Science.gov

Sample records for eagle creek watershed

  1. Assessment of exposure of fish to emerging contaminants in the Eagle Creek Watershed

    EPA Science Inventory

    The Eagle Creek Watershed (ECW) encompasses 162 square miles in central Indiana upstream of the Eagle Creek Reservoir, a public drinking water source for the city of Indianapolis. The dominant land-cover is agriculture, although some portions are undergoing urbanization, with th...

  2. 77 FR 42714 - Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC; Notice of Application...: Eagle Creek Hydropower, LLC; Eagle Creek Land Resources, LLC; and Eagle Creek Water Resources, LLC. e... Contact: Robert Gates, Senior Vice President-- Operations, Eagle Creek Hydropower, LLC, Eagle Creek Water...

  3. Effects of best-management practices in Eagle and Joos Valley Creeks in the Waumandee Creek Priority Watershed, Wisconsin, 1990-2007

    Graczyk, David J.; Walker, John F.; Bannerman, Roger T.; Rutter, Troy D.

    2012-01-01

    In many watersheds, nonpoint-source contamination is a major contributor to water-quality problems. In response to the recognition of the importance of nonpoint sources, the Wisconsin Nonpoint Source Water Pollution Abatement Program (Nonpoint Program) was enacted in 1978. This report summarizes the results of a study to assess the effectiveness of watershed-management practices for controlling nonpoint-source contamination for the Eagle Creek and Joos Valley Creek Watersheds. Streamflow-gaging stations equipped for automated sample collection and continuous recording of stream stage were installed in July 1990 at Eagle and Joos Valley Creeks and were operated through September 2007. In October 1990, three rain gages were installed in each watershed and were operated through September 2007. Best-Management Practices (BMPs) were installed during 1993 to 2000 in Eagle and Joos Valley Creeks and were tracked throughout the study period. By the year 2000, a majority of the BMPs were implemented in the two watersheds and goals set by the Wisconsin Department of Natural Resources and the local Land Conservation Department had been achieved for the two study watersheds (Wisconsin Department of Natural Resources, 1990). The distributions of the rainstorms that produced surface runoff and storm loads were similar in the pre-BMP (1990-93) and post-BMP implementation (2000-07) periods for both Eagle and Joos Valley Creeks. The highest annual streamflow occurred at both sites in water year 1993, which corresponded to the greatest above normal nonfrozen precipitation measured at two nearby NOAA weather stations. The minimum streamflow occurred in water year 2007 at both sites. Base-flow and stormwater samples were collected and analyzed for suspended solids, total phosphorus, and ammonia nitrogen. For both Eagle and Joos Valley Creeks the median concentrations of suspended solids and total phosphorus in base flow were lower during the post-BMP period compared to the pre

  4. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ...; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land Resources, LLC; Notice... 24, 2012, AER NY-Gen, LLC (transferor), Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources.... Cherry, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources...

  5. 75 FR 27332 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... 9690-106] AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek... Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC (transferees) filed an.... Paul Ho, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources...

  6. Rapid reconnaissance hydrogeologic modeling on public lands using analytic element solutions coupled with MODFLOW - application to the Eagle Creek watershed, New Mexico

    NASA Astrophysics Data System (ADS)

    Congdon, R. D.

    2012-12-01

    There is frequently a need in land management agencies for a quick and easy method for estimating hydrogeologic conditions in a watershed for which there is very little subsurface information. Setting up a finite difference or finite element model takes valuable time that often is not available when decisions need to be made quickly. An analytic element model (AEM), GFLOW in this case, may enable the investigator to produce a preliminary steady-state model for a watershed, and to easily evaluate variants of the conceptual model. Use of preexisting data, such as stream gage data or USGS reports makes the job much easier. Solutions to analytic element models are obtained within seconds. The Eagle Creek watershed in central New Mexico is a site of local water supply issues in an area of volcanic and plutonic rocks. Parameters estimated by groundwater consultants and the USGS, and discharge data from three USGS stream gages were used to set up the steady-state analytical model (GFLOW). Matching gage records with line-sink fluxes facilitated conceptualization of local groundwater flow and quick analysis of the effects of steady water supply pumping on Eagle Creek. Because of steep topgraphy and limited access, a water supply well is located within the stream channel within 20 meters of the creek, and it would be useful to evaluate the effects of the well on stream flow. A USGS report (SIR 2010-5205) revealed a section of Eagle Creek with a high vertical conductivity which results in flow loss of up to 34 l/s (including flow to the water table and flow into alluvium) when the well was pumped and the water table was lowered below the channel bottom. The water supply well was simulated with a steady-state well pumping at the average and maximum rates of 12 l/s and 31 l/s. The initial simulation shows that pumping at these rates results in stream flow loss of 19% and 51%, respectively. The simulation was conducted with average flow conditions, and this information will be

  7. Alameda Creeks Healthy Watersheds Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Alameda Creeks Healthy Watersheds Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resour

  8. The Caspar Creek Experimental Watershed

    T. E. Lisle

    1979-01-01

    The Caspar Creek Experimental Watershed was set up as a traditional paired watershed to investigate the effects of logging and road construction on erosion and sedimentation. Research participants have come from the California Division of Forestry, the Pacific Southwest Forest and Range Experiment Station, the California Department of Water Resources, the California...

  9. Bonanza Creek Experimental Forest & Caribou-Poker Creeks Research Watershed.

    Valerie Rapp

    2003-01-01

    Bonanza Creek Experimental Forest and Caribou-Poker Creeks Research Watershed are located in the boreal forest of interior Alaska. Research focuses on basic ecological processes, hydrology, disturbance regimes, and climate change in the boreal forest region. Interior Alaska lies between the Alaska Range to the south and the Brooks Range to the north and covers an area...

  10. Update on the Caspar Creek watershed study

    Peter Cafferata

    1987-01-01

    Readers of this Newsletter are aware that CDF and the USFS, through its Pacific Southwest Forest and Range Experiment Stationa at Arcata (PSW), are carrying out a long term cooperative watershed experiment in JDSF's Caspar Creek drainage.

  11. CEAP in the Cedar Creek watershed

    This publication provides research updates from the Conservation Effects Assessment Project (CEAP) in the Cedar Creek watershed in Indiana. In this inaugural issue, we explain the CEAP and why the National Soil Erosion Research Lab is doing research in Cedar Creek. It also includes a 'Research Featu...

  12. Overview of the Caspar Creek watershed study

    Norm Henry

    1998-01-01

    The California Department of Forestry and Fire Protection (CDF) and the Pacific Southwest Research Station, Redwood Sciences Laboratory (PSW) have been conducting watershed research within the Caspar Creek watershed on the Jackson Demonstration State Forest, in northern California, since 1962. A concrete broad-crested weir with a 120 degree low-flow V-notch was...

  13. Geology of the Teakettle Creek watersheds

    Robert S. LaMotte

    1937-01-01

    The Teakettle Creek Experimental Watersheds lie for the most part on quartzites of probable Triassic age. However one of the triplicate drainages has a considerable acreage developed on weathered granodiorite. Topography is relatively uniform and lends itself to triplicate watershed studies. Locations for dams are suitable if certain engineering precautions...

  14. Environmental setting of Maple Creek watershed, Nebraska

    Fredrick, Brian S.; Linard, Joshua I.; Carpenter, Jennifer L.

    2006-01-01

    The Maple Creek watershed covers a 955-square-kilometer area in eastern Nebraska, which is a region dominated by agricultural land use. The Maple Creek watershed is one of seven areas currently included in a nationwide study of the sources, transport, and fate of water and chemicals in agricultural watersheds. This study, known as the topical study of 'Agricultural Chemicals: Sources, Transport, and Fate' is part of the National Water-Quality Assessment Program being conducted by the U.S. Geological Survey. The Program is designed to describe water-quality conditions and trends based on representative surface- and ground-water resources across the Nation. The objective of the Agricultural Chemicals topical study is to investigate the sources, transport, and fate of selected agricultural chemicals in a variety of agriculturally diverse environmental settings. The Maple Creek watershed was selected for the Agricultural Chemicals topical study because its watershed represents the agricultural setting that characterizes eastern Nebraska. This report describes the environmental setting of the Maple Creek watershed in the context of how agricultural practices, including agricultural chemical applications and irrigation methods, interface with natural settings and hydrologic processes. A description of the environmental setting of a subwatershed within the drainage area of Maple Creek is included to improve the understanding of the variability of hydrologic and chemical cycles at two different scales.

  15. Hydrology and the effects of selected agricultural best-management practices in the Bald Eagle Creek Watershed, York County, Pennsylvania, prior to and during nutrient management : Water-Quality Study for the Chesapeake Bay Program

    Langland, Michael J.; Fishel, David K.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Susquehanna River Basin Commission and the Pennsylvania Department of Environmental Resources, conducted a study as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program to determine the effects of nutrient management of surface-water quality by reducing animal units in a 0.43-square-mile agricultural watershed in York County. The study was conducted primarily from October 1985 through September 1990 prior to and during the implementation of nutrient-management practices designed to reduce nutrient and sediment discharges. Intermittent sampling continued until August 1991. The Bald Eagle Creek Basin is underlain by schist and quartzite. About 87 percent of the watershed is cropland and pasture. Nearly 33 percent of the cropland was planted in corn prior to nutrient management, whereas 22 percent of the cropland was planted in corn during the nutrient-management phase. The animal population was reduced by 49 percent during nutrient management. Average annual applications of nitrogen and phosphorus from manure to cropland were reduced by 3,940 pounds (39 percent) and 910 pounds (46 percent), respectively, during nutrient management. A total of 94,560 pounds of nitrogen (538 pounds per acre) and 26,400 pounds of phosphorus (150 pounds per acre) were applied to the cropland as commercial fertilizer and manure during the 5-year study. Core samples from the top 4 feet of soil were collected prior to and during nutrient management and analyzed from concentrations of nitrogen and phosphorus. The average amount of nitrate nitrogen in the soil ranged from 36 to 135 pounds per acre, and soluble phosphorus ranged from 0.39 to 2.5 pounds per acre, prior to nutrient management. During nutrient management, nitrate nitrogen in the soil ranged from 21 to 291 pounds per acre and soluble phosphorus ranged from 0.73 to 1.7 pounds per acre. Precipitation was about 18 percent below normal and streamflow was about 35

  16. Assessment of surface-water quantity and quality, Eagle River watershed, Colorado, 1947-2007

    Williams, Cory A.; Moore, Jennifer L.; Richards, Rodney J.

    2011-01-01

    The spatial patterns for concentrations of trace metals (aluminum, cadmium, copper, iron, manganese, and zinc) indicate an increase in dissolved concentrations of these metals near historical mining areas in the Eagle River and several tributaries near Belden. In general, concentrations decrease downstream from mining areas. Concentrations typically are near or below reporting limits in Gore Creek and other tributaries within the watershed. Concentrations for trace elements (arsenic, selenium, and uranium) in the watershed usually are below the reporting limit, and no prevailing spatial patterns were observed in the data. Step-trend analysis and temporal-trend analysis provide evidence that remediation of historical mining areas in the upper Eagle River have led to observed decreases in metals concentrations in many surface-waters. Comparison of pre- and post-remediation concentrations for many metals indicates significant decreases in metals concentrations for cadmium, manganese, and zinc at sites downstream from the Eagle Mine Superfund Site. Some sites show order of magnitude reductions in median concentrations between these two periods. Evaluation of monotonic trends for dissolved metals concentrations show downward trends at numerous sites in, and downstream from, historic mining areas. The spatial pattern of nutrients shows lower concentrations on many tributaries and on the Eagle River upstream from Red Cliff with increases in nutrients downstream of major urban areas. Seasonal variations show that for many nutrient species, concentrations tend to be lowest May-June and highest January-March. The gradual changes in concentrations between seasons may be related to dilution effects from increases and decreases in streamflow. Upward trends in nutrients between the towns of Gypsum and Avon were detected for nitrate, orthophosphate, and total phosphorus. An upward trend in nitrite was detected in Gore Creek. No trends were detected in un-ionized ammonia within

  17. Boundary of the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This vector data set delineates the approximate boundary of the Eagle River watershed valley-fill aquifer (ERWVFA). This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. The boundary of the ERWVFA was developed by combining information from two data sources. The first data source was a 1:250,000-scale geologic map of the Leadville quadrangle developed by Day and others (1999). The location of Quaternary sediments was used as a first approximation of the ERWVFA. The boundary of the ERWVFA was further refined by overlaying the geologic map with Digital Raster Graphic (DRG) scanned images of 1:24,000 topographic maps (U.S. Geological Survey, 2001). Where appropriate, the boundary of the ERWVFA was remapped to correspond with the edge of the valley-fill aquifer marked by an abrupt change in topography at the edge of the valley floor throughout the Eagle River watershed. The boundary of the ERWVFA more closely resembles a hydrogeomorphic region presented by Rupert (2003, p. 8) because it is based upon general geographic extents of geologic materials and not on an actual aquifer location as would be determined through a rigorous hydrogeologic investigation.

  18. Protect and Restore Lolo Creek Watershed : Annual Report CY 2005.

    SciT

    McRoberts, Heidi

    2006-03-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this effort. The successful completion of the replacement and removal of several passage blocking culverts represent a major improvement to the watershed. Thesemore » projects, coupled with other recently completed projects and those anticipated in the future, are a significant step in improving habitat conditions in Lolo Creek.« less

  19. Radioactivity at the Copper Creek copper lode prospect, Eagle district, east-central Alaska

    Wedow, Helmuth; Tolbert, Gene Edward

    1952-01-01

    Investigation of radioactivity anomalies at the Copper Creek copper lode prospect, Eagle district, east-central Alaska, during 1949 disclosed that the radioactivity is associated with copper mineralization in highly metamorphosed sedimentary rocks. These rocks are a roof pendant in the Mesozoic "Charley River" batholith. The radioactivity is probably all due to uranium associated with bornite and malachite.

  20. 76 FR 6114 - Lincoln National Forest, New Mexico, North Fork Eagle Creek Wells Special Use Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... groundwater drawdown from this well field to maintain surface flows and protect water-dependent ecosystems.... The United States Geological Survey (USGS) conducted the independent study from 2007-2009 to determine... during both time periods, there were no days of zero flow recorded at the Eagle Creek gage from 1969-1980...

  1. Low-flow water-quality characterization of the Gore Creek watershed, upper Colorado River basin, Colorado, August 1996

    Wynn, Kirby H.; Spahr, Norman E.

    1998-01-01

    The Upper Colorado River Basin (UCOL) is one of 59 National Water-Quality Assessment (NAWQA) study units designed to assess the status and trends of the Nation?s water quality (Leahy and others, 1990). The UCOL study unit began operation in 1994, and surface-water-quality data collection at a network of 14 sites began in October 1995 (Apodaca and others, 1996; Spahr and others, 1996). Gore Creek, which flows through Vail, Colorado, originates in pristine alpine headwaters and is designated a gold-medal trout fishery. The creek drains an area of about 102 square miles and is a tributary to the Eagle River. Gore Creek at the mouth near Minturn (site 13 in fig. 1) is one of the 14 sites in the UCOL network. This site was selected to evaluate water quality resulting from urban development and recreational land use. The Gore Creek watershed has undergone rapid land-use changes since the 1960?s as the Vail area shifted from traditional mountain ranchlands to a four-season resort community. Residential, recreational, commercial, and transportation development continues near Gore Creek and its tributaries to support the increasing permanent and tourist population of the area. Interstate 70 runs through the watershed from Vail Pass near site 14, along the eastern side of Black Gore Creek, and along the northern side of the main stem of Gore Creek to the mouth of the watershed (fig. 1). A major local concern is how increasing urbanization/recreation affects the water quality, gold-medal trout fishery, and aesthetic values of Gore Creek. An evaluation of the spatial characteristics of water quality in the watershed upstream from site 13 at the mouth of Gore Creek (fig. 1) can provide local water and land managers with information necessary to establish water policy and make land-use planning decisions to maintain or improve water quality. Historical data collected at the mouth of Gore Creek provide information about water quality resulting from land use, but a synoptic

  2. Nutrient and Sediment TMDLs for the Indian Creek Watershed, Pennsylvania

    EPA Pesticide Factsheets

    This page contains documents for nutrient and sediment TMDLS for the Indian Creek Watershed, Pennsylvania. This includes the original TMDLs established in 2008, reconsideration documents from March 2014, and a 2015 errata to the original TMDL.

  3. Urban Waters and the Proctor Creek Watershed/Atlanta (Georgia)

    EPA Pesticide Factsheets

    Proctor Creek Watershed/Atlanta (Georgia) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  4. Walnut Creek and Squaw Creek Watersheds, Iowa: National Institute of Food and Agriculture-Conservation Effects Assessment Project

    The Walnut Creek Watershed NIFA-CEAP Watershed project was designed to assess water quality benefits and economic costs from the adoption of a prairie ecosystem (conservation practice implementation) at a watershed scale. This chapter describes and summarizes the paired watershed (Walnut Creek and S...

  5. Large woody debris budgets in the Caspar Creek Experimental Watersheds

    Sue Hilton

    2012-01-01

    Monitoring of large woody debris (LWD) in the two mainstem channels of the Caspar Creek Experimental Watersheds since 1998, combined with older data from other work in the watersheds, gives estimates of channel wood input rates, survival, and outputs in intermediate-sized channels in coastal redwood forests. Input rates from standing trees for the two reaches over a 15...

  6. Restore McComas Watershed; Meadow Creek Watershed, 2002-2003 Annual Report.

    SciT

    McRoberts, Heidi

    2004-01-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing. During years 2000-2003, trees were planted in riparian areas within the meadow and its tributaries. Culverts have been prioritized for replacement to accommodate fish passage throughoutmore » the watershed. Designs for replacement are being coordinated with the Nez Perce National Forest. Twenty miles of road were contracted for decommissioning. Tribal crews completed maintenance to the previously built fence.« less

  7. Rehabilitate Newsome Creek Watershed, 2007-2008 Annual Report.

    SciT

    Bransford, Stephanie

    2009-05-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridgetop approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Newsome Creek watershed of the South Fork Clearwater River in 1997. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. Starting in FY 2001 and continuing into themore » present, a major stream restoration effort on the mainstem of Newsome Creek has been pursued. From completing a watershed assessment to a feasibility study of 4 miles of mainstem rehabilitation to carrying that forward into NEPA and a final design, we will begin the effort of restoring the mainstem channel of Newsome Creek to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed.« less

  8. 76 FR 62758 - Wallowa-Whitman and Umatilla National Forests, Oregon Granite Creek Watershed Mining Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... Granite Creek Watershed Mining Plans AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an... to authorize the approval of mining Plans of Operation in the Granite Creek Watershed Mining Plans... environmental analyses for proposed mining Plans in the portions of the Granite Creek Watershed under their...

  9. Sources of baseflow for the Minnehaha Creek Watershed, Minnesota, US

    NASA Astrophysics Data System (ADS)

    Nieber, J. L.; Moore, T. L.; Gulliver, J. S.; Magner, J. A.; Lahti, L. B.

    2013-12-01

    Minnehaha Creek is among the most valued surface water features in the Minneapolis, MN metro area, with a waterfall as it enters the Minnehaha Creek park. Flow in Minnehaha Creek is heavily dependent on discharge from the stream's origin, Lake Minnetonka, the outlet of which is closed during drought periods to maintain water elevations in the lake resulting in low- (or no-) flow conditions in the creek. Stormwater runoff entering directly to the creek from the creek's largely urbanized watershed exacerbates extremes in flow conditions. Given the cultural and ecological value of this stream system, there is great interest in enhancing the cultural and ecosystem services provided by Minnehaha Creek through improvements in streamflow regime by reducing flashiness and sustaining increased low-flows. Determining the potential for achieving improvements in flow requires first that the current sources of water contributing to low-flows in the creek be identified and quantified. Work on this source identification has involved a number of different approaches, including analyses of the streamflow record using a hydrologic system model framework, examination of the Quaternary and bedrock geology of the region, estimation of groundwater-surface water exchange rates within the channel using hyporheic zone temperature surveys and flux meter measurements, and analyses of the stable isotopes of oxygen and hydrogen in samples of stream water, groundwater, and rainfall. Analysis of baseflow recessions using the method of Brutsaert and Nieber (1977) indicates that only a small portion of the catchment, probably the riparian zone, contributes to baseflows. This result appears to be supported by the observation that the limestone/shale bedrock layer underlying the surficial aquifer has a non-zero permeability, and in a significant portion of the watershed the layer has been eroded away leaving the surficial aquifer ';bottomless' and highly susceptible to vertical (down) water loss

  10. Precipitation and runoff simulations of select perennial and ephemeral watersheds in the middle Carson River basin, Eagle, Dayton, and Churchill Valleys, west-central Nevada

    Jeton, Anne E.; Maurer, Douglas K.

    2011-01-01

    The effect that land use may have on streamflow in the Carson River, and ultimately its impact on downstream users can be evaluated by simulating precipitation-runoff processes and estimating groundwater inflow in the middle Carson River in west-central Nevada. To address these concerns, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, began a study in 2008 to evaluate groundwater flow in the Carson River basin extending from Eagle Valley to Churchill Valley, called the middle Carson River basin in this report. This report documents the development and calibration of 12 watershed models and presents model results and the estimated mean annual water budgets for the modeled watersheds. This part of the larger middle Carson River study will provide estimates of runoff tributary to the Carson River and the potential for groundwater inflow (defined here as that component of recharge derived from percolation of excess water from the soil zone to the groundwater reservoir). The model used for the study was the U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Models were developed for 2 perennial watersheds in Eagle Valley having gaged daily mean runoff, Ash Canyon Creek and Clear Creek, and for 10 ephemeral watersheds in the Dayton Valley and Churchill Valley hydrologic areas. Model calibration was constrained by daily mean runoff for the 2 perennial watersheds and for the 10 ephemeral watersheds by limited indirect runoff estimates and by mean annual runoff estimates derived from empirical methods. The models were further constrained by limited climate data adjusted for altitude differences using annual precipitation volumes estimated in a previous study. The calibration periods were water years 1980-2007 for Ash Canyon Creek, and water years 1991-2007 for Clear Creek. To

  11. The Caspar Creek Watersheds--a case study

    R. R. Ziemer

    1990-01-01

    Caspar Creek experimental watersheds are located on the Jackson Demonstration State Forest. Sponsors are the Pacific Southwest Research Station (PSW), USDA Forest Service, and the California Department of Forestry and Fire Protection (CDF). Both organizations have been working cooperatively since 1962

  12. EAARL topography-Potato Creek watershed, Georgia, 2010

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Jones, J.W.; Wright, C.W.; Brock, J.C.; Nagle, D.B.

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Potato Creek watershed in the Apalachicola-Chattahoochee-Flint River basin, Georgia. These datasets were acquired on February 27, 2010.

  13. A summary of the Caspar Creek watershed study

    David M. Burns

    1965-01-01

    The Caspar Creek Watershed Study, is located on the Jackson State Forest. It is a cooperative study by the California Division of Forestry, The Pacific Southwest Forest and Range Experiment Station, the California Department of Water Resources and the California Department of Fish and Game. The precipitation records were started in 1961. The weirs, however, were not...

  14. Caspar Creek watershed study--a current status report

    F. B. Tilley; R. M. Rice

    1977-01-01

    For 16 years Jackson State Forest, managed by the California Department of Forestry, has been the site of a comprehensive watershed experiment. This experiment, on Caspar Creek five miles south of Fort Bragg on the Mendocino coast, is a cooperative project between the California Department of Forestry and the U. S. Forest Service Pacific Southwest Forest and Range...

  15. Research in the Caspar Creek Experimental Watersheds, Northern California

    Jack Lewis; Rand E. Eads; Robert R. Ziemer

    2000-01-01

    For the past four decades, researchers from the Pacific Southwest Research Station's Redwood Sciences Laboratory, in cooperation with the California Department of Forestry and Fire Protection, have been studying the effects of logging in the Caspar Creek Experimental Watersheds on the Jackson Demonstration State Forest near Fort Bragg, California. Their findings...

  16. Undoing the Past: Restoration in the Monday Creek Watershed.

    ERIC Educational Resources Information Center

    Reed, Mary

    2000-01-01

    Monday Creek Restoration Project is a collaborative effort of 20 organizations to clean up an Appalachian Ohio stream fouled for generations by acid mine drainage and industrial waste. The grassroots effort has involved state and federal agencies, VISTA volunteers, community volunteers, and college students who monitor the watershed and share…

  17. The Caspar Creek Watershed Study Completes 40 Years of Research

    California Dept. of Forestry and Fire Protection

    2003-01-01

    This is the first issue of the State Forests Research and Demonstration program's newsletter. With this initial issue we have chosen to highlight the Caspar Creek Watershed Study and the contributions it is making toward a better understanding of the impacts of forest management on the environment.

  18. Hydrology of Eagle Creek Basin and effects of groundwater pumping on streamflow, 1969-2009

    Matherne, Anne Marie; Myers, Nathan C.; McCoy, Kurt J.

    2010-01-01

    Urban and resort development and drought conditions have placed increasing demands on the surface-water and groundwater resources of the Eagle Creek Basin, in southcentral New Mexico. The Village of Ruidoso, New Mexico, obtains 60-70 percent of its water from the Eagle Creek Basin. The village drilled four production wells on Forest Service land along North Fork Eagle Creek; three of the four wells were put into service in 1988 and remain in use. Local citizens have raised questions as to the effects of North Fork well pumping on flow in Eagle Creek. In response to these concerns, the U.S. Geological Survey, in cooperation with the Village of Ruidoso, conducted a hydrologic investigation from 2007 through 2009 of the potential effect of the North Fork well field on streamflow in North Fork Eagle Creek. Mean annual precipitation for the period of record (1942-2008) at the Ruidoso climate station is 22.21 inches per year with a range from 12.27 inches in 1970 to 34.81 inches in 1965. Base-flow analysis indicates that the 1970-80 mean annual discharge, direct runoff, and base flow were 2,260, 1,440, and 819 acre-ft/yr, respectively, and for 1989-2008 were 1,290, 871, and 417 acre-ft/yr, respectively. These results indicate that mean annual discharge, direct runoff, and base flow were less during the 1989-2008 period than during the 1970-80 period. Mean annual precipitation volume for the study area was estimated to be 12,200 acre-feet. Estimated annual evapotranspiration for the study area ranged from 8,730 to 8,890 acre-feet. Estimated annual basin yield for the study area was 3,390 acre-ft or about 28 percent of precipitation. On the basis of basin-yield computations, annual recharge was estimated to be 1,950 acre-ft, about 16 percent of precipitation. Using a chloride mass-balance method, groundwater recharge over the study area was estimated to average 490 acre-ft, about 4.0 percent of precipitation. Because the North Fork wells began pumping in 1988, 1969

  19. Simulation of Water Quality in the Tull Creek and West Neck Creek Watersheds, Currituck Sound Basin, North Carolina and Virginia

    Garcia, Ana Maria

    2009-01-01

    A study of the Currituck Sound was initiated in 2005 to evaluate the water chemistry of the Sound and assess the effectiveness of management strategies. As part of this study, the Soil and Water Assessment Tool (SWAT) model was used to simulate current sediment and nutrient loadings for two distinct watersheds in the Currituck Sound basin and to determine the consequences of different water-quality management scenarios. The watersheds studied were (1) Tull Creek watershed, which has extensive row-crop cultivation and artificial drainage, and (2) West Neck Creek watershed, which drains urban areas in and around Virginia Beach, Virginia. The model simulated monthly streamflows with Nash-Sutcliffe model efficiency coefficients of 0.83 and 0.76 for Tull Creek and West Neck Creek, respectively. The daily sediment concentration coefficient of determination was 0.19 for Tull Creek and 0.36 for West Neck Creek. The coefficient of determination for total nitrogen was 0.26 for both watersheds and for dissolved phosphorus was 0.4 for Tull Creek and 0.03 for West Neck Creek. The model was used to estimate current (2006-2007) sediment and nutrient yields for the two watersheds. Total suspended-solids yield was 56 percent lower in the urban watershed than in the agricultural watershed. Total nitrogen export was 45 percent lower, and total phosphorus was 43 percent lower in the urban watershed than in the agricultural watershed. A management scenario with filter strips bordering the main channels was simulated for Tull Creek. The Soil and Water Assessment Tool model estimated a total suspended-solids yield reduction of 54 percent and total nitrogen and total phosphorus reductions of 21 percent and 29 percent, respectively, for the Tull Creek watershed.

  20. Stream-sediment geochemistry in mining-impacted streams: Prichard, Eagle, and Beaver creeks, northern Coeur d'Alene Mining District, northern Idaho

    Box, Stephen E.; Wallis, John C.; Briggs, Paul H.; Brown, Zoe Ann

    2005-01-01

    This report presents the results of one aspect of an integrated watershed-characterization study that was undertaken to assess the impacts of historical mining and milling of silver-lead-zinc ores on water and sediment composition and on aquatic biota in streams draining the northern part of the Coeur d?Alene Mining District in northern Idaho. We present the results of chemical analyses of 62 samples of streambed sediment, 19 samples of suspended sediment, 23 samples of streambank soil, and 29 samples of mine- and mill-related artificial- fill material collected from the drainages of Prichard, Eagle, and Beaver Creeks, all tributaries to the North Fork of the Coeur d?Alene River. All samples were sieved into three grain-size fractions (<0.063, 0.063?0.25, and 0.25?1.0 mm) and analyzed for 40 elements after four-acid digestion by inductively coupled plasma atomic-emission spectrometry and for mercury by continuous- flow cold-vapor atomic-absorption spectrometry in the U.S. Geological Survey laboratory in Denver, Colo. Historical mining of silver-lead-zinc ores in the headwater reaches of the Prichard Creek, Eagle Creek, and Beaver Creek drainages has resulted in enrichments of lead, zinc, mercury, arsenic, cadmium, silver, copper, cobalt, and, to a lesser extent, iron and manganese in streambed sediment. Using samples collected from the relatively unimpacted West Fork of Eagle Creek as representative of background compositions, streambed sediment in the vicinity of the mines and millsites has Pb and Zn contents of 20 to 100 times background values, decreasing to 2 to 5 times background values at the mouth of the each stream, 15 to 20 km downstream. Lesser enrichments (<10 times background values) of mercury and arsenic also are generally associated with, and decrease downstream from, historical silver-lead-zinc mining in the drainages. However, enrichments of arsenic and, to a lesser extent, mercury also are areally associated with the lode gold deposits along

  1. Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.

    SciT

    Christian, Richard

    2004-02-01

    This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyonmore » Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the amount

  2. Protect and Restore Mill Creek Watershed : Annual Report CY 2005.

    SciT

    McRoberts, Heidi

    2006-03-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing intomore » 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.« less

  3. 75 FR 62530 - Eagle Creek Hydro Power, LLC; Laredo Ridge Wind, LLC; RRI Energy West, Inc.; Goshen Phase II LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ...; EG10-52-000; EG10-53-000; EG10- 54-000; EG10-55-000; EG10-56-000] Eagle Creek Hydro Power, LLC; Laredo Ridge Wind, LLC; RRI Energy West, Inc.; Goshen Phase II LLC; Solar Partners I, LLC; Solar Partners II, LLC; Solar Partners VIII, LLC; Notice of Effectiveness of Exempt Wholesale Generator Status October 1...

  4. Trout Creek, Oregon Watershed Assessment; Findings, Condition Evaluation and Action Opportunities, 2002 Technical Report.

    SciT

    Runyon, John

    The purpose of the assessment is to characterize historical and current watershed conditions in the Trout Creek Watershed. Information from the assessment is used to evaluate opportunities for improvements in watershed conditions, with particular reference to improvements in the aquatic environment. Existing information was used, to the extent practicable, to complete this work. The assessment will aid the Trout Creek Watershed Council in identifying opportunities and priorities for watershed restoration projects.

  5. Cumulative watershed effects: Caspar Creek and beyond

    Leslie M. Reid

    1998-01-01

    Cumulative effects are the combined effects of multiple activities, and watershed effects are those which involve processes of water transport. Almost all impacts are influenced by multiple activities, so almost all impacts must be evaluated as cumulative impacts rather than as individual impacts. Existing definitions suggest that to be significant, an impact must be...

  6. Probability of Elevated Volatile Organic Compound (VOC) Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated volatile organic compound (VOC) concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  7. Probability of Elevated Nitrate Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated nitrate concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  8. Road construction on Caspar Creek watersheds --- 10-year report on impact

    J. S. Krammes; David M. Burns

    1973-01-01

    In 1960, Federal and State agencies jointly started a long-term study of the effects of logging and road building on streamflow, sedimentation, aquatic habitat, and fish populations on two watersheds of Caspar Creek, in northern California. The experimental watersheds are the North and South Forks of the Creek. The data being collected consist of continuous streamflow...

  9. Effects of forest management on streamflow, sediment yield, and erosion, Caspar Creek Experimental Watersheds

    Elizabeth T. Keppeler; Jack Lewis; Thomas E. Lisle

    2003-01-01

    Abstract - Caspar Creek Experimental Watersheds were established in 1962 to research the effects of forest management on streamflow, sedimentation, and erosion in the rainfall-dominated, forested watersheds of north coastal California. Currently, 21 stream sites are gaged in the North Fork (473 ha) and South Fork (424 ha) of Caspar Creek. From 1971 to 1973, 65% of...

  10. Little Cypress Creek study: A watershed restoration option for protection of wetlands

    Lisa Gandy; Randy Roberson; Tom Foti

    2000-01-01

    The Little Cypress Creek watershed, which is the home of the Louisiana Purchase Historic State Park and Natural Area, is one of the only remaining examples of a headwater swamp ecosystem left in Arkansas. An increase in water elevations and a change in species composition were noticed in the park in late 1970. A study of the upper watershed of Little Cypress Creek was...

  11. Water Quality Analysis of Yosemite Creek Watershed, San Francisco, California

    NASA Astrophysics Data System (ADS)

    Davis, J. R.; Snow, M. K.; Aquino, A.; Huang, C.; Thai, A.; Yuen, C.

    2003-12-01

    Surface water quality in urban settings can become contaminated by anthropogenic inputs. Yosemite Creek watershed is situated on the east side of San Francisco near Bayview Hunters Point and provides an ideal location for water quality investigations in urban environments. Accordingly, students from Philip and Sala Burton High School monitored water quality at three locations for their physicochemical and biological characteristics. Water was tested for pH, dissolved oxygen, conductivity, total dissolved solids, salinity, and oxidation reduction potential. In addition, a Hach DR 850 digital colorimeter was utilized to measure chlorine, fluorine, nitrogen, phosphorous, and sulfate. The biological component was assessed via monitoring benthic macro invertebrates. Specifically, the presence of caddisfly (Trichoptera) were used to indicate low levels of contaminants and good water quality. Our results indicate that water quality and macro invertebrate populations varied spatially within the watershed. Further investigation is needed to pinpoint the precise location of contaminant inputs.

  12. Protect and Restore Lolo Creek Watershed, 2002-2003 Annual Report.

    SciT

    McRoberts, Heidi

    2004-01-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, stabilizing streambanks, decommissioning roads, and upgrading culverts. During the years 2000-2003, trees were planted in riparian areas of headwater streams to Lolo Creek. Inventory of culvertsmore » is an on-going practice, being completed by sub-drainage, and are being prioritized for replacement to accommodate fish passage and 100-year flow events throughout the watershed. Tribal crews completed maintenance to the previously built fence.« less

  13. Protect and Restore Mill Creek Watershed; Annual Report 2002-2003.

    SciT

    McRoberts, Heidi

    2004-01-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Mill Creek watershed are coordinated with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. During the FY 2002, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-streammore » crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed. Maintenance to the previously built fence was also completed.« less

  14. Logging impacts of the 1970's vs. the 1990's in the Caspar Creek watershed

    Peter H. Cafferata; Thomas E. Spittler

    1998-01-01

    The Caspar Creek watershed study provides resource professionals with information regarding the impacts of timber operations conducted under varying forest practices on sensitive aquatic habitats. In the South Fork watershed, roads were constructed near watercourse channels in the 1960's, and the watershed was selectively logged using tractors during the early...

  15. Long-term Watershed Database for the Ridge and Valley Physiographic Province: Mahantango Creek Watershed, Pennsylvania, USA

    Understanding agricultural effects on water quality in rivers and estuaries requires understanding of hydrometeorology and geochemical cycling at various scales over time. The USDA-ARS initiated a hydrologic research program at the Mahantango Creek Watershed (MCW) in 1968, a research watershed at t...

  16. Protect and Restore Lolo Creek Watershed, 2003-2004 Annual Report.

    SciT

    McRoberts, Heidi

    2004-06-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this project. Riparian enhancement through planning of riparian trees continues. Culvert inventory is on-going and will be completed in 2004 for the entiremore » Lolo Creek drainage. High priority culverts are being replaced and passage blocking log culverts are being removed. Tribal crews completed maintenance to the previously built fence.« less

  17. Protect and Restore Lolo Creek Watershed, 2004-2005 Annual Report.

    SciT

    McRoberts, Heidi

    2005-12-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this project. Riparian enhancement through planting of riparian trees and streambank bioengineering was completed. Culvert inventory was completed in 2004 on US Forestmore » Service and Potlatch Corporation lands in the Lolo Creek drainage. Two high priority culverts were replaced, and are now accessible for fish species. Four miles of road was decommissioned. Tribal crews completed maintenance to the previously built fence.« less

  18. Integrating local research watersheds into hydrologic education: Lessons from the Dry Creek Experimental Watershed

    NASA Astrophysics Data System (ADS)

    McNamara, J. P.; Aishlin, P. S.; Flores, A. N.; Benner, S. G.; Marshall, H. P.; Pierce, J. L.

    2014-12-01

    While a proliferation of instrumented research watersheds and new data sharing technologies has transformed hydrologic research in recent decades, similar advances have not been realized in hydrologic education. Long-standing problems in hydrologic education include discontinuity of hydrologic topics from introductory to advanced courses, inconsistency of content across academic departments, and difficulties in development of laboratory and homework assignments utilizing large time series and spatial data sets. Hydrologic problems are typically not amenable to "back-of-the-chapter" examples. Local, long-term research watersheds offer solutions to these problems. Here, we describe our integration of research and monitoring programs in the Dry Creek Experimental Watershed into undergraduate and graduate hydrology programs at Boise State University. We developed a suite of watershed-based exercises into courses and curriculums using real, tangible datasets from the watershed to teach concepts not amenable to traditional textbook and lecture methods. The aggregation of exercises throughout a course or degree allows for scaffolding of concepts with progressive exposure of advanced concepts throughout a course or degree. The need for exercises of this type is growing as traditional lecture-based classes (passive learning from a local authoritative source) are being replaced with active learning courses that integrate many sources of information through situational factors.

  19. Gore Creek watershed, Colorado : assessment of historical and current water quantity, water quality, and aquatic ecology, 1968-98

    Wynn, Kirby H.; Bauch, Nancy J.; Driver, Nancy E.

    2001-01-01

    The historical and current (1998) water-quantity, water-quality, and aquatic-ecology conditions in the Gore Creek watershed are described as part of a study by the U.S. Geological Survey, done in cooperation with the Town of Vail, the Eagle River Water and Sanitation District, and the Upper Eagle Regional Water Authority. Interpretation of the available water-quantity, water-quality, and aquatic-ecology data collected by various agencies since 1968 showed that background geology and land use in the watershed influence the water quality and stream biota. Surface-water nutrient concentrations generally increased as water moved downstream through the Town of Vail, but concentrations at the mouth of Gore Creek were typical when compared with national data for urban/undeveloped sites. Nitrate concentrations in Gore Creek were highest just downstream from a wastewater-treatment plant discharge, but concentrations decreased at sites farther downstream because of dilution and nitrogen uptake by algae. Recent total phosphorus concentrations were somewhat elevated when compared to the U.S. Environmental Protection Agency recommended level of 0.10 milligram per liter for control of eutrophication in flowing water. However, total phosphorus concentrations at the mouth of Gore Creek were relatively low when compared to a national study of phosphorus in urban land-use areas. Historically, suspended sediment associated with construction of Interstate 70 in the early 1970's has been of primary concern; however, recent data indicate that streambed aggradation of sediment originating from Interstate 70 traction sanding currently is a greater concern. About 4,000 tons of coarse sand and fine gravel is washed into Black Gore Creek each year following application of traction materials to Interstate 70 during adverse winter driving conditions. Suspended-sediment concentrations were low in Black Gore Creek; however, bedload-transport rates of as much as 4 tons per day have been measured

  20. First Reconsideration Decision and Rationale: Nutrient and Sediment TMDLs for the Indian Creek Watershed, Pennsylvania

    EPA Pesticide Factsheets

    Reconsideration Decision and Rationale: Nutrient and Sediment TMDLs for the Indian Creek Watershed, Pennsylvania: Established by the U.S. Environmental Protection Agency, Region 3, Philadelphia, PA. March 21, 2014. 6 Documents, below

  1. Restore McComas Meadows; Meadow Creek Watershed, 2003-2004 Annual Report.

    SciT

    McRoberts, Heidi

    2006-08-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated and cost shared with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, planting trees in riparian areas within the meadow and its tributaries, prioritizing culverts for replacement to accommodate fish passage, and decommissioning roads tomore » reduce sediment input. Designs for culvert replacements are being coordinated with the Nez Perce National Forest. 20 miles of roads were decommissioned. Tribal crews completed maintenance to the previously built fence.« less

  2. Prioritizing Restoration in the Hangman Creek Watershed: Predicting Baseflow through Sub-basin Modeling

    NASA Astrophysics Data System (ADS)

    Navickis-Brasch, A. S.; Fiedler, F. R.

    2013-12-01

    Land use changes since European settlement have significantly impaired the beneficial uses of Coeur d'Alene (CDA) Tribe water bodies in the Hangman Creek watershed. The cumulative impacts have resulted in a 303 (d) designation by the Environmental Protection Agency (EPA), extirpated the only salmon run on the reservation, and reduced tributary connectivity by isolating many native fish populations. Considering salmon were an essential part of tribal identity and cultural activities, the tribe initiated a 100-year management plan to restore the 155,000-acre portion of the Hangman Creek watershed located on the CDA reservation. The restoration management plan focuses on sustaining subsistence and cultural activities by reestablishing stream connectivity and providing sustainable aquatic habitats as well as restoring watershed processes and improving water quality. Ultimately, the restoration goal is to improve the habitat suitability of Hangman Creek for the eventual return of salmon. To accomplish these goals, it is essential to prioritize and sequence activities that most effectively support restoration. While watershed modeling provides a commonly accepted holistic approach to simulating watershed responses, it appears the effectiveness of models in predicting restoration success, particularly with respect to the effects of restoration on baseflow, have not been well documented. In addition, creating a representative watershed model capable of accounting for a watershed scale spatial and temporal variability generally requires extensive field measurements. This presents a challenge for developing a model of Hangman Creek, since the watershed is mostly ungauged with only limited data available at a few monitoring sites. Our approach to developing a restoration prioritization plan is to first model a subbasin in the watershed with similar characteristics and restoration goals, then utilize the subbasin model to project future baseflow responses in the larger

  3. Multiple resource evaluations on the Beaver Creek watershed: An Annotated Bibliography (1956-1996)

    M. B. Baker; P. F. Ffolliott

    1998-01-01

    The Beaver Creek experimental watershed, located in north-central Arizona, was established in 1956 in response to public concerns that the flow of streams and the amount of livestock forage on watersheds in the Salt-Verde River Basins were being reduced by increasing densities of ponderosa pine saplings and pinyon-juniper trees. Natural resource responses to the...

  4. IMPACT OF URBANIZATION ON THE HYDROLOGY OF THE POCONO CREEK WATERSHED: A MODEL STUDY

    EPA Science Inventory

    The Pocono Creek watershed located in Monroe County, PA, is threatened by high population growth and urbanization. Of concern specifically is the potential impact of future developments in the watershed on the reduction of base flow and the consequent risk of degradation of wild ...

  5. Restore McComas Meadows; Meadow Creek Watershed, 2005-2006 Annual Report.

    SciT

    McRoberts, Heidi

    2006-07-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated and cost shared with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, planting trees in riparian areas within the meadow and its tributaries, prioritizing culverts for replacement to accommodate fish passage, and decommissioning roads tomore » reduce sediment input. During this contract period work was completed on two culvert replacement projects; Doe Creek and a tributary to Meadow Creek. Additionally construction was also completed for the ditch restoration project within McComas Meadows. Monitoring for project effectiveness and trends in watershed conditions was also completed. Road decommissioning monitoring, as well as stream temperature, sediment, and discharge were completed.« less

  6. Restore McComas Meadows; Meadow Creek Watershed, 2004-2005 Annual Report.

    SciT

    McRoberts, Heidi

    2005-12-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated and cost shared with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, planting trees in riparian areas within the meadow and its tributaries, prioritizing culverts for replacement to accommodate fish passage, and decommissioning roads tomore » reduce sediment input. During this contract period, bids were solicited and awarded for two culvert replacement projects on Doe Creek, and a tributary to Meadow Creek. Additionally, NEPA and permits were completed for the ditch restoration project within McComas Meadows. Due to delays in cultural resource surveys, the contract was not awarded for the performance of the ditch restoration. It will occur in 2005. Monitoring for project effectiveness and trends in watershed conditions was also completed. Road decommissioning monitoring, as well as stream temperature, sediment, and discharge were completed.« less

  7. Effects of timber harvesting on the lag time of Caspar Creek watershed

    Karen Hardison Sendek

    1985-01-01

    Abstract - Hydrograph lag time was analyzed to determine changes after road construction and after selective, tractor-yarded logging in a Caspar Creek watershed, Mendocino County, California. The paired watershed technique was used. Hydrograph lag time for each storm was the time separation between the midpoint of precipitation and the time coordinate of the runoff...

  8. Timber harvest and logging plan for the South Fork of the Caspar Creek watershed

    Anonymous

    1970-01-01

    The Caspar Creek Watershed Study was initiated in 1960 to study large differences between conditions of stream flow and sedimentation, fish life and fish habitat between paired watersheds, one of which will be carefully logged while the other is left undisturbed as a control. This study will not compare differences in types of logging practices.

  9. EFFECT OF URBANIZATION ON SUSTAINABILITY OF WATER RESOURCES IN THE POCONO CREEK WATERSHED

    EPA Science Inventory

    Understanding the effects of population growth and urbanization on the hydrologic balance of the watershed is of paramount importance for sustainable water resources management. The 120 km2 Pocono Creek watershed in Eastern Pennsylvania that drains into one of the main...

  10. The effect of timber harvest on the Fool Creek watershed, 30 years later

    C. A. Troendle; R. M. King

    1985-01-01

    The Fool Creek watershed at the Fraser Experimental Forest, Colorado was harvested using a pattern of alternating clearcut and forested strips in 1956. Today, with almost 30 years of postharvest record, subtle impacts on the hydrology of the watershed can be detected that were not significant in the past. In addition to the depositional increases in the snowpack in the...

  11. Erosion and runoff evaluation in Goodwater Creek Experimental Watershed using the SWAT-T Model

    The 72 km2 Goodwater Creek Experimental Watershed (GCEW), in the claypan region, is a Long-Term Agro-ecosystem Research Watershed in Boone and Audrain counties of north-central MO, which has reported problems with degraded water quality from nutrients, sediment, and herbicides. Terraces are effectiv...

  12. Unit Hydrograph Peaking Analysis for Goose Creek Watershed in Virginia: A Case Study

    DTIC Science & Technology

    2017-05-01

    ER D C/ CH L TR -1 7- 6 Unit Hydrograph Peaking Analysis for Goose Creek Watershed in Virginia: A Case Study Co as ta l a nd H yd ra...default. ERDC/CHL TR-17-6 May 2017 Unit Hydrograph Peaking Analysis for Goose Creek Watershed in Virginia: A Case Study Nawa Raj Pradhan and...confidence interval precipitation depths to the watershed in addition to the 50% value. This study concluded that a design event with a return period greater

  13. Assessment of aquatic macroinvertebrate communities in the Autauga Creek watershed, Autauga County, Alabama, 2009

    Mooty, Will S.; Gill, Amy C.

    2011-01-01

    Only four families within the Ephemeroptera, Plecoptera, and Trichoptera orders were found during a 1999 survey of aquatic macroinvertebrates in Autauga Creek, Autauga County, Alabama, by the Alabama Department of Environmental Management. The low number of taxa of Ephemeroptera, Plecoptera, and Trichoptera families indicated that the aquatic macroinvertebrate community was in poor condition, and the creek was placed on the Alabama Department of Environmental Management 303(d) list. The U.S. Geological Survey conducted a study in 2009 to provide data for the Alabama Department of Environmental Management and other water management agencies to re-evaluate aquatic macroinvertebrate communities in Autauga Creek to see if they meet Alabama Department of Environmental Management water-quality criteria. Aquatic macroinvertebrate communities were evaluated at three sites in the Autauga Creek watershed. Macroinvertebrates were sampled at two sites on Autauga Creek and one on Bridge Creek, the largest tributary to Autauga Creek. Water-quality field parameters were assessed at 11 sites. During the 2009 sampling, 12 families within the orders of Ephemeroptera, Plecoptera, Trichoptera were found at the Alabama Department of Environmental Management's assessment site whereas only four were found in 1999. The upstream site on Autauga Creek had consistently higher numbers of taxa than the Bridge Creek site and the lower site on Autauga Creek which is the Alabama Department of Environmental Management's assessment site. Chironomid richness was noticeably higher on the two Autauga Creek sites than the Bridge Creek site.

  14. Water quality, sources of nitrate, and chemical loadings in the Geronimo Creek and Plum Creek watersheds, south-central Texas, April 2015–March 2016

    Lambert, Rebecca B.; Opsahl, Stephen P.; Musgrove, MaryLynn

    2017-12-22

    Located in south-central Texas, the Geronimo Creek and Plum Creek watersheds have long been characterized by elevated nitrate concentrations. From April 2015 through March 2016, an assessment was done by the U.S. Geological Survey, in cooperation with the Guadalupe-Blanco River Authority and the Texas State Soil and Water Conservation Board, to characterize nitrate concentrations and to document possible sources of elevated nitrate in these two watersheds. Water-quality samples were collected from stream, spring, and groundwater sites distributed across the two watersheds, along with precipitation samples and wastewater treatment plant (WWTP) effluent samples from the Plum Creek watershed, to characterize endmember concentrations and isotopic compositions from April 2015 through March 2016. Stream, spring, and groundwater samples from both watersheds were collected during four synoptic sampling events to characterize spatial and temporal variations in water quality and chemical loadings. Water-quality and -quantity data from the WWTPs and stream discharge data also were considered. Samples were analyzed for major ions, selected trace elements, nutrients, and stable isotopes of water and nitrate.The dominant land use in both watersheds is agriculture (cultivated crops, rangeland, and grassland and pasture). The upper part of the Plum Creek watershed is more highly urbanized and has five major WWTPs; numerous smaller permitted wastewater outfalls are concentrated in the upper and central parts of the Plum Creek watershed. The Geronimo Creek watershed, in contrast, has no WWTPs upstream from or near the sampling sites.Results indicate that water quality in the Geronimo Creek watershed, which was evaluated only during base-flow conditions, is dominated by groundwater, which discharges to the stream by numerous springs at various locations. Nitrate isotope values for most Geronimo Creek samples were similar, which indicates that they likely have a common source (or

  15. Remote estimation of surface moisture over a watershed. M.S. Thesis; [Goodwater Creek Watershed, Missouri

    NASA Technical Reports Server (NTRS)

    Kocin, P. J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Contoured analyses of moisture availability, moisture flux, sensible heat flux, thermal inertia, and day and nighttime temperatures over a Missouri watershed for a date in June and in September show that forests and creeks exhibit the highest values of moisture availability, whereas farmlands and villages are relatively dry. The distribution of moisture availability over agricultural districts differs significantly between the two cases. This difference is attributed to a change in the surface's vegetative canopy between June and September, with higher moisture availabilities found in the latter case. Horizontal variations of moisture, however, do indicate some relationship between moisture availability and both local rainfall accumulations and the nature of the terrain.

  16. Macroinvertebrate-based assessment of biological condition at selected sites in the Eagle River watershed, Colorado, 2000-07

    Zuellig, Robert E.; Bruce, James F.; Healy, Brian D.; Williams, Cory A.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, Colorado Springs Utilities, Denver Water, and the U.S. Department of Agriculture Forest Service (FS), compiled macroinvertebrate (73 sites, 124 samples) data previously collected in the Eagle River watershed from selected USGS and FS studies, 2000-07. These data were analyzed to assess the biological condition (that is, biologically ?degraded? or ?good?) at selected sites in the Eagle River watershed and determine if site class (for example, urban or undeveloped) described biological condition. An independently developed predictive model was applied to calculate a site-specific measure of taxonomic completeness for macroinvertebrate communities, where taxonomic completeness was expressed as the ratio of observed (O) taxa to those expected (E) to occur at each site. Macroinvertebrate communities were considered degraded at sites were O/E values were less than 0.80, indicating that at least 20 percent of expected taxa were not observed. Sites were classified into one of four classes (undeveloped, adjacent road or highway or both, mixed, urban) using a combination of riparian land-cover characteristics, examination of topographic maps and aerial imagery, screening for exceedances in water-quality standards, and best professional judgment. Analysis of variance was used to determine if site class accounted for variability in mean macroinvertebrate O/E values. Finally, macroinvertebrate taxa observed more or less frequently than expected at urban sites were indentified. This study represents the first standardized assessment of biological condition of selected sites distributed across the Eagle River watershed. Of the 73 sites evaluated, just over

  17. 75 FR 77826 - White River National Forest; Eagle County, CO; Beaver Creek Mountain Improvements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... and/or affected individuals, organizations and governmental agencies will be used to identify resource... upcoming 2015 World Alpine Championships. In order for Beaver Creek to continue to host international... located at Beaver Creek. Hosting the 2015 International Skiing Federation (FIS) World Alpine Ski...

  18. Simulation of streamflow and estimation of recharge to the Edwards aquifer in the Hondo Creek, Verde Creek, and San Geronimo Creek watersheds, south-central Texas, 1951-2003

    Ockerman, Darwin J.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the San Antonio Water System, constructed three watershed models using the Hydrological Simulation Program—FORTRAN (HSPF) to simulate streamflow and estimate recharge to the Edwards aquifer in the Hondo Creek, Verde Creek, and San Geronimo Creek watersheds in south-central Texas. The three models were calibrated and tested with available data collected during 1992–2003. Simulations of streamflow and recharge were done for 1951–2003. The approach to construct the models was to first calibrate the Hondo Creek model (with an hourly time step) using 1992–99 data and test the model using 2000–2003 data. The Hondo Creek model parameters then were applied to the Verde Creek and San Geronimo Creek watersheds to construct the Verde Creek and San Geronimo Creek models. The simulated streamflows for Hondo Creek are considered acceptable. Annual, monthly, and daily simulated streamflows adequately match measured values, but simulated hourly streamflows do not. The accuracy of streamflow simulations for Verde Creek is uncertain. For San Geronimo Creek, the match of measured and simulated annual and monthly streamflows is acceptable (or nearly so); but for daily and hourly streamflows, the calibration is relatively poor. Simulated average annual total streamflow for 1951–2003 to Hondo Creek, Verde Creek, and San Geronimo Creek is 45,400; 32,400; and 11,100 acre-feet, respectively. Simulated average annual streamflow at the respective watershed outlets is 13,000; 16,200; and 6,920 acre-feet. The difference between total streamflow and streamflow at the watershed outlet is streamflow lost to channel infiltration. Estimated average annual Edwards aquifer recharge for Hondo Creek, Verde Creek, and San Geronimo Creek watersheds for 1951–2003 is 37,900 acrefeet (5.04 inches), 26,000 acre-feet (3.36 inches), and 5,940 acre-feet (1.97 inches), respectively. Most of the recharge (about 77 percent for the three watersheds

  19. Walnut creek watershed monitoring project, Iowa: Monitoring water quality in response to prairie restoration

    Schilling, K.E.; Thompson, C.A.

    2000-01-01

    Land use and surface water data for nitrogen and pesticides (1995 to 1997) are reported for the Walnut Creek Watershed Monitoring Project, Jasper County Iowa. The Walnut Creek project was established in 1995 as a nonpoint source monitoring program in relation to watershed habitat restoration and agricultural management changes implemented at the Neal Smith National Wildlife Refuge by the U.S. Fish and Wildlife Service. The monitoring project utilizes a paired-watershed approach (Walnut and Squaw creeks) as well as upstream/downstream comparisons on Walnut for analysis and tracking of trends. From 1992 to 1997, 13.4 percent of the watershed was converted from row crop to native prairie in the Walnut Creek watershed. Including another 6 percent of watershed farmed on a cash-rent basis, land use changes have been implemented on 19.4 percent of the watershed by the USFWS. Nitrogen and pesticide applications were reduced an estimated 18 percent and 28 percent in the watershed from land use changes. Atrazine was detected most often in surface water with frequencies of detection ranging from 76-86 percent. No significant differences were noted in atrazine concentrations between Walnut and Squaw Creek. Nitrate-N concentrations measured in both watersheds were similar; both basins showed a similar pattern of detection and an overall reduction in nitrate-N concentrations from upstream to downstream monitoring sites. Water quality improvements are suggested by nitrate-N and chloride ratios less than one in the Walnut Creek watershed and low nitrate-N concentrations measured in the subbasin of Walnut Creek containing the greatest amount of land use changes. Atrazine and nitrate-N concentrations from the lower portion of the Walnut Creek watershed (including the prairie restoration area) may be decreasing in relation to the upstream untreated component of the watershed. The frequencies of pesticide detections and mean nitrate-N concentrations appear related to the percentage of

  20. Macroinvertebrate and algal community sample collection methods and data collected at selected sites in the Eagle River watershed, Colorado, 2000-07

    Zuellig, Robert E.; Bruce, James F.

    2010-01-01

    State and local agencies are concerned about the effects of increasing urban development and human population growth on water quality and the biological condition of regional streams in the Eagle River watershed. In response to these needs, the U.S. Geological Survey initiated a study in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, Colorado Springs Utilities, Denver Water, and the U.S. Department of Agriculture Forest Service. As part of this study, previously collected macroinvertebrate and algal data from the Eagle River watershed were compiled. This report includes macroinvertebrate data collected by the U.S. Geological Survey and(or) the U.S. Department of Agriculture Forest Service from 73 sites from 2000 to 2007 and algal data collected from up to 26 sites between 2000 and 2001 in the Eagle River watershed. Additionally, a brief description of the sample collection methods and data processing procedures are presented.

  1. Bassett Creek Watershed, Hennepin County, Minnesota. Feasibility Report for Control. Appendixes.

    DTIC Science & Technology

    1976-03-01

    maintenance of the creek corridor . The local interests objected to any plan that would impair the aesthetics of the creek. The needs of the watershed with...OPEN CHANNEL CORRIDOR TO THE MISSISSIPPI RIVR (Alternate 5-E) ...... .............. D-26 COMBINATIONS OF NONSTRUCTURAL AND STRUCTURAL ALTERNATIVES...AND DRE TURNEL (Alternate 6-D) . . ... . . . . . . . . . . D-30 FLOOD STORAGE AND FLOOD PROOFIM. WIT7 AN O(IUI SPACE-- OPEN CHANNEL CORRIDOR TO THE

  2. Groundwater Quality, Age, and Probability of Contamination, Eagle River Watershed Valley-Fill Aquifer, North-Central Colorado, 2006-2007

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    The Eagle River watershed is located near the destination resort town of Vail, Colorado. The area has a fastgrowing permanent population, and the resort industry is rapidly expanding. A large percentage of the land undergoing development to support that growth overlies the Eagle River watershed valley-fill aquifer (ERWVFA), which likely has a high predisposition to groundwater contamination. As development continues, local organizations need tools to evaluate potential land-development effects on ground- and surface-water resources so that informed land-use and water management decisions can be made. To help develop these tools, the U.S. Geological Survey (USGS), in cooperation with Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority, conducted a study in 2006-2007 of the groundwater quality, age, and probability of contamination in the ERWVFA, north-central Colorado. Ground- and surface-water quality samples were analyzed for major ions, nutrients, stable isotopes of hydrogen and oxygen in water, tritium, dissolved gases, chlorofluorocarbons (CFCs), and volatile organic compounds (VOCs) determined with very low-level laboratory methods. The major-ion data indicate that groundwaters in the ERWVFA can be classified into two major groups: groundwater that was recharged by infiltration of surface water, and groundwater that had less immediate recharge from surface water and had elevated sulfate concentrations. Sulfate concentrations exceeded the USEPA National Secondary Drinking Water Regulations (250 milligrams per liter) in many wells near Eagle, Gypsum, and Dotsero. The predominant source of sulfate to groundwater in the Eagle River watershed is the Eagle Valley Evaporite, which is a gypsum deposit of Pennsylvanian age located predominantly in the western one-half of Eagle County.

  3. Mapping spatial and temporal variation of stream water temperature in the upper Esopus Creek watershed

    NASA Astrophysics Data System (ADS)

    Chien, H.; McGlinn, L.

    2017-12-01

    The upper Esopus Creek and its tributary streams located in the Catskill Mountain region of New York State provide habitats for cold-adapted aquatic species. However, ongoing global warming may change the stream water temperature within a watershed and disturb the persistence of coldwater habitats. Characterizing thermal regimes within the upper Esopus Creek watershed is important to provide information of thermally suitable habitats for aquatic species. The objectives of this study are to measure stream water temperature and map thermal variability among tributaries to the Esopus Creek and within Esopus Creek. These objectives will be achieved by measuring stream water temperature for at least two years. More than 100 water temperature data loggers have been placed in the upper Esopus Creek and their tributaries to collect 30-minute interval water temperatures. With the measured water temperature, we will use spatial interpolation in ArcGIS to create weekly and monthly water temperature surface maps to evaluate the thermal variation over time and space within the upper Esopus Creek watershed. We will characterize responsiveness of water temperature in tributary streams to air temperature as well. This information of spatial and temporal variation of stream water temperature will assist stream managers with prioritizing management practices that maintain or enhance connectivity of thermally suitable habitats in high priority areas.

  4. Water-quality investigation of the Caney Creek watershed, Northeast Arkansas

    Lamb, T.E.; Newsom, G.

    1979-01-01

    The results of a 1-year study, in 1977-78, of surface-water quality in the Caney Creek watershed, northeast Arkansas, are presented to document conditions before implementation of Soil Conservation Service programs. The report includes a general description of the watershed 's topography, geology, and aquifers, and the results of several measurements at two sites of discharge, and a number of physical and chemical parameters. (USGS)

  5. Environmental assessment of water, sediment, and biota collected from the Bear Creek watershed, Colusa County, California

    Rytuba, James J.; Hothem, Roger L.; Brussee, Brianne E.; Goldstein, Daniel; May, Jason T.

    2015-01-01

    The Cache Creek watershed lies within California's North Coast Range, an area with abundant geologic sources of mercury (Hg) and a long history of Hg contamination (Rytuba, 2000). Bear Creek, Cache Creek, and the North Fork of Cache Creek are the major streams of the Cache Creek watershed, encompassing 2978 km2. The Cache Creek watershed contains soils naturally enriched in Hg as well as natural springs (both hot and cold) with varying levels of aqueous Hg (Domagalski and others, 2004, Suchanek and others, 2004, Holloway and others 2009). All three tributaries are known to be significant sources of anthropogenically derived Hg from historic mines, both Hg and gold (Au), and associated ore storage/processing sites and facilities (Slotton and others, 1995, 2004; CVRWQCB, 2003; Schwarzbach and others, 2001; Gassel and others, 2005; Suchanek and others., 2004, 2008a, 2009). Historically, two of the primary sources of mercury contamination in the upper part of Bear Creek have been the Rathburn and Petray Hg Mines. The Rathburn Hg mine was discovered and initially mined in the early 1890s. The Rathburn and the more recently developed Petray open pit mines are localized along fault zones in serpentinite that has been altered and cut by quartz and chalcedony veins. Cold saline-carbonate springs are located perepheral to the Hg deposits and effluent from the springs locally has high concentrations of Hg (Slowey and Rytuba, 2008). Several ephemeral tributaries to Bear Creek drain the mine area which is located on federal land managed by the U.S. Bureau of Land Management (USBLM). The USBLM requested that the U.S. Geological Survey (USGS) measure and characterize Hg and other geochemical constituents in sediment, water, and biota to establish baseline information prior to remediation of the Rathburn and Petray mines. Samples sites were established in Bear Creek upstream and downstream from the mine area. This report is made in response to the USBLM request, the lead agency

  6. Preliminary evaluation of effects of best management practices in the Black Earth Creek, Wisconsin, priority watershed

    Walker, J.F.; Graczyk, D.J.; Olem, H.

    1993-01-01

    Nonpoint-source contamination accounts for a substantial part of the water quality problems in many watersheds. The Wisconsin Nonpoint Source Water Pollution Abatement Program provides matching money for voluntary implementation of various best management practices (BMPs). The effectiveness of BMPs on a drainage-basin scale has not been adequately assessed in Wisconsin by use of data collected before and after BMP implementation. The U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, monitored water quality in the Black Earth Creek watershed in southern Wisconsin from October 1984 through September 1986 (pre-BMP conditions). BMP implementation began during the summer of 1989 and is planned to continue through 1993. Data collection resumed in fall 1989 and is intended to provide information during the transitional period of BMP implementation (1990-93) and 2 years of post-BMP conditions (1994-95). Preliminary results presented for two subbasins in toe Black Earth Creek watershed (Brewery and Garfoot Creeks) are based on data collected during pre-BMP conditions and the first 3 years of the transitional period. The analysis includes the use of regressions to control for natural variability in the data and, hence, enhance the ability to detect changes. Data collected to date (1992) indicate statistically significant differences in storm mass transport of suspended sediment and ammonia nitrogen at Brewery Creek. The central tendency of the regression residuals has decreased with the implementation of BMPs; hence, the improvement in water quality in the Brewery Creek watershed is likely a result of BMP implementation. Differences in storm mass transport at Garfoot Creek were not detected, primarily because of an insufficient number of storms in the transitional period. As practice implementation continues, the additional data will be used to determine the level of management which results in significant improvements in water

  7. The Conewago Creek initiative: a model for community watershed engagement and restoration

    Matt Royer; Kristen Kyler; Jennifer Fetter

    2016-01-01

    Over the last several years, a partnership of over thirty organizations called the Conewago Creek Initiative has been working cooperatively in a small watershed to increase community engagement and work with farmers and landowners to adopt land management practices to improve water quality.

  8. Proceedings of the conference on coastal watersheds: the Caspar Creek story. May 6, 1998, Ukiah, California

    Robert R. Ziemer

    1998-01-01

    These proceedings report on 36 years of research at the Caspar Creek Experimental Watershed, Jackson Demonstration State Forest in northwestern California. The 16 papers include discussions of streamflow, sediment production and routing, stream channel condition, soil moisture and subsurface water, nutrient cycling, aquatic and riparian habitat, streamside buffers,...

  9. Hydrologic and water quality monitoring on Turkey Creek watershed, Francis Marion National Forest, SC

    D.M. Amatya; T.J. Callahan; A. Radecki-Pawlik; P. Drewes; C. Trettin; W.F. Hansen

    2008-01-01

    The re-initiation of a 7,260 ha forested watershed study on Turkey Creek, a 3rd order stream, within the Francis Marion National forest in South Carolina, completes the development of a multi-scale hydrology and ecosystem monitoring framework in the Atlantic Coastal Plain. Hydrology and water quality monitoring began on the Santee Experimental...

  10. Mercury Assessment and Monitoring Protocol for the Bear Creek Watershed, Colusa County, California

    Suchanek, Thomas H.; Hothem, Roger L.; Rytuba, James J.; Yee, Julie L.

    2010-01-01

    This report summarizes the known information on the occurrence and distribution of mercury (Hg) in physical/chemical and biological matrices within the Bear Creek watershed. Based on these data, a matrix-specific monitoring protocol for the evaluation of the effectiveness of activities designed to remediate Hg contamination in the Bear Creek watershed is presented. The monitoring protocol documents procedures for collecting and processing water, sediment, and biota for estimation of total Hg (TotHg) and monomethyl mercury (MMeHg) in the Bear Creek watershed. The concurrent sampling of TotHg and MMeHg in biota as well as water and sediment from 10 monitoring sites is designed to assess the relative bioavailability of Hg released from Hg sources in the watershed and identify environments conducive to Hg methylation. These protocols are designed to assist landowners, land managers, water quality regulators, and scientists in determining whether specific restoration/mitigation actions lead to significant progress toward achieving water quality goals to reduce Hg in Bear and Sulphur Creeks.

  11. Soil health research in the Goodwater Creek Experimental Watershed Long-Term Agroecosystem Research site

    The Goodwater Creek Experimental Watershed (GCEW) is located in the Central Claypan Region in NE Missouri. Within GCEW, a field and plot research site has been operated by the USDA-Agricultural Research Service (ARS) Cropping Systems and Water Quality Research Unit since 1991. The GCEW site joined t...

  12. AmeriFlux US-ICt Imnavait Creek Watershed Tussock Tundra

    DOE Data Explorer

    Bret-Harte, Syndonia [University of Alaska Fairbanks; Euskirchen, Eugenie [University of Alaska Fairbanks; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ICt Imnavait Creek Watershed Tussock Tundra. Site Description - The Imnavait Creek Watershed Tussock Tundra (Biocomplexity Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Biocomplexity Station was deployed in 2004, and it has been in operation during the melt seasons ever since.

  13. AmeriFlux US-ICs Imnavait Creek Watershed Wet Sedge Tundra

    DOE Data Explorer

    Bret-Harte, Syndonia [University of Alaska Fairbanks; Euskirchen, Eugenie [University of Alaska Fairbanks; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ICs Imnavait Creek Watershed Wet Sedge Tundra. Site Description - The Imnavait Creek Watershed Wet Sedge Tundra (Fen Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Fen Station was deployed at the end of Summer 2007.

  14. AmeriFlux US-ICh Imnavait Creek Watershed Heath Tundra

    DOE Data Explorer

    Bret-Harte, Syndonia [University of Alaska Fairbanks; Euskirchen, Eugenie [University of Alaska Fairbanks; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ICh Imnavait Creek Watershed Heath Tundra. Site Description - The Imnavait Creek Watershed Heath Tundra (Ridge Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Ridge Station was deployed at the end of Summer 2007.

  15. Honey Creek Watershed Project Tillage Demonstration Results 1981.

    DTIC Science & Technology

    1982-01-01

    previous levels of water quality. Of these nonpoint sources, nutrient runoff from agricultural watersheds is most significant. This publication reports...return to previous levels of water quality. Of these nonpoint sources, nu- trient runoff from agricultural watersheds is most significent. How, though...was the Corps, experienced as civil engineers, to address nutrient runoff and erosion control in farm areas? Their answer to this question was to ask

  16. Water resources of the Minnesota River-Hawk Creek watershed, southwestern Minnesota

    Van Voast, Wayne A.; Broussard, W.L.; Wheat, D.E.

    1972-01-01

    The Minnesota River – Hawk Creek watershed is located in southwestern Minnesota. The watershed has an area of 1,479 square miles and is drained along its southwestern edge by the Minnesota River (Minnesota Division of Waters, 1959). The major watercourse within the watershed is Hawk Creek, having a drainage area of 510 square miles. Other, shorter streams drain into the Minnesota River but are mostly ephemeral. The watershed has a gently undulating land surface formed on glacial deposits. Directly underlying the glacial deposits in most of the area are Cretaceous sedimentary rocks. Paleozoic and Precambrian rocks are also locally in contact with overlying glacial deposits. Beds of sand and gravel buried at various depths within the glacial deposits are generally thin and discomtinuous but are the most accessible and widely used aquifers in the watershed. Beds of poorly consolidated sandstone in the Cretaceous rocks are locally good aquifers, generally yielding softer water, but in lesser quantities, than aquifers in the overlying glacial deposits. In the eastern part of the watershed, aquifers in Paleozoic and Precambrian sedimentary rocks are capable of high yields to wells and contain water of similar quality to water in the overlying Cretaceous and glacial deposits.

  17. Probability of Unmixed Young Groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of unmixed young groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps were developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  18. Biomonitoring of fish communities, using the Index of Biotic Integrity (IBI) in Rabbit Creek-Cat Creek Watershed, Summer 1992

    SciT

    Not Available

    1993-08-01

    The Index of Biotic Integrity (IBI) is a method for evaluating the health of water bodies and watersheds by analyzing sample catches of fishes. Sites are scored on a numerical scale of 12--60 and on that basis assigned to a ``bioclass`` ranging from ``very poor`` to ``excellent.`` Overall, the major causes of depressed IBI scores in the Rabbit Creek watershed would appear to be: Organic pollution, mostly from livestock, but also from agricultural runoff and possible septic tank failures; sedimentation, principally from stream bank damage by cattle, also possibly from agriculture and construction; toxic pollution from agrochemicals applied to Hollymore » Springs Golf course and agricultural fields` and Warming of water and evaporation loss due to elimination of shade on stream banks and construction of ponds.« less

  19. Protect and Restore Mill Creek Watershed; Annual Report 2004-2005.

    SciT

    McRoberts, Heidi

    2005-12-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing intomore » 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.« less

  20. Protect and Restore Mill Creek Watershed; Annual Report 2003-2004.

    SciT

    McRoberts, Heidi

    2004-06-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004,more » trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and designs completed on two of the high priority culverts. Maintenance to the previously built fence was also completed.« less

  1. Valuing water quality in urban watersheds: A comparative analysis of Johnson Creek, Oregon, and Burnt Bridge Creek, Washington

    NASA Astrophysics Data System (ADS)

    Netusil, Noelwah R.; Kincaid, Michael; Chang, Heejun

    2014-05-01

    This study uses the hedonic price method to investigate the effect of five water quality parameters on the sale price of single-family residential properties in two urbanized watersheds in the Portland, Oregon-Vancouver, Washington metropolitan area. Water quality parameters include E. coli or fecal coliform, which can affect human health, decrease water clarity and generate foul odors; pH, dissolved oxygen, and stream temperature, which can impact fish and wildlife populations; and total suspended solids, which can affect water clarity, aquatic life, and aesthetics. Properties within ¼ mile, ½, mile, one mile, or more than one mile from Johnson Creek are estimated to experience an increase in sale price of 13.71%, 7.05%, 8.18%, and 3.12%, respectively, from a one mg/L increase in dissolved oxygen levels during the dry season (May-October). Estimates for a 100 count per 100 mL increase in E. coli during the dry season are -2.81% for properties within ¼ mile of Johnson Creek, -0.86% (½ mile), -1.19% (one mile), and -0.71% (greater than one mile). Results for properties in Burnt Bridge Creek include a significantly positive effect for a one mg/L increase in dissolved oxygen levels during the dry season for properties within ½ mile (4.49%), one mile (2.95%), or greater than one mile from the creek (3.17%). Results for other water quality parameters in Burnt Bridge Creek are generally consistent with a priori expectations. Restoration efforts underway in both study areas might be cost justified based on their estimated effect on property sale prices.

  2. Using Caffeine as a Water Quality Indicator in the Ambient Monitoring Program for Third Fork Creek Watershed, Durham, North Carolina

    PubMed Central

    Spence, Porché L

    2015-01-01

    Caffeine has been suggested as a chemical indicator for domestic wastewater in freshwater systems, although it is not included in water quality monitoring programs. The Third Fork Creek watershed in Durham, NC, is highly urbanized, with a history of receiving untreated wastewater from leaking and overflowing sanitary sewers. The poor water quality originating in the Third Fork Creek watershed threatens its intended uses and jeopardizes drinking water, aquatic life, and recreational activities provided by Jordan Lake. Organic waste contaminants have been detected in both Third Fork Creek watershed and Jordan Lake; however, the sampling periods were temporary, resulting in a few samples collected during nonstorm periods. It is recommended that (1) the concentration of caffeine and other organic waste contaminants are determined during storm and nonstorm periods and (2) caffeine is monitored regularly with traditional water quality indicators to evaluate the health of Third Fork Creek watershed. PMID:26157335

  3. Evaluation of Nitrate Concentrations and Sources in the Elk Creek Watershed, Southwestern Ohio, 2003-2004

    Schumann, Thomas L.; Pletsch, Bruce A.

    2006-01-01

    Nitrate concentrations exceeding the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter have been reported in ground water near the City of Trenton, Ohio, in the southern part of the Elk Creek watershed. A study of nitrate concentrations and sources in surface and ground water within the Elk Creek watershed was conducted during 2003 and 2004. Nitrate concentrations in the Elk Creek watershed range from less than 0.06 to 11 milligrams per liter. The likely sources of elevated nitrate in the ground water near the City of Trenton appear to be soil organic matter and ammonia fertilizer. Land use is predominantly (93 percent) agricultural, with no identified point sources of nitrate. Likely sources of nitrate in the surface water appear to be manure and septic system effluent, soil organic matter, and ammonia fertilizer. Water-quality constituents, including nitrate, were sampled in water from 38 wells and at 6 surface-water sites. The wells were all shallow (less than 105 feet deep), with open intervals in aquifers of glacial origin, that include tills, outwash, and alluvium. Nitrate concentrations (median of 0.06 milligrams per liter) in the ground water of the upper section of the watershed were lower than those in the lower section of the watershed (median of 4.2 milligrams per liter). Nitrate was analyzed for nitrogen and oxygen isotope values. The d15N and d18O range from -22.36 to +32.29 per mil, and -6.27 to +17.72 per mil, respectively. A positive correlation of d15N and d18O enrichment indicates that denitrification is a prevalent process within the watershed.

  4. Applications of long-term watershed research to forest management in California: 50 Years of Learning from the Caspar Creek Watershed Study

    Cafferata Peter; Leslie Reid

    2013-01-01

    For over 50 years, the Caspar Creek Experimental Watersheds, located in western Mendocino County, California, have been the site of long-term cooperative watershed research carried out by the U.S. Forest Service Pacific Southwest Research Station (PSW) and the California Department of Forestry and Fire Protection (CAL FIRE). Preliminary stream flow, suspended...

  5. NONPOINT SOURCE MODEL CALIBRATION IN HONEY CREEK WATERSHED

    EPA Science Inventory

    The U.S. EPA Non-Point Source Model has been applied and calibrated to a fairly large (187 sq. mi.) agricultural watershed in the Lake Erie Drainage basin of north central Ohio. Hydrologic and chemical routing algorithms have been developed. The model is evaluated for suitability...

  6. Caspar Creek Phase II: Discovering how watersheds respond to logging

    Anonymous

    1993-01-01

    For the past three decades, researchers from the Pacific Southwest Research Station's Redwood Sciences Laboratory in Arcata, California, and the California Department of Forestry and Fire Protection (CDF), Jackson Demonstration Forest near Fort Bragg, have been studying the effects of logging northern California watersheds. The findings have identified the extent...

  7. SUSTAINABILITY OF RESOURCES IN THE CHADRON CREEK WATERSHED

    EPA Science Inventory

    We achieved most of the major components of all of our goals. Below is a list of the WST’s major accomplishments, followed by critical assessments.

    • Measured environmental quality in the watershed in the areas of physical hydrology, chemistry, microbiology...

    • Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

      Kennedy, Ben W.; Langley, Dustin E.

      2007-01-01

      Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase

    • Synthesis of 10-years of Ecohydrologic studies on Turkey Creek watershed

      Devendra Amatya; Timothy Callahan; Carl Trettin

      2016-01-01

      Since the establishment of a collaborative study 10 years ago, research on the third-order, 5240 ha forested Turkey Creek watershed in South Carolina’s coastal plain has advanced the understanding of rainfall-runoff relationships, stream hydrograph characteristics, and water table dynamics for dominant soil types. Surface water dynamics were shown to be regulated...

    • Effects of Timber Harvest on Fog Drip and Streamflow, Caspar Creek Experimental Watersheds, Mendocino County, California

      Elizabeth Keppeler

      2007-01-01

      Within the second-growth redwood forest of the Caspar Creek watershed, fog drip was measured in 1998 at 12 sites where heavy fog drip was expected. The following year, two one-ha plots were each instrumented with six randomly sited 1.35 m2 fog-drip collectors and one additional collector in a nearby clearcut. Fog-drip totals were highly variable...

    • Hydrologic change in a coast redwood forest, Caspar Creek Experimental Watersheds: implications for salmonid survival

      Elizabeth Keppeler

      2016-01-01

      The 52-year record of streamflow from the Caspar Creek Experimental Watersheds shows a trend toward decreasing rainfall and streamflow during the fall season when coho salmon (Oncorhynchus kisutch) migrate upstream to spawn. Rainfall records show a slight declining trend in fall totals and a slight increasing trend in spring totals since 1962, but only November shows a...

    • Identifying sources and processes controlling the sulphur cycle in the Canyon Creek watershed, Alberta, Canada.

      PubMed

      Nightingale, Michael; Mayer, Bernhard

      2012-01-01

      Sources and processes affecting the sulphur cycle in the Canyon Creek watershed in Alberta (Canada) were investigated. The catchment is important for water supply and recreational activities and is also a source of oil and natural gas. Water was collected from 10 locations along an 8 km stretch of Canyon Creek including three so-called sulphur pools, followed by the chemical and isotopic analyses on water and its major dissolved species. The δ(2)H and δ(18)O values of the water plotted near the regional meteoric water line, indicating a meteoric origin of the water and no contribution from deeper formation waters. Calcium, magnesium and bicarbonate were the dominant ions in the upstream portion of the watershed, whereas sulphate was the dominant anion in the water from the three sulphur pools. The isotopic composition of sulphate (δ(34)S and δ(18)O) revealed three major sulphate sources with distinct isotopic compositions throughout the catchment: (1) a combination of sulphate from soils and sulphide oxidation in the bedrock in the upper reaches of Canyon Creek; (2) sulphide oxidation in pyrite-rich shales in the lower reaches of Canyon Creek and (3) dissolution of Devonian anhydrite constituting the major sulphate source for the three sulphur pools in the central portion of the watershed. The presence of H(2)S in the sulphur pools with δ(34)S values ∼30 ‰ lower than those of sulphate further indicated the occurrence of bacterial (dissimilatory) sulphate reduction. This case study reveals that δ(34)S values of surface water systems can vary by more than 20 ‰ over short geographic distances and that isotope analyses are an effective tool to identify sources and processes that govern the sulphur cycle in watersheds.

    • Temporal Geochemistry Data from Five Springs in the Cement Creek Watershed, San Juan County, Colorado

      Johnson, Raymond H.; Wirt, Laurie; Leib, Kenneth J.

      2008-01-01

      Temporal data from five springs in the Cement Creek watershed, San Juan County, Colorado provide seasonal geochemical data for further research in the formation of ferricretes. In addition, these data can be used to help understand the ground-water flow system. The resulting data demonstrate the difficulty in gathering reliable seasonal data from springs, show the unique geochemistry of each spring due to local geology, and provide seasonal trends in geochemistry for Tiger Iron Spring.

    • Summaries of Minnehaha Creek Watershed District Plans/Studies/Reports

      DTIC Science & Technology

      2004-01-30

      34+ Management of all wetland functional assessment data in a Microsoft Access© database "+ Development of a GIS wetland data management system "+ Recommendations...General Task B Design GIS -Based Decision Making Model: Scenario-Based $125,000 $125,000 Model of Landuse Hydro Data Monitoring Task C Water Quality...Landuse and Land cover data + Watershed GIS data layers + Flood Insurance Rate Maps + Proposed project locations + Stream miles, reaches and conditions

    • Return Spawning/Rearing Habitat to Anadromous/Resident Fish within the Fishing Creek to Legendary Bear Creek Analysis Area Watersheds; 2002-2003 Final Report.

      SciT

      Taylor, Jr., Emmit E.

      2004-03-01

      This project is a critical component of currently on-going watershed restoration effort in the Lochsa River Drainage, including the Fishing (Squaw) Creek to Legendary Bear (Papoose) Creek Watersheds Analysis Area. In addition, funding for this project allowed expansion of the project into Pete King Creek and Cabin Creek. The goal of this project is working towards the re-establishment of healthy self-sustaining populations of key fisheries species (spring Chinook salmon, steelhead, bull trout, and westslope cutthroat trout) through returning historic habitat in all life stages (spawning, rearing, migration, and over-wintering). This was accomplished by replacing fish barrier road crossing culverts withmore » structures that pass fish and accommodate site conditions.« less

    • Collection of short papers on Beaver Creek watershed studies in West Tennessee, 1989-94

      Doyle, W. Harry.; Baker, Eva G.

      1995-01-01

      In 1989, the U.S. Geological Survey began a scientific investigation to evaluate the effect of agricultural activities on water quality and the effectiveness of agricultural best management practices in the Beaver Creek watershed, West Tennessee. The project is being conducted jointly with other Federal, State, county agencies, the farming community, and academic institutions, in support of the U.S. Department of Agriculture's Hydrologic Unit Area program. The Beaver Creek project has evolved into a long-term watershed assessment and monitoring program. In 1991, a grant was received to develop and evaluate sampling strategies for higher order streams. During the summer of 1992, a reconnaissance of water-quality conditions for the shallow aquifers in Shelby, Tipton, Fayette, and Haywood Counties was conducted and included 89 domestic wells in the Beaver Creek watershed. Results from this effort lead to the development of a 1-year program to evaluate cause- and-effect relations that can explain the observed water-quality conditions for the shallow aquifers in the watershed. In 1992 the USGS, in cooperation with the Soil Conservation Service and the Shelby County Soil Conservation District, began an evaluation of in-stream processes and in-stream resource-management systems. In 1993, a biomonitoring program was established in the watershed. This collection of eight articles and abstracts was originally published in the American Water Resources Association National Symposium on Water Quality Proceedings for the national conference held in Chicago in 1994 and describes what has been learned in the study to date.

    • Effects of forest harvest on stream-water quality and nitrogen cycling in the Caspar Creek watershed

      Randy A. Dahlgren

      1998-01-01

      The effects of forest harvest on stream-water quality and nitrogen cycling were examined for a redwood/Douglas-fir ecosystem in the North Fork, Caspar Creek experimental watershed in northern California. Stream-water samples were collected from treated (e.g., clearcut) and reference (e.g., noncut) watersheds, and from various locations downstream from the treated...

    • Applying hydropedology to nutrient management in the northeastern US: lessons learned from the Mahantango Creek Experimental Watershed

      Understanding the nature and extent of soils prone to nutrient losses in runoff is central to the success of nutrient management in agricultural watersheds. Drawing upon case studies from USDA-ARS’s Mahantango Creek Experimental Watershed in east-central Pennsylvania, this presentation will discuss ...

    • Soil-landscape relationships at the lower reaches of a watershed at Bear Creek near Oak Ridge, Tennessee

      D.H. Phillips; J.E. Foss; C.A. Stiles; Carl C. Trettin; R.J. Luxmoore

      2000-01-01

      The watersheds at Bear Creek, Oak Ridge, TN, have similar soil-landscape relationships. The lower reaches of many of these watersheds consist of headwater riparian wetlands situated between sloping non-wetland upland zones. The objectives of this study are to examine the effects of (i) slope and geomorphic processes, (ii) human impacts, and (iii) particular...

    • Traveltime characteristics of Gore Creek and Black Gore Creek, upper Colorado River basin, Colorado

      Gurdak, Jason J.; Spahr, Norman E.; Szmajter, Richard J.

      2002-01-01

      In the Rocky Mountains of Colorado, major highways are often constructed in stream valleys. In the event of a vehicular accident involving hazardous materials, the close proximity of highways to the streams increases the risk of contamination entering the streams. Recent population growth has contributed to increased traffic volume along Colorado highways and has resulted in increased movement of hazardous materials, particularly along Interstate 70. Gore Creek and its major tributary, Black Gore Creek, are vulnerable to such contamination from vehicular accidents along Interstate 70. Gore Creek, major tributary of the Eagle River, drains approximately 102 square miles, some of which has recently undergone significant urban development. The headwaters of Gore Creek originate in the Gore Range in the eastern part of the Gore Creek watershed. Gore Creek flows west to the Eagle River. Beginning at the watershed boundary on Vail Pass, southeast of Vail Ski Resort, Interstate 70 parallels Black Gore Creek and then closely follows Gore Creek the entire length of the watershed. Interstate 70 crosses Gore Creek and tributaries 20 times in the watershed. In the event of a vehicular accident involving a contaminant spill into Gore Creek or Black Gore Creek, a stepwise procedure has been developed for water-resource managers to estimate traveltimes of the leading edge and peak concentration of a conservative contaminant. An example calculating estimated traveltimes for a hypothetical contaminant release in Black Gore Creek is provided. Traveltime measurements were made during May and September along Black Gore Creek and Gore Creek from just downstream from the Black Lakes to the confluence with the Eagle River to account for seasonal variability in stream discharge. Fluorometric dye injection of rhodamine WT and downstream dye detection by fluorometry were used to measure traveltime characteristics of Gore Creek and Black Gore Creek. During the May traveltime measurements

  1. Suspended-sediment and turbidity responses to sediment and turbidity reduction projects in the Beaver Kill, Stony Clove Creek, and Warner Creek, Watersheds, New York, 2010–14

    Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle

    2016-12-05

    Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.

  2. Hydrogeology and Ground-Water Flow in the Opequon Creek Watershed area, Virginia and West Virginia

    Kozar, Mark D.; Weary, David J.

    2009-01-01

    Due to increasing population and economic development in the northern Shenandoah Valley of Virginia and West Virginia, water availability has become a primary concern for water-resource managers in the region. To address these issues, the U.S. Geological Survey (USGS), in cooperation with the West Virginia Department of Health and Human Services and the West Virginia Department of Environmental Protection, developed a numerical steady-state simulation of ground-water flow for the 1,013-square-kilometer Opequon Creek watershed area. The model was based on data aggregated for several recently completed and ongoing USGS hydrogeologic investigations conducted in Jefferson, Berkeley, and Morgan Counties in West Virginia and Clarke, Frederick, and Warren Counties in Virginia. A previous detailed hydrogeologic assessment of the watershed area of Hopewell Run (tributary to the Opequon Creek), which includes the USGS Leetown Science Center in Jefferson County, West Virginia, provided key understanding of ground-water flow processes in the aquifer. The ground-water flow model developed for the Opequon Creek watershed area is a steady-state, three-layer representation of ground-water flow in the region. The primary objective of the simulation was to develop water budgets for average and drought hydrologic conditions. The simulation results can provide water managers with preliminary estimates on which water-resource decisions may be based. Results of the ground-water flow simulation of the Opequon Creek watershed area indicate that hydrogeologic concepts developed for the Hopewell Run watershed area can be extrapolated to the larger watershed model. Sensitivity analyses conducted as part of the current modeling effort and geographic information system analyses of spring location and yield reveal that thrust and cross-strike faults and low-permeability bedding, which provide structural and lithologic controls, respectively, on ground-water flow, must be incorporated into the

  3. Water-quality, bed-sediment, and biological data, for streams in the upper Prickly Pear Creek watershed, Montana, 2001

    Klein, Terry L.; Thamke, Joanna N.; Harper, David D.; Farag, Aïda M.; Nimick, David A.; Fey, David L.

    2003-01-01

    The upper Prickly Pear Creek watershed encompasses the upstream 15 miles of Prickly Pear Creek, south of Helena, Montana (fig. 1). The headwaters of Prickly Pear Creek and its tributaries (Beavertown Creek, Clancy Creek, Dutchman Creek, Golconda Creek, Lump Gulch, Spring Creek, and Warm Springs Creek) are primarily in the Helena National Forest, whereas the central part of the watershed primarily is within either Bureau of Land Management (BLM) or privately owned property. Three mining districts are present in the upper Prickly Pear Creek watershed: Alhambra, Clancy, and Colorado. Numerous prospects, adits, tailings piles, mills, dredge piles, and mines (mostly inactive) are located throughout the watershed. These districts contain polymetallic (Ag, Au, Cu, Pb, Zn) vein deposits and precious-metal (Au-Ag) vein and disseminated deposits that were exploited beginning in the 1860’s. Placer Au deposits in the major streams were extensively mined in the late 1800’s and early 1900’s.As part of a cooperative effort with Federal land management agencies, the U.S. Geological Survey (USGS) is currently using an integrated approach to investigate two mining impacted watersheds in the western United States (the Animas River in Colorado and the Boulder River in Montana). These studies provide the USDA Forest Service and BLM scientific data for implementing informed land-management decisions regarding cleanup of abandoned mine lands within each watershed. A similar integrated-science approach will be used to characterize the upper Prickly Pear Creek watershed with respect to water and streambed sediment chemistry, aquatic biota, and geologic framework. This integrated database presents data that will be used to identify important pathways of metals movement and biological impacts, thereby guiding resource management decisions of land-managers in several publications that are in preparation. Watershed-level characterization in terms of water quality, streambed sediment

  4. Water-quality assessment of the Cypress Creek watershed, Warrick County, Indiana

    Bobo, Linda L.; Peters, Charles A.

    1980-01-01

    The U.S. Soil Conservation Service needs chemical, biological, microbiological, and hydrological data to prepare an environmental evaluation of the water quality in the Cypress Creek watershed, Warrick County, Ind., before plans can be devised to (1) improve water quality, (2) minimize flooding, (3) reduce sedimentation, and (4) provide adequate outlets for drainage in the watershed. The U.S. Geological Survey obtained these data for the Soil Conservation Service in a water-quality survey of the watershed from March to August 1979. Past and present surface coal mining is the factor having the greatest impact on water quality in the watershed. The upper reaches of Cypress Creek receive acid-mine drainage from a coal-mine waste slurry during periods of intense rainfall. All the remaining tributaries, except Summer Pecka ditch, drain mined or reclaimed lands. The general water type of Cypress Creek and most of its tributaries is calcium and magnesium sulfate. In contrast, the water type at background site 21 on Summer Pecka ditch is calcium sulfate. Specific conductance ranged from 470 to 4,730 micromhos per centimeter at 25 degrees Celsius, and pH ranged from 1.2 to 8.8. Specific conductance, hardness, and concentrations of major ions and dissolved solids were highest in tributaries affected by mining. The pH was lowest in the same tributaries. Concentrations of iron, manganese, and sulfate in water samples and chlordane, DDT, and PCB 's in streambed samples exceeded water-quality limits set by the U.S. Environmental Protection Agency. (USGS)

  5. Understanding Stream Channel Sediment Source Contributions For The Paradise Creek Watershed In Northern Idaho

    NASA Astrophysics Data System (ADS)

    Rittenburg, R.; Boll, J.; Brooks, E. S.

    2013-12-01

    Excess sediment from agricultural areas has been a major source of impairment for water bodies, resulting in the implementation of mitigation measures across landscapes. Watershed scale reductions often target upland erosion as key non-point sources for sediment loading. Stream channel dynamics, however, also play a contributing role in sediment loading in the form of legacy sediments, channel erosion and deposition, and buffering during storm events. In-stream contributions are not well understood, and are a potentially important consideration for Total Maximum Daily Loads (TMDLs). The objective of this study is to differentiate stream bank and stream bed sediment contributions and better understand the role of legacy sediments. The study area is the Paradise Creek Watershed in northern Idaho. We modeled sediment yield to the channel system using the Water Erosion Prediction Project (WEPP) model, and subsequent channel erosion and deposition using CONCEPTs. Field observations of cross-sections along the channel system over a 5-year period were collected to verify model simulations and to test the hypothesis that the watershed load was composed predominantly of legacy sediments. Our modeling study shows that stream channels contributed to 39% of the total annual sediment load for the basin, with a 19-year time lag between sediments entering the stream to leaving the watershed outlet. Observations from long-term cross sectional data in the watershed, and a sediment fingerprinting analysis will be presented to better understand sediment contributions from within the stream channel system.

  6. Hydrographic characterization of two tidal creeks with implications for watershed land use, flushing times, and benthic production

    Buzzelli, C.; Holland, Austin F.; Sanger, D.M.; Conrads, P.C.

    2007-01-01

    Many coastal ecosystems are undergoing anthropogenic stress from large increases in population and urbanization. In many regions changes in freshwater and material inputs to the coastal zone are altering the biogeochemical and biological capacities of ecosystems. Despite increased watershed inputs, large tidal volumes and flushing indicative of macrotidal estuaries can modulate the fate of introduced materials masking some of the symptoms of eutrophication. The Land Use Coastal Ecosystem Study (LU-CES) examined linkages between land use and environmental properties of Malind and Okatee Creeks in South Carolina from 2001 to 2004. The objectives of this particular study were to assess the hydrography of the two macrotidal creek ecosystems, explore differences in dissolved oxygen (DO), and develop a better understanding of the variations in primary and benthic secondary production in southeastern creek ecosystems. Depth, pH, salinity, and DO were reduced and more variable in Malind Creek than in Okatee Creek, although both creeks had strong semidiurnal frequencies in salinity time signatures. While time series analyses of DO saturation in Malind Creek revealed a dominant semidiurnal pattern, Okatee Creek had a distinctly diel DO pattern. The strongly semidiurnal fluctuations in DO and reduced flushing time indicated that biological processes were not fast enough to influence DO in Malind Creek. The Okatee Creek system had a much greater storage volume, a wider marsh, and a dominant 25-h DO frequency. These attributes contributed to an estimated 8-10 times more phytoplankton-based carbon in Okatee Creek and twice the annual benthic production. As expected from their proximity to the upland, low surface area, and high organic content, both ecosystems were net heterotrophic. This fundamental understanding of tidal creek hydrography is being used to help define linkages among differential watershed land uses, flushing characteristics, and levels of biological production

  7. Geochemical Indicators of Urban Development in Tributaries and Springs along the Bull Creek Watershed, Austin, TX

    NASA Astrophysics Data System (ADS)

    Senison, J. J.; Banner, J. L.; Reyes, D.; Sharp, J. M.

    2012-12-01

    Urbanization can cause significant changes to both flow and water quality in streams and tributaries. In the Austin, Texas, area, previous studies have demonstrated that streamwater strontium isotope compositions (87Sr/86Sr) correlate with measures of urbanization when comparing non-urbanized streams to their urban counterparts. The inclusion of municipal water into natural surface water is inferred from the mean 87Sr/86Sr value found in urbanized streams, which falls between the high value in treated municipal water and the lower values found in local surface streams sourcing from non-urbanized catchments. Fluoride is added to municipal tap water in the treatment process, and a correlation between 87Sr/86Sr and fluoride is observed in streamwater sampled from the watersheds around Austin. These relationships represent some of the principal findings reported in Christian et al. (2011). Current research is testing the hypothesis that municipal water influx in urban areas is a primary modifier of stream- and spring-water chemistry in a single watershed that contains a strong gradient in land use. We compare 87Sr/86Sr and other chemical constituents with potential contributing endmembers, such as municipal tap water and wastewater, local soil and rock leachates, and land use within the Bull Creek watershed. As a consequence of the history of land development, some Bull Creek tributaries are sourced and flow almost entirely in fully-developed areas, whereas others are located in protected natural areas. Thirteen tributaries were monitored and classified as either urbanized or non-urbanized based upon land use within the tributary catchment. Springs in the Bull Creek watershed were also sampled and are similarly classified. The Bull Creek watershed is composed of Lower Cretaceous limestone with significantly lower 87Sr/86Sr than that of municipal water taken from the Lower Colorado River, which is underlain in part by Precambrian rocks upstream of Austin. There are

  8. Hydrologic, Hydraulic, and Flood Analyses of the Blackberry Creek Watershed, Kendall County, Illinois

    Murphy, Elizabeth A.; Straub, Timothy D.; Soong, David T.; Hamblen, Christopher S.

    2007-01-01

    Results of the hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kendall County, Illinois, indicate that the 100-year and 500-year flood plains cover approximately 3,699 and 3,762 acres of land, respectively. On the basis of land-cover data for 2003, most of the land in the flood plains was cropland and residential land. Although many acres of residential land were included in the flood plain, this land was mostly lawns, with 25 homes within the 100-year flood plain, and 41 homes within the 500-year flood plain in the 2003 aerial photograph. This report describes the data collection activities to refine the hydrologic and hydraulic models used in an earlier study of the Kane County part of the Blackberry Creek watershed and to extend the flood-frequency analysis through water year 2003. The results of the flood-hazard analysis are presented in graphical and tabular form. The hydrologic model, Hydrological Simulation Program - FORTRAN (HSPF), was used to simulate continuous water movement through various land-use patterns in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center- River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and the 100-year floodway. The hydraulic model was calibrated and verified using observations during three storms at two crest-stage gages and the U.S. Geological Survey streamflowgaging station near Yorkville. Digital maps of the 100-year and 500-year flood plains and the 100-year floodway for each tributary and the main stem of Blackberry Creek were compiled.

  9. Surface-subsurface interactions of the seasonally snow-covered Boulder Creek Watershed at Orodell, Colorado

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Williams, M. W.; Rock, N.; Cowie, R. M.

    2015-12-01

    The hydrology of the western United States and many other semi-arid regions of the world is dominated by snowmelt runoff. An important question is the role of subsurface interactions with snowmelt runoff. Hydrologic mixing models have been used to answer this question at the hillslope and small basin scale. Here we present information on snowmelt/subsurface interactions for the 270-km2 Boulder Creek Watershed in the Colorado Front Range using isotopic, geochemical, and hydrometric data along with end-member mixing analysis (EMMA). We measured these parameters at several different elevations in weekly precipitation, the seasonal snowpack, snowmelt before contact with the ground, discharge, springs, soil solution, and groundwater. At the watershed outlet Orodell, five tracers are selected: Ca2+, Mg2+, Na+, ANC, and d18O. The first two principal components can explain about 98% of the chemical variance in stream water, and require three end members: groundwater, rain, and snowmelt. The r-squared values of measured and predicted values are higher than 0.95, suggesting that we have identified the correct end-members. It is concluded that in summer months, contributions from groundwater to stream flow decreased from high to low elevations along the Boulder Creek main stem, while contributions from rain and snow increased. Whether this trend represents the general contributions for streamflow on a yearly basis is uncertain, and needs further investigation. On the contrary, contributions of snow to streamflow decreased from GL4 to GG in summer months (Cowie, 2014). Thus, in Boulder Creek Watershed at Orodell, the hydrochemical evolution at headwater catchments is different from that in the main stem.

  10. Cliff swallows Petrochelidon pyrrhonota as bioindicators of environmental mercury, Cache Creek Watershed, California

    Hothem, Roger L.; Trejo, Bonnie S.; Bauer, Marissa L.; Crayon, John J.

    2008-01-01

    To evaluate mercury (Hg) and other element exposure in cliff swallows (Petrochelidon pyrrhonota), eggs were collected from 16 sites within the mining-impacted Cache Creek watershed, Colusa, Lake, and Yolo counties, California, USA, in 1997-1998. Nestlings were collected from seven sites in 1998. Geometric mean total Hg (THg) concentrations ranged from 0.013 to 0.208 ??g/g wet weight (ww) in cliff swallow eggs and from 0.047 to 0.347 ??g/g ww in nestlings. Mercury detected in eggs generally followed the spatial distribution of Hg in the watershed based on proximity to both anthropogenic and natural sources. Mean Hg concentrations in samples of eggs and nestlings collected from sites near Hg sources were up to five and seven times higher, respectively, than in samples from reference sites within the watershed. Concentrations of other detected elements, including aluminum, beryllium, boron, calcium, manganese, strontium, and vanadium, were more frequently elevated at sites near Hg sources. Overall, Hg concentrations in eggs from Cache Creek were lower than those reported in eggs of tree swallows (Tachycineta bicolor) from highly contaminated locations in North America. Total Hg concentrations were lower in all Cache Creek egg samples than adverse effects levels established for other species. Total Hg concentrations in bullfrogs (Rana catesbeiana) and foothill yellow-legged frogs (Rana boylii) collected from 10 of the study sites were both positively correlated with THg concentrations in cliff swallow eggs. Our data suggest that cliff swallows are reliable bioindicators of environmental Hg. ?? Springer Science+Business Media, LLC 2007.

  11. Watershed scale response to climate change--Black Earth Creek Basin, Wisconsin

    Hunt, Randall J.; Walker, John F.; Westenbroek, Steven M.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Black Earth Creek Basin, Wisconsin.

  12. A water-quality assessment of the Burnham Creek Watershed, Polk County, Minnesota

    Have, M.R.

    1975-01-01

    A water-quality assessment of the Burnham Creek watershed, Polk County, Minn., was made in May 1975. Surface waters were calcium magnesium bicarbonate types with 0.11 mg/liter or less of nitrite plus nitrate nitrogen and 0.10 mg/liter or less of total phosphorous. Fecal coliform bacteria concentrations were between 3 and 720 colonies per 100 milliliters and fecal Streptococci concentrations ranged between 19 and 1600 colonies per 100 milliliters. Pesticide concentrations were low in the stream bottom materials, but an increasing trend was apparent in the downstream direction. The benthic community was dominated by blackfly larvae.

  13. The Reynolds Creek Experimental Watershed: A Hydro-Geo-Climatic Observatory for the 21^{st} Century

    NASA Astrophysics Data System (ADS)

    Marks, D.; Seyfried, M.; Flerchinger, G.

    2006-12-01

    Long-term hydro-climatic data on a watershed scale are critical to improving our understanding of basic hydrologic and ecologic processes because they provide a context to assess inter-annual variability and allow us to document longer-term trends. In addition, a scientific infrastructure that captures the spatial variations within a watershed are required to identify recharge areas, describe the amount and timing of streamflow generation and understand the variability of vegetation. These basic data, combined with soil microclimate information, are required to describe the milieu for geochemical weathering and soil formation. Data from watersheds that include significant human activities, such as grazing, farming, irrigation, and urbanization, represent conditions typical to most watersheds and are critical for determining the signature of human induced changes on hydrologic processes and the water cycle. The Reynolds Creek Experimental Watershed (RCEW), a 239 km2 drainage in the Owyhee Mountains near Boise, Idaho, was added to the USDA Agricultural Research Service watershed program in 1960. The vision for RCEW as an outdoor laboratory to support watershed research was described 1965 in the first volume of Water Resources Research [Robins et al., 1965]. The RCEW has supported a sustained data collection network for over 45 years. The first 35 years of data were presented in a series of papers in 2001 [Marks, 2001]. More recently, there has been an effort to better describe spatial variations within the watershed, and research is currently supported by 9 weirs, 32 primary and 5 secondary meteorological measurement stations, 26 precipitation stations, 8 snow course and 5 snow study sites, and 5 eddy covariance systems. In addition, soil microclimate (moisture and temperature) profile data are collected eight sites with surface data collected at an additional 19 sites. These support a wide range of experimental investigations including snow hydrology and physics

  14. Sources of fine-grained sediment in the Linganore Creek watershed, Frederick and Carroll Counties, Maryland, 2008-10

    Gellis, Allen C.; Noe, Gregory B.; Clune, John W.; Myers, Michael K.; Hupp, Cliff R.; Schenk, Edward R.; Schwarz, Gregory E.

    2015-01-01

    Management implications of this study indicate that both agriculture and streambanks are important sources of sediment in Linganore Creek where the delivery of agriculture sediment was 4 percent and the delivery of streambank sediment was 44 percent. Fourth order streambanks, on average, had the highest rates of bank erosion. Combining the sediment fingerprinting and sediment budget results indicates that 96 percent of the eroded fine-grained sediment from agriculture went into storage. Flood plains and ponds are effective storage sites of sediment in the Linganore Creek watershed. Flood plains stored 8 percent of all eroded sediment with 4th and 5th order flood plains, on average, storing the most sediment. Small ponds in the Linganore Creek watershed, which drained 16 percent of the total watershed area, stored 15 percent of all eroded sediment. Channel beds were relatively stable with the greatest erosion generally occurring in 4th and 5th order streams.

  15. Transport and Sources of Suspended Sediment in the Mill Creek Watershed, Johnson County, Northeast Kansas, 2006-07

    Lee, Casey J.; Rasmussen, Patrick P.; Ziegler, Andrew C.; Fuller, Christopher C.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Johnson County Stormwater Management Program, evaluated suspended-sediment transport and sources in the urbanizing, 57.4 mi2 Mill Creek watershed from February 2006 through June 2007. Sediment transport and sources were assessed spatially by continuous monitoring of streamflow and turbidity as well as sampling of suspended sediment at nine sites in the watershed. Within Mill Creek subwatersheds (2.8-16.9 mi2), sediment loads at sites downstream from increased construction activity were substantially larger (per unit area) than those at sites downstream from mature urban areas or less-developed watersheds. Sediment transport downstream from construction sites primarily was limited by transport capacity (streamflow), whereas availability of sediment supplies primarily influenced transport downstream from mature urban areas. Downstream sampling sites typically had smaller sediment loads (per unit area) than headwater sites, likely because of sediment deposition in larger, less sloping stream channels. Among similarly sized storms, those with increased precipitation intensity transported more sediment at eight of the nine monitoring sites. Storms following periods of increased sediment loading transported less sediment at two of the nine monitoring sites. In addition to monitoring performed in the Mill Creek watershed, sediment loads were computed for the four other largest watersheds (48.6-65.7 mi2) in Johnson County (Blue River, Cedar, Indian, and Kill Creeks) during the study period. In contrast with results from smaller watersheds in Mill Creek, sediment load (per unit area) from the most urbanized watershed in Johnson County (Indian Creek) was more than double that of other large watersheds. Potential sources of this sediment include legacy sediment from earlier urban construction, accelerated stream-channel erosion, or erosion from specific construction sites, such as stream-channel disturbance during bridge

  16. Understanding the hydrologic consequences of timber-harvest and roading: four decades of streamflow and sediment results from the Caspar Creek experimental watersheds

    Elizabeth Keppeler; Jack Lewis

    2007-01-01

    The Caspar Creek Experimental Watersheds were established in 1962 to study the effects of forest management on streamflow, sedimentation, and erosion in the rainfall-dominated, forested watersheds of north coastal California. Currently, 21 stream sites are gaged in the North Fork (473 ha) and South Fork (424 ha) of Caspar Creek. From 1971 to 1973, 65% of the timber...

  17. Impacts on water quality and biota from natural acid rock drainage in Colorado's Lake Creek watershed

    Bird, D.A.; Sares, Matthew A.; Policky, Greg A.; Schmidt, Travis S.; Church, Stan E.

    2006-01-01

    Colorado's Lake Creek watershed hosts natural acid rock drainage that significantly impacts surface water, streambed sediment, and aquatic life. The source of the ARD is a group of iron-rich springs that emerge from intensely hydrothermally altered, unexploited, low-grade porphyry copper mineralization in the Grizzly Peak Caldera. Source water chemistry includes pH of 2.5 and dissolved metal concentrations of up to 277 mg/L aluminum, 498 mg/L iron, and 10 mg/L copper. From the hydrothermally altered area downstream for 27 kilometers to Twin Lakes Reservoir, metal concentrations in streambed sediment are elevated and the watershed experiences locally severe adverse impacts to aquatic life due to the acidic, metal-laden water. The water and sediment quality of Twin Lakes Reservoir is sufficiently improved that the reservoir supports a trout fishery, and remnants of upstream ARD are negligible.

  18. Bioaccumulation of selenium by the Bryophyte Hygrohypnum ochraceum in the Fountain Creek Watershed, Colorado.

    PubMed

    Herrmann, S J; Turner, J A; Carsella, J S; Lehmpuhl, D W; Nimmo, D R

    2012-12-01

    Aquatic bryophytes, Hygrohypnum ochraceum, were deployed "in situ" at 14 sites in the Fountain Creek Watershed, spring and fall, 2007 to study selenium (Se) accumulation. Dissolved, total, and pore (sediment derived) water samples were collected and water quality parameters determined while plants were exposed to the water for 10 days. There was a trend showing plant tissue-Se uptake with distance downstream and we found a strong correlation between Se in the water with total hardness in both seasons. There was a modest association between Se-uptake in plants with hardness in the spring of 2007 but not the fall. Plants bioconcentrated Se from the water by a factor of 5.8 × 10(3) at Green Mountain Falls and 1.5 × 10(4) at Manitou Springs in the fall of 2007. Both are examples of the bioconcentration abilities of the plants, primarily in the upper reaches of the watershed where bioconcentration factors were highest. However, the mean minima and maxima of Se in the plants in each of the three watershed segments appeared similar during both seasons. We found direct relationships between the pore and dissolved Se in water in the spring (R (2) = 0.84) and fall (R (2) = 0.95) and dissolved Se and total hardness in the spring and fall (R (2) = 0.92). The data indicate that H. ochraceum was a suitable indicator of Se bioavailability and Se uptake in other trophic levels in the Fountain Creek Watershed based on a subsequent study of Se accumulation in fish tissues at all 14 sites.

  19. Linking plot, field, and watershed runoff and water quality in Goodwater Creek Experimental Watershed

    Most water quality studies are conducted at the plot, field, or watershed scale; however, studies that integrate the three scales provide information to scale results obtained at one scale to a greater area. The objective of this study was to analyze runoff and water quality measured (1997-2001) fr...

  20. Watershed Landscape Ecology: Interdisciplinary and Field-based Learning in the Northeast Creek Watershed, Mount Desert Island, Maine

    NASA Astrophysics Data System (ADS)

    Hall, S. R.; Anderson, J.; Rajakaruna, N.; Cass, D.

    2014-12-01

    At the College of the Atlantic, Bar Harbor, Maine, undergraduate students have the opportunity to design their own curriculum within a major of "Human Ecology." To enable students to have early research experiences, we developed a field-based interdisciplinary program for students to learn and practice field methods in a variety of disciplines, Earth Science, Botany, Chemistry, and Wildlife Biology at three specific field sites within a single watershed on Mt. Desert Island. As the Northeast Creek watershed was the site of previous water quality studies, this program of courses enabled continued monitoring of portions of the watershed. The program includes 4 new courses: Critical Zone 1, Critical Zone 2, Wildlife Biology, and Botany. In Critical Zone 1 students are introduced to general topics in Earth Science and learn to use ArcGIS to make basic maps. In Critical Zone 2, Wildlife Biology, and Botany, students are in the field every week using classic field tools and methods. All three of these courses use the same three general field areas: two with working farms at the middle and lower portion of the watershed and one uninhabited forested property in the higher relief headwaters of the watershed. Students collect daily surface water chemistry data at five stream sites within the watershed, complete basic geologic bedrock and geomorphic mapping, conduct wildlife surveys, botanical surveys, and monitor weather patterns at each of the main sites. Beyond the class data collected and synthesized, students also complete group independent study projects at focused field sites, some of which have turned into much larger research projects. This program is an opportunity for students and faculty with varied interests and expertise to work together to study a specific field locality over multiple years. We see this model as enhancing a number of positive education components: field-based learning, teamwork, problem solving, interdisciplinary discussion, multiple faculty

  1. Quantifying stream channel sediment contributions for the Paradise Creek Watershed in northern Idaho

    NASA Astrophysics Data System (ADS)

    Rittenburg, R.; Squires, A.; Boll, J.; Brooks, E. S.

    2012-12-01

    Excess sediment from agricultural areas has been a major source of impairment for water bodies around the world, resulting in the implementation of mitigation measures across landscapes. Watershed scale reductions often target upland erosion as key non-point sources for sediment loading. Stream channel dynamics, however, also play a contributing role in sediment loading in the form of legacy sediments, channel erosion and deposition, and buffering during storm events. Little is known about in-stream contributions, a potentially important consideration for Total Maximum Daily Loads (TMDLs). The objective of this study is to identify where and when sediment is delivered to the stream and the spatial and temporal stream channel contributions to the overall watershed scale sediment load. The study area is the Paradise Creek Watershed in northern Idaho. We modeled sediment yield to the channel system using the Water Erosion Prediction Project (WEPP) model, and subsequent channel erosion and deposition using CONCEPTs. Field observations of cross-sections along the channel system over a 5-year period were collected to verify model simulations and to test the hypothesis that the watershed load was made up predominantly of legacy sediments. Our modeling study shows that stream channels contributed to 50% of the total annual sediment load for the basin, with a 19 year time lag between sediments entering the stream to leaving the watershed outlet. Observations from long-term data in the watershed will be presented to indicate if the main source of the sediment is from either rural and urban non-point sources or the channel system.

  2. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.

    SciT

    Rasmussen, Lynn

    2006-07-01

    The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nezmore » Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.« less

  3. Concentrations of metals and trace elements in aquatic biota associated with abandoned mine lands in the Whiskeytown National Recreation Area and nearby Clear Creek watershed, Shasta County, northwestern California, 2002-2003

    Hothem, Roger L.; May, Jason T.; Gibson, Jennifer K.; Brussee, Brianne E.

    2015-01-01

    Compared with other recently evaluated mine-impacted watersheds in northern California, invertebrates, amphibians, and fish from sites within the Upper Clear Creek watershed tended to have significantly lower concentrations of Hg than at most other sites. For other metals and trace elements, Upper Clear Creek sites were only compared with the Deer Creek watershed, Nevada County, California. Copper from both Willow Creek sites (WLCC and WLTH) in the Clear Creek watershed was the only metal with concentrations in biota that were significantly higher than biota from Deer Creek

  4. Continuous Turbidity Monitoring in the Indian Creek Watershed, Tazewell County, Virginia, 2006-08

    Moyer, Douglas; Hyer, Kenneth

    2009-01-01

    Thousands of miles of natural gas pipelines are installed annually in the United States. These pipelines commonly cross streams, rivers, and other water bodies during pipeline construction. A major concern associated with pipelines crossing water bodies is increased sediment loading and the subsequent impact to the ecology of the aquatic system. Several studies have investigated the techniques used to install pipelines across surface-water bodies and their effect on downstream suspended-sediment concentrations. These studies frequently employ the evaluation of suspended-sediment or turbidity data that were collected using discrete sample-collection methods. No studies, however, have evaluated the utility of continuous turbidity monitoring for identifying real-time sediment input and providing a robust dataset for the evaluation of long-term changes in suspended-sediment concentration as it relates to a pipeline crossing. In 2006, the U.S. Geological Survey, in cooperation with East Tennessee Natural Gas and the U.S. Fish and Wildlife Service, began a study to monitor the effects of construction of the Jewell Ridge Lateral natural gas pipeline on turbidity conditions below pipeline crossings of Indian Creek and an unnamed tributary to Indian Creek, in Tazewell County, Virginia. The potential for increased sediment loading to Indian Creek is of major concern for watershed managers because Indian Creek is listed as one of Virginia's Threatened and Endangered Species Waters and contains critical habitat for two freshwater mussel species, purple bean (Villosa perpurpurea) and rough rabbitsfoot (Quadrula cylindrical strigillata). Additionally, Indian Creek contains the last known reproducing population of the tan riffleshell (Epioblasma florentina walkeri). Therefore, the objectives of the U.S. Geological Survey monitoring effort were to (1) develop a continuous turbidity monitoring network that attempted to measure real-time changes in suspended sediment (using

  5. Problems in determining the return of a watershed to pretreatment conditions: techniques applied to a study at Caspar Creek, California

    Robert B. Thomas

    1990-01-01

    Using a previously treated basin as a control in subsequent paired watershed studies requires the control to be stable. Basin stability can be assessed in many ways, some of which are investigated for the South Fork of Caspar Creek in northern California. This basin is recovering from logging and road building in the early 1970s. Three storm-based discharge...

  6. The Caspar Creek watersheds: a case study of cumulative effects in a small coastal basin in northern California

    R. R. Ziemer; P. H. Cafferata

    1991-01-01

    Abstract - Since 1962, the 483-ha North Fork and 424-ha South Fork of Caspar Creek in northwestern California have been used to evaluate the hydrologic impacts of road building and harvesting second-growth redwood/Douglas-fir forests. Three tributaries are serving as untreated controls. In 1985, the study was modified to evaluate the cumulative watershed effects of...

  7. Development of an ecological classification system for the Cooper Creek watershed of the Chattahoochee National Forest: a first approximation

    W. Henry McNab; Ronald B. Stephens; Erika M. Mavity; Joanne E. Baggs; James M. Wentworth; Richard D. Rightmyer; Alex J. Jaume; Brian D. Jackson; Michael P. Joyce

    2015-01-01

    The 2004 management plan for the Chattahoochee National Forest states that many future resource objectives and goals have an ecological basis. Assessment of resource needs in the Cooper Creek watershed area of the southern Appalachian Mountains of north Georgia were identified with awareness of ecological constraints and suitability. An interdisciplinary team of...

  8. Simulation of streamflow in the McTier Creek watershed, South Carolina

    Feaster, Toby D.; Golden, Heather E.; Odom, Kenneth R.; Lowery, Mark A.; Conrads, Paul; Bradley, Paul M.

    2010-01-01

    The McTier Creek watershed is located in the Sand Hills ecoregion of South Carolina and is a small catchment within the Edisto River Basin. Two watershed hydrology models were applied to the McTier Creek watershed as part of a larger scientific investigation to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River Basin. The two models are the topography-based hydrological model (TOPMODEL) and the grid-based mercury model (GBMM). TOPMODEL uses the variable-source area concept for simulating streamflow, and GBMM uses a spatially explicit modified curve-number approach for simulating streamflow. The hydrologic output from TOPMODEL can be used explicitly to simulate the transport of mercury in separate applications, whereas the hydrology output from GBMM is used implicitly in the simulation of mercury fate and transport in GBMM. The modeling efforts were a collaboration between the U.S. Geological Survey and the U.S. Environmental Protection Agency, National Exposure Research Laboratory. Calibrations of TOPMODEL and GBMM were done independently while using the same meteorological data and the same period of record of observed data. Two U.S. Geological Survey streamflow-gaging stations were available for comparison of observed daily mean flow with simulated daily mean flow-station 02172300, McTier Creek near Monetta, South Carolina, and station 02172305, McTier Creek near New Holland, South Carolina. The period of record at the Monetta gage covers a broad range of hydrologic conditions, including a drought and a significant wet period. Calibrating the models under these extreme conditions along with the normal flow conditions included in the record enhances the robustness of the two models. Several quantitative assessments of the goodness of fit between model simulations and the observed daily mean flows were done. These included the Nash-Sutcliffe coefficient

  9. Hydrology and the hypothetical effects of reducing nutrient applications of water quality in the Bald Eagle Creek Headwaters, southeastern Pennsylvania prior to implementation of agricultural best-management practices

    Fishel, D.K.; Langland, M.J.; Truhlar, M.V.

    1991-01-01

    The report characterizes a 0.43-square-mile agricultural watershed in York County, underlain by albite-chlorite and oligoclase-mica schist in the Lower Susquehanna River basin, that is being studied as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program. The water quality of Bald Eagle Creek was studied from October 1985 through September 1987 prior to the implementation of Best-Management Practices to reduce nutrient and sediment discharge into Muddy Creek, a tributary to the Chesapeake Bay. About 88 percent of the watershed is cropland and pasture, and nearly 33 percent of the cropland is used for corn. The animal population is entirely dairy cattle. About 85,640 pounds of nitrogen (460 pounds per acre) and 21,800 pounds of phosphorus (117 pounds per acre) were applied to fields; 52 percent of the nitrogen and 69 percent of the phosphorus was from commercial fertilizer. Prior to fertilization, nitrate nitrogen in the soil ranged from 36 to 136 pounds per acre and phosphorus ranged from 0.89 to 5.7 pounds per acre in the top 4 feet of soil. Precipitation was about 18 percent below normal and streamflow about 35 percent below normal during the 2-year study. Eighty-four percent of the 20.44 inches of runoff was base flow. Median concentrations of total nitrogen and dissolved phosphorous in base flow were 0.05 and 0.04 milligrams per liter as phosphorus, respectively. Concentrations of dissolved nitrate in base flow increased following wet periods after crops were harvested and manure was applied. During the growing season, concentrations decreased similarly to those observed in carbonate-rock areas as nutrient uptake and evapotranspiration by corn increased. About 4,550 pounds of suspended sediment, 5,250 pounds of nitrogen, and 66.6 pounds of phosphorus discharged in base flow during the 2-year period. The suspended sediment load was about 232,000 pounds in stormflow from 26 storms that contributed 51 percent of the total stormflow. The

  10. Estimation of runoff and sediment yield in the Redrock Creek watershed using AnnAGNPS and GIS

    Tsou, Ming‐shu; Zhan, X.-Y.

    2004-01-01

    Sediment has been identified as a significant threat to water quality and channel clogging that in turn may lead to river flooding. With the increasing awareness of the impairment from sediment to water bodies in a watershed, identifying the locations of the major sediment sources and reducing the sediment through management practices will be important for an effective watershed management. The annualized agricultural non-point source pollution (AnnAGNPS) model and newly developed GIS interface for it were applied in a small agricultural watershed, Redrock Creek watershed, Kansas, in this pilot study for exploring the effectiveness of using this model as a management tool. The calibrated model appropriately simulated monthly runoff and sediment yield through the practices in this study and potentially suggested the ways of sediment reduction through evaluating the changes of land use and field operation in the model for the purpose of watershed management.

  11. Spatial Translation and Scaling Up of LID Practices in Deer Creek Watershed in East Missouri

    NASA Astrophysics Data System (ADS)

    Di Vittorio, Damien

    This study investigated two important aspects of hydrologic effects of low impact development (LID) practices at the watershed scale by (1) examining the potential benefits of scaling up of LID design, and (2) evaluating downstream effects of LID design and its spatial translation within a watershed. The Personal Computer Storm Water Management Model (PCSWMM) was used to model runoff reduction with the implementation of LID practices in Deer Creek watershed (DCW), Missouri. The model was calibrated from 2003 to 2007 (R2 = 0.58 and NSE = 0.57), and validated from 2008 to 2012 (R2 = 0.64 and NSE = 0.65) for daily direct runoff. Runoff simulated for the study period, 2003 to 2012 (NSE = 0.61; R2 = 0.63), was used as the baseline for comparison to LID scenarios. Using 1958 areal imagery to assign land cover, a predevelopment scenario was constructed and simulated to assess LID scenarios' ability to restore predevelopment hydrologic conditions. The baseline and all LID scenarios were simulated using 2006 National Land Cover Dataset. The watershed was divided in 117 subcatchments, which were clustered in six groups of approximately equal areas and two scaling concepts consisting of incremental scaling and spatial scaling were modelled. Incremental scaling was investigated using three LID practices (rain barrel, porous pavement, and rain garden). Each LID practice was simulated at four implementation levels (25%, 50%, 75%, and 100%) in all subcatchments for the study period (2003 to 2012). Results showed an increased runoff reduction, ranging from 3% to 31%, with increased implementation level. Spatial scaling was investigated by increasing the spatial extent of LID practices using the subcatchment groups and all three LID practices (combined) implemented at 50% level. Results indicated that as the spatial extent of LID practices increased the runoff reduction at the outlet also increased, ranging from 3% to 19%. Spatial variability of LID implementation was examined by

  12. Flood Scenario Simulation and Disaster Estimation of Ba-Ma Creek Watershed in Nantou County, Taiwan

    NASA Astrophysics Data System (ADS)

    Peng, S. H.; Hsu, Y. K.

    2018-04-01

    The present study proposed several scenario simulations of flood disaster according to the historical flood event and planning requirement in Ba-Ma Creek Watershed located in Nantou County, Taiwan. The simulations were made using the FLO-2D model, a numerical model which can compute the velocity and depth of flood on a two-dimensional terrain. Meanwhile, the calculated data were utilized to estimate the possible damage incurred by the flood disaster. The results thus obtained can serve as references for disaster prevention. Moreover, the simulated results could be employed for flood disaster estimation using the method suggested by the Water Resources Agency of Taiwan. Finally, the conclusions and perspectives are presented.

  13. Watershed scale response to climate change--Clear Creek Basin, Iowa

    Christiansen, Daniel E.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Clear Creek Basin, near Coralville, Iowa.

  14. Watershed scale response to climate change--Sagehen Creek Basin, California

    Markstrom, Steven L.; Hay, Lauren E.; Regan, R. Steven

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Sagehen Creek Basin near Truckee, California.

  15. Summary and Synthesis of Mercury Studies in the Cache Creek Watershed, California, 2000-01

    Domagalski, Joseph L.; Slotton, Darell G.; Alpers, Charles N.; Suchanek, Thomas H.; Churchill, Ronald; Bloom, Nicolas; Ayers, Shaun M.; Clinkenbeard, John

    2004-01-01

    This report summarizes the principal findings of the Cache Creek, California, components of a project funded by the CALFED Bay?Delta Program entitled 'An Assessment of Ecological and Human Health Impacts of Mercury in the Bay?Delta Watershed.' A companion report summarizes the key findings of other components of the project based in the San Francisco Bay and the Delta of the Sacramento and San Joaquin Rivers. These summary documents present the more important findings of the various studies in a format intended for a wide audience. For more in-depth, scientific presentation and discussion of the research, a series of detailed technical reports of the integrated mercury studies is available at the following website: .

  16. Geologic Map of the Upper Wolf Island Creek Watershed, Reidsville Area, Rockingham County, North Carolina

    Horton, J. Wright; Geddes, Donald J.

    2006-01-01

    This geologic map provides a foundation for hydrogeologic investigations in the Reidsville area of Rockingham County, north-central North Carolina. The 16-mi2 area within the Southeast Eden and Reidsville 7.5-min quadrangles includes the watershed of Wolf Island Creek and its tributary, Carroll Creek, upstream of their confluence. Layered metamorphic rocks in this area of the Milton terrane, here informally named the Chinqua-Penn metamorphic suite, include a heterogeneous mica gneiss and schist unit that contains interlayers and lenses of white-mica schist, felsic gneiss, amphibolite, and ultramafic rock; a felsic gneiss that contains interlayers of amphibolite, white-mica schist, and minor ultramafic lenses; and a migmatitic biotite gneiss. Crushed stone is produced from an active quarry in the felsic gneiss. Igneous intrusive rocks include a mafic-ultramafic assemblage that may have originated as mafic intrusive bodies containing ultramafic cumulates, a foliated two-mica granite informally named the granite of Reidsville, and unmetamorphosed Jurassic diabase dikes. The newly recognized Carroll Creek shear zone strikes roughly east-west and separates heterogeneous mica gneiss and schist to the north from structurally overlying felsic gneiss to the south. Regional amphibolite-facies metamorphism accompanied polyphase ductile deformation in the metamorphic rocks. Two phases of isoclinal to tight folding and related penetrative deformation, described as D1 and D2, were followed by phases of high-strain mylonitic deformation in shear zones and late gentle to open folding. Later brittle deformation produced minor faults, steep joints, foliation-parallel parting, and sheeting joints. The metamorphic and igneous rocks are mantled by saprolite and residual soil derived from weathering of the underlying bedrock, and unconsolidated Quaternary alluvium occupies the flood plains of Wolf Island Creek and its tributaries. The geologic map delineates lithologic and structural

  17. CTUIR Grande Ronde River Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1995-1999 Progress Report.

    SciT

    Childs, Allen B.

    2000-08-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Bonneville Power Administration (BPA) entered into a contract agreement beginning in 1996 to fund watershed restoration and enhancement actions and contribute to recovery of fish and wildlife resources and water quality in the Grande Ronde River Basin. The CTUIR's habitat program is closely coordinated with the Grande Ronde Model Watershed Program and multiple agencies and organizations within the basin. The CTUIR has focused during the past 4 years in the upper portions of the Grande Ronde Subbasin (upstream of LaGrande, Oregon) on several major project areas in the Meadow, McCoy,more » and McIntyre Creek watersheds and along the mainstem Grande Ronde River. This Annual Report provides an overview of individual projects and accomplishments.« less

  18. Escherichia coli Concentrations in the Mill Creek Watershed, Cleveland, Ohio, 2001-2004

    Brady, Amie M.G.

    2007-01-01

    Mill Creek in Cleveland, Ohio, receives discharges from combined-sewer overflows (CSOs) and other sanitary-sewage inputs. These discharges affect the water quality of the creek and that of its receiving stream, the Cuyahoga River. In an effort to mitigate this problem, the Northeast Ohio Regional Sewer District implemented a project to eliminate or control (by reducing the number of overflows) all of the CSOs in the Mill Creek watershed. This study focused on monitoring the microbiological water quality of the creek before and during sewage-collection system modifications. Routine samples were collected semimonthly from August 2001 through September 2004 at a site near a U.S. Geological Survey stream gage near the mouth of Mill Creek. In addition, event samples were collected September 19 and 22, 2003, when rainfall accumulations were 0.5 inches (in.) or greater. Concentrations of Escherichia coli (E. coli) were determined and instantaneous discharges were calculated. Streamflow and water-quality characteristics were measured at the time of sampling, and precipitation data measured at a nearby precipitation gage were obtained from the National Oceanic and Atmospheric Administration. Concentrations of E. coli were greater than Ohio's single-sample maximum for primary-contact recreation (298 colony-forming units per 100 milliliters (CFU/100 mL)) in 84 percent of the routine samples collected. In all but one routine sample E. coli concentrations in samples collected when instantaneous streamflows were greater than 20 cubic feet per second (ft3/s) were greater than Ohio's single-sample maximum. When precipitation occurred in the 24-hour period before routine sample collection, concentrations were greater than the maximum in 89 percent of the samples as compared to 73 percent when rainfall was absent during the 24 hours prior to routine sample collection. Before modifications to the sewage-collection system in the watershed began, E. coli concentrations in Mill Creek

  19. Hydrology and hydraulics of Cypress Creek watershed, Texas during Hurricane Harvey and Impact of Potential Mitigation Measures.

    NASA Astrophysics Data System (ADS)

    El Hassan, A.; Fares, A.; Risch, E.

    2017-12-01

    Rain resulting from Hurricane Harvey stated to spread into Harris County late in August 25 and continued until August 31 2017. This high intensity rainfall caused catastrophic flooding across the Greater Houston Area and south Texas. The objectives of this study are to use the USACE Gridded Surface Subsurface Hydrologic Analysis model (GSSHA) to: i) simulate the hydrology and hydraulics of Cypress Creek watershed and quantify the impact of hurricane Harvey on it; and ii) test potential mitigation measures, e.g., construction of a third surface reservoir on the flooding and hydrology of this watershed. Cypress Creek watershed area is 733 km2. Simulations were conducted using precipitation from two sources a) the Multisensory Precipitation Estimator radar products (MPE) and Multi-Radar Multi-Sensor (MRMS) system. Streamflow was downloaded from the USGS gauge at the outlet of the watershed. The models performance using both precipitation data was very reasonable. The construction of an 8 m high embankment at the south central part of the watershed resulted in over 22% reduction of the peak flow of the stream and also reduction of the depth of inundation across the east part of the watershed. These and other mitigation scenarios will be further discussed in details during the presentation.

  20. Microarray assessment of virulence, antibiotic, and heavy metal resistance in an agricultural watershed creek.

    PubMed

    Unc, Adrian; Zurek, Ludek; Peterson, Greg; Narayanan, Sanjeev; Springthorpe, Susan V; Sattar, Syed A

    2012-01-01

    Potential risks associated with impaired surface water quality have commonly been evaluated by indirect description of potential sources using various fecal microbial indicators and derived source-tracking methods. These approaches are valuable for assessing and monitoring the impacts of land-use changes and changes in management practices at the source of contamination. A more detailed evaluation of putative etiologically significant genetic determinants can add value to these assessments. We evaluated the utility of using a microarray that integrates virulence genes with antibiotic and heavy metal resistance genes to describe and discriminate among spatially and seasonally distinct water samples from an agricultural watershed creek in Eastern Ontario. Because microarray signals may be analyzed as binomial distributions, the significance of ambiguous signals can be easily evaluated by using available off-the-shelf software. The FAMD software was used to evaluate uncertainties in the signal data. Analysis of multilocus fingerprinting data sets containing missing data has shown that, for the tested system, any variability in microarray signals had a marginal effect on data interpretation. For the tested watershed, results suggest that in general the wet fall season increased the downstream detection of virulence and resistance genes. Thus, the tested microarray technique has the potential to rapidly describe the quality of surface waters and thus to provide a qualitative tool to augment quantitative microbial risk assessments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Modeling of Selenium for the San Diego Creek Watershed and Newport Bay, California

    Presser, Theresa S.; Luoma, Samuel N.

    2009-01-01

    The San Diego Creek watershed and Newport Bay in southern California are contaminated with selenium (Se) as a result of groundwater associated with urban development overlying a historical wetland, the Swamp of the Frogs. The primary Se source is drainage from surrounding seleniferous marine sedimentary formations. An ecosystem-scale model was employed as a tool to assist development of a site-specific Se objective for the region. The model visualizes outcomes of different exposure scenarios in terms of bioaccumulation in predators using partitioning coefficients, trophic transfer factors, and site-specific data for food-web inhabitants and particulate phases. Predicted Se concentrations agreed well with field observations, validating the use of the model as realistic tool for testing exposure scenarios. Using the fish tissue and bird egg guidelines suggested by regulatory agencies, allowable water concentrations were determined for different conditions and locations in the watershed and the bay. The model thus facilitated development of a site-specific Se objective that was locally relevant and provided a basis for step-by-step implementation of source control.

  2. Using sediment particle size distribution to evaluate sediment sources in the Tobacco Creek Watershed

    NASA Astrophysics Data System (ADS)

    Liu, Cenwei; Lobb, David; Li, Sheng; Owens, Philip; Kuzyk, ZouZou

    2014-05-01

    Lake Winnipeg has recently brought attention to the deteriorated water quality due to in part to nutrient and sediment input from agricultural land. Improving water quality in Lake Winnipeg requires the knowledge of the sediment sources within this ecosystem. There are a variety of environmental fingerprinting techniques have been successfully used in the assessment of sediment sources. In this study, we used particle size distribution to evaluate spatial and temporal variations of suspended sediment and potential sediment sources collected in the Tobacco Creek Watershed in Manitoba, Canada. The particle size distribution of suspended sediment can reflect the origin of sediment and processes during sediment transport, deposition and remobilization within the watershed. The objectives of this study were to quantify visually observed spatial and temporal changes in sediment particles, and to assess the sediment source using a rapid and cost-effective fingerprinting technique based on particle size distribution. The suspended sediment was collected by sediment traps twice a year during rainfall and snowmelt periods from 2009 to 2012. The potential sediment sources included the top soil of cultivated field, riparian area and entire profile from stream banks. Suspended sediment and soil samples were pre-wet with RO water and sieved through 600 μm sieve before analyzing. Particle size distribution of all samples was determined using a Malvern Mastersizer 2000S laser diffraction with the measurement range up to 600μm. Comparison of the results for different fractions of sediment showed significant difference in particle size distribution of suspended sediment between snowmelt and rainfall events. An important difference of particle size distribution also found between the cultivated soil and forest soil. This difference can be explained by different land uses which provided a distinct fingerprint of sediment. An overall improvement in water quality can be achieved by

  3. Simulation of runoff and water quality for 1990 and 2008 land use conditions in the Reedy Creek watershed, East-Central Florida

    Wicklein, Shaun M.; Schiffer, Donna M.

    2002-01-01

    Hydrologic and water-quality data have been collected within the 177-square-mile Reedy Creek, Florida, watershed, beginning as early as 1939, but the data have not been used to evaluate relations among land use, hydrology, and water quality. A model of the Reedy Creek watershed was developed and applied to the period January 1990 to December 1995 to provide a computational foundation for evaluating the effects of future land-use changes on hydrology and water quality in the watershed. The Hydrological Simulation Program-Fortran (HSPF) model was used to simulate hydrology and water quality of runoff for pervious land areas, impervious land areas, and stream reaches. Six land-use types were used to characterize the hydrology and water quality of pervious and impervious land areas in the Reedy Creek watershed: agriculture, rangeland, forest, wetlands, rapid infiltration basins, and urban areas. Hydrologic routing and water-quality reactions were simulated to characterize hydrologic and water-quality processes and the movement of runoff and its constituents through the main stream channels and their tributaries. Because of the complexity of the stream system within the Reedy Creek Improvement District (RCID) (hydraulic structures, retention ponds) and the anticipated difficulty of modeling the system, an approach of calibrating the model parameters for a subset of the gaged watersheds and confirming the usefulness of the parameters by simulating the remainder of the gaged sites was selected for this study. Two sub-watersheds (Whittenhorse Creek and Davenport Creek) were selected for calibration because both have similar land use to watersheds within the RCID (with the exception of urban areas). Given the lack of available rainfall data, the hydrologic calibration of the Whittenhorse Creek and Davenport Creek sub-watersheds was considered acceptable (for monthly data, correlation coefficients, 0.86 and 0.88, and coefficients of model-fit efficiency, 0.72 and 0

  4. The distribution of phosphorus in Popes Creek, VA, and in the Pocomoke River, MD: Two watersheds with different land management practices in the Chesapeake Bay Basin

    Simon, N.S.; Bricker, O.P.; Newell, W.; McCoy, J.; Morawe, R.

    2005-01-01

    This paper compares phosphorus (P) concentrations in sediments from two watersheds, one with, and one without, intensive animal agriculture. The watersheds are in the coastal plain of the Chesapeake Bay and have similar physiographic characteristics. Agriculture in the Pocomoke River, MD, watershed supplied 2.7 percent of all broiler chickens produced in the USA in 1997. Poultry litter is an abundant, local source of manure for crops. Broiler chickens are not produced in the Popes Creek, VA, watershed and poultry manure is, therefore, not a major source of fertilizer. The largest concentrations of P in sediment samples are found in floodplain and main-stem bottom sediment in both watersheds. Concentrations of total P and P extracted with 1N HCl are significantly larger in main-stem bottom sediments from the Pocomoke River than in main-stem bottom sediments from Popes Creek. Larger concentrations of P are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Pocomoke River watershed than are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Popes Creek watershed. Data for P and iron (Fe) concentrations in sediments from the Popes Creek watershed provide a numerical framework (baseline) with which to compare P and Fe concentrations in sediment from the Pocomoke River watershed. ?? Springer 2005.

  5. Water Quality and Fecal-Indicator Detection in Response to an Impaired Urban Watershed: Turkey Creek "Gulf of Mexico Initiative Focus"; and a "Making a Visible Difference" Program

    EPA Science Inventory

    The historical communities of Turkey Creek originated in 1866, when a group of emancipated African-Americans purchased land in Harrison County, MS, along the Turkey Creek watershed. Many of the current members of this community are descendants from the original settlers. This wa...

  6. Health Impact Assessment of the Boone Boulevard Green Street Project in the Proctor Creek Watershed of Atlanta - Urban Waters National Training Workshop

    EPA Science Inventory

    Proctor Creek is one of the most impaired creeks in metro-Atlanta due to exceedance of state water quality standards for fecal coliforms. The topography, prevalence of impervious surfaces in the watershed, and a strained combined sewer system have contributed to pervasive floodin...

  7. Prediction of suspended-sediment concentrations at selected sites in the Fountain Creek watershed, Colorado, 2008-09

    Stogner, Sr., Robert W.; Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Mau, David P.

    2013-01-01

    In 2008, the U.S. Geological Survey (USGS), in cooperation with Pikes Peak Area Council of Governments, Colorado Water Conservation Board, Colorado Springs City Engineering, and the Lower Arkansas Valley Water Conservancy District, began a small-scale pilot study to evaluate the effectiveness of the use of a computational model of streamflow and suspended-sediment transport for predicting suspended-sediment concentrations and loads in the Fountain Creek watershed in Colorado. Increased erosion and sedimentation damage have been identified by the Fountain Creek Watershed Plan as key problems within the watershed. A recommendation in the Fountain Creek Watershed plan for management of the basin is to establish measurable criteria to determine if progress in reducing erosion and sedimentation damage is being made. The major objective of this study was to test a computational method to predict local suspended-sediment loads at two sites with different geomorphic characteristics in order to evaluate the feasibility of using such an approach to predict local suspended-sediment loads throughout the entire watershed. Detailed topographic surveys, particle-size data, and suspended-sediment samples were collected at two gaged sites: Monument Creek above Woodmen Road at Colorado Springs, Colorado (USGS gage 07103970), and Sand Creek above mouth at Colorado Springs, Colorado (USGS gage 07105600). These data were used to construct three-dimensional computational models of relatively short channel reaches at each site. The streamflow component of these models predicted a spatially distributed field of water-surface elevation, water velocity, and bed shear stress for a range of stream discharges. Using the model predictions, along with measured particle sizes, the sediment-transport component of the model predicted the suspended-sediment concentration throughout the reach of interest. These computed concentrations were used with predicted flow patterns and channel morphology to

  8. Remote sensing applications to hydrology in Minnesota. [Rice Creek watershed and St. Paul-Minneapolis metropolitan area

    NASA Technical Reports Server (NTRS)

    Brown, D.; Skaggs, R.

    1975-01-01

    Development of low lying southeastern shore of Pike Lake is described as part of the Rice Creek watershed study. Several small wetlands in Arden Hills, Minnesota were incorporated into the drainage plans as pollutant and nutrient sinks rather than being infilled. Lake water quality in the St. Paul-Minneapolis metropolitan area was analyzed using Landsat images. In the same urban area, the inventory and seasonal change of the open water were also studied.

  9. Mercury and methylmercury concentrations and loads in the Cache Creek watershed, California

    Domagalski, Joseph L.; Alpers, Charles N.; Slotton, D.G.; Suchanek, T.H.; Ayers, S.M.

    2004-01-01

    Concentrations and loads of total mercury and methylmercury were measured in streams draining abandoned mercury mines and in the proximity of geothermal discharge in the Cache Creek watershed of California during a 17-month period from January 2000 through May 2001. Rainfall and runoff were lower than long-term averages during the study period. The greatest loading of mercury and methylmercury from upstream sources to downstream receiving waters, such as San Francisco Bay, generally occurred during or after winter rainfall events. During the study period, loads of mercury and methylmercury from geothermal sources tended to be greater than those from abandoned mining areas, a pattern attributable to the lack of large precipitation events capable of mobilizing significant amounts of either mercury-laden sediment or dissolved mercury and methylmercury from mine waste. Streambed sediments of Cache Creek are a significant source of mercury and methylmercury to downstream receiving bodies of water. Much of the mercury in these sediments is the result of deposition over the last 100-150 years by either storm-water runoff, from abandoned mines, or continuous discharges from geothermal areas. Several geochemical constituents were useful as natural tracers for mining and geothermal areas, including the aqueous concentrations of boron, chloride, lithium and sulfate, and the stable isotopes of hydrogen and oxygen in water. Stable isotopes of water in areas draining geothermal discharges showed a distinct trend toward enrichment of 18O compared with meteoric waters, whereas much of the runoff from abandoned mines indicated a stable isotopic pattern more consistent with local meteoric water. ?? 2004 Elsevier B.V. All rights reserved.

  10. Watershed analysis

    Alan Gallegos

    2002-01-01

    Watershed analyses and assessments for the Kings River Sustainable Forest Ecosystems Project were done on about 33,000 acres of the 45,500-acre Big Creek watershed and 32,000 acres of the 85,100-acre Dinkey Creek watershed. Following procedures developed for analysis of cumulative watershed effects (CWE) in the Pacific Northwest Region of the USDA Forest Service, the...

  11. Instream investigations in the Beaver Creek Watershed in West Tennessee, 1991-95

    Byl, T.D.; Carney, K.A.

    1996-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Tennessee Department of Agriculture, began a long-term scientific investigation in 1989 to evaluate the effect of agricultural activities on water quality and the effectiveness of agricultural best management practices in the Beaver Creek watershed, West Tennessee. In 1993 as a part of this study, the USGS, in cooperation with the Natural Resources Conservation Service, Shelby County Soil Conservation District, and the Tennessee Soybean Promotion Board, began an evaluation of the physical, chemical, biological and hydrological factors that affect water quality in streams and wetlands, and instream resource-management systems to treat agricultural nonpoint-source runoff and improve water quality. The purpose of this report is to present the results of three studies of stream and wetland investigations and a study on the transport of aldicarb from an agricultural field in the Beaver Creek watershed. A natural bottomland hardwood wetland and an artificially constructed wetland were evaluated as instream resource-management systems. These two studies showed that wetlands are an effective way to improve the quality of agricultural nonpoint-source runoff. The wetlands reduced concentrations and loads of suspended sediments, nutrients, and pesticides in the streams. A third paper documents the influence of riparian vegetation on the biological structure and water quality of a small stream draining an agricultural field. A comparison of the upper reach lined with herbaceous plants and the lower reach with mature woody vegetation showed a more stable biological community structure and Water- quality characteristics in the woody reach than in the herbaceous reach. The water-quality characteristics monitored were pH, temperature, dissolved oxygen, and specific conductance. The herbaceous reach had a greater diversity and abundance of organisms during spring and early summer, but the abundance dropped by approximately

  12. Sacaton riparian grasslands of the Sky Islands: Mapping distribution and ecological condition using state-and-transition models in Upper Cienega Creek Watershed

    Ron Tiller; Melissa Hughes; Gita Bodner

    2013-01-01

    Riparian grasslands dominated by Sporobolus wrightii (big sacaton) were once widely distributed in the intermountain basins of the Madrean Archipelago. These alluvial grasslands are still recognized as key resources for watershed function, livestock, and wildlife. The upper Cienega Creek watershed in SE Arizona is thought to harbor some of the region’s most extensive...

  13. Watershed Data Management (WDM) Database for Salt Creek Streamflow Simulation, DuPage County, Illinois

    Murphy, Elizabeth A.; Ishii, Audrey L.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with DuPage County Department of Engineering, Stormwater Management Division, maintains a database of hourly meteorologic and hydrologic data for use in a near real-time streamflow simulation system, which assists in the management and operation of reservoirs and other flood-control structures in the Salt Creek watershed in DuPage County, Illinois. The majority of the precipitation data are collected from a tipping-bucket rain-gage network located in and near DuPage County. The other meteorologic data (wind speed, solar radiation, air temperature, and dewpoint temperature) are collected at Argonne National Laboratory in Argonne, Illinois. Potential evapotranspiration is computed from the meteorologic data. The hydrologic data (discharge and stage) are collected at USGS streamflow-gaging stations in DuPage County. These data are stored in a Watershed Data Management (WDM) database. This report describes a version of the WDM database that was quality-assured and quality-controlled annually to ensure the datasets were complete and accurate. This version of the WDM database contains data from January 1, 1997, through September 30, 2004, and is named SEP04.WDM. This report provides a record of time periods of poor data for each precipitation dataset and describes methods used to estimate the data for the periods when data were missing, flawed, or snowfall-affected. The precipitation dataset data-filling process was changed in 2001, and both processes are described. The other meteorologic and hydrologic datasets in the database are fully described in the annual U.S. Geological Survey Water Data Report for Illinois and, therefore, are described in less detail than the precipitation datasets in this report.

  14. Agricultural Nutrient Cycling at the Strawberry Creek Watershed: Insights Into Processes Using Stable Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Thuss, E.; English, M. C.; Spoelstra, J.

    2009-05-01

    When nitrogen availability exceeds biological demand, excess nitrogen, especially nitrate, may subsequently pollute ground and surface water. Agricultural practices in Southern Ontario typically supplement soils with organic and inorganic nutrients to aid in crop development, and employ various management techniques to limit nutrient loss. Excess nitrogen has several potential fates, which are controlled by the net effects of numerous nitrogen cycling reactions in the soil that are often difficult to measure directly. Nitrogen cycling in soils is controlled in large part by soil moisture, as it affects microbial activity and soil redox conditions. Stable isotope geochemistry is a powerful tool that provides information on nitrogen sources and processes. This study uses crop nitrogen and carbon isotope ratios to provide insights into the net effects of soil nitrogen cycling and nitrogen fate. This research was conducted at the Strawberry Creek Watershed (SCW), an agricultural research watershed located between Kitchener-Waterloo and Guelph, Ontario. The SCW exhibits elevated nitrate concentrations in groundwater, tile discharge, and the stream itself. Previous isotopic work revealed that this nitrate is largely derived from chemical fertilizer and manure applications. Field-scale hydrological processes lead to areas where the fate of applied nitrogen differs, which has an isotopic effect on the residual nitrogen that is available to plants. Results of this study indicate significant patterns in the isotopic signature of plant tissue, in both temporal and spatial scales. At the plot-scale where soil conditions are similar, there is little to no variation in foliar isotope values, but at the field-scale there appears to be a significant amount of variability related to soil moisture and nitrogen loss. This relationship can potentially provide insight into ideal conditions for nitrogen uptake efficiency. Reducing agricultural nitrogen leaching to ground and surface

  15. Model evaluation of potential impacts of on-site wastewater systems on phosphorus in Turkey creek watershed.

    PubMed

    Geza, Mengistu; McCray, John E; Murray, Kyle E

    2010-01-01

    Nutrient loading to surface water systems has traditionally been associated with agricultural sources. Sources such as on-site wastewater systems (OWS) may be of concern especially in rural, nonagricultural watersheds. The impact of various point and nonpoint sources including OWS in Turkey Creek Watershed was evaluated using the Watershed Analysis Risk Management Framework, which was calibrated using 10 yr of observed stream flow and total P concentrations. Doubling the population in the watershed or OWS septic tank effluent P concentration increased mean stream total P concentration by a factor of 1.05. Converting all the OWS to a conventional sewer system with a removal efficiency of 93% at the wastewater treatment plant increased the mean total P concentration at the watershed outlet by a factor of 1.26. Reducing the soil adsorption capacity by 50% increased the mean stream total P concentration by a factor of 3.2. Doubling the initial P concentration increased the mean stream total P concentration by a factor of 1.96. Stream flow and sediment transport also substantially affected stream P concentration. The results suggest that OWS contribution to stream P in this watershed is minimal compared with other factors within the simulated time frame of 10 yr.

  16. Turbidity Responses from Timber Harvesting, Wildfire, and Post-Fire Logging in the Battle Creek Watershed, Northern California.

    PubMed

    Lewis, Jack; Rhodes, Jonathan J; Bradley, Curtis

    2018-04-11

    The Battle Creek watershed in northern California was historically important for its Chinook salmon populations, now at remnant levels due to land and water uses. Privately owned portions of the watershed are managed primarily for timber production, which has intensified since 1998, when clearcutting became widespread. Turbidity has been monitored by citizen volunteers at 13 locations in the watershed. Approximately 2000 grab samples were collected in the 5-year analysis period as harvesting progressed, a severe wildfire burned 11,200 ha, and most of the burned area was salvage logged. The data reveal strong associations of turbidity with the proportion of area harvested in watersheds draining to the measurement sites. Turbidity increased significantly over the measurement period in 10 watersheds and decreased at one. Some of these increases may be due to the influence of wildfire, logging roads and haul roads. However, turbidity continued trending upwards in six burned watersheds that were logged after the fire, while decreasing or remaining the same in two that escaped the fire and post-fire logging. Unusually high turbidity measurements (more than seven times the average value for a given flow condition) were very rare (0.0% of measurements) before the fire but began to appear in the first year after the fire (5.0% of measurements) and were most frequent (11.6% of measurements) in the first 9 months after salvage logging. Results suggest that harvesting contributes to road erosion and that current management practices do not fully protect water quality.

  17. Fecal-indicator bacteria in the Newfound Creek watershed, western North Carolina, during a high and low streamflow condition, 2003

    Giddings, Elise M.; Oblinger, Carolyn J.

    2004-01-01

    Water quality in the Newfound Creek watershed has been shown to be affected by bacteria, sediment, and nutrients. In this study, Escherichia coli (E. coli) bacteria were sampled at five sites in Newfound Creek and five tributary sites during low flow on May 28, 2003, and high flow on November 19, 2003. In addition, a subset of five sites was sampled for fecal coliform bacteria, E. coli bacteria in streambed sediments (low flow only), and coliphage virus for serotyping. Coliphage virus serotyping has been used to identify human and animal sources of bacterial contamination. A streamflow gage was installed and operated to support ongoing water-quality studies in the watershed. Fecal coliform densities ranged from 92 to 27,000 colony-forming units per 100 milliliters of water for E. coli and 140 to an estimated 29,000 colony-forming units per 100 milliliters of water for fecal coliform during the two sampling visits. Ninety percent of the E. coli and fecal coliform samples exceeded corresponding U.S. Environmental Protection Agency or North Carolina water-quality criteria for recreational and ambient waters. During low flow, the middle part of the Newfound Creek watershed and the Dix Creek tributary had the highest densities of E. coli bacteria. During the high-flow sampling, all tributaries contained high densities of E. coli bacteria, although Dix Creek and Round Hill Branch were the largest contributors of these bacteria to Newfound Creek. Coliphage virus serotyping results were inconclusive because most samples did not contain the male-specific RNA coliphage needed for serotyping. Positive results indicated, however, that during low flow, non-human sources of bacteria were present in Sluder Branch, and during high flow, human sources of bacteria were present in Round Hill Branch. Sampling of bacteria in streambed sediments during low flow indicated that sediments do not appear to be a substantial source of bacteria relative to the water column, with the exception

  18. Diets of three species of anurans from the cache creek watershed, California, USA

    Hothem, R.L.; Meckstroth, A.M.; Wegner, K.E.; Jennings, M.R.; Crayon, J.J.

    2009-01-01

    We evaluated the diets of three sympatric anuran species, the native Northern Pacific Treefrog, Pseudacris regilla, and Foothill Yellow-Legged Frog, Rana boylii, and the introduced American Bullfrog, Lithobates catesbeianus, based on stomach contents of frogs collected at 36 sites in 1997 and 1998. This investigation was part of a study of mercury bioaccumulation in the biota of the Cache Creek Watershed in north-central California, an area affected by mercury contamination from natural sources and abandoned mercury mines. We collected R. boylii at 22 sites, L. catesbeianus at 21 sites, and P. regilla at 13 sites. We collected both L. catesbeianus and R. boylii at nine sites and all three species at five sites. Pseudacris regilla had the least aquatic diet (100% of the samples had terrestrial prey vs. 5% with aquatic prey), followed by R. boylii (98% terrestrial, 28% aquatic), and L. catesbeianus, which had similar percentages of terrestrial (81%) and aquatic prey (74%). Observed predation by L. catesbeianus on R. boylii may indicate that interaction between these two species is significant. Based on their widespread abundance and their preference for aquatic foods, we suggest that, where present, L. catesbeianus should be the species of choice for all lethal biomonitoring of mercury in amphibians. Copyright ?? 2009 Society for the Study of Amphibians and Reptiles.

  19. Surface-water quality in the Lycoming Creek watershed, north-central Pennsylvania, August 1–3, 2011

    Risser, Dennis W.; Conlon, Matthew D.

    2018-05-17

    This report presents the methodology and results for a study of surface-water quality of the Lycoming Creek watershed in north-central Pennsylvania during August 1–3, 2011. The study was done in cooperation with the Williamsport Municipal Water Authority and the Pennsylvania Department of Environmental Protection. Samples of stream water were collected from 31 sites in an area of exploration and production of natural gas from the Marcellus Shale – 5 sites on the main stem of Lycoming Creek and 26 sites on tributary streams. The samples provide a snapshot of the base-flow water-quality conditions, which helps document the spatial variability in water-quality and could be useful for assessing future changes.The 272-square mile Lycoming Creek watershed is located within Lycoming, Tioga, and Sullivan Counties in north-central Pennsylvania. Lycoming Creek flows 37.5 miles to its confluence with the West Branch Susquehanna River in the city of Williamsport. A well field that supplies water for Williamsport captures some water that has infiltrated the streambed of Lycoming Creek. Because the stream provides a source of water to the well field, this study focused on the stream-water quality as it relates to drinking-water standards as opposed to aquatic life.Surface-water samples collected at 20 sites by the U.S. Geological Survey and 11 sites by the Pennsylvania Department of Environmental Protection were analyzed by each agency for a suite of constituents that included major ions, trace metals, nutrients, and radiochemicals. None of the analytical results failed to meet standards set by the U.S. Environmental Protection Agency as maximum contaminant levels for drinking water.Results of the sampling show the substantial spatial variability in base-flow water quality within the Lycoming Creek watershed caused by the interrelated effects of physiography, geology and land use. Dissolved-solids concentrations ranged from less than the laboratory reporting level of 12

  20. Occurrence of Organic Wastewater Compounds in the Tinkers Creek Watershed and Two Other Tributaries to the Cuyahoga River, Northeast Ohio

    Tertuliani, J.S.; Alvarez, D.A.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Koltun, G.F.

    2008-01-01

    The U.S. Geological Survey - in cooperation with the Ohio Water Development Authority; National Park Service; Cities of Aurora, Bedford, Bedford Heights, Solon, and Twinsburg; and Portage and Summit Counties - and in collaboration with the Ohio Environmental Protection Agency, did a study to determine the occurrence and distribution of organic wastewater compounds (OWCs) in the Tinkers Creek watershed in northeastern Ohio. In the context of this report, OWCs refer to a wide range of compounds such as antibiotics, prescription and nonprescription pharmaceuticals, personal-care products, household and industrial compounds (for example, antimicrobials, fragrances, surfactants, fire retardants, and so forth) and a variety of other chemicals. Canisters containing polar organic integrative sampler (POCIS) and semipermeable membrane device (SPMD) media were deployed instream for a 28-day period in Mayand June 2006 at locations upstream and downstream from seven wastewater-treatment-plant (WWTP) outfalls in the Tinkers Creek watershed, at a site on Tinkers Creek downstream from all WWTP discharges, and at one reference site each in two nearby watersheds (Yellow Creek and Furnace Run) that drain to the Cuyahoga River. Streambed-sediment samples also were collected at each site when the canisters were retrieved. POCIS and SPMDs are referred to as 'passive samplers' because they sample compounds that they are exposed to without use of mechanical or moving parts. OWCs detected in POCIS and SPMD extracts are referred to in this report as 'detections in water' because both POCIS and SPMDs provided time-weighted measures of concentration in the stream over the exposure period. Streambed sediments also reflect exposure to OWCs in the stream over a long period of time and provide another OWC exposure pathway for aquatic organisms. Four separate laboratory methods were used to analyze for 32 antibiotic, 20 pharmaceutical, 57 to 66 wastewater, and 33 hydrophobic compounds. POCIS and

  1. A precipitation-runoff model for part of the Ninemile Creek Watershed near Camillus, Onondaga County, New York

    Zarriello, Phillip J.

    1999-01-01

    A precipitation-runoff model, HSPF (Hydrologic Simulation Program Fortran), of a 41.7 square mile part of the Ninemile Creek watershed near Camillus, in central New York, was developed and calibrated to predict the hydrological effects of future suburban development on streamflow, and the effects of stormwater detention on flooding of Ninemile Creek at Camillus. Development was represented in the model in two ways: (1) as a pervious area (open and residential land) that simulates the hydrologic response from mixed pervious and impervious areas that drain to pervious areas, or (2) as an impervious area that drains to channels. Simulations indicate that peak discharges for 30 non-winter storms in 1995-96 would increase by an average of 10 to 37 percent in response to a 10- to 100-percent buildup of developable land represented as open/residential land and by 40 to 68 percent in response to 10 to 100 percent buildup of developable area represented as impervious area. A 10 to 100 percent buildup of developable area represents an impervious area of about 1 to 7 percent of the watershed. A log Pearson Type-III analysis of peak annual discharge for October 1989 through September 1996 for simulations with full development represented as impervious area indicates that stormflows that formerly occurred once every 2 years on average will occur once every 1.5 years, and stormflows that formerly occurred once every 5 years will occur once every 3.3 years.Simulations of a hypothetical 147-acre residential development in the lower part of the watershed with and without stormwater detention indicate that detention basins could cause either increase or decrease downstream flooding of Ninemile Creek at Camillus, depending on the basin.s available storage relative to its inflows and, hence, the timing of its peak outflow in relation to that of the peak discharge in Ninemile Creek; and the degree of flow retention by wetlands and other channel storage that affect the timing of peak

  2. Streamflow, groundwater hydrology, and water quality in the upper Coleto Creek watershed in southeast Texas, 2009–10

    Braun, Christopher L.; Lambert, Rebecca B.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Goliad County Groundwater Conservation District, Victoria County Groundwater Conservation District, Pecan Valley Groundwater Conservation District, Guadalupe-Blanco River Authority, and San Antonio River Authority, did a study to examine the hydrology and stream-aquifer interactions in the upper Coleto Creek watershed. Findings of the study will enhance the scientific understanding of the study-area hydrology and be used to support water-management decisions to help ensure protection of the Evangeline aquifer and surface-water resources in the study area. This report describes the results of streamflow measurements, groundwater-level measurements, and water quality (from both surface-water and groundwater sites) collected from three sampling events (July–August 2009, January 2010, and June 2010) designed to characterize groundwater (from the Evangeline aquifer) and surface water, and the interaction between them, in the upper Coleto Creek watershed upstream from Coleto Creek Reservoir in southeast Texas. This report also provides a baseline level of water quality for the upper Coleto Creek watershed. Three surface-water gain-loss surveys—July 29–30, 2009, January 11–13, 2010, and June 21–22, 2010—were done under differing hydrologic conditions to determine the locations and amounts of streamflow recharging or discharging from the Evangeline aquifer. During periods when flow in the reaches of the upper Coleto Creek watershed was common (such as June 2010, when 12 of 25 reaches were flowing) or probable (such as January 2010, when 22 of 25 reaches were flowing), most of the reaches appeared to be gaining (86 percent in January 2010 and 92 percent in June 2010); however, during drought conditions (July 2009), streamflow was negligible in the entire upper Coleto Creek watershed; streamflow was observed in only two reaches during this period, one that receives inflow directly from Audilet Spring and

  3. Selenium Speciation in the Fountain Creek Watershed (Colorado, USA) Correlates with Water Hardness, Ca and Mg Levels.

    PubMed

    Carsella, James S; Sánchez-Lombardo, Irma; Bonetti, Sandra J; Crans, Debbie C

    2017-04-30

    The environmental levels of selenium (Se) are regulated and strictly enforced by the Environmental Protection Agency (EPA) because of the toxicity that Se can exert at high levels. However, speciation plays an important role in the overall toxicity of Se, and only when speciation analysis has been conducted will a detailed understanding of the system be possible. In the following, we carried out the speciation analysis of the creek waters in three of the main tributaries-Upper Fountain Creek, Monument Creek and Lower Fountain Creek-located in the Fountain Creek Watershed (Colorado, USA). There are statistically significant differences between the Se, Ca and Mg, levels in each of the tributaries and seasonal swings in Se, Ca and Mg levels have been observed. There are also statistically significant differences between the Se levels when grouped by Pierre Shale type. These factors are considered when determining the forms of Se present and analyzing their chemistry using the reported thermodynamic relationships considering Ca 2+ , Mg 2+ , SeO₄ 2- , SeO₃ 2- and carbonates. This analysis demonstrated that the correlation between Se and water hardness can be explained in terms of formation of soluble CaSeO₄. The speciation analysis demonstrated that for the Fountain Creek waters, the Ca 2+ ion may be mainly responsible for the observed correlation with the Se level. Considering that the Mg 2+ level is also correlating linearly with the Se levels it is important to recognize that without Mg 2+ the Ca 2+ would be significantly reduced. The major role of Mg 2+ is thus to raise the Ca 2+ levels despite the equilibria with carbonate and other anions that would otherwise decrease Ca 2+ levels.

  4. Ground-water-quality data for selected wells in the Beaver Creek watershed, West Tennessee

    Williams, S.D.

    1996-01-01

    In 1993 the U.S. Geological Survey, in cooperation with the Tennessee Department of Environment and Conservation (TDEC), began an investigation of the quality of ground water in the Beaver Creek watershed in West Tennessee. A total of 408 water samples were collected from 91 wells during 5 sampling periods in 1994. Water samples were analyzed for selected water-quality properties, fecal coliform and streptococci bacteria, nutrients, and major inorganic constituents. Selected well- construction data and information on potential sources of contamination were also collected for the 91 wells sampled. Nitrate concentrations (measured as NO3) ranged from a detection limit of 0.1 to 91 milligrams per liter (mg/L). Nitrate concentrations exceeding 13 mg/L were detected in 71 of the samples collected. Nitrate concentrations in water samples collected from three wells exceeded the TDEC primary drinking water standard of 44 mg/L for nitrate (measured as NO3). Nitrite (measured as NO2), ammonium (measured as NH4), and orthophosphate (measured as PO4) concentrations in samples were generally less than 0.1 mg/L (detection limit). Fecal coliform bacteria were detected in 33 of the 408 water samples collected. Samples from 21 of the 91 wells contained fecal coliform bacteria during one or more of the five sampling periods. Fecal streptococci bacteria were detected in 123 of the 408 samples. Samples from 59 wells contained fecal streptococci bacteria during one or more of the five sampling periods.

  5. Contributions to Jarvis Creek Watershed, Alaska, from Winter Accumulation and Glacier Melt Inferred Through Airborne and Ground-Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Liljedahl, A. K.; Douglas, T. A.; Bernsen, S.; Gatesman, T.; Gerbi, C. C.

    2017-12-01

    Glacier meltwater contributions to river discharge has been increasing in much of the Arctic, likely because of higher air temperatures. For small glaciers that provide a large portion of meltwater to downstream discharge, a sustained negative mass balance is concerning to surrounding ecosystems because the water budget will ultimately decline when glacier ice disappears. Separating components of the hydrological budget is important for predicting future discharge, particularly when major inputs such as glacier ice melt are at risk of total loss. Jarvis Glacier in Eastern Alaska offers an example of this potential scenario. It is a 6-km long glacier that has been in retreat since the 1950's, yet it accounts for 15% of the annual downstream discharge into Jarvis Creek (Liljedahl et al., 2017). In March 2012 through April 2017 we completed yearly airborne and ground-penetrating radar surveys over Jarvis Glacier and its surrounding non-glaciated watershed. These surveys were conducted to assess winter snow accumulation and its potential contribution to the hydrological budget of Jarvis Creek. We also surveyed glacier ice thicknesses to estimate ice volume and potential long term future meltwater contributions to Jarvis Creek based on its sustained negative mass balance. High-frequency radar collected across Jarvis Glacier reveal winter accumulation rates between 1.1-1.9 m SWE. Thickness of winter snow in the surrounding glacier-free valleys is highly variable but it tended to accumulate as drifts near ridge tops or low in the valleys. Low-frequency GPR reveals ice thickness reaching 250 m, mid-glacier, tapering to less than 100 m near the debris-rich terminus. Several over-deepened basins exist and an obvious polythermal structure with 20-30 m of cold ice overlaying temperate ice is also evident. Our presentation will summarize further details of these results in relation to current and potential future contributions of glacier ice and winter snowpack melt to Jarvis

  6. Assessing the Influence of Copper-Nickel-Bearing Bedrock on Baseline Water Quality in Filson Creek Watershed, Northeast Minnesota

    NASA Astrophysics Data System (ADS)

    Runkel, R. L.; Jones, P. M.; Elliott, S. M.; Woodruff, L. G.

    2017-12-01

    Mining sulfide-bearing copper (Cu), nickel (Ni), and platinum-group-elements (PGE) deposits in the Duluth Complex of northeast Minnesota could have detrimental effects on surrounding water resources and associated ecosystems. A study was conducted to 1) assess copper, nickel, and other metal concentrations in surface water, bedrock, streambed sediments, and soils in watersheds where the basal part of the Duluth Complex is exposed or near the land surface; and 2) determine if these concentrations, and metal-bearing deposits, are currently influencing regional water quality in areas of potential base-metal mining. One of the watersheds that was assessed was the Filson Creek watershed, where shallow Cu-Ni-PGE deposits are present. Field water-quality, streambed sediments, soils, bedrock, and streamflow data set were collected in Filson Creek and it's watershed in 2014 and 2015. Surface-water samples were analyzed for 12 trace metals (dissolved and total concentrations), 14 inorganic constituents (dissolved concentrations), alkalinity, 18 O /16O and 2H/1H isotopes, and total and dissolved organic carbon. Background total Cu and Ni concentrations in the creek in 2014 and 2015 ranged from 1.2 to 10.8 micrograms per liter (µg/L), and 1.7 to 8.4 µg/L, respectively. The concentrations of copper, nickel, and other trace metals in surface waters and streambed sediments reflects the geochemistry of underlying rock types and glacially transported unconsolidated material, establishing baseline conditions prior to any mining. Dissolved and total organic carbon (DOC and TOC) concentrations in surface waters are very high compared to most surface waters in Minnesota, ranging from 21.3 to 43.2 milligrams per liter (mg/L), and 22.4 and 53.5 mg/L. Synoptic water-quality and flow data from a tracer test conducted over a stream segment of Filson Creek above a shallow Cu-Ni-PGE deposit (Spruce Road Deposit) was used with the 2014-15 water-quality and synthetic flow data to calibrate

  7. Hydrographs Showing Groundwater Level Changes for Selected Wells in the Chambers-Clover Creek Watershed and Vicinity, Pierce County, Washington

    Justin, G.B.; Julich, R.; Payne, K.L.

    2009-01-01

    Selected groundwater level hydrographs for the Chambers-Clover Creek watershed (CCCW) and vicinity, Washington, are presented in an interactive web-based map to illustrate changes in groundwater levels in and near the CCCW on a monthly and seasonal basis. Hydrographs are linked to points corresponding to the well location on an interactive map of the study area. Groundwater level data and well information from Federal, State, and local agencies were obtained from the U.S. Geological Survey National Water Information System (NWIS), Groundwater Site Inventory (GWSI) System.

  8. Buffalo Metropolitan Area, New York Water Resources Management Study, Tonawanda Creek Watershed. Interim Flood Management Study. Appendices.

    DTIC Science & Technology

    1980-12-01

    direction w~ih: A HE M a 6 peak dicg cft I pows TONAWANDA CREEK WATERSHED. NEW YORK MARCH 1960 FLOODED AREAS* FLOODLANO IN THE CITY OF BATAVIA AND...AREA CURVES4: 7 Uas. Aitem teivals~ DISuICT. UWFALO 00 200 DRAINIAGE AREA INf SQ. /IILES PLATE AMl V......... . u;t 99,li:k- - - - %;: :.z...NY State Geological Assn., p. 116. Grossman, William L., 1938, Geology of the Caledonia Quadrangle, M. A. Thesis University of Rochester. Kindle, E. M

  9. Evaluation of a method for comparing phosphorus loads from barnyards and croplands in Otter Creek Watershed, Wisconsin

    Wierl, Judy A.; Giddings, Elise M.P.; Bannerman, Roger T.

    1998-01-01

    Control of phosphorus from rural nonpoint sources is a major focus of current efforts to improve and protect water resources in Wisconsin and is recommended in almost every priority watershed plan prepared for the State's Nonpoint Source (NFS) Program. Barnyards and crop- lands usually are identified as the primary rural sources of phosphorus. Numerous questions have arisen about which of these two sources to control and about the method currently being used by the NFS program to compare phosphorus loads from barnyards and croplands. To evaluate the method, the U.S. Geological Survey (USGS). in cooperation with the Wisconsin Department of Natural Resources, used phosphorus-load and sediment-load data from streams and phosphorus concentrations in soils from the Otter Creek Watershed (located in the Sheboygan River Basin: fig. 1) in conjunction with two computer-based models. 

  10. Hydrogeological constraints on riparian buffers for reduction of diffuse pollution: examples from the Bear Creek watershed in Iowa, USA.

    PubMed

    Simpkins, W W; Wineland, T R; Andress, R J; Johnston, D A; Caron, G C; Isenhart, T M; Schultz, R C

    2002-01-01

    Riparian Management Systems (RiMS) have been proposed to minimize the impacts of agricultural production and improve water quality in Iowa in the Midwestern USA. As part of RiMS, multispecies riparian buffers have been shown to decrease nutrient, pesticide, and sediment concentrations in runoff from adjacent crop fields. However, their effect on nutrients and pesticides moving in groundwater beneath buffers has been discussed only in limited and idealized hydrogeologic settings. Studies in the Bear Creek watershed of central Iowa show the variability inherent in hydrogeologic systems at the watershed scale, some of which may be favorable or unfavorable to future implementation of buffers. Buffers may be optimized by choosing hydrogeologic systems where a shallow groundwater flow system channels water directly through the riparian buffer at velocities that allow for processes such as denitrification to occur.

  11. A METHODOLOGY FOR ESTIMATING UNCERTAINTY OF A DISTRIBUTED HYDROLOGIC MODEL: APPLICATION TO POCONO CREEK WATERSHED

    EPA Science Inventory

    Utility of distributed hydrologic and water quality models for watershed management and sustainability studies should be accompanied by rigorous model uncertainty analysis. However, the use of complex watershed models primarily follows the traditional {calibrate/validate/predict}...

  12. CTUIR Grande Ronde River Basin Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1996-1998 Progress Report.

    SciT

    Childs, Allen B.

    1999-07-01

    This Annual Report provides a detailed overview of watershed restoration accomplishments achieved by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and project partners in the Upper Grande Ronde River Basin under contract with the Bonneville Power Administration (BPA) during the period July 1, 1997 through June 30, 1998. The Contract Agreement entitled McCoy Meadows Watershed Restoration Project (Project No.96-83-01) includes habitat restoration planning, design, and implementation in two project areas--the McCoy Meadows Ranch located in the Meadow, McCoy, and McIntyre Creek subbasins on private land and the Mainstem Grande Ronde River Habitat Enhancement Project located on private andmore » National Forest System lands near Bird Tract Springs along the Grande Ronde River. During the contract period, the CTUIR and partners (Mark and Lorna Tipperman, landowners), Oregon Department of Environmental Quality (ODEQ), U.S. Environmental Protection Agency (EPA), Oregon Department of Fish and Wildlife (ODFW), and Natural Resource Conservation Service (NRCS) initiated phase 1 construction of the McCoy Meadows Restoration Project. Phase 1 involved reintroduction of a segment of McCoy Creek from its existing channelized configuration into a historic meander channel. Project efforts included bioengineering and tree/shrub planting and protection, transporting salvaged cottonwood tree boles and limbs from offsite source to the project area for utilization by resident beaver populations for forage and dam construction materials, relocation of existing BPA/ODFW riparian corridor fencing to outer edges of meadow floodplain, establishment of pre-project photo points, and coordination of other monitoring and evaluation efforts being led by other project partners including groundwater monitoring wells, channel cross sections, water quality monitoring stations, juvenile population sampling index sites, redd surveys, and habitat surveys. Project activities also

  13. Simulation of streamflow and water quality in the Leon Creek watershed, Bexar County, Texas, 1997-2004

    Ockerman, Darwin J.; Roussel, Meghan C.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers and the San Antonio River Authority, configured, calibrated, and tested a Hydrological Simulation Program ? FORTRAN watershed model for the approximately 238-square-mile Leon Creek watershed in Bexar County, Texas, and used the model to simulate streamflow and water quality (focusing on loads and yields of selected constituents). Streamflow in the model was calibrated and tested with available data from five U.S. Geological Survey streamflow-gaging stations for 1997-2004. Simulated streamflow volumes closely matched measured streamflow volumes at all streamflow-gaging stations. Total simulated streamflow volumes were within 10 percent of measured values. Streamflow volumes are greatly influenced by large storms. Two months that included major floods accounted for about 50 percent of all the streamflow measured at the most downstream gaging station during 1997-2004. Water-quality properties and constituents (water temperature, dissolved oxygen, suspended sediment, dissolved ammonia nitrogen, dissolved nitrate nitrogen, and dissolved and total lead and zinc) in the model were calibrated using available data from 13 sites in and near the Leon Creek watershed for varying periods of record during 1992-2005. Average simulated daily mean water temperature and dissolved oxygen at the most downstream gaging station during 1997-2000 were within 1 percent of average measured daily mean water temperature and dissolved oxygen. Simulated suspended-sediment load at the most downstream gaging station during 2001-04 (excluding July 2002 because of major storms) was 77,700 tons compared with 74,600 tons estimated from a streamflow-load regression relation (coefficient of determination = .869). Simulated concentrations of dissolved ammonia nitrogen and dissolved nitrate nitrogen closely matched measured concentrations after calibration. At the most downstream gaging station, average simulated monthly

  14. Mercury and methylmercury related to historical mercury mining in three tributaries to Lake Berryessa, Putah Creek Watershed, California

    NASA Astrophysics Data System (ADS)

    Sparks, G. C.; Horner, T.; Cornwell, K.; Izzo, V.; Alpers, C. N.

    2014-12-01

    This study examined the relative contribution of total mercury (THg) and mono-methylmercury (MMHg) from upstream historical mercury-mining districts to Lake Berryessa, a reservoir with impaired water quality because of mercury. The third and fourth largest historical mercury-producing mining districts in California are within Lake Berryessa's three largest tributary watersheds: Pope, (Upper) Putah, and Knoxville-Eticuera Creeks. Downstream of the reservoir, Putah Creek drains into the Yolo Bypass, a major source of THg and MMHg to the Sacramento-San Joaquin Delta. Water samples were collected from October 2012 to May 2014 during 37 non-storm and 8 storm events along Pope, (Upper) Putah, and Knoxville-Eticuera Creeks and analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and turbidity). Additionally, water samples collected during five of the non-storm and storm events were analyzed for unfiltered THg and MMHg and total suspended solids (TSS). Discharge was measured during sampling to calculate instantaneous loads. More than 120 streambed sediment samples were collected to determine the spatial variation of THg and organic carbon content (loss on ignition). Across the watersheds, unfiltered THg (in water) samples ranged from 2.3 to 125 ng/L and unfiltered MMHg (in water) samples from 0.12 to 1.0 ng/L. Concentrations of THg ranged from less than 0.0001 to 122 mg/kg in streambed sediment. Tributary reaches with elevated mercury concentrations ("hot spots") are near or downstream of historical mercury mines and have: (1) strong positive correlations between THg (in water) or MMHg (in water) and TSS (R2> 0.88, n=5); (2) higher instantaneous loads of suspended sediment, THg and MMHg than reaches with low THg and MMHg concentrations; and (3) elevated sediment organic carbon content. Tributary reaches with weaker correlations among THg, MMHg, and TSS in unfiltered water may reflect non-mining sources of dissolved THg and MMHg, such as

  15. Hydrologic conditions and water quality of rainfall and storm runoff for two agricultural areas of the Oso Creek watershed, Nueces County, Texas, 2005-08

    Ockerman, Darwin J.; Fernandez, Carlos J.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and water quality of rainfall and storm runoff of two primarily agricultural subwatersheds of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is about 5,145 acres. The other area, a subwatershed drained by an unnamed tributary to Oso Creek (hereinafter, Oso Creek tributary), is about 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during the study period October 2005-September 2008. Seventeen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Twenty-four composite runoff water-quality samples (12 at West Oso Creek, 12 at Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-six discrete suspended-sediment samples (12 West Oso Creek, 14 Oso Creek tributary) and 17 bacteria samples (10 West Oso Creek, 7 Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the two subwatersheds. Quantities of fertilizers and pesticides applied in the two subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff from the two subwatersheds occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 13.95 inches compared with 9.45 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 3

  16. Shell Creek Summers

    ERIC Educational Resources Information Center

    Seier, Mark; Goedeken, Suzy

    2005-01-01

    In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided…

  17. Technical review of managed underground storage of water study of the upper Catherine Creek watershed, Union County, northeastern Oregon

    Snyder, Daniel T.

    2014-01-01

    Because of water diversions during summer, flow in Catherine Creek, a tributary to the Grande Ronde River in northeastern Oregon, is insufficient to sustain several aquatic species for which the stream is listed as critical habitat. A feasibility study for managed underground storage (MUS) in the upper Catherine Creek watershed in Union County, Oregon, was undertaken by Anderson Perry and Associates, Inc., to address the issue of low flows in summer. The results of the study were released as a report titled “Upper Catherine Creek Storage Feasibility Study for Grande Ronde Model Watershed,” which evaluated the possibility of diverting Catherine Creek streamflow during winter (when stream discharge is high), storing the water by infiltration or injection into an aquifer adjacent to the stream, and discharging the water back to the stream in summer to augment low flows. The method of MUS would be accomplished using either (1) aquifer storage and recovery (ASR) that allows for the injection of water that meets drinking-water-quality standards into an aquifer for later recovery and use, or (2) artificial recharge (AR) that involves the intentional addition of water diverted from another source to a groundwater reservoir. Concerns by resource managers that the actions taken to improve water availability for upper Catherine Creek be effective, cost-efficient, long-term, and based on sound analysis led the National Fish and Wildlife Foundation to request that the U.S. Geological Survey conduct an independent review and evaluation of the feasibility study. This report contains the results of that review. The primary objectives of the Anderson Perry and Associates study reviewed here included (1) identifying potentially fatal flaws with the concept of using AR and (or) ASR to augment the streamflow of Catherine Creek, (2) identifying potentially favorable locations for augmenting streamflow, (3) developing and evaluating alternatives for implementing AR and (or) ASR, and

  18. Trends in precipitation and streamflow and changes in stream morphology in the Fountain Creek watershed, Colorado, 1939-99

    Stogner, Sr., Robert W.

    2000-01-01

    The Fountain Creek watershed, located in and along the eastern slope of the Front Range section of the southern Rocky Mountains, drains approximately 930 square miles of parts of Teller, El Paso, and Pueblo Counties in eastern Colorado. Streamflow in the watershed is dominated by spring snowmelt runoff and storm runoff during the summer monsoon season. Flooding during the 1990?s has resulted in increased streambank erosion. Property loss and damage associated with flooding and bank erosion has cost area residents, businesses, utilities, municipalities, and State and Federal agencies millions of dollars. Precipitation (4 stations) and streamflow (6 stations) data, aerial photographs, and channel reconnaissance were used to evaluate trends in precipitation and streamflow and changes in channel morphology. Trends were evaluated for pre-1977, post-1976, and period-of-record time periods. Analysis revealed the lack of trend in total annual and seasonal precipitation during the pre-1977 time period. In general, the analysis also revealed the lack of trend in seasonal precipitation for all except the spring season during the post-1976 time period. Trend analysis revealed a significant upward trend in long-term (period of record) total annual and spring precipitation data, apparently due to a change in total annual precipitation throughout the Fountain Creek watershed. During the pre-1977 time period, precipitation was generally below average; during the post- 1976 time period, total annual precipitation was generally above average. During the post- 1976 time period, an upward trend in total annual and spring precipitation was indicated at two stations. Because two of four stations evaluated had upward trends for the post-1976 period and storms that produce the most precipitation are isolated convection storms, it is plausible that other parts of the watershed had upward precipitation trends that could affect trends in streamflow. Also, because of the isolated nature of

  19. Travel time analysis for a subsurface drained sub-watershed in Upper Big Walnut Creek Watershed, Ohio

    Runoff travel time, which is a function of watershed and storm characteristics, is an important parameter affecting the prediction accuracy of hydrologic models. Although, time of concentration (tc) is a most widely used time parameter, it has multiple conceptual and computational definitions. Most ...

  20. Hydrologic conditions and assessment of water resources in the Turkey Creek watershed, Jefferson County, Colorado, 1998-2001

    Bossong, Clifford R.; Caine, Jonathan S.; Stannard, David I.; Flynn, Jennifer L.; Stevens, Michael R.; Heiny-Dash, Janet S.

    2003-01-01

    The 47.2-square-mile Turkey Creek watershed, in Jefferson County southwest of Denver, Colorado, is relatively steep with about 4,000 feet of relief and is in an area of fractured crystalline rocks of Precambrian age. Water needs for about 4,900 households in the watershed are served by domestic wells and individual sewage-disposal systems. Hydrologic conditions are described on the basis of contemporary hydrologic and geologic data collected in the watershed from early spring 1998 through September 2001. The water resources are assessed using discrete fracture-network modeling to estimate porosity and a physically based, distributed-parameter watershed runoff model to develop estimates of water-balance terms. A variety of climatologic and hydrologic data were collected. Direct measurements of evapotranspiration indicate that a large amount (3 calendar-year mean of 82.9 percent) of precipitation is returned to the atmosphere. Surface-water records from January 1, 1999, through September 30, 2001, indicate that about 9 percent of precipitation leaves the watershed as streamflow in a seasonal pattern, with highest streamflows generally occurring in spring related to snowmelt and precipitation. Although conditions vary considerably within the watershed, overall watershed streamflow, based on several records collected during the 1940's, 1950's, 1980', and 1990's near the downstream part of watershed, can be as high as about 200 cubic feet per second on a daily basis during spring. Streamflow typically recedes to about 1 cubic foot per second or less during rainless periods and is rarely zero. Ground-water level data indicate a seasonal pattern similar to that of surface water in which water levels are highest, rising tens of feet in some locations, in the spring and then receding during rainless periods at relatively constant rates until recharged. Synoptic measurements of water levels in 131 mostly domestic wells in fall of 2001 indicate a water-table surface that

  1. Hydrologic conditions and quality of rainfall and storm runoff for two agricultural areas of the Oso Creek Watershed, Nueces County, Texas, 2005-07

    Ockerman, Darwin J.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and quality of rainfall and storm runoff of two (primarily) agricultural areas (subwatersheds) of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is 5,145 acres. The other area, a subwatershed drained by an unnamed Oso Creek tributary (hereinafter, Oso Creek tributary), is 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during October 2005-September 2007. Fourteen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Nineteen composite runoff samples (10 West Oso Creek, nine Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-two discrete suspended-sediment samples (10 West Oso Creek, 12 Oso Creek tributary) and 13 bacteria samples (eight West Oso Creek, five Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the study subwatersheds. Quantities of fertilizers and pesticides applied in the subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff at both subwatershed outlet sites occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 10.83 inches compared with 7.28 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 2-year study period averaged 2.61 pounds

  2. Biological Inventory Cape La Croix Creek Watershed, Cape Girardeau County, Missouri.

    DTIC Science & Technology

    1977-01-01

    important stream flow characteristic of Cape La Croix Creek in this region is that it is a losing stream, or one which loses water to the groundwater system...flowing water habitat types (Capt. L7 Croix Creek and tributaries and Mississippi River) on the habitat map. Backwaters and oxbows are aquatic habitats...samples of 30 to 60 liters were collected at aquatic sampling stations 1 through 6 using a #25 plankton net. Sample volumes were dependent upon water

  3. Assessing long-term hydrologic impact of climate change using ensemble approach and comparison with Global Gridded Model-A case study on Goodwater Creek Experimental Watershed

    Potential impacts of climate change on hydrologic components of Goodwater Creek Experimental Watershed were assessed using climate datasets from the Coupled Model Intercomparison Project Phase 5 and Soil and Water Assessment Tool (SWAT). Historical and future ensembles of downscaled precipitation an...

  4. Using global positioning system technology for watershed mapping in Caspar Creek

    Norm Henry

    1991-01-01

    Surveying and mapping work has been an essential and time consuming part of the Caspar Watershed study during the North Fork phase. The cumulative effects study and several other studies being done in this phase require accurate mapping and periodic map updating of watershed features and disturbances.

  5. Water quality and streamflow in the Caribou-Poker Creeks Research Watershed, central Alaska, 1979.

    Jerry W. Hilgert; Charles W. Slaughter

    1987-01-01

    Baseline data from 1979 are presented on precipitation, streamflow, occurrence of permafrost, and physical and chemical water quality in a subarctic, tiaga watershed. First- to third-order streams drain catchments embracing permafrost-underlain and permafrost-free landscapes in the undisturbed research watershed. The data are compared to those from a fourth-order...

  6. Development and application of a comprehensive simulation model to evaluate impacts of watershed structures and irrigation water use on streamflow and groundwater: The case of Wet Walnut Creek Watershed, Kansas, USA

    Ramireddygari, S.R.; Sophocleous, M.A.; Koelliker, J.K.; Perkins, S.P.; Govindaraju, R.S.

    2000-01-01

    This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard 'base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed. (C) 2000 Elsevier Science B.V.This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west

  7. Mercury and Methylmercury Related to Historical Mercury Mining in Three Major Tributaries to Lake Berryessa, Upper Putah Creek Watershed, California

    NASA Astrophysics Data System (ADS)

    Sparks, G. C.; Alpers, C. N.; Horner, T. C.; Cornwell, K.; Izzo, V.

    2016-12-01

    The relative contributions of total mercury (THg) and methylmercury (MeHg) from upstream historical mercury (Hg) mining districts were examined in the three largest tributaries to Lake Berryessa, a reservoir with water quality impaired by Hg. A fish consumption advisory has been issued for the reservoir; also, in a study of piscivorous birds at 25 California reservoirs, blood samples from Lake Berryessa grebes had the highest THg concentration state-wide. The third and fourth largest historical Hg-producing mining districts in California are within the study area. These mining districts are located within the Pope Creek, Upper Putah Creek, and Knoxville-Eticuera Creeks watersheds. Downstream of the reservoir, Lower Putah Creek drains into the Yolo Bypass, a major source of THg and MeHg to the Sacramento-San Joaquin Delta. Study objectives included: (1) determining if tributaries downstream of historical Hg mining districts and draining to the reservoir are continuing sources of THg and MeHg; (2) characterizing variability of water and streambed sediment parameters in upstream and downstream reaches of each creek; and (3) estimating loads of suspended sediment, THg, and MeHg entering the reservoir from each tributary. Water samples were collected from October 2012 to September 2014 during non-storm and storm events along each tributary and analyzed for general water quality field parameters; unfiltered THg and MeHg; total suspended solids; and total particulate matter. Discharge measurements were made at the time of sample collection; flow and concentration data were combined to compute daily loads. To determine spatial variability, 135 streambed sediment samples were analyzed for THg, organic content (loss on ignition), and grain-size distribution. All three tributaries contribute THg and MeHg to the reservoir. Some consistent spatial trends in THg (water) concentrations were observed over multiple sampling events; THg (water) decreased from upstream to downstream

  8. Hydrology and Climatology of the Caribou-Poker Creeks Research Watershed, Alaska,

    DTIC Science & Technology

    1982-10-01

    system the watershed falls within the Inter- dense brush of willow, alder and dwarf birch in ior Alaska Forest ( Taiga ) designation. open forests near...and C.T. Cushwina (1973) Research stream flow characteristics in the discontinuous opportunities and needs in the Taiga of Alaska. permafrost zone of...edition. taiga research watershed. Institute of Water Re- linkenson, W.M. nB. Lotspeich and lW. Mueller sources, University of Alaska, Fairbanks, Alaska

  9. Environmental data for the White Oak Creek/White Oak Lake watershed: Environmental Sciences Division publication No. 2779

    SciT

    Sherwood, C.B.; Loar, J.M.

    1987-01-01

    Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek (WOC) watershed, which drains approximately 16.8 km/sup 2/ (6.5 mile/sup 2/). The waters of WOC are impounded by White Oak Dam at WOC's intersection with White Wing Road (State Route 95), 1.0 km (0.6 mile) upstream from the Clinch River. The resulting White Oak Lake (WOL) is a small, shallow impoundment, whose water level is controlled by a vertical sluice gate that remains in a fixed position during normal operations. White Oak Creek has been utilized for the discharge of treated and untreated wastes from routine operations sincemore » the Laboratory's inception. In addition, most of the more recent (1954 to date) liquid and solid low-level-waste disposal operations have been located in the drainage area of WOC. As a federally owned facility, ORNL is required to comply with all existing federal, state, and local environmental regulations regarding waste management. On July 15, 1985, the US Environmental Protection Agency published final rules to incorporate changes in the Resource Conservation and Recovery Act of 1976 that resulted from the passage of the Hazardous and Solid Waste Amendments of 1984. As a part of the rule changes, a new Sect. 3004(u) was added. The new section requires that any facility permit issued after November 8, 1984, include planned corrective actions for all continuing releases of hazardous waste or constituents from any disposal unit at the facility, regardless of when the waste was placed at the disposal unit. This report was prepared to compile existing information on the content and quantity of hazardous substances (both radioactive and nonradioactive) in the WOC/WOL watershed and to provide background information on the geology, hydrology, and ecology of the site for use in planning future remedial actions. 109 refs., 45 figs., 33 tabs.« less

  10. Caspar Creek experimental watersheds: cumulative effects of forest practices on downstream resources

    Anne M. Rosenthal; Thomas E. Featured: Lisle

    2005-01-01

    Research at Caspar Creek provides information that helps forest managers assess and predict the environmental effects of forest practices and natural disturbances on downstream resources. Monitoring long-term effects and adapting practices can help protect and restore water quality and fish habitat in Northern California.

  11. A watershed's response to logging and roads: South Fork of Caspar Creek, California, 1967-1976

    Raymond M. Rice; Forest B. Tilley; Patricia A. Datzman

    1979-01-01

    The effect of logging and roadbuilding on erosion and sedimentation are analyzed by comparing the North Fork and South Fork of Caspar Creek, in northern California. Increased sediment production during the 4 years after road construction, was 326 cu yd/sq mi/yr—80 percent greater than that predicted by the predisturbance regression analysis. The average...

  12. Comparison of freshwater mussel communities from 1988 to 2015 in the Cedar Creek Watershed, Indiana

    Out of the 300 genera of freshwater mussels (Unionidae) represented in North America, most species have shown declines in abundance and distribution largely due to human-mediated factors. This study compares current community composition, abundance and richness of mussels in Cedar Creek, Indiana wit...

  13. Upper Clear Creek watershed aquatic chemistry and biota surveys, 2004-5, Whiskeytown National Recreation Area, Shasta County, California

    Wulff, Marissa L.; May, Jason T.; Brown, Larry R.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Whiskeytown National Recreation Area, performed a comprehensive aquatic biota survey of the upper Clear Creek watershed, Shasta County, California, during 2004-5. Data collected in this study can provide resource managers with information regarding aquatic resources, watershed degradation, and regional biodiversity within Whiskeytown National Recreation Area. Surveys of water chemistry, bed-sediment chemistry, algae assemblages, benthic macroinvertebrate assemblages, aquatic vertebrate assemblages, in-stream habitat characteristics, and sediment heterogeneity were conducted at 17 stream sites during both 2004 and 2005, with an additional 4 sites surveyed in 2005. A total of 67 bed-sediment samples were analyzed for major and trace inorganic element concentrations. Forty-six water samples were analyzed for trace metals and nutrients. A total of 224 taxa of invertebrates were collected during these surveys. Eleven fish species, seven of which were native, and two species of larval amphibians, were collected. A total of 24 genera of soft algae and 159 taxa of diatoms were identified. To date, this survey represents the most comprehensive inventory of aquatic resources within Whiskeytown National Recreation Area, and this information can serve as a baseline for future monitoring efforts and to inform management decisions.

  14. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    SciT

    NONE

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oakmore » Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.« less

  15. Flood-inundation and flood-mitigation modeling of the West Branch Wapsinonoc Creek Watershed in West Branch, Iowa

    Cigrand, Charles V.

    2018-03-26

    The U.S. Geological Survey (USGS) in cooperation with the city of West Branch and the Herbert Hoover National Historic Site of the National Park Service assessed flood-mitigation scenarios within the West Branch Wapsinonoc Creek watershed. The scenarios are intended to demonstrate several means of decreasing peak streamflows and improving the conveyance of overbank flows from the West Branch Wapsinonoc Creek and its tributary Hoover Creek where they flow through the city and the Herbert Hoover National Historic Site located within the city.Hydrologic and hydraulic models of the watershed were constructed to assess the flood-mitigation scenarios. To accomplish this, the models used the U.S. Army Corps of Engineers Hydrologic Engineering Center-Hydrologic Modeling System (HEC–HMS) version 4.2 to simulate the amount of runoff and streamflow produced from single rain events. The Hydrologic Engineering Center-River Analysis System (HEC–RAS) version 5.0 was then used to construct an unsteady-state model that may be used for routing streamflows, mapping areas that may be inundated during floods, and simulating the effects of different measures taken to decrease the effects of floods on people and infrastructure.Both models were calibrated to three historic rainfall events that produced peak streamflows ranging between the 2-year and 10-year flood-frequency recurrence intervals at the USGS streamgage (05464942) on Hoover Creek. The historic rainfall events were calibrated by using data from two USGS streamgages along with surveyed high-water marks from one of the events. The calibrated HEC–HMS model was then used to simulate streamflows from design rainfall events of 24-hour duration ranging from a 20-percent to a 1-percent annual exceedance probability. These simulated streamflows were incorporated into the HEC–RAS model.The unsteady-state HEC–RAS model was calibrated to represent existing conditions within the watershed. HEC–RAS model simulations with the

  16. Summary statistics and graphical comparisons of historical hydrologic and water-quality data, Seco Creek Watershed, South-Central Texas

    Brown, David W.; Slattery, Richard N.; Gilhousen, Jon R.

    1998-01-01

    The U.S. Geological Survey collected hydrologic (rainfall, streamflow, and reservoir content) and water-quality data in the Seco Creek watershed, south-central Texas. Most of the data from 15 sites were collected as part of a study in cooperation with the U.S. Department of Agriculture and the Texas State Soil and Water Conservation Board to evaluate the effects of agricultural best-management practices on surface- and ground-water quantity and quality in the 255-square-mile watershed. Nearly 400 best-management practices at 58 sites were implemented by landowners in the watershed during March 1990-September 1995. Most of the data are from the early 1990s, the period during and after implementation of best-management practices. Data from five sites include water quality and are summarized in tables and graphics in the text; and data from all 15 sites are summarized on a diskette. Maximum annual rainfall among the sites for which data are presented in the text (excluding one site) for the during-and-after-implementation period (March 1990-September 1995) was 53.27 inches in water year 1992. Maximum annual total streamflow among the sites for the period was 63,400 acre-feet, also in water year 1992. At the one site with water-quality data (under base-flow conditions) for both the before-implementation period and the during-and-after implementation period of best-management practices, percentiles (5, 25, 50, 75, 95) for specific conductance, nitrate concentration, and fecal coliform density were less for the during-and-after-implementation period than for the before-implementation period.

  17. Fluvial responses to land-use changes and climatic variations within the Drury Creek watershed, southern Illinois

    NASA Astrophysics Data System (ADS)

    Miller, Suzanne Orbock; Ritter, Dale F.; Kochel, R. Craig; Miller, Jerry R.

    1993-04-01

    Fluvial responses to climatic variation and Anglo-American settlement were documented for the Drury Creek watershed, southern Illinois by examining stratigraphic, geomorphic, climatic, and historical data. Regional analyses of long-term precipitation records document a period of decreasing mean annual precipitation from 1904 to about 1945, and an increasing trend in annual precipitation from 1952 to the present. The period between 1945 and 1951 experienced a large number of intense storms that resulted in high annual precipitation totals. Statistical relationships illustrate that changes in precipitation totals are transferred to the hydrologic system as fluctuations in stream discharge. Historical records of southern Illinois show that a maximum period of settlement and deforestation occurred between the 1860s and 1920s. This era ended in the 1940s when large tracts of land were revegetated in an attempt to curtail erosion which had caused extensive upland degradation. In response to hillslope erosion at least two meters of fine-grained sediments were deposited on valley floors. Average sedimentation rates, determined using decdrochronologic techniques, are estimated to be 2.11 cm/yr for the period between 1890 and 1988; rates that are 1 to 2 orders of magnitude greater than pre-settlement values calculated for other areas of the midwest. However, botanical data suggest that aggradation was episodic, possibly occurring during three periods characterized by greater annual precipitation. Since the 1940s, sedimentation rates have declined. Reduced rates of sedimentation are related to an episode of channel entrenchment that reduced overbank flooding. Entrenchment coincided with a period of: (1) reduced sediment yields associated with watershed revegetation and the introduction of soil conservation practices, and (2) intense storm activity that resulted in long periods of high discharge. As a result of channel incision and hillslope erosion, newly exposed bedrock in

  18. Rainfall-runoff relationships and water-quality assessment of Coon Creek watershed, Anoka County, Minnesota

    Arntson, A.D.; Tornes, L.H.

    1985-01-01

    Water-quality characteristics were determined based on 14 water samples from 4 sites and 1 bottom-mate rial sample from each site. Results of the analyses indicated that streams draining urban areas carry the highest concentrations of most constituents sampled. Sand Creek at Xeon Boulevard, which drains the most urbanized area, had the highest mean concentration of metals, chloride, dissolved solids, and suspended sediment. Concentrations of total phosphorus ranged from 0.04 to 0.43 milligram per liter at the rural sites on County Ditch 58 at Andover Boulevard and Coon Creek at Raddison Road. Average phosphorus concentrations at the rural sites are comparable to concentrations at the urban sites.

  19. Prioritizing Road Treatments using the Geomorphic Roads Analysis and Inventory Package (GRAIP) to Improve Watershed Conditions in the Wall Creek Watershed, Oregon

    NASA Astrophysics Data System (ADS)

    Day, K. T.; Black, T.; Clifton, C.; Luce, C.; McCune, S.; Nelson, N.

    2010-12-01

    Wall Creek, tributary to the North Fork John Day River in eastern Oregon, was identified as a priority watershed by the Umatilla National Forest for restoration in 2002. Most streams in this 518 km2 multi-ownership watershed are designated critical habitat for threatened steelhead. Eight streams are listed on the Oregon 303(d) list for elevated temperatures and excess sedimentation. Over 1000 km of public and private roads in the watershed present a major source of potential water quality and habitat impairment. We conducted a watershed-wide inventory of roads using the Geomorphic Roads Analysis and Inventory Package (GRAIP) in 2009 to quantify sediment contributions from roads to streams. GRAIP is a field and GIS-based model developed by the Forest Service Rocky Mountain Research Station and Utah State University that georeferences and quantifies road hydrologic connectivity, sediment production and delivery, mass wasting, and risk of diversion and plugging at stream crossings. Field survey and modeling produced data for 6,473 drainage locations on 726 km of road (most of the publically owned roads) quantifying the location and mass of sediment produced and delivered to streams. Findings indicate a relatively small subset of roads deliver the majority of road-produced fine sediment; 12 percent of the road length delivers 90 percent of the total fine sediment to streams. Overall fine sediment production in the watershed is relatively low (with an estimated background erosion rate of 518,000 kg/yr for the watershed) and sediment produced and delivered from the road system appears to be a modest addition. Road surfaces produce approximately 81,455 kg of fine sediment per year, with 20,976 kg/year delivered to the stream network. Fifty-nine gullies were observed, 41 of which received road runoff. Sixteen road-related landslides were also observed. The excavated volume of these features totals 3,922,000 kg which is equivalent to 175 years of fine sediment delivery at

  20. Site-specific critical acid load estimates for forest soils in the Osborn Creek watershed, Michigan

    Trevor Hobbs; Jason Lynch; Randy Kolka

    2017-01-01

    Anthropogenic acid deposition has the potential to accelerate leaching of soil cations, and in turn, deplete nutrients essential to forest vegetation. The critical load concept, employing a simple mass balance (SMB) approach, is often used to model this process. In an evaluation under the U.S. Forest Service Watershed Condition Framework program, soils in all 6th level...

  1. Dry creek long-term watershed study: buffer zone performance as viable amphibian habitat

    Brooke L. Talley; Thomas L. Crisman

    2006-01-01

    As bioindicators, amphibians typically require both terrestrial and aquatic habitats to complete their life cycles. Pre- timber-harvest monitoring (December 2002 through September 2003) of salamander and frog (Hylidae) populations was conducted in four watersheds of Decatur County, GA. Post- timber-harvest monitoring (December 2003 through September...

  2. Water quality and streamflow in the Caribou-Poker Creeks Research Watershed, central Alaska, 1978.

    Jerry W. Hilgert; Charles W. Slaughter

    1983-01-01

    Baseline data from 1978 are presented on precipitation, streamflow, and chemical and biological water quality in a subarctic, taiga watershed. First-, second-, and third-order streams that drain undisturbed catchments embracing permafrost-underlain and permafrost-free landscapes were monitored; results are being used in analysis of the natural, undisturbed condition of...

  3. Simulated effects of existing and proposed surface-water impoundments and gas-well pads on streamflow and suspended sediment in the Cypress Creek watershed, Arkansas

    Hart, Rheannon M.

    2014-01-01

    The Arkansas Natural Resources Commission and the Arkansas Department of Environmental Quality list suspended sediment from “poor pastures” as a primary source of nonpoint-source pollution in north-central Arkansas, but unpaved (gravel) roads are another important source of suspended sediment. Because of the high sediment-loading rates associated with gravel roads and the large amount of pasture within the watershed, the factors most responsible for suspended sediment within the Cypress Creek watershed are likely associated more with the pastureland and gravel roads, than factors associated with gas-well pads/pipelines.

  4. Comparison of TOPMODEL streamflow simulations using NEXRAD-based and measured rainfall data, McTier Creek watershed, South Carolina

    Feaster, Toby D.; Westcott, Nancy E.; Hudson, Robert J.M.; Conrads, Paul; Bradley, Paul M.

    2012-01-01

    Rainfall is an important forcing function in most watershed models. As part of a previous investigation to assess interactions among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations in the Edisto River Basin, the topography-based hydrological model (TOPMODEL) was applied in the McTier Creek watershed in Aiken County, South Carolina. Measured rainfall data from six National Weather Service (NWS) Cooperative (COOP) stations surrounding the McTier Creek watershed were used to calibrate the McTier Creek TOPMODEL. Since the 1990s, the next generation weather radar (NEXRAD) has provided rainfall estimates at a finer spatial and temporal resolution than the NWS COOP network. For this investigation, NEXRAD-based rainfall data were generated at the NWS COOP stations and compared with measured rainfall data for the period June 13, 2007, to September 30, 2009. Likewise, these NEXRAD-based rainfall data were used with TOPMODEL to simulate streamflow in the McTier Creek watershed and then compared with the simulations made using measured rainfall data. NEXRAD-based rainfall data for non-zero rainfall days were lower than measured rainfall data at all six NWS COOP locations. The total number of concurrent days for which both measured and NEXRAD-based data were available at the COOP stations ranged from 501 to 833, the number of non-zero days ranged from 139 to 209, and the total difference in rainfall ranged from -1.3 to -21.6 inches. With the calibrated TOPMODEL, simulations using NEXRAD-based rainfall data and those using measured rainfall data produce similar results with respect to matching the timing and shape of the hydrographs. Comparison of the bias, which is the mean of the residuals between observed and simulated streamflow, however, reveals that simulations using NEXRAD-based rainfall tended to underpredict streamflow overall. Given that the total NEXRAD-based rainfall data for the simulation period is lower than the

  5. Ecological and water quality impairment resulting from the New Idria Mercury Mine and natural sources in the San Carlos and Silver Creek watersheds, central California

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.; Hothem, R.; Goldstein, D.; Brussee, B.

    2011-12-01

    The New Idria Mercury Mine in central California is the second largest mercury (Hg) deposit in North America and has been proposed as a US EPA Superfund Site based on ecological impairment to the San Carlos and Silver Creek watersheds. Water, sediment, and biota were sampled in San Carlos Creek in the mine area and downstream for 25 km into the watershed termed Silver Creek. Release of acid rock drainage (ARD) and erosion of mine tailings have impacted the watershed during 120 years of mining and since the mine was closed in 1972. The watershed can be divided into three segments based on water and sediment composition, Hg sources and concentrations, and biodiversity of aquatic invertebrates. Creek waters in segment no. 1 above the mine area consist of Mg-Ca-CO3 meteoric water with pH 8.73. Hg concentrations are elevated in both sediment (100μg/g), and in waters (60 ng/L) because of erosion of Hg mine tailings in the upper part of the watershed. Invertebrate biodiversity is the highest of the sites sampled in the watershed, with seven families (six orders) of aquatic invertebrates collected and six other families observed. In the mine area isotopically heavy ARD (pH 2.7) with high levels of Fe(II), SO4, and total Hg (HgT: 76.7 ng/L) enters and mixes with meteoric creek water, constituting from 10-15% of the water in the 10-km long second creek segment downstream from the mine. Oxidation of Fe(II) from ARD results in precipitation of FeOOH which is transported and deposited as an Fe precipitate that has high Hg and MMeHg concentration (Hg: 15.7-79 μg/g, MMeHg: 0.31 - 1.06 ng/g). Concentrations of HgT are uniformly high (1530-2890 ng/L) with particulate Hg predominant. MMeHg ranges from 0.21-0.99 ng/L. In the area just downstream from the ARD source, biodiversity of invertebrates was low, with only one taxa (water striders) available in sufficient numbers and mass (> 1 g)_to be sampled. Biodiversity further downstream was also low, with only up to 2 families present

  6. Developing a post-fire flood chronology and recurrence probability from alluvial stratigraphy in the Buffalo Creek watershed, Colorado, USA

    Elliott, J.G.; Parker, R.S.

    2001-01-01

    Stratigraphic and geomorphic evidence indicate floods that occur soon after forest fires have been intermittent but common events in many mountainous areas during the past several thousand years. The magnitude and recurrence of these post-fire flood events reflects the joint probability between the recurrence of fires and the recurrence of subsequent rainfall events of varying magnitude and intensity. Following the May 1996 Buffalo Creek, Colorado, forest fire, precipitation amounts and intensities that generated very little surface runoff outside of the burned area resulted in severe hillslope erosion, floods, and streambed sediment entrainment in the rugged, severely burned, 48 km2 area. These floods added sediment to many existing alluvial fans, while simultaneously incising other fans and alluvial deposits. Incision of older fans revealed multiple sequences of fluvially transported sandy gravel that grade upward into charcoal-rich, loamy horizons. We interpret these sequences to represent periods of high sediment transport and aggradation during floods, followed by intervals of quiescence and relative stability in the watershed until a subsequent fire occurred. An alluvial sequence near the mouth of a tributary draining a 0??82 km2 area indicated several previous post-fire flood cycles in the watershed. Dendrochronologic and radiocarbon ages of material in this deposit span approximately 2900 years, and define three aggradational periods. The three general aggradational periods are separated by intervals of approximately nine to ten centuries and reflect a 'millennium-scale' geomorphic response to a closely timed sequence of events: severe and intense, watershed-scale, stand-replacing fires and subsequent rainstorms and flooding. Millennium-scale aggradational units at the study site may have resulted from a scenario in which the initial runoff from the burned watershed transported and deposited large volumes of sediment on downstream alluvial surfaces and

  7. Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado

    SciT

    Wohl, Ellen; Rathburn, Sara; Chignell, Stephen

    We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-basedmore » understanding of relative connectivity within the watershed. Here, we conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.« less

  8. Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado

    DOE PAGES

    Wohl, Ellen; Rathburn, Sara; Chignell, Stephen; ...

    2016-05-06

    We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-basedmore » understanding of relative connectivity within the watershed. Here, we conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.« less

  9. Characterization of Stormflows and Wastewater Treatment-Plant Effluent Discharges on Water Quality, Suspended Sediment, and Stream Morphology for Fountain and Monument Creek Watersheds, Colorado, 1981-2006

    Mau, David P.; Stogner, Sr., Robert W.; Edelmann, Patrick

    2007-01-01

    In 1998, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study of the Fountain and Monument Creek watersheds to characterize water quality and suspended-sediment conditions in the watershed for different flow regimes, with an emphasis on characterizing water quality during storm runoff. Water-quality and suspended-sediment samples were collected in the Fountain and Monument Creek watersheds from 1981 through 2006 to evaluate the effects of stormflows and wastewater-treatment effluent on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality data were collected at 11 sites between 1981 and 2001, and 14 tributary sites were added in 2003 to increase spatial coverage and characterize water quality throughout the watersheds. Suspended-sediment samples collected daily at 7 sites from 1998 through 2001, 6 sites daily from 2003 through 2006, and 13 tributary sites intermittently from 2003 through 2006 were used to evaluate the effects of stormflow on suspended-sediment concentrations, discharges, and yields. Data were separated into three flow regimes: base flow, normal flow, and stormflow. Stormflow concentrations from 1998 through 2006 were compared to Colorado acute instream standards and, with the exception of a few isolated cases, did not exceed water-quality standards for inorganic constituents that were analyzed. However, stormflow concentrations of both fecal coliform and Escherichia coli (E. coli) frequently exceeded water-quality standards during 1998 through 2006 on main-stem and tributary sites by more than an order of magnitude. There were two sites on Cottonwood Creek, a tributary to Monument Creek, with elevated concentrations of dissolved nitrite plus nitrate: site 07103985 (TbCr), a tributary to Cottonwood Creek and site 07103990 (lower_CoCr), downstream from site 07103985 (TbCr), and near the confluence with Monument Creek. During base-flow and normal-flow conditions, the median

  10. Unit Hydrograph Peaking Analysis for Goose Creek Watershed in Virginia: A Case Study

    DTIC Science & Technology

    2017-05-01

    increment would not exceed 1.5 times the designed unit peak. The purpose of this study is to analyze the validity of this UHPF range of the Goose...confidence interval precipitation depths to the watershed in addition to the 50% value. This study concluded that a design event with a return period greater...In this study , the physically based GSSHA model was deployed to obtain corresponding design discharge from probable rainfall events. 3.2.1 GSSHA

  11. Surface- and ground-water characteristics in the Upper Truckee River and Trout Creek watersheds, South Lake Tahoe, California and Nevada, July-December 1996

    Rowe, T.G.; Allander, Kip K.

    2000-01-01

    The Upper Truckee River and Trout Creek watersheds, South Lake Tahoe, California and Nevada, were studied from July to December 1996 to develop a better understanding of the relation between surface water and ground water. Base flows at 63 streamflow sites were measured in late September 1996 in the Upper Truckee River and Trout Creek watersheds. Most reaches of the main stem of the Upper Truckee River and Trout Creek had gaining or steady flows, with one losing reach in the mid-section of each stream. Twenty-seven of the streamflow sites measured in the Upper Truckee River watershed were on 14 tributaries to the main stem of the Upper Truckee River. Sixteen of the 40 streamflow sites measured in the Upper Truckee River watershed had no measurable flow. Streamflow in Upper Truckee River watershed ranged from 0 to 11.6 cubic feet per second (ft3/s). The discharge into Lake Tahoe from the Upper Truckee River was 11.6 ft3/s, of which, 40 percent of the flow was from ground-water discharge into the main stem, 40 percent was from tributary inflows, and the remaining 20 percent was the beginning flow. Gains from or losses to ground water along streams ranged from a 1.4 cubic feet per second per mile (ft3/s/mi) gain to a 0.5 ft3/s/mi loss along the main stem. Fourteen of the streamflow sites measured in the Trout Creek watershed were on eight tributaries to the main stem of Trout Creek. Of the 23 streamflow sites measured in the Trout Creek watershed, only one site had no flow. Flows in the Trout Creek watershed ranged from zero to 23.0 ft3/s. Discharge into Lake Tahoe from Trout Creek was 23.0 ft3/s, of which, about 5 percent of the flow was from ground-water discharge into the main stem, 75 percent was from tributary inflows, and the remaining 20 percent was the beginning flow. Ground-water seepage rates ranged from a 1.4 ft3/s/mi gain to a 0.9 ft3/s/mi loss along the main stem. Specific conductances measured during the seepage run in September 1996 increased in a

  12. Water-quality trends for selected sites in the Boulder River and Tenmile Creek watersheds, Montana, based on data collected during water years 1997-2013

    Sando, Steven K.; Clark, Melanie L.; Cleasby, Thomas E.; Barnhart, Elliott P.

    2015-01-01

    Trend results for sites in the Tenmile Creek watershed generally are more variable and difficult to interpret than for sites in the Boulder River watershed. Trend results for Tenmile Creek above City Diversion (site 11) and Minnehaha Creek near Rimini (site 12) for water years 2000–13 indicate decreasing trends in FACs of cadmium, copper, and zinc. The magnitudes of the decreasing trends in FACs of copper generally are moderate and statistically significant for sites 11 and 12. The magnitudes of the decreasing trends in FACs of cadmium and zinc for site 11 are minor to small and not statistically significant; however, the magnitudes for site 12 are moderate and statistically significant. In general, patterns in FACs for Tenmile Creek near Rimini (site 13) are not well represented by fitted trends within the short data collection period, which might indicate that the trend-analysis structure of the study is not appropriate for describing trends in FACs for site 13. The large decreasing trend in FACs of suspended sediment is the strongest indication of change in water quality during the short period of record for site 13; however, this trend is not statistically significant.

  13. Continuous hydrologic simulation and flood-frequency, hydraulic, and flood-hazard analysis of the Blackberry Creek watershed, Kane County, Illinois

    Soong, David T.; Straub, Timothy D.; Murphy, Elizabeth A.

    2006-01-01

    Results of hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kane County, Illinois, indicate that the 100-year and 500-year flood plains range from approximately 25 acres in the tributary F watershed (a headwater subbasin at the northeastern corner of the watershed) to almost 1,800 acres in Blackberry Creek main stem. Based on 1996 land-cover data, most of the land in the 100-year and 500-year flood plains was cropland, forested and wooded land, and grassland. A relatively small percentage of urban land was in the flood plains. The Blackberry Creek watershed has undergone rapid urbanization in recent decades. The population and urbanized lands in the watershed are projected to double from the 1990 condition by 2020. Recently, flood-induced damage has occurred more frequently in urbanized areas of the watershed. There are concerns about the effect of urbanization on flood peaks and volumes, future flood-mitigation plans, and potential effects on the water quality and stream habitats. This report describes the procedures used in developing the hydrologic models, estimating the flood-peak discharge magnitudes and recurrence intervals for flood-hazard analysis, developing the hydraulic model, and the results of the analysis in graphical and tabular form. The hydrologic model, Hydrological Simulation Program-FORTRAN (HSPF), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and to determine the 100-year floodway. The hydraulic model was calibrated and verified using high water marks and observed inundation maps for the July 17-18, 1996, flood event. Digital

  14. Responses to riparian restoration in the Spring Creek watershed, Central Pennsylvania

    Carline, R.F.; Walsh, M.C.

    2007-01-01

    Riparian treatments, consisting of 3- to 4-m buffer strips, stream bank stabilization, and rock-lined stream crossings, were installed in two streams with livestock grazing to reduce sediment loading and stream bank erosion. Cedar Run and Slab Cabin Run, the treatment streams, and Spring Creek, an adjacent reference stream without riparian grazing, were monitored prior to (1991-1992) and 3-5 years after (2001-2003) riparian buffer installation to assess channel morphology, stream substrate composition, suspended sediments, and macroinvertebrate communities. Few changes were found in channel widths and depths, but channel-structuring flow events were rare in the drought period after restoration. Stream bank vegetation increased from 50% or less to 100% in nearly all formerly grazed riparian buffers. The proportion of fine sediments in stream substrates decreased in Cedar Run but not in Slab Cabin Run. After riparian treatments, suspended sediments during base flow and storm flow decreased 47-87% in both streams. Macroinvertebrate diversity did not improve after restoration in either treated stream. Relative to Spring Creek, macroinvertebrate densities increased in both treated streams by the end of the posttreatment sampling period. Despite drought conditions that may have altered physical and biological effects of riparian treatments, goals of the riparian restoration to minimize erosion and sedimentation were met. A relatively narrow grass buffer along 2.4 km of each stream was effective in improving water quality, stream substrates, and some biological metrics. ?? 2007 Society for Ecological Restoration International.

  15. Turbidity and suspended sediment in the upper Esopus Creek watershed, Ulster County, New York

    McHale, Michael R.; Siemion, Jason

    2014-01-01

    Discharge, SSC, and turbidity were strongly related at the Coldbrook site but not at every monitoring site. In general, relations between discharge and SSC and turbidity were strongest at sites with high SSCs, with the exception of Stony Clove Creek. Stony Clove Creek had high SSCs and turbidity regardless of discharge, and although concentrations and turbidity values generally increased with increasing discharge, the relation was not strong. Five of the six sites used to investigate the relations between SSC and laboratory turbidity had a coefficient of determination (r2) greater than 0.7. Relations were not as strong between SSC and the turbidity measured by in situ probes because the period of record was shorter and therefore the sample sizes were smaller. Data from in situ turbidity probes were strongly related to turbidity data measured in the laboratory for all but one of the monitoring sites where the relation was strongly leveraged by one sample. Although the in situ turbidity probes appeared to provide a good surrogate for SSC and could allow more accurate calculations of suspended-sediment load than discrete suspended-sediment samples alone, more data would be required to define the regression models throughout the range in discharge, SSCs, and turbidity levels that occur at each monitoring site. Nonetheless, the in situ probes provided much greater detail about the relation between discharge and turbidity than did the grab samples and storm samples measured in the laboratory.

  16. 78 FR 26065 - Notice of Availability of the Draft Environmental Impact Statement for the Jump Creek, Succor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Cow Creek Watersheds Grazing Permit Renewal, ID AGENCY: Bureau of Land Management, Interior. ACTION... the Jump Creek, Succor Creek, and Cow Creek Watersheds Grazing Permit Renewal and by this notice is... receive written comments on the Draft EIS for the Jump Creek, Succor Creek, and Cow Creek Watersheds...

  17. 78 FR 64003 - Notice of Availability of the Final Environmental Impact Statement for the Jump Creek, Succor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... Cow Creek Watersheds Grazing Permit Renewal, Owyhee County, ID AGENCY: Bureau of Land Management... Field Office Jump Creek, Succor Creek and Cow Creek Watersheds grazing permit renewal, and by this... in the Federal Register. ADDRESSES: Copies of the Jump Creek, Succor Creek and Cow Creek Watersheds...

  18. Watershed Data Management (WDM) database for Salt Creek streamflow simulation, DuPage County, Illinois, water years 2005-11

    Bera, Maitreyee

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with DuPage County Stormwater Management Division, maintains a USGS database of hourly meteorologic and hydrologic data for use in a near real-time streamflow simulation system, which assists in the management and operation of reservoirs and other flood-control structures in the Salt Creek watershed in DuPage County, Illinois. Most of the precipitation data are collected from a tipping-bucket rain-gage network located in and near DuPage County. The other meteorologic data (wind speed, solar radiation, air temperature, and dewpoint temperature) are collected at Argonne National Laboratory in Argonne, Ill. Potential evapotranspiration is computed from the meteorologic data. The hydrologic data (discharge and stage) are collected at USGS streamflow-gaging stations in DuPage County. These data are stored in a Watershed Data Management (WDM) database. An earlier report describes in detail the WDM database development including the processing of data from January 1, 1997, through September 30, 2004, in SEP04.WDM database. SEP04.WDM is updated with the appended data from October 1, 2004, through September 30, 2011, water years 2005–11 and renamed as SEP11.WDM. This report details the processing of meteorologic and hydrologic data in SEP11.WDM. This report provides a record of snow affected periods and the data used to fill missing-record periods for each precipitation site during water years 2005–11. The meteorologic data filling methods are described in detail in Over and others (2010), and an update is provided in this report.

  19. Morphological Analyses and Simulated Flood Elevations in a Watershed with Dredged and Leveed Stream Channels, Wheeling Creek, Eastern Ohio

    Sherwood, James M.; Huitger, Carrie A.; Ebner, Andrew D.; Koltun, G.F.

    2008-01-01

    The USGS, in cooperation with the Ohio Emergency Management Agency, conducted a study in the Wheeling Creek Basin to (1) evaluate and contrast land-cover characteristics from 2001 with characteristics from 1979 and 1992; (2) compare current streambed elevation, slope, and geometry with conditions present in the late 1980s; (3) look for evidence of channel filling and over widening in selected undredged reaches; (4) estimate flood elevations for existing conditions in both undredged and previously dredged reaches; (5) evaluate the height of the levees required to contain floods with selected recurrence intervals in previously dredged reaches; and (6) estimate flood elevations for several hypothetical dredging and streambed aggradation scenarios in undredged reaches. The amount of barren land in the Wheeling Creek watershed has decreased from 20 to 1 percent of the basin area based on land-cover characteristics from 1979 and 2001. Barren lands appear to have been converted primarily to pasture, presumably as a result of surface-mine reclamation. Croplands also decreased from 13 to 8 percent of the basin area. The combined decrease in barren lands and croplands is approximately offset by the increase in pasture. Stream-channel surveys conducted in 1987 and again in 2006 at 21 sites in four previously dredged reaches of Wheeling Creek indicate little change in the elevation, slope, and geometry of the channel at most sites. The mean change in width-averaged bed and thalweg elevations for the 21 cross sections was 0.1 feet. Bankfull widths, mean depths, and cross-sectional areas measured at 12 sites in undredged reaches were compared to estimates determined from regional equations. The mean percentage difference between measured and estimated bankfull widths was -0.2 percent, suggesting that bankfull widths in the Wheeling Creek Basin are generally about the same as regional averages for undisturbed basins of identical drainage area. For bankfull mean depth and cross

  20. The effects of green infrastructure on exceedance of critical shear stress in Blunn Creek watershed

    NASA Astrophysics Data System (ADS)

    Shannak, Sa'd.

    2017-10-01

    Green infrastructure (GI) has attracted city planners and watershed management professional as a new approach to control urban stormwater runoff. Several regulatory enforcements of GI implementation created an urgent need for quantitative information on GI practice effectiveness, namely for sediment and stream erosion. This study aims at investigating the capability and performance of GI in reducing stream bank erosion in the Blackland Prairie ecosystem. To achieve the goal of this study, we developed a methodology to represent two types of GI (bioretention and permeable pavement) into the Soil Water Assessment Tool, we also evaluated the shear stress and excess shear stress for stream flows in conjunction with different levels of adoption of GI, and estimated potential stream bank erosion for different median soil particle sizes using real and design storms. The results provided various configurations of GI schemes in reducing the negative impact of urban stormwater runoff on stream banks. Results showed that combining permeable pavement and bioretention resulted in the greatest reduction in runoff volumes, peak flows, and excess shear stress under both real and design storms. Bioretention as a stand-alone resulted in the second greatest reduction, while the installation of detention pond only had the least reduction percentages. Lastly, results showed that the soil particle with median diameter equals to 64 mm (small cobbles) had the least excess shear stress across all design storms, while 0.5 mm (medium sand) soil particle size had the largest magnitude of excess shear stress. The current study provides several insights into a watershed scale for GI planning and watershed management to effectively reduce the negative impact of urban stormwater runoff and control streambank erosion.

  1. Sensitivity of potential evapotranspiration and simulated flow to varying meteorological inputs, Salt Creek watershed, DuPage County, Illinois

    Whitbeck, David E.

    2006-01-01

    The Lamoreux Potential Evapotranspiration (LXPET) Program computes potential evapotranspiration (PET) using inputs from four different meteorological sources: temperature, dewpoint, wind speed, and solar radiation. PET and the same four meteorological inputs are used with precipitation data in the Hydrological Simulation Program-Fortran (HSPF) to simulate streamflow in the Salt Creek watershed, DuPage County, Illinois. Streamflows from HSPF are routed with the Full Equations (FEQ) model to determine water-surface elevations. Consequently, variations in meteorological inputs have potential to propagate through many calculations. Sensitivity of PET to variation was simulated by increasing the meteorological input values by 20, 40, and 60 percent and evaluating the change in the calculated PET. Increases in temperatures produced the greatest percent changes, followed by increases in solar radiation, dewpoint, and then wind speed. Additional sensitivity of PET was considered for shifts in input temperatures and dewpoints by absolute differences of ?10, ?20, and ?30 degrees Fahrenheit (degF). Again, changes in input temperatures produced the greatest differences in PET. Sensitivity of streamflow simulated by HSPF was evaluated for 20-percent increases in meteorological inputs. These simulations showed that increases in temperature produced the greatest change in flow. Finally, peak water-surface elevations for nine storm events were compared among unmodified meteorological inputs and inputs with values predicted 6, 24, and 48 hours preceding the simulated peak. Results of this study can be applied to determine how errors specific to a hydrologic system will affect computations of system streamflow and water-surface elevations.

  2. Effects of groundwater levels and headwater wetlands on streamflow in the Charlie Creek basin, Peace River watershed, west-central Florida

    Lee, T.M.; Sacks, L.A.; Hughes, J.D.

    2010-01-01

    The Charlie Creek basin was studied from April 2004 to December 2005 to better understand how groundwater levels in the underlying aquifers and storage and overflow of water from headwater wetlands preserve the streamflows exiting this least-developed tributary basin of the Peace River watershed. The hydrogeologic framework, physical characteristics, and streamflow were described and quantified for five subbasins of the 330-square mile Charlie Creek basin, allowing the contribution of its headwaters area and tributary subbasins to be separately quantified. A MIKE SHE model simulation of the integrated surface-water and groundwater flow processes in the basin was used to simulate daily streamflow observed over 21 months in 2004 and 2005 at five streamflow stations, and to quantify the monthly and annual water budgets for the five subbasins including the changing amount of water stored in wetlands. Groundwater heads were mapped in Zone 2 of the intermediate aquifer system and in the Upper Floridan aquifer, and were used to interpret the location of artesian head conditions in the Charlie Creek basin and its relation to streamflow. Artesian conditions in the intermediate aquifer system induce upward groundwater flow into the surficial aquifer and help sustain base flow which supplies about two-thirds of the streamflow from the Charlie Creek basin. Seepage measurements confirmed seepage inflow to Charlie Creek during the study period. The upper half of the basin, comprised largely of the Upper Charlie Creek subbasin, has lower runoff potential than the lower basin, more storage of runoff in wetlands, and periodically generates no streamflow. Artesian head conditions in the intermediate aquifer system were widespread in the upper half of the Charlie Creek basin, preventing downward leakage from expansive areas of wetlands and enabling them to act as headwaters to Charlie Creek once their storage requirements were met. Currently, the dynamic balance between wetland

  3. Ambient and potential denitrification rates in marsh soils of Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine

    Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.

    2012-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park on Mount Desert Island, Maine, because of the potential problems of degradation of water quality and eutrophication in estuaries. Degradation of water quality has been observed at Bass Harbor Marsh estuary in the park but only minimally in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential source of nutrients. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in-place denitrification rates in marsh soils in Northeast Creek and in Bass Harbor Marsh watersheds during summer 2008 and summer 2009. Denitrification was measured under ambient conditions as well as after additions of inorganic nitrogen and glucose. In-place denitrification rates under ambient conditions were similar to those reported for other coastal wetlands, although they were generally lower than those reported for salt marshes having high ambient concentrations of nitrate (NO3). Denitrification rates generally increased by at least an order of magnitude following NO3 additions, with or without glucose (as the carbohydrate) additions, compared with the ambient treatments that received no nutrient additions. The treatment that added both glucose and NO3 resulted in a variety of denitrification responses when compared with the addition of NO3 alone. In most cases, the addition of glucose to a given rate of NO3 addition resulted in higher rates of denitrification. These variable responses indicate that the amount of

  4. Streamflow and water-quality conditions including geologic sources and processes affecting selenium loading in the Toll Gate Creek watershed, Aurora, Arapahoe County, Colorado, 2007

    Paschke, Suzanne S.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Schaffrath, Keelin R.

    2013-01-01

    Toll Gate Creek is a perennial stream draining a suburban area in Aurora, Colorado, where selenium concentrations have consistently exceeded the State of Colorado aquatic-life standard for selenium of 4.6 micrograms per liter since the early 2000s. In cooperation with the City of Aurora, Colorado, Utilities Department, a synoptic water-quality study was performed along an 18-kilometer reach of Toll Gate Creek extending from downstream from Quincy Reservoir to the confluence with Sand Creek to develop a detailed understanding of streamflow and concentrations and loads of selenium in Toll Gate Creek. Streamflow and surface-water quality were characterized for summer low-flow conditions (July–August 2007) using four spatially overlapping synoptic-sampling subreaches. Mass-balance methods were applied to the synoptic-sampling and tracer-injection results to estimate streamflow and develop spatial profiles of concentration and load for selenium and other chemical constituents in Toll Gate Creek surface water. Concurrent groundwater sampling determined concentrations of selenium and other chemical constituents in groundwater in areas surrounding the Toll Gate Creek study reaches. Multivariate principal-component analysis was used to group samples and to suggest common sources for dissolved selenium and major ions. Hydrogen and oxygen stable-isotope ratios, groundwater-age interpretations, and chemical analysis of water-soluble paste extractions from core samples are presented, and interpretation of the hydrologic and geochemical data support conclusions regarding geologic sources of selenium and the processes affecting selenium loading in the Toll Gate Creek watershed.

  5. Pesticides in groundwater in the Anacostia River and Rock Creek watersheds in Washington, D.C., 2005 and 2008

    Koterba, Michael T.; Dieter, Cheryl A.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the District Department of the Environment, conducted a groundwater-quality investigation to (a) determine the presence, concentrations, and distribution of selected pesticides in groundwater, and (b) assess the presence of pesticides in groundwater in relation to selected landscape, hydrogeologic, and groundwater-quality characteristics in the shallow groundwater underlying the Anacostia River and Rock Creek watersheds in Washington, D.C. With one exception, well depths were 100 feet or less below land surface. The USGS obtained or compiled ancillary data and information on land use (2001), subsurface sediments, and groundwater samples from 17 wells in the lower Anacostia River watershed from September through December 2005, and from 14 wells in the lower Anacostia River and lower Rock Creek watersheds from August through September 2008. Twenty-seven pesticide compounds, reflecting at least 19 different types of pesticides, were detected in the groundwater samples obtained in 2005 and 2008. No fungicides were detected. In relation to the pesticides detected, degradate compounds were as or more likely to be detected than applied (parent) compounds. The detected pesticides chiefly reflected herbicides commonly used in urban settings for non-specific weed control or insecticides used for nonspecific haustellate insects (insects with specialized mouthparts for sucking liquid) or termite-specific control. Detected pesticides included a combination of pesticides currently (2008) in use, banned or under highly restricted use, and some that had replaced the banned or restricted-use pesticides. The presence of banned and restricted-use pesticides illustrates their continued persistence and resistance to complete degradation in the environment. The presence of the replacement pesticides indicates the susceptibility of the surficial aquifer to contamination irrespective of the changes in the pesticides used. A

  6. LANDSAT-D Thematic Mapper image dimensionality reduction and geometric correction accuracy. [Walnut Creek Watershed, Texas

    NASA Technical Reports Server (NTRS)

    Ford, G. E. (Principal Investigator)

    1984-01-01

    Principal components transformations was applied to a Walnut Creek, Texas subscene to reduce the dimensionality of the multispectral sensor data. This transformation was also applied to a LANDSAT 3 MSS subscene of the same area acquired in a different season and year. Results of both procedures are tabulated and allow for comparisons between TM and MSS data. The TM correlation matrix shows that visible bands 1 to 3 exhibit a high degree of correlation in the range 0.92 to 0.96. Correlation for bands 5 to 7 is 0.93. Band 4 is not highly correlated with any other band, with corrections in the range 0.13 to 0.52. The thermal band (6) is not highly correlated with other bands in the range 0.13 to 0.46. The MSS correlation matrix shows that bands 4 and 5 are highly correlated (0.96) as are bands 6 and 7 with a correlation of 0.92.

  7. Denitrification rates in marsh soils and hydrologic and water quality data for Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine

    Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.

    2011-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in estuaries. Water-quality degradation has been observed at the park's Bass Harbor Marsh estuary but minimal degradation is observed in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential nutrient source. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in situ denitrification rates in marsh soils in Northeast Creek and Bass Harbor Marsh watersheds during the summer seasons of 2008 and 2009. Denitrification was measured under ambient conditions and following inorganic nitrogen and glucose additions. Laboratory incubations of marsh soils with and without acetylene were conducted to determine average ratios of nitrous oxide (N2O) to nitrogen (N2) produced during denitrification. Surface water and groundwater samples were analyzed for nutrients, specific conductance, temperature, and dissolved oxygen. Water level was recorded continuously during the growing season in Fresh Meadow Marsh in the Northeast Creek Watershed.

  8. Big Creek Hydroelectric System, East & West Transmission Line, 241mile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Big Creek Hydroelectric System, East & West Transmission Line, 241-mile transmission corridor extending between the Big Creek Hydroelectric System in the Sierra National Forest in Fresno County and the Eagle Rock Substation in Los Angeles, California, Visalia, Tulare County, CA

  9. Associations of benthic macroinvertebrate assemblages with environmental variables in the upper Clear Creek watershed, California

    Brown, Larry R.; May, Jason T.; Wulff, Marissa

    2012-01-01

    Benthic macroinvertebrates are integral components of stream ecosystems and are often used to assess the ecological integrity of streams. We sampled streams in the upper Clear Creek drainage in the Klamath—Siskiyou Ecoregion of northwestern California in fall 2004 (17 sites) and 2005 (original 17 plus 4 new sites) with the objectives of documenting the benthic macroinvertebrate assemblages supported by the streams in the area, determining how those assemblages respond to environmental variables, assessing the biological condition of the streams using a benthic index of biotic integrity (IBI), and understanding the assemblages in the context of biodiversity of the ecoregion. We collected both reach-wide (RW) and targeted-riffle (TR) macroinvertebrate samples at each site. The macroinvertebrate assemblages were diverse, with over 150 genera collected for each sampling protocol. The macroinvertebrate assemblages appeared to be most responsive to a general habitat gradient based on stream size, gradient, flow, and dominance of riffles. A second important habitat gradient was based on elevation and dominance of riffles. A gradient in water quality based on concentrations of dissolved ions and metals was also important. Models based on these 3 gradients had Spearman's rank correlations with macroinvertebrate taxonomic composition of 0.60 and 0.50 for the TR and RW samples, respectively. The majority (>50%) of the sites were in good or very good biological condition based on IBI scores. The diversity of macroinvertebrate assemblages is associated with the diversity of habitats available in the Klamath—Siskiyou Ecoregion. Maintaining the aquatic habitats in good condition is important in itself but is also vital to maintaining biodiversity in this diverse and unique ecoregion.

  10. Changes in streambed sediment characteristics and solute transport in the headwaters of Valley Creek, an urbanizing watershed

    NASA Astrophysics Data System (ADS)

    Ryan, Robert J.; Packman, Aaron I.

    2006-05-01

    Changes in streambed sediments were monitored in conjunction with Q series of conservative solute tracer injections over a 2-year period to assess the effects of urbanization on two streams in the Valley Creek watershed, located in Chester County, Pennsylvania approximately 30 km west of Philadelphia. The modeling package OTIS was used to analyze the solute transport behavior. Comparison of the results from the two streams demonstrates that the fine sediment fraction of the streambed controls hydraulic conductivity and transient storage exchange in this gravel- and cobble-bed Piedmont system. One site had a narrow (10-40 m) riparian corridor of mowed lawn and woody brush. At this site, the silt-clay fraction ( d<50 μm) of the fine sediment ( d<2 mm) increased from 6 to 25% during the course of the study. The relationship between sediment characteristics and transient storage exchange was evaluated using the method of Wörman et al. [Wörman, A., Packman, A.I., Johansson, H., Jonsson, K., 2002a. Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers. Water Resources Research 38. doi: 10.1029/2001WR000769], who showed that the hyporheic residence time, scaled by the hydraulic conductivity and stream depth, is a function of stream velocity and physical channel characteristics. This analysis indicated that the observed change in fine sediment composition caused a two-fold reduction in the hydraulic conductivity, a four-fold reduction in the transient storage area, and an order of magnitude reduction in the exchange coefficient. The second study site had a wide (100-300 m) riparian corridor of deciduous forest. During the study period, a parcel of woodland encompassing 11% of the drainage area was cleared and nine homes were constructed on the site. Despite this prominent development of the watershed, there was no significant change in sediment characteristics or solute transport during the study period. The model

  11. Environmental Impact of the Helen, Research, and Chicago Mercury Mines on Water, Sediment, and Biota in the Upper Dry Creek Watershed, Lake County, California

    Rytuba, James J.; Hothem, Roger L.; May, Jason T.; Kim, Christopher S.; Lawler, David; Goldstein, Daniel; Brussee, Brianne E.

    2009-01-01

    The Helen, Research, and Chicago mercury (Hg) deposits are among the youngest Hg deposits in the Coast Range Hg mineral belt and are located in the southwestern part of the Clear Lake volcanic field in Lake County, California. The mine workings and tailings are located in the headwaters of Dry Creek. The Helen Hg mine is the largest mine in the watershed having produced about 7,600 flasks of Hg. The Chicago and Research Hg mines produced only a small amount of Hg, less than 30 flasks. Waste rock and tailings have eroded from the mines, and mine drainage from the Helen and Research mines contributes Hg-enriched mine wastes to the headwaters of Dry Creek and contaminate the creek further downstream. The mines are located on federal land managed by the U.S. Bureau of Land Management (USBLM). The USBLM requested that the U.S. Geological Survey (USGS) measure and characterize Hg and geochemical constituents in tailings, sediment, water, and biota at the Helen, Research, and Chicago mines and in Dry Creek. This report is made in response to the USBLM request to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA - Removal Site Investigation (RSI). The RSI applies to removal of Hg-contaminated mine waste from the Helen, Research, and Chicago mines as a means of reducing Hg transport to Dry Creek. This report summarizes data obtained from field sampling of mine tailings, waste rock, sediment, and water at the Helen, Research, and Chicago mines on April 19, 2001, during a storm event. Further sampling of water, sediment, and biota at the Helen mine area and the upper part of Dry Creek was completed on July 15, 2003, during low-flow conditions. Our results permit a preliminary assessment of the mining sources of Hg and associated chemical constituents that could elevate levels of monomethyl Hg (MMeHg) in the water, sediment, and biota that are impacted by historic mining.

  12. Simulation of streamflow and estimation of ground-water recharge in the Upper Cibolo Creek Watershed, south-central Texas, 1992-2004

    Ockerman, Darwin J.

    2007-01-01

    A watershed model (Hydrological Simulation Program?FORTRAN) was developed, calibrated, and tested by the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, San Antonio River Authority, San Antonio Water System, and Guadalupe-Blanco River Authority, to simulate streamflow and estimate ground-water recharge in the upper Cibolo Creek watershed in south-central Texas. Rainfall, evapotranspiration, and streamflow data were collected during 1992?2004 for model calibrations and simulations. Estimates of average ground-water recharge during 1992?2004 from simulation were 79,800 acre-feet (5.47 inches) per year or about 15 percent of rainfall. Most of the recharge (about 74 percent) occurred as infiltration of streamflow in Cibolo Creek. The remaining recharge occurred as diffuse infiltration of rainfall through the soil and rock layers and karst features. Most recharge (about 77 percent) occurred in the Trinity aquifer outcrop. The remaining 23 percent occurred in the downstream part of the watershed that includes the Edwards aquifer recharge zone (outcrop). Streamflow and recharge in the study area are greatly influenced by large storms. Storms during June 1997, October 1998, and July 2002 accounted for about 11 percent of study-area rainfall, 61 percent of streamflow, and 16 percent of the total ground-water recharge during 1992?2004. Annual streamflow and recharge also were highly variable. During 1999, a dry year with about 16 inches of rain and no measurable runoff at the watershed outlet, recharge in the watershed amounted to only 0.99 inch compared with 13.43 inches during 1992, a relatively wet year with about 54 inches of rainfall. Simulation of flood-control/recharge-enhancement structures showed that certain structures might reduce flood peaks and increase recharge. Simulation of individual structures on tributaries showed relatively little effect. Larger structures on the main stem of Cibolo Creek were more effective than structures

  13. Eagle's Syndrome

    PubMed Central

    Pinheiro, Thaís Gonçalves; Soares, Vítor Yamashiro Rocha; Ferreira, Denise Bastos Lage; Raymundo, Igor Teixeira; Nascimento, Luiz Augusto; Oliveira, Carlos Augusto Costa Pires de

    2013-01-01

    Summary Introduction: Eagle's syndrome is characterized by cervicopharyngeal signs and symptoms associated with elongation of the styloid apophysis. This elongation may occur through ossification of the stylohyoid ligament, or through growth of the apophysis due to osteogenesis triggered by a factor such as trauma. Elongation of the styloid apophysis may give rise to intense facial pain, headache, dysphagia, otalgia, buzzing sensations, and trismus. Precise diagnosis of the syndrome is difficult, and it is generally confounded by other manifestations of cervicopharyngeal pain. Objective: To describe a case of Eagle's syndrome. Case Report: A 53-year-old man reported lateral pain in his neck that had been present for 30 years. Computed tomography (CT) of the neck showed elongation and ossification of the styloid processes of the temporal bone, which was compatible with Eagle's syndrome. Surgery was performed for bilateral resection of the stylohyoid ligament by using a transoral and endoscopic access route. The patient continued to present pain laterally in the neck, predominantly on his left side. CT was performed again, which showed elongation of the styloid processes. The patient then underwent lateral cervicotomy with resection of the stylohyoid process, which partially resolved his painful condition. Final Comments: Patients with Eagle's syndrome generally have a history of chronic pain. Appropriate knowledge of this disease is necessary for adequate treatment to be provided. The importance of diagnosing this uncommon and often unsuspected disease should be emphasized, given that correct clinical-surgical treatment is frequently delayed. The diagnosis of Eagle's syndrome is clinical and radiographic, and the definitive treatment in cases of difficult-to-control pain is surgical. PMID:25992033

  14. Geographic isolation of Escherichia coli genotypes in sediments and water of the Seven Mile Creek - A constructed riverine watershed.

    PubMed

    Chandrasekaran, Ramyavardhanee; Hamilton, Matthew J; Wang, Ping; Staley, Christopher; Matteson, Scott; Birr, Adam; Sadowsky, Michael J

    2015-12-15

    Escherichia coli is used to indicate fecal contamination in freshwater systems and is an indicator of the potential presence of human pathogens. However, naturalized E. coli strains that persist and grow in the environment confound the use of this bacterium as a fecal indicator. Here we examined the spatial and temporal distribution of E. coli in water and sediments of the Seven Mile Creek (SMC), a constructed, ephemeral watershed. E. coli concentrations showed variation by site and date, likely due to changes in temperature and rainfall. Horizontal fluorophore enhanced rep-PCR (HFERP) DNA fingerprint analyses indicated that E. coli populations were very diverse and consisted of transient and naturalized strains, which were especially prevalent in sediment. E. coli fingerprints from water and sediment collected in the same year clustered together with significant overlap, indicating exchange of strains between matrices. Isolates obtained during periods of flow, but not during non-flow conditions, clustered together regardless of sample site, indicating that transport between sites occurred. Naturalized E. coli strains were found in the SMC and strains become geographically isolated and distinct during non-flow conditions. Isolates collected during late spring to fall clustered together at each site, suggesting that temperature and growth of naturalized strains are likely factors affecting population dynamics. Results of this study show that newly introduced and naturalized E. coli strains are present in the SMC. Results of this study highlight an important concern for resource managers using this species for water quality monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A water-quality assessment of the Busseron Creek watershed, Sullivan, Vigo, Greene, and Clay Counties, Indiana

    Eikenberry, Stephen E.

    1978-01-01

    Chemical quality of surface water in the 237-square mile Busseron Creek watershed, in Indiana, is significantly affected by drainage from coal mines and municipalities. Drainage from coal mines is primarily a problem of higher than normal dissolved-solids concentration, whereas, drainage from municipalities is generally a problem of bacteria and phytoplankton. Generally, the water is calcium bicarbonate type, except in streams affected by drainage from coal mines, where the water is a mixed calcium and magnesium sulfate type. Ranges of concentration (in milligrams per liter) of dissolved solids and of some of the chemical constituents dissolved in streams from September 1975 to July 1976 were: dissolved solids, from 104 to 2,610; iron, from 0.00 to 150; sulfate, from 14 to 1,900; chloride, from 3.3 to 130; nitrate (as nitroglen), from 0.01 to 5.3; phosphate (as phosphorus), from 0.1 to 1.7; and total organic carbon, from 2.4 to 60. Range of pH was from 2.7 to 9.6 Ranges of concentration of chlorinated hydrocarbons (in micrograms per kilogram) detected in bed material of streams were: aldrin, from 0.2 to 0.4; chlordane, from 0 to 13; DDE, from 0.0 to 0.3; dieldrin, from 0.0 to 9.8; and heptachlor epoxide, from 0 to 1.0. Streams draining municipalities had high populations of fecal coliform bacteria (as many as 46,000 colonies per 100 milliliter) and phytoplankton (as many as 190 ,000 cells per milliliter). Dissolved-oxygen concentration ranged from 2.8 to 15.0 milligrams per liter. 

  16. Putting aquifers into atmospheric simulation models: An example from the Mill Creek Watershed, Northeastern Kansas

    York, J.P.; Person, M.; Gutowski, W.J.; Winter, T.C.

    2002-01-01

    Aquifer-atmosphere interactions can be important in regions where the water table is shallow (<2 m). A shallow water table provides moisture for the soil and vegetation and thus acts as a source term for evapotranspiration to the atmosphere. A coupled aquifer-land surface-atmosphere model has been developed to study aquifer-atmosphere interactions in watersheds, on decadal timescales. A single column vertically discretized atmospheric model is linked to a distributed soil-vegetation-aquifer model. This physically based model was able to reproduce monthly and yearly trends in precipitation, stream discharge, and evapotranspiration, for a catchment in northeastern Kansas. However, the calculated soil moisture tended to drop to levels lower than were observed in drier years. The evapotranspiration varies spatially and seasonally and was highest in cells situated in topographic depressions where the water table is in the root zone. Annually, simulation results indicate that from 5-20% of groundwater supported evapotranspiration is drawn from the aquifer. The groundwater supported fraction of evapotranspiration is higher in drier years, when evapotranspiration exceeds precipitation. A long-term (40 year) simulation of extended drought conditions indicated that water table position is a function of groundwater hydrodynamics and cannot be predicted solely on the basis of topography. The response time of the aquifer to drought conditions was on the order of 200 years indicating that feedbacks between these two water reservoirs act on disparate time scales. With recent advances in the computational power of massively parallel supercomputers, it may soon become possible to incorporate physically based representations of aquifer hydrodynamics into general circulation models (GCM) land surface parameterization schemes. ?? 2002 Elsevier Science Ltd. All rights reserved.

  17. Assessment of rangeland ecosystem conditions, Salt Creek watershed and Dugout Ranch, southeastern Utah

    Bowker, M.A.; Miller, M.E.; Belote, R.T.

    2012-01-01

    Increasingly, dry rangelands are being valued for multiple services beyond their traditional value as a forage production system. Additional ecosystem services include the potential to store carbon in the soil and plant biomass. In addition, dust emissions from rangelands might be considered an ecosystem detriment, the opposite of an ecosystem service. Dust emitted may have far-reaching impacts, for example, reduction of local air quality, as well as altering regional water supplies through effects on snowpack. Using an extensive rangeland monitoring dataset in the greater Canyonlands region (Utah, USA), we developed a method to estimate indices of the provisioning of three ecosystem services (forage production, dust retention, C storage) and one ecosystem property (nativeness), taking into account both ecosystem type and alternative states within that ecosystem type. We also integrated these four indices into a multifunctionality index. Comparing the currently ungrazed Canyonlands National Park watersheds to the adjacent Dugout Ranch pastures, we found clearly higher multifunctionality was attained in the Park, and that this was primarily driven by greater C-storage and better dust retention. It is unlikely to maximize all benefits and minimize all detriments at the same time. Some goods and services may have synergistic interactions; for example, managing for carbon storage will increase plant and biocrust cover likely lowering dust emission. Likewise, some may have antagonistic interactions. For instance, if carbon is consumed as biomass for livestock production, then carbon storage may be reduced. Ultimately our goal should be to quantify the monetary consequences of specific land use practices for multiple ecosystem services and determine the best land use and adaptive management practices for attaining multiple ecosystem services, minimizing economic detriments, and maximizing economic benefits from multi-commodity rangelands. Our technique is the first step

  18. Data visualization, time-series analysis, and mass-balance modeling of hydrologic and water-quality data for the McTier Creek watershed, South Carolina, 2007-2009

    Benedict, Stephen T.; Conrads, Paul; Feaster, Toby D.; Journey, Celeste A.; Golden, Heather E.; Knightes, Christopher D.; Davis, Gary M.; Bradley, Paul M.

    2012-01-01

    The McTier Creek watershed is located in the headwaters of the Edisto River Basin, which is in the Coastal Plain region of South Carolina. The Edisto ecosystem has some of the highest recorded fish-tissue mercury concentrations in the United States. In an effort to advance the understanding of the fate and transport of mercury in stream ecosystems, the U.S. Geological Survey, as part of its National Water-Quality Assessment Program, initiated a field investigation of mercury in the McTier Creek watershed in 2006. The initial efforts of the investigation included the collection of extensive hydrologic and water-quality field data, along with the development of several hydrologic and water-quality models. This series of measured and modeled data forms the primary source of information for this investigation to assess the fate and transport of mercury within the McTier Creek watershed.

  19. USING HISTORICAL BIOLOGICAL DATA TO EVALUATE STATUS AND TRENDS IN THE BIG DARBY CREEK WATERSHED (OHIO, USA)

    EPA Science Inventory

    Assessment of watershed ecological status and trends is challenging for managers who lack randomly or consistently sampled data, or monitoring programs developed from a watershed perspective. This study investigated analytical approaches for assessment of status and trends using ...

  20. Effect of detention basin release rates on flood flows - Application of a model to the Blackberry Creek Watershed in Kane County, Illinois

    Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.

    2009-01-01

    The effects of stormwater detention basins with specified release rates are examined on the watershed scale with a Hydrological Simulation Program - FORTRAN (HSPF) continuous-simulation model. Modeling procedures for specifying release rates from detention basins with orifice and weir discharge configurations are discussed in this report. To facilitate future detention modeling as a tool for watershed management, a chart relating watershed impervious area to detention volume is presented. The report also presents a case study of the Blackberry Creek watershed in Kane County, Ill., a rapidly urbanizing area seeking to avoid future flood damages from increased urbanization, to illustrate the effects of various detention basin release rates on flood peaks and volumes and flood frequencies. The case study compares flows simulated with a 1996 land-use HSPF model to those simulated with four different 2020 projected land-use HSPF model scenarios - no detention, and detention basins with release rates of 0.08, 0.10, and 0.12 cubic feet per second per acre (ft3/s-acre), respectively. Results of the simulations for 15 locations, which included the downstream ends of all tributaries and various locations along the main stem, showed that a release rate of 0.10 ft3/s-acre, in general, can maintain postdevelopment 100-year peak-flood discharge at a similar magnitude to that of 1996 land-use conditions. Although the release rate is designed to reduce the 100-year peak flow, reduction of the 2-year peak flow is also achieved for a smaller proportion of the peak. Results also showed that the 0.10 ft3/s-acre release rate was less effective in watersheds with relatively high percentages of preexisting (1996) development than in watersheds with less preexisting development.

  1. Evaluating the Least Cost Selection of Agricultural Management Practices in the Five Mile Creek area of Fort Cobb Watershed, Oklahoma, USA

    NASA Astrophysics Data System (ADS)

    Rasoulzadeh Gharibdousti, S.; Stoecker, A.; Storm, D.

    2017-12-01

    One of the main causes of water quality impairment in the United States is human induced Non-Point Source (NPS) pollution through intensive agriculture. The Fort Cobb Reservoir (FCR) watershed located in west-central Oklahoma, United States is a rural agricultural catchment with known issues of NPS pollution including suspended solids, siltation, nutrients, and pesticides. Recently, several Best Management Practices (BMPs) have been implemented in the watershed (such as no-tillage and cropland to grassland conversion) to improve water quality. The objective in this study is to estimate the most cost effective selection and placement of BMPs on farmlands to mitigate soil erosion and the delivery of sediment and nutrient loads to the FCR from Five Mile Creek (FMC) area of the FCR watershed. We employed the Soil and Water Assessment Tool (SWAT) to develop the hydrological model of the study area. The watershed was delineated using the 10 m National Elevation Dataset and divided into 43 sub-basins with an average area of 8 km2. Through a combination of Soil Survey Geographic Database- SSURGO soil data, the US Department of Agriculture crop layer and the slope information, the watershed was further divided into 15,217 hydrologic response units (HRUs). The historical climate pattern in the watershed was represented by two different weather stations. The model was calibrated for the 1991 - 2000 period and validated over the 2001 - 2010 period against the monthly USGS observations of streamflow and suspended sediment concentration recorded at the watershed outlet. Model parametrization resulted in satisfactory values for the R2 (0.64, 0.35) and NS (0.61, 0.34) in calibration period and an excellent model performance (R2 = 0.79, 0.38; NS = 0.75, 0.43) in validation period for streamflow and sediment concentration respectively. We have selected 20 BMPs to estimate their efficacy in terms of water, sediment, and crop yields. Linear Programming (LP) was used to determine the

  2. Development of an Assessment Tool for Agricultural Best Management Practice Implementation in the Great Lakes Restoration Initiative Priority Watersheds—Eagle Creek, Tributary to Maumee River, Ohio

    Merriman, Katherine R.

    2015-11-19

    The Great Lakes face a number of serious challenges that cause damage to water quality, habitat, ecology, and coastal health. Excess nutrients from point and nonpoint sources have a history of causing harmful algal blooms (HABs); since the late 1990s, a resurgence of HABs have forced beach closures and resulted in water quality impairments across the Great Lakes. Studies increasingly point to phosphorus (P) runoff from agricultural lands as the cause of these HABs. In 2010, the Great Lakes Restoration Initiative (GLRI) was launched to revitalize the Great Lakes. The GLRI aims to address the challenges facing the Great Lakes and provide a framework for restoration and protection. As part of this effort, the Priority Watersheds Work Group (PWWG), cochaired by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Agriculture-Natural Resources Conservation Service (USDA–NRCS), is targeting Priority Watersheds (PWs) to reduce the amount of P reaching the Great Lakes. Within the PWs, USDA–NRCS identifies small-scale subbasins with high concentrations of agriculture for coordinated nutrient reduction efforts and enhanced monitoring and modeling. The USDA–NRCS supplies financial and/or technical assistance to producers to install or implement best management practices (BMPs) to lessen the negative effects of agriculture to water quality; additional funding is provided by the GLRI through USDA–NRCS to saturate the small-scale subbasins with BMPs. The watershed modeling component, introduced in this fact sheet, assesses the effectiveness of USDA–NRCS funded BMPs, and nutrient reductions because of GLRI or other funding programs are differentiated. Modeling scenarios consider BMPs that have already been applied and those planned to be implemented across the small-scale subbasins.

  3. The role of interior watershed processes in improving parameter estimation and performance of watershed models.

    PubMed

    Yen, Haw; Bailey, Ryan T; Arabi, Mazdak; Ahmadi, Mehdi; White, Michael J; Arnold, Jeffrey G

    2014-09-01

    Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the large number of parameters at the disposal of these models, circumstances may arise in which excellent global results are achieved using inaccurate magnitudes of these "intra-watershed" responses. When used for scenario analysis, a given model hence may inaccurately predict the global, in-stream effect of implementing land-use practices at the interior of the watershed. In this study, data regarding internal watershed behavior are used to constrain parameter estimation to maintain realistic intra-watershed responses while also matching available in-stream monitoring data. The methodology is demonstrated for the Eagle Creek Watershed in central Indiana. Streamflow and nitrate (NO) loading are used as global in-stream comparisons, with two process responses, the annual mass of denitrification and the ratio of NO losses from subsurface and surface flow, used to constrain parameter estimation. Results show that imposing these constraints not only yields realistic internal watershed behavior but also provides good in-stream comparisons. Results further demonstrate that in the absence of incorporating intra-watershed constraints, evaluation of nutrient abatement strategies could be misleading, even though typical performance criteria are satisfied. Incorporating intra-watershed responses yields a watershed model that more accurately represents the observed behavior of the system and hence a tool that can be used with confidence in scenario evaluation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Geologic sources and concentrations of selenium in the West-Central Denver Basin, including the Toll Gate Creek watershed, Aurora, Colorado, 2003-2007

    Paschke, Suzanne S.; Walton-Day, Katherine; Beck, Jennifer A.; Webbers, Ank; Dupree, Jean A.

    2014-01-01

    Toll Gate Creek, in the west-central part of the Denver Basin, is a perennial stream in which concentrations of dissolved selenium have consistently exceeded the Colorado aquatic-life standard of 4.6 micrograms per liter. Recent studies of selenium in Toll Gate Creek identified the Denver lignite zone of the non-marine Cretaceous to Tertiary-aged (Paleocene) Denver Formation underlying the watershed as the geologic source of dissolved selenium to shallow ground-water and surface water. Previous work led to this study by the U.S. Geological Survey, in cooperation with the City of Aurora Utilities Department, which investigated geologic sources of selenium and selenium concentrations in the watershed. This report documents the occurrence of selenium-bearing rocks and groundwater within the Cretaceous- to Tertiary-aged Denver Formation in the west-central part of the Denver Basin, including the Toll Gate Creek watershed. The report presents background information on geochemical processes controlling selenium concentrations in the aquatic environment and possible geologic sources of selenium; the hydrogeologic setting of the watershed; selenium results from groundwater-sampling programs; and chemical analyses of solids samples as evidence that weathering of the Denver Formation is a geologic source of selenium to groundwater and surface water in the west-central part of the Denver Basin, including Toll Gate Creek. Analyses of water samples collected from 61 water-table wells in 2003 and from 19 water-table wells in 2007 indicate dissolved selenium concentrations in groundwater in the west-central Denver Basin frequently exceeded the Colorado aquatic-life standard and in some locations exceeded the primary drinking-water standard of 50 micrograms per liter. The greatest selenium concentrations were associated with oxidized groundwater samples from wells completed in bedrock materials. Selenium analysis of geologic core samples indicates that total selenium

  5. Geochemical investigations and interim recommendations for priority abandoned mine sites on U.S.D.A. Forest Service lands, Mineral Creek watershed, San Juan County, Colorado

    Nash, J.T.

    1999-01-01

    Field observations, sampling of mine dumps and mine drainage waters, and laboratory studies of dump materials have been made at mining areas deemed to be on public lands administered by the USDA Forest Service in the Mineral Creek watershed. Results of chemical analyses of dump materials, leachates of those materials, and of surface waters draining mines or dumps provide indications of where acid is generated or consumed, and what metals are mobilized below mines or dumps. Information on 25 sites is reviewed and reclamation priorities are ranked into four classes (high, medium, low priority, or no work required). The western side of the upper Animas watershed (the Mineral Creek watershed) has a history of mining and prospecting for about 130 years. The intensity of miningrelated disturbance is higher than in most parts of the San Juan Mountains region, but actually is much less than the eastern half of the watershed (US BLM lands) and none of the mines moved millions of tons of rock and ore as in some of the eastern mines. The majority of the roughly one thousand mining sites on the USFS lands are very small (less than 100 tons or 70 cubic yards of dump material), are more than 2 miles from a major stream, or are so inaccessible as to prohibit reclamation. Twenty five sites have been considered by others to have significant size and potential for significant environmental degradation. These most significant mining areas were evaluated by multiple criteria, including tendency to generate acid or liberate toxic metals, observed acidic pH or dead vegetation (?kill zones?) below dumps or adits, potential mobility of metals, and likelihood of transport into streams of the watershed. In the author?s opinion, no single measurable parameter, such as metal concentration, is reliable for ranking significance or feasibility of reclamation. Rather, subjective estimates are required to evaluate combinations of, or interactions among, several parameters. The most subjective

  6. Using airborne thermal infrared imagery and helicopter EM conductivity to locate mine pools and discharges in the Kettle Creek watershed, north-central Pennsylvania

    SciT

    Love, E.; Hammack, R.W.; Harbert, W.P.

    2005-11-01

    The Kettle Creek watershed contains 50–100-year-old surface and underground coal mines that are a continuing source of acid mine drainage (AMD). To characterize the mining-altered hydrology of this watershed, an airborne reconnaissance was conducted in 2002 using airborne thermal infrared imagery (TIR) and helicopter-mounted electromagnetic (HEM) surveys. TIR uses the temperature differential between surface water and groundwater to locate areas where groundwater emerges at the surface. TIR anomalies located in the survey included seeps and springs, as well as mine discharges. In a follow-up ground investigation, hand-held GPS units were used to locate 103 of the TIR anomalies. Of themore » sites investigated, 26 correlated with known mine discharges, whereas 27 were previously unknown. Seven known mine discharges previously obscured from TIR imagery were documented. HEM surveys were used to delineate the groundwater table and also to locate mine pools, mine discharges, and groundwater recharge zones. These surveys located 12 source regions and flow paths for acidic, metal-containing (conductive) mine drainage; areas containing acid-generating mine spoil; and areas of groundwater recharge and discharge, as well as identifying potential mine discharges previously obscured from TIR imagery by nondeciduous vegetation. Follow-up ground-based electromagnetic surveys verified the results of the HEM survey. Our study suggests that airborne reconnaissance can make the remediation of large watersheds more efficient by focusing expensive ground surveys on small target areas.« less

  7. Using airborne thermal infrared imagery and helicopter EM conductivity to locate mine pools and discharges in the Kettle Creek watershed, north-central Pennsylvania

    SciT

    Love, E.; Hammack, R.; Harbert, W.

    2005-12-01

    The Kettle Creek watershed contains 50-100-year-old surface and underground coal mines that are a continuing source of acid mine drainage (AMD). To characterize the mining-altered hydrology of this watershed, an airborne reconnaissance was conducted in 2002 using airborne thermal infrared imagery (TIR) and helicopter-mounted electromagnetic (HEM) surveys. TIR uses the temperature differential between surface water and groundwater to locate areas where groundwater emerges at the surface. TIR anomalies located in the survey included seeps and springs, as well as mine discharges. In a follow-up ground investigation, hand-held GPS units were used to locate 103 of the TIR anomalies. Of themore » sites investigated, 26 correlated with known mine discharges, whereas 27 were previously unknown. Seven known mine discharges previously obscured from TIR imagery were documented. HEM surveys were used to delineate the groundwater table and also to locate mine pools, mine discharges, and groundwater recharge zones. These surveys located 12 source regions and flow paths for acidic, metal-containing (conductive) mine drainage; areas containing acid-generating mine spoil; and areas of groundwater recharge and discharge, as well as identifying potential mine discharges previously obscured from TIR imagery by nondeciduous vegetation. Follow-up ground-based electromagnetic surveys verified the results of the HEM survey. Our study suggests that airborne reconnaissance can make the remediation of large watersheds more efficient by focusing expensive ground surveys on small target areas.« less

  8. BIG DARBY CREEK WATERSHED

    EPA Science Inventory

    What is an ecological risk assessment?

    An ecological risk assessment evaluates the potential adverse effects of human activities on the plants and animals that make up ecosystems. The risk assessment process provides a way to develop, organize and present scientific...

  9. Caspar Creek Watershed Study--North Fork Phase, Jackson Demonstration State Forest, Status and Plans, 1983-1990

    Norm Henry; Karen Sendek

    1985-01-01

    Abstract - The California Department of Forestry and U.S. Forest Service, Pacific Southwest Forest and Range Experiment Station have been conducting a paired watershed study on Jackson Demonstration State Forest for 24 years. The South Fork watershed phase of the study involved monitoring the impacts of road construction (1967) and selective tractor logging (1971-1973...

  10. Flow characterization in the Santee Cave system in the Chapel Branch Creek watershed, upper coastal plain of South Carolina, USA

    Amy E. Edwards; Devendra M. Amatya; Thomas M. Williams; Daniel R. Hitchcock; April L. James

    2013-01-01

    Karst watersheds possess both diffuse and conduit flow and varying degrees of connectivity between surface and groundwater over spatial scales that result in complex hydrology and contaminant transport processes. The flow regime and surface-groundwater connection must be properly identified and characterized to improve management in karst watersheds with impaired water...

  11. Total mercury, methylmercury, and selected elements in soils of the Fishing Brook watershed, Hamilton County, New York, and the McTier Creek watershed, Aiken County, South Carolina, 2008

    Woodruff, Laurel G.; Cannon, William F.; Knightes, Christopher D.; Chapelle, Francis H.; Bradley, Paul M.; Burns, Douglas A.; Brigham, Mark E.; Lowery, Mark A.

    2010-01-01

    Mercury is an element of on-going concern for human and aquatic health. Mercury sequestered in upland and wetland soils represents a source that may contribute to mercury contamination in sensitive ecosystems. An improved understanding of mercury cycling in stream ecosystems requires identification and quantification of mercury speciation and transport dynamics in upland and wetland soils within a watershed. This report presents data for soils collected in 2008 from two small watersheds in New York and South Carolina. In New York, 163 samples were taken from multiple depths or soil horizons at 70 separate locations near Fishing Brook, located in Hamilton County. At McTier Creek, in Aiken County, South Carolina, 81 samples from various soil horizons or soil depths were collected from 24 locations. Sample locations within each watershed were selected to characterize soil geochemistry in distinct land-cover compartments. Soils were analyzed for total mercury, selenium, total and carbonate carbon, and 42 other elements. A subset of the samples was also analyzed for methylmercury.

  12. Hydrogeologic Framework, Groundwater Movement, and Water Budget in the Chambers-Clover Creek Watershed and Vicinity, Pierce County, Washington

    Savoca, Mark E.; Welch, Wendy B.; Johnson, Kenneth H.; Lane, R.C.; Fasser, Elisabeth T.

    2010-01-01

    This report presents information used to characterize the groundwater-flow system in the Chambers-Clover Creek Watershed and vicinity, and includes descriptions of the geology and hydrogeologic framework; groundwater recharge and discharge; groundwater levels and flow directions; seasonal groundwater level fluctuations; interactions between aquifers and the surface-water system; and a water budget. The study area covers about 706 square miles in western Pierce County, Washington, and extends north to the Puyallup River, southwest to the Nisqually River, and is bounded on the south and east by foothills of the Cascade Range and on the west by Puget Sound. The area is underlain by a northwest-thickening sequence of unconsolidated glacial and interglacial deposits which overlie sedimentary and volcanic bedrock units that crop out in the foothills along the southern and southeastern margin of the study area. Geologic units were grouped into 11 hydrogeologic units consisting of aquifers, confining units, and an underlying bedrock unit. A surficial hydrogeologic unit map was developed and used with well information from 450 drillers' logs to construct 6 hydrogeologic sections, and unit extent and thickness maps. Groundwater in unconsolidated glacial and interglacial aquifers generally flows to the northwest towards Puget Sound, and to the north and northeast towards the Puyallup River. These generalized flow patterns likely are complicated by the presence of low permeability confining units that separate discontinuous bodies of aquifer material and act as local groundwater-flow barriers. Water levels in wells completed in the unconsolidated hydrogeologic units show seasonal variations ranging from less than 1 to about 50 feet. The largest groundwater-level fluctuation (78 feet) observed during the monitoring period (March 2007-September 2008) was in a well completed in the bedrock unit. Synoptic streamflow measurements made in September 2007 and July 2008 indicated a

  13. Reconnaissance of ground-water quality at selected wells in the Beaver Creek watershed, Shelby, Fayette, Tipton, and Haywood counties, West Tennessee, July to August 1992

    Fielder, A.M.; Roman-Mas, A. J.; Bennett, M.W.

    1994-01-01

    A reconnaissance of water-quality conditions of the water-table aquifer in the Beaver Creek watershed and other rural areas of Shelby, Fayette, Tipton, and Haywood Counties, Tennessee, was conducted during July and August 1992. The reconnaissance was conducted by the U.S. Geological Survey, in cooperation with the Tennessee Department of Agriculture and the University of Tennessee Agricultural Extension Service. The report presents data of selected water-quality constituents and properties of water samples collected from 398 domestic wells, located primarily in rural areas. Nitrate concentrations exceeded 10 milligrams per liter in water from 73 of the 398 wells. Fecal coliform and fecal streptococci bacteria were detected in water from 21 and 118 wells, respectively.

  14. Combining Long-Term Watershed Monitoring at Buck Creek with Spatially Extensive Ecosystem Data to Understand the Processes of Acid Rain Effects and Recovery

    NASA Astrophysics Data System (ADS)

    Lawrence, G. B.; Ross, D. S.; Sullivan, T. J.; McDonnell, T. C.; Bailey, S. W.; Dukett, J. E.

    2014-12-01

    The Buck Creek Monitoring Watershed, in the western Adirondack Region of New York, has provided long-term data back to 1982 for tracking acid rain effects and recovery, and for supporting fundamental research on environmental change. At Buck Creek, monitoring acidic deposition effects as they worsened, then diminished, has advanced our understanding of key biogeochemical processes such as Al mobilization. Although Al mobilization has been one of the primary adverse effects of acidic deposition, in the recovery phase it is now affecting terrestrial and aquatic ecosystems in new ways that could be both positive and negative, as soils and surface waters respond to further declines in acidic deposition. Using stream Al measurements from Buck Creek over varying seasons and flows, a new index, the base cation surplus (BCS), was developed to account for dissolved organic carbon (DOC) effects on the relationship between ANC and inorganic Al. Mobilization of inorganic Al, the form toxic to biota, occurs below a BCS of zero, regardless of DOC concentrations. Soil and stream data from Adirondack surveys showed that a BCS value of zero corresponds to a soil base saturation value in the B horizon of approximately 12%. Additional Adirondack survey work indicated that, where sugar maple stands grew in soils with base saturation values below 12%, seedling regeneration was nearly zero, suggesting a link between Al mobilization and impairment of tree regeneration. In recovering Adirondack lakes, the BCS was also used to show that increasing trends in DOC were accelerating decreases of inorganic Al beyond what would be expected from the increasing trends of ANC. Similar decreases of inorganic Al in Buck Creek, were coupled with increases in organic Al concentrations, which resulted in no trend in total Al concentrations despite a strong increase in pH. Sampling of Buck Creek soils in 1997, and again in 2009-2010, indicated a substantial decrease in forest floor exchangeable Al, of

  15. Using Landsat and a Bayesian hard classifier to study forest change in the Salmon Creek Watershed area from 1972-2013

    NASA Astrophysics Data System (ADS)

    Mullis, David Stone

    The Salmon Creek Watershed in Sonoma County, California, USA, is home to a variety of wildlife, and many of its residents are mindful of their place in its ecology. In the past half century, several of its native and rare species have become threatened, endangered, or extinct, most notably the once common Coho salmon and Chinook salmon. The cause of this decline is believed to be a combination of global climate change, local land use, and land cover change. More specifically, the clearing of forested land to create vineyards, as well as other agricultural and residential uses, has led to a decline in biodiversity and habitat structure. I studied sub-scenes of Landsat data from 1972 to 2013 for the Salmon Creek Watershed area to estimate forest cover over this period. I used a maximum likelihood hard classifier to determine forest area, a Mahalanobis distance soft classifier to show the software's uncertainty in classification, and manually digitized forest cover to test and compare results for the 2013 30 m image. Because the earliest images were lower spatial resolution, I also tested the effects of resolution on these statistics. The images before 1985 are at 60 m spatial resolution while the later images are at 30 m resolution. Each image was processed individually and the training data were based on knowledge of the area and a mosaic of aerial photography. Each sub-scene was classified into five categories: water, forest, pasture, vineyard/orchard, and developed/barren. The research shows a decline in forest area from 1972 to around the mid-1990s, then an increase in forest area from the mid-1990s to present. The forest statistics can be helpful for conservation and restoration purposes, while the study on resolution can be helpful for landscape analysis on many levels.

  16. Alternative spatial configurations to reflect landscape structure in a hydrological model: SUMMA applications to the Reynolds Creek Watershed and the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Nijssen, Bart; Clark, Martyn; Mizukami, Naoki; Chegwidden, Oriana

    2016-04-01

    Most existing hydrological models use a fixed representation of landscape structure. For example, high-resolution, spatially-distributed models may use grid cells that exchange moisture through the saturated subsurface or may divide the landscape into hydrologic response units that only exchange moisture through surface channels. Alternatively, many regional models represent the landscape through coarse elements that do not model any moisture exchange between these model elements. These spatial organizations are often represented at a low-level in the model code and its data structures, which makes it difficult to evaluate different landscape representations using the same hydrological model. Instead, such experimentation requires the use of multiple, different hydrological models, which in turn complicates the analysis, because differences in model outcomes are no longer constrained by differing spatial representations. This inflexibility in the representation of landscape structure also limits a model's capability for scaling local processes to regional outcomes. In this study, we used the Structure for Unifying Multiple Modeling Alternatives (SUMMA) to evaluate different model spatial configurations to represent landscape structure and to evaluate scaling behavior. SUMMA can represent the moisture exchange between arbitrarily shaped landscape elements in a number of different ways, while using the same model parameterizations for vertical fluxes. This allows us to isolate the effects of changes in landscape representations on modeled hydrological fluxes and states. We examine the effects of spatial configuration in Reynolds Creek, Idaho, USA, which is a research watershed with gaged areas from 1-20 km2. We then use the same modeling system to evaluate scaling behavior in simulated hydrological fluxes in the Columbia River Basin, Pacific Northwest, USA. This basin drains more than 500,000 km2 and includes the Reynolds Creek Watershed.

  17. Effects of Land-Use Changes and Ground-Water Withdrawals on Stream Base Flow, Pocono Creek Watershed, Monroe County, Pennsylvania

    Sloto, Ronald A.

    2008-01-01

    The Pocono Creek watershed drains 46.5 square miles in eastern Monroe County, Pa. Between 2000 and 2020, the population of Monroe County is expected to increase by 70 percent, which will result in substantial changes in land-use patterns. An evaluation of the effect of reduced recharge from land-use changes and additional ground-water withdrawals on stream base flow was done by the U.S. Geological Survey (USGS) in cooperation with the U.S. Environmental Protection Agency (USEPA) and the Delaware River Basin Commission as part of the USEPA?s Framework for Sustainable Watershed Management Initiative. Two models were used. A Soil and Water Assessment Tool (SWAT) model developed by the USEPA provided areal recharge values for 2000 land use and projected full buildout land use. The USGS MODFLOW-2000 ground-water-flow model was used to estimate the effect of reduced recharge from changes in land use and additional ground-water withdrawals on stream base flow. This report describes the ground-water-flow-model simulations. The Pocono Creek watershed is underlain by sedimentary rock of Devonian age, which is overlain by a veneer of glacial deposits. All water-supply wells are cased into and derive water from the bedrock. In the ground-water-flow model, the surficial geologic units were grouped into six categories: (1) moraine deposits, (2) stratified drift, (3) lake deposits, (4) outwash, (5) swamp deposits, and (6) undifferentiated deposits. The unconsolidated surficial deposits are not used as a source of water. The ground-water and surface-water systems are well connected in the Pocono Creek watershed. Base flow measured on October 13, 2004, at 27 sites for model calibration showed that streams gained water between all sites measured except in the lower reach of Pocono Creek. The ground-water-flow model included the entire Pocono Creek watershed. Horizontally, the modeled area was divided into a 53 by 155 cell grid with 6,060 active cells. Vertically, the modeled area

  18. Chemistry and age of groundwater in bedrock aquifers of the Piceance and Yellow Creek watersheds, Rio Blanco County, Colorado, 2010-12

    McMahon, P.B.; Thomas, J.C.; Hunt, A.G.

    2013-01-01

    Fourteen monitoring wells completed in the Uinta and Green River Formations in the Piceance Creek and Yellow Creek watersheds in Rio Blanco County, Colorado, were sampled for chemical, isotopic, and groundwater-age tracers to provide information on the overall groundwater quality, the occurrence and distribution of chemicals that could be related to the development of underlying natural-gas reservoirs, and to better understand groundwater residence times in the flow system. Methane concentrations in groundwater ranged from less than 0.0005 to 387 milligrams per liter. The methane was predominantly biogenic in origin, although the biogenic methane was mixed with thermogenic methane in water from seven wells. Three BTEX compounds (benzene, toluene, and ethylbenzene) were detected in water from six of the wells, but none of the concentrations exceeded Federal drinking-water standards. The presence of thermogenic methane in the aquifers indicates a connection and vulnerability to chemicals in deeper geologic units. Helium-4 data indicate that groundwater had ages ranging from less than 1,000 years to greater than 50,000 years. The presence of old groundwater in parts of the aquifers indicates that these aquifers may not be useful for large-scale water supply because of low recharge rates.

  19. Supplement Analysis for the Watershed Management Program EIS, (DOE/EIS-0265/SA-69) - Improvement of Anadromous Fish Habitat and Passage in Omak Creek

    SciT

    Spiering, Colleen

    2001-11-15

    BPA proposes to fund a project with the Colville Confederated Tribes that will improve spawning and rearing specifically for summer steelhead in the Omak Creek Watershed. Efforts to achieve this objective include improved livestock and forestry management and barrier removal. These techniques include exclusionary fencing, spring developments, hardened-rock crossings, road decommissioning, culvert removal and placement, riparian vegetation planting and installation of instream structures. The result of implementing these techniques will reduce fine sediment delivered to the stream channel which will result in increased hatching success of summer steelhead. Also, reestablishing riparian vegetation will provide canopy and enclose the stream channelmore » resulting in reduced stream temperatures. Two “on-the-ground” projects are proposed for this year. One project consists of installing three instream structures and planting riparian vegetation to provide bank stability along approximately 200’ of privately owned stream bank of Omak Creek. Also a fence will be constructed to exclude the landowner’s horses. The second project consists of removal of an inadequate sized culvert (5’ diameter) and replacement with a larger bottomless arch (6’ x 12’). This project will also include seven instream structures to stabilize the stream bank both upstream and downstream of the culvert and direct flows through the center of the bottomless arch.« less

  20. Waste area grouping 2 Phase I task data report: Ecological risk assessment and White Oak Creek watershed screening ecological risk assessment

    SciT

    Efroymson, R.A.; Jackson, B.L.; Jones, D.S.

    1996-05-01

    This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridgemore » National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.« less

  1. Evaluating the impacts of logging activities on erosion and suspended sediment transport in the Caspar Creek watersheds

    Jack Lewis

    1998-01-01

    Suspended sediment has been sampled at both the North and South Fork weirs of Caspar Creek in northwestern California since 1963, and at 13 tributary locations in the North Fork since 1986. The North Fork gaging station (NFC) was used as a control to evaluate the effects of logging in the South Fork, in the 1970's, on annual sediment loads. In the most...

  2. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-71) - Duncan Creek Channel Rehabilitation Project

    SciT

    Stewart, Shannon C.

    2001-10-29

    BPA proposes to fund a project with the Washington State Department of Fish and Wildlife that will restore historic spawning areas for chum salmon in Duncan Creek. Duncan Creek, a Washington tributary of the Columbia River, was traditionally an important spawning area for chum salmon. The spring seeps areas that chum historically used for spawning are still present in Duncan Creek, however during the past 30 years they have been covered by sediment and debris and infested with reed canary grass. This project proposes to rehabilitate these spawning channels in order to provide chum salmon with a protected spawning andmore » incubation environment. The proposed habitat rehabilitation project will include removing existing gravel in the seeps of Duncan Creek that contain mud, sand, and organics and replacing them with gravels that will maximize egg-to-fry survival rates for chum salmon. A trackhoe or similar equipment will be used to excavate the spawning sites. Invasive vegetation will be removed. Spawning channels will then be reconstructed using sediment free spawning gravels and base rock. Upon completion of work, all disturbed spring channel banks will be protected from erosion with staked coir fabric and revegetated with native willows. Plantings will help to restore native plant communities, increase stream channel shading, and reduce re-infestation by reed canary grass.« less

  3. Water Relations of Obligate Riparian Plants as a Function of Streamflow Diversion on the Bishop Creek Watershed

    Stanley D. Smith; Janet L. Nachlinger; A. Bruce Wellington; Carl A. Fox

    1989-01-01

    We investigated the water relations of obligate riparian plants on paired diverted and undiverted reaches on Bishop Creek, Eastern Sierra Nevada. Riparian plants on diverted reaches had reduced stomatal conductance and water potential compared to plants on undiverted reaches in a dry year, but not in a high runoff year. Juvenile plants on diverted reaches had reduced...

  4. Modeling the Environmental Fate of Graphene Oxide and Its Phototransformation Products in Brier Creek Watershed Using the Water Quality Analysis Simulation Program 8 (WASP8)

    NASA Astrophysics Data System (ADS)

    Han, Y.; Bouchard, D.; Chang, X.; Hsieh, H. S.; Knightes, C. D.; Spear, J.; Zepp, R. G.

    2017-12-01

    The production of graphene-family nanoparticles (GFNs) appreciably increased in recent years. Among GFNs, graphene oxide (GO) is one of the most highly studied members due to its inexpensive synthesis cost compared to graphene, its stability in aqueous media and its broad application. However, GO also has been found to be the most toxic among GFNs. Lab studies showed that GO undergoes phototransformation in surface waters, resulting in products that include reduced GO (rGO) and polycyclic aromatic hydrocarbons (PAHs). Due to technical and analytical limitations, it is still difficult to conduct in-situ measurement of GO and rGO concentrations released in the environment, and it is of utmost importance to establish a model that can predict their environmental exposure concentrations in the environment. In this study, we develop a fate and transport model to predict time-dependent environmental exposure concentrations of GO for the Brier Creek Watershed in the GA coastal plain. We investigate the influence of sunlight radiation on the distribution of GO and its phototransformation products in the watershed over a 20-year period using the most updated Water Quality Analysis Simulation Program (WASP8). Flow rate, sediment transport data and sunlight radiation data are input into WASP8, and WASP8 is used to internally calculate a GO phototransformation rate and productions of rGO and PAHs. Heteroaggregation coefficients of GO and rGO with suspended solids were measured in an EPA laboratory, and then input into WASP8. GO and rGO concentrations in the watershed are calculated by WASP8. Mass fraction results show that GO is the predominant species among GO derived species, which account for 99% of the mass throughout the whole watershed of interest, while rGO species, including free rGO and rGO heteroaggregated to suspended solids, only account for 1%. We also found that almost all free GO and rGO are present in water column due to their extremely low settling velocity. r

  5. The seasonal fluctuations and accumulation of iodine-129 in relation to the hydrogeochemistry of the Wolf Creek Research Basin, a discontinuous permafrost watershed.

    PubMed

    Herod, Matthew N; Li, Tianjiao; Pellerin, André; Kieser, William E; Clark, Ian D

    2016-11-01

    The long lived radioisotope (129)I is a uranium fission product, and an environmental contaminant of the nuclear age. Consequently, it can trace anthropogenic releases of (129)I in watersheds, and has been identified as a potential means to distinguish water sources in discharge (Nimz, 1998). The purpose of this work was to identify the sources and mass input of (129)I and trace the transport, partitioning and mass balance of (129)I over time in a remote watershed. We monitored (129)I and other geochemical and isotope tracers (e.g. δ(14)CDIC, δ(13)CDIC, δ(2)H, δ(18)O, etc.) in precipitation and discharge from the Wolf Creek Research Basin (WCRB), a discontinuous permafrost watershed in the Yukon Territory, Canada, and evaluated the use of (129)I as a water end-member tracer. Radiocarbon and geochemical tracers of weathering show that discharge is comprised of (i) groundwater baseflow that has recharged under open system conditions, (ii) spring freshet meltwater that has derived solutes through closed-system interaction with saturated soils, and (iii) active layer drainage. The abundance of (129)I and the (129)I/(127)I ratio correlated with geochemical tracers suggests varying contributions of these three water end-members to discharge. The (129)I concentration was highest at the onset of freshet, reaching 17.4×10(6) atoms/L, and likely reflects the lack of interaction between meltwater and organic matter at that time. This peak in (129)I was followed by a decline over the summer to its lowest value. Mass balance calculations of the (129)I budget show that the input to the watershed via precipitation is nearly one order of magnitude higher than the output suggesting that such arctic watersheds accumulate nearly 90% of the annual input, primarily in soil organic matter. Temporal variations in discharge (129)I concentrations correlated with changes in discharge water sources suggesting that (129)I is a promising hydrologic tracer, particularly when used in

  6. Non-Fluvial Controls of Erosion, Sediment Transport and Fluvial Morphology in a mid-Atlantic Piedmont Watershed, White Clay Creek, Pennsylvania, U.S.A.

    NASA Astrophysics Data System (ADS)

    McCarthy, K.; Affinito, R. A.; Pizzuto, J. E.; Stotts, S.; Henry, T.; Krauthauser, M.; O'Neal, M. A.

    2017-12-01

    Quantifying contemporary sediment budgets is essential for restoration and ecosystem management of mid-Atlantic watersheds, but relevant processes and controls are poorly understood. In the 153 km2 White Clay Creek watershed in southeastern Pennsylvania, longitudinal profiles reflect migration of knickpoints though bedrock over Quaternary timescales. In bank exposures along stream valleys, saprolite, bedrock, and matrix-supported cobbly and bouldery diamicton (likely colluvial) commonly underlie finer-grained clay, silt, sand, and gravel deposits of valley floor depositional environments. Overbank sedimentation rates were quantified by measuring the thickness of sediment deposited over the roots of floodplain trees. The sampled trees range in age from 25-270 years with median sediment accumulation rates of approximately 2 mm/yr (range 0-10 mm/yr). Rates of bank retreat (measured from historical aerial imagery or root-exposure dendrochronology) vary from 6-36 cm/yr, with median rates of 10 cm/yr. While bank erosion rates are subject to a variety of controls, including channel curvature, the density of riparian trees, and freeze-thaw processes, the strongest influence appears to be the grain size and thickness of bouldery diamicton exposed along the toes of retreating banks. Cobbles and boulders supplied by eroding diamicton also mantle the bed of the channel, such that 33- 80% of the bed material remains immobile at bankfull stage. A conceptual model of fluvial processes and sediment budgets for these channels must account for the watershed's history of changing climate, tectonics, and land use, requiring mapping of bedrock, colluvium, former mill dam sediments, and other non-alluvial deposits and controls. Efforts to apply hydraulic geometry principles (requiring a precise adjustment to contemporary hydraulic and sediment regime) or to treat these channels as traditional "threshold" rivers are unlikely to be successful.

  7. The Mica Creek Experimental Watershed: An Outdoor Laboratory for the Investigation of Hydrologic Processes in a Continental/Maritime Mountainous Environment

    NASA Astrophysics Data System (ADS)

    Link, T. E.; Gravelle, J.; Hubbart, J.; Warnsing, A.; Du, E.; Boll, J.; Brooks, E.; Cundy, T.

    2004-12-01

    Experimental catchments have proven to be extremely useful for investigations focused on fundamental hydrologic processes and on the impacts of land cover change on hydrologic regimes and water quality. Recent studies have illustrated how watershed responses to experimental treatments vary greatly between watersheds with differing physical, ecological and hydroclimatic characteristics. Meteorological and hydrological data within catchments are needed to help identify how hydrologic mechanisms may be altered by land cover alterations, and to both constrain and develop spatially-distributed physically based models. Existing instrumentation at the Mica Creek Experimental Watershed (MCEW) in northern Idaho is a fourth-order catchment that is undergoing expansion to produce a comprehensive dataset for model development and testing. The experimental catchments encompass a 28 km2 area spanning elevations from 975 to 1725 m msl. Snow processes dominate the hydrology of the catchment and climate conditions in the winter alternate between cold, dry continental and warm, moist maritime weather systems. Landcover is dominated by 80 year old second growth conifer forests, with partially cut (thinned) and clear-cut sub-catchments. Climate and precipitation data are collected at a SNOTEL site, three primary, and seven supplemental meteorological stations stratified by elevation and canopy cover. Manual snow depth measurements are recorded every 1-2 weeks during snowmelt, stratified by aspect, elevation and canopy cover. An air temperature transect spans three second-order sub-catchments to track air temperature lapse rate dynamics. Precipitation gauge arrays are installed within thinned and closed-canopy stands to track throughfall and interception loss. Nine paired and nested sub-catchments are monitored for flow, temperature, sediment, and nutrients. Hydroclimatic data are augmented by LiDAR and hyperspectral imagery for determination of canopy and topographic structure

  8. Bald Eagles at Bay

    ERIC Educational Resources Information Center

    Laycock, George

    1974-01-01

    Describes the process of transplanting eggs from one nest to another in an attempt to aid in the strengthening of the eagle population. Discusses pressures exerted on eagles by hunting, trapping and pesticides. (SLH)

  9. Rainfall-runoff modeling of the Chapel Branch Creek Watershed using GIS-based rational and SCS-CN methods

    Elizabeth N. Mihalik; Norm S. Levine; Devendra M. Amatya

    2008-01-01

    Chapel Branch Creek (CBC), located within the Town of Santee adjacent to Lake Marion in Orangeburg County, SC, is listed on the SC 2004 303(d) list of impaired waterbodies due to elevated levels of nitrogen (N), phosphorus (P), chlorophyll-a, and pH. In this study, using a GIS-based approach, two runoff modeling methods, the Rational and SCS-CN methods, have been...

  10. NPDES Permit for City of Eagle Butte Wastewater Treatment Facility in South Dakota

    EPA Pesticide Factsheets

    Under NPDES permit SD-0020192, the City of Eagle Butte, South Dakota, is authorized to discharge from its wastewater treatment facility within the Cheyenne River Sioux Reservation in Dewey County, South Dakota, to Green Grass Creek.

  11. Evaluation of Water Quality Trends in Goodwater Creek Experimental Watershed, Missouri: Implications for Monitoring Strategies and Objective Setting

    Continued public support for U.S. tax-payer funded programs aimed at reducing agricultural non-point source pollutants depends on clear demonstrations of water quality improvements. Effectiveness of structural BMPs, as well as watershed monitoring networks is an important information need to make f...

  12. Cumulative watershed effects: Can they be measured? What have we learned from the Caspar Creek studies in northern California?

    R. M. Rice

    1991-01-01

    Cumulative Watershed Effects (CWEs) may be additive or synergistic. Additive CWEs are the accumulation downstream of the effects of various activities. Their existence is inevitable. However, their magnitude is often difficult to measure. The amount of sediment, for example, has considerable natural variation which may mask the CWEs caused by road construction or...

  13. Comparison of WEPP and APEX runoff and erosion prediction at field scale in Goodwater Creek Experimental Watershed

    The Water Erosion Prediction Project (WEPP) and the Agricultural Policy/Environmental eXtender (APEX) are process-based models that can predict spatial and temporal distributions of erosion for hillslopes and watersheds. This study applies the WEPP model to predict runoff and erosion for a 35-ha fie...

  14. A methodology to reduce uncertainties in the high-flow portion of the rating curve for Goodwater Creek Watershed

    Flow monitoring at watershed scale relies on the establishment of a rating curve that describes the relationship between stage and flow and is developed from actual flow measurements at various stages. Measurement errors increase with out-of-bank flow conditions because of safety concerns and diffic...

  15. Application of Watershed Scale Models to Predict Nitrogen Loading From Coastal Plain Watersheds

    George M. Chescheir; Glenn P Fernandez; R. Wayne Skaggs; Devendra M. Amatya

    2004-01-01

    DRAINMOD-based watershed models have been developed and tested using data collected from an intensively instrumented research site on Kendricks Creek watershed near Plymouth. NC. These models were applied to simulate the hydrology and nitrate nitrogen (NO3-N) loading from two other watersheds in the Coastal Plain of North Carolina, the 11600 ha Chicod Creek watershed...

  16. Nutrient, sediment, and pesticide data collected at four small agricultural basins in the Beaver Creek watershed, West Tennessee, 1990-1995

    Williams, Shannon D.; Harris, Robin M.

    1996-01-01

    In 1989, the U.S. Geological Survey began a cooperative study with the Tennessee Department of Agriculture to assess the impact of agricultural activities on water quality in the Beaver Creek watershed in West Tennessee. Quantification of the transport of nutrients, sediment, and pesticides from agricultural fields was one of the objectives of the study. This report presents nutrient, sediment, and pesticide data collected during selected storm events from 1990 through 1995 at four relatively small, agricultural basins (28 to 422 acres) in the Beaver Creek watershed. Approximately 3,000 water samples (500 to 1,000 at each site) were analyzed for nitrogen and phosphorus species. Total nitrogen (N) concentrations ranged from 0.2 to 41.2 milligrams per liter (mg/L). Median concentrations for samples from each site ranged from 2.0 to 2.7 mg/L for total nitrogen, 1.2 to 1.9 mg/L for organic nitrogen, 0.05 to 0.14 mg/L for ammonia (measured as N), and 0.2 to 0.8 mg/L for nitrate plus nitrite (measured as N). Total phosphorus (P) concentrations ranged from 0.03 to 16.0 mg/L. Median concentrations for samples from each site ranged from 0.80 to 1.2 mg/L for total phosphorus and 0.15 to 0.72 for orthophosphate (measured as P). Approximately 6,000 water samples (1,300 to 1,800 at each site) were analyzed for suspended sediment. Suspended-sediment concentrations ranged from 8.0 to 98,353 mg/L. Concentrations exceeded 1,000 mg/L in 33 percent of the samples collected and exceeded 10,000 mg/L in 6 percent of the samples. Median concentrations ranged from 347 to 713 mg/L at the four sites. Several herbicides and insecticides were detected in water samples. Maximum concentrations detected were 37 micrograms per liter for metolachlor, 3.2 for trifluralin, 150 for fluometuron, and 430 for aldicarb. Aldicarb metabolites were also detected in several samples. The maximum aldicarb sulfoxide and aldicarb sulfone concentrations detected were 68.4 and 14.3 micrograms per liter

  17. Total nitrogen and suspended-sediment loads and identification of suspended-sediment sources in the Laurel Hill Creek watershed, Somerset County, Pennsylvania, water years 2010-11

    Sloto, Ronald A.; Gellis, Allen C.; Galeone, Daniel G.

    2012-01-01

    Laurel Hill Creek is a watershed of 125 square miles located mostly in Somerset County, Pennsylvania, with small areas extending into Fayette and Westmoreland Counties. The upper part of the watershed is on the Pennsylvania Department of Environmental Protection 303(d) list of impaired streams because of siltation, nutrients, and low dissolved oxygen concentrations. The objectives of this study were to (1) estimate the annual sediment load, (2) estimate the annual nitrogen load, and (3) identify the major sources of fine-grained sediment using the sediment-fingerprinting approach. This study by the U.S. Geological Survey (USGS) was done in cooperation with the Somerset County Conservation District. Discharge, suspended-sediment, and nutrient data were collected at two streamflow-gaging stations—Laurel Hill Creek near Bakersville, Pa., (station 03079600) and Laurel Hill Creek at Ursina, Pa., (station 03080000)—and one ungaged stream site, Laurel Hill Creek below Laurel Hill Creek Lake at Trent (station 03079655). Concentrations of nutrients generally were low. Concentrations of ammonia were less than 0.2 milligrams per liter (mg/L), and concentrations of phosphorus were less than 0.3 mg/L. Most concentrations of phosphorus were less than the detection limit of 0.02 mg/L. Most water samples had concentrations of nitrate plus nitrite less than 1.0 mg/L. At the Bakersville station, concentrations of total nitrogen ranged from 0.63 to 1.3 mg/L in base-flow samples and from 0.57 to 1.5 mg/L in storm composite samples. Median concentrations were 0.88 mg/L in base-flow samples and 1.2 mg/L in storm composite samples. At the Ursina station, concentrations of total nitrogen ranged from 0.25 to 0.92 mg/L in base-flow samples; the median concentration was 0.57 mg/L. The estimated total nitrogen load at the Bakersville station was 262 pounds (lb) for 11 months of the 2010 water year (November 2009 to September 2010) and 266 lb for the 2011 water year. Most of the total

  18. Simulated water budgets and ground-water/surface-water interactions in Bushkill and parts of Monocacy Creek watersheds, Northampton County, Pennsylvania: A preliminary study with identification of data needs

    Risser, Dennis W.

    2006-01-01

    This report, prepared in cooperation with the Department of Environmental Protection, Office of Mineral Resources Management, provides a preliminary analysis of water budgets and generalized ground-water/surface-water interactions for Bushkill and parts of Monocacy Creek watersheds in Northampton County, Pa., by use of a ground-water flow model. Bushkill Creek watershed was selected for study because it has areas of rapid growth, ground-water withdrawals from a quarry, and proposed stream-channel modifications, all of which have the potential for altering ground-water budgets and the interaction between ground water and streams. Preliminary 2-dimensional, steady-state simulations of ground-water flow by the use of MODFLOW are presented to show the status of work through September 2005 and help guide ongoing data collection in Bushkill Creek watershed. Simulations were conducted for (1) predevelopment conditions, (2) a water table lowered for quarry operations, and (3) anthropogenic changes in hydraulic conductivity of the streambed and aquifer. Preliminary results indicated under predevelopment conditions, the divide between the Bushkill and Monocacy Creek ground-water basins may not have been coincident with the topographic divide and as much as 14 percent of the ground-water discharge to Bushkill Creek may have originated from recharge in the Monocacy Creek watershed. For simulated predevelopment conditions, Schoeneck Creek and parts of Monocacy Creek were dry, but Bushkill Creek was gaining throughout all reaches. Simulated lowering of the deepest quarry sump to an altitude of 147 feet for quarry operations caused ground-water recharge and streamflow leakage to be diverted to the quarry throughout about 14 square miles and caused reaches of Bushkill and Little Bushkill Creeks to change from gaining to losing streams. Lowering the deepest quarry sump to an altitude of 100 feet caused simulated ground-water discharge to the quarry to increase about 4 cubic feet

  19. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciT

    Loar, J.M.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, andmore » (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.« less

  20. Pesticide movement in soils; a comparison of no-tillage and conventional tillage in the Beaver Creek watershed in West Tennessee

    Olsen, Lisa D.

    1995-01-01

    In 1993, a study of pesticide movement and degradation in soils was intitated in the Beaver Creek watershed, which consists of about 95,000 acres and includes some of the Nation's most highly erodible soils. Resource-management agencies in this locality have recommended conservation tillage or "no-tillage" as a best management practices to control soil erosion. The pesticide aldicarb was selected for this study because it is both highly mobile and extremely toxic. Horizontal movement of aldicarb and its metabolites was negligible. Vertical movement of aldicarb and its metabolites was limited to the top 2.5 feet of soil. Most of the aldicarb residue (over 85 percent) remaining in the soil after 148 days was detected in the top 0.5 foot of soil. No significant differences in the movement or degradation of aldicarb and its metabolites were observed between the no-tilled and conventionally tilled fields. No-till practices did not increase the downward movement of aldicarb in the test areas. No-tillage has proven to be an effective best management practice for soil-loss reduction in many studies throughout the United States.

  1. Spatial Distribution of Ground-Water Recharge Estimated with a Water-Budget Method for the Jordan Creek Watershed, Lehigh County, Pennsylvania

    Risser, Dennis W.

    2008-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Pennsylvania Geological Survey, to illustrate a water-budget method for mapping the spatial distribution of ground-water recharge for a 76-square-mile part of the Jordan Creek watershed, northwest of Allentown, in Lehigh County, Pennsylvania. Recharge was estimated by using the Hydrological Evaluation of Landfill Performance (HELP) water-budget model for 577 landscape units in Jordan Creek watershed, delineated on the basis of their soils, land use/land cover, and mean annual precipitation during 1951-2000. The water-budget model routes precipitation falling on each landscape unit to components of evapotranspiration, surface runoff, storage, and vertical percolation (recharge) for a five-layer soil column on a daily basis. The spatial distribution of mean annual recharge during 1951-2000 for each landscape unit was mapped by the use of a geographic information system. Recharge simulated by the water-budget model in Jordan Creek watershed during 1951-2000 averaged 12.3 inches per year and ranged by landscape unit from 0.11 to 17.05 inches per year. Mean annual recharge during 1951-2000 simulated by the water-budget model was most sensitive to changes to input values for precipitation and runoff-curve number. Mean annual recharge values for the crop, forest, pasture, and low-density urban land-use/land-cover classes were similar (11.2 to 12.2 inches per year) but were substantially less for high-density urban (6.8 inches per year), herbaceous wetlands (2.5 inches per year), and forested wetlands (1.3 inches per year). Recharge rates simulated for the crop, forest, pasture, and low-density urban land-cover classes were similar because those land-use/land-cover classes are represented in the model with parameter values that either did not significantly affect simulated recharge or tended to have offsetting effects on recharge. For example, for landscapes with forest land

  2. Mercury bioaccumulation in fish in a region affected by historic gold mining; the South Yuba River, Deer Creek, and Bear River watersheds, California, 1999

    May, Jason T.; Hothem, Roger L.; Alpers, Charles N.; Law, Matthew A.

    2000-01-01

    Mercury that was used historically for gold recovery in mining areas of the Sierra Nevada continues to enter local and downstream water bodies, including the Sacramento Delta and the San Francisco Bay of northern California. Methylmercury is of particular concern because it is the most prevalent form of mercury in fish and is a potent neurotoxin that bioaccumulates at successive trophic levels within food webs. In April 1999, the U.S. Geological Survey, in cooperation with several other agencies the Forest Service (U.S. Department of Agriculture), the Bureau of Land Management, the U.S. Environmental Protection Agency, the California State Water Resources Control Board, and the Nevada County Resource Conservation District began a pilot investigation to characterize the occurrence and distribution of mercury in water, sediment, and biota in the South Yuba River, Deer Creek, and Bear River watersheds of California. Biological samples consisted of semi-aquatic and aquatic insects, amphibians, bird eggs, and fish. Fish were collected from 5 reservoirs and 14 stream sites during August through October 1999 to assess the distribution of mercury in these watersheds. Fish that were collected from reservoirs included top trophic level predators (black basses, Micropterus spp.) intermediate trophic level predators [sunfish (blue gill, Lepomis macrochirus; green sunfish, Lepomis cyanellus; and black crappie, Poxomis nigromaculatus)] and benthic omnivores (channel catfish, Ictularus punctatus). At stream sites, the species collected were upper trophic level salmonids (brown trout, Salmo trutta) and upper-to-intermediate trophic level salmonids (rainbow trout, Oncorhynchus mykiss). Boneless and skinless fillet portions from 161 fish were analyzed for total mercury; 131 samples were individual fish, and the remaining 30 fish were combined into 10 composite samples of three fish each of the same species and size class. Mercury concentrations in samples of black basses

  3. 1. EAGLE MILL EXTERIOR FROM NORTHWEST, c. 1907. SHOWS INITIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EAGLE MILL EXTERIOR FROM NORTHWEST, c. 1907. SHOWS INITIAL MILL CONFIGURATION WITH FULLY EXPOSED CRUDE ORE BIN CONCRETE RETAINING WALL, SINGLE (SOUTH) CRUDE ORE BIN, AND EXPOSED CRUSHER HOUSE. NOTE THE LACK OF MACHINE SHOP OR SNOW SHEDS. CREDIT JW. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  4. 3. EAGLE MILL, DETAIL OF CRUDE ORE BIN FROM NORTH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAGLE MILL, DETAIL OF CRUDE ORE BIN FROM NORTH, c. 1908-10. SHOWS EXPOSED CRUSHER HOUSE IN FRONT OF (SOUTH) CRUDE ORE BIN AND SNOW SHED ADDED OVER TRAM TRACKS. NOTE LACK OF EAST OR WEST CRUDE ORE BINS. CREDIT JW. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  5. Effects of best-management practices in Bower Creek in the East River priority watershed, Wisconsin, 1991-2009

    Corsi, Steven R.; Horwatich, Judy A.; Rutter, Troy D.; Bannerman, Roger T.

    2013-01-01

    Hydrologic and water-quality data were collected at Bower Creek during the periods before best-management practices (BMPs), and after BMPs were installed for evaluation of water-quality improvements. The monitoring was done between 1990 and 2009 with the pre-BMP period ending in July 1994 and the post-BMP period beginning in October 2006. BMPs installed in this basin included streambank protection and fencing, stream crossings, grade stabilization, buffer strips, various barnyard-runoff controls, nutrient management, and a low degree of upland BMPs. Water-quality evaluations included base-flow concentrations and storm loads for total suspended solids, total phosphorus, and ammonia nitrogen. The only reductions detected between the base-flow samples of the pre- and post-BMP periods were in median concentrations of total phosphorus from base-flow samples, but not for total suspended solids or dissolved ammonia nitrogen. Differences in storm loads for the three water-quality constituents monitored were not observed during the study period.

  6. Nature Photography - Bald Eagle

    2016-12-12

    An American bald eagle soars from its perch in a tree at NASA's Kennedy Space Center in Florida. Several eagles call the center home. The center shares a boundary with the Merritt Island National Wildlife Refuge. The refuge is home to more than 65 amphibian and reptile species, along with 330 native and migratory bird species, 25 mammal and 117 fish species.

  7. Nature Photography - Bald Eagle

    2016-12-12

    An American bald eagle perches in a tree at NASA's Kennedy Space Center in Florida. Several eagles call the center home. The center shares a boundary with the Merritt Island National Wildlife Refuge. The refuge is home to more than 65 amphibian and reptile species, along with 330 native and migratory bird species, 25 mammal and 117 fish species.

  8. Nature Photography - Bald Eagles

    2017-01-04

    One American bald eagle sits in its nest, while another eagle perches on a branch in tree at NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  9. Nature Photography - Bald Eagle

    2016-12-12

    An American bald eagle begins to soar from its perch in a tree at NASA's Kennedy Space Center in Florida. Several eagles call the center home. The center shares a boundary with the Merritt Island National Wildlife Refuge. The refuge is home to more than 65 amphibian and reptile species, along with 330 native and migratory bird species, 25 mammal and 117 fish species.

  10. Searching for Feedbacks between Land-use/Land-cover Changes and the Water Budget in Complex Terrain at the Dry Creek Experimental Watershed in Idaho, USA

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Engdahl, N.

    2017-12-01

    Proactive management to improve water resource sustainability is often limited by a lack of understanding about the hydrological consequences of human activities and climate induced land use and land cover (LULC) change. Changes in LULC can alter runoff, soil moisture, and evapotranspiration, but these effects are complex and traditional modeling techniques have had limited successes in realistically simulating the relevant feedbacks. Recent studies have investigated the coupled interactions but typically do so at coarse resolutions with simple topographic settings, so it is unclear if the previous conclusions remain valid in the steep, complex terrains that dominate the western USA. This knowledge gap was explored with a series of integrated hydrologic simulations based on the Dry Creek Experimental Watershed (DCEW) in southwestern Idaho, USA, using the ParFlow.CLM model. The DCEW has extensive monitoring data that allowed for a direct calibration and validation of the base-case simulation, which is not commonly done with integrated models. The effects of LULC change on the hydrologic and water budgets were then assessed at two grid resolutions (20m and 40m) under four LULC scenarios: 1) current LULC; 2) LULC change from a small but gradual decrease in potential recharge (PR); 3) LULC change from a large but rapid decrease in PR; and 4) LULC change from a large but gradual decrease in PR. The results show that the methods used for terrain processing and the grid resolution can both heavily impact the simulation results and that LULC change can significantly alter the relative amounts of groundwater storage and runoff.

  11. Reconnaissance of Surface-Water Quality and Possible Sources of Nutrients and Bacteria in the Turkey Creek Watershed, Northwest Oklahoma, 2002-2003

    Becker, Carol J.

    2004-01-01

    The U.S. Geological Survey in cooperation with the Oklahoma Department of Environmental Quality and the U.S. Environmental Protection Agency investigated the distribution of surface-water quality and possible sources of nutrients and Escherichia coli bacteria to surface water in Turkey Creek, which flows about 70 miles through mostly rural agricultural areas in northwest Oklahoma. Results show that discharge on the main stem of Turkey Creek increased during low-flow conditions from an average of 5.4 cubic feet per second at the upper most site to 39 cubic feet per second at the lower most site in the watershed, indicating that Turkey Creek gains water from ground-water discharge. A portion of the increase in stream discharge may be from discharges of treated effluent from city sewage lagoons. However, the volume and frequency of discharges are unknown. Surface-water-quality samples show that specific conductance ranged from 1,180 to 1,740 microsiemens per centimeter at 25 degrees Celsius during low-flow conditions and in general, decreased downstream with site 1 or site 2 having the largest measurement and site 5 having the lowest. The pH values were slightly alkaline and ranged from 6.8 to 8.5 with a median of 8.2. Dissolved oxygen ranged from 9.3 to 15.9 milligrams per liter in samples collected in the months of November, February, and March and ranged from 5.3 to 13.9 milligrams per liter in samples collected in the months of June, July, and August. Surface-water-quality samples show that the median concentrations of nitrite plus nitrate as nitrogen (1.16 milligrams per liter) and total phosphorus (0.275 milligram per liter) are larger than the average median concentrations of 0.35 and 0.083 milligram per liter, respectively, calculated from water-quality sites in Oklahoma and part of Arkansas (excluding sites in the Ozark Highland and the Ouachita Mountains ecoregions) having similar stream orders and stream slopes. Concentrations of nitrite plus nitrate as

  12. Optimizing conservation practices in watersheds: Do community preferences matter?

    NASA Astrophysics Data System (ADS)

    Piemonti, Adriana D.; Babbar-Sebens, Meghna; Jane Luzar, E.

    2013-10-01

    This paper focuses on investigating (a) how landowner tenure and attitudes of farming communities affect the preference of individual conservation practices in agricultural watersheds, (b) how spatial distribution of landowner tenure affects the spatial optimization of conservation practices on a watershed scale, and (c) how the different attitudes and preferences of stakeholders can modify the effectiveness of alternatives obtained via classic optimization approaches that do not include the influence of existing social attitudes in a watershed during the search process. Results show that for Eagle Creek Watershed in central Indiana, USA, the most optimal alternatives (i.e., highest benefits for minimum economic costs) are for a scenario when the watershed consists of landowners who operate as farmers on their own land. When a different land-tenure scenario was used for the watershed (e.g., share renters and cash renters), the optimized alternatives had similar nitrate reduction benefits and sediment reduction benefits, but at higher economic costs. Our experiments also demonstrated that social attitudes can lead to alteration of optimized alternatives found via typical optimization approaches. For example, when certain practices were rejected by landowner operators whose attitudes toward practices were driven by economic profits, removal of these practices from the optimized alternatives led to a setback of nitrates reduction by 2-50%, peak flow reductions by 11-98 %, and sediments reduction by 20-77%. In conclusion, this study reveals the potential loss in optimality of optimized alternatives possible, when socioeconomic data on farmer preferences and land tenure are not incorporated within watershed optimization investigations.

  13. Wildlife Photography - Eagles

    2018-03-13

    An adult American bald eagle perches in a nest in a tree along State Road 3 at NASA's Kennedy Space Center in Florida. Eagles have built nests in trees at the center for many years. The center shares a border with the 140,000-acre Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  14. Wildlife Photography - Eagles

    2018-03-13

    An adult American bald eagle perches on a branch in a tree along State Road 3 at NASA's Kennedy Space Center in Florida. Eagles have built nests in trees at the center for many years. The center shares a border with the 140,000-acre Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  15. An analysis of potential water availability from the Charles Mill, Clendening, Piedmont, Pleasant Hill, Senecaville, and Wills Creek Lakes in the Muskingum River Watershed, Ohio

    Koltun, G.F.

    2014-01-01

    This report presents the results of a study to assess potential water availability from the Charles Mill, Clendening, Piedmont, Pleasant Hill, Senecaville, and Wills Creek Lakes, located within the Muskingum River Watershed, Ohio. The assessment was based on the criterion that water withdrawals should not appreciably affect maintenance of recreation-season pool levels in current use. To facilitate and simplify the assessment, it was assumed that historical lake operations were successful in maintaining seasonal pool levels, and that any discharges from lakes constituted either water that was discharged to prevent exceeding seasonal pool levels or discharges intended to meet minimum in-stream flow targets downstream from the lakes. It further was assumed that the volume of water discharged in excess of the minimum in-stream flow target is available for use without negatively impacting seasonal pool levels or downstream water uses and that all or part of it is subject to withdrawal. Historical daily outflow data for the lakes were used to determine the quantity of water that potentially could be withdrawn and the resulting quantity of water that would flow downstream (referred to as “flow-by”) on a daily basis as a function of all combinations of three hypothetical target minimum flow-by amounts (1, 2, and 3 times current minimum in-stream flow targets) and three pumping capacities (1, 2, and 3 million gallons per day). Using both U.S. Geological Survey streamgage data (where available) and lake-outflow data provided by the U.S. Army Corps of Engineers resulted in analytical periods ranging from 51 calendar years for Charles Mill, Clendening, and Piedmont Lakes to 74 calendar years for Pleasant Hill, Senecaville, and Wills Creek Lakes. The observed outflow time series and the computed time series of daily flow-by amounts and potential withdrawals were analyzed to compute and report order statistics (95th, 75th, 50th, 25th, 10th, and 5th percentiles) and means for

  16. A 3PG-based Model to Simulate Delta-13C Content in Three Tree Species in The Mica Creek Experiment Watershed, Idaho

    NASA Astrophysics Data System (ADS)

    Wei, L.; Marshall, J. D.

    2007-12-01

    3PG (Physiological Principles in Predicting Growth), a process-based physiological model of forest productivity, has been widely used and well validated. Based on 3PG, a 3PG-δ13C model to simulate δ13C content in plant tissue is built in this research. 3PG calculates carbon assimilation from utilizable absorbed photosynthetically active radiation (PAR), and calculates stomatal conductance from maximum canopy conductance multiplied by physiological modifier which includes the effect of water vapor deficit and soil water. Then the equation of Farquhar and Sharkey (1982) was used to calculate δ13C content in plant. Five even-aged coniferous forest stands located near Clarkia, Idaho (47°15'N, 115°25'W) in Mica Creek Experimental Watershed, were chosen to test the model, (2 stands had been partial cut (50% canopy removal in 1990) and 3 were uncut). MCEW has been extensively investigated since 1990 and many necessary parameters needed for 3PG are readily available. Each of these sites is located near a UI Meteorological station, which recorded half-hourly climatic data since 2003. These site-specific climatic data were extend to 1991 by correlating with data from a nearby SNOTEL station (SNOwpack TELemetry, NRCS, 47°9' N, 116°16' W). Forest mensuration data were obtained form each stand using variable radius plots (VRP). Three tree species, which consist more than 95% of all trees, were parameterized for 3PG model, including: grand fir (Abies grandis Donn ex D. Don), western red cedar (Thuja plicat Donn ex D. Don a) and Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco). Because 4 out of 5 stands have mixed species, we also used parameters for mixed stands to run the model. To stabilize, the model was initially run under average climatic data for 20 years, and then run under the actual climatic data from 1991 to 2006. As 3PG runs in a monthly time step, monthly δ13C values were calculated first, and then yearly values were calculated by weighted

  17. Linking physical monitoring to coho and Chinook salmon populations in the Redwood Creek Watershed, California—Summary of May 3–4, 2012 Workshop

    Madej, Mary Ann; Torregrosa, Alicia; Woodward, Andrea

    2012-01-01

    On Thursday, May 3, 2012, a science workshop was held at the Redwood National and State Parks (RNSP) office in Arcata, California, with researchers and resource managers working in RNSP to share data and expert opinions concerning salmon populations and habitat in the Redwood Creek watershed. The focus of the workshop was to discuss how best to synthesize physical and biological data related to the freshwater and estuarine phases of salmon life cycles in order to increase the understanding of constraints on salmon populations. The workshop was hosted by the U.S. Geological Survey (USGS) Status and Trends (S&T) Program National Park Monitoring Project (http://www.fort.usgs.gov/brdscience/ParkMonitoring.htm), which supports USGS research on priority topics (themes) identified by the National Park Service (NPS) Inventory and Monitoring Program (I&M) and S&T. The NPS has organized more than 270 parks with significant natural resources into 32 Inventory and Monitoring (I&M) Networks (http://science.nature.nps.gov/im/networks.cfm) that share funding and core professional staff to monitor the status and long-term trends of selected natural resources (http://science.nature.nps.gov/im/monitor). All 32 networks have completed vital signs monitoring plans (available at http://science.nature.nps.gov/im/monitor/MonitoringPlans.cfm), containing background information on the important resources of each park, conceptual models behind the selection of vital signs for monitoring the condition of natural resources, and the selection of high priority vital signs for monitoring. Vital signs are particular physical, chemical, and biological elements and processes of park ecosystems that represent the overall health or condition of the park, known or hypothesized effects of stressors, or elements that have important human values (Fancy and others, 2009). Beginning in 2009, the I&M program funded projects to analyze and synthesize the biotic and abiotic data generated by vital signs

  18. Estimation of frequency based flood peak for an ungauged watershed using field calibration : technical summary.

    DOT National Transportation Integrated Search

    1997-06-01

    This report presents: (1) calculation of flood frequency for the Ward Creek watershed using eight flood prediction models, (2) establishment of the rating curve (stage-discharge relation) for the Ward Creek watershed, (3) evaluation of these flood pr...

  19. Characterization of water quality and suspended sediment during cold-season flows, warm-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015

    Miller, Lisa D.; Stogner, Sr., Robert W.

    2017-09-01

    From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water

  20. Optimal implementation of green infrastructure practices to minimize influences of land use change and climate change on hydrology and water quality: Case study in Spy Run Creek watershed, Indiana.

    PubMed

    Liu, Yaoze; Engel, Bernard A; Collingsworth, Paris D; Pijanowski, Bryan C

    2017-12-01

    Nutrient loading from the Maumee River watershed is a significant reason for the harmful algal blooms (HABs) problem in Lake Erie. The nutrient loading from urban areas needs to be reduced with the installation of green infrastructure (GI) practices. The Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model was used to explore the influences of land use (LU) and climate change on water quantity and quality in Spy Run Creek watershed (SRCW) (part of Maumee River watershed), decide whether and where excess phosphorus loading existed, identify critical areas to understand where the greatest amount of runoff/pollutants originated, and optimally implement GI practices to obtain maximum environmental benefits with the lowest costs. Both LU/climate changes increased runoff/pollutants generated from the watershed. Areas with the highest runoff/pollutant amount per area, or critical areas, differed for various environmental concerns, land uses (LUs), and climates. Compared to optimization considering all areas, optimization conducted only in critical areas can provide similar cost-effective results with decreased computational time for low levels of runoff/pollutant reductions, but critical area optimization results were not as cost-effective for higher levels of runoff/pollutant reductions. Runoff/pollutants for 2011/2050 LUs/climates could be reduced to amounts of 2001 LU/climate by installation of GI practices with annual expenditures of $0.34 to $2.05 million. The optimization scenarios that were able to obtain the 2001 runoff level in 2011/2050, can also reduce all pollutants to 2001 levels in this watershed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Bald eagle and osprey

    Henny, C.J.; Anthony, R.G.; Pendleton, Beth Giron

    1989-01-01

    Bald eagles nested in all nine western states during recent years (about 19% of known U.S. population in 1982). The known numbers of nesting pairs in the west increased substantially in the last 10 years and totaled 584 in 1986. Much of the increase was due to more intensive survey efforts, but most biologists cite examples of new palrs establishing nesting territories. In contrast, productivity was relatively stable at 0.9 young produced per occupied territory with small annual fluctuations, a level slightly below the requirement for delisting (1.0 young per occupied territory) by the Pacific States Bald Eagle Recovery Plan. About 4,500 to 6,000 (minimum estimate) bald eagles winter throughout the western United States, which is about 50% of the surveyed population in the contiguous 48 states. Osprey range expansion and population increases have been documented in the West since 1981, when the population was estimated at 1,472 palrs (i.e., about 18% of the U.S. population). Monitoring efforts in the 1980s were not as intensive for ospreys as for bald eagles, but productivity was usually at the upper end of 0.95 to 13 young per occupied territory (a rate generally believed adequate for population stability). Although bald eagle and osprey nesting populations and productivity show cause for optimism, organochlorine contaminants remain a problem in a few individual birds and in some localized areas (e.g., lower Columbia River). DDE residues high enough to reduce productivity have been documented in eggs of both species during the 1980s. In addition, the bald eagle, which also forages on sick or dead prey, has been exposed to lead shot and the organophosphorus insecticide famphur. These contaminants have killed numbers of them in the West in recent years. Nesting ospreys appear more tolerant than nesting bald eagles of man and his disturbance; thus, more restrictions are required at bald eagle nest sites. Furthermore, bald eagles winter within the United States and

  2. Solar Eagle 2

    NASA Technical Reports Server (NTRS)

    Roberto, Richard D.

    1995-01-01

    During a 22-month period from February 1991 to December 1993, a dedicated group of students, faculty, and staff at California State University, Los Angeles completed a project to design, build, and race their second world class solar-powered electric vehicle, the Solar Eagle 2. This is the final report of that project. As a continuation of the momentum created by the success of the GM-sponsored Sunrayce USA in 1990, the U.S. Department of Energy (DOE) picked up the banner from General Motors as sponsors of Sunrayce 93. In February 1991, the DOE sent a request for proposals to all universities in North America inviting them to submit a proposal outlining how they would design, build, and test a solar-powered electric vehicle for a seven-day race from Arlington, Texas to Minneapolis, Minnesota, to be held in June 1993. Some 70 universities responded. At the end of a proposal evaluation process, 36 universities including CSLA were chosen to compete. This report documents the Solar Eagle 2 project--the approaches take, what was learned, and how our experience from the first Solar Eagle was incorporated into Solar Eagle 2. The intent is to provide a document that would assist those who may wish to take up the challenge to build Solar Eagle 3.

  3. Proctor Creek Boone Boulevard Fact Sheet

    EPA Pesticide Factsheets

    This fact sheet provides an overview of the Proctor Creek watershed and community, green infrastructure, the Boone Boulevard Green Street Project Conceptual Design, and the added value and application of Health Impact Assessment (HIA) to the project.

  4. Review of: An analysis of flooding in Elk River and Freshwater Creek watersheds, Humboldt County, California (prepared by The Pacific Lumber Company, Scotia, California)

    L. M. Reid

    1999-01-01

    The reviewed report (PL 1999) attempts to demonstrate that logging conducted over the past decade or so in Freshwater and Elk watersheds has not caused increased flooding in downstream portions of the watersheds. However, most of the report's sections include information that supports the hypothesis that logging has aggravated flood hazard, produce conclusions...

  5. Wildlife - Bald Eagle

    2007-03-20

    High in a pine tree at NASA's Kennedy Space Center, an adult bald eagle (right) and a fledgling keep watch from their nest. There are approximately a dozen active bald eagle nests both in KSC and in the Merritt Island National Wildlife Refuge, which surrounds KSC. The refuge includes several wading bird rookeries, many osprey nests, up to 400 manatees during the spring, and approximately 2,500 Florida scrub jays. It also is a major wintering area for migratory birds. More than 500 species of wildlife inhabit the refuge, with 15 considered federally threatened or endangered.

  6. "Visit to Caspar Creek, northern California"

    Nick Schofield

    1989-01-01

    As part of a brief study tour in California, I had the good fortune of spending a very pleasant day on the Caspar Creek watershed, ably guided by Peter Cafferata and Liz Keppeler. Amongst the many notable achievements of the Caspar Creek Study is its longevity. The study started in 1962 and has evolved over time

  7. Nature Photography - Bald Eagles

    2016-12-13

    An American bald eagle soars through the air above NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  8. Nature Photography - Bald Eagles

    2016-12-13

    An American bald eagle soars through the air above NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. The bird is one of more than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles that call Kennedy and the wildlife refuge home.

  9. Nature Photography - Bald Eagles

    2016-12-13

    With wings outstretched, an American bald eagle soars through the air above NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. The bird is one of more than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles that call Kennedy and the wildlife refuge home.

  10. Nature Photography - Bald Eagles

    2016-12-13

    Two American bald eagles are perched in a nest atop a pole at NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  11. Wildlife Photography - Eagles

    2017-05-04

    A juvenile bald eagle watches for prey in the grass at NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  12. Wildlife Photography - Eagles

    2017-05-04

    An American bald eagle eats its prey on a wooden dock at NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  13. Wildlife Photography - Eagles

    2017-05-04

    A juvenile bald eagle sits in the grass at NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  14. Wildlife Photography - Bald Eagle

    2017-05-04

    An American bald eagle soars through the air with its prey at NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  15. Creative Photography - Baby Eagles

    2018-02-08

    A baby eagle perches in a nest in a tree along State Road 3 at NASA's Kennedy Space Center in Florida. The center shares a border with the 140,000-acre Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  16. Creative Photography - Baby Eagles

    2018-02-08

    Two baby eagles perch in a nest in a tree along State Road 3 at NASA's Kennedy Space Center in Florida. The center shares a border with the 140,000-acre Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  17. The Beaver Creek story

    Doyle, W.H.; Whitworth, B.G.; Smith, G.F.; Byl, T.D.

    1996-01-01

    Beaver Creek watershed in West Tennessee includes about 95,000 acres of the Nation's most productive farmland and most highly erodible soils. In 1989 the U.S. Geological Survey, in cooperation with the Tennessee Department of Agriculture, began a study to evaluate the effect of agricultural activities on water quality in the watershed and for best management practices designed to reduce agricultural nonpoint-source pollution. Agrichemical monitoring included testing the soils, ground water, and streams at four farm sites ranging from 27 to 420 acres. Monitoring stations were operated downstream to gain a better understanding of the water chemistry as runoff moved from small ditches into larger streams to the outlet of the Beaver Creek watershed. Prior to the implementation of best management practices at one of the farm study sites, some storms produced an average suspended-sediment concentration of 70,000 milligrams per liter. After the implementation of BMP's, however, the average value never exceeded 7,000 milligrams per liter. No-till crop production was the most effective best management practice for conserving soil on the farm fields tested. A natural bottomland hardwood wetland and a constructed wetland were evaluated as instream resource-management systems. The wetlands improved water quality downstream by acting as a filter and removing a significant amount of nonpoint-source pollution from the agricultural runoff. The constructed wetland reduced the sediment, pesticide, and nutrient load by approximately 50 percent over a 4-month period. The results of the Beaver Creek watershed study have increased the understanding of the effects of agriculture on water resources. Study results also demonstrated that BMP's do protect and improve water quality.

  18. Environmental Impact of the Contact and Sonoma Mercury Mines on Water, Sediment, and Biota in Anna Belcher and Little Sulphur Creek Watersheds, Sonoma County, California

    Rytuba, James J.; Hothem, Roger L.; May, Jason T.; Kim, Christopher S.; Lawler, David; Goldstein, Daniel

    2009-01-01

    The Contact and Sonoma mercury (Hg) deposits are among the youngest Hg deposits in the Coast Range Hg mineral belt and are located in the western part of the Clear Lake volcanic field in Sonoma County, California. The mine workings and tailings are located in the headwaters of Anna Belcher Creek, which is a tributary to Little Sulphur Creek. The Contact Hg mine produced about 1,000 flasks of Hg, and the Sonoma mine produced considerably less. Waste rock and tailings eroded from the Contact and Sonoma mines have contributed Hg-enriched mine waste material to the headwaters of Anna Belcher Creek. The mines are located on federal land managed by the U.S. Bureau of Land Management (USBLM). The USBLM requested that the U.S. Geological Survey (USGS) measure and characterize Hg and other geochemical constituents in tailings, sediment, water, and biota at the Contact and Sonoma mines and in Anna Belcher and Little Sulphur Creeks. This report is made in response to the USBLM request, the lead agency mandated to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) - Removal Site Investigation (RSI). The RSI applies to removal of Hg-contaminated mine waste from the Contact and Sonoma mines as a means of reducing Hg transport to Anna Belcher and Little Sulphur Creeks. This report summarizes data obtained from field sampling of mine tailings, waste rock, sediment, and water at the Contact and Sonoma mines that was initiated on April 20 during a storm event, and on June 19, 2001. Further sampling of water, sediment, and biota in a pond and tributaries that drain from the mine area was completed on April 1, 2003. Our results permit a preliminary assessment of the mining sources of Hg and associated chemical constituents that could elevate levels of monomethyl Hg (MMeHg) in tributaries and biota that are impacted by historic mining.

  19. NPDES Permit for Eagle Oil and Gas Company – Sheldon Dome Field in Wyoming

    EPA Pesticide Factsheets

    Under NPDES permit WY-0020338, the Eagle Oil and Gas Company is authorized to discharge from its Sheldon Dome Field wastewater treatment facility in Fremont County, Wyoming, to an unnamed ephemeral tributary of Dry Creek, a tributary to the Wind River.

  20. Long-term effects of high intensity prescribed fire on vegetation dynamics in the Wine Spring Creek Watershed, Western North Carolina, USA

    Katherine Elliott; James Vose; Ronald Hendrick

    2009-01-01

    We examined the long-term effects of a prescribed fire in a southern Appalachian watershed in Nantahala National Forest, western North Carolina, USA. Fire was prescribed in 1995 on this site by forest managers to restore a degraded pine (Pinus spp.)-hardwood community, specifically to stimulate forage production, promote pine and oak (Quercus spp.) regeneration, and...

  1. Use of short-term (5-Minute) and long-term (18-Hour) leaching tests to characterize, fingerprint, and rank mine-waste material from historical mines in the Deer Creek, Snake River, and Clear Creek Watersheds in and around the Montezuma Mining District, Colorado

    Hageman, Philip L.

    2004-01-01

    Precipitation-induced runoff from historical mine-waste located adjacent to the headwaters of the Snake River, Deer Creek, Saints John Creek, Grizzly Gulch, Stevens Gulch, and Leavenworth Creek contributes to the degradation of water quality in these streams. Because historical mine-waste piles have had long-term exposure to the atmosphere, it is surmised that runoff from these piles, induced by meteorological events such as cloudbursts and snowmelt, may cause mobility of acid and metals into a watershed due to dissolution of soluble minerals. For this study, 13 mine-waste composite samples from various mine-wastes in these drainage basins were leached using both a short-term and a long-term leach test. Analytical results from this combination of leach tests are tools that allow the investigator to quantify (fingerprint) which geochemical components could be expected in runoff from these piles if they were leached by a cloudburst (5-minute leach test), as well as what the ?worst-case? geochemical profile would look like if the material were subject to extended leaching and breakdown of the mine-waste material (18-hour leach test). Also, this combination of leach tests allows the geoscientist the ability to see geochemical changes in the mine-waste leachate over time. That is, does the leachate become more or less acidic over time; does the specific conductance increase or decrease; and are there changes in the concentrations of major or trace elements? Further, use of a ranking scheme described herein will aid in prediction of which historical mine-waste piles have the greatest potential for impact on a watershed should runoff occur. Because of long-term weathering of these historical mine-waste piles, geochemical profiles, leachate time-trends, and relative ranking of the mine-wastes produced from analysis of the leachates are Hageman_SIR_2508.doc 1 7/21/2004 2:50 PM indicative of how the mine-waste piles can be expected to act in the environment and may help to

  2. Eagle Feathers, the Highest Honor.

    ERIC Educational Resources Information Center

    Beaverhead, Pete

    Following his own advice that elders of the tribe share their knowledge so that "the way of the Indians would come back to the children of today," Pete Beaverhead (1899-1975) tells of the traditions of respect and honor surrounding the eagle feather in a booklet illustrated with black and white drawings. The eagle is an Indian symbol of…

  3. Lead Levels in Utah Eagles

    NASA Astrophysics Data System (ADS)

    Arnold, Michelle

    2006-10-01

    Lead is a health hazard to most animals, causing adverse effects to the nervous and reproductive systems if in sufficient quantity. Found in most fishing jigs and sinkers, as well as some ammunition used in hunting, this metal can poison wildlife such as eagles. Eagles are raptors, or predatory birds, and their lead exposure would most likely comes from their food -- a fish which has swallowed a sinker or lead shot in carrion (dead animal matter). As part of an ongoing project to investigate the environment lead levels in Utah, the bone lead levels in the wing bones of eagles have been measured for eagle carcasses found throughout Utah. The noninvasive technique of x-ray fluorescence was used, consisting of a Cd-109 radioactive source to activate lead atoms and a HPGe detector with digital electronics to collect the gamma spectra. Preliminary results for the eagles measured to date will be presented.

  4. EAGLES NEST WILDERNESS, COLORADO.

    Tweto, Ogden; Williams, Frank E.

    1984-01-01

    On the basis of a geologic and mineral survey, a primitive area that constitutes the nucleus of the Eagles Nest Wilderness, Colorado was appraised to offer little promise for the occurrence of mineral or energy resources. Among the additional areas later incorporated in the wilderness, only a strip near a major fault west and northwest of Frisco and Dillon is classed as having probable mineral-resource potential. If mineral deposits exist, they probably are of the silver-lead-zinc or fluorspar types.

  5. Simulating mercury and methyl mercury stream concentrations at multiple scales in a wetland influenced coastal plain watershed (McTier Creek, SC, USA)

    Chris Knightes; G.M. Davis; H.E. Golden; P.A. Conrads; P.M. Bradley; C.A. Journey

    2016-01-01

    Mercury (Hg) is the toxicant responsible for the most fish advisories across the United States, with 1.1 million river miles under advisory. The processes governing fate, transport, and transformation of mercury in streams and rivers are not well understood, in large part, because these systems are intimately linked with their surrounding watersheds and are often...

  6. Identifying fecal pollution sources using 3M(™) Petrifilm (™) count plates and antibiotic resistance analysis in the Horse Creek Watershed in Aiken County, SC (USA).

    PubMed

    Harmon, S Michele; West, Ryan T; Yates, James R

    2014-12-01

    Sources of fecal coliform pollution in a small South Carolina (USA) watershed were identified using inexpensive methods and commonly available equipment. Samples from the upper reaches of the watershed were analyzed with 3M(™) Petrifilm(™) count plates. We were able to narrow down the study's focus to one particular tributary, Sand River, that was the major contributor of the coliform pollution (both fecal and total) to a downstream reservoir that is heavily used for recreation purposes. Concentrations of total coliforms ranged from 2,400 to 120,333 cfu/100 mL, with sharp increases in coliform counts observed in samples taken after rain events. Positive correlations between turbidity and fecal coliform counts suggested a relationship between fecal pollution and stormwater runoff. Antibiotic resistance analysis (ARA) compared antibiotic resistance profiles of fecal coliform isolates from the stream to those of a watershed-specific fecal source library (equine, waterfowl, canines, and untreated sewage). Known fecal source isolates and unknown isolates from the stream were exposed to six antibiotics at three concentrations each. Discriminant analysis grouped known isolates with an overall average rate of correct classification (ARCC) of 84.3 %. A total of 401 isolates from the first stream location were classified as equine (45.9 %), sewage (39.4 %), waterfowl (6.2 %), and feline (8.5 %). A similar pattern was observed at the second sampling location, with 42.6 % equine, 45.2 % sewage, 2.8 % waterfowl, 0.6 % canine, and 8.8 % feline. While there were slight weather-dependent differences, the vast majority of the coliform pollution in this stream appeared to be from two sources, equine and sewage. This information will contribute to better land use decisions and further justify implementation of low-impact development practices within this urban watershed.

  7. Field Scale Optimization for Long-Term Sustainability of Best Management Practices in Watersheds

    NASA Astrophysics Data System (ADS)

    Samuels, A.; Babbar-Sebens, M.

    2012-12-01

    Agricultural and urban land use changes have led to disruption of natural hydrologic processes and impairment of streams and rivers. Multiple previous studies have evaluated Best Management Practices (BMPs) as means for restoring existing hydrologic conditions and reducing impairment of water resources. However, planning of these practices have relied on watershed scale hydrologic models for identifying locations and types of practices at scales much coarser than the actual field scale, where landowners have to plan, design and implement the practices. Field scale hydrologic modeling provides means for identifying relationships between BMP type, spatial location, and the interaction between BMPs at a finer farm/field scale that is usually more relevant to the decision maker (i.e. the landowner). This study focuses on development of a simulation-optimization approach for field-scale planning of BMPs in the School Branch stream system of Eagle Creek Watershed, Indiana, USA. The Agricultural Policy Environmental Extender (APEX) tool is used as the field scale hydrologic model, and a multi-objective optimization algorithm is used to search for optimal alternatives. Multiple climate scenarios downscaled to the watershed-scale are used to test the long term performance of these alternatives and under extreme weather conditions. The effectiveness of these BMPs under multiple weather conditions are included within the simulation-optimization approach as a criteria/goal to assist landowners in identifying sustainable design of practices. The results from these scenarios will further enable efficient BMP planning for current and future usage.

  8. Simulation of climate change effects on streamflow, groundwater, and stream temperature using GSFLOW and SNTEMP in the Black Earth Creek Watershed, Wisconsin

    Hunt, Randall J.; Westenbroek, Stephen M.; Walker, John F.; Selbig, William R.; Regan, R. Steven; Leaf, Andrew T.; Saad, David A.

    2016-08-23

    Potential future changes in air temperature drivers were consistently upward regardless of General Circulation Model and emission scenario selected; thus, simulated stream temperatures are forecast to increase appreciably with future climate. However, the amount of temperature increase was variable. Such uncertainty is reflected in temperature model results, along with uncertainty in the groundwater/surface-water interaction itself. The estimated increase in annual average temperature ranged from approximately 3 to 6 degrees Celsius by 2100 in the upper reaches of Black Earth Creek and 2 to 4 degrees Celsius in reaches farther downstream. As with all forecasts that rely on projections of an unknowable future, the results are best considered to approximate potential outcomes of climate change given the underlying uncertainty.

  9. EAGLE: 'EAGLE'Is an' Algorithmic Graph Library for Exploration

    SciT

    2015-01-16

    The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. Today there is no tools to conduct "graph mining" on RDF standard data sets. We address that need through implementation of popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, degree distribution,more » diversity degree, PageRank, etc.). We implement these algorithms as SPARQL queries, wrapped within Python scripts and call our software tool as EAGLE. In RDF style, EAGLE stands for "EAGLE 'Is an' algorithmic graph library for exploration. EAGLE is like 'MATLAB' for 'Linked Data.'« less

  10. BANNOCK CREEK, POWER COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1980 - 1981

    EPA Science Inventory

    Bannock Creek, Idaho (17040206) is a small agricultural watershed. The basin is partially on the Fort Hall Reservation. Several large farms and leases of reservation land are active in the watershed. Bannock Creek and its tributaries were sampled for suspended sediment load an...

  11. Reynolds Creek long-term agricultural research

    Mark Seyfried; Fred Pierson; Tony Svjecar; Kathleen Lohse

    2016-01-01

    The Reynolds Creek Experimental Watershed (RCEW) was established by the Agricultural Research Service (ARS) in 1960 to investigate rangeland hydrology issues in the northwestern USA. The site, which is administered by the Northwest Watershed Research Center (NWRC) in Boise, Idaho, is representative of much of the region, with a 1000 m elevation range and associated...

  12. Qualitative Erosion and Sedimentation Investigation Maline Creek, City and County of St. Louis, Missouri.

    DTIC Science & Technology

    1985-07-30

    Flooding of Maline Creek in and around St. Louis, Missouri has been a problem. In an effort to provide significant flood damage mitigation, increase...miles of environmental/recreational trails. The sediment transport characteristics of Maline Creek , were qualitatively evaluated and the effect of...erosion and sedimentation of loess soils since they are common to the Maline Creek watershed.

  13. Creek Comparisons.

    ERIC Educational Resources Information Center

    Parker, Pamela H.; Mahoney, Melissa

    1998-01-01

    Details a project in which students assess the health of two seemingly different streams by conducting chemical and biological tests. Focuses on student and teacher use of a watershed educational project in Tennessee. (DDR)

  14. The Eagle's EGGs

    NASA Astrophysics Data System (ADS)

    2001-12-01

    VLT ISAAC Looks for Young Stars in the Famous "Pillars of Creation" Summary Through imaging at infrared wavelengths, evidence has been found for recent star formation in the so-called "Pillars of Creation" in the Eagle Nebula (also known as Messier 16 ), made famous when the NASA/ESA Hubble Space Telescope (HST) obtained spectacular visible-wavelength images of this object in 1995. Those huge pillars of gas and dust are being sculpted and illuminated by bright and powerful high-mass stars in the nearby NGC 6611 young stellar cluster . The Hubble astronomers suggested that perhaps even younger stars were forming inside. Using the ISAAC instrument on the VLT 8.2-m ANTU telescope at the ESO Paranal Observatory , European astronomers have now made a wide-field infrared image of the Messier 16 region with excellent spatial resolution, enabling them to penetrate the obscuring dust and search for light from newly born stars . Two of the three pillars are seen to have very young, relatively massive stars in their tips. Another dozen or so lower-mass stars seem to be associated with the small "evaporating gaseous globules (EGGs)" that the Hubble astronomers had discovered scattered over the surface of the pillars. These findings bring new evidence to several key questions about how stars are born . Was the formation of these new stars triggered as the intense ultraviolet radiation from the NGC 6611 stars swept over the pillars, or were they already there? Will the new stars be prematurely cut off from surrounding gas cloud, thus stunting their growth? If the new stars have disks of gas and dust around them, will they be destroyed before they have time to form planetary systems? PR Photo 37a/01 : Full wide-field ISAAC image of the Eagle Nebula. PR Photo 37b/01 : Close-up view of the ISAAC image , showing the famous "Pillars of Creation". PR Photo 37c/01 : Enlargement of the head of Column 1 . PR Photo 37d/01 : Enlargement of the head of Column 2 . PR Photo 37e/01

  15. Estimating pothole wetland connectivity to Pipestem Creek ...

    EPA Pesticide Factsheets

    Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding how reliant stream flow is on wetlands within their watershed. We used the isotopic evaporation signal in water to examine wetland-stream hydrologic connectivity within the Pipestem Creek watershed, North Dakota, a watershed dominated by prairie-pothole wetlands. During a wetter-than-normal decade, Pipestem Creek exhibited an evaporated-water signal that had approximately half the isotopic-enrichment signal found in most evaporatively enriched pothole wetlands. If evaporation was mainly occurring within the stream, we expected the evaporation signal to increase from upstream towards downstream. However, the signal either remained similar or decreased downstream over the two years of sampling. Groundwater measured at the water table adjacent to Pipestem Creek had isotopic values that indicated recharge from winter precipitation and had no significant evaporative enrichment. Using isotopic theory and discharge data, we estimated the surface area of open water necessary to generate the evaporation signal found within Pipestem Creek over time. The range of evaporating surface-area estimates was highly dynamic, spanning from 35 to 2380 ha of open water contributing to streamflow over time, and varied primarily with the amount of discharge. The median value (417 ha) was well above the surface area of the Pipestem Creek network (245 ha), and only two periods

  16. Fly with Eagles

    NASA Astrophysics Data System (ADS)

    Brown, G. E.

    My training in many areas of research in theoretical physics derived from what I learned from the "eagles" I flew with. Let me enumerate them. First of all, when the Navy sent me to the University of Wisconsin in January 1944 to become an electrical engineering officer, I met Gregory Breit, who practically adopted me as a son. I learned from him to drag a problem bleeding through the street until it cried for help and gave up. My political indiscretions during my young life forced me to flee to England from Joe McCarthy, where I ended up in the inspiring theory group of Rudi Peierls. Peierls taught us to drive immediately to fundamentals. When I began collaborating with Hans Bethe, the first thing I learned was why he had never had long-term collaborators. I had to wait until he was more than 70 years old in order to have any chance of keeping up with him. He worked like a bulldozer, heading directly for the light at the end of the tunnel. Most important is confidence. He starts each day with a pile of white paper in the upper left-hand corner of his desk and fills it with calculations at a more or less even rate, although he's happy to stop for lunch. I found this to be an amazingly effective procedure to imitate. From my training with Rudi Peierls, his closest friend, I was well prepared to work with Hans. The twenty-odd years I've collaborated with him have been exciting and productive.

  17. Hillslope hydrology research at Caspar Creek

    Elizabeth T. Keppeler; Peter H. Cafferata

    1991-01-01

    As part of the ongoing Caspar Creek Watershed Study on Jackson Demonstration State Forest, researchers from the US Forest Service and the California Department of Forestry and Fire Protection are investigating subsurface drainage in the headwaters of the basin. In order to predict how land use practices will impact stream systems, and hence habitats for aquatic...

  18. Caspar Creek

    Robert R. Ziemer

    2001-01-01

    The USDA Forest Service Pacific Southwest Research Station and the California Department of Forestry and Fire Protection have gauged streamflow, and suspended sediment and precipitation since 1962 in the 473 ha North Fork and the 424 ha South Fork of the 2167 ha Caspar Creek in the Jackson Demonstation State Forest in northwestern California. Within the two Caspar...

  19. Using Caspar Creek flow records to test peak flow estimation methods applicable to crossing design

    Peter H. Cafferata; Leslie M. Reid

    2017-01-01

    Long-term flow records from sub-watersheds in the Caspar Creek Experimental Watersheds were used to test the accuracy of four methods commonly used to estimate peak flows in small forested watersheds: the Rational Method, the updated USGS Magnitude and Frequency Method, flow transference methods, and the NRCS curve number method. Comparison of measured and calculated...

  20. A bald eagle at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    High in a pine tree on the grounds of the Kennedy Space Center, a bald eagle perches on a branch. The Southern Bald Eagle ranges throughout Florida and along the coasts of California, Texas, Louisiana, and the south Atlantic states. Bald eagles are listed as endangered in the U.S., except in five states where they are listed as threatened. The number of nesting pairs of the southern race once numbered several thousand; recent estimates are only 350-375. Most of the southern race nests in Florida. Eagles arrive at KSC during late summer and leave for the north in late spring. They move to nest sites in October and November and lay one to three eggs. The young fledge from February to April. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  1. A bald eagle at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On the grounds of the Kennedy Space Center, a bald eagle takes wing away from two vultures at the site of an undetermined carcass. The Southern Bald Eagle ranges throughout Florida and along the coasts of California, Texas, Louisiana, and the south Atlantic states. Bald eagles are listed as endangered in the U.S., except in five states where they are listed as threatened. The number of nesting pairs of the southern race once numbered several thousand; recent estimates are only 350-375. Most of the southern race nests in Florida. Eagles arrive at KSC during late summer and leave for the north in late spring. They move to nest sites in October and November and lay one to three eggs. The young fledge from February to April. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  2. A bald eagle at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A bald eagle joins two vultures at the site of an undetermined carcass on the grounds of the Kennedy Space Center. The Southern Bald Eagle ranges throughout Florida and along the coasts of California, Texas, Louisiana, and the south Atlantic states. Bald eagles are listed as endangered in the U.S., except in five states where they are listed as threatened. The number of nesting pairs of the southern race once numbered several thousand; recent estimates are only 350-375. Most of the southern race nests in Florida. Eagles arrive at KSC during late summer and leave for the north in late spring. They move to nest sites in October and November and lay one to three eggs. The young fledge from February to April. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  3. NIF Discovery Science Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Kane, Jave; Martinez, David; Pound, Marc; Heeter, Robert; Casner, Alexis; Villette, Bruno; Mancini, Roberto

    2017-10-01

    The University of Maryland and and LLNL are investigating the origin and dynamics of the famous Pillars of the Eagle Nebula and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds. The National Ignition Facility (NIF) Discovery Science program Eagle Nebula has performed NIF shots to study models of pillar formation. The shots feature a new long-duration x-ray source, in which multiple hohlraums mimicking a cluster of stars are driven with UV light in series for 10 to 15 ns each to create a 30 to 60 ns output x-ray pulse. The source generates deeply nonlinear hydrodynamics in the Eagle science package, a structure of dense plastic and foam mocking up a molecular cloud containing a dense core. Omega EP and NIF shots have validated the source concept, showing that earlier hohlraums do not compromise later ones by preheat or by ejecting ablated plumes that deflect later beams. The NIF shots generated radiographs of shadowing-model pillars, and also showed evidence that cometary structures can be generated. The velocity and column density profiles of the NIF shadowing and cometary pillars have been compared with observations of the Eagle Pillars made at the millimeter-wave BIMA and CARMA observatories. Prepared by LLNL under Contract DE-AC52-07NA27344.

  4. Nesting bald eagles attack researcher

    Teryl G. Grubb

    1976-01-01

    Because of the large and relatively stable Bald Eagle (Haliaeetus leucocephalus) population on Kodiak Island, Alaska, studies on nesting, productivity, and other aspects of the species' life history have been a part of a continuing research program on the Kodiak National Wildlife Refuge (Hensel and Troyer 1964, Condor 66: 282; Troyer and...

  5. Watershed Restoration Project

    SciT

    Julie Thompson; Betsy Macfarlan

    2007-09-27

    In 2003, the U.S. Department of Energy issued the Eastern Nevada Landscape Coalition (ENLC) funding to implement ecological restoration in Gleason Creek and Smith Valley Watersheds. This project was made possible by congressionally directed funding that was provided through the US Department of Energy, Energy Efficiency and Renewable Energy, Office of the Biomass Program. The Ely District Bureau of Land Management (Ely BLM) manages these watersheds and considers them priority areas within the Ely BLM district. These three entities collaborated to address the issues and concerns of Gleason Creek and Smith Valley and prepared a restoration plan to improve themore » watersheds’ ecological health and resiliency. The restoration process began with watershed-scale vegetation assessments and state and transition models to focus on restoration sites. Design and implementation of restoration treatments ensued and were completed in January 2007. This report describes the restoration process ENLC undertook from planning to implementation of two watersheds in semi-arid Eastern Nevada.« less

  6. Application of a DRAINMOD-based watershed model to a lower coastal plain watershed

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2003-01-01

    This is a case study for applying DRAINMOD-GIS, a DRAINMOD based lumped parameter watershed model to Chicod Creek, a 11300 ha coastal plain watershed in North Carolina which is not intensively instrumented or documented. The study utilized the current database of land-use, topography, stream network, soil, and weather data available to the State and Federal agencies....

  7. 78 FR 36743 - Adoption of Final Environmental Assessment (UT-040-09-03) Prepared for the Upper Kanab Creek...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... Assessment (UT-040-09-03) Prepared for the Upper Kanab Creek Watershed Vegetation Management Project AGENCY... (NRCS) announces its intent to adopt the Kanab Creek Watershed Vegetation Management Project EA, as... Management Project EA, request a copy of the EA, or submit comments on actions being taken by NRCS regarding...

  8. Optimal selection and placement of green infrastructure to reduce impacts of land use change and climate change on hydrology and water quality: An application to the Trail Creek Watershed, Indiana.

    PubMed

    Liu, Yaoze; Theller, Lawrence O; Pijanowski, Bryan C; Engel, Bernard A

    2016-05-15

    The adverse impacts of urbanization and climate change on hydrology and water quality can be mitigated by applying green infrastructure practices. In this study, the impacts of land use change and climate change on hydrology and water quality in the 153.2 km(2) Trail Creek watershed located in northwest Indiana were estimated using the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for the following environmental concerns: runoff volume, Total Suspended Solids (TSS), Total Phosphorous (TP), Total Kjeldahl Nitrogen (TKN), and Nitrate+Nitrite (NOx). Using a recent 2001 land use map and 2050 land use forecasts, we found that land use change resulted in increased runoff volume and pollutant loads (8.0% to 17.9% increase). Climate change reduced runoff and nonpoint source pollutant loads (5.6% to 10.2% reduction). The 2050 forecasted land use with current rainfall resulted in the largest runoff volume and pollutant loads. The optimal selection and placement of green infrastructure practices using L-THIA-LID 2.1 model were conducted. Costs of applying green infrastructure were estimated using the L-THIA-LID 2.1 model considering construction, maintenance, and opportunity costs. To attain the same runoff volume and pollutant loads as in 2001 land uses for 2050 land uses, the runoff volume, TSS, TP, TKN, and NOx for 2050 needed to be reduced by 10.8%, 14.4%, 13.1%, 15.2%, and 9.0%, respectively. The corresponding annual costs of implementing green infrastructure to achieve the goals were $2.1, $0.8, $1.6, $1.9, and $0.8 million, respectively. Annual costs of reducing 2050 runoff volume/pollutant loads were estimated, and results show green infrastructure annual cost greatly increased for larger reductions in runoff volume and pollutant loads. During optimization, the most cost-efficient green infrastructure practices were selected and implementation levels increased for greater reductions of runoff and nonpoint source pollutants

  9. Lower Walnut Creek Restoration

    EPA Pesticide Factsheets

    Lower Walnut Creek Restoration Project will restore and enhance coastal wetlands along southern shoreline of Suisun Bay from Suisun Bay upstream along Walnut Creek, improving habitat quality, diversity, and connectivity along three miles of creek channel.

  10. Aquatic Turtles Of Diversely Managed Watersheds in the Ouachita Mountains, Arkansas

    Joseph P. Phelps

    2004-01-01

    Abstract - Aquatic turtles were trapped using hoop nets in creeks and ponds located in four Ouachita Mountain water-sheds (Little Glazypeau, North Alum, Bread, and South Alum Creeks). These watersheds range in management from one dominated by industrial loblolly pine (Pinus taeda L.) plantations to one having virtually no...

  11. Estimating pothole wetland connectivity to Pipestem Creek ...

    EPA Pesticide Factsheets

    Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding how reliant stream flow is on wetlands within their watershed. We used the isotopic evaporation signal in water to examine hydrologic connectivity within Pipestem Creek, North Dakota, with a watershed dominated by prairie potholes. During a decadal period of wet conditions, Pipestem Creek contained evaporated water that had approximately half the isotopic evaporative enrichment signal found in most evaporated permanent wetlands. If evaporation was mainly occurring within the stream, we expected the evaporation signal to increase from the headwaters with distance downstream. However, the signal either remained similar or decreased downstream over the two years of sampling. Groundwater measured at the water table adjacent to Pipestem Creek had isotopic values that indicated recharge from winter precipitation and had no significant evaporation. Using isotopic theory and discharge data, we estimated the surface area of open water necessary to generate the evaporation signal found within Pipestem Creek over time. The range of evaporating surface-area estimates was highly dynamic, spanning from 43 to 2653 ha and varying primarily with discharge. The average value (just over 600 ha) was well above the surface area of Pipestem Creek network (245 ha). This estimate of contributing area indicated that Prairie Pothole wetlands were important sources of stream fl

  12. An approach to study the effect of harvest and wildfire on watershed hydrology and sediment yield in a coast redwood forest

    Christopher G. Surfleet; Arne Skaugset; Brian Dietterick

    2012-01-01

    The Little Creek watershed, within California State Polytechnic University’s Swanton Pacific Ranch, is the location of a paired and nested watershed study to investigate the watershed effects of coast redwood forest management. Streamflow, suspended sediment, and stream turbidity have been collected during storms at two locations on the North Fork Little Creek and at...

  13. 3. EAGLE ROCK CONTROL CENTER, OPERATIONS CONTROL. AS SYSTEM BECOMES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAGLE ROCK CONTROL CENTER, OPERATIONS CONTROL. AS SYSTEM BECOMES INCREASINGLY AUTOMATED, EAGLE ROCK WILL BECOME MORE AND MORE THE CENTRAL CONTROL SYSTEM OF THE METROPOLITAN WATER DISTRICT. - Eagle Rock Operations Control Center, Pasadena, Los Angeles County, CA

  14. 77 FR 47628 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [P-13123-002-CA] Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting Postponement On July 17, 2012, the...), on the Eagle Mountain Pumped Storage Hydroelectric Project. However, the meeting has been postponed...

  15. 76 FR 15971 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [P-13123-002-CA] Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Teleconference a. Date and Time of Meeting... staff of the U.S. Fish and Wildlife Service and Eagle Crest Energy as part of its on-going Section 7...

  16. 76 FR 22699 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [P-13123-002--CA] Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Teleconference a. Date and Time of Meeting... staff of the U.S. Fish and Wildlife Service and Eagle Crest Energy as part of its on-going Section 7...

  17. 77 FR 27174 - Eagle Permits; Changes in the Regulations Governing Eagle Permitting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ..., proposed rule to revise the regulations for permits for nonpurposeful take of golden eagles (Aquila... will post all comments on http:/www.regulations.gov. This generally means that we will post any... of golden eagles (Aquila chrysaetos) and bald eagles (Haliaeetus leucocephalus), where the take is...

  18. The Northern Bald Eagle (Haliaeetus leucocephalus alascanus).

    DTIC Science & Technology

    1979-01-01

    finally lured out of the nest with a show of food. Kussman (1976, cited in Diss. Abst. Intern. 38(3):1033-D) studied post- fledging behavior of eagles...Frenzel, L. D., G. Juenemann, and J. Kussman 1973 Behavioral Aspects of Eagle Nest Surveys. pp 33-36 in: Bald Eagle Nest Survey Workshop, 15 Aug. U.S...J. Ligas, and W. B. Robertson, Jr. 1970 Organochlorine and Heavy Metal Residues in Bald Eagle Eggs. Pestic. Monit. Jour., 3(3): 136-140. Kussman , J

  19. Hermosa Creek Watershed Protection Act of 2014

    THOMAS, 113th Congress

    Sen. Bennet, Michael F. [D-CO

    2013-04-25

    Senate - 12/10/2014 Placed on Senate Legislative Calendar under General Orders. Calendar No. 632. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  20. Baseline Characteristics of Jordan Creek, Juneau, Alaska

    Host, Randy H.; Neal, Edward G.

    2004-01-01

    Anadromous fish populations historically have found healthy habitat in Jordan Creek, Juneau, Alaska. Concern regarding potential degradation to the habitat by urban development within the Mendenhall Valley led to a cooperative study among the City and Borough of Juneau, Alaska Department of Environmental Conservation, and the U.S. Geological Survey, that assessed current hydrologic, water-quality, and physical-habitat conditions of the stream corridor. Periods of no streamflow were not uncommon at the Jordan Creek below Egan Drive near Auke Bay stream gaging station. Additional flow measurements indicate that periods of no flow are more frequent downstream of the gaging station. Although periods of no flow typically were in March and April, streamflow measurements collected prior to 1999 indicate similar periods in January, suggesting that no flow conditions may occur at any time during the winter months. This dewatering in the lower reaches likely limits fish rearing and spawning habitat as well as limiting the migration of juvenile salmon out to the ocean during some years. Dissolved-oxygen concentrations may not be suitable for fish survival during some winter periods in the Jordan Creek watershed. Dissolved-oxygen concentrations were measured as low as 2.8 mg/L at the gaging station and were measured as low as 0.85 mg/L in a tributary to Jordan Creek. Intermittent measurements of pH and dissolved-oxygen concentrations in the mid-reaches of Jordan Creek were all within acceptable limits for fish survival, however, few measurements of these parameters were made during winter-low-flow conditions. One set of water quality samples was collected at six different sites in the Jordan Creek watershed and analyzed for major ions and dissolved nutrients. Major-ion chemistry showed Jordan Creek is calcium bicarbonate type water with little variation between sampling sites.

  1. Dry creek long-term watershed study: the effects of harvesting in streamside management zones and adjacent uplands of riparian corridors on avian communities in the Coastal Plain of Georgia

    Merideth P. Grooms; J. Drew Lanham; T. Bently Wigley

    2006-01-01

    We evaluated the effects of Best Management Practices (BMPs) harvesting on avian communities associated with headwater streams in the Georgia Coastal Plain. Two watersheds served as references, with no timber harvesting, and two treatment watersheds were clearcut with retention of Streamside Management Zones (SMZs) according to Georgia BMPs for forestry. Bird...

  2. Utilizing long-term ARS data to compare and contrast hydroclimatic trends from snow and rainfall dominated watersheds

    The U.S. Department of Agriculture–ARS, Northwest and Southwest Watershed Research Centers have operated the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho and the Walnut Gulch Experimental Watershed (WGEW) in southern Arizona since the 1950s. Each watershed is densely instrumen...

  3. Hydrologic modeling of two glaciated watersheds in Northeast Pennsylvania

    Srinivasan, M.S.; Hamlett, J.M.; Day, R.L.; Sams, J.I.; Petersen, G.W.

    1998-01-01

    A hydrologic modeling study, using the Hydrologic Simulation Program - FORTRAN (HSPF), was conducted in two glaciated watersheds, Purdy Creek and Ariel Creek in northeastern Pennsylvania. Both watersheds have wetlands and poorly drained soils due to low hydraulic conductivity and presence of fragipans. The HSPF model was calibrated in the Purdy Creek watershed and verified in the Ariel Creek watershed for June 1992 to December 1993 period. In Purdy Creek, the total volume of observed streamflow during the entire simulation period was 13.36 x 106 m3 and the simulated streamflow volume was 13.82 x 106 m3 (5 percent difference). For the verification simulation in Ariel Creek, the difference between the total observed and simulated flow volumes was 17 percent. Simulated peak flow discharges were within two hours of the observed for 30 of 46 peak flow events (discharge greater than 0.1 m3/sec) in Purdy Creek and 27 of 53 events in Ariel Creek. For 22 of the 46 events in Purdy Creek and 24 of 53 in Ariel Creek, the differences between the observed and simulated peak discharge rates were less than 30 percent. These 22 events accounted for 63 percent of total volume of streamflow observed during the selected 46 peak flow events in Purdy Creek. In Ariel Creek, these 24 peak flow events accounted for 62 percent of the total flow observed during all peak flow events. Differences in observed and simulated peak flow rates and volumes (on a percent basis) were greater during the snowmelt runoff events and summer periods than for other times.A hydrologic modeling study, using the Hydrologic Simulation Program - FORTRAN (HSPF), was conducted in two glaciated watersheds, Purdy Creek and Ariel Creek in northeastern Pennsylvania. Both watersheds have wetlands and poorly drained soils due to low hydraulic conductivity and presence of fragipans. The HSPF model was calibrated in the Purdy Creek watershed and verified in the Ariel Creek watershed for June 1992 to December 1993 period. In

  4. Estimating pothole wetland connectivity to Pipestem Creek, North Dakota: an isotopic approach

    EPA Science Inventory

    Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding how reliant stream flow is on wetlands within their watershed. We used the isotopic evaporation signal in water to examine hydrologic connectivity within Pipestem Creek, Nort...

  5. A Creek to Bay Biological Assessment in Oakland, California

    NASA Astrophysics Data System (ADS)

    Ahumada, E.; Ramirez, N.; Lopez, A.; Avila, M.; Ramirez, J.; Arroyo, D.; Bracho, H.; Casanova, A.; Pierson, E.

    2011-12-01

    In 2007, the Surface Water Ambient Monitoring Program (SWAMP) assessed the impact of trash on water quality in the Peralta Creek which is located in the Fruitvale district of Oakland, CA. This 2011 follow-up study will take further steps in evaluating the physical and biological impacts of pollution and human development on Peralta Creek and in the San Leandro Bay, where the Creek empties into the larger San Francisco Bay estuary. This study will utilize two forms of biological assessment in order to determine the level of water quality and ecosystem health of Peralta Creek and San Leandro Bay in Oakland, California. A Rapid Bioassesment Protocal (RBP) will be used as the method of biological assessment for Peralta Creek. RBP uses a biotic index of benthic macroinvertebrates to provide a measure of a water body's health. Larval trematodes found in two mud snails (Ilynassa obsoleta and Cerithidea californica) will be used to evaluate the health of the San Leandro Bay. Due to the complex life cycle of trematodes, the measure of trematode diversity and richness in host species serves as an indicator of estuarine health (Huspeni 2005). We have completed the assessment of one section of Peralta Creek, located at 2465 34th Avenue, Oakland, CA 94601. Abundance results indicate a moderately healthy creek because there were high levels of pollution tolerant benthic macroinvertebrates. The tolerant group of benthic macroinvertebrates includes such organisms as flatworms, leeches, and scuds. This is possibly due to this section of the creek being pumped up to the surface from culverts impacting the macroinvertebrate's life cycle. Another contributing factor to creek health is the amount of organic debris found in the creek, which inhibits the flow and oxygenation of the water, allowing for more pollution tolerant aquatic insects to persist. Further investigation is being conducted to fully assess the Peralta Creek watershed; from the preliminary results one can surmise that

  6. Constructing bald eagle nests with natural materials

    T. G. Grubb

    1995-01-01

    A technique for using natural materials to build artificial nests for bald eagles (Haliaeetus leucocephalus) and other raptors is detailed. Properly constructed nests are as permanently secured to the nest tree or cliff substrate as any eagle-built nest or human-made platform. Construction normally requires about three hours and at least two people. This technique is...

  7. ASBO Eagle Institute: A Leadership Opportunity

    ERIC Educational Resources Information Center

    Scharff, James

    2012-01-01

    Each summer, ASBO International conducts an Eagle Institute leadership session in the Washington, D.C., area that provides a group of about 25 participants, including Eagle Award recipients, an opportunity to network with and learn from exemplary leaders inside and outside the field of school business management. Each year, the focus of the…

  8. EAGLE The controlled source experiment

    NASA Astrophysics Data System (ADS)

    Maguire, P. K. H.; Eagle Controlled Source Group

    2003-04-01

    In January 2003, a wide-angle reflection / refraction seismic project was carried out over the north-eastern section of the Main Ethiopian Rift as part of the international EAGLE (Ethiopia Afar Geoscientific Lithospheric Experiment) programme. EAGLE comprises a combination of passive and controlled source seismic experiments to determine the geometry and kinematics of a continental rift immediately prior to break-up, enabling the development of magmatic margin break-up models. A total of ˜900 seismic instruments were deployed along two 450km profiles, one along the axis of the Ethiopian Rift into the south-west corner of Afar; and a second across the rift, extending north and south across the uplifted, flood basalt covered, Ethiopian plateau. The two profiles intersect over the Nazret volcanic segment in the rift. This may be indicative of the transition from continental style rifting in which strain is accommodated on the rift bounding border faults, to a state where strain and magmatism have migrated to a narrow zone within the rift, a necessary pre-cursor to break-up. A further ˜300 instruments were deployed in a 100x100km^2 array around the intersection of the two profiles. A total of 16 borehole and 2 lake shots were fired into the network over a period of four days. The principal objectives of the controlled source project were to examine crustal strain, the distribution of crustal magmatic intrusions, the influence of pre-rift crustal property variations on rift development and also to provide a crustal seismic velocity distribution to improve images of the deep mantle, as well as earthquake locations derived from the EAGLE passive arrays.

  9. Sediment Management at the Watershed Level

    DTIC Science & Technology

    2012-08-01

    al. 2005). Trimble examined ten river basins (1,000 to 7,500 mi2 ) and found that the sediment yield averaged about six percent. He attributed the...importance of storage and remobilization in controlling sediment yield from the 139 mi2 Coon Creek watershed in Wisconsin. Trimble prepared sediment...Federal government in 1984, DHP activities targeted sixteen watersheds comprising 2,625 mi2 within the Yazoo River Basin in the Lower Mississippi

  10. Survey for hemoparasites in imperial eagles (Aquila heliaca), steppe eagles (Aquila nipalensis), and white-tailed sea eagles (Haliaeetus albicilla) from Kazakhstan.

    PubMed

    Leppert, Lynda L; Layman, Seth; Bragin, Evgeny A; Katzner, Todd

    2004-04-01

    Prevalence of hemoparasites has been investigated in many avian species throughout Europe and North America. Basic hematologic surveys are the first step toward evaluating whether host-parasite prevalences observed in North America and Europe occur elsewhere in the world. We collected blood smears from 94 nestling imperial eagles (Aquila heliaca), five nestling steppe eagles (Aquila nipalensis), and 14 nestling white-tailed sea eagles (Haliaeetus albicilla) at Naurzum Zapovednik (Naurzum National Nature Reserve) in Kazakhstan during the summers of 1999 and 2000. In 1999, six of 29 imperial eagles were infected with Lencocytozoon toddi. Five of 65 imperial eagles and one of 14 white-tailed sea eagle were infected with L. toddi in 2000. Furthermore, in 2000, one of 65 imperial eagles was infected with Haemoproteus sp. We found no parasites in steppe eagles in either year, and no bird had multiple-species infections. These data are important because few hematologic studies of these eagle species have been conducted.

  11. EAGLE: relay mirror technology development

    NASA Astrophysics Data System (ADS)

    Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.

    2002-06-01

    EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.

  12. Breeding bald eagles in captivity

    Maestrelli, J.R.; Wiemeyer, Stanley N.

    1975-01-01

    A 7-year-old female Bald Eagle from Alabama was paired with a 4-year-old Alaskan male in a large flight pen during December 1969. Both birds were free of physical defects when originally placed in the pen but the female was blind in one eye prior to the 1973 breeding season.....Nesting first occurred during 1971 when at least two eggs were laid; all but one, which showed no sign of embryonic development after being incubated for 56 days, were broken by the adult birds. Two of three eggs laid in 1972 hatched. Both young died a few days after hatching following a period of inclement weather. Three eggs were laid and hatched during 1973. Antagonism between the nestlings was observed soon after hatching and may have been responsible for the unobserved death of one nestling, two days after the third young hatched. The two remaining young were raised by the adult birds and eventually left the nest 85 days after the first egg hatched. Incubation periods for the 1972-73 clutches averaged 35 days. No renesting attempts were made by the eagles during the 3.year period.

  13. 36 CFR 71.5 - Golden Eagle Passport.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Golden Eagle Passport. 71.5... RECREATION FEES § 71.5 Golden Eagle Passport. (a) The Golden Eagle Passport is an annual permit, valid on a... Passport shall be $10. The annual Golden Eagle Passport shall be nontransferable and the unlawful use...

  14. 36 CFR 71.5 - Golden Eagle Passport.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Golden Eagle Passport. 71.5... RECREATION FEES § 71.5 Golden Eagle Passport. (a) The Golden Eagle Passport is an annual permit, valid on a... Passport shall be $10. The annual Golden Eagle Passport shall be nontransferable and the unlawful use...

  15. 36 CFR 71.5 - Golden Eagle Passport.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Golden Eagle Passport. 71.5... RECREATION FEES § 71.5 Golden Eagle Passport. (a) The Golden Eagle Passport is an annual permit, valid on a... Passport shall be $10. The annual Golden Eagle Passport shall be nontransferable and the unlawful use...

  16. 36 CFR 71.5 - Golden Eagle Passport.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Golden Eagle Passport. 71.5... RECREATION FEES § 71.5 Golden Eagle Passport. (a) The Golden Eagle Passport is an annual permit, valid on a... Passport shall be $10. The annual Golden Eagle Passport shall be nontransferable and the unlawful use...

  17. 36 CFR 71.5 - Golden Eagle Passport.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Golden Eagle Passport. 71.5... RECREATION FEES § 71.5 Golden Eagle Passport. (a) The Golden Eagle Passport is an annual permit, valid on a... Passport shall be $10. The annual Golden Eagle Passport shall be nontransferable and the unlawful use...

  18. AmeriFlux US-Rws Reynolds Creek Wyoming big sagebrush

    DOE Data Explorer

    Flerchinger, Gerald [USDA Agricultural Research Service

    2017-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Rws Reynolds Creek Wyoming big sagebrush. Site Description - The site is located on the USDA-ARS's Reynolds Creek Experimental Watershed. It is dominated by Wyoming big sagebrush on land managed by USDI Bureau of Land Management.

  19. A solar energy estimation procedure using remote sensing techniques. [watershed hydrologic models

    NASA Technical Reports Server (NTRS)

    Khorram, S.

    1977-01-01

    The objective of this investigation is to design a remote sensing-aided procedure for daily location-specific estimation of solar radiation components over the watershed(s) of interest. This technique has been tested on the Spanish Creek Watershed, Northern California, with successful results.

  20. Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost

    Kelly L. Balcarczyk; Jeremy B. Jones; Rudolf Jaffe; Nagamitsu Maie

    2009-01-01

    We examined the impact of permafrost on dissolved organic matter (DOM) composition in Caribou-Poker Creeks Research Watershed (CPCRW), a watershed underlain with discontinuous permafrost, in interior Alaska. The stream draining the high permafrost watershed had higher DOC and dissolved organic nitrogen (DON) concentrations, higher DOCDON and greater specific...

  1. Characterizing mercury concentrations and flux dynamics in a coastal plain watershed using multiple models

    EPA Science Inventory

    The primary goal was to asess Hg cycling within a small coastal plain watershed (McTier Creek) using multiple watershed models with distinct mathematical frameworks that emphasize different system dynamics; a secondary goal was to identify current needs in watershed-scale Hg mode...

  2. Agonistic asymmetries and the foraging ecology of Bald Eagles

    Knight, Richard L.; Skagen, Susan Knight

    1988-01-01

    We investigated the effects of both asymmetries and differing food levels on contest outcomes of wintering Bald Eagles (Haliaeetus leucocephalus) feeding on chum salmon (Oncorhynchus keta) carcasses. Large eagles, regardless of age, were more successful in pirating than smaller eagles. Small pirating eagles were usually unsuccessful unless they were adults attempting to supplant other small eagles. Feeding eagles were more successful in defeating pirating eagles according to (1) whether their heads were up to prior to a pirating attempt, (2) how long their heads had been up, and (3) whether they displayed. During periods of food scarcity pirating eagles were less successful, a fact attributed in a proximate sense to the increase incidence of retaliation by feeding birds. When food was scarce and eagles had a choice between scavenging the pirating, they chose to scavenge more often. Body size appears to be an important factor in determining social dominance and influencing differences in foraging modes of wintering Bald Eagles.

  3. Effects of watershed-scale land use change on stream nitrate concentrations

    Schilling, K.E.; Spooner, J.

    2006-01-01

    The Walnut Creek Watershed Monitoring Project was conducted from 1995 through 2005 to evaluate the response of stream nitrate concentrations to changing land use patterns in paired 5000-ha Iowa watersheds. A large portion of the Walnut Creek watershed is being converted from row crop agriculture to native prairie and savanna by the U.S. Fish and Wildlife Service at the Neal Smith National Wildlife Refuge (NSNWR). Before restoration, land use in both Walnut Creek (treatment) and Squaw Creek (control) watersheds consisted of 70% row crops. Between 1990 and 2005, row crop area decreased 25.4% in Walnut Creek due to prairie restoration but increased 9.2% in Squaw Creek due to Conservation Reserve Program (CRP) grassland conversion back to row crop. Nitrate concentrations ranged between <0.5 to 14 mg L-1 at the Walnut Creek outlet and 2.1 to 15 mg L-1 at the downstream Squaw Creek outlet. Nitrate concentrations decreased 1.2 mg L-1 over 10 yr in the Walnut Creek watershed but increased 1.9 mg L-1 over 10 yr in Squaw Creek. Changes in nitrate were easier to detect and more pronounced in monitored subbasins, decreasing 1.2 to 3.4 mg L-1 in three Walnut Creek subbasins, but increasing up to 8.0 and 11.6 mg L-1 in 10 yr in two Squaw Creek subbasins. Converting row crop lands to grass reduced stream nitrate levels over time in Walnut Creek, but stream nitrate rapidly increased in Squaw Creek when CRP grasslands were converted back to row crop. Study results highlight the close association of stream nitrate to land use change and emphasize that grasslands or other perennial vegetation placed in agricultural settings should be part of a long-term solution to water quality problems. ?? ASA, CSSA, SSSA.

  4. Transport of agrichemicals to ground and surface water in a small central Indiana watershed

    Fenelon, J.M.; Moore, R.C.

    1998-01-01

    The occurrence, distribution, concentrations, and pathways of agrichemicals in water were investigated in the Sugar Creek watershed, a poorly drained agricultural watershed typical of many watersheds in the midwestern USA. Water samples from Sugar Creek, two tile drains, and 11 wells along a groundwater flowpath to Sugar Creek were collected between May 1992 and August 1996 and analyzed for N and pesticide compounds. Nitrate was the principal N species and pesticides were common in alluvial water-bearing units in the Sugar Creek floodplain. In the confined stratified drift aquifers, ammonia was the principal N species and pesticides were rare. Tile drains directly affected the water quality in Sugar Creek by transporting Soil pore water and shallow groundwater containing high concentrations of nitrate (NO3) and pesticides to the creek. When tile drains were flowing (typically December through July), elevated NO3 concentrations (2-10 mg/L NO3N) in the creek correlated with high NO3 concentrations (2-23 mg/L NO3N) in tile drains discharging to the creek. Likewise, with concentrations of atrazine and atrazine metabolites, seasonal trends in the tile-drain effluent were similar to seasonal trends in Sugar Creek. When tile drains went dry, NO3 concentrations in the creek were low, indicating most groundwater discharge to the creek consisted of old or denitrified water. Trace levels of pesticides in the creek at low flow probably were the result of seepage from alluvial water-bearing units.

  5. Bald eagle predation on common loon egg

    DeStefano, Stephen; McCarthy, Kyle P.; Laskowski, Tom

    2010-01-01

    The Common Loon (Gavia immer) must defend against many potential egg predators during incubation, including corvids, Herring Gulls (Larus argentatus), raccoons (Procyon lotor), striped skunk (Mephitis mephitis), fisher (Martes pennanti), and mink (Neovison vison) (McIntyre 1988, Evers 2004, McCann et al. 2005). Bald Eagles (Haliaeetus leucocephalus) have been documented as predators of both adult Common Loons and their chicks (Vliestra and Paruk 1997, Paruk et al. 1999, Erlandson et al. 2007, Piper et al. 2008). In Wisconsin, where nesting Bald Eagles are abundant (>1200 nesting pairs, >1 young/pair/year), field biologists observed four instances of eagle predation of eggs in loon nests during the period 2002–2004 (M. Meyer pers. comm.). In addition, four cases of eagle predation of incubating adult loons were inferred from evidence found at the loon nest (dozens of plucked adult loon feathers, no carcass remains) and/or loon leg, neck, and skull bones beneath two active eagle nests, including leg bones containing the bands of the nearby (<25 m) incubating adult loon. However, although loon egg predation has been associated with Bald Eagles, predation events have yet to be described in peer-reviewed literature. Here we describe a photographic observation of predation on a Common Loon egg by an immature Bald Eagle as captured by a nest surveillance video camera on Lake Umbagog, a large lake (32 km2) at Umbagog National Wildlife Refuge (UNWR) in Maine.

  6. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    SciT

    Hinzman, R.L.; Beauchamp, J.J.; Cada, G.F.

    1996-04-01

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities.

  7. Analytical results for Bullion Mine and Crystal Mine waste samples and bed sediments from a small tributary to Jack Creek and from Uncle Sam Gulch, Boulder River watershed, Montana

    Fey, David L.; Church, Stan E.; Finney, Christopher J.

    2000-01-01

    Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana affect water quality as a result of acid-generation and toxic-metal solubilization. Mine waste and tailings in the unnamed tributary to Jack Creek draining the Bullion mine area and in Uncle Sam Gulch below the Crystal mine are contributors to water quality degradation of Basin Creek and Cataract Creek, Montana. Basin Creek and Cataract Creek are two of three tributaries to the Boulder River in the study area. The bed sediment geochemistry in these two creeks has also been affected by the acidic drainage from these two mines. Geochemical analysis of 42 tailings cores and eleven bed-sediment samples was undertaken to determine the concentrations of Ag, As, Cd, Cu, Pb, and Zn present in these materials. These elements are environmentally significant, in that they can be toxic to fish and/or the invertebrate organisms in the aquatic food chain. Suites of one-inch cores of mine waste and tailings material were taken from two breached tailings impoundments near the site of the Bullion mine and from Uncle Sam Gulch below the Crystal mine. Forty-two core samples were taken and divided into 211 subsamples. The samples were analyzed by ICP-AES (inductively coupled plasma-atomic emission spectroscopy) using a mixed-acid (HC1-HNO3-HC1O4-HF) digestion. Results of the core analyses show that some samples contain moderate to very high concentrations of arsenic (as much as 13,000 ppm), silver (as much as 130 ppm), cadmium (as much as 260 ppm), copper (as much as 9,000 ppm), lead (as much as 11,000 ppm), and zinc (as much as 18,000 ppm). Eleven bed-sediment samples were also subjected to the mixed-acid total digestion, and a warm (50°C) 2M HC1-1% H2O2 leach and analyzed by ICP-AES. Results indicate that bed sediments of the Jack Creek tributary are impacted by past mining at the Bullion and Crystal mines. The contaminating metals are mostly contained in the 2M HC1-1% H2O2

  8. Daily Streamflow Predictions in an Ungauged Watershed in Northern California Using the Precipitation-Runoff Modeling System (PRMS): Calibration Challenges when nearby Gauged Watersheds are Hydrologically Dissimilar

    NASA Astrophysics Data System (ADS)

    Dhakal, A. S.; Adera, S.

    2017-12-01

    Accurate daily streamflow prediction in ungauged watersheds with sparse information is challenging. The ability of a hydrologic model calibrated using nearby gauged watersheds to predict streamflow accurately depends on hydrologic similarities between the gauged and ungauged watersheds. This study examines daily streamflow predictions using the Precipitation-Runoff Modeling System (PRMS) for the largely ungauged San Antonio Creek watershed, a 96 km2 sub-watershed of the Alameda Creek watershed in Northern California. The process-based PRMS model is being used to improve the accuracy of recent San Antonio Creek streamflow predictions generated by two empirical methods. Although San Antonio Creek watershed is largely ungauged, daily streamflow data exists for hydrologic years (HY) 1913 - 1930. PRMS was calibrated for HY 1913 - 1930 using streamflow data, modern-day land use and PRISM precipitation distribution, and gauged precipitation and temperature data from a nearby watershed. The PRMS model was then used to generate daily streamflows for HY 1996-2013, during which the watershed was ungauged, and hydrologic responses were compared to two nearby gauged sub-watersheds of Alameda Creek. Finally, the PRMS-predicted daily flows between HY 1996-2013 were compared to the two empirically-predicted streamflow time series: (1) the reservoir mass balance method and (2) correlation of historical streamflows from 80 - 100 years ago between San Antonio Creek and a nearby sub-watershed located in Alameda Creek. While the mass balance approach using reservoir storage and transfers is helpful for estimating inflows to the reservoir, large discrepancies in daily streamflow estimation can arise. Similarly, correlation-based predicted daily flows which rely on a relationship from flows collected 80-100 years ago may not represent current watershed hydrologic conditions. This study aims to develop a method of streamflow prediction in the San Antonio Creek watershed by examining PRMS

  9. Golden eagle records from the Midwinter Bald Eagle Survey: information for wind energy management and planning

    Eakle, Wade; Haggerty, Patti; Fuller, Mark; Phillips, Susan L.

    2013-01-01

    The purpose of this Data Series report is to provide the occasions, locations, and counts when golden eagles were recorded during the annual Midwinter Bald Eagle Surveys. Golden eagles (Aquila chrysaetos) are protected by Federal statutes including the Bald and Golden Eagle Protection Act (BGEPA) (16 USC 668-668c) and the Migratory Bird Treaty Act (MBTA) (16 USC 703-12). The U.S. Fish and Wildlife Service (Service) manages golden eagles with the goal of maintaining stable or increasing breeding populations (U.S. Fish and Wildlife Service, 2009). Development for the generation of electricity from wind turbines is occurring in much of the range of the golden eagle in the western United States. Development could threaten population stability because golden eagles might be disturbed by construction and operation of facilities and they are vulnerable to mortality from collisions with wind turbines (Smallwood and Thelander, 2008). Therefore, the Service has proposed a process by which wind energy developers can collect information that could lead to Eagle Conservation Plans (ECP), mitigation, and permitting that allow for golden eagle management in areas of wind energy development (U.S. Fish and Wildlife Service, 2011). The Service recommends that ECP be developed in stages, and the first stage is to learn if golden eagles occur at the landscape level where potential wind facilities might be located. Information about where eagles occur can be obtained from technical literature, agency files, and other sources of information including on-line biological databases. The broad North American distribution of golden eagles is known, but there is a paucity of readily available information about intermediate geographic scales and site-specific scales, especially during the winter season (Kochert and others, 2002).

  10. MQ-1C Gray Eagle Unmanned Aircraft System (MQ-1C Gray Eagle)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-420 MQ-1C Gray Eagle Unmanned Aircraft System (MQ-1C Gray Eagle) As of FY 2017 President’s...Budget Defense Acquisition Management Information Retrieval (DAMIR) March 21, 2016 17:33:19 UNCLASSIFIED MQ-1C Gray Eagle December 2015 SAR March 21...Gray Eagle December 2015 SAR March 21, 2016 17:33:19 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element PEO - Program Executive Officer PM

  11. An Eagle of Cosmic Proportions

    NASA Astrophysics Data System (ADS)

    2009-07-01

    Today ESO has released a new and stunning image of the sky around the Eagle Nebula, a stellar nursery where infant star clusters carve out monster columns of dust and gas. Located 7000 light-years away, towards the constellation of Serpens (the Snake), the Eagle Nebula is a dazzling stellar nursery, a region of gas and dust where young stars are currently being formed and where a cluster of massive, hot stars, NGC 6611, has just been born. The powerful light and strong winds from these massive new arrivals are shaping light-year long pillars, seen in the image partly silhouetted against the bright background of the nebula. The nebula itself has a shape vaguely reminiscent of an eagle, with the central pillars being the "talons". The star cluster was discovered by the Swiss astronomer, Jean Philippe Loys de Chéseaux, in 1745-46. It was independently rediscovered about twenty years later by the French comet hunter, Charles Messier, who included it as number 16 in his famous catalogue, and remarked that the stars were surrounded by a faint glow. The Eagle Nebula achieved iconic status in 1995, when its central pillars were depicted in a famous image obtained with the NASA/ESA Hubble Space Telescope. In 2001, ESO's Very Large Telescope (VLT) captured another breathtaking image of the nebula in the near-infrared, giving astronomers a penetrating view through the obscuring dust, and clearly showing stars being formed in the pillars. The newly released image, obtained with the Wide-Field Imager camera attached to the MPG/ESO 2.2-metre telescope at La Silla, Chile, covers an area on the sky as large as the full Moon, and is about 15 times more extensive than the previous VLT image, and more than 200 times more extensive than the iconic Hubble visible-light image. The whole region around the pillars can now be seen in exquisite detail. The "Pillars of Creation" are in the middle of the image, with the cluster of young stars, NGC 6611, lying above and to the right. The

  12. Restoring Fossil Creek

    ERIC Educational Resources Information Center

    Flaccus, Kathleen; Vlieg, Julie; Marks, Jane C.; LeRoy, Carri J.

    2004-01-01

    Fossil Creek had been dammed for the past 90 years, and plans were underway to restore the stream. The creek runs through Central Arizona and flows from the high plateaus to the desert, cutting through the same formations that form the Grand Canyon. This article discusses the Fossil Creek monitoring project. In this project, students and teachers…

  13. Watershed Seasons

    ERIC Educational Resources Information Center

    Endreny, Anna

    2007-01-01

    All schools are located in "watersheds," land that drains into bodies of water. Some watersheds, like the one which encompasses the school discussed in this article, include bodies of water that are walking distance from the school. The watershed cited in this article has a brook and wetland within a several-block walk from the school. This…

  14. The North Fork of Caspar Creek: a cooperative venture between CDF and USFS

    Pete Cafferata

    1984-01-01

    The Caspar Creek Watershed Study on JDSF has taken a new direction in the last two years, as our work progresses towards full instrumentation of the North Fork phase. When most of the equipment has been installed by the end of the summer, this 1195-acre watershed will become the most intensively sampled drainage ever studied by hydrologists.

  15. Caspar Creek ecology project: annual report, 1967-68

    John W. DeWitt

    1968-01-01

    Two summers of calibration of the north and south fork Caspar Creek stream ecology study areas were completed in 1967. Clearing for logging road construction in the south fork watershed began in May, 1957. Bulldozer operations first reached the stream itself in July. Some calibration determinations were made during the period of road construction and stream clearance...

  16. Sediment delivery in the North Fork of Caspar Creek

    Raymond M. Rice

    1996-01-01

    Sediment delivery was estimated for 13 tributary watersheds and the North Fork of Caspar Creek. The ratio of sediment to erosion averaged 16.4%, ranging from 1.0% to 89.7%. Because the data were so highly skewed their median is a better indicator of central tendency than their mean. The median delivery ratio was 6.3%

  17. Experimental lead poisoning in bald eagles

    Pattee, H.; Wiemeyer, S.; Hoffman, P.; Carpenter, J.; Sileo, L.

    1979-01-01

    Captive, crippled bald eagles unsuitable for release were fed lead shot to determine diagnostic criteria for lead poisoning. The eagles were fluoroscoped and bled periodically to determine shot retention and blood delta--aminolevulinic acid dehydratase activity. Microscopic examination revealed renal tubular degeneration, arterial fibrinoid necrosis and myocardial necrosis. Acid-fast intra-nuclear inclusion bodies were not found in proximal convoluted tubule cells. Analyses of blood and toxicological data are not yet complete.

  18. EAGLE can do Efficient LTL Monitoring

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik

    2003-01-01

    We briefly present a rule-based framework, called EAGLE, that has been shown to be capable of defining and implementing finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time logics, interval logics, forms of quantified temporal logics, and so on. In this paper we show how EAGLE can do linear temporal logic (LTL) monitoring in an efficient way. We give an upper bound on the space and time complexity of this monitoring.

  19. Wildfire impacts on stream sedimentation: re-visiting the Boulder Creek Burn in Little Granite Creek, Wyoming, USA

    Sandra Ryan; Kathleen Dwire

    2012-01-01

    In this study of a burned watershed in northwestern Wyoming, USA, sedimentation impacts following a moderately-sized fire (Boulder Creek burn, 2000) were evaluated against sediment loads estimated for the period prior to burning. Early observations of suspended sediment yield showed substantially elevated loads (5x) the first year post-fire (2001), followed by less...

  20. Geologic map of the Vail West quadrangle, Eagle County, Colorado

    Scott, Robert B.; Lidke, David J.; Grunwald, Daniel J.

    2002-01-01

    Rio Grande rift system in Colorado. In the southwestern part of the map area, a diapiric(?) exposure of the Eagle Valley Evaporite exists and chaotic faults and folds suggest extensive dissolution and collapse of overlying bedrock, indicating the presence of a geologic hazard. Quaternary landslides are common and indicate that landslide hazards are widespread in the area, particularly where old slide deposits are disturbed by construction. The late Pliocene(?) landslide that consists largely of a smectitic upper Morrison Formation matrix and boulders of Dakota Sandstone is readily reactivated. Debris flows are likely to invade low-standing areas within the towns of Vail and West Vail where tributaries of Gore Creek issue from the mountains on the north side of the valley.

  1. 76 FR 22393 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Cancellation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [P-13123-002-CA] Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Cancellation of Teleconference On March 15... Mountain Pumped Storage Hydroelectric Project. This meeting has been cancelled. We will reschedule this...

  2. 77 FR 43280 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With the Bureau of Land Management a... Bureau of Land Management to improve agency coordination and discuss the agencies' overlapping jurisdictions (pursuant to the Federal Land Policy and Management Act and the Federal Power Act), on the Eagle...

  3. 78 FR 25263 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting With the Bureau of Land Management a.... Purpose of the Meeting: Commission staff will meet with the staff of the Bureau of Land Management to... Land Policy and Management Act and the Federal Power Act), on the Eagle Mountain Pumped Storage...

  4. 78 FR 26358 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With the Bureau of Land Management a... of the Meeting: Commission staff will meet with the staff of the Bureau of Land Management to improve... Policy and Management Act and the Federal Power Act), on the Eagle Mountain Pumped Storage Hydroelectric...

  5. Impact of Coastal Development and Marsh Width Variability on Groundwater Quality in Estuarine Tidal Creeks

    NASA Astrophysics Data System (ADS)

    Shanahan, M.; Wilson, A. M.; Smith, E. M.

    2017-12-01

    Coastal upland development has been shown to negatively impact surface water quality in tidal creeks in the southeastern US, but less is known about its impact on groundwater. We sampled groundwater in the upland and along the marsh perimeter of tidal creeks located within developed and undeveloped watersheds. Samples were analyzed for salinity, dissolved organic carbon, nitrogen and phosphorus concentrations. Groundwater samples collected from the upland in developed and undeveloped watersheds were compared to study the impact of development on groundwater entering the marsh. Groundwater samples collected along the marsh perimeter were analyzed to study the impact of marsh width variability on groundwater quality within each creek. Preliminary results suggest a positive correlation between salinity and marsh width in undeveloped watersheds, and a higher concentration of nutrients in developed versus undeveloped watersheds.

  6. Boulder Creek: A stream ecosystem in an urban landscape

    Verplanck, Philip L.; Murphy, Sheila F.; Birkeland, Peter W.; Pitlick,; Barber, Larry B.; Schmidt, Travis S.; Raynolds, Robert G.H.

    2008-01-01

    The Boulder Creek Watershed, within the Front Range region of Colorado, is typical of many western watersheds because it is composed of a high-gradient upper reach mostly fed by snowmelt, a substantial change in gradient at the range front, and an urban corridor within the lower gradient section. A stream ecosystem within an urban landscape not only can provide water for municipal, industrial, and agricultural needs, but also can be utilized for recreation, esthetic enjoyment, and wastewater disposal. The purpose of this 26 km bicycle field trip is to explore the hydrology and geochemistry of Boulder and South Boulder Creeks and to discuss topics including flood frequency and hazards, aqueous geochemistry of the watershed, and potential impacts of invasive species and emerging contaminants on stream ecology.

  7. Study design and preliminary data analysis for a streambank fencing project in the Mill Creek Basin, Pennsylvania

    Galeone, Daniel G.; Koerkle, Edward H.

    1996-01-01

    The Pequea Creek and Mill Creek Basins within Lancaster and Chester Counties in Pennsylvania have been identified as areas needing control of nonpoint-source (NFS) pollution to improve water quality. The two basins are a total of approximately 200 square miles and are primarily underlain by carbonate bedrock. Land use is predominantly agriculture. The most common agricultural NFS pollution-control practices implemented in the Pequea Creek and Mill Creek Basins are barnyard-runoff control and Streambank fencing. To provide land managers information on the effectiveness of Streambank fencing in controlling NFS pollution, a study is being conducted in two small paired watersheds within the Mill Creek Basin.

  8. National Program of Inspection of Non-Federal Dams, Tennessee. Jennings Creek Watershed Dam Number 15 (Inventory Number TN 08705), Cumberland River Basin, near North Springs, Jackson County, Tennessee. Phase I Investigation Report,

    DTIC Science & Technology

    1981-06-01

    acres (0.766 mi2 ). Major soil types in the watershed include Bodine, Mountview, Delrose, Dickson, and Mimosa . The drainage area is mountainous and...Bodine, Mountview, Delrose, Dickson, Mimosa c. Average slope - 40% d. Land use - Woods, pasture, few roads, and isolated structures e. Runoff from...490 acres (0.766 mi2) B. Average Channel Slope 2% C. Average Land Slope 40% D. Hydrologic Soil Group 90% C (Dickson, Mimosa ) E. Time of Concentration

  9. The Water Erosion Prediction Project (WEPP) model for saturation excess conditions: application to an agricultural and a forested watershed.

    NASA Astrophysics Data System (ADS)

    Crabtree, B.; Brooks, E.; Ostrowski, K.; Elliot, W. J.; Boll, J.

    2006-12-01

    We incorporated saturation excess overland flow processes in the Water Erosion Prediction Project (WEPP) model for the evaluation of human disturbances in watersheds. In this presentation, we present results of the modified WEPP model to two watersheds: an agricultural watershed with mixed land use, and a forested watershed. The agricultural watershed is Paradise Creek, an intensively monitored watershed with continuous climate, flow and sediment data collection at multiple locations. Restoration efforts in Paradise Creek watershed include changing to minimal tillage or no-tillage sytems, and implementation of structural practices. The forested watershed is the 28 km2 Mica Creek Experimental Watershed (MCEW) where disturbances include clear and partial cutting, and road building. The MCEW has a nested study design, which allows for the analysis of cumulative effects as well as the traditional comparison of treatment versus control. Mica Creek watershed is a high elevation watershed where streamflow is generated mostly by snowmelt. Treatments include road building in 1997, and clearcut and partial-cut logging in 2001. Our results include the simulation of streamflow and sediment delivery at multiple locations within each watershed, and evaluation of the human disturbances.

  10. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  11. Spatial Variations In The Fate And Transport Of Metals In A Mining-Influenced Stream, North Fork Clear Creek, Colorado

    EPA Science Inventory

    North Fork Clear Creek (NFCC) receives acid-mine drainage (AMD) from multiple abandoned mines in the Clear Creek Watershed. Point sources of AMD originate In the Black Hawk/Central City region of the stream. Water chemistry also is influenced by several non-point sources of AMD,...

  12. 78 FR 33282 - Endangered and Threatened Wildlife and Plants; Revision of Critical Habitat for Salt Creek Tiger...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... habitat includes saline wetlands and streams associated with Little Salt Creek and encompasses all three habitat areas occupied by the subspecies at the time of listing. It also includes saline wetlands and... beetle is endemic to saline wetlands associated with the Salt Creek watershed and some of its tributaries...

  13. The Effect of Water Management and Land Use Practices on the Restoration of Lee Vining and Rush Creeks

    Peter Vorster; G. Mathias Kondolf

    1989-01-01

    This paper describes water management and land use practices in the Rush and Lee Vining Creek watersheds and evaluates the effect they have had on the stream environment. The management practices will continue to have effects on the flow regime and consequently habitat conditions on lower Lee Vining and Rush Creeks. The implications of existing and potential management...

  14. Measuring the Erosion of River Channel Widths Impacted by Watershed Urbanization Using Historic Aerial Photographs and Modern Surveys

    NASA Astrophysics Data System (ADS)

    Galster, J. C.; Pazzaglia, F. J.; Germanoski, D.

    2007-12-01

    Land use in a watershed exerts a strong influence on trunk channel form and process. Land use changes act over human time scales which is short enough to measure their effects directly using historic aerial photographs. We show that high-resolution topographic surveys comparing channel form for paired watersheds in the Lehigh Valley, PA are indistinguishable, but have channel widths that have changed dramatically in the past five decades. The two watersheds, Little Lehigh Creek and Sacony Creek, are similar in all respects except they have different amount of urban land use. Aerial photographs of the urbanized Little Lehigh Creek show that a majority of the measured widths (67 of 85) were statistically wider in 1999 than in 1947. In contrast, the measured widths from the agricultural Sacony Creek are more evenly distributed among those that widened (18), narrowed (28), and those that were statistically unchanged (6) from 1946 to 1999. From 1946 to 1999 the only section of Sacony creek that widened was that reach downstream of the only sizable urban area in the watershed. The current land use in Sacony Creek watershed resembles that of 1946, while the Little Lehigh Creek watershed has more than tripled its urban area. These data suggest that the increase in urban areas that subsequently increases peak discharges is the mechanism behind the widening that occurred in the Little Lehigh Creek. These wider channels can affect water quality, aquatic habitat, suspended sediment loads, and river aesthetics.

  15. Alternative Fuels Data Center: Golden Eagle Distributors Inc. to Convert

    several years. Golden Eagle will convert all fleet vehicles to CNG in their six branch operations Entire Fleet to CNG Golden Eagle Distributors Inc. to Convert Entire Fleet to CNG to someone by E-mail Share Alternative Fuels Data Center: Golden Eagle Distributors Inc. to Convert Entire Fleet

  16. Evidence of Bald Eagles feeding on freshwater mussels

    Teryl G. Grubb; Michael A. Coffey

    1982-01-01

    A 1978 study of the winter habitat of the Bald Eagle (Haliaeetus leucocephalus) in the Coconino National Forest, Arizona, indicated repeated and potentially heavy use of a freshwater mussel (Anodonta corpulenta) in the eagles’ diet. As many as 10 eagles (five adults and five immatures) were observed at Upper Lake Mary near...

  17. Bald eagles nesting in Baja California

    Henny, Charles J.; Anderson, Daniel W.; Knoder, C.E.

    1978-01-01

    Published records of Bald Eagles (Haliaeetus leucocephalus) nesting in Baja California during the last 50 years are nonexistent to our knowledge, and few records exist prior to that time. Friedmann et al. (1950:61, Pac. Coast Avifauna 29) describe the distribution of Bald Eagles in Baja California as "a scattering of pairs on both the Pacific and Gulf Sides." Nesting Bald Eagles were first reported by Bryant (1889, Proc. Calif. Acad. Sci. 2: 237-320), who found a pair on Isla Santa Margarita (24°25'N, 111°50'W; hereafter abbreviated as 2425-11150) and saw an adult on the "estero" north from Magdalena Bay (the region where one pair was seen in 1977). Other records were reviewed by Grinnell (1928, Univ. Calif. Publ. Zool. 32).

  18. Whooping crane preyed upon by golden eagle

    Windingstad, Ronald M.; Stiles, Harry E.; Drewien, Roderick C.

    1981-01-01

    The Golden Eagle (Aquila chrysaetos) is the largest predatory bird in North America and is well known for its predatory abilities. Attacks have been reported on mammals such as whitetail jackrabbits (Lepus townsendi) (McGahan 1967, J. Wildl. Mgmt. 31: 496), pronghorn antelope (Antilocapra americana) (Bruhns 1970, Can. Field-Natur. 84: 301), Mallards (Anas platyrhynchos) (Kelleher and O'Malia 1971, Auk 88: 186), and Great Blue Herons (Ardea herodias) (Carnie 1954, Condor 56: 3). This communication describes an attack on an immature Whooping Crane (Grus americana) by a Golden Eagle and the subsequent necropsy findings.

  19. DDE poisoning in an adult bald eagle

    Garcelon, D.K.; Thomas, N.J.

    1997-01-01

    A 12-year-old female bald eagle (Haliaeetus leucocephalus) was found in May 1993 on Santa Catalina Island, California (USA), in a debilitated condition, exhibiting ataxia and tremors; it died within hours. On necropsy, the bird was emaciated but had no evidence of disease or physical injury. Chemical analyses were negative for organophosphorus pesticides and lead poisoning. High concentrations of DDE (wet weight basis) were found in the brain (212 ppm), liver (838 ppm), and serum (53 ppm). Mobilization of DDE, from depleted fat deposits, probably resulted in the lethal concentration in the eagle's brain.

  20. Suspected lead toxicosis in a bald eagle

    Jacobson, E.; Carpenter, J.W.; Novilla, M.

    1977-01-01

    An immature bald eagle (Haliaeetus leucocephalus) was submitted to the University of Maryland, College Park, for clinical examination. The bird was thin, had green watery feces, and was unable to maintain itself in upright posture. Following radiography, the bird went into respiratory distress and died. Numerous lead shot were recovered from the gizzard, and chemical analysis of liver and kidney tissue revealed 22.9 and 11.3 ppm lead, respectively. The clinical signs, necropsy findings, and chemical analysis of the eagle were compatible with lead toxicosis.

  1. Macroinvertebrate community sample collection methods and data collected from Sand Creek and Medano Creek, Great Sand Dunes National Park and Preserve, Colorado, 2005–07

    Ford, Morgan A.; Zuellig, Robert E.; Walters, David M.; Bruce, James F.

    2016-08-11

    This report provides a table of site descriptions, sample information, and semiquantitative aquatic macroinvertebrate data from 105 samples collected between 2005 and 2007 from 7 stream sites within the Sand Creek and Medano Creek watersheds in Great Sand Dunes National Park and Preserve, Saguache County, Colorado. Additionally, a short description of sample collection methods and laboratory sample processing procedures is presented. These data were collected in anticipation of assessing the potential effects of fish toxicants on macroinvertebrates.

  2. Concentration-discharge relationships during an extreme event: Contrasting behavior of solutes and changes to chemical quality of dissolved organic material in the Boulder Creek Watershed during the September 2013 flood: SOLUTE FLUX IN A FLOOD EVENT

    SciT

    Rue, Garrett P.; Rock, Nathan D.; Gabor, Rachel S.

    During the week of September 10-17, 2013, close to 20 inches of rain fell across Boulder County, Colorado, USA. This rainfall represented a 1000-year event that caused massive hillslope erosion, landslides, and mobilization of sediments. The resultant stream flows corresponded to a 100-year flood. For the Boulder Creek Critical Zone Observatory (BC-CZO), this event provided an opportunity to study the effect of extreme rainfall on solute concentration-discharge relationships and biogeochemical catchment processes. We observed base cation and dissolved organic carbon (DOC) concentrations at two sites on Boulder Creek following the recession of peak flow. We also isolated three distinct fractionsmore » of dissolved organic matter (DOM) for chemical characterization. At the upper site, which represented the forested mountain catchment, the concentrations of the base cations Ca, Mg and Na were greatest at the peak flood and decreased only slightly, in contrast with DOC and K concentrations, which decreased substantially. At the lower site within urban corridor, all solutes decreased abruptly after the first week of flow recession, with base cation concentrations stabilizing while DOC and K continued to decrease. Additionally, we found significant spatiotemporal trends in the chemical quality of organic matter exported during the flood recession, as measured by fluorescence, 13C-NMR spectroscopy, and FTICR-MS. Similar to the effect of extreme rainfall events in driving landslides and mobilizing sediments, our findings suggest that such events mobilize solutes by the flushing of the deeper layers of the critical zone, and that this flushing regulates terrestrial-aquatic biogeochemical linkages during the flow recession.« less

  3. WATERSHED INFORMATION - SURF YOUR WATERSHED

    EPA Science Inventory

    Surf Your Watershed is both a database of urls to world wide web pages associated with the watershed approach of environmental management and also data sets of relevant environmental information that can be queried. It is designed for citizens and decision makers across the count...

  4. Fine sediment sources in coastal watersheds with uplifted marine terraces in northwest Humboldt County, California

    Stephen Sungnome Madrone; Andrew P. Stubblefield

    2012-01-01

    Erosion in the Mill and Luffenholtz Creek watersheds in Humboldt County, California, with their extensive clay soils, can lead to high turbidity levels in receiving bodies of water, increasing the costs of treating water for domestic water supplies. Detailed road and erosion surveys and monitoring of suspended sediment, discharge, and turbidity levels in Mill Creek (3....

  5. CAUSAL ANALYSIS OF BIOLOGICAL IMPAIRMENT IN LONG CREEK, A SANDY-BOTTOMED STREAM IN COASTAL SOUTHERN MAINE (Final Report)

    EPA Science Inventory

    This assessment presents results from a complex causal assessment of a biologically impaired, urbanized coastal watershed located primarily in South Portland, Maine, USA—the Long Creek watershed. This case study serves as an example implementation of U.S. Environmental Protectio...

  6. Water Quality of Camp Creek, Costello Creek, and Other Selected Streams on the South Side of Denali National Park and Preserve, Alaska

    Brabets, Timothy P.; Whitman, Matthew S.

    2002-01-01

    The Camp and Costello Creek watersheds are located on the south side of Denali National Park and Preserve. The Dunkle Mine, an abandoned coal mine, is located near the mouth of Camp Creek. Due to concern about runoff from the mine and its possible effects on the water quality and aquatic habitat of Camp Creek and its receiving stream, Costello Creek, these two streams were studied during the summer runoff months (June to September) in 1999 and 2000 as part of a cooperative study with the National Park Service. Since the south side of Denali National Park and Preserve is part of the U.S. Geological Survey?s National Water-Quality Assessment Cook Inlet Basin study unit, an additional part of this study included analysis of existing water-quality data at 23 sites located throughout the south side of Denali National Park and Preserve to compare with the water quality of Camp and Costello Creeks and to obtain a broader understanding of the water quality in this area of the Cook Inlet Basin. Analysis of water column, bed sediment, fish, invertebrate, and algae data indicate no effects on the water quality of Camp Creek from the Dunkle Mine. Although several organic compounds were found in the streambed of Camp Creek, all concentrations were below recommended levels for aquatic life and most of the concentrations were below the minimum reporting level of 50 ?g/kg. Trace element concentrations of arsenic, chromium, and nickel in the bed sediments of Camp Creek exceeded threshold effect concentrations (TEC), but concentrations of these trace elements were also exceeded in streambed sediments of Costello Creek above Camp Creek. Since the percent organic carbon in Camp Creek is relatively high, the toxicity quotient of 0.55 is only slightly above the threshold value of 0.5. Costello Creek has a relatively low organic carbon content and has a higher toxicity quotient of 1.19. Analysis of the water-quality data for other streams located in the south side of Denali National Park

  7. Famphur toxicosis in a bald eagle

    Franson, J. Christian; Kolbe, E.J.; Carpenter, J.W.

    1985-01-01

    On 24 November 1983, an adult female bald eagle (Haliaeetus leucocephalus L.) was found unable to fly near Lewes, Del-aware. She was kept overnight by U.S. Fish and Wildlife Service personnel at Prime Hook National Wildlife Refuge and transported to the Patuxent Wildlife Research Center, Laurel, Maryland, the following afternoon.

  8. Scaled Eagle Nebula Experiments on NIF

    SciT

    Pound, Marc W.

    We performed scaled laboratory experiments at the National Ignition Facility laser to assess models for the creation of pillar structures in star-forming clouds of molecular hydrogen, in particular the famous Pillars of the Eagle Nebula. Because pillars typically point towards nearby bright ultraviolet stars, sustained directional illumination appears to be critical to pillar formation. The experiments mock up illumination from a cluster of ultraviolet-emitting stars, using a novel long duration (30--60 ns), directional, laser-driven x-ray source consisting of multiple radiation cavities illuminated in series. Our pillar models are assessed using the morphology of the Eagle Pillars observed with the Hubblemore » Space Telescope, and measurements of column density and velocity in Eagle Pillar II obtained at the BIMA and CARMA millimeter wave facilities. In the first experiments we assess a shielding model for pillar formation. The experimental data suggest that a shielding pillar can match the observed morphology of Eagle Pillar II, and the observed Pillar II column density and velocity, if augmented by late time cometary growth.« less

  9. Bald eagle, United States [chapter 7

    Teryl G. Grubb

    2010-01-01

    "One of you boys will continue radio-tracking bears, and the other will start climbing trees to band bald eagle nestlings ... " That's how it all began for me back in the summer of 1967, on the Kodiak National Wildlife Refuge in Alaska, my first summer job in the wildlife field. And as it turned out, that inauspicious beginning has led to a fascinating,...

  10. Rover Landing Hardware at Eagle Crater, Mars

    2017-04-21

    The bright landing platform left behind by NASA's Mars Exploration Rover Opportunity in 2004 is visible inside Eagle Crater, at upper right in this April 8, 2017, observation by NASA's Mars Reconnaissance Orbiter. Mars Reconnaissance Orbiter arrived at Mars in March 2006, more than two years after Opportunity's landing on Jan. 25, 2004, Universal Time (Jan. 24, PDT). This is the first image of Eagle Crater from the orbiter's High Resolution Imaging Science Experiment (HiRISE) camera, which has optics that include the most powerful telescope ever sent to Mars. Eagle Crater is about 72 feet (22 meters) in diameter, at 1.95 degrees south latitude, 354.47 degrees east longitude, in the Meridiani Planum region of Mars. The airbag-cushioned lander, with Opportunity folded-up inside, first hit Martian ground near the crater, then bounced and rolled right into the crater. The lander structure was four triangles, folded into a tetrahedron until after the airbags deflated. The triangular petals then opened, exposing the rover. A week later, the rover drove off (see PIA05214), and the landing platform's job was done. The spacecraft's backshell and parachute, jettisoned during final descent, are visible near the lower left corner of this scene. The blue tint of the backshell is an effect of exaggerated color, because HiRISE combines color information from red, blue-green and infrared portions of the spectrum, rather than three different visible-light colors, so its color images are not true color. Opportunity examined Eagle Crater for more than half of the rover's originally planned three-month mission, before driving east and south to larger craters. At Eagle, it found headline-making evidence that water once flowed over the surface and soaked the subsurface of the area. By the time this orbital image of the landing site was taken, about 13 years after the rover departed Eagle, Opportunity had driven more than 27 miles (44 kilometers) and was actively exploring the rim of

  11. Watershed Investigations

    ERIC Educational Resources Information Center

    Bodzin, Alec; Shive, Louise

    2004-01-01

    Investigating local watersheds presents middle school students with authentic opportunities to engage in inquiry and address questions about their immediate environment. Investigation activities promote learning in an investigations interdisciplinary context as students explore relationships among chemical, biological, physical, geological, and…

  12. Watershed improvement using prescribed burns as a way to restore aquatic habitat for native fish

    David F. Gori; Dana Backer

    2005-01-01

    The Nature Conservancy and Bureau of Land Management are testing a model that prescribed burns can be used to increase perennial grass cover, reduce shrubs in desert grassland, and improve watershed condition and aquatic habitat. Results of a prescribed burn in the Hot Springs Creek watershed on Muleshoe Ranch CMA demonstrated the predicted vegetation changes and...

  13. SEDIMENT SOURCES IN AN URBANIZING, MIXED LAND-USE WATERSHED. (R825284)

    EPA Science Inventory

    Abstract

    The Issaquah Creek watershed is a rapidly urbanizing watershed of 144 km2 in western Washington, where sediment aggradation of the main channel and delivery of fine sediment into a large downstream lake have raised increasingly frequent concern...

  14. HYDROLOGIC MODELING OF AN EASTERN PENNSYLVANIA WATERSHED WITH NEXRAD AND RAIN GAUGE DATA

    EPA Science Inventory

    This paper applies the Soil Water Assessment Tool (SWAT) to model the hydrology in the Pocono Creek watershed located in Monroe County, Pa. The calibrated model will be used in a subsequent study to examine the impact of population growth and rapid urbanization in the watershed o...

  15. Watershed response and recovery from the Will Fire: ten years of observations

    Kenneth B. Roby

    1989-01-01

    Watershed response and recovery from a wildfire which burned 95 percent of the Williams Creek watershed in 1979 were monitored. Ground cover reduced to 11 percent by the fire increased to 80 percent by 1983. Grasses seeded for erosion control provided less than 10 percent cover until 3 years following the fire, and no significant difference in ground cover was found...

  16. Changes in storm hydrographs after roadbuilding and selective logging on a coastal watershed in northern California

    Kenneth A. Wright

    1985-01-01

    Abstract - The effects of road building and selective tractor harvesting on storm peak flows and storm volumes were assessed for a small (424 hectare) coastal watershed in Northern California. Two watersheds, the North and South Fork of Caspar Creek were calibrated from 1962 to 1967 while no treatments took place. Roads were then built on the South Fork, and the two...

  17. Some runoff characteristics of a small forested watershed in northern Idaho

    A. R. Stage

    1957-01-01

    Benton Creek on the Priest River Experimental Forest, Idaho, is one of the few gauged streams flowing from a small, forested watershed in the northern Rocky Mountains, a region of summer drought and heavy winter snows. Over sixteen years of streamflow records from this watershed are summarized here to characterize the runoff from such a stream. The streamgauging...

  18. Spatial evaluation of precipitation in two large watersheds in north-central Arizona

    Boris Poff; Assefa Desta; Aregai Tecle

    2004-01-01

    The USDA Forest Service established the Beaver Creek Experimental Watershed Pilot Project in north-central Arizona in 1957 and operated it until 1982. After the Forest Service discontinued the project in 1982, Northern Arizona University's School of Forestry continued to monitor and do research in two of the largest watersheds, known as Woods Canyon and Bar M....

  19. 78 FR 65238 - Proposed Establishment of Class E Airspace; Eagle, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...-0777; Airspace Docket No. 12-AAL-16] Proposed Establishment of Class E Airspace; Eagle, AK AGENCY... action proposes to establish Class E airspace at Eagle Airport, Eagle, AK. Controlled airspace is... management of aircraft operations at Eagle Airport, Eagle, AK. DATES: Comments must be received on or before...

  20. Organic matters: investigating the sources, transport, and fate of organic matter in Fanno Creek, Oregon

    Sobieszczyk, Steven; Keith, Mackenzie K.; Goldman, Jami H.; Rounds, Stewart A.

    2015-01-01

    The U.S. Geological Survey (USGS), in cooperation with Clean Water Services, recently completed an investigation into the sources, transport, and fate of organic matter in the Fanno Creek watershed. The information provided by this investigation will help resource managers to implement strategies aimed at decreasing the excess supply of organic matter that contributes to low dissolved-oxygen levels in Fanno Creek and downstream in the Tualatin River during summer. This fact sheet summarizes the findings of the investigation.

  1. Partridge Creek Diversion Project

    EPA Pesticide Factsheets

    Goal: prevent mercury contamination by keeping the creek from flowing through a mine pit. The project improved brook trout habitat, green infrastructure, the local economy, and decreased human health risks. Includes before-and-after photos.

  2. San Mateo Creek Basin

    EPA Pesticide Factsheets

    The San Mateo Creek Basin comprises approximately 321 square miles within the Rio San Jose drainage basin in McKinley and Cibola counties, New Mexico. This basin is located within the Grants Mining District (GMD).

  3. The Chena River Watershed Hydrology Model

    DTIC Science & Technology

    2012-04-01

    Moose Creek Dam Pro- ject and determine the Probable Maximum Flood (PMF) hydrograph. The Chena River water- shed covers 2115 mi2 . It is characterized...Tanana River in Fairbanks, AK (Figure 1). The watershed has a total area of 2115 mi2 , and elevations range from 420 ft at the outlet to 5280 ft at...physical characteristics. Sub- basin Description Area ( mi2 ) Longest flow path (mi) Elevation at divide (ft) Elevation at outlet (ft

  4. Hydrologic resilience of a Canadian Foothills watershed to forest harvest

    NASA Astrophysics Data System (ADS)

    Goodbrand, Amy; Anderson, Axel

    2016-04-01

    Recent investigations of long-term hydrometeorological, groundwater, and streamflow data from watersheds on the eastern slopes of the Canadian Rocky Mountains showed the streamflow regime was resilient to forest harvest. These watersheds had low levels of harvest relative to their size and a large area of sparsely vegetated alpine talus slopes and exposed bedrock; an area shown to generate the majority of runoff for streamflow. In contrast, watersheds located in the foothills of the Rocky Mountains are of lower relief and typically have harvestable timber throughout the watershed; therefore, these watersheds may be more sensitive to forest disturbance and have increased potential for streamflow response. This project assesses the hydrologic resilience of an Alberta Foothills watershed to forest harvest using a 23-year dataset from the Tri-Creeks Experimental Watershed (Tri-Creeks). Tri-Creeks has been the site of intensive streamflow, groundwater, snow accumulation, and precipitation observations from 1967 - 1990. During the early 1980s, forestry experiments were conducted to compare the effects of timber harvest and riparian buffers, and the effectiveness of timber harvesting ground rules in protecting fisheries and maintaining water resources within three sub-watersheds: Eunice (16.8 km2; control); Deerlick (15.2 km2; 36% streamside timber removal); and, Wampus (28.3 km2; 37% clear-cut). Statistical analyses were used to compare the pre-and post-harvest ratios of treatment to control sub-watershed runoff for: water year, monthly (April - October), snowmelt peak flow, and low flow (10th percentile streamflow) periods as an assessment of hydrologic resilience to forest harvest. The only significant post-harvest change was an increase in water yield during May at Wampus (Mann-Whitney (MW), p<0.05) and Deerlick (MW, p<0.1) Creeks. The lack of change in snowmelt peak flow timing or magnitude was not expected, particularly in Deerlick, which had 36% streamside timber

  5. Mercury contamination in Idaho bald eagles, Haliaeetus leucocephalus.

    PubMed

    Bechard, Marc J; Perkins, Dusty N; Kaltenecker, Gregory S; Alsup, Steve

    2009-11-01

    Because mercury contamination is potentially threatening to bald eagle (Haliaeetus leucocephalus) populations, we collected molted feathers at nests to determine the level of contamination in bald eagles in the state of Idaho, USA. Eagle feathers contained measurable amounts of cadmium (Cd), chromium (Cr), selenium (Se), lead (Pb), as well as mercury (Hg). Cadmium, Cr, Se, and Pb levels averaged 0.17, 4.68, 2.02, and 1.29 mg/kg dry weight, respectively, and were at or below concentrations indicated as causing reproductive failure in bald eagles. Mercury contamination was found to be the highest averaging 18.74 mg/kg dry weight. Although a concentration of only 7.5 mg/kg dry weight Hg in bird feathers can cause reduced productivity and even sterility, all of the eagles we sampled bred successfully and the population of bald eagles continues to grow annually throughout the state.

  6. Eagle-i: Making Invisible Resources, Visible

    PubMed Central

    Haendel, M.; Wilson, M.; Torniai, C.; Segerdell, E.; Shaffer, C.; Frost, R.; Bourges, D.; Brownstein, J.; McInnerney, K.

    2010-01-01

    RP-134 The eagle-i Consortium – Dartmouth College, Harvard Medical School, Jackson State University, Morehouse School of Medicine, Montana State University, Oregon Health and Science University (OHSU), the University of Alaska, the University of Hawaii, and the University of Puerto Rico – aims to make invisible resources for scientific research visible by developing a searchable network of resource repositories at research institutions nationwide. Now in early development, it is hoped that the system will scale beyond the consortium at the end of the two-year pilot. Data Model & Ontology: The eagle-i ontology development team at the OHSU Library is generating the data model and ontologies necessary for resource indexing and querying. Our indexing system will enable cores and research labs to represent resources within a defined vocabulary, leading to more effective searches and better linkage between data types. This effort is being guided by active discussions within the ontology community (http://RRontology.tk) bringing together relevant preexisting ontologies in a logical framework. The goal of these discussions is to provide context for interoperability and domain-wide standards for resource types used throughout biomedical research. Research community feedback is welcomed. Architecture Development, led by a team at Harvard, includes four main components: tools for data collection, management and curation; an institutional resource repository; a federated network; and a central search application. Each participating institution will populate and manage their repository locally, using data collection and curation tools. To help improve search performance, data tools will support the semi-automatic annotation of resources. A central search application will use a federated protocol to broadcast queries to all repositories and display aggregated results. The search application will leverage the eagle-i ontologies to help guide users to valid queries via auto

  7. EAGLE CAP WILDERNESS AND ADJACENT AREAS, OREGON.

    Kilsgaard, Thor H.; Tuchek, Ernest T.

    1984-01-01

    On the basis of a mineral survey of the Eagle Cap Wilderness and adjacent areas a probable mineral-resources potential was identified in five areas in the eastern part of the wilderness. Mineral resources are most likely to occur in tactite deposits in sedimentary rocks at or near contacts with intrusive granitic rocks that could contain copper and small amounts of other metals; however, there is little promise for the occurrence of energy resources.

  8. Wintering bald eagle trends in northern Arizona, 1975-2000

    Teryl G. Grubb

    2003-01-01

    Between 1975 and 2000, 4,525 sightings of wintering bald eagles (Haliaeetus leucocephalus) were recorded at Mormon Lake in northern Arizona. Numbers of wintering eagles fluctuated little in the 20 years from 1975 through 1994 (5.5 ± 3.0 mean sightings per day). However, during the winters of 1995 through 1997 local record highs of 59 to 118 eagles...

  9. Program Monitoring with LTL in EAGLE

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik

    2004-01-01

    We briefly present a rule-based framework called EAGLE, shown to be capable of defining and implementing finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time and metric temporal logics (MTL), interval logics, forms of quantified temporal logics, and so on. In this paper we focus on a linear temporal logic (LTL) specialization of EAGLE. For an initial formula of size m, we establish upper bounds of O(m(sup 2)2(sup m)log m) and O(m(sup 4)2(sup 2m)log(sup 2) m) for the space and time complexity, respectively, of single step evaluation over an input trace. This bound is close to the lower bound O(2(sup square root m) for future-time LTL presented. EAGLE has been successfully used, in both LTL and metric LTL forms, to test a real-time controller of an experimental NASA planetary rover.

  10. Geochemical reconnaissance study of Vassar Meadow (Adams Rib) wetlands and vicinity, Eagle County, Colorado

    Owen, Douglass E.; Breit, George N.

    1995-01-01

    Wetlands are known to be efficient filters of metals dissolved in ground and surface waters. This paper presents the results of geochemical reconnaissance sampling done at the request of the U.S. Environmental Protection Agency in wetlands in Vassar Meadow, Eagle County, Colorado. Ten wetlands were sampled and found to be variously enriched in chromium, molybdenum, and uranium. The uranium and chromium concentrations (and, to a lesser extent, molybdenum) represent an environmental concern should they be released as a result of anthropogenic disturbance. The metal accumulation in these wetlands documents that the wetlands have been functioning as filters that protect water quality in East Brush Creek by lowering the dissolved metal content in water.

  11. Surface-water quality of coal-mine lands in Raccoon Creek Basin, Ohio

    Wilson, K.S.

    1985-01-01

    The Ohio Department of Natural Resources, Division of Reclamation, plans to reclaim abandoned surface mines in the Raccoon Creek watershed in southern Ohio. Historic water-quality data collected between 1975 and 1983 were complied and analyzed in terms of eight selected mine-drainage characteristics to develop a data base for individual subbasin reclamation projects. Areas of mine drainage affecting Raccoon Creek basin, the study Sandy Run basin, the Hewett Fork basin, and the Little raccoon Creek basin. Surface-water-quality samples were collected from a 41-site network from November 1 through November 3, 1983, Results of the sampling reaffirmed that the major sources of mine drainage to Raccoon Creek are in the Little Raccoon Creek basin, and the Hewett Fork basin. However, water quality at the mouth of Sandy Run indicated that it is not a source of mine drainage to Raccoon Creek. Buffer Run, Goose Run, an unnamed tributary to Little Raccoon Creek, Mulga Run, and Sugar Run were the main sources of mine drainage sampled in the Little Raccoon Creek basin. All sites sampled in the East Branch Raccoon Creek basin were affected by mine drainage. This information was used to prepare a work plan for additional data collection before, during, and after reclamation. The data will be used to define the effectiveness of reclamation effects in the basin.

  12. Wintering Golden Eagles on the coastal plain of South Carolina

    DOE PAGES

    Vukovich, Mark; Turner, Kelsey L.; Grazia, Tracy E.; ...

    2015-10-01

    Golden Eagles (Aquila chrysaetos) are rare winter residents in eastern North America, with most found along the Appalachian Mountains and few reported on the coastal plain of the Carolinas. We used remote cameras baited with wild pig (Sus scrofa) and white-tailed deer (Odocoileus virginianus) carcasses to detect, age, and individually identify Golden Eagles on the U.S. Department of Energy’s Savannah River Site on the coastal plain of South Carolina. We identified eight individual Golden Eagles during the winters of 2013–2014 and 2014–2015, with one detected during both winters. We detected eagles for 19 and 66 calendar days during the wintersmore » of 2013–2014 and 2014–2015, respectively, with two adult eagles detected for 30 and 31 calendar days in 2014–2015. Eagles typically scavenged on carcasses for a few days, left, and then returned when cameras were baited with another carcass, suggesting they had remained in the area. These observations suggest that large tracts of forests on the coastal plain may be important wintering areas for some Golden Eagles and, further, that other areas in the coastal plain of the southeastern United States may also harbor wintering eagles. Identification of wintering areas of Golden Eagles in the east will be an important step in the conservation of this protected species, and camera traps baited with carcasses can be an effective tool for such work.« less

  13. Modeling climate change impacts on overwintering bald eagles.

    PubMed

    Harvey, Chris J; Moriarty, Pamela E; Salathé, Eric P

    2012-03-01

    Bald eagles (Haliaeetus leucocephalus) are recovering from severe population declines, and are exerting pressure on food resources in some areas. Thousands of bald eagles overwinter near Puget Sound, primarily to feed on chum salmon (Oncorhynchus keta) carcasses. We used modeling techniques to examine how anticipated climate changes will affect energetic demands of overwintering bald eagles. We applied a regional downscaling method to two global climate change models to obtain hourly temperature, precipitation, wind, and longwave radiation estimates at the mouths of three Puget Sound tributaries (the Skagit, Hamma Hamma, and Nisqually rivers) in two decades, the 1970s and the 2050s. Climate data were used to drive bald eagle bioenergetics models from December to February for each river, year, and decade. Bald eagle bioenergetics were insensitive to climate change: despite warmer winters in the 2050s, particularly near the Nisqually River, bald eagle food requirements declined only slightly (<1%). However, the warming climate caused salmon carcasses to decompose more rapidly, resulting in 11% to 14% less annual carcass biomass available to eagles in the 2050s. That estimate is likely conservative, as it does not account for decreased availability of carcasses due to anticipated increases in winter stream flow. Future climate-driven declines in winter food availability, coupled with a growing bald eagle population, may force eagles to seek alternate prey in the Puget Sound area or in more remote ecosystems.

  14. Wintering Golden Eagles on the coastal plain of South Carolina

    SciT

    Vukovich, Mark; Turner, Kelsey L.; Grazia, Tracy E.

    Golden Eagles (Aquila chrysaetos) are rare winter residents in eastern North America, with most found along the Appalachian Mountains and few reported on the coastal plain of the Carolinas. We used remote cameras baited with wild pig (Sus scrofa) and white-tailed deer (Odocoileus virginianus) carcasses to detect, age, and individually identify Golden Eagles on the U.S. Department of Energy’s Savannah River Site on the coastal plain of South Carolina. We identified eight individual Golden Eagles during the winters of 2013–2014 and 2014–2015, with one detected during both winters. We detected eagles for 19 and 66 calendar days during the wintersmore » of 2013–2014 and 2014–2015, respectively, with two adult eagles detected for 30 and 31 calendar days in 2014–2015. Eagles typically scavenged on carcasses for a few days, left, and then returned when cameras were baited with another carcass, suggesting they had remained in the area. These observations suggest that large tracts of forests on the coastal plain may be important wintering areas for some Golden Eagles and, further, that other areas in the coastal plain of the southeastern United States may also harbor wintering eagles. Identification of wintering areas of Golden Eagles in the east will be an important step in the conservation of this protected species, and camera traps baited with carcasses can be an effective tool for such work.« less

  15. Modeling climate change impacts on overwintering bald eagles

    PubMed Central

    Harvey, Chris J; Moriarty, Pamela E; Salathé Jr, Eric P

    2012-01-01

    Bald eagles (Haliaeetus leucocephalus) are recovering from severe population declines, and are exerting pressure on food resources in some areas. Thousands of bald eagles overwinter near Puget Sound, primarily to feed on chum salmon (Oncorhynchus keta) carcasses. We used modeling techniques to examine how anticipated climate changes will affect energetic demands of overwintering bald eagles. We applied a regional downscaling method to two global climate change models to obtain hourly temperature, precipitation, wind, and longwave radiation estimates at the mouths of three Puget Sound tributaries (the Skagit, Hamma Hamma, and Nisqually rivers) in two decades, the 1970s and the 2050s. Climate data were used to drive bald eagle bioenergetics models from December to February for each river, year, and decade. Bald eagle bioenergetics were insensitive to climate change: despite warmer winters in the 2050s, particularly near the Nisqually River, bald eagle food requirements declined only slightly (<1%). However, the warming climate caused salmon carcasses to decompose more rapidly, resulting in 11% to 14% less annual carcass biomass available to eagles in the 2050s. That estimate is likely conservative, as it does not account for decreased availability of carcasses due to anticipated increases in winter stream flow. Future climate-driven declines in winter food availability, coupled with a growing bald eagle population, may force eagles to seek alternate prey in the Puget Sound area or in more remote ecosystems. PMID:22822430

  16. Hydrologic consequences of logging second-growth redwood watersheds

    Robert R. Ziemer; Jack Lewis; Elizabeth T. Keppeler

    1996-01-01

    Abstract - Streamflow, suspended sediment, and bedload have been gauged continuously since 1962 in the 473-ha North Fork and the 424-ha South Fork of Caspar Creek on the Jackson Demonstration State Forest. From 1963 to 1967, both 90-year-old second-growth watersheds were measured in an ""untreated"" condition. In 1967, logging roads were built in...

  17. Annual evapotranspiration of a forested wetland watershed, SC

    Devendra M. Amatya; Carl Trettin

    2007-01-01

    In this study, hydro-meteorological data collected from 1 964 to 1 9 76 on an approximately 5, 000 ha predominantly forested coastal watershed (Turkey Creek) at the Francis Marion National Forest near Charleston, SC were analyzed to estimate annual evapotranspiration (E T) using four different empirical methods. The first one, reported by Zhang et a/. (2001), that...

  18. Long Term Dynamic Stream Nitrate and Phosphate Changes Following Watershed Wildfires

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Brass, James A.; Riggan, Philip J.; Ewing, Roy; Sebesta, Paul D.; Peterson, David L. (Technical Monitor)

    1994-01-01

    During and following the 1988 Yellowstone National Park wildfires, airborne remotely sensed data were collected in order to characterize various vegetative components, fire front movements and bum intensities. ER-2 derived Thematic Mapper Simulator (TMS) data were used in conjunction with water sampling and chemistry analysis to determine fire intensities in various watersheds and aquatic system condition changes. The airborne Daedalus multispectral TMS data allowed the characterization of various bum intensities in watersheds. Stream sampling was then conducted in those various burned watersheds to determine nitrate and phosphate concentration changes. Six stream watersheds were monitored for five years (1989-1993) during non-snow periods (May/June through September): Cache Creek (intensely burned), Blacktail Deer Creek (intensely burned), Snake River (moderately burned), Lamar River (mixed burning), Soda Butte Creek (lightly burned), and Amphitheatre Creek (unburned). One litre samples were collected from those streams with ISCO water samplers every 12 hours. The samples were removed every 14 days .(28 Samples), and water chemistry analysis was performed. Chemistry analysis indicated that nitrate and phosphate concentrations were elevated in moderately burned watersheds and significantly elevated in severely burned watersheds. The results during the five year study indicate that bum intensities regulate stream water nitrate and phosphate concentrations, and that remotely sensed data can be used effectively to predict watershed chemical changes which will affect aquatic conditions.

  19. Predicting the spatial distribution of Lonicera japonica, based on species occurrence data from two watersheds in Western Kentucky and Tennessee

    Dongjiao Liu; Hao Jiang; Robin Zhang; Kate S. He

    2011-01-01

    The spatial distribution of most invasive plants is poorly documented and studied. This project examined and compared the spatial distribution of a successful invasive plant, Japanese honeysuckle (Lonicera japonica), in two similar-sized but ecologically distinct watersheds in western Kentucky (Ledbetter Creek) and western Tennessee (Panther Creek)....

  20. Daedalus Project's Light Eagle - Human powered aircraft

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Michelob Light Eagle is seen here in flight over Rogers Dry Lake at the NASA Dryden Flight Research Center, Edwards, California. The Light Eagle and Daedalus human powered aircraft were testbeds for flight research conducted at Dryden between January 1987 and March 1988. These unique aircraft were designed and constructed by a group of students, professors, and alumni of the Massachusetts Institute of Technology within the context of the Daedalus project. The construction of the Light Eagle and Daedalus aircraft was funded primarily by the Anheuser Busch and United Technologies Corporations, respectively, with additional support from the Smithsonian Air and Space Museum, MIT, and a number of other sponsors. To celebrate the Greek myth of Daedalus, the man who constructed wings of wax and feathers to escape King Minos, the Daedalus project began with the goal of designing, building and testing a human-powered aircraft that could fly the mythical distance, 115 km. To achieve this goal, three aircraft were constructed. The Light Eagle was the prototype aircraft, weighing 92 pounds. On January 22, 1987, it set a closed course distance record of 59 km, which still stands. Also in January of 1987, the Light Eagle was powered by Lois McCallin to set the straight distance, the distance around a closed circuit, and the duration world records for the female division in human powered vehicles. Following this success, two more aircraft were built, the Daedalus 87 and Daedalus 88. Each aircraft weighed approximately 69 pounds. The Daedalus 88 aircraft was the ship that flew the 199 km from the Iraklion Air Force Base on Crete in the Mediterranean Sea, to the island of Santorini in 3 hours, 54 minutes. In the process, the aircraft set new records in distance and endurance for a human powered aircraft. The specific areas of flight research conducted at Dryden included characterizing the rigid body and flexible dynamics of the Light Eagle, investigating sensors for an

  1. 77 FR 22267 - Eagle Permits; Changes in the Regulations Governing Eagle Permitting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... with rotating wind turbines. Permit Duration and Transferability In February 2011, we published draft... permit applicants, because of the known risk to eagles from collisions with wind turbines and electric..., shoot at, poison, wound, kill, capture, trap, collect, destroy, molest, or disturb'' (Sec. 22.3). The...

  2. Wintering Golden Eagles on the coastal plain of South Carolina

    Mark Vukovich; K.L. Turner; T.E. Grazia; T. Mims; J.C. Beasley; John Kilgo

    2015-01-01

    Golden Eagles (Aquila chrysaetos) are rare winter residents in eastern North America, with most found along the Appalachian Mountains and few reported on the coastal plain of the Carolinas. We used remote cameras baited with wild pig (Sus scrofa) and white-tailed deer (Odocoileus virginianus) carcasses to detect, age, and individually identify Golden Eagles on the U.S...

  3. Conservation significance of alternative nests of golden eagles

    Brian A. Millsap; Teryl G. Grubb; Robert K. Murphy; Ted Swem; James W. Watson

    2015-01-01

    Golden eagles (Aquila chrysaetos) are long-lived raptors that maintain nesting territories that may be occupied for a century or longer. Within occupied nesting territories there is one nest in which eagles lay their eggs in a given year (i.e., the used nest), but there are usually other nests (i.e., alternative nests). Conservation plans often protect used nests, but...

  4. Leaders Hit the Battlefield for Education's Future: 2009 Eagle Institute

    ERIC Educational Resources Information Center

    Verardi, Nicole

    2010-01-01

    More than 40 esteemed school business officials traveled to Washington, D.C., for the 2009 Eagle Institute which was held on July 14-17. They examined the past and the future to uncover leadership insights. Eagle Institute participants shared a powerful experience of camaraderie, reflection, and optimism for the future. This article describes the…

  5. Channel incision and suspended sediment delivery at Caspar Creek, Mendocino County, California

    Nicholas J. Dewey; Thomas E. Lisle; Leslie M. Reid

    2003-01-01

    Tributary and headwater valleys in the Caspar Creek watershed,in coastal Mendocino County, California,show signs of incision along much of their lengths.An episode of incision followed initial-entry logging which took place between 1860 and 1906. Another episode of incision cut into skid-trails created for second-entry logging in the 1970's.

  6. Impacts of wildfire on runoff and sediment loads at Little Granite Creek, western Wyoming

    Sandra E. Ryan; Kathleen A. Dwire; Mark K. Dixon

    2011-01-01

    Baseline data on rates of sediment transport provide useful information on the inherent variability of stream processes and may be used to assess departure in channel form or process from disturbances. In August 2000, wildfire burned portions of the Little Granite Creek watershed near Bondurant, WY where bedload and suspended sediment measurements had been collected...

  7. Assessing effects of changing land use practices on sediment loads in Panther Creek, north coastal California

    Mary Ann Madej; Greg Bundros; Randy Klein

    2012-01-01

    Revisions to the California Forest Practice Rules since 1974 were intended to increase protection of water quality in streams draining timber harvest areas. The effects of improved timber harvesting methods and road designs on sediment loading are assessed for the Panther Creek basin, a 15.4 km2 watershed in Humboldt County, north coastal...

  8. Caspar Creek, what have we learned, what can we learn from this project?

    Forest B. Tilley

    1981-01-01

    For 18 years Jackson Demonstration State Forest, managed by the California Department of Forestry, has been the site of a comprehensive watershed experiment. This experiment, on Caspar Creek five miles south of Fort Bragg on the Mendocino coast (fig. L), is a cooperative project between the California Department of Forestry and the U. S. Forest Service, Pacific...

  9. Coyote Creek (San Diego County) Management and Restoration at Anza-Borrego Desert State Park

    David H. Van Cleve; Lyann A. Comrack; Wier Harold A.

    1989-01-01

    Coyote Creek, along with its associated watershed in Anza-Borrego Desert State Park, is an extremely rich riparian system in the Colorado Desert of California. It provides habitat for the least Bell's vireo (Vireo bellii pusillus), is used as a critical summer watering site for the peninsular bighorn sheep (Ovis canadensis cremnobates), and was...

  10. Simulation of partially saturated - saturated flow in the Caspar Creek E-road groundwater system

    Jason C. Fisher

    2000-01-01

    Abstract - Over the past decade, the U.S. Forest Service has monitored the subsurface hillslope flow of the E-road swale. The swale is located in the Caspar Creek watershed near Fort Bragg, California. In hydrologic year 1990 a logging road was built across the middle section of the hillslope followed by a total clearcut of the area during the following year....

  11. Water budgets for selected watersheds in the Delaware River basin, eastern Pennsylvania and western New Jersey

    Sloto, Ronald A.; Buxton, Debra E.

    2005-01-01

    This pilot study, done by the U.S. Geological Survey in cooperation with the Delaware River Basin Commission, developed annual water budgets using available data for five watersheds in the Delaware River Basin with different degrees of urbanization and different geological settings. A basin water budget and a water-use budget were developed for each watershed. The basin water budget describes inputs to the watershed (precipitation and imported water), outputs of water from the watershed (streamflow, exported water, leakage, consumed water, and evapotranspiration), and changes in ground-water and surface-water storage. The water-use budget describes water withdrawals in the watershed (ground-water and surface-water withdrawals), discharges of water in the watershed (discharge to surface water and ground water), and movement of water of water into and out of the watershed (imports, exports, and consumed water). The water-budget equations developed for this study can be applied to any watershed in the Delaware River Basin. Data used to develop the water budgets were obtained from available long-term meteorological and hydrological data-collection stations and from water-use data collected by regulatory agencies. In the Coastal Plain watersheds, net ground-water loss from unconfined to confined aquifers was determined by using ground-water-flow-model simulations. Error in the water-budget terms is caused by missing data, poor or incomplete measurements, overestimated or underestimated quantities, measurement or reporting errors, and the use of point measurements, such as precipitation and water levels, to estimate an areal quantity, particularly if the watershed is hydrologically or geologically complex or the data-collection station is outside the watershed. The complexity of the water budgets increases with increasing watershed urbanization and interbasin transfer of water. In the Wissahickon Creek watershed, for example, some ground water is discharged to streams in

  12. Conservation practice establishment in two northeast Iowa watersheds: Strategies, water quality implications, and lessons learned

    Gassman, Philip W.; Tisl, J.A.; Palas, E.A.; Fields, C.L.; Isenhart, T.M.; Schilling, K.E.; Wolter, C.F.; Seigley, L.S.; Helmers, M.J.

    2010-01-01

    Coldwater trout streams are important natural resources in northeast Iowa. Extensive efforts have been made by state and federal agencies to protect and improve water quality in northeast Iowa streams that include Sny Magill Creek and Bloody Run Creek, which are located in Clayton County. A series of three water quality projects were implemented in Sny Magill Creek watershed during 1988 to 1999, which were supported by multiple agencies and focused on best management practice (BMP) adoption. Water quality monitoring was performed during 1992 to 2001 to assess the impact of these installed BMPs in the Sny Magill Creek watershed using a paired watershed approach, where the Bloody Run Creek watershed served as the control. Conservation practice adoption still occurred in the Bloody Run Creek watershed during the 10-year monitoring project and accelerated after the project ended, when a multiagency supported water quality project was implemented during 2002 to 2007. Statistical analysis of the paired watershed results using a pre/post model indicated that discharge increased 8% in Sny Magill Creek watershed relative to the Bloody Run Creek watershed, turbidity declined 41%, total suspended sediment declined 7%, and NOx-N (nitrate-nitrogen plus nitrite-nitrogen) increased 15%. Similar results were obtained with a gradual change statistical model.The weak sediment reductions and increased NOx-N levels were both unexpected and indicate that dynamics between adopted BMPs and stream systems need to be better understood. Fish surveys indicate that conditions for supporting trout fisheries have improved in both streams. Important lessons to be taken from the overall study include (1) committed project coordinators, agency collaborators, and landowners/producers are all needed for successful water quality projects; (2) smaller watershed areas should be used in paired studies; (3) reductions in stream discharge may be required in these systems in order for significant sediment

  13. Kleptoparasitism by bald eagles wintering in south-central Nebraska

    Jorde, Dennis G.; Lingle, G.R.

    1988-01-01

    Kleptoparasitism on other raptors was one means by which Bald Eagles (Haliaeetus leucocephalus) secured food along the North Platte and Platte rivers during the winters of 1978-1980. Species kelptoparasitized were Ferruginous Hawk (Buteo regalis), Red-tailed Hawk (B. jamaicensis), Rough-legged Hawk (B. lagopus), Golden Eagle (Aquila chrysaetos), and Bald Eagle. Stealing of prey occurred more often during the severe winter of 1978-1979 when ice cover restricted eagles from feeding on fish than during the milder winter of 1979-1980. Kleptoparasitism occurred principally in agricultural habitats where large numbers of Mallards (Anas platyrhynchos) were foraging. Subadults watched adults steal food and participated in food-stealing with adults, which indicated interspecific kleptoparasitism may be a learned behavior. We suggest factors that may favor interspecific kleptoparasitism as a foraging strategy of Bald Eagles in obtaining waterfowl during severe winters.

  14. Deception Creek Experimental Forest

    Theresa B. Jain; Russell T. Graham

    1996-01-01

    Deception Creek Experimental Forest is in one of the most productive forests in the Rocky Mountains. When the forest was established in 1933, large, old-age western white pine (Pinus monticola) were important for producing lumber products. The forest, located in the Coeur d'Alene Mountains, is in the heart of the western white pine forest type. Therefore, research...

  15. WILLOW CREEK RECLAMATION PROJECT

    EPA Science Inventory

    Working in cooperation with the EPA, Colorado Division of Minerals and Geology, and others, the Willow Creek Reclamation Committee (WCRC) will investigate the sources and character of water entering the mine workings on the Amethyst vein near the town of Creede, Colorado. Activi...

  16. Tenderfoot Creek Experimental Forest

    Ward W. McCaughey

    1996-01-01

    The Tenderfoot Creek Experimental Forest, established in 1961, is representative of the vast expanses of lodgepole pine (Pinus contorta) found east of the Continental Divide in Montana, southwest Alberta, and Wyoming. Discrete generations of even-age lodgepole stands form a mosaic typical of the fireprone forests at moderate to high altitudes in the Northern Rocky...

  17. Bent Creek demonstration program

    Erik C. Berg

    1997-01-01

    Bent Creek Research and Demonstration Forest scientists have transferred the results of research on the ecology and management of Southern Appalachian hardwoods since 1925. Since 1989, a full-time technology transfer specialist has led demonstration efforts. The demonstration program was designed to quickly transfer research results to interested users and to free...

  18. Boulder Creek Study

    ERIC Educational Resources Information Center

    Bingaman, Deirdre; Eitel, Karla Bradley

    2010-01-01

    Boulder Creek runs literally in the backyard of Donnelly Elementary School and happens to be on the EPA list of impaired water bodies. Therefore, a unique opportunity for problem solving opened the door to an exciting chance for students to become scientists, while also becoming active in their community. With the help of the Idaho Department of…

  19. Trout Creek 1999 Burn

    Sherel Goodrich

    2008-01-01

    A small prescribed fire near the mouth of Trout Creek in Strawberry Valley, Wasatch County, Utah, on the Uinta National Forest provided an opportunity to compare production and vascular plant composition in unburned and burned areas. At four years post burn, production of herbaceous plants was about four times greater in the burned area than in the unburned area. Most...

  20. Bent Creek demonstration program

    Erik C. Berg

    1997-01-01

    Bent Creek Research and Demonstration Forest scientists have transferred the results of research on the ecology and management of Southern Appalachian hardwoods since 1925. Since 1989, a full-time technology transfer specialist has led demonstration efforts. The demonstration program was designed to quickly transfer research results to interested users, and free-up...