with topical 1 % CBD-cream may exert neuroprotective effects against EAE, diminishing clinical disease score (mean of 5.0 in EAE mice vs 1.5 in EAE + CBD-cream), by recovering of paralysis of hind limbs and by ameliorating histological score typical of disease (lymphocytic infiltration and demyelination) in spinal cord tissues. Also, 1 % CBD-cream is able to counteract the EAE-induced damage reducing release of CD4 and CD8α T cells (spleen tissue localization was quantified about 10,69 % and 35,96 % of positive staining respectively in EAE mice) and expression of the main pro-inflammatory cytokines as well as several other direct or indirect markers of inflammation (p-selectin, IL-10, GFAP, Foxp3, TGF-β, IFN-γ), oxidative injury (Nitrotyrosine, iNOS, PARP) and apoptosis (Cleaved caspase 3). All these data suggest an interesting new profile of CBD that could lead to its introduction in the clinical management of MS and its associated symptoms at least in association with current conventional therapy.
Benkhoucha, Mahdia; Molnarfi, Nicolas; Dunand-Sauthier, Isabelle; Merkler, Doron; Schneiter, Gregory; Bruscoli, Stefano; Riccardi, Carlo; Tabata, Yasuhiko; Funakoshi, Hiroshi; Nakamura, Toshikazu; Reith, Walter; Santiago-Raber, Marie-Laure; Lalive, Patrice H
2014-09-15
Autoimmune neuroinflammation, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), a prototype for T cell-mediated autoimmunity, is believed to result from immune tolerance dysfunction leading to demyelination and substantial neurodegeneration. We previously showed that CNS-restricted expression of hepatocyte growth factor (HGF), a potent neuroprotective factor, reduced CNS inflammation and clinical deficits associated with EAE. In this study, we demonstrate that systemic HGF treatment ameliorates EAE through the development of tolerogenic dendritic cells (DCs) with high expression levels of glucocorticoid-induced leucine zipper (GILZ), a transcriptional repressor of gene expression and a key endogenous regulator of the inflammatory response. RNA interference-directed neutralization of GILZ expression by DCs suppressed the induction of tolerance caused by HGF. Finally, adoptive transfer of HGF-treated DCs from wild-type but not GILZ gene-deficient mice potently mediated functional recovery in recipient mice with established EAE through effective modulation of autoaggressive T cell responses. Altogether, these results show that by inducing GILZ in DCs, HGF reproduces the mechanism of immune regulation induced by potent immunomodulatory factors such as IL-10, TGF-β1, and glucocorticoids and therefore that HGF therapy may have potential in the treatment of autoimmune dysfunctions. Copyright © 2014 by The American Association of Immunologists, Inc.
Targeting MOG expression to dendritic cells delays onset of experimental autoimmune disease.
Ko, Hyun-Ja; Chung, Jie-Yu; Nasa, Zeyad; Chan, James; Siatskas, Christopher; Toh, Ban-Hock; Alderuccio, Frank
2011-05-01
Haematopoietic stem cell (HSC) transfer coupled with gene therapy is a powerful approach to treating fatal diseases such as X-linked severe combined immunodeficiency. This ability to isolate and genetically manipulate HSCs also offers a strategy for inducing immune tolerance through ectopic expression of autoantigens. We have previously shown that retroviral transduction of bone marrow (BM) with vectors encoding the autoantigen, myelin oligodendrocyte glycoprotein (MOG), can prevent the induction of experimental autoimmune encephalomyelitis (EAE). However, ubiquitous cellular expression of autoantigen driven by retroviral promoters may not be the best approach for clinical translation and a targeted expression approach may be more acceptable. As BM-derived dendritic cells (DCs) play a major role in tolerance induction, we asked whether targeted expression of MOG, a target autoantigen in EAE, to DCs can promote tolerance induction and influence the development of EAE. Self-inactivating retroviral vectors incorporating the mouse CD11c promoter were generated and used to transduce mouse BM cells. Transplantation of gene-modified cells into irradiated recipients resulted in the generation of chimeric mice with transgene expression limited to DCs. Notably, chimeric mice transplanted with MOG-expressing BM cells manifest a significant delay in the development of EAE suggesting that targeted antigen expression to tolerogenic cell types may be a feasible approach to inducing antigen-specific tolerance.
Batoulis, H; Recks, M S; Holland, F O; Thomalla, F; Williams, R O; Kuerten, S
2014-01-01
In various autoimmune diseases, anti-tumour necrosis factor (TNF)-α treatment has been shown to reduce both clinical disease severity and T helper type 1 (Th1)1/Th17 responses. In experimental autoimmune encephalomyelitis (EAE), however, the role of TNF-α has remained unclear. Here, C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 and treated with anti-TNF-α, control antibody or vehicle. The clinical disease course, incidence and severity were assessed. On day 20 after immunization the antigen-specific Th1/Th17 response was evaluated by enzyme-linked immunospot (ELISPOT) in spleen and central nervous system (CNS). Also, the extent of spinal cord histopathology was analysed on semi- and ultrathin sections. Our results demonstrate that anti-TNF-α treatment reduced the incidence and delayed the onset of EAE, but had no effect on disease severity once EAE had been established. Whereas anti-TNF-α treatment induced an increase in splenic Th1/Th17 responses, there was no effect on the number of antigen-specific Th1/Th17 cells in the spinal cord. Accordingly, the degree of CNS histopathology was comparable in control and anti-TNF-α-treated mice. In conclusion, while the anti-TNF-α treatment had neither immunosuppressive effects on the Th1/Th17 response in the CNS nor histoprotective properties in EAE, it enhanced the myelin-specific T cell response in the immune periphery. © 2013 British Society for Immunology.
Tian, G X; Zhu, X Q; Chen, Y; Wu, G C; Wang, J
2013-01-01
The active role of chemokines and inflammatory cytokines in the central nervous system (CNS) during the pathogenesis of experimental autoimmune encephalomyelitis (EAE) has been clearly established. Recent studies from our laboratory reported that Huperzine A (HupA) can attenuate the disease process in EAE by the inhibition of inflammation, demyelination, and axonal injury in the spinal cord as well as encephalomyelitic T-cell proliferation. In this study, the effects of low dose HupA on CCL2, TNF-alpha, IL-6, and IL-1beta expression were evaluated in EAE. The effect of HupA on lipopolysachharide (LPS)-induced inflammatory molecule secretion was investigated in cultured-astrocytes in vitro. In MOG35-55-induced EAE mice, intraperitoneal injections of HupA (0.1 mg/kgd−1) significantly suppressed the expression of CCL2, IL-6, TNF-alpha, and IL-1beta in the spinal cord. HupA also repressed LPS-induced CCL2 production, but with little influence on pro-inflammatory cytokines in primary cultured astrocytes. The inhibition effect of HupA on CCL2 is PPARgamma-dependent and nicotine receptor-independent. Conditioned culture media from HupA-treated astrocyte decreased PBMC migration in vitro. Collectively, these results suggest that HupA can ameliorate EAE by inhibiting CCL2 production in astrocyte, which may consequently decrease inflammatory cell infiltration in the spinal cord. HupA may have a potential therapeutic value for the treatment of MS and other neuroinflammatory diseases.
Salate derivatives found in sunscreens block experimental autoimmune encephalomyelitis in mice
Wang, Yanping; Marling, Steven J.; Plum, Lori A.; DeLuca, Hector F.
2017-01-01
UV light suppresses experimental autoimmune encephalomyelitis (EAE), a widely used animal model of MS, in mice and may be responsible for the decreased incidence of MS in equatorial regions. To test this concept further, we applied commercially available sunblock preparations to mice before exposing them to UV radiation. Surprisingly, some of the sunblock preparations blocked EAE without UV radiation. Furthermore, various sunblock preparations had variable ability to suppress EAE. By examining the components of the most effective agents, we identified homosalate and octisalate as the components responsible for suppressing EAE. Thus, salates may be useful in stopping the progression of MS, and may provide new insight into mechanisms of controlling autoimmune disease. PMID:28739922
Scruggs, Brittni A.; Semon, Julie A.; Zhang, Xiujuan; Zhang, Shijia; Bowles, Annie C.; Pandey, Amitabh C.; Imhof, Kathleen M.P.; Kalueff, Allan V.; Gimble, Jeffrey M.
2013-01-01
There is a significant clinical need for effective therapies for primary progressive multiple sclerosis, which presents later in life (i.e., older than 50 years) and has symptoms that increase in severity without remission. With autologous mesenchymal stem cell therapy now in the early phases of clinical trials for all forms of multiple sclerosis (MS), it is necessary to determine whether autologous stem cells from older donors have therapeutic effectiveness. In this study, the therapeutic efficacy of human adipose-derived mesenchymal stem cells (ASCs) from older donors was directly compared with that of cells from younger donors for disease prevention. Mice were induced with chronic experimental autoimmune encephalomyelitis (EAE) using the myelin oligodendrocyte glycoprotein35–55 peptide and treated before disease onset with ASCs derived from younger (<35 years) or older (>60 years) donors. ASCs from older donors failed to ameliorate the neurodegeneration associated with EAE, and mice treated with older donor cells had increased central nervous system inflammation, demyelination, and splenocyte proliferation in vitro compared with the mice receiving cells from younger donors. Therefore, the results of this study demonstrated that donor age significantly affects the ability of human ASCs to provide neuroprotection, immunomodulation, and/or remyelination in EAE mice. The age-related therapeutic differences corroborate recent findings that biologic aging occurs in stem cells, and the differences are supported by evidence in this study that older ASCs, compared with younger donor cells, secrete less hepatocyte growth factor and other bioactive molecules when stimulated in vitro. These results highlight the need for evaluation of autologous ASCs derived from older patients when used as therapy for MS. PMID:24018793
The habenula and iron metabolism in cerebral mouse models of multiple sclerosis
Sands, Scott A.; Tsau, Sheila; LeVine, Steven M.
2015-01-01
Iron accumulates in the CNS of patients with multiple sclerosis, but our understanding of the mechanism accounting for this accumulation is unclear. Mouse models of cerebral experimental autoimmune encephalomyelitis (EAE) in C57BL/6 and SJL mice were used together with a histochemical stain for iron and immunohistochemical stains for transferrin receptor, synaptophysin, iron regulatory protein 1 (IRP1) and/or IRP2 to investigate the role of disease activity on CNS iron metabolism. The expression of transferrin receptor, but not IRP1 or IRP2, increased in the medial habenula, which is adjacent to the third ventricle, in response to both types of cerebral EAE. In the habenula, the elevated expression of transferrin receptor in C57BL/6 mice with cerebral EAE was generally restricted to the medial habenula while the expression in SJL mice with cerebral EAE was more diffusely expressed. Iron levels were increased in all regions of the habenula in C57BL/6 mice with cerebral EAE, and in the medial and medial lateral but not the lateral habenula in SJL mice with cerebral EAE. Synaptophysin, which has been observed previously in endocytic vesicles together with the transferrin receptor, was concentrated at the medial habenula, but its levels did not increase with disease in C57BL/6 mice with cerebral EAE. Our results support the model that the medial habenula responds to disease activity by upregulating transferrin receptor to facilitate the movement of iron into the brain from the third ventricle, raising the possibility that a similar mechanism accounts for iron accumulation in deep gray matter structures in patients with multiple sclerosis. PMID:26362814
Haensgen, Henny; Albornoz, Eduardo; Opazo, María C; Bugueño, Katherinne; Jara Fernández, Evelyn Liliana; Binzberger, Rebecca; Rivero-Castillo, Tomás; Venegas Salas, Luis F; Simon, Felipe; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Kalergis, Alexis M; Bueno, Susan M; Riedel, Claudia A
2018-01-01
Hypothyroxinemia (Hpx) is a thyroid hormone deficiency (THD) condition highly frequent during pregnancy, which although asymptomatic for the mother, it can impair the cognitive function of the offspring. Previous studies have shown that maternal hypothyroidism increases the severity of experimental autoimmune encephalomyelitis (EAE), an autoimmune disease model for multiple sclerosis (MS). Here, we analyzed the immune response after EAE induction in the adult offspring gestated in Hpx. Mice gestated in Hpx showed an early appearance of EAE symptoms and the increase of all parameters of the disease such as: the pathological score, spinal cord demyelination, and immune cell infiltration in comparison to the adult offspring gestated in euthyroidism. Isolated CD4 + CD25 + T cells from spleen of the offspring gestated in Hpx that suffer EAE showed reduced capacity to suppress proliferation of effector T cells (T Eff ) after being stimulated with anti-CD3 and anti-CD28 antibodies. Moreover, adoptive transfer experiments of CD4 + CD25 + T cells from the offspring gestated in Hpx suffering EAE to mice that were induced with EAE showed that the receptor mice suffer more intense EAE pathological score. Even though, no significant differences were detected in the frequency of T reg cells and IL-10 content in the blood, spleen, and brain between mice gestated in Hpx or euthyroidism, T cells CD4 + CD25 + from spleen have reduced capacity to differentiate in vitro to T reg and to produce IL-10. Thus, our data support the notion that maternal Hpx can imprint the immune response of the offspring suffering EAE probably due to a reduced capacity to trigger suppression. Such "imprints" on the immune system could contribute to explaining as to why adult offspring gestated in Hpx suffer earlier and more intense EAE.
Chondroitin 6-O-sulfate ameliorates experimental autoimmune encephalomyelitis.
Miyamoto, Katsuichi; Tanaka, Noriko; Moriguchi, Kota; Ueno, Rino; Kadomatsu, Kenji; Kitagawa, Hiroshi; Kusunoki, Susumu
2014-05-01
Chondroitin sulfate proteoglycans (CSPGs) are the main component of the extracellular matrix in the central nervous system (CNS) and influence neuroplasticity. Although CSPG is considered an inhibitory factor for nerve repair in spinal cord injury, it is unclear whether CSPG influences the pathogenetic mechanisms of neuroimmunological diseases. We induced experimental autoimmune encephalomyelitis (EAE) in chondroitin 6-O-sulfate transferase 1-deficient (C6st1(-/-)) mice. C6ST1 is the enzyme that transfers sulfate residues to position 6 of N-acetylgalactosamine in the sugar chain of CSPG. The phenotypes of EAE in C6st1(-/-) mice were more severe than those in wild-type (WT) mice were. In adoptive-transfer EAE, in which antigen-reactive T cells from WT mice were transferred to C6st1(-/-) and WT mice, phenotypes were significantly more severe in C6st1(-/-) than in WT mice. The recall response of antigen-reactive T cells was not significantly different among the groups. Furthermore, the number of pathogenic T cells within the CNS was also not considerably different. When EAE was induced in C6ST1 transgenic mice with C6ST1 overexpression, the mice showed considerably milder symptoms compared with those in WT mice. In conclusion, the presence of sulfate at position 6 of N-acetylgalactosamine of CSPG may influence the effecter phase of EAE to prevent the progression of pathogenesis. Thus, modification of the carbohydrate residue of CSPG may be a novel therapeutic strategy for neuroimmunological diseases such as multiple sclerosis.
2013-01-01
Background Extracts of leaves from Clerodendrum have been used for centuries to treat a variety of medicinal problems in tropical Africa. However, little is known about the high-molecular weight active components conferring therapeutic properties to these extracts. Methods Polysaccharides from the leaves of Clerodendrum splendens were extracted and fractionated by ion exchange and size-exclusion chromatography. Molecular weight determination, sugar analysis, degree of methyl esterification, and other chemical characterization of the fractions were performed. Immunomodulatory activity of the fractions was evaluated by determining their ability to induce monocyte/macrophage nitric oxide (NO), cytokine production, and mitogen-activated protein kinase (MAPK) phosphorylation. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice, and severity of EAE was monitored in mice treated with intraperitoneal (i.p.) injections of the most active polysaccharide fraction. Lymph nodes (LN) and spleen were harvested, and levels of cytokines in supernatants from LN cells and splenocytes challenged with myelin oligodendrocyte glycoprotein peptide were determined. Results Fractions containing type II arabinogalactan had potent immunomodulatory activity. Specifically, the high-molecular weight sub-fraction CSP-AU1 (average of 38.5 kDa) induced NO and cytokine [interleukin (IL)-1α, -1β, -6, -10, tumor necrosis factor (TNF; designated previously as TNF-α), and granulocyte macrophage-colony stimulating factor (GM-CSF)] production by human peripheral blood mononuclear cells (PBMCs) and monocyte/macrophages. CSP-AU1-induced secretion of TNF was prevented by Toll-like receptor 4 (TLR4) antagonist LPS-RS, indicating a role for TLR4 signaling. Treatment with CSP-AU1 also induced phosphorylation of a number of MAPKs in human PBMC and activated AP-1/NF-κB. In vivo treatment of mice with CSP-AU1 and CSP-NU1 resulted in increased serum IL-6, IL-10, TNF, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein (MIP)-1α/CCL3, and MIP-1β/CCL4. CSP-AU1 treatment of mice with EAE (50 mg/kg, i.p., daily, 13 days) resulted in significantly reduced disease severity in this experimental model of multiple sclerosis. Levels of IL-13, TNF, interferon (IFN)-γ, IL-17, and GM-CSF were also significantly decreased, whereas transforming growth factor (TGF)-β was increased in LN cells from CSP-AU1-treated EAE mice. Conclusions Polysaccharide CSP-AU1 is a potent natural innate immunomodulator with a broad spectrum of agonist activity in vitro and immunosupressive properties after chronic administration in vivo. PMID:23806004
Hwang, Insun; Ahn, Ginnae; Park, Eunjin; Ha, Danbee; Song, Jie-Young; Jee, Youngheun
2011-08-30
An acidic polysaccharide of Panax ginseng (APG), so called ginsan, is a purified polysaccharide. APG has multiple immunomodulatory effects of stimulating natural killer (NK) and T cells and producing a variety of cytokines that proved to diminish the proinflammatory response, and protect from septic lethality. To determine APG's role in the autoimmune demyelinating disease, we tested whether APG can regulate inflammatory and encephalitogenic response in experimental autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS). Here, we demonstrate the therapeutic efficacy of the APG which induces the suppression of an encephalitogenic response during EAE. APG significantly ameliorates the progression of EAE by inhibiting the proliferation of autoreactive T cells and the production of inflammatory cytokines such as IFN-γ, IL-1β and IL-17. More importantly, APG promotes the generation of immunosuppressive regulatory T cells (Tregs) through the activation of transcription factor, Foxp3. Furthermore, the depletion of CD25+ cells from APG-treated EAE mice abrogates the beneficial effects of EAE. The capacity of APG to induce clinically beneficial effects furthers our understanding of the basis for its therapeutic immunosuppression of EAE and, possibly, MS. Thus, our results suggest that APG may serve as an effective therapy for MS and other autoimmune diseases. Copyright © 2011 Elsevier B.V. All rights reserved.
Myeloid microvesicles are a marker and therapeutic target for neuroinflammation.
Verderio, Claudia; Muzio, Luca; Turola, Elena; Bergami, Alessandra; Novellino, Luisa; Ruffini, Francesca; Riganti, Loredana; Corradini, Irene; Francolini, Maura; Garzetti, Livia; Maiorino, Chiara; Servida, Federica; Vercelli, Alessandro; Rocca, Mara; Dalla Libera, Dacia; Martinelli, Vittorio; Comi, Giancarlo; Martino, Gianvito; Matteoli, Michela; Furlan, Roberto
2012-10-01
Microvesicles (MVs) have been indicated as important mediators of intercellular communication and are emerging as new biomarkers of tissue damage. Our previous data indicate that reactive microglia/macrophages release MVs in vitro. The aim of the study was to evaluate whether MVs are released by microglia/macrophages in vivo and whether their number varies in brain inflammatory conditions, such as multiple sclerosis (MS). Electron and fluorescence microscopy and flow cytometry were used to detect myeloid MVs in the cerebrospinal fluid (CSF) of healthy controls, MS patients, and rodents affected by experimental autoimmune encephalomyelitis (EAE), the animal model of MS. Myeloid MVs were detected in CSF of healthy controls. In relapsing and remitting EAE mice, the concentration of myeloid MVs in the CSF was significantly increased and closely associated with disease course. Analysis of MVs in the CSF of 28 relapsing patients and 28 patients with clinical isolated syndrome from 2 independent cohorts revealed higher levels of myeloid MVs than in 13 age-matched controls, indicating a clinical value of MVs as a companion tool to capture disease activity. Myeloid MVs were found to spread inflammatory signals both in vitro and in vivo at the site of administration; mice impaired in MV shedding were protected from EAE, suggesting a pathogenic role for MVs in the disease. Finally, FTY720, the first approved oral MS drug, significantly reduced the amount of MVs in the CSF of EAE-treated mice. These findings identify myeloid MVs as a marker and therapeutic target of brain inflammation. Copyright © 2012 American Neurological Association.
Poppensieker, Karola; Otte, David-Marian; Schürmann, Britta; Limmer, Andreas; Dresing, Philipp; Drews, Eva; Schumak, Beatrix; Klotz, Luisa; Raasch, Jennifer; Mildner, Alexander; Waisman, Ari; Scheu, Stefanie; Knolle, Percy; Förster, Irmgard; Prinz, Marco; Maier, Wolfgang; Zimmer, Andreas; Alferink, Judith
2012-01-01
Dendritic cells (DCs) are pivotal for the development of experimental autoimmune encephalomyelitis (EAE). However, the mechanisms by which they control disease remain to be determined. This study demonstrates that expression of CC chemokine receptor 4 (CCR4) by DCs is required for EAE induction. CCR4−/− mice presented enhanced resistance to EAE associated with a reduction in IL-23 and GM-CSF expression in the CNS. Restoring CCR4 on myeloid cells in bone marrow chimeras or intracerebral microinjection of CCR4-competent DCs, but not macrophages, restored EAE in CCR4−/− mice, indicating that CCR4+ DCs are cellular mediators of EAE development. Mechanistically, CCR4−/− DCs were less efficient in GM-CSF and IL-23 production and also TH-17 maintenance. Intraspinal IL-23 reconstitution restored EAE in CCR4−/− mice, whereas intracerebral inoculation using IL-23−/− DCs or GM-CSF−/− DCs failed to induce disease. Thus, CCR4-dependent GM-CSF production in DCs required for IL-23 release in these cells is a major component in the development of EAE. Our study identified a unique role for CCR4 in regulating DC function in EAE, harboring therapeutic potential for the treatment of CNS autoimmunity by targeting CCR4 on this specific cell type. PMID:22355103
Koch, Marcus W; Zabad, Rana; Giuliani, Fabrizio; Hader, Walter; Lewkonia, Ray; Metz, Luanne; Wee Yong, V
2015-11-15
Microglial activation is thought to be a key pathophysiological mechanism underlying disease activity in all forms of MS. Hydroxychloroquine (HCQ) is an antimalarial drug with immunomodulatory properties that is widely used in the treatment of rheumatological diseases. In this series of experiments, we explore the effect of HCQ on human microglial activation in vitro and on the development of experimental autoimmune encephalitis (EAE) in vivo. We activated human microglia with lipopolysaccharide (LPS), and measured concentrations of several pro- and anti-inflammatory cytokines in untreated and HCQ pretreated cultures. We investigated the effect of HCQ pretreatment at two doses on the development of EAE and spinal cord histology. HCQ pretreatment reduced the production of pro-inflammatory (TNF-alpha, IL-6, and IL-12) and anti-inflammatory (IL-10 and IL-1 receptor antagonist) cytokines in LPS-stimulated human microglia. HCQ pretreatment delayed the onset of EAE, and reduced the number of Iba-1 positive microglia/macrophages and signs of demyelination in the spinal cords of HCQ treated animals. HCQ treatment reduces the activation of human microglia in vitro, delays the onset of EAE, and decreases the representation of activated macrophages/microglia and demyelination in the spinal cord of treated mice. HCQ is a plausible candidate for further clinical studies in MS. Copyright © 2015 Elsevier B.V. All rights reserved.
Hammer, Leslie A; Waldner, Hanspeter; Zagon, Ian S; McLaughlin, Patricia J
2016-01-01
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by infiltrating myelin-reactive T lymphocytes and demyelinating lesions. Experimental autoimmune encephalomyelitis (EAE) is the animal model widely utilized to study MS. EAE is mediated by CD4(+) T cells and can be induced in EAE-susceptible mice through immunization with a myelin antigen, such as proteolipid protein 139-151 (PLP139-151) in SJL mice. In this PLP-induced EAE model, autoreactive CD4(+) T cells migrate from peripheral tissues into the CNS where they are reactivated resulting in CNS damage. Th1 and Th17 cells produce the pro-inflammatory cytokines IFNγ and IL-17, respectively, that have been shown to have pathogenic roles in EAE and MS. Anti-inflammatory Th2, IL-4 secreting cells, have been indicated to inhibit EAE exacerbation. However, given the inflammatory environment of EAE, Th2 effector cells are outnumbered by Th1/Th17 cells. Regulatory CD4(+) T cells suppress immune reactions and have been demonstrated to be dysfunctional in MS patients. Opioid growth factor (OGF), chemically termed [Met(5)]-enkephalin, is a negative growth factor that interacts with the OGF receptor. The OGF-OGFr axis can be activated through exogenous administration of OGF or a low dosage of naltrexone (LDN), an opioid antagonist. We have previously demonstrated that modulation of the OGF-OGFr axis results in alleviation from relapse-remitting EAE, and that CNS-infiltrating CD3(+) T cells are diminished with exogenous OGF or intermittent blockade with LDN administration. In this paper, we aimed to determine whether OGF or LDN alter the Th effector responses of CD4(+) T lymphocytes within the CNS in established EAE. We report in these studies that the numbers of CD4(+) T lymphocytes in the CNS of EAE mice are decreased following treatment with OGF for five days but not LDN. However, modulation of the OGF-OGFr axis did not result in changes to CD4(+) Th effector cell responses in the CNS of EAE mice. © 2016 by the Society for Experimental Biology and Medicine.
Lafaille, J J; Keere, F V; Hsu, A L; Baron, J L; Haas, W; Raine, C S; Tonegawa, S
1997-07-21
Chronic inflammatory autoimmune diseases such as multiple sclerosis, diabetes, and rheumatoid arthritis are caused by CD4(+) Th1 cells. Because Th2 cells antagonize Th1 cell functions in several ways, it is believed that immune deviation towards Th2 can prevent or cure autoimmune diseases. Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease used as a model for multiple sclerosis. Using an adoptive transfer system we assessed the role of Th1 and Th2 cells in EAE. In vitro generated Th1 and Th2 cells from myelin basic protein (MBP)-specific TCR transgenic mice were transferred into normal and immunodeficient mice. Th1 cells caused EAE in all recipients after a brief preclinical phase. Surprisingly, Th2 cells also caused EAE in RAG-1 KO mice and in alphabeta T cell-deficient mice, albeit after a longer preclinical phase. Normal or gammadelta T cell-deficient mice were resistant to EAE induced by Th2 cells. The histopathological features of this disease resembled those of an allergic process. In addition, disease induction by Th1 cells was not altered by coadmininstration of Th2 cells in any of the recipients. These findings indicate that MBP-specific Th2 cells have the potential to induce EAE and that the disease induced by previously activated Th1 cells cannot be prevented by normal lymphocytes nor by previously activated Th2 cells.
Regulatory Lymphocytes Are Key Factors in MHC-Independent Resistance to EAE
Marín, Nieves; Mecha, Miriam; Espejo, Carmen; Mestre, Leyre; Eixarch, Herena; Montalban, Xavier; Álvarez-Cermeño, José C.; Guaza, Carmen; Villar, Luisa M.
2014-01-01
Background and Objectives. Resistant and susceptible mouse strains to experimental autoimmune encephalomyelitis (EAE), an inducible demyelinating experimental disease serving as animal model for multiple sclerosis, have been described. We aimed to explore MHC-independent mechanisms inducing resistance to EAE. Methods. For EAE induction, female C57BL/6 (susceptible strain) and CD1 (resistant outbred strain showing heterogeneous MHC antigens) mice were immunized with the 35–55 peptide of myelin oligodendrocyte glycoprotein (MOG35−55). We studied T cell proliferation, regulatory and effector cell subpopulations, intracellular and serum cytokine patterns, and titers of anti-MOG serum antibodies. Results. Upon immunization with MOG35−55, T lymphocytes from susceptible mice but not that of resistant strain were capable of proliferating when stimulated with MOG35−55. Accordingly, resistant mice experienced a rise in regulatory B cells (P = 0.001) and, to a lower extent, in regulatory T cells (P = 0.02) compared with C57BL/6 susceptible mice. As a consequence, MOG35−55-immunized C57BL/6 mice showed higher percentages of CD4+ T cells producing both IFN-gamma (P = 0.02) and IL-17 (P = 0.009) and higher serum levels of IL-17 (P = 0.04) than resistant mice. Conclusions. Expansion of regulatory B and T cells contributes to the induction of resistance to EAE by an MHC-independent mechanism. PMID:24868560
Natural Killer T Cell Activation Protects Mice Against Experimental Autoimmune Encephalomyelitis
Singh, Avneesh K.; Wilson, Michael T.; Hong, Seokmann; Olivares-Villagómez, Danyvid; Du, Caigan; Stanic, Aleksandar K.; Joyce, Sebastian; Sriram, Subramaniam; Koezuka, Yasuhiko; Van Kaer, Luc
2001-01-01
Experimental autoimmune encephalomyelitis (EAE) serves as a prototypic model for T cell–mediated autoimmunity. Vα14 natural killer T (NKT) cells are a subset of T lymphocytes that recognize glycolipid antigens presented by the nonpolymorphic major histocompatibility complex (MHC) class I–like protein CD1d. Here, we show that activation of Vα14 NKT cells by the glycosphingolipid α-galactosylceramide (α-GalCer) protects susceptible mice against EAE. β-GalCer, which binds CD1d but is not recognized by NKT cells, failed to protect mice against EAE. Furthermore, α-GalCer was unable to protect CD1d knockout (KO) mice against EAE, indicating the requirement for an intact CD1d antigen presentation pathway. Protection of disease conferred by α-GalCer correlated with its ability to suppress myelin antigen-specific Th1 responses and/or to promote myelin antigen-specific Th2 cell responses. α-GalCer was unable to protect IL-4 KO and IL-10 KO mice against EAE, indicating a critical role for both of these cytokines. Because recognition of α-GalCer by NKT cells is phylogenetically conserved, our findings have identified NKT cells as novel target cells for treatment of inflammatory diseases of the central nervous system. PMID:11748281
Imaging B Cells in a Mouse Model of Multiple Sclerosis Using 64Cu-Rituximab PET.
James, Michelle L; Hoehne, Aileen; Mayer, Aaron T; Lechtenberg, Kendra; Moreno, Monica; Gowrishankar, Gayatri; Ilovich, Ohad; Natarajan, Arutselvan; Johnson, Emily M; Nguyen, Joujou; Quach, Lisa; Han, May; Buckwalter, Marion; Chandra, Sudeep; Gambhir, Sanjiv S
2017-11-01
B lymphocytes are a key pathologic feature of multiple sclerosis (MS) and are becoming an important therapeutic target for this condition. Currently, there is no approved technique to noninvasively visualize B cells in the central nervous system (CNS) to monitor MS disease progression and response to therapies. Here, we evaluated 64 Cu-rituximab, a radiolabeled antibody specifically targeting the human B cell marker CD20, for its ability to image B cells in a mouse model of MS using PET. Methods: To model CNS infiltration by B cells, experimental autoimmune encephalomyelitis (EAE) was induced in transgenic mice that express human CD20 on B cells. EAE mice were given subcutaneous injections of myelin oligodendrocyte glycoprotein fragment 1-125 emulsified in complete Freund adjuvant. Control mice received complete Freund adjuvant alone. PET imaging of EAE and control mice was performed 1, 4, and 19 h after 64 Cu-rituximab administration. Mice were perfused and sacrificed after the final PET scan, and radioactivity in dissected tissues was measured with a γ-counter. CNS tissues from these mice were immunostained to quantify B cells or were further analyzed via digital autoradiography. Results: Lumbar spinal cord PET signal was significantly higher in EAE mice than in controls at all evaluated time points (e.g., 1 h after injection: 5.44 ± 0.37 vs. 3.33 ± 0.20 percentage injected dose [%ID]/g, P < 0.05). 64 Cu-rituximab PET signal in brain regions ranged between 1.74 ± 0.11 and 2.93 ± 0.15 %ID/g for EAE mice, compared with 1.25 ± 0.08 and 2.24 ± 0.11 %ID/g for controls ( P < 0.05 for all regions except striatum and thalamus at 1 h after injection). Similarly, ex vivo biodistribution results revealed notably higher 64 Cu-rituximab uptake in the brain and spinal cord of huCD20tg EAE, and B220 immunostaining verified that increased 64 Cu-rituximab uptake in CNS tissues corresponded with elevated B cells. Conclusion: B cells can be detected in the CNS of EAE mice using 64 Cu-rituximab PET. Results from these studies warrant further investigation of 64 Cu-rituximab in EAE models and consideration of use in MS patients to evaluate its potential for detecting and monitoring B cells in the progression and treatment of this disease. These results represent an initial step toward generating a platform to evaluate B cell-targeted therapeutics en route to the clinic. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Gentile, Antonietta; Fresegna, Diego; Musella, Alessandra; Sepman, Helena; Bullitta, Silvia; De Vito, Francesca; Fantozzi, Roberta; Usiello, Alessandro; Maccarrone, Mauro; Mercuri, Nicola B; Lutz, Beat; Mandolesi, Georgia; Centonze, Diego
2016-09-02
Mood disorders, including anxiety and depression, are frequently diagnosed in multiple sclerosis (MS) patients, even independently of the disabling symptoms associated with the disease. Anatomical, biochemical, and pharmacological evidence indicates that type-1 cannabinoid receptor (CB1R) is implicated in the control of emotional behavior and is modulated during inflammatory neurodegenerative diseases such as MS and experimental autoimmune encephalomyelitis (EAE). We investigated whether CB1R could exert a role in anxiety-like behavior in mice with EAE. We performed behavioral, pharmacological, and electrophysiological experiments to explore the link between central inflammation, mood, and CB1R function in EAE. We observed that EAE-induced anxiety was associated with the downregulation of CB1R-mediated control of striatal GABA synaptic transmission and was exacerbated in mice lacking CB1R (CB1R-KO mice). Central blockade of interleukin-1β (IL-1β) reversed the anxiety-like phenotype of EAE mice, an effect associated with the concomitant rescue of dopamine (DA)-regulated spontaneous behavior, and DA-CB1R neurotransmission, leading to the rescue of striatal CB1R sensitivity. Overall, results of the present investigation indicate that synaptic dysfunction linked to CB1R is involved in EAE-related anxiety and motivation-based behavior and contribute to clarify the complex neurobiological mechanisms underlying mood disorders associated to MS.
Clonal expansion of T-cell receptor beta gene segment in the retrocochlear lesions of EAE mice.
Cheng, K C; Lee, K M; Yoo, T J
1998-01-01
It has been reported that the T cell receptor V beta 8.2 (TcrbV8.2) gene segment is predominantly expressed in encephalomyelitic T cells responding to myelin basic protein (MBP) in experimental allergic encephalomyelitis (EAE) mice. We have demonstrated retrocochlear hearing loss in EAE mice in previous studies. Administration of a monoclonal antibody specific to the T cell receptor V beta 8 (TcrbV8) subfamily prevented both this type of hearing loss and the central nerve disease. In this study, we examined the role of the TcrbV8.2 gene segment in the retrocochlear lesions of EAE mice. A clonal expression of T cell receptor beta chain gene segment (TcrbV8.2-TcrbD2-TcrbJ2.7) was identified in the retrocochlear lesions. The TcrbV8.2 gene segment appears to recombine only with TcrbJ2.1 (32.1%) and TcrbJ2.7 (67.9%) gene segments. The TcrbJ2.7 gene segment has also been previously identified as the dominant TcrbJ gene in the lymph nodes of EAE mice. Only TcrbD2, with a length of 4 amino acids, was observed recombining with these TcrbV8.2 sequences. G and C nucleotides are predominantly expressed at the N regions between the V-D and D-J junctions. This dominant TcrbV gene segment (TcrbV8.2-TcrbD2-TcrbJ2.7) observed in the retrocochlear lesions has been identified in the MBP-specific T cells from the lymph nodes of EAE mice. These results suggest that a small subset of antigen-specific T cells migrate to, and expand at, the retrocochlear lesions, which leads to hearing loss.
Dutt, Mahasweta; Tabuena, Philomela; Ventura, Elvira; Rostami, Abdolmohamad
2010-01-01
Purpose. Acute vision loss from optic neuritis typically resolves; however, recovery is often not complete. Permanent vision loss from retinal ganglion cell (RGC) death occurs in 40% to 60% of patients. Current therapy (high-dose corticosteroids) speeds recovery but does not change final visual outcomes. Here the authors examined whether corticosteroids administered early in the disease course can prevent RGC loss in experimental optic neuritis. Methods. RGCs were retrogradely labeled with fluorogold in SJL/J mice. Experimental autoimmune encephalomyelitis (EAE) was induced by immunization with proteolipid protein peptide. Optic neuritis began 9 days after immunization. Mice were treated daily with dexamethasone, methylprednisolone, or PBS from days 0 to 14 or days 10 to 14 and then were killed on day 14, 18, or 22. Results. Corticosteroid treatment initiated before optic neuritis onset (days 0–14) suppressed EAE and reduced optic neuritis incidence through day 14. In the few eyes that developed optic neuritis, inflammation was mild, and RGC loss was attenuated. After treatment was stopped on day 14, mice rapidly developed EAE and optic neuritis by day 18, but RGC loss was still reduced. By day 22, RGC loss increased to levels similar to those of untreated optic neuritis eyes. Corticosteroid treatment after optic neuritis onset (days 10–14) slowed EAE progression and showed a trend toward suppression of optic neuritis and RGC loss on day 14 that was lost by day 18. Conclusions. Corticosteroids can suppress optic neuritis and prevent RGC loss if treatment is initiated before optic nerve inflammation onset. Treatment is less effective after inflammation begins. Results suggest that chronic immunomodulation may prevent recurrent optic neuritis and RGC damage. PMID:19892867
Mangalam, Ashutosh; Luo, Ningling; Luckey, David; Papke, Louisa; Hubbard, Alyssa; Wussow, Arika; Smart, Michele; Giri, Shailendra; Rodriguez, Moses; David, Chella
2014-01-01
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system (CNS) of presumed autoimmune origin. Of all the genetic factors linked with MS, MHC class-II molecules have the strongest association. Generation of HLA class-II transgenic mice has helped to elucidate the role of HLA class-II genes in chronic inflammatory and demyelinating diseases. We have shown that the human HLA-DRB1*0301 gene predisposes to proteolipid protein (PLP)-induced EAE, whereas HLA-DQβ1*0601 (DQ6) was resistant. We also showed that the DQ6 molecule protects from EAE in DRB1*0301.DQ6 double transgenic mice by producing anti-inflammatory interferon gamma (IFNγ). HLA-DQβ1*0302 (DQ8) transgenic mice were also resistant to PLP91-110-induced EAE, but production of pro-inflammatory IL-17 exacerbated disease in DRB1*0301.DQ8 mice. To further confirm the role of IFNγ in protection, we generated DRB1*0301.DQ8 mice lacking IFNγ (DRB1*0301.DQ8.IFNγ−/−). Immunization with PLP91-110 peptide caused atypical EAE in DRB1*0301.DQ8.IFNγ−/− mice characterized by ataxia, spasticity and dystonia, hallmarks of brain-specific disease. Severe brain specific inflammation and demyelination in DRB1*0301.DQ8.IFNγ−/− mice with minimal spinal cord pathology further confirmed brain-specific pathology. Atypical EAE in DRB1*0301.DQ8.IFNγ−/− mice was associated with increased encephalitogenicity of CD4 T cells and their ability to produce higher levels of IL-17 and GM-CSF compared to DRB1*0301.DQ8 mice. Further, areas with demyelination showed increased presence of CD68+ inflammatory cells, suggesting an important role for monocytes/microglia in causing brain pathology. Thus, our study supports a protective role for IFNγ in the demyelination of brain through down regulation of IL-17/GM-CSF and induction of neuro-protective factors in the brain by monocytes/microglial cells. PMID:25339670
Nygårdas, Michaela; Paavilainen, Henrik; Müther, Nadine; Nagel, Claus-Henning; Röyttä, Matias; Sodeik, Beate; Hukkanen, Veijo
2013-01-01
Herpes simplex virus type 1 (HSV-1) has properties that can be exploited for the development of gene therapy vectors. The neurotropism of HSV enables delivery of therapeutic genes to the nervous system. Using a bacterial artificial chromosome (BAC), we constructed an HSV-1(17+)-based replicative vector deleted of the neurovirulence gene γ134.5, and expressing leukemia inhibitory factor (LIF) as a transgene for treatment of experimental autoimmune encephalomyelitis (EAE). EAE is an inducible T-cell mediated autoimmune disease of the central nervous system (CNS) and is used as an animal model for multiple sclerosis. Demyelination and inflammation are hallmarks of both diseases. LIF is a cytokine that has the potential to limit demyelination and oligodendrocyte loss in CNS autoimmune diseases and to affect the T-cell mediated autoimmune response. In this study SJL/J mice, induced for EAE, were treated with a HSV-LIF vector intracranially and the subsequent changes in disease parameters and immune responses during the acute disease were investigated. Replicating HSV-LIF and its DNA were detected in the CNS during the acute infection, and the vector spread to the spinal cord but was non-virulent. The HSV-LIF significantly ameliorated the EAE and contributed to a higher number of oligodendrocytes in the brains when compared to untreated mice. The HSV-LIF therapy also induced favorable changes in the expression of immunoregulatory cytokines and T-cell population markers in the CNS during the acute disease. These data suggest that BAC-derived HSV vectors are suitable for gene therapy of CNS disease and can be used to test the therapeutic potential of immunomodulatory factors for treatment of EAE. PMID:23700462
Berard, Jennifer L; Zarruk, Juan G; Arbour, Nathalie; Prat, Alexandre; Yong, V Wee; Jacques, Francois H; Akira, Shizuo; David, Samuel
2012-07-01
Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model of multiple sclerosis (MS), an inflammatory, demyelinating disease of the central nervous system (CNS). EAE pathogenesis involves various cell types, cytokines, chemokines, and adhesion molecules. Given the complexity of the inflammatory response in EAE, it is likely that many immune mediators still remain to be discovered. To identify novel immune mediators of EAE pathogenesis, we performed an Affymetrix gene array screen on the spinal cords of mice at the onset stage of disease. This screening identified the gene encoding lipocalin 2 (Lcn2) as being significantly upregulated. Lcn2 is a multi-functional protein that plays a role in glial activation, matrix metalloproteinase (MMP) stabilization, and cellular iron flux. As many of these processes have been implicated in EAE, we characterized the expression and role of Lcn2 in this disease in C57BL/6 mice. We show that Lcn2 is significantly upregulated in the spinal cord throughout EAE and is expressed predominantly by monocytes and reactive astrocytes. The Lcn2 receptor, 24p3R, is also expressed on monocytes, macrophages/microglia, and astrocytes in EAE. In addition, we show that EAE severity is increased in Lcn2(-/-) mice as compared with wild-type controls. Finally, we demonstrate that elevated levels of Lcn2 are detected in the plasma and cerebrospinal fluid (CSF) in MS and in immune cells in CNS lesions in MS tissue sections. These data indicate that Lcn2 is a modulator of EAE pathogenesis and suggest that it may also play a role in MS. Copyright © 2012 Wiley Periodicals, Inc.
Peferoen, Laura A N; Breur, Marjolein; van de Berg, Sarah; Peferoen-Baert, Regina; Boddeke, Erik H W G M; van der Valk, Paul; Pryce, Gareth; van Noort, Johannes M; Baker, David; Amor, Sandra
2016-10-01
Current therapies for multiple sclerosis (MS) reduce the frequency of relapses by modulating adaptive immune responses but fail to limit the irreversible neurodegeneration driving progressive disability. Experimental autoimmune encephalomyelitis (EAE) in Biozzi ABH mice recapitulates clinical features of MS including relapsing-remitting episodes and secondary-progressive disability. To address the contribution of recurrent inflammatory events and ageing as factors that amplify progressive neurological disease, we examined EAE in 8- to 12-week-old and 12-month-old ABH mice. Compared with the relapsing-remitting (RREAE) and secondary progressive (SPEAE) EAE observed in young mice, old mice developed progressive disease from onset (PEAE) associated with pronounced axonal damage and increased numbers of CD3(+) T cells and microglia/macrophages, but not B cells. Whereas the clinical neurological features of PEAE and SPEAE were comparable, the pathology was distinct. SPEAE was associated with significantly reduced perivascular infiltrates and T-cell numbers in the central nervous system (CNS) compared with PEAE and the acute phase of RREAE. In contrast to perivascular infiltrates that declined during progression from RREAE into SPEAE, the numbers of microglia clusters remained constant. Similar to what is observed during MS, the microglia clusters emerging during EAE were associated with axonal damage and oligodendrocytes expressing heat-shock protein B5, but not lymphocytes. Taken together, our data reveal that the course of EAE is dependent on the age of the mice. Younger mice show a relapsing-remitting phase followed by progressive disease, whereas old mice immediately show progression. This indicates that recurrent episodes of inflammation in the CNS, as well as age, contribute to progressive neurological disease. © 2016 John Wiley & Sons Ltd.
Zheng, Hui; Zhang, Han; Liu, Feng; Qi, Yuanyuan; Jiang, Hong
2014-01-01
Mice immunized with neuroantigens in incomplete Freund's adjuvant (IFA) are resistant to subsequent induction of experimental autoimmune encephalomyelitis (EAE). The mechanisms involved in this protection are complex. Studies on relevant CD4(+) or CD8(+) T cells, including effective and regulatory T cells, have been performed by others. In this work, the effects of CD4(-)-, CD8(-)- splenocytes on protection from EAE in C57BL/6 mice which were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG)35-55 in IFA were evaluated. We observed that MOG-reactive CD4(+) T cells failed to be activated and proliferate when CD4(-)-, CD8(-)- splenocytes from MOG/IFA-immunized mice were regarded as antigen-presenting cells (APC). It was shown that these APC expressed lower levels of major histocompatibility complex class II (MHC-II), CD80, and CD86 than naïve cells. In addition, CD4(-)-, CD8(-)- splenocytes from MOG/IFA-immunized mice showed significantly higher levels of IL-10 mRNA expression. When the immunized-mice were induced to develop EAE, these cells secreted significantly higher levels of IL-10 and produced lower levels of IL-6, leading to decreased secretion of IL-17 and IFN-γ from MOG-specific CD4(+) T cells. The transfer of CD4(-)-, CD8(-)- splenocytes from MOG/IFA-immunized mice was able to ameliorate the subsequent induction of EAE in recipient mice. Thus, MOG/IFA immunization can modulate CD4(-)-, CD8(-)- splenocytes by reducing the expression of antigen-presenting molecules and altering the levels of secreted cytokines. Our study reveals an additional mechanism involved in the protective effects of MOG/IFA pre-immunization in an EAE model. Copyright © 2013 Elsevier B.V. All rights reserved.
Musella, Alessandra; Sepman, Helena; Mandolesi, Georgia; Gentile, Antonietta; Fresegna, Diego; Haji, Nabila; Conrad, Andrea; Lutz, Beat; Maccarrone, Mauro; Centonze, Diego
2014-04-01
Type-1 cannabinoid receptors (CB1R) are important regulators of the neurodegenerative damage in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). In GABAergic striatal neurons, CB1R stimulation exerts protective effects by limiting inflammation-induced potentiation of glutamate-mediated spontaneous excitatory postsynaptic currents (sEPSCs). Here we show that CB1R located on GABAergic or on glutamatergic neurons are differentially involved in the pre- and postsynaptic alterations of sEPSCs caused by EAE in the striatum. After induction of EAE, mice selectively lacking CB1R on GABAergic neurons (GABA-CB1R-KO) showed exacerbated alterations of sEPSC duration in GABAergic medium spiny neurons (MSN). On the other hand, EAE-induced alterations of corticostriatal sEPSC frequency were exacerbated only in mice lacking CB1R on glutamatergic neurons (Glu-CB1R-KO), indicating that this subset of receptors controls the effects of inflammation on glutamate release. While EAE severity was enhanced in whole CB1R-KO mice, GABA-CB1R-KO and Glu-CB1R-KO mice had similar motor deficits as the respective wild-type (WT) counterparts. Our results provide further evidence that CB1R are involved in EAE pathophysiology, and suggest that both pre- and postsynaptic alterations of glutamate transmission are important to drive excitotoxic neurodegeneration typical of this disorder. Copyright © 2014 Elsevier Ltd. All rights reserved.
Garay, Laura; Gonzalez Giqueaux, Paula; Guennoun, Rachida; Schumacher, Michael; Gonzalez Deniselle, Maria Claudia; De Nicola, Alejandro F
2017-01-01
Previous studies of experimental autoimmune encephalomyelitis (EAE) have shown that progesterone decreases inflammatory cell infiltration and proinflammatory factors, increases myelination and attenuates clinical grade of EAE mice. To elucidate potential mediators of these effects, we analyzed the mRNA expression of neurosteroidogenic enzymes in the spinal cord, in view of the protective role of steroids in EAE. We also analyzed mitochondrial morphology and dynamics (fusion and fission proteins), considering the role of mitochondria in neurosteroidogenesis. EAE was induced in C57Bl6 mice using MOG 40-54 and killed on day 16 after induction. Using qPCR, we found in steroid-untreated EAE mice decreased mRNAs for the steroidogenic acute regulatory protein (Star), voltage-dependent anion channel (VDAC), P450scc (cholesterol side-chain cleavage), 5α-reductase, 3α-hydroxysteroid dehydrogenase (3α-HSD) and aromatase, whereas levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) showed a large intra-group variance. We also found increased mRNA expression of 18Kd translocator protein (TSPO), which likely resulted from the reactive microgliosis in this model. EAE mice also showed pathological mitochondrial morphology and reduced expression of fission and fusion protein mRNAs. Most importantly, pretreatment with progesterone a week before EAE induction increased Star,VDAC, P450scc, 5α-reductase type I, 3α-HSD and aromatase mRNAs and did not modify 3β-HSD. TSPO mRNA was decreased, consequent with the inhibition of microgliosis. Mitochondrial morphology was improved and fission/fusion protein mRNAs were enhanced by progesterone treatment. Furthermore, progesterone protective effects on mitochondrial and endoplasmic reticulum may allow the recovery of neurosteroidogenesis. In this way, endogenously synthesized neurosteroids may reinforce the beneficial effects of exogenous progesterone previously shown in MS mice. Copyright © 2016 Elsevier Ltd. All rights reserved.
R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice
Schmitz, Katja; de Bruin, Natasja; Bishay, Philipp; Männich, Julia; Häussler, Annett; Altmann, Christine; Ferreirós, Nerea; Lötsch, Jörn; Ultsch, Alfred; Parnham, Michael J; Geisslinger, Gerd; Tegeder, Irmgard
2014-01-01
R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4+CD25+FoxP3+ regulatory T cells, CTLA4+ inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial. PMID:25269445
R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice.
Schmitz, Katja; de Bruin, Natasja; Bishay, Philipp; Männich, Julia; Häussler, Annett; Altmann, Christine; Ferreirós, Nerea; Lötsch, Jörn; Ultsch, Alfred; Parnham, Michael J; Geisslinger, Gerd; Tegeder, Irmgard
2014-11-01
R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4(+)CD25(+)FoxP3(+) regulatory T cells, CTLA4(+) inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.
Bing, So Jin; Ha, Danbee; Hwang, Insun; Park, Eunjin; Ahn, Ginnae; Song, Jie-Young; Jee, Youngheun
2016-01-01
Bearing pathologic and clinical similarities to human multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE) is used as a murine model to test potential therapeutic agents for MS. Recently, we reported the protective effects of an acidic polysaccharide of Panax ginseng (APG) in C57BL/6 strain-dependent EAE, a model of primary progressive MS. In this study, we extend our previous findings on the therapeutic capacity of APG in relapsing-remitting EAE (rr-EAE), the animal model to closely mimic recurrent inflammatory demyelination lesions of relapsing-remitting MS. Treatments with APG led to a significant reduction of clinical symptoms and the relapse rate of EAE than vehicle treatments. Consistent with this, histological examination revealed that APG markedly modulated the infiltration of CD4[Formula: see text] T cells and CD11b[Formula: see text] macrophages into the spinal cord and the APG-treated CNS was devoid of demyelination and axonal damages. In addition, APG decreased the proliferation of peripheral PLP-reactive T cells and the production of pro-inflammatory factors such as IFN-[Formula: see text], IL-17 and TNF-[Formula: see text]. The fact that APG can induce clinically beneficial effects to distinct types of EAE furthers our understanding on the basis of its immunosuppression in EAE and, possibly, in MS. Our results suggest that APG may serve as a new therapeutic agent for MS as well as other human autoimmune diseases, and warrants continued evaluation for its translation into therapeutic application.
Zhong, Shan-Shan; Xiang, Ya-Juan; Liu, Pen-Ju; He, Yang; Yang, Ting-Ting; Wang, Yang-Yang; Rong, A; Zhang, Jun; Liu, Guang-Zhi
2017-10-05
As a traditional Chinese medicine, Cordyceps sinensis (CS) possesses a variety of immunoregulatory properties. This study aimed to explore the therapeutic potential of CS in a mice model of multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE). Female C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein35-55to induce EAE, followed by an instant intragastric feeding with a low dosage of CS (low-CS group, n = 5), high dosage of CS (high-CS group, n = 5), or the same volume of normal saline (control group, n = 5). All the mice were observed for clinical assessment. Over the 30 days of CS treatment, flow cytometry was used to detect the frequency of helper T-cell (Th) subsets, Th1 and Th17, and CD4+ CD25+ regulatory T cells in the spleen and lymph nodes. Meanwhile, pathological changes in brain were determined using both hematoxylin-eosin and luxol fast blue staining. Data were analyzed using the one-way analysis of variance (ANOVA). Over the 15 and 30 days of CS treatment, the clinical assessment for EAE demonstrated that both high-CS group (2.51 ± 0.31 and 2.26 ± 0.39 scores, respectively) and low-CS group (2.99 ± 0.40 and 2.69 ± 0.46, respectively) had lower disease severity scores than those of control group (3.57 ± 0.53 and 3.29 ± 0.53, all P < 0.01, respectively). Meanwhile, after 15 and 30 days, the high-CS group (19.18 ± 1.34 g and 20.41 ± 1.56 g, respectively) and low-CS group (18.07 ± 1.18 g and 19.48 ± 1.69 g, respectively) had a lower body weight, as compared with control group (16.85 ± 1.15 g and 18.22 ± 1.63 g, all P < 0.01, respectively). At 30 days post-CS treatment, there was a lower Th1 frequency in the lymph nodes (2.85 ± 1.54% and 2.77 ± 1.07% vs. 5.35 ± 1.34%, respectively; P < 0.05) and spleens (3.96 ± 1.09% and 3.09 ± 0.84% vs. 5.07 ± 1.50%, respectively; P < 0.05) and less inflammatory infiltration and demyelination in the brain of CS-treated mice than that of control group. Our preliminary study demonstrated that CS efficiently alleviated EAE severity and EAE-related pathology damage and decreased the number of Th1s in the periphery, indicating its effectiveness in the treatment of murine EAE. Thus, our findings strongly support the therapeutic potential of this agent as a new traditional Chinese medicine approach in MS treatment.
Zhong, Shan-Shan; Xiang, Ya-Juan; Liu, Pen-Ju; He, Yang; Yang, Ting-Ting; Wang, Yang-Yang; Rong, A; Zhang, Jun; Liu, Guang-Zhi
2017-01-01
Background: As a traditional Chinese medicine, Cordyceps sinensis (CS) possesses a variety of immunoregulatory properties. This study aimed to explore the therapeutic potential of CS in a mice model of multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE). Methods: Female C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein35–55 to induce EAE, followed by an instant intragastric feeding with a low dosage of CS (low-CS group, n = 5), high dosage of CS (high-CS group, n = 5), or the same volume of normal saline (control group, n = 5). All the mice were observed for clinical assessment. Over the 30 days of CS treatment, flow cytometry was used to detect the frequency of helper T-cell (Th) subsets, Th1 and Th17, and CD4+ CD25+ regulatory T cells in the spleen and lymph nodes. Meanwhile, pathological changes in brain were determined using both hematoxylin-eosin and luxol fast blue staining. Data were analyzed using the one-way analysis of variance (ANOVA). Results: Over the 15 and 30 days of CS treatment, the clinical assessment for EAE demonstrated that both high-CS group (2.51 ± 0.31 and 2.26 ± 0.39 scores, respectively) and low-CS group (2.99 ± 0.40 and 2.69 ± 0.46, respectively) had lower disease severity scores than those of control group (3.57 ± 0.53 and 3.29 ± 0.53, all P < 0.01, respectively). Meanwhile, after 15 and 30 days, the high-CS group (19.18 ± 1.34 g and 20.41 ± 1.56 g, respectively) and low-CS group (18.07 ± 1.18 g and 19.48 ± 1.69 g, respectively) had a lower body weight, as compared with control group (16.85 ± 1.15 g and 18.22 ± 1.63 g, all P < 0.01, respectively). At 30 days post-CS treatment, there was a lower Th1 frequency in the lymph nodes (2.85 ± 1.54% and 2.77 ± 1.07% vs. 5.35 ± 1.34%, respectively; P < 0.05) and spleens (3.96 ± 1.09% and 3.09 ± 0.84% vs. 5.07 ± 1.50%, respectively; P < 0.05) and less inflammatory infiltration and demyelination in the brain of CS-treated mice than that of control group. Conclusions: Our preliminary study demonstrated that CS efficiently alleviated EAE severity and EAE-related pathology damage and decreased the number of Th1s in the periphery, indicating its effectiveness in the treatment of murine EAE. Thus, our findings strongly support the therapeutic potential of this agent as a new traditional Chinese medicine approach in MS treatment. PMID:28937034
2012-01-01
Background Murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis, presents typically as ascending paralysis. However, in mice in which interferon-gamma (IFNγ) signaling is disrupted by genetic deletion, limb paralysis is accompanied by atypical deficits, including head tilt, postural imbalance, and circling, consistent with cerebellar/vestibular dysfunction. This was previously attributed to intense cerebellar and brainstem infiltration by peripheral immune cells and formation of neutrophil-rich foci within the CNS. However, the exact mechanism by which IFNγ signaling prohibits the development of vestibular deficits, and whether the distribution and composition of inflammatory foci within the CNS affects the course of atypical EAE remains elusive. Methods We induced EAE in IFNγ-/- mice and bone marrow chimeric mice in which IFNγR is not expressed in the CNS but is intact in the periphery (IFNγRCNSKO) and vice versa (IFNγRperiKO). Blood-brain barrier permeability was determined by Evans blue intravenous administration at disease onset. Populations of immune cell subsets in the periphery and the CNS were quantified by flow cytometry. CNS tissues isolated at various time points after EAE induction, were analyzed by immunohistochemistry for composition of inflammatory foci and patterns of axonal degeneration. Results Incidence and severity of atypical EAE were more pronounced in IFNγRCNSKO as compared to IFNγRperiKO mice. Contrary to what we anticipated, cerebella/brainstems of IFNγRCNSKO mice were only minimally infiltrated, while the same areas of IFNγRperiKO mice were extensively populated by peripheral immune cells. Furthermore, the CNS of IFNγRperiKO mice was characterized by persistent neutrophil-rich foci as compared to IFNγRCNSKO. Immunohistochemical analysis of the CNS of IFNγ-/- and IFNγR chimeric mice revealed that IFNγ protective actions are exerted through microglial STAT1. Conclusions Alterations in distribution and composition of CNS inflammatory foci are not sufficient for the onset of atypical EAE. IFNγ dictates the course of neuroinflammatory disorders mainly through actions exerted within the CNS. This study provides strong evidence that link microglial STAT1 inactivation to vestibular dysfunction. PMID:22248039
Sisay, Sofia; Pryce, Gareth; Jackson, Samuel J; Tanner, Carolyn; Ross, Ruth A; Michael, Gregory J; Selwood, David L; Giovannoni, Gavin; Baker, David
2013-01-01
Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim)) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen)) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim) mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some transgenic/gene knockout and other studies on low-EAE susceptibility backgrounds with inconsistent disease course and susceptibility.
Jackson, Samuel J.; Tanner, Carolyn; Ross, Ruth A.; Michael, Gregory J.; Selwood, David L.; Giovannoni, Gavin; Baker, David
2013-01-01
Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 tm1Zim) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 Dgen) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some transgenic/gene knockout and other studies on low-EAE susceptibility backgrounds with inconsistent disease course and susceptibility. PMID:24130809
Delarasse, Cécile; Daubas, Philippe; Mars, Lennart T.; Vizler, Csaba; Litzenburger, Tobias; Iglesias, Antonio; Bauer, Jan; Della Gaspera, Bruno; Schubart, Anna; Decker, Laurence; Dimitri, Dalia; Roussel, Guy; Dierich, Andrée; Amor, Sandra; Dautigny, André; Liblau, Roland; Pham-Dinh, Danielle
2003-01-01
We studied the immunological basis for the very potent encephalitogenicity of myelin/oligodendrocyte glycoprotein (MOG), a minor component of myelin in the CNS that is widely used to induce experimental autoimmune encephalomyelitis (EAE). For this purpose, we generated a mutant mouse lacking a functional mog gene. This MOG-deficient mouse presents no clinical or histological abnormalities, permitting us to directly assess the role of MOG as a target autoantigen in EAE. In contrast to WT mice, which developed severe EAE following immunization with whole myelin, MOG-deficient mice had a mild phenotype, demonstrating that the anti-MOG response is a major pathogenic component of the autoimmune response directed against myelin. Moreover, while MOG transcripts are expressed in lymphoid organs in minute amounts, both MOG-deficient and WT mice show similar T and B cell responses against the extracellular domain of MOG, including the immunodominant MOG 35–55 T cell epitope. Furthermore, no differences in the fine specificity of the T cell responses to overlapping peptides covering the complete mouse MOG sequence were observed between MOG+/+ and MOG–/– mice. In addition, upon adoptive transfer, MOG-specific T cells from WT mice and those from MOG-deficient mice are equally pathogenic. This total lack of immune tolerance to MOG in WT C57BL/6 mice may be responsible for the high pathogenicity of the anti-MOG immune response as well as the high susceptibility of most animal strains to MOG-induced EAE. PMID:12925695
Hertwig, Laura; Hamann, Isabell; Romero-Suarez, Silvina; Millward, Jason M; Pietrek, Rebekka; Chanvillard, Coralie; Stuis, Hanna; Pollok, Karolin; Ransohoff, Richard M; Cardona, Astrid E; Infante-Duarte, Carmen
2016-08-01
Fractalkine receptor (CX3CR1)-deficient mice develop very severe experimental autoimmune encephalomyelitis (EAE), associated with impaired NK cell recruitment into the CNS. Yet, the precise implications of NK cells in autoimmune neuroinflammation remain elusive. Here, we investigated the pattern of NK cell mobilization and the contribution of CX3CR1 to NK cell dynamics in the EAE. We show that in both wild-type and CX3CR1-deficient EAE mice, NK cells are mobilized from the periphery and accumulate in the inflamed CNS. However, in CX3CR1-deficient mice, the infiltrated NK cells displayed an immature phenotype contrasting with the mature infiltrates in WT mice. This shift in the immature/mature CNS ratio contributes to EAE exacerbation in CX3CR1-deficient mice, since transfer of mature WT NK cells prior to immunization exerted a protective effect and normalized the CNS NK cell ratio. Moreover, mature CD11b(+) NK cells show higher degranulation in the presence of autoreactive 2D2 transgenic CD4(+) T cells and kill these autoreactive cells more efficiently than the immature CD11b(-) fraction. Together, these data suggest a protective role of mature NK cells in EAE, possibly through direct modulation of T cells inside the CNS, and demonstrate that mature and immature NK cells are recruited into the CNS by distinct chemotactic signals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Suppression of Inflammatory Demyelinaton and Axon Degeneration through Inhibiting Kv3 Channels
Jukkola, Peter; Gu, Yuanzheng; Lovett-Racke, Amy E.; Gu, Chen
2017-01-01
The development of neuroprotective and repair strategies for treating progressive multiple sclerosis (MS) requires new insights into axonal injury. 4-aminopyridine (4-AP), a blocker of voltage-gated K+ (Kv) channels, is used in symptomatic treatment of progressive MS, but the underlying mechanism remains unclear. Here we report that deleting Kv3.1—the channel with the highest 4-AP sensitivity—reduces clinical signs in experimental autoimmune encephalomyelitis (EAE), a mouse model for MS. In Kv3.1 knockout (KO) mice, EAE lesions in sensory and motor tracts of spinal cord were markedly reduced, and radial astroglia were activated with increased expression of brain derived neurotrophic factor (BDNF). Kv3.3/Kv3.1 and activated BDNF receptors were upregulated in demyelinating axons in EAE and MS lesions. In spinal cord myelin coculture, BDNF treatment promoted myelination, and neuronal firing via altering channel expression. Therefore, suppressing Kv3.1 alters neural circuit activity, which may enhance BNDF signaling and hence protect axons from inflammatory insults. PMID:29123469
Becklund, Bryan R; James, Bradley J; Gagel, Robert F; DeLuca, Hector F
2009-08-15
The active form of vitamin D, 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), can suppress disease in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Calcium appears to be a critical component of 1,25(OH)(2)D(3)-mediated suppression of EAE, as complete disease prevention only occurs with a concomitant increase in serum calcium levels. Calcitonin (CT) is a peptide hormone released in response to acute increases in serum calcium, which led us to explore its importance in 1,25(OH)(2)D(3)-mediated suppression of EAE. Previously, we discovered that co-administration of pharmacological doses of CT enhanced the suppressive effect of 1,25(OH)(2)D(3) on EAE, suggesting CT may play a role in 1,25(OH)(2)D(3)-mediated suppression of EAE. To determine the importance of CT in EAE we have utilized a mouse strain in which the gene encoding CT and its alternative splice product, calcitonin gene related peptide-alpha (CGRP), have been deleted. Deletion of the CT/CGRP gene had no effect on EAE progression. Furthermore, treatment with 1,25(OH)(2)D(3) suppressed EAE in CT/CGRP knock-out mice equal to that in wild type mice. Therefore, we conclude that CT is not necessary for 1,25(OH)(2)D(3)-mediated suppression of EAE.
Lemos, Henrique; Huang, Lei; Chandler, Phillip R.; Mohamed, Eslam; Souza, Guilherme R.; Li, Lingqian; Pacholczyk, Gabriela; Barber, Glen N.; Hayakawa, Yoshihiro; Munn, David H.; Mellor, Andrew L.
2014-01-01
Cytosolic DNA sensing activates the Stimulator of Interferon Genes (STING) adaptor to induce interferon type I (IFNαβ) production. Constitutive DNA sensing to induce sustained STING activation incites tolerance breakdown leading to autoimmunity. Here we show that systemic treatments with DNA nanoparticles (DNPs) induced potent immune regulatory responses via STING signaling that suppressed experimental autoimmune encephalitis (EAE) when administered to mice after immunization with myelin oligodendrocyte glycoprotein (MOG), at EAE onset, or at peak disease severity. DNP treatments attenuated infiltration of effector T cells into the central nervous system (CNS) and suppressed innate and adaptive immune responses to MOG immunization in spleen. Therapeutic responses were not observed in mice treated with cargo DNA or cationic polymers alone, indicating that DNP uptake and cargo DNA sensing by cells with regulatory functions was essential for therapeutic responses to manifest. Intact STING and IFNαβ receptor genes, but not IFNγ receptor genes, were essential for therapeutic responses to DNPs to manifest. Treatments with cyclic diguanylate monophosphate (c-diGMP) to activate STING also delayed EAE onset and reduced disease severity. Therapeutic responses to DNPs were critically dependent on indoleamine 2,3 dioxygenase (IDO) enzyme activity in hematopoietic cells. Thus DNPs and c-diGMP attenuate EAE by inducing dominant T cell regulatory responses via the STING-IFNαβ-IDO pathway that suppress CNS-specific autoimmunity. These findings reveal dichotomous roles for the STING-IFNαβ pathway in either stimulating or suppressing autoimmunity and identify STING activating reagents as a novel class of immune modulatory drugs. PMID:24799564
Mancera, Pilar; Wappenhans, Blanca; Cordobilla, Begoña; Virgili, Noemí; Pugliese, Marco; Rueda, Fèlix; Espinosa-Parrilla, Juan F; Domingo, Joan C
2017-06-30
Many neurodegenerative diseases are associated, at least in part, to an inflammatory process in which microglia plays a major role. The effect of the triglyceride form of the omega-3 polyunsaturated fatty acid docosahexaenoic acid (TG-DHA) was assayed in vitro and in vivo to assess the protective and anti-inflammatory activity of this compound. In the in vitro study, BV-2 microglia cells were previously treated with TG-DHA and then activated with Lipopolysaccharide (LPS) and Interferon-gamma (IFN-γ). TG-DHA treatment protected BV-2 microglia cells from oxidative stress toxicity attenuating NO production and suppressing the induction of inflammatory cytokines. When compared with DHA in the ethyl-ester form, a significant difference in the ability to inhibit NO production in favor of TG-DHA was observed. TG-DHA inhibited significantly splenocyte proliferation but isolated CD4+ lymphocyte proliferation was unaffected. In a mice model of autoimmune encephalomyelitis (EAE), 250 mg/kg/day oral TG-DHA treatment was associated with a significant amelioration of the course and severity of the disease as compared to untreated animals. TG-DHA-treated EAE mice showed a better weight profile, which is a symptom related to a better course of encephalomyelitis. TG-DHA may be a promising therapeutic agent in neuroinflammatory processes and merit to be more extensively studied in human neurodegenerative disorders.
Effects of Intermittent Fasting on Experimental Autoimune Encephalomyelitis in C57BL/6 Mice.
Razeghi Jahromi, Soodeh; Ghaemi, Amir; Alizadeh, Akram; Sabetghadam, Fatemeh; Moradi Tabriz, Hedieh; Togha, Mansoureh
2016-06-01
Several religions recommend periods of fasting. One of the most frequently asked questions of MS patients before the holy month of Ramadan is weather fasting might have an unfavorable effect on their disease course. This debate became more challenging after the publication of experimental studies suggesting that calorie restriction prior to disease induction attenuates disease severity. We conducted this study to assess early and late effects of fasting on the animal model of MS, known as autoimmune encephalomyelitis. EAE was induced in the C57BL/6 mice, using Myelin Oligodendrocyte Glycopeptide (MOG) 35-55 and they fasted every other day either after the appearance of the first clinical sign or 30 days after disease induction for ten days. Thereafter, the mice were sacrificed for further histological and immunological evaluations. Intermittent fasting after the establishment of EAE did not have any unfavorable effect on the course of disease. Moreover, fasting at the early phase of disease alleviated EAE severity by ameliorating spinal cord demyelination. Fasting suppressed the secretion of IFN-γ, TNF-α and raised IL-10 production in splenocytes. Fasting was also associated with a lower percent of cytotoxicity. Intermittent fasting not only had no unfavorable effect on EAE but also reduced EAE severity if started at early phase of disease.
2013-01-01
Introduction Multiple sclerosis (MS) is the most common inflammatory demyelinating disorder of the central nervous system (CNS). Minocycline ameliorates the clinical severity of MS and exhibits antiinflammatory, neuroprotective activities, and good tolerance for long-term use, whereas it is toxic to the CNS. Recently, the immunomodulation and neuroprotection capabilities of human bone marrow mesenchymal stem cells (hBM-MSCs) were shown in experimental autoimmune encephalomyelitis (EAE). In this study, we evaluated whether the combination of hBM-MSCs and a low-dose minocycline could produce beneficial effects in EAE mice. Methods The sensitivity of hBM-MSCs to minocycline was determined by an established cell-viability assay. Minocycline-treated hBM-MSCs were also characterized with flow cytometry by using MSC surface markers and analyzed for their multiple differentiation capacities. EAE was induced in C57BL/6 mice by using immunization with MOG35-55. Immunopathology assays were used to detect the inflammatory cells, demyelination, and neuroprotection. Interferon gamma (IFN-γ)/tumor necrosis factor alpha (TNF-α) and interleukin-4 (IL-4)/interleukin-10 (IL-10), the hallmark cytokines that direct Th1 and Th2 development, were detected with enzyme-linked immunosorbent assay (ELISA). terminal dUTP nick-end labeling (TUNEL) staining was performed to elucidate the cell apoptosis in the spinal cords of EAE mice. Results Minocycline did not affect the viability, surface phenotypes, or differentiation capacity of hBM-MSCs, while minocycline affected the viability of astrocytes at a high dose. In vivo efficacy experiments showed that combined treatment, compared to the use of minocycline or hBM-MSCs alone, resulted in a significant reduction in clinical scores, along with attenuation of inflammation, demyelination, and neurodegeneration. Moreover, the combined treatment with hBM-MSCs and minocycline enhanced the immunomodulatory effects, which suppressed proinflammatory cytokines (IFN-γ, TNF-α) and conversely increased anti-inflammatory cytokines (IL-4, IL-10). In addition, TUNEL staining also demonstrated a significant decrease of the number of apoptotic cells in the combined treatment compared with either treatment alone. Conclusions The combination of hBM-MSCs and minocycline provides a novel experimental protocol to enhance the therapeutic effects in MS. PMID:23826999
Davidson, Emily A; Pickens, C Austin; Fenton, Jenifer I
2018-03-01
Delta-5 (D5D) and delta-6 (D6D) desaturase are key enzymes in fatty acid (FA) metabolism. Dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may alter tissue FA composition via D5D and D6D. The purpose was to determine the relationship between dietary EPA + DHA, estimated desaturase activities of various tissues and the reflection of desaturase activity in the red blood cell (RBC). Mice were fed diets with increasing percent of energy from EPA + DHA. Phospholipid FA composition of heart, muscle, spleen, lung, adipose tissues and RBC were analysed. D5D and D6D enzyme activity estimates (EAE) were calculated as the ratio of 20:4/20:3 and 20:3/18:2, respectively. D5D EAE decreased in all tissues, except muscle, with increasing dietary EPA + DHA. RBC D5D EAE positively correlated with D5D EAE in all tissues. RBC D6D EAE positively correlated with muscle and inversely correlated with adipose D6D EAE. Our findings suggest differential influence of dietary EPA + DHA upon tissue desaturase activities.
Laquinimod ameliorates excitotoxic damage by regulating glutamate re-uptake.
Gentile, Antonietta; Musella, Alessandra; De Vito, Francesca; Fresegna, Diego; Bullitta, Silvia; Rizzo, Francesca Romana; Centonze, Diego; Mandolesi, Georgia
2018-01-05
Laquinimod is an immunomodulatory drug under clinical investigation for the treatment of the progressive form of multiple sclerosis (MS) with both anti-inflammatory and neuroprotective effects. Excitotoxicity, a prominent pathophysiological feature of MS and of its animal model, experimental autoimmune encephalomyelitis (EAE), involves glutamate transporter (GluT) dysfunction in glial cells. The aim of this study was to assess whether laquinimod might exert direct neuroprotective effects by interfering with the mechanisms of excitotoxicity linked to GluT function impairments in EAE. Osmotic minipumps allowing continuous intracerebroventricular (icv) infusion of laquinimod for 4 weeks were implanted into C57BL/6 mice before EAE induction. EAE cerebella were taken to perform western blot and qPCR experiments. For ex vivo experiments, EAE cerebellar slices were incubated with laquinimod before performing electrophysiology, western blot, and qPCR. In vivo treatment with laquinimod attenuated EAE clinical score at the peak of the disease, without remarkable effects on inflammatory markers. In vitro application of laquinimod to EAE cerebellar slices prevented EAE-linked glutamatergic alterations without mitigating astrogliosis and inflammation. Moreover, such treatment induced an increase of Slcla3 mRNA coding for the glial glutamate-aspartate transporter (GLAST) without affecting the protein content. Concomitantly, laquinimod significantly increased the levels of the glial glutamate transporter 1 (GLT-1) protein and pharmacological blockade of GLT-1 function fully abolished laquinimod anti-excitotoxic effect. Overall, our results suggest that laquinimod protects against glutamate excitotoxicity of the cerebellum of EAE mice by bursting the expression of glial glutamate transporters, independently of its anti-inflammatory effects.
Giacoppo, S; Soundara Rajan, T; Galuppo, M; Pollastro, F; Grassi, G; Bramanti, P; Mazzon, E
2015-12-01
Multiple Sclerosis (MS) is a global concern disease leading to a progressive, chronic and demyelinating condition, affecting the central nervous system (CNS). The pathology has an inflammatory/autoimmune origin; nevertheless, neuronal cell death mechanisms are not to be underestimated. The present study was designed to test the effects of intraperitoneal administration of cannabidiol (CBD), the main non-psychotropic cannabinoid of Cannabis sativa (CS), in an experimental model of MS. The aim is to evaluate the capability of CBD administration to thwart the cascade of mediators involved in MS-induced apoptosis. Experimental Autoimmune Encephalomyelitis (EAE) was induced by immunization with myelin oligodendroglial glycoprotein (MOG)35-55 peptide in mice. After immunization, mice were observed daily for signs of EAE and weight loss. Disease signs were evaluated using a standardized scoring system. Immunohistochemical and Western blot assessments of key apoptotic markers reveal that CBD treatment is able to avoid Fas pathway activation, phospho-ERK p42/44 and cleaved caspase-3 triggering as well as alterations in mitochondrial permeability due to Bax/Bcl-2 unbalance. Moreover, CBD interferes with p53-p21 axis activation. As results, the absence of tissue apobody formation in spinal cord tissues of EAE-mice treated with CBD was established. Most of therapeutic properties of CS are currently ascribed to the psychotropic effects of phenylterpenoid delta-9 tetrahydrocannabinol. We have demonstrated that, alone, purified CBD possesses an anti-apoptotic power against the neurodegenerative processes underlying MS development. This represents an interesting new profile of CBD that could lead to its introduction in the clinical management of MS.
Astrocytic IL-6 Influences the Clinical Symptoms of EAE in Mice.
Erta, Maria; Giralt, Mercedes; Jiménez, Silvia; Molinero, Amalia; Comes, Gemma; Hidalgo, Juan
2016-05-17
Interleukin-6 (IL-6) is a multifunctional cytokine that not only plays major roles in the immune system, but also serves as a coordinator between the nervous and endocrine systems. IL-6 is produced in multiple cell types in the CNS, and in turn, many cells respond to it. It is therefore important to ascertain which cell type is the key responder to IL-6 during both physiological and pathological conditions. In order to test the role of astrocytic IL-6 in neuroinflammation, we studied an extensively-used animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), in mice with an IL-6 deficiency in astrocytes (Ast-IL-6 KO). Results indicate that lack of astrocytic IL-6 did not cause major changes in EAE symptomatology. However, a delay in the onset of clinical signs was observed in Ast-IL-6 KO females, with fewer inflammatory infiltrates and decreased demyelination and some alterations in gliosis and vasogenesis, compared to floxed mice. These results suggest that astrocyte-secreted IL-6 has some roles in EAE pathogenesis, at least in females.
White, Derek R; Khedri, Zahra; Kiptoo, Paul; Siahaan, Teruna J; Tolbert, Thomas J
2017-07-19
Multiple sclerosis (MS) is a neurodegenerative disease that is estimated to affect over 2.3 million people worldwide. The exact cause for this disease is unknown but involves immune system attack and destruction of the myelin protein surrounding the neurons in the central nervous system. One promising class of compounds that selectively prevent the activation of immune cells involved in the pathway leading to myelin destruction are bifunctional peptide inhibitors (BPIs). Treatment with BPIs reduces neurodegenerative symptoms in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. In this work, as an effort to further improve the bioactivity of BPIs, BPI peptides were conjugated to the N- and C-termini of the fragment crystallizable (Fc) region of the human IgG1 antibody. Initially, the two peptides were conjugated to IgG1 Fc using recombinant DNA technology. However, expression in yeast resulted in low yields and one of the peptides being heavily proteolyzed. To circumvent this problem, the poorly expressed peptide was instead produced by solid phase peptide synthesis and conjugated enzymatically using a sortase-mediated ligation. The sortase-mediated method showed near-complete conjugation yield as observed by SDS-PAGE and mass spectrometry in small-scale reactions. This method was scaled up to obtain sufficient quantities for testing the BPI-Fc fusion in mice induced with EAE. Compared to the PBS-treated control, mice treated with the BPI-Fc fusion showed significantly reduced disease symptoms, did not experience weight loss, and showed reduced de-myelination. These results demonstrate that the BPI peptides were highly active at suppressing EAE when conjugated to the large Fc scaffold in this manner.
Carter, Laura L; Leach, Michael W; Azoitei, Mihai L; Cui, Junqing; Pelker, Jeffrey W; Jussif, Jason; Benoit, Steve; Ireland, Gretchen; Luxenberg, Deborah; Askew, G Roger; Milarski, Kim L; Groves, Christopher; Brown, Tom; Carito, Brenda A; Percival, Karen; Carreno, Beatriz M; Collins, Mary; Marusic, Suzana
2007-01-01
Interactions between PD-1 and its two differentially expressed ligands, PD-L1 and PD-L2, attenuate T cell activation and effector function. To determine the role of these molecules in autoimmune disease of the CNS, PD-1-/-, PD-L1-/- and PD-L2-/- mice were generated and immunized to induce experimental autoimmune encephalomyelitis (EAE). PD-1-/- and PD-L1-/- mice developed more severe EAE than wild type and PD-L2-/- mice. Consistent with this, PD-1-/- and PD-L1-/- cells produced elevated levels of the pro-inflammatory cytokines IFN-gamma, TNF, IL-6 and IL-17. These results demonstrate that interactions between PD-1/PD-L1, but not PD-1/PDL-2, are crucial in attenuating T cell responses in EAE.
Reynolds, Jacob D; Case, Laure K; Krementsov, Dimitry N; Raza, Abbas; Bartiss, Rose; Teuscher, Cory
2017-06-01
Month-season of birth (M-SOB) is a risk factor in multiple chronic diseases, including multiple sclerosis (MS), where the lowest and greatest risk of developing MS coincide with the lowest and highest birth rates, respectively. To determine whether M-SOB effects in such chronic diseases as MS can be experimentally modeled, we examined the effect of M-SOB on susceptibility of C57BL/6J mice to experimental autoimmune encephalomyelitis (EAE). As in MS, mice that were born during the M-SOB with the lowest birth rate were less susceptible to EAE than mice born during the M-SOB with the highest birth rate. We also show that the M-SOB effect on EAE susceptibility is associated with differential production of multiple cytokines/chemokines by neuroantigen-specific T cells that are known to play a role in EAE pathogenesis. Taken together, these results support the existence of an M-SOB effect that may reflect seasonally dependent developmental differences in adaptive immune responses to self-antigens independent of external stimuli, including exposure to sunlight and vitamin D. Moreover, our documentation of an M-SOB effect on EAE susceptibility in mice allows for modeling and detailed analysis of mechanisms that underlie the M-SOB effect in not only MS but in numerous other diseases in which M-SOB impacts susceptibility.-Reynolds, J. D., Case, L. K., Krementsov, D. N., Raza, A., Bartiss, R., Teuscher, C. Modeling month-season of birth as a risk factor in mouse models of chronic disease: from multiple sclerosis to autoimmune encephalomyelitis. © FASEB.
NASA Astrophysics Data System (ADS)
Al-Ghobashy, Medhat A.; Elmeshad, Aliaa N.; Abdelsalam, Rania M.; Nooh, Mohammed M.; Al-Shorbagy, Muhammad; Laible, Götz
2017-04-01
Recombinant human myelin basic protein (rhMBP) was previously produced in the milk of transgenic cows. Differences in molecular recognition of either hMBP or rhMBP by surface-immobilized anti-hMBP antibodies were demonstrated. This indicated differences in immunological response between rhMBP and hMBP. Here, the activity of free and controlled release rhMBP poly(ɛ-caprolactone) nanoparticles (NPs), as a therapeutic vaccine against multiple sclerosis (MS) was demonstrated in experimental autoimmune encephalomyelitis (EAE) animal model. Following optimization of nanoformulation, discrete spherical, rough-surfaced rhMBP NPs with high entrapment efficiency and controlled release pattern were obtained. Results indicated that rhMBP was loaded into and electrostatically adsorbed onto the surface of NPs. Subcutaneous administration of free or rhMBP NPs before EAE-induction reduced the average behavioral score in EAE mice and showed only mild histological alterations and preservation of myelin sheath, with rhMBP NPs showing increased protection. Moreover, analysis of inflammatory cytokines (IFN-γ and IL-10) in mice brains revealed that pretreatment with free or rhMBP NPs significantly protected against induced inflammation. In conclusion: i) rhMBP ameliorated EAE symptoms in EAE animal model, ii) nanoformulation significantly enhanced efficacy of rhMBP as a therapeutic vaccine and iii) clinical investigations are required to demonstrate the activity of rhMBP NPs as a therapeutic vaccine for MS.
Al-Ghobashy, Medhat A; ElMeshad, Aliaa N; Abdelsalam, Rania M; Nooh, Mohammed M; Al-Shorbagy, Muhammad; Laible, Götz
2017-04-20
Recombinant human myelin basic protein (rhMBP) was previously produced in the milk of transgenic cows. Differences in molecular recognition of either hMBP or rhMBP by surface-immobilized anti-hMBP antibodies were demonstrated. This indicated differences in immunological response between rhMBP and hMBP. Here, the activity of free and controlled release rhMBP poly(ε-caprolactone) nanoparticles (NPs), as a therapeutic vaccine against multiple sclerosis (MS) was demonstrated in experimental autoimmune encephalomyelitis (EAE) animal model. Following optimization of nanoformulation, discrete spherical, rough-surfaced rhMBP NPs with high entrapment efficiency and controlled release pattern were obtained. Results indicated that rhMBP was loaded into and electrostatically adsorbed onto the surface of NPs. Subcutaneous administration of free or rhMBP NPs before EAE-induction reduced the average behavioral score in EAE mice and showed only mild histological alterations and preservation of myelin sheath, with rhMBP NPs showing increased protection. Moreover, analysis of inflammatory cytokines (IFN-γ and IL-10) in mice brains revealed that pretreatment with free or rhMBP NPs significantly protected against induced inflammation. i) rhMBP ameliorated EAE symptoms in EAE animal model, ii) nanoformulation significantly enhanced efficacy of rhMBP as a therapeutic vaccine and iii) clinical investigations are required to demonstrate the activity of rhMBP NPs as a therapeutic vaccine for MS.
Overcoming failure to repair demyelination in EAE: gamma-secretase inhibition of Notch signaling.
Jurynczyk, Maciej; Jurewicz, Anna; Bielecki, Bartosz; Raine, Cedric S; Selmaj, Krzysztof
2008-02-15
In multiple sclerosis (MS), myelin destroyed by the immune attack is not effectively repaired by oligodendrocytes (OLs) and MS foci eventually undergo glial scarring. Although oligodendrocyte precursor cells (OPCs) are normally recruited to the lesion areas, they fail to mature and remyelinate the damaged fibers. Activation of the Notch pathway has been shown to inhibit OPC differentiation and to hamper their ability to produce myelin during CNS development. We have recently shown that inhibition of gamma-secretase within the CNS of SJL/J mice with experimental autoimmune encephalomyelitis (EAE) blocks Notch pathway activation in OLs, promotes remyelination, reduces axonal damage and significantly enhances clinical recovery from the disease. Our results suggest that inhibiting the non-myelin permissive environment maintained by Notch pathways within the mature CNS offers a new strategy for treating autoimmune demyelination, including MS.
CD6 as a potential target for treating multiple sclerosis
Singer, Nora G.; Whitbred, Joy; Bowen, Michael A.; Lin, Feng
2017-01-01
CD6 was established as a marker of T cells more than three decades ago, and recent studies have identified CD6 as a risk gene for multiple sclerosis (MS), a disease in which autoreactive T cells are integrally involved. Nevertheless, the precise role of CD6 in regulating T-cell responses is controversial and its significance in the pathogenesis of various diseases remains elusive, partly due to the lack of animals engineered to alter expression of the CD6 gene. In this report, we found that CD6 KO mice showed decreased pathogenic T-cell responses, reduced spinal cord T-cell infiltration, and attenuated disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. CD6-deficient T cells exhibited augmented activation, but also significantly reduced survival and proliferation after activation, leading to overall decreased Th1 and Th17 polarization. Activated CD6-deficient T cells also showed impaired infiltration through brain microvascular endothelial cell monolayers. Furthermore, by developing CD6 humanized mice, we identified a mouse anti-human CD6 monoclonal antibody that is highly effective in treating established EAE without depleting T cells. These results suggest that (i) CD6 is a negative regulator of T-cell activation, (ii) at the same time, CD6 is a positive regulator of activated T-cell survival/proliferation and infiltration; and (iii) CD6 is a potential new target for treating MS and potentially other T-cell–driven autoimmune conditions. PMID:28209777
Wang, Jun; Chen, Fu; Zheng, Peng; Deng, Weijuan; Yuan, Jia; Peng, Bo; Wang, Ruochen; Liu, Wenjun; Zhao, Hui; Wang, Yanqing; Wu, Gencheng
2012-07-01
Huperzine A (HupA), a sesquiterpene alkaloid and a potent and reversible inhibitor of acetylcholinesterase, possesses potential anti-inflammatory properties and is used for the treatment of certain neurodegenerative diseases such as Alzheimer's disease. However, it is still unknown whether this chemical is beneficial in the treatment of multiple sclerosis, a progressive inflammatory disease of the central nervous system. In this study, we examined the immunomodulatory properties of HupA in experimental autoimmune encephalomyelitis (EAE), a T-cell mediated murine model of multiple sclerosis. The following results were obtained: (1) intraperitoneal injections of HupA significantly attenuate the neurological severity of EAE in mice. (2) HupA decreases the accumulation of inflammatory cells, autoimmune-related demyelination and axonal injury in the spinal cords of EAE mice. (3) HupA down-regulates mRNA levels of the pro-inflammatory cytokines (IFN-γ and IL-17) and chemokines (MCP-1, RANTES, and TWEAK) while enhancing levels of anti-inflammatory cytokines (IL-4 and IL-10) in the spinal cords of EAE mice. (4) HupA inhibits MOG(35-55) stimulation-induced T-cell proliferation and IFN-γ and IL-17 secretion in cultured splenocytes. (5) HupA inhibition of T-cell proliferation is reversed by the nicotinic acetylcholinergic receptor antagonist mecamylamine. We conclude that HupA can ameliorate EAE by suppressing autoimmune responses, inflammatory reactions, subsequent demyelination and axonal injury in the spinal cord. Therefore, HupA may have a potential therapeutic value for the treatment of multiple sclerosis and as a neuroimmunomodulatory drug to control human CNS pathology. Copyright © 2012 Elsevier Inc. All rights reserved.
Benson, Curtis; Paylor, John W; Tenorio, Gustavo; Winship, Ian; Baker, Glen; Kerr, Bradley J
2015-09-01
Multiple sclerosis (MS) is classically defined by motor deficits, but it is also associated with the secondary symptoms of pain, depression, and anxiety. Up to this point modifying these secondary symptoms has been difficult. There is evidence that both MS and the animal model experimental autoimmune encephalomyelitis (EAE), commonly used to study the pathophysiology of the disease, can be modulated by exercise. To examine whether limited voluntary wheel running could modulate EAE disease progression and the co-morbid symptoms of pain, mice with EAE were allowed access to running wheels for 1h every day. Allowing only 1h every day of voluntary running led to a significant delay in the onset of clinical signs of the disease. The development of mechanical allodynia was assessed using Von Frey hairs and indicated that wheel running had a modest positive effect on the pain hypersensitivity associated with EAE. These behavioral changes were associated with reduced numbers of cFOS and phosphorylated NR1 positive cells in the dorsal horn of the spinal cord compared to no-run EAE controls. In addition, within the dorsal horn, voluntary wheel running reduced the number of infiltrating CD3(+) T-cells and reduced the overall levels of Iba1 immunoreactivity. Using high performance liquid chromatography (HPLC), we observed that wheel-running lead to significant changes in the spinal cord levels of the antioxidant glutathione. Oxidative stress has separately been shown to contribute to EAE disease progression and neuropathic pain. Together these results indicate that in mice with EAE, voluntary motor activity can delay the onset of clinical signs and reduce pain symptoms associated with the disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Diffusion fMRI detects white-matter dysfunction in mice with acute optic neuritis
Lin, Tsen-Hsuan; Spees, William M.; Chiang, Chia-Wen; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei
2014-01-01
Optic neuritis is a frequent and early symptom of multiple sclerosis (MS). Conventional magnetic resonance (MR) techniques provide means to assess multiple MS-related pathologies, including axonal injury, demyelination, and inflammation. A method to directly and non-invasively probe white-matter function could further elucidate the interplay of underlying pathologies and functional impairments. Previously, we demonstrated a significant 27% activation-associated decrease in the apparent diffusion coefficient of water perpendicular to the axonal fibers (ADC⊥) in normal C57BL/6 mouse optic nerve with visual stimulation using diffusion fMRI. Here we apply this approach to explore the relationship between visual acuity, optic nerve pathology, and diffusion fMRI in the experimental autoimmune encephalomyelitis (EAE) mouse model of optic neuritis. Visual stimulation produced a significant 25% (vs. baseline) ADC⊥ decrease in sham EAE optic nerves, while only a 7% (vs. baseline) ADC⊥ decrease was seen in EAE mice with acute optic neuritis. The reduced activation-associated ADC⊥ response correlated with post-MRI immunohistochemistry determined pathologies (including inflammation, demyelination, and axonal injury). The negative correlation between activation-associated ADC⊥ response and visual acuity was also found when pooling EAE-affected and sham groups under our experimental criteria. Results suggest that reduction in diffusion fMRI directly reflects impaired axonal-activation in EAE mice with optic neuritis. Diffusion fMRI holds promise for directly gauging in vivo white-matter dysfunction or therapeutic responses in MS patients. PMID:24632420
Marín, N; Eixarch, H; Mansilla, M J; Rodríguez-Martín, E; Mecha, M; Guaza, C; Álvarez-Cermeño, J C; Montalban, X; Villar, L M; Espejo, C
2014-01-01
Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is an autoimmune disorder in which activated T cells cross the blood–brain barrier (BBB) to initiate an inflammatory response that leads to demyelination and axonal damage. The key mechanisms responsible for disease initiation are still unknown. We addressed this issue in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. It is widely known that EAE manifests only in certain strains when immunized with myelin proteins or peptides. We studied the differential immune responses induced in two mouse strains that are susceptible or resistant to EAE induction when they are immunized with the 139–151 peptide of proteolipid protein, an encephalitogenic peptide capable of inducing EAE in the susceptible strain. The adequate combination of major histocompatibility complex alleles and myelin peptides triggered in susceptible mice a T helper type 17 (Th17) response capable of inducing the production of high-affinity anti-myelin immunoglobulin (Ig)G antibodies. These were not detected in resistant mice, despite immunization with the encephalitogenic peptide in junction with complete Freund's adjuvant and pertussis toxin, which mediate BBB disruption. These data show the pivotal role of Th17 responses and of high-affinity anti-myelin antibodies in EAE induction and that mechanisms that prevent their appearance can contribute to resistance to EAE. PMID:24188195
Libbey, J E; Sanchez, J M; Doty, D J; Sim, J T; Cusick, M F; Cox, J E; Fischer, K F; Round, J L; Fujinami, R S
2018-04-25
Multiple sclerosis (MS) is a metabolically demanding disease involving immune-mediated destruction of myelin in the central nervous system. We previously demonstrated a significant alteration in disease course in the experimental autoimmune encephalomyelitis (EAE) preclinical model of MS due to diet. Based on the established crosstalk between metabolism and gut microbiota, we took an unbiased sampling of microbiota, in the stool, and metabolites, in the serum and stool, from mice (Mus musculus) on the two different diets, the Teklad global soy protein-free extruded rodent diet (irradiated diet) and the Teklad sterilisable rodent diet (autoclaved diet). Within the microbiota, the genus Lactobacillus was found to be inversely correlated with EAE severity. Therapeutic treatment with Lactobacillus paracasei resulted in a significant reduction in the incidence of disease, clinical scores and the amount of weight loss in EAE mice. Within the metabolites, we identified shifts in glycolysis and the tricarboxylic acid cycle that may explain the differences in disease severity between the different diets in EAE. This work begins to elucidate the relationship between diet, microbiota and metabolism in the EAE preclinical model of MS and identifies targets for further study with the goal to more specifically probe the complex metabolic interaction at play in EAE that may have translational relevance to MS patients.
Li, Bin; Cui, Wei; Liu, Jia; Li, Ru; Liu, Qian; Xie, Xiao-Hua; Ge, Xiao-Li; Zhang, Jing; Song, Xiu-Juan; Wang, Ying; Guo, Li
2013-12-01
Sulforaphane (SFN) is an organosulfur compound present in vegetables and has potent anti-oxidant and anti-inflammatory activities. This study was aimed at investigating the effect of treatment with SFN on inflammation and oxidative stress, and the potential mechanisms underlying the action of SFN in experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. Treatment with SFN significantly inhibited the development and severity of EAE in mice, accompanied by mitigating inflammatory infiltration and demyelination in the spinal cord of mice. The protective effect of SFN was associated with significantly improved distribution of claudin-5 and occludin, and decreased levels of MMP-9 expression, preserving the blood-brain barrier. Furthermore, the protection of SFN was also related to decreased levels of oxidative stress in the brains of mice by enhanced activation of the Nrf2/ARE pathway and increased levels of anti-oxidant HO-1 and NQO1 expression. In addition, treatment with SFN inhibited antigen-specific Th17 responses and enhanced IL-10 responses. Our data indicated that treatment with SFN inhibited EAE development and severity in mice by its anti-oxidant activity and antagonizing autoimmune inflammation. Our findings suggest that SFN and its analogues may be promising reagents for intervention of multiple sclerosis and other autoimmune diseases. © 2013.
Hsp70 Regulates Immune Response in Experimental Autoimmune Encephalomyelitis
Mansilla, M. José; Costa, Carme; Eixarch, Herena; Tepavcevic, Vanja; Castillo, Mireia; Martin, Roland; Lubetzki, Catherine; Aigrot, Marie-Stéphane; Montalban, Xavier; Espejo, Carmen
2014-01-01
Heat shock protein (Hsp)70 is one of the most important stress-inducible proteins. Intracellular Hsp70 not only mediates chaperone-cytoprotective functions but can also block multiple steps in the apoptosis pathway. In addition, Hsp70 is actively released into the extracellular milieu, thereby promoting innate and adaptive immune responses. Thus, Hsp70 may be a critical molecule in multiple sclerosis (MS) pathogenesis and a potential target in this disease due to its immunological and cytoprotective functions. To investigate the role of Hsp70 in MS pathogenesis, we examined its immune and cytoprotective roles using both in vitro and in vivo experimental procedures. We found that Hsp70.1-deficient mice were more resistant to developing experimental autoimmune encephalomyelitis (EAE) compared with their wild-type (WT) littermates, suggesting that Hsp70.1 plays a critical role in promoting an effective myelin oligodendrocyte glycoprotein (MOG)-specific T cell response. Conversely, Hsp70.1-deficient mice that developed EAE showed an increased level of autoreactive T cells to achieve the same production of cytokines compared with the WT mice. Although a neuroprotective role of HSP70 has been suggested, Hsp70.1-deficient mice that developed EAE did not exhibit increased demyelination compared with the control mice. Accordingly, Hsp70 deficiency did not influence the vulnerability to apoptosis of oligodendrocyte precursor cells (OPCs) in culture. Thus, the immunological role of Hsp70 may be relevant in EAE, and specific therapies down-regulating Hsp70 expression may be a promising approach to reduce the early autoimmune response in MS patients. PMID:25153885
Therapeutic Efficacy of Suppressing the JAK/STAT Pathway in Multiple Models of EAE1
Liu, Yudong; Holdbrooks, Andrew T.; De Sarno, Patrizia; Rowse, Amber L.; Yanagisawa, Lora L.; McFarland, Braden C.; Harrington, Laurie E.; Raman, Chander; Sabbaj, Steffanie; Benveniste, Etty N.; Qin, Hongwei
2014-01-01
Pathogenic T helper cells and myeloid cells are involved in the pathogenesis of Multiple Sclerosis (MS) and Experimental Autoimmune Encephalomyelitis (EAE), an animal model of MS. The JAK/STAT pathway is utilized by numerous cytokines for signaling, and is critical for development, regulation and termination of immune responses. Dysregulation of the JAK/STAT pathway has pathological implications in autoimmune and neuroinflammatory diseases. Many of the cytokines involved in MS/EAE, including IL-6, IL-12, IL-23, IFN-γ and GM-CSF, use the JAK/STAT pathway to induce biological responses. Thus, targeting JAKs has implications for treating autoimmune inflammation of the brain. We have utilized AZD1480, a JAK1/2 inhibitor, to investigate the therapeutic potential of inhibiting the JAK/STAT pathway in models of EAE. AZD1480 treatment inhibits disease severity in MOG-induced classical and atypical EAE models by preventing entry of immune cells into the brain, suppressing differentiation of Th1 and Th17 cells, deactivating myeloid cells, inhibiting STAT activation in the brain, and reducing expression of pro-inflammatory cytokines and chemokines. Treatment of SJL/J mice with AZD1480 delays disease onset of PLP-induced relapsing-remitting disease, reduces relapses and diminishes clinical severity. AZD1480 treatment was also effective in reducing ongoing paralysis induced by adoptive transfer of either pathogenic Th1 or Th17 cells. In vivo AZD1480 treatment impairs both the priming and expansion of T-cells, and attenuates antigen-presentation functions of myeloid cells. Inhibition of the JAK/STAT pathway has clinical efficacy in multiple pre-clinical models of MS, suggesting the feasibility of the JAK/STAT pathway as a target for neuroinflammatory diseases. PMID:24323580
González-García, Coral; Torres, Irene Moreno; García-Hernández, Ruth; Campos-Ruíz, Lucía; Esparragoza, Luis Rodríguez; Coronado, María José; Grande, Aranzazu García; García-Merino, Antonio; Sánchez López, Antonio J
2017-12-01
Cannabidiol (CBD) is one of the most important compounds in Cannabis sativa, lacks psychotropic effects, and possesses a high number of therapeutic properties including the amelioration of experimental autoimmune encephalomyelitis (EAE). The aim of this study was to analyse the relative efficacy of CBD in adoptively transferred EAE (at-EAE), a model that allows better delineation of the effector phase of EAE. Splenocytes and lymph nodes from mice with actively induced EAE were cultured in the presence of MOG 35-55 and IL-12 and inoculated intraperitoneally in recipient female C57BL/6J mice. The effects of CBD were evaluated using clinical scores and magnetic resonance imaging (MRI). In the central nervous system, the extent of cell infiltration, axonal damage, demyelination, microglial activation and cannabinoid receptors expression was assessed by immunohistochemistry. Lymph cell viability, apoptosis, oxidative stress and IL-6 production were measured in vitro. Preventive intraperitoneal treatment with CBD ameliorated the clinical signs of at-EAE, and this improvement was accompanied by a reduction of the apparent diffusion coefficient in the subiculum area of the brain. Inflammatory infiltration, axonal damage, and demyelination were reduced, and cannabinoid receptor expression was modulated. Incubation with CBD decreased encephalitogenic cell viability, increasing early apoptosis and reactive oxygen species (ROS) and decreasing IL-6 production. The reduction in viability was not mediated by CB 1 , CB 2 or GPR55 receptors. CBD markedly improved the clinical signs of at-EAE and reduced infiltration, demyelination and axonal damage. The CBD-mediated decrease in the viability of encephalitogenic cells involves ROS generation, apoptosis and a decrease in IL-6 production and may contribute to the therapeutic effect of this compound. Copyright © 2017 Elsevier Inc. All rights reserved.
Trubiani, Oriana; Giacoppo, Sabrina; Ballerini, Patrizia; Diomede, Francesca; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela
2016-01-04
Multiple sclerosis is a demyelinating disease mostly of autoimmune origin that affects and damages the central nervous system, leading to a disabling condition. The aim of the present study was to investigate whether administration of mesenchymal stem cells from human periodontal ligament (hPDLSCs) could ameliorate multiple sclerosis progression by exerting neuroprotective effects in an experimental model of autoimmune encephalomyelitis (EAE). EAE was induced by immunization with myelin oligodendroglial glycoprotein peptide (MOG)35-55 in C57BL/6 mice. After immunization, mice were observed every 48 hours for signs of EAE and weight loss. At the onset of disease, approximately 14 days after immunization, EAE mice were subjected to a single intravenous injection of hPDLSCs (10(6) cells/150 μl) into the tail vein. At the point of animal sacrifice on day 56 after EAE induction, spinal cord and brain tissues were collected in order to perform histological evaluation, immunohistochemistry and western blotting analysis. Achieved results reveal that treatment with hPDLSCs may exert neuroprotective effects against EAE, diminishing both clinical signs and histological score typical of the disease (lymphocytic infiltration and demyelination) probably through the production of neurotrophic factors (results focused on brain-derived neurotrophic factor and nerve growth factor expression). Furthermore, administration of hPDLSCs modulates expression of inflammatory key markers (tumor necrosis factor-α, interleukin (IL)-1β, IL-10, glial fibrillary acidic protein, Nrf2 and Foxp3), the release of CD4 and CD8α T cells, and the triggering of apoptotic death pathway (data shown for cleaved caspase 3, p53 and p21). In light of the achieved results, transplantation of hPDLSCs may represent a putative novel and helpful tool for multiple sclerosis treatment. These cells could have considerable implication for future therapies for multiple sclerosis and this study may represent the starting point for further investigations.
Smith, M E; Eller, N L; McFarland, H F; Racke, M K; Raine, C S
1999-10-01
A prominent feature of the clinical spectrum of multiple sclerosis (MS) is its high incidence of onset in the third decade of life and the relative rarity of clinical manifestations during childhood and adolescence, features suggestive of age-related restriction of clinical expression. Experimental allergic encephalomyelitis (EAE), a model of central nervous system (CNS) autoimmune demyelination with many similarities to MS, has a uniform rapid onset and a high incidence of clinical and pathological disease in adult (mature) animals. Like MS, EAE is most commonly seen and studied in female adults. In this study, age-related resistance to clinical EAE has been examined with the adoptive transfer model of EAE in SJL mice that received myelin basic protein-sensitized cells from animals 10 days (sucklings) to 12 weeks (young adults) of age. A variable delay before expression of clinical EAE was observed between the different age groups. The preclinical period was longest in the younger (<14 days of age) animals, and shortest in animals 6 to 8 weeks old at time of transfer. Young animals initially resistant to EAE eventually expressed well-developed clinical signs by 6 to 7 weeks of age. This was followed by a remitting, relapsing clinical course. For each age at time of sensitization, increased susceptibility of females compared to males was observed. Examination of the CNS of younger animal groups during the preclinical period showed lesions of acute EAE. Older age groups developed onset of signs coincident with acute CNS lesions. This age-related resistance to clinical EAE in developing mice is reminiscent of an age-related characteristic of MS previously difficult to study in vivo. The associated subclinical CNS pathology and age-related immune functions found in young animals may be relevant to the increasing clinical expression of MS with maturation, and may allow study of factors associated with the known occasional poor correlation of CNS inflammation and demyelination and clinical changes in this disease.
Gupta, Avneet; Raj, Hem; Karchuli, Manvender Singh; Upmanyu, Neeraj
2013-12-01
The effects of ethanolic extracts of whole plants of Bacopa monnieri (BME), Evolvulus alsinoides (EAE), Tinospora cordifolia (TCE) and their combinations in equal proportion [CEP-1 (BME+EAE), CEP-2 (BME+TCE), CEP-3 (EAE+TCE) and CEP-4 (BME+EAE+TCE)] were tested in amnesic rats using Radial arm maze task performance (RAM) and Barnes maze test at 200 mg/kg p.o. The latency to find food and target hole was observed in RAM and Barnes maze respectively. Cognitive dysfunction was induced by scopolamine (0.3 mg/kg i.p.) treatment. BME, EAE, TCE and their combinations of equal proportion (CEPs) showed significant decrease in latency to find food and target hole in RAM and Barnes maze respectively. Inter comparison among single extract alone treated groups revealed that BME treated animals showed significant difference as compared to EAE and TCE treated animals. All combinations of equal proportion (CEPs) of these extracts showed significant difference in latency to find food and target hole as compared to single extracts treated animals. CEP-1 showed significantly better effect as compared to CEP-2 and CEP-3. Significant difference in latency to find food and target hole was also present between CEP-2 and CEP-3. Effect of CEP-4 was found to be significantly better than CEP-1, CEP-2 and CEP-3 treated rats in both models. From present investigation, it was concluded that ethanolic extract of Bacopa monnieri, Evolvulus alsinoides and Tinospora cordifolia provided better nootropic effect when used in combination.
Cowden, W B; Cullen, F A; Staykova, M A; Willenborg, D O
1998-08-01
Rat strains vary in their susceptibility to experimental autoimmune encephalomyelitis (EAE) and in many cases, factors other than MHC antigens are thought to play a role in this. We found that PVG rats, which have a very low susceptibility to EAE, were rendered highly susceptible to clinical disease when treated with N-methylarginine (NMA) an inhibitor of nitric oxide synthase (NOS). The clinical course of the ensuing disease in NMA-treated PVG rats was in most cases fulminating in nature and accompanied by some mortality. Following immunisation with myelin basic protein (MBP)-complete Freund's adjuvant (CFA), PVG rats developed higher serum levels of the surrogate markers of nitric oxide production, reactive nitrogen intermediates (RNI; nitrite and nitrate), than did their Lewis counterparts. This in vivo finding was reflected in vitro, where the levels of RNI produced in 24, 48 and 72 h IFN-gamma-stimulated spleen cell cultures for PVG rats were significantly higher than those for Lewis rats. A mechanism by which increased NO production might protect PVG rats against clinical EAE was suggested by the finding that lymph node cells, isolated from NMA-treated MBP-immunised PVG rats, proliferated in response to MBP at a rate approximately 3 x greater than those from MBP-immunised, saline treated rats. Thus, the greater number of MBP-specific T cells generated in the NOS inhibitor-treated vs. untreated rats could account for their increased susceptibility to developing clinical EAE. The findings in this study suggest that NO plays a role in protecting PVG rats against developing EAE.
Itabashi, Tetsuya; Arima, Yasunobu; Kamimura, Daisuke; Higuchi, Kotaro; Bando, Yoshio; Takahashi-Iwanaga, Hiromi; Murakami, Masaaki; Watanabe, Masahiko; Iwanaga, Toshihiko; Nio-Kobayashi, Junko
2018-06-16
Multiple sclerosis (MS) is an autoimmune disease in which pathogenic T cells play an important role, and an experimental autoimmune encephalomyelitis (EAE) is used as an animal model of MS. Galectins are β-galactoside-binding lectins and involved in various physiological and pathological events. Among fifteen members of galectins, galectin-1, -8, and -9 play immunosuppressive roles in MS and EAE; however, the role of galectin-3 (gal-3) is complex and controversial. We examined expression of gal-3 in the spinal cord and nerve roots of EAE mice. No immunohistochemical signals were detected in naïve mice, whereas gal-3 appeared at lower lumbar levels of the spinal cord and nerve roots in EAE mice. In the spinal cord, gal-3-positive cells were activated microglia and/or infiltrating macrophages, which were round in shape and intensified for the lysosomal enzyme, cathepsin D, indicating elevated phagocytic activity. Gal-3-positive cells in the spinal cord were most abundant during the peak symptomatic period. In the recovery period, they disappeared from the spinal parenchyma but remained at moderate levels in the pia mater. Interestingly, gal-3-positive cells selectively appeared in ventral, but not dorsal, nerve roots running through the spinal canal, with expression peaking during the recovery period. In ventral nerve roots, the major cell type expressing gal-3 was a specific population of Schwann cells that surround unmyelinated axons and express the biosynthetic enzyme for l-serine, a potent neurotrophic amino acid. Gal-3 was also induced in Iba1/F4/80-positive macrophages, which engulf damaged myelin and axon debris. Thus, gal-3 is induced in distinct cell types that are engaged in removal of damaged axons and cell debris and axon regeneration and remyelination, suggesting a potential neuroprotective role of gal-3 in EAE mice. Copyright © 2018. Published by Elsevier Ltd.
Bebo, Bruce F; Dehghani, Babak; Foster, Scott; Kurniawan, Astrid; Lopez, Francisco J; Sherman, Larry S
2009-05-01
Steroidal estrogens can regulate inflammatory immune responses and may be involved in the suppression of multiple sclerosis (MS) during pregnancy. However, the risks and side effects associated with steroidal estrogens may limit their usefulness for long-term MS therapy. Selective estrogen receptor modulators (SERMs) could provide an alternative therapeutic strategy, because they behave as estrogen agonists in some tissues, but are either inert or behave like estrogen antagonists in other tissues. In this study, we investigated the ability of two commercially available SERMs (tamoxifen and raloxifene) to regulate myelin specific immunity and experimental autoimmune encephalomyelitis (EAE) in mice. Both tamoxifen and raloxifene suppressed myelin antigen specific T-cell proliferation. However, tamoxifen was more effective in this regard. Tamoxifen treatment reduced the induction of major histocompatibility complex II by lipopolysaccharide stimulated dendritic cells and decreased their ability to activate myelin specific T-cells. At lower doses, tamoxifen was found to increase the levels of Th2 transcription factors and induce a Th2 bias in cultures of myelin-specific splenocytes. EAE symptoms and the degree of demyelination were less severe in mice treated with tamoxifen than in control mice. These findings support the notion that tamoxifen or related SERMs are potential agents that could be used in the treatment of inflammatory autoimmune disorders that affect the central nervous system.
Dasgupta, Anushka; Zheng, Jianzheng; Perrone-Bizzozero, Nora I.; Bizzozero, Oscar A.
2013-01-01
Previous work from our laboratory implicated protein carbonylation in the pathophysiology of both MS (multiple sclerosis) and its animal model EAE (experimental autoimmune encephalomyelitis). Subsequent in vitro studies revealed that the accumulation of protein carbonyls, triggered by glutathione deficiency or proteasome inhibition, leads to protein aggregation and neuronal cell death. These findings prompted us to investigate whether their association can be also established in vivo. In the present study, we characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of MOG (myelin-oligodendrocyte glycoprotein)35–55 peptide-induced EAE in C57BL/6 mice. The results show that protein carbonyls accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. We also show a temporal correlation between protein carbonylation (but not oxidative stress) and apoptosis. Furthermore, carbonyl levels are significantly higher in apoptotic cells than in live cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are present during the course of EAE. The LC3 (microtubule-associated protein light chain 3)-II/LC3-I ratio is significantly reduced in both acute and chronic EAE indicating reduced autophagy and explaining why aggresomes accumulate in this disorder. Taken together, the results of the present study suggest a link between protein oxidation and neuronal/glial cell death in vivo, and also demonstrate impaired proteostasis in this widely used murine model of MS. PMID:23489322
Immunomodulation of Experimental Autoimmune Encephalomyelitis by Oral Administration of Copolymer 1
NASA Astrophysics Data System (ADS)
Teitelbaum, Dvora; Arnon, Ruth; Sela, Michael
1999-03-01
The activity of copolymer 1 (Cop 1, Copax-one, glatiramer acetate) in suppressing experimental autoimmune encephalomyelitis (EAE) and in the treatment of multiple sclerosis patients when injected parenterally has been extensively demonstrated. In the present study we addressed the question of whether Cop 1 can induce oral tolerance to EAE similar to myelin basic protein (MBP). We now have demonstrated that oral Cop 1 inhibited EAE induction in both rats and mice. Furthermore, oral Cop 1 was more effective than oral MBP in suppressing EAE in rats. The beneficial effect of oral Cop 1 was found to be associated with specific inhibition of the proliferative and Th1 cytokine secretion responses to MBP of spleen cells from Cop 1-fed mice and rats. In all of these assays, oral Cop 1 was more effective than oral MBP. The tolerance induced by Cop 1 could be adoptively transferred with spleen cells from Cop 1-fed animals. Furthermore, Cop 1-specific T cell lines, which inhibit EAE induction in vivo, could be isolated from the above spleen cells. These T cell lines secrete the anti-inflammatory cytokines IL-10 and transforming growth factor type β , but not IL-4, in response to both Cop 1 and MBP. In conclusion, oral Cop 1 has a beneficial effect on the development of EAE that is associated with down-regulation of T cell immune responses to MBP and is mediated by Th2/3 type regulatory cells. These results suggest that oral administration of Cop 1 may modulate multiple sclerosis as well.
Disruption of oligodendrocyte gap junctions in experimental autoimmune encephalomyelitis.
Markoullis, Kyriaki; Sargiannidou, Irene; Gardner, Christopher; Hadjisavvas, Andreas; Reynolds, Richard; Kleopa, Kleopas A
2012-07-01
Gap junctions (GJs) are vital for oligodendrocyte survival and myelination. In order to examine how different stages of inflammatory demyelination affect oligodendrocyte GJs, we studied the expression of oligodendrocytic connexin32 (Cx32) and Cx47 and astrocytic Cx43 in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis (MS) induced by recombinant myelin oligodendrocyte glycoprotein. EAE was characterized by remissions and relapses with demyelination and axonal loss. Formation of GJ plaques was quantified in relation to the lesions and in normal appearing white matter (NAWM). During acute EAE at 14 days postimmunization (dpi) both Cx47 and Cx32 GJs were severely reduced within and around lesions but also in the NAWM. Cx47 was localized intracellularly in oligodendrocytes while protein levels remained unchanged, and this redistribution coincided with the loss of Cx43 GJs in astrocytes. Cx47 and Cx32 expression increased during remyelination at 28 dpi but decreased again at 50 dpi in the relapsing phase. Oligodendrocyte GJs remained reduced even in NAWM, despite increased formation of Cx43 GJs toward lesions indicating astrogliosis. EAE induced in Cx32 knockout mice resulted in an exacerbated clinical course with more demyelination and axonal loss compared with wild-type EAE mice of the same backcross, despite similar degree of inflammation, and an overall milder loss of Cx47 and Cx43 GJs. Thus, EAE causes persistent impairment of both intra- and intercellular oligodendrocyte GJs even in the NAWM, which may be an important mechanism of MS progression. Furthermore, GJ deficient myelinated fibers appear more vulnerable to CNS inflammatory demyelination. Copyright © 2012 Wiley Periodicals, Inc.
Gao, Ming; Yang, Yan; Li, Daling; Ming, Bingxia; Chen, Huoying; Sun, Yan; Xiao, Yifan; Lai, Lin; Zou, Huijuan; Xu, Yong; Xiong, Ping; Tan, Zheng; Gong, Feili; Zheng, Fang
2016-08-01
NK cells participate in the development of human multiple sclerosis (MS) and mouse experimental autoimmune encephalomyelitis (EAE), but the roles of different NK cell subsets in disease onset remain poorly understood. In this study, murine NK cells were divided into CD27(high) and CD27(low/-) subsets. The CD27(high) subset was decreased and the CD27(low/-) subset was increased in lymphoid organs during the pre-onset stage of EAE. Compared with the counterpart in naïve mice, the CD27(high) subset showed lower expression of Ly49D, Ly49H and NKG2D, and less production of IFN-γ, whereas the CD27(low/-) subset showed similar expression of the above mentioned surface receptors but higher cytotoxic activity in EAE mice. Compared with the CD27(high) subset, the CD27(low/-) subset exhibited increased promotion of DC maturation and no significant inhibition of T cells proliferation and Th17 cells differentiation in vitro Additionally, adoptive transfer of the CD27(low/-) subset, but not the CD27(high) subset, exacerbated the severity of EAE. Collectively, our data suggest the CD27 NK cell subsets play different roles in controlling EAE onset, which provide a new understanding for the regulation of NK cell subsets in early autoimmune disease. © The Author(s) 2016.
Rezende, Rafael M.; Oliveira, Rafael P.; Medeiros, Samara R.; Gomes-Santos, Ana C.; Alves, Andrea C.; Loli, Flávia G.; Guimarães, Mauro A.F.; Amaral, Sylvia S.; da Cunha, André P.; Weiner, Howard L.; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M.C.
2013-01-01
Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403
Rezende, Rafael M; Oliveira, Rafael P; Medeiros, Samara R; Gomes-Santos, Ana C; Alves, Andrea C; Loli, Flávia G; Guimarães, Mauro A F; Amaral, Sylvia S; da Cunha, André P; Weiner, Howard L; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M C
2013-02-01
Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. Copyright © 2012 Elsevier Ltd. All rights reserved.
B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6–producing B cells
Shen, Ping; Brown, Sheila; Lampropoulou, Vicky; Roch, Toralf; Lawrie, Sarah; Fan, Boli; O’Connor, Richard A.; Anderton, Stephen M.; Bar-Or, Amit; Fillatreau, Simon; Gray, David
2012-01-01
B cells have paradoxical roles in autoimmunity, exerting both pathogenic and protective effects. Pathogenesis may be antibody independent, as B cell depletion therapy (BCDT) leads to amelioration of disease irrespective of autoantibody ablation. However, the mechanisms of pathogenesis are poorly understood. We demonstrate that BCDT alleviates central nervous system autoimmunity through ablation of IL-6–secreting pathogenic B cells. B cells from mice with experimental autoimmune encephalomyelitis (EAE) secreted elevated levels of IL-6 compared with B cells from naive controls, and mice with a B cell–specific IL-6 deficiency showed less severe disease than mice with wild-type B cells. Moreover, BCDT ameliorated EAE only in mice with IL-6–sufficient B cells. This mechanism of pathogenesis may also operate in multiple sclerosis (MS) because B cells from MS patients produced more IL-6 than B cells from healthy controls, and this abnormality was normalized with B cell reconstitution after Rituximab treatment. This suggests that BCDT improved disease progression, at least partly, by eliminating IL-6–producing B cells in MS patients. Taking these data together, we conclude that IL-6 secretion is a major mechanism of B cell–driven pathogenesis in T cell–mediated autoimmune disease such as EAE and MS. PMID:22547654
Millward, Jason M.; Schnorr, Jörg; Taupitz, Matthias; Wagner, Susanne; Wuerfel, Jens T.; Infante-Duarte, Carmen
2013-01-01
Neuroinflammation during multiple sclerosis involves immune cell infiltration and disruption of the BBB (blood–brain barrier). Both processes can be visualized by MRI (magnetic resonance imaging), in multiple sclerosis patients and in the animal model EAE (experimental autoimmune encephalomyelitis). We previously showed that VSOPs (very small superparamagnetic iron oxide particles) reveal CNS (central nervous system) lesions in EAE which are not detectable by conventional contrast agents in MRI. We hypothesized that VSOP may help detect early, subtle inflammatory events that would otherwise remain imperceptible. To investigate the capacity of VSOP to reveal early events in CNS inflammation, we induced EAE in SJL mice using encephalitogenic T-cells, and administered VSOP prior to onset of clinical symptoms. In parallel, we administered VSOP to mice at peak disease, and to unmanipulated controls. We examined the distribution of VSOP in the CNS by MRI and histology. Prior to disease onset, in asymptomatic mice, VSOP accumulated in the choroid plexus and in spinal cord meninges in the absence of overt inflammation. However, VSOP was undetectable in the CNS of non-immunized control mice. At peak disease, VSOP was broadly distributed; we observed particles in perivascular inflammatory lesions with apparently preserved glia limitans. Moreover, at peak disease, VSOP was prominent in the choroid plexus and was seen in elongated endothelial structures, co-localized with phagocytes, and diffusely disseminated in the parenchyma, suggesting multiple entry mechanisms of VSOP into the CNS. Thus, using VSOP we were able to discriminate between inflammatory events occurring in established EAE and, importantly, we identified CNS alterations that appear to precede immune cell infiltration and clinical onset. PMID:23452162
Active suppression induced by repetitive self-epitopes protects against EAE development.
Puentes, Fabiola; Dickhaut, Katharina; Hofstätter, Maria; Falk, Kirsten; Rötzschke, Olaf
2013-01-01
Autoimmune diseases result from a breakdown in self-tolerance to autoantigens. Self-tolerance is induced and sustained by central and peripheral mechanisms intended to deviate harmful immune responses and to maintain homeostasis, where regulatory T cells play a crucial role. The use of self-antigens in the study and treatment of a range of autoimmune diseases has been widely described; however, the mechanisms underlying the induced protection by these means are unclear. This study shows that protection of experimental autoimmune disease induced by T cell self-epitopes in a multimerized form (oligomers) is mediated by the induction of active suppression. The experimental autoimmune encephalomyelitis (EAE) animal model for multiple sclerosis was used to study the mechanisms of protection induced by the treatment of oligomerized T cell epitope of myelin proteolipid protein (PLP139-151). Disease protection attained by the administration of oligomers was shown to be antigen specific and effective in both prevention and treatment of ongoing EAE. Oligomer mediated tolerance was actively transferred by cells from treated mice into adoptive hosts. The induction of active suppression was correlated with the recruitment of cells in the periphery associated with increased production of IL-10 and reduction of the pro-inflammatory cytokine TNF-α. The role of suppressive cytokines was demonstrated by the reversion of oligomer-induced protection after in vivo blocking of either IL-10 or TGF-β cytokines. This study strongly supports an immunosuppressive role of repeat auto-antigens to control the development of EAE with potential applications in vaccination and antigen specific treatment of autoimmune diseases.
Lewkowicz, Przemysław; Cwiklińska, Hanna; Mycko, Marcin P; Cichalewska, Maria; Domowicz, Małgorzata; Lewkowicz, Natalia; Jurewicz, Anna; Selmaj, Krzysztof W
2015-05-13
MicroRNAs (miRNAs) associate with Argonaute (Ago), GW182, and FXR1 proteins to form RNA-induced silencing complexes (RISCs). RISCs represent a critical checkpoint in the regulation and bioavailability of miRNAs. Recent studies have revealed dysregulation of miRNAs in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE); however, the function of RISCs in EAE and MS is largely unknown. Here, we examined the expression of Ago, GW182, and FXR1 in CNS tissue, oligodendrocytes (OLs), brain-infiltrating T lymphocytes, and CD3(+)splenocytes (SCs) of EAE mic, and found that global RISC protein levels were significantly dysregulated. Specifically, Ago2 and FXR1 levels were decreased in OLs and brain-infiltrating T cells in EAE mice. Accordingly, assembly of Ago2/GW182/FXR1 complexes in EAE brain tissues was disrupted, as confirmed by immunoprecipitation experiments. In parallel with alterations in RISC complex content in OLs, we found downregulation of miRNAs essential for differentiation and survival of OLs and myelin synthesis. In brain-infiltrating T lymphocytes, aberrant RISC formation contributed to miRNA-dependent proinflammatory helper T-cell polarization. In CD3(+) SCs, we found increased expression of both Ago2 and FXR1 in EAE compared with nonimmunized mice. Therefore, our results demonstrate a gradient in expression of miRNA between primary activated T cells in the periphery and polarized CNS-infiltrating T cells. These results suggest that, in polarized autoreactive effector T cells, miRNA synthesis is inhibited in response to dysregulated RISC assembly, allowing these cells to maintain a highly specific proinflammatory program. Therefore, our findings may provide a mechanism that leads to miRNA dysregulation in EAE/MS. Copyright © 2015 the authors 0270-6474/15/357521-17$15.00/0.
Ko, Hyun-Ja; Kinkel, Sarah A; Hubert, François-Xavier; Nasa, Zeyad; Chan, James; Siatskas, Christopher; Hirubalan, Premila; Toh, Ban-Hock; Scott, Hamish S; Alderuccio, Frank
2010-12-01
The autoimmune regulator (AIRE) promotes "promiscuous" expression of tissue-restricted antigens (TRA) in thymic medullary epithelial cells to facilitate thymic deletion of autoreactive T-cells. Here, we show that AIRE-deficient mice showed an earlier development of myelin oligonucleotide glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). To determine the outcome of ectopic Aire expression, we used a retroviral transduction system to over-express Aire in vitro, in cell lines and in bone marrow (BM). In the cell lines that included those of thymic medullary and dendritic cell origin, ectopically expressed Aire variably promoted expression of TRA including Mog and Ins2 (proII) autoantigens associated, respectively, with the autoimmune diseases multiple sclerosis and type 1 diabetes. BM chimeras generated from BM transduced with a retrovirus encoding Aire displayed elevated levels of Mog and Ins2 expression in thymus and spleen. Following induction of EAE with MOG(35-55), transplanted mice displayed significant delay in the onset of EAE compared with control mice. To our knowledge, this is the first example showing that in vivo ectopic expression of AIRE can modulate TRA expression and alter autoimmune disease development. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kou, Shuang; Zheng, Qi; Wang, Yizhou; Zhao, Hui; Zhang, Qiuxia; Li, Ming; Qi, Fang; Fang, Ling; Liu, Lei; Ouyang, Junyao; Zhao, Haiyu; Wang, Lei
2014-12-02
Zuo-Gui pills (ZGPs) and You-Gui pills (YGPs) are 2 traditional Chinese herbal formulas used for treating multiple sclerosis (MS) in the clinical setting and have been shown to have neuroprotective effects in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The aim of this study was to explore the mechanisms underlying the neuroprotective functions of ZGPs and YGPs. Female Lewis rats were randomly divided into normal control, EAE model, 2g/kg ZGP-treated EAE, 3g/kg YGP-treated EAE, and prednisone acetate-treated groups. EAE model was induced by subcutaneous injection of MBP68-86 antigen. The neurological function scores were estimated. Histological structures of the brains and spinal cords were observed, and myelinated and axons imaged. NogoA, Nogo receptor (NgR), and RhoA transcript and protein levels were measured by real-time quantitative RT-PCR and western blotting on postimmunization (PI) days 14 (acute stage) and 28 (remission stage). ZGPs and YGPs significantly reduced neurological functions scores and abrogated inflammatory infiltrates, demyelination, and axonal damage. Furthermore, treatment with ZGPs and YGPs inhibited NogoA, NgR, and RhoA mRNA and protein expression in rats at both the acute and remission stages. ZGPs exhibited stronger effects on NogoA and RhoA expressions, as well as neurological function, during the acute stage of EAE, while YGPs caused greater reductions in NogoA expression during the remission stage. Our findings suggested that ZGPs and YGPs exerted neuroprotective effects by downregulation of NogoA, NgR, and RhoA pathways, with differences in response times and targets observed between ZGPs and YGPs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Dual role of ALCAM in neuroinflammation and blood–brain barrier homeostasis
Saint-Laurent, Olivia; Bourbonnière, Lyne; Larouche, Sandra; Larochelle, Catherine; Michel, Laure; Charabati, Marc; Abadier, Michael; Zandee, Stephanie; Haghayegh Jahromi, Neda; Gowing, Elizabeth; Pittet, Camille; Lyck, Ruth; Engelhardt, Britta
2017-01-01
Activated leukocyte cell adhesion molecule (ALCAM) is a cell adhesion molecule found on blood–brain barrier endothelial cells (BBB-ECs) that was previously shown to be involved in leukocyte transmigration across the endothelium. In the present study, we found that ALCAM knockout (KO) mice developed a more severe myelin oligodendrocyte glycoprotein (MOG)35–55–induced experimental autoimmune encephalomyelitis (EAE). The exacerbated disease was associated with a significant increase in the number of CNS-infiltrating proinflammatory leukocytes compared with WT controls. Passive EAE transfer experiments suggested that the pathophysiology observed in active EAE was linked to the absence of ALCAM on BBB-ECs. In addition, phenotypic characterization of unimmunized ALCAM KO mice revealed a reduced expression of BBB junctional proteins. Further in vivo, in vitro, and molecular analysis confirmed that ALCAM is associated with tight junction molecule assembly at the BBB, explaining the increased permeability of CNS blood vessels in ALCAM KO animals. Collectively, our data point to a biologically important function of ALCAM in maintaining BBB integrity. PMID:28069965
Mori, Yuki; Murakami, Masaaki; Arima, Yasunobu; Zhu, Dasong; Terayama, Yasuo; Komai, Yutaka; Nakatsuji, Yuji; Kamimura, Daisuke; Yoshioka, Yoshichika
2014-02-01
Magnetic resonance imaging (MRI) is widely employed for the diagnosis of multiple sclerosis (MS). However, sometimes, the lesions found by MRI do not correlate with the neurological impairments observed in MS patients. We recently showed autoreactive T cells accumulate in the fifth lumbar cord (L5) to pass the blood-brain barrier and cause inflammation in the central nervous system of experimental autoimmune encephalomyelitis (EAE) mice, an MS model. We here investigated this early event using ultrahigh-field MRI. T2-weighted image signals, which conform to the water content, increased in L4 and L5 during the development of EAE. At the same time, the sizes of L4 and L5 changed. Moreover, angiographic images of MRI showed branch positions of the blood vessels in the lower lumbar cords were significantly altered. Interestingly, EAE mice showed occluded and thickened vessels, particularly during the peak phase, followed by reperfusion in the remission phase. Additionally, demyelination regions of some MS patients had increased lactic acid content, suggesting the presence of ischemic events. These results suggest that inflammation-mediated alterations in the lower lumbar cord change the homeostasis of the spinal cord and demonstrate that ultrahigh-field MRI enables the detection of previously invisible pathological alterations in EAE.
Zhou, Jieru; Cai, Wei; Jin, Min; Xu, Jingwei; Wang, Yanan; Xiao, Yichuan; Hao, Li; Wang, Bei; Zhang, Yanyun; Han, Jie; Huang, Rui
2015-09-02
Microglia are intrinsic immune cells in the central nervous system (CNS). The under controlled microglia activation plays important roles in inflammatory demyelination diseases, such as multiple sclerosis (MS). However, the means to modulate microglia activation as a therapeutic modality and the underlying mechanisms remain elusive. Here we show that administration of 18β-glycyrrhetinic acid (GRA), by using both preventive and therapeutic treatment protocols, significantly suppresses disease severity of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. The treatment effect of GRA on EAE is attributed to its regulatory effect on microglia. GRA-modulated microglia significantly decreased pro-inflammatory profile in the CNS through suppression of MAPK signal pathway. The ameliorated CNS pro-inflammatory profile prevented the recruitment of encephalitogenic T cells into the CNS, which alleviated inflammation-induced demyelination. In addition, GRA treatment promoted remyelination in the CNS of EAE mice. The induced remyelination can be mediated by the overcome of inflammation-induced blockade of brain-derived neurotrophic factor expression in microglia, as well as enhancing oligodendrocyte precursor cell proliferation. Collectively, our results demonstrate that GRA-modulated microglia suppresses EAE through inhibiting microglia activation-mediated CNS inflammation, and promoting neuroprotective effect of microglia, which represents a potential therapeutic strategy for MS and maybe other neuroinflammatory diseases associated with microglia activation.
Planche, Vincent; Panatier, Aude; Hiba, Bassem; Ducourneau, Eva-Gunnel; Raffard, Gerard; Dubourdieu, Nadège; Maitre, Marlène; Lesté-Lasserre, Thierry; Brochet, Bruno; Dousset, Vincent; Desmedt, Aline; Oliet, Stéphane H; Tourdias, Thomas
2017-02-01
Memory impairment is an early and disabling manifestation of multiple sclerosis whose anatomical and biological substrates are still poorly understood. We thus investigated whether memory impairment encountered at the early stage of the disease could be explained by a differential vulnerability of particular hippocampal subfields. By using experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, we identified that early memory impairment was associated with selective alteration of the dentate gyrus as pinpointed in vivo with diffusion-tensor-imaging (DTI). Neuromorphometric analyses and electrophysiological recordings confirmed dendritic degeneration, alteration in glutamatergic synaptic transmission and impaired long-term synaptic potentiation selectively in the dentate gyrus, but not in CA1, together with a more severe pattern of microglial activation in this subfield. Systemic injections of the microglial inhibitor minocycline prevented DTI, morphological, electrophysiological and behavioral impairments in EAE-mice. Furthermore, daily infusions of minocycline specifically within the dentate gyrus were sufficient to prevent memory impairment in EAE-mice while infusions of minocycline within CA1 were inefficient. We conclude that early memory impairment in EAE is due to a selective disruption of the dentate gyrus associated with microglia activation. These results open new pathophysiological, imaging, and therapeutic perspectives for memory impairment in multiple sclerosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Iron deposition is independent of cellular inflammation in a cerebral model of multiple sclerosis
2011-01-01
Background Perivenular inflammation is a common early pathological feature in multiple sclerosis (MS). A recent hypothesis stated that CNS inflammation is induced by perivenular iron deposits that occur in response to altered blood flow in MS subjects. In order to evaluate this hypothesis, an animal model was developed, called cerebral experimental autoimmune encephalomyelitis (cEAE), which presents with CNS perivascular iron deposits. This model was used to investigate the relationship of iron deposition to inflammation. Methods In order to generate cEAE, mice were given an encephalitogen injection followed by a stereotactic intracerebral injection of TNF-α and IFN-γ. Control animals received encephalitogen followed by an intracerebral injection of saline, or no encephalitogen plus an intracerebral injection of saline or cytokines. Laser Doppler was used to measure cerebral blood flow. MRI and iron histochemistry were used to localize iron deposits. Additional histological procedures were used to localize inflammatory cell infiltrates, microgliosis and astrogliosis. Results Doppler analysis revealed that cEAE mice had a reduction in cerebral blood flow compared to controls. MRI revealed T2 hypointense areas in cEAE animals that spatially correlated with iron deposition around vessels and at some sites of inflammation as detected by iron histochemistry. Vessels with associated iron deposits were distributed across both hemispheres. Mice with cEAE had more iron-labeled vessels compared to controls, but these vessels were not commonly associated with inflammatory cell infiltrates. Some iron-laden vessels had associated microgliosis that was above the background microglial response, and iron deposits were observed within reactive microglia. Vessels with associated astrogliosis were more commonly observed without colocalization of iron deposits. Conclusion The findings indicate that iron deposition around vessels can occur independently of inflammation providing evidence against the hypothesis that iron deposits account for inflammatory cell infiltrates observed in MS. PMID:21699685
Rui, Yuxiang; Honjo, Tasuku; Chikuma, Shunsuke
2013-01-01
Programmed cell death 1 (PD-1) is an inhibitory coreceptor on immune cells and is essential for self-tolerance because mice genetically lacking PD-1 (PD-1−/−) develop spontaneous autoimmune diseases. PD-1−/− mice are also susceptible to severe experimental autoimmune encephalomyelitis (EAE), characterized by a massive production of effector/memory T cells against myelin autoantigen, the mechanism of which is not fully understood. We found that an increased primary response of PD-1−/− mice to heat-killed mycobacteria (HKMTB), an adjuvant for EAE, contributed to the enhanced production of T-helper 17 (Th17) cells. Splenocytes from HKMTB-immunized, lymphocyte-deficient PD-1−/− recombination activating gene (RAG)2−/− mice were found to drive antigen-specific Th17 cell differentiation more efficiently than splenocytes from HKMTB-immunized PD-1+/+ RAG2−/− mice. This result suggested PD-1’s involvement in the regulation of innate immune responses. Mice reconstituted with PD-1−/− RAG2−/− bone marrow and PD-1+/+ CD4+ T cells developed more severe EAE compared with the ones reconstituted with PD-1+/+ RAG2−/− bone marrow and PD-1+/+ CD4+ T cells. We found that upon recognition of HKMTB, CD11b+ macrophages from PD-1−/− mice produced very high levels of IL-6, which helped promote naive CD4+ T-cell differentiation into IL-17–producing cells. We propose a model in which PD-1 negatively regulates antimycobacterial responses by suppressing innate immune cells, which in turn prevents autoreactive T-cell priming and differentiation to inflammatory effector T cells. PMID:24043779
Massilamany, Chandirasegaran; Gangaplara, Arunakumar; Jia, Ting; Elowsky, Christian; Li, Qingsheng; Zhou, You; Reddy, Jay
2014-01-01
This report demonstrates the use of major histocompatibility complex (MHC) class II dextramers for detection of autoreactive CD4 T cells in situ in myelin proteolipid protein (PLP) 139-151-induced experimental autoimmune encephalomyelitis (EAE) in SJL mice and cardiac myosin heavy chain-α (Myhc) 334-352-induced experimental autoimmune myocarditis (EAM) in A/J mice. Two sets of cocktails of dextramer reagents were used, where dextramers+ cells were analyzed by laser scanning confocal microscope (LSCM): EAE, IAs/PLP 139-151 dextramers (specific)/anti-CD4 and IAs/Theiler’s murine encephalomyelitis virus (TMEV) 70-86 dextramers (control)/anti-CD4; and EAM, IAk/Myhc 334-352 dextramers/anti-CD4 and IAk/bovine ribonuclease (RNase) 43-56 dextramers (control)/anti-CD4. LSCM analysis of brain sections obtained from EAE mice showed the presence of cells positive for CD4 and PLP 139-151 dextramers, but not TMEV 70-86 dextramers suggesting that the staining obtained with PLP 139-151 dextramers was specific. Likewise, heart sections prepared from EAM mice also revealed the presence of Myhc 334-352, but not RNase 43-56-dextramer+ cells as expected. Further, a comprehensive method has also been devised to quantitatively analyze the frequencies of antigen-specific CD4 T cells in the ‘Z’ serial images. PMID:25145797
Smith, Paul A; Schmid, Cindy; Zurbruegg, Stefan; Jivkov, Magali; Doelemeyer, Arno; Theil, Diethilde; Dubost, Valérie; Beckmann, Nicolau
2018-05-15
Longitudinal brain atrophy quantification is a critical efficacy measurement in multiple sclerosis (MS) clinical trials and the determination of No Evidence of Disease Activity (NEDA). Utilising fingolimod as a clinically validated therapy we evaluated the use of repeated brain tissue volume measures during chronic experimental autoimmune encephalomyelitis (EAE) as a new preclinical efficacy measure. Brain volume changes were quantified using magnetic resonance imaging (MRI) at 7 Tesla and correlated to treatment-induced brain derived neurotrophic factor (BDNF) measured in blood, cerebrospinal fluid, spinal cord and brain. Serial brain MRI measurements revealed slow progressive brain volume loss in vehicle treated EAE mice despite a stable clinical score. Fingolimod (1 mg/kg) significantly ameliorated brain tissue atrophy in the cerebellum and striatum when administered from established EAE disease onwards. Fingolimod-dependent tissue preservation was associated with induction of BDNF specifically within the brain and co-localized with neuronal soma. In contrast, therapeutic teriflunomide (3 mg/kg) treatment failed to inhibit CNS autoimmune mediated brain degeneration. Finally, weekly anti-IL-17A antibody (15 mg/kg) treatment was highly efficacious and preserved whole brain, cerebellum and striatum volume. Fingolimod-mediated BDNF increases within the CNS may contribute to limiting progressive tissue loss during chronic neuroinflammation. Copyright © 2018 Elsevier B.V. All rights reserved.
Polanczyk, Magdalena J.; Jones, Richard E.; Subramanian, Sandhya; Afentoulis, Michael; Rich, Cathleen; Zakroczymski, Melissa; Cooke, Paul; Vandenbark, Arthur A.; Offner, Halina
2004-01-01
Gender influences mediated by 17β-estradiol (E2) have been associated with susceptibility to and severity of autoimmune diseases such as diabetes, arthritis, and multiple sclerosis. In this regard, we have shown that estrogen receptor-α (Esr1) is crucial for the protective effect of 17β-estradiol (E2) in murine experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis. The expression of estrogen receptors among various immune cells (eg, T and B lymphocytes, antigen-presenting cells) suggests that the therapeutic effect of E2 is likely mediated directly through specific receptor binding. However, the target immune cell populations responsive to E2 treatment have not been identified. In the current study, we induced EAE in T-cell-deficient, severe combined immunodeficient mice or in immunocompetent mice with encephalitogenic T cells from wild-type Esr1+/+ or Esr1 knockout (Esr1−/−) donors and compared the protective E2 responses. The results showed that E2-responsive, Esr1+/+ disease-inducing encephalitogenic T cells were neither necessary nor sufficient for E2-mediated protection from EAE. Instead, the therapeutic response appeared to be mediated through direct effects on nonlymphocytic, E2-responsive cells and down-regulation of the inflammatory response in the central nervous system. These results provide the first demonstration that the protective effect of E2 on EAE is not mediated directly through E2-responsive T cells and raise the alternative possibility that nonlymphocytic cells such as macrophages, dendritic cells, or other nonlymphocytic cells are primarily responsive to E2 treatment in EAE. PMID:15579449
Li, Ju-Pi; Yang, Chia-Yu; Chuang, Huai-Chia; Lan, Joung-Liang; Chen, Der-Yuan; Chen, Yi-Ming; Wang, Xiaohong; Chen, Alice J; Belmont, John W; Tan, Tse-Hua
2014-04-09
JNK pathway-associated phosphatase (JKAP, also known as DUSP22 or JSP-1) is a JNK activator. The in vivo role of JKAP in immune regulation remains unclear. Here we report that JKAP directly inactivates Lck by dephosphorylating tyrosine-394 residue during T-cell receptor (TCR) signalling. JKAP-knockout T cells display enhanced cell proliferation and cytokine production. JKAP-knockout mice show enhanced T-cell-mediated immune responses and are more susceptible to experimental autoimmune encephalomyelitis (EAE). In addition, the recipient mice that are adoptively transferred with JKAP-knockout T cells show exacerbated EAE symptoms. Aged JKAP-knockout mice spontaneously develop inflammation and autoimmunity. Thus, our results indicate that JKAP is an important phosphatase that inactivates Lck in the TCR signalling turn-off stage, leading to suppression of T-cell-mediated immunity and autoimmunity.
Krementsov, Dimitry N; Case, Laure K; Hickey, William F; Teuscher, Cory
2015-08-01
Multiple sclerosis (MS) is a debilitating autoimmune neuroinflammatory disease influenced by genetics and the environment. MS incidence in female subjects has approximately tripled in the last century, suggesting a sex-specific environmental influence. Recent animal and human studies have implicated dietary sodium as a risk factor in MS, whereby high sodium augmented the generation of T helper (Th) 17 cells and exacerbated experimental autoimmune encephalomyelitis (EAE), the principal model of MS. However, whether dietary sodium interacts with sex or genetics remains unknown. Here, we show that high dietary sodium exacerbates EAE in a strain- and sex-specific fashion. In C57BL6/J mice, exposure to a high-salt diet exacerbated disease in both sexes, while in SJL/JCrHsd mice, it did so only in females. In further support of a genetic component, we found that sodium failed to modify EAE course in C57BL6/J mice carrying a 129/Sv-derived interval on chromosome 17. Furthermore, we found that the high-sodium diet did not augment Th17 or Th1 responses, but it did result in increased blood-brain barrier permeability and brain pathology. Our results demonstrate that the effects of dietary sodium on autoimmune neuroinflammation are sex specific, genetically controlled, and CNS mediated. © FASEB.
Rafieemehr, Hassan; Kheyrandish, Maryam; Soleimani, Masoud
2015-12-01
Multiple Sclerosis (MS) is an autoimmune inflammatory demyelinating disease of the central nervous system. The aim of this study was to investigate the neuroprotective effects of transplanted human umbilical cord blood mesenchymal stromal cells (UCB-MSC) derived neural progenitor cell (MDNPC) in EAE, an experimental model of MS. To initiate neuronal differentiation of UCB-MSCs, the pre-induction medium was removed and replaced with induction media containing retinoic acid, b FGF, h EGF, NGF, IBMX and ascorbic acid for one week. The expression of neural genes was examined in comparison to control group by real-time PCR assay. Then, experimental autoimmune encephalitis (EAE) was induced using myelin oligodendrocyte glycoprotein (MOG, 35-55 peptides) in 24 C57BL/6 mice. After induction, the mice were divided in four groups (n=6) as follows: healthy, PBS, UCB-MSCs and MDNPC, respectively. At the end of the study, disease status in all the groups was analyzed using hematoxylin-eosin (H&E) staining of brain sections. We found that UCB-MSCs exhibit neuronal differentiation potential in vitro and transplanted MDNPC lowered clinical score and reduced CNS leukocyte infiltration compared to untreated mice. Our results showed that MDNPC from UCB may be a proper candidate for regenerative therapy in MS and other neurodegenerative diseases.
Takemiya, Takako; Takeuchi, Chisen; Kawakami, Marumi
2017-12-19
Microsomal prostaglandin synthetase-1 (mPGES-1) is an inducible terminal enzyme that produces prostaglandin E₂ (PGE₂). In our previous study, we investigated the role of mPGES-1 in the inflammation and demyelination observed in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, using mPGES - 1 -deficient ( mPGES-1 -/- ) and wild-type (wt) mice. We found that mPGES-1 facilitated inflammation, demyelination, and paralysis and was induced in vascular endothelial cells and macrophages and microglia around inflammatory foci. Here, we investigated the role of interleukin-1β (IL-1β) in the intercellular mechanism stimulated by mPGES-1 in EAE spinal cords in the presence of inflammation. We found that the area invaded by CD4-positive (CD4⁺) T cells was extensive, and that PGE₂ receptors EP1-4 were more induced in activated CD4⁺ T cells of wt mice than in those of mPGES - 1 -/- mice. Moreover, IL-1β and IL-1 receptor 1 (IL-1r1) were produced by 65% and 48% of CD4⁺ T cells in wt mice and by 44% and 27% of CD4⁺ T cells in mPGES-1 -/- mice. Furthermore, interleukin-17 (IL-17) was released from the activated CD4⁺ T cells. Therefore, mPGES-1 stimulates an intercellular interaction between CD4⁺ T cells by upregulating the autocrine function of IL-1β in activated CD4⁺ T cells, which release IL-17 to facilitate axonal and myelin damage in EAE mice.
Peón, Alberto N; Ledesma-Soto, Yadira; Olguín, Jonadab E; Bautista-Donis, Marcel; Sciutto, Edda; Terrazas, Luis I
2017-01-01
A negative correlation between the geographical distribution of autoimmune diseases and helminth infections has been largely associated in the last few years with a possible role for such type of parasites in the regulation of inflammatory diseases, suggesting new pathways for drug development. However, few helminth-derived immunomodulators have been tested in experimental autoimmune encephalomyelitis (EAE), an animal model of the human disease multiple sclerosis (MS). The immunomodulatory activities of Taenia crassiceps excreted/secreted products (TcES) that may suppress EAE development were sought for. Interestingly, it was discovered that TcES was able to suppress EAE development with more potency than dexamethasone; moreover, TcES treatment was still effective even when inoculated at later stages after the onset of EAE. Importantly, the TcES treatment was able to induce a range of Th2-type cytokines, while suppressing Th1 and Th17 responses. Both the polyclonal and the antigen-specific proliferative responses of lymphocytes were also inhibited in EAE-ill mice receiving TcES in association with a potent recruitment of suppressor cell populations. Peritoneal inoculation of TcES was able to direct the normal inflammatory cell traffic to the site of injection, thus modulating CNS infiltration, which may work along with Th2 immune polarization and lymphocyte activation impairment to downregulate EAE development.
NF-κB Activation Protects Oligodendrocytes against Inflammation
Stone, Sarrabeth; Jamison, Stephanie; Yue, Yuan; Durose, Wilaiwan
2017-01-01
NF-κB is a key player in inflammatory diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the effects of NF-κB activation on oligodendrocytes in MS and EAE remain unknown. We generated a mouse model that expresses IκBαΔN, a super-suppressor of NF-κB, specifically in oligodendrocytes and demonstrated that IκBαΔN expression had no effect on oligodendrocytes under normal conditions (both sexes). Interestingly, we showed that oligodendrocyte-specific expression of IκBαΔN blocked NF-κB activation in oligodendrocytes and resulted in exacerbated oligodendrocyte death and hypomyelination in young, developing mice that express IFN-γ ectopically in the CNS (both sexes). We also showed that NF-κB inactivation in oligodendrocytes aggravated IFN-γ-induced remyelinating oligodendrocyte death and remyelination failure in the cuprizone model (male mice). Moreover, we found that NF-κB inactivation in oligodendrocytes increased the susceptibility of mice to EAE (female mice). These findings imply the cytoprotective effects of NF-κB activation on oligodendrocytes in MS and EAE. SIGNIFICANCE STATEMENT Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. NF-κB is a major player in inflammatory diseases that acts by regulating inflammation and cell viability. Data indicate that NF-κB activation in inflammatory cells facilitates the development of MS. However, to date, attempts to understand the role of NF-κB activation in oligodendrocytes in MS have been unsuccessful. Herein, we generated a mouse model that allows for inactivation of NF-κB specifically in oligodendrocytes and then used this model to determine the precise role of NF-κB activation in oligodendrocytes in models of MS. The results presented in this study represent the first demonstration that NF-κB activation acts cell autonomously to protect oligodendrocytes against inflammation in animal models of MS. PMID:28842413
Marte, Antonella; Cavallero, Anna; Morando, Sara; Uccelli, Antonio; Raiteri, Maurizio; Fedele, Ernesto
2010-10-01
We have investigated the spontaneous and the depolarisation-induced release of [(3)H]D-aspartate ([(3)H]D-ASP), a non-metabolisable analogue of glutamate, in spinal cord slices, synaptosomes and gliosomes from mice with experimental autoimmune encephalomyelitis (EAE) at 13, 21 and 55 days post-immunisation (d.p.i.), representing onset, peak and chronic phases of the pathology. At 13 and 21 d.p.i., the KCl-evoked, calcium-dependent overflow of [(3)H]D-ASP in spinal cord slices was significantly lower (30-40%), whereas at 55 d.p.i. it was significantly higher (30%), than that elicited in matched controls. When the release was measured from spinal cord synaptosomes and gliosomes in superfusion, a different picture emerged. The spontaneous and the KCl(15 mM)-induced release of [(3)H]D-ASP were significantly increased both in synaptosomes (17% and 45%, respectively) and gliosomes (26% and 25%, respectively) at 21, but not at 13, d.p.i. At 55 d.p.i., the KCl-induced [(3)H]D-ASP release was significantly increased (40%) only in synaptosomes. Finally, uptake of [(3)H]D-ASP was markedly (50-60%) increased in spinal cord synaptosomes, but not in gliosomes, obtained from EAE mice at 21 d.p.i., whereas no differences could be detected at 13 d.p.i. Our data indicate that glutamatergic neurotransmission is altered in the spinal cord of EAE mice. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.
Khan, Reas S.; Geisler, John G.
2017-01-01
The ability of novel mitochondrial uncoupler prodrug of 2,4-dinitrophenol (DNP), MP201, to prevent neuronal damage and preserve visual function in an experimental autoimmune encephalomyelitis (EAE) model of optic neuritis was evaluated. Optic nerve inflammation, demyelination, and axonal loss are prominent features of optic neuritis, an inflammatory optic neuropathy often associated with the central nervous system demyelinating disease multiple sclerosis. Currently, optic neuritis is frequently treated with high-dose corticosteroids, but treatment fails to prevent permanent neuronal damage and associated vision changes that occur as optic neuritis resolves, thus suggesting that additional therapies are required. MP201 administered orally, once per day, attenuated visual dysfunction, preserved retinal ganglion cells (RGCs), and reduced RGC axonal loss and demyelination in the optic nerves of EAE mice, with limited effects on inflammation. The prominent mild mitochondrial uncoupling properties of MP201, with slow elimination of DNP, may contribute to the neuroprotective effect by modulating the entire mitochondria's physiology directly. Results suggest that MP201 is a potential novel treatment for optic neuritis. PMID:28680531
Screening Immunomodulators To Skew the Antigen-Specific Autoimmune Response.
Northrup, Laura; Sullivan, Bradley P; Hartwell, Brittany L; Garza, Aaron; Berkland, Cory
2017-01-03
Current therapies to treat autoimmune diseases often result in side effects such as nonspecific immunosuppression. Therapies that can induce antigen-specific immune tolerance provide an opportunity to reverse autoimmunity and mitigate the risks associated with global immunosuppression. In an effort to induce antigen-specific immune tolerance, co-administration of immunomodulators with autoantigens has been investigated in an effort to reprogram autoimmunity. To date, identifying immunomodulators that may skew the antigen-specific immune response has been ad hoc at best. To address this need, we utilized splenocytes obtained from mice with experimental autoimmune encephalomyelitis (EAE) in order to determine if certain immunomodulators may induce markers of immune tolerance following antigen rechallenge. Of the immunomodulatory compounds investigated, only dexamethasone modified the antigen-specific immune response by skewing the cytokine response and decreasing T-cell populations at a concentration corresponding to a relevant in vivo dose. Thus, antigen-educated EAE splenocytes provide an ex vivo screen for investigating compounds capable of skewing the antigen-specific immune response, and this approach could be extrapolated to antigen-educated cells from other diseases or human tissues.
Cannabinoids inhibit neurodegeneration in models of multiple sclerosis.
Pryce, Gareth; Ahmed, Zubair; Hankey, Deborah J R; Jackson, Samuel J; Croxford, J Ludovic; Pocock, Jennifer M; Ledent, Catherine; Petzold, Axel; Thompson, Alan J; Giovannoni, Gavin; Cuzner, M Louise; Baker, David
2003-10-01
Multiple sclerosis is increasingly being recognized as a neurodegenerative disease that is triggered by inflammatory attack of the CNS. As yet there is no satisfactory treatment. Using experimental allergic encephalo myelitis (EAE), an animal model of multiple sclerosis, we demonstrate that the cannabinoid system is neuroprotective during EAE. Mice deficient in the cannabinoid receptor CB1 tolerate inflammatory and excitotoxic insults poorly and develop substantial neurodegeneration following immune attack in EAE. In addition, exogenous CB1 agonists can provide significant neuroprotection from the consequences of inflammatory CNS disease in an experimental allergic uveitis model. Therefore, in addition to symptom management, cannabis may also slow the neurodegenerative processes that ultimately lead to chronic disability in multiple sclerosis and probably other diseases.
Wu, Limin; Li, Nainong; Zhang, Mingfeng; Xue, Sheng-Li; Cassady, Kaniel; Lin, Qing; Riggs, Arthur D.; Zeng, Defu
2015-01-01
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system with demyelination, axon damage, and paralysis. Induction of mixed chimerism with allogeneic donors has been shown to not cause graft-versus-host disease (GVHD) in animal models and humans. We have reported that induction of MHC-mismatched mixed chimerism can cure autoimmunity in autoimmune NOD mice, but this approach has not yet been tested in animal models of MS, such as experimental autoimmune encephalomyelitis (EAE). Here, we report that MHC-mismatched mixed chimerism with C57BL/6 (H-2b) donor in SJL/J (H-2s) EAE recipients eliminates clinical symptoms and prevents relapse. This cure is demonstrated by not only disappearance of clinical signs but also reversal of autoimmunity; elimination of infiltrating T, B, and macrophage cells in the spinal cord; and regeneration of myelin sheath. The reversal of autoimmunity is associated with a marked reduction of autoreactivity of CD4+ T cells and significant increase in the percentage of Foxp3+ Treg among host-type CD4+ T cells in the spleen and lymph nodes. The latter is associated with a marked reduction of the percentage of host-type CD4+CD8+ thymocytes and an increase of Treg percentage among the CD4+CD8+ and CD4+CD8− thymocytes. Thymectomy leads to loss of prevention of EAE relapse by induction of mixed chimerism, although there is a dramatic expansion of host-type Treg cells in the lymph nodes. These results indicate that induction of MHC-mismatched mixed chimerism can restore thymic negative selection of autoreactive CD4+ T cells, augment production of Foxp3+ Treg, and cure EAE. PMID:26647186
Timmermans, Silke; Bogie, Jeroen F J; Vanmierlo, Tim; Lütjohann, Dieter; Stinissen, Piet; Hellings, Niels; Hendriks, Jerome J A
2014-03-01
Epidemiological studies suggest a positive correlation between the incidence and severity of multiple sclerosis (MS) and the intake of fatty acids. It remains to be clarified whether high fat diet (HFD) indeed can exacerbate the disease pathology associated with MS and what the underlying mechanisms are. In this study, we determined the influence of HFD on the severity and pathology of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Mice were fed either normal diet (ND) or HFD and subsequently induced with EAE. Immunohistochemical staining and real-time PCR were used to determine immune cell infiltration and inflammatory mediators in the central nervous system (CNS). Our data show that HFD increases immune cell infiltration and inflammatory mediator production in the CNS and thereby aggravates EAE. Moreover, our data demonstrate that activation of the renin angiotensin system (RAS) is associated with the HFD-mediated effects on EAE severity. These results show that HFD exacerbates an autoreactive immune response within the CNS. This indicates that diets containing excess fat have a significant influence on neuroinflammation in EAE, which may have important implications for the treatment and prevention of neuroinflammatory disorders.
Ochoa-Repáraz, Javier; Mielcarz, Daniel W; Ditrio, Lauren E; Burroughs, Ashley R; Begum-Haque, Sakhina; Dasgupta, Suryasarathi; Kasper, Dennis L; Kasper, Lloyd H
2010-10-01
The importance of gut commensal bacteria in maintaining immune homeostasis is increasingly understood. We recently described that alteration of the gut microflora can affect a population of Foxp3(+)T(reg) cells that regulate demyelination in experimental autoimmune encephalomyelitis (EAE), the experimental model of human multiple sclerosis. We now extend our previous observations on the role of commensal bacteria in CNS demyelination, and we demonstrate that Bacteroides fragilis producing a bacterial capsular polysaccharide Ag can protect against EAE. Recolonization with wild type B. fragilis maintained resistance to EAE, whereas reconstitution with polysaccharide A-deficient B. fragilis restored EAE susceptibility. Enhanced numbers of Foxp3(+)T(reg) cells in the cervical lymph nodes were observed after intestinal recolonization with either strain of B. fragilis. Ex vivo, CD4(+)T cells obtained from mice reconstituted with wild type B. fragilis had significantly enhanced rates of conversion into IL-10-producing Foxp3(+)T(reg) cells and offered greater protection against disease. Our results suggest an important role for commensal bacterial Ags, in particular B. fragilis expressing polysaccharide A, in protecting against CNS demyelination in EAE and perhaps human multiple sclerosis.
Guillot, Flora; Garcia, Alexandra; Salou, Marion; Brouard, Sophie; Laplaud, David A; Nicot, Arnaud B
2015-07-04
Astrocytes, the most abundant cell population in mammal central nervous system (CNS), contribute to a variety of functions including homeostasis, metabolism, synapse formation, and myelin maintenance. White matter (WM) reactive astrocytes are important players in amplifying autoimmune demyelination and may exhibit different changes in transcriptome profiles and cell function in a disease-context dependent manner. However, their transcriptomic profile has not yet been defined because they are difficult to purify, compared to gray matter astrocytes. Here, we isolated WM astrocytes by laser capture microdissection (LCM) in a murine model of multiple sclerosis to better define their molecular profile focusing on selected genes related to inflammation. Based on previous data indicating anti-inflammatory effects of estrogen only at high nanomolar doses, we also examined mRNA expression for enzymes involved in steroid inactivation. Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL6 mice with MOG35-55 immunization. Fluorescence activated cell sorting (FACS) analysis of a portion of individual spinal cords at peak disease was used to assess the composition of immune cell infiltrates. Using custom Taqman low-density-array (TLDA), we analyzed mRNA expression of 40 selected genes from immuno-labeled laser-microdissected WM astrocytes from lumbar spinal cord sections of EAE and control mice. Immunohistochemistry and double immunofluorescence on control and EAE mouse spinal cord sections were used to confirm protein expression in astrocytes. The spinal cords of EAE mice were infiltrated mostly by effector/memory T CD4+ cells and macrophages. TLDA-based profiling of LCM-astrocytes identified EAE-induced gene expression of cytokines and chemokines as well as inflammatory mediators recently described in gray matter reactive astrocytes in other murine CNS disease models. Strikingly, SULT1A1, but not other members of the sulfotransferase family, was expressed in WM spinal cord astrocytes. Moreover, its expression was further increased in EAE. Immunohistochemistry on spinal cord tissues confirmed preferential expression of this enzyme in WM astrocytic processes but not in gray matter astrocytes. We described here for the first time the mRNA expression of several genes in WM astrocytes in a mouse model of multiple sclerosis. Besides expected pro-inflammatory chemokines and specific inflammatory mediators increased during EAE, we evidenced relative high astrocytic expression of the cytoplasmic enzyme SULT1A1. As the sulfonation activity of SULT1A1 inactivates estradiol among other phenolic substrates, its high astrocytic expression may account for the relative resistance of this cell population to the anti-neuroinflammatory effects of estradiol. Blocking the activity of this enzyme during neuroinflammation may thus help the injured CNS to maintain the anti-inflammatory activity of endogenous estrogens or limit the dose of estrogen co-regimens for therapeutical purposes.
Beurel, Eléonore; Kaidanovich-Beilin, Oksana; Yeh, Wen-I; Song, Ling; Palomo, Valle; Michalek, Suzanne M.; Woodgett, James R.; Harrington, Laurie E.; Eldar-Finkelman, Hagit; Martinez, Ana; Jope, Richard S.
2013-01-01
Experimental autoimmune encephalomyelitis (EAE) is a rodent model of multiple sclerosis (MS), a debilitating autoimmune disease of the central nervous system, for which only limited therapeutic interventions are available. Since MS is mediated in part by autoreactive T cells, particularly Th17 and Th1 cells, in the present study, we tested if inhibitors of glycogen synthase kinase-3 (GSK3), previously reported to reduce Th17 cell generation, also alter Th1 cell production or ameliorate EAE. GSK3 inhibitors were found to impede the production of Th1 cells by reducing STAT1 activation. Molecularly reducing the expression of either of the two GSK3 isoforms demonstrated that Th17 cell production was sensitive to reduced levels of GSK3β, and Th1 cell production was inhibited in GSK3α-deficient cells. Administration of the selective GSK3 inhibitors TDZD-8, VP2.51, VP0.7, or L803-mts, significantly reduced the clinical symptoms of MOG35-55-induced EAE in mice, nearly eliminating the chronic progressive phase, and reduced the number of Th17 and Th1 cells in the spinal cord. Administration of TDZD-8 or L803-mts after the initial disease episode ameliorated clinical symptoms in a relapsing/remitting model of PLP139-151-induced EAE. Furthermore, deletion of GSK3β specifically in T cells was sufficient to ameliorate MOG35-55-induced EAE. These results demonstrate isoform-selective effects of GSK3 on T cell generation, therapeutic effects of GSK3 inhibitors in EAE, and that GSK3 inhibition in T cells is sufficient to reduce the severity of EAE, suggesting that GSK3 may be a feasible target for developing new therapeutic interventions for MS. PMID:23606540
Ray, Avijit; Basu, Sreemanti; Williams, Calvin B; Salzman, Nita H; Dittel, Bonnie N
2012-04-01
B cells are important for the regulation of autoimmune responses. In experimental autoimmune encephalomyelitis (EAE), B cells are required for spontaneous recovery in acute models. Production of IL-10 by regulatory B cells has been shown to modulate the severity EAE and other autoimmune diseases. Previously, we suggested that B cells regulated the number of CD4(+)Foxp3(+) T regulatory cells (Treg) in the CNS during EAE. Because Treg suppress autoimmune responses, we asked whether B cells control autoimmunity by maintenance of Treg numbers. B cell deficiency achieved either genetically (μMT) or by depletion with anti-CD20 resulted in a significant reduction in the number of peripheral but not thymic Treg. Adoptive transfer of WT B cells into μMT mice restored both Treg numbers and recovery from EAE. When we investigated the mechanism whereby B cells induce the proliferation of Treg and EAE recovery, we found that glucocorticoid-induced TNF ligand, but not IL-10, expression by B cells was required. Of clinical significance is the finding that anti-CD20 depletion of B cells accelerated spontaneous EAE and colitis. Our results demonstrate that B cells play a major role in immune tolerance required for the prevention of autoimmunity by maintenance of Treg via their expression of glucocorticoid-induced TNFR ligand.
Imitola, Jaime; Côté, Daniel; Rasmussen, Stine; Xie, X. Sunney; Liu, Yingru; Chitnis, Tanuja; Sidman, Richard L.; Lin, Charles. P.; Khoury, Samia J.
2011-01-01
Myelin loss and axonal degeneration predominate in many neurological disorders; however, methods to visualize them simultaneously in live tissue are unavailable. We describe a new imaging strategy combining video rate reflectance and fluorescence confocal imaging with coherent anti-Stokes Raman scattering (CARS) microscopy tuned to CH2 vibration of myelin lipids, applied in live tissue of animals with chronic experimental autoimmune encephalomyelitis (EAE). Our method allows monitoring over time of demyelination and neurodegeneration in brain slices with high spatial resolution and signal-to-noise ratio. Local areas of severe loss of lipid signal indicative of demyelination and loss of the reflectance signal from axons were seen in the corpus callosum and spinal cord of EAE animals. Even in myelinated areas of EAE mice, the intensity of myelin lipid signals is significantly reduced. Using heterozygous knock-in mice in which green fluorescent protein replaces the CX3CR1 coding sequence that labels central nervous system microglia, we find areas of activated microglia colocalized with areas of altered reflectance and CARS signals reflecting axonal injury and demyelination. Our data demonstrate the use of multimodal CARS microscopy for characterization of demyelinating and neurodegenerative pathology in a mouse model of multiple sclerosis, and further confirm the critical role of microglia in chronic inflammatory neurodegeneration. PMID:21361672
Short-term sPECAM-Fc treatment ameliorates EAE while chronic use hastens onset of symptoms
Reinke, Emily K.; Lee, JangEun; Zozulya, Alla; Karman, Jozsef; Muller, William A.; Sandor, Matyas; Fabry, Zsuzsanna
2007-01-01
The homotypic cell adhesion molecule PECAM-1 is a major participant in the migration of leukocytes across endothelium. We examined the ability of a chimeric soluble sPECAM-1 fused to human IgG-Fc to impair leukocyte entry through the blood-brain barrier and reduce CNS autoimmunity. sPECAM-Fc impaired migration of lymphocytes across brain endothelial monolayers and diminished the severity of EAE, an experimental model of MS, when administered at the onset of symptoms. However, in mice transgenic for sPECAM-Fc, the chronically elevated levels of sPECAM-Fc hastened onset of EAE disease without significantly changing clinical score severity. Our data suggests that short-term treatment of diseases like MS with sPECAM-Fc has therapeutic potential. PMID:17467062
Luo, Shasha; Zou, Qiang
2016-01-01
It is well known that dendritic cells (DCs) play a pivotal role in triggering self-specific responses. Conversely, tolerogenic DCs (tolDCs), a specialized subset, induce tolerance and negatively regulate autoreactive responses. Tofacitinib, a Janus kinase inhibitor developed by Pfizer for treatment of rheumatoid arthritis, is probable to be a promising candidate for inducing tolDCs. The aims of this study were to evaluate the effectiveness of tolDCs induced by tofacitinib in a myelin oligodendrocyte glycoprotein- (MOG-) specific experimental autoimmune encephalomyelitis (EAE) model and to investigate their effects on Th17/Treg balance in the animal model of multiple sclerosis (MS). Our results revealed that tofacitinib-treated DCs maintained a steady semimature phenotype with a low level of proinflammatory cytokines and costimulatory molecules. DCs treated by tofacitinib also induced antigen-specific T cells hyporesponsiveness in a concentration-dependent manner. Upon intravenous injection into EAE mice, MOG pulsed tolDCs significantly dampened disease activity, and adoptive cell therapy (ACT) disturbed Th17/Treg balance with a remarkable decrease of Th1/Th17 cells and an increase in regulatory T cells (Tregs). Overall, DCs modified by tofacitinib exhibited a typical tolerogenic phenotype, and the antigen-specific tolDCs may represent a new avenue of research for the development of future clinical treatments for MS. PMID:28070525
Hatfield, Julianne K; Brown, Melissa A
2015-10-01
Innate lymphoid cells are immune cells that reside in tissues that interface with the external environment and contribute to the first line defense against pathogens. However, they also have roles in promoting chronic inflammation. Here we demonstrate that group 3 ILCs, (ILC3s - CD45+Lin-IL-7Rα+RORγt+), are normal residents of the meninges and exhibit disease-induced accumulation and activation in EAE. In addition to production of the pro-inflammatory cytokines IL-17 and GM-CSF, ILC3s constitutively express CD30L and OX40L, molecules required for memory T cell survival. We show that disease-induced trafficking of transferred wild type T cells to the meninges is impaired in ILC3-deficient Rorc-/- mice. Furthermore, lymphoid tissue inducer cells, a c-kit+ ILC3 subset that promotes ectopic lymphoid follicle development, a hallmark of many autoimmune diseases, are reduced in the meninges of EAE-resistant c-kit mutant Kit(W/Wv) mice. We propose that ILC3s sustain neuroinflammation by supporting T cell survival and reactivation in the meninges. Copyright © 2015 Elsevier Inc. All rights reserved.
Increase in chemokine CXCL1 by ERβ ligand treatment is a key mediator in promoting axon myelination.
Karim, Hawra; Kim, Sung Hoon; Lapato, Andrew S; Yasui, Norio; Katzenellenbogen, John A; Tiwari-Woodruff, Seema K
2018-06-12
Estrogen receptor β (ERβ) ligands promote remyelination in mouse models of multiple sclerosis. Recent work using experimental autoimmune encephalomyelitis (EAE) has shown that ERβ ligands induce axon remyelination, but impact peripheral inflammation to varying degrees. To identify if ERβ ligands initiate a common immune mechanism in remyelination, central and peripheral immunity and pathology in mice given ERβ ligands at peak EAE were assessed. All ERβ ligands induced differential expression of cytokines and chemokines, but increased levels of CXCL1 in the periphery and in astrocytes. Oligodendrocyte CXCR2 binds CXCL1 and has been implicated in normal myelination. In addition, despite extensive immune cell accumulation in the CNS, all ERβ ligands promoted extensive remyelination in mice at peak EAE. This finding highlights a component of the mechanism by which ERβ ligands mediate remyelination. Hence, interplay between the immune system and central nervous system may be responsible for the remyelinating effects of ERβ ligands. Our findings of potential neuroprotective benefits arising from the presence of CXCL1 could have implications for improved therapies for multiple sclerosis. Copyright © 2018 the Author(s). Published by PNAS.
Ljubisavljevic, Srdjan; Stojanovic, Ivana; Pavlovic, Dusica; Milojkovic, Maja; Vojinovic, Slobodan; Sokolovic, Dusan; Stevanovic, Ivana
2012-01-01
Experimental autoimmune encephalomyelitis (EAE) is a well-established cell-mediated autoimmune inflammatory disease of the CNS, which has been used as a model of the human demyelinating disease. EAE is characterized by infiltration of the CNS by lymphocytes and mononuclear cells, microglial and astrocytic hypertrophy, and demyelination which cumulatively contribute to clinical expression of the disease. EAE was induced in female Sprague-Dawley rats, 3 months old (300 g ± 20 g), by immunization with myelin basic protein (MBP) in combination with Complete Freund's adjuvant (CFA). The animals were divided into 7 groups: control, EAE, CFA, EAE + aminoguanidine (AG), AG, EAE + N-acetyl-L-cysteine (NAC) and NAC. The animals were sacrificed 15 days after EAE induction, and the level of nitric oxide (NO(·)) production was determined by measuring nitrite and nitrate concentrations in 10% homogenate of cerebellum and spinal cord. Obtained results showed that the level of NO(·) was significantly increased in all examined tissues of the EAE rats compared to the control and CFA groups. Also, AG and NAC treatment decreased the level of NO(·) in all tissues compared to the EAE group. The level of NO(·) is increased significantly in the spinal cord compared to the cerebellum. The clinical course of the EAE was significantly decreased in the EAE groups treated with AG and NAC during the development of the disease compared to EAE group and its correlates with the NO(·) level in cerebellum and spinal cord. The findings of our work suggest that NO(·) and its derivatives play an important role in multiple sclerosis (MS). It may be the best target for new therapies in human demyelinating disease and recommend the new therapeutic approaches based on a decreased level of NO(·) during the course of MS.
Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota.
Cignarella, Francesca; Cantoni, Claudia; Ghezzi, Laura; Salter, Amber; Dorsett, Yair; Chen, Lei; Phillips, Daniel; Weinstock, George M; Fontana, Luigi; Cross, Anne H; Zhou, Yanjiao; Piccio, Laura
2018-06-05
Multiple sclerosis (MS) is more common in western countries with diet being a potential contributing factor. Here we show that intermittent fasting (IF) ameliorated clinical course and pathology of the MS model, experimental autoimmune encephalomyelitis (EAE). IF led to increased gut bacteria richness, enrichment of the Lactobacillaceae, Bacteroidaceae, and Prevotellaceae families and enhanced antioxidative microbial metabolic pathways. IF altered T cells in the gut with a reduction of IL-17 producing T cells and an increase in regulatory T cells. Fecal microbiome transplantation from mice on IF ameliorated EAE in immunized recipient mice on a normal diet, suggesting that IF effects are at least partially mediated by the gut flora. In a pilot clinical trial in MS patients, intermittent energy restriction altered blood adipokines and the gut flora resembling protective changes observed in mice. In conclusion, IF has potent immunomodulatory effects that are at least partially mediated by the gut microbiome. Copyright © 2018 Elsevier Inc. All rights reserved.
Multiple elements of the allergic arm of the immune response modulate autoimmune demyelination
Pedotti, Rosetta; DeVoss, Jason J.; Youssef, Sawsan; Mitchell, Dennis; Wedemeyer, Jochen; Madanat, Rami; Garren, Hideki; Fontoura, Paulo; Tsai, Mindy; Galli, Stephen J.; Sobel, Raymond A.; Steinman, Lawrence
2003-01-01
Analysis of mRNA from multiple sclerosis lesions revealed increased amounts of transcripts for several genes encoding molecules traditionally associated with allergic responses, including prostaglandin D synthase, histamine receptor type 1 (H1R), platelet activating factor receptor, Ig Fc ɛ receptor 1 (FcɛRI), and tryptase. We now demonstrate that, in the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), mediated by T helper 1 (Th1) T cells, histamine receptor 1 and 2 (H1R and H2R) are present on inflammatory cells in brain lesions. Th1 cells reactive to myelin proteolipid protein expressed more H1R and less H2R than Th2 cells. Pyrilamine, an H1R antagonist, blocked EAE, and the platelet activating factor receptor antagonist CV6209 reduced the severity of EAE. EAE severity was also decreased in mice with disruption of the genes encoding Ig FcγRIII or both FcγRIII and FcɛRI. Prostaglandin D synthase and tryptase transcripts were elevated in EAE brain. Taken together, these data reveal extensive involvement of elements of the immune response associated with allergy in autoimmune demyelination. The pathogenesis of demyelination must now be viewed as encompassing elements of both Th1 responses and “allergic” responses. PMID:12576552
Commensal Gut-Derived Anaerobes as Novel Therapy for Inflammatory Autoimmune Diseases
2011-05-01
plays an important role in the health of the host and posses probiotics like qualities. We hypothesize that Gram-negative commensal bacteria from...Treatment of mice with P histicola as probiotics is ongoing. Our study showed that treatment of mice with 3-4 doses of P. histicola in collagen/PLP91...transgenic mice. Treatment of mice with P histicola as probiotics is ongoing in EAE model. Similarly, we studied therapeutic efficacy of P
Krementsov, Dimitry N.; Case, Laure K.; Hickey, William F.; Teuscher, Cory
2015-01-01
Multiple sclerosis (MS) is a debilitating autoimmune neuroinflammatory disease influenced by genetics and the environment. MS incidence in female subjects has approximately tripled in the last century, suggesting a sex-specific environmental influence. Recent animal and human studies have implicated dietary sodium as a risk factor in MS, whereby high sodium augmented the generation of T helper (Th) 17 cells and exacerbated experimental autoimmune encephalomyelitis (EAE), the principal model of MS. However, whether dietary sodium interacts with sex or genetics remains unknown. Here, we show that high dietary sodium exacerbates EAE in a strain- and sex-specific fashion. In C57BL6/J mice, exposure to a high-salt diet exacerbated disease in both sexes, while in SJL/JCrHsd mice, it did so only in females. In further support of a genetic component, we found that sodium failed to modify EAE course in C57BL6/J mice carrying a 129/Sv-derived interval on chromosome 17. Furthermore, we found that the high-sodium diet did not augment Th17 or Th1 responses, but it did result in increased blood–brain barrier permeability and brain pathology. Our results demonstrate that the effects of dietary sodium on autoimmune neuroinflammation are sex specific, genetically controlled, and CNS mediated.—Krementsov, D. N., Case, L. K., Hickey, W. F., Teuscher, C. Exacerbation of autoimmune neuroinflammation by dietary sodium is genetically controlled and sex specific. PMID:25917331
Mangalam, AK; Poisson, LM; Nemutlu, E; Datta, I; Denic, A; Dzeja, P; Rodriguez, M; Rattan, R; Giri, S
2013-01-01
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the CNS. Although, MS is well characterized in terms of the role played by immune cells, cytokines and CNS pathology, nothing is known about the metabolic alterations that occur during the disease process in circulation. Recently, metabolic aberrations have been defined in various disease processes either as contributing to the disease, as potential biomarkers, or as therapeutic targets. Thus in an attempt to define the metabolic alterations that may be associated with MS disease progression, we profiled the plasma metabolites at the chronic phase of disease utilizing relapsing remitting-experimental autoimmune encephalomyelitis (RR-EAE) model in SJL mice. At the chronic phase of the disease (day 45), untargeted global metabolomic profiling of plasma collected from EAE diseased SJL and healthy mice was performed, using a combination of high-throughput liquid-and-gas chromatography with mass spectrometry. A total of 282 metabolites were identified, with significant changes observed in 44 metabolites (32 up-regulated and 12 down-regulated), that mapped to lipid, amino acid, nucleotide and xenobiotic metabolism and distinguished EAE from healthy group (p<0.05, false discovery rate (FDR)<0.23). Mapping the differential metabolite signature to their respective biochemical pathways using the Kyoto Encyclopedia of Genes and Genomics (KEGG) database, we found six major pathways that were significantly altered (containing concerted alterations) or impacted (containing alteration in key junctions). These included bile acid biosynthesis, taurine metabolism, tryptophan and histidine metabolism, linoleic acid and D-arginine metabolism pathways. Overall, this study identified a 44 metabolite signature drawn from various metabolic pathways which correlated well with severity of the EAE disease, suggesting that these metabolic changes could be exploited as (1) biomarkers for EAE/MS progression and (2) to design new treatment paradigms where metabolic interventions could be combined with present and experimental therapeutics to achieve better treatment of MS. PMID:24273690
Cellular mechanisms of IL-17-induced blood-brain barrier disruption.
Huppert, Jula; Closhen, Dorothea; Croxford, Andrew; White, Robin; Kulig, Paulina; Pietrowski, Eweline; Bechmann, Ingo; Becher, Burkhard; Luhmann, Heiko J; Waisman, Ari; Kuhlmann, Christoph R W
2010-04-01
Recently T-helper 17 (Th17) cells were demonstrated to disrupt the blood-brain barrier (BBB) by the action of IL-17A. The aim of the present study was to examine the mechanisms that underlie IL-17A-induced BBB breakdown. Barrier integrity was analyzed in the murine brain endothelial cell line bEnd.3 by measuring the electrical resistance values using electrical call impedance sensing technology. Furthermore, in-cell Western blots, fluorescence imaging, and monocyte adhesion and transendothelial migration assays were performed. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. IL-17A induced NADPH oxidase- or xanthine oxidase-dependent reactive oxygen species (ROS) production. The resulting oxidative stress activated the endothelial contractile machinery, which was accompanied by a down-regulation of the tight junction molecule occludin. Blocking either ROS formation or myosin light chain phosphorylation or applying IL-17A-neutralizing antibodies prevented IL-17A-induced BBB disruption. Treatment of mice with EAE using ML-7, an inhibitor of the myosin light chain kinase, resulted in less BBB disruption at the spinal cord and less infiltration of lymphocytes via the BBB and subsequently reduced the clinical characteristics of EAE. These observations indicate that IL-17A accounts for a crucial step in the development of EAE by impairing the integrity of the BBB, involving augmented production of ROS.-Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., Bechmann, I., Becher, B., Luhmann, H. J., Waisman, A., Kuhlmann, C. R. W. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.
2012-01-01
Background Alkaline phosphatase (AP) is a ubiquitously expressed enzyme which can neutralize endotoxin as well as adenosine triphosphate (ATP), an endogenous danger signal released during brain injury. In this study we assessed a potential therapeutic role for AP in inhibiting neuroinflammation using three complementary approaches. Methods Mice were immunized to induce experimental autoimmune encephalomyelitis (EAE) and treated with AP for seven days during different phases of disease. In addition, serological assays to determine AP activity, endotoxin levels and endotoxin-reactive antibodies were performed in a cohort of multiple sclerosis (MS) patients and controls. Finally, the expression of AP and related enzymes CD39 and CD73 was investigated in brain tissue from MS patients and control subjects. Results AP administration during the priming phase, but not during later stages, of EAE significantly reduced neurological signs. This was accompanied by reduced proliferation of splenocytes to the immunogen, myelin oligodendrocyte glycoprotein peptide. In MS patients, AP activity and isoenzyme distribution were similar to controls. Although endotoxin-reactive IgM was reduced in primary-progressive MS patients, plasma endotoxin levels were not different between groups. Finally, unlike AP and CD73, CD39 was highly upregulated on microglia in white matter lesions of patients with MS. Conclusions Our findings demonstrate that: 1) pre-symptomatic AP treatment reduces neurological signs of EAE; 2) MS patients do not have altered circulating levels of AP or endotoxin; and 3) the expression of the AP-like enzyme CD39 is increased on microglia in white matter lesions of MS patients. PMID:23231745
Curtis, Alan D.; Taslim, Najla; Reece, Shaun P.; Grebenciucova, Elena; Ray, Richard H.; Rosenbaum, Matthew D.; Wardle, Robert L.; Van Scott, Michael R.; Mannie, Mark D.
2014-01-01
Atypical models of experimental autoimmune encephalomyelitis (EAE) are advantageous in that the heterogeneity of clinical signs appears more reflective of those in multiple sclerosis (MS). Conversely, models of classical EAE feature stereotypic progression of an ascending flaccid paralysis that is not a characteristic of MS. The study of atypical EAE however has been limited due to the relative lack of suitable models that feature reliable disease incidence and severity, excepting mice deficient in gamma-interferon signaling pathways. In this study, atypical EAE was induced in Lewis rats, and a related approach was effective for induction of an unusual neurologic syndrome in a cynomolgus macaque. Lewis rats were immunized with the rat immunoglobulin variable (IgV)-related extracellular domain of myelin oligodendrocyte glycoprotein (IgV-MOG) in complete Freund’s adjuvant (CFA) followed by one or more injections of rat IgV-MOG in incomplete Freund’s adjuvant (IFA). The resulting disease was marked by torticollis, unilateral rigid paralysis, forelimb weakness, and high titers of anti-MOG antibody against conformational epitopes of MOG, as well as other signs of atypical EAE. A similar strategy elicited a distinct atypical form of EAE in a cynomolgus macaque. By day 36 in the monkey, titers of IgG against conformational epitopes of extracellular MOG were evident, and on day 201, the macaque had an abrupt onset of an unusual form of EAE that included a pronounced arousal-dependent, transient myotonia. The disease persisted for 6–7 weeks and was marked by a gradual, consistent improvement and an eventual full recovery without recurrence. These data indicate that one or more boosters of IgV-MOG in IFA represent a key variable for induction of atypical or unusual forms of EAE in rat and Macaca species. These studies also reveal a close correlation between humoral immunity against conformational epitopes of MOG, extended confluent demyelinating plaques in spinal cord and brainstem, and atypical disease induction. PMID:25303101
Curtis, Alan D; Taslim, Najla; Reece, Shaun P; Grebenciucova, Elena; Ray, Richard H; Rosenbaum, Matthew D; Wardle, Robert L; Van Scott, Michael R; Mannie, Mark D
2014-01-01
Atypical models of experimental autoimmune encephalomyelitis (EAE) are advantageous in that the heterogeneity of clinical signs appears more reflective of those in multiple sclerosis (MS). Conversely, models of classical EAE feature stereotypic progression of an ascending flaccid paralysis that is not a characteristic of MS. The study of atypical EAE however has been limited due to the relative lack of suitable models that feature reliable disease incidence and severity, excepting mice deficient in gamma-interferon signaling pathways. In this study, atypical EAE was induced in Lewis rats, and a related approach was effective for induction of an unusual neurologic syndrome in a cynomolgus macaque. Lewis rats were immunized with the rat immunoglobulin variable (IgV)-related extracellular domain of myelin oligodendrocyte glycoprotein (IgV-MOG) in complete Freund's adjuvant (CFA) followed by one or more injections of rat IgV-MOG in incomplete Freund's adjuvant (IFA). The resulting disease was marked by torticollis, unilateral rigid paralysis, forelimb weakness, and high titers of anti-MOG antibody against conformational epitopes of MOG, as well as other signs of atypical EAE. A similar strategy elicited a distinct atypical form of EAE in a cynomolgus macaque. By day 36 in the monkey, titers of IgG against conformational epitopes of extracellular MOG were evident, and on day 201, the macaque had an abrupt onset of an unusual form of EAE that included a pronounced arousal-dependent, transient myotonia. The disease persisted for 6-7 weeks and was marked by a gradual, consistent improvement and an eventual full recovery without recurrence. These data indicate that one or more boosters of IgV-MOG in IFA represent a key variable for induction of atypical or unusual forms of EAE in rat and Macaca species. These studies also reveal a close correlation between humoral immunity against conformational epitopes of MOG, extended confluent demyelinating plaques in spinal cord and brainstem, and atypical disease induction.
Critzer, Faith J; Dsouza, Doris H; Golden, David A
2008-07-01
Expression of the multiple antibiotic resistance (mar) operon causes increased antimicrobial resistance in bacterial pathogens. The activator of this operon, MarA, can alter expression of >60 genes in Escherichia coli K-12. However, data on the expression of virulence and resistance genes when foodborne pathogens are exposed to antimicrobial agents are lacking. This study was conducted to determine transcription of marA (mar activator), stx1 (Shiga toxin 1), and eaeA (intimin) genes of E. coli O157:H7 EDL933 as affected by sodium benzoate. E. coli O157:H7 was grown in Luria-Bertani broth containing 0 (control) and 1% sodium benzoate at 37 degrees C for 24 h, and total RNA was extracted. Primers were designed for hemX (209 bp; housekeeping gene), marA (261 bp), and eaeA (223 bp) genes; previously reported primers were used for stx1. Tenfold dilutions of RNA were used in a real-time one-step reverse transcriptase PCR to determine transcription levels. All experiments were conducted in triplicate, and product detection was validated by gel electrophoresis. For marA and stx1, real-time one-step reverse transcriptase PCR products were detected at a 1-log-greater dilution in sodium benzoate-treated cells than in control cells, although cell numbers for each were similar (7.28 and 7.57 log CFU/ml, respectively). This indicates a greater (albeit slight) level of their transcription in treated cells than in control cells. No difference in expression of eaeA was observed. HemX is a putative uroporphyrinogen III methylase. The hemX gene was expressed at the same level in control and treated cells, validating hemX as an appropriate housekeeping marker. These data indicate that stx1 and marA genes could play a role in pathogen virulence and survival when treated with sodium benzoate, whereas eaeA expression is not altered. Understanding adaptations of E. coli O157:H7 during antimicrobial exposure is essential to better understand and implement methods to inhibit or control survival of this pathogen in foods.
Kanakasabai, Saravanan; Chearwae, Wanida; Walline, Crystal C; Iams, Wade; Adams, Suzanne M; Bright, John J
2010-01-01
Multiple sclerosis (MS) is a neurological disorder that affects more than a million people world-wide. The aetiology of MS is not known and there is no medical treatment available that can cure MS. Experimental autoimmune encephalomyelitis (EAE) is a T-cell-mediated autoimmune disease model of MS. The pathogenesis of EAE/MS is a complex process involving activation of immune cells, secretion of inflammatory cytokines and destruction of myelin sheath in the central nervous system (CNS). Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptor transcription factors that regulate cell growth, differentiation and homeostasis. PPAR agonists have been used in the treatment of obesity, diabetes, cancer and inflammation. We and others have shown that PPARγ, α and δ agonists inhibit CNS inflammation and demyelination in the EAE model of MS. In this study we show that the PPARδ agonists GW501516 and L165041 ameliorate MOGp35-55-induced EAE in C57BL/6 mice by blocking interferon (IFN)-γ and interleukin (IL)-17 production by T helper type 1 (Th1) and Th17 cells. The inhibition of EAE by PPARδ agonists was also associated with a decrease in IL-12 and IL-23 and an increase in IL-4 and IL-10 expression in the CNS and lymphoid organs. These findings indicate that PPARδ agonists modulate Th1 and Th17 responses in EAE and suggest their use in the treatment of MS and other autoimmune diseases. PMID:20406305
Kim, Jiyun V; Jiang, Ning; Tadokoro, Carlos E; Liu, Liping; Ransohoff, Richard M; Lafaille, Juan J; Dustin, Michael L
2010-01-31
The mouse spinal cord is an important site for autoimmune and injury models. Skull thinning surgery provides a minimally invasive window for microscopy of the mouse cerebral cortex, but there are no parallel methods for the spinal cord. We introduce a novel, facile and inexpensive method for two-photon laser scanning microscopy of the intact spinal cord in the mouse by taking advantage of the naturally accessible intervertebral space. These are powerful methods when combined with gene-targeted mice in which endogenous immune cells are labeled with green fluorescent protein (GFP). We first demonstrate that generation of the intervertebral window does not elicit a reaction of GFP(+) microglial cells in CX3CR1(gfp/+) mice. We next demonstrate a distinct rostrocaudal migration of GFP(+) immune cells in the spinal cord of CXCR6(gfp/+) mice during active experimental autoimmune encephalomyelitis (EAE). Interestingly, infiltration of the cerebral cortex by GFP(+) cells in these mice required three conditions: EAE induction, cortical injury and expression of CXCR6 on immune cells. Copyright 2009 Elsevier B.V. All rights reserved.
Beneficial effects of fingolimod in MS patients with high serum Sema4A levels.
Koda, Toru; Namba, Akiko; Nakatsuji, Yuji; Niino, Masaaki; Miyazaki, Yusei; Sugimoto, Tomoyuki; Kinoshita, Makoto; Takata, Kazushiro; Yamashita, Kazuya; Shimizu, Mikito; Fukazawa, Toshiyuki; Kumanogoh, Atsushi; Mochizuki, Hideki; Okuno, Tatsusada
2018-01-01
We previously demonstrated that patients with multiple sclerosis (MS) of high serum Sema4A levels are resistant to IFN-β therapy. To further elucidate the role of serum Sema4A as a biomarker for therapeutic stratification in MS patients, it is important to clarify the efficacy of other disease-modifying drugs (DMD) in those with high serum Sema4A levels. Thus, in this study we investigated whether fingolimod has beneficial effects on MS patients with high Sema4A levels. We retrospectively analyzed annualized relapse rate (ARR) and Expanded Disability Status Scale (EDSS) change in 56 relapsing-remitting multiple sclerosis (RRMS) patients who had been treated with fingolimod, including those who switched from IFN-β therapy. The levels of Sema4A in the sera were measured by sandwich ELISA. The implications of Sema4A on the efficacy of fingolimod were investigated by administering recombinant Sema4A-Fc and fingolimod to mice with experimental autoimmune encephalomyelitis (EAE). Retrospective analysis of MS cohort (17 high Sema4A and 39 low Sema4A) demonstrated the effectiveness of fingolimod in those with high serum Sema4A levels, showing reduction of ARR (from 1.21 to 0.12) and EDSS progression (from 0.50 to 0.04). Consistent with this observation, improvement in the disease severity of EAE mice receiving recombinant Sema4A-Fc was also observed after fingolimod treatment. These data suggest that fingolimod could serve as a candidate DMD for managing the disease activity of MS patients with high Sema4A levels.
He, Yixin; Du, Min; Gao, Yan; Liu, Hongshuai; Wang, Hongwei; Wu, Xiaojun; Wang, Zhengtao
2013-01-01
Multiple sclerosis (MS) is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI), a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE) in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS) as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.
Marin-Bañasco, C; Benabdellah, K; Melero-Jerez, C; Oliver, B; Pinto-Medel, M J; Hurtado-Guerrero, I; de Castro, F; Clemente, D; Fernández, O; Martin, F; Leyva, L; Suardíaz, M
2017-02-01
Recombinant IFN-ß is one of the first-line treatments in multiple sclerosis (MS), despite its lack of efficacy in some patients. In this context, mesenchymal stem cells (MSCs) represent a promising therapeutic alternative due to their immunomodulatory properties and multipotency. Moreover, by taking advantage of their pathotropism, these cells can be genetically modified to be used as carriers for delivering or secreting therapeutic drugs into injured tissues. Here, we report the therapeutic effect of systemic delivery of adipose-derived MSCs (AdMSCs), transduced with the IFN-β gene, into mice with experimental autoimmune encephalomyelitis (EAE). Relapsing-remitting and chronic progressive EAE were induced in mice. Cells were injected i.v. Disease severity, inflammation and tissue damage were assessed clinically, by flow cytometry of spleens and histopathological evaluation of the CNS respectively. Genetic engineering did not modify the biological characteristics of these AdMSCs (morphology, growth rate, immunophenotype and multipotency). Furthermore, the transduction of IFN-ß to AdMSCs maintained and, in some cases, enhanced the functional properties of AdMSCs by ameliorating the symptoms of MS in EAE models and by decreasing indications of peripheral and central neuro-inflammation. Gene therapy was found to be more effective than cell therapy in ameliorating several clinical parameters in both EAE models, presumably due to the continuous expression of IFN-β. Furthermore, it has significant advantages over AdMSC therapy, and also over systemic IFN-ß treatment, by providing long-term expression of the cytokine at therapeutic concentrations and reducing the frequency of injections, while minimizing dose-limiting side effects. © 2016 The British Pharmacological Society.
Marin‐Bañasco, C; Benabdellah, K; Melero‐Jerez, C; Oliver, B; Pinto‐Medel, M J; Hurtado‐Guerrero, I; de Castro, F; Clemente, D; Fernández, O; Martin, F; Leyva, L
2017-01-01
Background and Purpose Recombinant IFN‐ß is one of the first‐line treatments in multiple sclerosis (MS), despite its lack of efficacy in some patients. In this context, mesenchymal stem cells (MSCs) represent a promising therapeutic alternative due to their immunomodulatory properties and multipotency. Moreover, by taking advantage of their pathotropism, these cells can be genetically modified to be used as carriers for delivering or secreting therapeutic drugs into injured tissues. Here, we report the therapeutic effect of systemic delivery of adipose‐derived MSCs (AdMSCs), transduced with the IFN‐β gene, into mice with experimental autoimmune encephalomyelitis (EAE). Experimental Approach Relapsing–remitting and chronic progressive EAE were induced in mice. Cells were injected i.v. Disease severity, inflammation and tissue damage were assessed clinically, by flow cytometry of spleens and histopathological evaluation of the CNS respectively. Key Results Genetic engineering did not modify the biological characteristics of these AdMSCs (morphology, growth rate, immunophenotype and multipotency). Furthermore, the transduction of IFN‐ß to AdMSCs maintained and, in some cases, enhanced the functional properties of AdMSCs by ameliorating the symptoms of MS in EAE models and by decreasing indications of peripheral and central neuro‐inflammation. Conclusion and Implications Gene therapy was found to be more effective than cell therapy in ameliorating several clinical parameters in both EAE models, presumably due to the continuous expression of IFN‐β. Furthermore, it has significant advantages over AdMSC therapy, and also over systemic IFN‐ß treatment, by providing long‐term expression of the cytokine at therapeutic concentrations and reducing the frequency of injections, while minimizing dose‐limiting side effects. PMID:27882538
Gocke, Anne R.; Hussain, Rehana Z.; Yang, Yuhong; Peng, Haiyan; Weiner, Jeffrey; Ben, Li-Hong; Drew, Paul D.; Stuve, Olaf; Lovett-Racke, Amy E.; Racke, Michael K.
2010-01-01
Peroxisome proliferator-activated receptor-α (PPARα) agonists have been shown to have a therapeutic benefit in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). In this study, we investigated the mechanism by which the PPARα agonist gemfibrozil induces immune deviation and protects mice from EAE. We demonstrated that treatment with gemfibrozil increases expression of the Th2 transcription factor GATA-3 and decreases expression of the Th1 transcription factor T-bet in vitro and directly ex vivo. These changes correlated with an increase in nuclear PPARα expression. Moreover, the protective effects of PPARα agonists in EAE were shown to be partially dependent on IL-4 and to occur in a receptor-dependent manner. PPARα was demonstrated, for the first time, to regulate the IL-4 and IL-5 genes and to bind the IL-4 promoter in the presence of steroid receptor coactivator-1, indicating that PPARα can directly transactivate the IL-4 gene. Finally, therapeutic administration of PPARα agonists ameliorated clinically established EAE, suggesting that PPARα agonists may provide a treatment option for immune-mediated inflammatory diseases. PMID:19299749
Munari, Carla Carolina; Alves, Jacqueline Morais; Bastos, Jairo Kenupp; Tavares, Denise Crispim
2010-01-01
Baccharis dracunculifolia (Asteraceae), the main botanical source of green propolis, is a shrub of the Brazilian 'cerrado'. In folk medicine it is used as an anti-inflammatory agent, mainly for the treatment of gastrointestinal diseases. The aim of the present study was to evaluate the genotoxic and antigenotoxic effects of B. dracunculifolia ethyl acetate extract (Bd-EAE) on Chinese hamster lung fibroblasts (V79 cells) by the comet assay. Methyl methanesulfonate (MMS; 200 microM) was used as an inducer of DNA damage. Genotoxicity was evaluated using four different concentrations of Bd-EAE: 12.5, 25.0, 50.0 and 100.0 microg ml(-1). Antigenotoxicity was assessed before, simultaneously, and after treatment with the mutagen. The results showed a significant increase in the frequency of DNA damage in cultures treated with 50.0 and 100.0 microg ml(-1) Bd-EAE. Regarding its antigenotoxic potential, Bd-EAE reduced the frequency of DNA damage induced by MMS. However, this chemopreventive activity depended on the concentrations and treatment regimens used. The antioxidant activity of phenolic components present in Bd-EAE may contribute to reduce the alkylation damage induced by MMS. In conclusion, our findings confirmed the chemopreventive activity of Bd-EAE and showed that this effect occurs under different mechanism.
Selim, Assmaa O; Selim, Sally A; Shalaby, Sally M; Mosaad, Hala; Saber, Taisir
2016-09-01
Current therapies for multiple sclerosis (MS) are largely palliative, not curative. Mesenchymal stromal cells (MSCs) harbor regenerative and immunosuppressive functions, indicating a potential therapy for MS. A preparation of MSCs derived from full-term human placenta (PDMSCs) is a new approach in the treatment of patients with MS. This study aimed to rule out the possible therapy by PDMSCs in experimental autoimmune encephalomyelitis (EAE), a rat model of MS. Thirty-five female Wistar rats were classified into the following groups: I, control; II, EAE untreated; III and IV, EAE treated with phosphate-buffered saline (PBS) at 9 and 16 days post-immunization (dpi), respectively; V and VI, EAE treated with PDMSCs at 9 and 16 dpi, respectively. Intravenous administration of PDMSCs at 9 or 16 dpi significantly ameliorated the disease course, decreasing brain inflammation and degenerating neurons. A reduction of axonal damage as well as an increase of oligodendrocyte precursors were recorded. Moreover, there was an engraftment of the PDMSCs into the brain tissue. Human brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and neurotrophin 3 (NTF3) were significantly expressed in brains of rats treated by PDMSCs. Human PDMSCs have demonstrated striking therapeutic effects when delivered at the onset or at the peak of the disease. PDMSCs have direct neurotrophic support after their engraftment within the lesion through expression of the neurotrophins. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Bowles, Annie C; Wise, Rachel M; Gerstein, Brittany Y; Thomas, Robert C; Ogelman, Roberto; Febbo, Isabella; Bunnell, Bruce A
2017-10-01
The pathogenesis of many diseases is driven by the interactions between helper T (T H ) cells and macrophages. The phenotypes of these cells are functional dichotomies that are persuaded according to the surrounding milieu. In both multiple sclerosis and the experimental autoimmune encephalomyelitis (EAE) model, T H 1 and T H 17 cells propagate autoimmune signaling and inflammation in the peripheral lymphoid tissues. In turn, this proinflammatory repertoire promotes the classical activation, formerly the M1-type, macrophages. Together, these cells infiltrate into the central nervous system (CNS) tissues and generate inflammatory and demyelinating lesions. Our most recent report demonstrated the immunomodulatory and anti-inflammatory effects of adipose stromal vascular fraction (SVF) cells and adipose-derived stem cells (ASCs) that led to functional, immunological, and pathological improvements in the EAE model. Here, a deeper investigation revealed the induction of regulatory T cells and alternative activation, or M2-type, macrophages in the periphery followed by the presence of alternative activation macrophages, reduced cellular infiltrates, and attenuation of neuroinflammation in CNS tissues following intraperitoneal administration of these treatments. Spleens from treated EAE mice revealed diminished T H 1 and T H 17 cell activities and were markedly higher in the levels of anti-inflammatory cytokine interleukin-10. Interestingly, SVF cells were more effective than ASCs at mediating these beneficial changes, which were attributed to their localization to the spleens after administration. Together, SVF cells rapidly and robustly attenuated the propagation of autoimmune signaling in the periphery that provided a permissive milieu in the CNS for repair and possibly regeneration. Stem Cells 2017;35:2198-2207. © 2017 AlphaMed Press.
NASA Astrophysics Data System (ADS)
Guy, John; Qi, Xiaoping; Hauswirth, William W.
1998-11-01
Suppression of oxidative injury by viral-mediated transfer of the human catalase gene was tested in the optic nerves of animals with experimental allergic encephalomyelitis (EAE). EAE is an inflammatory autoimmune disorder of primary central nervous system demyelination that has been frequently used as an animal model for the human disease multiple sclerosis (MS). The optic nerve is a frequent site of involvement common to both EAE and MS. Recombinant adeno-associated virus containing the human gene for catalase was injected over the right optic nerve heads of SJL/J mice that were simultaneously sensitized for EAE. After 1 month, cell-specific catalase activity, evaluated by quantitation of catalase immunogold, was increased approximately 2-fold each in endothelia, oligodendroglia, astrocytes, and axons of the optic nerve. Effects of catalase on the histologic lesions of EAE were measured by computerized analysis of the myelin sheath area (for demyelination), optic disc area (for optic nerve head swelling), extent of the cellular infiltrate, extravasated serum albumin labeled by immunogold (for blood-brain barrier disruption), and in vivo H2O2 reaction product. Relative to control, contralateral optic nerves injected with the recombinant virus without a therapeutic gene, catalase gene inoculation reduced demyelination by 38%, optic nerve head swelling by 29%, cellular infiltration by 34%, disruption of the blood-brain barrier by 64%, and in vivo levels of H2O2 by 61%. Because the efficacy of potential treatments for MS are usually initially tested in the EAE animal model, this study suggests that catalase gene delivery by using viral vectors may be a therapeutic strategy for suppression of MS.
Parvaneh Tafreshi, Azita; Talebi, Farideh; Ghorbani, Samira; Bernard, Claude; Noorbakhsh, Farshid
2017-10-01
There is growing evidence that the impaired IGF-I system contributes to neurodegeneration. In this study, we examined the spinal cords of the EAE, the animal model of multiple sclerosis, to see if the expression of the IGF-I system is altered. To induce EAE, C57/BL6 mice were immunized with the Hooke lab MOG kit, sacrificed at the peak of the disease and their spinal cords were examined for the immunoreactivities (ir) of the IGF-I, IGF binding protein-1 (IGFBP-1) and glycogen synthase kinase 3β (GSK3β), as one major downstream molecule in the IGF-I signaling. Although neurons in the non EAE spinal cords did not show the IGF-I immunoreactivity, they were numerously positive for the IGFBP-1. In the inflamed EAE spinal cord however, the patterns of expressions were reversed, that is, a significant increased number of IGF-I expressing neurons versus a reduced number of IGFBP-1 positive neurons. Moreover, while nearly all IGF-I-ir neurons expressed GSK3β, some expressed it more intensely. Considering our previous finding where we showed a significant reduced number of the inactive (phosphorylated) but not that of the total GSK3β expressing neurons in the EAE spinal cord, it is conceivable that the intense total GSK3β expression in the IGF-I-ir neurons belongs to the active form of GSK3β known to exert neuroinflammatory effects. We therefore suggest that the altered expression of the IGF-I system including GSK3β in spinal cord neurons might involve in pathophysiological events during the EAE. © 2017 Wiley Periodicals, Inc.
Ballerini, C; Aldinucci, A; Luccarini, I; Galante, A; Manuelli, C; Blandina, P; Katebe, M; Chazot, P L; Masini, E; Passani, M B
2013-01-01
Background and Purpose The histamine H4 receptor has a primary role in inflammatory functions, making it an attractive target for the treatment of asthma and refractory inflammation. These observations suggested a facilitating action on autoimmune diseases. Here we have assessed the role of H4 receptors in experimental autoimmune encephalomyelitis (EAE) a model of multiple sclerosis (MS). Experimental Approach We induced EAE with myelin oligodendrocyte glycoprotein (MOG35–55) in C57BL/6 female mice as a model of MS. The histamine H4 receptor antagonist 5-chloro-2-[(4-methylpiperazin-1-yl)carbonyl]-1H-indole (JNJ7777120) was injected i.p. daily starting at day 10 post-immunization (D10 p.i.). Disease severity was monitored by clinical and histopathological evaluation of inflammatory cells infiltrating into the spinal cord, anti-MOG35–55 antibody production, assay of T-cell proliferation by [3H]-thymidine incorporation, mononucleate cell phenotype by flow cytometry, cytokine production by elisa assay and transcription factor quantification of mRNA expression. Key Results Treatment with JNJ7777120 exacerbated EAE, increased inflammation and demyelination in the spinal cord of EAE mice and increased IFN-γ expression in lymph nodes, whereas it suppressed IL-4 and IL-10, and augmented expression of the transcription factors Tbet, FOXP3 and IL-17 mRNA in lymphocytes. JNJ7777120 did not affect proliferation of anti-MOG35–55 T-cells, anti-MOG35–55 antibody production or mononucleate cell phenotype. Conclusions and Implications H4 receptor blockade was detrimental in EAE. Given the interest in the development of H4 receptor antagonists as anti-inflammatory compounds, it is important to understand the role of H4 receptors in immune diseases to anticipate clinical benefits and also predict possible detrimental effects. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2013.170.issue-1 PMID:23735232
Rosenkranz, Eva; Maywald, Martina; Hilgers, Ralf-Dieter; Brieger, Anne; Clarner, Tim; Kipp, Markus; Plümäkers, Birgit; Meyer, Sören; Schwerdtle, Tanja; Rink, Lothar
2016-03-01
The essential trace element zinc is indispensable for proper immune function as zinc deficiency accompanies immune defects and dysregulations like allergies, autoimmunity and an increased presence of transplant rejection. This point to the importance of the physiological and dietary control of zinc levels for a functioning immune system. This study investigates the capacity of zinc to induce immune tolerance. The beneficial impact of physiological zinc supplementation of 6 μg/day (0.3mg/kg body weight) or 30 μg/day (1.5mg/kg body weight) on murine experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis with a Th1/Th17 (Th, T helper) cell-dominated immunopathogenesis, was analyzed. Zinc administration diminished EAE scores in C57BL/6 mice in vivo (P<.05), reduced Th17 RORγT(+) cells (P<.05) and significantly increased inducible iTreg cells (P<.05). While Th17 cells decreased systemically, iTreg cells accumulated in the central nervous system. Cumulatively, zinc supplementation seems to be capable to induce tolerance in unwanted immune reactions by increasing iTreg cells. This makes zinc a promising future tool for treating autoimmune diseases without suppressing the immune system. Copyright © 2015 Elsevier Inc. All rights reserved.
Effect of thalidomide and pentoxifylline on experimental autoimmune encephalomyelitis (EAE).
Corrêa, José Otávio do Amaral; Aarestrup, Beatriz Julião Vieira; Aarestrup, Fernando Monteiro
2010-11-01
Autoimmune encephalomyelitis (EAE) in Lewis rats is a classical experimental model of demyelinating inflammatory disease of the central nervous system. EAE is widely accepted for study of immune-inflammatory mechanisms in the CNS related to multiple sclerosis (MS) due to similar clinical evolution. In the present study we investigated the effects of Thalidomide and pentoxifylline during EAE development in Lewis rats. EAE was induced in Lewis rats and treatment with Thalidomide or pentoxifylline was performed. Clinical evaluation was carried out daily. Histopathological analysis of the brain tissue and spinal cord was performed. Griess method was used for determination of NO serum levels. TNF-alpha and IFN-gamma serum levels were investigated using ELISA method. Thalidomide and pentoxifylline treatment is associated with significant reduction of neuroinflammation in CNS. Serum levels of NO, IFN-gamma and TNF-alpha showed a marked reduction. Such findings were correlated with improvement of clinical symptoms, particularly in thalidomide treated rats. Taken together the data suggested that thalidomide and pentoxifylline may be therapeutic options for the treatment of MS, however further experiments must be performed to investigate this hypothesis. Copyright © 2010 Elsevier Inc. All rights reserved.
Scorisa, Juliana M.; Freria, Camila M.; Victorio, Sheila C.; Barbizan, Roberta; Zanon, Renata G.; Oliveira, Alexandre L. R.
2011-01-01
The recent discovery that the major histocompatibility complex of class I (MHC I) expression has a role in the synaptic elimination process, represented an insight into understanding the cross talk between neurons. In the present study, the possibility that glatiramer acetate (GA) treatment influences the MHC class I expression and the synaptic plasticity process in the spinal cord during the course of EAE was investigated. C57BL/6J mice were induced to EAE and submitted to treatment either with a placebo solution or with GA (0.05mg/animal, subcutaneously, on a daily basis). All the animals were sacrificed at the peak disease (14 days after induction) or at the point of recovery of the clinical signs (21 days after induction). The spinal cords were removed and submitted to immunohistochemical examination, Western blotting and transmission electron microscopy analysis. The results showed that GA treatment was able to decrease synaptic loss during the course of EAE, which correlates with the downregulation of the MHC I complex. The present results reinforce the neuroprotective role of GA treatment, by reducing synaptic loss during the course of the disease. Such action may be associated with the recently described role of MHC I regulation during the synaptic plasticity process. PMID:22043176
Multi-modal antigen specific therapy for autoimmunity.
Legge, K L; Bell, J J; Li, L; Gregg, R; Caprio, J C; Zaghouani, H
2001-10-01
Peripheral tolerance, represents an attractive strategy to down-regulate previously activated T cells and suppress an ongoing disease. Herein, immunoglobulins (Igs) were used to deliver self and altered self peptides for efficient peptide presentation without costimulation to test for modulation of experimental allergic encephalomyelitis (EAE). Accordingly, the encephalitogenic proteolipid protein (PLP) sequence 139-151 (referred to as PLP1) and an altered form of PLP1 known as PLP-LR were genetically expressed on Igs and the resulting Ig-PLP1 and Ig-PLP-LR were tested for efficient presentation of the peptides and for amelioration of ongoing EAE. Evidence is presented indicating that Ig-PLP1 as well as Ig-PLP-LR given in saline to mice with ongoing clinical EAE suppresses subsequent relapses. However, aggregation of both chimeras allows crosslinking of Fcgamma receptors (FcgammaRs) and induction of IL-10 production by APCs but does not promote the up-regulation of costimulatory molecules. Consequently, IL-10 displays bystander suppression and synergizes with presentation without costimulation to drive effective modulation of EAE. As Ig-PLP1 is more potent than Ig-PLP-LR in the down-regulation of T cells, we conclude that peptide affinity plays a critical role in this multi-modal approach of T cell modulation.
Amelioration of ongoing experimental autoimmune encephalomyelitis with fluoxetine.
Bhat, Roopa; Mahapatra, Sidharth; Axtell, Robert C; Steinman, Lawrence
2017-12-15
In patients with multiple sclerosis, the selective serotonin reuptake inhibitor, fluoxetine, resulted in less acute disease activity. We tested the immune modulating effects of fluoxetine in a mouse model of multiple sclerosis, i.e. experimental autoimmune encephalomyelitis (EAE). We show that fluoxetine delayed the onset of disease and reduced clinical paralysis in mice with established disease. Fluoxetine had abrogating effects on proliferation of immune cells and inflammatory cytokine production by both antigen-presenting cells and T cells. Specifically, in CD 4 T cells, fluoxetine increased Fas-induced apoptosis. We conclude that fluoxetine possesses immune-modulating effects resulting in the amelioration of symptoms in EAE. Copyright © 2017 Elsevier B.V. All rights reserved.
Dietrich, Michael; Helling, Niklas; Hilla, Alexander; Heskamp, Annemarie; Issberner, Andrea; Hildebrandt, Thomas; Kohne, Zippora; Küry, Patrick; Berndt, Carsten; Aktas, Orhan; Fischer, Dietmar; Hartung, Hans-Peter; Albrecht, Philipp
2018-03-07
In multiple sclerosis (MS), neurodegeneration is the main reason for chronic disability. Alpha-lipoic acid (LA) is a naturally occurring antioxidant which has recently been demonstrated to reduce the rate of brain atrophy in progressive MS. However, it remains uncertain if it is also beneficial in the early, more inflammatory-driven phases. As clinical studies are costly and time consuming, optic neuritis (ON) is often used for investigating neuroprotective or regenerative therapeutics. We aimed to investigate the prospect for success of a clinical ON trial using an experimental autoimmune encephalomyelitis-optic neuritis (EAE-ON) model with visual system readouts adaptable to a clinical ON trial. Using an in vitro cell culture model for endogenous oxidative stress, we compared the neuroprotective capacity of racemic LA with the R/S-enantiomers and its reduced form. In vivo, we analyzed retinal neurodegeneration using optical coherence tomography (OCT) and the visual function by optokinetic response (OKR) in MOG 35-55 -induced EAE-ON in C57BL/6J mice. Ganglion cell counts, inflammation, and demyelination were assessed by immunohistological staining of retinae and optic nerves. All forms of LA provided equal neuroprotective capacities in vitro. In EAE-ON, prophylactic LA therapy attenuated the clinical EAE score and prevented the thinning of the inner retinal layer while therapeutic treatment was not protective on visual outcomes. A prophylactic LA treatment is necessary to protect from visual loss and retinal thinning in EAE-ON, suggesting that a clinical ON trial starting therapy after the onset of symptoms may not be successful.
Ramos González, E J; Ramirez Jirano, L J; García Martínez, D Z; Ortiz, G G; Jave Suárez, L F; Leal Cortes, C A; Bitzer Quintero, O K
2018-03-08
Multiple sclerosis (MS) is a chronic, demyelinating, autoimmune disease of the central nervous system causing neuroinflammation. Experimental autoimmune encephalitis (EAE) is a model of the disease. MS is classically treated with interferon beta (IFN-β) and glatiramer acetate (GA). Melatonin (MLT) has been reported to modulate immune system responses. The aim of the present study is to analyse the effects of MLT administration in comparison with the first-line treatments for MS (IFN-β and GA). EAE was induced in male Sprague-Dawley rats; the animals subsequently received either IFN-β, GA, or MLT. Cerebrospinal fluid (CSF) samples were analysed by multiplex assay to determine the levels of proinflammatory cytokines. The neurological evaluation of EAE was also recorded. All immunised animals developed EAE. We evaluated the first relapse-remission cycle, observing that IFN-β and GA had better results than MLT in the clinical evaluation. Neither EAE nor any of the treatments administered modified CSF IL-1β and IL-12p70 concentrations. However, IFN-β and MLT did decrease CSF TNF-α concentrations. Further studies are needed to evaluate the molecular mechanisms involved in the behaviour of MLT in EAE, and to quantify other cytokines in different biological media in order for MLT to be considered an anti-inflammatory agent capable of regulating MS. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Tselios, Theodore; Aggelidakis, Mihalis; Tapeinou, Anthi; Tseveleki, Vivian; Kanistras, Ioannis; Gatos, Dimitrios; Matsoukas, John
2014-11-04
Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG), plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR) contact residues of the human MOG35-55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs) by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl) using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35-55 peptide at the time of immunization.
Sands, Scott A; Williams, Rachel; Marshall, Sylvester; LeVine, Steven M
2014-10-17
Nitration of proteins, which is thought to be mediated by peroxynitrite, is a mechanism of tissue damage in multiple sclerosis (MS). However, protein nitration can also be catalyzed by iron, heme or heme-associated molecules independent of peroxynitrite. Since microhemorrhages and perivascular iron deposits are present in the CNS of MS patients, we sought to determine if iron is associated with protein nitration. A cerebral model of experimental autoimmune encephalomyelitis (cEAE) was utilized since this model has been shown to have perivascular iron deposits similar to those present in MS. Histochemical staining for iron was used together with immunohistochemistry for nitrotyrosine, eNOS, or iNOS on cerebral sections. Leakage of the blood-brain barrier (BBB) was studied by albumin immunohistochemistry. Iron deposits were colocalized with nitrotyrosine staining around vessels in cEAE mice while control animals revealed minimal staining. This finding supports the likelihood that nitrotyrosine formation was catalyzed by iron or iron containing molecules. Examples of iron deposits were also observed in association with eNOS and iNOS, which could be one source of substrates for this reaction. Extravasation of albumin was present in cEAE mice, but not in control animals. Extravasated albumin may act to limit tissue injury by binding iron and/or heme as well as being a target of nitration, but the protection is incomplete. In summary, iron-catalyzed nitration of proteins is a likely mechanism of tissue damage in MS. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Kurte, Mónica; Luz-Crawford, Patricia; Vega-Letter, Ana María; Contreras, Rafael A; Tejedor, Gautier; Elizondo-Vega, Roberto; Martinez-Viola, Luna; Fernández-O'Ryan, Catalina; Figueroa, Fernando E; Jorgensen, Christian; Djouad, Farida; Carrión, Flavio
2018-01-01
The therapeutic effect of mesenchymal stem cells (MSCs) in multiple sclerosis (MS) and the experimental autoimmune encephalomyelitis (EAE) model has been well described. This effect is, in part, mediated through the inhibition of IL17-producing cells and the generation of regulatory T cells. While proinflammatory cytokines such as IFNγ, TNFα, and IL1β have been shown to enhance MSCs immunosuppressive function, the role of IL17 remains poorly elucidated. The aim of this study was, therefore, to investigate the role of the IL17/IL17R pathway on MSCs immunoregulatory effects focusing on Th17 cell generation in vitro and on Th17-mediated EAE pathogenesis in vivo . In vitro , we showed that the immunosuppressive effect of MSCs on Th17 cell proliferation and differentiation is partially dependent on IL17RA expression. This was associated with a reduced expression level of MSCs immunosuppressive mediators such as VCAM1, ICAM1, and PD-L1 in IL17RA -/- MSCs as compared to wild-type (WT) MSCs. In the EAE model, we demonstrated that while WT MSCs significantly reduced the clinical scores of the disease, IL17RA -/- MSCs injected mice exhibited a clinical worsening of the disease. The disability of IL17RA -/- MSCs to reduce the progression of the disease paralleled the inability of these cells to reduce the frequency of Th17 cells in the draining lymph node of the mice as compared to WT MSCs. Moreover, we showed that the therapeutic effect of MSCs was correlated with the generation of classical Treg bearing the CD4 + CD25 + Foxp3 + signature in an IL17RA-dependent manner. Our findings reveal a novel role of IL17RA on MSCs immunosuppressive and therapeutic potential in EAE and suggest that the modulation of IL17RA in MSCs could represent a novel method to enhance their therapeutic effect in MS.
Munari, Carla C; Furtado, Ricardo A; Santiago, Mirian L; Manhas, Simony S; Bastos, Jairo K; Tavares, Denise C
2014-07-01
Baccharis dracunculifolia (Asteraceae), the main botanical source of green propolis, also known as 'alecrim-do-campo' and 'vassourinha', is a shrub of the Brazilian 'cerrado' and is native to the South and Southeast of Brazil. The effects of B. dracunculifolia ethyl acetate extract (Bd-EAE) were evaluated on the 1,2-dimethylhydrazine (DMH)-induced DNA damage and aberrant crypt foci (ACF) in the colon of male Wistar rats by the comet and ACF assays, respectively. The animals were treated by gavage with doses of 6, 12, and 24 mg/kg body weight/day. Animals were also administered a single subcutaneous injection of 40 mg/kg DMH and were killed after 4 h for evaluation of DNA damage. Also, two doses of 40 mg/kg of DMH were administered weekly for 2 weeks, and animals were killed 2 weeks after the last injection for evaluation of ACF development in the colon. The results showed a significant reduction in the frequency of DNA damage and ACF in the group treated with the Bd-EAE plus DMH in comparison with those treated with DMH alone, suggesting that Bd-EAE reduced DNA damage and suppressed the formation of ACF and also exerted a protective affect against colon carcinogenesis.
Yu, Jiayi; Zhou, Xiaofei; Nakaya, Mako; Jin, Wei; Cheng, Xuhong; Sun, Shao-Cong
2014-01-01
The Noncanonical NF-κB pathway induces processing of the NF-κB2 precursor protein p100 and, thereby, mediates activation of p52-containing NF-κB complexes. This pathway is crucial for B-cell maturation and humoral immunity, but its role in regulating T-cell function is less clear. Using mutant mice that express a non-processible p100, NF-κB2lym1, we show that the noncanonical NF-κB pathway has a T cell-intrinsic role in regulating the pathogenesis of a T cell-mediated autoimmunity, experimental autoimmune encephalomyelitis (EAE). Although the lym1 mutation does not interfere with naïve T-cell activation, it renders the Th17 cells defective in the production of inflammatory effector molecules, particularly the cytokine GM-CSF. We provide evidence that p52 binds to the promoter of the GM-CSF-encoding gene (Csf2) and cooperates with c-Rel in the transactivation of this target gene. Introduction of exogenous p52 or GM-CSF to the NF-κB2lym1 mutant T cells partially restores their ability to induce EAE. These results suggest that the noncanonical NF-κB pathway mediates induction of EAE by regulating the effector function of inflammatory T cells. PMID:24899500
Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin
NASA Astrophysics Data System (ADS)
Yednock, Ted A.; Cannon, Catherine; Fritz, Lawrence C.; Sanchez-Madrid, Francisco; Steinman, Lawrence; Karin, Nathan
1992-03-01
EXPERIMENTAL autoimmune encephalomyelitis (EAE) is an inflammatory condition of the central nervous system with similarities to multiple sclerosis1,2. In both diseases, circulating leukocytes penetrate the blood-brain barrier and damage myelin, resulting in impaired nerve conduction and paralysis3-5. We sought to identify the adhesion receptors that mediate the attachment of circulating leukocytes to inflamed brain endothelium in EAE, because this interaction is the first step in leukocyte entry into the central nervous system. Using an in vitro adhesion assay on tissue sections, we found that lymphocytes and monocytes bound selectively to inflamed EAE brain vessels. Binding was inhibited by antibodies against the integrin molecule α4βl, but not by antibodies against numerous other adhesion receptors. When tested in vivo, anti-α4 integrin effectively prevented the accumulation of leukocytes in the central nervous system and the development of EAE. Thus, therapies designed to interfere with α4βl integrin may be useful in treating inflammatory diseases of the central nervous system, such as multiple sclerosis.
Zhang, Lingyun; Ke, Fang; Liu, Zhaoyuan; Bai, Jing; Liu, Jinlin; Yan, Sha; Xu, Zhenyao; Lou, Fangzhou; Wang, Hong; Zhu, Huiyuan; Sun, Yang; Cai, Wei; Gao, Yuanyuan; Li, Qun; Yu, Xue-Zhong; Qian, Youcun; Hua, Zichun; Deng, Jiong; Li, Qi-Jing; Wang, Honglin
2015-01-01
Peripherally derived regulatory T (pTreg) cell generation requires T-cell receptor (TCR) signalling and the cytokines TGF-β1 and IL-2. Here we show that TCR signalling induces the microRNA miR-31, which negatively regulates pTreg-cell generation. miR-31 conditional deletion results in enhanced induction of pTreg cells, and decreased severity of experimental autoimmune encephalomyelitis (EAE). Unexpectedly, we identify Gprc5a as a direct target of miR-31. Gprc5a is known as retinoic acid-inducible protein 3, and its deficiency leads to impaired pTreg-cell induction and increased EAE severity. By generating miR-31 and Gprc5a double knockout mice, we show that miR-31 promotes the development of EAE through inhibiting Gprc5a. Thus, our data identify miR-31 and its target Gprc5a as critical regulators for pTreg-cell generation, suggesting a previously unrecognized epigenetic mechanism for dysfunctional Treg cells in autoimmune diseases. PMID:26165721
Immune modulation using transdermal photodynamic therapy
NASA Astrophysics Data System (ADS)
Levy, Julia G.; Chowdhary, R. K.; Ratkay, Leslie G.; Waterfield, Douglas; Obochi, Modestus; Leong, Simon; Hunt, David W. C.; Chan, Agnes H.
1995-01-01
The photosensitizer benzoporphyrin derivative monoacid ring A (VerteporfinR or BPD) has maximum absorption characteristics (690 nm) and biodistribution characteristics which permit activation of the drug in capillaries of the skin without causing skin photosensitivity (transdermal PDT). This permits targeting of cells in the circulation for selective ablation. Since BPD has been shown to accumulate preferentially in activated lymphocytes and monocytes, studies have been undertaken to determine the effect of transdermal PDT on murine models for rheumatoid arthritis (the MRL/lpr adjuvant enhanced model) and multiple sclerosis (the experimental allergic encephalomyelitis (EAE) model in PL mice). Localized transdermal PDT with BPD was found to be completely successful in preventing the development of adjuvant enhanced arthritis in the MRL/lpr mouse as well as improving the underlying arthritic condition of these animals. In the EAE model, in which an adoptive transfer system was used, it was found that transdermal PDT of recipients was effective in preventing EAE if treatments were implemented up to 24 hours after cell transfer but was not effective if given later, indicating the requirement for circulating T cells for effective treatment.
The secretome of periodontal ligament stem cells from MS patients protects against EAE
Rajan, Thangavelu Soundara; Giacoppo, Sabrina; Diomede, Francesca; Ballerini, Patrizia; Paolantonio, Michele; Marchisio, Marco; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana
2016-01-01
Manipulation of stem cells or stem cells-derived secretome has emerged as a novel alternative therapeutic option for multiple sclerosis (MS). Here we show that human periodontal ligament stem cells (hPDLSCs)-derived conditioned medium (hPDLSCs-CM) and purified exosomes/microvesicles (hPDLSCs-EMVs) obtained from Relapsing Remitting (RR)-MS patients and healthy donors block experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by inducing anti-inflammatory and immunosuppressive effects in spinal cord and spleen, and reverse disease progression by restoring tissue integrity via remyelination in the spinal cord. We show that hPDLSCs-CM and hPDLSCs-EMVs reduce pro-inflammatory cytokines IL-17, IFN-γ, IL-1β, IL-6, TNF-α, and induce anti-inflammatory IL-10. In addition, apoptosis related STAT1, p53, Caspase 3, and Bax expressions were attenuated. Our findings unravel the immunosuppressive effects of hPDLSCs-CM and hPDLSCs-EMVs in EAE mice, and suggest simple alternative autologous source for patient-customized cell-free targeting treatment in MS patients. PMID:27924938
Kong, Weimin; Hooper, Kirsten M; Ganea, Doina
2016-03-01
Prostaglandins and leukotrienes, bioactive mediators generated by cyclooxygenases (COX) and 5-lipoxygenase (5-LO) from arachidonic acid, play an essential role in neuroinflammation. High levels of LTB4 and PGE2 and increased expression of COX and 5-LO, as well as high expression of PGE2 receptors were reported in multiple sclerosis (MS) patients and in experimental autoimmune encephalomyelitis (EAE). Prostaglandins and leukotrienes have an interdependent and compensatory role in EAE, which led to the concept of therapy using dual COX/5-LO inhibitors. The plant derived flavocoxid, a dual COX/5-LO inhibitor with anti-inflammatory and antioxidant properties, manufactured as a prescription pharmaconutrient, was reported to be neuroprotective in models of transient ischemic stroke and brain injury. The present study is the first report on prophylactic and therapeutic effects of flavocoxid in EAE. The beneficial effects correlate with reduced expression of proinflammatory cytokines and of COX2 and 5-LO in spinal cords and spleens of EAE mice. The protective mechanisms include: 1. reduction in expression of MHCII/costimulatory molecules and production of proinflammatory cytokines; 2. promotion of the M2 phenotype including IL-10 expression and release by macrophages and microglia; 3. inhibition of Th1 and Th17 differentiation through direct effects on T cells. The direct inhibitory effect on Th1/Th17 differentiation, and promoting the development of M2 macrophages and microglia, represent novel mechanisms for the flavocoxid anti-inflammatory activity. As a dual COX/5-LO inhibitor with antioxidant properties, flavocoxid might be useful as a potential therapeutic medical food agent in MS patients. Copyright © 2015. Published by Elsevier Inc.
Rouse, Michael; Rao, Roshni; Nagarkatti, Mitzi
2014-01-01
3,3′-Diindolylmethane (DIM) is a naturally derived indole found in cruciferous vegetables that has great potential as a novel and effective therapeutic agent. In the current study, we investigated the effects of DIM post-treatment on the regulation of activated T cells during the development of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. We demonstrated that the administration of DIM 10 days after EAE induction was effective at ameliorating disease parameters, including inflammation and central nervous system cellular infiltration. MicroRNA (miRNA) microarray analysis revealed an altered miRNA profile in brain infiltrating CD4+ T cells following DIM post-treatment of EAE mice. Additionally, bioinformatics analysis suggested the involvement of DIM-induced miRNAs in pathways and processes that halt cell cycle progression and promote apoptosis. Additional studies confirmed that DIM impacted these cellular processes in activated T cells. Further evidence indicated that DIM treatment significantly upregulated several miRNAs (miR-200c, miR-146a, miR-16, miR-93, and miR-22) in brain CD4+ T cells during EAE while suppressing their associated target genes. Similarly, we found that overexpression of miR-16 in primary CD4+ T cells led to significant downregulation of both mRNA and protein levels of cyclin E1 and B-cell lymphoma-2, which play important roles in regulating cell cycle progression and apoptosis. Collectively, these studies demonstrate that DIM post-treatment leads to the amelioration of EAE development by suppressing T-cell responses through the induction of select miRNAs that control cell cycle progression and mediate apoptosis. PMID:24898268
Cohen, Mikhal E; Fainstein, Nina; Lavon, Iris; Ben-Hur, Tamir
2014-09-01
Multiple sclerosis (MS) is a multifocal disease, and precursor cells need to migrate into the multiple lesions in order to exert their therapeutic effects. Therefore, cell migration is a crucial element in regenerative processes in MS, dictating the route of delivery, when cell transplantation is considered. We have previously shown that inflammation triggers migration of multi-potential neural precursor cells (NPCs) into the white matter of experimental autoimmune encephalomyelitis (EAE) rodents, a widely used model of MS. Here we investigated the molecular basis of this attraction. NPCs were grown from E13 embryonic mouse brains and transplanted into the lateral cerebral ventricles of EAE mice. Transplanted NPC migration was directed by three tissue-derived chemokines. Stromal cell-derived factor-1α, monocyte chemo-attractant protein-1 and hepatocyte growth factor were expressed in the EAE brain and specifically in microglia and astrocytes. Their cognate receptors, CXCR4, CCR2 or c-Met were constitutively expressed on NPCs. Selective blockage of CXCR4, CCR2 or c-Met partially inhibited NPC migration in EAE brains. Blocking all three receptors had an additive effect and resulted in profound inhibition of NPC migration, as compared to extensive migration of control NPCs. The inflammation-triggered NPC migration into white matter tracts was dependent on a motile NPC phenotype. Specifically, depriving NPCs from epidermal growth factor (EGF) prevented the induction of glial commitment and a motile phenotype (as indicated by an in vitro motility assay), hampering their response to neuroinflammation. In conclusion, signaling via three chemokine systems accounts for most of the inflammation-induced, tissue-derived attraction of transplanted NPCs into white matter tracts during EAE. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Fu, Yan; Frederick, Terra J.; Huff, Terry B.; Goings, Gwendolyn E.; Miller, Stephen D.; Cheng, Ji-Xin
2011-10-01
How demyelination is initiated is a standing question for pathology of multiple sclerosis. By label-free coherent anti-Stokes Raman scattering (CARS) imaging of myelin lipids, we investigate myelin integrity in the lumbar spinal cord tissue isolated from naïve SJL mice, and from mice at the onset, peak acute, and remission stages of relapsing experimental autoimmune encephalomyelitis (EAE). Progressive demyelinating disease is initially characterized by the retraction of paranodal myelin both at the onset of disease and at the borders of acute demyelinating lesions. Myelin retraction is confirmed by elongated distribution of neurofascin proteins visualized by immunofluorescence. The disruption of paranodal myelin subsequently exposes Kv1.2 channels at the juxtaparanodes and lead to the displacement of Kv1.2 channels to the paranodal and nodal domains. Paranodal myelin is partially restored during disease remission, indicating spontaneous myelin regeneration. These findings suggest that paranodal domain injury precedes formation of internodal demyelinating lesions in relapsing EAE. Our results also demonstrate that CARS microscopy is an effective readout of myelin disease burden.
... cells — have proven successful in treating animals with experimental allergic encephalomyelitis (EAE), an animal model of MS. Pilot clinical trials are in progress. Future experimental therapies may involve antibodies directed against the cytokines ...
Boroujerdi, Amin; Welser-Alves, Jennifer V.; Milner, Richard
2013-01-01
Alterations in vascular structure and function are a central component of demyelinating disease. In addition to blood-brain barrier (BBB) breakdown, which occurs early in the course of disease, recent studies have described angiogenic remodeling, both in multiple sclerosis tissue and in the mouse demyelinating model, experimental autoimmune encephalomyelitis (EAE). As the precise timing of vascular remodeling in demyelinating disease has yet to be fully defined, the purpose of the current study was to define the time-course of these events in the MOG35-55 EAE model. Quantification of endothelial cell proliferation and vessel density revealed that a large part of angiogenic remodeling in cervical spinal cord white matter occurs during the pre-symptomatic phase of EAE. At the height of vascular remodeling, blood vessels in the cervical spinal cord showed strong transient upregulation of fibronectin and the α5β1 integrin. In vitro experiments revealed that α5 integrin inhibition reduced brain endothelial cell proliferation under inflammatory conditions. Interestingly, loss of vascular integrity was evident in all vessels during the first 4–7 days post-immunization, but after 14 days, was localized predominantly to venules. Taken together, our data demonstrate that extensive vascular remodeling occurs during the pre-symptomatic phase of EAE and point to a potential role for the fibronectin-α5β1 integrin interaction in promoting vascular remodeling during demyelinating disease. PMID:24056042
Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis.
Rossi, Silvia; Muzio, Luca; De Chiara, Valentina; Grasselli, Giorgio; Musella, Alessandra; Musumeci, Gabriele; Mandolesi, Georgia; De Ceglia, Roberta; Maida, Simona; Biffi, Emilia; Pedrocchi, Alessandra; Menegon, Andrea; Bernardi, Giorgio; Furlan, Roberto; Martino, Gianvito; Centonze, Diego
2011-07-01
Synaptic dysfunction triggers neuronal damage in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). While excessive glutamate signaling has been reported in the striatum of EAE, it is still uncertain whether GABA synapses are altered. Electrophysiological recordings showed a reduction of spontaneous GABAergic synaptic currents (sIPSCs) recorded from striatal projection neurons of mice with MOG((35-55))-induced EAE. GABAergic sIPSC deficits started in the acute phase of the disease (20-25days post immunization, dpi), and were exacerbated at later time-points (35, 50, 70 and 90dpi). Of note, in slices they were independent of microglial activation and of release of TNF-α. Indeed, sIPSC inhibition likely involved synaptic inputs arising from GABAergic interneurons, because EAE preferentially reduced sIPSCs of high amplitude, and was associated with a selective loss of striatal parvalbumin (PV)-positive GABAergic interneurons, which contact striatal projection neurons in their somatic region, giving rise to more efficient synaptic inhibition. Furthermore, we found also that the chronic persistence of pro-inflammatory cytokines were able, per se, to produce profound alterations of electrophysiological network properties, that were reverted by GABA administration. The results of the present investigation indicate defective GABA transmission in MS models depending from alteration of PV cells number and, in part, deriving from the effects of a chronic inflammation, and suggest that pharmacological agents potentiating GABA signaling might be considered to limit neuronal damage in MS patients. Copyright © 2010 Elsevier Inc. All rights reserved.
Boroujerdi, Amin; Welser-Alves, Jennifer V; Milner, Richard
2013-12-01
Alterations in vascular structure and function are a central component of demyelinating disease. In addition to blood-brain barrier (BBB) breakdown, which occurs early in the course of disease, recent studies have described angiogenic remodeling, both in multiple sclerosis tissue and in the mouse demyelinating model, experimental autoimmune encephalomyelitis (EAE). As the precise timing of vascular remodeling in demyelinating disease has yet to be fully defined, the purpose of the current study was to define the time-course of these events in the MOG35-55 EAE model. Quantification of endothelial cell proliferation and vessel density revealed that a large part of angiogenic remodeling in cervical spinal cord white matter occurs during the pre-symptomatic phase of EAE. At the height of vascular remodeling, blood vessels in the cervical spinal cord showed strong transient upregulation of fibronectin and the α5β1 integrin. In vitro experiments revealed that α5 integrin inhibition reduced brain endothelial cell proliferation under inflammatory conditions. Interestingly, loss of vascular integrity was evident in all vessels during the first 4-7days post-immunization, but after 14days, was localized predominantly to venules. Taken together, our data demonstrate that extensive vascular remodeling occurs during the pre-symptomatic phase of EAE and point to a potential role for the fibronectin-α5β1 integrin interaction in promoting vascular remodeling during demyelinating disease. © 2013.
Lipopolysaccharide Binding Protein and Oxidative Stress in a Multiple Sclerosis Model.
Escribano, Begoña M; Medina-Fernández, Francisco J; Aguilar-Luque, Macarena; Agüera, Eduardo; Feijoo, Montserrat; Garcia-Maceira, Fe I; Lillo, Rafael; Vieyra-Reyes, Patricia; Giraldo, Ana I; Luque, Evelio; Drucker-Colín, René; Túnez, Isaac
2017-01-01
Recent findings in experimental autoimmune encephalomyelitis (EAE) suggest that altering certain bacterial populations present in the gut may lead to a proinflammatory condition, that could result in the development of multiple sclerosis (MS). Also, Reactive Oxygen Species seem to be involved in the course of MS. In this study, it has been aimed to relate all these variables starting from an analysis of the lipopolysaccharide (LPS) and LPS-binding protein (LBP) with the determination of parameters related to oxidative stress in the blood, brain and spinal cord. For this purpose, samples obtained from EAE rats and relapsing-remitting (RRMS) MS patients were used. In addition, EAE rats were treated with Natalizumab, N-acetyl-cysteine and dimethyl fumarate. Natalizumab was also employed in RRMS. The results of this study revealed an improvement in the clinical symptoms of the EAE and MS with the treatments, as well as a reduction in the oxidative stress parameters and in LBP. Correlations between the clinical variables of the disease, i.e. oxidative damage and LBP, were established. Although the conclusions of this research are indeed relevant, further investigation would be necessary to establish the intrinsic mechanisms of the MS-oxidative stress-microbiota relationship.
Poisson, Laila M.; Suhail, Hamid; Singh, Jaspreet; Datta, Indrani; Denic, Aleksandar; Labuzek, Krzysztof; Hoda, Md Nasrul; Shankar, Ashray; Kumar, Ashok; Cerghet, Mirela; Elias, Stanton; Mohney, Robert P.; Rodriguez, Moses; Rattan, Ramandeep; Mangalam, Ashutosh K.; Giri, Shailendra
2015-01-01
We performed untargeted metabolomics in plasma of B6 mice with experimental autoimmune encephalitis (EAE) at the chronic phase of the disease in search of an altered metabolic pathway(s). Of 324 metabolites measured, 100 metabolites that mapped to various pathways (mainly lipids) linked to mitochondrial function, inflammation, and membrane stability were observed to be significantly altered between EAE and control (p < 0.05, false discovery rate <0.10). Bioinformatics analysis revealed six metabolic pathways being impacted and altered in EAE, including α-linolenic acid and linoleic acid metabolism (PUFA). The metabolites of PUFAs, including ω-3 and ω-6 fatty acids, are commonly decreased in mouse models of multiple sclerosis (MS) and in patients with MS. Daily oral administration of resolvin D1, a downstream metabolite of ω-3, decreased disease progression by suppressing autoreactive T cells and inducing an M2 phenotype of monocytes/macrophages and resident brain microglial cells. This study provides a proof of principle for the application of metabolomics to identify an endogenous metabolite(s) possessing drug-like properties, which is assessed for therapy in preclinical mouse models of MS. PMID:26546682
Kurte, Mónica; Luz-Crawford, Patricia; Vega-Letter, Ana María; Contreras, Rafael A.; Tejedor, Gautier; Elizondo-Vega, Roberto; Martinez-Viola, Luna; Fernández-O’Ryan, Catalina; Figueroa, Fernando E.; Jorgensen, Christian; Djouad, Farida; Carrión, Flavio
2018-01-01
The therapeutic effect of mesenchymal stem cells (MSCs) in multiple sclerosis (MS) and the experimental autoimmune encephalomyelitis (EAE) model has been well described. This effect is, in part, mediated through the inhibition of IL17-producing cells and the generation of regulatory T cells. While proinflammatory cytokines such as IFNγ, TNFα, and IL1β have been shown to enhance MSCs immunosuppressive function, the role of IL17 remains poorly elucidated. The aim of this study was, therefore, to investigate the role of the IL17/IL17R pathway on MSCs immunoregulatory effects focusing on Th17 cell generation in vitro and on Th17-mediated EAE pathogenesis in vivo. In vitro, we showed that the immunosuppressive effect of MSCs on Th17 cell proliferation and differentiation is partially dependent on IL17RA expression. This was associated with a reduced expression level of MSCs immunosuppressive mediators such as VCAM1, ICAM1, and PD-L1 in IL17RA−/− MSCs as compared to wild-type (WT) MSCs. In the EAE model, we demonstrated that while WT MSCs significantly reduced the clinical scores of the disease, IL17RA−/− MSCs injected mice exhibited a clinical worsening of the disease. The disability of IL17RA−/− MSCs to reduce the progression of the disease paralleled the inability of these cells to reduce the frequency of Th17 cells in the draining lymph node of the mice as compared to WT MSCs. Moreover, we showed that the therapeutic effect of MSCs was correlated with the generation of classical Treg bearing the CD4+CD25+Foxp3+ signature in an IL17RA-dependent manner. Our findings reveal a novel role of IL17RA on MSCs immunosuppressive and therapeutic potential in EAE and suggest that the modulation of IL17RA in MSCs could represent a novel method to enhance their therapeutic effect in MS. PMID:29760692
NASA Astrophysics Data System (ADS)
Dasgupta, Anushka
Many studies have suggested that oxidative stress plays an important role in the pathophysiology of both multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Yet, the mechanism by which oxidative stress leads to tissue damage in these disorders is unclear. Recent work from our laboratory has revealed that protein carbonylation, a major oxidative modification caused by severe and/or chronic oxidative stress conditions, is elevated in MS and EAE. Furthermore, protein carbonylation has been shown to alter protein structure leading to misfolding/aggregation. These findings prompted me to hypothesize that carbonylated proteins, formed as a consequence of oxidative stress and/or decreased proteasomal activity, promote protein aggregation to mediate neuronal apoptosis in vitro and in EAE. To test this novel hypothesis, I first characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of myelin-oligodendrocyte glycoprotein (MOG)35-55 peptide-induced EAE in C57BL/6 mice [Chapter 2]. The results show that carbonylated proteins accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. I discovered not only that there is a temporal correlation between protein carbonylation and apoptosis but also that carbonyl levels are significantly higher in apoptotic cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are also present during the course of EAE, which seems to be due to reduced autophagy. In chapter 3, I show that when gluthathione levels are reduced to those in EAE spinal cord, both neuron-like PC12 (nPC12) cells and primary neuronal cultures accumulate carbonylated proteins and undergo cell death (both by necrosis and apoptosis). Immunocytochemical and biochemical studies also revealed a temporal/spatial relationship between carbonylation, protein aggregation and cellular apoptosis. Furthermore, the effectiveness of the carbonyl scavenger hydralazine, histidine hydrazide and methoxylamine at preventing cell death identifies protein carbonyls as the toxic species. Experiments using well-characterized apoptosis inhibitors place protein carbonylation downstream of the mitochondrial transition pore opening and upstream of caspase activation. These in vitro studies demonstrate for the first time a causal relationship between carbonylation, protein aggregation and apoptosis of neurons undergoing oxidative damage. This relationship was further strengthened with the experiments carried out in chapter 4, which show that inhibition of protein aggregation with congo red (CR) or 2-hydroxypropyl beta-cyclodextrin (HPCD) significantly reduced neuronal cell death without affecting the levels of oxidized proteins. Interestingly, large, juxta-nuclear aggregates are not formed upon GSH depletion, suggesting that the small protein aggregates are the cytotoxic species. Together, our data suggest that protein carbonylation causes protein aggregation to mediate neuronal apoptosis in vitro and that a similar mechanism might be contributing to neuronal/glial apoptosis in EAE. These studies provide the basis for testing protein carbonylation scavengers and protein aggregation inhibitors for the treatment of inflammatory demyelinating disorders.
Schuhmann, Michael K; Stegner, David; Berna-Erro, Alejandro; Bittner, Stefan; Braun, Attila; Kleinschnitz, Christoph; Stoll, Guido; Wiendl, Heinz; Meuth, Sven G; Nieswandt, Bernhard
2010-02-01
Calcium (Ca(2+)) signaling in T lymphocytes is essential for a variety of functions, including the regulation of differentiation, gene transcription, and effector functions. A major Ca(2+) entry pathway in nonexcitable cells, including T cells, is store-operated Ca(2+) entry (SOCE), wherein depletion of intracellular Ca(2+) stores upon receptor stimulation causes subsequent influx of extracellular Ca(2+) across the plasma membrane. Stromal interaction molecule (STIM) 1 is the Ca(2+) sensor in the endoplasmic reticulum, which controls this process, whereas the other STIM isoform, STIM2, coregulates SOCE. Although the contribution of STIM molecules and SOCE to T lymphocyte function is well studied in vitro, their significance for immune processes in vivo has remained largely elusive. In this study, we studied T cell function in mice lacking STIM1 or STIM2 in a model of myelin-oligodendrocyte glycoprotein (MOG(35-55))-induced experimental autoimmune encephalomyelitis (EAE). We found that STIM1 deficiency significantly impaired the generation of neuroantigen-specific T cell responses in vivo with reduced Th1/Th17 responses, resulting in complete protection from EAE. Mice lacking STIM2 developed EAE, but the disease course was ameliorated. This was associated with a reduced clinical peak of disease. Deficiency of STIM2 was associated with an overall reduced proliferative capacity of lymphocytes and a reduction of IFN-gamma/IL-17 production by neuroantigen-specific T cells. Neither STIM1 nor STIM2 deficiency altered the phenotype or function of APCs. These findings reveal a crucial role of STIM-dependent pathways for T cell function and activation under autoimmune inflammatory conditions, establishing them as attractive new molecular therapeutic targets for the treatment of inflammatory and autoimmune disorders.
Schiefenhövel, Fridtjof; Immig, Kerstin; Prodinger, Carolin; Bechmann, Ingo
2017-07-01
The concept as to how the brain maintains its immune privilege has initially been based on observations that it is lacking classical lymph vessels and later, the absence of dendritic cells (DC). This view has been challenged by several groups demonstrating drainage/migration of injected tracers and cells into cervical lymph nodes (CLNs) and the presence of brain antigens in CLNs in the course of various brain pathologies. Using CD11c-diphtheria toxin receptor (DTR)-green fluorescent protein (GFP) transgenic (tg) mice, we have shown the existence of CD11c + cells, a main DC marker, within the brain parenchyma. Since injecting tracers or cells may cause barrier artefacts, we have now transplanted wild type (wt)-bone marrow (BM) to lethally irradiated CD11c-DTR-GFP tg mice to restrict the CD11c-DTR-GFP + population to the brain and induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). We observed ramified GFP + cells in the olfactory bulb, the cribriform plate, the nasal mucosa and superficial CLNs. We measured a significant increase of host gfp genomic DNA (gDNA) levels in lymph nodes (LNs) previously described as draining stations for the central nervous system (CNS). Using flow cytometry analysis, we observed an increase of the percentage of CD11c-GFP + cells in brain parenchyma in the course of EAE which is most likely due to an up-regulation of CD11c of resident microglial cells since levels of gfp gDNA did not increase. Our data supports the hypothesis that brain-resident antigen presenting cells (APC) are capable of migrating to CNS-draining LNs to present myelin-associated epitopes.
Xie, Li; Chen, Jing; McMickle, Anthony; Awar, Nadia; Nady, Soad; Sredni, Benjamin; Drew, Paul D; Yu, Shiguang
2014-08-15
We reported that AS101 (organotellurium compound, trichloro(dioxoethylene-O,O') tellurate) inhibited the differentiation of Th17 cells and reduced the production of IL-17 and GM-CSF. In addition, AS101 promoted the production of IL-2 in activated T cells. Flow cytometric analysis showed that AS101 inhibited Th17 cell proliferation. AS101 blocked the activation of transcriptional factor NFAT, Stat3, and RORγt, and increased activation of Erk1/2, suggesting a mechanism of action of AS101. We further demonstrated that AS101 was effective in amelioration of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Finally, by real-time PCR analysis we showed that AS101 reduces the IL-17, IFN-γ, GM-CSF, and IL-6 mRNA expression in inflammatory cells of spinal cords. Additionally, flow cytometry analysis also indicated that the CD4+ T cells and IL-17 and GM-CSF-producing cells were reduced in the spinal cords of AS101 treated mice compared to those treated with PBS. Copyright © 2014 Elsevier B.V. All rights reserved.
Xie, Li; Chen, Jing; McMickle, Anthony; Awar, Nadia; Nady, Soad; Sredni, Benjamin; Drew, Paul D.; Yu, Shiguang
2014-01-01
We reported that AS101 (organotellurium compound, trichloro(dioxoethylene-O,O′) tellurate) inhibited the differentiation of Th17 cells and reduced the production of IL-17 and GM-CSF. In addition, AS101 promoted the production of IL-2 in activated T cells. Flow cytometric analysis showed that AS101 inhibited Th17 cell proliferation. AS101 blocked the activation of transcriptional factor NFAT, Stat3, and RORγt, and increased activation of Erk1/2, suggesting a mechanism of action of AS101. We further demonstrated that AS101 was effective in amelioration of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Finally, by real-time PCR analysis we showed that AS101 reduces the IL-17, IFN-γ, GM-CSF, and IL-6 mRNA expression in inflammatory cells of spinal cords. Additionally, flow cytometry analysis also indicated that the CD4+ T cells and IL-17 and GM-CSF-producing cells were reduced in the spinal cords of AS101 treated mice compared to those treated with PBS. PMID:24975323
Zhang, Yu; Liu, Chang; Wei, Bin; Pei, Gang
2013-01-01
β-Arrestins are well-known regulators and mediators of G protein-coupled receptor signalling, and accumulating evidence reveals that they are functionally involved in inflammation and autoimmune diseases. Of the two β-arrestins, β-arrestin 1 is documented to play regulatory roles in an animal model of multiple sclerosis (MS), whereas the role of β-arrestin 2 is less clear. Here, we show that β-arrestin 2-deficient mice displayed the exacerbated and sustained symptoms of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. At the cellular level, deficiency of β-arrestin 2 led to a decreased number of Foxp3+ CD4+ regulatory T (Treg) cells in peripheral lymphoid organs of EAE mice. Consistently, our in vitro observations also revealed that loss of β-arrestin 2 impaired the conversion of Foxp3− CD4+ T cells into Foxp3+ CD4+ inducible Treg cells. Taken together, our data suggest that β-arrestin 2 plays a regulatory role in MS, that is opposite to that of β-arrestin 1, in autoimmune diseases such as MS, which is at least partially through regulation of iTreg cell differentiation. PMID:23859136
Terrazas, Cesar; de Dios Ruiz-Rosado, Juan; Amici, Stephanie A.; Jablonski, Kyle A.; Martinez-Saucedo, Diana; Webb, Lindsay M.; Cortado, Hanna; Robledo-Avila, Frank; Oghumu, Steve; Satoskar, Abhay R.; Rodriguez-Sosa, Miriam; Terrazas, Luis I.; Guerau-de-Arellano, Mireia; Partida-Sánchez, Santiago
2017-01-01
Helminths cause chronic infections and affect the immune response to unrelated inflammatory diseases. Although helminths have been used therapeutically to ameliorate inflammatory conditions, their anti-inflammatory properties are poorly understood. Alternatively activated macrophages (AAMϕs) have been suggested as the anti-inflammatory effector cells during helminth infections. Here, we define the origin of AAMϕs during infection with Taenia crassiceps, and their disease-modulating activity on the Experimental Autoimmune Encephalomyelitis (EAE). Our data show two distinct populations of AAMϕs, based on the expression of PD-L1 and PD-L2 molecules, resulting upon T. crassiceps infection. Adoptive transfer of Ly6C+ monocytes gave rise to PD-L1+/PD-L2+, but not PD-L1+/PD-L2− cells in T. crassiceps-infected mice, demonstrating that the PD-L1+/PD-L2+ subpopulation of AAMϕs originates from blood monocytes. Furthermore, adoptive transfer of PD-L1+/PD-L2+ AAMϕs into EAE induced mice reduced disease incidence, delayed disease onset, and diminished the clinical disability, indicating the critical role of these cells in the regulation of autoimmune disorders. PMID:28094319
Núñez-Iglesias, María J; Novío, Silvia; Almeida-Dias, Antonio; Freire-Garabal, Manuel
2010-12-01
The progression and development of multiple sclerosis (MS) has long been hypothesized to be associated with stress. Benzodiazepines have been observed to reduce negative consequences of stress on the immune system in experimental and clinical models, but there are no data on their effects on MS, or experimental autoimmune encephalomyelitis (EAE), a model for human MS. We designed experiments conducted to ascertain whether alprazolam could modify the clinical, histological and neuroendocrine manifestations of acute EAE in Lewis rats exposed to a chronic auditory stressor. EAE was induced by injection of an emulsion of MBP and complete Freund's adjuvant containing Mycobacterium tuberculosis H37Ra. Stress application and treatment with drugs (placebo or alprazolam) were initiated 5days before inoculation and continued daily for the duration of the experiment (days 14 or 34 postinoculation).Our results show significant increases in the severity of neurological signs, the histological lesions of the spinal cord (inflammation), and the corticosterone plasmatic levels in stressed rats compared to those non-stressed ones. Treatment with alprazolam reversed the adverse effects of stress. These findings could have clinical implications in patients suffering from MS treated with benzodiazepines, so besides the psychopharmacological properties of alprazolam against stress, it has beneficial consequences on EAE. Copyright © 2010 Elsevier Inc. All rights reserved.
Dang, Shipeng; Xu, Huanbai; Xu, Congfeng; Cai, Wei; Li, Qian; Cheng, Yiji; Jin, Min; Wang, Ru-Xing; Peng, Yongde; Zhang, Yi; Wu, Changping; He, Xiaozhou; Wan, Bing; Zhang, Yanyun
2014-01-01
Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4+ T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy. PMID:24905997
Dang, Shipeng; Xu, Huanbai; Xu, Congfeng; Cai, Wei; Li, Qian; Cheng, Yiji; Jin, Min; Wang, Ru-Xing; Peng, Yongde; Zhang, Yi; Wu, Changping; He, Xiaozhou; Wan, Bing; Zhang, Yanyun
2014-07-01
Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4(+) T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy.
Gu, Zhen; Li, Fengqiao; Zhang, Yi Ping; Shields, Lisa B E; Hu, Xiaoling; Zheng, Yiyan; Yu, Panpan; Zhang, Yongjie; Cai, Jun; Vitek, Michael P; Shields, Christopher B
2013-04-01
Considering demyelination is the pathological hallmark of multiple sclerosis (MS), reducing demyelination and/or promoting remyelination is a practical therapeutic strategy to improve functional recovery for MS. An apolipoprotein E (apoE)-mimetic peptide COG112 has previously demonstrated therapeutic efficacy on functional and histological recovery in a mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. In the current study, we further investigated whether COG112 promotes remyelination and improves functional recovery in lysolecithin induced focal demyelination in the white matter of spinal cord in mice. A focal demyelination model was created by stereotaxically injecting lysolecithin into the bilateral ventrolateral funiculus (VLF) of T8 and T9 mouse spinal cords. Immediately after lysolecithin injection mice were treated with COG112, prefix peptide control or vehicle control for 21 days. The locomotor function of the mice was measured by the beam walking test and Basso Mouse Scale (BMS) assessment. The nerve transmission of the VLF of mice was assessed in vivo by transcranial magnetic motor evoked potentials (tcMMEPs). The histological changes were also examined by by eriochrome cyanine staining, immunohistochemistry staining and electron microscopy (EM) method. The area of demyelination in the spinal cord was significantly reduced in the COG112 group. EM examination showed that treatment with COG112 increased the thickness of myelin sheaths and the numbers of surviving axons in the lesion epicenter. Locomotor function was improved in COG112 treated animals when measured by the beam walking test and BMS assessment compared to controls. TcMMEPs also demonstrated the COG112-mediated enhancement of amplitude of evoked responses. The apoE-mimetic COG112 demonstrates a favorable combination of activities in suppressing inflammatory response, mitigating demyelination and in promoting remyelination and associated functional recovery in animal model of CNS demyelination. These data support that apoE-mimetic strategy may represent a promising therapy for MS and other demyelination disorders.
Stanisavljević, Suzana; Dinić, Miroslav; Jevtić, Bojan; Đedović, Neda; Momčilović, Miljana; Đokić, Jelena; Golić, Nataša; Mostarica Stojković, Marija; Miljković, Đorđe
2018-01-01
Albino Oxford (AO) rats are extremely resistant to induction of experimental autoimmune encephalomyelitis (EAE). EAE is an animal model of multiple sclerosis, a chronic inflammatory disease of the central nervous system (CNS), with established autoimmune pathogenesis. The autoimmune response against the antigens of the CNS is initiated in the peripheral lymphoid tissues after immunization of AO rats with CNS antigens. Subsequently, limited infiltration of the CNS occurs, yet without clinical sequels. It has recently become increasingly appreciated that gut-associated lymphoid tissues (GALT) and gut microbiota play an important role in regulation and propagation of encephalitogenic immune response. Therefore, modulation of AO gut microbiota by antibiotics was performed in this study. The treatment altered composition of gut microbiota in AO rats and led to a reduction in the proportion of regulatory T cells in Peyer's patches, mesenteric lymph nodes, and in lymph nodes draining the site of immunization. Upregulation of interferon-γ and interleukin (IL)-17 production was observed in the draining lymph nodes. The treatment led to clinically manifested EAE in AO rats with more numerous infiltrates and higher production of IL-17 observed in the CNS. Importantly, transfer of AO gut microbiota into EAE-prone Dark Agouti rats ameliorated the disease. These results clearly imply that gut microbiota is an important factor in AO rat resistance to EAE and that gut microbiota transfer is an efficacious way to treat CNS autoimmunity. These findings also support the idea that gut microbiota modulation has a potential as a future treatment of multiple sclerosis.
Medina-Fernández, Francisco J; Luque, Evelio; Aguilar-Luque, Macarena; Agüera, Eduardo; Feijóo, Montserrat; García-Maceira, Fe I; Escribano, Begoña M; Pascual-Leone, Álvaro; Drucker-Colín, René; Túnez, Isaac
2017-01-15
Experimental autoimmune encephalomyelitis (EAE) is considered a valid experimental model for multiple sclerosis, a chronic neuroinflammatory condition of the central nervous system. Additionally, some evidence has shown that some microbial products such as the bacterial lipopolysaccharide could lead to the activation of reactive immune cells, triggering neuroinflammation. Several studies have found that transcranial magnetic stimulation (TMS) may exert a neuroprotective effect. Therefore, we aimed to assess the effect of TMS on the neuroinflammation occurring in EAE. A total of 44 male Dark Agouti rats were used. EAE induction was performed administering subcutaneously at the dorsal base of the tail a single dose of myelin oligodendrocyte glycoprotein. Clinical evaluation of motor symptoms was performed. Brain and spinal cord were collected and analyzed for nitric oxide, bacterial lipopolysaccharide and lipopolysaccharide-binding protein. We also carried out a histologic exam, which included an astrocyte immunostaining and Nissl staining for the assessment of brain cell density and pyknotic nuclei. TMS effectively ameliorated motor impairment secondary to EAE. This form of magnetic field was capable of decreasing the proliferation of astrocytes as a response to the autoimmune attack, reducing the content of nitric oxide, bacterial lipopolysaccharide and lipopolysaccharide-binding protein in central nervous system. Moreover, in treated animals, brain cell density was improved and the number of pyknotic nuclei was decreased. Transcranial magnetic stimulation modifies astrocytosis, cell density and lipopolysaccharide levels in EAE. These results suggest that TMS could be a promising treatment for neuroinflammatory conditions such as multiple sclerosis. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Raphael, Itay; Mahesula, Swetha; Purkar, Anjali; Black, David; Catala, Alexis; Gelfond, Jonathon A. L.; Forsthuber, Thomas G.; Haskins, William E.
2014-09-01
Central nervous system-specific proteins (CSPs), transported across the damaged blood-brain-barrier (BBB) to cerebrospinal fluid (CSF) and blood (serum), might be promising diagnostic, prognostic and predictive protein biomarkers of disease in individual multiple sclerosis (MS) patients because they are not expected to be present at appreciable levels in the circulation of healthy subjects. We hypothesized that microwave & magnetic (M2) proteomics of CSPs in brain tissue might be an effective means to prioritize putative CSP biomarkers for future immunoassays in serum. To test this hypothesis, we used M2 proteomics to longitudinally assess CSP expression in brain tissue from mice during experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Confirmation of central nervous system (CNS)-infiltrating inflammatory cell response and CSP expression in serum was achieved with cytokine ELISPOT and ELISA immunoassays, respectively, for selected CSPs. M2 proteomics (and ELISA) revealed characteristic CSP expression waves, including synapsin-1 and α-II-spectrin, which peaked at day 7 in brain tissue (and serum) and preceded clinical EAE symptoms that began at day 10 and peaked at day 20. Moreover, M2 proteomics supports the concept that relatively few CNS-infiltrating inflammatory cells can have a disproportionally large impact on CSP expression prior to clinical manifestation of EAE.
Hidaka, Yoshihiko; Inaba, Yuji; Matsuda, Kazuyuki; Itoh, Makoto; Kaneyama, Tomoki; Nakazawa, Yozo; Koh, Chang-Sung; Ichikawa, Motoki
2014-05-15
Multiple sclerosis (MS) is a chronic demyelinating disease often displaying a relapsing-remitting course of neurological manifestations that is mimicked by experimental autoimmune encephalomyelitis (EAE) in animal models of MS. In particular, NOD mice immunized with myelin oligodendrocyte glycoprotein peptide 35-55 develop chronic relapsing-remitting EAE (CREAE). To elucidate the mechanisms that cause MS relapse, we investigated the histopathology and cytokine production of spleen cells and mRNA expression levels in the central nervous system (CNS) of CREAE mice. During the first attack, inflammatory cell infiltration around small vessels and in the subarachnoid space was observed in the spinal cord. Spleen cell production and mRNA expression in the CNS of several cytokines, including IFN-γ, TNF-α, IL-6, IL-17, and CC chemokine ligand 2 (CCL2), were higher in CREAE mice than in controls. Afterwards, parenchymal infiltration and demyelination were observed histologically in the spinal cord and corresponded with the more severe clinical symptoms of the first and second relapses. IL-17 and CCL2, but not IFN-γ, TNF-α, or IL-6, were also produced by spleen cells during recurrences. Our results suggested that the immune mechanisms in relapses were different from those in the first attack for CREAE. Further investigation of CREAE mechanisms may provide important insights into successful therapies for human relapsing-remitting MS. Copyright © 2014 Elsevier B.V. All rights reserved.
Wasser, Beatrice; Pramanik, Gautam; Hess, Moritz; Klein, Matthias; Luessi, Felix; Dornmair, Klaus; Bopp, Tobias; Zipp, Frauke; Witsch, Esther
2016-12-01
The importance of CD11c + antigen-presenting cells (APCs) in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) is well accepted and the gate keeper function of perivascular CD11c + APCs has been demonstrated. CD11c can be expressed by APCs from external sources or by central nervous system (CNS) resident APCs such as microglia. Yet, changes in the gene expression pattern of CNS CD11c + APCs during disease are still unclear and differentially expressed genes might play a decisive role in EAE progression. Due to their low numbers in the diseased brain and due to the absence of considerable numbers in the healthy CNS, analysis of CNS CD11c + cells is technically difficult. To ask whether the CD11c + APC population contributes to remission of EAE disease, we used Illumina deep mRNA sequencing (RNA-Seq) and quantitative real time polymerase chain reaction (qRT-PCR) analyses to identify the transcriptome of CD11c + APCs during disease course. We identified a battery of genes that were significantly regulated during the exacerbation of the disease compared to remission and relapse. Three of these genes, Arginase-1, Chi3l3 and Ms4a8a, showed a higher expression at the exacerbation than at later time points during the disease, both in SJL/J and in C57BL/6 mice, and could be attributed to alternatively activated APCs. Expression of Arginase-1, Chi3l3 and Ms4a8a genes was linked to the disease phase of EAE rather than to disease score. Expression of these genes suggested that APCs resembling alternatively activated macrophages are involved during the first wave of neuroinflammation and can be directly associated with the disease progress.
O'Connor, Richard A; Li, Xujian; Blumerman, Seth; Anderton, Stephen M; Noelle, Randolph J; Dalton, Dyana K
2012-03-01
CFA is a strong adjuvant capable of stimulating cellular immune responses. Paradoxically, adjuvant immunotherapy by prior exposure to CFA or live mycobacteria suppresses the severity of experimental autoimmune encephalomyelitis (EAE) and spontaneous diabetes in rodents. In this study, we investigated immune responses during adjuvant immunotherapy of EAE. Induction of EAE in CFA-pretreated mice resulted in a rapid influx into the draining lymph nodes (dLNs) of large numbers of CD11b(+)Gr-1(+) myeloid cells, consisting of immature cells with ring-shaped nuclei, macrophages, and neutrophils. Concurrently, a population of mycobacteria-specific IFN-γ-producing T cells appeared in the dLNs. Immature myeloid cells in dLNs expressed the chemokines CXCL10 and CXCL16 in an IFN-γ-dependent manner. Subsequently, CD4(+) T cells coexpressing the cognate chemokine receptors CXCR3 and CXCR6 and myelin oligodendrocyte glycoprotein (MOG)-specific CD4(+) T cells accumulated within the chemokine-expressing dLNs, rather than within the CNS. Migration of CD4(+) T cells toward dLN cells was abolished by depleting the CD11b(+) cells and was also mediated by the CD11b(+) cells alone. In addition to altering the distribution of MOG-specific T cells, adjuvant treatment suppressed development of MOG-specific IL-17. Thus, adjuvant immunotherapy of EAE requires IFN-γ, which suppresses development of the Th17 response, and diverts autoreactive T cells away from the CNS toward immature myeloid cells expressing CXCL10 and CXCL16 in the lymph nodes.
Starossom, Sarah C.; Veremeyko, Tatyana; Yung, Amanda W. Y.; Dukhinova, Marina; Au, Cheryl; Lau, Alexander Y.; Weiner, Howard L.; Ponomarev, Eugene D.
2015-01-01
Rationale Platelets are known to participate in vascular pathologies; however, their role in neuroinflammatory diseases such as multiples sclerosis (MS) is unknown. Autoimmune CD4 T cells have been the main focus of studies of MS, although the factors that regulate T cell differentiation towards pathogenic Th1/Th17 phenotypes are not completely understood. Objectives We investigated the role of platelets in the modulation of CD4 T cell functions in MS patients and in mice with experimental autoimmune encephalitis (EAE), an animal model for MS. Methods and Results We found that early in MS and EAE platelets degranulated and produced a number of soluble factors serotonin (5HT), PF4 and PAF, which specifically stimulated differentiation of T cells towards pathogenic Th1, Th17 and IFN-γ/IL-17-producing CD4 T cells. At the later stages of MS and EAE platelets became exhausted in their ability to produce proinflammatory factors and stimulate CD4 T cells, but substantially increased their ability to form aggregates with CD4 T cells. Formation of platelet-CD4 T cell aggregates involved interaction of CD62P on activated platelets with adhesion molecule CD166 on activated CD4 T cells, contributing to downmodulation of CD4 T cell activation, proliferation and production of IFN-γ. Blocking of formation of platelet-CD4 T cell aggregates during progression of EAE substantially enhanced proliferation of CD4 T cell in the CNS and the periphery leading to exacerbation of the disease. Conclusion Our study indicates differential roles for platelets in the regulation of functions of pathogenic CD4 T cells during initiation and progression of CNS autoimmune inflammation. PMID:26294656
Lubina-Dąbrowska, Natalia; Stepień, Adam; Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Langfort, Józef; Chalimoniuk, Małgorzata
2017-08-01
The aim of this study was to investigate the effects of interferon (IFN)-β1a and IFN-β1b treatment on inflammatory factors and myelin protein levels in the brain cortex of the Lewis rat experimental autoimmune encephalomyelitis (EAE), animal model of multiple sclerosis. To induce EAE, rat were immunized with inoculums containing spinal cord guinea pig homogenized in phosphate-buffered saline and emulsified in Freund's complete adjuvant containing 110 µg of the appropriate antigen in 100 µl of an emulsion and additionally 4-mg/ml Mycobacterium tuberculosis (H37Ra). The rats were treated three times per week with subcutaneous applications of 300,000 units IFN-β1a or IFN-β1b. The treatments were started 8 days prior to immunization and continued until day 14 after immunization. The rats were killed on the 14th day of the experiment. EAE induced dramatic increase in interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-concentrations and inducible nitric oxide synthase (iNOS) expression in the brain, which closely corresponded to the course of neurological symptoms and the loss of weight. Both IFN-β1b and IFN-β1a treatments inhibited the pro-inflammatory cytokines (IL-6, IL-1β, TNF-α and IFN-γ), decreased the activation of astrocytes, increased the myelin protein level in the brain cortex, and improved the neurological status of EAE rats by different mechanisms; IFN-β1a reduced iNOS expression, at least in part, by the enhancement of IL-10, while IFN-β1b diminished IL-10 concentration and did not decrease EAE-induced iNOS expression.
IFNβ secreted by microglia mediates clearance of myelin debris in CNS autoimmunity.
Kocur, Magdalena; Schneider, Reiner; Pulm, Ann-Kathrin; Bauer, Jens; Kropp, Sonja; Gliem, Michael; Ingwersen, Jens; Goebels, Norbert; Alferink, Judith; Prozorovski, Timour; Aktas, Orhan; Scheu, Stefanie
2015-04-03
Multiple sclerosis (MS) is a chronic demyelinating disorder of the central nervous system (CNS) leading to progressive neurological disability. Interferon β (IFNβ) represents a standard treatment for relapsing-remitting MS and exogenous administration of IFNβ exhibits protective effects in experimentally induced CNS autoimmunity. Also, genetic deletion of IFNβ in mice leads to an aggravation of disease symptoms in the MS model of experimental autoimmune encephalomyelitis (EAE). However, neither the underlying mechanisms mediating the beneficial effects nor the cellular source of IFNβ have been fully elucidated. In this report, a subpopulation of activated microglia was identified as the major producers of IFNβ in the CNS at the peak of EAE using an IFNβ-fluorescence reporter mouse model. These IFNβ expressing microglia specifically localized to active CNS lesions and were associated with myelin debris in demyelinated cerebellar organotypic slice cultures (OSCs). In response to IFNβ microglia showed an enhanced capacity to phagocytose myelin in vitro and up-regulated the expression of phagocytosis-associated genes. IFNβ treatment was further sufficient to stimulate association of microglia with myelin debris in OSCs. Moreover, IFNβ-producing microglia mediated an enhanced removal of myelin debris when co-transplanted onto demyelinated OSCs as compared to IFNβ non-producing microglia. These data identify activated microglia as the major producers of protective IFNβ at the peak of EAE and as orchestrators of IFNβ-induced clearance of myelin debris.
Aggregation of MBP in chronic demyelination
Frid, Kati; Einstein, Ofira; Friedman-Levi, Yael; Binyamin, Orli; Ben-Hur, Tamir; Gabizon, Ruth
2015-01-01
Objectives Misfolding of key disease proteins to an insoluble state is associated with most neurodegenerative conditions, such as prion, Parkinson, and Alzheimer’s diseases. In this work, and by studying animal models of multiple sclerosis, we asked whether this is also the case for myelin basic protein (MBP) in the late and neurodegenerative phases of demyelinating diseases. Methods To this effect, we tested whether MBP, an essential myelin component, present prion-like properties in animal models of MS, as is the case for Cuprizone-induced chronic demyelination or chronic phases of Experimental Autoimmune Encephalomyelitis (EAE). Results We show here that while total levels of MBP were not reduced following extensive demyelination, part of these molecules accumulated thereafter as aggregates inside oligodendrocytes or around neuronal cells. In chronic EAE, MBP precipitated concomitantly with Tau, a marker of diverse neurodegenerative conditions, including MS. Most important, analysis of fractions from Triton X-100 floatation gradients suggest that the lipid composition of brain membranes in chronic EAE differs significantly from that of naïve mice, an effect which may relate to oxidative insults and subsequently prevent the appropriate insertion and compaction of new MBP in the myelin sheath, thereby causing its misfolding and aggregation. Interpretation Prion-like aggregation of MBP following chronic demyelination may result from an aberrant lipid composition accompanying this pathological status. Such aggregation of MBP may contribute to neuronal damage that occurs in the progressive phase of MS. PMID:26273684
Noor, Neveen A; Fahmy, Heba M; Mohammed, Faten F; Elsayed, Anwar A; Radwan, Nasr M
2015-01-01
Multiple sclerosis (MS) is the major, immune-mediated, demyelinating neurodegenerative disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model of MS. The aim of the present study was to investigate the protective and ameliorative effects of N. sativa seeds (2.8 g/kg body weight) in EAE-induced Wistar rats. EAE-induced rats were divided into: 1- EAE-induced rats (“EAE” group). 2- “N. sativa + EAE” group received daily oral administration of N. sativa 2 weeks prior EAE induction until the end of the experiment. 3- “EAE + N. sativa” group received daily oral administration of N. sativa after the appearance of first clinical signs until the end of the experiment. All animals were decapitated at the 28th day post EAE-induction. EAE was investigated using histopathological, immunohistochemical and ultrastructural examinations in addition to determination of some oxidative stress parameters in the cerebellum and medulla. N. sativa suppressed inflammation observed in EAE-induced rats. In addition, N. sativa enhanced remyelination in the cerebellum. Moreover, N. sativa reduced the expression of transforming growth factor beta 1 (TGF β1). N. sativa seeds could provide a promising agent effective in both the protection and treatment of EAE. PMID:26261504
Phosphorus-Based Dendrimer ABP Treats Neuroinflammation by Promoting IL-10-Producing CD4(+) T Cells.
Hayder, Myriam; Varilh, Marjorie; Turrin, Cédric-Olivier; Saoudi, Abdelhadi; Caminade, Anne-Marie; Poupot, Rémy; Liblau, Roland S
2015-11-09
Dendrimers are polyfunctional nano-objects of perfectly defined structure that can provide innovative alternatives for the treatment of chronic inflammatory diseases, including multiple sclerosis (MS). To investigate the efficiency of a recently described amino-bis(methylene phosphonate)-capped ABP dendrimer as a potential drug candidate for MS, we used the classical mouse model of MOG35-55-induced experimental autoimmune encephalomyelitis (EAE). Our study provides evidence that the ABP dendrimer prevents the development of EAE and inhibits the progression of established disease with a comparable therapeutic benefit as the approved treatment Fingolimod. We also show that the ABP dendrimer redirects the pathogenic myelin-specific CD4(+) T cell response toward IL-10 production.
USP15 regulates type I interferon response and is required for pathogenesis of neuroinflammation.
Torre, Sabrina; Polyak, Maria J; Langlais, David; Fodil, Nassima; Kennedy, James M; Radovanovic, Irena; Berghout, Joanne; Leiva-Torres, Gabriel A; Krawczyk, Connie M; Ilangumaran, Subburaj; Mossman, Karen; Liang, Chen; Knobeloch, Klaus-Peter; Healy, Luke M; Antel, Jack; Arbour, Nathalie; Prat, Alexandre; Majewski, Jacek; Lathrop, Mark; Vidal, Silvia M; Gros, Philippe
2017-01-01
Genes and pathways in which inactivation dampens tissue inflammation present new opportunities for understanding the pathogenesis of common human inflammatory diseases, including inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. We identified a mutation in the gene encoding the deubiquitination enzyme USP15 (Usp15 L749R ) that protected mice against both experimental cerebral malaria (ECM) induced by Plasmodium berghei and experimental autoimmune encephalomyelitis (EAE). Combining immunophenotyping and RNA sequencing in brain (ECM) and spinal cord (EAE) revealed that Usp15 L749R -associated resistance to neuroinflammation was linked to dampened type I interferon responses in situ. In hematopoietic cells and in resident brain cells, USP15 was coexpressed with, and functionally acted together with the E3 ubiquitin ligase TRIM25 to positively regulate type I interferon responses and to promote pathogenesis during neuroinflammation. The USP15-TRIM25 dyad might be a potential target for intervention in acute or chronic states of neuroinflammation.
Ongoing Oxidative Stress Causes Subclinical Neuronal Dysfunction in the Recovery Phase of EAE
Radbruch, Helena; Bremer, Daniel; Guenther, Robert; Cseresnyes, Zoltan; Lindquist, Randall; Hauser, Anja E.; Niesner, Raluca
2016-01-01
Most multiple sclerosis (MS) patients develop over time a secondary progressive disease course, characterized histologically by axonal loss and atrophy. In early phases of the disease, focal inflammatory demyelination leads to functional impairment, but the mechanism of chronic progression in MS is still under debate. Reactive oxygen species generated by invading and resident central nervous system (CNS) macrophages have been implicated in mediating demyelination and axonal damage, but demyelination and neurodegeneration proceed even in the absence of obvious immune cell infiltration, during clinical recovery in chronic MS. Here, we employ intravital NAD(P)H fluorescence lifetime imaging to detect functional NADPH oxidases (NOX1–4, DUOX1, 2) and, thus, to identify the cellular source of oxidative stress in the CNS of mice affected by experimental autoimmune encephalomyelitis (EAE) in the remission phase of the disease. This directly affects neuronal function in vivo, as monitored by cellular calcium levels using intravital FRET–FLIM, providing a possible mechanism of disease progression in MS. PMID:27014271
Weiss, Jonathan M.; Bilate, Angelina M.; Gobert, Michael; Ding, Yi; Curotto de Lafaille, Maria A.; Parkhurst, Christopher N.; Xiong, Huizhong; Dolpady, Jayashree; Frey, Alan B.; Ruocco, Maria Grazia; Yang, Yi; Floess, Stefan; Huehn, Jochen; Oh, Soyoung; Li, Ming O.; Niec, Rachel E.; Rudensky, Alexander Y.; Dustin, Michael L.; Littman, Dan R.
2012-01-01
Foxp3 activity is essential for the normal function of the immune system. Two types of regulatory T (T reg) cells express Foxp3, thymus-generated natural T reg (nT reg) cells, and peripherally generated adaptive T reg (iT reg) cells. These cell types have complementary functions. Until now, it has not been possible to distinguish iT reg from nT reg cells in vivo based solely on surface markers. We report here that Neuropilin 1 (Nrp1) is expressed at high levels by most nT reg cells; in contrast, mucosa-generated iT reg and other noninflammatory iT reg cells express low levels of Nrp1. We found that Nrp1 expression is under the control of TGF-β. By tracing nT reg and iT reg cells, we could establish that some tumors have a very large proportion of infiltrating iT reg cells. iT reg cells obtained from highly inflammatory environments, such as the spinal cords of mice with spontaneous autoimmune encephalomyelitis (EAE) and the lungs of mice with chronic asthma, express Nrp1. In the same animals, iT reg cells in secondary lymphoid organs remain Nrp1low. We also determined that, in spontaneous EAE, iT reg cells help to establish a chronic phase of the disease. PMID:22966001
Severe oxidative stress in an acute inflammatory demyelinating model in the rhesus monkey.
Dunham, Jordon; van de Vis, Reinofke; Bauer, Jan; Wubben, Jacqueline; van Driel, Nikki; Laman, Jon D; 't Hart, Bert A; Kap, Yolanda S
2017-01-01
Oxidative stress is increasingly implicated as a co-factor of tissue injury in inflammatory/demyelinating disorders of the central nervous system (CNS), such as multiple sclerosis (MS). While rodent experimental autoimmune encephalomyelitis (EAE) models diverge from human demyelinating disorders with respect to limited oxidative injury, we observed that in a non-human primate (NHP) model for MS, namely EAE in the common marmoset, key pathological features of the disease were recapitulated, including oxidative tissue injury. Here, we investigated the presence of oxidative injury in another NHP EAE model, i.e. in rhesus macaques, which yields an acute demyelinating disease, which may more closely resemble acute disseminated encephalomyelitis (ADEM) than MS. Rhesus monkey EAE diverges from marmoset EAE by abundant neutrophil recruitment into the CNS and destructive injury to white matter. This difference prompted us to investigate to which extent the oxidative pathway features elicited in MS and marmoset EAE are reflected in the acute rhesus monkey EAE model. The rhesus EAE brain was characterized by widespread demyelination and active lesions containing numerous phagocytic cells and to a lesser extent T cells. We observed induction of the oxidative stress pathway, including injury, with a predilection of p22phox expression in neutrophils and macrophages/microglia. In addition, changes in iron were observed. These results indicate that pathogenic mechanisms in the rhesus EAE model may differ from the marmoset EAE and MS brain due to the neutrophil involvement, but may in the end lead to similar induction of oxidative stress and injury.
Cytokinetics of adult rat SVZ after EAE.
Sajad, Mir; Chawla, Raman; Zargan, Jamil; Umar, Sadiq; Sadaqat, Mir; Khan, Haider A
2011-01-31
Cytokinetics regulating cell cycle division can be modulated by several endogenous factors. EAE (experimental autoimmune encephalomyelitis) increases proliferation of progenitor cells in the subventricular zone (SVZ). Using cumulative and single S phase labeling with 5-bromo-2-deoxyuridine, we examined cell cycle kinetics of neural progenitor cells in the SVZ after EAE. 20% of the SVZ cell population was proliferating in adjuvant control rats. However, EAE significantly increased them up to 27% and these cells had a cell cycle length (TC) of 15.6h, significantly (P<0.05) shorter than the 19 h TC in non EAE SVZ cells. Few TUNEL (+) cells were detected in the SVZ cells of adjuvant controls. EAE increased (P<0.05) TUNEL (+) nuclei in SVZ suggesting early stage progenitor cell death. Cell cycle phase analysis revealed that EAE substantially shortened the length of the G1 phase (9.6h) compared with the G1 phase of 12.25 h in adjuvant control SVZ cells (P<0.05). This reduction in G1 contributes to EAE-induced reduction of TC because no significant changes were detected on the length of S, G2 and M phases between the two groups. Our results show a surge in proliferating progenitor cells in the SVZ with concomitant increase in apoptotic cell death after EAE. Furthermore, increase in the SVZ proliferation contributes to EAE-induced neurogenesis and this increase is regulated by shortening the G1 phase. Our investigation suggests the activation of quiescent cells in SVZ to generate actively proliferating progenitors. Moreover, the increase in the cell death in proliferating population may contribute towards negative regulation of proliferative cell number and hence diminished regenerative capacity of CNS following EAE. Copyright © 2010 Elsevier B.V. All rights reserved.
Nosratabadi, Reza; Rastin, Maryam; Sankian, Mojtaba; Haghmorad, Dariush; Tabasi, Nafiseh; Zamani, Shahrzad; Aghaee, Azita; Salehipour, Zohre; Mahmoudi, Mahmoud
2016-05-01
Multiple sclerosis (MS) is a central nervous system disorder mainly characterized by inflammation, demyelination and axonal injury. Anti-inflammatory agents can be used to ameliorate the disease process. Hypericum perforatum L or St. John's wort is widely used as an anti-depressant and anti-inflammatory remedy in traditional and herbal medicine. Based on St. John's wort properties, the therapeutic potentials of an H. perforatum extract (HPE) and a single component, hyperforin were evaluated for effectiveness against MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), an animal model for human multiple sclerosis. Female C57BL/6 mice were immunized with specific antigen MOG35-55 and then administered different doses of hyperforin or HPE post-immunization. Clinical symptoms/other relevant parameters were assessed daily. Histological analysis of the spinal cord was performed. T-cell proliferative activity was also evaluated using a BrdU assay. The effect of hyperforin on regulatory T-cells (Treg cells) was assessed using flow cytometry. The results indicate hyperforin and HPE reduced the incidence and severity of EAE, an outcome that closely correlated with an inhibition of pathological features (leukocyte infiltration and demyelination) and antigen-specific T-cell proliferation. The study also showed that hyperforin caused increased Treg cell levels in the spleen. These results indicated that hyperforin and HPE could attenuate EAE autoimmune responses by inhibiting immune cell infiltration and expansion of Treg cell and could eventually be considered as a potential candidate for use in the treatment of MS.
Seifaddinipour, Maryam; Farghadani, Reyhaneh; Namvar, Farideh; Mohamad, Jamaludin; Abdul Kadir, Habsah
2018-01-05
Pistachio ( Pistacia vera L.) hulls (PVLH) represents a significant by-product of industrial pistachio processing that contains high amounta of phenolic and flavonoid compounds known to act as antioxidants. The current study was designed to evaluate the anti-tumor and anti-angiogenic potentials of PVLH extracts. The cytotoxic effects of hexane, ethyl acetate, methanol, and water PVLH extracts toward human colon cancer (HT-29 and HCT-116), breast adenocarcinoma (MCF-7), lung adenocarcinoma (H23), liver hepatocellular carcinoma (HepG2), cervical cancer (Ca Ski), and normal fibroblast (BJ-5ta) cells were assessed using a MTT cell viability assay. Apoptosis induction was evaluated through the different nuclear staining assays and confirmed by flow cytometry analysis. Anti-angiogenic activities were also determined using chorioallantoic membrane (CAM) assay. PVLH ethyl acetate extracts (PVLH-EAE) demonstrated a suppressive effect with an IC 50 value of 21.20 ± 1.35, 23.00 ± 1.2 and 25.15 ± 1.85 µg/mL against MCF-7, HT-29 and HCT-116, respectively, after 72 h of treatment. Morphological assessment and flow cytometry analysis showed the potential of PVLH-EAE to induce apoptosis. PVLH-EAE at the highest concentration demonstrated significant inhibition of angiogenesis as comparing with control group. Also the expression of Bax increased and the expression of Bcl-2 decreased in treated MCF-7 cells. Thus, the apoptosis induction and angiogenesis potential of PVLH-EAE make it to be the most suitable for further cancer research study to deal with selective antitumor active substances to human cancers especially breast cancer.
Hu, Xuguang; Wen, Ya; Liu, Shasha; Luo, Jiabo; Tan, Xiaomei; Li, Zhiheng; Lu, Xinhua; Long, Xiaoying
2015-04-14
The anaphylactoid reactions induced by andrographis injection have repeatedly been reported. The aim of our study was to evaluate the immuno-sensitizing potential of extracts from Andrographis paniculata Nees and to screen for the constituent that is responsible for inducing the anaphylactoid reaction. In the direct popliteal lymph node assay (D-PLNA), female BALB/c mice were randomly divided into several groups with ten mice per group according to the experiment design, the right hind footpads of mice received a single subcutaneous injection of Andrographis paniculata (50 μl), and the left hind footpads received the same volume of vehicle. Seven days later, the mice were sacrificed by cervical dislocation, and the popliteal lymph nodes from both the left and right sides were removed. The weight (WI) and cellularity indices (CI) of the popliteal lymph nodes (PLNs) were then calculated, and the pathological changes of the PLNs were measured. In addition, P815 mast cells were collected for the in vitro cell degranulation experiment. The level of histamine, the percentage of cell degranulation and the ratio of ammonia glycosidase released were measured to further evaluate the potential allergenicity. Alcohol extract (AEE), ethyl acetate extract (EAE) and n-butanol extract (NBE) significantly increased the weight (WI > 2) and cell number (CI > 5) of PLNs (P < 0.05, P < 0.01). Additionally, all the three monomers of andrographis, namely NAD, AND, and DDA, significantly increased the weight (WI > 2) and cell number (CI > 5) of the PLNs (P < 0.05, P < 0.01). In the cell model, all of the different extract fractions (AEE, EAE and NBE) and the three monomers of andrographis markedly elevated the level of histamine, the percentage of cell degranulation and the ratio of ammonia glycosidase released. The diterpene lactone compounds of Andrographis paniculata Nees (total lactones of andrographolide) may have a potential sensitizing capacity in andrographis injection.
Yu, Cheng-Rong; Kim, Sung-Hye; Mahdi, Rashid M.; Egwuagu, Charles E.
2013-01-01
Suppressors of cytokine signaling (SOCS) proteins are negative-feedback regulators of JAK/STAT pathway and SOCS3 contributes to host immunity by regulating the intensity/duration of cytokine signals and inflammatory responses. Mice with Socs3 deletion in myeloid cells exhibit enhanced STAT3-signaling, expansion of Th1 and Th17 cells and developed severe experimental autoimmune encephalomyelitis (EAE). Interestingly, development of the unique IL-17/IFN-γ-double producing (Th17/IFN-γ and Tc17/IFN-γ) subsets that exhibit strong cytotoxic activities and associated with pathogenesis of several autoimmune diseases, has recently been shown to depend on epigenetic suppression of SOCS3 expression, further suggesting involvement of SOCS3 in autoimmunity and tumor immunity. In this study, we generated mice with Socs3 deletion in CD4 T cell compartment (CD4-SOCS3KO) to determine in vivo effects of the loss of Socs3 in the T cell-mediated autoimmune disease, experimental autoimmune uveitis (EAU). In contrast to the exacerbation of EAE in myeloid-specific SOCS3-deleted mice, CD4-SOCS3KO mice were protected from acute and chronic uveitis. Protection from EAU correlated with enhanced expression of CTLA4 and expansion of IL-10 producing Tregs with augmented suppressive activities. We further show that SOCS3 interacts with CTLA4 and negatively regulates CTLA4 levels in T cells, providing mechanistic explanation for the expansion of Tregs in CD4-SOCS3 during EAU. Contrary to in vitro epigenetic studies, Th17/IFN-γ and Tc17/IFN-γ populations were markedly reduced in CD4-SOCS3KO, suggesting that SOCS3 promotes expansion of Th17/IFN-γ subset associated with development of severe uveitis. Thus, SOCS3 is a potential therapeutic target in uveitis and other auto-inflammatory diseases. PMID:24101549
Kaushik, Naveen K; Bagavan, Asokan; Rahuman, Abdul A; Zahir, Abdul A; Kamaraj, Chinnaperumal; Elango, Gandhi; Jayaseelan, Chidambaram; Kirthi, Arivarasan V; Santhoshkumar, Thirunavukkarasu; Marimuthu, Sampath; Rajakumar, Govindasamy; Tiwari, Santosh K; Sahal, Dinkar
2015-02-07
Development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents. Inspired by their ethnobotanical reputation for being effective against febrile diseases, antiplasmodial potential of ethyl acetate extracts (EAE) and methanol extracts (ME) of 17 medicinal plants collected from the Eastern Ghats of South India and Buchpora, North India were explored against Plasmodium falciparum in vitro using the SYBR Green assay. The results were validated both by confirmation that the fall in fluorescence signal was not due to quenching effects mediated by phytochemical extracts and by Giemsa-stained microscopy. Using EAE or ME, promising antiplasmodial activity (IC₅₀ Pf3D7 ≤ 20 μg/ml), was seen in Aerva lanata (Whole aerial parts-EAE), Anisomeles malabarica (Leaf-EAE), Anogeissus latifolia (bark-EAE), Cassia alata (leaves-EAE), Glycyrrhiza glabra (root-EAE), Juglans regia (seed-ME), Psidium guajava (leaf-ME and EAE) and Solanum xanthocarpum (Whole aerial parts-EAE). EAEs from leaves of Couroupita guianensis, Euphorbia hirta, Pergularia daemia, Tinospora cordifolia and Tridax procumbens as also ME from Ricinus communis (leaf and seed) showed good antiplasmodial activity (Pf 3D7 IC₅₀ 21 - 40 μg/ml). Moderate activity (Pf 3D7 IC₅₀: 40-60 μg/mL) was shown by the leaf EAEs of Cardiospermum halicacabum, Indigofera tinctoria and Ricinus communis while the remaining extracts showed marginal (Pf 3D7 IC₅₀ 60 to >100 μg/ml) activities. The promising extracts showed good resistance indices (0.41 - 1.4) against the chloroquine resistant INDO strain of P. falciparum and good selectivity indices (3 to > 22.2) when tested against the HeLa cell line. These results provide validity to the traditional medicinal usage of some of these plants and further make a case for activity-guided purification of new pharmacophores against malaria.
Anwar Jagessar, S; Fagrouch, Zahra; Heijmans, Nicole; Bauer, Jan; Laman, Jon D; Oh, Luke; Migone, Thi; Verschoor, Ernst J; 't Hart, Bert A
2013-06-01
The robust and rapid clinical effect of depleting anti-CD20 monoclonal antibodies (mAb) in multiple sclerosis (MS) demonstrates a critical pathogenic contribution of B cells. The clinical effect of anti-CD20 mAb has been replicated in a relevant preclinical MS model, experimental autoimmune encephalomyelitis (EAE) in marmoset monkeys (Callithrix jacchus). By contrast, treatment with mAbs against two essential cytokines in B cell activation growth and survival, i.e. BlyS/BAFF and APRIL, was only partially effective. All three mAbs induced depletion of CD20+ B cells from the circulation, albeit with different kinetics and based on distinct mechanisms of action. In the current study we analyzed whether the different clinical effect of anti-CD20 mAb or the anti-BLyS and anti-APRIL mAbs is due to different depletion of B cells infected with the EBV of marmosets, CalHV3. Employing a novel PCR-based assay, half of the colony of group-housed marmosets was tested positive for CalHV3 DNA in secondary lymphoid organs. The same prevalence was observed in placebo-treated monkeys. In marmosets treated with anti-CD20 mAb the load of CalHV3 DNA in lymphoid organs was substantially reduced, while this was not observed in the monkeys treated with anti-BLyS or anti-APRIL mAbs. To examine the pathogenic role of virus-transformed B cells, we infused EBV-transformed B lymphoblastic cell (BLC) lines presenting the immunodominant MOG34-56 peptide. We observed in the recipients of MOG34-56 pulsed BLC, but not in their fraternal siblings infused with non-pulsed BLC, activation of anti-MOG34-56 T cells and meningeal inflammation. Collectively, the data show that among CD20+ B cells, the herpesvirus-transformed subset has a particularly important pathogenic role in the marmoset EAE model.
Conde, C; Escribano, B M; Luque, E; Aguilar-Luque, M; Feijóo, M; Ochoa, J J; LaTorre, M; Giraldo, A I; Lillo, R; Agüera, E; Santamaría, A; Túnez, I
2018-05-05
This study has evaluated the effect of EVOO (Extra-Virgin olive oil), OA (oleic acid) and HT (hydroxytyrosol) in an induced model of MS through experimental autoimmune encephalomyelitis (EAE). Dark Agouti 2-month old rats (25 males) were divided into five groups: (i) control group, (ii) EAE group, (iii) EAE+EVOO, (iv) EAE+HT, and (v) EAE+OA. At 65 days, the animals were sacrificed and the glutathione redox system and bacterial lipopolysaccharide (LPS) and LPS-binding protein (LBP) products of the microbiota in brain, spinal cord, and blood were evaluated. Gastric administration of EVOO, OA, and HT reduced the degree of lipid and protein oxidation, and increased glutathione peroxidase, making it a diet-based mechanism for enhancing protection against oxidative damage. In addition, it reduced the levels of LPS and LBP, which appeared as being increased in the EAE correlated with the oxidative stress produced by the disease.
Azzam, Sausan; Broadwater, Laurie; Li, Shuo; Freeman, Ernest J; McDonough, Jennifer; Gregory, Roger B
2013-05-01
Experimental autoimmune encephalomyelitis (EAE) is an autoimmune, inflammatory disease of the central nervous system that is widely used as a model of multiple sclerosis (MS). Mitochondrial dysfunction appears to play a role in the development of neuropathology in MS and may also play a role in disease pathology in EAE. Here, surface enhanced laser desorption ionization mass spectrometry (SELDI-MS) has been employed to obtain protein expression profiles from mitochondrially enriched fractions derived from EAE and control mouse brain. To gain insight into experimental variation, the reproducibility of sub-cellular fractionation, anion exchange fractionation as well as spot-to-spot and chip-to-chip variation using pooled samples from brain tissue was examined. Variability of SELDI mass spectral peak intensities indicates a coefficient of variation (CV) of 15.6% and 17.6% between spots on a given chip and between different chips, respectively. Thinly slicing tissue prior to homogenization with a rotor homogenizer showed better reproducibility (CV = 17.0%) than homogenization of blocks of brain tissue with a Teflon® pestle (CV = 27.0%). Fractionation of proteins with anion exchange beads prior to SELDI-MS analysis gave overall CV values from 16.1% to 18.6%. SELDI mass spectra of mitochondrial fractions obtained from brain tissue from EAE mice and controls displayed 39 differentially expressed proteins (p≤ 0.05) out of a total of 241 protein peaks observed in anion exchange fractions. Hierarchical clustering analysis showed that protein fractions from EAE animals with severe disability clearly segregated from controls. Several components of electron transport chain complexes (cytochrome c oxidase subunit 6b1, subunit 6C, and subunit 4; NADH dehydrogenase flavoprotein 3, alpha subcomplex subunit 2, Fe-S protein 4, and Fe-S protein 6; and ATP synthase subunit e) were identified as possible differentially expressed proteins. Myelin Basic Protein isoform 8 (MBP8) (14.2 kDa) levels were lower in EAE samples with advanced disease relative to controls, while an MBP fragment (12. 4kDa), likely due to calpain digestion, was increased in EAE relative to controls. The appearance of MBP in mitochondrially enriched fractions is due to tissue freezing and storage, as MBP was not found associated with mitochondria obtained from fresh tissue. SELDI mass spectrometry can be employed to explore the proteome of a complex tissue (brain) and obtain protein profiles of differentially expressed proteins from protein fractions. Appropriate homogenization protocols and protein fractionation using anion exchange beads can be employed to reduce sample complexity without introducing significant additional variation into the SELDI mass spectra beyond that inherent in the SELDI- MS method itself. SELDI-MS coupled with principal component analysis and hierarchical cluster analysis provides protein patterns that can clearly distinguish the disease state from controls. However, identification of individual differentially expressed proteins requires a separate purification of the proteins of interest by polyacrylamide electrophoresis prior to trypsin digestion and peptide mass fingerprint analysis, and unambiguous identification of differentially expressed proteins can be difficult if protein bands consist of several proteins with similar molecular weights.
2013-01-01
Background Experimental autoimmune encephalomyelitis (EAE) is an autoimmune, inflammatory disease of the central nervous system that is widely used as a model of multiple sclerosis (MS). Mitochondrial dysfunction appears to play a role in the development of neuropathology in MS and may also play a role in disease pathology in EAE. Here, surface enhanced laser desorption ionization mass spectrometry (SELDI-MS) has been employed to obtain protein expression profiles from mitochondrially enriched fractions derived from EAE and control mouse brain. To gain insight into experimental variation, the reproducibility of sub-cellular fractionation, anion exchange fractionation as well as spot-to-spot and chip-to-chip variation using pooled samples from brain tissue was examined. Results Variability of SELDI mass spectral peak intensities indicates a coefficient of variation (CV) of 15.6% and 17.6% between spots on a given chip and between different chips, respectively. Thinly slicing tissue prior to homogenization with a rotor homogenizer showed better reproducibility (CV = 17.0%) than homogenization of blocks of brain tissue with a Teflon® pestle (CV = 27.0%). Fractionation of proteins with anion exchange beads prior to SELDI-MS analysis gave overall CV values from 16.1% to 18.6%. SELDI mass spectra of mitochondrial fractions obtained from brain tissue from EAE mice and controls displayed 39 differentially expressed proteins (p≤ 0.05) out of a total of 241 protein peaks observed in anion exchange fractions. Hierarchical clustering analysis showed that protein fractions from EAE animals with severe disability clearly segregated from controls. Several components of electron transport chain complexes (cytochrome c oxidase subunit 6b1, subunit 6C, and subunit 4; NADH dehydrogenase flavoprotein 3, alpha subcomplex subunit 2, Fe-S protein 4, and Fe-S protein 6; and ATP synthase subunit e) were identified as possible differentially expressed proteins. Myelin Basic Protein isoform 8 (MBP8) (14.2 kDa) levels were lower in EAE samples with advanced disease relative to controls, while an MBP fragment (12. 4kDa), likely due to calpain digestion, was increased in EAE relative to controls. The appearance of MBP in mitochondrially enriched fractions is due to tissue freezing and storage, as MBP was not found associated with mitochondria obtained from fresh tissue. Conclusions SELDI mass spectrometry can be employed to explore the proteome of a complex tissue (brain) and obtain protein profiles of differentially expressed proteins from protein fractions. Appropriate homogenization protocols and protein fractionation using anion exchange beads can be employed to reduce sample complexity without introducing significant additional variation into the SELDI mass spectra beyond that inherent in the SELDI- MS method itself. SELDI-MS coupled with principal component analysis and hierarchical cluster analysis provides protein patterns that can clearly distinguish the disease state from controls. However, identification of individual differentially expressed proteins requires a separate purification of the proteins of interest by polyacrylamide electrophoresis prior to trypsin digestion and peptide mass fingerprint analysis, and unambiguous identification of differentially expressed proteins can be difficult if protein bands consist of several proteins with similar molecular weights. PMID:23635033
Kassem, Sahar; Gaud, Guillaume; Bernard, Isabelle; Benamar, Mehdi; Dejean, Anne S; Liblau, Roland; Fournié, Gilbert J; Colacios, Céline; Malissen, Bernard; Saoudi, Abdelhadi
2016-07-01
The guanine nucleotide exchange factor Vav1 is essential for transducing T cell antigen receptor signals and therefore plays an important role in T cell development and activation. Our previous genetic studies identified a locus on rat chromosome 9 that controls the susceptibility to neuroinflammation and contains a non-synonymous polymorphism in the major candidate gene Vav1. To formally demonstrate the causal implication of this polymorphism, we generated a knock-in mouse bearing this polymorphism (Vav1R63W). Using this model, we show that Vav1R63W mice display reduced susceptibility to experimental autoimmune encephalomyelitis (EAE) induced by MOG35-55 peptide immunization. This is associated with a lower production of effector cytokines (IFN-γ, IL-17 and GM-CSF) by autoreactive CD4 T cells. Despite increased proportion of Foxp3+ regulatory T cells in Vav1R63W mice, we show that this lowered cytokine production is intrinsic to effector CD4 T cells and that Treg depletion has no impact on EAE development. Finally, we provide a mechanism for the above phenotype by showing that the Vav1R63W variant has normal enzymatic activity but reduced adaptor functions. Together, these data highlight the importance of Vav1 adaptor functions in the production of inflammatory cytokines by effector T cells and in the susceptibility to neuroinflammation.
Kassem, Sahar; Bernard, Isabelle; Dejean, Anne S.; Liblau, Roland; Fournié, Gilbert J.; Colacios, Céline
2016-01-01
The guanine nucleotide exchange factor Vav1 is essential for transducing T cell antigen receptor signals and therefore plays an important role in T cell development and activation. Our previous genetic studies identified a locus on rat chromosome 9 that controls the susceptibility to neuroinflammation and contains a non-synonymous polymorphism in the major candidate gene Vav1. To formally demonstrate the causal implication of this polymorphism, we generated a knock-in mouse bearing this polymorphism (Vav1R63W). Using this model, we show that Vav1R63W mice display reduced susceptibility to experimental autoimmune encephalomyelitis (EAE) induced by MOG35-55 peptide immunization. This is associated with a lower production of effector cytokines (IFN-γ, IL-17 and GM-CSF) by autoreactive CD4 T cells. Despite increased proportion of Foxp3+ regulatory T cells in Vav1R63W mice, we show that this lowered cytokine production is intrinsic to effector CD4 T cells and that Treg depletion has no impact on EAE development. Finally, we provide a mechanism for the above phenotype by showing that the Vav1R63W variant has normal enzymatic activity but reduced adaptor functions. Together, these data highlight the importance of Vav1 adaptor functions in the production of inflammatory cytokines by effector T cells and in the susceptibility to neuroinflammation. PMID:27438086
NASA Astrophysics Data System (ADS)
Esposito, Giovanna; D'angeli, Luca; Bartoli, Antonietta; Chaabane, Linda; Terreno, Enzo
2013-02-01
Positron Emission Tomography (PET) with 18F-FDG is a promising tool for the detection and evaluation of active inflammation in animal models of neuroinflammation. MRI is a complementary imaging technique with high resolution and contrast suitable to obtain the anatomical data required to analyze PET data. To combine PET and MRI modalities, we developed a support bed system compatible for both scanners that allowed to perform imaging exams without animal repositioning. With this approach, MRI and PET data were acquired in mice with Experimental autoimmune encephalomyelitis (EAE). In this model, it was possible to measure a variation of 18F-FDG uptake proportional to the degree of disease severity which is mainly related to Central Nervous System (CNS) inflammation. Against the low resolved PET images, the co-registered MRI/PET images allowed to distinguish the different brain structures and to obtain a more accurate tracer evaluation. This is essential in particular for brain regions whose size is of the order of the spatial resolution of PET.
Zhang, Kai; Ge, Zhenzhen; Da, Yurong; Wang, Dong; Liu, Ying; Xue, Zhenyi; Li, Yan; Li, Wen; Zhang, Lijuan; Wang, Huafeng; Zhang, Huan; Peng, Meiyu; Hao, Junwei; Yao, Zhi; Zhang, Rongxin
2014-08-15
Plumbagin (PL, 5-hydroxy-2-methyl-1,4-naphthoquinone) is a herbal compound derived from medicinal plants of the Droseraceae, Plumbaginaceae, Dioncophyllaceae, and Ancistrocladaceae families. Reports have shown that PL exerts immunomodulatory activity and may be a novel drug candidate for immune-related disease therapy. However, its effects on dendritic cells (DCs), the most potent antigen-presenting cells (APCs), remain unclear. In this study, we demonstrate that PL inhibits the differentiation, maturation, and function of human monocyte-derived DCs. PL can also restrict the expression of Th1- and Th17-polarizing cytokines in mDC. In addition, PL suppresses DCs both in vitro and in vivo, as demonstrated by its effects on the mouse DC line DC2.4 and mice with experimental autoimmune encephalomyelitis (EAE), respectively. Notably, PL ameliorated the clinical symptoms of EAE, including central nervous system (CNS) inflammation and demyelination. Our results demonstrate the immune suppressive and anti-inflammatory properties of PL via its effects on DCs and suggest that PL could be a potential treatment for DC-related autoimmune and inflammatory diseases. Copyright © 2014 Elsevier B.V. All rights reserved.
Yang, Kun; Pagaling, Eulyn
2014-01-01
Presently, the understanding of bacterial enteric diseases in the community and their virulence factors relies almost exclusively on clinical disease reporting and examination of clinical pathogen isolates. This study aimed to investigate the feasibility of an alternative approach that monitors potential enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) prevalence and intimin gene (eae) diversity in a community by directly quantifying and characterizing target virulence genes in the sanitary sewage. The quantitative PCR (qPCR) quantification of the eae, stx1, and stx2 genes in sanitary sewage samples collected over a 13-month period detected eae in all 13 monthly sewage samples at significantly higher abundance (93 to 7,240 calibrator cell equivalents [CCE]/100 ml) than stx1 and stx2, which were detected sporadically. The prevalence level of potential EPEC in the sanitary sewage was estimated by calculating the ratio of eae to uidA, which averaged 1.0% (σ = 0.4%) over the 13-month period. Cloning and sequencing of the eae gene directly from the sewage samples covered the majority of the eae diversity in the sewage and detected 17 unique eae alleles belonging to 14 subtypes. Among them, eae-β2 was identified to be the most prevalent subtype in the sewage, with the highest detection frequency in the clone libraries (41.2%) and within the different sampling months (85.7%). Additionally, sewage and environmental E. coli isolates were also obtained and used to determine the detection frequencies of the virulence genes as well as eae genetic diversity for comparison. PMID:24141131
Clarkson, Benjamin D; Walker, Alec; Harris, Melissa; Rayasam, Aditya; Sandor, Matyas; Fabry, Zsuzsanna
2014-01-01
Evidence from experimental autoimmune encephalomyelitis (EAE) suggests that CNS-infiltrating dendritic cells (DCs) are crucial for restimulation of coinfiltrating T cells. Here we systematically quantified and visualized the distribution and interaction of CNS DCs and T cells during EAE. We report marked periventricular accumulation of DCs and myelin-specific T cells during EAE disease onset prior to accumulation in the spinal cord, indicating that the choroid plexus-CSF axis is a CNS entry portal. Moreover, despite emphasis on spinal cord inflammation in EAE and in correspondence with MS pathology, inflammatory lesions containing interacting DCs and T cells are present in specific brain regions. PMID:25288303
Role of intestinal microbiota in the development of multiple sclerosis.
Castillo-Álvarez, F; Marzo-Sola, M E
2017-04-01
Multiple sclerosis (MS) is a demyelinating disease that affects young adults; in that age group, it represents the second leading cause of disability in our setting. Its precise aetiology has not been elucidated, but it is widely accepted to occur in genetically predisposed patients who are exposed to certain environmental factors. The discovery of the regulatory role played by intestinal microbiota in various autoimmune diseases has opened a new line of research in this field, which is discussed in this review. We reviewed published studies on the role of the microbiota in the development of both MS and its animal model, experimental autoimmune encephalomyelitis (EAE). In mice, it has been shown that intestinal microorganisms regulate the polarisation of T helper cells from Th1-Th17 up to Th2, the function of regulatory T cells, and the activity of B cells; they participate in the pathogenesis of EAE and contribute to its prevention and treatment. In contrast, evidence in humans is still scarce and mainly based on case-control studies that point to the presence of differences in certain bacterial communities. Multiple evidence points to the role of microbiota in EAE. Extrapolation of these results to MS is still in the early stages of research, and studies are needed to define which bacterial populations are associated with MS, the role they play in pathogenesis, and the therapeutic possibilities this knowledge offers us. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
2011-01-01
Background Vaccination strategies that elicit antigen-specific tolerance are needed as therapies for autoimmune disease. This study focused on whether cytokine-neuroantigen (NAg) fusion proteins could inhibit disease in chronic murine models of experimental autoimmune encephalomyelitis (EAE) and thus serve as potential therapeutic modalities for multiple sclerosis. Results A fusion protein comprised of murine GM-CSF as the N-terminal domain and the encephalitogenic MOG35-55 peptide as the C-terminal domain was tested as a tolerogenic, therapeutic vaccine (TTV) in the C57BL/6 model of EAE. Administration of GMCSF-MOG before active induction of EAE, or alternatively, at the onset of EAE blocked the development and progression of EAE. Covalent linkage of the GM-CSF and MOG35-55 domains was required for tolerogenic activity. Likewise, a TTV comprised of GM-CSF and PLP139-151 was a tolerogen in the SJL model of EAE. Conclusion These data indicated that fusion proteins containing GM-CSF coupled to myelin auto-antigens elicit tolerance rather than immunity. PMID:22208499
Majidi-Zolbanin, J; Doosti, M-H; Kosari-Nasab, M; Salari, A-A
2015-05-21
Multiple sclerosis (MS) is thought to result from a combination of genetics and environmental factors. Several lines of evidence indicate that significant prevalence of anxiety and depression-related disorders in MS patients can influence the progression of the disease. Although we and others have already reported the consequences of prenatal maternal immune activation on anxiety and depression, less is known about the interplay between maternal inflammation, MS and gender. We here investigated the effects of maternal immune activation with Poly I:C during mid-gestation on the progression of clinical symptoms of experimental autoimmune encephalomyelitis (EAE; a mouse model of MS), and then anxiety- and depressive-like behaviors in non-EAE and EAE-induced offspring were evaluated. Stress-induced corticosterone and tumor necrosis factor-alpha (TNF-α) levels in EAE-induced offspring were also measured. Maternal immune activation increased anxiety and depression in male offspring, but not in females. This immune challenge also resulted in an earlier onset of the EAE clinical signs in male offspring and enhanced the severity of the disease in both male and female offspring. Interestingly, the severity of the disease was associated with increased anxiety/depressive-like behaviors and elevated corticosterone or TNF-α levels in both sexes. Overall, these data suggest that maternal immune activation with Poly I:C during mid-pregnancy increases anxiety- and depressive-like behaviors, and the clinical symptoms of EAE in a sex-dependent manner in non-EAE or EAE-induced offspring. Finally, the progression of EAE in offspring seems to be linked to maternal immune activation-induced dysregulation in neuro-immune-endocrine system. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
2015-10-01
patients, there is little evidence for a role of ACE2/A( 1 -7)/Mas axis, only a solitary assessment showing decreased ACE2 levels in the CSF of MS...project? Major Goals (Year 1 ): 1 : Measure levels of RAS components in the spinal cord of mice with EAE (animal model of MS) prior to, and at multiple...AWARD NUMBER: W81XWH-14- 1 -0523 TITLE: Reducing Disease Activity in Animal Models of MS by Activation of the Protective Arm of the Renin
Surfer's ear: external auditory exostoses are more prevalent in cold water surfers.
Kroon, David F; Lawson, M Louise; Derkay, Craig S; Hoffmann, Karen; McCook, Joe
2002-05-01
The study goal was to demonstrate the prevalence and severity of external auditory exostoses (EAEs) in a population of surfers and to examine the relationship between these lesions and the length of time surfed as well as water temperature in which the swimmers surfed. It was hypothesized that subjects who predominantly surfed in colder waters had more frequent and more severe exostoses. Two hundred two avid surfers (91% male and 9% female, median age 17 years) were included in the study. EAEs were graded based on the extent of external auditory canal patency; grades of normal (100% patency), mild (66% to 99% patency), and moderate-severe (<66% patency) were assigned. Otoscopic findings were correlated with data collected via questionnaires that detailed surfing habits. There was a 38% overall prevalence of EAEs, with 69% of lesions graded as mild and 31% graded as moderate-severe. Professional surfers (odds ratio 3.8) and those subjects who surfed predominantly in colder waters (odds ratio 5.8) were found to be at a significantly increased risk for the development of EAEs. The number of years surfed was also found to be significant, increasing one's risk for developing an exostosis by 12% per year and for developing more severe lesions by 10% per year. Individuals who had moderate-severe EAEs were significantly more likely to be willing to surf in colder waters than were those who had mild EAEs (odds ratio 4.3). EAEs are more prevalent in cold water surfers, and additional years surfing increase one's risk not only for developing an EAE but also for developing more severe lesions.
Gao, Zhen; Nissen, Jillian C.; Ji, Kyungmin; Tsirka, Stella E.
2014-01-01
Epidemiological studies have reported that cigarette smoking increases the risk of developing multiple sclerosis (MS) and accelerates its progression. However, the molecular mechanisms underlying these effects remain unsettled. We have investigated here the effects of the nicotine and the non-nicotine components in cigarette smoke on MS using the experimental autoimmune encephalomyelitis (EAE) model, and have explored their underlying mechanism of action. Our results show that nicotine ameliorates the severity of EAE, as shown by reduced demyelination, increased body weight, and attenuated microglial activation. Nicotine administration after the development of EAE symptoms prevented further disease exacerbation, suggesting that it might be useful as an EAE/MS therapeutic. In contrast, the remaining components of cigarette smoke, delivered as cigarette smoke condensate (CSC), accelerated and increased adverse clinical symptoms during the early stages of EAE, and we identify a particular cigarette smoke compound, acrolein, as one of the potential mediators. We also show that the mechanisms underlying the opposing effects of nicotine and CSC on EAE are likely due to distinct effects on microglial viability, activation, and function. PMID:25250777
2017-01-01
In the context of Middle and Late Pleistocene eastern Eurasian human crania, the external auditory exostoses (EAE) of the late archaic Xuchang 1 and 2 and the Xujiayao 15 early Late Pleistocene human temporal bones are described. Xujiayao 15 has small EAE (Grade 1), Xuchang 1 presents bilateral medium EAE (Grade 2), and Xuchang 2 exhibits bilaterally large EAE (Grade 3), especially on the right side. These cranial remains join the other eastern Eurasian later Pleistocene humans in providing frequencies of 61% (N = 18) and 58% (N = 12) respectively for archaic and early modern human samples. These values are near the upper limits of recent human frequencies, and they imply frequent aquatic exposure among these Pleistocene humans. In addition, the medial extents of the Xuchang 1 and 2 EAE would have impinged on their tympanic membranes, and the large EAE of Xuchang 2 would have resulted in cerumen impaction. Both effects would have produced conductive hearing loss, a serious impairment in a Pleistocene foraging context. PMID:29232394
Trinkaus, Erik; Wu, Xiu-Jie
2017-01-01
In the context of Middle and Late Pleistocene eastern Eurasian human crania, the external auditory exostoses (EAE) of the late archaic Xuchang 1 and 2 and the Xujiayao 15 early Late Pleistocene human temporal bones are described. Xujiayao 15 has small EAE (Grade 1), Xuchang 1 presents bilateral medium EAE (Grade 2), and Xuchang 2 exhibits bilaterally large EAE (Grade 3), especially on the right side. These cranial remains join the other eastern Eurasian later Pleistocene humans in providing frequencies of 61% (N = 18) and 58% (N = 12) respectively for archaic and early modern human samples. These values are near the upper limits of recent human frequencies, and they imply frequent aquatic exposure among these Pleistocene humans. In addition, the medial extents of the Xuchang 1 and 2 EAE would have impinged on their tympanic membranes, and the large EAE of Xuchang 2 would have resulted in cerumen impaction. Both effects would have produced conductive hearing loss, a serious impairment in a Pleistocene foraging context.
Sex-specific control of CNS autoimmunity by p38 MAPK signaling in myeloid cells
Krementsov, Dimitry N.; Noubade, Rajkumar; Dragon, Julie A.; Otsu, Kinya; Rincon, Mercedes; Teuscher, Cory
2013-01-01
Objective Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), characterized by a global increasing incidence driven by relapsing-remitting disease in females. p38 MAP kinase (MAPK) has been described as a key regulator of inflammatory responses in autoimmunity, but its role in the sexual dimorphism in MS or MS models remains unexplored. Methods Toward this end, we used experimental autoimmune encephalomyelitis (EAE), the principal animal model of MS, combined with pharmacologic and genetic inhibition of p38 MAPK activity and transcriptomic analyses. Results Pharmacologic inhibition of p38 MAPK selectively ameliorated EAE in female mice. Conditional deletion studies demonstrated that p38α signaling in macrophages/myeloid cells, but not T cells or dendritic cells, recapitulated this sexual dimorphism. Analysis of CNS inflammatory infiltrates showed that female, but not male mice lacking p38α in myeloid cells exhibited reduced immune cell activation compared with controls, while peripheral T cell priming was unaffected in both sexes. Transcriptomic analyses of myeloid cells revealed differences in p38α-controlled transcripts comprising female- and male-specific gene modules, with greater p38α dependence of pro-inflammatory gene expression in females. Interpretation Our findings demonstrate a key role for p38α in myeloid cells in CNS autoimmunity and uncover important molecular mechanisms underlying sex differences in disease pathogenesis. Taken together, our results suggest that the p38 MAPK signaling pathway represents a novel target for much needed disease modifying therapies for MS. PMID:24027119
Silva, Gleidy A A; Pradella, Fernando; Moraes, Adriel; Farias, Alessandro; dos Santos, Leonilda M B; de Oliveira, Alexandre L R
2014-01-01
Background Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease that affects young adults. It is characterized by generating a chronic demyelinating autoimmune inflammation in the central nervous system. An experimental model for studying MS is the experimental autoimmune encephalomyelitis (EAE), induced by immunization with antigenic proteins from myelin. Aims The present study investigated the evolution of EAE in pregabalin treated animals up to the remission phase. Methods and results The results demonstrated a delay in the onset of the disease with statistical differences at the 10th and the 16th day after immunization. Additionally, the walking track test (CatWalk) was used to evaluate different parameters related to motor function. Although no difference between groups was obtained for the foot print pressure, the regularity index was improved post treatment, indicating a better motor coordination. The immunohistochemical analysis of putative synapse preservation and glial reactivity revealed that pregabalin treatment improved the overall morphology of the spinal cord. A preservation of circuits was depicted and the glial reaction was downregulated during the course of the disease. qRT-PCR data did not show immunomodulatory effects of pregabalin, indicating that the positive effects were restricted to the CNS environment. Conclusions Overall, the present data indicate that pregabalin is efficient for reducing the seriousness of EAE, delaying its course as well as reducing synaptic loss and astroglial reaction. PMID:25365796
A research agenda for the European Association for Endoscopic Surgeons (EAES).
Francis, Nader; Kazaryan, Airazat M; Pietrabissa, Andrea; Goitein, David; Yiannakopoulou, Eugenia; Agresta, Ferdinando; Khatkov, Igor; Schulze, Svend; Arulampalam, Tan; Tomulescu, Victor; Kim, Young-Woo; Targarona, Eduardo Mª; Zaninotto, Giovanni
2017-05-01
The European Association of Endoscopic Surgeons (EAES) conducted this study aiming to identify the top research questions which are relevant to surgeons in Minimal Access Surgery (MAS). This is in order to promote and link research questions to the current clinical practice in MAS in Europe. Using a systematic methodology, (modified Delphi), the EAES members and leadership teams were surveyed to obtain consensus on the top research priorities in MAS. The responses were categorized and redistributed to the membership to rate the level of importance of each research question. The data were reported as the weighted average score with a scale from 1 (lowest agreement) to 5 (highest agreement). In total, 324 of 2580 (12.5%) of the EAES members and the leaders responded to the survey and contributed to the final consensus. The ranked responses over the 80th percentile identified 39 research priorities with rating ranged from 4.22 to 3.67. The top five highest ranking research priorities in the EAES were centered on improving training in MAS, laparoscopic surgery for benign upper gastrointestinal conditions, integration of novel technology in OR, translational and basic science research in bariatric surgery and investigating the role of MAS in rectal cancer. An EAES research agenda was developed using a systematic methodology and can be used to focus MAS research. This study was commissioned by the European Association for Endoscopic Surgery (EAES).
Chou, Hsin-Yu; Lee, Chelsea; Pan, Jian-Liang; Wen, Zhi-Hong; Huang, Shu-Hung; Lan, Chi-Wei John; Liu, Wang-Ta; Hour, Tzyh-Chyuan; Hseu, You-Cheng; Hwang, Byeong Hee; Cheng, Kuo-Chen; Wang, Hui-Min David
2016-01-01
Among many antioxidants that are used for the repairing of oxidative stress induced skin damages, we identified the enriched astaxanthin extract (EAE) from Haematococcus pluvialis as a viable ingredient. EAE was extracted from the red microalgae through supercritical fluid carbon dioxide extraction. To compare the effectiveness, EAE wastreated on human dermal fibroblasts with other components, phorbol 12-myristate 13-acetate (PMA), and doxycycline. With sirius red staining and quantitative real-time polymerase chain reaction (qRT-PCR), we found that PMA decreased the collagen concentration and production while overall the addition of doxycycline and EAE increased the collagen concentration in a trial experiments. EAE increased collagen contents through inhibited MMP1 and MMP3 mRNA expression and induced TIMP1, the antagonists of MMPs protein, gene expression. As for when tested for various proteins through western blotting, it was seen that the addition of EAE increased the expression of certain proteins that promote cell proliferation. Testing those previous solutions using growth factor assay, it was noticeable that EAE had a positive impact on cell proliferation and vascular endothelial growth factor (VEGF) than doxycycline, indicating that it was a better alternative treatment for collagen production. To sum up, the data confirmed the possible applications as medical cosmetology agentsand food supplements. PMID:27322248
Su, Pan; Chen, Sheng; Zheng, Yu Han; Zhou, Hai Yan; Yan, Cheng Hua; Yu, Fang; Zhang, Ya Guang; He, Lan; Zhang, Yuan; Wang, Yanming; Wu, Lei; Wu, Xiaoai; Yu, Bingke; Ma, Li Yan; Yang, Zhiru; Wang, Jianhua; Zhao, Guixian; Zhu, Jinfang; Wu, Zhi-Ying; Sun, Bing
2016-01-01
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS characterized by demyelination and axonal damage. Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model for human MS. While Th17 cells are important for the disease induction, Th2 cells are inhibitory in this process. Here, we report the effect of a Th2 cell product, extracellular matrix protein 1 (ECM1), on the differentiation of Th17 cells and the development of experimental autoimmune encephalomyelitis (EAE). Our results demonstrated that ECM1 administration from day 1 to day 7 following the EAE induction could ameliorate the Th17 cell responses and EAE development in vivo. Further mechanism study revealed that ECM1 could interact with αv integrin on DC cells and block the αv integrin-mediated activation of latent TGF-β, resulting in an inhibition of Th17 differentiation at early stage of EAE induction. Furthermore, overexpression of ECM1 in vivo significantly inhibited Th17 cell response and EAE induction in ECM1 transgenic mouse. Overall, our work has identified a novel function of ECM1 in inhibiting Th17 differentiation in the EAE model, suggesting that ECM1 may have a potential to be used in clinical applications for understanding the pathogenesis of MS and its diagnosis. PMID:27316685
Coppolino, Giusy T.; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide
2018-01-01
Abstract Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17‐iCreERT2xCAG‐eGFP mice) allowing to follow the final fate of GPR17+ cells by tamoxifen‐induced GFP‐labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP+ cells at damaged areas. However, only in the cuprizone model reacting GFP+ cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP+ cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor‐1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti‐inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. PMID:29424466
Coppolino, Giusy T; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide; Abbracchio, Maria P
2018-05-01
Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17-iCreER T2 xCAG-eGFP mice) allowing to follow the final fate of GPR17 + cells by tamoxifen-induced GFP-labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP + cells at damaged areas. However, only in the cuprizone model reacting GFP + cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP + cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor-1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti-inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. © 2018 The Authors GLIA Published by Wiley Periodicals, Inc.
Arima, Yasunobu; Ohki, Takuto; Nishikawa, Naoki; Higuchi, Kotaro; Ota, Mitsutoshi; Tanaka, Yuki; Nio-Kobayashi, Junko; Elfeky, Mohamed; Sakai, Ryota; Mori, Yuki; Kawamoto, Tadafumi; Stofkova, Andrea; Sakashita, Yukihiro; Morimoto, Yuji; Kuwatani, Masaki; Iwanaga, Toshihiko; Yoshioka, Yoshichika; Sakamoto, Naoya; Yoshimura, Akihiko; Takiguchi, Mitsuyoshi; Sakoda, Saburo; Prinz, Marco; Kamimura, Daisuke; Murakami, Masaaki
2017-01-01
Impact of stress on diseases including gastrointestinal failure is well-known, but molecular mechanism is not understood. Here we show underlying molecular mechanism using EAE mice. Under stress conditions, EAE caused severe gastrointestinal failure with high-mortality. Mechanistically, autoreactive-pathogenic CD4+ T cells accumulated at specific vessels of boundary area of third-ventricle, thalamus, and dentate-gyrus to establish brain micro-inflammation via stress-gateway reflex. Importantly, induction of brain micro-inflammation at specific vessels by cytokine injection was sufficient to establish fatal gastrointestinal failure. Resulting micro-inflammation activated new neural pathway including neurons in paraventricular-nucleus, dorsomedial-nucleus-of-hypothalamus, and also vagal neurons to cause fatal gastrointestinal failure. Suppression of the brain micro-inflammation or blockage of these neural pathways inhibited the gastrointestinal failure. These results demonstrate direct link between brain micro-inflammation and fatal gastrointestinal disease via establishment of a new neural pathway under stress. They further suggest that brain micro-inflammation around specific vessels could be switch to activate new neural pathway(s) to regulate organ homeostasis. DOI: http://dx.doi.org/10.7554/eLife.25517.001 PMID:28809157
A Study on Corrosion Inhibitor for Mild Steel in Ethanol Fuel Blend
Vu, Nguyen Si Hoai; Hien, Pham Van; Man, Tran Van; Hanh Thu, Vu Thi; Tri, Mai Dinh
2017-01-01
The main aim of this study is to investigate Aganonerion polymorphum leaf-ethyl acetate extract (APL-EAE) and its inhibiting effect for steel in ethanol fuel blend. The immersion test, electrochemical and surface analysis techniques were successfully carried out in this research. Scanning electron microscope images indicated that the ethanol fuel blend induced pitting corrosion of steel. Remarkably, the surface of the sample containing 1000 ppm APL-EAE is smoother than the others submerged in different conditions. The electrochemical impedance spectroscopy result shows that APL-EAE has formed a good protective layer, preventing corrosive factors from hitting the steel surface. The potentiodynamic polarization data argue that the corrosion inhibition efficiency was strengthened with the increase of APL-EAE concentration. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated less intensity of Fe peaks, higher intensity of C1s peak and the appearance of organic peaks (N1s, P2p, O1s) from specimens with and without APL-EAE addition. Therefore, the results suggest the formation of the protective film on steel surface and affirm that APL-EAE has served as an effective corrosion inhibitor for steel in ethanol fuel blend. PMID:29301224
A Study on Corrosion Inhibitor for Mild Steel in Ethanol Fuel Blend.
Vu, Nguyen Si Hoai; Hien, Pham Van; Man, Tran Van; Hanh Thu, Vu Thi; Tri, Mai Dinh; Nam, Nguyen Dang
2017-12-31
The main aim of this study is to investigate Aganonerion polymorphum leaf-ethyl acetate extract (APL-EAE) and its inhibiting effect for steel in ethanol fuel blend. The immersion test, electrochemical and surface analysis techniques were successfully carried out in this research. Scanning electron microscope images indicated that the ethanol fuel blend induced pitting corrosion of steel. Remarkably, the surface of the sample containing 1000 ppm APL-EAE is smoother than the others submerged in different conditions. The electrochemical impedance spectroscopy result shows that APL-EAE has formed a good protective layer, preventing corrosive factors from hitting the steel surface. The potentiodynamic polarization data argue that the corrosion inhibition efficiency was strengthened with the increase of APL-EAE concentration. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated less intensity of Fe peaks, higher intensity of C 1s peak and the appearance of organic peaks (N 1s , P 2p , O 1s ) from specimens with and without APL-EAE addition. Therefore, the results suggest the formation of the protective film on steel surface and affirm that APL-EAE has served as an effective corrosion inhibitor for steel in ethanol fuel blend.
Pozdnyakov, Yuri M
2018-06-01
Trimetazidine (TMZ) is an anti-ischemic metabolic agent that has been shown to be efficacious in angina treatment, both in monotherapy and in combination. A new formulation of TMZ modified-release (MR) 80 mg was developed, which is to be taken once daily (od), instead of twice daily (bid) for the currently available TMZ MR 35 mg, with the aim of simplifying the medication regimen. The present study was an international, multicenter, randomized, double-blind, parallel-group phase III study with a 12-week treatment period. The safety of TMZ MR 80 mg once daily was assessed compared to TMZ MR 35 mg twice daily, in patients previously treated successfully by the latter. Emergent adverse events (EAEs), biological parameters, vital signs, 12-lead resting ECG (electrocardiogram) and Canadian Cardiovascular Society (CCS) classification were recorded. One-hundred and sixty-five patients previously diagnosed with stable angina pectoris on treatment were randomized to receive either TMZ MR 80 mg od or TMZ MR 35 mg bid. In the TMZ MR 80 mg group, fewer patients had ≥ 1 EAE (17.1 vs. 22.9% in the TMZ MR 35 mg group). Serious EAEs were reported by three patients in each group. No EAE required dose modification, withdrawal, or temporary interruption of study treatments. Vital signs, 12-lead ECG, and laboratory parameters did not change. No worsening in CCS classes was observed with either treatment. TMZ MR 80 mg od and TMZ MR 35 mg bid have similar safety profiles. This new once-daily formulation could improve patient compliance with therapy, thereby enhancing clinical benefit. ISRCTN registry, ISRCTN 84362208. Institut de Recherches Internationales Servier and Servier, Moscow, Russian Federation. Plain language summary available for this article.
Floris, S; Blezer, E L A; Schreibelt, G; Döpp, E; van der Pol, S M A; Schadee-Eestermans, I L; Nicolay, K; Dijkstra, C D; de Vries, H E
2004-03-01
Enhanced cerebrovascular permeability and cellular infiltration mark the onset of early multiple sclerosis lesions. So far, the precise sequence of these events and their role in lesion formation and disease progression remain unknown. Here we provide quantitative evidence that blood-brain barrier leakage is an early event and precedes massive cellular infiltration in the development of acute experimental allergic encephalomyelitis (EAE), the animal correlate of multiple sclerosis. Cerebrovascular leakage and monocytes infiltrates were separately monitored by quantitative in vivo MRI during the course of the disease. Magnetic resonance enhancement of the contrast agent gadolinium diethylenetriaminepentaacetate (Gd-DTPA), reflecting vascular leakage, occurred concomitantly with the onset of neurological signs and was already at a maximal level at this stage of the disease. Immunohistochemical analysis also confirmed the presence of the serum-derived proteins such as fibrinogen around the brain vessels early in the disease, whereas no cellular infiltrates could be detected. MRI further demonstrated that Gd-DTPA leakage clearly preceded monocyte infiltration as imaged by the contrast agent based on ultra small particles of iron oxide (USPIO), which was maximal only during full-blown EAE. Ultrastructural and immunohistochemical investigation revealed that USPIOs were present in newly infiltrated macrophages within the inflammatory lesions. To validate the use of USPIOs as a non-invasive tool to evaluate therapeutic strategies, EAE animals were treated with the immunomodulator 3-hydroxy-3-methylglutaryl Coenzyme A reductase inhibitor, lovastatin, which ameliorated clinical scores. MRI showed that the USPIO load in the brain was significantly diminished in lovastatin-treated animals. Data indicate that cerebrovascular leakage and monocytic trafficking into the brain are two distinct processes in the development of inflammatory lesions during multiple sclerosis, which can be monitored on-line with MRI using USPIOs and Gd-DTPA as contrast agents. These studies also implicate that USPIOs are a valuable tool to visualize monocyte infiltration in vivo and quantitatively assess the efficacy of new therapeutics like lovastatin.
Al Jumah, Mohammed A.; Abumaree, Mohamed H.
2012-01-01
Mesenchymal stem cells (MSCs) are multipotent cells that differentiate into the mesenchymal lineages of adipocytes, osteocytes and chondrocytes. MSCs can also transdifferentiate and thereby cross lineage barriers, differentiating for example into neurons under certain experimental conditions. MSCs have anti-proliferative, anti-inflammatory and anti-apoptotic effects on neurons. Therefore, MSCs were tested in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), for their effectiveness in modulating the pathogenic process in EAE to develop effective therapies for MS. The data in the literature have shown that MSCs can inhibit the functions of autoreactive T cells in EAE and that this immunomodulation can be neuroprotective. In addition, MSCs can rescue neural cells via a mechanism that is mediated by soluble factors, which provide a suitable environment for neuron regeneration, remyelination and cerebral blood flow improvement. In this review, we discuss the effectiveness of MSCs in modulating the immunopathogenic process and in providing neuroprotection in EAE. PMID:22942767
Bourrié, Bernard; Bribes, Estelle; Esclangon, Martine; Garcia, Laurent; Marchand, Jean; Thomas, Corinne; Maffrand, Jean-Pierre; Casellas, Pierre
1999-01-01
Experimental autoimmune encephalomyelitis (EAE) is a T cell autoimmune disorder that is a widely used animal model for multiple sclerosis (MS) and, as in MS, clinical signs of EAE are associated with blood–brain barrier (BBB) disruption. SR 57746A, a nonpeptide drug without classical immunosuppressive properties, efficiently protected the BBB and impaired intrathecal IgG synthesis (two conventional markers of MS exacerbation) and consequently suppressed EAE clinical signs. This compound inhibited EAE-induced spinal cord mononuclear cell invasion and normalized tumor necrosis factor α and IFN-γ mRNA expression within the spinal cord. These data suggested that pharmacological intervention aimed at inhibiting proinflammatory cytokine expression within the central nervous system provided protection against BBB disruption, the first clinical sign of EAE and probably the key point of acute MS attacks. This finding could lead to the development of a new class of compounds for oral therapy of MS, as a supplement to immunosuppressive agents. PMID:10536012
Diagnosis and management of acute appendicitis. EAES consensus development conference 2015.
Gorter, Ramon R; Eker, Hasan H; Gorter-Stam, Marguerite A W; Abis, Gabor S A; Acharya, Amish; Ankersmit, Marjolein; Antoniou, Stavros A; Arolfo, Simone; Babic, Benjamin; Boni, Luigi; Bruntink, Marlieke; van Dam, Dieuwertje A; Defoort, Barbara; Deijen, Charlotte L; DeLacy, F Borja; Go, Peter Mnyh; Harmsen, Annelieke M K; van den Helder, Rick S; Iordache, Florin; Ket, Johannes C F; Muysoms, Filip E; Ozmen, M Mahir; Papoulas, Michail; Rhodes, Michael; Straatman, Jennifer; Tenhagen, Mark; Turrado, Victor; Vereczkei, Andras; Vilallonga, Ramon; Deelder, Jort D; Bonjer, Jaap
2016-11-01
Unequivocal international guidelines regarding the diagnosis and management of patients with acute appendicitis are lacking. The aim of the consensus meeting 2015 of the EAES was to generate a European guideline based on best available evidence and expert opinions of a panel of EAES members. After a systematic review of the literature by an international group of surgical research fellows, an expert panel with extensive clinical experience in the management of appendicitis discussed statements and recommendations. Statements and recommendations with more than 70 % agreement by the experts were selected for a web survey and the consensus meeting of the EAES in Bucharest in June 2015. EAES members and attendees at the EAES meeting in Bucharest could vote on these statements and recommendations. In the case of more than 70 % agreement, the statement or recommendation was defined as supported by the scientific community. Results from both the web survey and the consensus meeting in Bucharest are presented as percentages. In total, 46 statements and recommendations were selected for the web survey and consensus meeting. More than 232 members and attendees voted on them. In 41 of 46 statements and recommendations, more than 70 % agreement was reached. All 46 statements and recommendations are presented in this paper. They comprise topics regarding the diagnostic work-up, treatment indications, procedural aspects and post-operative care. The consensus meeting produced 46 statements and recommendations on the diagnostic work-up and management of appendicitis. The majority of the EAES members supported these statements. These consensus proceedings provide additional guidance to surgeons and surgical residents providing care to patients with appendicitis.
Epidemiological studies on Escherichia coli O157:H7 in Egyptian sheep.
Kamel, Mohammed; Abo El-Hassan, Diea G; El-Sayed, Amr
2015-08-01
In the present work, the epidemiological role of apparently healthy sheep in transmission of Escherichia coli O157:H7 in different seasons was investigated. Fecal samples (convenience sampling) of apparently healthy farmed sheep (three farms, n = 70) and from 15 wandering flocks fed on city wastes (n = 80) in the Giza governorate were examined. The samples were collected in spring under mild weather conditions and during hot summer to be compared. Out of the 150 animals, 13 (8.7%) were E. coli O157 shedders. The 13 ovine sorbitol-negative E. coli O157 were characterized by different PCR sets. The eae gene was detected in 11 isolate (85%), stx1 in 3 isolates (23%), stx2 in 8 isolates (62%), and finally the hlyA in 11 isolate (85%). Among the 13 isolates, 2 strains (15%) were positive for eae, stx1, stx2, and hlyA as gene combination, one isolate (8%) for eae, stx1, and hlyA, 5 isolates (38%) for eae, stx2, and hlyA, 1 isolate (8%) for eae and stx2, 2 isolates (15%) contained eae and hlyA, 1 isolate (8%) contained hlyA only, and finally, 1 isolate (8%) did not contain any of these genes. None of the isolates showed the gene combination eae stx1, stx1 hlyA, or stx2 hlyA. The results indicated significant association of unfavorable weather and management conditions on O157:H7 shedding while the age or sex did not play any role in this process.
Vaitaitis, Gisela M.; Yussman, Martin G.; Waid, Dan M.; Wagner, David H.
2017-01-01
CD40-CD154 interaction is critically involved in autoimmune diseases, and CD4 T cells play a dominant role in the Experimental Autoimmune Encephalomyelitis (EAE) model of Multiple Sclerosis (MS). CD4 T cells expressing CD40 (Th40) are pathogenic in type I diabetes but have not been evaluated in EAE. We demonstrate here that Th40 cells drive a rapid, more severe EAE disease course than conventional CD4 T cells. Adoptively transferred Th40 cells are present in lesions in the CNS and are associated with wide spread demyelination. Primary Th40 cells from EAE-induced donors adoptively transfer EAE without further in-vitro expansion and without requiring the administration of the EAE induction regimen to the recipient animals. This has not been accomplished with primary, non-TCR-transgenic donor cells previously. If co-injection of Th40 donor cells with Freund’s adjuvant (CFA) in the recipient animals is done, the disease course is more severe. The CFA component of the EAE induction regimen causes generalized inflammation, promoting expansion of Th40 cells and infiltration of the CNS, while MOG-antigen shapes the antigen-specific TCR repertoire. Those events are both necessary to precipitate disease. In MS, viral infections or trauma may induce generalized inflammation in susceptible individuals with subsequent disease onset. It will be important to further understand the events leading up to disease onset and to elucidate the contributions of the Th40 T cell subset. Also, evaluating Th40 levels as predictors of disease onset would be highly useful because if either the generalized inflammation event or the TCR-honing can be interrupted, disease onset may be prevented. PMID:28192476
Sajad, Mir; Zargan, Jamil; Sharma, Jyoti; Chawla, Raman; Arora, Rajesh; Umar, Sadiq; Khan, Haider A
2011-06-01
Survival of neuronal progenitors (NPCs) is a critical determinant of the regenerative capacity of brain following cellular loss. Herein, we report for the first time, the increased spontaneous apoptosis of the first acute phase of Experimental Autoimmune Encephalomyelitis (EAE) derived neurospheres in vitro. Neuronal as well as oligodendroglial loss occurs during experimental autoimmune encephalomyelitis (EAE). This loss is replenished spontaneously by the concomitant increase in the NPC proliferation evidenced by the presence of thin myelin sheaths in the remodeled lesions. However, remyelination depends upon the survival of NPCs and their lineage specific differentiation. We observed significant increase (P < 0.001) in number of BrdU (+) cells in ependymal subventricular zone (SVZ) in EAE rats. EAE derived NPCs showed remarkable increase in S-phase population which was indeed due to the decrease in G-phase progeny suggesting activation of neuronal progenitor cells (NPCs) from quiescence. However, EAE derived neurospheres showed limited survival in vitro which was mediated by the significantly (P < 0.01) depolarized mitochondria, elevated Caspase-3 (P < 0.001) and fragmentation of nuclear DNA evidenced by single cell gel electrophoresis. Our results suggest EAE induced spontaneous apoptosis of NPCs in vitro which may increase the possibility of early stage cell death in the negative regulation of the proliferative cell number and may explain the failure of regeneration in human multiple sclerosis.
Analgesic effects of stem bark extracts of Trichilia monadelpha (Thonn.) JJ De Wilde.
Woode, Eric; Amoh-Barimah, Ama Kyeraa; Abotsi, Wonder Kofi Mensah; Ainooson, George Kwaw; Owusu, George
2012-01-01
Various parts of Trichilia monadelpha (Thonn) JJ De Wilde (Fam. Meliaceae) are used in Ghanaian traditional medicine for the treatment of painful and inflammatory conditions. The present study examined the analgesic properties of the petroleum ether (PEE), ethyl acetate (EAE), and the hydro-ethanolic (HAE) extract of the stem bark of the plant in murine models. PEE, EAE, and HAE were assessed in chemical (acetic acid-induced abdominal writhing and formalin tests), thermal (hot plate test), and mechanical (Randall-Selitto paw pressure test) pain models. The possible mechanisms of the antinociceptive action were also examined with various antagonists in the formalin test. HAE, EAE, and PEE, each at doses of 10-100 mg/kg orally, and the positive controls (morphine and diclofenac) elicited significant dose-dependent antinociceptive activity in the chemical (acetic acid abdominal writhing and formalin tests), thermal (hot plate test), and mechanical (Randall-Selitto paw pressure test) pain models in rodents. The antinociceptive effect of HAE was partly or wholly reversed by systemic administration of atropine, naloxone, and glibenclamide. The antinociceptive effects of EAE and PEE were inhibited by atropine. The extracts HAE, EAE, and PEE caused dose-related antinociception in chemical, thermal, and mechanical models of pain in animals. The mechanism of action of HAE involves an interaction with muscarinic cholinergic, adenosinergic, opioidergic pathways, and ATP-sensitive K+ channels while that of EAE and PEE involve the muscarinic cholinergic system.
Gerriets, Valerie A.; Danzaki, Keiko; Kishton, Rigel J.; Eisner, William; Nichols, Amanda G.; Saucillo, Donte C.; Shinohara, Mari L.; MacIver, Nancie J.
2016-01-01
Upon activation, T cells require energy for growth, proliferation and function. Effector T cells (Teff), such as Th1 and Th17, utilize high levels of glucose uptake and glycolysis to fuel proliferation and function. In contrast, Treg instead require oxidative metabolism to fuel suppressive function. It remains unknown how Teff/Treg metabolism is altered in settings of malnutrition, when nutrients are limited and circulating leptin levels are low. We therefore examined the role of malnutrition and associated hypoleptinemia on Teff versus Treg. We found that both malnutrition-associated hypoleptinemia and T cell-specific leptin receptor knockout suppressed Teff number, function, and glucose metabolism, but did not alter Treg metabolism or suppressive function. Using the autoimmune model EAE, we confirmed that fasting-induced hypoleptinemia altered Teff, but not Treg, glucose metabolism and function in vivo, leading to decreased disease severity. To explore potential mechanisms, we examined HIF-1α, a key regulator of Th17 differentiation and Teff glucose metabolism, and found HIF-1α expression was decreased in T cell-specific leptin receptor knockout Th17 cells, and in Teff cells from fasted EAE mice, but was unchanged in Treg. Altogether, these data demonstrate a selective, cell-intrinsic requirement for leptin to upregulate glucose metabolism and maintain function in Teff, but not Treg. PMID:27222115
McMahon, Tanis C.; Blais, Burton W.; Wong, Alex; Carrillo, Catherine D.
2017-01-01
Foodborne illness attributed to enterohemorrhagic E. coli (EHEC), a highly pathogenic subset of Shiga toxin-producing E. coli (STEC), is increasingly recognized as a significant public health issue. Current microbiological methods for identification of EHEC in foods often use PCR-based approaches to screen enrichment broth cultures for characteristic gene markers [i.e., Shiga toxin (stx) and intimin (eae)]. However, false positives arise when complex food matrices, such as beef, contain mixtures of eae-negative STEC and eae-positive E. coli, but no EHEC with both markers in a single cell. To reduce false-positive detection of EHEC in food enrichment samples, a Multiplexed, Single Intact Cell droplet digital PCR (MuSIC ddPCR) assay capable of detecting the co-occurrence of the stx and eae genes in a single bacterial cell was developed. This method requires: (1) dispersal of intact bacteria into droplets; (2) release of genomic DNA (gDNA) by heat lysis; and (3) amplification and detection of genetic targets (stx and eae) using standard TaqMan chemistries with ddPCR. Performance of the method was tested with panels of EHEC and non-target E. coli. By determining the linkage (i.e., the proportion of droplets in which stx and eae targets were both amplified), samples containing EHEC (typically greater than 20% linkage) could be distinguished from samples containing mixtures of eae-negative STEC and eae-positive E. coli (0–2% linkage). The use of intact cells was necessary as this linkage was not observed with gDNA extracts. EHEC could be accurately identified in enrichment broth cultures containing excess amounts of background E. coli and in enrichment cultures derived from ground beef/pork and leafy-green produce samples. To our knowledge, this is the first report of dual-target detection in single bacterial cells using ddPCR. The application of MuSIC ddPCR to enrichment-culture screening would reduce false-positives, thereby improving the cost, speed, and accuracy of current methods for EHEC detection in foods. PMID:28303131
McMahon, Tanis C; Blais, Burton W; Wong, Alex; Carrillo, Catherine D
2017-01-01
Foodborne illness attributed to enterohemorrhagic E. coli (EHEC), a highly pathogenic subset of Shiga toxin-producing E. coli (STEC), is increasingly recognized as a significant public health issue. Current microbiological methods for identification of EHEC in foods often use PCR-based approaches to screen enrichment broth cultures for characteristic gene markers [i.e., Shiga toxin ( stx ) and intimin ( eae )]. However, false positives arise when complex food matrices, such as beef, contain mixtures of eae -negative STEC and eae -positive E. coli , but no EHEC with both markers in a single cell. To reduce false-positive detection of EHEC in food enrichment samples, a Multiplexed, Single Intact Cell droplet digital PCR (MuSIC ddPCR) assay capable of detecting the co-occurrence of the stx and eae genes in a single bacterial cell was developed. This method requires: (1) dispersal of intact bacteria into droplets; (2) release of genomic DNA (gDNA) by heat lysis; and (3) amplification and detection of genetic targets ( stx and eae ) using standard TaqMan chemistries with ddPCR. Performance of the method was tested with panels of EHEC and non-target E. coli . By determining the linkage (i.e., the proportion of droplets in which stx and eae targets were both amplified), samples containing EHEC (typically greater than 20% linkage) could be distinguished from samples containing mixtures of eae -negative STEC and eae -positive E. coli (0-2% linkage). The use of intact cells was necessary as this linkage was not observed with gDNA extracts. EHEC could be accurately identified in enrichment broth cultures containing excess amounts of background E. coli and in enrichment cultures derived from ground beef/pork and leafy-green produce samples. To our knowledge, this is the first report of dual-target detection in single bacterial cells using ddPCR. The application of MuSIC ddPCR to enrichment-culture screening would reduce false-positives, thereby improving the cost, speed, and accuracy of current methods for EHEC detection in foods.
Merzaban, Jasmeen S; Imitola, Jaime; Starossom, Sarah C; Zhu, Bing; Wang, Yue; Lee, Jack; Ali, Amal J; Olah, Marta; Abuelela, Ayman F; Khoury, Samia J; Sackstein, Robert
2015-01-01
Neural stem cell (NSC)-based therapies offer potential for neural repair in central nervous system (CNS) inflammatory and degenerative disorders. Typically, these conditions present with multifocal CNS lesions making it impractical to inject NSCs locally, thus mandating optimization of vascular delivery of the cells to involved sites. Here, we analyzed NSCs for expression of molecular effectors of cell migration and found that these cells are natively devoid of E-selectin ligands. Using glycosyltransferase-programmed stereosubstitution (GPS), we glycan engineered the cell surface of NSCs (“GPS-NSCs”) with resultant enforced expression of the potent E-selectin ligand HCELL (hematopoietic cell E-/L-selectin ligand) and of an E-selectin-binding glycoform of neural cell adhesion molecule (“NCAM-E”). Following intravenous (i.v.) injection, short-term homing studies demonstrated that, compared with buffer-treated (control) NSCs, GPS-NSCs showed greater neurotropism. Administration of GPS-NSC significantly attenuated the clinical course of experimental autoimmune encephalomyelitis (EAE), with markedly decreased inflammation and improved oligodendroglial and axonal integrity, but without evidence of long-term stem cell engraftment. Notably, this effect of NSC is not a universal property of adult stem cells, as administration of GPS-engineered mouse hematopoietic stem/progenitor cells did not improve EAE clinical course. These findings highlight the utility of cell surface glycan engineering to boost stem cell delivery in neuroinflammatory conditions and indicate that, despite the use of a neural tissue-specific progenitor cell population, neural repair in EAE results from endogenous repair and not from direct, NSC-derived cell replacement. PMID:26153105
NASA Astrophysics Data System (ADS)
Wang, Chengyun; Zuo, Xiaoxi; Zhao, Minkai; Xiao, Xin; Yu, Le; Nan, Junmin
2016-03-01
1H,1H,5H-Perfluoropentyl-1,1,2,2-tetrafluoroethylether (F-EAE) mixed with ethylene carbonate (EC), diethyl carbonate (DEC), and lithium hexafluorophosphate (LiPF6) is evaluated as a co-solvent high-potential electrolyte of LiNi1/3Co1/3Mn1/3O2/graphite batteries. Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) indicate that the EC/DEC-based electrolyte with F-EAE possesses a high oxidation potential (>5.2 V vs. Li/Li+) and excellent film-forming characteristics. With 40 wt% F-EAE in the electrolyte, the capacity retention of the LiNi1/3Co1/3Mn1/3O2/graphite pouch cells that are cycled between 3.0 and 4.5 V is significantly improved from 28.8% to 86.8% after 100 cycles. In addition, electrochemical impedance spectroscopy (EIS) of three-electrode pouch cells, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) are used to characterize the effects of F-EAE on the enhanced capacity retention. It is demonstrated that F-EAE facilitates the formation of a stable surface electrolyte interface (SEI) layer with low impedance on the anode and effectively suppresses an increase in the charge-transfer resistance on the cathode. These results suggest that F-EAE can serve as an alternative electrolyte solvent for 4.5 V high voltage rechargeable lithium-ion batteries.
Analysis of the cross-talk of Epstein–Barr virus-infected B cells with T cells in the marmoset
Dunham, Jordon; van Driel, Nikki; Eggen, Bart JL; Paul, Chaitali; ‘t Hart, Bert A; Laman, Jon D; Kap, Yolanda S
2017-01-01
Despite the well-known association of Epstein–Barr virus (EBV), a lymphocryptovirus (LCV), with multiple sclerosis, a clear pathogenic role for disease progression has not been established. The translationally relevant experimental autoimmune encephalomyelitis (EAE) model in marmoset monkeys revealed that LCV-infected B cells have a central pathogenic role in the activation of T cells that drive EAE progression. We hypothesized that LCV-infected B cells induce T-cell functions relevant for EAE progression. In the current study, we examined the ex vivo cross-talk between lymph node mononuclear cells (MNCs) from EAE marmosets and (semi-) autologous EBV-infected B-lymphoblastoid cell lines (B-LCLs). Results presented here demonstrate that infection with EBV B95-8 has a strong impact on gene expression profile of marmoset B cells, particularly those involved with antigen processing and presentation or co-stimulation to T cells. At the cellular level, we observed that MNC co-culture with B-LCLs induced decrease of CCR7 expression on T cells from EAE responder marmosets, but not in EAE monkeys without clinically evident disease. B-LCL interaction with T cells also resulted in significant loss of CD27 expression and reduced expression of IL-23R and CCR6, which coincided with enhanced IL-17A production. These results highlight the profound impact that EBV-infected B-LCL cells can have on second and third co-stimulatory signals involved in (autoreactive) T-cell activation. PMID:28243437
Conduction block in the peripheral nervous system in experimental allergic encephalomyelitis
NASA Astrophysics Data System (ADS)
Pender, M. P.; Sears, T. A.
1982-04-01
Experimental allergic encephalomyelitis (EAE) has been widely studied as a model of multiple sclerosis, a central nervous system (CNS) disease of unknown aetiology. The clinical features of both EAE and multiple sclerosis provide the only guide to the progress and severity of these diseases, and are used to assess the response to treatment. In such comparisons the clinical features of EAE are assumed to be due to lesions in the CNS, but in this disease there is also histological evidence of damage to the peripheral nervous system1-8. However, the functional consequences of such peripheral lesions have been entirely ignored. To examine this we have studied nerve conduction in rabbits with EAE. We report here that most of the large diameter afferent fibres are blocked in the region of the dorsal root ganglion and at the dorsal root entry zone, thus accounting for the loss of tendon jerks and also, through the severe loss of proprioceptive information, the ataxia of these animals. We conclude that whenever clinical comparisons are made between EAE and multiple sclerosis, the pathophysiology associated with the histological damage of the peripheral nervous system must be taken into account.
Huang, Jie; Han, Song; Sun, Qi; Zhao, Yipeng; Liu, Junchen; Yuan, Xiaolu; Mao, Wenqian; Peng, Biwen; Liu, Wanhong; Yin, Jun; He, Xiaohua
2017-01-01
Disruption of blood-brain barrier (BBB) and subsequent infiltration of auto-reactive T lymphocytes are major characteristics of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Kv1.3 channel blockers are demonstrated potential therapeutic effects on MS patients and EAE models, maybe via reducing activation of T cells. However, it remains to be explored whether Kv1.3 channel blockers maintain integrity of BBB in MS model. In this study, ImKTx88, a highly selective Kv1.3 channel blocker, was used to determine the role of Kv1.3 channel in the pathogenesis of EAE, particularly in the maintenance of BBB. ImKTx88 ameliorated pathological severity in the EAE rats, and reduced extravasation into CNS. ImKTx88 also ameliorated the severity of loss or redistribution of tight junction proteins, and inhibited over-expression of ICAM-1 and VCAM-1 in the brain from EAE rats. Furthermore ImKTx88 protection was associated with activation of Ang-1/Tie-2 axis, and might be due to decreased IL-17 production. ImKTx88 may be a novel therapeutic agent for MS treatment by stabilizing the BBB.
Tian, Xing; Sui, Shuang; Huang, Jin; Bai, Jun-Peng; Ren, Tian-Shu; Zhao, Qing-Chun
2014-07-01
Many studies have shown that glutamate-induced oxidative stress can lead to neuronal cell death involved in the development of neurodegenerative diseases. In this work, protective effects of ethyl acetate extract (EAE) of Arctium lappa L. roots against glutamate-induced oxidative stress in PC12 cells were evaluated. Also, the effects of EAE on antioxidant system, mitochondrial pathway, and signal transduction pathway were explored. Pretreatment with EAE significantly increased cell viability, activities of GSH-Px and SOD, mitochondrial membrane potential and reduced LDH leakage, ROS formation, and nuclear condensation in a dose-dependent manner. Furthermore, western blot results revealed that EAE increased the Bcl-2/Bax ratio, and inhibited the up-regulation of caspase-3, release of cytochrome c, phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK 1/2). Therefore, our results indicate that EAE may be a promising neuroprotective agent for the prevention and treatment of neurodegenerative diseases implicated with oxidative stress. Copyright © 2014 Elsevier B.V. All rights reserved.
Zeitelhofer, Manuel; Hochmeister, Sonja; Beyeen, Amennai Daniel; Paulson, Atul; Gillett, Alan; Hedreul, Melanie Thessen; Covacu, Ruxandra; Lassmann, Hans; Olsson, Tomas; Jagodic, Maja
2012-01-01
Multiple sclerosis (MS) is a polygenic disease characterized by inflammation and demyelination in the central nervous system (CNS), which can be modeled in experimental autoimmune encephalomyelitis (EAE). The Eae18b locus on rat chromosome 10 has previously been linked to regulation of beta-chemokine expression and severity of EAE. Moreover, the homologous chemokine cluster in humans showed evidence of association with susceptibility to MS. We here established a congenic rat strain with Eae18b locus containing a chemokine cluster (Ccl2, Ccl7, Ccl11, Ccl12 and Ccl1) from the EAE- resistant PVG rat strain on the susceptible DA background and utilized myelin oligodendrocyte glycoprotein (MOG)-induced EAE to characterize the mechanisms underlying the genetic regulation. Congenic rats developed a milder disease compared to the susceptible DA strain, and this was reflected in decreased demyelination and in reduced recruitment of inflammatory cells to the brain. The congenic strain also showed significantly increased Ccl11 mRNA expression in draining lymph nodes and spinal cord after EAE induction. In the lymph nodes, macrophages were the main producers of CCL11, whereas macrophages and lymphocytes expressed the main CCL11 receptor, namely CCR3. Accordingly, the congenic strain also showed significantly increased Ccr3 mRNA expression in lymph nodes. In the CNS, the main producers of CCL11 were neurons, whereas CCR3 was detected on neurons and CSF producing ependymal cells. This corresponded to increased levels of CCL11 protein in the cerebrospinal fluid of the congenic rats. Increased intrathecal production of CCL11 in congenic rats was accompanied by a tighter blood brain barrier, reflected by more occludin+ blood vessels. In addition, the congenic strain showed a reduced antigen specific response and a predominant anti-inflammatory Th2 phenotype. These results indicate novel mechanisms in the genetic regulation of neuroinflammation. PMID:22815714
Use of the ecf1 gene to detect Shiga toxin-producing Escherichia coli in beef samples.
Livezey, Kristin W; Groschel, Bettina; Becker, Michael M
2015-04-01
Escherichia coli O157:H7 and six serovars (O26, O103, O121, O111, O145, and O45) are frequently implicated in severe clinical illness worldwide. Standard testing methods using stx, eae, and O serogroup-specific gene sequences for detecting the top six non-O157 STEC bear the disadvantage that these genes may reside, independently, in different nonpathogenic organisms, leading to false-positive results. The ecf operon has previously been identified in the large enterohemolysin-encoding plasmid of eae-positive Shiga toxin-producing E. coli (STEC). Here, we explored the utility of the ecf operon as a single marker to detect eae-positive STEC from pure broth and primary meat enrichments. Analysis of 501 E. coli isolates demonstrated a strong correlation (99.6%) between the presence of the ecf1 gene and the combined presence of stx, eae, and ehxA genes. Two large studies were carried out to determine the utility of an ecf1 detection assay to detect non-O157 STEC strains in enriched meat samples in comparison to the results using the U. S. Department of Agriculture Food Safety and Inspection Service (FSIS) method that detects stx and eae genes. In ground beef samples (n = 1,065), the top six non-O157 STEC were detected in 4.0% of samples by an ecf1 detection assay and in 5.0% of samples by the stx- and eae-based method. In contrast, in beef samples composed largely of trim (n = 1,097), the top six non-O157 STEC were detected at 1.1% by both methods. Estimation of false-positive rates among the top six non-O157 STEC revealed a lower rate using the ecf1 detection method (0.5%) than using the eae and stx screening method (1.1%). Additionally, the ecf1 detection assay detected STEC strains associated with severe illness that are not included in the FSIS regulatory definition of adulterant STEC.
Das, Suresh Chandra; Ramamurthy, Thandavanaryanalu; Ghosh, Santanu; Pazhani, Gururaja Perumal; Sen, Tista; Singh, Raghubir
2017-01-01
Background & objectives: Shigatoxic Escherichia coli (STEC) recovered from dairy animals of Kolkata, India, harboured the putative virulence genes; however, the animals did not exhibit clinical symptoms. Similarly, human isolates in this locality also showed variations in degree of symptoms. Hence, this study was designed to know the presence of recognized gene(s) in the locus of enterocyte effacement (LEE) pathogenicity island in these STEC isolates and functional status of the cardinal gene (eae) related to pathogenicity. Methods: Genes were characterized using polymerase chain reaction (PCR) assays, and functional status of cardinal gene (eae) was evaluated by fluorescent actin staining (FAS) assay. Variation in eae gene was determined by intimin PCR. Results: Cattle STEC isolates carried 22 genes in LEE pathogenicity island in different frequencies ranging from 5.63 to 47.88 per cent of the isolates. In human isolates, the genes namely ler, escRSTU, orf2, escC, escV, orf3 and tir that are associated with secretory function, were found to be absent and rest of the genes were present in lower frequency. Further, the cardinal gene (eae) responsible for initiation of pathogenesis was in a very low frequency in human (n=2; 10.5%) and cattle (n=11; 15.5%) isolates. None of these eae+ STEC isolates from human and cattle revealed positivity in FAS assay. Interpretation & conclusions: Majority of human STEC isolates lacked the cardinal virulence gene (eae), and genes for secretory function that are essential for facilitating pathogenesis. This may partially be attributed to low occurrence of STEC in human clinical diarrhoea in this area. Although a few isolates (11 of 71) from cattle had eae gene, they did not express phenotypically. This could be one of the reasons for not appearing of clinical symptoms in the hosts. PMID:29205193
Environmental asbestos exposure sources in Korea
2016-01-01
Background Because of the long asbestos-related disease latencies (10–50 years), detection, diagnosis, and epidemiologic studies require asbestos exposure history. However, environmental asbestos exposure source (EAES) data are lacking. Objectives To survey the available data for past EAES and supplement these data with interviews. Methods We constructed an EAES database using a literature review and interviews of experts, former traders, and workers. Exposure sources by time period and type were visualized using a geographic information system (ArcGIS), web-based mapping (Google Maps), and OpenWeatherMap. The data were mounted in the GIS to show the exposure source location and trend. Results The majority of asbestos mines, factories, and consumption was located in Chungnam; Gyeonggi, Busan, and Gyeongnam; and Gyeonggi, Daejeon, and Busan, respectively. Shipbuilding and repair companies were mostly located in Busan and Gyeongnam. Conclusions These tools might help evaluate past exposure from EAES and estimate the future asbestos burden in Korea. PMID:27726756
Environmental asbestos exposure sources in Korea.
Kang, Dong-Mug; Kim, Jong-Eun; Kim, Ju-Young; Lee, Hyun-Hee; Hwang, Young-Sik; Kim, Young-Ki; Lee, Yong-Jin
2016-10-01
Because of the long asbestos-related disease latencies (10-50 years), detection, diagnosis, and epidemiologic studies require asbestos exposure history. However, environmental asbestos exposure source (EAES) data are lacking. To survey the available data for past EAES and supplement these data with interviews. We constructed an EAES database using a literature review and interviews of experts, former traders, and workers. Exposure sources by time period and type were visualized using a geographic information system (ArcGIS), web-based mapping (Google Maps), and OpenWeatherMap. The data were mounted in the GIS to show the exposure source location and trend. The majority of asbestos mines, factories, and consumption was located in Chungnam; Gyeonggi, Busan, and Gyeongnam; and Gyeonggi, Daejeon, and Busan, respectively. Shipbuilding and repair companies were mostly located in Busan and Gyeongnam. These tools might help evaluate past exposure from EAES and estimate the future asbestos burden in Korea.
Gupta, Avneet; Raj, Hem; Sharma, Bhartendu; Upmanyu, Neeraj
2014-04-01
Bacopa monnieri, Evolvulus alsinoides and Tinospora cordifolia are established ayurvedic herbs having neuropharmacological effect. In present study is aimed to Phytochemical Comparison between Pet ether and Ethanolic extracts of Bacopa monnieri (BME), Evolvulus alsinoides (EAE) and Tinospora cordifolia (TCE). To identify the presence (+) or absence (-) of different phytoconstituents in Pet ether and Ethanolic extracts of BME, EAE and TCE by using various phytochemical testing methods. Phytochemical investigation showed the presence of various phytochemical constituents in Pet ether and Ethanolic extracts of BME, EAE and TCE. When comparison between Pet ether and Ethanolic extracts of BME, EAE and TCE; Ethanolic extracts of these plants showed more phytoconstituents as compared to Pet ether extracts of these plants. From present investigation, it can be concluded that phytochemical comparison is subsequently momentous and useful in finding chemical constituents in the plant substances that may lead to their quantitative evaluation and also pharmacologically active chemical compounds.
Mokarizadeh, Aram; Delirezh, Nowruz; Morshedi, Ahhmad; Mosayebi, Ghasem; Farshid, Amir-Abbas; Dalir-Naghadeh, Bahram
2012-01-01
Auto-reactive cells-mediated immune responses are responsible for the current tissue damages during autoimmunity. Accordingly, functional modulation of auto-reactive cells has been a pivotal aim in many of recent studies. In the current study, we investigated the possibility for insertion of regulatory molecules onto auto-reactive cells through exosomal nano-shuttles as a novel approach for phenotype modification of auto-reactive cells. The exosomes were isolated from supernatant of mesenchymal stem cells culture. Resultant exosomes co-cultured with lymphocytes were harvested from established EAE mice in the presence of antigenic MOG35-55 peptide. After 24 hr, insertion of exosomal tolerogenic molecules (PD-L1, TGF-β, galectin-1) onto auto-reactive cells were explored through flow cytometry. The potency of exosomal inserted membrane molecules to modulate phenotype of auto-reactive lymphocytes was assessed upon ELISA test for their-derived cytokines IFN-γ and IL-17. Incorporation of exosomal molecules into lymohocytes' membrane was confirmed by flow cytometric analyses for surface levels of mentioned molecules. Additionally, the decreased secretion of IFN-γ and IL-17 were detected in exosome pre-treated lymphocytes upon stimulation with MOG peptide. Mesenchymal stem cells -derived exosomes showed to be efficient organelles for insertion of bioactive tolerogenic molecules onto auto-reactive cells and modulation of their phenotypes.
Oral testosterone in male rats and the development of experimental autoimmune encephalomyelitis.
Macció, Daniela R; Calfa, Gastón; Roth, German A
2005-01-01
Considering that sex steroids can influence the immune system, we studied the development of experimental autoimmune encephalomyelitis (EAE), a T-cell-mediated autoimmune disease of the central nervous system, and the concomitant cell-mediated immunity in gonadally intact and gonadectomized male Wistar rats given testosterone supplementation. Sham-operated rats and surgically castrated animals were orally self-administered with vehicle or testosterone added in the water bottle for 20 days before EAE induction. The androgenic effect of oral testosterone self-administration was evidenced by changes in body weight, and in the weights of androgen-dependent testes and seminal vesicles. Testosterone administration reduced the incidence of clinical signs of EAE in sham-operated animals and reversed the clinical symptoms of the disease associated with castrated EAE animals. The clinical signs observed in the different groups correlated with changes in delayed-type hypersensitivity and mononuclear cell-proliferative responses to the encephalitogenic myelin basic protein. Moreover, testosterone but not cholesterol supplementation in vitro suppressed the proliferative response of mononuclear cells to myelin basic protein suggesting that testosterone may affect specific immune functions through direct actions on immune cells. Finally, self-administration of testosterone induced also elevated corticosterone levels that in sham-operated rats correlated with the low incidence of the disease and in gonadectomized animals could be involved in the remission of clinical symptoms of EAE. These results suggest that orally self-administered testosterone can modulate specific cellular immune responses and serum corticosterone levels leading to changes in the development of EAE. Copyright 2005 S. Karger AG, Basel.
Yang, Junling; Kou, Jinghong; Lim, Jeong-Eun; Lalonde, Robert; Fukuchi, Ken-ichiro
2015-01-01
Interleukin-17A (IL-17A) is generally considered as one of the pathogenic factors involved in multiple sclerosis (MS). Indirect evidence for this is that IL-17A-producing T helper 17 (Th17) cells preferentially accumulate in lesions of MS and experimental autoimmune encephalomyelitis (EAE). However, a direct involvement of IL-17A in MS pathogenesis is still an open question. In this study, we overexpressed IL-17A in the brains of mice (IL-17A-in-Brain mice) via recombinant adeno-associated virus serotype 5 (rAAV5)-mediated gene delivery. In spite of high levels of IL-17A expression in the brain and blood, IL-17A-in-Brain mice exhibit no inflammatory responses and no abnormalities in motor coordination and spatial orientation. Unexpectedly, IL-17A-in-Brain mice show decreases in body weight and adipose tissue mass and an improvement in glucose tolerance and insulin sensitivity. IL-17A enhances glucose uptake in PC12 cells by activation of AKT. Our results provide direct evidence for the first time that IL-17A overexpression in the central nervous system does not cause physical and learning disabilities and neuroinflammation and suggest that IL-17A may regulate glucose metabolism through the AKT signaling pathway. PMID:26562537
Munari, Carla Carolina; Resende, Flávia Aparecida; Alves, Jacqueline Morais; de Sousa, João Paulo; Bastos, Jairo Kenupp; Tavares, Denise Crispim
2008-09-01
Baccharis dracunculifolia De Candole (Asteraceae), a native plant from the Brazilian "cerrado", is widely used in folk medicine as an anti-inflammatory agent and for the treatment of gastrointestinal diseases. B. dracunculifolia has been described as the most important plant source of propolis in southeastern Brazil, which is called green propolis due to its color. The aim of the present study was to evaluate the mutagenic and antimutagenic effects of the ethyl acetate extract of B. dracunculifolia leaves (Bd-EAE) on Chinese hamster ovary cells. On one hand, the results showed a significant increase in the frequencies of chromosome aberrations at the highest Bd-EAE concentration tested (100 microg/mL). On the other hand, the lowest Bd-EAE concentration tested (12.5 micro/mL) significantly reduced the chromosome damage induced by the chemotherapeutic agent doxorubicin. The present results indicate that Bd-EAE has the characteristics of a so-called Janus compound, that is, Bd-EAE is mutagenic at higher concentrations, whereas it displays a chemopreventive effect on doxorubicin-induced mutagenicity at lower concentrations. The constituents of B. dracunculifolia responsible for its mutagenic and antimutagenic effects are probably flavonoids and phenylpropanoids, since these compounds can act either as pro-oxidants or as free radical scavengers depending on their concentration.
't Hart, Bert A; Laman, Jon D; Kap, Yolanda S
2018-05-01
The translation of scientific discoveries made in animal models into effective treatments for patients often fails, indicating that currently used disease models in preclinical research are insufficiently predictive for clinical success. An often-used model in the preclinical research of autoimmune neurological diseases, multiple sclerosis in particular, is experimental autoimmune encephalomyelitis (EAE). Most EAE models are based on genetically susceptible inbred/SPF mouse strains used at adolescent age (10-12 weeks), which lack exposure to genetic and microbial factors which shape the human immune system. Areas covered: Herein, the authors ask whether an EAE model in adult non-human primates from an outbred conventionally-housed colony could help bridge the translational gap between rodent EAE models and MS patients. Particularly, the authors discuss a novel and translationally relevant EAE model in common marmosets (Callithrix jacchus) that shares remarkable pathological similarity with MS. Expert opinion: The MS-like pathology in this model is caused by the interaction of effector memory T cells with B cells infected with the γ1-herpesvirus (CalHV3), both present in the pathogen-educated marmoset immune repertoire. The authors postulate that depletion of only the small subset (<0.05%) of CalHV3-infected B cells may be sufficient to limit chronic inflammatory demyelination.
NASA Astrophysics Data System (ADS)
Martín-González, Fidel; Martín-Velazquez, Silvia; Rodrigez-Pascua, Miguel Angel; Pérez-López, Raul; Silva, Pablo
2014-05-01
The intensity scales determined the damage caused by an earthquake. However, a new methodology takes into account not only the damage but the type of damage "Earthquake Archaeological Effects", EAE's, and its orientation (e.g. displaced masonry blocks, conjugated fractures, fallen and oriented columns, impact marks, dipping broken corners, etc.) (Rodriguez-Pascua et al., 2011; Giner-Robles et al., 2012). Its main contribution is that it focuses not only on the amount of damage but also in its orientation, giving information about the ground motion during the earthquake. Therefore, this orientations and instrumental data can be correlated with historical earthquakes. In 2011 an earthquake of magnitude Mw 5.2 took place in Lorca (SE Spain) (9 casualties and 460 million Euros in reparations). The study of the EAE's was carried out through the whole city (Giner-Robles et al., 2012). The present study aimed to a.- validate the EAE's methodology using it only in a small place, specifically the cemetery of San Clemente in Lorca, and b.- constraining the range of orientation for each EAE's. This cemetery has been selected because these damage orientation data can be correlated with instrumental information available, and also because this place has: a.- wide variety of architectural styles (neogothic, neobaroque, neoarabian), b.- its Cultural Interest (BIC), and c.- different building materials (brick, limestone, marble). The procedure involved two main phases: a.- inventory and identification of damage (EAE's) by pictures, and b.- analysis of the damage orientations. The orientation was calculated for each EAE's and plotted in maps. Results are NW-SE damage orientation. This orientation is consistent with that recorded in the accelerometer of Lorca (N160°E) and with that obtained from the analysis of EAE's for the whole town of Lorca (N130°E) (Giner-Robles et al., 2012). Due to the existence of an accelerometer, we know the orientation of the peak ground acceleration and we have been able to constrain the ranges of orientation for each EAE's. The orientation of the damage is not usually recorded after an earthquake; however, it can provide information on seismic source in historical earthquakes. References Giner-Robles, J. L., Perez-Lopez, R., Silva Barroso, P., Rodriguez-Pascua, M. A., Martin-Gonzalez, F. and Cabanas, L. 2012. Analisis estructural de danos orientados en el terremoto de Lorca del 11 de mayo de 2011. Aplicaciones en arqueosismologia. Boletín Geológico y Minero, 123 (4): 503-513 Rodriguez-Pascua, M.A., Perez-Lopez, R., Silva, P.G., Giner- Robles, J.L., Garduno-Monroy, V.H. and Reicherter, K. 2011. A Comprehensive Classification of Earthquake Archaeological Effects (EAE) for Archaeoseismology. Quaternary International, 242, 20-30.
Kinzel, Silke; Lehmann-Horn, Klaus; Torke, Sebastian; Häusler, Darius; Winkler, Anne; Stadelmann, Christine; Payne, Natalie; Feldmann, Linda; Saiz, Albert; Reindl, Markus; Lalive, Patrice H; Bernard, Claude C; Brück, Wolfgang; Weber, Martin S
2016-07-01
In the pathogenesis of central nervous system (CNS) demyelinating disorders, antigen-specific B cells are implicated to act as potent antigen-presenting cells (APC), eliciting waves of inflammatory CNS infiltration. Here, we provide the first evidence that CNS-reactive antibodies (Ab) are similarly capable of initiating an encephalitogenic immune response by targeting endogenous CNS antigen to otherwise inert myeloid APC. In a transgenic mouse model, constitutive production of Ab against myelin oligodendrocyte glycoprotein (MOG) was sufficient to promote spontaneous experimental autoimmune encephalomyelitis (EAE) in the absence of B cells, when mice endogenously contained MOG-recognizing T cells. Adoptive transfer studies corroborated that anti-MOG Ab triggered activation and expansion of peripheral MOG-specific T cells in an Fc-dependent manner, subsequently causing EAE. To evaluate the underlying mechanism, anti-MOG Ab were added to a co-culture of myeloid APC and MOG-specific T cells. At otherwise undetected concentrations, anti-MOG Ab enabled Fc-mediated APC recognition of intact MOG; internalized, processed and presented MOG activated naïve T cells to differentiate in an encephalitogenic manner. In a series of translational experiments, anti-MOG Ab from two patients with an acute flare of CNS inflammation likewise facilitated detection of human MOG. Jointly, these observations highlight Ab-mediated opsonization of endogenous CNS auto-antigen as a novel disease- and/or relapse-triggering mechanism in CNS demyelinating disorders.
Jiang, Wei; Li, Daojing; Han, Ranran; Zhang, Chao; Jin, Wei-Na; Wood, Kristofer; Liu, Qiang; Shi, Fu-Dong; Hao, Junwei
2017-07-25
The nonneural cholinergic system of immune cells is pivotal for the maintenance of immunological homeostasis. Here we demonstrate the expression of choline acetyltransferase (ChAT) and cholinergic enzymes in murine natural killer (NK) cells. The capacity for acetylcholine synthesis by NK cells increased markedly under inflammatory conditions such as experimental autoimmune encephalomyelitis (EAE), in which ChAT expression escalated along with the maturation of NK cells. ChAT + and ChAT - NK cells displayed distinctive features in terms of cytotoxicity and chemokine/cytokine production. Transfer of ChAT + NK cells into the cerebral ventricles of CX3CR1 -/- mice reduced brain and spinal cord damage after EAE induction, and decreased the numbers of CNS-infiltrating CCR2 + Ly6C hi monocytes. ChAT + NK cells killed CCR2 + Ly6C hi monocytes directly via the disruption of tolerance and inhibited the production of proinflammatory cytokines. Interestingly, ChAT + NK cells and CCR2 + Ly6C hi monocytes formed immune synapses; moreover, the impact of ChAT + NK cells was mediated by α7-nicotinic acetylcholine receptors. Finally, the NK cell cholinergic system up-regulated in response to autoimmune activation in multiple sclerosis, perhaps reflecting the severity of disease. Therefore, this study extends our understanding of the nonneural cholinergic system and the protective immune effect of acetylcholine-producing NK cells in autoimmune diseases.
Pillay, Leanne; Olaniran, Ademola O
2016-05-01
The poor operational status of some wastewater treatment plants often result in the discharge of inadequately treated effluent into receiving surface waters. This is of significant public health concern as there are many informal settlement dwellers (ISDs) that rely on these surface waters for their domestic use. This study investigated the treatment efficiency of two independent wastewater treatment plants (WWTPs) in Durban, South Africa and determined the impact of treated effluent discharge on the physicochemical and microbial quality of the receiving water bodies over a 6-month period. Presumptive Escherichia coli isolates were identified using biochemical tests and detection of the mdh gene via PCR. Six major virulence genes namely eae, hly, fliC, stx1, stx2, and rfbE were also detected via PCR while antibiotic resistance profiles of the isolates were determined using Kirby-Bauer disc diffusion assay. The physicochemical parameters of the wastewater samples ranged variously between 9 and 313.33 mg/L, 1.52 and 76.43 NTUs, and 6.30 and 7.87 for COD, turbidity, and pH respectively, while the E. coli counts ranged between 0 and 31.2 × 10(3) CFU/ml. Of the 200 selected E. coli isolates, the hly gene was found in 28 %, fliC in 20 %, stx2 in 17 %, eae in 14 %, with stx1 and rfbE in only 4 % of the isolates. Notable resistance was observed toward trimethoprim (97 %), tetracycline (56 %), and ampicillin (52.5 %). These results further highlight the poor operational status of these WWTPs and outline the need for improved water quality monitoring and enforcement of stringent guidelines.
Merzaban, Jasmeen S; Imitola, Jaime; Starossom, Sarah C; Zhu, Bing; Wang, Yue; Lee, Jack; Ali, Amal J; Olah, Marta; Abuelela, Ayman F; Khoury, Samia J; Sackstein, Robert
2015-12-01
Neural stem cell (NSC)-based therapies offer potential for neural repair in central nervous system (CNS) inflammatory and degenerative disorders. Typically, these conditions present with multifocal CNS lesions making it impractical to inject NSCs locally, thus mandating optimization of vascular delivery of the cells to involved sites. Here, we analyzed NSCs for expression of molecular effectors of cell migration and found that these cells are natively devoid of E-selectin ligands. Using glycosyltransferase-programmed stereosubstitution (GPS), we glycan engineered the cell surface of NSCs ("GPS-NSCs") with resultant enforced expression of the potent E-selectin ligand HCELL (hematopoietic cell E-/L-selectin ligand) and of an E-selectin-binding glycoform of neural cell adhesion molecule ("NCAM-E"). Following intravenous (i.v.) injection, short-term homing studies demonstrated that, compared with buffer-treated (control) NSCs, GPS-NSCs showed greater neurotropism. Administration of GPS-NSC significantly attenuated the clinical course of experimental autoimmune encephalomyelitis (EAE), with markedly decreased inflammation and improved oligodendroglial and axonal integrity, but without evidence of long-term stem cell engraftment. Notably, this effect of NSC is not a universal property of adult stem cells, as administration of GPS-engineered mouse hematopoietic stem/progenitor cells did not improve EAE clinical course. These findings highlight the utility of cell surface glycan engineering to boost stem cell delivery in neuroinflammatory conditions and indicate that, despite the use of a neural tissue-specific progenitor cell population, neural repair in EAE results from endogenous repair and not from direct, NSC-derived cell replacement. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
D’Souza, Cheryl A.; Zhao, Fei Linda; Li, Xujian; Xu, Yan; Dunn, Shannon E.; Zhang, Li
2016-01-01
Ovarian cancer G protein-coupled receptor 1 (OGR1) is a proton-sensing molecule that can detect decreases in extracellular pH that occur during inflammation. Although OGR1 has been shown to have pro-inflammatory functions in various diseases, its role in autoimmunity has not been examined. We therefore sought to determine whether OGR1 has a role in the development of T cell autoimmunity by contrasting the development of experimental autoimmune encephalomyelitis between wild type and OGR1-knockout mice. OGR1-knockout mice showed a drastically attenuated clinical course of disease that was associated with a profound reduction in the expansion of myelin oligodendrocyte glycoprotein 35-55-reactive T helper 1 (Th1) and Th17 cells in the periphery and a reduced accumulation of Th1 and Th17 effectors in the central nervous system. We determined that these impaired T cell responses in OGR1-knockout mice associated with a reduced frequency and number of dendritic cells in draining lymph nodes during EAE and a higher production of nitric oxide by macrophages. Our studies suggest that OGR1 plays a key role in regulating T cell responses during autoimmunity. PMID:26828924
Bouchard, Caroline; Pagé, Julie; Bédard, Andréanne; Tremblay, Pierrot; Vallières, Luc
2007-06-01
G protein-coupled receptor 84 (GPR84) is a recently discovered member of the seven transmembrane receptor superfamily whose function and regulation are unknown. Here, we report that in mice suffering from endotoxemia, microglia express GPR84 in a strong and sustained manner. This property is shared by subpopulations of peripheral macrophages and, to a much lesser extent, monocytes. The induction of GPR84 expression by endotoxin is mediated, at least in part, by proinflammatory cytokines, notably tumor necrosis factor (TNF) and interleukin-1 (IL-1), because mice lacking either one or both of these molecules have fewer GPR84-expressing cells in their cerebral cortex than wild-type mice during the early phase of endotoxemia. Moreover, when injected intracerebrally or added to microglial cultures, recombinant TNF stimulates GPR84 expression through a dexamethasone-insensitive mechanism. Finally, we show that microglia produce GPR84 not only during endotoxemia, but also during experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. In conclusion, this study reports the identification of a new sensitive marker of microglial activation, which may play an important regulatory role in neuroimmunological processes, acting downstream to the effects of proinflammatory mediators.
Systemic Injection of Neural Stem/Progenitor Cells in Mice with Chronic EAE
Donegà, Matteo; Giusto, Elena; Cossetti, Chiara; Schaeffer, Julia; Pluchino, Stefano
2014-01-01
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology. PMID:24798882
pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation
Duraes, Fernanda V.; Lippens, Carla; Steinbach, Karin; Dubrot, Juan; Brighouse, Dale; Bendriss-Vermare, Nathalie; Issazadeh-Navikas, Shohreh; Merkler, Doron; Hugues, Stephanie
2016-01-01
Plasmacytoid dendritic cells (pDCs) exhibit both innate and adaptive functions. In particular they are the main source of type I IFNs and directly impact T cell responses through antigen presentation. We have previously demonstrated that during experimental autoimmune encephalomyelitis (EAE) initiation, myelin-antigen presentation by pDCs is associated with suppressive Treg development and results in attenuated EAE. Here, we show that pDCs transferred during acute disease phase confer recovery from EAE. Clinical improvement is associated with migration of injected pDCs into inflamed CNS and is dependent on the subsequent and selective chemerin-mediated recruitment of endogenous pDCs to the CNS. The protective effect requires pDC pre-loading with myelin antigen, and is associated with the modulation of CNS-infiltrating pDC phenotype and inhibition of CNS encephalitogenic T cells. This study may pave the way for novel pDC-based cell therapies in autoimmune diseases, aiming at specifically modulating pathogenic cells that induce and sustain autoimmune inflammation. PMID:26341385
Mor, F; Cohen, I R
1992-01-01
To characterize the cellular immune response in an autoimmune lesion, we investigated the accumulation of specific T cells in the central nervous system in actively induced experimental autoimmune encephalomyelitis (EAE) in Lewis rats, using a limiting dilution analysis (LDA) assay for T cells that proliferate in response to antigens. Lymphocytes isolated from the spinal cord infiltrate were compared with cells from the popliteal lymph nodes with respect to frequency of cells responding to basic protein (BP), mycobacterium tuberculosis (MT), the 65-kD heat shock protein (hsp65), allogeneic brown norway spleen cells, and concanavalin A. Additionally, we compared the BP frequency in acute EAE of cells from the spinal cord, peripheral blood, spleen and lymph nodes, and the spinal cord and lymph node after recovery from EAE. We found that acute EAE was associated with marked enrichment of BP-reactive T cells in the spinal cord relative to their frequency in the lymphoid organs and peripheral blood. The infiltrate was also enriched for T cells responding to hsp65; alloreactive T cells, in contrast, were not enriched. The frequency of BP reactive T cells in the spinal cord was highest at the peak of paralysis; however, BP-reactive T cells could still be detected at moderate frequencies after clinical recovery. We established BP- and Mycobacteria-reactive T cell lines from the spinal infiltrates that were CD4+ and TcR alpha beta +. Most of the BP lines were found to react to the major encephalitogenic epitope of guinea pig BP for rats (amino acids 71-90); these lines were found to mediate EAE in naive recipients. T cell lines recognizing other epitopes of BP were not encephalitogenic. All of the lines responsive to Mycobacteria recognized hsp65 or hsp70. These results indicating that the immune infiltrate in active EAE is enriched with cells responding to the autoantigen and to hsp65 were confirmed in EAE adoptively transferred by anti-BP T cell clone. Images PMID:1281835
Programmed cell death-1 and programmed cell death ligand-1 antibodies-induced dysthyroidism.
Jaafar, Jaafar; Fernandez, Eugenio; Alwan, Heba; Philippe, Jacques
2018-05-01
Monoclonal antibodies blocking the programmed cell death-1 (PD-1) or its ligand (PD-L1) are a group of immune checkpoints inhibitors (ICIs) with proven antitumor efficacy. However, their use is complicated by immune-related adverse events (irAEs), including endocrine adverse events (eAEs). We review the incidence, time to onset and resolution rate of dysthyroidism induced by PD-1/PD-L1 Ab, and the clinical, biological and radiological findings. We aim to discuss the potential mechanisms of PD-1/PD-L1 Ab-induced dysthyroidism, and to propose a management algorithm. We performed a literature search of available clinical trials regarding PD-1/PD-L1 Ab in the PubMed database. We selected all English language clinical trials that included at least 100 patients. We also present selected case series or reports, retrospective studies and reviews related to this issue. In patients treated with PD-1 Ab, hypothyroidism occurred in 2-10.1% and hyperthyroidism occurred in 0.9-7.8%. When thyroiditis was reported separately, it occurred in 0.34-2.6%. Higher rates were reported when PD-1 Ab were associated with other ICI or chemotherapy. The median time to onset of hyperthyroidism and hypothyroidism after PD-1 Ab initiation was 23-45 days and 2-3.5 months, respectively. Regarding PD-L1 Ab, hypothyroidism occurred in 0-10% and hyperthyroidism in 0.5-2% of treated patients. The average time to onset of dysthyroidism after PD-L1 Ab was variable and ranged from 1 day after treatment initiation to 31 months. Dysthyroidism occurs in up to 10% of patients treated with PD-1/PD-L1 Ab. Hypothyroidism and reversible destructive thyroiditis are the most frequent endocrine adverse events (eAE) in PD-1/PD-L1 treated patients. Immune and non-immune mechanisms are potentially involved, independently of the presence of thyroid antibodies. © 2018 The authors.
Dunham, Jordon; Bauer, Jan; Campbell, Graham R; Mahad, Don J; van Driel, Nikki; van der Pol, Susanne M A; 't Hart, Bert A; Lassmann, Hans; Laman, Jon D; van Horssen, Jack; Kap, Yolanda S
2017-06-01
Oxidative damage and iron redistribution are associated with the pathogenesis and progression of multiple sclerosis (MS), but these aspects are not entirely replicated in rodent experimental autoimmune encephalomyelitis (EAE) models. Here, we report that oxidative burst and injury as well as redistribution of iron are hallmarks of the MS-like pathology in the EAE model in the common marmoset. Active lesions in the marmoset EAE brain display increased expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (p22phox, p47phox, and gp91phox) and inducible nitric oxide synthase immunoreactivity within lesions with active inflammation and demyelination, coinciding with enhanced expression of mitochondrial heat-shock protein 70 and superoxide dismutase 1 and 2. The EAE lesion-associated liberation of iron (due to loss of iron-containing myelin) was associated with altered expression of the iron metabolic markers FtH1, lactoferrin, hephaestin, and ceruloplasmin. The enhanced expression of oxidative damage markers in inflammatory lesions indicates that the enhanced antioxidant enzyme expression could not counteract reactive oxygen and nitrogen species-induced cellular damage, as is also observed in MS brains. This study demonstrates that oxidative injury and aberrant iron distribution are prominent pathological hallmarks of marmoset EAE thus making this model suitable for therapeutic intervention studies aimed at reducing oxidative stress and associated iron dysmetabolism. © 2017 American Association of Neuropathologists, Inc. All rights reserved.
Genain, C P; Gritz, L; Joshi, N; Panicali, D; Davis, R L; Whitaker, J N; Letvin, N L; Hauser, S L
1997-11-01
A primary demyelinating form of experimental allergic encephalomyelitis (EAE) resembling human multiple sclerosis (MS) occurs in Callithrix jacchus marmosets following immunization with human white matter. Participation of a T-cell immune response against myelin basic protein (MBP) in this disease model is supported by observations of increased reactivity against MBP in PBMC and of adoptive transfer of an inflammatory form of EAE by MBP-reactive T-cells. To evaluate the effects of ectopic presentation of MBP on marmoset EAE, animals were vaccinated prior to induction of EAE by subcutaneous injection of attenuated strains of vaccinia virus genetically engineered to contain either the entire coding sequence for human MBP (vT15) or the equine herpes virus glycoprotein gH gene (vAbT249). Vaccination with vT15 was followed by transient cytoplasmic and surface membrane expression of MBP in circulating PBMC (15-45 days). The onset of clinical EAE after immunization (pi) was markedly delayed in vT15-vaccinated animals (37-97 days pi, n = 4) compared to vAbT249-vaccinated controls (14-18 days pi, n = 3). Proliferative responses against MBP but not against vaccinia antigens or phytohemagglutinin were suppressed in protected animals. Thus, development of attenuated live viruses carrying genes for myelin antigens could be useful for induction of immunologic tolerance and for modulation of autoimmune demyelination.
Gouveia, E M M F; Silva, I S; Nakazato, G; Onselem, V J V; Corrêa, R A C; Araujo, F R; Chang, M R
2013-01-01
The therapeutic action of phosphorylated mannanoligosaccharides (MOS) was investigated regarding its prebiotic activity on enteropathogenic Escherichia coli (EPEC). Diarrhea was induced in dogs by experimental infection with EPEC strains. Then MOS was supplied once a day, in water for 20 days. Immunological (IgA and IgG), hematological (lymphocytes, neutrophils and monocytes) and bacteriological variables (PCR detection of the eae gene of EPEC recovered from stool culture), as well as occurrence of diarrhea were evaluated. All strains caused diarrhea at 24, 48 and 72 h after infection. PCR results indicated that E. coli isolated from stool culture of all infected animals had the eae gene. There was no significant difference among groups as to number of blood cells in the hemogram and IgA and IgG production. MOS was effective in recovering of EPEC-infected dogs since prebiotic-treated animals recovered more rapidly from infection than untreated ones (p < 0.05). This is an important finding since diarrhea causes intense dehydration and nutrient loss. The use of prebiotics for humans and other animals with diarrhea can be an alternative for the treatment and prophylaxis of EPEC infections.
Pedotti, Rosetta; Musio, Silvia; Scabeni, Stefano; Farina, Cinthia; Poliani, Pietro Luigi; Colombo, Emanuela; Costanza, Massimo; Berzi, Angela; Castellucci, Fabrizio; Ciusani, Emilio; Confalonieri, Paolo; Hemmer, Bernhard; Mantegazza, Renato; Antozzi, Carlo
2013-09-15
The pathogenic role of antibodies in multiple sclerosis (MS) is still controversial. We transferred to mice with experimental autoimmune encephalomyelitis (EAE), animal model of MS, IgG antibodies purified from a MS patient presenting a dramatic clinical improvement during relapse after selective IgG removal with immunoadsorption. Passive transfer of patient's IgG exacerbated motor paralysis and increased mouse central nervous system (CNS) inflammation and demyelination. Binding of patient's IgG was demonstrated in mouse CNS, with a diffuse staining of white matter oligodendrocytes. These data support a growing body of evidence that antibodies can play an important role in the pathobiology of MS. Copyright © 2013 Elsevier B.V. All rights reserved.
pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation.
Duraes, Fernanda V; Lippens, Carla; Steinbach, Karin; Dubrot, Juan; Brighouse, Dale; Bendriss-Vermare, Nathalie; Issazadeh-Navikas, Shohreh; Merkler, Doron; Hugues, Stephanie
2016-02-01
Plasmacytoid dendritic cells (pDCs) exhibit both innate and adaptive functions. In particular they are the main source of type I IFNs and directly impact T cell responses through antigen presentation. We have previously demonstrated that during experimental autoimmune encephalomyelitis (EAE) initiation, myelin-antigen presentation by pDCs is associated with suppressive Treg development and results in attenuated EAE. Here, we show that pDCs transferred during acute disease phase confer recovery from EAE. Clinical improvement is associated with migration of injected pDCs into inflamed CNS and is dependent on the subsequent and selective chemerin-mediated recruitment of endogenous pDCs to the CNS. The protective effect requires pDC pre-loading with myelin antigen, and is associated with the modulation of CNS-infiltrating pDC phenotype and inhibition of CNS encephalitogenic T cells. This study may pave the way for novel pDC-based cell therapies in autoimmune diseases, aiming at specifically modulating pathogenic cells that induce and sustain autoimmune inflammation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
European Association of Echocardiography: Research Grant Programme.
Gargani, Luna; Muraru, Denisa; Badano, Luigi P; Lancellotti, Patrizio; Sicari, Rosa
2012-01-01
The European Society of Cardiology (ESC) offers a variety of grants/fellowships to help young professionals in the field of cardiological training or research activities throughout Europe. The number of grants has significantly increased in recent years with contributions from the Associations, Working Groups and Councils of the ESC. The European Association of Echocardiography (EAE) is a registered branch of the ESC and actively takes part in this initiative. One of the aims of EAE is to promote excellence in research in cardiovascular ultrasound and other imaging modalities in Europe. Therefore, since 2008, the EAE offers a Research Grant Programme to help young doctors to obtain research experience in a high standard academic centre (or similar institution oriented to clinical or pre-clinical research) in an ESC member country other than their own. This programme can be considered as a valorization of the geographical mobility as well as cultural exchanges and professional practice in the field of cardiovascular imaging. The programme has been very successful so far, therefore in 2012 the EAE has increased its offer to two grants of 25,000 euros per annum each.
Michelli, Elvia; Millán, Adriana; Rodulfo, Hectorina; Michelli, Mirian; Luiggi, Jesús; Carreño, Numirin; De Donato, Marcos
2016-03-28
Diarrheagenic Escherichia coli is an important causative agent of acute diarrheic syndrome. To identify clonal groups of enteropathogenic E. coli (EPEC), in 485 children with acute diarrhea aged 0 to 10 years attending health care centers in Arismendi, Benítez and Sucre municipalities, Sucre state, Venezuela, from March to December, 2011. After obtaining the informed consent, stool samples were collected. Escherichia coli was identified using standard coproculture methods and serology with polyvalent and monovalent antisera. DNA was isolated, and eae (intimin) and bfpA (bundlin) genes were amplified through two multiplex polymerase chain reactions (PCR). The presence of bacterial infection was determined in 39.6% of coprocultures. The prevalence of E. coli was 54.7%; 82.9% of these isolates were positive by serology for the evaluated serogroups and serotypes, which were mostly identified in children between 0 and 2 years (37.9%); 48.6% of E. coli strains amplified the eae gene; of these, 58.8% were classified as typical EPEC (eae+ y bfp+). EPEC II was the most common serogroup (38.7%), with predominance of typical EPEC (60%). In positive strains for eae gene, the β intimin allele was the most frequently identified (74.5%). Only four strains with O157:H7 serotype were identified, which showed no PCR amplification of the eae and bfpA genes. This study showed the importance of molecular tests to identify diarrheagenic E. coli strains causing clinical conditions of varying severity.
Kumar, Shalini; Patel, Rhusheet; Moore, Spencer; Crawford, Daniel K.; Suwanna, Nirut; Mangiardi, Mario; Tiwari-Woodruff, Seema K.
2013-01-01
The identification of a drug that stimulates endogenous myelination and spares axon degeneration during multiple sclerosis (MS) could potentially reduce the rate of disease progression. Using experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, we have previously shown that prophylactic administration of the estrogen receptor (ER) β ligand 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) decreases clinical disease, is neuroprotective, stimulates endogenous myelination, and improves axon conduction without altering peripheral cytokine production or reducing central nervous system (CNS) inflammation. Here, we assessed the effects of therapeutic DPN treatment during peak EAE disease, which represents a more clinically relevant treatment paradigm. In addition, we investigated the mechanism of action of DPN treatment-induced recovery during EAE. Given that prophylactic and therapeutic treatment with DPN during EAE improved remyelination-induced axon conduction, and that ER (α and β) and membrane (m)ERs are present on oligodendrocyte lineage cells, a direct effect of treatment on oligodendrocytes is likely. DPN treatment of EAE animals resulted in phosphorylated ERβ and activated the phosphatidylinositol 3-kinase (PI3K)/ serine–threonine-specific protein kinase (Akt)/ mammalian target of rapamycin (mTOR) signaling pathway, a pathway required for oligodendrocyte survival and axon myelination. These results, along with our previous studies of prophylactic DPN treatment, make DPN and similar ERβ ligands immediate and favorable therapeutic candidates for demyelinating disease. PMID:23603111
Mazumder, Asit
2014-01-01
Escherichia coli isolates (n = 658) obtained from drinking water intakes of Comox Lake (2011 to 2013) were screened for the following virulence genes (VGs): stx1 and stx2 (Shiga toxin-producing E. coli [STEC]), eae and the adherence factor (EAF) gene (enteropathogenic E. coli [EPEC]), heat-stable (ST) enterotoxin (variants STh and STp) and heat-labile enterotoxin (LT) genes (enterotoxigenic E. coli [ETEC]), and ipaH (enteroinvasive E. coli [EIEC]). The only genes detected were eae and stx2, which were carried by 37.69% (n = 248) of the isolates. Only eae was harbored by 26.74% (n = 176) of the isolates, representing potential atypical EPEC strains, while only stx2 was detected in 10.33% (n = 68) of the isolates, indicating potential STEC strains. Moreover, four isolates were positive for both the stx2 and eae genes, representing potential EHEC strains. The prevalence of VGs (eae or stx2) was significantly (P < 0.0001) higher in the fall season, and multiple genes (eae plus stx2) were detected only in fall. Repetitive element palindromic PCR (rep-PCR) fingerprint analysis of 658 E. coli isolates identified 335 unique fingerprints, with an overall Shannon diversity (H′) index of 3.653. Diversity varied among seasons over the years, with relatively higher diversity during fall. Multivariate analysis of variance (MANOVA) revealed that the majority of the fingerprints showed a tendency to cluster according to year, season, and month. Taken together, the results indicated that the diversity and population structure of E. coli fluctuate on a temporal scale, reflecting the presence of diverse host sources and their behavior over time in the watershed. Furthermore, the occurrence of potentially pathogenic E. coli strains in the drinking water intakes highlights the risk to human health associated with direct and indirect consumption of untreated surface water. PMID:25548059
Gerriets, Valerie A; Danzaki, Keiko; Kishton, Rigel J; Eisner, William; Nichols, Amanda G; Saucillo, Donte C; Shinohara, Mari L; MacIver, Nancie J
2016-08-01
Upon activation, T cells require energy for growth, proliferation, and function. Effector T (Teff) cells, such as Th1 and Th17 cells, utilize high levels of glycolytic metabolism to fuel proliferation and function. In contrast, Treg cells require oxidative metabolism to fuel suppressive function. It remains unknown how Teff/Treg-cell metabolism is altered when nutrients are limited and leptin levels are low. We therefore examined the role of malnutrition and associated hypoleptinemia on Teff versus Treg cells. We found that both malnutrition-associated hypoleptinemia and T cell-specific leptin receptor knockout suppressed Teff-cell number, function, and glucose metabolism, but did not alter Treg-cell metabolism or suppressive function. Using the autoimmune mouse model EAE, we confirmed that fasting-induced hypoleptinemia altered Teff-cell, but not Treg-cell, glucose metabolism, and function in vivo, leading to decreased disease severity. To explore potential mechanisms, we examined HIF-1α, a key regulator of Th17 differentiation and Teff-cell glucose metabolism, and found HIF-1α expression was decreased in T cell-specific leptin receptor knockout Th17 cells, and in Teff cells from fasted EAE mice, but was unchanged in Treg cells. Altogether, these data demonstrate a selective, cell-intrinsic requirement for leptin to upregulate glucose metabolism and maintain function in Teff, but not Treg cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2012-01-01
Background There is increasing awareness that, aside from producing cerebrospinal fluid, the choroid plexus (CP) might be a key regulator of immune activity in the central nervous system (CNS) during neuroinflammation. Specifically, the CP has recently been posited to control entry of sentinel T cells into the uninflamed CNS during the early stages of neuroinflammatory diseases, like multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). As the CP is compartmentalized into a stromal core containing fenestrated capillaries devoid of typical blood–brain barrier properties, surrounded by a tight junction-expressing choroidal epithelium, each of these compartments might mount unique responses that instigate the neuroinflammatory process. Methods To discern responses of the respective CP stromal capillary and choroidal epithelial tissues during evolving neuroinflammation, we investigated morphology and in situ expression of 93 immune-related genes during early stages of EAE induced by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Specifically, 3-D immunofluorescent imaging was employed to gauge morphological changes, and laser capture microdissection was coupled to an Immune Panel TaqMan Low Density Array to detail alterations in gene expression patterns at these separate CP sites on days 9 and 15 post-immunization (p.i.). To resolve CP effects due to autoimmunity against MOG peptide, from those due to complete Freund’s adjuvant (CFA) and pertussis toxin (PTX) included in the immunization, analysis was performed on MOG-CFA/PTX-treated, CFA/PTX-treated, and naïve cohorts. Results The CP became swollen and displayed significant molecular changes in response to MOG-CFA/PTX immunization. Both stromal capillary and choroidal epithelial tissues mounted vigorous, yet different, changes in expression of numerous genes over the time course analyzed - including those encoding adhesion molecules, cytokines, chemokines, statins, interleukins, T cell activation markers, costimulatory molecules, cyclooxygenase, pro-inflammatory transcription factors and pro-apoptotic markers. Moreover, CFA/PTX-treatment, alone, resulted in extensive, though less robust, alterations in both CP compartments. Conclusions MOG-CFA/PTX immunization significantly affects CP morphology and stimulates distinct expression patterns of immune-related genes in CP stromal capillary and epithelial tissues during evolving EAE. CFA/PTX treatment, alone, causes widespread gene alterations that could prime the CP to unlock the CNS to T cell infiltration during neuroinflammatory disease. PMID:22870943
Effect of pregnancy on experimental allergic encephalomyelitis in guinea pigs and rats.
Keith, A B
1978-10-01
Pregnancy in guinea pigs and rats exerted a suppressive influence on the development of experimental allergic encephalomyelitis (EAE). Early or late stages in pregnancy had a similar effect in delaying the onset of EAE, a greater delay being observed in pregnant guinea pigs with full term pregnancies. However, the suppressive effect in the majority of animals was only temporary and when they developed the disease the clinical severity was then similar to that in the controls. Clinical symptoms of EAE, in guinea pigs that did not maintain their pregnancy, developed soon after abortion or resorption and these animals deteriorated rapidly. Histologic lesions were markedly enhanced with prominent demyelination in the majority of guinea pigs that were sensitised when pregnant.
Plumb, Jonnie; Cross, Alison K; Surr, Jessica; Haddock, Gail; Smith, Terence; Bunning, Rowena A D; Woodroofe, M Nicola
2005-07-01
Tumour necrosis factor (TNF) is a major immunomodulatory and proinflammatory cytokine implicated in the pathogenesis of multiple sclerosis (MS) and the animal model experimental autoimmune encephalomyelitis (EAE). ADAM-17 cleaves membrane-bound TNF into its soluble form. The distribution and level of ADAM-17 expression within spinal cords of Lewis rats with EAE was investigated. ADAM-17 was associated with endothelial cells in the naïve and pre-disease spinal cords. In peak disease astrocytic and inflammatory cells expressed ADAM-17. Upregulation of ADAM-17 mRNA expression was coupled with a decrease in mRNA levels of its inhibitor TIMP3 suggesting a role for ADAM-17 in EAE pathogenesis.
Behavioral testing strategies in a localized animal model of multiple sclerosis.
Buddeberg, Bigna S; Kerschensteiner, Martin; Merkler, Doron; Stadelmann, Christine; Schwab, Martin E
2004-08-01
To assess neurological impairments quantitatively in an animal model of multiple sclerosis (MS), we have used a targeted model of experimental autoimmune encephalomyelitis (EAE), which leads to the formation of anatomically defined lesions in the spinal cord. Deficits in the hindlimb locomotion are therefore well defined and highly reproducible, in contrast to the situation in generalized EAE with disseminated lesions. Behavioral tests for hindlimb sensorimotor functions, originally established for traumatic spinal cord injury, revealed temporary or persistent deficits in open field locomotion, the grid walk, the narrow beam and the measurement of the foot exorotation angle. Such refined behavioral testing in EAE will be crucial for the analysis of new therapeutic approaches for MS that seek to improve or prevent neurological impairment.
Cao, Guangchao; Wang, Qian; Huang, Wanjun; Tong, Jiyu; Ye, Dewei; He, Yan; Liu, Zonghua; Tang, Xin; Cheng, Hao; Wen, Qiong; Li, Dehai; Chau, Hau-Tak; Wen, Yiming; Zhong, Hui; Meng, Ziyu; Liu, Hui; Wu, Zhenzhou; Zhao, Liqing; Flavell, Richard A; Zhou, Hongwei; Xu, Aimin; Yang, Hengwen; Yin, Zhinan
2017-01-01
Epidemiological data provide strong evidence of dramatically increasing incidences of many autoimmune diseases in the past few decades, mainly in western and westernized countries. Recent studies clearly revealed that 'Western diet' increases the risk of autoimmune diseases at least partially via disrupting intestinal tight junctions and altering the construction and metabolites of microbiota. However, the role of high sucrose cola beverages (HSCBs), which are one of the main sources of added sugar in the western diet, is barely known. Recently, a population study showed that regular consumption of sugar-sweetened beverages is associated with increased risk of seropositive rheumatoid arthritis in women, which provokes interest in the genuine effects of these beverages on the pathogenesis of autoimmune diseases and the underlying mechanisms. Here we showed that long-term consumption of caffeine-free HSCBs aggravated the pathogenesis of experimental autoimmune encephalomyelitis in mice in a microbiota-dependent manner. Further investigation revealed that HSCBs altered community structure of microbiota and increased Th17 cells. High sucrose consumption had similar detrimental effects while caffeine contamination limited the infiltrated pathogenic immune cells and counteracted these effects. These results uncovered a deleterious role of decaffeinated HSCBs in aggravating the pathogenesis of experimental autoimmune encephalomyelitis in mice.
Amani, Jafar; Mousavi, Seyed Latif; Rafati, Sima; Salmanian, Ali Hatef
2011-04-01
Transgenic plants offer the possibility to produce and deliver an oral immunogen on a large-scale with low production costs and minimal purification or enrichment. Cattles are important reservoirs of Escherichia coli O157:H7 and developing a specific immunity in animals would be invaluable. Intimin, Tir, and EspA proteins are the virulence factors expressed by LEE locus of enterohemorrhagic E. coli. We hypothesized that the chimeric recombinant forms of these effectors delivered as an edible-base vaccine would reduce colonization of bacteria in mice. A synthetic gene (eit) composed of espA (e), eae (i) and tir (t) attached by linkers was constructed. The gene was codon optimized and cloned into plant expression vectors adjacent to CaMV35S and FAE promoters for expression in tobacco and canola plants. Of total soluble protein 0.2% and 0.3% (in average) were detected in transgenic tobacco leaves and canola seeds respectively. Mice immunized either subcutaneously or orally with recombinant EIT and challenged with E. coli O157:H7 significantly exhibited reduced bacterial shedding. Application of transgenic plants containing trivalent immunogen is an effective tool for protection against E. coli O157:H7. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Cao, Guangchao; Wang, Qian; Huang, Wanjun; Tong, Jiyu; Ye, Dewei; He, Yan; Liu, Zonghua; Tang, Xin; Cheng, Hao; Wen, Qiong; Li, Dehai; Chau, Hau-Tak; Wen, Yiming; Zhong, Hui; Meng, Ziyu; Liu, Hui; Wu, Zhenzhou; Zhao, Liqing; Flavell, Richard A; Zhou, Hongwei; Xu, Aimin; Yang, Hengwen; Yin, Zhinan
2017-01-01
Epidemiological data provide strong evidence of dramatically increasing incidences of many autoimmune diseases in the past few decades, mainly in western and westernized countries. Recent studies clearly revealed that ‘Western diet’ increases the risk of autoimmune diseases at least partially via disrupting intestinal tight junctions and altering the construction and metabolites of microbiota. However, the role of high sucrose cola beverages (HSCBs), which are one of the main sources of added sugar in the western diet, is barely known. Recently, a population study showed that regular consumption of sugar-sweetened beverages is associated with increased risk of seropositive rheumatoid arthritis in women, which provokes interest in the genuine effects of these beverages on the pathogenesis of autoimmune diseases and the underlying mechanisms. Here we showed that long-term consumption of caffeine-free HSCBs aggravated the pathogenesis of experimental autoimmune encephalomyelitis in mice in a microbiota-dependent manner. Further investigation revealed that HSCBs altered community structure of microbiota and increased Th17 cells. High sucrose consumption had similar detrimental effects while caffeine contamination limited the infiltrated pathogenic immune cells and counteracted these effects. These results uncovered a deleterious role of decaffeinated HSCBs in aggravating the pathogenesis of experimental autoimmune encephalomyelitis in mice. PMID:28670480
Audoy-Rémus, Julie; Bozoyan, Lusine; Dumas, Aline; Filali, Mohammed; Lecours, Cynthia; Lacroix, Steve; Rivest, Serge; Tremblay, Marie-Eve; Vallières, Luc
2015-05-01
Microglia surrounds the amyloid plaques that form in the brains of patients with Alzheimer's disease (AD), but their role is controversial. Under inflammatory conditions, these cells can express GPR84, an orphan receptor whose pathophysiological role is unknown. Here, we report that GPR84 is upregulated in microglia of APP/PS1 transgenic mice, a model of AD. Without GPR84, these mice display both accelerated cognitive decline and a reduced number of microglia, especially in areas surrounding plaques. The lack of GPR84 affects neither plaque formation nor hippocampal neurogenesis, but promotes dendritic degeneration. Furthermore, GPR84 does not influence the clinical progression of other diseases in which its expression has been reported, i.e., experimental autoimmune encephalomyelitis (EAE) and endotoxic shock. We conclude that GPR84 plays a beneficial role in amyloid pathology by acting as a sensor for a yet unknown ligand that promotes microglia recruitment, a response affecting dendritic degeneration and required to prevent further cognitive decline. Copyright © 2015 Elsevier Inc. All rights reserved.
Crowe, Fiona; Sperduti, Alessandra; O'Connell, Tamsin C; Craig, Oliver E; Kirsanow, Karola; Germoni, Paola; Macchiarelli, Roberto; Garnsey, Peter; Bondioli, Luca
2010-07-01
The reconstruction of dietary patterns in the two Roman imperial age coastal communities of Portus and Velia (I-III AD) by means of stable isotope analysis of bone remains has exposed a certain degree of heterogeneity between and within the two samples. Results do not correlate with any discernible mortuary practices at either site, which might have pointed to differential social status. The present study tests the hypothesis of a possible connection between dietary habits and occupational activities in the two communities. Among skeletal markers of occupation, external auricular exostosis (EAE) has proved to be very informative. Clinical and retrospective epidemiological surveys have revealed a strong positive correlation between EAE development and habitual exposure to cold water. In this study, we show that there is a high rate of occurrence of EAE among adult males in both skeletal samples (21.1% in Portus and 35.3% in Velia). Further, there is a statistically significant higher prevalence of EAE among those individuals at Velia with very high nitrogen isotopic values. This points to fishing (coastal, low-water fishing) as the sea-related occupation most responsible for the onset of the ear pathology. For Portus, where the consumption of foods from sea and river seems to be more widespread through the population, and where the scenario of seaport and fluvial activities was much more complex than in Velia, a close correlation between EAE and fish consumption by fishermen is less easy to establish. (c) 2009 Wiley-Liss, Inc.
Emmanouil, Mary; Tseveleki, Vivian; Triantafyllakou, Iro; Nteli, Agathi; Tselios, Theodore; Probert, Lesley
2018-01-31
In this report, amide-linked cyclic peptide analogues of the 87-99 myelin basic protein (MBP) epitope, a candidate autoantigen in multiple sclerosis (MS), are tested for therapeutic efficacy in experimental autoimmune encephalomyelitis (EAE). Cyclic altered peptide analogues of MBP 87-99 with substitutions at positions 91 and/or 96 were tested for protective effects when administered using prophylactic or early therapeutic protocols in MBP 72-85 -induced EAE in Lewis rats. The Lys 91 and Pro 96 of MBP 87-99 are crucial T-cell receptor (TCR) anchors and participate in the formation of trimolecular complex between the TCR-antigen (peptide)-MHC (major histocompability complex) for the stimulation of encephalitogenic T cells that are necessary for EAE induction and are implicated in MS. The cyclic peptides were synthesized using Solid Phase Peptide Synthesis (SPPS) applied on the 9-fluorenylmethyloxycarboxyl/tert-butyl Fmoc/tBu methodology and combined with the 2-chlorotrityl chloride resin (CLTR-Cl). Cyclo(91-99)[Ala 96 ]MBP 87-99 , cyclo(87-99)[Ala 91,96 ]MBP 87-99 and cyclo(87-99)[Arg 91 , Ala 96 ]MBP 87-99 , but not wild-type linear MBP 87-99 , strongly inhibited MBP 72-85 -induced EAE in Lewis rats when administered using prophylactic and early therapeutic vaccination protocols. In particular, cyclo(87-99)[Arg 91 , Ala 96 ]MBP 87-99 was highly effective in preventing the onset and development of clinical symptoms and spinal cord pathology and providing lasting protection against EAE induction.
Sajad, Mir; Zargan, Jamil; Chawla, Raman; Umar, Sadiq; Sadaqat, Mir; Khan, Haider A
2009-08-01
Experimental Autoimmune Encephalomyelitis (EAE) is a well-established animal model of human multiple sclerosis (MS). The effect of this inflammatory disease on hippocampus has not been addressed. Keeping in view the above consideration an attempt was made to delineate the effect of EAE on the hippocampus of Wistar rats. The assessment of the damage to the hippocampus was done 16 days post induction by the immunolocalization of ChAT (choline acetyl transferase). ChAT decreased remarkably after induction that revealed cholinergic neuronal degeneration in the hippocampus. Subsequently, many biochemical parameters were assessed to ascertain inflammatory activation of nitric oxide and associated oxidative damage as a putative mechanism of the cholinergic degeneration. Nitric oxide metabolites increased significantly (P < 0.05) with enhancement of MPO (Myeloperoxidase activity) (P < 0.001) in the MOG (myelin oligodendrocyte protein) group as compared to the controls. Peroxidation of biomembranes increased (P < 0.001), while reduced glutathione depleted (P < 0.001) with parallel decrease in catalase (P < 0.01) and superoxide dismutase enzyme activity (P < 0.001) in the MOG group. Our results show a strong role of peroxidase dependent oxidation of nitrite and oxidative stress in cholinergic degeneration in EAE.
ERIC Educational Resources Information Center
Prieß-Buchheit, Julia
2015-01-01
The Economic Actions in Education training module (EAE) teaches how to handle, use and judge external standardized tests in schools. The EAE programme was implemented in teacher training at the University of Kiel, because teachers are increasingly under external scrutiny and are being held accountable for student and school achievements. The EAE…
Zhao, Jianmei; Gao, Ying; Cheng, Chun; Yan, Meijuan; Wang, Jian
2013-03-01
Inflammatory infiltration has been recently emphasized in the demyelinating diseases of the central nervous system including multiple sclerosis. β-1,4-Galactosyltransferase I (β-1,4-GalT-I) is a major galactosyltransferase responsible for selectin-ligand biosynthesis, mediating rolling of the inflammatory lymphocytes. In the present study, Western blot showed that expression of β-1,4-GalT-I was low in normal or complete Freund's adjuvant (CFA) control rats' spinal cords, and it began to increase since early stage and peaked at E4 stage of experimental autoimmune encephalomyelitis (EAE) and restored approximately at normal level in the recovery stage. Immunohistochemisty revealed that upregulation of β-1,4-GalT-I was predominantly distributed in the white matter of spinal cord , while there was also some increased staining of β-1,4-GalT-I in the grey matter. Meanwhile, the expression of E-selectin, the substrate of β-1,4-GalT-I, was significantly increased, with a peak at E4 stage of EAE, and gradually decreased thereafter. Lectin blot showed that the protein bands with molecular weights of 65-25 kDa reacted a remarkable increase at the peak stage of EAE when compared with the normal and CFA control. Ricinus Communis Agglutinin-I (RCA-I) histochemistry revealed that RCA-Ι-positive signals were most intense in white matter of lumbosacral spinal cord at the peak stage of EAE (E4). Immunohistochemistry showed that β-1,4-GalT-I and CD62E, a marker for E-selectin stainings located in a considerable number of ED1 (+) macrophages in perivascular or in the white matter in EAE lesions, and a good co-localization of ED1 (+) cells with CD62E was observed. All these results suggest that β-1,4-GalT-I might serve as an inflammatory mediator regulating adhesion and migration of inflammatory cells in EAE, possibly through influencing the modification of galactosylated carbohydrate chains to modulate selectin-ligand biosynthesis and interaction with E-selectin.
NASA Astrophysics Data System (ADS)
Schuengel, Edmund
2014-10-01
The processing of large area surfaces in capacitive radio-frequency plasmas is a crucial step in the manufacturing of various high-technological products. To optimize these discharges for applications, understanding and controlling the dynamics of electrons and ions is vitally important. A recently proposed method of controlling these dynamics is based on the Electrical Asymmetry Effect (EAE): By driving the capacitive discharge with a dual-frequency voltage waveform composed of two consecutive harmonics, the symmetry of the discharge can be varied by tuning the relative phase. In this experimental study, the EAE is tested in hydrogen diluted silane discharges. The electron dynamics visualized by Phase Resolved Optical Emission Spectroscopy depends on the electrical asymmetry, the heating mode, and the presence of dust particles agglomerating in the plasma volume. In particular, a transition from the α-mode (heating by sheath expansion and field reversal) to the Ω-mode (heating by drift field in the bulk) is observed. The ion dynamics are strongly affected by the sheaths electric fields, which can be controlled via the EAE: Separate control of the flux and mean energy of ions onto the electrodes is possible via the EAE. Furthermore, investigations of the spatially resolved ion flux in the electromagnetic regime, i.e. using higher driving frequencies, reveal that the ion flux profile is controllable via the phase, as well, allowing for a significant improvement of the uniformity. Thus, it is demonstrated that the EAE is a powerful tool to control the properties of large area capacitive discharges in the volume and at the surfaces in various ways. Funded by the German Federal Ministry for the Environment, Nature conservation, and Nuclear Safety (0325210B).
Pryce, Gareth; Riddall, Dieter R; Selwood, David L; Giovannoni, Gavin; Baker, David
2015-06-01
Multiple sclerosis (MS) is the major immune-mediated, demyelinating, neurodegenerative disease of the central nervous system. Compounds within cannabis, notably Δ9-tetrahydrocannabinol (Δ9-THC) can limit the inappropriate neurotransmissions that cause MS-related problems and medicinal cannabis is now licenced for the treatment of MS symptoms. However, the biology indicates that the endocannabinoid system may offer the potential to control other aspects of disease. Although there is limited evidence that the cannabinoids from cannabis are having significant immunosuppressive activities that will influence relapsing autoimmunity, we and others can experimentally demonstrate that they may limit neurodegeneration that drives progressive disability. Here we show that synthetic cannabidiol can slow down the accumulation of disability from the inflammatory penumbra during relapsing experimental autoimmune encephalomyelitis (EAE) in ABH mice, possibly via blockade of voltage-gated sodium channels. In addition, whilst non-sedating doses of Δ9-THC do not inhibit relapsing autoimmunity, they dose-dependently inhibit the accumulation of disability during EAE. They also appear to slow down clinical progression during MS in humans. Although a 3 year, phase III clinical trial did not detect a beneficial effect of oral Δ9-THC in progressive MS, a planned subgroup analysis of people with less disability who progressed more rapidly, demonstrated a significant slowing of progression by oral Δ9-THC compared to placebo. Whilst this may support the experimental and biological evidence for a neuroprotective effect by the endocannabinoid system in MS, it remains to be established whether this will be formally demonstrated in further trials of Δ9-THC/cannabis in progressive MS.
Locri, Filippo; Amato, Rosario; Marsili, Stefania; Rusciano, Dario; Bagnoli, Paola
2018-01-01
Optic neuritis is an acute inflammatory demyelinating disorder of the optic nerve (ON) and is an initial symptom of multiple sclerosis (MS). Optic neuritis is characterized by ON degeneration and retinal ganglion cell (RGC) loss that contributes to permanent visual disability and lacks a reliable treatment. Here, we used the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, a well-established model also for optic neuritis. In this model, C57BL6 mice, intraperitoneally injected with a fragment of the myelin oligodendrocyte glycoprotein (MOG), were found to develop inflammation, Müller cell gliosis, and infiltration of macrophages with increased production of oncomodulin (OCM), a calcium binding protein that acts as an atypical trophic factor for neurons enabling RGC axon regeneration. Immunolabeling of retinal whole mounts with a Brn3a antibody demonstrated drastic RGC loss. Dietary supplementation with Neuro-FAG (nFAG®), a balanced mixture of fatty acids (FAs), counteracted inflammatory and gliotic processes in the retina. In contrast, infiltration of macrophages and their production of OCM remained at elevated levels thus eventually preserving OCM trophic activity. In addition, the diet supplement with nFAG exerted a neuroprotective effect preventing MOG-induced RGC death. In conclusion, these data suggest that the balanced mixture of FAs may represent a useful form of diet supplementation to limit inflammatory events and death of RGCs associated to optic neuritis. This would occur without affecting macrophage infiltration and the release of OCM thus favoring the maintenance of OCM neuroprotective role. PMID:29517994
Christy, Alison L; Walker, Margaret E; Hessner, Martin J; Brown, Melissa A
2013-05-01
The meninges are often considered inert tissues that house the CSF and provide protection for the brain and spinal cord. Yet emerging data demonstrates that they are also active sites of immune responses. Furthermore, the blood-CSF barrier surrounding meningeal blood vessels, together with the blood-brain barrier (BBB), is postulated to serve as a gateway for the pathological infiltration of immune cells into the CNS in multiple sclerosis (MS). Our previous studies using mast cell-deficient (Kit(W/Wv)) mice demonstrated that mast cells resident in the dura mater and pia mater exacerbate experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, by facilitating CNS inflammatory cell influx. Here we examined the underlying mechanisms that mediate these effects. We demonstrate that there are dramatic alterations in immune associated gene expression in the meninges in pre-clinical disease, including those associated with mast cell and neutrophil function. Meningeal mast cells are activated within 24 h of disease induction, but do not directly compromise CNS vascular integrity. Rather, through production of TNF, mast cells elicit an early influx of neutrophils, cells known to alter vascular permeability, into the meninges. These data add to the growing evidence that inflammation in the meninges precedes CNS immune cell infiltration and establish that mast cells are among the earliest participants in these disease-initiating events. We hypothesize that mast cell-dependent neutrophil recruitment and activation in the meninges promotes early breakdown of the local BBB and CSF-blood barrier allowing initial immune cell access to the CNS. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ghanta, Srijani; Banerjee, Anindita; Poddar, Avijit; Chattopadhyay, Sharmila
2007-12-26
At 0.1 mg/mL, the ethyl acetate extract (EAE) of the crude 85% methanolic extract (CAE) of Stevia rebaudiana leaves exhibited preventive activity against DNA strand scission by *OH generated in Fenton's reaction on pBluescript II SK (-) DNA. Its efficacy is better than that of quercetin. The radical scavenging capacity of CAE was evaluated by the DPPH test (IC50=47.66+/-1.04 microg/mL). EAE was derived from CAE scavenged DPPH (IC50=9.26+/-0.04 microg/mL), ABTS+ (IC50=3.04+/-0.22 microg/mL) and *OH (IC50=3.08+/-0.19 microg/mL). Additionally, inhibition of lipid peroxidation induced with 25 mM FeSO 4 on rat liver homogenate as a lipid source was noted with CAE (IC50=2.1+/-1.07 mg/mL). The total polyphenols and total flavonoids of EAE were 0.86 mg gallic acid equivalents/mg and 0.83 mg of quercetin equivalents/mg, respectively. Flavonoids, isolated from EAE, were characterized as quercetin-3-O-arabinoside, quercitrin, apigenin, apigenin-4-O-glucoside, luteolin, and kaempferol-3-O-rhamnoside by LC-MS and NMR analysis. These results indicate that Stevia rebaudiana may be useful as a potential source of natural antioxidants.
Ke, Fang; Zhang, Lingyun; Liu, Zhaoyuan; Yan, Sha; Xu, Zhenyao; Bai, Jing; Zhu, Huiyuan; Lou, Fangzhou; Cai, Wei; Sun, Yang; Gao, Yuanyuan; Wang, Hong
2016-01-01
T helper 17 (Th17) cells play an important role in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Th17 cell differentiation from naïve T cells can be induced in vitro by the cytokines transforming growth factor β1 and interleukin-6. However, it remains unclear whether other regulatory factors control the differentiation of Th17 cells. Mesenchymal stem cells (MSCs) have emerged as a promising candidate for inhibiting Th17 cell differentiation and autoimmune diseases. Despite the fact that several molecules have been linked to the immunomodulatory function of MSCs, many other key MSC-secreted regulators that are involved in inhibiting Th17 cell polarization are ill-defined. In this study, we demonstrated that the intraperitoneal administration of skin-derived MSCs (S-MSCs) substantially ameliorated the development of EAE in mice. We found that the proinflammatory cytokine tumor necrosis factor (TNF)-α, a key mediator in the pathophysiology of MS and EAE, was capable of promoting Th17 cell differentiation. Moreover, under inflammatory conditions, we demonstrated that S-MSCs produced high amounts of soluble TNF receptor 1 (sTNFR1), which binds TNF-α and antagonizes its function. Knockdown of sTNFR1 in S-MSCs decreased their inhibitory effect on Th17 cell differentiation ex vivo and in vivo. Thus, our data identified sTNFR1 and its target TNF-α as critical regulators for Th17 cell differentiation, suggesting a previously unrecognized mechanism for MSC therapy in Th17-mediated autoimmune diseases. Significance This study showed that administration of skin-derived mesenchymal stem cells (S-MSCs) was able to alleviate the clinical score of experimental autoimmune encephalomyelitis by inhibiting the differentiation of T helper 17 (Th17) cells. Tumor necrosis factor (TNF)-α is a critical cytokine for promoting Th17 cell differentiation. It was discovered that activated S-MSCs produced high amount of soluble TNF receptor 1 (sTNFR1), which neutralized TNF-α and inhibited Th17 cell polarization. The data identified S-MSC-secreted sTNFR1 and its target TNF-α as essential regulators for Th17 cell differentiation and revealed a novel mechanism underlying MSC-mediated immunomodulatory function in autoimmunity. PMID:26819253
Withaferin-A Reduces Acetaminophen-Induced Liver Injury in Mice.
Jadeja, Ravirajsinh N; Urrunaga, Nathalie H; Dash, Suchismita; Khurana, Sandeep; Saxena, Neeraj Kumar
2015-09-01
Withaferin-A (WA) has anti-oxidant activities however, its therapeutic potential in acetaminophen (APAP) hepatotoxicity is unknown. We performed a proof-of-concept study to assess the therapeutic potential of WA in a mouse model that mimics APAP-induced liver injury (AILI) in humans. Overnight fasted C57BL/6NTac (5-6 wk. old) male mice received 200 mg/kg APAP intraperitoneally (i.p.). After 1 h mice were treated with 40 mg/kg WA or vehicle i.p., and euthanized 4 and 16 h later; their livers were harvested and serum collected for analysis. At 4 h, compared to vehicle-treated mice, WA-treated mice had reduced serum ALT levels, hepatocyte necrosis and intrahepatic hemorrhage. All APAP-treated mice had reduced hepatic glutathione (GSH) levels however, reduction in GSH was lower in WA-treated when compared to vehicle-treated mice. Compared to vehicle-treated mice, livers from WA-treated mice had reduced APAP-induced JNK activation, mitochondrial Bax translocation, and nitrotyrosine generation. Compared to vehicle-treated mice, WA-treated mice had increased hepatic up-regulation of Nrf2, Gclc and Nqo1, and down-regulation of Il-6 and Il-1β. The hepatoprotective effect of WA persisted at 16 h. Compared to vehicle-treated mice, WA-treated mice had reduced hepatocyte necrosis and hepatic expression of Il-6, Tnf-α and Il-1β, increased hepatic Gclc and Nqo1 expression and GSH levels, and reduced lipid peroxidation. Finally, in AML12 hepatocytes, WA reduced H₂O₂-induced oxidative stress and necrosis by preventing GSH depletion. Collectively, these data show mechanisms whereby WA reduces necrotic hepatocyte injury, and demonstrate that WA has therapeutic potential in AILI. Copyright © 2015 Elsevier Inc. All rights reserved.
Lang, Yue
2018-01-01
The gut environment and gut microbiome dysbiosis have been demonstrated to significantly influence a range of disorders in humans, including obesity, diabetes, rheumatoid arthritis, and multiple sclerosis (MS). MS is an autoimmune disease affecting the central nervous system (CNS). The etiology of MS is not clear, and it should involve both genetic and extrinsic factors. The extrinsic factors responsible for predisposition to MS remain elusive. Recent studies on MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have found that gastrointestinal microbiota may play an important role in the pathogenesis of MS/EAE. Thus, gut microbiome adjustment may be a future direction of treatment in MS. In this review, we discuss the characteristics of the gut microbiota, the connection between the brain and the gut, and the changes in gut microbiota in MS/EAE, and we explore the possibility of applying microbiota therapies in patients with MS. PMID:29805314
Impact property enhancement of poly (lactic acid) with different flexible copolymers
NASA Astrophysics Data System (ADS)
Likittanaprasong, N.; Seadan, M.; Suttiruengwong, S.
2015-07-01
The objective of this work was to improve the impact property of Poly (lactic acid) (PLA) by blending with different copolymers. Six flexible copolymers, namely, acrylonitrile butadiene styrene (ABS) powder, Biomax, polybutyrate adipate co-terephthalate (PBAT), polyether block amide (PEBAX), ethylene-vinyl acetate (EVA) and ethylene acrylic elastomer (EAE), with loading less than 20wt% were used and compared. The rheological, mechanical and morphological properties of samples were investigated by melt flow index, tensile testing, impact testing and scanning electron microscope (SEM), respectively. It was found that PLA added 20wt% EAE showed the highest impact strength (59.5 kJ/m2), which was 22 times higher than neat PLA. The elongation at break was also increased by 12 folds compared to neat PLA. The SEM images showed good interface and distribution for PLA containing 20wt% EAE, 15 phr Biomax and 20 wt% PEBAX.
Schlegel, Victoria; Thieme, Markus; Holzmann, Carsten; Witt, Martin; Grittner, Ulrike; Rolfs, Arndt; Wree, Andreas
2016-11-09
Niemann-Pick Type C1 (NPC1) is an autosomal recessive inherited disorder characterized by accumulation of cholesterol and glycosphingolipids. Previously, we demonstrated that BALB/c-npc1 nih Npc1 -/- mice treated with miglustat, cyclodextrin and allopregnanolone generally performed better than untreated Npc1 -/- animals. Unexpectedly, they also seemed to accomplish motor tests better than their sham-treated wild-type littermates. However, combination-treated mutant mice displayed worse cognition performance compared to sham-treated ones. To evaluate effects of these drugs in healthy BALB/c mice, we here analyzed pharmacologic effects on motor and cognitive behavior of wild-type mice. For combination treatment mice were injected with allopregnanolone/cyclodextrin weekly, starting at P7. Miglustat injections were performed daily from P10 till P23. Starting at P23, miglustat was embedded in the chow. Other mice were treated with miglustat only, or sham-treated. The battery of behavioral tests consisted of accelerod, Morris water maze, elevated plus maze, open field and hot-plate tests. Motor capabilities and spontaneous motor behavior were unaltered in both drug-treated groups. Miglustat-treated wild-type mice displayed impaired spatial learning compared to sham- and combination-treated mice. Both combination- and miglustat-treated mice showed enhanced anxiety in the elevated plus maze compared to sham-treated mice. Additionally, combination treatment as well as miglustat alone significantly reduced brain weight, whereas only combination treatment reduced body weight significantly. Our results suggest that allopregnanolone/cyclodextrin ameliorate most side effects of miglustat in wild-type mice.
Tambalo, Stefano; Peruzzotti-Jametti, Luca; Rigolio, Roberta; Fiorini, Silvia; Bontempi, Pietro; Mallucci, Giulia; Balzarotti, Beatrice; Marmiroli, Paola; Sbarbati, Andrea; Cavaletti, Guido
2015-01-01
Cortical reorganization occurring in multiple sclerosis (MS) patients is thought to play a key role in limiting the effect of structural tissue damage. Conversely, its exhaustion may contribute to the irreversible disability that accumulates with disease progression. Several aspects of MS-related cortical reorganization, including the overall functional effect and likely modulation by therapies, still remain to be elucidated. The aim of this work was to assess the extent of functional cortical reorganization and its brain structural/pathological correlates in Dark Agouti rats with experimental autoimmune encephalomyelitis (EAE), a widely accepted preclinical model of chronic MS. Morphological and functional MRI (fMRI) were performed before disease induction and during the relapsing and chronic phases of EAE. During somatosensory stimulation of the right forepaw, fMRI demonstrated that cortical reorganization occurs in both relapsing and chronic phases of EAE with increased activated volume and decreased laterality index versus baseline values. Voxel-based morphometry demonstrated gray matter (GM) atrophy in the cerebral cortex, and both GM and white matter atrophy were assessed by ex vivo pathology of the sensorimotor cortex and corpus callosum. Neuroinflammation persisted in the relapsing and chronic phases, with dendritic spine density in the layer IV sensory neurons inversely correlating with the number of cluster of differentiation 45-positive inflammatory lesions. Our work provides an innovative experimental platform that may be pivotal for the comprehension of key mechanisms responsible for the accumulation of irreversible brain damage and for the development of innovative therapies to reduce disability in EAE/MS. SIGNIFICANCE STATEMENT Since the early 2000s, functional MRI (fMRI) has demonstrated profound modifications in the recruitment of cortical areas during motor, cognitive, and sensory tasks in multiple sclerosis (MS) patients. Experimental autoimmune encephalomyelitis (EAE) represents a reliable model of the chronic-progressive variant of MS. fMRI studies in EAE have not been performed extensively up to now. This paper reports fMRI studies in a rat model of MS with somatosensory stimulation of the forepaw. We demonstrated modifications in the recruitment of cortical areas consistent with data from MS patients. To the best of our knowledge, this is the first report of cortical remodeling in a preclinical in vivo model of MS. PMID:26157006
Miyake, Sachiko
2012-01-01
Mucosal associated invariant T (MAIT) cells are restricted by a nonpolymorphic MHC-related molecule-1 (MR1), and express an invariant TCRα chain: Vα7.2-Jα33 in humans and Vα19-Jα33 in mice. MAIT cells are selected in the thymus, but, interestingly, MAIT cells require B cells as well as commensal flora for their peripheral expansion. Bourhis et al demonstrated that MAIT cells display antimicrobial capacity. Both human and mouse MAIT cells have been shown to be activated by Escherichia coli-infected antigen presenting cells in an MR1-dependent manner. MAIT cells show a protective role against Mycobacteriu abscessus or E. coli infections in mice. Human MAIT cells are capable of producing IFNγ and IL-17 and are found in Mycobacterium tuberculosis-infected lung tissues. Thus, MAIT cells play an antimicrobial function under these infectious conditions. MAIT cells play a protective role against autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS), whereas they play a pathogenic role in murine models of arthritis. In patients with autoimmune diseases, the frequency of MAIT cells in peripheral blood was significantly reduced. The frequency of MAIT cells reflected the disease activity in MS patients, suggesting the involvement of MAIT cells in the regulation of autoimmune diseases.
Vidal, Maricel; Kruger, Eileen; Durán, Claudia; Lagos, Rosanna; Levine, Myron; Prado, Valeria; Toro, Cecilia; Vidal, Roberto
2005-01-01
We designed a multiplex PCR for the detection of all categories of diarrheagenic Escherichia coli. This method proved to be specific and rapid in detecting virulence genes from Shiga toxin-producing (stx1, stx2, and eae), enteropathogenic (eae and bfp), enterotoxigenic (stII and lt), enteroinvasive (virF and ipaH), enteroaggregative (aafII), and diffuse adherent (daaE) Escherichia coli in stool samples. PMID:16208019
Emerson, Mitchell R; Gallagher, Ryan J; Marquis, Janet G; LeVine, Steven M
2009-01-01
Advancing the understanding of the mechanisms involved in the pathogenesis of multiple sclerosis (MS) likely will lead to new and better therapeutics. Although important information about the disease process has been obtained from research on pathologic specimens, peripheral blood lymphocytes and MRI studies, the elucidation of detailed mechanisms has progressed largely through investigations using animal models of MS. In addition, animal models serve as an important tool for the testing of putative interventions. The most commonly studied model of MS is experimental autoimmune encephalomyelitis (EAE). This model can be induced in a variety of species and by various means, but there has been concern that the model may not accurately reflect the disease process, and more importantly, it may give rise to erroneous findings when it is used to test possible therapeutics. Several reasons have been given to explain the shortcomings of this model as a useful testing platform, but one idea provides a framework for improving the value of this model, and thus, it deserves careful consideration. In particular, the idea asserts that EAE studies are inadequately designed to enable appropriate evaluation of putative therapeutics. Here we discuss problem areas within EAE study designs and provide suggestions for their improvement. This paper is principally directed at investigators new to the field of EAE, although experienced investigators may find useful suggestions herein. PMID:19389303
Relationship between aquaporin-5 expression and saliva flow in streptozotocin-induced diabetic mice?
Soyfoo, M S; Bolaky, N; Depoortere, I; Delporte, C
2012-07-01
To investigate the expression and distribution of AQP5 in submandibular acinar cells from sham- and streptozotocin (STZ)-treated mice in relation to the salivary flow. Mice were sham or STZ injected. Distribution of AQP5 subcellular expression in submandibular glands was determined by immunohistochemistry. AQP5 labelling indices (LI), reflecting AQP5 subcellular distribution, were determined in acinar cells. Western blotting was performed to determine the expression of AQP5 in submandibular glands. Blood glycaemia and osmolality and saliva flow rates were also determined. AQP5 immunoreactivity was primarily located at the apical and apical-basolateral membranes of submandibular gland acinar cells from sham- and STZ-treated mice. No significant differences in AQP5 protein levels were observed between sham- and STZ-treated mice. Compared to sham-treated mice, STZ-treated mice had significant increased glycaemia, while no significant differences in blood osmolality were observed. Saliva flow rate was significantly decreased in STZ-treated mice as compared to sham-treated mice. In STZ-treated mice, significant reduction in salivary flow rate was observed without any concomitant modification in AQP5 expression and localization. © 2011 John Wiley & Sons A/S.
Kim, Min-Seok; Kim, Sung-Hwan; Jeon, Doin; Kim, Hyeon-Young; Lee, Kyuhong
2018-01-15
Inhalation of polyhexamethylene guanidine (PHMG) causes irreversible pulmonary injury, such as pulmonary fibrosis. However, the mechanism underlying PHMG-induced lung injury is unclear. In this study, we compared the difference in time-dependent lung injury between PHMG- and bleomycin (BLM)-treated mice and determined cytokines involved in inducing lung injury by performing cytokine antibody array analysis. Mice were treated once with 1.8mg/kg BLM or 1.2mg/kg PHMG through intratracheal instillation and were sacrificed on days 7 and 28. Bronchoalveolar lavage fluid (BALF) analysis showed that the number of neutrophils was significantly higher in PHMG-treated mice than in BLM-treated mice on day 7. Histopathological analysis showed inflammatory cell infiltration and fibrosis mainly in the terminal bronchioles and alveoli in the lungs of PHMG- and BLM-treated mice. However, continuous macrophage infiltration in the alveolar space and bronchioloalveolar epithelial hyperplasia (BEH) were only observed in PHMG-treated mice. Cytokine antibody array analysis showed that 15 and eight cytokines were upregulated in PHMG- and BLM-treated mice, respectively, on day 7. On day 28, 13 and five cytokines were upregulated in PHMG and BLM-treated mice, respectively. In addition, the expressed cytokines between days 7 and 28 in BLM-treated mice were clearly different, but were similar in PHMG-treated mice. Consequently, between PHMG- and BLM-treated mice, we observed differences in the expression patterns and types of cytokines. These differences are considered to be a result of the inflammatory processes induced by both substances, which may mainly involve macrophage infiltration. Therefore, continuous induction of the inflammatory response by PHMG may play an important role in the development of pulmonary fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Oswald, E.; Schmidt, H.; Morabito, S.; Karch, H.; Marchès, O.; Caprioli, A.
2000-01-01
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) produce the characteristic “attaching and effacing” (A/E) lesion of the brush border. Intimin, an outer membrane protein encoded by eae, is responsible for the tight association of both pathogens with the host cell. Several eae have been cloned from different EPEC and EHEC strains isolated from humans and animals. These sequences are conserved in the N-terminal region but highly variable in the last C-terminal 280 amino acids (aa), where the cell binding activity is localized. Based on these considerations, we developed a panel of specific primers to investigate the eae heterogeneity of the variable 3′ region by using PCR amplification. We then investigated the distribution of the known intimin types in a large collection of EPEC and EHEC strains isolated from humans and different animal species. The existence of a yet-unknown family of intimin was suspected because several EHEC strains, isolated from human and cattle, did not react with any of the specific primer pairs, although these strains were eae positive when primers amplifying the conserved 5′ end were used. We then cloned and sequenced the eae present in one of these strains (EHEC of serotype O103:H2) and subsequently designed a PCR primer that recognizes in a specific manner the variable 3′ region of this new intimin type. This intimin, referred to as “ɛ,” was present in human and bovine EHEC strains of serogroups O8, O11, O45, O103, O121, and O165. Intimin ɛ is the largest intimin cloned to date (948 aa) and shares the greatest overall sequence identity with intimin β, although analysis of the last C-terminal 280 aa suggests a greater similarity with intimins α and γ. PMID:10603369
Murphy, Aine C; Lalor, Stephen J; Lynch, Marina A; Mills, Kingston H G
2010-05-01
Experimental autoimmune encephalomyelitis (EAE) is a mouse model for multiple sclerosis, where disease is mediated by autoantigen-specific T cells. Although there is evidence linking CD4(+) T cells that secrete IL-17, termed Th17 cells, and IFN-gamma-secreting Th1 cells with the pathogenesis of EAE, the precise contribution of these T cell subtypes or their associated cytokines is still unclear. We have investigated the infiltration of CD4(+) T cells that secrete IFN-gamma, IL-17 or both cytokines into CNS during development of EAE and have examined the role of T cells in microglial activation. Our findings demonstrate that Th17 cells and CD4(+) T cells that produce both IFN-gamma and IL-17, which we have called Th1/Th17 cells, infiltrate the brain prior to the development of clinical symptoms of EAE and that this coincides with activation of CD11b(+) microglia and local production of IL-1beta, TNF-alpha and IL-6 in the CNS. In contrast, significant infiltration of Th1 cells was only detected after the development of clinical disease. Co-culture experiments, using mixed glia and MOG-specific T cells, revealed that T cells that secreted IFN-gamma and IL-17 were potent activators of pro-inflammatory cytokines but T cells that secrete IFN-gamma, but not IL-17, were less effective. In contrast both Th1 and Th1/Th17 cells enhanced MHC-class II and co-stimulatory molecule expression on microglia. Our findings suggest that T cells which secrete IL-17 or IL-17 and IFN-gamma infiltrate the CNS prior to the onset of clinical symptoms of EAE, where they may mediate CNS inflammation, in part, through microglial activation. Copyright 2010 Elsevier Inc. All rights reserved.
Phenytoin promotes Th2 type immune response in mice
Okada, K; Sugiura, T; Kuroda, E; Tsuji, S; Yamashita, U
2001-01-01
The effects of chronic administration of phenytoin, a common anticonvulsive drug, on immune responses were studied in mice. Anti-keyhole limpet haemocyanin (KLH) IgE antibody response after KLH-immunization was enhanced in phenytoin-treated mice. Proliferative responses of spleen cells induced with KLH, concanavalin A (ConA), lipopolysaccharide and anti-CD3 antibody were reduced in phenytoin-treated mice. Accessory function of spleen adherent cells on ConA-induced T cell proliferative response was reduced in phenytoin-treated mice. KLH-induced IL-4 production of spleen cells was enhanced, while IFN-γ production was reduced in phenytoin-treated mice. In addition, production of IL-1α, but not IL-6 and IL-12 by spleen adherent cells from phenytoin-treated mice was reduced. Natural killer cell activity was reduced in phenytoin-treated mice. These results suggest that phenytoin treatment preferentially induces a Th2 type response. We also observed that plasma ACTH and corticosterone levels were increased in phenytoin-treated mice, and speculated that phenytoin might act directly and indirectly, through HPA axis activation, on the immune system to modulate Th1/Th2 balance. PMID:11472401
Boomkamp, Stephanie D; Byun, Hoe-Sup; Ubhi, Satvir; Jiang, Hui-Rong; Pyne, Susan; Bittman, Robert; Pyne, Nigel J
2016-01-01
We have assessed the effect of two ether glycerol lipids, 77-6 ((2S, 3R)-4-(Tetradecyloxy)-2-amino-1,3-butanediol) and 56-5 ((S)-2-Amino-3-O-hexadecyl-1-propanol), which are substrates for sphingosine kinases, on inflammatory responses. Treatment of differentiated U937 macrophage-like cells with 77-6 but not 56-5 enhanced IL-1β release; either alone or in the presence of LPS. The stimulatory effect of sphingosine or 77-6 on LPS-stimulated IL-1β release was reduced by pretreatment of cells with the caspase-1 inhibitor, Ac-YVAD-CHO, thereby indicating a role for the inflammasome. The enhancement of LPS-stimulated IL-1β release in response to sphingosine, but not 77-6, was reduced by pretreatment of cells with the cathepsin B inhibitor, CA074Me, indicating a role for lysosomal destabilization in the effect of sphingosine. Administration of 56-5 to mice increased disease progression in an experimental autoimmune encephalomyelitis model and this was associated with a considerable increase in the infiltration of CD4(+) T-cells, CD11b(+) monocytes and F4/80(+) macrophages in the spinal cord. 56-5 and 77-6 were without effect on the degradation of myc-tagged sphingosine 1-phosphate 1 receptor in CCL39 cells. Therefore, the effect of 56-5 on EAE disease progression is likely to be independent of the inflammasome or the sphingosine 1-phosphate 1 receptor. However, 56-5 is chemically similar to platelet activating factor and the exacerbation of EAE disease progression might be linked to platelet activating factor receptor signaling. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Increased Cerebral Tff1 Expression in Two Murine Models of Neuroinflammation.
Znalesniak, Eva B; Fu, Ting; Guttek, Karina; Händel, Ulrike; Reinhold, Dirk; Hoffmann, Werner
2016-01-01
The trefoil factor family (TFF) peptide TFF1 is a typical secretory product of the gastric mucosa and a very low level of expression occurs in nearly all regions of the murine brain. TFF1 possesses a lectin activity and binding to a plethora of transmembrane glycoproteins could explain the diverse biological effects of TFF1 (e.g., anti-apoptotic effect). It was the aim to test whether TFF expression is changed during neuroinflammation. Expression profiling was performed using semi-quantitative RT-PCR analyses in two murine models of neuroinflammation, i.e. Toxoplasma gondii-induced encephalitis and experimental autoimmune encephalomyelitis (EAE), the latter being the most common animal model of multiple sclerosis. Tff1 expression was also localized using RNA in situ hybridization histochemistry. We report for the first time on a significant transcriptional induction in cerebral Tff1 expression in both T. gondii-induced encephalitis and EAE. In contrast, Tff2 and Tff3 expression were not altered. Tff1 transcripts were predominantly localized in the internal granular layer of the cerebellum indicating neuronal expression. Furthermore, also glial cells are expected to express Tff1. Characterization of both experimental models by expression profiling (e.g., inflammasome sensors, inflammatory cytokines, microglial marker Iba1, ependymin related protein 1) revealed differences concerning the expression of the inflammasome sensor Nlrp1 and interleukin 17a. The up-regulated expression of Tff1 is probably the result of a complex inflammatory process as its expression is induced by tumor necrosis factor α as well as interleukins 1β and 17. However on the transcript level, Tff1KO mice did not show any significant signs of an altered immune response after infection with T. gondii in comparison with the wild type animals. © 2016 The Author(s) Published by S. Karger AG, Basel.
Gergely, P; Nuesslein-Hildesheim, B; Guerini, D; Brinkmann, V; Traebert, M; Bruns, C; Pan, S; Gray, NS; Hinterding, K; Cooke, NG; Groenewegen, A; Vitaliti, A; Sing, T; Luttringer, O; Yang, J; Gardin, A; Wang, N; Crumb, WJ; Saltzman, M; Rosenberg, M; Wallström, E
2012-01-01
BACKGROUND AND PURPOSE BAF312 is a next-generation sphingosine 1-phosphate (S1P) receptor modulator, selective for S1P1 and S1P5 receptors. S1P1 receptors are essential for lymphocyte egress from lymph nodes and a drug target in immune-mediated diseases. Here, we have characterized the immunomodulatory potential of BAF312 and the S1P receptor-mediated effects on heart rate using preclinical and human data. EXPERIMENTAL APPROACH BAF312 was tested in a rat experimental autoimmune encephalomyelitis (EAE) model. Electrophysiological recordings of G-protein-coupled inwardly rectifying potassium (GIRK) channels were carried out in human atrial myocytes. A Phase I multiple-dose trial studied the pharmacokinetics, pharmacodynamics and safety of BAF312 in 48 healthy subjects. KEY RESULTS BAF312 effectively suppressed EAE in rats by internalizing S1P1 receptors, rendering them insensitive to the egress signal from lymph nodes. In healthy volunteers, BAF312 caused preferential decreases in CD4+ T cells, Tnaïve, Tcentral memory and B cells within 4–6 h. Cell counts returned to normal ranges within a week after stopping treatment, in line with the elimination half-life of BAF312. Despite sparing S1P3 receptors (associated with bradycardia in mice), BAF312 induced rapid, transient (day 1 only) bradycardia in humans. BAF312-mediated activation of GIRK channels in human atrial myocytes can fully explain the bradycardia. CONCLUSION AND IMPLICATIONS This study illustrates species-specific differences in S1P receptor specificity for first-dose cardiac effects. Based on its profound but rapidly reversible inhibition of lymphocyte trafficking, BAF312 may have potential as a treatment for immune-mediated diseases. PMID:22646698
Protective and therapeutic role of 2-carba-cyclic phosphatidic acid in demyelinating disease.
Yamamoto, Shinji; Yamashina, Kota; Ishikawa, Masaki; Gotoh, Mari; Yagishita, Sosuke; Iwasa, Kensuke; Maruyama, Kei; Murakami-Murofushi, Kimiko; Yoshikawa, Keisuke
2017-07-21
Multiple sclerosis is a neuroinflammatory demyelinating and neurodegenerative disease of the central nervous system characterized by recurrent and progressive demyelination/remyelination cycles, neuroinflammation, oligodendrocyte loss, demyelination, and axonal degeneration. Cyclic phosphatidic acid (cPA) is a natural phospholipid mediator with a unique cyclic phosphate ring structure at the sn-2 and sn-3 positions of the glycerol backbone. We reported earlier that cPA elicits a neurotrophin-like action and protects hippocampal neurons from ischemia-induced delayed neuronal death. We designed, chemically synthesized, and metabolically stabilized derivatives of cPA: 2-carba-cPA (2ccPA), a synthesized compound in which one of the phosphate oxygen molecules is replaced with a methylene group at the sn-2 position. In the present study, we investigated whether 2ccPA exerts protective effects in oligodendrocytes and suppresses pathology in the two most common mouse models of multiple sclerosis. To evaluate whether 2ccPA has potential beneficial effects on the pathology of multiple sclerosis, we investigated the effects of 2ccPA on oligodendrocyte cell death in vitro and administrated 2ccPA to mouse models of experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. We demonstrated that 2ccPA suppressed the CoCl 2 -induced increase in the Bax/Bcl-2 protein expression ratio and phosphorylation levels of p38MAPK and JNK protein. 2ccPA treatment reduced cuprizone-induced demyelination, microglial activation, NLRP3 inflammasome, and motor dysfunction. Furthermore, 2ccPA treatment reduced autoreactive T cells and macrophages, spinal cord injury, and pathological scores in EAE, the autoimmune multiple sclerosis mouse model. We demonstrated that 2ccPA protected oligodendrocytes via suppression of the mitochondrial apoptosis pathway. Also, we found beneficial effects of 2ccPA in the multiperiod of cuprizone-induced demyelination and the pathology of EAE. These data indicate that 2ccPA may be a promising compound for the development of new drugs to treat demyelinating disease and ameliorate the symptoms of multiple sclerosis.
Hao, Zhenyue; Sheng, Yi; Duncan, Gordon S; Li, Wanda Y; Dominguez, Carmen; Sylvester, Jennifer; Su, Yu-Wen; Lin, Gloria H Y; Snow, Bryan E; Brenner, Dirk; You-Ten, Annick; Haight, Jillian; Inoue, Satoshi; Wakeham, Andrew; Elford, Alisha; Hamilton, Sara; Liang, Yi; Zúñiga-Pflücker, Juan C; He, Housheng Hansen; Ohashi, Pamela S; Mak, Tak W
2017-01-13
T-cell proliferation is regulated by ubiquitination but the underlying molecular mechanism remains obscure. Here we report that Lys-48-linked ubiquitination of the transcription factor KLF4 mediated by the E3 ligase Mule promotes T-cell entry into S phase. Mule is elevated in T cells upon TCR engagement, and Mule deficiency in T cells blocks proliferation because KLF4 accumulates and drives upregulation of its transcriptional targets E2F2 and the cyclin-dependent kinase inhibitors p21 and p27. T-cell-specific Mule knockout (TMKO) mice develop exacerbated experimental autoimmune encephalomyelitis (EAE), show impaired generation of antigen-specific CD8 + T cells with reduced cytokine production, and fail to clear LCMV infections. Thus, Mule-mediated ubiquitination of the novel substrate KLF4 regulates T-cell proliferation, autoimmunity and antiviral immune responses in vivo.
Miyake, Sachiko
2014-01-01
Mucosal associated invariant T (MAIT) cells express a semi-invariant TCRα chain: Vα7.2-Jα33 in humans and Vα19-Jα33 in mice. They are restricted by a nonpolymorphic MHC-related molecule-1 (MR1), and cells are selected in the thymus. Interestingly, MAIT cells require B cells as well as commensal flora for their peripheral expansion. MAIT cells display antimicrobial capacity. Recently, vitamin metabolites were demonstrated as antigens created by intestinal flora for MAIT cells. MAIT cells play a protective role against autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS), wheras they play a pathogenic role in murine models of arthritis. In patients with autoimmune diseases, the frequency of MAIT cells in peripheral blood was significantly reduced. The frequency of MAIT cells reflected the disease activity in MS patients, suggesting the involvement of MAIT cells in the regulation of autoimmune diseases.
Keszthelyi, E; Karlik, S; Hyduk, S; Rice, G P; Gordon, G; Yednock, T; Horner, H
1996-10-01
The leukocyte integrin receptor, alpha 4 beta 1, and its endothelial cell ligand, vascular cell adhesion molecule 1, appear to be of critical importance in the leukocyte trafficking that accompanies CNS damage in experimental allergic encephalomyelitis (EAE). In this study, the persistence of the role for alpha 4 beta 1/VCAM-1 in EAE was established by observing antibody-mediated disease reversal up to 1 month following disease onset. Limited treatment with a monoclonal antibody against alpha 4 integrin, GG5/3, resulted in a significant decrease in both clinical and histopathologic signs. This was not observed in isotype control experiments. In the latter phase of progressive disease, widespread demyelination occurred in the animals that did not respond to 6 days of anti-alpha 4 treatment. These results demonstrate an essential role for alpha 4 beta 1 interactions throughout active EAE and illustrate the difference between reversible clinical deficits caused by edema and irreversible deficits associated with demyelination.
Kaplan, Barbara L F
2018-02-21
Cannabinoid compounds refer to a group of more than 60 plant-derived compounds in Cannabis sativa, more commonly known as marijuana. Exposure to marijuana and cannabinoid compounds has been increasing due to increased societal acceptance for both recreational and possible medical use. Cannabinoid compounds suppress immune function, and while this could compromise one's ability to fight infections, immune suppression is the desired effect for therapies for autoimmune diseases. It is critical, therefore, to understand the effects and mechanisms by which cannabinoid compounds alter immune function, especially immune responses induced in autoimmune disease. Therefore, this unit will describe induction and assessment of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), and its potential alteration by cannabinoid compounds. The unit includes three approaches to induce EAE, two of which provide correlations to two forms of MS, and the third specifically addresses the role of autoreactive T cells in EAE. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.
NASA Technical Reports Server (NTRS)
DAmelio, Fernando E.; Smith, Marion E.; Eng, Lawrence F.
1990-01-01
Experimental allergic encephalomyelitis (EAE) was induced in adult Lewis rats with purified guinea pig CNS myelin and Freund's adjuvant. As soon as the very earliest clinical signs appeared the animals were perfused with fixatives and the spinal cord analyzed by electron microscopy, silver methods, and immunocytochemistry. Our findings suggest that in the early stages of EAE a sequence of events can be traced, although these events frequently overlap. The earliest morphological change appears to be astrocytic edema in both the cell body and processes. Increased amounts of glycogen particles and dispersion of glial filaments are prominent. These changes seem to occur just prior to the time when inflammatory cells begin to penetrate the capillary walls. Invasion of the neuropil mainly by macrophages and lymphocytes closely follows. Both macrophages and microglia seem to participate in phagocytosis of oligodendrocytes and myelin. Demyelination, however, is not a prominent feature at this early stage.
Zhu, Yang; Li, Qian; Mao, Guanghua; Zou, Ye; Feng, Weiwei; Zheng, Daheng; Wang, Wei; Zhou, Lulu; Zhang, Tianxiu; Yang, Jun; Yang, Liuqing; Wu, Xiangyang
2014-01-30
The enzyme-assisted extraction (EAE) of polysaccharides from the fruits of Hericium erinaceus was studied. In this study, response surface methodology and the Box-Behnken design based on single-factor and orthogonal experiments were applied to optimize the EAE conditions. The optimal extraction conditions were as follows: a pH of 5.71, a temperature of 52.03°C and a time of 33.79 min. The optimal extraction conditions resulted in the highest H. erinaceus polysaccharides (HEP) yield, with a value 13.46 ± 0.37%, which represented an increase of 67.72% compared to hot water extraction (HWE). The polysaccharides were characterized by FT-IR, SEM, CD, AFM, and GC. The results showed that HEP was composed of mannose, glucose, xylose, and galactose in a molar ratio of 15.16:5.55:4.21:1. The functional groups of the H. erinaceus polysaccharides extracted by HWE and EAE were fundamentally identical but had apparent conformational changes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Strużyńska, Lidia
2013-01-01
The aim of our investigation was to characterize the role of group I mGluRs and NMDA receptors in pathomechanisms of experimental autoimmune encephalomyelitis (EAE), the rodent model of MS. We tested the effects of LY 367385 (S-2-methyl-4-carboxyphenylglycine, a competitive antagonist of mGluR1), MPEP (2-methyl-6-(phenylethynyl)-pyridine, an antagonist of mGluR5), and the uncompetitive NMDA receptor antagonists amantadine and memantine on modulation of neurological deficits observed in rats with EAE. The neurological symptoms of EAE started at 10-11 days post-injection (d.p.i.) and peaked after 12-13 d.p.i. The protein levels of mGluRs and NMDA did not increase in early phases of EAE (4 d.p.i.), but starting from 8 d.p.i. to 25 d.p.i., we observed a significant elevation of mGluR1 and mGluR5 protein expression by about 20% and NMDA protein expression by about 10% over the control at 25 d.p.i. The changes in protein levels were accompanied by changes in mRNA expression of group I mGluRs and NMDARs. During the late disease phase (20-25 d.p.i.), the mRNA expression levels reached 300% of control values. In contrast, treatment with individual receptor antagonists resulted in a reduction of mRNA levels relative to untreated animals.
Cadirci, Ozgür; Siriken, Belgin; Inat, Gökhan; Kevenk, Tahsin Onur
2010-03-01
The present study was conducted to investigate the presence of Escherichia coli O157 and O157:H7 strains and to detect the presence of the stx1, stx2, and eaeA genes in isolates derived from 200 samples (100 samples from fresh ground beef and 100 samples from raw meatball). The samples were purchased from the Samsun Province in Turkey, over a period of 1 year. Enrichment-based immunomagnetic separation and multiplex polymerase chain reaction were applied for these analyses. E. coli O157 was detected in five of the 200 (2.5%) samples tested (one isolated from ground beef and four from meatball samples), whereas E. coli O157: H7 was not detected in any sample. During the analysis, eight strains of E. coli O157 were obtained. The genes stx1, stx2, and eaeA were detected in two E. coli O157 isolates obtained from two meatball samples, whereas only the eaeA and the stx2 genes were detected in four E. coli O157 strains that were isolated from one meatball sample. None of the stx1, stx2, and eaeA was detected in the E. coli O157 isolates obtained from the ground beef and the one meatball samples. Copyright 2009 Elsevier Ltd. All rights reserved.
Yuan, Huaibo; Wang, Wenjuan; Chen, Deyi; Zhu, Xiping; Meng, Lina
2017-05-01
Enteric dysbiosis is associated with chronic inflammation and interacts with obesity and insulin resistance. Obesity and diabetes are induced in ICR (Institute of Cancer Research) mice fed a high-fat diet and administered a streptozocin injection. These mice were treated with normal rice (NR), normal rice with a high resistant starch content (NRRS) or Se-rich rice (selenium-enriched rice) with a high resistant starch content (SRRS). Faecal cell counts of Bifidobacterium, Lactobacillus and Enterococcus were significantly higher in SRRS-treated mice than in diabetic controls, while Enterobacter cloacae were lower. Similar results were also found in NRRS-treated mice. In contrast, no significant difference was found between NR-treated and diabetic control groups. The treatments with SRRS and NRRS reduced the faecal pH values of the diabetic mice. Regarding the inflammatory factor levels, lower levels of serum C-reactive protein (CRP), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), nuclear factor-k-gene binding (NF-κB) and leptin (LEP) and higher adiponutrin (ADPN) levels were found in the SRRS and NRRS-treated mice compared with the diabetic and NR-treated mice. In addition, the CRP, IL-6 and NF-κB levels in the SRRS-treated mice were significantly reduced compared with those observed in the NRRS-treated mice. The reverse transcription-PCR (RT-PCR) results showed that the SRRS and NRRS-treated mice presented higher expression levels of orphan G protein-coupled receptor 41 (GPR41) and orphan G protein-coupled receptor 43 (GPR43) proteins compared with diabetic mice and NR-treated mice. These results indicate that treatments with rice high in RS exert beneficial effects by improving enteric dysbiosis and chronic inflammation. In addition, selenium and RS may exert synergistic effects on chronic inflammation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Wasilenko, Jamie L; Fratamico, Pina M; Sommers, Christopher; DeMarco, Daniel R; Varkey, Stephen; Rhoden, Kyle; Tice, George
2014-01-01
Shiga toxin-producing Escherichia coli (STEC) and Salmonella are food-borne pathogens commonly associated with beef, and reliable methods are needed to determine their prevalence in beef and to ensure food safety. Retail ground beef was tested for the presence of E. coli O157:H7, STEC serogroups O26, O45, O103, O111, O121, and O145, and Salmonella using the DuPont™ BAX® system method. Ground beef (325 g) samples were enriched in 1.5 L of TSB with 2 mg/L novobiocin at 42°C for 18 h, and then evaluated using the BAX® System real-time PCR assays for E. coli O157:H7 and STEC suite, and the BAX® System standard PCR assays for E. coli O157:H7 MP and Salmonella. Samples positive for STEC target genes by the BAX® System assays were subjected to immunomagnetic separation (IMS) and plating onto modified Rainbow Agar O157. Enrichments that were PCR positive for Salmonella were inoculated into RV broth, incubated for 18 h at 42°C, and then plated onto XLT-4 agar. Presumptive positive STEC and Salmonella colonies were confirmed using the BAX® System assays. Results of the BAX® System STEC assays showed 20/308 (6.5%) of samples positive for both the Shiga toxin (stx) and intimin (eae) genes; 4 (1.3%) for stx, eae, and O26; 1 (0.3%) for stx, eae, and O45; 3 (1%) for stx, eae, and O103; and 1 (0.3%) for stx, eae, and O145. There were also 3 samples positive for stx, eae, and more than one STEC serogroup. Three (1.0%) of the samples were positive using the BAX® System real-time E. coli O157:H7 assay, and 28 (9.1%) were positive using the BAX® System Salmonella assay. STEC O103 and E. coli O157:H7 were isolated from 2/6 and 2/3 PCR positive samples, respectively. Salmonella isolates were recovered and confirmed from 27 of the 28 Salmonella PCR positive samples, and a portion of the isolates were serotyped and antibiotic resistance profiles determined. Results demonstrate that the BAX® System assays are effective for detecting STEC and Salmonella in beef.
Tang, Hong-Bo; Ren, Yu-Ping; Zhang, Jun; Ma, Shi-Hui; Gao, Feng; Wu, Yi-Ping
2007-11-01
Insulin-like growth factors (IGFs) play important roles in the development and progression of tumors. But the mechanism of tumorigenesis in relation to IGF-1 is unclear yet. This study was to explore the correlation of circulating IGF-1 level to the angiogenesis of breast cancer in IGF-1-deficient mice. The liver-specific IGF-1-deficient (LID) mice and control mice were injected with 7,12-dimethybenz(a)anthracene (DMBA) to develop breast cancer. Ginsenoside Rg3 was used to intervene tumor growth. The occurrence rates of breast cancer were compared. The expression of vascular endothelial growth factor (VEGF) and microvessel density (MVD) was detected by immunohistochemistry. The occurrence rate of breast cancer was 66.67% in untreated control mice, 33.33% in untreated LID mice, 36.00% in Rg3-treated control mice, and 12.00% in Rg3-treated LID mice. The tumor size was (0.79+/-0.20) cm in untreated control mice, (0.37+/-0.08) cm in untreated LID mice, (0.32+/-0.08) cm in Rg3-treated control mice, and (0.15+/-0.05) cm in Rg3-treated LID mice. The average light density and positive rate of VEGF were the highest in untreated control mice (0.34+/-0.10 and 0.04+/-0.02, P<0.05), and the lowest in Rg3-treated LID mice (0.13+/-0.03 and 0.01+/-0.00, P<0.05). The MVD was 31.9+/-5.3 in untreated control mice, 26.8+/-4.9 in untreated LID mice, 20.1+/-4.9 in Rg3-treated control mice, and 14.4+/-4.9 in Rg3-treated LID mice. Circulating IGF-1 plays a role in the onset and development of breast cancer. Degrading serum IGF-1 level could inhibit angiogenesis and growth of breast cancer. Rg3 could promote this effect.
Deraos, George; Rodi, Maria; Kalbacher, Hubert; Chatzantoni, Kokona; Karagiannis, Fotios; Synodinos, Loukas; Plotas, Panayiotis; Papalois, Apostolos; Dimisianos, Nikolaos; Papathanasopoulos, Panagiotis; Gatos, Dimitrios; Tselios, Theodore; Apostolopoulos, Vasso; Mouzaki, Athanasia; Matsoukas, John
2015-08-28
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system, and it has been established that autoreactive T helper (Th) cells play a crucial role in its pathogenesis. Myelin basic protein (MBP) epitopes are major autoantigens in MS, and the sequence MBP87-99 is an immunodominant epitope. We have previously reported that MBP87-99 peptides with modifications at principal T-cell receptor (TCR) contact sites suppressed the induction of EAE symptoms in rats and SJL/J mice, diverted the immune response from Th1 to Th2 and generated antibodies that did not cross react with the native MBP protein. In this study, the linear and cyclic analogs of the MBP87-99 epitope, namely linear (Ala91,Ala96)MBP87-99 (P2) and cyclo(87-99)(Ala91,Ala96)MBP87-99 (P3), were evaluated for their binding to HLA-DR4, stability to lysosomal enzymes, their effect on cytokine secretion by peripheral blood mononuclear cells (PBMC) derived from MS patients or healthy subjects (controls), and their effect in rat EAE. P1 peptide (wild-type, MBP87-99) was used as control. P2 and P3 did not alter significantly the cytokine secretion by control PBMC, in contrast to P1 that induced moderate IL-10 production. In MS PBMC, P2 and P3 induced the production of IL-2 and IFN-γ, with a simultaneous decrease of IL-10, whereas P1 caused a reduction of IL-10 secretion only. The cellular response to P3 indicated that cyclization did not affect the critical TCR contact sites in MS PBMC. Interestingly, the cyclic P3 analog was found to be a stronger binder to HLA-DR4 compared to linear P2. Moreover, cyclic P3 was more stable to proteolysis compared to linear P2. Finally, both P2 and P3 suppressed EAE induced by an encephalitogenic guinea pig MBP74-85 epitope in Lewis rats whereas P1 failed to do so. In conclusion, cyclization of myelin altered peptide ligand (Ala91,Ala96)MBP87-99 improved binding affinity to HLA-DR4, resistance to proteolysis and antigen-specific immunomodulation, rendering cyclo(87-99)(Ala91,Ala96)MBP87-99 an important candidate drug for MS immunotherapy. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Canto-de-Souza, L; Garção, D C; Romaguera, F; Mattioli, R
2015-02-05
Several findings have pointed to the role of histaminergic neurotransmission in the modulation of anxiety-like behaviors and emotional memory. The elevated plus-maze (EPM) test has been widely used to investigate the process of anxiety and also has been used to investigate the process of learning and memory. Visual cues are relevant to the formation of spatial maps, and as the hippocampus is involved in this task, experiment 1 explored this issue. Experiment 2 investigated the effects of intraperitoneal (i.p.) injections of l-histidine (LH, a precursor of histamine) and of intra-dorsal hippocampus (intra-DH) injections of chlorpheniramine (CPA, an H1 receptor antagonist) on anxiety and emotional memory in mice re-exposed to the EPM. Mice received saline (SAL) or LH i.p. and SAL or CPA (0.016, 0.052, and 0.16 nmol/0.1 μl) intra-DH prior to Trial 1 (T1) and Trial 2 (T2). No significant changes were observed in the number of enclosed-arm entries (EAE) in T1, an EPM index of general exploratory activity. LH had an anxiolytic-like effect that was reversed by intra-DH injections of CPA. T2 versus T1 analysis revealed that only the lower dose of CPA resulted in impaired emotional memory. Combined injections of LH and CPA revealed that higher doses of CPA impair emotional memory. Taken together, these results suggest that LH and H1 receptors present in the dorsal hippocampus are involved in anxiety-related behaviors and emotional memory in mice submitted to EPM. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Matsuo, R; Ball, M A; Kobayashi, M; Herndon, D N; Pollard, R B; Suzuki, F
1994-10-01
The protective effect of Kanzo-bushi-to (TJS-038) was investigated on the opportunistic infection of herpes simplex virus type 1 (HSV) in thermally injured mice (TI-Mice). We have previously reported that TI-Mice were approximately 100 times more susceptible to HSV infection than normal mice (N-Mice) and that CD8+ suppressor T (ST)-cells induced by burn injury were involved in causing this increased susceptibility of TI-Mice. Increased susceptibility of TI-Mice to the infection was reversed to the levels observed in N-Mice when TI-Mice were treated intraperitoneally with TJS-038 at a dose of 5 mg/kg 1 and 4 days after thermal injury. The activity of ST-cells was greatly decreased in TI-Mice treated with TJS-038. The generation of Vicia villosa lectin-adherent CD4+ CD28+ TCR-alpha/beta+ contrasuppressor T (Contra-ST)-cells associated with the appearance of ST-cells was expanded and occurred earlier in spleens of TJS-038-treated TI-Mice as compared with that of untreated TI-Mice. The improved resistance of TJS-038-treated TI-Mice to the infection was transferred to untreated TI-Mice by adoptive transfer of Contra-ST-cells prepared from TJS-038-treated TI-Mice. These results suggest that TJS-038 may restore the resistance of TI-Mice to the HSV infection through the expanded generation of Contra-ST-cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bora, B., E-mail: bbora@cchen.cl
2015-10-15
On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found tomore » work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage.« less
Marchès, Olivier; Nougayrède, Jean-Philippe; Boullier, Séverine; Mainil, Jacques; Charlier, Gérard; Raymond, Isabelle; Pohl, Pierre; Boury, Michèle; De Rycke, Jean; Milon, Alain; Oswald, Eric
2000-01-01
Attaching and effacing (A/E) rabbit enteropathogenic Escherichia coli (REPEC) strains belonging to serogroup O103 are an important cause of diarrhea in weaned rabbits. Like human EPEC strains, they possess the locus of enterocyte effacement clustering the genes involved in the formation of the A/E lesions. In addition, pathogenic REPEC O103 strains produce an Esp-dependent but Eae (intimin)-independent alteration of the host cell cytoskeleton characterized by the formation of focal adhesion complexes and the reorganization of the actin cytoskeleton into bundles of stress fibers. To investigate the role of intimin and its translocated coreceptor (Tir) in the pathogenicity of REPEC, we have used a newly constructed isogenic tir null mutant together with a previously described eae null mutant. When human HeLa epithelial cells were infected, the tir mutant was still able to induce the formation of stress fibers as previously reported for the eae null mutant. When the rabbit epithelial cell line RK13 was used, REPEC O103 produced a classical fluorescent actin staining (FAS) effect, whereas both the eae and tir mutants were FAS negative. In a rabbit ligated ileal loop model, neither mutant was able to induce A/E lesions. In contrast to the parental strain, which intimately adhered to the enterocytes and destroyed the brush border microvilli, bacteria of both mutants were clustered in the mucus without reaching and damaging the microvilli. The role of intimin and Tir was then analyzed in vivo by oral inoculation of weaned rabbits. Although both mutants were still present in the intestinal flora of the rabbits 3 weeks after oral inoculation, neither mutant strain induced any clinical signs or significant weight loss in the inoculated rabbits whereas the parental strain caused the death of 90% of the inoculated rabbits. Nevertheless, an inflammatory infiltrate was present in the lamina propria of the rabbits infected with both mutants, with an inflammatory response greater for the eae null mutant. In conclusion, we have confirmed the role of intimin in virulence, and we have shown, for the first time, that Tir is also a key factor in vivo for pathogenicity. PMID:10722617
Marchès, O; Nougayrède, J P; Boullier, S; Mainil, J; Charlier, G; Raymond, I; Pohl, P; Boury, M; De Rycke, J; Milon, A; Oswald, E
2000-04-01
Attaching and effacing (A/E) rabbit enteropathogenic Escherichia coli (REPEC) strains belonging to serogroup O103 are an important cause of diarrhea in weaned rabbits. Like human EPEC strains, they possess the locus of enterocyte effacement clustering the genes involved in the formation of the A/E lesions. In addition, pathogenic REPEC O103 strains produce an Esp-dependent but Eae (intimin)-independent alteration of the host cell cytoskeleton characterized by the formation of focal adhesion complexes and the reorganization of the actin cytoskeleton into bundles of stress fibers. To investigate the role of intimin and its translocated coreceptor (Tir) in the pathogenicity of REPEC, we have used a newly constructed isogenic tir null mutant together with a previously described eae null mutant. When human HeLa epithelial cells were infected, the tir mutant was still able to induce the formation of stress fibers as previously reported for the eae null mutant. When the rabbit epithelial cell line RK13 was used, REPEC O103 produced a classical fluorescent actin staining (FAS) effect, whereas both the eae and tir mutants were FAS negative. In a rabbit ligated ileal loop model, neither mutant was able to induce A/E lesions. In contrast to the parental strain, which intimately adhered to the enterocytes and destroyed the brush border microvilli, bacteria of both mutants were clustered in the mucus without reaching and damaging the microvilli. The role of intimin and Tir was then analyzed in vivo by oral inoculation of weaned rabbits. Although both mutants were still present in the intestinal flora of the rabbits 3 weeks after oral inoculation, neither mutant strain induced any clinical signs or significant weight loss in the inoculated rabbits whereas the parental strain caused the death of 90% of the inoculated rabbits. Nevertheless, an inflammatory infiltrate was present in the lamina propria of the rabbits infected with both mutants, with an inflammatory response greater for the eae null mutant. In conclusion, we have confirmed the role of intimin in virulence, and we have shown, for the first time, that Tir is also a key factor in vivo for pathogenicity.
Li, Xin; Lees, Jason R
2013-03-01
In region-specific forms of experimental autoimmune encephalomyelitis (EAE), lesion initiation is regulated by T-cell-produced interferon-γ (IFN-γ) resulting in spinal cord disease in the presence of IFN-γ and cerebellar disease in the absence of IFN-γ. Although this role for IFN-γ in regional disease initiation is well defined, little is known about the consequences of previous tissue inflammation on subsequent regional disease, information vital to the development of therapeutics in established disease states. This study addressed the hypothesis that previous establishment of regional EAE would determine subsequent tissue localization of new T-cell invasion and associated symptoms regardless of the presence or absence of IFN-γ production. Serial transfer of optimal or suboptimal doses of encephalitogenic IFN-γ-sufficient or -deficient T-cell lines was used to examine the development of new clinical responses associated with the spinal cord and cerebellum at various times after EAE initiation. Previous inflammation within either cerebellum or spinal cord allowed subsequent T-cell driven inflammation within that tissue regardless of IFN-γ presence. Further, T-cell IFN-γ production after initial lesion formation exacerbated disease within the cerebellum, suggesting that IFN-γ plays different roles at different stages of cerebellar disease. For the spinal cord, IFN-γ-deficient cells (that are ordinarily cerebellum disease initiators) were capable of driving new spinal-cord-associated clinical symptoms more than 60 days after the initial acute EAE resolution. These data suggest that previous inflammation modulates the molecular requirements for new neuroinflammation development. © 2012 Blackwell Publishing Ltd.
New Treatments for Drug-Resistant Epilepsy that Target Presynaptic Transmitter Release
2014-07-01
mice injected with saline vehicle for 4 weeks (control no treatment=C-NT, n=5), b) pilocarpine-treated SpH mice that developed status epilepticus ...injected with saline ( status epilepticus no treatment=SE–NT, n=5), c) control SpH mice injected with levetiracetam (see below) (control treated=C-T, n...4), and d) pilocarpine-treated SpH mice that suffered status epilepticus and were treated subsequently with levetiracetam intraperitoneally (see
Sałat, Kinga; Podkowa, Adrian; Mogilski, Szczepan; Zaręba, Paula; Kulig, Katarzyna; Sałat, Robert; Malikowska, Natalia; Filipek, Barbara
2015-12-01
GABAergic neurotransmission is involved in long-term potentiation, a neurophysiological basis for learning and memory. On the other hand, GABA-enhancing drugs may impair memory and learning in humans and animals. The present study aims at investigating the effect of GAT1 inhibitor tiagabine on memory and learning. Albino Swiss (CD-1) and C57BL/6J mice were used in the passive avoidance (PA), Morris water maze (MWM) and radial arm water maze (RAWM) tasks. Scopolamine (1mg/kg ip) was applied to induce cognitive deficits. In the retention trial of PA scopolamine reduced step-through latency as compared to vehicle-treated mice, and pretreatment with tiagabine did not have any influence on this effect. In MWM the results obtained for vehicle-treated mice, scopolamine-treated group and combined scopolamine+tiagabine-treated mice revealed variable learning abilities in these groups. Tiagabine did not impair learning in the acquisition trial. In RAWM on day 1 scopolamine-treated group made nearly two-fold more errors than vehicle-treated mice and mice that received combined scopolamine and tiagabine. Learning abilities in the latter group were similar to those of vehicle-treated mice in the corresponding trial block on day 1, except for the last trial block, during which tiagabine+scopolamine-injected mice made more errors than control mice and the scopolamine-treated group. In all groups a complete reversal of memory deficits was observed in the last trial block of day 2. The lack of negative influence of tiagabine on cognitive functions in animals with scopolamine-induced memory impairments may be relevant for patients treated with this drug. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Berkowitz, Bruce A; Podolsky, Robert H; Lenning, Jacob; Khetarpal, Nikita; Tran, Catherine; Wu, Johnny Y; Berri, Ali M; Dernay, Kristin; Shafie-Khorassani, Fatema; Roberts, Robin
2017-06-01
We identify noninvasive biomarkers that measure the severity of oxidative stress within retina layers in sodium iodate (SI)-atrophy vulnerable (C57BL/6 [B6]) and SI-atrophy resistant (129S6/SvEvTac [S6]) mice. At 24 hours after administering systemic SI to B6 and S6 mice we measured: (1) superoxide production in whole retina ex vivo, (2) excessive free radical production in vivo based on layer-specific 1/T1 values before and after α-lipoic acid (ALA) administration while the animal was inside the magnet (QUEnch-assiSTed MRI [QUEST MRI]), and (3) visual performance (optokinetic tracking) ± antioxidants; control mice were similarly assessed. Retinal layer spacing and thickness in vivo also were evaluated (optical coherence tomography, MRI). SI-treated B6 mice retina had a significantly higher superoxide production than SI-treated S6 mice. ALA-injected SI-treated B6 mice had reduced 1/T1 in more retinal layers in vivo than in SI-treated S6 mice. Uninjected and saline-injected SI-treated B6 mice had similar transretinal 1/T1 profiles. Notably, the inner segment layer 1/T1 of SI-treated B6 mice was responsive to ALA but was unresponsive in SI-treated S6 mice. In both SI-treated strains, antioxidants improved contrast sensitivity to similar extents; antioxidants did not change acuity in either group. Retinal thicknesses were normal in both SI-treated strains at 24 hours after treatment. QUEST MRI uniquely measured severity of excessive free radical production within retinal layers of the same subject. Identifying the mechanisms underlying genetic vulnerabilities to oxidative stress is expected to help in understanding the pathogenesis of retinal degeneration.
Experimental Autoimmune Encephalomyelitis (EAE) as Animal Models of Multiple Sclerosis (MS).
Glatigny, Simon; Bettelli, Estelle
2018-01-08
Multiple sclerosis (MS) is a multifocal demyelinating disease of the central nervous system (CNS) leading to the progressive destruction of the myelin sheath surrounding axons. It can present with variable clinical and pathological manifestations, which might reflect the involvement of distinct pathogenic processes. Although the mechanisms leading to the development of the disease are not fully understood, numerous evidences indicate that MS is an autoimmune disease, the initiation and progression of which are dependent on an autoimmune response against myelin antigens. In addition, genetic susceptibility and environmental triggers likely contribute to the initiation of the disease. At this time, there is no cure for MS, but several disease-modifying therapies (DMTs) are available to control and slow down disease progression. A good number of these DMTs were identified and tested using animal models of MS referred to as experimental autoimmune encephalomyelitis (EAE). In this review, we will recapitulate the characteristics of EAE models and discuss how they help shed light on MS pathogenesis and help test new treatments for MS patients. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
Nosratabadi, Reza; Rastin, Maryam; Sankian, Mojtaba; Haghmorad, Dariush; Mahmoudi, Mahmoud
2016-10-01
Hyperforin an herbal compound, is commonly used in traditional medicine due to its anti-inflammatory activities. The aim of this study was to use a hyperforin loaded gold nanoparticle (Hyp-GNP) in the treatment of experimental autoimmune encephalomyelitis (EAE) an animal model of multiple sclerosis (MS). Hyp-GNP and hyperforin significantly reduced clinical severity of EAE, which was accompanied by a decrease in the number of inflammatory cell infiltration in the spinal cord. Additionally, treatment with Hyp-GNP significantly inhibited disease-associated cytokines as well as an increase in the anti-inflammatory cytokines in comparison to all groups including the free-hyp group. Furthermore, hyperforin and Hyp-GNP inhibited the differentiation of Th1 and Th17 cells while promoting Treg and Th2 cell differentiation via regulating their master transcription factors. The current study demonstrated the although, free-hyp improved clinical and laboratory data Hyp-GNP is significantly more efficient than free hyperforin in the treatment of EAE. Copyright © 2016 Elsevier Inc. All rights reserved.
Zozulya, Alla L.; Ortler, Sonja; Lee, JangEun; Weidenfeller, Christian; Sandor, Matyas; Wiendl, Heinz; Fabry, Zsuzsanna
2010-01-01
Dendritic cells (DCs) appear in higher numbers within the CNS as a consequence of inflammation associated with autoimmune disorders, such as multiple sclerosis (MS), but the contribution of these cells to the outcome of disease is not yet clear. Here we show that stimulatory or tolerogenic functional states of intracerebral DCs regulate the systemic activation of neuroantigen-specific T cells, the recruitment of these cells into the CNS and the onset and progression of experimental autoimmune encephalomyelitis (EAE). Intracerebral microinjection of stimulatory DCs exacerbated the onset and clinical course of EAE, accompanied with an early T-cell infiltration and a decreased proportion of regulatory FoxP3-expressing cells in the brain. In contrast, the intracerebral microinjection of DCs modified by tumor necrosis factor alpha (TNF-α) induced their tolerogenic functional state and delayed or prevented EAE onset. This triggered the generation of interleukin 10 (IL-10)-producing neuroantigen-specific lymphocytes in the periphery and restricted IL-17 production in the CNS. Our findings suggest that DCs are a rate-limiting factor for neuroinflammation. PMID:19129392
Mast cell inflammasome activity in the meninges regulates EAE disease severity.
Russi, Abigail E; Walker-Caulfield, Margaret E; Brown, Melissa A
2018-04-01
Inflammasomes are multiprotein complexes that assemble in response to microbial and other danger signals and regulate the secretion of biologically active IL-1β and IL-18. Although they are important in protective immunity against bacterial, viral and parasitic infections, aberrant inflammasome activity promotes chronic inflammation associated with autoimmune disease. Inflammasomes have been described in many immune cells, but the majority of studies have focused on their activity in macrophages. Here we discuss an important role for mast cell-inflammasome activity in EAE, the rodent model of multiple sclerosis, a CNS demyelinating disease. We review our evidence that mast cells in the meninges, tissues that surround the brain and spinal cord, interact with infiltrating myelin-specific T cells in early disease. This interaction elicits IL-1β expression by mast cells, which in turn, promotes GM-CSF expression by T cells. In view of the essential role that GM-CSF plays in T cell encephalitogenicity, we propose this mast cell-T cell crosstalk in the meninges is critical for EAE disease development. Copyright © 2016 Elsevier Inc. All rights reserved.
A Peptide Targeting Inflammatory CNS Lesions in the EAE Rat Model of Multiple Sclerosis.
Boiziau, Claudine; Nikolski, Macha; Mordelet, Elodie; Aussudre, Justine; Vargas-Sanchez, Karina; Petry, Klaus G
2018-06-01
Multiple sclerosis is characterized by inflammatory lesions dispersed throughout the central nervous system (CNS) leading to severe neurological handicap. Demyelination, axonal damage, and blood brain barrier alterations are hallmarks of this pathology, whose precise processes are not fully understood. In the experimental autoimmune encephalomyelitis (EAE) rat model that mimics many features of human multiple sclerosis, the phage display strategy was applied to select peptide ligands targeting inflammatory sites in CNS. Due to the large diversity of sequences after phage display selection, a bioinformatics procedure called "PepTeam" designed to identify peptides mimicking naturally occurring proteins was used, with the goal to predict peptides that were not background noise. We identified a circular peptide CLSTASNSC called "Ph48" as an efficient binder of inflammatory regions of EAE CNS sections including small inflammatory lesions of both white and gray matter. Tested on human brain endothelial cells hCMEC/D3, Ph48 was able to bind efficiently when these cells were activated with IL1β to mimic inflammatory conditions. The peptide is therefore a candidate for further analyses of the molecular alterations in inflammatory lesions.
Behavioural and neuroinflammatory effects of the combination of binge ethanol and MDMA in mice.
Ros-Simó, Clara; Ruiz-Medina, Jessica; Valverde, Olga
2012-06-01
Binge drinking is a common pattern of alcohol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular, 3,4-methylendioxymethamphetamine (MDMA). To evaluate the behavioural consequences of voluntary binge ethanol consumption, alone and in combination to MDMA. Also, to elucidate the effects of the combined consumption of these two drugs on neuroinflammation. Adolescent mice received MDMA (MDMA-treated mice), ethanol (ethanol-treated mice group) or both (ethanol plus MDMA-treated mice). Drinking in the dark (DID) procedure was used as a model of binge. Body temperature, locomotor activity, motor coordination, anxiety-like and despair behaviour in adolescent mice were evaluated 48 h, 72 h, and 7 days after the treatments. Also, neuroinflammatory response to these treatments was measured in the striatum. The hyperthermia observed in MDMA-treated mice was abolished by pre-exposition to ethanol. Ethanol plus MDMA-treated mice showed lower locomotor activity. Ethanol-treated mice showed motor coordination impairment and increased despair behaviour. Anxiety-like behaviour was only seen in animals that were treated with both drugs. Contrarily, neuroinflammation was mostly seen in animals treated only with MDMA. Ethanol and MDMA co-administration increases the neurobehavioural changes induced by the consumption of each one of these drugs. However, as ethanol consumption did not increase neuroinflammatory responses induced by MDMA, other mechanisms, mediated by ethanol, are likely to account for this effect and need to be evaluated.
Immunization alters body odor.
Kimball, Bruce A; Opiekun, Maryanne; Yamazaki, Kunio; Beauchamp, Gary K
2014-04-10
Infections have been shown to alter body odor. Because immune activation accompanies both infection and immunization, we tested the hypothesis that classical immunization might similarly result in the alteration of body odors detectable by trained biosensor mice. Using a Y-maze, we trained biosensor mice to distinguish between urine odors from rabies-vaccinated (RV) and unvaccinated control mice. RV-trained mice generalized this training to mice immunized with the equine West Nile virus (WNV) vaccine compared with urine of corresponding controls. These results suggest that there are similarities between body odors of mice immunized with these two vaccines. This conclusion was reinforced when mice could not be trained to directly discriminate between urine odors of RV- versus WNV-treated mice. Next, we trained biosensor mice to discriminate the urine odors of mice treated with lipopolysaccharide (LPS; a general elicitor of innate immunological responses) from the urine of control mice. These LPS-trained biosensors could distinguish between the odors of LPS-treated mouse urine and RV-treated mouse urine. Finally, biosensor mice trained to distinguish between the odors of RV-treated mouse urine and control mouse urine did not generalize this training to discriminate between the odors of LPS-treated mouse urine and control mouse urine. From these experiments, we conclude that: (1) immunization alters urine odor in similar ways for RV and WNV immunizations; and (2) immune activation with LPS also alters urine odor but in ways different from those of RV and WNV. Published by Elsevier Inc.
Nishi, N; Osawa, M; Ishikawa, R; Nishikawa, M; Tsumura, H; Inoue, H; Sudo, T
1995-09-01
It is known that treatment of mice with 5-fluorouracil (5-FU, 150 mg/kg) confers radioprotection. To investigate this effect, we performed bone marrow transplantation (BMT) using C57BL/6-Ly5 congenic mice treated with 5-FU five days prior to experiments. The mononuclear cells (MNC) in 5-FU-treated bone marrow (BM) were 10 times more radioprotective than those in untreated BM. Moreover, the number of BM MNC expressing c-kit on their surface from 5-FU-treated mice was markedly decreased relative to those from untreated controls. These results showed that the surface characteristics of cells that contributed to this radio-protective effect differ from those of stem cells as reported recently. BM MNC of mice treated with 5-FU were separated on the basis of expression of the lineage-specific antigens (Lin), c-kit, and Ly6A/E. When injected into lethally irradiated mice, 1,000 Lin+ and Lin-c-kit+Ly6A/E+ cells showed radioprotective effects such that 100% and 60% survived, respectively. Flow cytometric analysis 165 days after BMT showed that 88.8% and 65.1% of peripheral blood (PB) in mice transplanted with Lin+ and Lin-c-kit+Ly6A/E+ was derived from donor mice, respectively. After six months, donor-derived Lin-c-kit+Ly6A/E+ cells which showed radioprotective effects on a secondary irradiated host were detected from mice transplanted with Lin+ cells from 5-FU-treated mice. Taken together, these findings demonstrated that stem cells expressing Lin+ present in the BM of mice treated with 5-FU other than Lin-c-kit+Ly6A/E+ cells and these Lin+ cells play an important role in the recovery of myeloablative mice.
Role of CYP2B in Phenobarbital-Induced Hepatocyte Proliferation in Mice.
Li, Lei; Bao, Xiaochen; Zhang, Qing-Yu; Negishi, Masahiko; Ding, Xinxin
2017-08-01
Phenobarbital (PB) promotes liver tumorigenesis in rodents, in part through activation of the constitutive androstane receptor (CAR) and the consequent changes in hepatic gene expression and increases in hepatocyte proliferation. A typical effect of CAR activation by PB is a marked induction of Cyp2b10 expression in the liver; the latter has been suspected to be vital for PB-induced hepatocellular proliferation. This hypothesis was tested here by using a Cyp2a(4/5)bgs -null (null) mouse model in which all Cyp2b genes are deleted. Adult male and female wild-type (WT) and null mice were treated intraperitoneally with PB at 50 mg/kg once daily for 5 successive days and tested on day 6. The liver-to-body weight ratio, an indicator of liver hypertrophy, was increased by 47% in male WT mice, but by only 22% in male Cyp2a(4/5)bgs -null mice, by the PB treatment. The fractions of bromodeoxyuridine-positive hepatocyte nuclei, assessed as a measure of the rate of hepatocyte proliferation, were also significantly lower in PB-treated male null mice compared with PB-treated male WT mice. However, whereas few proliferating hepatocytes were detected in saline-treated mice, many proliferating hepatocytes were still detected in PB-treated male null mice. In contrast, female WT mice were much less sensitive than male WT mice to PB-induced hepatocyte proliferation, and PB-treated female WT and PB-treated female null mice did not show significant difference in rates of hepatocyte proliferation. These results indicate that CYP2B induction plays a significant, but partial, role in PB-induced hepatocyte proliferation in male mice. U.S. Government work not protected by U.S. copyright.
Angiogenesis blockade as a new therapeutic approach to experimental colitis
Danese, Silvio; Sans, Miquel; Spencer, David M; Beck, Ivy; Doñate, Fernando; Plunkett, Marian L; de la Motte, Carol; Redline, Raymond; Shaw, David E; Levine, Alan D; Mazar, Andrew P; Fiocchi, Claudio
2007-01-01
Background Neoangiogenesis is a critical component of chronic inflammatory disorders. Inhibition of angiogenesis is an effective treatment in animal models of inflammation, but has not been tested in experimental colitis. Aim To investigate the effect of ATN‐161, an anti‐angiogenic compound, on the course of experimental murine colitis. Method Interleukin 10‐deficient (IL10−/−) mice and wild‐type mice were kept in ultra‐barrier facilities (UBF) or conventional housing, and used for experimental conditions. Dextran sodium sulphate (DSS)‐treated mice were used as a model of acute colitis. Mice were treated with ATN‐161 or its scrambled peptide ATN‐163. Mucosal neoangiogenesis and mean vascular density (MVD) were assessed by CD31 staining. A Disease Activity Index (DAI) was determined, and the severity of colitis was determined by a histological score. Colonic cytokine production was measured by ELISA, and lamina propria mononuclear cell proliferation by thymidine incorporation. Result MVD increased in parallel with disease progression in IL10−/− mice kept in conventional housing, but not in IL10−/− mice kept in UBF. Angiogenesis also occurred in DSS‐treated animals. IL10−/− mice with established disease treated with ATN‐161, but not with ATN‐163, showed a significant and progressive decrease in DAI. The histological colitis score was significantly lower in ATN‐161‐treated mice than in scrambled peptide‐treated mice. Inhibition of angiogenesis was confirmed by a significant decrease of MVD in ATN‐161‐treated mice than in ATN‐163‐treated mice. No therapeutic effects were observed in the DSS model of colitis. ATN‐161 showed no direct immunomodulatory activity in vitro. Conclusion Active angiogenesis occurs in the gut of IL10−/− and DSS‐treated colitic mice and parallels disease progression. ATN‐161 effectively decreases angiogenesis as well as clinical severity and histological inflammation in IL10−/− mice but not in the DDS model of inflammatory bowel disease (IBD). The results provide the rational basis for considering anti‐angiogenic strategies in the treatment of IBD in humans. PMID:17170016
Xu, Dan; Nishimura, Toshi; Nishimura, Sachiko; Zhang, Haili; Zheng, Ming; Guo, Ying-Ying; Masek, Marylin; Michie, Sara A; Glenn, Jeffrey; Peltz, Gary
2014-04-01
Seven of 15 clinical trial participants treated with a nucleoside analogue (fialuridine [FIAU]) developed acute liver failure. Five treated participants died, and two required a liver transplant. Preclinical toxicology studies in mice, rats, dogs, and primates did not provide any indication that FIAU would be hepatotoxic in humans. Therefore, we investigated whether FIAU-induced liver toxicity could be detected in chimeric TK-NOG mice with humanized livers. Control and chimeric TK-NOG mice with humanized livers were treated orally with FIAU 400, 100, 25, or 2.5 mg/kg/d. The response to drug treatment was evaluated by measuring plasma lactate and liver enzymes, by assessing liver histology, and by electron microscopy. After treatment with FIAU 400 mg/kg/d for 4 d, chimeric mice developed clinical and serologic evidence of liver failure and lactic acidosis. Analysis of liver tissue revealed steatosis in regions with human, but not mouse, hepatocytes. Electron micrographs revealed lipid and mitochondrial abnormalities in the human hepatocytes in FIAU-treated chimeric mice. Dose-dependent liver toxicity was detected in chimeric mice treated with FIAU 100, 25, or 2.5 mg/kg/d for 14 d. Liver toxicity did not develop in control mice that were treated with the same FIAU doses for 14 d. In contrast, treatment with another nucleotide analogue (sofosbuvir 440 or 44 mg/kg/d po) for 14 d, which did not cause liver toxicity in human trial participants, did not cause liver toxicity in mice with humanized livers. FIAU-induced liver toxicity could be readily detected using chimeric TK-NOG mice with humanized livers, even when the mice were treated with a FIAU dose that was only 10-fold above the dose used in human participants. The clinical features, laboratory abnormalities, liver histology, and ultra-structural changes observed in FIAU-treated chimeric mice mirrored those of FIAU-treated human participants. The use of chimeric mice in preclinical toxicology studies could improve the safety of candidate medications selected for testing in human participants. Please see later in the article for the Editors' Summary.
Acedo, Simone Coghetto; Caria, Cintia Rabelo E Paiva; Gotardo, Érica Martins Ferreira; Pereira, José Aires; Pedrazzoli, José; Ribeiro, Marcelo Lima; Gambero, Alessandra
2015-10-28
To study pentoxifylline effects in liver and adipose tissue inflammation in obese mice induced by high-fat diet (HFD). Male swiss mice (6-wk old) were fed a high-fat diet (HFD; 60% kcal from fat) or AIN-93 (control diet; 15% kcal from fat) for 12 wk and received pentoxifylline intraperitoneally (100 mg/kg per day) for the last 14 d. Glucose homeostasis was evaluated by measurements of basal glucose blood levels and insulin tolerance test two days before the end of the protocol. Final body weight was assessed. Epididymal adipose tissue was collected and weighted for adiposity evaluation. Liver and adipose tissue biopsies were homogenized in solubilization buffer and cytokines were measured in supernatant by enzyme immunoassay or multiplex kit, respectively. Hepatic histopathologic analyses were performed in sections of paraformaldehyde-fixed, paraffin-embedded liver specimens stained with hematoxylin-eosin by an independent pathologist. Steatosis (macrovesicular and microvesicular), ballooning degeneration and inflammation were histopathologically determined. Triglycerides measurements were performed after lipid extraction in liver tissue. Pentoxifylline treatment reduced microsteatosis and tumor necrosis factor (TNF)-α in liver (156.3 ± 17.2 and 62.6 ± 7.6 pg/mL of TNF-α for non-treated and treated obese mice, respectively; P < 0.05). Serum aspartate aminotransferase levels were also reduced (23.2 ± 6.9 and 12.1 ± 1.6 U/L for non-treated and treated obese mice, respectively; P < 0.05) but had no effect on glucose homeostasis. In obese adipose tissue, pentoxifylline reduced TNF-α (106.1 ± 17.6 and 51.1 ± 9.6 pg/mL for non-treated and treated obese mice, respectively; P < 0.05) and interleukin-6 (340.8 ± 51.3 and 166.6 ± 22.5 pg/mL for non-treated and treated obese mice, respectively; P < 0.05) levels; however, leptin (8.1 ± 0.7 and 23.1 ± 2.9 ng/mL for non-treated and treated lean mice, respectively; P < 0.05) and plasminogen activator inhibitor-1 (600.2 ± 32.3 and 1508.6 ± 210.4 pg/mL for non-treated and treated lean mice, respectively; P < 0.05) levels increased in lean adipose tissue. TNF-α level in the liver of lean mice also increased (29.6 ± 6.6 and 75.4 ± 12.6 pg/mL for non-treated and treated lean mice, respectively; P < 0.05) while triglycerides presented a tendency to reduction. Pentoxifylline was beneficial in obese mice improving liver and adipose tissue inflammation. Unexpectedly, pentoxifylline increased pro-inflammatory markers in the liver and adipose tissue of lean mice.
Role of pentoxifylline in non-alcoholic fatty liver disease in high-fat diet-induced obesity in mice
Acedo, Simone Coghetto; Caria, Cintia Rabelo e Paiva; Gotardo, Érica Martins Ferreira; Pereira, José Aires; Pedrazzoli, José; Ribeiro, Marcelo Lima; Gambero, Alessandra
2015-01-01
AIM: To study pentoxifylline effects in liver and adipose tissue inflammation in obese mice induced by high-fat diet (HFD). METHODS: Male swiss mice (6-wk old) were fed a high-fat diet (HFD; 60% kcal from fat) or AIN-93 (control diet; 15% kcal from fat) for 12 wk and received pentoxifylline intraperitoneally (100 mg/kg per day) for the last 14 d. Glucose homeostasis was evaluated by measurements of basal glucose blood levels and insulin tolerance test two days before the end of the protocol. Final body weight was assessed. Epididymal adipose tissue was collected and weighted for adiposity evaluation. Liver and adipose tissue biopsies were homogenized in solubilization buffer and cytokines were measured in supernatant by enzyme immunoassay or multiplex kit, respectively. Hepatic histopathologic analyses were performed in sections of paraformaldehyde-fixed, paraffin-embedded liver specimens stained with hematoxylin-eosin by an independent pathologist. Steatosis (macrovesicular and microvesicular), ballooning degeneration and inflammation were histopathologically determined. Triglycerides measurements were performed after lipid extraction in liver tissue. RESULTS: Pentoxifylline treatment reduced microsteatosis and tumor necrosis factor (TNF)-α in liver (156.3 ± 17.2 and 62.6 ± 7.6 pg/mL of TNF-α for non-treated and treated obese mice, respectively; P < 0.05). Serum aspartate aminotransferase levels were also reduced (23.2 ± 6.9 and 12.1 ± 1.6 U/L for non-treated and treated obese mice, respectively; P < 0.05) but had no effect on glucose homeostasis. In obese adipose tissue, pentoxifylline reduced TNF-α (106.1 ± 17.6 and 51.1 ± 9.6 pg/mL for non-treated and treated obese mice, respectively; P < 0.05) and interleukin-6 (340.8 ± 51.3 and 166.6 ± 22.5 pg/mL for non-treated and treated obese mice, respectively; P < 0.05) levels; however, leptin (8.1 ± 0.7 and 23.1 ± 2.9 ng/mL for non-treated and treated lean mice, respectively; P < 0.05) and plasminogen activator inhibitor-1 (600.2 ± 32.3 and 1508.6 ± 210.4 pg/mL for non-treated and treated lean mice, respectively; P < 0.05) levels increased in lean adipose tissue. TNF-α level in the liver of lean mice also increased (29.6 ± 6.6 and 75.4 ± 12.6 pg/mL for non-treated and treated lean mice, respectively; P < 0.05) while triglycerides presented a tendency to reduction. CONCLUSION: Pentoxifylline was beneficial in obese mice improving liver and adipose tissue inflammation. Unexpectedly, pentoxifylline increased pro-inflammatory markers in the liver and adipose tissue of lean mice. PMID:26523207
Positron states on the Cs/Cu(100) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koeymen, A.R.; Lee, K.H.; Mehl, D.
1991-02-01
The attenuation of the CuM{sub 23}VV Auger peak with Cs coverage on Cu(100) is measured using both positron-annihilation-induced Auger electron emission (PAES) and conventional (electron induced) Auger electron spectroscopy (EAES). The Cs coverage varies from 0 to 1 physical monolayer (ML). The data indicates that below 0.5 ML in agreement with first order theoretical calculations the positrons are trapped at the Cu/Cs interface. At higher Cs coverages the thermal desorption of the positrons as positronium drops the PAES intensity to zero whereas the EAES signal changes linearly as expected.
Shaw, Patrick J; Ditewig, Amy C; Waring, Jeffrey F; Liguori, Michael J; Blomme, Eric A; Ganey, Patricia E; Roth, Robert A
2009-01-01
The antibiotic trovafloxacin (TVX) has caused severe idiosyncratic hepatotoxicity in people, whereas levofloxacin (LVX) has not. Mice cotreated with TVX and lipopolysaccharide (LPS), but not with LVX and LPS, develop severe hepatocellular necrosis. Mice were treated with TVX and/or LPS, and hepatic gene expression changes were measured before liver injury using gene array. Hepatic gene expression profiles from mice treated with TVX/LPS clustered differently from those treated with LPS or TVX alone. Several of the probe sets expressed differently in TVX/LPS-treated mice were involved in interferon (IFN) signaling and the janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. A time course of plasma concentrations of IFN-gamma and interleukin (IL)-18, which directly induces IFN-gamma production, revealed that both cytokines were selectively increased in TVX/LPS-treated mice. Both IL-18(-/-) and IFN-gamma(-/-) mice were significantly protected from TVX/LPS-induced liver injury. In addition, IFN-gamma(-/-) mice had decreased plasma concentrations of tumor necrosis factor-alpha, IL-18, and IL-1beta when compared to wild-type mice. In conclusion, the altered expression of genes involved in IFN signaling in TVX/LPS-treated mice led to the finding that IL-18 and IFN-gamma play a critical role in TVX/LPS-induced liver injury.
Karbalay-Doust, S; Noorafshan, A
2011-01-01
Metronidazole (MTZ) is used as an antiparasitic drug. Curcumin is considered as anti-oxidant and anti-inflammatory agent. The ameliorative effects of curcumin on MTZ induced toxicity on mice spermatozoon tail length, count, motility and testosterone level were investigated. MTZ was administered in 500 and 165 (high and therapeutic doses) mg/kg/day, with and without curcumin (100 mg/kg/day). After 16 days the above parameters were assessed. Spermatozoon count and motility and serum testosterone level MTZ-treated (500 and 165) mice were reduced. In the mice treated with MTZ+curcumin these parameters decreased but in a lesser extent than the MTZ-treated animals. Mid-piece and total lengths of the spermatozoon tail in control animals were 31.6 ± 9.0 μm and 100.3 ± 15.0 μm and in the mice treated with high doses (500) of MTZ were reduced. The mid-piece and total spermatozoon tail length has been decreased in a lesser extent in the mice treated with high dose MTZ+curcumin than the mice treated with high dose MTZ (p<0.01). But the length was not changed in animals treated with therapeutic dose of MTZ. It means curcumin treated animals had ~52% and ~39% average increase in mid-piece and total lengths in comparison with the MTZ-treated (500) animals. Stereological estimation of the sperm tail length, including sampling of spermatozoa and also counting of the intersections of their tails with the stereological grids was a rapid technique and took only 5-10 minutes. It can be concluded that curcumin has an ameliorative effect on the spermatozoon, testosterone level and tail length in MTZ-treated mice.
Clindamycin in a murine model of toxoplasmic encephalitis.
Hofflin, J M; Remington, J S
1987-01-01
We investigated the efficacy of clindamycin in a murine model of toxoplasmic encephalitis using direct intracerebral inoculation. Clindamycin reduced mortality from 40% in normal mice and 100% in cortisone-treated mice to 0% in both groups. Although we were unable to document appreciable levels of clindamycin in the brains of infected mice, the histological features of cerebral infection were markedly altered. The formation of large numbers of cysts and the intense inflammatory response seen in the brains of normal mice and the unchecked infection and tissue necrosis in the brains of cortisone-treated mice were absent in the brains of clindamycin-treated mice. Enumeration of cysts in the brains of mice 10 weeks after infection revealed a significantly lower number in the clindamycin-treated mice. Spread of infection to other organs was also decreased during clindamycin administration. These observations suggest that clindamycin may have a role in the therapy of toxoplasmic encephalitis. Images PMID:3606059
Kim, Ok-Kyung; Lee, Minhee; Kwon, Han Ol; Lee, Dasom; Park, Jeongjin; Kim, Eungpil; You, Yanghee; Lim, Young Tae; Jun, Woojin; Lee, Jeongmin
2018-05-23
We investigated the potential effects of Costaria costata (CC) on atopic dermatitis (AD) development in chloro-2,4-dinitrobenzene (DNCB)-treated NC/Nga mice. CC is a brown alga distributed across the seas of Korea, China, and Japan. A total of 40 mice were randomly assigned to 5 groups with 8 mice per group: untreated Balb/c mice, AD control (0.1% w/v DNCB-treated NC/Nga mice), positive control (i.e., DNCB-treated NC/Nga mice fed a dietary supplement of 66.6 mg/kg of body weight [b.w.] of CJLP133), DNCB-treated NC/Nga mice fed a dietary supplement of 100 mg/kg b.w. of CCE10 (CCE10 100), and DNCB-treated mice fed a dietary supplement of 300 mg/kg b.w. of CCE10 (CCE10 300) groups. The CCE10 100 and CCE10 300 treatment groups suppressed AD development including clinical and histopathological changes and a reduction in skin hydration induced by DNCB. In addition, Th2 cytokine production in primary splenocytes, serum IgE and histamine production, and mast cell infiltration into the skin were suppressed in the CCE10 300 mice compared to the CCE10 100 mice. Our finding demonstrated an inhibitory effect of CCE10 in AD development by means of improving the Th1/Th2 cytokine balance and anti-inflammatory effect in an in vivo model. © 2018 S. Karger AG, Basel.
Hida, Toshie H; Kawaminami, Hiromi; Ishibashi, Ken-Ichi; Miura, Noriko N; Adachi, Yoshiyuki; Yadomae, Toshiro; Ohno, Naohito
2009-07-01
SCG is a 6-branched 1,3-beta-D-glucan, which are major cell wall structural components in fungi. Leukocytes from DBA/1 and DBA/2 mice are highly sensitive to SCG, producing cytokines such as GM-CSF, IFN-gamma, TNF-alpha and IL-12p70, but not IL-6. GM-CSF plays a key biological role in this activity. In the present study, we examined the effect of giving i.p. SCG to DBA/2 mice on cytokine production in vitro. SCG was given i.p. to DBA/2 mice on day 0. Splenocytes were prepared on day 7 and cultured in the presence of SCG in vitro. The levels of cytokine production induced by SCG in vitro were lower in the cells from SCG-treated mice than in control mice. Expression of the beta-glucan receptor, dectin-1, in SCG-treated mice was comparable with that shown in control mice. However, the consumption of exogenously added rmGM-CSF in vitro was observed in SCG-treated mice. The addition of a large amount of rmGM-CSF to the culture medium resulted in larger amounts of TNF-alpha and IL-6 in SCG-treated mice than in normal mice. These results suggested that GM-CSF was closely related with the reactivity of beta-glucan. Giving SCG increased the number of macrophages and granulocytes in the spleen. These results suggested that in SCG-treated mice, a change of cell population would be related to modulation of the profile of cytokine production induced by SCG in vitro.
NASA Technical Reports Server (NTRS)
Gould, Cheryl L.; Sonnenfeld, Gerald
1987-01-01
The effect of pretreatment of mice with 34 units/day, for five days, of interferon-gamma (IFN-gamma) on the course of infection with LD50 of Salmonella typhimurium strain LT-2 was assessed, using two IFN preparations: (1) a hybridoma supernatant fluid containing concanavalin-A-induced IFN-gamma activity and (2) pure murine IFN-gamma produced by recombinant DNA technology. The hybridoma supernatant-treated Salmonella-infected mice were found to die faster than mice treated only with Salmonella. Pure murine IFN-gamma was found to protect infected mice significantly, with 95 percent of mice surviving LD50 infection. In contrast, the Salmonella-infected mice treated with hybridoma supernatant were found to die faster than the Salmonella-infected untreated controls. Mice treated with concanavalin A alone prior to infection with S. typhimurium died more quickly than the untreated infected controls, suggesting that contamination with concanavalin A had a detrimental effect on mice survival.
Hyperglycemia and hepatic tumors in ICR mice neonatally injected with streptozotocin.
Ariza, Lorena; Zaguirre, Mireia; García, Marta; Blasco, Ester; Rabanal, Rosa Maria; Bosch, Assumpició; Otaegui, Pedro José
2014-07-01
Repeated, low-dose administration of streptozotocin (STZ) is widely used to induce insulin-dependent diabetes mellitus in mice. The authors adapted this method using neonatal mice and determined the long-term effects of STZ injection in the mice. After receiving intraperitoneal injections of STZ at postnatal day 3 (P3), P4 and P8, male and female mice were hyperglycemic by week 4. A clear sex difference was found, with blood glucose levels in STZ-treated males remaining higher than those in STZ-treated females until week 23. Whereas STZ-treated males remained hyperglycemic until week 23, STZ-treated females did not have significantly higher glucose levels than control mice after week 18. Additionally, STZ-treated mice had neoplastic lesions in their livers by week 4, with a progression in the severity of these lesions until week 24. The results confirm that, in addition to pancreatic beta cell toxicity, STZ has an oncogenic effect on the liver when administered to neonates.
Ren, Yongxin; Liu, Bo; Feng, Yuxu; Shu, Lei; Cao, Xiaojian; Karaplis, Andrew; Goltzman, David; Miao, Dengshun
2011-01-01
Although the capacity of exogenous PTH1-34 to enhance the rate of bone repair is well established in animal models, our understanding of the mechanism(s) whereby PTH induces an anabolic response during skeletal repair remains limited. Furthermore it is unknown whether endogenous PTH is required for fracture healing and how the absence of endogenous PTH would influence the fracture-healing capacity of exogenous PTH. Closed mid-diaphyseal femur fractures were created and stabilized with an intramedullary pin in 8-week-old wild-type and Pth null (Pth(-/-)) mice. Mice received daily injections of vehicle or of PTH1-34 (80 µg/kg) for 1-4 weeks post-fracture, and callus tissue properties were analyzed at 1, 2 and 4 weeks post-fracture. Cartilaginous callus areas were reduced at 1 week post-fracture, but were increased at 2 weeks post-fracture in vehicle-treated and PTH-treated Pth(-/-) mice compared to vehicle-treated and PTH-treated wild-type mice respectively. The mineralized callus areas, bony callus areas, osteoblast number and activity, osteoclast number and surface in callus tissues were all reduced in vehicle-treated and PTH-treated Pth(-/-) mice compared to vehicle-treated and PTH-treated wild-type mice, but were increased in PTH-treated wild-type and Pth(-/-) mice compared to vehicle-treated wild-type and Pth(-/-) mice. Absence of endogenous PTH1-84 impedes bone fracture healing. Exogenous PTH1-34 can act in the absence of endogenous PTH but callus formation, including accelerated endochondral bone formation and callus remodeling as well as mechanical strength of the bone are greater when endogenous PTH is present. Results of this study suggest a complementary role for endogenous PTH1-84 and exogenous PTH1-34 in accelerating fracture healing.
Cáceres, María E; Etcheverría, Analía I; Fernández, Daniel; Rodríguez, Edgardo M; Padola, Nora L
2017-01-01
Shiga toxin-producing Escherichia coli (STEC) are pathogens of significant public health concern. Several studies have confirmed that cattle are the main reservoir of STEC in Argentina and other countries. Although Shiga toxins represent the primary virulence factors of STEC, the adherence and colonization of the gut are also important in the pathogenesis of the bacteria. The aim of this study was to analyze and to compare the presence of putative virulence factors codified in plasmid - katP, espP, subA, stcE - and adhesins involved in colonization of cattle - efa1, iha - in 255 native STEC strains isolated from different categories of cattle from different production systems. The most prevalent gene in all strains was espP , and the less prevalent was stcE . katP was highly detected in strains isolated from young and rearing calves (33.3%), while subA was predominant in those isolated from adults (71.21%). Strains from young calves showed the highest percentage of efa1 (72.46%), while iha showed a high distribution in strains from rearing calves and adults (87.04 and 98.48% respectively). It was observed that espP and iha were widely distributed throughout all strains, whereas katP, stcE , and efa1 were more associated with the presence of eae and subA with the eae -negative strains. A great proportion of eae -negative strains were isolated from adults -dairy and grazing farms- and from rearing calves -dairy and feedlot-, while mostly of the eae -positive strains were isolated from dairy young calves. Data exposed indicate a correlation between the category of the animal and the production systems with the presence or absence of several genes implicated in adherence and virulence of STEC.
Pickens, C. Austin; Lane-Elliot, Ami; Comstock, Sarah S.; Fenton, Jenifer I.
2016-01-01
Background Altered lipid metabolism and plasma fatty acid (FA) levels are associated with colorectal cancer (CRC). Obesity and elevated waist circumference (WC) increase the likelihood of developing precancerous colon adenomas. Methods Venous blood was collected from 126 males, ages 48 to 65 years, who received routine colonoscopies. Plasma phospholipid (PPL) FAs were isolated, derivatized, and then analyzed using gas chromatography. Odds ratios (ORs) and 95% confidence intervals were determined using polytomous logistic regression after adjusting for confounding factors (i.e. age, smoking, WC, and BMI). Results PPL palmitic acid (PA) was inversely correlated with the presence of colon adenomas (p = 0.01). For each unit increase in palmitoleic acid (OR: 3.75, p = 0.04) or elaidic acid (OR: 2.92, p = 0.04) an individual was more likely to have adenomas relative to no colon polyps. Higher enzyme activity estimates (EAEs) of stearoyl-CoA desaturase-1 (SCD-1, p = 0.02) and elongation of very long chain-6 (Elovl-6, p = 0.03) were associated with an individual being approximately 1.5 times more likely to have an adenoma compared to no polyps. Conclusions PPL FAs and EAEs, which have previously been associated with CRC, are significantly different in those with adenomas when compared to those without polyps. PPL PA, elaidic acid, and SCD-1 and Elovl-6 EAEs are associated with adenomas independent of BMI and WC. Impact PPL PA, elaidic acid, and SCD-1 and Elovl-6 EAEs are associated with adenomas even after adjusting for obesity-related risk factors and may function as novel biomarkers of early CRC risk. PMID:26721667
Torres-Salazar, Delany; Bittner, Stefan; Zozulya, Alla L.; Weidenfeller, Christian; Kotsiari, Alexandra; Stangel, Martin; Fahlke, Christoph; Wiendl, Heinz
2008-01-01
In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), impairment of glial “Excitatory Amino Acid Transporters” (EAATs) together with an excess glutamate-release by invading immune cells causes excitotoxic damage of the central nervous system (CNS). In order to identify pathways to dampen excitotoxic inflammatory CNS damage, we assessed the effects of a β-lactam antibiotic, ceftriaxone, reported to enhance expression of glial EAAT2, in “Myelin Oligodendrocyte Glycoprotein” (MOG)-induced EAE. Ceftriaxone profoundly ameliorated the clinical course of murine MOG-induced EAE both under preventive and therapeutic regimens. However, ceftriaxone had impact neither on EAAT2 protein expression levels in several brain areas, nor on the radioactive glutamate uptake capacity in a mixed primary glial cell-culture and the glutamate-induced uptake currents in a mammalian cell line mediated by EAAT2. Moreover, the clinical effect of ceftriaxone was preserved in the presence of the EAAT2-specific transport inhibitor, dihydrokainate, while dihydrokainate alone caused an aggravated EAE course. This demonstrates the need for sufficient glial glutamate uptake upon an excitotoxic autoimmune inflammatory challenge of the CNS and a molecular target of ceftriaxone other than the glutamate transporter. Ceftriaxone treatment indirectly hampered T cell proliferation and proinflammatory INFγ and IL17 secretion through modulation of myelin-antigen presentation by antigen-presenting cells (APCs) e.g. dendritic cells (DCs) and reduced T cell migration into the CNS in vivo. Taken together, we demonstrate, that a β-lactam antibiotic attenuates disease course and severity in a model of autoimmune CNS inflammation. The mechanisms are reduction of T cell activation by modulation of cellular antigen-presentation and impairment of antigen-specific T cell migration into the CNS rather than or modulation of central glutamate homeostasis. PMID:18773080
Noguchi, Atsushi; Tominaga, Mitsutoshi; Takahashi, Nobuaki; Matsuda, Hironori; Kamata, Yayoi; Umehara, Yoshie; Ko, Kyi Chan; Suga, Yasushi; Ogawa, Hideoki; Takamori, Kenji
2017-04-01
Topical corticosteroid and calcineurin inhibitor have similar therapeutic benefits in atopic dermatitis (AD), but the differences in therapeutic mechanisms of action of these agents against AD symptoms are not fully understood. This study was performed to examine the different effects of topical betamethasone valerate (BMV), clobetasol propionate (CBP), and tacrolimus (TAC) on itch-related behavior and dermatitis in NC/Nga mice with AD-like symptoms. AD-like dermatitis was induced in the dorsal skin of NC/Nga mice by repeated topical application of Dermatophagoides farinae body (Dfb) ointment twice weekly for three weeks. Mice with dermatitis scores over 5 were divided into five groups with equal dermatitis scores and treated with BMV, CBP, TAC, or Vaseline (Vas) once daily for two consecutive days, or were not treated (NT). Scratching behavior was analyzed using a SCLABA ® -Real system. Transepidermal water loss (TEWL) before and after treatment was measured using a Tewameter ® TM210. Skin collected from each group was analyzed histologically. After the second treatment, dermatitis showed significantly greater improvement in the CBP and TAC-treated groups than in the Vas-treated and NT groups. The numbers of scratching bouts were significantly lower in CBP and TAC-treated mice than in Vas-treated mice. TEWL was significantly lower in TAC-, but not in CBP-, treated mice than in Vas-treated mice. Immunohistochemical examination showed that BMV, CBP and TAC did not reduce the increased densities of epidermal protein gene product 9.5- and substance P-immunoreactive fibers. The numbers of dermal CD4-immunoreactive T cells were significantly lower in BMV and CBP-treated mice than in Vas-treated and NT mice. The numbers of dermal eosinophils were significantly lower in BMV, CBP and TAC-treated mice than in Vas-treated and NT mice, with CBP showing the strongest effect. CBP significantly reduced epidermal thickness compared with Vas and NT. There were no significant differences in the numbers of interleukin-31-immunoreactive cells and mast cells, or in expression of epidermal thymic stromal lymphopoietin among all five groups. The therapeutic potency of TAC against AD-like symptoms, including pruritus, is equal to that of the corticosteroid CBP. Epidermal innervation of sensory nerves itself might not be related to the therapeutic effects of topical tacrolimus and corticosteroids in its early phase. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Recurrent Cutaneous Herpes Simplex in Hairless Mice
Underwood, Gerald E.; Weed, Sheldon D.
1974-01-01
Passively immunized hairless mice were inoculated cutaneously with herpes simplex virus. Thirty-nine days later, when the primary cutaneous lesions had completely healed, the mice were treated subcutaneously with prednisone. Within 12 to 30 days after starting prednisone treatment, herpesvirus was recovered by skin swabs from 12 of 71 (17%) of the treated mice. This new model has potential application for understanding and treating recurrent cutaneous herpes infections. PMID:4372171
Astaxanthin affects oxidative stress and hyposalivation in aging mice
Kuraji, Manatsu; Matsuno, Tomonori; Satoh, Tazuko
2016-01-01
Oral dryness, a serious problem for the aging Japanese society, is induced by aging-related hyposalivation and causes dysphagia, dysgeusia, inadaptation of dentures, and growth of oral Candida albicans. Oxidative stress clearly plays a role in decreasing saliva secretion and treatment with antioxidants such astaxanthin supplements may be beneficial. Therefore, we evaluated the effects of astaxanthin on the oral saliva secretory function of aging mice. The saliva flow increased in astaxanthin-treated mice 72 weeks after administration while that of the control decreased by half. The plasma d-ROMs values of the control but not astaxanthin-treated group measured before and 72 weeks after treatment increased. The diacron-reactive oxygen metabolites (d-ROMs) value of astaxanthin-treated mice 72 weeks after treatment was significantly lower than that of the control group was. The plasma biological antioxidative potential (BAP) values of the control but not astaxanthin-treated mice before and 72 weeks after treatment decreased. Moreover, the BAP value of the astaxanthin-treated group 72 weeks after treatment was significantly higher than that of the control was. Furthermore, the submandibular glands of astaxanthin-treated mice had fewer inflammatory cells than the control did. Specifically, immunofluorescence revealed a significantly large aquaporin-5 positive cells in astaxanthin-treated mice. Our results suggest that astaxanthin treatment may prevent age-related decreased saliva secretion. PMID:27698533
Perfluorocarbon emulsion therapy attenuates pneumococcal infection in sickle cell mice.
Helmi, Nawal; Andrew, Peter W; Pandya, Hitesh C
2015-05-15
Impaired immunity and tissue hypoxia-ischemia are strongly linked with Streptococcus pneumoniae pathogenesis in patients with sickle cell anemia. Perfluorocarbon emulsions (PFCEs) have high O2-dissolving capacity and can alleviate tissue hypoxia. Here, we evaluate the effects of intravenous PFCE therapy in transgenic sickle cell (HbSS) mice infected with S. pneumoniae. HbSS and C57BL/6 (control) mice intravenously infected with S. pneumoniae were treated intravenously with PFCE or phosphate-buffered saline (PBS) and then managed in either air/O2 (FiO2 proportion, 50%; hereafter referred to as the PFCE-O2 and PBS-O2 groups) or air only (hereafter, the PFCE-air and PBS-air groups) gas mixtures. Lungs were processed for leukocyte and bacterial counts and cytokine measurements. HbSS mice developed severe pneumococcal infection significantly faster than C57BL/6 mice (Kaplan-Maier analysis, P < .05). PFCE-O2-treated HbSS mice had significantly better survival at 72 hours than HBSS mice treated with PFCE-air, PBS-O2, or PBS-air (P < .05). PFCE-O2-treated HbSS mice also had significantly lower pulmonary leukocyte counts, lower interleukin 1β and interferon γ levels, and higher interleukin 10 levels than PFCE-air-treated HbSS mice. Clearance of S. pneumoniae from lungs of HbSS mice or C57BL/6 mice was not altered by PFCE treatment. Improved survival of PFCE-O₂-treated HbSS mice infected with S. pneumoniae is associated with altered pulmonary inflammation but not enhanced bacterial clearance. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Protective effects of radon inhalation on carrageenan-induced inflammatory paw edema in mice.
Kataoka, Takahiro; Teraoka, Junichi; Sakoda, Akihiro; Nishiyama, Yuichi; Yamato, Keiko; Monden, Mayuko; Ishimori, Yuu; Nomura, Takaharu; Taguchi, Takehito; Yamaoka, Kiyonori
2012-04-01
We assessed whether radon inhalation inhibited carrageenan-induced inflammation in mice. Carrageenan (1% v/v) was injected subcutaneously into paws of mice that had or had not inhaled approximately 2,000 Bq/m(3) of radon for 24 h. Radon inhalation significantly increased superoxide dismutase (SOD) and catalase activities and significantly decreased lipid peroxide levels in mouse paws, indicating that radon inhalation activates antioxidative functions. Carrageenan administration induced paw edema and significantly increased tumor necrosis factor-alpha (TNF-α) and nitric oxide in serum. However, radon inhalation significantly reduced carrageenan-induced paw edema. Serum TNF-α levels were lower in the radon-treated mice than in sham-treated mice. In addition, SOD and catalase activities in paws were significantly higher in the radon-treated mice than in the sham-treated mice. These findings indicated that radon inhalation had anti-inflammatory effects and inhibited carrageenan-induced inflammatory paw edema.
Scroggins, Sabrina M; Olivier, Alicia K; Meyerholz, David K; Schlueter, Annette J
2013-01-01
Despite improvements in human leukocyte antigen matching and pharmacologic prophylaxis, acute graft-versus-host disease (GVHD) is often a fatal complication following hematopoietic stem cell transplant (HSCT). Older HSCT recipients experience significantly increased morbidity and mortality compared to young recipients. Prophylaxis with syngeneic regulatory dendritic cells (DCreg) in young bone marrow transplanted (BMT) mice has been shown to decrease GVHD-associated mortality. To evaluate this approach in older BMT recipients, young (3-4 months) and older (14-18 months) DCreg were generated using GM-CSF, IL-10, and TGFβ. Analysis of young versus older DCreg following culture revealed no differences in phenotype. The efficacy of DCreg treatment in older BMT mice was evaluated in a BALB/c→C57Bl/6 model of GVHD; on day 2 post-BMT (d +2), mice received syngeneic, age-matched DCreg. Although older DCreg-treated BMT mice showed decreased morbidity and mortality compared to untreated BMT mice (all of which died), there was a small but significant decrease in the survival of older DCreg-treated BMT mice (75% survival) compared to young DCreg-treated BMT mice (90% survival). To investigate differences between dendritic cells (DC) in young and older DCreg-treated BMT mice that may play a role in DCreg function in vivo, DC phenotypes were assessed following DCreg adoptive transfer. Transferred DCreg identified in older DCreg-treated BMT mice at d +3 showed significantly lower expression of PD-L1 and PIR B compared to DCreg from young DCreg-treated BMT mice. In addition, donor DC identified in d +21 DCreg-treated BMT mice displayed increased inhibitory molecule and decreased co-stimulatory molecule expression compared to d +3, suggesting induction of a regulatory phenotype on the donor DC. In conclusion, these data indicate DCreg treatment is effective in the modulation of GVHD in older BMT recipients and provide evidence for inhibitory pathways that DCreg and donor DC may utilize to induce and maintain tolerance to GVHD.
Recks, Mascha S; Stormanns, Eva R; Bader, Jonas; Arnhold, Stefan; Addicks, Klaus; Kuerten, Stefanie
2013-10-01
Studies of MS histopathology are largely dependent on suitable animal models. While light microscopic analysis gives an overview of tissue pathology, it falls short in evaluating detailed changes in nerve fiber morphology. The ultrastructural data presented here and obtained from studies of myelin oligodendrocyte glycoprotein (MOG):35-55-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice delineate that axonal damage and myelin pathology follow different kinetics in the disease course. While myelin pathology accumulated with disease progression, axonal damage coincided with the initial clinical disease symptoms and remained stable over time. This pattern applied both to irreversible axolysis and early axonal pathology. Notably, these histopathological patterns were reflected by the normal-appearing white matter (NAWM), suggesting that the NAWM is also in an active neurodegenerative state. The data underline the need for neuroprotection in MS and suggest the MOG model as a highly valuable tool for the assessment of different therapeutic strategies. Copyright © 2013 Elsevier Inc. All rights reserved.
CD34 EXPRESSION BY HAIR FOLLICLE STEM CELLS IS REQUIRED FOR SKIN TUMOR DEVELOPMENT IN MICE
We used knockout mice to show that a cell surface protein called CD34 is required for skin tumor formation in mice. Wild type mice treated with 7-12-Dimethylbenz(a)anthracene (DMBA) and a tumor promoter developed papillomas. When we treated CD34 knockout (KO) mice the same way, n...
Gao, Jian-ping; Huang, Man; Li, Ning; Wang, Peng-fei; Chen, Huan-lin; Xu, Qiu-ping
2011-01-01
A novel adsorber, polyvinylidene fluoride matrix immobilized with l-serine ligand (PVDF-Ser), was developed in the present study to evaluate its safety and therapeutic efficacy in septic pigs by extracorporeal hemoperfusion. Endotoxin adsorption efficiency (EAE) of the adsorber was firstly measured in vitro. The biocompatibility and hemodynamic changes during extracorporeal circulation were then evaluated. One half of 16 pigs receiving lipopolysaccharide (Escherichia coli O111:B4, 5 μg/kg) intravenously in 1 h were consecutively treated by hemoperfusion with the new adsorber for 2 h. The changes of circulating endotoxin and certain cytokines and respiratory function were analyzed. The 72 h-survival rate was assessed eventually. EAE reached 46.3% (100 EU/ml in 80 ml calf serum) after 2 h-circulation. No deleterious effect was observed within the process. The plasma endotoxin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels were decreased during the hemoperfusion. Arterial oxygenation was also improved during and after the process. Furthermore, the survival time was significantly extended (>72 h vs. 47.5 h for median survival time). The novel product PVDF-Ser could adsorb endotoxin with high safety and efficacy. Early use of extracorporeal hemoperfusion with the new adsorber could reduce the levels of circulating endotoxin, IL-6, and TNF-α, besides improve respiratory function and consequent 72 h-survival rate of the septic pigs. Endotoxin removal strategy with blood purification using the new adsorber renders a potential promising future in sepsis therapy. PMID:21462381
Enteropathogenic Escherichia coli: foe or innocent bystander?
Hu, Jia; Torres, Alfredo G.
2015-01-01
Enteropathogenic Escherichia coli (EPEC) remain one the most important pathogens infecting children and they are one of the main causes of persistent diarrhea worldwide. Historically, typical EPEC (tEPEC), defined as those isolates with the attaching and effacement (A/E) genotype (eae+), which possess bfpA+ and lack the stx- genes are found strongly associated with diarrheal cases. However, occurrence of atypical EPEC (aEPEC; eae+ bfpA- stx-) in diarrheal and asymptomatic hosts has made investigators question the role of these pathogens in human disease. Current epidemiological data is helping answering the question whether EPEC is mainly a foe or an innocent bystander during infection. PMID:25726041
't Hart, Bert A; Jagessar, S Anwar; Kap, Yolanda S; Haanstra, Krista G; Philippens, Ingrid H C H M; Serguera, Che; Langermans, Jan; Vierboom, Michel
2014-09-01
The poor translational validity of autoimmune-mediated inflammatory disease (AIMID) models in inbred and specific pathogen-free (SPF) rodents underlies the high attrition of new treatments for the corresponding human disease. Experimental autoimmune encephalomyelitis (EAE) is a frequently used preclinical AIMID model. We discuss here how crucial information needed for the innovation of current preclinical models can be obtained from postclinical analysis of the nonhuman primate EAE model, highlighting the mechanistic reasons why some therapies fail and others succeed. These new insights can also help identify new targets for treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehl, D.R.
1990-01-01
The first surface sensitivity studies of positron-annihilation-induced Auger-electron spectroscopy (PAES) are presented. Preliminary measurements on polycrystalline Al with adsorbates indicate that PAES is more selective of the surface than conventional electron-induced Auger electron spectroscopy (EAES). PAES and EAES studies of well-defined overlayer-metal systems of Cu(110)+S and Cu(110)+Cs verify that PAES is selective of the top atomic layer. This surface selectivity is accounted for by theoretical calculations which indicate that the positron surface state is displaced away from the substrate by the over-layer, decreasing the annihilation rate of positrons with substrate core electrons.
NASA Astrophysics Data System (ADS)
Yuan, Jiaojiao; Li, Bing; Qin, Frank G. F.; Tu, Junling
2018-01-01
High purify oleuropein (81.04% OL) was hydrolyzed by hemicellulase and phenols was existed in the ethyl acetate extract of enzymatic hydrolysate (EAE). The results presented that there were hydroxytyrosol (HT), tyrosol, caffeic acid, 3,4-dihydroxybenzoic acid, 3,4-dihydroxy phenylacetic acid in EAE by HPLC, and HT content was 19.36%. Antioxidant activities (DPPH radical scavenging capacity) were all added as the samples concentration increased, and dose-effect relationships also existed. HT possessed the highest DPPH radical scavenging capacity, followed by Vc, and eugenol, OL, caffeic acid, 3,4-dihydroxy phenylacetic acid and 3,4-dihydroxybenzoic acid.
NASA Astrophysics Data System (ADS)
Rodríguez-Pascua, M. A.; Silva, P. G.; Perucha, M. A.; Giner-Robles, J. L.; Heras, C.; Bastida, A. B.; Carrasco, P.; Roquero, E.; Lario, J.; Bardaji, T.; Pérez-López, R.; Elez, J.
2016-10-01
The ancient Roman city of Complutum (Alcalá de Henares, Madrid), founded in the 1st century AD, was one of the most important cities of Hispania. The old Roman city was destroyed, abruptly abandoned, relocated close by and rebuilt during the late 4th century AD. Destruction of the city and its relocation has not yet been explained by archaeologists. In this paper, with our multidisciplinary approach, we identify and characterize earthquake archaeological effects (EAEs) affecting the archaeological site, the La Magdalena, an agricultural holding 4 km from the core of Complutum. The most important EAEs in the site are liquefactions (sand dikes and explosive sand-gravel craters) affecting Roman structures, such as water tanks (cisterns), houses and graves. Ground liquefaction generated significant ground cracks, explosive craters and folds in foundations of buildings. Several other Roman sites throughout the valley were also abandoned abruptly during the 4th century AD, in some cases with EAEs of similar origin. This suggests the occurrence of a 5.0-6.6 Mw seismic event in the zone, in accordance with the minimum empirical limit of seismically-induced liquefaction and the maximum surface rupture length of the Henares fault.
Hosein, Z Z; Gilbert, J J; Strejan, G H
1984-12-01
Hartley guinea pig central nervous system (CNS) myelin has been purified and fractionated into its protein and lipid components. Experimental allergic encephalomyelitis (EAE) was induced in juvenile strain 13 guinea pigs with both lyophilized and fresh 'wet' myelin. However, a larger dose of lyophilized myelin was required to induce chronic EAE. Total myelin lipids, galactocerebrosides, gangliosides, phospholipids or proteolipids were combined with a non-encephalitogenic dose of myelin basic protein (MBP) and injected in juvenile Hartley guinea pigs. No clinical or histological manifestations of disease were observed. Parameters of immune functions indicated that the total myelin lipids augmented cell-mediated immune responses as measured by in vitro lymphocyte transformation and by a significant decrease in the percentage of peripheral early T cells. Only the proteolipids elicited delayed hypersensitivity reactions. Animals that received the phospholipid-MBP combination showed no changes when compared to animals injected with MBP alone. The results suggest that although the myelin lipids did not act synergistically with a non-encephalitogenic dose of MBP to induce EAE, they induced immunological changes and potentiated the immune response to MBP.
Gonzalez, A G M; Cerqueira, A M F; Guth, B E C; Coutinho, C A; Liberal, M H T; Souza, R M; Andrade, J R C
2016-10-01
The occurrence of virulence markers, serotypes and invasive ability were investigated in Shiga toxin-producing Escherichia coli (STEC) isolated from faecal samples of healthy dairy cattle at Rio de Janeiro State, Brazil. From 1562 stx-positive faecal samples, 105 STEC strains were isolated by immuno-magnetic separation (IMS) or plating onto MacConkey agar (MC) followed by colony hybridisation. Fifty (47·6%) strains belonged to nine serotypes (O8:H19, O22:H8, O22:H16, O74:H42, O113:H21, O141:H21, O157:H7, O171:H2 and ONT:H21). The prevalent serotypes were O157:H7 (12·4%), O113:H21 (6·7%) and O8:H19 (5·7%). Virulence genes were identified by polymerase chain reaction (PCR). E-hlyA (77·1%) was the more prevalent virulence marker, followed by espP (64·8%), saa (39%), eae (24·8%) and astA (21·9%). All O157:H7 strains carried the γ (gamma) variant of the locus of enterocyte effacement (LEE) genes and the stx2c gene, while the stx1/stx2 genotype prevailed among the eae-negative strains. None of the eae-positive STEC produced the localized adherence (LA) phenotype in HEp-2 or Caco-2 cells. However, intimate attachment (judged by the fluorescent actin staining test) was detected in some eae-positive strains, both in HEp-2 (23·1%) and in Caco-2 cells (11·5%). Most strains (87·5%) showed 'peripheral association' (PA) adherence phenotype to undifferentiated Caco-2 cells. Twenty-five (92·6%) of 27 strains invaded Caco-2 cells. The highest average value of invasion (9·6%) was observed among the eae-negative bovine strains from serotypes described in human disease. Healthy dairy cattle is a reservoir of STEC carrying virulence genes and properties associated with human disease. Although reports of human disease associated with STEC are scarce in Brazil, the colonization of the animal reservoir by potentially pathogenic strains offers a significant risk to our population. © 2016 The Society for Applied Microbiology.
Stojić-Vukanić, Zorica; Pilipović, Ivan; Vujnović, Ivana; Nacka-Aleksić, Mirjana; Petrović, Raisa; Arsenović-Ranin, Nevena; Dimitrijević, Mirjana; Leposavić, Gordana
2016-01-01
Given that granulocyte macrophage colony-stimulating factor (GM-CSF) is identified as the key factor to endow auto-reactive Th cells with the potential to induce neuroinflammation in experimental autoimmune encephalomyelitis (EAE) models, the frequency and phenotype of GM-CSF-producing (GM-CSF+) Th cells in draining lymph nodes (dLNs) and spinal cord (SC) of Albino Oxford (AO) and Dark Agouti (DA) rats immunized for EAE were examined. The generation of neuroantigen-specific GM-CSF+ Th lymphocytes was impaired in dLNs of AO rats (relatively resistant to EAE induction) compared with their DA counterparts (susceptible to EAE) reflecting impaired CD4+ lymphocyte proliferation and less supportive of GM-CSF+ Th cell differentiation dLN cytokine microenvironment. Immunophenotyping of GM-CSF+ Th cells showed their phenotypic heterogeneity in both strains and revealed lower frequency of IL-17+IFN-γ+, IL-17+IFN-γ-, and IL-17-IFN-γ+ cells accompanied by higher frequency of IL-17-IFN-γ- cells among them in AO than in DA rats. Compared with DA, in AO rats was also found (i) slightly lower surface density of CCR2 (drives accumulation of highly pathogenic GM-CSF+IFN-γ+ Th17 cells in SC) on GM-CSF+IFN-γ+ Th17 lymphocytes from dLNs, and (ii) diminished CCL2 mRNA expression in SC tissue, suggesting their impaired migration into the SC. Moreover, dLN and SC cytokine environments in AO rats were shown to be less supportive of GM-CSF+IFN-γ+ Th17 cell differentiation (judging by lower expression of mRNAs for IL-1β, IL-6 and IL-23/p19). In accordance with the (i) lower frequency of GM-CSF+ Th cells in dLNs and SC of AO rats and their lower GM-CSF production, and (ii) impaired CCL2 expression in the SC tissue, the proportion of proinflammatory monocytes among peripheral blood cells and their progeny (CD45hi cells) among the SC CD11b+ cells were reduced in AO compared with DA rats. Collectively, the results indicate that the strain specificities in efficacy of several mechanisms controlling (auto)reactive CD4+ lymphocyte expansion/differentiation into the cells with pathogenic phenotype and migration of the latter to the SC contribute to AO rat resistance to EAE.
Jamal, Mostofa; Ito, Asuka; Tanaka, Naoko; Miki, Takanori; Takakura, Ayaka; Suzuki, Shingo; Ameno, Kiyoshi; Kinoshita, Hiroshi
2018-05-01
Disruption of apolipoprotein E (APOE) is responsible for age-dependent neurodegeneration and cognitive impairment. Elderly individuals are more sensitive than young individuals to the effects of ethanol (EtOH), particularly those affecting cognition. We investigated the role of APOE deficiency and EtOH exposure on age-dependent alterations in choline acetyltransferase (ChAT) and brain-derived neurotrophic factor (BDNF) mRNA and protein expression in the mouse hippocampus. Three-month-old (young) and 12-month-old (aged) ApoE-knockout (ApoE-KO) and wild-type (WT) mice were treated with saline or 2 g/kg EtOH, and the bilateral hippocampus was collected after 60 min for real-time PCR and western blotting analyses. ChAT (P < 0.01) and BDNF (P < 0.01) expression were significantly decreased in both young and aged saline- and EtOH-treated ApoE-KO mice versus young and aged saline- and EtOH-treated WT mice. Aged saline- and EtOH-treated ApoE-KO mice exhibited greater differences in ChAT and BDNF expression (P < 0.01) than young saline- and EtOH-treated ApoE-KO mice. Aged EtOH-treated WT mice also exhibited larger decreases in BDNF expression (P < 0.01)-but not in ChAT expression-than young EtOH-treated WT mice. EtOH decreased ChAT and BDNF expression in both young (P < 0.01) and aged (P < 0.01) ApoE-KO mice versus EtOH-free ApoE-KO mice of the same age. EtOH also decreased BDNF expression in aged (P < 0.01) WT mice versus EtOH-free aged WT mice. In summary, these results suggest that APOE deficiency and EtOH exposure cause age-dependent decreases in ChAT and BDNF in the hippocampus. Importantly, the decreases in ChAT and BDNF were greater in aged EtOH-treated mice, particularly those lacking APOE, raising the possibility that APOE-deficient individuals who consume alcohol may be at greater risk of memory deficit.
Yu, Qing; Sali, Arpana; Van der Meulen, Jack; Creeden, Brittany K; Gordish-Dressman, Heather; Rutkowski, Anne; Rayavarapu, Sree; Uaesoontrachoon, Kitipong; Huynh, Tony; Nagaraju, Kanneboyina; Spurney, Christopher F
2013-01-01
Congenital muscular dystrophy is a distinct group of diseases presenting with weakness in infancy or childhood and no current therapy. One form, MDC1A, is the result of laminin alpha-2 deficiency and results in significant weakness, respiratory insufficiency and early death. Modification of apoptosis is one potential pathway for therapy in these patients. dy(2J) mice were treated with vehicle, 0.1 mg/kg or 1 mg/kg of omigapil daily via oral gavage over 17.5 weeks. Untreated age matched BL6 mice were used as controls. Functional, behavioral and histological measurements were collected. dy(2J) mice treated with omigapil showed improved respiratory rates compared to vehicle treated dy(2J) mice (396 to 402 vs. 371 breaths per minute, p<0.03) and similar to control mice. There were no statistical differences in normalized forelimb grip strength between dy(2J) and controls at baseline or after 17.5 weeks and no significant differences seen among the dy(2J) treatment groups. At 30-33 weeks of age, dy(2J) mice treated with 0.1 mg/kg omigapil showed significantly more movement time and less rest time compared to vehicle treated. dy(2J) mice showed normal cardiac systolic function throughout the trial. dy(2J) mice had significantly lower hindlimb maximal (p<0.001) and specific force (p<0.002) compared to the control group at the end of the trial. There were no statistically significant differences in maximal or specific force among treatments. dy(2J) mice treated with 0.1 mg/kg/day omigapil showed decreased percent fibrosis in both gastrocnemius (p<0.03) and diaphragm (p<0.001) compared to vehicle, and in diaphragm (p<0.013) when compared to 1 mg/kg/day omigapil treated mice. Omigapil treated dy(2J) mice demonstrated decreased apoptosis. Omigapil therapy (0.1 mg/kg) improved respiratory rate and decreased skeletal and respiratory muscle fibrosis in dy(2J) mice. These results support a putative role for the use of omigapil in laminin deficient congenital muscular dystrophy patients.
Milesi-Hallé, Alessandra; Abdel-Rahman, Susan M.; Brown, Aliza; McCullough, Sandra S.; Letzig, Lynda; Hinson, Jack A.; James, Laura P.
2011-01-01
Standard assays to assess acetaminophen (APAP) toxicity in animal models include determination of ALT (alanine aminotransferase) levels and examination of histopathology of liver sections. However, these assays do not reflect the functional capacity of the injured liver. To examine a functional marker of liver injury, the pharmacokinetics of indocyanine green (ICG) were examined in mice treated with APAP, saline, or APAP followed by N-acetylcysteine (NAC) treatment. Male B6C3F1 mice were administered APAP (200 mg/kg IP) or saline. Two additional groups of mice received APAP followed by NAC at 1 or 4 h after APAP. At 24 h, mice were injected with ICG (10 mg/kg IV) and serial blood samples (0, 2, 10, 30, 50 and 75 min) were obtained for determination of serum ICG concentrations and ALT. Mouse livers were removed for measurement of APAP protein adducts and examination of histopathology. Toxicity (ALT values and histology) was significantly increased above saline treated mice in the APAP and APAP/NAC 4 h mice. Mice treated with APAP/NAC 1 h had complete protection from toxicity. APAP protein adducts were increased in all APAP treated groups and were highest in the APAP/NAC 1 h group. Pharmacokinetic analysis of ICG demonstrated that the total body clearance (ClT) of ICG was significantly decreased and the mean residence time (MRT) was significantly increased in the APAP mice compared to the saline mice. Mice treated with NAC at 1 h had ClT and MRT values similar to those of saline treated mice. Conversely, mice that received NAC at 4 h had a similar ICG pharmacokinetic profile to that of the APAP only mice. Prompt treatment with NAC prevented loss of functional activity while late treatment with NAC offered no improvement in ICG clearance at 24 h. ICG clearance in mice with APAP toxicity can be utilized in future studies testing the effects of novel treatments for APAP toxicity. PMID:21145883
Antiviral Effect of Pyran Against Systemic Infection of Mice with Herpes Simplex Virus Type 2
McCord, Ronald S.; Breinig, Mary K.; Morahan, Page S.
1976-01-01
The immunomodulator pyran markedly protected 5-week-old mice from lethal intravenous infection with herpes simplex virus type 2. The 50% lethal dose was increased almost 100-fold in pyran-treated mice as compared with controls. Although the protection was not as marked in older mice (10 and 16 weeks old), there was a significant increase in mean survival time. When the pathogenesis of herpesvirus disease was monitored in control and drug-treated mice, the effect of pyran was most evident in the spinal cord, where virus was recovered from 20 of 25 control mice and from only 6 of 25 pyran-treated mice. There was also a significant reduction in the titer of virus present, and virus appeared later in the spinal cord of pyran-treated mice than in control mice. The protective effect of pyran was observed only when the drug was administered 24 h before viral challenge, was seen after both intraperitoneal and intravenous injection, and was not due to direct inactivation of the virus. PMID:185945
Genistein treatment increases bone mass in obese, hyperglycemic mice.
Michelin, Richard M; Al-Nakkash, Layla; Broderick, Tom L; Plochocki, Jeffrey H
2016-01-01
Obesity and type 2 diabetes mellitus are associated with elevated risk of limb bone fracture. Incidences of these conditions are on the rise worldwide. Genistein, a phytoestrogen, has been shown by several studies to demonstrate bone-protective properties and may improve bone health in obese type 2 diabetics. In this study, we test the effects of genistein treatment on limb bone and growth plate cartilage histomorphometry in obese, hyperglycemic ob/ob mice. Six-week-old ob/ob mice were divided into control and genistein-treated groups. Genistein-treated mice were fed a diet containing 600 mg genistein/kg for a period of 4 weeks. Cross-sectional geometric and histomorphometric analyses were conducted on tibias. Genistein-treated mice remained obese and hyperglycemic. However, histomorphometric comparisons show that genistein-treated mice have greater tibial midshaft diameters and ratios of cortical bone to total tissue area than the controls. Genistein-treated mice also exhibit decreased growth plate thickness of the proximal tibia. Our results indicate that genistein treatment affects bone of the tibial midshaft in the ob/ob mouse, independent of improvements in the hyperglycemic state and body weight.
Patton, John B; Bonne-Année, Sandra; Deckman, Jessica; Hess, Jessica A; Torigian, April; Nolan, Thomas J; Wang, Zhu; Kliewer, Steven A; Durham, Amy C; Lee, James J; Eberhard, Mark L; Mangelsdorf, David J; Lok, James B; Abraham, David
2018-01-02
Strongyloides stercoralis hyperinfection causes high mortality rates in humans, and, while hyperinfection can be induced by immunosuppressive glucocorticoids, the pathogenesis remains unknown. Since immunocompetent mice are resistant to infection with S. stercoralis , we hypothesized that NSG mice, which have a reduced innate immune response and lack adaptive immunity, would be susceptible to the infection and develop hyperinfection. Interestingly, despite the presence of large numbers of adult and first-stage larvae in S. stercoralis -infected NSG mice, no hyperinfection was observed even when the mice were treated with a monoclonal antibody to eliminate residual granulocyte activity. NSG mice were then infected with third-stage larvae and treated for 6 wk with methylprednisolone acetate (MPA), a synthetic glucocorticoid. MPA treatment of infected mice resulted in 50% mortality and caused a significant >10-fold increase in the number of parasitic female worms compared with infected untreated mice. In addition, autoinfective third-stage larvae, which initiate hyperinfection, were found in high numbers in MPA-treated, but not untreated, mice. Remarkably, treatment with Δ7-dafachronic acid, an agonist of the parasite nuclear receptor Ss -DAF-12, significantly reduced the worm burden in MPA-treated mice undergoing hyperinfection with S. stercoralis Overall, this study provides a useful mouse model for S. stercoralis autoinfection and suggests a therapeutic strategy for treating lethal hyperinfection.
Tian, Bole; Hao, Jianqiang; Zhang, Yu; Tian, Lei; Yi, Huimin; O'Brien, Timothy D; Sutherland, David E R; Hering, Bernhard J; Guo, Zhiguang
2009-01-27
Immunotherapy with Complete Freund's adjuvant (CFA) is effective in ameliorating autoimmunity in diabetic nonobese diabetic (NOD) mice. We investigated whether CFA treatment up-regulates CD4+CD25+Foxp3+ regulatory T cells and increases transforming growth factor (TGF)-beta1 production in diabetic NOD mice. New-onset diabetic NOD mice were treated with CFA and exendin-4, a potent analog of glucagon-like peptide-1. Reversal of diabetes was determined by monitoring blood glucose level. Ameliorating autoimmunity through immunoregulation was assessed by adoptive transfer. Regulatory T cells in the peripheral blood, spleen, thymus, and pancreatic nodes were measured. TGF-beta1 in plasma and the insulin content in the pancreas were also measured. Immunostainings for insulin and BrdU were performed. New-onset diabetes could be reversed in 38% of NOD mice treated with CFA alone and in 86% of NOD mice treated with both CFA and exendin-4. Diabetes adoptive transfer by splenocytes from CFA-treated NOD mice was delayed. The percentage of CD4+CD25+Foxp3+ regulatory T cells in the pancreatic lymph nodes of CFA-treated NOD mice was significantly increased at 1, 5, and 15 to 17 weeks after treatment. TGF-beta1 in the plasma of CFA-treated NOD mice was also significantly increased. Combining CFA with exendin-4 treatment significantly increased the insulin content and the numbers of insulin and BrdU double-labeled beta cells in the islets. Our results demonstrated that CFA treatment ameliorates autoimmunity in diabetic NOD mice by up-regulating CD4=CD25+Foxp3+ regulatory T cells and increasing TGF-beta1 production. Exendin-4 enhanced the effect of CFA on reversing diabetes in NOD mice by stimulating beta-cell replication.
Khalaj, Anna J; Hasselmann, Jonathan; Augello, Catherine; Moore, Spencer; Tiwari-Woodruff, Seema K
2016-06-01
Demyelination in multiple sclerosis (MS) leads to significant, progressive axonal and neuronal degeneration. Currently existing immunosuppressive and immunomodulatory therapies alleviate MS symptoms and slow, but fail to prevent or reverse, disease progression. Restoration of damaged myelin sheath by replenishment of mature oligodendrocytes (OLs) should not only restore saltatory axon conduction, but also provide a major boost to axon survival. Our previous work has shown that therapeutic treatment with the modestly selective generic estrogen receptor (ER) β agonist diarylpropionitrile (DPN) confers functional neuroprotection in a chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS by stimulating endogenous remyelination. Recently, we found that the more potent, selective ERβ agonist indazole-chloride (Ind-Cl) improves clinical disease and motor performance. Importantly, electrophysiological measures revealed improved corpus callosal conduction and reduced axon refractoriness. This Ind-Cl treatment-induced functional remyelination was attributable to increased OL progenitor cell (OPC) and mature OL numbers. At the intracellular signaling level, transition of early to late OPCs requires ERK1/2 signaling, and transition of immature to mature OLs requires mTOR signaling; thus, the PI3K/Akt/mTOR pathway plays a major role in the late stages of OL differentiation and myelination. Indeed, therapeutic treatment of EAE mice with various ERβ agonists results in increased brain-derived neurotrophic factor (BDNF) and phosphorylated (p) Akt and p-mTOR levels. It is notable that while DPN's neuroprotective effects occur in the presence of peripheral and central inflammation, Ind-Cl is directly neuroprotective, as demonstrated by remyelination effects in the cuprizone-induced demyelination model, as well as immunomodulatory. Elucidating the mechanisms by which ER agonists and other directly remyelinating agents modulate endogenous OPC and OL regulatory signaling is critical to the development of effective remyelinating drugs. The discovery of signaling targets to induce functional remyelination will valuably contribute to the treatment of demyelinating neurological diseases, including MS, stroke, and traumatic brain and spinal cord injury. Published by Elsevier Ltd.
Khalaj, Anna J.; Hasselmann, Jonathan; Augello, Catherine; Moore, Spencer; Tiwari-Woodruff, Seema K.
2017-01-01
Demyelination in multiple sclerosis (MS) leads to significant, progressive axonal and neuronal degeneration. Currently existing immunosuppressive and immunomodulatory therapies alleviate MS symptoms and slow, but fail to prevent or reverse, disease progression. Restoration of damaged myelin sheath by replenishment of mature oligodendrocytes (OLs) should not only restore saltatory axon conduction, but also provide a major boost to axon survival. Our previous work has shown that therapeutic treatment with the modestly selective generic estrogen receptor (ER) β agonist diarylpropionitrile (DPN) confers functional neuroprotection in a chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS by stimulating endogenous myelination. Recently, we found that the more potent, selective ERβ agonist indazole-chloride (Ind-Cl) improves clinical disease and motor performance. Importantly, electrophysiological measures revealed improved corpus callosal conduction and reduced axon refractoriness. This Ind-Cl treatment-induced functional remyelination was attributable to increased OL progenitor cell (OPC) and mature OL numbers. At the intracellular signaling level, transition of early to late OPCs requires Erk1/2 signaling, and transition of immature to mature OLs requires mTOR signaling; thus, the PI3K/Akt/mTOR pathway plays a major role in the late stages of OL differentiation and myelination. Indeed, therapeutic treatment of EAE mice with various ERβ agonists results in increased brain-derived neurotrophic factor (BDNF) and phosphorylated (p) Akt and p-mTOR levels. It is notable that while DPN’s neuroprotective effects occur in the presence of peripheral and central inflammation, Ind-Cl is directly neuroprotective, as demonstrated by remyelination effects in the cuprizone-induced demyelination model, as well as anti-inflammatory. Elucidating the mechanisms by which ER agonists and other directly remyelinating agents modulate endogenous OPC and OL regulatory signaling is critical to the development of effective remyelinating drugs. The discovery of signaling targets to induce functional remyelination will valuably contribute to the treatment of demyelinating neurological diseases, including MS, stroke, and traumatic brain and spinal cord injury. PMID:26776441
Chiang, Chia-Wen; Wang, Yong; Sun, Peng; Lin, Tsen-Hsuan; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei
2014-01-01
The effect of extra-fiber structural and pathological components confounding diffusion tensor imaging (DTI) computation was quantitatively investigated using data generated by both Monte-Carlo simulations and tissue phantoms. Increased extent of vasogenic edema, by addition of various amount of gel to fixed normal mouse trigeminal nerves or by increasing non-restricted isotropic diffusion tensor components in Monte-Carlo simulations, significantly decreased fractional anisotropy (FA), increased radial diffusivity, while less significantly increased axial diffusivity derived by DTI. Increased cellularity, mimicked by graded increase of the restricted isotropic diffusion tensor component in Monte-Carlo simulations, significantly decreased FA and axial diffusivity with limited impact on radial diffusivity derived by DTI. The MC simulation and tissue phantom data were also analyzed by the recently developed diffusion basis spectrum imaging (DBSI) to simultaneously distinguish and quantify the axon/myelin integrity and extra-fiber diffusion components. Results showed that increased cellularity or vasogenic edema did not affect the DBSI-derived fiber FA, axial or radial diffusivity. Importantly, the extent of extra-fiber cellularity and edema estimated by DBSI correlated with experimentally added gel and Monte-Carlo simulations. We also examined the feasibility of applying 25-direction diffusion encoding scheme for DBSI analysis on coherent white matter tracts. Results from both phantom experiments and simulations suggested that the 25-direction diffusion scheme provided comparable DBSI estimation of both fiber diffusion parameters and extra-fiber cellularity/edema extent as those by 99-direction scheme. An in vivo 25-direction DBSI analysis was performed on experimental autoimmune encephalomyelitis (EAE, an animal model of human multiple sclerosis) optic nerve as an example to examine the validity of derived DBSI parameters with post-imaging immunohistochemistry verification. Results support that in vivo DBSI using 25-direction diffusion scheme correctly reflect the underlying axonal injury, demyelination, and inflammation of optic nerves in EAE mice. PMID:25017446
Apostolopoulos, Vasso; Deraos, George; Matsoukas, Minos-Timotheos; Day, Stephanie; Stojanovska, Lily; Tselios, Theodore; Androutsou, Maria-Eleni; Matsoukas, John
2017-01-15
Amino acid mutations to agonist peptide epitopes of myelin proteins have been used to modulate immune responses and experimental autoimmune encephalomyelitis (EAE, animal model of multiple sclerosis). Such amino acid alteration are termed, altered peptide ligands (APL). We have shown that the agonist myelin basic protein (MBP) 87-99 epitope (MBP 87-99 ) with crucial T cell receptor (TCR) substitutions at positions 91 and 96 (K 91 ,P 96 (TCR contact residues) to R 91 ,A 96 ; [R 91 ,A 96 ]MBP 87-99 ) results in altered T cell responses and inhibits EAE symptoms. In this study, the role of citrullination of arginines in [R 91 ,A 96 ]MBP 87-99 peptide analog was determined using in vivo experiments in combination with computational studies. The immunogenicity of linear [Cit 91 ,A 96 ,Cit 97 ]MBP 87-99 and its cyclic analog - cyclo(87-99)[Cit 91 ,A 96 ,Cit 97 ]MBP 87-99 when conjugated to the carrier mannan (polysaccharide) were studied in SJL/J mice. It was found that mannosylated cyclo(87-99)[Cit 91 ,A 96 ,Cit 97 ]MBP 87-99 peptide induced strong T cell proliferative responses and IFN-gamma cytokine secretion compared with the linear one. Moreover, the interaction of linear and cyclic peptide analogs with the major histocompatibility complex (MHC II, H2-IA s ) and TCR was analyzed using molecular dynamics simulations at the receptor level, in order to gain a better understanding of the molecular recognition mechanisms that underly the different immunological profiles of citrullinated peptides compared to its agonist native counterpart MBP 87-99 epitope. The results demonstrate that the citrullination of arginine in combination with the backbone conformation of mutated linear and cyclic analogs are significant elements for the immune response triggering the induction of pro-inflammatory cytokines. Copyright © 2016 Elsevier Ltd. All rights reserved.
Probiotics Protect Mice from Ovariectomy-Induced Cortical Bone Loss
Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H.; Farman, Helen H.; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara
2014-01-01
The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice. PMID:24637895
Probiotics protect mice from ovariectomy-induced cortical bone loss.
Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H; Farman, Helen H; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara
2014-01-01
The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.
Bertrand, Chantal; Pradère, Jean-Philippe; Geoffre, Nancy; Deleruyelle, Simon; Masri, Bernard; Personnaz, Jean; Le Gonidec, Sophie; Batut, Aurélie; Louche, Katie; Moro, Cédric; Valet, Philippe; Castan-Laurell, Isabelle
2018-04-01
Apelin treatment has been shown to improve insulin sensitivity in insulin resistant mice by acting in skeletal muscles. However, the effects of systemic apelin on the hepatic energy metabolism have not been addressed. We thus aimed to determine the effect of chronic apelin treatment on the hepatic lipid metabolism in insulin resistant mice. The apelin receptor (APJ) expression was also studied in this context since its regulation has only been reported in severe liver pathologies. Mice were fed a high-fat diet (HFD) in order to become obese and insulin resistant compared to chow fed mice (CD). HFD mice then received a daily intraperitoneal injection of apelin (0.1 µmol/kg) or PBS during 28 days. Triglycerides content and the expression of different lipogenesis-related genes were significantly decreased in the liver of HFD apelin-treated compared to PBS-treated mice. Moreover, at this stage of insulin resistance, the beta-oxidation was increased in liver homogenates of HFD PBS-treated mice compared to CD mice and reduced in HFD apelin-treated mice. Finally, APJ expression was not up-regulated in the liver of insulin resistant mice. In isolated hepatocytes from chow and HFD fed mice, apelin did not induce significant effect. Altogether, these results suggest that systemic apelin treatment decreases steatosis in insulin resistant mice without directly targeting hepatocytes.
Zhang, Xuelei; Li, Yan
2018-01-01
Ulva prolifera is the major causative species in the green tide, a serious marine ecological disaster, which bloomed in the Yellow Sea and the Bohai Sea of China. However, it is also a popular edible seaweed and its extracts exerts anti-inflammatory and antioxidant effects. The present study investigated the effects of ethanol extract of U. prolifera (EUP) on insulin sensitivity, inflammatory response, and oxidative stress in high-fat-diet- (HFD-) treated mice. HFD-treated mice obtained drinking water containing 2% or 5% EUP. The results showed that EUP supplementation significantly prevented HFD-induced weight gain of liver and fat. EUP supplementation also improved glucose tolerance and insulin resistance in HFD-treated mice. Moreover, EUP supplementation prevented the increased expression of genes involved in triglyceride synthesis and proinflammatory genes and the decreased expression of genes involved in fatty acid oxidation in liver of HFD-treated mice. Furthermore, EUP supplementation decreased reactive oxygen species content, while increasing glutathione content and glutathione peroxidase activity in HFD-treated mice. In conclusion, our results showed that EUP improved insulin resistance and had antilipid accumulation and anti-inflammatory and antioxidative effects on HFD-treated mice. We suggested that U. prolifera extracts may be regarded as potential candidate for the prevention of nonalcoholic fatty liver disease. PMID:29511669
González, Betina; Raineri, Mariana; Cadet, Jean Lud; García-Rill, Edgar; Urbano, Francisco J; Bisagno, Veronica
2014-12-01
Chronic use of methamphetamine (METH) leads to long-lasting cognitive dysfunction in humans and in animal models. Modafinil is a wake-promoting compound approved for the treatment of sleeping disorders. It is also prescribed off label to treat METH dependence. In the present study, we investigated whether modafinil could improve cognitive deficits induced by sub-chronic METH treatment in mice by measuring visual retention in a Novel Object Recognition (NOR) task. After sub-chronic METH treatment (1 mg/kg, once a day for 7 days), mice performed the NOR task, which consisted of habituation to the object recognition arena (5 min a day, 3 consecutive days), training session (2 equal objects, 10 min, day 4), and a retention session (1 novel object, 5 min, day 5). One hour before the training session, mice were given a single dose of modafinil (30 or 90 mg/kg). METH-treated mice showed impairments in visual memory retention, evidenced by equal preference of familiar and novel objects during the retention session. The lower dose of modafinil (30 mg/kg) had no effect on visual retention scores in METH-treated mice, while the higher dose (90 mg/kg) rescued visual memory retention to control values. We also measured extracellular signal-regulated kinase (ERK) phosphorylation in medial prefrontal cortex (mPFC), hippocampus, and nucleus accumbens (NAc) of METH- and vehicle-treated mice that received modafinil 1 h before exposure to novel objects in the training session, compared to mice placed in the arena without objects. Elevated ERK phosphorylation was found in the mPFC of vehicle-treated mice, but not in METH-treated mice, exposed to objects. The lower dose of modafinil had no effect on ERK phosphorylation in METH-treated mice, while 90 mg/kg modafinil treatment restored the ERK phosphorylation induced by novelty in METH-treated mice to values comparable to controls. We found neither a novelty nor treatment effect on ERK phosphorylation in hippocampus or NAc of vehicle- and METH-treated mice receiving acute 90 mg/kg modafinil treatment. Our results showed a palliative role of modafinil against METH-induced visual cognitive impairments, possibly by normalizing ERK signaling pathways in mPFC. Modafinil may be a valuable pharmacological tool for the treatment of cognitive deficits observed in human METH abusers as well as in other neuropsychiatric conditions. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.
Suppression of streptozotocin-induced type-1 diabetes in mice by radon inhalation.
Nishiyama, Y; Kataoka, T; Teraoka, J; Sakoda, A; Tanaka, H; Ishimori, Y; Mitsunobu, F; Taguchi, T; Yamaoka, K
2013-01-01
We examined the protective effect of radon inhalation on streptozotocin (STZ)-induced type-1 diabetes in mice. Mice inhaled radon at concentrations of 1000, 2500, and 5500 Bq/m3 for 24 hours before STZ administration. STZ administration induced characteristics of type-1 diabetes such as hyperglycemia and hypoinsulinemia; however, radon inhalation at doses of 1000 and 5500 Bq/m3 significantly suppressed the elevation of blood glucose in diabetic mice. Serum insulin was significantly higher in mice pre-treated with radon at a dose of 1000 Bq/m3 than in mice treated with a sham. In addition, superoxide dismutase activities and total glutathione contents were significantly higher and lipid peroxide was significantly lower in mice pre-treated with radon at doses of 1000 and 5500 Bq/m3 than in mice treated with a sham. These results were consistent with the result that radon inhalation at 1000 and 5500 Bq/m3 suppressed hyperglycemia. These findings suggested that radon inhalation suppressed STZ-induced type-1 diabetes through the enhancement of antioxidative functions in the pancreas.
Ung, Roth-Visal; Rouleau, Pascal; Guertin, Pierre A
2012-05-01
Chronic spinal cord injury may be complicated by weight loss, muscle atrophy, and bone loss. The authors identified a combination pharmacotherapy using buspirone, carbidopa, and L-DOPA (BCD) that elicits bouts of locomotor-like movements in spinal cord-transected (Tx) mice. They then evaluated the effects of 8 weeks of treadmill training in Tx mice that received BCD or BCD + clenbuterol, a monoaminergic agent with anabolic properties, on locomotor function, muscle atrophy, adipose tissue loss, and bone density measures. Induced locomotor movement, adipose tissue, skeletal muscle, and femoral bone properties were compared in unoperated control mice, operated controls (untreated, untrained Tx mice), and 2 groups of treated, trained Tx mice (Tx + BCD, Tx + BCD + clenbuterol) that also received training. BCD- and BCD + clenbuterol-treated mice showed comparable levels of locomotor movements that significantly improved over time. Soleus muscle mass and soleus and extensor digitorum longus cross-sectional area significantly increased in both groups of BCD-treated mice, with greater effects in BCD + clenbuterol-treated animals. Fiber type conversion, adipose tissues, bone mineral density, and content were reduced in all Tx groups compared with unoperated control mice. These findings suggest that locomotor movement and muscle properties can be restored to near-normal levels after several weeks of BCD treatment, regular training, and clenbuterol in completely paraplegic animals.
Keeler, Allison M; Conlon, Thomas; Walter, Glenn; Zeng, Huadong; Shaffer, Scott A; Dungtao, Fu; Erger, Kirsten; Cossette, Travis; Tang, Qiushi; Mueller, Christian; Flotte, Terence R
2012-06-01
Very long-chain acyl-coA dehydrogenase (VLCAD) is the rate-limiting step in mitochondrial fatty acid oxidation. VLCAD-deficient mice and patients clinical symptoms stem from not only an energy deficiency but also long-chain metabolite accumulations. VLCAD-deficient mice were treated systemically with 1 × 10(12) vector genomes of recombinant adeno-associated virus 9 (rAAV9)-VLCAD. Biochemical correction was observed in vector-treated mice beginning 2 weeks postinjection, as characterized by a significant drop in long-chain fatty acyl accumulates in whole blood after an overnight fast. Changes persisted through the termination point around 20 weeks postinjection. Magnetic resonance spectroscopy (MRS) and tandem mass spectrometry (MS/MS) revealed normalization of intramuscular lipids in treated animals. Correction was not observed in liver tissue extracts, but cardiac muscle extracts showed significant reduction of long-chain metabolites. Disease-specific phenotypes were characterized, including thermoregulation and maintenance of euglycemia after a fasting cold challenge. Internal body temperatures of untreated VLCAD(-/-) mice dropped below 20 °C and the mice became lethargic, requiring euthanasia. In contrast, all rAAV9-treated VLCAD(-/-) mice and the wild-type controls maintained body temperatures. rAAV9-treated VLCAD(-/-) mice maintained euglycemia, whereas untreated VLCAD(-/-) mice suffered hypoglycemia following a fasting cold challenge. These promising results suggest rAAV9 gene therapy as a potential treatment for VLCAD deficiency in humans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brook, I.; Elliott, T.B.; Ledney, G.D.
Exposure to whole-body irradiation is associated with fatal gram-negative sepsis. The effect of oral therapy with three quinolones, pefloxacin, ciprofloxacin, and ofloxacin, for orally acquired Klebsiella pneumoniae infection was tested in B6D2F1 mice exposed to 8.0 Gy whole-body irradiation from bilaterally positioned 60Co sources. A dose of 10(8) organisms was given orally 2 days after irradiation, and therapy was started 1 day later. Quinolones reduced colonization of the ileum with K. pneumoniae: 16 of 28 (57%) untreated mice harbored the organisms, compared to only 12 of 90 (13%) mice treated with quinolones (P less than 0.005). K. pneumoniae was isolatedmore » from the livers of 6 of 28 untreated mice, compared to only 1 of 90 treated mice (P less than 0.001). Only 5 of 20 (25%) untreated mice survived for at least 30 days compared with 17 of 20 (85%) mice treated with ofloxacin, 15 of 20 (75%) mice treated with pefloxacin, and 14 of 20 (70%) treated with ciprofloxacin (P less than 0.05). These data illustrate the efficacy of quinolones for oral therapy of orally acquired K. pneumoniae infection in irradiated hosts.« less
Protective effects of mito-TEMPO against doxorubicin cardiotoxicity in mice.
Rocha, Viviane Costa Junqueira; França, Luciana Souza de Aragão; de Araújo, Cintia Figueiredo; Ng, Ayling Martins; de Andrade, Candace Machado; Andrade, André Cronemberger; Santos, Emanuelle de Souza; Borges-Silva, Mariana da Cruz; Macambira, Simone Garcia; Noronha-Dutra, Alberto Augusto; Pontes-de-Carvalho, Lain Carlos
2016-03-01
Doxorubicin (DOX) is a chemotherapeutic that is widely used for the treatment of many human tumors. However, the development of cardiotoxicity has limited its use. The aim of the present study was to evaluate the possible efficacy of mito-TEMPO (mito-T) as a protective agent against DOX-induced cardiotoxicity in mice. C57BL/6 mice were treated twice with mito-T at low (5 mg/kg body weight) or high (20 mg/kg body weight) dose and once with DOX (24 mg/kg body weight) or saline (0.1 mL/20 g body weight) by means of intraperitoneal injections. The levels of malondialdehyde (MLDA), a marker of lipid peroxidation, and serum levels of creatine kinase were evaluated 48 h after the injection of DOX. DOX induced lipid peroxidation in heart mitochondria (p < 0.001), and DOX-treated mice receiving mito-T at low dose had levels of MLDA significantly lower than the mice that received only DOX (p < 0.01). Furthermore, administration of mito-T alone did not cause any significant changes from control values. Additionally, DOX-treated mice treated with mito-T at high dose showed decrease in serum levels of total CK compared to mice treated with DOX alone (p < 0.05). Our results indicate that mito-T protects mice against DOX-induced cardiotoxicity.
Martins, Yuri C; Freeman, Brandi D; Akide Ndunge, Oscar B; Weiss, Louis M; Tanowitz, Herbert B; Desruisseaux, Mahalia S
2016-11-01
Plasmodium berghei ANKA infection of C57BL/6 mice is a widely used model of experimental cerebral malaria (ECM). By contrast, the nonneurotropic P. berghei NK65 (PbN) causes severe malarial disease in C57BL/6 mice but does not cause ECM. Previous studies suggest that endothelin-1 (ET-1) contributes to the pathogenesis of ECM. In this study, we characterize the role of ET-1 on ECM vascular dysfunction. Mice infected with 10 6 PbN-parasitized red blood cells were treated with either ET-1 or saline from 2 to 8 days postinfection (dpi). Plasmodium berghei ANKA-infected mice served as the positive control. ET-1-treated PbN-infected mice exhibited neurological signs, hypothermia, and behavioral alterations characteristic of ECM, dying 4 to 8 dpi. Parasitemia was not affected by ET-1 treatment. Saline-treated PbN-infected mice did not display ECM, surviving until 12 dpi. ET-1-treated PbN-infected mice displayed leukocyte adhesion to the vascular endothelia and petechial hemorrhages throughout the brain at 6 dpi. Intravital microscopic images demonstrated significant brain arteriolar vessel constriction, decreased functional capillary density, and increased blood-brain barrier permeability. These alterations were not present in either ET-1-treated uninfected or saline-treated PbN-infected mice. In summary, ET-1 treatment of PbN-infected mice induced an ECM-like syndrome, causing brain vasoconstriction, adherence of activated leukocytes in the cerebral microvasculature, and blood-brain barrier leakage, indicating that ET-1 is involved in the genesis of brain microvascular alterations that are the hallmark of ECM. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Horiguchi, Hyogo; Oguma, Etsuko
2016-12-01
Acute exposure to cadmium (Cd), a toxic heavy metal, causes systemic inflammation characterized by neutrophilia. To elucidate the mechanism of neutrophilia induced by Cd, we investigated the induction of granulocyte colony-stimulating factor (G-CSF), which regulates neutrophil production, in mice with acute Cd toxicity, and compared it with mice injected with lipopolysaccharide (LPS) as an inducer of general inflammatory responses. We injected BALB/c mice with Cd at 2.5 mg/kg i.p. or LPS at 0.5 mg/kg i.p. and sampled the peripheral blood and organs at time points up to 24 h. In Cd-treated mice, the peripheral neutrophil count increased steadily up to 24 h, whereas LPS-treated mice showed a more rapid increase with a peak at 12 h. The serum G-CSF level increased gradually to reach a plateau at 12-18 h in Cd-treated mice, but LPS-treated mice showed a marked increase, reaching a peak at 2-3 h. A gradual elevation of G-CSF mRNA expression up to 24 h was detected by real-time PCR in the livers of Cd-treated mice, but in LPS-treated mice its highest expression was observed in the liver with a rapid increase at 2 h. By in situ hybridization using G-CSF RNA probes, hepatic Kupffer cells were identified as G-CSF-producing cells in the liver. These results indicated that Cd has a characteristic effect of delayed induction of G-CSF in the liver, causing systemic inflammation accompanied by prolonged neutrophilia.
Pivotal role of oxidative stress in tumor metastasis under diabetic conditions in mice.
Ikemura, Mai; Nishikawa, Makiya; Kusamori, Kosuke; Fukuoka, Miho; Yamashita, Fumiyoshi; Hashida, Mitsuru
2013-09-10
Diabetic patients are reported to have a high incidence and mortality of cancer, but little is known about the linkage. In this study, we investigated whether high oxidative stress is involved in the acceleration of tumor metastasis in diabetic mice. Murine melanoma B16-BL6 cells stably labeled with firefly luciferase (B16-BL6/Luc) were inoculated into the tail vein of streptozotocin (STZ)-treated or untreated mice. A luciferase assay demonstrated that tumor cells were present largely in the lung of untreated mice, whereas large numbers of tumor cells were detected in both the lung and liver of STZ-treated mice. Repeated injections of polyethylene glycol-conjugated catalase (PEG-catalase), a long-circulating derivative, reduced the elevated fasting blood glucose levels and plasma lipoperoxide levels of STZ-treated mice, but had no significant effects on these parameters in untreated mice. In addition, the injections significantly reduced the number of tumor cells in the lung and liver in both untreated and STZ-treated mice. Culture of B16-BL6/Luc cells in medium containing over 45 mg/dl glucose hardly affected the proliferation of the cells, whereas the addition of plasma of STZ-treated mice to the medium significantly increased the number of cells. Plasma samples of STZ-treated mice receiving PEG-catalase exhibited no such effect on proliferation. These findings indicate that a hyperglycemia-induced increase in oxidative stress is involved in the acceleration of tumor metastasis, and the removal of systemic hydrogen peroxide by PEG-catalase can inhibit the progression of diabetic conditions and tumor metastasis in diabetes. Copyright © 2013 Elsevier B.V. All rights reserved.
BDNF-Deficient Mice Show Reduced Psychosis-Related Behaviors Following Chronic Methamphetamine.
Manning, Elizabeth E; Halberstadt, Adam L; van den Buuse, Maarten
2016-04-01
One of the most devastating consequences of methamphetamine abuse is increased risk of psychosis. Brain-derived neurotrophic factor has been implicated in both psychosis and neuronal responses to methamphetamine. We therefore examined persistent psychosis-like behavioral effects of methamphetamine in brain-derived neurotrophic factor heterozygous mice. Mice were chronically treated with methamphetamine from 6 to 9 weeks of age, and locomotor hyperactivity to an acute D-amphetamine challenge was tested in photocell cages after a 2-week withdrawal period. Methamphetamine-treated wild-type mice, but not brain-derived neurotrophic factor heterozygous mice, showed locomotor sensitization to acute 3mg/kg D-amphetamine. Qualitative analysis of exploration revealed tolerance to D-amphetamine effects on entropy in methamphetamine-treated brain-derived neurotrophic factor heterozygous mice, but not wild-type mice. Chronic methamphetamine exposure induces contrasting profiles of behavioral changes in wild-type and brain-derived neurotrophic factor heterozygous mice, with attenuation of behaviors relevant to psychosis in methamphetamine-treated brain-derived neurotrophic factor heterozygous mice. This suggests that brain-derived neurotrophic factor signalling changes may contribute to development of psychosis in methamphetamine users. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Scroggins, Sabrina M.; Olivier, Alicia K.; Meyerholz, David K.; Schlueter, Annette J.
2013-01-01
Despite improvements in human leukocyte antigen matching and pharmacologic prophylaxis, acute graft-versus-host disease (GVHD) is often a fatal complication following hematopoietic stem cell transplant (HSCT). Older HSCT recipients experience significantly increased morbidity and mortality compared to young recipients. Prophylaxis with syngeneic regulatory dendritic cells (DCreg) in young bone marrow transplanted (BMT) mice has been shown to decrease GVHD-associated mortality. To evaluate this approach in older BMT recipients, young (3–4 months) and older (14–18 months) DCreg were generated using GM-CSF, IL-10, and TGFβ. Analysis of young versus older DCreg following culture revealed no differences in phenotype. The efficacy of DCreg treatment in older BMT mice was evaluated in a BALB/c→C57Bl/6 model of GVHD; on day 2 post-BMT (d +2), mice received syngeneic, age-matched DCreg. Although older DCreg-treated BMT mice showed decreased morbidity and mortality compared to untreated BMT mice (all of which died), there was a small but significant decrease in the survival of older DCreg-treated BMT mice (75% survival) compared to young DCreg-treated BMT mice (90% survival). To investigate differences between dendritic cells (DC) in young and older DCreg-treated BMT mice that may play a role in DCreg function in vivo, DC phenotypes were assessed following DCreg adoptive transfer. Transferred DCreg identified in older DCreg-treated BMT mice at d +3 showed significantly lower expression of PD-L1 and PIR B compared to DCreg from young DCreg-treated BMT mice. In addition, donor DC identified in d +21 DCreg-treated BMT mice displayed increased inhibitory molecule and decreased co-stimulatory molecule expression compared to d +3, suggesting induction of a regulatory phenotype on the donor DC. In conclusion, these data indicate DCreg treatment is effective in the modulation of GVHD in older BMT recipients and provide evidence for inhibitory pathways that DCreg and donor DC may utilize to induce and maintain tolerance to GVHD. PMID:24040397
CYTOGENETIC STUDIES IN MICE TREATED WITH THE JET FUELS, JET-A AND JP-8
Cytogenetic studies in mice treated with the jet fuels, Jet-A and JP-8
Abstract
The genotoxic potential of the jet fuels, Jet-A and JP-8, were examined in mice treated on the skin with a single dose of 240 ug/mouse. Peripheral blood smears were prepared at the start of the ...
NASA Astrophysics Data System (ADS)
Lee, Seungduk; Lee, Mina; Koh, Dalkwon; Kim, Beop-Min; Choi, Jee Hyun
2010-05-01
We applied near-infrared spectroscopy (NIRS) and electroencephalography (EEG) simultaneously on the mouse brain and investigated the hemodynamic response to epileptic episodes under pharmacologically driven seizure. γ-butyrolactone (GBL) and 4-aminopyridine (4-AP) were applied to induce absence and tonic-clonic seizures, respectively. The epileptic episodes were identified from the single-channel EEG, and the corresponding hemodynamic changes in different regions of the brain were characterized by multichannel frequency-domain NIRS. Our results are the following: (i) the oxyhemoglobin level increases in the case of GBL-treated mice but not 4-AP-treated mice compared to the predrug state; (ii) the dominant response to each absence seizure is a decrease in deoxyhemolobin; (iii) the phase shift between oxy- and deoxyhemoglobin reduces in GBL-treated mice but no 4-AP-treated mice; and (iv) the spatial correlation of hemodynamics increased significantly in 4-AP-treated mice but not in GBL-treated mice. Our results shows that spatiotemporal tracking of cerebral hemodynamics using NIRS can be successfully applied to the mouse brain in conjunction with electrophysiological recording, which will support the study of molecular, cellular, and network origin of neurovascular coupling in vivo.
Kim, Dong-Young; Jung, Jung-A; Kim, Tae-Ho; Seo, Sang-Wan; Jung, Sung-Ki; Park, Cheung-Seog
2009-04-21
Uncariae rhynchophylla (UR) is an herb which has blood pressure lowering and anti-inflammatory effects and has been prescribed traditionally to treat stroke and vascular dementia. In the present study, we examined whether UR suppress Atopic dermatitis (AD)-like skin lesions in NC/Nga mice treated with 2, 4-dinitrofluorobenzene (DNFB) under SPF conditions. The effect of UR in DNFB- treated NC/Nga mice was determined by measuring the skin symptom severity, levels of serum IgE, and of the amounts of IL-4 and IFN-gamma secreted by activated T cells in draining lymph nodes. Oral administration of UR to DNFB-treated NC/Nga mice was found to inhibit ear thickness increases and the skin lesions induced by DNFB. IFN-gamma production by CD4+ T cells from the lymph nodes of DNFB-treated NC/Nga mice was significantly inhibited by UR treatment, although levels of IL-4 and total IgE in serum were not. UR may suppress the development of AD-like dermatitis in DNFB-treated NC/Nga mice by reducing IFN-gamma production.
Genistein treatment increases bone mass in obese, hyperglycemic mice
Michelin, Richard M; Al-Nakkash, Layla; Broderick, Tom L; Plochocki, Jeffrey H
2016-01-01
Background Obesity and type 2 diabetes mellitus are associated with elevated risk of limb bone fracture. Incidences of these conditions are on the rise worldwide. Genistein, a phytoestrogen, has been shown by several studies to demonstrate bone-protective properties and may improve bone health in obese type 2 diabetics. Methods In this study, we test the effects of genistein treatment on limb bone and growth plate cartilage histomorphometry in obese, hyperglycemic ob/ob mice. Six-week-old ob/ob mice were divided into control and genistein-treated groups. Genistein-treated mice were fed a diet containing 600 mg genistein/kg for a period of 4 weeks. Cross-sectional geometric and histomorphometric analyses were conducted on tibias. Results Genistein-treated mice remained obese and hyperglycemic. However, histomorphometric comparisons show that genistein-treated mice have greater tibial midshaft diameters and ratios of cortical bone to total tissue area than the controls. Genistein-treated mice also exhibit decreased growth plate thickness of the proximal tibia. Conclusion Our results indicate that genistein treatment affects bone of the tibial midshaft in the ob/ob mouse, independent of improvements in the hyperglycemic state and body weight. PMID:27042131
Cecchi, Claudia R; Higuti, Eliza; Oliveira, Nelio A J; Lima, Eliana R; Jakobsen, Maria; Dagnaes-Hansen, Frederick; Gissel, Hanne; Aagaard, Lars; Jensen, Thomas G; Jorge, Alexander A L; Bartolini, Paolo; Peroni, Cibele N
2014-02-01
The possibilities for non-viral GH gene therapy are studied in immunocompetent dwarf mice (lit/lit). As expression vector we used a plasmid previously employed in immunodeficient dwarf mice (pUBI-hGH-gDNA) by replacing the human GH gene with the genomic sequence of mouse-GH DNA (pUBI-mGH-gDNA). HEK-293 human cells transfected with pUBI-mGH-gDNA produced 3.0 µg mGH/10(6) cells/day compared to 3.7 µg hGH/10(6) cells/day for pUBIhGH- gDNA transfected cells. The weight of lit/lit mice treated with the same two plasmids (50 µg DNA/mouse) by electrotransfer into the quadriceps muscle was followed for 3 months. The weight increase up to 15 days for mGH, hGH and saline treated mice were 0.130, 0.112 and 0.027 g/mouse/day. Most sera from hGH-treated mice contained anti-hGH antibodies already on day 15, with the highest titers on day 45, while no significant anti-mGH antibodies were observed in mGH-treated mice. At the end of 3 months, the weight increase for mGH-treated mice was 34.3%, while the nose-to-tail and femur lengths increased 9.5% and 24.3%. Mouse-GH and hGH circulating levels were 4-5 ng/mL 15 days after treatment, versus control levels of ~0.7 ng GH/mL (P<0.001). In mGH-treated mice, mIGF-I determined on days 15, 45 and 94 were 1.5- to 3-fold higher than the control and 1.2- to 1.6-fold higher than hGH-treated mice. The described homologous model represents an important progress forming the basis for preclinical testing of non-viral gene therapy for GH deficiency.
Effects of Thai piperaceae plant extracts on Neospora caninum infection.
Leesombun, Arpron; Boonmasawai, Sookruetai; Nishikawa, Yoshifumi
2017-06-01
Neosporosis has a worldwide distribution and causes economic losses in farming, particularly by increasing the risk of abortion in cattle. This study investigated the effects of Thai piperaceae (Piper betle, P. nigrum, and P. sarmentosum) extracts on Neospora caninum infections in vitro and in vivo. In an in vitro parasite growth assay based on the green fluorescent protein (GFP) signal, P. betle was the most effective extract at inhibiting parasite growth in human foreskin fibroblast cells (IC 50 of GFP-expressing N. caninum parasites, 22.1μg/ml). The P. betle extract, at 25μg per ml, inhibited parasite invasion into host cells. Furthermore, in two independent experiments, treating N. caninum-infected mice with the P. betle extract for 7days post-infection increased their survival. In trial one, the anti-N. caninum effects of the P. betle extract reduced the mouse clinical scores for 30days post-infection (dpi). The survival rate of the mice treated with 400mg/kg was 100% compared with 66.6% for those treated with 100mg/kg and the non-treated controls. In trial two, treating the infected mice with the P. betle extract increased their survival at 50dpi. All mice in the non-treatment group died; however, the survival rates of the 400mg/kg-treated and 100mg/kg-treated mice were 83.3% and 33.3%, respectively. Also, a trend towards a reduced parasite burden was noted in the brains of the P. betle extract-treated mice, compared with the control mice. Therefore P. betle extract has potential as a medicinal plant for treating neosporosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Sałat, Kinga; Podkowa, Adrian; Malikowska, Natalia; Trajer, Jędrzej
2017-03-01
Cognitive deficits are one of the frequent symptoms accompanying epilepsy or its treatment. In this study, the effect on cognition of intraperitoneally administered antiepileptic drug, pregabalin (10 mg/kg), was investigated in scopolamine-induced memory-impaired mice in the passive avoidance task and Morris water maze task. The effect of scopolamine and pregabalin on animals' locomotor activity was also studied. In the retention phase of the passive avoidance task, pregabalin reversed memory deficits induced by scopolamine (p < 0.05). During the acquisition phase of the Morris water maze pregabalin-treated memory-impaired mice performed the test with longer escape latencies than the vehicle-treated mice (significant at p < 0.05 on Day 5, and at p < 0.001 on Day 6). There were no differences in this parameter between the scopolamine-treated control group and pregabalin-treated memory-impaired mice, which indicated that pregabalin had no influence on spatial learning in this task. During the probe trial a significant difference (p < 0.05) was observed in terms of the mean number of target crossings between vehicle-treated mice and pregabalin-treated memory-impaired mice but there was no difference between the scopolamine-treated control group and mice treated with pregabalin + scopolamine. Pregabalin did not influence locomotor activity increased by scopolamine. In passive avoidance task, pregabalin reversed learning deficits induced by scopolamine. In the Morris water maze, pregabalin did not influence spatial learning deficits induced by scopolamine. These results are relevant for epileptic patients treated with pregabalin and those who use it for other therapeutic indications (anxiety, pain).
Vaughan, Kerrie; Peters, Bjoern; O'Connor, Kevin C.; Martin, Roland; Sette, Alessandro
2016-01-01
An analysis to inventory all immune epitope data related to multiple sclerosis (MS) was performed using the Immune Epitope Database (IEDB). The analysis revealed that MS related data represent >20% of all autoimmune data, and that studies of EAE predominate; only 22% of the references describe human data. To date, >5800 unique peptides, analogs, mimotopes, and/or non-protein epitopes have been reported from 861 references, including data describing myelin-containing, as well as non-myelin antigens. This work provides a reference point for the scientific community of the universe of available data for MS-related adaptive immunity in the context of EAE and human disease. PMID:24365494
Kang, Jong Soon; Lee, Kiho; Han, Sang-Bae; Ahn, Ji-Mi; Lee, Hyunju; Han, Mi Hwa; Yoon, Yeo Dae; Yoon, Won Kee; Park, Song-Kyu; Kim, Hwan Mook
2006-10-01
Mite antigen has been considered to play important roles in the development of atopic eczema/dermatitis syndrome (AEDS). In the present study, we attempted to induce an AEDS-like skin lesion in mice using Dermatophagoides pteronyssinus crude extract (DPE) as an antigen and performed pathophysiological evaluations. Ears of mice were tape-stripped and DPE was painted 3 times a week. Eczematous skin lesion and ear swelling were apparent in NC/Nga mice treated with DPE after 2 weeks, whereas neither skin lesion nor ear swelling were observed in BALB/c mice even after 30 days. Histological evaluation demonstrated that edema, epidermal hyperplasia and the accumulation of inflammatory cells were apparent in the ears of DPE-treated NC/Nga mice. In contrast to skin lesion and ear swelling, total serum IgE levels were increased in both NC/Nga and BALB/c mice. Treatment with DPE also increased auricular lymph node weight in both NC/Nga mice and BALB/c mice. To further characterize, we analyzed cytokine mRNA expression in ears and lymph nodes of DPE-treated NC/Nga mice. Increased expression of IL-4 and TNF-alpha mRNA was observed in both ears and lymph nodes of NC/Nga mice treated with DPE. Additionally, there was no change in the responsiveness of BALB/c mice to DPE treatment by adaptive transfer of serum from DPE-treated NC/Nga mice to BALB/c mice. Taken together, our results indicate that eczematous skin lesion and ear swelling caused by repeated application of DPE in NC/Nga mice has a Th2-dominant background and that inflammation is involved in this process. The animal model of AEDS established in this report may be used to investigate the pathogenesis of AEDS and evaluate the potential therapeutic agents for AEDS.
Liu, Chang; Tang, Xiaojun; Feng, Ruihai; Yao, Genhong; Chen, Weiwei; Li, Wenchao; Liang, Jun; Feng, Xuebing
2018-01-01
Objective To investigate the effects of umbilical cord mesenchymal stem cell (UC-MSC) transplantation on joint damage and osteoporosis in collagen-induced arthritis (CIA) mice and to explore the mechanisms by which UC-MSCs modulate the osteogenic differentiation. Methods CIA mice were divided into the following treated groups: UC-MSC transplantation group, antitumor necrosis factor- (TNF-) α group, and zoledronic acid (ZA) group. Microcomputed tomography (micro-CT) was used to analyze the bone morphology parameters. Osteogenic differentiation of treated CIA mice was determined. Bone marrow mesenchymal stem cells (BM-MSCs) from CIA mice were treated with TNF-α in vitro to explore their effects on osteogenesis. Results The arthritis score was significantly reduced in the UC-MSC transplantation and anti-TNF-α-treated CIA groups, compared with control mice (P < 0.001). Micro-CT showed that CIA mice developed osteoporosis at 12 weeks after immunization. The bone morphology parameters were partially improved in UC-MSC-treated CIA mice. Impaired osteogenic differentiation functions were indicated by decreased ALP activity (P < 0.001) and reduced mRNA and protein levels of osteogenic marker genes (P < 0.05) in CIA mice compared with DBA/1 mice. UC-MSC treatment significantly upregulated the impaired osteogenic differentiation ability in CIA mice. Meanwhile, the serum TNF-α level was decreased significantly in the UC-MSC group. The osteogenesis was reduced with the addition of TNF-α in vitro. Conclusion This study demonstrated that UC-MSC transplantation not only significantly improved the joint damage but also played a beneficial role in osteoporosis in CIA mice. Mechanistically, the improved osteogenic differentiation of CIA under UC-MSC treatment may be achieved by inhibition of TNF-α. PMID:29853911
Trapeaux, J; Busseuil, D; Shi, Y; Nobari, S; Shustik, D; Mecteau, M; El-Hamamsy, I; Lebel, M; Mongrain, R; Rhéaume, E; Tardif, J-C
2013-01-01
Background and Purpose We have shown that infusions of apolipoprotein A-I (ApoA-I) mimetic peptide induced regression of aortic valve stenosis (AVS) in rabbits. This study aimed at determining the effects of ApoA-I mimetic therapy in mice with calcific or fibrotic AVS. Experimental Approach Apolipoprotein E-deficient (ApoE−/−) mice and mice with Werner progeria gene deletion (WrnΔhel/Δhel) received high-fat diets for 20 weeks. After developing AVS, mice were randomized to receive saline (placebo group) or ApoA-I mimetic peptide infusions (ApoA-I treated groups, 100 mg·kg−1 for ApoE−/− mice; 50 mg·kg−1 for Wrn mice), three times per week for 4 weeks. We evaluated effects on AVS using serial echocardiograms and valve histology. Key Results Aortic valve area (AVA) increased in both ApoE−/− and Wrn mice treated with the ApoA-I mimetic compared with placebo. Maximal sinus wall thickness was lower in ApoA-I treated ApoE−/− mice. The type I/III collagen ratio was lower in the sinus wall of ApoA-I treated ApoE−/− mice compared with placebo. Total collagen content was reduced in aortic valves of ApoA-I treated Wrn mice. Our 3D computer model and numerical simulations confirmed that the reduction in aortic root wall thickness resulted in improved AVA. Conclusions and Implications ApoA-I mimetic treatment reduced AVS by decreasing remodelling and fibrosis of the aortic root and valve in mice. PMID:23638718
Luz María Chacón, J; Lizeth Taylor, C; Carmen Valiente, A; Irene Alvarado, P; Ximena Cortés, B
2012-01-01
The availability of a useful tool for simple and timely detection of the most important virulent varieties of Escherichia coli is indispensable. To this end, bacterial DNA pools which had previously been categorized were obtained from isolated colonies as well as selected in terms of utilized phenotype; the pools were assessed by two PCR Multiplex for the detection of virulent E. coli eaeA, bfpA, stx1, stx2, ipaH, ST, LT, and aatA genes, with the 16S gene used as DNA control. The system was validated with 66 fecal samples and 44 wastewater samples. At least one positive isolate was detected by a virulent gene among the 20 that were screened. The analysis of fecal samples from children younger than 6 years of age detected frequencies of 25% LT positive strains, 8.3% eae, 8.3% bfpA, 16.7% ipaH, as well as 12.5 % aatA and ST. On the other hand, wastewater samples revealed frequencies of 25.7% eaeA positive, 30.3% stx1, 15.1% LT and 19.7% aatA. This study is an initial step toward carrying out epidemiological field research that will reveal the presence of these bacterial varieties. PMID:24031959
Qin, Xia; Guo, Bingshi T; Wan, Bing; Fang, Lei; Lu, Limin; Wu, Lili; Zang, Ying Qin; Zhang, Jingwu Z
2010-08-01
Berberine (BBR), an isoquinoline alkaloid derived from plants, is widely used as an anti-inflammatory remedy in traditional Chinese medicine. In this study, we showed that BBR was efficacious in the amelioration of experimental autoimmune encephalomyelitis (EAE) through novel regulatory mechanisms involving pathogenic Th1 and Th17 cells. BBR inhibited differentiation of Th17 cells and, to a lesser degree, Th1 cells through direct actions on the JAK/STAT pathway, whereas it had no effect on the relative number of CD4(+)Foxp3(+) regulatory T cells. In addition, BBR indirectly influenced Th17 and Th1 cell functions through its effect on the expression and function of costimulatory molecules and the production of IL-6, which was attributable to the inhibition of NF-kappaB activity in CD11b(+) APCs. BBR treatment completely abolished the encephalitogenicity of MOG(35-55)-reactive Th17 cells in an adoptive transfer EAE model, and the same treatment significantly inhibited the ability of MOG(35-55)-reactive Th1 cells to induce EAE. This study provides new evidence that natural compounds, such as BBR, are of great value in the search for novel anti-inflammatory agents and therapeutic targets for autoimmune diseases.
Anisimov, Vladimir N; Khavinson, Vladimir K H; Provinciali, Mauro; Alimova, Irina N; Baturin, Dmitri A; Popovich, Irina G; Zabezhinski, Mark A; Imyanitov, Eugeni N; Mancini, Romina; Franceschi, Claudio
2002-09-01
Female FVB/N HER-2/neu transgenic mice from the age of 2 months were subcutaneously injected with saline, the peptide Epitalon(R) (Ala-Glu-Asp-Gly) or with the peptide Vilon(R) (Lys-Glu) in a single dose of 1 microg/mouse for 5 consecutive days every month. Epitalon treatment reduced the cumulative number and the maximum size of tumors (p < 0.05). Furthermore, the number of mice bearing 1 mammary tumor was increased, whereas the number of mice bearing 2 or more mammary tumors was reduced in Epitalon-treated in comparison to saline-treated animals (p < 0.05). The size but not the number of lung metastases was reduced in Epitalon-treated compared to saline-treated mice (p < 0.05). The treatment with Vilon produced significant negative effects when compared to the control group, with an increased incidence of mammary cancer development (p < 0.05), a shorter mean latent period of tumors (p < 0.05) and an increased cumulative number of tumors (p < 0.05). A 3.7-fold reduction in the expression of HER-2/neu mRNA was found in mammary tumors from HER-2/neu transgenic mice treated with Epitalon compared to control animals. The expression of mRNA for HER-2/neu was also partially reduced in Vilon-treated mice, but it remained significantly higher in Vilon- than in Epitalon-treated animals (1.9-fold increase). The data demonstrate the inhibitory effect of Epitalon in the development of spontaneous mammary tumors in HER-2/neu mice, suggesting that a downregulation of HER-2/neu gene expression in mammary adenocarcinoma may be responsible, at least in part, for the antitumor effect of the peptide. Copyright 2002 Wiley-Liss, Inc.
Sasaki-Hamada, Sachie; Hojo, Yuki; Koyama, Hajime; Otsuka, Hayuma; Oka, Jun-Ichiro
2015-05-01
Glucose is the sole neural fuel for the brain and is essential for cognitive function. Abnormalities in glucose tolerance may be associated with impairments in cognitive function. Experimental obese model mice can be generated by an intraperitoneal injection of monosodium glutamate (MSG; 2 mg/g) once a day for 5 days from 1 day after birth. MSG-treated mice have been shown to develop glucose intolerance and exhibit chronic neuroendocrine dysfunction associated with marked cognitive malfunctions at 28-29 weeks old. Although hippocampal synaptic plasticity is impaired in MSG-treated mice, changes in synaptic transmission remain unknown. Here, we investigated whether glucose intolerance influenced cognitive function, synaptic properties and protein expression in the hippocampus. We demonstrated that MSG-treated mice developed glucose intolerance due to an impairment in the effectiveness of insulin actions, and showed cognitive impairments in the Y-maze test. Moreover, long-term potentiation (LTP) at Schaffer collateral-CA1 pyramidal synapses in hippocampal slices was impaired, and the relationship between the slope of extracellular field excitatory postsynaptic potential and stimulus intensity of synaptic transmission was weaker in MSG-treated mice. The protein levels of vesicular glutamate transporter 1 and GluA1 glutamate receptor subunits decreased in the CA1 region of MSG-treated mice. These results suggest that deficits in glutamatergic presynapses as well as postsynapses lead to impaired synaptic plasticity in MSG-treated mice during the development of glucose intolerance, though it remains unknown whether impaired LTP is due to altered inhibitory transmission. It may be important to examine changes in glucose tolerance in order to prevent cognitive malfunctions associated with diabetes. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Ni, Peggy P; Wang, Yaming; Allen, Paul M
2014-11-01
It is perplexing why vertebrates express a limited number of major histocompatibility complex (MHC) molecules when theoretically, having a greater repertoire of MHC molecules would increase the number of epitopes presented, thereby enhancing thymic selection and T cell response to pathogens. It is possible that any positive effects would either be neutralized or outweighed by negative selection restricting the T cell repertoire. We hypothesize that the limit on MHC number is due to negative consequences arising from expressing additional MHC. We compared T cell responses between B6 mice (I-A(+)) and B6.E(+) mice (I-A(+), I-E(+)), the latter expressing a second class II MHC molecule, I-E(b), due to a monomorphic Eα(k) transgene that pairs with the endogenous I-Eβ(b) chain. First, the naive T cell Vβ repertoire was altered in B6.E(+) thymi and spleens, potentially mediating different outcomes in T cell reactivity. Although the B6 and B6.E(+) responses to hen egg-white lysozyme (HEL) protein immunization remained similar, other immune models yielded differences. For viral infection, the quality of the T cell response was subtly altered, with diminished production of certain cytokines by B6.E(+) CD4(+) T cells. In alloreactivity, the B6.E(+) T cell response was significantly dampened. Finally, we observed markedly enhanced susceptibility to experimental autoimmune encephalomyelitis (EAE) in B6.E(+) mice. This correlated with decreased percentages of nTreg cells, supporting the concept of Tregs exhibiting differential susceptibility to negative selection. Altogether, our data suggest that expressing an additional class II MHC can produce diverse effects, with more severe autoimmunity providing a compelling explanation for limiting the expression of MHC molecules. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gonzales, Gustavo F; Gonzales-Castañeda, Cynthia; Gasco, Manuel
2013-09-01
We investigated the effect of two extracts from Peruvian plants given alone or in a mixture on sperm count and glycemia in streptozotocin-diabetic mice. Normal or diabetic mice were divided in groups receiving vehicle, black maca (Lepidium meyenii), yacon (Smallanthus sonchifolius) or three mixtures of extracts black maca/yacon (90/10, 50/50 and 10/90%). Normal or diabetic mice were treated for 7 d with each extract, mixture or vehicle. Glycemia, daily sperm production (DSP), epididymal and vas deferens sperm counts in mice and polyphenol content, and antioxidant activity in each extract were assessed. Black maca (BM), yacon and the mixture of extracts reduced glucose levels in diabetic mice. Non-diabetic mice treated with BM and yacon showed higher DSP than those treated with vehicle (p < 0.05). Diabetic mice treated with BM, yacon and the mixture maca/yacon increased DSP, and sperm count in vas deferens and epididymis with respect to non-diabetic and diabetic mice treated with vehicle (p < 0.05). Yacon has 3.05 times higher polyphenol content than in maca, and this was associated with higher antioxidant activity. The combination of two extracts improved glycemic levels and male reproductive function in diabetic mice. Streptozotocin increased 1.43 times the liver weight that was reversed with the assessed plants extracts. In summary, streptozotocin-induced diabetes resulted in reduction in sperm counts and liver damage. These effects could be reduced with BM, yacon and the BM+yacon mixture.
Yan, Bing Chun; Yoo, Ki-Yeon; Park, Joon Ha; Lee, Choong Hyun; Choi, Jung Hoon
2011-01-01
Earthworm extract has shown anticancer characteristics. In the present study, we examined the effect of chronic treatment with a high dose of earthworm (Eisenia andrei) extract (EE) on cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus (DG) of 3-week-old mice using 5-bromo-2'-deoxyuridine (BrdU) and Ki-67 immunohistochemistry for cell proliferation and doublecortin (DCX) immunohistochemistry for neuroblast differentiation, respectively. BrdU-, Ki-67-, and DCX-immunoreactive cells were easily detected in the subgranular zone of the DG in vehicle (saline)-treated mice. However, BrdU-, Ki-67-, and DCX-immunoreactive cells in the 500 mg/kg EE-treated mice decreased distinctively compared to those in the vehicle-treated mice. In addition, brain-derived neurotrophic factor (BDNF) immunoreactivity and its protein level decreased markedly in the DG of the EE-treated group compared to those in the vehicle-treated group. These results indicate that chronic treatment with high dose EE decreased cell proliferation and neuroblast differentiation, and that BDNF immunoreactivity decreased in the DG of EE-treated mice. PMID:22025974
Slinger, Robert; Lau, Kimberley; Slinger, Michael; Moldovan, Ioana; Chan, Francis
2017-03-23
Typical enteropathogenic Escherichia coli (t-EPEC) are known to cause diarrhea in children but it is uncertain whether atypical EPEC (a-EPEC) do, since a-EPEC lack the bundle-forming pilus (bfp) gene that encodes a key adherence factor in t-EPEC. In culture-based studies of a-EPEC, the presence of another adherence factor, called EHEC factor for adherence/lymphocyte activation inhibitor (efa1/lifA), was strongly associated with diarrhea. Since a-EPEC culture is not feasible in clinical laboratories, we designed an efa1/lifA quantitative PCR assay and examined whether the presence of efa1/lifA was associated with higher a-EPEC bacterial loads in pediatric diarrheal stool samples. Fecal samples from children with diarrhea were tested by qPCR for EPEC (presence of eae gene) and for shiga toxin genes to exclude enterohemorrhagic E. coli, which also contain the eae gene. EPEC containing samples were then tested for the bundle-forming pilus gene found in t-EPEC and efa1/lifA. The eae gene quantity in efa1/lifA-positive and negative samples was compared. Thirty-nine of 320 (12%) fecal samples tested positive for EPEC and 38/39 (97%) contained a-EPEC. The efa1/lifA gene was detected in 16/38 (42%) a-EPEC samples. The median eae concentration for efa1/lifA positive samples was significantly higher than for efa1/lifA negative samples (median 16,745 vs. 1183 copies/µL, respectively, p = 0.006). Atypical enteropathogenic E. coli-positive diarrheal stool samples containing the efa1/lifA gene had significantly higher bacterial loads than samples lacking this gene. This supports the idea that efa1/lifA contributes to diarrheal pathogenesis and suggests that, in EPEC-positive samples, efa/lifA may be a useful additional molecular biomarker.
Wentzel, Alexander; Christmann, Andreas; Adams, Thorsten; Kolmar, Harald
2001-01-01
Intimins are members of a family of bacterial adhesins from pathogenic Escherichia coli which specifically interact with diverse eukaryotic cell surface receptors. The EaeA intimin from enterohemorrhagic E. coli O157:H7 contains an N-terminal transporter domain, which resides in the bacterial outer membrane and promotes the translocation of four C-terminally attached passenger domains across the bacterial cell envelope. We investigated whether truncated EaeA intimin lacking two carboxy-terminal domains could be used as a translocator for heterologous passenger proteins. We found that a variant of the trypsin inhibitor Ecballium elaterium trypsin inhibitor II (EETI-II), interleukin 4, and the Bence-Jones protein REIv were displayed on the surface of E. coli K-12 via fusion to truncated intimin. Fusion protein net accumulation in the outer membrane could be regulated over a broad range by varying the cellular amount of suppressor tRNA that is necessary for translational readthrough at an amber codon residing within the truncated eaeA gene. Intimin-mediated adhesion of the bacterial cells to eukaryotic target cells could be mimicked by surface display of a short fibrinogen receptor binding peptide containing an arginine-glycine-aspartic acid sequence motif, which promoted binding of E. coli K-12 to human platelets. Cells displaying a particular epitope sequence fused to truncated intimin could be enriched 200,000-fold by immunofluorescence staining and fluorescence-activated cell sorting in three sorting rounds. These results demonstrate that truncated intimin can be used as an anchor protein that mediates the translocation of various passenger proteins through the cytoplasmic and outer membranes of E. coli and their exposure on the cell surface. Intimin display may prove a useful tool for future protein translocation studies with interesting biological and biotechnological ramifications. PMID:11717287
Cáceres, María E.; Etcheverría, Analía I.; Fernández, Daniel; Rodríguez, Edgardo M.; Padola, Nora L.
2017-01-01
Shiga toxin-producing Escherichia coli (STEC) are pathogens of significant public health concern. Several studies have confirmed that cattle are the main reservoir of STEC in Argentina and other countries. Although Shiga toxins represent the primary virulence factors of STEC, the adherence and colonization of the gut are also important in the pathogenesis of the bacteria. The aim of this study was to analyze and to compare the presence of putative virulence factors codified in plasmid -katP, espP, subA, stcE- and adhesins involved in colonization of cattle -efa1, iha- in 255 native STEC strains isolated from different categories of cattle from different production systems. The most prevalent gene in all strains was espP, and the less prevalent was stcE. katP was highly detected in strains isolated from young and rearing calves (33.3%), while subA was predominant in those isolated from adults (71.21%). Strains from young calves showed the highest percentage of efa1 (72.46%), while iha showed a high distribution in strains from rearing calves and adults (87.04 and 98.48% respectively). It was observed that espP and iha were widely distributed throughout all strains, whereas katP, stcE, and efa1 were more associated with the presence of eae and subA with the eae-negative strains. A great proportion of eae-negative strains were isolated from adults -dairy and grazing farms- and from rearing calves -dairy and feedlot-, while mostly of the eae-positive strains were isolated from dairy young calves. Data exposed indicate a correlation between the category of the animal and the production systems with the presence or absence of several genes implicated in adherence and virulence of STEC. PMID:28503491
Joo, Erina; Yamane, Shunsuke; Hamasaki, Akihiro; Harada, Norio; Matsunaga, Tetsuro; Muraoka, Atsushi; Suzuki, Kazuyo; Nasteska, Daniela; Fukushima, Toru; Hayashi, Tatsuya; Tsuji, Hidemi; Shide, Kenichiro; Tsuda, Kinsuke; Inagaki, Nobuya
2013-03-01
Ulcerative colitis is a chronic recurrent disease characterized by acute inflammation of the colonic mucosa. In Japan, a dietary supplementation product enriched with glutamine, dietary fiber, and oligosaccharide (GFO) is widely applied for enteral nutrition support. These three components have been suggested to improve intestinal health. In this study, we investigated whether GFO has suppressive effects on mucosal damage in ulcerative colitis in an experimental mouse model. C57BL/6 mice received 2.5% dextran sulfate sodium in drinking water for 5 d to induce colitis. Then, they were given 0.25 mL of GFO or a 20% glucose solution twice daily for 10 d. Another set of mice receiving unaltered drinking water was used as the normal control group. The body weight loss and disease activity index were significantly lower in the GFO-treated mice compared with the glucose-treated mice (P < 0.05). The decrease in colon length induced by dextran sulfate sodium was significantly alleviated in GFO-treated mice compared with glucose-treated mice (P < 0.01). In addition, the histologic findings showed that intestinal inflammation was significantly attenuated in mice treated with GFO. Furthermore, treatment with GFO significantly inhibited the dextran sulfate sodium-induced increase in the mRNA expression of interleukin-1β. These results suggest that GFO has potential therapeutic value as an adjunct therapy for ulcerative colitis. Copyright © 2013 Elsevier Inc. All rights reserved.
Spurney, Christopher F.; Sali, Arpana; Guerron, Alfredo D.; Iantorno, Micaela; Yu, Qing; Gordish-Dressman, Heather; Rayavarapu, Sree; van der Meulen, Jack; Hoffman, Eric P.; Nagaraju, Kanneboyina
2014-01-01
Recent studies showed that chronic administration of losartan, an angiotensin II type I receptor antagonist, improved skeletal muscle function in dystrophin-deficient mdx mice. In this study, C57BL/10ScSn-Dmdmdx/J female mice were either untreated or treated with losartan (n = 15) in the drinking water at a dose of 600 mg/L over a 6-month period. Cardiac function was assessed via in vivo high frequency echocardiography and skeletal muscle function was assessed using grip strength testing, Digiscan monitoring, Rotarod timing, and in vitro force testing. Fibrosis was assessed using picrosirius red staining and Image J analysis. Gene expression was evaluated using real-time polymerized chain reaction (RT-PCR). Percentage shortening fraction was significantly decreased in untreated (26.9% ± 3.5%) mice compared to losartan-treated (32.2% ± 4.2%; P < .01) mice. Systolic blood pressure was significantly reduced in losartan-treated mice (56 ± 6 vs 69 ± 7 mm Hg; P < .0005). Percentage cardiac fibrosis was significantly reduced in losartan-treated hearts (P < .05) along with diaphragm (P < .01), extensor digitorum longus (P < .05), and gastrocnemius (P < .05) muscles compared to untreated mdx mice. There were no significant differences in skeletal muscle function between treated and untreated groups. Chronic treatment with losartan decreases cardiac and skeletal muscle fibrosis and improves cardiac systolic function in dystrophin-deficient mdx mice. PMID:21304057
Atorvastatin and Simvastatin Promoted Mouse Lung Repair After Cigarette Smoke-Induced Emphysema.
Pinho-Ribeiro, Vanessa; Melo, Adriana Correa; Kennedy-Feitosa, Emanuel; Graca-Reis, Adriane; Barroso, Marina Valente; Cattani-Cavalieri, Isabella; Carvalho, Giovanna Marcella Cavalcante; Zin, Walter Araújo; Porto, Luis Cristóvão; Gitirana, Lycia Brito; Lanzetti, Manuella; Valença, Samuel Santos
2017-06-01
Cigarette smoke (CS) induces pulmonary emphysema by inflammation, oxidative stress, and metalloproteinase (MMP) activation. Pharmacological research studies have not focused on tissue repair after the establishment of emphysema but have instead focused on inflammatory stimulation. The aim of our study was to analyze the effects of atorvastatin and simvastatin on mouse lung repair after emphysema caused by CS. Male mice (C57BL/6, n = 45) were divided into the following groups: control (sham-exposed), CSr (mice exposed to 12 cigarettes a day for 60 days and then treated for another 60 days with the vehicle), CSr+A (CSr mice treated with atorvastatin for 60 days), and CSr+S (CSr mice treated with simvastatin for 60 days). The treatment with atorvastatin and simvastatin was administered via inhalation (15 min with 1 mg/mL once a day). Mice were sacrificed 24 h after the completion of the 120-day experimental procedure. We performed biochemical, morphological, and physiological analyses. We observed decreased levels of leukocytes and cytokines in statin-treated mice, accompanied by a reduction in oxidative stress markers. We also observed a morphological improvement confirmed by a mean linear intercept counting in statin-treated mice. Finally, statins also ameliorated lung function. We conclude that inhaled atorvastatin and simvastatin improved lung repair after cigarette smoke-induced emphysema in mice.
Hypothermia increases interleukin-6 and interleukin-10 in juvenile endotoxemic mice.
Stewart, Corrine R; Landseadel, Jessica P; Gurka, Matthew J; Fairchild, Karen D
2010-01-01
To develop a juvenile mouse model to establish effects of in vivo hypothermia on expression of the inflammation-modulating cytokines tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, and interleukin-10. Although induced hypothermia is neuroprotective in some patients, the mechanisms of protection are not well understood and concerns remain over potential detrimental effects, particularly in the setting of infection. We previously showed that in vitro hypothermia increases production of tumor necrosis factor-alpha and interleukin-1beta in lipopolysaccharide-treated monocytes. : Laboratory investigation. Research laboratory. Juvenile (4-wk) male C57BL/6 mice. : Mice were given chlorpromazine to suspend thermoregulation and lipopolysaccharide to stimulate cytokine production. Core temperature was maintained at 32 degrees C or 37 degrees C for 6 hrs by adjusting environmental temperature. In separate experiments, lipopolysaccharide-treated mice were kept in a cooling chamber without chlorpromazine treatment. Plasma and organs were collected for cytokine quantitation. Chlorpromazine-treated hypothermic mice had 2.3-fold and 1.8-fold higher plasma interleukin-6 and interleukin-10 levels at 6 hrs compared with identically treated normothermic mice (p < .05), whereas plasma tumor necrosis factor-alpha and interleukin-1beta were not significantly different at 2 hrs or 6 hrs. Liver tumor necrosis factor-alpha and interleukin-6 were significantly higher in hypothermic vs. normothermic mice, but lung and brain cytokines were not different. Lipopolysaccharide-treated mice kept in a cooling chamber without chlorpromazine treatment developed varying degrees of hypothermia with associated increases in plasma interleukin-6 and interleukin-10. A nonspecific marker of stress (plasma corticosterone) was not affected by hypothermia in lipopolysaccharide-treated mice. Further studies are necessary to determine the mechanism and physiologic consequences of augmented systemic interleukin-6 and interleukin-10 expression during induced hypothermia.
Effects of transplantation of adipose tissue-derived stem cells on prostate tumor.
Lin, Guiting; Yang, Rong; Banie, Lia; Wang, Guifang; Ning, Hongxiu; Li, Long-Cheng; Lue, Tom F; Lin, Ching-Shwun
2010-07-01
Obesity is a risk factor for prostate cancer development, but the underlying mechanism is unknown. The present study tested the hypothesis that stromal cells of the adipose tissue might be recruited by cancer cells to help tumor growth. PC3 prostate cancer cells were transplanted into the subcutaneous space of the right flank of athymic mice. One week later, adipose tissue-derived stromal or stem cells (ADSC) or phosphate-buffered saline (PBS, as control) was transplanted similarly to the left flank. Tumor size was monitored for the next 34 days; afterwards, the mice were sacrificed and their tumors harvested for histological examination. The ability of PC3 cells to attract ADSC was tested by migration assay. The involvement of the CXCL12/CXCR4 axis was tested by migration assay in the presence of a specific inhibitor AMD3100. Throughout the entire course, the average size of PC3 tumors in ADSC-treated mice was larger than in PBS-treated mice. ADSC were identified inside the tumors of ADSC-treated mice; CXCR4 expression was also detected. Migration assay indicated the involvement of the CXCL12/CXCR4 axis in the migration of ADSC toward PC3 cells. Capillary density was twice as high in the tumors of ADSC-treated mice than in the tumors of PBS-treated mice. VEGF expression was similar but FGF2 expression was significantly higher in tumors of ADSC-treated mice than in the tumors of PBS-tread mice. Prostate cancer cells recruited ADSC by the CXCL12/CXCR4 axis. ADSC helps tumor growth by increasing tumor vascularity, and which was mediated by FGF2.
Improve T Cell Therapy in Neuroblastoma
2013-07-01
ear, and spleen of treated mice. Control mice showed evidence of chronic dermatitis , with moderate diffuse epithelial hyperplasia, hyperkeratosis and...treated mice. Control mice showed evidence of chronic dermatitis , with moderate diffuse epithelial hyperplasia, hyperkeratosis and marked multi- focal...in question to contact us about making the changes. Please note, however, that the manuscript would be held from further processing until this issue
Rikihisa, Y; Jiang, B M
1989-03-01
Effects of three antibiotics on clinical, pathologic and immunologic responses in murine Potomac horse fever caused by Ehrlichia risticii infection were examined. When antibiotics were given after the development of clinical signs, antibiotics ranked in the order of reducing clinical signs and in preventing body weight loss and an intestinal enlargement were doxycycline, demeclocycline and rifampin. Infected mice treated with doxycycline and demeclocycline developed greater splenomegaly than rifampin-treated or untreated infected mice. All antibiotics used prevented thymic atrophy due to E. risticii infection. Indirect fluorescent antibody titers were highest with doxycycline treatment. Mice treated with demeclocycline and rifampin produced higher antibody titer than those without treatment. Ehrlichia risticii was reisolated from the spleens of both untreated and rifampin-treated infected mice. The effects of administering single doses of doxycycline at different times after infection were examined. Body weight loss was prevented by the drug given at every treatment day examined, i.e. Days 3, 5 and 7 post-infection (PI). Thymic atrophy was minimum in mice treated at Day 5 PI, while splenomegaly was found on every treatment day. Splenocyte proliferative response to concanavalin A and lipopolysaccharide, and specific antibody development against E. risticii was best in mice treated at Day 5 PI followed by those treated at Day 3 and Day 7 PI.
Veremeyko, Tatyana; Yung, Amanda W. Y.; Dukhinova, Marina; Kuznetsova, Inna S.; Pomytkin, Igor; Lyundup, Alexey; Strekalova, Tatyana; Barteneva, Natasha S.; Ponomarev, Eugene D.
2018-01-01
Although it has been demonstrated that cAMP pathway affect both adaptive and innate cell functions, the role of this pathway in the regulation of T-cell-mediated central nervous system (CNS) autoimmune inflammation, such as in experimental autoimmune encephalomyelitis (EAE), remains unclear. It is also unclear how cAMP pathway affects the function of CD4 T cells in vivo at the site of inflammation. We found that adenylyl cyclase activator Forskolin besides inhibition of functions autoimmune CD4 T cells also upregulated microRNA (miR)-124 in the CNS during EAE, which is associated with M2 phenotype of microglia/macrophages. Our study further established that in addition to direct influence of cAMP pathway on CD4 T cells, stimulation of this pathway promoted macrophage polarization toward M2 leading to indirect inhibition of function of T cells in the CNS. We demonstrated that Forskolin together with IL-4 or with Forskolin together with IL-4 and IFNγ effectively stimulated M2 phenotype of macrophages indicating high potency of this pathway in reprogramming of macrophage polarization in Th2- and even in Th1/Th2-mixed inflammatory conditions such as EAE. Mechanistically, Forskolin and/or IL-4 activated ERK pathway in macrophages resulting in the upregulation of M2-associated molecules miR-124, arginase (Arg)1, and Mannose receptor C-type 1 (Mrc1), which was reversed by ERK inhibitors. Administration of Forskolin after the onset of EAE substantially upregulated M2 markers Arg1, Mrc1, Fizz1, and Ym1 and inhibited M1 markers nitric oxide synthetase 2 and CD86 in the CNS during EAE resulting in decrease in macrophage/microglia activation, lymphocyte and CD4 T cell infiltration, and the recovery from the disease. Forskolin inhibited proliferation and IFNγ production by CD4 T cells in the CNS but had rather weak direct effect on proliferation of autoimmune T cells in the periphery and in vitro, suggesting prevalence of indirect effect of Forskolin on differentiation and functions of autoimmune CD4 T cells in vivo. Thus, our data indicate that Forskolin has potency to skew balance toward M2 affecting ERK pathway in macrophages and indirectly inhibit pathogenic CD4 T cells in the CNS leading to the suppression of autoimmune inflammation. These data may have also implications for future therapeutic approaches to inhibit autoimmune Th1 cells at the site of tissue inflammation. PMID:29422898
Veremeyko, Tatyana; Yung, Amanda W Y; Dukhinova, Marina; Kuznetsova, Inna S; Pomytkin, Igor; Lyundup, Alexey; Strekalova, Tatyana; Barteneva, Natasha S; Ponomarev, Eugene D
2018-01-01
Although it has been demonstrated that cAMP pathway affect both adaptive and innate cell functions, the role of this pathway in the regulation of T-cell-mediated central nervous system (CNS) autoimmune inflammation, such as in experimental autoimmune encephalomyelitis (EAE), remains unclear. It is also unclear how cAMP pathway affects the function of CD4 T cells in vivo at the site of inflammation. We found that adenylyl cyclase activator Forskolin besides inhibition of functions autoimmune CD4 T cells also upregulated microRNA (miR)-124 in the CNS during EAE, which is associated with M2 phenotype of microglia/macrophages. Our study further established that in addition to direct influence of cAMP pathway on CD4 T cells, stimulation of this pathway promoted macrophage polarization toward M2 leading to indirect inhibition of function of T cells in the CNS. We demonstrated that Forskolin together with IL-4 or with Forskolin together with IL-4 and IFNγ effectively stimulated M2 phenotype of macrophages indicating high potency of this pathway in reprogramming of macrophage polarization in Th2- and even in Th1/Th2-mixed inflammatory conditions such as EAE. Mechanistically, Forskolin and/or IL-4 activated ERK pathway in macrophages resulting in the upregulation of M2-associated molecules miR-124, arginase (Arg)1, and Mannose receptor C-type 1 (Mrc1), which was reversed by ERK inhibitors. Administration of Forskolin after the onset of EAE substantially upregulated M2 markers Arg1, Mrc1, Fizz1, and Ym1 and inhibited M1 markers nitric oxide synthetase 2 and CD86 in the CNS during EAE resulting in decrease in macrophage/microglia activation, lymphocyte and CD4 T cell infiltration, and the recovery from the disease. Forskolin inhibited proliferation and IFNγ production by CD4 T cells in the CNS but had rather weak direct effect on proliferation of autoimmune T cells in the periphery and in vitro , suggesting prevalence of indirect effect of Forskolin on differentiation and functions of autoimmune CD4 T cells in vivo . Thus, our data indicate that Forskolin has potency to skew balance toward M2 affecting ERK pathway in macrophages and indirectly inhibit pathogenic CD4 T cells in the CNS leading to the suppression of autoimmune inflammation. These data may have also implications for future therapeutic approaches to inhibit autoimmune Th1 cells at the site of tissue inflammation.
Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice.
Yuan, Jichao; Liu, Wei; Zhu, Haitao; Zhang, Xuan; Feng, Yang; Chen, Yaxing; Feng, Hua; Lin, Jiangkai
2017-01-01
Early brain injury, one of the most important mechanisms underlying subarachnoid hemorrhage (SAH), comprises edema formation and blood-brain barrier (BBB) disruption. Curcumin, an active extract from the rhizomes of Curcuma longa, alleviates neuroinflammation by as yet unknown neuroprotective mechanisms. In this study, we examined whether curcumin treatment ameliorates SAH-induced brain edema and BBB permeability changes, as well as the mechanisms underlying this phenomenon. We induced SAH in mice via endovascular perforation, administered curcumin 15 min after surgery and evaluated neurologic scores, brain water content, Evans blue extravasation, Western blot assay results, and immunohistochemical analysis results 24 h after surgery. Curcumin significantly improved neurologic scores and reduced brain water content in treated mice compared with SAH mice. Furthermore, curcumin decreased Evans blue extravasation, matrix metallopeptidase-9 expression, and the number of Iba-1-positive microglia in treated mice compared with SAH mice. At last, curcumin treatment increased the expression of the tight junction proteins zonula occludens-1 and occludin in treated mice compared with vehicle-treated and sample SAH mice. We demonstrated that curcumin inhibits microglial activation and matrix metallopeptidase-9 expression, thereby reducing brain edema and attenuating post-SAH BBB disruption in mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Anderson, Chastain; Majeste, Andrew; Hanus, Jakub; Wang, Shusheng
2016-12-01
Cigarette smoking remains one of the leading causes of preventable death worldwide. Vascular cell death and dysfunction is a central or exacerbating component in the majority of cigarette smoking related pathologies. The recent development of the electronic nicotine delivery systems known as e-cigarettes provides an alternative to conventional cigarette smoking; however, the potential vascular health risks of e-cigarette use remain unclear. This study evaluates the effects of e-cigarette aerosol extract (EAE) and conventional cigarette smoke extract (CSE) on human umbilical vein endothelial cells (HUVECs). A laboratory apparatus was designed to produce extracts from e-cigarettes and conventional cigarettes according to established protocols for cigarette smoking. EAE or conventional CSE was applied to human vascular endothelial cells for 4-72 h, dependent on the assay. Treated cells were assayed for reactive oxygen species, DNA damage, cell viability, and markers of programmed cell death pathways. Additionally, the anti-oxidants α-tocopherol and n-acetyl-l-cysteine were used to attempt to rescue e-cigarette induced cell death. Our results indicate that e-cigarette aerosol is capable of inducing reactive oxygen species, causing DNA damage, and significantly reducing cell viability in a concentration dependent fashion. Immunofluorescent and flow cytometry analysis indicate that both the apoptosis and programmed necrosis pathways are triggered by e-cigarette aerosol treatment. Additionally, anti-oxidant treatment provides a partial rescue of the induced cell death, indicating that reactive oxygen species play a causal role in e-cigarette induced cytotoxicity. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Combined therapies to treat complex diseases: The role of the gut microbiota in multiple sclerosis.
Calvo-Barreiro, Laura; Eixarch, Herena; Montalban, Xavier; Espejo, Carmen
2018-02-01
The commensal microbiota has emerged as an environmental risk factor for multiple sclerosis (MS). Studies in experimental autoimmune encephalomyelitis (EAE) models have shown that the commensal microbiota is an essential player in triggering autoimmune demyelination. Likewise, the commensal microbiota modulates the host immune system, alters the integrity and function of biological barriers and has a direct effect on several types of central nervous system (CNS)-resident cells. Moreover, a characteristic gut dysbiosis has been recognized as a consistent feature during the clinical course of MS, and the MS-related microbiota is gradually being elucidated. This review highlights animal studies in which commensal microbiota modulation was tested in EAE, as well as the mechanisms of action and influence of the commensal microbiota not only in the local milieu but also in the innate and adaptive immune system and the CNS. Regarding human research, this review focuses on studies that show how the commensal microbiota might act as a pathogenic environmental risk factor by directing immune responses towards characteristic pathogenic profiles of MS. We speculate how specific microbiome signatures could be obtained and used as potential pathogenic events and biomarkers for the clinical course of MS. Finally, we review recently published and ongoing clinical trials in MS patients regarding the immunomodulatory properties exerted by some microorganisms. Because MS is a complex disease with a large variety of associated environmental risk factors, we suggest that current treatments combined with strategies that modulate the commensal microbiota would constitute a broader immunotherapeutic approach and improve the clinical outcome for MS patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Izawa, Hiromi; Kohara, Machiko; Aizawa, Koichi; Suganuma, Hiroyuki; Inakuma, Takahiro; Watanabe, Gen; Taya, Kazuyoshi; Sagai, Masaru
2008-05-01
Diesel exhaust particles (DEPs) are particulate matter from diesel exhaust that contain many toxic compounds, such as polyaromatic hydrocarbons (PAHs). Some toxicities of PAH are thought to be expressed via aryl hydrocarbon receptors (AhRs). The male reproductive toxicity of DEPs might depend on AhR activation induced by PAHs. We hypothesized that AhR antagonists protect against the male reproductive toxicity of DEPs. Quercetin is a flavonoid and a well-known AhR antagonist, while onion contains many flavonoids, including quercetin. Hence, we examined whether quercetin and onion have alleviative effects against the male reproductive toxicity induced by DEPs. BALB/c male mice were fed quercetin- or onion-containing diets and received 10 injections of DEP suspension or vehicle into the dorsal subcutaneous layer over 5 weeks. The mice were euthanized at 2 weeks, after the last treatment, and their organs were collected. Daily sperm production and total incidence of sperm abnormalities were significantly affected in the DEP groups as compared with the vehicle group, but the total incidence of sperm abnormalities in the quercetin + DEP-treated mice was significantly reduced as compared with the DEP-treated mice. The numbers of Sertoli cells were significantly decreased in DEP-treated mice as compared with the vehicle-treated mice, but, the numbers of Sertoli cells were significantly increased in the quercetin and the onion + DEP-treated mice as compared with the DEP-treated mice. These results clearly indicate alleviative effects of quercetin and onion against the male reproductive toxicity induced by DEP.
Mostafa, Osama M S; Eid, Refaat A; Adly, Mohamed A
2011-08-01
The repeated chemotherapy of schistosomiasis has resulted in the emergence of drug-resistant schistosome strains. The development of such resistance has drawn the attention of many authors to alternative drugs. Many medicinal plants were studied to investigate their antischistosomal potency. The present work aimed to evaluate antischistosomal activity of crude aqueous extract of ginger against Schistosoma mansoni. Sixteen mice of C57 strain were exposed to 100 ± 10 cercariae per mouse by the tail immersion method; the mice were divided into two groups: untreated group and ginger-treated one. All mice were sacrificed at the end of 10th week post-infection. Worm recovery and egg counting in the hepatic tissues and faeces were determined. Surface topography of the recovered worms was studied by scanning electron microscopy. Histopathological examination of liver and intestine was done using routine histological procedures. The worm burden and the egg density in liver and faeces of mice treated with ginger were fewer than in non-treated ones. Scanning electron microscopical examination revealed that male worms recovered from mice treated with ginger lost their normal surface architecture, since its surface showed partial loss of tubercles' spines, extensive erosion in inter-tubercle tegumental regions and numerous small blebs around tubercles. Histopathological data indicated a reduction in the number and size of granulomatous inflammatory infiltrations in the liver and intestine of treated mice compared to non-treated mice. The results of the present work suggested that ginger has antischistosomal activities and provided a basis for subsequent experimental and clinical trials.
Tajima, Soichiro; Ikeda, Yasumasa; Enomoto, Hideaki; Imao, Mizuki; Horinouchi, Yuya; Izawa-Ishizawa, Yuki; Kihira, Yoshitaka; Miyamoto, Licht; Ishizawa, Keisuke; Tsuchiya, Koichiro; Tamaki, Toshiaki
2015-08-01
Angiotensin II (ANG II) has been shown to affect iron metabolism through alteration of iron transporters, leading to increased cellular and tissue iron contents. Serum ferritin, a marker of body iron storage, is elevated in various cardiovascular diseases, including hypertension. However, the associated changes in iron absorption and the mechanism underlying increased iron content in a hypertensive state remain unclear. The C57BL6/J mice were treated with ANG II to generate a model of hypertension. Mice were divided into three groups: (1) control, (2) ANG II-treated, and (3) ANG II-treated and ANG II receptor blocker (ARB)-administered (ANG II-ARB) groups. Mice treated with ANG II showed increased serum ferritin levels compared to vehicle-treated control mice. In ANG II-treated mice, duodenal divalent metal transporter-1 and ferroportin (FPN) expression levels were increased and hepatic hepcidin mRNA expression and serum hepcidin concentration were reduced. The mRNA expression of bone morphogenetic protein 6 and CCAAT/enhancer-binding protein alpha, which are regulators of hepcidin, was also down-regulated in the livers of ANG II-treated mice. In terms of tissue iron content, macrophage iron content and renal iron content were increased by ANG II treatment, and these increases were associated with reduced expression of transferrin receptor 1 and FPN and increased expression of ferritin. These changes induced by ANG II treatment were ameliorated by the administration of an ARB. Angiotensin II (ANG II) altered the expression of duodenal iron transporters and reduced hepcidin levels, contributing to the alteration of body iron distribution.
Endothelin-1 mediates natriuresis but not polyuria during vitamin D-induced acute hypercalcaemia.
Tokonami, Natsuko; Cheval, Lydie; Monnay, Isabelle; Meurice, Guillaume; Loffing, Johannes; Feraille, Eric; Houillier, Pascal
2017-04-15
Hypercalcaemia can occur under various pathological conditions, such as primary hyperparathyroidism, malignancy or granulomatosis, and it induces natriuresis and polyuria in various species via an unknown mechanism. A previous study demonstrated that hypercalcaemia induced by vitamin D in rats increased endothelin (ET)-1 expression in the distal nephron, which suggests the involvement of the ET system in hypercalcaemia-induced effects. In the present study, we demonstrate that, during vitamin D-induced hypercalcaemia, the activation of ET system by increased ET-1 is responsible for natriuresis but not for polyuria. Vitamin D-treated hypercalcaemic mice showed a blunted response to amiloride, suggesting that epithelial sodium channel function is inhibited. We have identified an original pathway that specifically mediates the effects of vitamin D-induced hypercalcaemia on sodium handling in the distal nephron without affecting water handling. Acute hypercalcaemia increases urinary sodium and water excretion; however, the underlying molecular mechanism remains unclear. Because vitamin D-induced hypercalcaemia increases the renal expression of endothelin (ET)-1, we hypothesized that ET-1 mediates the effects of hypercalcaemia on renal sodium and water handling. Hypercalcaemia was induced in 8-week-old, parathyroid hormone-supplemented, male mice by oral administration of dihydrotachysterol (DHT) for 3 days. DHT-treated mice became hypercalcaemic and displayed increased urinary water and sodium excretion compared to controls. mRNA levels of ET-1 and the transcription factors CCAAT-enhancer binding protein β and δ were specifically increased in the distal convoluted tubule and downstream segments in DHT-treated mice. To examine the role of the ET system in hypercalcaemia-induced natriuresis and polyuria, mice were treated with the ET-1 receptor antagonist macitentan, with or without DHT. Mice treated with both macitentan and DHT displayed hypercalcaemia and polyuria similar to that in mice treated with DHT alone; however, no increase in urinary sodium excretion was observed. To identify the affected sodium transport mechanism, we assessed the response to various diuretics in control and DHT-treated hypercalcaemic mice. Amiloride, an inhibitor of the epithelial sodium channel (ENaC), increased sodium excretion to a lesser extent in DHT-treated mice compared to control mice. Mice treated with either macitentan+DHT or macitentan alone had a similar response to amiloride. In summary, vitamin D-induced hypercalcaemia increases the renal production of ET-1 and decreases ENaC activity, which is probably responsible for the rise in urinary sodium excretion but not for polyuria. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Endothelin‐1 mediates natriuresis but not polyuria during vitamin D‐induced acute hypercalcaemia
Tokonami, Natsuko; Cheval, Lydie; Monnay, Isabelle; Meurice, Guillaume; Loffing, Johannes; Feraille, Eric
2017-01-01
Key points Hypercalcaemia can occur under various pathological conditions, such as primary hyperparathyroidism, malignancy or granulomatosis, and it induces natriuresis and polyuria in various species via an unknown mechanism.A previous study demonstrated that hypercalcaemia induced by vitamin D in rats increased endothelin (ET)‐1 expression in the distal nephron, which suggests the involvement of the ET system in hypercalcaemia‐induced effects.In the present study, we demonstrate that, during vitamin D‐induced hypercalcaemia, the activation of ET system by increased ET‐1 is responsible for natriuresis but not for polyuria.Vitamin D‐treated hypercalcaemic mice showed a blunted response to amiloride, suggesting that epithelial sodium channel function is inhibited.We have identified an original pathway that specifically mediates the effects of vitamin D‐induced hypercalcaemia on sodium handling in the distal nephron without affecting water handling. Abstract Acute hypercalcaemia increases urinary sodium and water excretion; however, the underlying molecular mechanism remains unclear. Because vitamin D‐induced hypercalcaemia increases the renal expression of endothelin (ET)‐1, we hypothesized that ET‐1 mediates the effects of hypercalcaemia on renal sodium and water handling. Hypercalcaemia was induced in 8‐week‐old, parathyroid hormone‐supplemented, male mice by oral administration of dihydrotachysterol (DHT) for 3 days. DHT‐treated mice became hypercalcaemic and displayed increased urinary water and sodium excretion compared to controls. mRNA levels of ET‐1 and the transcription factors CCAAT‐enhancer binding protein β and δ were specifically increased in the distal convoluted tubule and downstream segments in DHT‐treated mice. To examine the role of the ET system in hypercalcaemia‐induced natriuresis and polyuria, mice were treated with the ET‐1 receptor antagonist macitentan, with or without DHT. Mice treated with both macitentan and DHT displayed hypercalcaemia and polyuria similar to that in mice treated with DHT alone; however, no increase in urinary sodium excretion was observed. To identify the affected sodium transport mechanism, we assessed the response to various diuretics in control and DHT‐treated hypercalcaemic mice. Amiloride, an inhibitor of the epithelial sodium channel (ENaC), increased sodium excretion to a lesser extent in DHT‐treated mice compared to control mice. Mice treated with either macitentan+DHT or macitentan alone had a similar response to amiloride. In summary, vitamin D‐induced hypercalcaemia increases the renal production of ET‐1 and decreases ENaC activity, which is probably responsible for the rise in urinary sodium excretion but not for polyuria. PMID:28120456
Cadmium modulates hematopoietic stem and progenitor cells and skews toward myelopoiesis in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yandong; Yu, Xinchun
The heavy metal cadmium (Cd) is known to modulate immunity and cause osteoporosis. However, how Cd influences on hematopoiesis remain largely unknown. Herein, we show that wild-type C57BL/6 (B6) mice exposed to Cd for 3 months had expanded bone marrow (BM) populations of long-term hematopoietic stem cells (LT-HSCs), common myeloid progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs), while having reduced populations of multipotent progenitors (MPPs) and common lymphoid progenitors (CLPs). A competitive mixed BM transplantation assay indicates that BM from Cd-treated mice had impaired LT-HSC ability to differentiate into mature cells. In accordance with increased myeloid progenitors and decreased lymphoid progenitors,more » the BM and spleens of Cd-treated mice had more monocytes and/or neutrophils and fewer B cells and T cells. Cd impaired the ability of the non-hematopoietic system to support LT-HSCs, in that lethally irradiated Cd-treated recipients transplanted with normal BM cells had reduced LT-HSCs after the hematopoietic system was fully reconstituted. This is consistent with reduced osteoblasts, a known critical component for HSC niche, observed in Cd-treated mice. Conversely, lethally irradiated control recipients transplanted with BM cells from Cd-treated mice had normal LT-HSC reconstitution. Furthermore, both control mice and Cd-treated mice that received Alendronate, a clinical drug used for treating osteoporosis, had BM increases of LT-HSCs. Thus, the results suggest Cd increase of LT-HSCs is due to effects on HSCs and not on osteoblasts, although, Cd causes osteoblast reduction and impaired niche function for maintaining HSCs. Furthermore, Cd skews HSCs toward myelopoiesis. - Highlights: • Cd increases the number of LT-HSCs but impairs their development. • Cd-treated hosts have compromised ability to support LT-HSCs. • Cd promotes myelopoiesis at the expense of lymphopoiesis at the MPP level.« less
Demars, Fanny; Clark, Kristen; Wyeth, Megan S; Abrams, Emily; Buckmaster, Paul S
2018-05-01
Harmful blooms of domoic acid (DA)-producing algae are a problem in oceans worldwide. DA is a potent glutamate receptor agonist that can cause status epilepticus and in survivors, temporal lobe epilepsy. In mice, one-time low-dose in utero exposure to DA was reported to cause hippocampal damage and epileptiform activity, leading to the hypothesis that unrecognized exposure to DA from contaminated seafood in pregnant women can damage the fetal hippocampus and initiate temporal lobe epileptogenesis. However, development of epilepsy (i.e., spontaneous recurrent seizures) has not been tested. In the present study, long-term seizure monitoring and histology was used to test for temporal lobe epilepsy following prenatal exposure to DA. In Experiment One, the previous study's in utero DA treatment protocol was replicated, including use of the CD-1 mouse strain. Afterward, mice were video-monitored for convulsive seizures from 2 to 6 months old. None of the CD-1 mice treated in utero with vehicle or DA was observed to experience spontaneous convulsive seizures. After seizure monitoring, mice were evaluated for pathological evidence of temporal lobe epilepsy. None of the mice treated in utero with DA displayed the hilar neuron loss that occurs in patients with temporal lobe epilepsy and in the mouse pilocarpine model of temporal lobe epilepsy. In Experiment Two, a higher dose of DA was administered to pregnant FVB mice. FVB mice were tested as a potentially more sensitive strain, because they have a lower seizure threshold, and some females spontaneously develop epilepsy. Female offspring were monitored with continuous video and telemetric bilateral hippocampal local field potential recording at 1-11 months old. A similar proportion of vehicle- and DA-treated female FVB mice spontaneously developed epilepsy, beginning in the fourth month of life. Average seizure frequency and duration were similar in both groups. Seizure frequency was lower than that of positive-control pilocarpine-treated mice, but seizure duration was similar. None of the mice treated in utero with vehicle or DA displayed hilar neuron loss or intense mossy fiber sprouting, a form of aberrant synaptic reorganization that develops in patients with temporal lobe epilepsy and in pilocarpine-treated mice. FVB mice that developed epilepsy (vehicle- and DA-treated) displayed mild mossy fiber sprouting. Results of this study suggest that a single subconvulsive dose of DA at mid-gestation does not cause temporal lobe epilepsy in mice. Copyright © 2018 Elsevier B.V. All rights reserved.
Abe, Takahiro; Sato, Tsuyoshi; Kokabu, Shoichiro; Hori, Naoko; Shimamura, Yumiko; Sato, Tomoya; Yoda, Tetsuya
2016-07-01
The nitrogen-containing bisphosphonate (BP) zoledronic acid (ZA) is a potent antiresorptive drug used in conjunction with standard cancer therapy to treat osteolysis or hypercalcemia due to malignancy. However, it is unclear how ZA influences the circulating levels of bone remodeling factors. The aim of this study was to evaluate the effects of ZA on the serum levels of soluble receptor activator of NF-kB ligand (sRANKL) and osteoprotegerin (OPG). The following four groups of C57BL/6 mice were used (five mice per group): (1) the placebo+phosphate-buffered saline (PBS) group, in which placebo-treated mice were injected once weekly with PBS for 4weeks; (2) the placebo+ZA group, in which placebo-treated mice were injected once weekly with ZA for 4weeks; (3) the prednisolone (PSL)+PBS group, in which PSL-treated mice were injected once weekly with PBS for 4weeks; and (4) the PSL+ZA group, in which PSL-treated mice were injected once weekly with ZA for 4weeks. At the 3-week time point, all mice were subjected to oral inflammatory stimulation with bacterial lipopolysaccharide (LPS). The sera of these mice were obtained every week and the levels of sRANKL and OPG were measured using enzyme-linked immunosorbent assay. At the time of sacrifice, femurs were prepared for micro-computed tomography (micro-CT), histological, and histomorphometric analyses. Our data indicated that ZA administration remarkably reduced bone turnover and significantly increased the basal level of sRANKL. Interestingly, the PSL+ZA group showed a dramatically elevated sRANKL level after LPS stimulation. In contrast, the PSL+ZA group in nonobese diabetic mice with severe combined immunodeficiency disease (NOD-SCID mice), which are characterized by the absence of functional T- and B-lymphocytes, showed no increase in the sRANKL level. Our data suggest that, particularly with combination treatment of ZA and glucocorticoids, surviving lymphocytes might be the source of inflammation-induced sRANKL. Thus, circulating sRANKL levels might be modulated by ZA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fagan, Peter K.; Hornitzky, Michael A.; Bettelheim, Karl A.; Djordjevic, Steven P.
1999-01-01
A multiplex PCR was developed for the rapid detection of genes encoding Shiga toxins 1 and 2 (stx1 and stx2), intimin (eaeA), and enterohemolysin A (hlyA) in 444 fecal samples derived from healthy and clinically affected cattle, sheep, pigs, and goats. The method involved non-solvent-based extraction of nucleic acid from an aliquot of an overnight culture of feces in EC (modified) broth. The detection limit of the assay for both fecal samples and pure cultures was between 18 and 37 genome equivalents. stx1 and hlyA were the most commonly encountered virulence factors. PMID:9925634
Analysing Blast and Fragment Penetration Effects on Composite Helicopter Structures
2005-03-01
7.3 BC/AC 10 -45 7.2/7.3 DE/AE - 4.9/5.0 E/AE - 11 45 8.5/8.6 DE/AE 7.4/7. A’,E’ 4.8/8.5 E/AE 7.4/7.7 A’/E’ = very 9 local12 7.2/7.3 DE/AE - 7.2/7.5 D...6 ±45 7 ±45 8 0/90 9 45 10 0/90 11 ±45 12 0/90 Table 11 : Laminate lay-up for the tensile and in-plane shear test specimen O)2004 Advanced...onderling gevolgen voor de manier van construeren, vergeleken. maar ook voor de kwetsbaarbeid. Schet fins/a~g Deze ontwvikkelingen vereisen aanpassing
Knutsson, Anki; Hsiung, Sabrina; Celik, Selvi; Rattik, Sara; Mattisson, Ingrid Yao; Wigren, Maria; Scher, Howard I; Nilsson, Jan; Hultgårdh-Nilsson, Anna
2016-05-18
Androgen-deprivation therapy (ADT) for prostate cancer has been associated with increased risk for development of cardiovascular events and recent pooled analyses of randomized intervention trials suggest that this primarily is the case for patients with pre-existing cardiovascular disease treated with gonadotropin-releasing hormone receptor (GnRH-R) agonists. In the present study we investigated the effects of the GnRH-R agonist leuprolide and the GnRH-R antagonist degarelix on established atherosclerotic plaques in ApoE(-/-) mice. A shear stress modifier was used to produce both advanced and more stable plaques in the carotid artery. After 4 weeks of ADT, increased areas of necrosis was observed in stable plaques from leuprolide-treated mice (median and IQR plaque necrotic area in control, degarelix and leuprolide-treated mice were 0.6% (IQR 0-3.1), 0.2% (IQR 0-4.4) and 11.0% (IQR 1.0-19.8), respectively). There was also evidence of increased inflammation as assessed by macrophage immunohistochemistry in the plaques from leuprolide-treated mice, but we found no evidence of such changes in plaques from control mice or mice treated with degarelix. Necrosis destabilizes plaques and increases the risk for rupture and development of acute cardiovascular events. Destabilization of pre-existing atherosclerotic plaques could explain the increased cardiovascular risk in prostate cancer patients treated with GnRH-R agonists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoyama, Hiroaki; Couse, John F.; Hewitt, Sylvia C.
2005-12-15
In a 2-year NTP bioassay, Bromoethane (BE) was found to induce endometrial neoplasms in the uterus of B6C3F1 mice [; ]. In women, hormonal influences, such as 'unopposed' estrogenic stimulus, have been implicated as important etiologic factors in uterine cancer. BE, however, does not affect the serum concentrations of sex hormones in female B6C3F1 mice [] and the mechanism of BE-induced uterine carcinogenesis still remains unclear. In the present study, we examined the estrogenic effects of BE on the uterus of ovariectomized B6C3F1 mice and on Ishikawa cells. Groups of 6 mice were given daily s.c. injections of 0, 100,more » 500 or 1000 mg BE/kg for 3 consecutive days. Mice treated with 17{beta}-estradiol served as positive controls. Mice were necropsied 24 h after the final injection, and uteri were weighed and examined histologically and immunohistochemically along with the vagina. Changes observed in the estrogen-treated mice included increased uterine weights, edema and inflammation of the endometrium, increased epithelial layers of the uterine and vaginal lumens and keratinization of the vaginal epithelium. In the BE-treated mice, no such changes occurred; however, immunohistochemical staining of the uterus revealed a significant increase in immunoexpression of the estrogen receptor alpha (ER{alpha}) in the two higher dose groups. Analysis of mRNA also showed slightly increased uterine ER{alpha} expression in these groups. Upregulated expression of ER{alpha} was confirmed in BE-treated Ishikawa cells, in which Western blotting analyses identified an intense signal at approximately 66 kDa, which is consistent with ER{alpha}. These data suggest that upregulated expression of ER{alpha} may be important in the induction of endometrial neoplasms in BE-treated mice.« less
Tofani, S; Barone, D; Berardelli, M; Berno, E; Cintorino, M; Foglia, L; Ossola, P; Ronchetto, F; Toso, E; Eandi, M
2003-07-01
Previous works showed that exposure to static and extremely low frequency (ELF) magnetic fields (MF) over 3 mT slows down the growth kinetics of human tumors engrafted s.c. in immunodeficient mice, reducing their metastatizing power and prolonging mouse survival. In the experiments reported here, immunocompetent mice bearing murine Lewis Lung carcinomas (LLCs) or B16 melanotic melanomas were exposed to MF and treated respectively with two commonly used anti-cancer drugs: cis-diamminedichloroplatinum (cis-platin) and N,N-bis (2-chloroethyl)tetra-hydro-2H-1,3,2-oxazaphosphorin-2-amine 2-oxide (cyclophosphamide). The experiment endpoint was survival time. The survival time of mice treated with cis-platin (3mg/kg i.p.) and exposed to MF was significantly (P<0.01) longer than that of mice treated only with cis-platin or only exposed to MF, superimposing that of mice treated with 10mg/kg i.p. of the drug, showing that MF act synergically with the pharmacological treatment. On the contrary, when mice treated with cyclophosphamide (50mg/kg i.p.) were exposed to MF no synergic effects were observed, the survival curve being exactly the same as that of mice treated with the drug alone. No clinical signs or toxicity were seen in any of the mice exposed to MF alone or along with cis-platin or cyclophosphamide treatment, compared to mice given only the two known drugs.A possible explanation for the synergic effect of MF being found in mice treated with cis-platin could be that the platinum ion stimulates radical production and that MF enhance active oxygen production bringing about changes in tumor cell membrane permeability, influencing positively the drug uptake. Alternatively, or in addition to this, it has been demonstrated that the rate of conversion of cis-platin to reactive species able to bind to DNA, is increased by localized production of free radicals by MF.
Survival Advantage of Neonatal CNS Gene Transfer for Late Infantile Neuronal Ceroid Lipofuscinosis
Sondhi, Dolan; Peterson, Daniel A.; Edelstein, Andrew M.; del Fierro, Katrina; Hackett, Neil R.; Crystal, Ronald G.
2009-01-01
Summary Late infantile neuronal ceroid lipofuscinosis (LINCL), a fatal autosomal recessive neurodegenerative lysosomal storage disorder of childhood, is caused by mutations in the CLN2 gene, resulting in deficiency of the protein tripeptidyl peptidase I (TPP-I). We have previously shown that direct CNS administration of AAVrh.10hCLN2 to adult CLN2 knockout mice, a serotype rh.10 adeno-associated virus expressing the wild type CLN2 cDNA, will partially improve neurological function and survival. In this study, we explore the hypothesis that administration of AAVrh.10hCLN2 to the neonatal brain will significantly improve the results of AAVrh.10hCLN2 therapy. To assess this concept, AAVrh.10hCLN2 vector was administered directly to the CNS of CLN2 knockout mice at 2 days, 3 wk and 7 wk of age. While all treatment groups show a marked increase in total TPP-I activity over wild-type mice, neonatally treated mice displayed high levels of TPP-I activity in the CNS 1 yr after administration which was spread throughout the brain. Using behavioral markers, 2 day treated mice demonstrate marked improvement over 3 wk, 7 wk or untreated mice. Finally, neonatal administration of AAVrh.10hCLN2 was associated with markedly enhanced survival, with a median time of death 376 days for neonatal treated mice, 277 days for 3 wk treated mice, 168 days for 7 wk treated mice, and 121 days for untreated mice. These data suggest that neonatal treatment offers many unique advantages, and that early detection and treatment may be essential for maximal gene therapy for childhood lysosomal storage disorders affecting the CNS. PMID:18639872
Nagarkar, Deepti R; Bowman, Emily R; Schneider, Dina; Wang, Qiong; Shim, Jee; Zhao, Ying; Linn, Marisa J; McHenry, Christina L; Gosangi, Babina; Bentley, J Kelley; Tsai, Wan C; Sajjan, Umadevi S; Lukacs, Nicholas W; Hershenson, Marc B
2010-08-15
Human rhinovirus is responsible for the majority of virus-induced asthma exacerbations. To determine the immunologic mechanisms underlying rhinovirus (RV)-induced asthma exacerbations, we combined mouse models of allergic airways disease and human rhinovirus infection. We inoculated OVA-sensitized and challenged BALB/c mice with rhinovirus serotype 1B, a minor group strain capable of infecting mouse cells. Compared with sham-infected, OVA-treated mice, virus-infected mice showed increased lung infiltration with neutrophils, eosinophils and macrophages, airway cholinergic hyperresponsiveness, and increased lung expression of cytokines including eotaxin-1/CCL11, IL-4, IL-13, and IFN-gamma. Administration of anti-eotaxin-1 attenuated rhinovirus-induced airway eosinophilia and responsiveness. Immunohistochemical analysis showed eotaxin-1 in the lung macrophages of virus-infected, OVA-treated mice, and confocal fluorescence microscopy revealed colocalization of rhinovirus, eotaxin-1, and IL-4 in CD68-positive cells. RV inoculation of lung macrophages from OVA-treated, but not PBS-treated, mice induced expression of eotaxin-1, IL-4, and IL-13 ex vivo. Macrophages from OVA-treated mice showed increased expression of arginase-1, Ym-1, Mgl-2, and IL-10, indicating a shift in macrophage activation status. Depletion of macrophages from OVA-sensitized and -challenged mice reduced eosinophilic inflammation and airways responsiveness following RV infection. We conclude that augmented airway eosinophilic inflammation and hyperresponsiveness in RV-infected mice with allergic airways disease is directed in part by eotaxin-1. Airway macrophages from mice with allergic airways disease demonstrate a change in activation state characterized in part by altered eotaxin and IL-4 production in response to RV infection. These data provide a new paradigm to explain RV-induced asthma exacerbations.
Nam, Sung Min; Kim, Jong Whi; Yoo, Dae Young; Kim, Woosuk; Jung, Hyo Young; Choi, Jung Hoon; Hwang, In Koo; Seong, Je Kyung
2016-01-01
Aluminum (Al) accumulation increases with aging, and long-term exposure to Al is regarded as a risk factor for Alzheimer's disease. In this study, we investigated the effects of Al and/or D-galactose on neural stem cells, proliferating cells, differentiating neuroblasts, and mature neurons in the hippocampal dentate gyrus. AlCl3 (40 mg/kg/day) was intraperitoneally administered to C57BL/6J mice for 4 weeks. In addition, vehicle (physiological saline) or D-galactose (100 mg/kg) was subcutaneously injected to these mice immediately after AlCl3 treatment. Neural stem cells, proliferating cells, differentiating neuroblasts, and mature neurons were detected using the relevant marker for each cell type, including nestin, Ki67, doublecortin, and NeuN, respectively, via immunohistochemistry. Subchronic (4 weeks) exposure to Al in mice reduced neural stem cells, proliferating cells, and differentiating neuroblasts without causing any changes to mature neurons. This Al-induced reduction effect was exacerbated in D-galactose-treated mice compared to vehicle-treated adult mice. Moreover, exposure to Al enhanced lipid peroxidation in the hippocampus and expression of antioxidants such as Cu, Zn- and Mn-superoxide dismutase in D-galactose-treated mice. These results suggest that Al accelerates the reduction of neural stem cells, proliferating cells, and differentiating neuroblasts in D-galactose-treated mice via oxidative stress, without inducing loss in mature neurons. PMID:26243606
Minocycline protects against lipopolysaccharide-induced cognitive impairment in mice.
Hou, Yue; Xie, Guanbo; Liu, Xia; Li, Guoxun; Jia, Congcong; Xu, Jinghua; Wang, Bing
2016-03-01
The role of glial cells, especially microglia and astrocytes, in neuroinflammation and cognition has been studied intensively. Lipopolysaccharide (LPS), a commonly used inducer of neuroinflammation, can cause cognitive impairment. Minocycline is known to possess potent neuroprotective activity, but its effect on LPS-induced cognitive impairment is unknown. This study aims to investigate the effects of minocycline on LPS-induced cognitive impairment and glial cell activation in mice. Behavioral tests were conducted for cognitive function, immunohistochemistry for microglial and astrocyte response, and quantitative PCR for mRNA expression of proinflammatory cytokines. Minocycline significantly reversed the decreased spontaneous alternation induced by intrahippocampal administration of LPS in the Y-maze task. In the Morris water maze place navigation test, minocycline decreased the escape latency and distance traveled compared to LPS-treated mice. In the probe test, minocycline-treated mice spent more time in the target quadrant and crossed the platform area more frequently than animals in the LPS-treated group. Minocycline produced a significant decrease in the number of Iba-1- and GFAP-positive hippocampal cells compared to the LPS-treated group. Minocycline-treated mice had significantly reduced hippocampal TNF-α and IL-1β mRNA levels compared with LPS-treated animals. Minocycline caused a significant increase in hippocampal BDNF expression compared to the LPS-treated group. Minocycline can attenuate LPS-induced cognitive impairments in mice. This effect may be associated with its action to suppress the activation of microglia and astrocytes and to normalize BDNF expression. Since neuroinflammatory processes and cognitive impairments are implicated in neurodegenerative disorders, minocycline may be a promising candidate for treating such diseases.
Toda, Naohiro; Mori, Kiyoshi; Kasahara, Masato; Koga, Kenichi; Ishii, Akira; Mori, Keita P; Osaki, Keisuke; Mukoyama, Masashi; Yanagita, Motoko; Yokoi, Hideki
2018-06-01
Connective tissue growth factor (CTGF/CCN2) regulates the signalling of other growth factors and promotes fibrosis. CTGF is increased in mice and humans with peritoneal fibrosis. Inhibition of CTGF has not been examined as a potential therapeutic target for peritoneal fibrosis because systemic CTGF knockout mice die at the perinatal stage. To study the role of CTGF in peritoneal fibrosis of adult mice, we generated CTGF conditional knockout (cKO) mice by crossing CTGF floxed mice with RosaCreERT2 mice. We administered tamoxifen to Rosa-CTGF cKO mice to delete the CTGF gene throughout the body. We induced peritoneal fibrosis by intraperitoneal injection of chlorhexidine gluconate (CG) in wild-type and Rosa-CTGF cKO mice. Induction of peritoneal fibrosis in wild-type mice increased CTGF expression and produced severe thickening of the peritoneum. In contrast, CG-treated Rosa-CTGF cKO mice exhibited reduced thickening of the peritoneum. Peritoneal equilibration test revealed that the excessive peritoneal small-solute transport in CG-treated wild-type mice was normalized by CTGF deletion. CG-treated Rosa-CTGF cKO mice exhibited a reduced number of αSMA-, Ki67-, CD31- and MAC-2-positive cells in the peritoneum. Analyses of peritoneal mRNA showed that CG-treated Rosa-CTGF cKO mice exhibited reduced expression of Cd68, Acta2 (αSMA), Pecam1 (CD31) and Vegfa. These results indicate that a deficiency of CTGF can reduce peritoneal thickening and help to maintain peritoneal function by reducing angiogenesis and inflammation in peritoneal fibrosis. These results suggest that CTGF plays an important role in the progression of peritoneal fibrosis.
Krijt, J; Stranska, P; Maruna, P; Vokurka, M; Sanitrak, J
1997-01-01
Administration of oxadiazon or oxyfluorfen (1000 ppm in the diet) to male BALB/c mice for 9 days resulted in experimental porphyria, resembling the acute phase of human variegate porphyria. Urinary concentrations of 5-aminolevulinic acid and porphobilinogen reached 1500 and 3000 mumol/L, respectively. Both herbicides caused a decrease of protoporphyrinogen oxidase activity in liver and kidney. Brain protoporphyrinogen oxidase activity was not altered. Liver and kidney porphyrin content increased to 11 and 17 nmol/g, respectively (control mice, 2 nmol/g). Over 50% of liver and kidney porphyrins were in the reduced (porphyrinogen) form. Bile of oxadiazon-treated mice contained 700 nmol/mL of protoporphyrinogen (control mice, 15 nmol/mL). Porphyrin content of the trigeminal nerve increased from 1 nmol/g in control animals to 11 nmol/g in oxadiazon-treated animals, suggesting a possible contribution of peripheral nerve porphyrins to porphyric neuropathy. Mice treated with 125 ppm of oxadiazon in the diet for 9 days excreted moderately elevated levels of porphobilinogen in urine (control mice, less than 50 mumol/L; treated mice, 330 mumol/L). Administration of phenobarbital or phenytoin (single injections on days 7, 8, and 9) increased the urinary porphobilinogen concentration to 3500 mumol/L. This response to porphyrogenic drugs resembles the response observed in human acute porphyrias.