Sample records for eagle river water

  1. Boundary of the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This vector data set delineates the approximate boundary of the Eagle River watershed valley-fill aquifer (ERWVFA). This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. The boundary of the ERWVFA was developed by combining information from two data sources. The first data source was a 1:250,000-scale geologic map of the Leadville quadrangle developed by Day and others (1999). The location of Quaternary sediments was used as a first approximation of the ERWVFA. The boundary of the ERWVFA was further refined by overlaying the geologic map with Digital Raster Graphic (DRG) scanned images of 1:24,000 topographic maps (U.S. Geological Survey, 2001). Where appropriate, the boundary of the ERWVFA was remapped to correspond with the edge of the valley-fill aquifer marked by an abrupt change in topography at the edge of the valley floor throughout the Eagle River watershed. The boundary of the ERWVFA more closely resembles a hydrogeomorphic region presented by Rupert (2003, p. 8) because it is based upon general geographic extents of geologic materials and not on an actual aquifer location as would be determined through a rigorous hydrogeologic investigation.

  2. Assessment of surface-water quantity and quality, Eagle River watershed, Colorado, 1947-2007

    USGS Publications Warehouse

    Williams, Cory A.; Moore, Jennifer L.; Richards, Rodney J.

    2011-01-01

    The spatial patterns for concentrations of trace metals (aluminum, cadmium, copper, iron, manganese, and zinc) indicate an increase in dissolved concentrations of these metals near historical mining areas in the Eagle River and several tributaries near Belden. In general, concentrations decrease downstream from mining areas. Concentrations typically are near or below reporting limits in Gore Creek and other tributaries within the watershed. Concentrations for trace elements (arsenic, selenium, and uranium) in the watershed usually are below the reporting limit, and no prevailing spatial patterns were observed in the data. Step-trend analysis and temporal-trend analysis provide evidence that remediation of historical mining areas in the upper Eagle River have led to observed decreases in metals concentrations in many surface-waters. Comparison of pre- and post-remediation concentrations for many metals indicates significant decreases in metals concentrations for cadmium, manganese, and zinc at sites downstream from the Eagle Mine Superfund Site. Some sites show order of magnitude reductions in median concentrations between these two periods. Evaluation of monotonic trends for dissolved metals concentrations show downward trends at numerous sites in, and downstream from, historic mining areas. The spatial pattern of nutrients shows lower concentrations on many tributaries and on the Eagle River upstream from Red Cliff with increases in nutrients downstream of major urban areas. Seasonal variations show that for many nutrient species, concentrations tend to be lowest May-June and highest January-March. The gradual changes in concentrations between seasons may be related to dilution effects from increases and decreases in streamflow. Upward trends in nutrients between the towns of Gypsum and Avon were detected for nitrate, orthophosphate, and total phosphorus. An upward trend in nitrite was detected in Gore Creek. No trends were detected in un-ionized ammonia within

  3. Macroinvertebrate and algal community sample collection methods and data collected at selected sites in the Eagle River watershed, Colorado, 2000-07

    USGS Publications Warehouse

    Zuellig, Robert E.; Bruce, James F.

    2010-01-01

    State and local agencies are concerned about the effects of increasing urban development and human population growth on water quality and the biological condition of regional streams in the Eagle River watershed. In response to these needs, the U.S. Geological Survey initiated a study in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, Colorado Springs Utilities, Denver Water, and the U.S. Department of Agriculture Forest Service. As part of this study, previously collected macroinvertebrate and algal data from the Eagle River watershed were compiled. This report includes macroinvertebrate data collected by the U.S. Geological Survey and(or) the U.S. Department of Agriculture Forest Service from 73 sites from 2000 to 2007 and algal data collected from up to 26 sites between 2000 and 2001 in the Eagle River watershed. Additionally, a brief description of the sample collection methods and data processing procedures are presented.

  4. Groundwater Quality, Age, and Probability of Contamination, Eagle River Watershed Valley-Fill Aquifer, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    The Eagle River watershed is located near the destination resort town of Vail, Colorado. The area has a fastgrowing permanent population, and the resort industry is rapidly expanding. A large percentage of the land undergoing development to support that growth overlies the Eagle River watershed valley-fill aquifer (ERWVFA), which likely has a high predisposition to groundwater contamination. As development continues, local organizations need tools to evaluate potential land-development effects on ground- and surface-water resources so that informed land-use and water management decisions can be made. To help develop these tools, the U.S. Geological Survey (USGS), in cooperation with Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority, conducted a study in 2006-2007 of the groundwater quality, age, and probability of contamination in the ERWVFA, north-central Colorado. Ground- and surface-water quality samples were analyzed for major ions, nutrients, stable isotopes of hydrogen and oxygen in water, tritium, dissolved gases, chlorofluorocarbons (CFCs), and volatile organic compounds (VOCs) determined with very low-level laboratory methods. The major-ion data indicate that groundwaters in the ERWVFA can be classified into two major groups: groundwater that was recharged by infiltration of surface water, and groundwater that had less immediate recharge from surface water and had elevated sulfate concentrations. Sulfate concentrations exceeded the USEPA National Secondary Drinking Water Regulations (250 milligrams per liter) in many wells near Eagle, Gypsum, and Dotsero. The predominant source of sulfate to groundwater in the Eagle River watershed is the Eagle Valley Evaporite, which is a gypsum deposit of Pennsylvanian age located predominantly in the western one-half of Eagle County.

  5. Probability of Elevated Nitrate Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated nitrate concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  6. 77 FR 42714 - Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC; Notice of Application...: Eagle Creek Hydropower, LLC; Eagle Creek Land Resources, LLC; and Eagle Creek Water Resources, LLC. e... Contact: Robert Gates, Senior Vice President-- Operations, Eagle Creek Hydropower, LLC, Eagle Creek Water...

  7. Probability of Elevated Volatile Organic Compound (VOC) Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated volatile organic compound (VOC) concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  8. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ...; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land Resources, LLC; Notice... 24, 2012, AER NY-Gen, LLC (transferor), Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources.... Cherry, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources...

  9. 75 FR 27332 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... 9690-106] AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek... Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC (transferees) filed an.... Paul Ho, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources...

  10. Probability of Unmixed Young Groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of unmixed young groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps were developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  11. Macroinvertebrate-based assessment of biological condition at selected sites in the Eagle River watershed, Colorado, 2000-07

    USGS Publications Warehouse

    Zuellig, Robert E.; Bruce, James F.; Healy, Brian D.; Williams, Cory A.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, Colorado Springs Utilities, Denver Water, and the U.S. Department of Agriculture Forest Service (FS), compiled macroinvertebrate (73 sites, 124 samples) data previously collected in the Eagle River watershed from selected USGS and FS studies, 2000-07. These data were analyzed to assess the biological condition (that is, biologically ?degraded? or ?good?) at selected sites in the Eagle River watershed and determine if site class (for example, urban or undeveloped) described biological condition. An independently developed predictive model was applied to calculate a site-specific measure of taxonomic completeness for macroinvertebrate communities, where taxonomic completeness was expressed as the ratio of observed (O) taxa to those expected (E) to occur at each site. Macroinvertebrate communities were considered degraded at sites were O/E values were less than 0.80, indicating that at least 20 percent of expected taxa were not observed. Sites were classified into one of four classes (undeveloped, adjacent road or highway or both, mixed, urban) using a combination of riparian land-cover characteristics, examination of topographic maps and aerial imagery, screening for exceedances in water-quality standards, and best professional judgment. Analysis of variance was used to determine if site class accounted for variability in mean macroinvertebrate O/E values. Finally, macroinvertebrate taxa observed more or less frequently than expected at urban sites were indentified. This study represents the first standardized assessment of biological condition of selected sites distributed across the Eagle River watershed. Of the 73 sites evaluated, just over

  12. Water and Sediment Quality in the Yukon River and its Tributaries Between Atlin, British Columbia, Canada, and Eagle, Alaska, USA, 2004

    USGS Publications Warehouse

    Halm, Douglas R.; Dornblaser, Mark M.

    2007-01-01

    The Yukon River basin is the fourth largest watershed in North America at 831,400 square kilometers (km2). Approximately 126,000 people live within the basin and depend on the Yukon River and its tributaries for drinking water, commerce, subsistence, and recreational fish and game resources. Climate warming in the Arctic and Subarctic regions encompassing the Yukon basin has recently become a concern because of possible far-reaching effects on the ecosystem. Large amounts of carbon and nutrients are stored in permafrost and have potential for release in response to this warming. These changes in carbon and nutrient cycling may result in changes in stream chemistry and productivity, including salmon populations, and ultimately changes in the chemistry and productivity of the Bearing Sea. To address these concerns, the U.S. Geological Survey (USGS) conducted a 5-year comprehensive water-quality study of the Yukon River and its major tributaries starting in 2000. The study included frequent water-quality sampling at a fixed site network as well as intensive sampling along the Yukon River and its major tributaries. This report contains observations of water and sediment quantity and quality of the Yukon River and its tributaries in Canada during 2004. Chemical, biological, physical, and discharge data are presented for the reach of river between Atlin, British Columbia, Canada, and Eagle, Alaska, USA.

  13. 77 FR 25164 - Adequacy Status of the Eagle River, Alaska Particulate Matter Limited Maintenance Plan for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-R10-OAR-2010-1914; FRL-9664-7] Adequacy Status of the Eagle River, Alaska Particulate Matter Limited Maintenance Plan for Transportation Conformity Purposes AGENCY... notifying the public of its finding that the Eagle River, Alaska, Particulate Matter (PM 10 ) Limited...

  14. Water and sediment quality of the Yukon River and its tributaries, from Eagle to St. Marys, Alaska, 2002-2003

    USGS Publications Warehouse

    Dornblaser, Mark M.; Halm, Douglas R.

    2006-01-01

    fixed-site sampling, intensive synoptic sampling of tributaries draining directly into the Yukon River was conducted along its entire length. This report contains observations of water and sediment quality made in the Yukon River basin during the synoptic sampling cruises in years 2002 and 2003. Chemical and biological data are presented for the Yukon River and its major tributaries between the towns of Eagle and St. Marys, Alaska.

  15. Abundance of Harpy and Crested Eagles from a reservoir-impact area in the Low- and Mid-Xingu River.

    PubMed

    Sanaiotti, T M; Junqueira, T G; Palhares, V; Aguiar-Silva, F H; Henriques, L M P; Oliveira, G; Guimarães, V Y; Castro, V; Mota, D; Trombin, D F; Villar, D N A; Lara, K M; Fernandes, D; Castilho, L; Yosheno, E; Alencar, R M; Cesca, L; Dantas, S M; Laranjeiras, T O; Mathias, P C; Mendonça, C V

    2015-08-01

    In the Brazilian Amazon, two monospecific genera, the Harpy Eagle and Crested Eagle have low densities and are classified by IUCN as Near Threatened due to habitat loss, deforestation, habitat degradation and hunting. In this study, we evaluate occurrence of these large raptors using the environmental surveys database from Belo Monte Hydroelectric Power Plant. Integrating the dataset from two methods, we plotted a distribution map along the Xingu River, including records over a 276-km stretch of river. Terrestrial surveys (RAPELD method) were more efficient for detecting large raptors than standardized aquatic surveys, although the latter were complementary in areas without modules. About 53% of the records were obtained during activities of wildlife rescue/flushing, vegetation suppression or in transit. Between 2012 and 2014, four Harpy Eagles were removed from the wild; two shooting victims, one injured by collision with power lines and one hit by a vehicle. Also, seven nests were mapped. The mean distance between Harpy Eagle records was 15 km along the river channel, with a mean of 20 km between nests near the channel, which allowed us to estimate 20 possible pairs using the alluvial forest, riverine forest and forest fragments. Territories of another ten pairs will probably be affected by inundation of the Volta Grande channel, which is far from the main river. The average distance between Crested Eagle records was 16 km along the river channel. The only nest found was 1.3 km away from a Harpy Eagle nest. The remnant forests are under threat of being replaced by cattle pastures, so we recommend that permanently protected riparian vegetation borders (APP) be guaranteed, and that forest fragments within 5 km of the river be conserved to maintain eagle populations.

  16. Chemical quality of surface water in the West Branch Susquehanna River basin, Pennsylvania

    USGS Publications Warehouse

    McCarren, Edward F.

    1964-01-01

    The West Branch Susquehanna River is 228 miles long and drains 6,913 square miles of mountainous area in central Pennsylvania. Much of this area is forestcovered wilderness, part of which is reserved as State game land. Wild animals, such as deer, bear, turkey and grouse, are sheltered there, and many streams contain trout and other game fish. This helps to make the region one of the best hunting and fishing areas in Pennsylvania. The Congress has approved Federal funds for the construction of several reservoirs to prevent flooding of the main river and several of its tributaries. Water stored behind the dams will not be withdrawn below a minimum level designated as conservation pools. These pools will be available for recreation. Several headwater streams, such as Clearfield, Moshannon, and at times Sinnemahoning Creek, that carry drainage from coal mines are acid and contain high concentrations of dissolved solids, especially sulfates. These streams acidify the West Branch Susquehanna River downstream as far as Jersey Shore. One of the most influential tributaries affecting the quality of the West Branch Susquehanna River after they merge is Bald Eagle Creek. Bald Eagle Creek enters the main river downstream from Lock Haven which is approximately 100 river miles from the river's source. Because of its alkaline properties, water of Bald Eagle Creek can neutralize acidic water. Many streams draining small areas and several draining large areas such as Pine Creek, Lycoming Creek, and Loyalsock Creek are clear nearly neutral water low in dissolved solids whose pH is about 7.0 most of the time. These streams have a diluting and neutralizing effect on the quality of the West Branch Susquehanna River, so that from Williamsport downstream the river water is rarely acid, and for most of the time it is of good chemical quality.

  17. Occurrence of anthropogenic organic compounds in ground water and finished water of community water systems in Eagle and Spanish Springs Valleys, Nevada, 2002-2004

    USGS Publications Warehouse

    Rosen, Michael R.; Shaefer, Donald H.; Toccalino, Patricia A.; Delzer, Gregory C.

    2006-01-01

    As a part of the U.S. Geological Survey's National Water-Quality Assessment Program, an effort to characterize the quality of major rivers and aquifers used as a source of supply to some of the largest community water systems (CWSs) in the United States has been initiated. These studies, termed Source Water-Quality Assessments (SWQAs), consist of two sampling phases. Phase 1 was designed to determine the frequency of detection and concentrations of about 260 volatile organic compounds (VOCs), pesticides and pesticide degradates, and other anthropogenic organic compounds in source water of 15 CWS wells in each study. Phase 2 monitors concentrations in the source water and also the associated finished water of CWSs for compounds most frequently detected during phase 1. One SWQA was completed in the Nevada Basin and Range area in Nevada. Ten CWS wells in Eagle Valley and five CWS wells in Spanish Springs Valley were sampled. For phase 2, two wells were resampled in Eagle Valley. Samples were collected during 2002-2004 for both phases. Water use in Eagle Valley is primarily for domestic purposes and is supplied through CWSs. Ground-water sources provide about 55 percent of the public-water supply, and surface-water sources supply about 45 percent. Lesser amounts of water are provided by domestic wells. Very little water is used for agriculture or manufacturing. Spanish Springs Valley has water-use characteristics similar to those in Eagle Valley, although there is more agricultural water use in Spanish Springs Valley than in Eagle Valley. Maximum contaminant concentrations were compared to two human-health benchmarks, if available, to describe the water-quality data in a human-health context for these findings. Measured concentrations of regulated contaminants were compared to U.S. Environmental Protection Agency and Nevada Maximum Contaminant Level (MCL) values. Measured concentrations of unregulated contaminants were compared to Health-Based Screening Levels, which

  18. Hydrologic data from Nation, Kandik, and Yukon rivers, Yukon-Charley Rivers National Preserve, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.

    2001-01-01

    Flow data were collected from two adjacent rivers in Yukon?Charley Rivers National Preserve, Alaska?the Nation River (during 1991?2000) and the Kandik River (1994?2000)?and from the Yukon River (1950?2000) at Eagle, Alaska, upstream from the boundary of the preserve. These flow records indicate that most of the runoff from these rivers occurs from May through September and that the average monthly discharge during this period ranges from 1,172 to 2,210 cubic feet per second for the Nation River, from 1,203 to 2,633 cubic feet per second for the Kandik River, and from 112,000 to 224,000 cubic feet per second for the Yukon River. Water-quality data were collected for the Nation River and several of its tributaries from 1991 to 1992 and for the Yukon River at Eagle from 1950 to 1994. Three tributaries to the Nation River (Waterfall Creek, Cathedral Creek, and Hard Luck Creek) have relatively high concentrations of calcium, magnesium, and sulfate. These three watersheds are underlain predominantly by Paleozoic and Precambrian rocks. The Yukon River transports 33,000,000 tons of suspended sediment past Eagle each year. Reflecting the inputs from its major tributaries, the water of the Yukon River at Eagle is dominated by calcium?magnesium bicarbonate.

  19. Modeling climate change impacts on overwintering bald eagles.

    PubMed

    Harvey, Chris J; Moriarty, Pamela E; Salathé, Eric P

    2012-03-01

    Bald eagles (Haliaeetus leucocephalus) are recovering from severe population declines, and are exerting pressure on food resources in some areas. Thousands of bald eagles overwinter near Puget Sound, primarily to feed on chum salmon (Oncorhynchus keta) carcasses. We used modeling techniques to examine how anticipated climate changes will affect energetic demands of overwintering bald eagles. We applied a regional downscaling method to two global climate change models to obtain hourly temperature, precipitation, wind, and longwave radiation estimates at the mouths of three Puget Sound tributaries (the Skagit, Hamma Hamma, and Nisqually rivers) in two decades, the 1970s and the 2050s. Climate data were used to drive bald eagle bioenergetics models from December to February for each river, year, and decade. Bald eagle bioenergetics were insensitive to climate change: despite warmer winters in the 2050s, particularly near the Nisqually River, bald eagle food requirements declined only slightly (<1%). However, the warming climate caused salmon carcasses to decompose more rapidly, resulting in 11% to 14% less annual carcass biomass available to eagles in the 2050s. That estimate is likely conservative, as it does not account for decreased availability of carcasses due to anticipated increases in winter stream flow. Future climate-driven declines in winter food availability, coupled with a growing bald eagle population, may force eagles to seek alternate prey in the Puget Sound area or in more remote ecosystems.

  20. Modeling climate change impacts on overwintering bald eagles

    PubMed Central

    Harvey, Chris J; Moriarty, Pamela E; Salathé Jr, Eric P

    2012-01-01

    Bald eagles (Haliaeetus leucocephalus) are recovering from severe population declines, and are exerting pressure on food resources in some areas. Thousands of bald eagles overwinter near Puget Sound, primarily to feed on chum salmon (Oncorhynchus keta) carcasses. We used modeling techniques to examine how anticipated climate changes will affect energetic demands of overwintering bald eagles. We applied a regional downscaling method to two global climate change models to obtain hourly temperature, precipitation, wind, and longwave radiation estimates at the mouths of three Puget Sound tributaries (the Skagit, Hamma Hamma, and Nisqually rivers) in two decades, the 1970s and the 2050s. Climate data were used to drive bald eagle bioenergetics models from December to February for each river, year, and decade. Bald eagle bioenergetics were insensitive to climate change: despite warmer winters in the 2050s, particularly near the Nisqually River, bald eagle food requirements declined only slightly (<1%). However, the warming climate caused salmon carcasses to decompose more rapidly, resulting in 11% to 14% less annual carcass biomass available to eagles in the 2050s. That estimate is likely conservative, as it does not account for decreased availability of carcasses due to anticipated increases in winter stream flow. Future climate-driven declines in winter food availability, coupled with a growing bald eagle population, may force eagles to seek alternate prey in the Puget Sound area or in more remote ecosystems. PMID:22822430

  1. Contaminants in fishes from great lakes-influenced sections and above dams of three Michigan Rivers: III. Implications for health of bald eagles

    USGS Publications Warehouse

    Giesy, J.P.; Bowerman, W.W.; Mora, M.A.; Verbrugge, D.A.; Othoudt, R. A.; Newsted, J.L.; Summer, C. L.; Aulerich, R.J.; Bursian, S.J.; Ludwig, J. P.; Dawson, G. A.; Kubiak, T.J.; Best, D. A.; Tillitt, D. E.

    1995-01-01

    Recently, there have been discussions of the relative merits of passage of fishes around hydroelectric dams on three rivers (Au Sable, Manistee, and Muskegon) in Michigan. A hazard assessment was conducted to determine the potential for adverse effects on bald eagles that could consume such fishes from above and below dams on the three primary rivers. The hazard assessments were verified by comparing the reproductive productivities of eagles nesting in areas where they ate primarily fish from either above or below dams on the three primary rivers, as well as on two additional rivers in Michigan, the Menominee and Thunder Bay. Concentrations of organochlorine insecticides (OCI), polychlorinated biphenyls (total PCBs), 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ), and total mercury (Hg) were measured in composite samples of fishes from above and below hydroelectric dams on the Manistee and Muskegon Rivers, which flow into Lake Michigan, and the Au Sable River, which flows into Lake Huron. Mean concentrations of OCI, total PCBs, and TCDD-EQ were all greater in fishes from below the dams than in those from above. The hazard assessment indicated that current concentrations of Hg and OCI other than DDT (DDT + DDE + DDD) in fish from neither above nor below dams would present a significant hazard to bald eagles (Haliaeetus leucocephalus). Both total PCBs and TCDD-EQ in fishes from below the dams currently present a significant hazard to bald eagles, since their mean hazard quotients (HQ) were all greater than one.

  2. Resource availability and diet in Harpy Eagle breeding territories on the Xingu River, Brazilian Amazon.

    PubMed

    Aguiar-Silva, F H; Junqueira, T G; Sanaiotti, T M; Guimarães, V Y; Mathias, P V C; Mendonça, C V

    2015-08-01

    In the Tapajos-Xingu interfluve, one of the largest birds of prey, the Harpy Eagle, is under intense anthropogenic pressure due to historical and recent reductions in forest cover. We studied prey availability and use by Harpy Eagle on six breeding territories on the low- and mid-Xingu River, between 2013 and 2015. We evaluated food resource availability using the environmental-surveys database from two methods: terrestrial surveys (RAPELD method) and fauna rescue/flushing before vegetation suppression for the Belo Monte Hydroelectric Complex construction. Harpy Eagle diet was identified by prey remains sampled around six nest trees. Eighteen species of mammals, birds and reptiles comprised the prey items. Most prey species were sloths, primates and porcupines, which have arboreal habits and are found in forested areas, but two species, hoatzin and iguana, are usually associated with riverine habitats. The proportion of prey from each species predated on the nest best studied was different from estimated availability (χ2 = 54.23; df = 16; p < 0.001), however there was a positive correlation (rs = 0.7; p < 0.01) between prey species consumed and abundance available, where the predation was more on species more abundant. Continuous monitoring of the Harpy Eagle diet at these nests could evidence changes in the assemblage of prey species available for Harpy Eagles, due to changes in the seasonal flood pulse of the Xingu River to be caused by the operation of the hydroelectric dam, and changes in habitat features by forest reduction around breeding territories. We believe that it is important to consider the protection of remnants of forested areas in the landscape matrix surrounding the breeding territories to maintain the food resource availability and allow all pairs to successfully reproduce.

  3. INFLUENCE OF SNOWFALL ON BLOOD LEAD LEVELS OF FREE-FLYING BALD EAGLES (HALIAEETUS LEUCOCEPHALUS) IN THE UPPER MISSISSIPPI RIVER VALLEY.

    PubMed

    Lindblom, Ronald A; Reichart, Letitia M; Mandernack, Brett A; Solensky, Matthew; Schoenebeck, Casey W; Redig, Patrick T

    2017-10-01

    Lead poisoning of scavenging raptors occurs primarily via consumption of game animal carcasses containing lead, which peaks during fall firearm hunting seasons. We hypothesized that snowfall would mitigate exposure by concealing carcasses. We categorized blood lead level (BLL) for a subsample of Bald Eagles (Haliaeetus leucocephalus) from the Upper Mississippi River Valley and described BLL with respect to age, sex, and snowfall. We captured Bald Eagles overwintering in the Upper Mississippi River Valley (n=55) between December 1999 and January 2002. Individual BLL ranged from nondetectable to 335 μg/dL, with 73% of the samples testing positive for acute exposure to lead. Eagle BLL did not significantly differ between age or sex, but levels were higher immediately following the hunting season, and they were lower when the previous month's snowfall was greater than 11 cm. This study suggests a window of time between the white-tailed deer (Odocoileus virginianus) hunting season and the onset of snow when the population experienced peak exposure to lead. Combining these findings with existing research, we offer a narrative of the annual lead exposure cycle of Upper Mississippi River Valley Bald Eagles. These temporal associations are necessary considerations for accurate collection and interpretation of BLL.

  4. Questa baseline and premining ground-water quality investigation. 8. Lake-sediment geochemical record from 1960 to 2002, Eagle Rock and Fawn Lakes, Taos County, New Mexico

    USGS Publications Warehouse

    Church, S.E.; Fey, D.L.; Marot, M.E.

    2005-01-01

    Geochemical studies of lake sediment from Eagle Rock Lake and upper Fawn Lake were conducted to evaluate the effect of mining at the Molycorp Questa porphyry molybdenum deposit located immediately north of the Red River. Two cores were taken, one from each lake near the outlet where the sediment was thinnest, and they were sampled at 1-cm intervals to provide geochemical data at less than 1-year resolution. Samples from the core intervals were digested and analyzed for 34 elements using ICP-AES (inductively coupled plasma-atomic emission spectrometry). The activity of 137Cs has been used to establish the beginning of sedimentation in the two lakes. Correlation of the geochemistry of heavy-mineral suites in the cores from both Fawn and Eagle Rock Lakes has been used to develop a sedimentation model to date the intervals sampled. The core from upper Fawn Lake, located upstream of the deposit, provided an annual sedimentary record of the geochemical baseline for material being transported in the Red River, whereas the core from Eagle Rock Lake, located downstream of the deposit, provided an annual record of the effect of mining at the Questa mine on the sediment in the Red River. Abrupt changes in the concentrations of many lithophile and deposit-related metals occur in the middle of the Eagle Rock Lake core, which we correlate with the major flood-of-record recorded at the Questa gage at Eagle Rock Lake in 1979. Sediment from the Red River collected at low flow in 2002 is a poor match for the geochemical data from the sediment core in Eagle Rock Lake. The change in sediment geochemistry in Eagle Rock Lake in the post-1979 interval is dramatic and requires that a new source of sediment be identified that has substantially different geochemistry from that in the pre-1979 core interval. Loss of mill tailings from pipeline breaks are most likely responsible for some of the spikes in trace-element concentrations in the Eagle Rock Lake core. Enrichment of Al2O3, Cu, and Zn

  5. Changes in baseflow patterns in water-limited shale oil and gas regions: the Eagle Ford play

    NASA Astrophysics Data System (ADS)

    Arciniega, S.; Brena-Naranjo, J. A.; Hernández-Espriú, A.; Pedrozo-Acuña, A.

    2016-12-01

    Quantifying and analyzing the contribution of groundwater from shallow aquifers to rivers as baseflow is very important for water supply and riverine ecosystem health, especially in water-limited catchments. Baseflow depends on the water available (precipitation), vegetation (land use, water use), aquifer properties and water-table depth. In this context, human activities such as groundwater abstraction for multiple purposes can alter the relationship between aquifer storage and baseflow. In this study, we analyzed observed changes in baseflow patterns of 40 catchments located across the Eagle Ford shale gas/oil play (Texas) during the period 1986-2015. The Eagle Ford sedimentary formation is actually the largest shale oil producing region in the US with large production in shale gas. Intensive unconventional resources extraction in the Eagle Ford play started in 2009 and gas/oil production increased faster than in other plays, accompanied by a rise in groundwater consumption for HF purposes. Spatial and temporal impacts on baseflow at the Eagle Ford play derived from HF were assessed by means of different patterns such as baseflow hydrograph separation, flow-duration curves, empirical storage-discharge relationships and streamflow recession curve analysis. A comparison during different periods of water use for HF activities was performed: pre-development period (1986-2000); moderate period (2001-2008); and intensive period (2009-2015). The pre-development period was considered as a baseline and catchments located inside and outside the play area were separately analyzed. The results show negative changes on baseflow patterns during the intensive HF period that were not observed during the moderate period, especially in catchments located inside the play. These changes were also characterized by a decline on mean annual baseflow volume and shorter hydrograph recession times, that led to a shift in the streamflow regime in some catchments from perennial to

  6. Changes in productivity and contaminants in bald eagles nesting along the lower Columbia River, USA

    USGS Publications Warehouse

    Buck, J.A.; Anthony, R.G.; Schuler, C.A.; Isaacs, F.B.; Tillitt, D.E.

    2005-01-01

    Previous studies documented poor productivity of bald eagles (Haliaeetus leucocephalus) in the lower Columbia River (LCR), USA, and elevated p,p???-dichlorodiphenyldichloroethylene (DDE), polychlorinated biphenyls (PCBs), dioxins, and furans in eagle eggs. From 1994 to 1995, we collected partially incubated eggs at 19 of 43 occupied territories along the LCR and compared productivity and egg contaminants to values obtained in the mid-1980s. We found higher productivity at new nesting sites along the river, yet productivity at 23 older breeding territories remained low and was not different (p = 0.713) between studies. Eggshell thickness at older territories had not improved (p = 0.404), and eggshells averaged 11% thinner than shells measured before dichlorodiphenyltrichloroethane use. Decreases in DDE (p = 0.022) and total PCBs (p = 0.0004) in eggs from older breeding areas occurred between study periods. Productivity was not correlated to contaminants, but DDE, PCBs, and dioxin-like chemicals exceeded estimated no-effect values. Some dioxin-like contaminants in eggs were correlated to nest location, with highest concentrations occurring toward the river's mouth where productivity was lowest. Although total productivity increased due to the success of new nesting pairs in the region, egg contaminants remain high enough to impair reproduction at older territories and, over time, may alter productivity of new pairs nesting near the river's mouth. ?? 2005 SETAC.

  7. 78 FR 900 - Approval and Promulgation of Air Quality Implementation Plans; Alaska: Eagle River PM10

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ...-7] Approval and Promulgation of Air Quality Implementation Plans; Alaska: Eagle River PM 10... National Ambient Air Quality Standards (NAAQS) for particulate matter with an aerodynamic diameter less... under section 110 and part D of the CAA? D. Has the State demonstrated that the air quality improvement...

  8. Ground-water flow and ground- and surface-water interaction at McBaine Bottoms, Columbia, Missouri--2000-02

    USGS Publications Warehouse

    Smith, Brenda J.

    2003-01-01

    McBaine Bottoms southwest of Columbia, Missouri, is the site of 4,269 acres of the Eagle Bluffs Conservation Area operated by the Missouri Department of Conservation, about 130 acres of the city of Columbia wastewater-treat-ment wetlands, and the city of Columbia munici-pal-supply well field. The city of Columbia wastewater-treatment wetlands supply treated effluent to the Eagle Bluffs Conservation Area. The presence of a sustained ground-water high underlying the Eagle Bluffs Conservation Area has indicated that ground-water flow is toward the municipal well field that supplies drinking water to the city of Columbia. The U.S. Geological Survey, in cooperation with the Missouri Department of Conservation and the city of Columbia, measured the ground-water levels in about 88 monitoring wells and the surface-water elevation at 4 sites monthly during a 27-month period to determine the ground-water flow and the ground- and surface-water interaction at McBaine Bottoms. Lateral ground-water flow was dominated by the presence of a ground-water high that was beneath the Eagle Bluffs Conservation Area and the presence of a cone of depression in the northern part of the study area. The ground-water high was present during all months of the study. Ground-water flow was radially away from the apex of the ground-water high; west and south of the high, flow was toward the Missouri River, east of the high, flow was toward Perche Creek, and north of the high, flow was toward the north toward the city of Columbia well field. The cone of depression was centered around the city of Columbia well field. Another permanent feature on the water-level maps was a ground-water high beneath treatment wetland unit 1. Although the ground-water high beneath the Eagle Bluffs Conservation Area was present throughout the study period, the configuration of the high changed depending on hydrologic conditions. Generally in the spring, the height of the ground-water high began to decrease and hydraulic

  9. White phosphorus at Eagle River Flats, Alaska: A case history of waterfowl mortality

    USGS Publications Warehouse

    Sparling, Donald W.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    2003-01-01

    White phosphorus has a limited distribution in the environment because it only occurs where it has been directly used by humans. It is not transported aerially for any distance and, due to its density, has a limited ability to disperse through water. Therefore, it is not a contaminant of broad-scale concern. However, where it does occur, it can cause substantial mortality or critically injure populations of waterfowl. This chronic harm includes impaired liver and kidney functioning, decreased respiratory efficiency, increased susceptibility to predation, loss of body mass, general weakening and malaise, and curtailment of reproductive functioning. Lethal effects occur around 3---4 mg/kg or approximately 3-6 ingested particles; sublethal effects can occur with ingestion of as little as a single particle. The impact of P4 on waterfowl populations nesting around ERF has never been estimated. Even if direct mortality on ERF could be estimated accurately in ducks, the delayed toxicity of P4 in swans (and presumably other species that use small grit size) and the potential for swans to fly away after ingesting a lethal dose of P4 could greatly underestimate the overall mortality. Inhibition of laying, reduced fertility and hatchability, and teratogenesis in hens ingesting even a small amount of P4 could potentially have, an effect on populations greater than that exhibited by direct mortality. Predators such as bald eagles and gulls are also at risk due to the toxicity of pelletized, dissolved, and assimilated P4 in prey organisms. Although the U.S. Army stopped using P4 in wetlands in 1993 and remediation efforts have been underway since 1995, waterfowl mortality is expected to continue for several more years. Because Eagle River Flats is only one of several sites where P4 has been found in wetland conditions, further biological investigation is warranted at these other sites.

  10. Remedial Investigation Report: White Phosphorus Contamination of Salt Marsh Sediments at Eagle River Flats, Alaska

    DTIC Science & Technology

    1992-03-31

    ponds (Bread Truck Pond) were significantly higher than those from the other ponds. Area C and the Bread Truck ponds, covering an area of about 15 ha (37...Figure 1-12. Aerial view of Eagle River Flats in January 1991 viewed to the north showing Knik Arm and ice- covered ERF. Figure 11-13. Ice core...levees of some distributaries are tall stands of beach rye (Elymus arenarius). Inside or landward of this sparsely vegetated mudflat zone is a low sedge

  11. Kleptoparasitism by bald eagles wintering in south-central Nebraska

    USGS Publications Warehouse

    Jorde, Dennis G.; Lingle, G.R.

    1988-01-01

    Kleptoparasitism on other raptors was one means by which Bald Eagles (Haliaeetus leucocephalus) secured food along the North Platte and Platte rivers during the winters of 1978-1980. Species kelptoparasitized were Ferruginous Hawk (Buteo regalis), Red-tailed Hawk (B. jamaicensis), Rough-legged Hawk (B. lagopus), Golden Eagle (Aquila chrysaetos), and Bald Eagle. Stealing of prey occurred more often during the severe winter of 1978-1979 when ice cover restricted eagles from feeding on fish than during the milder winter of 1979-1980. Kleptoparasitism occurred principally in agricultural habitats where large numbers of Mallards (Anas platyrhynchos) were foraging. Subadults watched adults steal food and participated in food-stealing with adults, which indicated interspecific kleptoparasitism may be a learned behavior. We suggest factors that may favor interspecific kleptoparasitism as a foraging strategy of Bald Eagles in obtaining waterfowl during severe winters.

  12. Bald eagle and osprey

    USGS Publications Warehouse

    Henny, C.J.; Anthony, R.G.; Pendleton, Beth Giron

    1989-01-01

    Bald eagles nested in all nine western states during recent years (about 19% of known U.S. population in 1982). The known numbers of nesting pairs in the west increased substantially in the last 10 years and totaled 584 in 1986. Much of the increase was due to more intensive survey efforts, but most biologists cite examples of new palrs establishing nesting territories. In contrast, productivity was relatively stable at 0.9 young produced per occupied territory with small annual fluctuations, a level slightly below the requirement for delisting (1.0 young per occupied territory) by the Pacific States Bald Eagle Recovery Plan. About 4,500 to 6,000 (minimum estimate) bald eagles winter throughout the western United States, which is about 50% of the surveyed population in the contiguous 48 states. Osprey range expansion and population increases have been documented in the West since 1981, when the population was estimated at 1,472 palrs (i.e., about 18% of the U.S. population). Monitoring efforts in the 1980s were not as intensive for ospreys as for bald eagles, but productivity was usually at the upper end of 0.95 to 13 young per occupied territory (a rate generally believed adequate for population stability). Although bald eagle and osprey nesting populations and productivity show cause for optimism, organochlorine contaminants remain a problem in a few individual birds and in some localized areas (e.g., lower Columbia River). DDE residues high enough to reduce productivity have been documented in eggs of both species during the 1980s. In addition, the bald eagle, which also forages on sick or dead prey, has been exposed to lead shot and the organophosphorus insecticide famphur. These contaminants have killed numbers of them in the West in recent years. Nesting ospreys appear more tolerant than nesting bald eagles of man and his disturbance; thus, more restrictions are required at bald eagle nest sites. Furthermore, bald eagles winter within the United States and

  13. 3. EAGLE ROCK CONTROL CENTER, OPERATIONS CONTROL. AS SYSTEM BECOMES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAGLE ROCK CONTROL CENTER, OPERATIONS CONTROL. AS SYSTEM BECOMES INCREASINGLY AUTOMATED, EAGLE ROCK WILL BECOME MORE AND MORE THE CENTRAL CONTROL SYSTEM OF THE METROPOLITAN WATER DISTRICT. - Eagle Rock Operations Control Center, Pasadena, Los Angeles County, CA

  14. Wintering Golden Eagles on the coastal plain of South Carolina

    DOE PAGES

    Vukovich, Mark; Turner, Kelsey L.; Grazia, Tracy E.; ...

    2015-10-01

    Golden Eagles (Aquila chrysaetos) are rare winter residents in eastern North America, with most found along the Appalachian Mountains and few reported on the coastal plain of the Carolinas. We used remote cameras baited with wild pig (Sus scrofa) and white-tailed deer (Odocoileus virginianus) carcasses to detect, age, and individually identify Golden Eagles on the U.S. Department of Energy’s Savannah River Site on the coastal plain of South Carolina. We identified eight individual Golden Eagles during the winters of 2013–2014 and 2014–2015, with one detected during both winters. We detected eagles for 19 and 66 calendar days during the wintersmore » of 2013–2014 and 2014–2015, respectively, with two adult eagles detected for 30 and 31 calendar days in 2014–2015. Eagles typically scavenged on carcasses for a few days, left, and then returned when cameras were baited with another carcass, suggesting they had remained in the area. These observations suggest that large tracts of forests on the coastal plain may be important wintering areas for some Golden Eagles and, further, that other areas in the coastal plain of the southeastern United States may also harbor wintering eagles. Identification of wintering areas of Golden Eagles in the east will be an important step in the conservation of this protected species, and camera traps baited with carcasses can be an effective tool for such work.« less

  15. Wintering Golden Eagles on the coastal plain of South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukovich, Mark; Turner, Kelsey L.; Grazia, Tracy E.

    Golden Eagles (Aquila chrysaetos) are rare winter residents in eastern North America, with most found along the Appalachian Mountains and few reported on the coastal plain of the Carolinas. We used remote cameras baited with wild pig (Sus scrofa) and white-tailed deer (Odocoileus virginianus) carcasses to detect, age, and individually identify Golden Eagles on the U.S. Department of Energy’s Savannah River Site on the coastal plain of South Carolina. We identified eight individual Golden Eagles during the winters of 2013–2014 and 2014–2015, with one detected during both winters. We detected eagles for 19 and 66 calendar days during the wintersmore » of 2013–2014 and 2014–2015, respectively, with two adult eagles detected for 30 and 31 calendar days in 2014–2015. Eagles typically scavenged on carcasses for a few days, left, and then returned when cameras were baited with another carcass, suggesting they had remained in the area. These observations suggest that large tracts of forests on the coastal plain may be important wintering areas for some Golden Eagles and, further, that other areas in the coastal plain of the southeastern United States may also harbor wintering eagles. Identification of wintering areas of Golden Eagles in the east will be an important step in the conservation of this protected species, and camera traps baited with carcasses can be an effective tool for such work.« less

  16. Double-survey estimates of bald eagle populations in Oregon

    USGS Publications Warehouse

    Anthony, R.G.; Garrett, Monte G.; Isaacs, F.B.

    1999-01-01

    The literature on abundance of birds of prey is almost devoid of population estimates with statistical rigor. Therefore, we surveyed bald eagle (Haliaeetus leucocephalus) populations on the Crooked and lower Columbia rivers of Oregon and used the double-survey method to estimate populations and sighting probabilities for different survey methods (aerial, boat, vehicle) and bald eagle ages (adults vs. subadults). Sighting probabilities were consistently 20%. The results revealed variable and negative bias (percent relative bias = -9 to -70%) of direct counts and emphasized the importance of estimating populations where some measure of precision and ability to conduct inference tests are available. We recommend use of the double-survey method to estimate abundance of bald eagle populations and other raptors in open habitats.

  17. Projecting the Water Footprint Associated with Shale Resource Production: Eagle Ford Shale Case Study.

    PubMed

    Ikonnikova, Svetlana A; Male, Frank; Scanlon, Bridget R; Reedy, Robert C; McDaid, Guinevere

    2017-12-19

    Production of oil from shale and tight reservoirs accounted for almost 50% of 2016 total U.S. production and is projected to continue growing. The objective of our analysis was to quantify the water outlook for future shale oil development using the Eagle Ford Shale as a case study. We developed a water outlook model that projects water use for hydraulic fracturing (HF) and flowback and produced water (FP) volumes based on expected energy prices; historical oil, natural gas, and water-production decline data per well; projected well spacing; and well economics. The number of wells projected to be drilled in the Eagle Ford through 2045 is almost linearly related to oil price, ranging from 20 000 wells at $30/barrel (bbl) oil to 97 000 wells at $100/bbl oil. Projected FP water volumes range from 20% to 40% of HF across the play. Our base reference oil price of $50/bbl would result in 40 000 additional wells and related HF of 265 × 10 9 gal and FP of 85 × 10 9 gal. The presented water outlooks for HF and FP water volumes can be used to assess future water sourcing and wastewater disposal or reuse, and to inform policy discussions.

  18. 76 FR 5580 - Eagle Crest Energy Company; Notice of Applicant-Proposed Water Pipeline Route for the Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... Hydroelectric Project (Eagle Mountain Project). This notice describes the water supply pipeline route proposed... property that would be crossed by the proposed water supply pipeline. We are currently soliciting comments on the proposed water supply pipeline and the draft EIS. Additionally, as discussed below, we will be...

  19. Survey for hemoparasites in imperial eagles (Aquila heliaca), steppe eagles (Aquila nipalensis), and white-tailed sea eagles (Haliaeetus albicilla) from Kazakhstan.

    PubMed

    Leppert, Lynda L; Layman, Seth; Bragin, Evgeny A; Katzner, Todd

    2004-04-01

    Prevalence of hemoparasites has been investigated in many avian species throughout Europe and North America. Basic hematologic surveys are the first step toward evaluating whether host-parasite prevalences observed in North America and Europe occur elsewhere in the world. We collected blood smears from 94 nestling imperial eagles (Aquila heliaca), five nestling steppe eagles (Aquila nipalensis), and 14 nestling white-tailed sea eagles (Haliaeetus albicilla) at Naurzum Zapovednik (Naurzum National Nature Reserve) in Kazakhstan during the summers of 1999 and 2000. In 1999, six of 29 imperial eagles were infected with Lencocytozoon toddi. Five of 65 imperial eagles and one of 14 white-tailed sea eagle were infected with L. toddi in 2000. Furthermore, in 2000, one of 65 imperial eagles was infected with Haemoproteus sp. We found no parasites in steppe eagles in either year, and no bird had multiple-species infections. These data are important because few hematologic studies of these eagle species have been conducted.

  20. Ground-water quality and geochemistry in Carson and Eagle Valleys, western Nevada and eastern California

    USGS Publications Warehouse

    Welch, Alan H.

    1994-01-01

    Aquifers in Carson and Eagle Valleys are an important source of water for human consumption and agriculture. Concentrations of major constituents in water from the principal aquifers on the west sides of Carson and Eagle Valleys appear to be a result of natural geochemical reactions with minerals derived primarily from plutonic rocks. In general, water from principal aquifers is acceptable for drinking when compared with current (1993) Nevada State drinking-water maximum contaminant level standards. Water was collected and analyzed for all inorganic constituents for which primary or secondary drinking-water standards have been established. About 3 percent of these sites had con- stituents that exceeded one or more primary or secondary drinking-water standards have been established. About 3 percent of these sites had con- stituents that exceeded one or more primary standards and water at about 10 percent of the sites had at least one constituent that surpassed a secondary standard. Arsenic exceeded the standard in water at less than 1 percent of the principal aquifer sites; nitrate surpassed its standard in water at 3 percent of 93 sites. Water from wells in the principal aquifer with high concentrations of nitrate was in areas where septic systems are used; these concentrations indicate that contamination may be entering the wells. Concentrations of naturally occurring radionuclides in water from the principal aquifers, exceed the proposed Federal standards for some constituents, but were not found t be above current (1993) State standards. The uranium concen- trations exceeded the proposed 20 micrograms per liter Federal standard at 10 percent of the sites. Of the sites analyzed for all of the inorganic constituents with primary standards plus uranium, 15 percent exceed one or more established standards. If the proposed 20 micrograms per liter standard for uranium is applied to the sampled sites, then 23 percent would exceed the standard for uranium or some other

  1. Seismic refraction surveys in the vicinity of Eagle City, Clark County, Ohio

    USGS Publications Warehouse

    Hassemer, Jerry H.; Watkins, Joel S.; Bailey, Norman G.

    1966-01-01

    As part of a continuing program to define the thickness and extent of water-bearing sand and gravel deposits in southwestern Ohio, the U.S. Geological Survey, in cooperation with the Ohio Division of Water, in the summer of 1964 completed a seismic refraction survey in the vicinity of Eagle and Tremont Cities, Ohio (fig. 1). Similar surveys were completed in 1962 of the lower Great Miami River and Whitewater River Valleys (Watkins, 1963); in 1963 of the upper Great Miami River Valley (Watkins and Spieker, 1964) and of the Scioto River Valley (Watkins and Bailey, 1964). The area of the survey includes known or inferred portions of an interglacial drainage system which is deeply entrenched into bedrock. Ohio was covered by glaciers at least twice during the Pleistocene Epoch. As the last glacier retreated from Clark County, floods of meltwater deposited up to 300 ft of sand and gravel, now forming the lowlands of the Mad River Valley. The sand and gravel is highly permeable and saturated with large quantities of water of good quality. The underlying bedrock consists of limestone and dolomite, and limestone interbedded with shale. The limestone and dolomite sequence is the principal source of water along the edges of the buried valley where the sand and gravel thins. The city of Springfield has recently developed wells in the glacial deposits, and many industries in the area rely on wells in these deposits as their principal source of water. The purpose of the present survey is to define the thickness and extent of the important water-bearing sand and gravel deposits. Such information will make possible a more accurate evaluation of the area's water resources than has previously been possible.

  2. Precipitation and runoff simulations of select perennial and ephemeral watersheds in the middle Carson River basin, Eagle, Dayton, and Churchill Valleys, west-central Nevada

    USGS Publications Warehouse

    Jeton, Anne E.; Maurer, Douglas K.

    2011-01-01

    The effect that land use may have on streamflow in the Carson River, and ultimately its impact on downstream users can be evaluated by simulating precipitation-runoff processes and estimating groundwater inflow in the middle Carson River in west-central Nevada. To address these concerns, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, began a study in 2008 to evaluate groundwater flow in the Carson River basin extending from Eagle Valley to Churchill Valley, called the middle Carson River basin in this report. This report documents the development and calibration of 12 watershed models and presents model results and the estimated mean annual water budgets for the modeled watersheds. This part of the larger middle Carson River study will provide estimates of runoff tributary to the Carson River and the potential for groundwater inflow (defined here as that component of recharge derived from percolation of excess water from the soil zone to the groundwater reservoir). The model used for the study was the U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Models were developed for 2 perennial watersheds in Eagle Valley having gaged daily mean runoff, Ash Canyon Creek and Clear Creek, and for 10 ephemeral watersheds in the Dayton Valley and Churchill Valley hydrologic areas. Model calibration was constrained by daily mean runoff for the 2 perennial watersheds and for the 10 ephemeral watersheds by limited indirect runoff estimates and by mean annual runoff estimates derived from empirical methods. The models were further constrained by limited climate data adjusted for altitude differences using annual precipitation volumes estimated in a previous study. The calibration periods were water years 1980-2007 for Ash Canyon Creek, and water years 1991-2007 for Clear Creek. To

  3. A bald eagle at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    High in a pine tree on the grounds of the Kennedy Space Center, a bald eagle perches on a branch. The Southern Bald Eagle ranges throughout Florida and along the coasts of California, Texas, Louisiana, and the south Atlantic states. Bald eagles are listed as endangered in the U.S., except in five states where they are listed as threatened. The number of nesting pairs of the southern race once numbered several thousand; recent estimates are only 350-375. Most of the southern race nests in Florida. Eagles arrive at KSC during late summer and leave for the north in late spring. They move to nest sites in October and November and lay one to three eggs. The young fledge from February to April. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  4. A bald eagle at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On the grounds of the Kennedy Space Center, a bald eagle takes wing away from two vultures at the site of an undetermined carcass. The Southern Bald Eagle ranges throughout Florida and along the coasts of California, Texas, Louisiana, and the south Atlantic states. Bald eagles are listed as endangered in the U.S., except in five states where they are listed as threatened. The number of nesting pairs of the southern race once numbered several thousand; recent estimates are only 350-375. Most of the southern race nests in Florida. Eagles arrive at KSC during late summer and leave for the north in late spring. They move to nest sites in October and November and lay one to three eggs. The young fledge from February to April. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  5. A bald eagle at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A bald eagle joins two vultures at the site of an undetermined carcass on the grounds of the Kennedy Space Center. The Southern Bald Eagle ranges throughout Florida and along the coasts of California, Texas, Louisiana, and the south Atlantic states. Bald eagles are listed as endangered in the U.S., except in five states where they are listed as threatened. The number of nesting pairs of the southern race once numbered several thousand; recent estimates are only 350-375. Most of the southern race nests in Florida. Eagles arrive at KSC during late summer and leave for the north in late spring. They move to nest sites in October and November and lay one to three eggs. The young fledge from February to April. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  6. Ground-Water Flow, 2004-07, and Water Quality, 1992-2007, in McBaine Bottoms, Columbia, Missouri

    USGS Publications Warehouse

    Smith, Brenda Joyce; Richards, Joseph M.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the city of Columbia, Missouri, and the Missouri Department of Conservation, collected ground-water quality data, surface-water quality data, and water-level data in McBaine Bottoms, southwest of Columbia. McBaine Bottoms, adjacent to the Missouri River, is the location of the municipal-supply well field for the city of Columbia, the city of Columbia wastewater-treatment wetlands, and the Missouri Department of Conservation Eagle Bluffs Conservation Area. This report describes the ground-water flow and water quality of McBaine Bottoms and provides information to better understand the interaction between treated effluent from the wetlands used on the Eagle Bluffs Conservation Area and the water in the alluvial aquifer that is pumped from the city of Columbia municipal-supply well field. Changes in major chemical constituent concentrations have been detected at several sampling sites between pre- and post-effluent application data. Analysis of post-effluent data indicates substantial changes in calcium, potassium, sodium, chloride, and sulfate concentrations in ground water. These changes became apparent shortly after the beginning of the operation of the wastewater-treatment wetland in 1994 and the formation of the Eagle Bluffs Conservation Area, which uses the treated effluent as a water source for the management of migratory water fowl. The changes have continued throughout the 15 years of sample collection. The concentrations of these major chemical constituents are on the mixing continuum between pre-effluent ground water as one end member and the treated wastewater effluent as the other end member. For monitoring wells that had changes in major chemical constituent concentrations, the relative percentage of treated effluent in the ground water, assuming chloride is conservative, ranged from 6 to 88 percent. Twenty-two monitoring wells throughout McBaine Bottoms have been affected by effluent based on chloride

  7. Water-quality and algal conditions in the Clackamas River basin, Oregon, and their relations to land and water management

    USGS Publications Warehouse

    Carpenter, Kurt D.

    2003-01-01

    In 1998, the U.S. Geological Survey sampled the Clackamas River, its major tributaries, and reservoirs to characterize basic water quality (nutrients, dissolved oxygen, pH, temperature, and conductance), water quantity (water sources within the basin), and algal conditions (biomass and species composition). Sampling locations reflected the dominant land uses in the basin (forest management, agriculture, and urban development) as well as the influence of hydroelectric projects, to examine how these human influences might be affecting water quality and algal conditions. Nuisance algal growths, with accompanying negative effects on water quality, were observed at several locations in the basin during this study. Algal biomass in the lower Clackamas River reached a maximum of 300 mg/m2 chlorophyll a, producing nuisance algal conditions, including fouled stream channels and daily fluctuations in pH and dissolved oxygen concentrations to levels that did not meet water-quality standards. Algal biomass was highest at sites immediately downstream from the hydroelectric project's reservoirs and/or powerhouses. Nuisance algal conditions also were observed in some of the tributaries, including the North Fork of the Clackamas River, Clear Creek, Rock Creek, and Sieben Creek. High amounts of drifting algae increased turbidity levels in the Clackamas River during June, which coincided with a general increase in the concentration of disinfection by-products found in treated Clackamas River water used for drinking, presumably due to the greater amounts of organic matter in the river. The highest nutrient concentrations were found in the four lowermost tributaries (Deep, Richardson, Rock, and Sieben Creeks), where most of the agriculture and urban development is concentrated. Of these, the greatest load of nutrients came from Deep Creek, which had both high nutrient concentrations and relatively high streamflow. Streams draining forestland in the upper basin (upper Clackamas River

  8. Low-flow water-quality characterization of the Gore Creek watershed, upper Colorado River basin, Colorado, August 1996

    USGS Publications Warehouse

    Wynn, Kirby H.; Spahr, Norman E.

    1998-01-01

    The Upper Colorado River Basin (UCOL) is one of 59 National Water-Quality Assessment (NAWQA) study units designed to assess the status and trends of the Nation?s water quality (Leahy and others, 1990). The UCOL study unit began operation in 1994, and surface-water-quality data collection at a network of 14 sites began in October 1995 (Apodaca and others, 1996; Spahr and others, 1996). Gore Creek, which flows through Vail, Colorado, originates in pristine alpine headwaters and is designated a gold-medal trout fishery. The creek drains an area of about 102 square miles and is a tributary to the Eagle River. Gore Creek at the mouth near Minturn (site 13 in fig. 1) is one of the 14 sites in the UCOL network. This site was selected to evaluate water quality resulting from urban development and recreational land use. The Gore Creek watershed has undergone rapid land-use changes since the 1960?s as the Vail area shifted from traditional mountain ranchlands to a four-season resort community. Residential, recreational, commercial, and transportation development continues near Gore Creek and its tributaries to support the increasing permanent and tourist population of the area. Interstate 70 runs through the watershed from Vail Pass near site 14, along the eastern side of Black Gore Creek, and along the northern side of the main stem of Gore Creek to the mouth of the watershed (fig. 1). A major local concern is how increasing urbanization/recreation affects the water quality, gold-medal trout fishery, and aesthetic values of Gore Creek. An evaluation of the spatial characteristics of water quality in the watershed upstream from site 13 at the mouth of Gore Creek (fig. 1) can provide local water and land managers with information necessary to establish water policy and make land-use planning decisions to maintain or improve water quality. Historical data collected at the mouth of Gore Creek provide information about water quality resulting from land use, but a synoptic

  9. 77 FR 27174 - Eagle Permits; Changes in the Regulations Governing Eagle Permitting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ..., proposed rule to revise the regulations for permits for nonpurposeful take of golden eagles (Aquila... will post all comments on http:/www.regulations.gov. This generally means that we will post any... of golden eagles (Aquila chrysaetos) and bald eagles (Haliaeetus leucocephalus), where the take is...

  10. Constituent concentrations, loads, and yields to Beaver Lake, Arkansas, water years 1999-2008

    USGS Publications Warehouse

    Bolyard, Susan E.; De Lanois, Jeanne L.; Green, W. Reed

    2010-01-01

    Beaver Lake is a large, deep-storage reservoir used as a drinking-water supply and considered a primary watershed of concern in the State of Arkansas. As such, information is needed to assess water quality, especially nutrient enrichment, nutrient-algal relations, turbidity, and sediment issues within the reservoir system. Water-quality samples were collected at three main inflows to Beaver Lake: the White River near Fayetteville, Richland Creek at Goshen, and War Eagle Creek near Hindsville. Water-quality samples collected over the period represented different flow conditions (from low to high). Constituent concentrations, flow-weighted concentrations, loads, and yields from White River, Richland Creek, and War Eagle Creek to Beaver Lake for water years 1999-2008 were documented for this report. Constituents include total ammonia plus organic nitrogen, dissolved nitrite plus nitrate nitrogen, dissolved orthophosphorus (soluble reactive phosphorus), total phosphorus, total nitrogen, dissolved organic carbon, total organic carbon, and suspended sediment. Linear regression models developed by computer program S-LOADEST were used to estimate loads for each constituent for the 10-year period at each station. Constituent yields and flow-weighted concentrations for each of the three stations were calculated for the study. Constituent concentrations and loads and yields varied with time and varied among the three tributaries contributing to Beaver Lake. These differences can result from differences in precipitation, land use, contributions of nutrients from point sources, and variations in basin size. Load and yield estimates varied yearly during the study period, water years 1999-2008, with the least nutrient and sediment load and yields generally occurring in water year 2006, and the greatest occurring in water year 2008, during a year with record amounts of precipitation. Flow-weighted concentrations of most constituents were greatest at War Eagle Creek near Hindsville

  11. NPDES Permit for City of Eagle Butte Wastewater Treatment Facility in South Dakota

    EPA Pesticide Factsheets

    Under NPDES permit SD-0020192, the City of Eagle Butte, South Dakota, is authorized to discharge from its wastewater treatment facility within the Cheyenne River Sioux Reservation in Dewey County, South Dakota, to Green Grass Creek.

  12. The Eagle’s Talons. The American Experience at War

    DTIC Science & Technology

    1988-12-01

    carrying American passengers (for 143 EAGLE’S TALONS example, the Lusitania ), became the most volatile issue be- tween the United States and Germany. It...99, 103-4, 108, 118-22 Lusitania : 144, 374 McClernand, John Alexander: Lys River: 163 103 McDowell, Irvin: 105, 114-15, MacArthur, Douglas: xv, 16

  13. EAGLE: 'EAGLE'Is an' Algorithmic Graph Library for Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-01-16

    The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. Today there is no tools to conduct "graph mining" on RDF standard data sets. We address that need through implementation of popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, degree distribution,more » diversity degree, PageRank, etc.). We implement these algorithms as SPARQL queries, wrapped within Python scripts and call our software tool as EAGLE. In RDF style, EAGLE stands for "EAGLE 'Is an' algorithmic graph library for exploration. EAGLE is like 'MATLAB' for 'Linked Data.'« less

  14. MQ-1C Gray Eagle Unmanned Aircraft System (MQ-1C Gray Eagle)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-420 MQ-1C Gray Eagle Unmanned Aircraft System (MQ-1C Gray Eagle) As of FY 2017 President’s...Budget Defense Acquisition Management Information Retrieval (DAMIR) March 21, 2016 17:33:19 UNCLASSIFIED MQ-1C Gray Eagle December 2015 SAR March 21...Gray Eagle December 2015 SAR March 21, 2016 17:33:19 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element PEO - Program Executive Officer PM

  15. 9. VIEW NORTH, EXCAVATED LOCK FROM WATER STREET (Numbers painted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW NORTH, EXCAVATED LOCK FROM WATER STREET (Numbers painted on stones for reconstruction purposes) - Bald Eagle Cross-Cut Canal Lock, North of Water Street along West Branch of Susquehanna River South bank, 500 feet East of Jay Street Bridge, Lock Haven, Clinton County, PA

  16. Assessing cumulative impacts to wintering Bald Eagles and their habitats in western Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witmer, G.W.; O'Neil, T.A.

    Bald Eagles (Haliaeetus leucocephalus) of Washington, the largest wintering population in the lower 48 states, are subject to numerous pressures and impacts from human activites. An evaluative method potential cumulative impacts of multiple hydroelectric development and logging activities on known and potential eagle use areas. Four resource components include food supply, roost sites, mature riparian forest, and disturbance. In addition to actual estimates of losses in food supply (fish biomass in kg) and habitat (km/sup 2/) in one river basin, impact levels from 0 (none) to 4 (high) were assigned for each development and for each component based on themore » impacts anticipated and the estimated value of the site to eagles. Midwinter eagle surveys, aerial photography, topographic and forest stand maps, and site visits were used in the analysis. Impacts were considered additive for all but the disturbance component, which was adjusted for potential synergism between developments. Adjustments were made for mitigation before the impacts were aggregated into a single, dimensionless cumulative impact score. 50 refs., 1 fig., 1 tab.« less

  17. NPDES Permit for Eagle Oil and Gas Company – Sheldon Dome Field in Wyoming

    EPA Pesticide Factsheets

    Under NPDES permit WY-0020338, the Eagle Oil and Gas Company is authorized to discharge from its Sheldon Dome Field wastewater treatment facility in Fremont County, Wyoming, to an unnamed ephemeral tributary of Dry Creek, a tributary to the Wind River.

  18. Golden eagle records from the Midwinter Bald Eagle Survey: information for wind energy management and planning

    USGS Publications Warehouse

    Eakle, Wade; Haggerty, Patti; Fuller, Mark; Phillips, Susan L.

    2013-01-01

    The purpose of this Data Series report is to provide the occasions, locations, and counts when golden eagles were recorded during the annual Midwinter Bald Eagle Surveys. Golden eagles (Aquila chrysaetos) are protected by Federal statutes including the Bald and Golden Eagle Protection Act (BGEPA) (16 USC 668-668c) and the Migratory Bird Treaty Act (MBTA) (16 USC 703-12). The U.S. Fish and Wildlife Service (Service) manages golden eagles with the goal of maintaining stable or increasing breeding populations (U.S. Fish and Wildlife Service, 2009). Development for the generation of electricity from wind turbines is occurring in much of the range of the golden eagle in the western United States. Development could threaten population stability because golden eagles might be disturbed by construction and operation of facilities and they are vulnerable to mortality from collisions with wind turbines (Smallwood and Thelander, 2008). Therefore, the Service has proposed a process by which wind energy developers can collect information that could lead to Eagle Conservation Plans (ECP), mitigation, and permitting that allow for golden eagle management in areas of wind energy development (U.S. Fish and Wildlife Service, 2011). The Service recommends that ECP be developed in stages, and the first stage is to learn if golden eagles occur at the landscape level where potential wind facilities might be located. Information about where eagles occur can be obtained from technical literature, agency files, and other sources of information including on-line biological databases. The broad North American distribution of golden eagles is known, but there is a paucity of readily available information about intermediate geographic scales and site-specific scales, especially during the winter season (Kochert and others, 2002).

  19. Assessment of exposure of fish to emerging contaminants in the Eagle Creek Watershed

    EPA Science Inventory

    The Eagle Creek Watershed (ECW) encompasses 162 square miles in central Indiana upstream of the Eagle Creek Reservoir, a public drinking water source for the city of Indianapolis. The dominant land-cover is agriculture, although some portions are undergoing urbanization, with th...

  20. Solar Eagle 2

    NASA Technical Reports Server (NTRS)

    Roberto, Richard D.

    1995-01-01

    During a 22-month period from February 1991 to December 1993, a dedicated group of students, faculty, and staff at California State University, Los Angeles completed a project to design, build, and race their second world class solar-powered electric vehicle, the Solar Eagle 2. This is the final report of that project. As a continuation of the momentum created by the success of the GM-sponsored Sunrayce USA in 1990, the U.S. Department of Energy (DOE) picked up the banner from General Motors as sponsors of Sunrayce 93. In February 1991, the DOE sent a request for proposals to all universities in North America inviting them to submit a proposal outlining how they would design, build, and test a solar-powered electric vehicle for a seven-day race from Arlington, Texas to Minneapolis, Minnesota, to be held in June 1993. Some 70 universities responded. At the end of a proposal evaluation process, 36 universities including CSLA were chosen to compete. This report documents the Solar Eagle 2 project--the approaches take, what was learned, and how our experience from the first Solar Eagle was incorporated into Solar Eagle 2. The intent is to provide a document that would assist those who may wish to take up the challenge to build Solar Eagle 3.

  1. Hazardous Waste Cleanup: Sunoco Incorporated - R&M Eagle Point Refinery in Westville, New Jersey

    EPA Pesticide Factsheets

    Sunoco, Inc. - R&M Eagle Point Refinery is located on Route 295 & 130 in Westville, West Deptford Township, New Jersey. The site is a 1,000-acre oil refinery on the Delaware River, 550 acres of which is an active production area.

  2. 77 FR 47628 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [P-13123-002-CA] Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting Postponement On July 17, 2012, the...), on the Eagle Mountain Pumped Storage Hydroelectric Project. However, the meeting has been postponed...

  3. Water quality in shallow alluvial aquifers, Upper Colorado River Basin, Colorado, 1997

    USGS Publications Warehouse

    Apodaca, L.E.; Bails, J.B.; Smith, C.M.

    2002-01-01

    Shallow ground water in areas of increasing urban development within the Upper Colorado River Basin was sampled for inorganic and organic constituents to characterize water-quality conditions and to identify potential anthropogenic effects resulting from development. In 1997, 25 shallow monitoring wells were installed and sampled in five areas of urban development in Eagle, Grand, Gunnison, and Summit Counties, Colorado. The results of this study indicate that the shallow ground water in the study area is suitable for most uses. Nonparametric statistical methods showed that constituents and parameters measured in the shallow wells were often significantly different between the five developing urban areas. Radon concentrations exceeded the proposed USEPA maximum contaminant level at all sites. The presence of nutrients, pesticides, and volatile organic compounds indicate anthropogenic activities are affecting the shallow ground-water quality in the study area. Nitrate as N concentrations greater than 2.0 mg/L were observed in ground water recharged between the 1980s and 1990s. Low concentrations of methylene blue active substances were detected at a few sites. Total coliform bacteria were detected at ten sites; however, E. coli was not detected. Continued monitoring is needed to assess the effects of increasing urban development on the shallow ground-water quality in the study area.

  4. Functions of perch relocations in a communal night roost of wintering bald eagles

    USGS Publications Warehouse

    Yackel Adams, A.A.; Skagen, S.K.; Knight, R.L.

    2000-01-01

    We investigated the functions of perch relocations within a communal night roost of wintering bald eagles (Haliaeetus leucocephalus) along the Nooksack River, Washington, during two winters. We tested seven predictions of two nonexclusive hypotheses: (1) bald eagles relocate within roosts to assess foraging success of conspecifics and (2) bald eagles relocate to obtain thermoregulatory benefits from an improved microclimate. Additionally, we gathered descriptive information to allow refinement of further alternative hypotheses. We rejected the hypothesis that relocations are a means of assessing foraging success. Contrary to our expectations, immature eagles did not relocate to be closer to adults, and relocations were less frequent when food was less abundant. Our data support the hypothesis that eagles relocate within night roosts to obtain a favorable microclimate during winters when they are subjected to cold stress and food stress. In both winters, relocations were more frequent in the evening than in the morning. In both winters, most evening relocations were to the center of the roost rather than to its edge, and the frequency of relocation to the center was greater when temperatures were low. The microclimate hypothesis, however, explains only a limited number of relocations. Based on our findings, it is likely that relocation has multiple functions, including establishing and (or) maintaining foraging associations, establishing and (or) maintaining social-dominance hierarchies when food is less abundant, and nonsocial activities.

  5. Eagle's Syndrome

    PubMed Central

    Pinheiro, Thaís Gonçalves; Soares, Vítor Yamashiro Rocha; Ferreira, Denise Bastos Lage; Raymundo, Igor Teixeira; Nascimento, Luiz Augusto; Oliveira, Carlos Augusto Costa Pires de

    2013-01-01

    Summary Introduction: Eagle's syndrome is characterized by cervicopharyngeal signs and symptoms associated with elongation of the styloid apophysis. This elongation may occur through ossification of the stylohyoid ligament, or through growth of the apophysis due to osteogenesis triggered by a factor such as trauma. Elongation of the styloid apophysis may give rise to intense facial pain, headache, dysphagia, otalgia, buzzing sensations, and trismus. Precise diagnosis of the syndrome is difficult, and it is generally confounded by other manifestations of cervicopharyngeal pain. Objective: To describe a case of Eagle's syndrome. Case Report: A 53-year-old man reported lateral pain in his neck that had been present for 30 years. Computed tomography (CT) of the neck showed elongation and ossification of the styloid processes of the temporal bone, which was compatible with Eagle's syndrome. Surgery was performed for bilateral resection of the stylohyoid ligament by using a transoral and endoscopic access route. The patient continued to present pain laterally in the neck, predominantly on his left side. CT was performed again, which showed elongation of the styloid processes. The patient then underwent lateral cervicotomy with resection of the stylohyoid process, which partially resolved his painful condition. Final Comments: Patients with Eagle's syndrome generally have a history of chronic pain. Appropriate knowledge of this disease is necessary for adequate treatment to be provided. The importance of diagnosing this uncommon and often unsuspected disease should be emphasized, given that correct clinical-surgical treatment is frequently delayed. The diagnosis of Eagle's syndrome is clinical and radiographic, and the definitive treatment in cases of difficult-to-control pain is surgical. PMID:25992033

  6. Sources of phosphorus to the Carson River upstream from Lahontan Reservoir, Nevada and California, Water Years 2001-02

    USGS Publications Warehouse

    Alvarez, Nancy L.; Seiler, Ralph L.

    2004-01-01

    -sediment concentrations are high. Downstream from Carson Valley, almost all samples exceed the water-quality standard, with the greatest concentrations observed during spring and summer months. Estimated annual total-phosphorus loads ranged from 1.33 tons at the West Fork Carson River at Woodfords to 43.41 tons at the Carson River near Carson City during water years 2001-02. Loads are greatest during spring runoff, followed by fall and winter, and least during the summer, which corresponds to the amount of streamflow in the Carson River. The estimated average annual phosphorus load entering Carson Valley was 21.9 tons; whereas, the estimated average annual phosphorus load leaving Carson Valley was 37.8 tons, for an annual gain in load across Carson Valley of 15.9 tons. Thus, about 58 percent of the total-phosphorus load leaving Carson Valley on an annual basis could be attributed to headwater reaches upstream from Carson Valley. During spring and summer (April 1-September 30) an average of 85 percent of the total-phosphorus load leaving Carson Valley could be attributed to headwater reaches. During fall and winter (October 1-March 31) only 17 percent of the phosphorus load leaving Carson Valley could be attributed to headwater reaches. The composition of the phosphorus changes during summer from particulate phosphorus entering Carson Valley to dissolved orthophosphate leaving Carson Valley. Particulate phosphorus entering Carson Valley could be settling out when water is applied to fields and be replaced by dissolved orthophosphate from other sources. Alternatively, the particulate phosphorus could be converted to dissolved orthophosphate as it travels across Carson Valley. Data collected during the study are not sufficient to distinguish between the two possibilities. Eagle Valley and Dayton-Churchill Valleys may act as sinks for phosphorus. On an annual basis, during water years 2001-02, about 90 percent of the phosphorus entering Eagle Valley left the

  7. 33 CFR 66.05-100 - Designation of navigable waters as State waters for private aids to navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... including the following impoundments: (1) Black Eagle Dam Reservoir. (2) Canyon Ferry Reservoir. (3) Hauser Lake. (4) Holter Lake. (5) Rainbow Dam Reservoir. (e) North Carolina. Navigable waters within the State...) Leesville Lake, on the Roanoke River below Smith Mountain Dam. (3) The portions of the following reservoirs...

  8. 33 CFR 66.05-100 - Designation of navigable waters as State waters for private aids to navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... including the following impoundments: (1) Black Eagle Dam Reservoir. (2) Canyon Ferry Reservoir. (3) Hauser Lake. (4) Holter Lake. (5) Rainbow Dam Reservoir. (e) North Carolina. Navigable waters within the State...) Leesville Lake, on the Roanoke River below Smith Mountain Dam. (3) The portions of the following reservoirs...

  9. 76 FR 15971 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [P-13123-002-CA] Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Teleconference a. Date and Time of Meeting... staff of the U.S. Fish and Wildlife Service and Eagle Crest Energy as part of its on-going Section 7...

  10. 76 FR 22699 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [P-13123-002--CA] Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Teleconference a. Date and Time of Meeting... staff of the U.S. Fish and Wildlife Service and Eagle Crest Energy as part of its on-going Section 7...

  11. Bald Eagles at Bay

    ERIC Educational Resources Information Center

    Laycock, George

    1974-01-01

    Describes the process of transplanting eggs from one nest to another in an attempt to aid in the strengthening of the eagle population. Discusses pressures exerted on eagles by hunting, trapping and pesticides. (SLH)

  12. Rover Landing Hardware at Eagle Crater, Mars

    NASA Image and Video Library

    2017-04-21

    The bright landing platform left behind by NASA's Mars Exploration Rover Opportunity in 2004 is visible inside Eagle Crater, at upper right in this April 8, 2017, observation by NASA's Mars Reconnaissance Orbiter. Mars Reconnaissance Orbiter arrived at Mars in March 2006, more than two years after Opportunity's landing on Jan. 25, 2004, Universal Time (Jan. 24, PDT). This is the first image of Eagle Crater from the orbiter's High Resolution Imaging Science Experiment (HiRISE) camera, which has optics that include the most powerful telescope ever sent to Mars. Eagle Crater is about 72 feet (22 meters) in diameter, at 1.95 degrees south latitude, 354.47 degrees east longitude, in the Meridiani Planum region of Mars. The airbag-cushioned lander, with Opportunity folded-up inside, first hit Martian ground near the crater, then bounced and rolled right into the crater. The lander structure was four triangles, folded into a tetrahedron until after the airbags deflated. The triangular petals then opened, exposing the rover. A week later, the rover drove off (see PIA05214), and the landing platform's job was done. The spacecraft's backshell and parachute, jettisoned during final descent, are visible near the lower left corner of this scene. The blue tint of the backshell is an effect of exaggerated color, because HiRISE combines color information from red, blue-green and infrared portions of the spectrum, rather than three different visible-light colors, so its color images are not true color. Opportunity examined Eagle Crater for more than half of the rover's originally planned three-month mission, before driving east and south to larger craters. At Eagle, it found headline-making evidence that water once flowed over the surface and soaked the subsurface of the area. By the time this orbital image of the landing site was taken, about 13 years after the rover departed Eagle, Opportunity had driven more than 27 miles (44 kilometers) and was actively exploring the rim of

  13. Relationships between bald eagle productivity and dynamics of fish populations and fisheries in the Wisconsin waters of Lake Superior, 1983-1999

    USGS Publications Warehouse

    Hoff, Michael H.; Meyer, Michael W.; Van Stappen, Julie; Fratt, Thomas W.

    2004-01-01

    Bald eagle (Haliaeetus leucocephalus) abundance declined in the 1950s and 1960s along the Wisconsin waters of Lake Superior, and were nearly absent along Wisconsin's Lake Superior shoreline. The population began to increase again between 1980 and 1983, and since then bald eagles nesting on islands along Wisconsin's Lake Superior shoreline (i.e., Apostle Islands) reproduced at a lower rate than have those nesting along the mainland shoreline of the lake and inland. Recent research indicated that bioaccumulation of toxic chemicals in the aquatic food chain no longer limits bald eagle reproduction there, and that productivity at island nests was lower than at mainland nests and inland nests as the result of low food availability. Management agencies have sought models that accurately predict productivity and explain ecological relationships, but no satisfactory models had previously been developed. Modeling was conducted here to determine which factors best explained productivity variability. The Ricker stock-recruitment model derived from only the bivariate breeding pair and productivity data explained only 1% of the variability in productivity data. The functional relationship that explained the greatest amount of productivity variation (83%) included the number of breeding pairs, burbot (Lota lota) biomass, longnose sucker (Catostomus catostomus) biomass, and commercial harvest of nontarget fishes. Model results were interpreted to mean that productivity was positively affected by populations of burbot and longnose sucker, which are important prey items, and by commercial fishermen feeding nontarget fish to bald eagles. Harvest of nontarget fishes by tribal fishermen and burbot and longnose sucker populations have not tended to change during the entire study period, although the burbot population has declined since 1991. Therefore, bald eagle productivity is not predicted to increase unless burbot, longnose sucker, or other preferred prey of bald eagles increases

  14. A Southern Bald Eagle perches on a pole at KSC.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A Southern Bald Eagle perched on top of a utility pole searches the area. About a dozen bald eagles live in the Merritt Island National Wildlife Refuge, which shares a boundary with Kennedy Space Center. The Southern Bald Eagle ranges throughout Florida and along the coasts of California, Texas, Louisiana, and the south Atlantic states. Bald Eagles are listed as endangered in the U.S., except in five states where they are listed as threatened. The number of nesting pairs of the southern race once numbered several thousand; recent estimates are only 350-375. Most of the southern race nest in Florida. Eagles arrive at KSC during late summer and leave for the north in late spring. They move to nest sites in October and November and lay one to three eggs. The young fledge from February to April. The Refuge encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  15. Lead Levels in Utah Eagles

    NASA Astrophysics Data System (ADS)

    Arnold, Michelle

    2006-10-01

    Lead is a health hazard to most animals, causing adverse effects to the nervous and reproductive systems if in sufficient quantity. Found in most fishing jigs and sinkers, as well as some ammunition used in hunting, this metal can poison wildlife such as eagles. Eagles are raptors, or predatory birds, and their lead exposure would most likely comes from their food -- a fish which has swallowed a sinker or lead shot in carrion (dead animal matter). As part of an ongoing project to investigate the environment lead levels in Utah, the bone lead levels in the wing bones of eagles have been measured for eagle carcasses found throughout Utah. The noninvasive technique of x-ray fluorescence was used, consisting of a Cd-109 radioactive source to activate lead atoms and a HPGe detector with digital electronics to collect the gamma spectra. Preliminary results for the eagles measured to date will be presented.

  16. 36 CFR 71.5 - Golden Eagle Passport.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Golden Eagle Passport. 71.5... RECREATION FEES § 71.5 Golden Eagle Passport. (a) The Golden Eagle Passport is an annual permit, valid on a... Passport shall be $10. The annual Golden Eagle Passport shall be nontransferable and the unlawful use...

  17. 36 CFR 71.5 - Golden Eagle Passport.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Golden Eagle Passport. 71.5... RECREATION FEES § 71.5 Golden Eagle Passport. (a) The Golden Eagle Passport is an annual permit, valid on a... Passport shall be $10. The annual Golden Eagle Passport shall be nontransferable and the unlawful use...

  18. 36 CFR 71.5 - Golden Eagle Passport.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Golden Eagle Passport. 71.5... RECREATION FEES § 71.5 Golden Eagle Passport. (a) The Golden Eagle Passport is an annual permit, valid on a... Passport shall be $10. The annual Golden Eagle Passport shall be nontransferable and the unlawful use...

  19. 36 CFR 71.5 - Golden Eagle Passport.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Golden Eagle Passport. 71.5... RECREATION FEES § 71.5 Golden Eagle Passport. (a) The Golden Eagle Passport is an annual permit, valid on a... Passport shall be $10. The annual Golden Eagle Passport shall be nontransferable and the unlawful use...

  20. 36 CFR 71.5 - Golden Eagle Passport.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Golden Eagle Passport. 71.5... RECREATION FEES § 71.5 Golden Eagle Passport. (a) The Golden Eagle Passport is an annual permit, valid on a... Passport shall be $10. The annual Golden Eagle Passport shall be nontransferable and the unlawful use...

  1. The economic value of Trinity River water

    USGS Publications Warehouse

    Douglas, A.J.; Taylor, J.G.

    1999-01-01

    The Trinity River, largest tributary of the Klamath River, has its head-waters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the Sacramento River, and power production at three of these installations would diminish if no Trinity River water were diverted to the Sacramento River. After Trinity River water reaches the Sacramento River, it flows toward the Sacramento-San Joaquin Delta and San Francisco Bay. Trinity River water is pumped via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The social cost of putting more water down the Trinity River is the sum of the value of the foregone consumer surplus from hydropower production as well as the value of the foregone irrigation water. Sharply diminished instream flows have also severely affected the size and robustness of Trinity River salmon, steelhead, shad and sturgeon runs. Survey data were used to estimate the non-market benefits of augmenting Trinity River instream flows by letting more water flow down the Trinity and moving less water to the Sacramento River. Preservation benefits for Trinity River instream flows and fish runs are $803 million per annum for the scenario that returns the most water down the Trinity River, a value that greatly exceeds the social cost estimate.The Trinity River, largest tributary of the Klamath River, has its headwaters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the

  2. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    NASA Astrophysics Data System (ADS)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  3. Radioactivity at the Copper Creek copper lode prospect, Eagle district, east-central Alaska

    USGS Publications Warehouse

    Wedow, Helmuth; Tolbert, Gene Edward

    1952-01-01

    Investigation of radioactivity anomalies at the Copper Creek copper lode prospect, Eagle district, east-central Alaska, during 1949 disclosed that the radioactivity is associated with copper mineralization in highly metamorphosed sedimentary rocks. These rocks are a roof pendant in the Mesozoic "Charley River" batholith. The radioactivity is probably all due to uranium associated with bornite and malachite.

  4. A Southern Bald Eagle perches on a pole at KSC.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A Southern Bald Eagle perches on top of a utility pole at Kennedy Space Center. About a dozen bald eagles live in the Merritt Island National Wildlife Refuge, which shares a boundary with Kennedy Space Center. The Southern Bald Eagle ranges throughout Florida and along the coasts of California, Texas, Louisiana, and the south Atlantic states. Bald Eagles are listed as endangered in the U.S., except in five states where they are listed as threatened. The number of nesting pairs of the southern race once numbered several thousand; recent estimates are only 350-375. Most of the southern race nest in Florida. Eagles arrive at KSC during late summer and leave for the north in late spring. They move to nest sites in October and November and lay one to three eggs. The young fledge from February to April. The Refuge encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  5. Wildlife Photography - Eagles

    NASA Image and Video Library

    2018-03-13

    An adult American bald eagle perches in a nest in a tree along State Road 3 at NASA's Kennedy Space Center in Florida. Eagles have built nests in trees at the center for many years. The center shares a border with the 140,000-acre Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  6. Wildlife Photography - Eagles

    NASA Image and Video Library

    2018-03-13

    An adult American bald eagle perches on a branch in a tree along State Road 3 at NASA's Kennedy Space Center in Florida. Eagles have built nests in trees at the center for many years. The center shares a border with the 140,000-acre Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  7. A pair of bald eagles on a utility pole at KSC.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A pair of nesting bald eagles share a utility pole on Kennedy Parkway North. Nearby is their 11-foot-deep nest, in a pine tree, which has been home to one or more pairs of eagles for two dozen years. It is one of a dozen eagle nests in the Merritt Island National Wildlife Refuge, which shares a boundary with Kennedy Space Center. The Southern Bald Eagle ranges throughout Florida and along the coasts of California, Texas, Louisiana, and the south Atlantic states. Bald Eagles are listed as endangered in the U.S., except in five states where they are listed as threatened. The number of nesting pairs of the southern race once numbered several thousand; recent estimates are only 350-375. Most of the southern race nests in Florida Eagles arrive at KSC during late summer and leave for the north in late spring. They move to nest sites in October and November and lay one to three eggs. The young fledge from February to April. The Refuge encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  8. River water quality and pollution sources in the Pearl River Delta, China.

    PubMed

    Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu

    2005-07-01

    Some physicochemical parameters were determined for thirty field water samples collected from different water channels in the Pearl River Delta Economic Zone river system. The analytical results were compared with the environmental quality standards for surface water. Using the SPSS software, statistical analyses were performed to determine the main pollutants of the river water. The main purpose of the present research is to investigate the river water quality and to determine the main pollutants and pollution sources. Furthermore, the research provides some approaches for protecting and improving river water quality. The results indicate that the predominant pollutants are ammonium, phosphorus, and organic compounds. The wastewater discharged from households in urban and rural areas, industrial facilities, and non-point sources from agricultural areas are the main sources of pollution in river water in the Pearl River Delta Economic Zone.

  9. Agonistic asymmetries and the foraging ecology of Bald Eagles

    USGS Publications Warehouse

    Knight, Richard L.; Skagen, Susan Knight

    1988-01-01

    We investigated the effects of both asymmetries and differing food levels on contest outcomes of wintering Bald Eagles (Haliaeetus leucocephalus) feeding on chum salmon (Oncorhynchus keta) carcasses. Large eagles, regardless of age, were more successful in pirating than smaller eagles. Small pirating eagles were usually unsuccessful unless they were adults attempting to supplant other small eagles. Feeding eagles were more successful in defeating pirating eagles according to (1) whether their heads were up to prior to a pirating attempt, (2) how long their heads had been up, and (3) whether they displayed. During periods of food scarcity pirating eagles were less successful, a fact attributed in a proximate sense to the increase incidence of retaliation by feeding birds. When food was scarce and eagles had a choice between scavenging the pirating, they chose to scavenge more often. Body size appears to be an important factor in determining social dominance and influencing differences in foraging modes of wintering Bald Eagles.

  10. Nature Photography - Bald Eagle

    NASA Image and Video Library

    2016-12-12

    An American bald eagle perches in a tree at NASA's Kennedy Space Center in Florida. Several eagles call the center home. The center shares a boundary with the Merritt Island National Wildlife Refuge. The refuge is home to more than 65 amphibian and reptile species, along with 330 native and migratory bird species, 25 mammal and 117 fish species.

  11. The Northern Bald Eagle (Haliaeetus leucocephalus alascanus).

    DTIC Science & Technology

    1979-01-01

    finally lured out of the nest with a show of food. Kussman (1976, cited in Diss. Abst. Intern. 38(3):1033-D) studied post- fledging behavior of eagles...Frenzel, L. D., G. Juenemann, and J. Kussman 1973 Behavioral Aspects of Eagle Nest Surveys. pp 33-36 in: Bald Eagle Nest Survey Workshop, 15 Aug. U.S...J. Ligas, and W. B. Robertson, Jr. 1970 Organochlorine and Heavy Metal Residues in Bald Eagle Eggs. Pestic. Monit. Jour., 3(3): 136-140. Kussman , J

  12. Nature Photography - Bald Eagle

    NASA Image and Video Library

    2016-12-12

    An American bald eagle soars from its perch in a tree at NASA's Kennedy Space Center in Florida. Several eagles call the center home. The center shares a boundary with the Merritt Island National Wildlife Refuge. The refuge is home to more than 65 amphibian and reptile species, along with 330 native and migratory bird species, 25 mammal and 117 fish species.

  13. Nature Photography - Bald Eagles

    NASA Image and Video Library

    2017-01-04

    One American bald eagle sits in its nest, while another eagle perches on a branch in tree at NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  14. Bald eagles view their territory from high tower at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A pair of Florida bald eagles take advantage of a tower to rest and view the landscape near the intersection of the NASA Causeway and Kennedy Parkway North at Kennedy Space Center. This pair of eagles nests near Kennedy Parkway and is seen frequently by KSC commuters and visitors. The Southern Bald Eagle ranges throughout Florida and along the coasts of California, Texas, Louisiana and the south Atlantic states. Bald Eagles are listed as endangered in the U.S., except in five states where they are listed as threatened. The number of nesting pairs of the southern race once numbered several thousand; recent estimates are only 350-375. Most southern Florida eagles nesting at KSC arrive during late summer and leave for the north in late spring. They move to nest sites in October and November and lay one to three eggs. The young fledge from February to April. . Kennedy Space Center shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  15. 76 FR 22393 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Cancellation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [P-13123-002-CA] Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Cancellation of Teleconference On March 15... Mountain Pumped Storage Hydroelectric Project. This meeting has been cancelled. We will reschedule this...

  16. Nature Photography - Bald Eagle

    NASA Image and Video Library

    2016-12-12

    An American bald eagle begins to soar from its perch in a tree at NASA's Kennedy Space Center in Florida. Several eagles call the center home. The center shares a boundary with the Merritt Island National Wildlife Refuge. The refuge is home to more than 65 amphibian and reptile species, along with 330 native and migratory bird species, 25 mammal and 117 fish species.

  17. Analysis of ambient conditions and simulation of hydrodynamics and water-quality characteristics in Beaver Lake, Arkansas, 2001 through 2003

    USGS Publications Warehouse

    Galloway, Joel M.; Green, W. Reed

    2006-01-01

    Beaver Lake is a large, deep-storage reservoir located in the upper White River Basin in northwestern Arkansas. The purpose of this report is to describe the ambient hydrologic and water-quality conditions in Beaver Lake and its inflows and describe a two-dimensional model developed to simulate the hydrodynamics and water quality of Beaver Lake from 2001 through 2003. Water-quality samples were collected at the three main inflows to Beaver Lake; the White River near Fayetteville, Richland Creek at Goshen, and War Eagle Creek near Hindsville. Nutrient concentrations varied among the tributaries because of land use and contributions of nutrients from point sources. The median concentrations of total ammonia plus organic nitrogen were greater for the White River than Richland and War Eagle Creeks. The greatest concentrations of nitrite plus nitrate and total nitrogen, however, were observed at War Eagle Creek. Phosphorus concentrations were relatively low, with orthophosphorus and dissolved phosphorus concentrations mostly below the laboratory reporting limit at the three sites. War Eagle Creek had significantly greater median orthophosphorus and total phosphorus concentrations than the White River and Richland Creek. Dissolved organic-carbon concentrations were significantly greater at the White River than at War Eagle and Richland Creeks. The White River also had significantly greater turbidity than War Eagle Creek and Richland Creek. The temperature distribution in Beaver Lake exhibits the typical seasonal cycle of lakes and reservoirs located within similar latitudes. Beaver Lake is a monomictic system, in which thermal stratification occurs annually during the summer and fall and complete mixing occurs in the winter. Isothermal conditions exist throughout the winter and early spring. Nitrogen concentrations varied temporally, longitudinally, and vertically in Beaver Lake for 2001 through 2003. Nitrite plus nitrate concentrations generally decreased from the

  18. Captive Rearing Program for Salmon River Chinook Salmon, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venditti, David; Willard, Catherine; James, Chris

    2003-11-01

    During 2002, the Idaho Department of Fish and Game continued to develop techniques to rear Chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 328) and the West Fork Yankee Fork Salmon River (WFYF; N = 308) to establish brood year 2002 culture cohorts. The eyed-eggs were incubated and reared at the Eagle Fish Hatchery, Eagle, Idaho (Eagle). Juveniles collected in 2000 were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidneymore » disease prior to being transferred to the NOAA Fisheries, Manchester Marine Experimental Station, Manchester, Washington (Manchester) for saltwater rearing through maturity. Smolt transfers included 203 individuals from the WFYF and 379 from the EFSR. Maturing fish transfers from Manchester to Eagle included 107 individuals from the LEM, 167 from the WFYF, and 82 from the EFSR. This was the second year maturing adults were held on chilled water at Eagle to test if water temperature manipulations could advance spawn timing. Adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) temperature groups while at Eagle. Forty-seven mature females from the LEM (19 chilled, 16 ambient, and 12 ambient not included in the temperature study) were spawned at Eagle with 42 males in 2002. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage averaged 66.5% and did not differ significantly between the temperature groups. Personnel from the Shoshone-Bannock Tribe placed a total of 47,977 eyed-eggs from these crosses in in-stream incubators. Mature adults (N = 215 including 56 precocial males) were released into the WFYF to evaluate their reproductive performance. After release, fish distributed themselves

  19. Water quality of arctic rivers in Finnish Lapland.

    PubMed

    Niemi, Jorma

    2010-02-01

    The water quality monitoring data of eight rivers situated in the Finnish Lapland above the Arctic Circle were investigated. These rivers are icebound annually for about 200 days. They belong to the International River Basin District founded according to the European Union Water Framework Directive and shared with Norway. They are part of the European river monitoring network that includes some 3,400 river sites. The water quality monitoring datasets available varied between the rivers, the longest comprising the period 1975-2003 and the shortest 1989-2003. For each river, annual medians of eight water quality variables were calculated. In addition, medians and fifth and 95th percentiles were calculated for the whole observation periods. The medians indicated good river water quality in comparison to other national or foreign rivers. However, the river water quality oscillated widely. Some rivers were in practice in pristine state, whereas some showed slight human impacts, e.g., occasional high values of hygienic indicator bacteria.

  20. Why Did the Bald Eagle Almost Become Extinct?

    ERIC Educational Resources Information Center

    Glassman, Sarah J.; Sterling, Donna R.

    2012-01-01

    The activity described in this article poses a question, provides evidence needed to answer the question, and uses a cooperative learning structure within which students analyze the evidence and create their own questions. Students see how a single cause can interact with two natural systems--the water cycle and the bald eagle food chain--to…

  1. Radionuclides in ground water of the Carson River Basin, western Nevada and eastern California, U.S.A.

    USGS Publications Warehouse

    Thomas, J.M.; Welch, A.H.; Lico, M.S.; Hughes, J.L.; Whitney, R.

    1993-01-01

    Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas 222Rn concentration decreases. Both 226Ra and 228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and 228Ra concentrations are <5 pCi/l. Four ground water samples were analyzed for 210Po and one sample contained a high concentration of 21 pCi/l. Seven samples were analyzed for 210Pb; six contained <3 pCi/l and one contained 12 pCi/l. Thorium-230 was detected at concentrations of 0.15 and 0.20 pCi/l in two of four samples. Alpha-emitting radionuclides in the ground water originated from the dissolution of U-rich granitic rocks in the Sierra Nevada by CO2, oxygenated water. Dissolution of primary minerals, mainly titanite (sphene) in the granitic rocks, releases U to the water. Dissolved U is probably removed from the water by adsorption on Fe- and Mn-oxide coatings on fracture surfaces and fine-grained sediment, by adsorption on organic matter, and by coprecipitation with Fe and Mn oxides. These coated sediments are transported throughout the basin by fluvial

  2. Impact of Yangtze River Water Transfer on the Water Quality of the Lixia River Watershed, China

    PubMed Central

    Ma, Xiaoxue; Wang, Lachun; Wu, Hao; Li, Na; Ma, Lei; Zeng, Chunfen; Zhou, Yi; Yang, Jun

    2015-01-01

    To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO), chemical oxygen demand (COD), potassium permanganate index (CODMn), ammonia nitrogen (NH4 +-N), electrical conductivity (EC), and water transparency (WT)) were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi) and single-factor (Si) evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4 +-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed. PMID:25835525

  3. Mercury contamination in Idaho bald eagles, Haliaeetus leucocephalus.

    PubMed

    Bechard, Marc J; Perkins, Dusty N; Kaltenecker, Gregory S; Alsup, Steve

    2009-11-01

    Because mercury contamination is potentially threatening to bald eagle (Haliaeetus leucocephalus) populations, we collected molted feathers at nests to determine the level of contamination in bald eagles in the state of Idaho, USA. Eagle feathers contained measurable amounts of cadmium (Cd), chromium (Cr), selenium (Se), lead (Pb), as well as mercury (Hg). Cadmium, Cr, Se, and Pb levels averaged 0.17, 4.68, 2.02, and 1.29 mg/kg dry weight, respectively, and were at or below concentrations indicated as causing reproductive failure in bald eagles. Mercury contamination was found to be the highest averaging 18.74 mg/kg dry weight. Although a concentration of only 7.5 mg/kg dry weight Hg in bird feathers can cause reduced productivity and even sterility, all of the eagles we sampled bred successfully and the population of bald eagles continues to grow annually throughout the state.

  4. Wildlife - Bald Eagle

    NASA Image and Video Library

    2007-03-20

    High in a pine tree at NASA's Kennedy Space Center, an adult bald eagle (right) and a fledgling keep watch from their nest. There are approximately a dozen active bald eagle nests both in KSC and in the Merritt Island National Wildlife Refuge, which surrounds KSC. The refuge includes several wading bird rookeries, many osprey nests, up to 400 manatees during the spring, and approximately 2,500 Florida scrub jays. It also is a major wintering area for migratory birds. More than 500 species of wildlife inhabit the refuge, with 15 considered federally threatened or endangered.

  5. Salinization of the Upper Colorado River - Fingerprinting Geologic Salt Sources

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Grauch, Richard I.

    2009-01-01

    Salt in the upper Colorado River is of concern for a number of political and socioeconomic reasons. Salinity limits in the 1974 U.S. agreement with Mexico require the United States to deliver Colorado River water of a particular quality to the border. Irrigation of crops, protection of wildlife habitat, and treatment for municipal water along the course of the river also place restrictions on the river's salt content. Most of the salt in the upper Colorado River at Cisco, Utah, comes from interactions of water with rock formations, their derived soil, and alluvium. Half of the salt comes from the Mancos Shale and the Eagle Valley Evaporite. Anthropogenic activities in the river basin (for example, mining, farming, petroleum exploration, and urban development) can greatly accelerate the release of constituents from these geologic materials, thus increasing the salt load of nearby streams and rivers. Evaporative concentration further concentrates these salts in several watersheds where agricultural land is extensively irrigated. Sulfur and oxygen isotopes of sulfate show the greatest promise for fingerprinting the geologic sources of salts to the upper Colorado River and its major tributaries and estimating the relative contribution from each geologic formation. Knowing the salt source, its contribution, and whether the salt is released during natural weathering or during anthropogenic activities, such as irrigation and urban development, will facilitate efforts to lower the salt content of the upper Colorado River.

  6. Eagle Feathers, the Highest Honor.

    ERIC Educational Resources Information Center

    Beaverhead, Pete

    Following his own advice that elders of the tribe share their knowledge so that "the way of the Indians would come back to the children of today," Pete Beaverhead (1899-1975) tells of the traditions of respect and honor surrounding the eagle feather in a booklet illustrated with black and white drawings. The eagle is an Indian symbol of…

  7. Bald eagle predation on common loon egg

    USGS Publications Warehouse

    DeStefano, Stephen; McCarthy, Kyle P.; Laskowski, Tom

    2010-01-01

    The Common Loon (Gavia immer) must defend against many potential egg predators during incubation, including corvids, Herring Gulls (Larus argentatus), raccoons (Procyon lotor), striped skunk (Mephitis mephitis), fisher (Martes pennanti), and mink (Neovison vison) (McIntyre 1988, Evers 2004, McCann et al. 2005). Bald Eagles (Haliaeetus leucocephalus) have been documented as predators of both adult Common Loons and their chicks (Vliestra and Paruk 1997, Paruk et al. 1999, Erlandson et al. 2007, Piper et al. 2008). In Wisconsin, where nesting Bald Eagles are abundant (>1200 nesting pairs, >1 young/pair/year), field biologists observed four instances of eagle predation of eggs in loon nests during the period 2002–2004 (M. Meyer pers. comm.). In addition, four cases of eagle predation of incubating adult loons were inferred from evidence found at the loon nest (dozens of plucked adult loon feathers, no carcass remains) and/or loon leg, neck, and skull bones beneath two active eagle nests, including leg bones containing the bands of the nearby (<25 m) incubating adult loon. However, although loon egg predation has been associated with Bald Eagles, predation events have yet to be described in peer-reviewed literature. Here we describe a photographic observation of predation on a Common Loon egg by an immature Bald Eagle as captured by a nest surveillance video camera on Lake Umbagog, a large lake (32 km2) at Umbagog National Wildlife Refuge (UNWR) in Maine.

  8. Trace Elements in River Waters

    NASA Astrophysics Data System (ADS)

    Gaillardet, J.; Viers, J.; Dupré, B.

    2003-12-01

    Trace elements are characterized by concentrations lower than 1 mg L-1 in natural waters. This means that trace elements are not considered when "total dissolved solids" are calculated in rivers, lakes, or groundwaters, because their combined mass is not significant compared to the sum of Na+, K+, Ca2+, Mg2+, H4SiO4, HCO3-, CO32-, SO42-, Cl-, and NO3-. Therefore, most of the elements, except about ten of them, occur at trace levels in natural waters. Being trace elements in natural waters does not necessarily qualify them as trace elements in rocks. For example, aluminum, iron, and titanium are major elements in rocks, but they occur as trace elements in waters, due to their low mobility at the Earth's surface. Conversely, trace elements in rocks such as chlorine and carbon are major elements in waters.The geochemistry of trace elements in river waters, like that of groundwater and seawater, is receiving increasing attention. This growing interest is clearly triggered by the technical advances made in the determination of concentrations at lower levels in water. In particular, the development of inductively coupled plasma mass spectrometry (ICP-MS) has considerably improved our knowledge of trace-element levels in waters since the early 1990s. ICP-MS provides the capability of determining trace elements having isotopes of interest for geochemical dating or tracing, even where their dissolved concentrations are extremely low.The determination of trace elements in natural waters is motivated by a number of issues. Although rare, trace elements in natural systems can play a major role in hydrosystems. This is particularly evident for toxic elements such as aluminum, whose concentrations are related to the abundance of fish in rivers. Many trace elements have been exploited from natural accumulation sites and used over thousands of years by human activities. Trace elements are therefore highly sensitive indexes of human impact from local to global scale. Pollution

  9. 77 FR 43280 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With the Bureau of Land Management a... Bureau of Land Management to improve agency coordination and discuss the agencies' overlapping jurisdictions (pursuant to the Federal Land Policy and Management Act and the Federal Power Act), on the Eagle...

  10. Suspended sediment and carbonate transport in the Yukon River Basin, Alaska: Fluxes and potential future responses to climate change

    USGS Publications Warehouse

    Dornblaser, Mark M.; Striegl, Robert G.

    2009-01-01

    Loads and yields of suspended sediment and carbonate were measured and modeled at three locations on the Yukon, Tanana, and Porcupine Rivers in Alaska during water years 2001–2005 (1 October 2000 to 30 September 2005). Annual export of suspended sediment and carbonate upstream from the Yukon Delta averaged 68 Mt a−1 and 387 Gg a−1, respectively, with 50% of the suspended sediment load originating in the Tanana River Basin and 88% of the carbonate load originating in the White River Basin. About half the annual suspended sediment export occurred during spring, and half occurred during summer‐autumn, with very little export in winter. On average, a minimum of 11 Mt a−1 of suspended sediment is deposited in floodplains between Eagle, Alaska, and Pilot Station, Alaska, on an annual basis, mostly in the Yukon Flats. There is about a 27% loss in the carbonate load between Eagle and Yukon River near Stevens Village, with an additional loss of about 29% between Stevens Village and Pilot Station, owing to a combination of deposition and dissolution. Comparison of current and historical suspended sediment loads for Tanana River suggests a possible link between suspended sediment yield and the Pacific decadal oscillation.

  11. Suspended sediment and carbonate transport in the Yukon River Basin, Alaska: Fluxes and potential future responses to climate change

    NASA Astrophysics Data System (ADS)

    Dornblaser, Mark M.; Striegl, Robert G.

    2009-06-01

    Loads and yields of suspended sediment and carbonate were measured and modeled at three locations on the Yukon, Tanana, and Porcupine Rivers in Alaska during water years 2001-2005 (1 October 2000 to 30 September 2005). Annual export of suspended sediment and carbonate upstream from the Yukon Delta averaged 68 Mt a-1 and 387 Gg a-1, respectively, with 50% of the suspended sediment load originating in the Tanana River Basin and 88% of the carbonate load originating in the White River Basin. About half the annual suspended sediment export occurred during spring, and half occurred during summer-autumn, with very little export in winter. On average, a minimum of 11 Mt a-1 of suspended sediment is deposited in floodplains between Eagle, Alaska, and Pilot Station, Alaska, on an annual basis, mostly in the Yukon Flats. There is about a 27% loss in the carbonate load between Eagle and Yukon River near Stevens Village, with an additional loss of about 29% between Stevens Village and Pilot Station, owing to a combination of deposition and dissolution. Comparison of current and historical suspended sediment loads for Tanana River suggests a possible link between suspended sediment yield and the Pacific decadal oscillation.

  12. Bald eagles view their territory atop a utility pole at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This pair of bald eagles appear unhappy as the focus of the camera while they perch together on the top of a utility pole at Kennedy Space Center. The Center counts more than half a dozen bald eagles among the denizens of its site, especially since KSC shares a boundary with the Merritt Island National Wildlife Refuge. The Southern bald eagle is no stranger to Florida as it ranges throughout the state and along the coasts of California, Texas, Louisiana and south Atlantic states. Most southern Florida eagles nesting at KSC arrive during late summer and leave for the north in late spring. They move to nest sites in October and November and lay one to three eggs. The young fledge from February to April. The Refuge encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  13. Migration of Florida sub-adult Bald Eagles

    USGS Publications Warehouse

    Mojica, E.K.; Meyers, J.M.; Millsap, B.A.; Haley, K.L.

    2008-01-01

    We used satellite telemetry locations accurate within 1 km to identify migration routes and stopover sites of 54 migratory sub-adult Bald Eagles (Haliaeetus leucocephalus) hatched in Florida from 1997 to 2001. We measured number of days traveled during migration, path of migration, stopover time and locations, and distance traveled to and from winter and summer areas for each eagle (1?5 years old). Eagles used both Coastal Plain (n = 24) and Appalachian Mountain (n = 26) routes on their first migration north. Mountain migrants traveled farther (X = 2,112 km; 95% CI: 1,815-2,410) than coastal migrants (X = 1,397 km; 95% CI: 1,087?1,706). Eagles changed between migration routes less often on northbound and southbound movements as they matured (X2 = 13.22, df = 2, P < 0.001). One-year-old eagles changed routes between yearly spring and fall migrations 57% of the time, 2-year-olds 30%, and 3-5-year-olds changed only 17% of the time. About half (n = 25, 46%) used stopovers during migration and stayed 6-31 days (X = 14.8 days; 95% CI: 12.8-16.8). We recommend that migratory stopover site locations be added to GIS data bases for improving conservation of Bald Eagles in the eastern United States.

  14. 78 FR 65238 - Proposed Establishment of Class E Airspace; Eagle, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...-0777; Airspace Docket No. 12-AAL-16] Proposed Establishment of Class E Airspace; Eagle, AK AGENCY... action proposes to establish Class E airspace at Eagle Airport, Eagle, AK. Controlled airspace is... management of aircraft operations at Eagle Airport, Eagle, AK. DATES: Comments must be received on or before...

  15. 78 FR 25263 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting With the Bureau of Land Management a.... Purpose of the Meeting: Commission staff will meet with the staff of the Bureau of Land Management to... Land Policy and Management Act and the Federal Power Act), on the Eagle Mountain Pumped Storage...

  16. 78 FR 26358 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With the Bureau of Land Management a... of the Meeting: Commission staff will meet with the staff of the Bureau of Land Management to improve... Policy and Management Act and the Federal Power Act), on the Eagle Mountain Pumped Storage Hydroelectric...

  17. Evidence of Bald Eagles feeding on freshwater mussels

    Treesearch

    Teryl G. Grubb; Michael A. Coffey

    1982-01-01

    A 1978 study of the winter habitat of the Bald Eagle (Haliaeetus leucocephalus) in the Coconino National Forest, Arizona, indicated repeated and potentially heavy use of a freshwater mussel (Anodonta corpulenta) in the eagles’ diet. As many as 10 eagles (five adults and five immatures) were observed at Upper Lake Mary near...

  18. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.205 Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. (a) San Joaquin River Deep Water Channel between Suisun Bay and the easterly end of the channel at...

  19. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.205 Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. (a) San Joaquin River Deep Water Channel between Suisun Bay and the easterly end of the channel at...

  20. 33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.205 Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. (a) San Joaquin River Deep Water Channel between Suisun Bay and the easterly end of the channel at...

  1. Water quality of Cisadane River based on watershed segmentation

    NASA Astrophysics Data System (ADS)

    Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin

    2018-05-01

    The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.

  2. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    PubMed

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  3. Surface-water/ground-water relations in the Lemhi River Basin, east-central Idaho

    USGS Publications Warehouse

    Donato, Mary M.

    1998-01-01

    This report summarizes work carried out in cooperation with the Bureau of Reclamation to provide hydrologic information to help Federal, State, and local agencies meet the goals of the Lemhi River Model Watershed Project. The primary goal of the project is to maintain, enhance, and restore anadromous and resident fish habitat in the Lemhi River, while maintaining a balance between resource protection and established water uses. The main objectives of the study were to carry out seepage measurements to determine seasonal distributed gains and losses in the Lemhi River and to estimate annual ground-water underflow from the basin to the Salmon River. In 1997, seepage measurements were made during and after the irrigation season along a 60-mile reach of the Lemhi River between Leadore and Salmon. Except for one 4-mile reach that lost 1.3 cubic feet per second per mile, the river gained from ground water in early August when ground-water levels were high. Highest flows in the Lemhi River in early August were about 400 cubic feet per second. In October, when ground-water levels were low, river losses to ground water were about 1 to 16 cubic feet per second per mile. In October, highest flows in the Lemhi River were about 500 cubic feet per second, near the river's mouth. Annual ground-water underflow from the Lemhi River Basin to the Salmon River was estimated by using a simplified water budget and by using Darcy's equation. The water-budget method contained large uncertainties associated with estimating precipitation and evapotranspiration. Results of both methods indicate that the quantity of ground water leaving the basin as underflow is small, probably less than 2 percent of the basin's total annual water yield.

  4. Spizaetus hawk-eagles as predators of arboreal colobines.

    PubMed

    Fam, S D; Nijman, V

    2011-04-01

    The predation pressure put on primates by diurnal birds of prey differs greatly between continents. Africa and South America have specialist raptors (e.g. crowned hawk-eagle Stephanoaetus coronatus and harpy eagle Harpia harpyja) whereas in Asia the only such specialist's (Philippine eagle Pithecophaga jefferyi) distribution is largely allopatric with primates. The almost universal absence of polyspecific groups in Asia (common in Africa and South America) may indicate reduced predation pressure. As such there is almost no information on predation pressures on primates in Asia by raptors. Here we report successful predation of a juvenile banded langur Presbytis femoralis (~2 kg) by a changeable hawk-eagle Spizaetus cirrhatus. The troop that was attacked displayed no signs of being alarmed, and no calls were made before the event. We argue that in insular Southeast Asia, especially, large Spizaetus hawk-eagles (~2 kg) are significant predators of arboreal colobines. Using data on the relative size of sympatric Spizaetus hawk-eagles and colobines we make predictions on where geographically we can expect the highest predation pressure (Thai-Malay Peninsula) and which colobines are least (Nasalis larvatus, Trachypithecus auratus, P. thomasi) and most (P. femoralis, T. cristatus) affected.

  5. Reconnaissance evaluation of surface-water quality in Eagle, Grand, Jackson, Pitkin, Routt, and Summit counties, Colorado

    USGS Publications Warehouse

    Britton, Linda J.

    1979-01-01

    Water-quality data were collected from streams in a six-county area in northwest Colorado to determine if the streams were polluted and, if so, to determine the sources of the pollution. Eighty-three stream sites were selected for sampling in Eagle, Grand, Jackson, Pitkin, Routt, and Summit Counties. A summary of data collected prior to this study, results of current chemical and biological sampling, and needs for future water-quality monitoring are reported for each county. Data collected at selected sites included temperature, pH, specific conductance, dissolved oxygen, and stream discharge. Chemical data collected included nutrients, inorganics, organics, and trace elements. Biological data collected included counts and species composition of total and fecal-coliform bacteria, fecal-streptococcus bacteria, benthic invertebrates, and phytoplankton. Most of the sites were sampled three times: in April-June 1976, August 1976, and January 1977. (Woodard-USGS)

  6. ASBO Eagle Institute: A Leadership Opportunity

    ERIC Educational Resources Information Center

    Scharff, James

    2012-01-01

    Each summer, ASBO International conducts an Eagle Institute leadership session in the Washington, D.C., area that provides a group of about 25 participants, including Eagle Award recipients, an opportunity to network with and learn from exemplary leaders inside and outside the field of school business management. Each year, the focus of the…

  7. Mercury concentrations in tissues of Florida bald eagles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, P.B.; Wood, J.M.; White, J.H.

    1996-01-01

    We collected 48 blood and 61 feather samples from nestling bald eagles at 42 nests and adult feather samples from 20 nests in north and central Florida during 1991-93. We obtained 32 liver, 10 feather, and 5 blood samples from 33 eagle carcasses recovered in Florida during 1987-93. For nestlings, mercury concentrations in blood (GM = 0.16 ppm wet wt) and feather (GM = 3.23 ppm) samples were correlated (r = 0.69, P = 0.0001). Although nestlings had lower mercury concentrations in feathers than did adults (GM = 6.03 ppm), the feather mercury levels in nestlings and adults from themore » same nest were correlated (r = 0.63, P < 0.02). Mercury concentrations in blood of captive adult eagles (GM = 0.23 ppm) was similar to Florida nestlings but some Florida nestlings had blood mercury concentrations up to 0.61 ppm, more than twice as high as captive adults. Feather mercury concentrations in both nestlings and adults exceeded those in captive eagles, but concentrations in all tissues were similar to, or lower than, those in bald eagles from other wild populations. Although mercury concentrations in Florida eagles are below those that cause mortality, they are in the range of concentrations that can cause behavioral changes or reduce reproduction. We recommend periodic monitoring of mercury in Florida bald eagles for early detection of mercury increases before negative effects on reproduction occur. 26 refs., 5 figs., 2 tabs.« less

  8. Influence of the South-to-North Water Transfer and the Yangtze River Mitigation Projects on the water quality of Han River, China

    NASA Astrophysics Data System (ADS)

    Liu, W.; Kuo, Y. M.

    2016-12-01

    The Middle Route of China's South-to-North Water Transfer (MSNW) and Yangtze-Han River Water Diversion (YHWD) Projects have been operated since 2014, which may deteriorate water quality in Han River. The 11 water sampling sites distributed from the middle and down streams of Han River watershed were monitored monthly between July 2014 and December 2015. Factor analysis and cluster analysis were applied to investigate the major pollution types and main variables influencing water quality in Han River. The factor analysis distinguishes three main pollution types (agricultural nonpoint source, organic, and phosphorus point source pollution) affecting water quality of Han River. Cluster analysis classified all sampling sites into four groups and determined their pollution source for both Dry and Wet seasons. The sites located at central city receive point source pollution in both seasons. The water quality in downstream Han River (excluding central city sites) was influenced by nonpoint source pollution from Jianghan Plain. Variations of water qualities are associated with hydrological conditions varied from operations of engineering projects and seasonal variability especially in Dry season. Good water quality as Class III mainly occurred when flow rate is greater than 800 cms in Dry season. The low average flow rate below 583 cms will degrade water quality as Class V at almost all sites. Elevating the flow rate discharged from MSNW and YHWD Projects to Han River can avoid degrading water quality especially in low flow conditions and may decrease the probability of algal bloom occurrence in Han River. Increasing the flow rate from 400 cms to 700 cms in main Han River can obviously improve the water quality of Han River. The investigation of relationships between water quality and flow rate in both projects can provide management strategies of water quality for various flow conditions.

  9. Scaled Eagle Nebula Experiments on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pound, Marc W.

    We performed scaled laboratory experiments at the National Ignition Facility laser to assess models for the creation of pillar structures in star-forming clouds of molecular hydrogen, in particular the famous Pillars of the Eagle Nebula. Because pillars typically point towards nearby bright ultraviolet stars, sustained directional illumination appears to be critical to pillar formation. The experiments mock up illumination from a cluster of ultraviolet-emitting stars, using a novel long duration (30--60 ns), directional, laser-driven x-ray source consisting of multiple radiation cavities illuminated in series. Our pillar models are assessed using the morphology of the Eagle Pillars observed with the Hubblemore » Space Telescope, and measurements of column density and velocity in Eagle Pillar II obtained at the BIMA and CARMA millimeter wave facilities. In the first experiments we assess a shielding model for pillar formation. The experimental data suggest that a shielding pillar can match the observed morphology of Eagle Pillar II, and the observed Pillar II column density and velocity, if augmented by late time cometary growth.« less

  10. In Brief: Improving Mississippi River water quality

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  11. Ranging behaviour and habitat preferences of the Martial Eagle: Implications for the conservation of a declining apex predator

    PubMed Central

    van Eeden, Rowen; Whitfield, D. Philip; Botha, Andre; Amar, Arjun

    2017-01-01

    Understanding the ranging behaviours of species can be helpful in effective conservation planning. However, for many species that are rare, occur at low densities, or occupy challenging environments, this information is often lacking. The Martial Eagle (Polemaetus bellicosus) is a low density apex predator declining in both non-protected and protected areas in southern Africa, and little is known about its ranging behaviour. We use GPS tags fitted to Martial Eagles (n = 8) in Kruger National Park (KNP), South Africa to describe their ranging behaviour and habitat preference. This represents the first time that such movements have been quantified in adult Martial Eagles. Territorial eagles (n = 6) held home ranges averaging ca. 108 km2. Home range estimates were similar to expectations based on inter-nest distances, and these large home range sizes could constrain the carrying capacity of even the largest conservation areas. Two tagged individuals classed as adults on plumage apparently did not hold a territory, and accordingly ranged more widely (ca. 44,000 km2), and beyond KNP boundaries as floaters. Another two territorial individuals abandoned their territories and joined the ‘floater’ population, and so ranged widely after leaving their territories. These unexpected movements after territory abandonment could indicate underlying environmental degradation. Relatively high mortality of these wide-ranging ‘floaters’ due to anthropogenic causes (three of four) raises further concerns for the species’ persistence. Habitat preference models suggested Martial Eagles used areas preferentially that were closer to rivers, had higher tree cover, and were classed as dense bush rather than open bush or grassland. These results can be used by conservation managers to help guide actions to preserve breeding Martial Eagles at an appropriate spatial scale. PMID:28306744

  12. Water-quality assessment of the Merced River, California, in the 1977 water year

    USGS Publications Warehouse

    Sorenson, Stephen K.; Hoffman, Ray J.

    1981-01-01

    Water-quality conditions in the Merced River in California were sampled four times during the 1977 water year at 12 stations on the river and its major impoundments. Samples taken at the record or near-record low flows of the 1976-77 drought, showed that calcium and bicarbonate were the predominant ions in the water. Inflow of irrigation return water to the river caused a threefold to sevenfold increase in specific conductance between river kilometer 42 and the farthest downstream station at kilometer 8. During the four sampling periods, the increase in total nitrogen concentrations was twofold to sixfold in that reach. Upstream of kilometer 42, the river was free of apparent water-quality degradation, with the exception of occasional increases in nitrogen and phosphorus. Measurements of primary productivity and phytoplankton in Lake McClure and at three river stations gave indications of trophic conditions in the river system. (USGS)

  13. Uncertainties in selected river water quality data

    NASA Astrophysics Data System (ADS)

    Rode, M.; Suhr, U.

    2007-02-01

    Monitoring of surface waters is primarily done to detect the status and trends in water quality and to identify whether observed trends arise from natural or anthropogenic causes. Empirical quality of river water quality data is rarely certain and knowledge of their uncertainties is essential to assess the reliability of water quality models and their predictions. The objective of this paper is to assess the uncertainties in selected river water quality data, i.e. suspended sediment, nitrogen fraction, phosphorus fraction, heavy metals and biological compounds. The methodology used to structure the uncertainty is based on the empirical quality of data and the sources of uncertainty in data (van Loon et al., 2005). A literature review was carried out including additional experimental data of the Elbe river. All data of compounds associated with suspended particulate matter have considerable higher sampling uncertainties than soluble concentrations. This is due to high variability within the cross section of a given river. This variability is positively correlated with total suspended particulate matter concentrations. Sampling location has also considerable effect on the representativeness of a water sample. These sampling uncertainties are highly site specific. The estimation of uncertainty in sampling can only be achieved by taking at least a proportion of samples in duplicates. Compared to sampling uncertainties, measurement and analytical uncertainties are much lower. Instrument quality can be stated well suited for field and laboratory situations for all considered constituents. Analytical errors can contribute considerably to the overall uncertainty of river water quality data. Temporal autocorrelation of river water quality data is present but literature on general behaviour of water quality compounds is rare. For meso scale river catchments (500-3000 km2) reasonable yearly dissolved load calculations can be achieved using biweekly sample frequencies. For

  14. NIF Discovery Science Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Kane, Jave; Martinez, David; Pound, Marc; Heeter, Robert; Casner, Alexis; Villette, Bruno; Mancini, Roberto

    2017-10-01

    The University of Maryland and and LLNL are investigating the origin and dynamics of the famous Pillars of the Eagle Nebula and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds. The National Ignition Facility (NIF) Discovery Science program Eagle Nebula has performed NIF shots to study models of pillar formation. The shots feature a new long-duration x-ray source, in which multiple hohlraums mimicking a cluster of stars are driven with UV light in series for 10 to 15 ns each to create a 30 to 60 ns output x-ray pulse. The source generates deeply nonlinear hydrodynamics in the Eagle science package, a structure of dense plastic and foam mocking up a molecular cloud containing a dense core. Omega EP and NIF shots have validated the source concept, showing that earlier hohlraums do not compromise later ones by preheat or by ejecting ablated plumes that deflect later beams. The NIF shots generated radiographs of shadowing-model pillars, and also showed evidence that cometary structures can be generated. The velocity and column density profiles of the NIF shadowing and cometary pillars have been compared with observations of the Eagle Pillars made at the millimeter-wave BIMA and CARMA observatories. Prepared by LLNL under Contract DE-AC52-07NA27344.

  15. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    PubMed

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  16. [Nutrients Input Characteristics of the Yangtze River and Wangyu River During the "Water Transfers on Lake Taihu from the Yangtze River"].

    PubMed

    Pan, Xiao-xue; Ma, Ying-qun; Qin, Yan-wen; Zou, Hua

    2015-08-01

    Overall 20 surface water samples were collected from the Yangtze River, the Wangyu River and the Gonghu Bay (Lake Taihu) to clarify the pollution characteristics of nitrogen and phosphorus during 2 sample stages of "Water Transfers on Lake Taihu from the Yangtze River" in August and December of 2013 respectively. The results showed that the mass concentrations of NO2- -N, NO3- -N, NH4+ -N and TN in the Gonghu Bay were lower than those of the Yangtze River and Wangyu River during the 2 water transfer processes. However, there was higher level of DON content in the Gonghu Bay than that of the Yangtze River and Wangyu River. The percentages of various N species showed that NO3- -N was the major N species in the Yangtze River and Wangyu River during the 2 water transfer processes. TP contents in samples collected from the Yangtze River displayed a constant trend compared with the Wangyu River. However, the percentages of various P species were different with each other during the 2 water transfer processes. Mass concentrations of DON and TP in surface water in August were higher than those in December and the contents of NO3- -N and TDP were lower in August than those in December. In general, NO3- -N and TPP were the main N and P species in Wangyu River from the Yangtze River. NO3- -N, PO4(3-) -P and TPP were the main N and P species in Gonghu Bay from Wangyu River during the 2 water transfer processes.

  17. Water quality evaluation of Al-Gharraf river by two water quality indices

    NASA Astrophysics Data System (ADS)

    Ewaid, Salam Hussein

    2017-11-01

    Water quality of Al-Gharraf river, the largest branch of Tigris River south of Iraq, was evaluated by the National Sanitation Foundation Water Quality Index (NFS WQI) and the Heavy Metal Pollution Index (HPI) depending on 13 physical, chemical, and biological parameters of water quality measured monthly at ten stations on the river during 2015. The NSF-WQI range obtained for the sampling sites was 61-70 indicating a medium water quality. The HPI value was 98.6 slightly below the critical value for drinking water of 100, and the water quality in the upstream stations is better than downstream due to decrease in water and the accumulation of contaminants along the river. This study explains the significance of applying the water quality indices that show the aggregate impact of ecological factors in charge of water pollution of surface water and which permits translation of the monitoring data to assist the decision makers.

  18. Dynamic water accounting in heavily committed river basins

    NASA Astrophysics Data System (ADS)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  19. The influence of weather on Golden Eagle migration in northwestern Montana

    USGS Publications Warehouse

    Yates, R.E.; McClelland, B.R.; Mcclelland, P.T.; Key, C.H.; Bennetts, R.E.

    2001-01-01

    We analyzed the influence of 17 weather factors on migrating Golden Eagles (Aquila chrysaetos) near the Continental Divide in Glacier National Park, Montana, U.S.A. Local weather measurements were recorded at automated stations on the flanks of two peaks within the migration path. During a total of 506 hr of observation, the yearly number of Golden Eagles in autumn counts (1994-96) averaged 1973; spring counts (1995 and 1996) averaged 605 eagles. Mean passage rates (eagles/hr) were 16.5 in autumn and 8.2 in spring. Maximum rates were 137 in autumn and 67 in spring. Using generalized linear modeling, we tested for the effects of weather factors on the number of eagles counted. In the autumn model, the number of eagles increased with increasing air temperature, rising barometric pressure, decreasing relative humidity, and interactions among those factors. In the spring model, the number of eagles increased with increasing wind speed, barometric pressure, and the interaction between these factors. Our data suggest that a complex interaction among weather factors influenced the number of eagles passing on a given day. We hypothesize that in complex landscapes with high topographic relief, such as Glacier National Park, numerous weather factors produce different daily combinations to which migrating eagles respond opportunistically. ?? 2001 The Raptor Research Foundation, Inc.

  20. Interactive effects of prey and weather on golden eagle reproduction

    USGS Publications Warehouse

    Steenhof, Karen; Kochert, Michael N.; McDonald, T.L.

    1997-01-01

    1. The reproduction of the golden eagle Aquila chrysaetos was studied in southwestern Idaho for 23 years, and the relationship between eagle reproduction and jackrabbit Lepus californicus abundance, weather factors, and their interactions, was modelled using general linear models. Backward elimination procedures were used to arrive at parsimonious models.2. The number of golden eagle pairs occupying nesting territories each year showed a significant decline through time that was unrelated to either annual rabbit abundance or winter severity. However, eagle hatching dates were significantly related to both winter severity and jackrabbit abundance. Eagles hatched earlier when jackrabbits were abundant, and they hatched later after severe winters.3. Jackrabbit abundance influenced the proportion of pairs that laid eggs, the proportion of pairs that were successful, mean brood size at fledging, and the number of young fledged per pair. Weather interacted with prey to influence eagle reproductive rates.4. Both jackrabbit abundance and winter severity were important in predicting the percentage of eagle pairs that laid eggs. Percentage laying was related positively to jackrabbit abundance and inversely related to winter severity.5. The variables most useful in predicting percentage of laying pairs successful were rabbit abundance and the number of extremely hot days during brood-rearing. The number of hot days and rabbit abundance were also significant in a model predicting eagle brood size at fledging. Both success and brood size were positively related to jackrabbit abundance and inversely related to the frequency of hot days in spring.6. Eagle reproduction was limited by rabbit abundance during approximately twothirds of the years studied. Weather influenced how severely eagle reproduction declined in those years.7. This study demonstrates that prey and weather can interact to limit a large raptor population's productivity. Smaller raptors could be affected more

  1. Correlates of immune defenses in golden eagle nestlings

    USGS Publications Warehouse

    MacColl, Elisabeth; Vanesky, Kris; Buck, Jeremy A.; Dudek, Benjamin; Eagles-Smith, Collin A.; Heath, Julie A.; Herring, Garth; Vennum, Chris; Downs, Cynthia J.

    2017-01-01

    An individual's investment in constitutive immune defenses depends on both intrinsic and extrinsic factors. We examined how Leucocytozoon parasite presence, body condition (scaled mass), heterophil-to-lymphocyte (H:L) ratio, sex, and age affected immune defenses in golden eagle (Aquila chrysaetos) nestlings from three regions: California, Oregon, and Idaho. We quantified hemolytic-complement activity and bacterial killing ability, two measures of constitutive immunity. Body condition and age did not affect immune defenses. However, eagles with lower H:L ratios had lower complement activity, corroborating other findings that animals in better condition sometimes invest less in constitutive immunity. In addition, eagles with Leucocytozoon infections had higher concentrations of circulating complement proteins but not elevated opsonizing proteins for all microbes, and eagles from Oregon had significantly higher constitutive immunity than those from California or Idaho. We posit that Oregon eagles might have elevated immune defenses because they are exposed to more endoparasites than eagles from California or Idaho, and our results confirmed that the OR region has the highest rate of Leucocytozoon infections. Our study examined immune function in a free-living, long-lived raptor species, whereas most avian ecoimmunological research focuses on passerines. Thus, our research informs a broad perspective regarding the evolutionary and environmental pressures on immune function in birds.

  2. Kyiv Small Rivers in Metropolis Water Objects System

    NASA Astrophysics Data System (ADS)

    Krelshteyn, P.; Dubnytska, M.

    2017-12-01

    The article answers the question, what really are the small underground rivers with artificial watercourses: water bodies or city engineering infrastructure objects? The place of such rivers in metropolis water objects system is identified. The ecological state and the degree of urbanization of small rivers, as well as the dynamics of change in these indicators are analysed on the Kiev city example with the help of water objects cadastre. It was found that the registration of small rivers in Kyiv city is not conducted, and the summary information on such water objects is absent and is not taken into account when making managerial decisions at the urban level. To solve this problem, we propose to create some water bodies accounting system (water cadastre).

  3. Wintering bald eagle trends in northern Arizona, 1975-2000

    Treesearch

    Teryl G. Grubb

    2003-01-01

    Between 1975 and 2000, 4,525 sightings of wintering bald eagles (Haliaeetus leucocephalus) were recorded at Mormon Lake in northern Arizona. Numbers of wintering eagles fluctuated little in the 20 years from 1975 through 1994 (5.5 ± 3.0 mean sightings per day). However, during the winters of 1995 through 1997 local record highs of 59 to 118 eagles...

  4. Water security evaluation in Yellow River basin

    NASA Astrophysics Data System (ADS)

    Jiang, Guiqin; He, Liyuan; Jing, Juan

    2018-03-01

    Water security is an important basis for making water security protection strategy, which concerns regional economic and social sustainable development. In this paper, watershed water security evaluation index system including 3 levels of 5 criterion layers (water resources security, water ecological security and water environment security, water disasters prevention and control security and social economic security) and 24 indicators were constructed. The entropy weight method was used to determine the weights of the indexes in the system. The water security index of 2000, 2005, 2010 and 2015 in Yellow River basin were calculated by linear weighting method based on the relative data. Results show that the water security conditions continue to improve in Yellow River basin but still in a basic security state. There is still a long way to enhance the water security in Yellow River basin, especially the water prevention and control security, the water ecological security and water environment security need to be promoted vigorously.

  5. Relationship of diets and environmental contaminants in wintering bald eagles. [Haliaeetus leucocephalus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frenzel, R.W.; Anthony, R.G.

    1989-07-01

    We investigated the relationship between diets and potential hazards in contaminants of wintering bald eagles (Haliaeetus leucocephalus) in the Klamath Basin of northern California and southern Oregon. We studied diets by identifying remains of 913 prey items found at perches, examining 341 castings collected from communal night roots, and observing foraging eagles. We determined residues of organochlorine compounds, lead (Pb), and mercury (Hg) in bald eagles and their prey by analyzing eagle blood samples and carcasses and 8 major prey species. Bald eagles fed largely on waterfowl by scavenging cholera-killed ducks and geese and on microtine rodents during mid- tomore » late winter. Residues of organochlorine pesticides and Hg in prey were low, and polychlorinated biphenyls (PCB's) were detected in low concentrations in 9% of prey samples. Means Pb concentrations in prey ranged from 0.15 to 4.79 ppm. Mercury was detected in all eagle blood samples, and Pb was detected in 41% of the bald eagle blood samples. Mean Pb concentration in livers of dead eagles was 2.09 ppm and ranged as high as 27 ppm in an eagle that died of Pb poisoning. Prey of the eagles were relatively free of contaminants with the possible exception of embedded Pb shot in waterfowl, which may present a potential for Pb poisoning of eagles.« less

  6. 43 CFR 418.17 - Truckee and Carson River water use.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Truckee and Carson River water use. 418.17... Operations and Management § 418.17 Truckee and Carson River water use. Project water must be managed to make maximum use of Carson River water and to minimize diversions of Truckee River water through the Truckee...

  7. 43 CFR 418.17 - Truckee and Carson River water use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Truckee and Carson River water use. 418.17... Operations and Management § 418.17 Truckee and Carson River water use. Project water must be managed to make maximum use of Carson River water and to minimize diversions of Truckee River water through the Truckee...

  8. Klamath River Basin water-quality data

    USGS Publications Warehouse

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  9. Bald eagles nesting in Baja California

    USGS Publications Warehouse

    Henny, Charles J.; Anderson, Daniel W.; Knoder, C.E.

    1978-01-01

    Published records of Bald Eagles (Haliaeetus leucocephalus) nesting in Baja California during the last 50 years are nonexistent to our knowledge, and few records exist prior to that time. Friedmann et al. (1950:61, Pac. Coast Avifauna 29) describe the distribution of Bald Eagles in Baja California as "a scattering of pairs on both the Pacific and Gulf Sides." Nesting Bald Eagles were first reported by Bryant (1889, Proc. Calif. Acad. Sci. 2: 237-320), who found a pair on Isla Santa Margarita (24°25'N, 111°50'W; hereafter abbreviated as 2425-11150) and saw an adult on the "estero" north from Magdalena Bay (the region where one pair was seen in 1977). Other records were reviewed by Grinnell (1928, Univ. Calif. Publ. Zool. 32).

  10. The Influence of Water Conservancy Projects on River Network Connectivity, A Case of Luanhe River Basin

    NASA Astrophysics Data System (ADS)

    Li, Z.; Li, C.

    2017-12-01

    Connectivity is one of the most important characteristics of a river, which is derived from the natural water cycle and determine the renewability of river water. The water conservancy project can change the connectivity of natural river networks, and directly threaten the health and stability of the river ecosystem. Based on the method of Dendritic Connectivity Index (DCI), the impacts from sluices and dams on the connectivity of river network are deeply discussed herein. DCI quantitatively evaluate the connectivity of river networks based on the number of water conservancy facilities, the connectivity of fish and geographical location. The results show that the number of water conservancy facilities and their location in the river basin have a great influence on the connectivity of the river network. With the increase of the number of sluices and dams, DCI is decreasing gradually, but its decreasing range is becoming smaller and smaller. The dam located in the middle of the river network cuts the upper and lower parts of the whole river network, and destroys the connectivity of the river network more seriously. Therefore, this method can be widely applied to the comparison of different alternatives during planning of river basins and then provide a reference for the site selection and design of the water conservancy project and facility concerned.

  11. Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.

    PubMed

    Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram

    2017-08-19

    Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.

  12. WATER QUALITY EFFECTS OF HYPORHEIC PROCESSING IN A LARGE RIVER

    EPA Science Inventory

    Water quality changes along hyporheic flow paths may have
    important effects on river water quality and aquatic habitat. Previous
    studies on the Willamette River, Oregon, showed that river water follows
    hyporheic flow paths through highly porous deposits created by river...

  13. EAGLE Monitors by Collecting Facts and Generating Obligations

    NASA Technical Reports Server (NTRS)

    Barrnger, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik

    2003-01-01

    We present a rule-based framework, called EAGLE, that has been shown to be capable of defining and implementing a range of finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time and metric temporal logics, interval logics, forms of quantified temporal logics, and so on. A monitor for an EAGLE formula checks if a finite trace of states satisfies the given formula. We present, in details, an algorithm for the synthesis of monitors for EAGLE. The algorithm is implemented as a Java application and involves novel techniques for rule definition, manipulation and execution. Monitoring is achieved on a state-by-state basis avoiding any need to store the input trace of states. Our initial experiments have been successful as EAGLE detected a previously unknown bug while testing a planetary rover controller.

  14. Relations Among River Stage, Rainfall, Ground-Water Levels, and Stage at Two Missouri River Flood-Plain Wetlands

    USGS Publications Warehouse

    Kelly, Brian P.

    2001-01-01

    The source of water is important to the ecological function of Missouri River flood-plain wetlands. There are four potential sources of water to flood-plain wetlands: direct flow from the river channel during high river stage, ground-water movement into the wetlands in response to river-stage changes and aquifer recharge, direct precipitation, and runoff from surrounding uplands. Concurrent measurements of river stage, rainfall, ground-water level, and wetland stage were compared for two Missouri River flood-plain wetlands located near Rocheport, Missouri, to characterize the spatial and temporal relations between river stage, rainfall, ground-water levels and wetland stage, determine the source of water to each wetland, and compare measured and estimated stage and ground-water levels at each site. The two sites chosen for this study were wetland NC-5, a non-connected, 50 feet deep scour constantly filled with water, formed during the flood of 1993, and wetland TC-1, a shallow, temporary wetland intermittently filled with water. Because these two wetlands bracket a range of wetland types of the Missouri River flood plain, the responses of other Missouri River wetlands to changes in river stage, rainfall, and runoff should be similar to the responses exhibited by wetlands NC-5 and TC-1. For wetlands deep enough to intersect the ground-water table in the alluvial aquifer, such as wetland NC-5, the ground-water response factor can estimate flood-plain wetland stage changes in response to known river-stage changes. Measured maximum stage and ground-water-level changes at NC-5 fall within the range of estimated changes using the ground-water response factor. Measured maximum ground-water-level changes at TC-1 are similar to, but consistently greater than the estimated values, and are most likely the result of alluvial deposits with higher than average hydraulic conductivity located between wetland TC-1 and the Missouri River. Similarity between ground-water level and

  15. Hydrochemical evaluation of river water quality—a case study: Horroud River

    NASA Astrophysics Data System (ADS)

    Falah, Fatemeh; Haghizadeh, Ali

    2017-12-01

    Surface waters, especially rivers are the most important sources of water supply for drinking and agricultural purposes. Water with desirable quality is necessary for human life. Therefore, knowledge of water quality and its temporal changes is of particular importance in sustainable management of water resources. In this study, available data during 20 years from two hydrometry stations located in the way of Horroud River in Lorestan province were used and analyzed using Aq.QA software. Piper, Schoeller, Stiff, and Wilcox diagram were drawn and Mann-Kendal test was used for determining data trend. According to Wilcox diagram, water of this river in both stations is placed in c2s1 class which is good for agricultural purposes, and according to Schoeller diagram, there is no restrict for drinking purposes. Results of Man-Kendal test show increasing trend for colorine, EC, TDS while decreasing trend for potassium in Kakareza station. On the other hand in Dehnu station, positive trend was seen in calcium and colorine while negative trend for sulfate and potassium. For other variables, no specific trend was found.

  16. Experimental lead poisoning in bald eagles

    USGS Publications Warehouse

    Pattee, H.; Wiemeyer, S.; Hoffman, P.; Carpenter, J.; Sileo, L.

    1979-01-01

    Captive, crippled bald eagles unsuitable for release were fed lead shot to determine diagnostic criteria for lead poisoning. The eagles were fluoroscoped and bled periodically to determine shot retention and blood delta--aminolevulinic acid dehydratase activity. Microscopic examination revealed renal tubular degeneration, arterial fibrinoid necrosis and myocardial necrosis. Acid-fast intra-nuclear inclusion bodies were not found in proximal convoluted tubule cells. Analyses of blood and toxicological data are not yet complete.

  17. Clayey materials in river basin enhancing microbial contamination of river water

    NASA Astrophysics Data System (ADS)

    Fosso-Kankeu, E.; Mulaba-Bafubiandi, A. F.; Barnard, T. G.

    Mineral constituents of clay materials may promote interaction, adsorption and attachment of microorganisms, often resulting in biofilms' formation. In this study investigation is made to determine how littoral clayey materials on the shores of a river promote accumulation of bacteria and increase contamination of river water. Clayey samples were collected at various points along the shore of a river around Mondeor in Johannesburg and the mineralogical composition was determined using XRD and XRF. Microorganisms in clay-biofilm and river water were identified by DNA sequencing and plate count. Results showed that total coliforms, Escherichia coli, Pseudomonas sp. and presumptive indigenous microorganisms attached to littoral clayey materials containing the mineral muscovite (characterising argillaceous soils). Bacteria number on clayey materials was significantly higher than on overlying water especially before rainy season. However a decrease of the number of bacteria in clayey materials concurrent with an increase in the number of suspended bacteria after rain events, was the result of the action of high and fast flows in the basin, eroding the biofilms. Attachment of microorganisms in clayey material as observed in this study could be ascribed to the glue-like aspect of soil (due to muscovite) that facilitates adhesion. It therefore demonstrates the potential of clayey materials to encourage biofilm formation and enhance microbial contamination of river water as shown here.

  18. Constructing bald eagle nests with natural materials

    Treesearch

    T. G. Grubb

    1995-01-01

    A technique for using natural materials to build artificial nests for bald eagles (Haliaeetus leucocephalus) and other raptors is detailed. Properly constructed nests are as permanently secured to the nest tree or cliff substrate as any eagle-built nest or human-made platform. Construction normally requires about three hours and at least two people. This technique is...

  19. Alternative Fuels Data Center: Golden Eagle Distributors Inc. to Convert

    Science.gov Websites

    several years. Golden Eagle will convert all fleet vehicles to CNG in their six branch operations Entire Fleet to CNG Golden Eagle Distributors Inc. to Convert Entire Fleet to CNG to someone by E-mail Share Alternative Fuels Data Center: Golden Eagle Distributors Inc. to Convert Entire Fleet

  20. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  1. Water contamination and environmental ecosystem in the Harlem River

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2013-12-01

    Nutrients, bacteria, polychlorinated biphenyls (PCBs) and other contaminates have degraded water quality of the Harlem River. The Harlem River is a natural straight connected to the Hudson River and the East River, and it has been used for navigation and boating. Water samples have been collected and analyzed from 2011 to 2013. Phosphorus, ammonia, turbidity, fecal coliform, E.Coli., and enterococcus all exceed regulated levels for New York City waters. There is only one wastewater treatment plant (Wards Island WWTP) that serves this river. Combined sewer overflows (CSOs) discharge raw sewage into the river during storms in spring and summer. Commercial fishing is banned, .however, individuals still fish. While some fishermen catch and release, it is likely some fish are consumed, creating concern for the environmental health of the community along the river. Storm water runoff, CSOs, and wastewater effluents are major pollutant sources of PCB 11 (3,3' dichlorobiphenyl), nutrient and bacteria. Nutrients, bacteria levels and their spatial/temporal variations were analyzed, and PCB analysis is underway. This data is a critical first step towards improving the water quality and environmental ecosystem in the Harlem River.

  2. EAGLE can do Efficient LTL Monitoring

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik

    2003-01-01

    We briefly present a rule-based framework, called EAGLE, that has been shown to be capable of defining and implementing finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time logics, interval logics, forms of quantified temporal logics, and so on. In this paper we show how EAGLE can do linear temporal logic (LTL) monitoring in an efficient way. We give an upper bound on the space and time complexity of this monitoring.

  3. Water quality in the Yukon River Basin, Alaska, water years 2006-2008

    USGS Publications Warehouse

    Schuster, Paul F.; Maracle, Karonhiakta'tie Bryan; Herman-Mercer, Nicole

    2010-01-01

    The Yukon River Inter-Tribal Watershed Council and the U.S. Geological Survey developed a water-quality monitoring program to address a shared interest in the water quality of the Yukon River and its relation to climate. This report contains water-quality data from samples collected in the Yukon River Basin during water years 2006 through 2008. A broad range of chemical analyses from 44 stations throughout the YRB are presented. On August 8, 2009 the USGS signed a Memorandum of Understanding with the Yukon River Inter-Tribal Watershed Council representing the culmination of 5 years of dedicated efforts to forge a working collaboration and partnership with expectations of continuing into the foreseeable future. The Memorandum of Understanding may be viewed at http://www.usgs.gov/mou/docs/yritwc_mou.pdf.

  4. Eagle RTS: A design of a regional transport

    NASA Technical Reports Server (NTRS)

    Bryer, Paul; Buckles, Jon; Lemke, Paul; Peake, Kirk

    1992-01-01

    The Eagle RTS (Regional Transport System) is a 66-passenger aircraft designed to satisfy the need for accessible and economical regional travel. The first design objective for the Eagle RTS is safety. Safety results primarily from avoidance of the hub airport air traffic, implementation of anti-stall characteristics by tailoring the canard, and proper positioning of the engines for blade shedding. To provide the most economical aircraft, the Eagle RTS will use existing technology to lower production and maintenance costs by decreasing the amount of new training required. In selecting the propulsion system, the effects on the environment were a main consideration. Two advantages of turbo-prop engines are the high fuel efficiency and low noise levels produced by this type of engine. This ensures the aircraft's usage during times of rising fuel costs and growing aircraft noise restrictions. The design of the Eagle RTS is for spoke-to-spoke transportation. It must be capable of landing on shorter runways and have speeds comparable to that of the larger aircraft to make its service beneficial to the airlines. With the use of turbo-prop engines and high lift devices, the Eagle RTS is highly adaptable to regional airports. The design topics discussed include: aerodynamics, stability, structures and materials, propulsion, and cost.

  5. Water resource management in river oases along the Tarim River in North-West of China

    NASA Astrophysics Data System (ADS)

    Kliucininkaite, Lina; Disse, Markus

    2013-04-01

    Tarim River is one of the longest inland rivers in the world. It flows its water in the northern part of the Taklamakan desert in Xinjiang, North-west of China, which is a very hostile region due its climatic conditions and particularly due to low precipitation and very high evaporation rates. During the past five decades intensive exploitation of water resources, mainly by agricultural activities, has changed the temporal and spatial distribution of them and caused serious environmental problems in the Tarim River Basin. The support measures for oasis management along the Tarim River under climatic and societal changes became the overarching goal of this research. The temperature has risen by nearly 1° C over the past 50 years in the Tarim River Basin so more water was available in the mountainous areas of Xinjiang, leading to an increasing trend of the headstream discharges of the Tarim Basin. Aksu, Hotan and Yarkant Rivers are three tributaries of the Tarim River, as well as its main water suppliers. However, under the condition of water increase with the volume of 25×108 m3 in headstreams in recent 10 years, the water to the mainstream has increased less than 108 m3 (in Alar hydrological station), which is less than 3% of the increased water volume of runoff. Moreover, the region is one of the biggest cotton and other cash crops producers in China. In addition, expansion of urban and, in particular, of irrigation areas have caused higher water consumption at different parts of the river, leading to severe ecological effects on rural areas, especially in the lower reaches. Moreover, it also highly affects groundwater level and quality. The aim of this research is to support decision makers, planners and engineers to find right measures in the area for the further development of the region, as well as adaptation to changing climate. Different scenarios for water resource management, as well as water distribution and allocation in a more efficient and water

  6. 77 FR 23120 - Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ...-AA08 Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount... at Patriots Point on the Cooper River. Approximately 600 swimmers will be participating in the swim... Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount Pleasant...

  7. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    NASA Astrophysics Data System (ADS)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity

  8. Water quality assessment of the Sinos River, Southern Brazil.

    PubMed

    Blume, K K; Macedo, J C; Meneguzzi, A; Silva, L B; Quevedo, D M; Rodrigues, M A S

    2010-12-01

    The Sinos River basin is located Northeast of the state of Rio Grande do Sul (29º 20' to 30º 10' S and 50º 15' to 51º20'W), Southern Brazil, covering two geomorphologic provinces: the Southern plateau and central depression. It is part of the Guaíba basin and has an area of approximately 800 km², encompassing 32 municipalities. The objective of this study was to monitor water quality in the Sinos River, the largest river in this basin. Water samples were collected at four selected sites in the Sinos River, and the following parameters were analysed: pH, dissolved oxygen, biochemical oxygen demand (BOD₅), turbidity, fecal coliforms, total dissolved solids, temperature, nitrate, nitrite, phosphorous, chromium, lead, aluminum, zinc, iron, and copper. The results were analysed based on Resolution No. 357/2005 of the Brazilian National Environmental Council (CONAMA) regarding regulatory limits for residues in water. A second analysis was performed based on a water quality index (WQI) used by the Sinos River Basin Management Committee (COMITESINOS). Poor water quality in the Sinos River presents a worrying scenario for the region, since this river is the main source of water supply for the urban core. Health conditions found in the Sinos River, mainly in its lower reaches, are worrying and a strong indicator of human activities on the basin.

  9. Bald Eagle nestling mortality associated with Argas radiatus and Argas ricei tick infestation and successful management with nest removal in Arizona, USA

    USGS Publications Warehouse

    Justice-Allen, Anne; Orr, Kathy; Schuler, Krysten L.; McCarty, Kyle; Jacobson, Kenneth; Meteyer, Carol U.

    2016-01-01

    Eight Bald Eagle (Haliaeetus leucocephalus) nestlings heavily infested with larval ticks were found in or under a nest near the confluence of the Verde and Salt rivers in Arizona in 2009-11. The 8-12-wk-old nestlings were slow to respond to stimuli and exhibited generalized muscle weakness or paresis of the pelvic limbs. Numerous cutaneous and subcutaneous hemorrhages were associated with sites of tick attachment. Ticks were identified as Argas radiatus and Argas ricei. Treatment with acaricides and infection with West Nile virus (WNV) may have confounded the clinical presentation in 2009 and 2010. However, WNV-negative birds exhibited similar signs in 2011. One nestling recovered from paresis within 36 h after the removal of all adult and larval ticks (>350) and was released within 3 wk. The signs present in the heavily infested Bald Eagle nestlings resembled signs associated with tick paralysis, a neurotoxin-mediated paralytic syndrome described in mammals, reptiles, and wild birds (though not eagles). Removal of the infested nest and construction of a nest platform in a different tree was necessary to break the cycle of infection. The original nesting pair constructed a new nest on the man-made platform and successfully fledged two Bald Eagles in 2012.

  10. The water quality of the Vrgorska Matica River.

    PubMed

    Stambuk-Giljanović, Nives

    2003-04-01

    The article presents the results of investigations carried out on the 42 km long Vrgorska Matica River, which flows through the 15 km long Vrgorsko polje (polje = field) which covers an area of 3000 ha, and is at 24 m a.s.l., located in Southern Croatia. It covers the years 1997-2000 after this field had been reclaimed for agricultural use. The purpose of the investigations was to evaluate the influence of the Vrgorska Matica River which is part of the catchment area of the Trebizat River, on the water quality in Modro Oko Lake and Prud Spring, which are used for water supply and are located downstream of the Vrgorska Matica River on the right bank of the Neretva River. The water quality was evaluated by using the quality index based on the following nine parameters: temperature, mineralization, corrosion coefficient, K = (Cl + SO4)/HCO3, dissolved oxygen, BOD5, total N, protein N, total phosphorus and total coliform bacteria (100 mL)-1 (MPN coli (100 mL)-1) for which concentrations C95 are calculated. After completing the nine parameters the results of C95 were recorded and transferred to the score table to obtain the q-value. The q-value used is an attempt to quantify environmental factors which would otherwise be qualitative. For each parameter the q-value was multiplied by a weighting factor based upon the relative significance of the parameter. The nine resulting scores values were then added to arrive at an overall water quality index (sigmaS95). According to this index the water can be classified into four categories. The first category, according to the Croatian Water Classification Act (Official Bulletin No. 77,1998), includes ground and surface waters used for drinking or in the food industry either in its natural state or after disinfection, and surface water used for raising high-quality species of fish, ranging from 85-100 scores; the second category includes water used in its natural state for swimming and recreation, sports or for other species of

  11. Entrainment sampling at the Savannah River Site (SRS) Savannah River water intakes (1991)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paller, M.

    1990-11-01

    Cooling water for the Westinghouse Savannah River Company (WSRC) L-Reactor, K-Reactor, and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pumphouses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water. They are passed through the reactor heat exchangers where temperatures may reach 70{degree}C during full power operation. Ichthyoplankton mortality under such conditions is presumably 100%. Apart from a small pilot study conducted in 1989, ichthyoplankton samples have not been collected from the vicinity of the SRS intake canals since 1985.more » The Department of Energy (DOE) has requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory (SRL) resume ichthyoplankton sampling for the purpose of assessing entrainment at the SRS Savannah River intakes. This request is due to the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River. The following scope of work presents a sampling plan that will collect information on the spatial and temporal distribution of fish eggs and larvae near the SRS intake canal mouths. This data will be combined with information on water movement patterns near the canal mouths in order to determine the percentage of ichthyoplankton that are removed from the Savannah River by the SRS intakes. The following sampling plan incorporates improvements in experimental design that resulted from the findings of the 1989 pilot study. 1 fig.« less

  12. 76 FR 65507 - Notice of Petition for Rate Approval; Eagle Ford Midstream, LP

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... Petition for Rate Approval; Eagle Ford Midstream, LP Take notice that on October 11, 2011, (Eagle Ford..., and its initial baseline Statement of Operating Conditions. Eagle Ford states that it is an existing..., currently providing intrastate services to its customers. Eagle Ford proposed rates for Section 311...

  13. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paller, M.

    1992-03-26

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in themore » river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.« less

  14. Water quality study of Sunter River in Jakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Martinus, Y.; Astono, W.; Hendrawan, D.

    2018-01-01

    Sunter River flows in the city of Jakarta with the designation of river water for agricultural purposes, and can be utilized for urban business and hydroelectric power industry. This study aims to determine the Sunter River water quality based on physical and chemical parameters. Water sampling was conducted 2 times which done in April and May with 5 sampling stations for measuring. The samples was analayzed in the laboratory according SNI methods for parameters BOD, COD, PO4 3-, NO3, Oil & Grease and Detergents. The quality status of Sunter River is determined by the Pollutant Index method. The results show that the water quality of Sunter River is influenced by organic parameter as dominant pollutant with COD concentration ranging from 48 mg/l - 182.4 mg/l and BOD concentration ranging from 14.69 mg/L - 98.91 mg/L. The Pollution Index calculation results show that the water quality status of Sunter River is moderate polluted with IP 6.47. The source of pollutants generally comes from the urban drainage channels, tributaries, and slaughtering industry. The results of this study expected to be use by the government to improve the water quality of Sunter River for better environment.

  15. Water quality and ground-water/surface-water interactions along the John River near Anaktuvuk Pass, Alaska, 2002-2003

    USGS Publications Warehouse

    Moran, Edward H.; Brabets, Timothy P.

    2005-01-01

    The headwaters of the John River are located near the village ofAnaktuvuk Pass in the central Brooks Range of interior Alaska. With the recent construction of a water-supply system and a wastewater-treatment plant, most homes in Anaktuvuk Pass now have modern water and wastewater systems. The effluent from the treatment plant discharges into a settling pond near a tributary of the John River. The headwaters of the John River are adjacent to Gates of the Arctic National Park and Preserve, and the John River is a designated Wild River. Due to the concern about possible water-quality effects from the wastewater effluent, the hydrology of the John River near Anaktuvuk Pass was studied from 2002 through 2003. Three streams form the John River atAnaktuvuk Pass: Contact Creek, Giant Creek, and the John RiverTributary. These streams drain areas of 90.3 km (super 2) , 120 km (super 2) , and 4.6 km (super 2) , respectively. Water-qualitydata collected from these streams from 2002-03 indicate that the waters are a calcium-bicarbonate type and that Giant Creek adds a sulfate component to the John River. The highest concentrations of bicarbonate, calcium, sodium, sulfate, and nitrate were found at the John River Tributary below the wastewater-treatment lagoon. These concentrations have little effect on the water quality of the John River because the flow of the John River Tributary is only about 2 percent of the John River flow. To better understand the ground-water/surface-water interactions of the upper John River, a numerical groundwater-flow model of the headwater area of the John River was constructed. Processes that occur during spring break-up, such as thawing of the active layer and the frost table and the resulting changes of storage capacity of the aquifer, were difficult to measure and simulate. Application and accuracy of the model is limited by the lack of specific hydrogeologic data both spatially and temporally. However

  16. Program Monitoring with LTL in EAGLE

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik

    2004-01-01

    We briefly present a rule-based framework called EAGLE, shown to be capable of defining and implementing finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time and metric temporal logics (MTL), interval logics, forms of quantified temporal logics, and so on. In this paper we focus on a linear temporal logic (LTL) specialization of EAGLE. For an initial formula of size m, we establish upper bounds of O(m(sup 2)2(sup m)log m) and O(m(sup 4)2(sup 2m)log(sup 2) m) for the space and time complexity, respectively, of single step evaluation over an input trace. This bound is close to the lower bound O(2(sup square root m) for future-time LTL presented. EAGLE has been successfully used, in both LTL and metric LTL forms, to test a real-time controller of an experimental NASA planetary rover.

  17. Surveying drinking water quality (Balikhlou River, Ardabil Province, Iran)

    NASA Astrophysics Data System (ADS)

    Aalipour erdi, Mehdi; Gasempour niari, Hassan; Mousavi Meshkini, Seyyed Reza; Foroug, Somayeh

    2018-03-01

    Considering the importance of Balikhlou River as one of the most important water sources of Ardabil, Nir and Sarein cities, maintaining water quality of this river is the most important goals in provincial and national levels. This river includes a wide area that provides agricultural, industrial and drinking water for the residents. Thus, surveying the quality of this river is important in planning and managing of region. This study examined the quality of river through eight physicochemical parameters (SO4, No3, BOD5, TDS, turbidity, pH, EC, COD) in two high- and low-water seasons by international and national standards in 2013. For this purpose, a review along the river has been done in five stations using t test and SPSS software. Model results showed that the amount difference in TDS and EC with WHO standards, and TDS rates with Iran standards in low-water seasons, pH and EC with WHO standards in high-water seasons, is not significant in high-water season; but for pH and SO4 parameters, turbidity and NO3 in both standards and EC value with WHO standard in low-water season and pH, EC, SO4 parameters and turbidity and NO3 in high-water season have significant difference from 5 to 1%, this shows the ideal limit and lowness of parameters for different usage.

  18. The investigation of chemical quality of water in tidal rivers

    USGS Publications Warehouse

    Keighton, Walter B.

    1954-01-01

    This report has been prepared for the guidance of personnel of the Water Resources Division who are engaged in water-quality investigations of tidal rivers. The study of tidal rivers is beset with many complexities not present in the investigation of non-tidal rivers. The periodic rise and fall of the tide may result in a corresponding periodic change in salinity at a sampling location on the tidal river. When the fresh water discharge is low, saline water may intrude up-river, and any factor changing the relative elevations of the ocean and the mean river level has an effect on the extent of salt-water intrusion. Variations in water composition between samples taken at several locations up or down river, at different depths, or at several locations across the stream are likely to be more pronounced than for similar sets of samples from a non-tidal stream. The nature of these variations and factors responsible for them are discussed, and the need for consideration of them in planning a sampling routine is stressed. The nature and mechanism of ocean-water intrusion in tidal rivers is discussed and sampling procedures for its detection are described. lllustrative examples - mostly from the work of the United States Geological Survey or State agencies - show various methods for correlating and presenting data from quality-of-water surveys of tidal rivers. Each tidal river presents an individual problem which can best be understood from a study of the factors involved. To that end the report is supplemented by an annotated bibliography of selected publications in the field.

  19. River water infiltration enhances denitrification efficiency in riparian groundwater.

    PubMed

    Trauth, Nico; Musolff, Andreas; Knöller, Kay; Kaden, Ute S; Keller, Toralf; Werban, Ulrike; Fleckenstein, Jan H

    2018-03-01

    Nitrate contamination in ground- and surface water is a persistent problem in countries with intense agriculture. The transition zone between rivers and their riparian aquifers, where river water and groundwater interact, may play an important role in mediating nitrate exports, as it can facilitate intensive denitrification, which permanently removes nitrate from the aquatic system. However, the in-situ factors controlling riparian denitrification are not fully understood, as they are often strongly linked and their effects superimpose each other. In this study, we present the evaluation of hydrochemical and isotopic data from a 2-year sampling period of river water and groundwater in the riparian zone along a 3rd order river in Central Germany. Based on bi- and multivariate statistics (Spearman's rank correlation and partial least squares regression) we can show, that highest rates for oxygen consumption and denitrification in the riparian aquifer occur where the fraction of infiltrated river water and at the same time groundwater temperature, are high. River discharge and depth to groundwater are additional explanatory variables for those reaction rates, but of minor importance. Our data and analyses suggest that at locations in the riparian aquifer, which show significant river water infiltration, heterotrophic microbial reactions in the riparian zone may be fueled by bioavailable organic carbon derived from the river water. We conclude that interactions between rivers and riparian groundwater are likely to be a key control of nitrate removal and should be considered as a measure to mitigate high nitrate exports from agricultural catchments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Water resources of the Humboldt River Valley near Winnemucca, Nevada

    USGS Publications Warehouse

    Cohen, Philip M.

    1965-01-01

    This report, resulting from studies made by the U.S. Geological Survey as part of the interagency Humboldt River Research Project, describes the qualitative and quantitative relations among the components of the hydrologic system in the Winnemucca Reach of the Humboldt River valley. The area studied includes the segment of the Humboldt River valley between the Comus and Rose Creek gaging stations. It is almost entirely in Humboldt County in north-central Nevada, and is about 200 miles downstream from the headwaters of the Humboldt River. Agriculture is the major economic activity in the area. Inasmuch as the valley lowlands receive an average of about 8 inches of precipitation per year and because the rate of evaporation from free-water surfaces is about six times the average annual precipitation, all crops in the area (largely forage crops) are irrigated. About 85 percent of the cultivated land is irrigated with Humboldt River water; the remainder is irrigated from about 20 irrigation wells. The consolidated rocks of the uplifted fault-block mountains are largely barriers to the movement of ground water and form ground-water and surface-water divides. Unconsolidated deposits of late Tertiary and Quaternary age underlie the valley lowlands to a maximum depth of about 5,000 feet. These deposits are in hydraulic continuity with the Humboldt River and store and transmit most of the economically recoverable ground water. Included in the valley fill is a highly permeable sand and gravel deposit having a maximum thickness of about 90-100 feet; it underlies the flood plain and bordering terraces throughout most of the project area. This deposit is almost completely saturated and contains about 500,000 acre-feet of ground water in storage. The Humboldt River is the source of 90-95 percent of the surface-water inflow to the area. In water years 1949-62 the average annual streamflow at the Comus gaging station at the upstream margin of the area was 172,100 acre-feet; outflow

  1. Eagle RTS: A design for a regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Bryer, Paul; Buckles, Jon; Lemke, Paul; Peake, Kirk

    1992-01-01

    This university design project concerns the Eagle RTS (Regional Transport System), a 66 passenger, twin turboprop aircraft with a range of 836 nautical miles. It will operate with a crew of two pilots and two flight attendents. This aircraft will employ the use of aluminum alloys and composite materials to reduce the aircraft weight and increase aerodynamic efficiency. The Eagle RTS will use narrow body aerodynamics with a canard configuration to improve performance. Leading edge technology will be used in the cockpit to improve flight handling and safety. The Eagle RTS propulsion system will consist of two turboprop engines with a total thrust of approximately 6300 pounds, 3150 pounds thrust per engine, for the cruise configuration. The engines will be mounted on the aft section of the aircraft to increase passenger safety in the event of a propeller failure. Aft mounted engines will also increase the overall efficiency of the aircraft by reducing the aircraft's drag. The Eagle RTS is projected to have a takeoff distance of approximately 4700 feet and a landing distance of 6100 feet. These distances will allow the Eagle RTS to land at the relatively short runways of regional airports.

  2. Lead and mercury in fall migrant golden eagles from western North America.

    PubMed

    Langner, Heiko W; Domenech, Robert; Slabe, Vincent A; Sullivan, Sean P

    2015-07-01

    Lead exposure from ingestion of bullet fragments is a serious environmental hazard to eagles. We determined blood lead levels (BLL) in 178 golden eagles (Aquila chrysaetos) captured during fall migration along a major North American flyway. These eagles spent the breeding season distributed over a large range and are the best currently available representation of free flying golden eagles on the continent. We found 58 % of these eagles containing increased BLL > 0.1 mg/L; 10 % were clinically lead poisoned with BLL > 0.6 mg/L; and 4 % were lethally exposed with BLL > 1.2 mg/L. No statistical difference in BLL existed between golden and bald eagles (Haliaeetus leucocephalus). Golden eagles captured on carrion had higher BLL than those captured using live bait suggesting differences in feeding habits among individuals. Median BLL increased with age class. We propose a conceptual model for the long-term increase in BLL after ingestion of lead particles. The mean blood mercury level in golden eagles was 0.023 mg/L. We evaluate a field test for BLL that is based on anodic stripping voltammetry. This cost-effective and immediate method correlated well with results from inductively coupled plasma-mass spectrometry, although results needed to be corrected for each calibration of the test kit.

  3. Tidal Influence on Water Quality of Kapuas Kecil River Downstream

    NASA Astrophysics Data System (ADS)

    Purnaini, Rizki; Sudarmadji; Purwono, Suryo

    2018-02-01

    The Kapuas Kecil River is strongly influenced by tidal, in the dry season the intrusion of surface water is often a problem for the WTP because it causes the change of raw water quality to be processed. The purpose of this study was to examine the effect of sea tides on water quality of the Kapuas Kecil River. The study was conducted in Kapuas River downstream along ± 30 km from the upper boundary to the estuary. Water sampling is carried out during the dry and rainy season, when the tidal conditions at 7 (seven) locations of the monitoring station. Descriptive analysis methods and regression-correlation statistics are used to determine the effect of tides on water quality in Kapuas River downstream. In general, the water quality of the Kapuas Kecil River has exceeded the criteria of first class water quality, ie water that can be used for drinking water. The status of water quality of the Kapuas Kecil River based on the pollution index calculation shows the condition of the river is "mild to medium pollutants". The result of multiple linear regression analysis got the value of coefficient of determination (adjusted R square) = 0,760, which in whole show that independent variable (tidal and distance) influence to dependent variable (value of TDS) equal to 76%.

  4. Adaptive EAGLE dynamic solution adaptation and grid quality enhancement

    NASA Technical Reports Server (NTRS)

    Luong, Phu Vinh; Thompson, J. F.; Gatlin, B.; Mastin, C. W.; Kim, H. J.

    1992-01-01

    In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code.

  5. Water quality and water contamination in the Harlem River

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2015-12-01

    Combined sewer overflows (CSOs) discharge untreated sewage into the Harlem River during rainstorms; which elevated nutrient and bacteria/pathogen levels, degraded water quality, reduced dissolved oxygen levels, impact on fish consumption safety and threatening public health. Swimming, boating, fishing was not safe especially during rainstorms. Harlem River, a 9 miles natural straight connects the Hudson River and the East River, was used for water recreation in the past. Phosphate, ammonia, turbidity, dissolved oxygen (DO), and pathogens levels in CSOs collected during storms were significantly higher than EPA/DEP's standards (phosphate <0.033mg/L; ammonia<0.23mg/L; turbidity<5.25FAU; DO>=4mg/L; fecal coliform<200MPN/100ml; E.Coli.<126MPN/100ml; enterococcus < 104MPN /100ml). The maximum values are: phosphate: 0.181mg/L; ammonia: 2.864mg/L; turbidity: 245 FAU& 882 FAU; fecal coliform>millions MPN/100ml; E.coli > 5000MPN /100ml; enterococcus>10,000MPN/100ml; DO<2.9 mg/L. Data showed that pathogen levels are higher than published data from riverkeepers (enterococcus) and USGS (fecal coliform). PCB 11 (3,3'-dichlorobiphenyl, C12H8Cl2), an indicator of raw sewage and stormwater runoff, is analyzed. Fish caught from the Harlem River is banned from commercial. New York State Department of Health (NYS DOH) suggests that not to eat the fish because concerns of PCBs, dioxin and cadmium. How to reduce CSOs is critical on water quality improvement. Green wall/roof and wetland has been planned to use along the river to reduce stormwater runoff consequently to reduce CSOs volume.

  6. Wildlife Photography - Eagles

    NASA Image and Video Library

    2017-05-04

    A juvenile bald eagle sits in the grass at NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  7. Water and Benefit Sharing in Transboundary River Basins

    NASA Astrophysics Data System (ADS)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  8. Quality of water, Quillayute River basin, Washington

    USGS Publications Warehouse

    Fretwell, M.O.

    1984-01-01

    Groundwater in Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses. River-water quality was generally excellent, as evaluated against Washington State water-use and water-quality criteria. Fecal coliform concentrations in all major tributaries met State water-quality criteria; water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow. Nutrient concentrations were generally low to very low. The four largest lakes in the basin were temperature-stratified in summer and one had an algal bloom. The Quillayute estuary had salt-wedge mixing characteristics; pollutants entering the salt wedge tended to spread to the toe of the wedge. Upwelling ocean water was the major cause of the low dissolved-oxygen concentrations observed in the estuary; ammonia concentrations in the estuary, however, were increased by the upwelling ocean waters. As in the rivers, total-coliform bacteria concentrations in the estuary were greater than fecal-coliform concentrations, indicating that many of the bacteria were of nonfecal origin and probably originated from soils. (USGS)

  9. Golden Eagle Monitoring Plan for the Desert Renewable Energy Conservation Plan

    USGS Publications Warehouse

    Wiens, David; Kolar, Patrick; Katzner, Todd

    2018-01-01

    This report describes options for monitoring the status and population trends of the golden eagle (Aquila chrysaetos) within the Desert Renewable Energy Conservation Plan (DRECP) area of Southern California in maintaining stable or increasing population in the planning area. The report profiles the ecology of golden eagles in the region and provides a range of potential sampling options to address monitoring needs and objectives. This approach also focused on links between changes in human land-use, golden eagle nesting and foraging habitat conditions, and population dynamics. The report outlines how monitoring data from demographic, prey, and habitat studies were used to develop a predictive demographic model for golden eagles in the DRECP area. Results from the model simulations suggest increases in renewable energy development could have negative consequences for population trajectories. Results also suggest site-specific conservation actions could reduce the magnitude of negative impacts to the local population of eagles. A monitoring framework is proposed including: (1) annual assessments of site-occupancy and reproduction by territorial pairs of golden eagles (including rates at which sites become colonized or vacated over time); (2) estimates of survival, movements, and intensity of use of landscapes by breeding and non-breeding golden eagles; (3) periodic (conducted every two to four years) assessments of nesting and foraging habitats, prey populations, and associations with land-use and management activities; and (4) updating the predictive demographic model with new information obtained on eagles and associated population stressors. The results of this research were published in the Journal of Rapture Research, Wiens, David,Inman, Rich D., Esque, Todd C., Longshore, Kathleen M. and Nussear, Kenneth (2017). Spatial Demographic Models to Inform Conservation Planning of Golden Eagles in Renewable Energy Landscapes. 51(3):234-257.

  10. Water resources of Red River Parish, Louisiana

    USGS Publications Warehouse

    Newcome, Roy; Page, Leland Vernon

    1963-01-01

    Red River Parish is on the eastern flank of the Sabine uplift in northwestern Louisiana. The 'area is underlain by lignitic clay and sand of Paleocene and Eocene age which dip to the east at the rate of about 30 feet per mile. The Red River is entrenched in these rocks in the western part of the parish. Alternating valley filling and erosion during the Quaternary period have resulted in the present lowland with flanking terraces. In the flood-plain area moderate to large quantities of very hard, iron-bearing water, suitable for irrigation, are available to wells in the alluvial sand and gravel of Quaternary age. The aquifer ranges in thickness from 20 to slightly more than 100 feet. It is recharged by downward seepage of rainfall through overlying clay and silt, by inflow from older sands adjacent to and beneath the entrenched valley, and by infiltration from the streams where the water table is below stream level during flood stages or as a result of pumping. Water levels are highest in the middle of the valley. Ground water moves mainly toward the Red River on the east and Bayou Pierre on the west, but small amounts move down the valley. Computations based on water-level and aquifer-test data indicate that the Quaternary alluvium contains more than 330 billion gallons of ground water in storage and that the maximum discharge of ground water to the streams is slightly more than 30 mgd (million gallons per day). At times of high river stage, surface water flows into the aquifer at a rate that depends in part upon the height and duration of the river stage. Moderate supplies of soft, iron-bearing water may be obtained from dissected Pleistocene terrace deposits that flank the flood plains of the Red River and Black Lake Bayou. However, the quantity of water that can be pumped from these deposits varies widely from place to place because of differences in the areal extent and saturated thickness of the segments of the deposits; this extent and thickness are governed

  11. Water Quality Assessment of Ayeyarwady River in Myanmar

    NASA Astrophysics Data System (ADS)

    Thatoe Nwe Win, Thanda; Bogaard, Thom; van de Giesen, Nick

    2015-04-01

    Myanmar's socio-economic activities, urbanisation, industrial operations and agricultural production have increased rapidly in recent years. With the increase of socio-economic development and climate change impacts, there is an increasing threat on quantity and quality of water resources. In Myanmar, some of the drinking water coverage still comes from unimproved sources including rivers. The Ayeyarwady River is the main river in Myanmar draining most of the country's area. The use of chemical fertilizer in the agriculture, the mining activities in the catchment area, wastewater effluents from the industries and communities and other development activities generate pollutants of different nature. Therefore water quality monitoring is of utmost importance. In Myanmar, there are many government organizations linked to water quality management. Each water organization monitors water quality for their own purposes. The monitoring is haphazard, short term and based on individual interest and the available equipment. The monitoring is not properly coordinated and a quality assurance programme is not incorporated in most of the work. As a result, comprehensive data on the water quality of rivers in Myanmar is not available. To provide basic information, action is needed at all management levels. The need for comprehensive and accurate assessments of trends in water quality has been recognized. For such an assessment, reliable monitoring data are essential. The objective of our work is to set-up a multi-objective surface water quality monitoring programme. The need for a scientifically designed network to monitor the Ayeyarwady river water quality is obvious as only limited and scattered data on water quality is available. However, the set-up should also take into account the current socio-economic situation and should be flexible to adjust after first years of monitoring. Additionally, a state-of-the-art baseline river water quality sampling program is required which

  12. Wildlife Photography - Eagles

    NASA Image and Video Library

    2017-05-04

    A juvenile bald eagle watches for prey in the grass at NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  13. Evaluation Of Water Quality At River Bian In Merauke Papua

    NASA Astrophysics Data System (ADS)

    Djaja, Irba; Purwanto, P.; Sunoko, H. R.

    2018-02-01

    River Bian in Merauke Regency has been utilized by local people in Papua (the Marind) who live along the river for fulfilling their daily needs, such as shower, cloth and dish washing, and even defecation, waste disposal, including domestic waste, as well as for ceremonial activities related to the locally traditional culture. Change in land use for other necessities and domestic activities of the local people have mounted pressures on the status of the River Bian, thus decreasing the quality of the river. This study had objectives to find out and to analyze river water quality and water quality status of the River Bian, and its compliance with water quality standards for ideal use. The study determined sample point by a purposive sampling method, taking the water samples with a grab method. The analysis of the water quality was performed by standard and pollution index methods. The study revealed that the water quality of River Bian, concerning BOD, at the station 3 had exceeded quality threshold. COD parameter for all stations had exceeded the quality threshold for class III. At three stations, there was a decreasing value due to increasing PI, as found at the stations 1, 2, and 3. In other words, River Bian had been lightly contaminated.

  14. Surface-water/ground-water interaction of the Spokane River and the Spokane Valley/Rathdrum Prairie aquifer, Idaho and Washington

    USGS Publications Warehouse

    Caldwell, Rodney R.; Bowers, Craig L.

    2003-01-01

    Although trace-element concentrations sometimes exceeded aquatic-life criteria in the water of the Spokane River and were elevated above national median values in the bed sediment, trace-element concentrations of all river and ground-water samples were at levels less than U.S. Environmental Protection Agency drinking-water standards. The Spokane River appears to be a source of cadmium, copper, zinc, and possibly lead in the near-river ground water. Dissolved cadmium, copper, and lead concentrations generally were less than 1 microgram per liter (µg/L) in the river water and ground water. During water year 2001, dissolved zinc concentrations were similar in water from near-river wells (17-71 µg/L) and the river water (22-66 µg/L), but were less than detection levels in wells farther from the river. Arsenic, found to be elevated in ground water in parts of the aquifer, does not appear to have a river source. Although the river does influence the ground-water chemistry in proximity to the river, it does not appear to adversely affect the ground-water quality to a level of human-health concern.

  15. Experimental lead-shot poisoning in bald eagles

    USGS Publications Warehouse

    Pattee, O.H.; Wiemeyer, Stanley N.; Mulhern, B.M.; Sileo, L.; Carpenter, J.W.

    1981-01-01

    Captive, crippled bald eagles unsuitable for release were fed lead shot to determine diagnostic criteria for lead poisoning. The eagles were fluoroscoped and bled periodically to determine shot retention and blood delta--aminolevulinic acid dehydratase activity. Microscopic examination revealed renal tubular degeneration, arterial fibrinoid necrosis and myocardial necrosis. Acid-fast intra-nuclear inclusion bodies were not found in proximal convoluted tubule cells. Analyses of blood and toxicological data are not yet complete.

  16. Occurrence and distribution of molybdenum in the surface waters of Colorado geochemistry of water

    USGS Publications Warehouse

    Voegeli, Paul Thomas; King, Robert Ugstad

    1969-01-01

    Molybdenum was detected in 89 percent of the samples collected from all the principal Colorado streams and their chief tributaries and from a few reservoirs and lakes. Amounts detected ranged from 1 to 3,800 micrograms per liter. The greatest amounts of molybdenum detected were in samples from the Colorado River at and below Kremmling, the Dillon Reservoir, the Blue River below Dillon Dam, the Eagle River, and Tenmile Creek.

  17. Wildlife Photography - Eagles

    NASA Image and Video Library

    2017-05-04

    An American bald eagle eats its prey on a wooden dock at NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  18. Effects of best-management practices in Eagle and Joos Valley Creeks in the Waumandee Creek Priority Watershed, Wisconsin, 1990-2007

    USGS Publications Warehouse

    Graczyk, David J.; Walker, John F.; Bannerman, Roger T.; Rutter, Troy D.

    2012-01-01

    In many watersheds, nonpoint-source contamination is a major contributor to water-quality problems. In response to the recognition of the importance of nonpoint sources, the Wisconsin Nonpoint Source Water Pollution Abatement Program (Nonpoint Program) was enacted in 1978. This report summarizes the results of a study to assess the effectiveness of watershed-management practices for controlling nonpoint-source contamination for the Eagle Creek and Joos Valley Creek Watersheds. Streamflow-gaging stations equipped for automated sample collection and continuous recording of stream stage were installed in July 1990 at Eagle and Joos Valley Creeks and were operated through September 2007. In October 1990, three rain gages were installed in each watershed and were operated through September 2007. Best-Management Practices (BMPs) were installed during 1993 to 2000 in Eagle and Joos Valley Creeks and were tracked throughout the study period. By the year 2000, a majority of the BMPs were implemented in the two watersheds and goals set by the Wisconsin Department of Natural Resources and the local Land Conservation Department had been achieved for the two study watersheds (Wisconsin Department of Natural Resources, 1990). The distributions of the rainstorms that produced surface runoff and storm loads were similar in the pre-BMP (1990-93) and post-BMP implementation (2000-07) periods for both Eagle and Joos Valley Creeks. The highest annual streamflow occurred at both sites in water year 1993, which corresponded to the greatest above normal nonfrozen precipitation measured at two nearby NOAA weather stations. The minimum streamflow occurred in water year 2007 at both sites. Base-flow and stormwater samples were collected and analyzed for suspended solids, total phosphorus, and ammonia nitrogen. For both Eagle and Joos Valley Creeks the median concentrations of suspended solids and total phosphorus in base flow were lower during the post-BMP period compared to the pre

  19. Occurrence of antibiotic resistance genes in reclaimed water and river water in the Werribee Basin, Australia.

    PubMed

    Barker-Reid, Fiona; Fox, Ellen M; Faggian, Robert

    2010-09-01

    The purpose of this study was to investigate the occurrence of antibiotic resistance genes (ARGs) in water used for irrigation in the Werribee River Basin, Australia, including river water and reclaimed effluent water (reclaimed water). Samples of reclaimed water, collected over a one-year period, were screened for the occurrence of ARGs using PCR detection assays. The presence of ARGs in the reclaimed water samples were contrasted with that of water samples taken from the Werribee River Basin, collected over the same time period, from five points selected for varying levels of urban and agricultural impact. Of the 54 river water samples collected, 2 (4%), 2 (4%), 0 and 0 were positive for methicillin, sulfonamide, gentamicin and vancomycin-resistant genes, respectively, while 6 of 11 reclaimed water samples were positive for methicillin (9%) and sulfonamide (45%). The presence/absence of ARGs did not appear to correlate with other measured water quality parameters. The low detection of ARGs in river water indicates that, regardless of its poor quality, the river has not yet been severely contaminated with ARGs. The greater prevalence of ARGs in reclaimed water indicates that this important agricultural water source will need to be monitored into the future.

  20. Water resources of the Waccasassa River Basin and adjacent areas, Florida

    USGS Publications Warehouse

    Taylor, G.F.; Snell, L.J.

    1978-01-01

    This map report was prepared in cooperation with the Southwest Florida Water Management District which, with the Waccasassa River Basin Board, had jurisdiction over waters within the Waccasassa River basin, the coastal areas adjacent to the basin, and other adjacent areas outside the basin. New water management district boundaries, effective January 1977, place most of the Waccasassa River basin in the Suwannee River Water Management District. The purpose of the report is to provide water information for consideration in land-use and water development which is accelerating, especially in the northeastern part of the study area. It is based largely on existing data in the relatively undeveloped area. Of the total area included in the topographic drainage basin for the Waccasassa River about 72 percent is in Levy County, 18 percent in Alachua County, 9 percent in Gilchrist County, and 1 percent in Marion County. The elongated north-south drainage basin is approximately 50 mi in length, averages 13 mi in width, and lies between the Suwannee River, the St. Johns River, and the Withlacoochee River basins. (Woodard-USGS)

  1. A parsimonious dynamic model for river water quality assessment.

    PubMed

    Mannina, Giorgio; Viviani, Gaspare

    2010-01-01

    Water quality modelling is of crucial importance for the assessment of physical, chemical, and biological changes in water bodies. Mathematical approaches to water modelling have become more prevalent over recent years. Different model types ranging from detailed physical models to simplified conceptual models are available. Actually, a possible middle ground between detailed and simplified models may be parsimonious models that represent the simplest approach that fits the application. The appropriate modelling approach depends on the research goal as well as on data available for correct model application. When there is inadequate data, it is mandatory to focus on a simple river water quality model rather than detailed ones. The study presents a parsimonious river water quality model to evaluate the propagation of pollutants in natural rivers. The model is made up of two sub-models: a quantity one and a quality one. The model employs a river schematisation that considers different stretches according to the geometric characteristics and to the gradient of the river bed. Each stretch is represented with a conceptual model of a series of linear channels and reservoirs. The channels determine the delay in the pollution wave and the reservoirs cause its dispersion. To assess the river water quality, the model employs four state variables: DO, BOD, NH(4), and NO. The model was applied to the Savena River (Italy), which is the focus of a European-financed project in which quantity and quality data were gathered. A sensitivity analysis of the model output to the model input or parameters was done based on the Generalised Likelihood Uncertainty Estimation methodology. The results demonstrate the suitability of such a model as a tool for river water quality management.

  2. Estimated effects on water quality of Lake Houston from interbasin transfer of water from the Trinity River, Texas

    USGS Publications Warehouse

    Liscum, Fred; East, Jeffery W.

    2000-01-01

    The City of Houston is considering the transfer of water from the Trinity River to Lake Houston (on the San Jacinto River) to alleviate concerns about adequate water supplies for future water demands. The U.S. Geological Survey, in cooperation with the City of Houston, conducted a study to estimate the effects on the water quality of Lake Houston from the transfer of Trinity River water. A water-quality model, CE–QUAL–W2, was used to simulate six water-quality properties and constituents for scenarios of interbasin transfer of Trinity River water. Three scenarios involved the transferred Trinity River water augmenting streamflow in the East Fork of Lake Houston, and three scenarios involved the transferred water replacing streamflow from the West Fork of the San Jacinto River.The estimated effects on Lake Houston were determined by comparing volume-weighted daily mean water temperature, phosphorus, ammonia nitrogen, nitrite plus nitrate nitrogen, algal biomass, and dissolved oxygen simulated for each of the transfer scenarios to simulations for a base dataset. The effects of the interbasin transfer on Lake Houston do not appear to be detrimental to water temperature, ammonia nitrogen, or dissolved oxygen. Phosphorus and nitrite plus nitrate nitrogen showed fairly large changes when Trinity River water was transferred to replace West Fork San Jacinto River streamflow. Algal biomass showed large decreases when Trinity River water was transferred to augment East Fork Lake Houston streamflow and large increases when Trinity River water was transferred to replace West Fork San Jacinto River streamflow. Regardless of the scenario simulated, the model indicated that light was the limiting factor for algal biomass growth.

  3. Conservation significance of alternative nests of golden eagles

    Treesearch

    Brian A. Millsap; Teryl G. Grubb; Robert K. Murphy; Ted Swem; James W. Watson

    2015-01-01

    Golden eagles (Aquila chrysaetos) are long-lived raptors that maintain nesting territories that may be occupied for a century or longer. Within occupied nesting territories there is one nest in which eagles lay their eggs in a given year (i.e., the used nest), but there are usually other nests (i.e., alternative nests). Conservation plans often protect used nests, but...

  4. 77 FR 22267 - Eagle Permits; Changes in the Regulations Governing Eagle Permitting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... with rotating wind turbines. Permit Duration and Transferability In February 2011, we published draft... permit applicants, because of the known risk to eagles from collisions with wind turbines and electric..., shoot at, poison, wound, kill, capture, trap, collect, destroy, molest, or disturb'' (Sec. 22.3). The...

  5. Effects of fire on golden eagle territory occupancy and reproductive success

    USGS Publications Warehouse

    Kochert, Michael N.; Steenhof, Karen; Marzluff, J.M.; Carpenter, L.B.

    1999-01-01

    We examined effects of fire on golden eagle (Aquila chrysaetos) territory occupancy and reproductive success in southwestern Idaho because wildfires since 1980 have resulted in large-scale losses of shrub habitat in the Snake River Plain. Success (percentage of pairs that raised young) at burned territories declined after major fires (P = 0.004). Pairs in burned areas that could expand into adjacent vacant territories were as successful as pairs in unburned territories and more successful than pairs in burned territories that could not expand. Success at extensively burned territories was lowest 4-6 years after burning but increased 4-5 years later. The incidence and extent of fires did not help predict territories that would have low occupancy and success rates in postburn years. The presence of a vacant neighboring territory and the amount of agriculture and proportion of shrubs within 3 km of the nesting centroid best predicted probability of territory occupancy. Nesting success during preburn years best predicted the probability of a territory being successful in postburn years. Burned territories with high success rates during preburn years continued to have high success rates during postburn years, and those with low success in preburn years continued to be less successful after burning. In areas where much shrub habitat has been lost to fire, management for golden eagles should include active fire suppression and rehabilitation of burned areas.

  6. Sacramento River Water Treatment Plant Intake Pier & Access Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  7. Movements and landscape use of Eastern Imperial Eagles Aquila heliaca in Central Asia

    USGS Publications Warehouse

    Poessel, Sharon; Bragin, Evgeny A.; Sharpe, Peter B.; Garcelon, David K.; Bartoszuk, Kordian; Katzner, Todd E.

    2018-01-01

    Capsule: We describe ecological factors associated with movements of a globally declining raptor species, the Eastern Imperial Eagle Aquila heliaca.Aims: To describe the movements, habitat associations and resource selection of Eastern Imperial Eagles marked in Central Asia.Methods: We used global positioning system (GPS) data sent via satellite telemetry devices deployed on Eastern Imperial Eagles captured in Kazakhstan to calculate distances travelled and to associate habitat and weather variables with eagle locations collected throughout the annual cycle. We also used resource selection models to evaluate habitat use of tracked birds during autumn migration. Separately, we used wing-tagging recovery data to broaden our understanding of wintering locations of eagles.Results: Eagles tagged in Kazakhstan wintered in most countries on the Arabian Peninsula, as well as Iran and India. The adult eagle we tracked travelled more efficiently than did the four pre-adults. During autumn migration, telemetered eagles used a mixture of vegetation types, but during winter and summer, they primarily used bare and sparsely vegetated areas. Finally, telemetered birds used orographic updrafts to subsidize their autumn migration flight, but they relied on thermal updrafts during spring migration.Conclusion: Our study is the first to use GPS telemetry to describe year-round movements and habitat associations of Eastern Imperial Eagles in Central Asia. Our findings provide insight into the ecology of this vulnerable raptor species that can contribute to conservation efforts on its behalf.

  8. Monitoring and Assessment of Youshui River Water Quality in Youyang

    NASA Astrophysics Data System (ADS)

    Wang, Xue-qin; Wen, Juan; Chen, Ping-hua; Liu, Na-na

    2018-02-01

    By monitoring the water quality of Youshui River from January 2016 to December 2016, according to the indicator grading and the assessment standard of water quality, the formulas for 3 types water quality indexes are established. These 3 types water quality indexes, the single indicator index Ai, single moment index Ak and the comprehensive water quality index A, were used to quantitatively evaluate the quality of single indicator, the water quality and the change of water quality with time. The results show that, both total phosphorus and fecal coliform indicators exceeded the standard, while the other 16 indicators measured up to the standard. The water quality index of Youshui River is 0.93 and the grade of water quality comprehensive assessment is level 2, which indicated that the water quality of Youshui River is good, and there is room for further improvement. To this end, several protection measures for Youshui River environmental management and pollution treatment are proposed.

  9. KSC-06pd0475

    NASA Image and Video Library

    2006-03-11

    KENNEDY SPACE CENTER, FLA. - A bald eagle, spotted near S.R. 3 on Kennedy Space Center, begins its flight, perhaps scouting for food or heading for its nearby nest. There are a dozen active nests throughout the Merritt Island National Wildlife Refuge, which shares a boundary with the Center. Eagles' habitats are near lakes, rivers, marshes and seacoasts. Nests are masses of sticks, usually in the top of a tall tree. Even though they are fish eaters, bald eagles will take whatever prey is available and easiest to obtain. Bald eagles which live along the coast and on major lakes and rivers feed mainly on fish. Bald eagles fish in both fresh and salt water. Because of the energy expended during hunting, an eagle has to spend a lot of time resting quietly. It's estimated that only one out of eighteen attacks are successful. Photo credit: NASA/Jim Grossmann

  10. Reproductive characteristics of migratory golden eagles in Denali National Park, Alaska

    USGS Publications Warehouse

    McIntyre, Carol L.; Adams, Layne G.

    1999-01-01

    We describe reproductive characteristics of Golden Eagles (Aquila chrysaetos) breeding in Denali National Park, Alaska during an entire snowshoe hare (Lepus americanus) cycle, 1988-1997. Data on nesting eagles were collected at 58 to 72 nesting areas annually using two aerial surveys. Surveys were conducted during the incubation period to determine occupancy and nesting activities and late in the nestling period to count nestlings and determine nesting success. Annual occupancy rates of nesting areas did not vary significantly, whereas laying rates, success rates, and mean brood size varied significantly over the study period. Fledgling production for the study population varied sevenfold during the ten-year period. Laying rates, mean brood size, and overall population productivity were significantly correlated with abundance of cyclic snowshoe hare and Willow Ptarmigan (Lugopus lagopus) populations. Reproductive rates of Golden Eagles in Denali were similar to those of Golden Eagles from other high latitude study areas in North America, but lower than for Golden Eagles from temperate zone study areas in North America.

  11. Spatial structure in the diet of imperial eagles Aquila heliaca in Kazakhstan

    USGS Publications Warehouse

    Katzner, T.E.; Bragin, E.A.; Knick, S.T.; Smith, A.T.

    2006-01-01

    We evaluated the relationship between spatial variability in prey and food habits of eastern imperial eagles Aquila heliaca at a 90,000 ha national nature reserve in north-central Kazakhstan. Eagle diet varied greatly within the population and the spatial structure of eagle diet within the population varied according to the scale of measurement. Patterns in dietary response were inconsistent with expectations if either ontogenetic imprinting or competition determined diet choice, but they met expectations if functional response determined diet. Eagles nesting near a high-density prey resource used that resource almost exclusively. In contrast, in locations with no single high-density prey species, eagles' diet was more diverse. Our results demonstrate that spatial structuring of diet of vertebrate predators can provide important insight into the mechanisms that drive dietary decisions. ?? OIKOS.

  12. Simulating Water Resource Disputes of Transboundary River: A Case Study of the Zhanghe River Basin, China

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; He, Weijun; Liao, Zaiyi; Mulugeta Degefu, Dagmawi; An, Min; Zhang, Zhaofang

    2018-01-01

    Water resource disputes within transboundary river basin has been hindering the sustainable use of water resources and efficient management of environment. The problem is characterized by a complex information feedback loop that involves socio-economic and environmental systems. This paper presents a system dynamics based model that can simulate the dynamics of water demand, water supply, water adequacy and water allocation instability within a river basin. It was used for a case study in the Zhanghe River basin of China. The base scenario has been investigated for the time period between 2000 and 2050. The result shows that the Chinese national government should change the water allocation scheme of downstream Zhanghe River established in 1989, more water need to be allocated to the downstream cities and the actual allocation should be adjusted to reflect the need associated with the socio-economic and environmental changes within the region, and system dynamics improves the understanding of concepts and system interactions by offering a comprehensive and integrated view of the physical, social, economic, environmental, and political systems.

  13. Impact assessments of water allocation on water environment of river network: Method and application

    NASA Astrophysics Data System (ADS)

    Wang, Qinggai; Wang, Yaping; Lu, Xuchuan; Jia, Peng; Zhang, Beibei; Li, Chen; Li, Sa; Li, Shibei

    2018-02-01

    Two types of water allocation scenarios were proposed for reasonably utilizing water resources and improving water quality in a two-river network in Tongzhou District. Water circulation and quality were selected as two important indexes to evaluate the two scenario. Meanwhile, one-dimensional water amount and quality model was set up on the basis of the MIKE11 model to compare the two scenarios in terms of improving water environment. The results showed that both scenarios changed the hydrodynamic conditions, and consequently the river flow reached 0.05 m/s or higher in the central part of river stream. In addition, we also found that the two plans have similar effects on water quality, with first scenario producing larger area of water class III and IV than the second scenario.

  14. Water-quality assessment of the Sacramento River basin, California : water quality of fixed sites, 1996-1998

    USGS Publications Warehouse

    Domagalski, Joseph L.; Dileanis, Peter D.

    2000-01-01

    Water-quality samples were collected from 12 sites in the Sacramento River Basin, Cali-fornia, from February 1996 through April 1998. Field measurements (dissolved oxygen, pH, specific conductance, alkalinity, and water tem-perature) were completed on all samples, and laboratory analyses were done for suspended sediments, nutrients, dissolved and particulate organic carbon, major ions, trace elements, and mercury species. Samples were collected at four types of locations on the Sacramento River?large tributaries to the Sacramento River, agricul-tural drainage canals, an urban stream, and a flood control channel. The samples were collected across a range of flow conditions representative of those sites during the timeframe of the study. The water samples from the Sacramento River indi-cate that specific conductance increases slightly downstream but that the water quality is indicative of dilute water. Water temperature of the Sacramento River increases below Shasta Lake during the spring and summer irrigation season owing to diversion of water out of the river and subsequent lower flow. All 12 sites had generally low concentrations of nutrients, but chlorophyll concentrations were not measured; therefore, the actual consequences of nutrient loading could not be adequately assessed. Concentrations of dis-solved organic carbon in samples from the Sacramento River and the major tributaries were generally low; the formation of trihalomethanes probably does not currently pose a problem when water from the Sacramento River and its major tributaries is chlorinated for drinking-water purposes. However, dissolved organic carbon concentrations were higher in the urban stream and in agricultural drainage canals, but were diluted upon mixing with the Sacramento River. The only trace element that currently poses a water-quality problem in the Sacramento River is mercury. A federal criterion for the protection of aquatic life was exceeded during this study, and floodwater

  15. Causes of variations in water quality and aquatic ecology in rivers of the Upper Mississippi River Basin, Minnesota and Wisconsin

    USGS Publications Warehouse

    Stark, James R.

    1996-01-01

    Physical and aquatic biological conditions differ among the Mississippi River and its major tributaries (the St. Croix and Minnesota Rivers) in Minnesota and Wisconsin. The quality of surface water and the ecological condition of rivers affect the ways in which we use them. The St. Croix River is used for recreation; the Mississippi River is used for recreation and is a corridor for commerce; and the Minnesota River primarily drains agricultural lands. Analysis of the environmental framework of the basins and water-quality and ecological information by the National Water-Quality Assessment (NAWQA) Program shows that the conditions of the rivers are a product of a combination of factors including climate, hydrology, geology, soils, land use, land cover, water management, and water use.

  16. Characterizing Golden Eagle risk to lead and anticoagulant rodenticide exposure: A review

    USGS Publications Warehouse

    Herring, Garth; Eagles-Smith, Collin A.; Buck, Jeremy A.

    2017-01-01

    Contaminant exposure is among the many threats to Golden Eagle (Aquila chrysaetos) populations throughout North America, particularly lead poisoning and anticoagulant rodenticides (AR). These threats may act in concert with others (e.g., lead poisoning and trauma associated with striking objects) to exacerbate risk. Golden Eagles are skilled hunters but also exploit scavenging opportunities, making them particularly susceptible to contaminant exposure from ingesting tissues of poisoned or shot animals. Lead poisoning has long been recognized as an important source of mortality for Golden Eagles throughout North America. More recently, ARs have been associated with both sublethal and lethal effects in raptor species worldwide. In this review, we examine the current state of knowledge for lead and AR exposure in Golden Eagles, drawing from the broader raptor contaminant ecology literature. We examine lead and AR sources within Golden Eagle habitats, exposure routes and toxicity, effects on individuals and populations, synergistic effects, and data and information needs. Continued research addressing data needs and information gaps will help with Golden Eagle conservation planning.

  17. Causes of mortality in eagles submitted to the National Wildlife Health Center 1975-2013

    USGS Publications Warehouse

    Russell, Robin E.; Franson, J. Christian

    2014-01-01

    We summarized the cause of death for 2,980 bald eagles (Haliaeetus leucocephalus) and 1,427 golden eagles (Aquila chrysaetos) submitted to the National Wildlife Health Center in Madison, Wisconsin, USA, for diagnosis between 1975 and the beginning of 2013. We compared the proportion of eagles with a primary diagnosis as electrocuted, emaciated, traumatized, shot or trapped, diseased, poisoned, other, and undetermined among the 4 migratory bird flyways of the United States (Atlantic, Mississippi, Central, and Pacific). Additionally, we compared the proportion of lead-poisoned bald eagles submitted before and after the autumn 1991 ban on lead shot for waterfowl hunting. Trauma and poisonings (including lead poisoning) were the leading causes of death for bald eagles throughout the study period, and a greater proportion of bald eagles versus golden eagles were diagnosed as poisoned. For golden eagles, the major causes of mortality were trauma and electrocution. The proportion of lead poisoning diagnoses for bald eagles submitted to the National Wildlife Health Center displayed a statistically significant increase in all flyways after the autumn 1991 ban on the use of lead shot for waterfowl hunting. Thus, lead poisoning was a significant cause of mortality in our necropsied eagles, suggesting a continued need to evaluate the trade-offs of lead ammunition for use on game other than waterfowl versus the impacts of lead on wildlife populations. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  18. Water - Essential Resource of the Southern Flint River Basin, Georgia

    USGS Publications Warehouse

    Warner, Debbie; Norton, Virgil

    2004-01-01

    Introduction Abundant water resources of the Flint River Basin have played a major role in the history and development of southwestern Georgia. The Flint River-along with its tributaries, wetlands, and swamps-and the productive aquifers of the river basin are essential components of the area's diverse ecosystems. These resources also are necessary for sustained agricultural, industrial, and municipal activities. Increasing, and in some cases conflicting, demand for water makes careful monitoring and wise planning and management of southwestern Georgia's water resources critical to the ecological and economic future of the area. This poster presents the major issues associated with increasing competition for water resources in the southern Flint River Basin.

  19. Water resources of the Big Sioux River Valley near Sioux Falls, South Dakota

    USGS Publications Warehouse

    Jorgensen, Donald G.; Ackroyd, Earl A.

    1973-01-01

    Water from the river is generally less mineralized, softer, and easier to treat than ground water. Water pumped from wells near the river is similar in quality to the river water, but does not have the objectionable odors or tastes often present in water from the river.

  20. A Water Budget for Riparian Vegetation on the Lower Colorado River: the Myth of Water Salvage

    NASA Astrophysics Data System (ADS)

    Nagler, P. L.; Glenn, E. P.; Webb, R. H.; Howard, K. A.

    2007-05-01

    For many years, river managers have envisaged large saving of water by clearing the exotic plant, saltcedar (Tamarix ramosissima) from western U.S. rivers. Early estimates of evapotranspiration (ET) by saltcedar ranged as high as 3-4 m/yr, and it was estimated that saltcedar on the Lower Colorado River used more water than Los Angeles. Furthermore, saltcedar was considered to have low habitat value, so clearing projects might enhance habitat value by allowing the return of more valuable native species. We have examined these assumptions based on recent evidence. Moisture flux towers set in dense saltcedar stands show that ET is moderate, ranging from 0.8-1.4 m/yr with a mean value of 1 m/yr over five studies on three rivers, similar to wide-area estimates from remote sensing studies. Projected over the 18,200 ha of dense saltcedar monocultures estimated for the Lower Colorado River riparian corridor in the U.S., the potential water saving would only be about 1 percent of the annual flow (assuming no replacement vegetation). A similar acreage of saltcedar monoculture exists in the Colorado River delta in Mexico, but these stands are supported by outflow of brackish water from the irrigation district rather than river water. The assumption of low habitat value is not supported by recent studies. For example, Hinojosa- Huerta (2006) found that saltcedar monocultures away from the river channel supported 65 percent as many bird numbers and 74 percent as many bird species as the best habitat type, mixed saltcedar and native trees in proximity to water, in the delta of the Colorado River in Mexico, and saltcedar provided equal habitat value as native trees for endangered willow flycatchers on Arizona and New Mexico rivers (Owen et al., 2005). Hence, the prospects for saving water without destroying habitat by clearing saltcedar are doubtful for this river system.

  1. Rare earth elements in river waters

    NASA Technical Reports Server (NTRS)

    Goldstein, Steven J.; Jacobsen, Stein B.

    1988-01-01

    To characterize the input to the oceans of rare earth elements (REE) in the dissolved and the suspended loads of rivers, the REE concentrations were measured in samples of Amazon, Indus, Mississippi, Murray-Darling, and Ohio rivers and in samples of smaller rivers that had more distinct drainage basin lithology and water chemistry. It was found that, in the suspended loads of small rivers, the REE pattern was dependent on drainage basin geology, whereas the suspended loads in major rivers had relatively uniform REE patterns and were heavy-REE depleted relative to the North American Shale composite (NASC). The dissolved loads in the five major rivers had marked relative heavy-REE enrichments, relative to the NASC and the suspended material, with the (La/Yb)N ratio of about 0.4 (as compared with the ratio of about 1.9 in suspended loads).

  2. World Eagle, The Monthly Social Studies Resource: Data, Maps, Graphs. 1990-1991.

    ERIC Educational Resources Information Center

    World Eagle, 1991

    1991-01-01

    This document consists of the 10 issues of "World Eagle" issued during the 1990-1991 school year. World Eagle is a monthly social studies resource in which demographic and geographic information is presented in the forms of maps, graphs, charts, and text. Each issue of World Eagle has a section that focuses on a particular topic, along with other…

  3. White River National Forest Hanging Lake transportation and operations study

    DOT National Transportation Integrated Search

    2017-05-01

    Hanging Lake is a recreation site located on land managed by the U.S. Forest Service (USFS) under the jurisdiction of the White River National Forests Eagle-Holy Cross Ranger District. Due to its increasing popularity over the past few years, the ...

  4. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paller, M.

    1992-03-26

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor`s heat exchangers where temperatures may reach 70{degrees}C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in themore » river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams & Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.« less

  5. Suspected lead toxicosis in a bald eagle

    USGS Publications Warehouse

    Jacobson, E.; Carpenter, J.W.; Novilla, M.

    1977-01-01

    An immature bald eagle (Haliaeetus leucocephalus) was submitted to the University of Maryland, College Park, for clinical examination. The bird was thin, had green watery feces, and was unable to maintain itself in upright posture. Following radiography, the bird went into respiratory distress and died. Numerous lead shot were recovered from the gizzard, and chemical analysis of liver and kidney tissue revealed 22.9 and 11.3 ppm lead, respectively. The clinical signs, necropsy findings, and chemical analysis of the eagle were compatible with lead toxicosis.

  6. Organic Matter in Rivers: The Crossroads between Climate and Water Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davisson, M L

    2001-04-27

    All surface waters in the world contain dissolved organic matter and its concentration depends on climate and vegetation. Dissolved organic carbon (DOC) is ten times higher in wetlands and swamps than in surface water of arctic, alpine, or arid climate. Climates of high ecosystem productivity (i.e., tropics) typically have soils with low organic carbon storage, but drain high dissolved organic loads to rivers. Regions with lower productivity (e.g. grasslands) typically have high soil carbon storage while adjacent rivers have high DOC contents. Most DOC in a free-flowing river is derived from leaching vegetation and soil organic matter, whereas in dammedmore » rivers algae may comprise a significant portion. Water chemistry and oxygen-18 abundance of river water, along with radiocarbon and carbon-13 isotope abundance measurements of DOC were used to distinguish water and water quality sources in the Missouri River watershed. Drinking water for the City of St. Louis incorporates these different sources, and its water quality depends mostly on whether runoff is derived from the upper or the lower watershed, with the lower watershed contributing water with the highest DOC. During drinking water chlorination, DOC forms carcinogenic by-products in proportion to the amount of DOC present. This has recently led the USEPA to propose federal regulation standards. Restoration of natural riparian habitat such as wetlands will likely increase DOC concentrations in river water.« less

  7. Quality of surface waters in the lower Columbia River Basin

    USGS Publications Warehouse

    Santos, John F.

    1965-01-01

    This report, made during 1959-60, provides reconnaissance data on the quality of waters in the lower Columbia River basin ; information on present and future water problems in the basin; and data that can be employed both in water-use studies and in planning future industrial, municipal, and agricultural expansion within this area. The lower Columbia River basin consists of approximately 46,000 square miles downstream from the confluence of the Snake and Columbia Rivers The region can be divided into three geographic areas. The first is the heavily forested, sparsely populated mountain regions in which quality of water in general is related to geologic and climatological factors. The second is a semiarid plateau east of the Cascade Mountains; there differences in geology and precipitation, together with more intensive use of available water for irrigation, bring about marked differences in water quality. The third is the Willamette-Puget trough area in which are concentrated most of the industry and population and in which water quality is influenced by sewage and industrial waste disposal. The majority of the streams in the lower Columbia River basin are calcium magnesium bicarbonate waters. In general, the rivers rising in the. Coast Range and on the west slope of the Cascade Range contain less than 100 parts per million of dissolved solids, and hardness of the water is less than 50 parts per million. Headwater reaches of the streams on the east slope of the Cascade Range are similar to those on the west slope; but, downstream, irrigation return flows cause the dissolved-solids content and hardness to increase. Most of the waters, however, remain calcium magnesium bicarbonate in type. The highest observed dissolved-solids concentrations and also some changes in chemical composition occur in the streams draining the more arid parts of the area. In these parts, irrigation is chiefly responsible for increasing the dissolved-solids concentration and altering the

  8. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  9. Mapping Water Vulnerability of the Yangtze River Basin: 1994-2013.

    PubMed

    Sun, Fengyun; Kuang, Wenhui; Xiang, Weining; Che, Yue

    2016-11-01

    A holistic understanding of the magnitude and long-term trend of water vulnerability is essential for making management decisions in a given river basin. Existing procedures to assess the spatiotemporal dynamic of water vulnerability in complex mega-scale river basins are inadequate; a new method named ensemble hydrologic assessment was proposed in this study, which allows collection of data and knowledge about many aspects of water resources to be synthesized in a useful way for vulnerability assessment. The objective of this study is to illustrate the practical utility of such an integrated approach in examining water vulnerability in the Yangtze River Basin. Overall, the results demonstrated that the ensemble hydrologic assessment model could largely explain the spatiotemporal evolution of water vulnerability. This paper improves understanding of the status and trends of water resources in the Yangtze River Basin.

  10. Water in the Humboldt River Valley near Winnemucca, Nevada

    USGS Publications Warehouse

    Cohen, Philip M.

    1966-01-01

    Most of the work of the interagency Humboldt River Research Project in the Winnemucca reach of the Humboldt River valley has been completed. More than a dozen State and Federal agencies and several private organizations and individuals participated in the study. The major objective of the project, which began in 1959, is to evaluate the water resources of the entire Humboldt River basin. However, because of the large size of the basin, most of the work during the first 5 years of the project was done in the Winnemucca area. The purpose of this report is to summarize briefly and simply the information regarding the water resources of the Winnemucca area-especially the quantitative aspects of the flow system-given in previous reports of the project. The Winnemucca reach of the Humboldt River valley, which is in north-central Nevada, is about 200 miles downstream from the headwaters of the Humboldt River and includes that part of the valley between the Comus and Rose Creek gaging stations. Average annual inflow to the storage area (the valley lowlands) in the Winnemucca reach in water years 1949-62 was about 250,000 acre-feet. Of this amount, about 68 percent was Humboldt River streamflow, as measured at the Comus gaging station, 23 percent was precipitation directly on the storage area, 6 percent was ground-water inflow, and about 3 percent was tributary streamflow. Average annual streamflow at the Rose Creek gaging station during the same period was about 155,000 acre-feet, or about 17,000 acre-feet less than that at the Comus gaging station. Nearly all the streamflow lost was consumed by evapotranspiration in the project area. Total average annual evapotranspiration loss during the period was about 115,000 acre-feet, or about 42 percent of the total average annual outflow. The most abundant ions in the ground and surface water in the area are commonly sodium and bicarbonate. Much of the water has a dissolved-solids content that ranges from 500 to 750 parts per

  11. Assessment of undiscovered oil and gas resources in conventional and continuous petroleum systems in the Upper Cretaceous Eagle Ford Group, U.S. Gulf Coast region, 2011

    USGS Publications Warehouse

    Dubiel, Russell F.; Pitman, Janet K.; Pearson, Ofori N.; Pearson, Krystal; Kinney, Scott A.; Lewan, Michael D.; Burke, Lauri; Biewick, Laura; Charpentier, Ronald R.; Cook, Troy A.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2012-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey assessed means of (1) 141 million barrels of oil (MMBO), 502 billion cubic feet of natural gas (BCFG), and 16 million barrels of natural gas liquids (MMBNGL) in the conventional Eagle Ford Updip Sandstone Oil and Gas Assessment Unit (AU); (2) 853 MMBO, 1,707 BCFG, and 34 MMBNGL in the continuous Eagle Ford Shale Oil AU; and (3) 50,219 BCFG and 2,009 MMBNGL in the continuous Eagle Ford Shale Gas AU in onshore lands and State waters of the Gulf Coast.

  12. Use of noninvasive genetics to assess nest and space use by white-tailed eagles

    USGS Publications Warehouse

    Bulut, Zafer; Bragin, Evgeny A.; DeWoody, J. Andrew; Braham, Melissa A.; Katzner, Todd E.; Doyle, Jacqueline M.

    2016-01-01

    Movement and space use are important components of animal interactions with the environment. However, for hard-to-monitor raptor species, there are substantial gaps in our understanding of these key determinants. We used noninvasive genetic tools to evaluate the details of space use over a 3-yr period by White-tailed Eagles (Haliaeetus albicilla) at the Naurzum Zapovednik in northern Kazakhstan. We genotyped, at 10 microsatellite markers and one mitochondrial marker, 859 eagle feathers and assigned naturally shed feathers to individuals. We identified 124 White-tailed Eagles, including both members of 5–10 pairs per year, and were able to monitor birds across years. Distances between eagle nests and hunting perches were always greater than nearest neighbor distances, eagles never used the closest available hunting perch, and hunting perches were always shared with other eagles. When eagles switched nests between years, the nests they chose were almost always well outside the space that theory predicted they defended the prior year. Our data are inconsistent with classical territorial and colonial models of resource use; they more closely resemble semi-colonial behavior. It is unlikely that standard methods of animal tracking (e.g., marking and telemetry), would have provided a similarly cost-effective mechanism to gain these insights into spatial and temporal aspects of eagle behavior. When combined with existing information on space use of other local species, these data suggest that partitioning of spatial resources among White-tailed Eagles and other eagles at the Zapovednik may be facilitated by the alternative strategies of space use they employ.

  13. Final Report Bald and Golden Eagle Territory Surveys for the Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fratanduono, M. L.

    2014-11-25

    Garcia and Associates (GANDA) was contracted by the Lawrence Livermore National Laboratory (LLNL) to conduct surveys for bald eagles (Haliaeetus leucocephalus) and golden eagles (Aquila chrysaetos) at Site 300 and in the surrounding area out to 10-miles. The survey effort was intended to document the boundaries of eagle territories by careful observation of eagle behavior from selected viewing locations throughout the study area.

  14. Water resources of the Yellow Medicine River Watershed, Southwestern Minnesota

    USGS Publications Warehouse

    Novitzki, R.P.; Van Voast, Wayne A.; Jerabek, L.A.

    1969-01-01

    The Yellow Medicine and Minnesota Rivers are the major sources of surface water. For physiographic regions – Upland Plain, Slope, Lowland Plain, and Minnesota River Flood Plain – influence surface drainage, and the flow of ground water through the aquifers. The watershed comprises 1070 square miles, including the drainage basin of the Yellow Medicine River (665 square miles) and 405 square miles drained by small streams tributary to the Minnesota River.

  15. Hydrochemical evaluation of river water quality—a case study

    NASA Astrophysics Data System (ADS)

    Qishlaqi, Afishin; Kordian, Sediqeh; Parsaie, Abbas

    2017-09-01

    Rivers are one of the most environmentally vulnerable sources for contamination. Since the rivers pass through the cities, industrial and agricultural centers, these have been considered as place to dispose the sewages. This issue is more important when the river is one of the main sources of water supplying for drinking, agricultural and industrial utilizations. The goal of the present study was assessing the physicochemical characteristics of the Tireh River water. The Tireh River is the main river in the Karkheh catchment in the Iran. To this end, 14 sampling stations for measuring the physicochemical properties of Tireh River along the two main cities (Borujerd and Dorud) were measured. The results showed that (except SO4) Mg, Ca and other anions and cations have concentrations under WHO standard limitation. Almost all samples have suitable conditions for drinking with regard to the WHO standard and in comparison with agricultural standard (FAO Standard), and the potential of water is suitable for irrigation purposes. According to Wilcox diagram, 78 % of samples were at the C3-S1 and 21.5 % were at C2-S1 classes. The piper diagram shows that most of samples are bicarbonate and calcic facies.

  16. Influence of a water regulation event on the age of Yellow River water in the Bohai

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Wang, Haiyan; Guo, Xinyu; Liu, Zhe; Gao, Huiwang; Zhang, Guiling

    2017-10-01

    Abrupt changes in freshwater inputs from large rivers usually imply regime shifts in coastal water environments. The influence of a water regulation event on the age of the Yellow River water in the Bohai was modeled using constituent-oriented age and residence time theory to better understand the change in the environmental function of the hydrodynamic field owing to human activities. The water ages in Laizhou Bay, the central basin, and the Bohai strait are sensitive to water regulation. The surface ages in those areas can decrease by about 300 days, particularly in July, and the age stratification is also strengthened. A water regulation event can result in declines in the water age in early July ahead of declines in the water age under climatological conditions (without the regulation event) by about 1 and 5 months in the central basin and Laizhou Bay, respectively. The change in the coastal circulation due to the water regulation event is the primary reason for the change in the Yellow River water age. The high Yellow River flow rate can enhance the density flow and, therefore, reduce the age of the Yellow River water. The subsequent impact of a single water regulation event can last about 1.0 to 4.0 years in different subregions.

  17. Impact of variable river water stage on the simulation of groundwater-river interactions over the Upper Rhine Graben hydrosystem

    NASA Astrophysics Data System (ADS)

    Habets, F.; Vergnes, J.

    2013-12-01

    The Upper Rhine alluvial aquifer is an important transboundary water resource which is particularly vulnerable to pollution from the rivers due to anthropogenic activities. A realistic simulation of the groundwater-river exchanges is therefore of crucial importance for effective management of water resources, and hence is the main topic of the NAPROM project financed by the French Ministry of Ecology. Characterization of these fluxes in term of quantity and spatio-temporal variability depends on the choice made to represent the river water stage in the model. Recently, a couple surface-subsurface model has been applied to the whole aquifer basin. The river stage was first chosen to be constant over the major part of the basin for the computation of the groundwater-river interactions. The present study aims to introduce a variable river water stage to better simulate these interactions and to quantify the impact of this process over the simulated hydrological variables. The general modeling strategy is based on the Eau-Dyssée modeling platform which couples existing specialized models to address water resources and quality in regional scale river basins. In this study, Eau-Dyssée includes the RAPID river routing model and the SAM hydrogeological model. The input data consist in runoff and infiltration coming from a simulation of the ISBA land surface scheme covering the 1986-2003 period. The QtoZ module allows to calculate river stage from simulated river discharges, which is then used to calculate the exchanges between aquifer units and river. Two approaches are compared. The first one uses rating curves derived from observed river discharges and river stages. The second one is based on the Manning's formula. Manning's parameters are defined with geomorphological parametrizations and topographic data based on Digital Elevation Model (DEM). First results show a relatively good agreement between observed and simulated river water height. Taking into account a

  18. DDE poisoning in an adult bald eagle

    USGS Publications Warehouse

    Garcelon, D.K.; Thomas, N.J.

    1997-01-01

    A 12-year-old female bald eagle (Haliaeetus leucocephalus) was found in May 1993 on Santa Catalina Island, California (USA), in a debilitated condition, exhibiting ataxia and tremors; it died within hours. On necropsy, the bird was emaciated but had no evidence of disease or physical injury. Chemical analyses were negative for organophosphorus pesticides and lead poisoning. High concentrations of DDE (wet weight basis) were found in the brain (212 ppm), liver (838 ppm), and serum (53 ppm). Mobilization of DDE, from depleted fat deposits, probably resulted in the lethal concentration in the eagle's brain.

  19. Whooping crane preyed upon by golden eagle

    USGS Publications Warehouse

    Windingstad, Ronald M.; Stiles, Harry E.; Drewien, Roderick C.

    1981-01-01

    The Golden Eagle (Aquila chrysaetos) is the largest predatory bird in North America and is well known for its predatory abilities. Attacks have been reported on mammals such as whitetail jackrabbits (Lepus townsendi) (McGahan 1967, J. Wildl. Mgmt. 31: 496), pronghorn antelope (Antilocapra americana) (Bruhns 1970, Can. Field-Natur. 84: 301), Mallards (Anas platyrhynchos) (Kelleher and O'Malia 1971, Auk 88: 186), and Great Blue Herons (Ardea herodias) (Carnie 1954, Condor 56: 3). This communication describes an attack on an immature Whooping Crane (Grus americana) by a Golden Eagle and the subsequent necropsy findings.

  20. Use of Superposition Models to Simulate Possible Depletion of Colorado River Water by Ground-Water Withdrawal

    USGS Publications Warehouse

    Leake, Stanley A.; Greer, William; Watt, Dennis; Weghorst, Paul

    2008-01-01

    According to the 'Law of the River', wells that draw water from the Colorado River by underground pumping need an entitlement for the diversion of water from the Colorado River. Consumptive use can occur through direct diversions of surface water, as well as through withdrawal of water from the river by underground pumping. To develop methods for evaluating the need for entitlements for Colorado River water, an assessment of possible depletion of water in the Colorado River by pumping wells is needed. Possible methods include simple analytical models and complex numerical ground-water flow models. For this study, an intermediate approach was taken that uses numerical superposition models with complex horizontal geometry, simple vertical geometry, and constant aquifer properties. The six areas modeled include larger extents of the previously defined river aquifer from the Lake Mead area to the Yuma area. For the modeled areas, a low estimate of transmissivity and an average estimate of transmissivity were derived from statistical analyses of transmissivity data. Aquifer storage coefficient, or specific yield, was selected on the basis of results of a previous study in the Yuma area. The USGS program MODFLOW-2000 (Harbaugh and others, 2000) was used with uniform 0.25-mile grid spacing along rows and columns. Calculations of depletion of river water by wells were made for a time of 100 years since the onset of pumping. A computer program was set up to run the models repeatedly, each time with a well in a different location. Maps were constructed for at least two transmissivity values for each of the modeled areas. The modeling results, based on the selected transmissivities, indicate that low values of depletion in 100 years occur mainly in parts of side valleys that are more than a few tens of miles from the Colorado River.

  1. Method to identify wells that yield water that will be replaced by Colorado River water in Arizona, California, Nevada, and Utah

    USGS Publications Warehouse

    Wilson, Richard P.; Owen-Joyce, Sandra J.

    1994-01-01

    Accounting for the use of Colorado River water is required by the U.S. Supreme Court decree, 1964, Arizona v. California. Water pumped from wells on the flood plain and from certain wells on alluvial slopes outside the flood plain is presumed to be river water and is accounted for as Colorado River water. A method was developed to identify wells outside the f1ood plain of the lower Colorado River that yield water that will be replaced by water from the river. The method provides a uniform criterion of identification for all users pumping water from wells. Wells that have a static water-level elevation equal to or below the accounting surface are presumed to yield water that will be replaced by water from the river. Wells that have a static water-level elevation above the accounting surface are presumed to yield water that will be replaced by water from precipitation and inflow from tributary valleys. The method is based on the concept of a river aquifer and an accounting surface within the river aquifer. The river aquifer consists of permeable, partly saturated sediments and sedimentary rocks that are hydraulically connected to the Colorado River so that water can move between the river and the aquifer in response to withdrawal of water from the aquifer or differences in water-level elevations between the river and the aquifer. The accounting surface represents the elevation and slope of the unconfined static water table in the river aquifer outside the flood plain and reservoirs that would exist if the river were the only source of water to the river aquifer. Maps at a scale of 1:100,000 show the extent and elevation of the accounting surface from the area surrounding Lake Mead to Laguna Dam near Yuma, Arizona.

  2. Analysis of River Water Quality and its influencing factors for the Effective Management of Water Environment

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Sadohara, S.; Yoshida, S.; Yuichi, S.

    2011-12-01

    In Japan, remarkable improvements in water quality have been observed over recent years because of regulations imposed on industrial wastewater and development of sewerage system. However, pollution loads from agricultural lands are still high and coverage ratio of sewerage system is still low in small and medium cities. In present context, nonpoint source pollution such as runoff from unsewered developments, urban and agricultural runoffs could be main water quality impacting factors. Further, atmospheric nitrogen (N) is the complex nonpoint source than can seriously affect river water environment. This study was undertaken to spatially investigate the present status of river water quality of Hadano Basin located in Kanagawa Prefecture, Japan. Water quality of six rivers was investigated and its relationship with nonpoint pollution sources was analyzed. This study, with inclusion of ground water circulation and atmospheric N, can be effectively employed for water quality management of other watersheds also, both with and without influence of ground water circulation. Hence, as a research area of this study, it is significant in terms of water quality management. Total nitrogen (TN) was found consistently higher in urbanized basins indicating that atmospheric N might be influencing TN of river water. Ground water circulation influenced both water quality and quantity. In downstream basins of Muro and Kuzuha rivers, Chemical oxygen demand (COD) and total phosphorus (TP) were diluted by ground water inflow. In Mizunashi River and the upstream of Kuzuha River, surface water infiltrated to the subsurface due to higher river bed permeability. Influencing factors considered in the analysis were unsewered population, agricultural land, urban area, forest and atmospheric N. COD and TP showed good correlation with unsewered population and agricultural land. While TN had good correlation with atmospheric N deposition. Multiple regression analysis between water quality

  3. Water quality and hydrogeochemical characteristics of the River Buyukmelen, Duzce, Turkey

    NASA Astrophysics Data System (ADS)

    Pehlivan, Rustem; Yilmaz, Osman

    2005-12-01

    The River Buyukmelen is located in the province of Duzce in northwest Turkey and its water basin is approximately 470 km2. The Aksu, Kucukmelen and Ugursuyu streams flow into the River Buyukmelen. It flows into the Black Sea with an output of 44 m3 s-1. The geological succession in the basin comprises limestone and dolomitic limestone of the Ylanl formation, sandstone, clayey limestone and marls of the Akveren formation, clastics and volcano-clastics of the Caycuma formation, and cover units comprised of river alluvium, lacutrine sediments and beach sands. The River Buyukmelen is expected to be a water source that can supply the drinking water needs of Istanbul until 2040; therefore, it is imperative that its water quality be preserved.The samples of rock, soil, stream water, suspended, bed and stream sediments and beach sand were collected from the Buyukmelen river basin. They were examined using mineralogical and geochemical methods. The chemical constituents most commonly found in the stream waters are Na+, Mg2+, SO2-4, Cl- and HCO3- in the Guz stream water, Ca2+ in the Abaza stream water, and K+ in the Kuplu stream water. The concentrations of Na+, K+, Ca2+, Mg2+, SO2-4, HCO-3, Cl-, As, Pb, Ni, Mn, Cr, Zn, Fe and U in the Kuplu and Guz stream waters were much higher than the world average values. The Dilaver, Gubi, Tepekoy, Maden, Celik and Abaza streams interact with sedimentary rocks, and the Kuplu and Guz streams interact with volcanic rocks.The amount of suspended sediment in the River Buyukmelen in December 2002 was 120 mg l-1. The suspended and bed sediments in the muddy stream waters are formed of quartz, calcite, plagioclase, clay (kaolinite, illite and smectite), muscovite and amphibole minerals. As, Co, Cd, Cr, Pb, Ni, Zn and U have all accumulated in the Buyukmelen river

  4. Lead exposure in bald eagles from big game hunting, the continental implications and successful mitigation efforts.

    PubMed

    Bedrosian, Bryan; Craighead, Derek; Crandall, Ross

    2012-01-01

    Studies suggest hunter discarded viscera of big game animals (i.e., offal) is a source of lead available to scavengers. We investigated the incidence of lead exposure in bald eagles in Wyoming during the big game hunting season, the influx of eagles into our study area during the hunt, the geographic origins of eagles exposed to lead, and the efficacy of using non-lead rifle ammunition to reduce lead in eagles. We tested 81 blood samples from bald eagles before, during and after the big game hunting seasons in 2005-2010, excluding 2008, and found eagles had significantly higher lead levels during the hunt. We found 24% of eagles tested had levels indicating at least clinical exposure (>60 ug/dL) during the hunt while no birds did during the non-hunting seasons. We performed driving surveys from 2009-2010 to measure eagle abundance and found evidence to suggest that eagles are attracted to the study area during the hunt. We fitted 10 eagles with satellite transmitters captured during the hunt and all migrated south after the cessation of the hunt. One returned to our study area while the remaining nine traveled north to summer/breed in Canada. The following fall, 80% returned to our study area for the hunting season, indicating that offal provides a seasonal attractant for eagles. We fitted three local breeding eagles with satellite transmitters and none left their breeding territories to feed on offal during the hunt, indicating that lead ingestion may be affecting migrants to a greater degree. During the 2009 and 2010 hunting seasons we provided non-lead rifle ammunition to local hunters and recorded that 24% and 31% of successful hunters used non-lead ammunition, respectively. We found the use of non-lead ammunition significantly reduced lead exposure in eagles, suggesting this is a viable solution to reduce lead exposure in eagles.

  5. Effects of Fluctuating River flow on Groundwater/Surface Water Mixing in the Hyporheic Zone of a Regulated, Large Cobble Bed River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan V.; Geist, David R.; Dresel, P. Evan

    2006-10-31

    Physicochemical relationships in the boundary zone between groundwater and surface water (i.e., the hyporheic zone) are controlled by surface water hydrology and the hydrogeologic properties of the riverbed. We studied how sediment permeability and river discharge altered the vertical hydraulic gradient (VHG) and water quality of the hyporheic zone within the Hanford Reach of the Columbia River. The Columbia River at Hanford is a large, cobble-bed river where water level fluctuates up to 2 m daily because of hydropower generation. Concomitant with recording river stage, continuous readings were made of water temperature, specific conductance, dissolved oxygen, and water level ofmore » the hyporheic zone. The water level data were used to calculate VHG between the river and hyporheic zone. Sediment permeability was estimated using slug tests conducted in piezometers installed into the river bed. The response of water quality measurements and VHG to surface water fluctuations varied widely among study sites, ranging from no apparent response to co-variance with river discharge. At some sites, a hysteretic relationship between river discharge and VHG was indicated by a time lag in the response of VHG to changes in river stage. The magnitude, rate of change, and hysteresis of the VHG response varied the most at the least permeable location (hydraulic conductivity (K) = 2.9 x 10-4 cms-1), and the least at the most permeable location (K=8.0 x 10-3 cms-1). Our study provides empirical evidence that sediment properties and river discharge both control the water quality of the hyporheic zone. Regulated rivers, like the Columbia River at Hanford, that undergo large, frequent discharge fluctuations represent an ideal environment to study hydrogeologic processes over relatively short time scales (i.e., days to weeks) that would require much longer periods of time to evaluate (i.e., months to years) in un-regulated systems.« less

  6. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    NASA Technical Reports Server (NTRS)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  7. KSC-06pd0473

    NASA Image and Video Library

    2006-03-11

    KENNEDY SPACE CENTER, FLA. - A pair of mating bald eagles are spotted in their pine-tree nest near S.R. 3 on Kennedy Space Center. The nest, decades old, measures about 12 feet deep. The nest is one of a dozen active nests throughout the Merritt Island National Wildlife Refuge, which shares a boundary with the Center. Eagles' habitats are near lakes, rivers, marshes and seacoasts. Nests are masses of sticks, usually in the top of a tall tree. Even though they are fish eaters, bald eagles will take whatever prey is available and easiest to obtain. Bald eagles which live along the coast and on major lakes and rivers feed mainly on fish. Bald eagles fish in both fresh and salt water. Because of the energy expended during hunting, an eagle has to spend a lot of time resting quietly. It's estimated that only one out of eighteen attacks are successful. Photo credit: NASA/Jim Grossmann

  8. KSC-06pd0474

    NASA Image and Video Library

    2006-03-11

    KENNEDY SPACE CENTER, FLA. - A bald eagle on the ground may be protecting its food or resting after a hunt for food. This one was spotted near S.R. 3 on Kennedy Space Center, close to its nest. The nest is one of a dozen active nests throughout the Merritt Island National Wildlife Refuge, which shares a boundary with the Center. Eagles' habitats are near lakes, rivers, marshes and seacoasts. Nests are masses of sticks, usually in the top of a tall tree. Even though they are fish eaters, bald eagles will take whatever prey is available and easiest to obtain. Bald eagles which live along the coast and on major lakes and rivers feed mainly on fish. Bald eagles fish in both fresh and salt water. Because of the energy expended during hunting, an eagle has to spend a lot of time resting quietly. It's estimated that only one out of eighteen attacks are successful. Photo credit: NASA/Jim Grossmann

  9. Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA

    USGS Publications Warehouse

    Crandall, C.A.; Katz, B.G.; Hirten, J.J.

    1999-01-01

    Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). ?? Springer-Verlag.

  10. Variations of Connecticut River Water Pathways and Its Water Age: A Coupled Modeling Study

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Whitney, M. M.

    2016-02-01

    As the largest freshwater source to the east-west oriented Long Island Sound (LIS), the Connecticut River (CR) delivers water on the north shore near the sound's mouth. The pathways the river water follows through LIS are impacted by river discharge, tides, winds, and complex topography. Using the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System, with passive dyes and age tracers, the main routes of CR water through the estuary and onto the shelf are determined with their corresponding time scales. During a high discharge period, the CR plume occupies the northern half of eastern LIS and extends farther west than during average discharge conditions. Most of the river water inside the central LIS is transported through this surface plume. After being mixed to deeper depths and farther offshore, the river water that is still within LIS is transported westward. During periods of low discharge, freshwater is initially more prevalent between the CR and the LIS mouth. Later, CR water mixed to depths still moves westward, reaching the estuary's head in approximately 3 weeks. Neap tide allows more CR water to quickly escape to the open shelf through Block Island Sound (BIS) while spring tide allows more CR water back into the central LIS at depth. BIS has a uniform water age ranging from 40 to 50 days throughout the water column. Lower discharge leads to older age in BIS. In western LIS, CR water age at depth increases from 50 to 75 days as discharge decreases and is several days younger than water closer to the surface. These results suggest a bottom-in/surface-out transport pattern exists for CR water in LIS for at least part of the year.

  11. Nature Photography - Bald Eagles

    NASA Image and Video Library

    2016-12-13

    An American bald eagle soars through the air above NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  12. Trend analysis of a tropical urban river water quality in Malaysia.

    PubMed

    Othman, Faridah; M E, Alaa Eldin; Mohamed, Ibrahim

    2012-12-01

    Rivers play a significant role in providing water resources for human and ecosystem survival and health. Hence, river water quality is an important parameter that must be preserved and monitored. As the state of Selangor and the city of Kuala Lumpur, Malaysia, are undergoing tremendous development, the river is subjected to pollution from point and non-point sources. The water quality of the Klang River basin, one of the most densely populated areas within the region, is significantly degraded due to human activities as well as urbanization. Evaluation of the overall river water quality status is normally represented by a water quality index (WQI), which consists of six parameters, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen and pH. The objectives of this study are to assess the water quality status for this tropical, urban river and to establish the WQI trend. Using monthly WQI data from 1997 to 2007, time series were plotted and trend analysis was performed by employing the first-order autocorrelated trend model on the moving average values for every station. The initial and final values of either the moving average or the trend model were used as the estimates of the initial and final WQI at the stations. It was found that Klang River water quality has shown some improvement between 1997 and 2007. Water quality remains good in the upper stream area, which provides vital water sources for water treatment plants in the Klang valley. Meanwhile, the water quality has also improved in other stations. Results of the current study suggest that the present policy on managing river quality in the Klang River has produced encouraging results; the policy should, however, be further improved alongside more vigorous monitoring of pollution discharge from various point sources such as industrial wastewater, municipal sewers, wet markets, sand mining and landfills, as well as non-point sources such as

  13. 33 CFR 223.1 - Mississippi River Water Control Management Board.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Mississippi River Water Control Management Board. 223.1 Section 223.1 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE BOARDS, COMMISSIONS, AND COMMITTEES § 223.1 Mississippi River Water Control Management Board. (a) Purpose. This...

  14. 33 CFR 223.1 - Mississippi River Water Control Management Board.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Mississippi River Water Control Management Board. 223.1 Section 223.1 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE BOARDS, COMMISSIONS, AND COMMITTEES § 223.1 Mississippi River Water Control Management Board. (a) Purpose. This...

  15. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    PubMed

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate.

  16. Annual movements of a steppe eagle (Aquila nipalensis) summering in Mongolia and wintering in Tibet

    USGS Publications Warehouse

    Ellis, D.H.; Moon, S.L.; Robinson, J.W.

    2001-01-01

    An adult female steppe eagle (Aquila nipalensis Hodgson) was captured and fitted with a satellite transmitter in June 1995 in southeastern Mongolia. In fall, it traveled southwest towards India as expected, but stopped in southeastern Tibet and wintered in a restricted zone within the breeding range of the steppe eagle. In spring, the bird returned to the same area of Mongolia where it was captured. These observations, though derived from the movements of a single bird, suggest three things that are contrary to what is generally believed about steppe eagle biology. First, not all steppe eagles move to warmer climes in winter. Second, not all steppe eagles are nomadic in winter. Finally, because our bird wintered at the periphery of the steppe eagle breeding range in Tibet, perhaps birds that breed in this same area also winter there. If so, not all steppe eagles are migratory.

  17. Long-term Trends in St. Louis River Water Quality

    EPA Science Inventory

    Water quality impairments caused by sewage and industrial waste discharge into the St. Louis River have been a primary concern for clean-up efforts throughout the last century. Surveys dating back to 1928 reveal severely degraded water quality in much of the river below Fond du L...

  18. Impact of reclaimed water in the watercourse of Huai River on groundwater from Chaobai River basin, Northern China

    NASA Astrophysics Data System (ADS)

    Yu, Yilei; Song, Xianfang; Zhang, Yinghua; Zheng, Fandong; Liu, Licai

    2017-12-01

    Reclaimed water is efficient for replenishing the dry rivers in northern China, but regional groundwater may be at risk from pollution. Therefore, samples of reclaimed water, river water, and groundwater were collected at the Huai River in the Chaobai River basin in 2010. The water chemistry and isotopic compositions of the samples were analyzed in the laboratory. The reclaimed water had stable compositions of water chemistry and isotopes, and the Na·Ca-HCO3·Cl water type. The water chemistry of the river water was consistent with that of the reclaimed water. A June peak of total nitrogen was the prominent characteristic in the shallow groundwater, which also had the Na·Ca-HCO3·Cl water type. However, the water chemistry and isotopes in most of the deep groundwater remained stable, and the water type was Ca·Mg-HCO3. The amount of reclaimed water recharging the groundwater was about 2.5 × 107 m3/yr. All of the shallow groundwater was impacted by the reclaimed water, with the mixing proportion of reclaimed water ranging from 42% to 80 % in the dry season and from 20% to 86% in the wet season. Only one deep well, with proportions of 67% (dry season) and 28% (wet season), was impacted. TDS, EC, and major ions (Na, K, Cl, NH4-N, NO2-N, and NO3-N) were increased in the impacted wells.

  19. Daedalus Project's Light Eagle - Human powered aircraft

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Michelob Light Eagle is seen here in flight over Rogers Dry Lake at the NASA Dryden Flight Research Center, Edwards, California. The Light Eagle and Daedalus human powered aircraft were testbeds for flight research conducted at Dryden between January 1987 and March 1988. These unique aircraft were designed and constructed by a group of students, professors, and alumni of the Massachusetts Institute of Technology within the context of the Daedalus project. The construction of the Light Eagle and Daedalus aircraft was funded primarily by the Anheuser Busch and United Technologies Corporations, respectively, with additional support from the Smithsonian Air and Space Museum, MIT, and a number of other sponsors. To celebrate the Greek myth of Daedalus, the man who constructed wings of wax and feathers to escape King Minos, the Daedalus project began with the goal of designing, building and testing a human-powered aircraft that could fly the mythical distance, 115 km. To achieve this goal, three aircraft were constructed. The Light Eagle was the prototype aircraft, weighing 92 pounds. On January 22, 1987, it set a closed course distance record of 59 km, which still stands. Also in January of 1987, the Light Eagle was powered by Lois McCallin to set the straight distance, the distance around a closed circuit, and the duration world records for the female division in human powered vehicles. Following this success, two more aircraft were built, the Daedalus 87 and Daedalus 88. Each aircraft weighed approximately 69 pounds. The Daedalus 88 aircraft was the ship that flew the 199 km from the Iraklion Air Force Base on Crete in the Mediterranean Sea, to the island of Santorini in 3 hours, 54 minutes. In the process, the aircraft set new records in distance and endurance for a human powered aircraft. The specific areas of flight research conducted at Dryden included characterizing the rigid body and flexible dynamics of the Light Eagle, investigating sensors for an

  20. Spatial use and habitat selection of golden eagles in southwestern Idaho

    USGS Publications Warehouse

    Marzluff, J.M.; Knick, Steven T.; Vekasy, M.S.; Schueck, Linda S.; Zarriello, T.J.

    1997-01-01

    We measured spatial use and habitat selection of radio-tagged Golden Eagles (Aquila chrysaetos) at eight to nine territories each year from 1992 to 1994 in the Snake River Birds of Prey National Conservation Area. Use of space did not vary between years or sexes, but did vary among seasons (home ranges and travel distances were larger during the nonbreeding than during the breeding season) and among individuals. Home ranges were large, ranging from 190 to 8,330 ha during the breeding season and from 1,370 to 170,000 ha outside of the breeding season, but activity was concentrated in small core areas of 30 to 1,535 ha and 485 to 6,380 ha during the breeding and nonbreeding seasons, respectively. Eagles selected shrub habitats and avoided disturbed areas, grasslands, and agriculture. This resulted in selection for habitat likely to contain their principal prey, black-tailed jackrabbits (Lepus californicus). Individuals with home ranges in extensive shrubland (n = 3) did not select for shrubs in the placement of their core areas or foraging points, but individuals in highly fragmented or dispersed shrublands (n = 5) concentrated their activities and foraged preferentially in jackrabbit habitats (i.e. areas with abundant and large shrub patches). As home ranges expanded outside of the breeding season, individuals selected jackrabbit habitats within their range. Shrubland fragmentation should be minimized so that remaining shrub patches are large enough to support jackrabbits.

  1. Impact of hydrological alterations on river-groundwater exchange and water quality in a semi-arid area: Nueces River, Texas.

    PubMed

    Murgulet, Dorina; Murgulet, Valeriu; Spalt, Nicholas; Douglas, Audrey; Hay, Richard G

    2016-12-01

    There is a lack of understanding and methods for assessing the effects of anthropogenic disruptions, (i.e. river fragmentation due to dam construction) on the extent and degree of groundwater-surface water interaction and geochemical processes affecting the quality of water in semi-arid, coastal catchments. This study applied a novel combination of electrical resistivity tomography (ERT) and elemental and isotope geochemistry in a coastal river disturbed by extended drought and periodic flooding due to the operation of multiple dams. Geochemical analyses show that the saltwater barrier causes an increase in salinity in surface water in the downstream river as a result of limited freshwater inflows, strong evaporation effects on shallow groundwater and mostly stagnant river water, and is not due to saltwater intrusion by tidal flooding. Discharge from bank storage is dominant (~84%) in the downstream fragment and its contribution could increase salinity levels within the hyporheic zone and surface water. When surface water levels go up due to upstream freshwater releases the river temporarily displaces high salinity water trapped in the hyporheic zone to the underlying aquifer. Geochemical modeling shows a higher contribution of distant and deeper groundwater (~40%) in the upstream river and lower discharge from bank storage (~13%) through the hyporheic zone. Recharge from bank storage is a source of high salt to both upstream and downstream portions of the river but its contribution is higher below the dam. Continuous ERT imaging of the river bed complements geochemistry findings and indicate that while lithologically similar, downstream of the dam, the shallow aquifer is affected by salinization while fresher water saturates the aquifer in the upstream fragment. The relative contribution of flows (i.e. surface water releases or groundwater discharge) as related to the river fragmentation control changes of streamwater chemistry and likely impact the interpretation

  2. Caribou antlers as nest materials for golden eagles in northwestern Alaska

    USGS Publications Warehouse

    Ellis, D.H.; Bunn, R.L.

    1998-01-01

    There are few published records of antlers in golden eagle (Aquila chrysaetos) nests. This note reports extensive use of caribou (Rangifer tarandus) antlers in three golden eagle nests in the Cape Kruzenstern region of northwestern Alaska. The importance of antlers to this population of eagles can be explained at least in part by (1) the lack of suitable woody vegetation on the open tundra, (2) the similarity of antlers to sticks, and (3) the abundance of antlers, especially cow caribou antlers, in the region.

  3. Aerial photographic water color variations from pollution in the James River

    NASA Technical Reports Server (NTRS)

    Bressette, W. E.

    1978-01-01

    A photographic flight was made over the James River on May 17, 1977. The data show that, in general, James River water has very high sunlight reflectance. In the Bailey Bay area this reflectance is drastically reduced. Also shown is a technique for normalizing off-axis variations in radiance film exposure from camera falloff and uneven sunlight conditions to the nadir value. After data normalization, a spectral analysis is performed that identifies Bailey Creek water in James River water. The spectral results when compared with laboratory spectrometer data indicate that reflectance from James River water is dominated by suspended matter, while the substance most likely responsible for reduced reflectance in Bailey Creek water is dissolved organic carbon.

  4. Toxicity of water from three South Carolina rivers to larval striped bass

    USGS Publications Warehouse

    Finger, Susan E.; Bulak, James S.

    1988-01-01

    The toxicity of water from three rivers in the Santee-Cooper drainage of South Carolina was evaluated in a series of on-site studies with larval striped bass Morone saxatilis. Mortality and swimming behavior were assessed daily for larvae exposed to serial dilutions of water collected from the Santee, Congaree, and Wateree rivers. After 96 h, cumulative mortality was 90% in the Wateree River, and a dose–response pattern was evident in serial dilutions of the water. Larvae exposed to water from the Santee and Congaree rivers swam lethargically, but no appreciable mortality was observed. Acutely toxic concentrations of inorganic contaminants were not detected in the rivers; however, pentachloroanisole, a methylated by-product of pentachlorophenol, was twice as high in the Wateree River as it was in the other two rivers. Phenolic compounds may have contributed to larval mortality in the Wateree River and to lethargic activity of larvae in the Santee and Congaree rivers.

  5. Quality of water, Quillayute River basin, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fretwell, M.O.

    Ground water in the Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses, with the exception of water in two wells which had iron concentrations that potentially could be tasted in beverages and could cause staining of laundry and porcelain fixtures. A comparison of the chemical compositions of ground and surface waters showed a strong similarity over a wide geographic area. Proportions of the major chemical constituents in the rivers ofmore » the basin were nearly constant despite concentration fluctuations in response to dilution from precipitation and snowmelt. River-water quality was generally excellent, as evaluated against Washington State water use and water-quality criteria. Fecal-coliform bacteria counts generally were much lower than the total-coliform bacteria counts, indicating that most of the coliform bacteria were of nonfecal origin and probably originated in soils. Fecal coliform concentrations in all the major tributaries met State water-quality criteria. Water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow; dissolved-oxygen concentrations were occasionally less than criteria minimum because of increased water temperature. Both conditions occurred naturally. Nutrient concentrations were generally low to very low and about the same as in streams from virgin forestland in the Olympic National Park. However, some slight increases in nutrient concentrations were observed, particularly in the vicinity of Mill Creek and the town of Forks; due to dilution and biological assimilation, these slightly elevated concentrations decreased as the water moved downstream. 35 refs., 24 figs., 16 tabs.« less

  6. Surface-water/ground-water interaction along reaches of the Snake River and Henrys Fork, Idaho

    USGS Publications Warehouse

    Hortness, Jon E.; Vidmar, Peter

    2005-01-01

    Declining water levels in the eastern Snake River Plain aquifer and decreases in spring discharges from the aquifer to the Snake River have spurred studies to improve understanding of the surface-water/ground-water interaction on the plain. This study was done to estimate streamflow gains and losses along specific reaches of the Snake River and Henrys Fork and to compare changes in gain and loss estimates to changes in ground-water levels over time. Data collected during this study will be used to enhance the conceptual model of the hydrologic system and to refine computer models of ground-water flow and surface-water/ground-water interactions. Estimates of streamflow gains and losses along specific subreaches of the Snake River and Henrys Fork, based on the results of five seepage studies completed during 2001?02, varied greatly across the study area, ranging from a loss estimate of 606 ft3/s in a subreach of the upper Snake River near Heise to a gain estimate of 3,450 ft3/s in a subreach of the Snake River that includes Thousand Springs. Some variations over time also were apparent in specific subreaches. Surface spring flow accounted for much of the inflow to subreaches having large gain estimates. Several subreaches alternately gained and lost streamflow during the study. Changes in estimates of streamflow gains and losses along some of the subreaches were compared with changes in water levels, measured at three different times during 2001?02, in adjacent wells. In some instances, a strong relation between changes in estimates of gains or losses and changes in ground-water levels was apparent.

  7. Polychlorinated biphenyl concentrations in Hudson River water and treated drinking water at Waterford, New York

    USGS Publications Warehouse

    Schroeder, R.A.; Barnes, C.R.

    1983-01-01

    Past discharge of PCBs into the Hudson River has resulted in contaminant concentrations of a few tenths of a microgram per liter in the water. Waterford is one of two large municipal users of the Hudson River for drinking-water supply. The treatment scheme at the Waterford plant, which processes approximately 1 million gallons per day, is similar to that of most conventional treatment plants except for the addition of powdered activated carbon during flocculation. Comparison of PCB concentrations in river water and intake water at the plant to concentrations in treated drinking-water samples indicates that purification processes remove 80 to 90 percent of the PCBs and that final concentrations seldom exceed 0.1 microgram per liter. No significant difference was noted between the removal efficiencies during periods of high river discharge, when PCBs are associated with suspended sediment, and low discharge, when PCBs are generally dissolved. (USGS)

  8. Golden eagle population trends in the western United States: 1968-2010

    USGS Publications Warehouse

    Millsap, Brian A.; Zimmerman, Guthrie S.; Sauer, John R.; Nielson, Ryan M.; Otto, Mark; Bjerre, Emily; Murphy, Robert K.

    2013-01-01

    In 2009, the United States Fish and Wildlife Service promulgated permit regulations for the unintentional lethal take (anthropogenic mortality) and disturbance of golden eagles (Aquila chrysaetos). Accurate population trend and size information for golden eagles are needed so agency biologists can make informed decisions when eagle take permits are requested. To address this need with available data, we used a log-linear hierarchical model to average data from a late-summer aerial-line-transect distance-sampling survey (WGES) of golden eagles in the United States portions of Bird Conservation Region (BCR) 9 (Great Basin), BCR 10 (Northern Rockies), BCR 16 (Southern Rockies/Colorado Plateau), and BCR 17 (Badlands and Prairies) from 2006 to 2010 with late-spring, early summer Breeding Bird Survey (BBS) data for the same BCRs and years to estimate summer golden eagle population size and trends in these BCRs. We used the ratio of the density estimates from the WGES to the BBS index to calculate a BCR-specific adjustment factor that scaled the BBS index (i.e., birds per route) to a density estimate. Our results indicated golden eagle populations were generally stable from 2006 to 2010 in the 4 BCRs, with an estimated average rate of population change of −0.41% (95% credible interval [CI]: −4.17% to 3.40%) per year. For the 4 BCRs and years, we estimated annual golden eagle population size to range from 28,220 (95% CI: 23,250–35,110) in 2007 to 26,490 (95% CI: 21,760–32,680) in 2008. We found a general correspondence in trends between WGES and BBS data for these 4 BCRs, which suggested BBS data were providing useful trend information. We used the overall adjustment factor calculated from the 4 BCRs and years to scale BBS golden eagle counts from 1968 to 2005 for the 4 BCRs and for 1968 to 2010 for the 8 other BCRs (without WGES data) to estimate golden eagle population size and trends across the western United States for the period 1968 to 2010. In general, we

  9. 78 FR 27033 - Safety Zone; High Water Conditions; Illinois River

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ...-AA00 Safety Zone; High Water Conditions; Illinois River AGENCY: Coast Guard, DHS. ACTION: Temporary... current extreme high-water conditions. This safety zone is necessary to protect the general public, levee... dangerously high water conditions, the Coast Guard established a safety zone on the Illinois River from Mile...

  10. Determination of base-flow characteristics at selected streamflow-gaging stations on the Mad River, Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    1995-01-01

    This report describes the results of a study to estimate characteristics of base flow and sustained ground-water discharge at five streamflow-gaging stations on the Mad River in Ohio. The five streamflow-gaging stations are located at Zanesfield, near Urbana, at St. Paris Pike (at Eagle City), near Springfield, and near Dayton. The median of the annual-mean base flows, determined by means of hydrograph separation, ranged from 0.64 (ft3/s)/mi2 (cubic feet per second per square mile) at Zanesfield to 0.74 (ft3/s)/mi2 at St. Paris Pike. The median percentage of annual total streamflow attributed to base flow ranged from 61.8 percent at Zanesfield to 76.1 percent near Urbana. Estimates of an upper limit (or threshold) at which base flows can be considered to be composed predominately of sustained ground-water discharge were made by constructing and analyzing base- flow-duration curves. The sustained ground-water discharges (base flows less than or equal to the estimated sustained ground-water-discharge thresholds) are assumed to originate from ground-water- flow systems that are minimally affected by seasonal climatic changes. The median sustained ground- water discharge ranged from 0.11 (ft3/s)/mi2 at Zanesfield to 0.26 (ft3/s)/mi2 at St. Paris Pike (at Eagle City) and near Springfield. The median sustained ground-water discharge, expressed as a percentage of the median annual-mean base flow, ranged from 17.2 percent at Zanesfield to 38.6 percent near Springfield.

  11. Factors that influence mercury concentrations in nestling Eagle Owls (Bubo bubo).

    PubMed

    Espín, Silvia; Martínez-López, Emma; León-Ortega, Mario; Calvo, José F; García-Fernández, Antonio Juan

    2014-02-01

    Mercury (Hg) is a global pollutant that bioaccumulates and biomagnifies in food chains, and is associated with adverse effects in both humans and wildlife. The Hg levels detected in blood obtained from Eagle Owl (Bubo bubo) chicks in Southeast Spain (Murcia) can be considered low (mean Hg concentration in blood from 2006 to 2012 was 36.83 ± 145.58 μg/l wet weigh, n=600), and it is therefore unlikely that Hg pollution can negatively affect their breeding. Positive correlation (r=0.339, p<0.001, n=229) was found to exist between the Hg concentrations in the blood and back feathers of the chicks. We provide a regression equation that could be helpful to estimate blood Hg levels when analyzing Hg concentrations in back feathers. Blood Hg concentrations in Eagle Owls have shown positive correlations with Hg levels in rabbit muscles, more evident in nests from the Northern area (r=0.600, p=0.014, n=16), where rabbits are the main prey of Eagle Owls. The best Linear Mixed Model to explain variations in blood Hg concentrations in nestling Eagle Owls includes year and location within the mining area as variables. The variable year is assigned the largest value of relative importance, followed by the location in the ancient mining sites and then the zone. Rainfalls may have an effect on the temporal differences in the blood Hg concentrations of nestling Eagle Owls. Although the studied region is not considered Hg polluted, the Hg levels were higher in Eagle Owls and European Rabbits from areas within the ancient mining sites as compared to those in the entire region. This result shows that spatial differences in Hg concentrations in Eagle Owls may be affected by local contamination, and that the role of diet composition may be less significant. © 2013.

  12. Organochlorine residues and autopsy data from bald eagles 1966-68

    USGS Publications Warehouse

    Mulhern, B.M.; Reichel, W.L.; Locke, L.N.; Lamont, T.G.; Belisle, A.A.; Cromartie, E.; Bagley, George E.; Prouty, R.M.

    1970-01-01

    Sixty-nine bald eagles found moribund or dead in 25 States during 1966-68 were analyzed for pesticide residues. Residues of polychlorinated biphenyls and DDE were detected in all samples of eagle carcasses; residues of dieldrin were detected in 68 and residues of DDD in 64; DDT, heptachlor epoxide, and DCBP were detected less frequently. Eight specimens had levels of dieldrin in the brain within the lethal range, and another probably died of DDT poisoning. Autopsy revealed that illegal shooting was the most frequent cause of mortality of these eagles; electrocution, impact injuries, probable lead poisoning, and infectious avian diseases were other causes of mortality.

  13. Pleistocene to historic shifts in bald eagle diets on the Channel Islands, California.

    PubMed

    Newsome, Seth D; Collins, Paul W; Rick, Torben C; Guthrie, Daniel A; Erlandson, Jon M; Fogel, Marilyn L

    2010-05-18

    Studies of current interactions among species, their prey, and environmental factors are essential for mitigating immediate threats to population viability, but the true range of behavioral and ecological flexibility can be determined only through research on deeper timescales. Ecological data spanning centuries to millennia provide important contextual information for long-term management strategies, especially for species that now are living in relict populations. Here we use a variety of methods to reconstruct bald eagle diets and local abundance of their potential prey on the Channel Islands from the late Pleistocene to the time when the last breeding pairs disappeared from the islands in the mid-20th century. Faunal and isotopic analysis of bald eagles shows that seabirds were important prey for immature/adult eagles for millennia before the eagles' local extirpation. In historic times (A.D. 1850-1950), however, isotopic and faunal data show that breeding bald eagles provisioned their chicks with introduced ungulates (e.g., sheep), which were locally present in high densities. Today, bald eagles are the focus of an extensive conservation program designed to restore a stable breeding population to the Channel Islands, but native and nonnative prey sources that were important for bald eagles in the past are either diminished (e.g., seabirds) or have been eradicated (e.g., introduced ungulates). In the absence of sufficient resources, a growing bald eagle population on the Channel Islands could expand its prey base to include carrion from local pinniped colonies, exert predation pressure on a recovering seabird population, and possibly prey on endangered island foxes.

  14. Water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the lower White River and the Puyallup River estuary, Washington, August-October 2002

    USGS Publications Warehouse

    Ebbert, James C.

    2003-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians monitored water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the White River at river miles 4.9 and 1.8 from August until mid-October 2002. Water diverted from the White River upstream from the monitoring sites into Lake Tapps is returned to the river at river mile 3.6 between the two sites. The same characteristics were measured in a cross section of the Puyallup River estuary at river mile 1.5 during high and low tides in September 2002. In late August, maximum daily water temperatures in the White River of 21.1°C (degrees Celsius) at river mile 4.9 and 19.6°C at river mile 1.8 exceeded the water-quality standard of 18°C at both monitoring sites. In mid-September, maximum daily water temperatures at river mile 4.9 exceeded the standard on 5 days. From August 2-25, water temperatures at both monitoring sites were similar and little or no water was discharged from Lake Tapps to the White River. Increases in water temperature at river mile 1.8 in late September and early October were caused by the mixing of warmer water discharged from Lake Tapps with cooler water in the White River.Specific conductance in the White River usually was lower at river mile 1.8 than at river mile 4.9 because of mixing with water from Lake Tapps, which has a lower specific conductance. Maximum values of pH in the White River at river mile 4.9 often exceeded the upper limit of the water-quality standard, 8.5 pH units, from early September until mid-October, when turbidity decreased. The pH standard was not exceeded at river mile 1.8. Dissolved-oxygen concentrations in the White River were often lower at river mile 1.8 than at river mile 4.9 because of mixing with water discharged from Lake Tapps, which has lower dissolved-oxygen concentrations. The lowest concentration of dissolved oxygen observed was 7.9 mg/L (milligrams per liter) at river mile 1.8. The

  15. Lead Exposure in Bald Eagles from Big Game Hunting, the Continental Implications and Successful Mitigation Efforts

    PubMed Central

    Bedrosian, Bryan; Craighead, Derek; Crandall, Ross

    2012-01-01

    Studies suggest hunter discarded viscera of big game animals (i.e., offal) is a source of lead available to scavengers. We investigated the incidence of lead exposure in bald eagles in Wyoming during the big game hunting season, the influx of eagles into our study area during the hunt, the geographic origins of eagles exposed to lead, and the efficacy of using non-lead rifle ammunition to reduce lead in eagles. We tested 81 blood samples from bald eagles before, during and after the big game hunting seasons in 2005–2010, excluding 2008, and found eagles had significantly higher lead levels during the hunt. We found 24% of eagles tested had levels indicating at least clinical exposure (>60 ug/dL) during the hunt while no birds did during the non-hunting seasons. We performed driving surveys from 2009–2010 to measure eagle abundance and found evidence to suggest that eagles are attracted to the study area during the hunt. We fitted 10 eagles with satellite transmitters captured during the hunt and all migrated south after the cessation of the hunt. One returned to our study area while the remaining nine traveled north to summer/breed in Canada. The following fall, 80% returned to our study area for the hunting season, indicating that offal provides a seasonal attractant for eagles. We fitted three local breeding eagles with satellite transmitters and none left their breeding territories to feed on offal during the hunt, indicating that lead ingestion may be affecting migrants to a greater degree. During the 2009 and 2010 hunting seasons we provided non-lead rifle ammunition to local hunters and recorded that 24% and 31% of successful hunters used non-lead ammunition, respectively. We found the use of non-lead ammunition significantly reduced lead exposure in eagles, suggesting this is a viable solution to reduce lead exposure in eagles. PMID:23284837

  16. Polychlorinated Biphenyls Water Pollution along the River Nile, Egypt

    PubMed Central

    Megahed, Ayman Mohamed; Dahshan, Hesham; Abd-El-Kader, Mahdy A.; Abd-Elall, Amr Mohamed Mohamed; Elbana, Mariam Hassan; Nabawy, Ehab; Mahmoud, Hend A.

    2015-01-01

    Ten polychlorinated biphenyl (PCB) congeners were determined in water samples collected along the River Nile using gas chromatography-electron capture detector (GC-ECD). PCB concentrations ranged from 14 to 20 μg/L, which were higher than those reported in previous studies, indicating serious PCB pollution in the River Nile. PCB congener profiles varied depending on the sampling sties. PCB-138 was the predominant congener accounting for more than 18% of total PCBs. The composition of PCB congeners in the water revealed that highly chlorinated PCB technical mixtures such as Aroclor 1254 was the main PCB production historically used in Egypt. An increasing trend in PCB levels from the upper stream to the Nile estuaries was observed. The calculated flux of PCBs indicated that 6.8 tons of PCBs is dumped into the Mediterranean Sea each year from the River Nile. The hazard quotients and carcinogenic risk caused by PCB pollution in the River Nile were above the acceptable level indicating that PCBs in the River Nile water pose adverse health effects for all age groups. Our findings revealed that PCBs possess a serious risk to the Egyptian population that depends mainly on the River Nile as a source of water. Thus, stricter legislation and regulatory controls should be applied to reduce the risk of PCBs in Egypt. PMID:26798844

  17. Golden Eagle Migratory Behaviors in Response to Arctic Warming

    NASA Astrophysics Data System (ADS)

    LaPoint, S.; Bohrer, G.; Davidson, S. C.; Gurarie, E.; Mahoney, P.; Boelman, N.

    2017-12-01

    Understanding how animals adapt to climate change is a conservation priority, particularly in arctic landscapes where these changes are accelerated. Doing so however, remains challenging because animal behavior datasets are typically conducted at site- or population-specific scales and are often short term (e.g., 2-3 years). We have overcome this challenge by compiling a long-term (25 years), large-scale (northwestern North America) dataset of > 0.5 million locations collected via 86 adult-aged golden eagles (Aquila chrysaetos) fitted with satellite and GPS data loggers. We used mechanistic range shift analyses to identify the locations and dates when each eagle performed a behavioral switch from a stationary phase (e.g., over-wintering or breeding) to migration and vice-versa. We annotated these spatio-temporal data with a suite of environmental data, including: %snow cover, time-to snow cover, time-to greening, air temperature, and wind direction and magnitude. Preliminary generalized additive mixed-models suggest these eagles have performed significant shifts in their departure dates, yet their arrival dates have remained relatively consistent. We will use a survival analysis (e.g., Cox proportional-hazard regression model) to quantify the influence of the environmental variables on these dates. It appears golden eagles migrating across northwestern North America are adapting to changes in the timing and duration of artic winters, by arriving to their northern breeding grounds earlier every spring, presumably to extend their breeding and chick rearing phases. Golden eagles exhibit some resiliency to changes in the arctic climate, but further work is warranted across other taxa and populations.

  18. Simulation of irrigation effect on water cycle in Yellow River catchment, China

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Watanabe, M.

    2006-12-01

    The Yellow River is 5,464 km long with a catchment area of 794,712 km2 if the Erdos inner flow area is included. This river catchment is divided between the upper region (length: 3472 km, area: 428,235 km2) from the headwater to Lanzhou in Gansu province, the middle region (length: 1,206 km, area: 343,751 km2) from Lanzhou to Huayuankou in Henan province, and the lower region (length: 786 km, area: 22,726 km2) from Huayuankou to the estuary. This river is well known for high sand content, frequent floods, unique channel characteristics in the lower reach (the river bed is higher than the land outside the banks), and the limited water resources. Since the competition of a large-scale irrigation project in 1969, noticeable river drying has been observed in the Yellow River. This flow dry-up phenomena, i.e., zero-flow in sections of the river channel, resulting from the intense competition between water supply and water demand, has occurred more and more often during the last 30 years. It is very important for decision making to ensure sustainable water resource utilization whether human activities were the only cause of the water shortage, the climate has changed during the last several decades in this catchment, and the water shortage has anything to do with climatic warming. The present research focuses on simulating the groundwater/river irrigation-effects on the water/heat dynamics in the Yellow River catchment. We combined the NIES Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama and Watanabe, 2004, 2006; Nakayama et al., 2006) with the agricultural model in order to evaluate river drying in the Yellow River (NICE-DRY). We simulated the water/heat dynamics in the entire catchment with a resolution of 10 km mesh by using the NICE-DRY. The model reproduced excellently the river discharge, soil moisture, evapotranspiration, groundwater level, crop water use, crop productivity, et al. Furthermore, we evaluated the role of irrigation on the water

  19. Wildlife Photography - Bald Eagle

    NASA Image and Video Library

    2017-05-04

    An American bald eagle soars through the air with its prey at NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  20. Nature Photography - Bald Eagles

    NASA Image and Video Library

    2016-12-13

    Two American bald eagles are perched in a nest atop a pole at NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  1. Davis Pond freshwater prediversion biomonitoring study: freshwater fisheries and eagles

    USGS Publications Warehouse

    Jenkins, Jill A.; Bourgeois, E. Beth; Jeske, Clint W.

    2008-01-01

    In January 2001, the construction of the Davis Pond freshwater diversion structure was completed by the U.S. Army Corps of Engineers. The diversion of freshwater from the Mississippi River is intended to mitigate saltwater intrusion from the Gulf of Mexico and to lessen the concomitant loss of wetland areas. In addition to the freshwater inflow, Barataria Bay basin would receive nutrients, increased flows of sediments, and water-borne and sediment-bound compounds. The purpose of this biomonitoring study was, therefore, to serve as a baseline for prediversion concentrations of selected contaminants in bald eagle (Haliaeetus leucocephalus) nestlings (hereafter referred to as eaglets), representative freshwater fish, and bivalves. Samples were collected from January through June 2001. Two similarly designed postdiversion studies, as described in the biological monitoring program, are planned. Active bald eagle nests targeted for sampling eaglet blood (n = 6) were generally located southwest and south of the diversion structure. The designated sites for aquatic animal sampling were at Lake Salvador, at Lake Cataouatche, at Bayou Couba, and along the Mississippi River. Aquatic animals representative of eagle prey were collected. Fish were from three different trophic levels and have varying feeding strategies and life histories. These included herbivorous striped mullet (Mugil cephalus), omnivorous blue catfish (Ictalurus furcatus), and carnivorous largemouth bass (Micropterus salmoides). Three individuals per species were collected at each of the four sampling sites. Freshwater Atlantic rangia clams (Rangia cuneata) were collected at the downstream marsh sites, and zebra mussels (Dreissena spp.) were collected on the Mississippi River. The U.S. Geological Survey (USGS) Biomonitoring of Environmental Status and Trends (BEST) protocols served as guides for fish sampling and health assessments. Fish are useful for monitoring aquatic ecosystems because they accumulate

  2. South Asia river-flow projections and their implications for water resources

    NASA Astrophysics Data System (ADS)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-12-01

    South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960-2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990-2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow

  3. Accounting System for Water Use by Vegetation in the Lower Colorado River Valley

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1992-01-01

    The Colorado River is the principal source of water in the valley of the Colorado River between Hoover Dam and the international boundary with Mexico (fig. 1). Agricultural, domestic, municipal, industrial, hydroelectric-power genera-tion, and recreation are the primary uses of river water in the valley. Most of the consumptive use of water from the river occurs downstream from Davis Dam, where water is diverted to irrigate crops along the river or is exported to interior regions of California and Arizona. Most of the agricultural areas are on the alluvium of the flood plain; in a few areas, land on the alluvial terraces has been cultivated. River water is consumed mainly by vegetation (crops and phreatophytes) on the flood plain. Crops were grown on 70.3 percent of the vegetated area classified by using 1984 digital image satellite data. Phreatophytes, natural vege-tation that obtain water from the alluvial aquifer, covered the remaining vegetated areas on the uncultivated flood plain. Most of the water used for irrigation is diverted or pumped from the river. In some areas, water is pumped from wells completed in the alluvial aquifer, which is hydraulically connected to the river.

  4. Final Environmental Assessment, Construction and Operation of TNARNG Readiness Center and Field Maintenance Shop

    DTIC Science & Technology

    2007-05-01

    Reelfoot Lake and at Dale Hollow Reservoir. However, bald eagles may occur on almost any waterway in the sta te (Tennessee Wildlife Resources Agency...include surface waters ( lakes , rivers, s treams, and springs) and g roundwater. Arnold AFB and the VTS-T lie within the Duck River and the Elk River...Authority. TUB purchases water from the Duck River Utility Commission, whose water source is Normandy Lake . Sewage is treated in a wastewater treatment

  5. Water and Sediment Quality in the Yukon River Basin, Alaska, During Water Year 2001

    USGS Publications Warehouse

    Schuster, Paul F.

    2003-01-01

    Overview -- This report contains water-quality and sediment-quality data from samples collected in the Yukon River Basin during water year 2001 (October 2000 through September 2001). A broad range of chemical and biological analyses from three sets of samples are presented. First, samples were collected throughout the year at five stations in the basin (three on the mainstem Yukon River, one each on the Tanana and Porcupine Rivers). Second, fecal indicators were measured on samples from drinking-water supplies collected near four villages. Third, sediment cores from five lakes throughout the Yukon Basin were sampled to reconstruct historic trends in the atmospheric deposition of trace elements and hydrophobic organic compounds.

  6. Successful nesting by a Bald Eagle pair in prairie grasslands of the Texas Panhandle

    USGS Publications Warehouse

    Boal, G.W.; Giovanni, M.D.; Beall, B.N.

    2006-01-01

    We observed a breeding Bald Eagle (Haliaeetus leitcocephalus) pair nesting in a short-grass prairie and agricultural community on the southern Great Plains of the Texas Panhandle in 2004 and 2005. The nesting eagles produced 1 fledgling in 2004 and 2 fledglings in 2005. Our assessment of landcover types within a 5-km radius of the nest indicated that grasslands accounted for most of the area (90%), followed by agricultural lands (8%). Black-tailed prairie dog (Cynomys ludovicianus) colonies occupied 2.5% of the area, and single human residences with associated structures (i.e., barns) occupied 2.5 ha in surface area was 51 km from the nest. An analysis of regurgitated castings collected near the nest revealed a mammalian-dominated, breeding-season diet with black-tailed prairie dogs occurring in 80.9% of the castings. Other identified prey included cottontails (Sylvilagus spp., 15.9%), black-tailed jackrabbits (Lepus californicus, 3.2%), pronghorn (Antilocapra americana, 3.2%), and plains pocket gopher (Geomys bursarius, 1.6%). Bird remains were also present in 34.9% of the castings. This is the first reported successful nesting of Bald Eagles in the panhandle region of Texas since 1916; the nest is particularly unique because of its distance from any substantial body of water.

  7. Anthropogenic impacts on water pollution and water quality in the Harlem River

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2016-12-01

    The Harlem River, a 9.3 mile long natural straight, connects the Hudson and East Rivers in New York City. It had been historically used for swimming, fishing, boating. Anthropogenic impacts have degraded water quality, limiting current aquatic activity in the river. Combined sewer overflows (CSOs) discharge rainwater mixed with untreated sewage during or following rainfall and can contain illness-causing bacteria. It is not safe for swimming, fishing or boating especially in rainstorms. CSOs water samples were collected during rainstorms, and analyzed in the laboratories of the Chemistry and Biology Department, Bronx Community College, City University of New York. Results showed elevated bacteria/pathogen and nutrient levels. Most recent data showed an ammonia concentration of 2.6 mg/L on July 30, 2015 during a heavy afternoon thunderstorm, and an ammonia level 2.7mg/L during tropical storm Arthur on July 2, 2014. Both significantly exceeded the EPA regulation level for NYC waters of 0.23mg/L. Phosphate levels peaked at 0.197 mg/L during a heavy thunderstorm on Apr 28, 2011, which was much higher than regulated level of 0.033 mg/L. Turbidity was 319 FAU during the July 30 2015 heavy thunderstorm, and was 882 FAU during tropical storm Arthur; which was significantly higher than regulation level of 5.25 FAU. CSOs collected during a recent heavy rainstorm on Oct 28, 2015, showed fecal coliform of 1 million MPN/100ml, E.Coli. of 60,000 MPN/100ml, and enterococcus of 65,000 MPN/100ml; which exceeded regulated levels of fecal coliform-200 MPN/100ml, E.Coli.-126 MPN/100ml, enterococcus-104 MPN/100ml. It is critical to reduce CSOs, restore ecosystem and improve water quality of the Harlem River. Green wall, green roof, and wetland had been used to reduce stormwater runoff & CSOs in the Bronx River; these green infrastructures are going to be used along the Harlem River waterfront as well. The goal of this research is to make the Harlem River swimmable and fishable again in

  8. Nature Photography - Bald Eagles

    NASA Image and Video Library

    2016-12-13

    An American bald eagle soars through the air above NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. The bird is one of more than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles that call Kennedy and the wildlife refuge home.

  9. Leaders Hit the Battlefield for Education's Future: 2009 Eagle Institute

    ERIC Educational Resources Information Center

    Verardi, Nicole

    2010-01-01

    More than 40 esteemed school business officials traveled to Washington, D.C., for the 2009 Eagle Institute which was held on July 14-17. They examined the past and the future to uncover leadership insights. Eagle Institute participants shared a powerful experience of camaraderie, reflection, and optimism for the future. This article describes the…

  10. A pilot golden eagle population study in the Altamont Pass Wind Resource Area, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, G.

    1995-05-01

    Orloff and Flannery (1992) estimated that several hundred reports are annually killed by turbine collisions, wire strikes, and electrocutions at the Altamont Pass Wind Resource Area (WRA). The most common fatalities were those of red-tailed hawks (Buteo jamaicensis), American kestrels (Falco sparvatius), and golden eagles (Aquila chrysaetos), with lesser numbers of turkey vultures (Cathartes aura), common ravens (Corvus corax), bam owls (Tyto alba), and others. Among the species of raptors killed at Altamont Pass, the one whose local population is most likely to be impacted is the golden eagle. Besides its being less abundant than the others, the breeding andmore » recruitment rates of golden eagles are naturally slow, increasing their susceptibility to decline as a result of mortality influences. The golden eagle is a species afforded special federal protection because of its inclusion within the Bald Eagle Protection Act as amended in 1963. There are no provisions within the Act which would allow the killing ``taking`` of golden eagles by WRA structures. This report details the results of field studies conducted during 19941. The primary purpose of the investigation is to lay the groundwork for determining whether or not turbine strikes and other hazards related to energy at Altamont Pass may be expected to affect golden eagles on a population basis. We also seek an understanding of the physical and biotic circumstances which attract golden eagles to the WRA within the context of the surrounding landscape and the conditions under which they are killed by wind turbines. Such knowledge may suggest turbine-related or habitat modifications that would result in a lower incidence of eagle mortality.« less

  11. Golden Eagle predation on experimental Sandhill and Whooping Cranes

    USGS Publications Warehouse

    Ellis, D.H.; Clegg, K.R.; Lewis, J.C.; Spaulding, E.

    1999-01-01

    There are very few published records of Golden Eagles preying upon cranes, especially in North America. During our experiments to lead cranes on migration behind motorized craft in the western United States, we experienced 15 attacks (four fatal) and believe many more attacks would have occurred (and more would have been fatal) without human intervention. We recognize eagle predation as an important risk to cranes especially during migration.

  12. Spatial distribution of dissolved constituents in Icelandic river waters

    NASA Astrophysics Data System (ADS)

    Oskarsdottir, Sigrídur Magnea; Gislason, Sigurdur Reynir; Snorrason, Arni; Halldorsdottir, Stefanía Gudrún; Gisladottir, Gudrún

    2011-02-01

    SummaryIn this study we map the spatial distribution of selected dissolved constituents in Icelandic river waters using GIS methods to study and interpret the connection between river chemistry, bedrock, hydrology, vegetation and aquatic ecology. Five parameters were selected: alkalinity, SiO 2, Mo, F and the dissolved inorganic nitrogen and dissolved inorganic phosphorus mole ratio (DIN/DIP). The highest concentrations were found in rivers draining young rocks within the volcanic rift zone and especially those draining active central volcanoes. However, several catchments on the margins of the rift zone also had high values for these parameters, due to geothermal influence or wetlands within their catchment area. The DIN/DIP mole ratio was higher than 16 in rivers draining old rocks, but lowest in rivers within the volcanic rift zone. Thus primary production in the rivers is limited by fixed dissolved nitrogen within the rift zone, but dissolved phosphorus in the old Tertiary catchments. Nitrogen fixation within the rift zone can be enhanced by high dissolved molybdenum concentrations in the vicinity of volcanoes. The river catchments in this study were subdivided into several hydrological categories. Importantly, the variation in the hydrology of the catchments cannot alone explain the variation in dissolved constituents. The presence or absence of central volcanoes, young reactive rocks, geothermal systems and wetlands is important for the chemistry of the river waters. We used too many categories within several of the river catchments to be able to determine a statistically significant connection between the chemistry of the river waters and the hydrological categories. More data are needed from rivers draining one single hydrological category. The spatial dissolved constituent distribution clearly revealed the difference between the two extremes, the young rocks of the volcanic rift zone and the old Tertiary terrain.

  13. Primary Datasets for Case Studies of River-Water Quality

    ERIC Educational Resources Information Center

    Goulder, Raymond

    2008-01-01

    Level 6 (final-year BSc) students undertook case studies on between-site and temporal variation in river-water quality. They used professionally-collected datasets supplied by the Environment Agency. The exercise gave students the experience of working with large, real-world datasets and led to their understanding how the quality of river water is…

  14. Evaluation of water quality index for River Sabarmati, Gujarat, India

    NASA Astrophysics Data System (ADS)

    Shah, Kosha A.; Joshi, Geeta S.

    2017-06-01

    An attempt has been made to develop water quality index (WQI), using six water quality parameters pH, dissolved oxygen, biochemical oxygen demand, electrical conductivity, nitrate nitrogen and total coliform measured at three different stations along the Sabarmati river basin from the year 2005 to 2008. Rating scale is developed based on the tolerance limits of inland waters and health point of view. Weighted arithmetic water quality index method was used to find WQI along the stretch of the river basin. It was observed from this study that the impact of human activity and sewage disposal in the river was severe on most of the parameters. The station located in highly urban area showed the worst water quality followed by the station located in moderately urban area and lastly station located in a moderately rural area. It was observed that the main cause of deterioration in water quality was due to the high anthropogenic activities, illegal discharge of sewage and industrial effluent, lack of proper sanitation, unprotected river sites and urban runoff.

  15. Water Quality in the Yakima River Basin, Washington, 1999-2000

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Morace, Jennifer L.; Johnson, Henry M.; Rinella, Joseph F.; Ebbert, James C.; Embrey, Sandra S.; Waite, Ian R.; Carpenter, Kurt D.; Wise, Daniel R.; Hughes, Curt A.

    2004-01-01

    This report contains the major findings of a 1999?2000 assessment of water quality in streams and drains in the Yakima River Basin. It is one of a series of reports by the NAWQA Program that present major findings on water resources in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is assessed at many scales?from large rivers that drain lands having many uses to small agricultural watersheds?and is discussed in terms of local, State, and regional issues. Conditions in the Yakima River Basin are compared to those found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, Tribal, State, or local agencies; universities; public interest groups; or the private sector. The information will be useful in addressing a number of current issues, such as source-water protection, pesticide registration, human health, drinking water, hypoxia and excessive growth of algae and plants, the effects of agricultural land use on water quality, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of water resources in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. Other products describing water-quality conditions in the Yakima River Basin are available. Detailed technical information, data and analyses, methodology, and maps that support the findings presented in this report can be accessed from http://or.water.usgs.gov/yakima. Other reports in this series and data collected from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  16. From the inside out: Eagle Rock School Producing a New Generation of CES Teachers

    ERIC Educational Resources Information Center

    Condon, Dan

    2008-01-01

    In this article, the author gives an overview of Eagle Rock School's Teaching Fellowship Program which he founded in collaboration with Public Allies, Inc. and under the auspices of Eagle Rock's Professional Development Center. Eagle Rock's Teaching Fellowship has two perspectives: (1) local; and (2) global. Locally, Fellows contribute skills,…

  17. Regional water table (2004) and water-level changes in the Mojave River and Morongo ground-water basins, Southwestern Mojave Desert, California

    USGS Publications Warehouse

    Stamos, Christina L.; Huff, Julia A.; Predmore, Steven K.; Clark, Dennis A.

    2004-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently, water availability. During March and April 2004, the U.S. Geological Survey and other agencies made almost 900 water-level measurements in about 740 wells in the Mojave River and Morongo ground-water basins. These data document recent conditions and, when compared with historical data, changes in ground-water levels. A water-level contour map was drawn using data from 500 wells, providing coverage for most of the basins. In addition, 26 long-term (as much as 74 years) hydrographs were constructed which show water-level conditions throughout the basins, 9 short-term (1992 to 2004) hydrographs were constructed which show the effects of recharge and discharge along the Mojave River, and a water-level-change map was compiled to compare 2002 and 2004 water levels throughout the basins. The water-level change data show that in the Mojave River ground-water basin, more than one half (102) of the wells had water-level declines of 0.5 ft or more and almost one fifth (32) of the wells had declines greater than 5 ft. between 2002 and 2004. The water-level change data also show that about one tenth (17) of the wells compared in the Mojave River ground-water basin had water level increases of 0.5 ft or more. Most of the water-level increases were the result of stormflow in the Mojave River during March 2004, which resulted in recharge to wells in the floodplain aquifer mainly along the river in the Alto subarea and the Transition zone, and along the

  18. Water Quality Assessment of the Buffalo River, Arkansas, United States

    NASA Astrophysics Data System (ADS)

    Bolin, K. L.; Ruhl, L. S.

    2017-12-01

    The Buffalo River was established as a National River by the U.S. Congress in 1972, and runs approximately 150 miles from Newton County, Arkansas to Baxter County where it joins the White River. The Buffalo National River is the one of the last free flowing rivers in the continental U.S. with a rich cultural and political history surrounding it. The geology surrounding the river can be characterized by its karst environment, which has led to the many caves, depressions, and sinkholes found along the river. Karst environments are more susceptible to groundwater pollution so drainage from septic systems is a major concern for towns along the river. There are also numerous abandoned mines in the Buffalo River watershed, especially in the Rush area, which was mined for lead and zinc. Additionally, an increase in livestock production in the area is also a concern for increased nitrate and phosphate, along with fertilizer runoff from agricultural areas. The purpose of this study was to determine the water quality changes along the Buffalo River from human and environmental influences. Samples at six different locations along the river were collected along with parameters such as pH, conductivity, salinity, and temperature during several trips in the summer of 2017. Water samples were analyzed for cations and anions by IC, trace metals by ICPMS, and Escherichia coli with agar plate colony counts. The results were used to map geochemical changes in the Buffalo River watershed, and calculate enrichment factors of constituents (like nitrate, phosphate, and trace elements) as the water flowed downstream.

  19. Hydrogeology and ground-water/surface water interactions in the Des Moines River valley, southwestern Minnesota, 1997-2001

    USGS Publications Warehouse

    Cowdery, Timothy K.

    2005-01-01

    Long-term withdrawals of water for public supplies may cause a net decrease in ground-water discharge to surface water. Water that does not evaporate, or that is not exported, is discharged to the Des Moines River but with changed water quality. Because ground-water and surface-water qualities in the study area are similar, the ground-water discharge probably has little effect on river water quality.

  20. Wintering Golden Eagles on the coastal plain of South Carolina

    Treesearch

    Mark Vukovich; K.L. Turner; T.E. Grazia; T. Mims; J.C. Beasley; John Kilgo

    2015-01-01

    Golden Eagles (Aquila chrysaetos) are rare winter residents in eastern North America, with most found along the Appalachian Mountains and few reported on the coastal plain of the Carolinas. We used remote cameras baited with wild pig (Sus scrofa) and white-tailed deer (Odocoileus virginianus) carcasses to detect, age, and individually identify Golden Eagles on the U.S...

  1. Residues of organochlorine pesticides and polychlorinated biphenyls and autopsy data for bald eagles, 1971-72

    USGS Publications Warehouse

    Cromartie, E.; Reichel, W.L.; Locke, L.N.; Belisle, A.A.; Kaiser, T.E.; Lamont, T.G.; Mulhern, B.M.; Prouty, R.M.; Swineford, D.M.

    1975-01-01

    Thirty-seven bald eagles found sick or dead in 18 States during 1971-72 were analyzed for organochlorine pesticides and polychlorinated biphenyls (PCB's). DDE and PCB's were detected in all bald eagle carcasses; 30 carcasses contained DDD and 28 contained dieldrin. Four eagles contained possibly lethal levels of dieldrin and nine eagles had been poisoned by thallium. Autopsies revealed that illegal shooting was the most common cause of mortality. Since 1964 when data were first collected, 8 of the 17 eagles obtained from Maryland, Virginia, South Carolina, and Florida possibly died from dieldrin poisoning; all four specimens from Maryland and Virginia were from the Chesapeake Bay Tidewater area.

  2. Research resources: curating the new eagle-i discovery system

    PubMed Central

    Vasilevsky, Nicole; Johnson, Tenille; Corday, Karen; Torniai, Carlo; Brush, Matthew; Segerdell, Erik; Wilson, Melanie; Shaffer, Chris; Robinson, David; Haendel, Melissa

    2012-01-01

    Development of biocuration processes and guidelines for new data types or projects is a challenging task. Each project finds its way toward defining annotation standards and ensuring data consistency with varying degrees of planning and different tools to support and/or report on consistency. Further, this process may be data type specific even within the context of a single project. This article describes our experiences with eagle-i, a 2-year pilot project to develop a federated network of data repositories in which unpublished, unshared or otherwise ‘invisible’ scientific resources could be inventoried and made accessible to the scientific community. During the course of eagle-i development, the main challenges we experienced related to the difficulty of collecting and curating data while the system and the data model were simultaneously built, and a deficiency and diversity of data management strategies in the laboratories from which the source data was obtained. We discuss our approach to biocuration and the importance of improving information management strategies to the research process, specifically with regard to the inventorying and usage of research resources. Finally, we highlight the commonalities and differences between eagle-i and similar efforts with the hope that our lessons learned will assist other biocuration endeavors. Database URL: www.eagle-i.net PMID:22434835

  3. Lower Charles River Bathymetry: 108 Years of Fresh Water

    NASA Astrophysics Data System (ADS)

    Yoder, M.; Sacarny, M.

    2017-12-01

    The Lower Charles River is a heavily utilized urban river that runs between Cambridge and Boston in Massachusetts. The recreational usage of the river is dependent on adequate water depths, but there have been no definitive prior studies on the sedimentation rate of the Lower Charles River. The river transitioned from tidal to a freshwater basin in 1908 due to the construction of the (old) Charles River Dam. Water surface height on the Lower Charles River is maintained within ±1 foot through controlled discharge at the new Charles River Dam. The current study area for historical comparisons is from the old Charles River Dam to the Boston University Bridge. This study conducted a bathymetric survey of the Lower Charles River, digitized three prior surveys in the study area, calculated volumes and depth distributions for each survey, and estimated sedimentation rates from fits to the volumes over time. The oldest chart digitized was produced in 1902 during dam construction deliberations. The average sedimentation rate is estimated as 5-10 mm/year, which implies 1.8-3.5 feet sedimentation since 1908. Sedimentation rates and distributions are necessary to develop comprehensive management plans for the river and there is evidence to suggest that sedimentation rates in the shallow upstream areas are higher than the inferred rates in the study area.

  4. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  5. Trigeminal neuralgia post-styloidectomy in Eagle syndrome: a case report

    PubMed Central

    2012-01-01

    Introduction Eagle syndrome is a condition characterized by an elongated (>3cm) styloid process with associated symptoms of recurrent facial or throat pain. In this report we present a case of Eagle syndrome exhibiting the typical findings of glossopharyngeal nerve involvement, as well as unusual involvement of the trigeminal nerve. Notably, this patient developed a classical trigeminal neuralgia post-styloidectomy. Case presentation A 68-year-old Caucasian woman presented with a 25-year history of dull pain along the right side of her throat, lateral neck, and jaw. Her symptoms were poorly controlled with medication until 15 years ago when she was diagnosed with Eagle syndrome, and underwent a manual fracture of her styloid process. This provided symptomatic relief until 5 years ago when the pain recurred and progressed. She underwent a styloidectomy via a lateral neck approach, which resolved the pain once again. However, 6 months ago a new onset of triggerable, electric shock-like facial pain began within the right V1 and V2 distributions. Conclusions Eagle syndrome is distressing to patients and often difficult to diagnose due to its wide variability in symptoms. It is easily confused with dental pain or temporomandibular joint disorder, leading to missed diagnoses and unnecessary procedures. Pain along the jaw and temple is an unusual but possible consequence of Eagle syndrome. An elongated styloid process should be considered a possible etiology of dull facial pain in the trigeminal distributions, in particular V3. PMID:23031688

  6. 76 FR 6114 - Lincoln National Forest, New Mexico, North Fork Eagle Creek Wells Special Use Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... groundwater drawdown from this well field to maintain surface flows and protect water-dependent ecosystems.... The United States Geological Survey (USGS) conducted the independent study from 2007-2009 to determine... during both time periods, there were no days of zero flow recorded at the Eagle Creek gage from 1969-1980...

  7. Lead and eagles: demographic and pathological characteristics of poisoning, and exposure levels associated with other causes of mortality

    USGS Publications Warehouse

    Franson, J. Christian; Russell, Robin E.

    2014-01-01

    We conducted a retrospective analysis to evaluate demographic and pathologic characteristics in 484 bald eagles (Haliaeetus leucocephalus) and 68 golden eagles (Aquila chrysaetos) diagnosed with lead poisoning at the U.S. Geological Survey National Wildlife Health Center. As part of our analysis, we compared characteristics of lead poisoned eagles with those that died of other causes. Odds of lead poisoning were greater for bald eagles versus golden eagles, females versus males, adults versus juveniles, and eagles from the Mississippi and Central flyways versus the Atlantic and Pacific flyways. In addition to spatial, species, and demographic associations, we detected a distinct temporal trend in the collection date of lead poisoned bald eagle carcasses. These carcasses were found at greater frequency in late autumn and winter than spring and summer. Lesions in lead poisoned birds included emaciation, evidence of bile stasis, myocardial degeneration and necrosis, and renal tubular nephrosis and necrosis. Ingested lead ammunition or fragments were found in 14.2 % of bald eagles and 11.8 % of golden eagles. The overall mean liver lead concentration (wet weight basis) for eagles diagnosed with lead poisoning was 28.9 ± 0.69 SE mg/kg in bald eagles and 19.4 ± 1.84 SE mg/kg in golden eagles. In eagles diagnosed with collision trauma, electrocution, poisoning (other than lead), emaciation, infectious disease, trapping death, other, and undetermined causes, average liver lead concentrations were low (<1 mg/kg) and did not differ among causes of mortality. Thus, based on our data, we found no evidence that lead exposure of eagles predisposed them to other causes of mortality.

  8. Numerical Simulation of Ground-Water Salinization in the Arkansas River Corridor, Southwest Kansas

    NASA Astrophysics Data System (ADS)

    Whittemore, D. O.; Perkins, S.; Tsou, M.; McElwee, C. D.; Zhan, X.; Young, D. P.

    2001-12-01

    The salinity of ground water in the High Plains aquifer underlying the upper Arkansas River corridor in southwest Kansas has greatly increased during the last few decades. The source of the salinization is infiltration of Arkansas River water along the river channel and in areas irrigated with diverted river water. The saline river water is derived from southeastern Colorado where consumptive losses of water in irrigation systems substantially concentrate dissolved solids in the residual water. Before development of surface- and ground-water resources, the Arkansas River gained flow along nearly all of its length in southwest Kansas. Since the 1970's, ground-water levels have declined in the High Plains aquifer from consumptive use of ground water. The water-level declines have now changed the river to a generally losing rather than gaining system. We simulated ground-water flow in the aquifers underlying 126 miles of the river corridor using MODFLOW integrated with the GIS software ArcView (Tsou and Whittemore, 2001). There are two layers in the model, one for the Quaternary alluvial aquifer and the other for the underlying High Plains aquifer. We prepared a simulation for circa 1940 that represented conditions prior to substantial ground-water development, and simulations for 40 years into the future that were based on holding constant either average water use or average ground-water levels for the 1990's. Streamflows along the river computed from the model results illustrated the flow gains from ground-water discharge for circa 1940 and losses during the 1990's. We modeled the movement of salinity as particle tracks generated by MODPATH based on the MODFLOW solutions. The results indicate that during the next 40 years, saline water will move a substantial distance in the High Plains aquifer on the south side of the central portion of the river valley. The differences between the circa 1940 and 1990's simulations fit the observed data that show large increases in

  9. Biotelemetery data for golden eagles (Aquila chrysaetos) captured in coastal southern California, February 2016–February 2017

    USGS Publications Warehouse

    Tracey, Jeff A.; Madden, Melanie C.; Sebes, Jeremy B.; Bloom, Peter H.; Katzner, Todd E.; Fisher, Robert N.

    2017-05-12

    Because of a lack of clarity about the status of golden eagles (Aquila chrysaetos) in coastal southern California, the USGS, in collaboration with local, State, and other Federal agencies, began a multi-year survey and tracking program of golden eagles to address questions regarding habitat use, movement behavior, nest occupancy, genetic population structure, and human impacts on eagles. Golden eagle trapping and tracking efforts began in September 2014. During trapping efforts from September 29, 2014, to February 23, 2016, 27 golden eagles were captured. During trapping efforts from February 24, 2016, to February 23, 2017, an additional 10 golden eagles (7 females and 3 males) were captured in San Diego, Orange, and western Riverside Counties. Biotelemetry data for 26 of the 37 golden eagles that were transmitting data from February 24, 2016, to February 23, 2017 are presented. These eagles ranged as far north as northern Nevada and southern Wyoming, and as far south as La Paz, Baja California, Mexico.

  10. 77 FR 839 - Pricing for 2011 American Eagle Silver Uncirculated Coins

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... DEPARTMENT OF THE TREASURY United States Mint Pricing for 2011 American Eagle Silver Uncirculated Coins Agency: United States Mint, Department of the Treasury. ACTION: Notice. SUMMARY: The United States Mint is announcing the re-pricing of the 2011 American Eagle Silver Uncirculated Coins. The price of...

  11. Sharing water and benefits in transboundary river basins

    NASA Astrophysics Data System (ADS)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-06-01

    The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the context of transboundary river basins and discusses this from a conceptual point of view, but falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study, we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. We describe a methodology in which (i) a hydrological model is used to allocate scarce water resources, in an economically efficient manner, to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges is equitably redistributed as monetary compensation to users in an amount determined through the application of a sharing method developed by stakeholder input, thus based on a stakeholder vision of fairness, using an axiomatic approach. With the proposed benefit-sharing mechanism, the efficiency-equity trade-off still exists, but the extent of the imbalance is reduced because benefits are maximized and redistributed according to a key that has been collectively agreed upon by the participants. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The described technique not only ensures economic efficiency, but may

  12. Eagle-i: Making Invisible Resources, Visible

    PubMed Central

    Haendel, M.; Wilson, M.; Torniai, C.; Segerdell, E.; Shaffer, C.; Frost, R.; Bourges, D.; Brownstein, J.; McInnerney, K.

    2010-01-01

    RP-134 The eagle-i Consortium – Dartmouth College, Harvard Medical School, Jackson State University, Morehouse School of Medicine, Montana State University, Oregon Health and Science University (OHSU), the University of Alaska, the University of Hawaii, and the University of Puerto Rico – aims to make invisible resources for scientific research visible by developing a searchable network of resource repositories at research institutions nationwide. Now in early development, it is hoped that the system will scale beyond the consortium at the end of the two-year pilot. Data Model & Ontology: The eagle-i ontology development team at the OHSU Library is generating the data model and ontologies necessary for resource indexing and querying. Our indexing system will enable cores and research labs to represent resources within a defined vocabulary, leading to more effective searches and better linkage between data types. This effort is being guided by active discussions within the ontology community (http://RRontology.tk) bringing together relevant preexisting ontologies in a logical framework. The goal of these discussions is to provide context for interoperability and domain-wide standards for resource types used throughout biomedical research. Research community feedback is welcomed. Architecture Development, led by a team at Harvard, includes four main components: tools for data collection, management and curation; an institutional resource repository; a federated network; and a central search application. Each participating institution will populate and manage their repository locally, using data collection and curation tools. To help improve search performance, data tools will support the semi-automatic annotation of resources. A central search application will use a federated protocol to broadcast queries to all repositories and display aggregated results. The search application will leverage the eagle-i ontologies to help guide users to valid queries via auto

  13. Hydrology of Eagle Creek Basin and effects of groundwater pumping on streamflow, 1969-2009

    USGS Publications Warehouse

    Matherne, Anne Marie; Myers, Nathan C.; McCoy, Kurt J.

    2010-01-01

    Urban and resort development and drought conditions have placed increasing demands on the surface-water and groundwater resources of the Eagle Creek Basin, in southcentral New Mexico. The Village of Ruidoso, New Mexico, obtains 60-70 percent of its water from the Eagle Creek Basin. The village drilled four production wells on Forest Service land along North Fork Eagle Creek; three of the four wells were put into service in 1988 and remain in use. Local citizens have raised questions as to the effects of North Fork well pumping on flow in Eagle Creek. In response to these concerns, the U.S. Geological Survey, in cooperation with the Village of Ruidoso, conducted a hydrologic investigation from 2007 through 2009 of the potential effect of the North Fork well field on streamflow in North Fork Eagle Creek. Mean annual precipitation for the period of record (1942-2008) at the Ruidoso climate station is 22.21 inches per year with a range from 12.27 inches in 1970 to 34.81 inches in 1965. Base-flow analysis indicates that the 1970-80 mean annual discharge, direct runoff, and base flow were 2,260, 1,440, and 819 acre-ft/yr, respectively, and for 1989-2008 were 1,290, 871, and 417 acre-ft/yr, respectively. These results indicate that mean annual discharge, direct runoff, and base flow were less during the 1989-2008 period than during the 1970-80 period. Mean annual precipitation volume for the study area was estimated to be 12,200 acre-feet. Estimated annual evapotranspiration for the study area ranged from 8,730 to 8,890 acre-feet. Estimated annual basin yield for the study area was 3,390 acre-ft or about 28 percent of precipitation. On the basis of basin-yield computations, annual recharge was estimated to be 1,950 acre-ft, about 16 percent of precipitation. Using a chloride mass-balance method, groundwater recharge over the study area was estimated to average 490 acre-ft, about 4.0 percent of precipitation. Because the North Fork wells began pumping in 1988, 1969

  14. South Asia river flow projections and their implications for water resources

    NASA Astrophysics Data System (ADS)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-06-01

    South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM) and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs), which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM) for the periods; 1990-2006 for ERA-Interim and 1960-2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM simulation provides a

  15. Nature Photography - Bald Eagles

    NASA Image and Video Library

    2016-12-13

    With wings outstretched, an American bald eagle soars through the air above NASA's Kennedy Space Center in Florida. The center shares a border with the Merritt Island National Wildlife Refuge. The bird is one of more than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles that call Kennedy and the wildlife refuge home.

  16. Creative Photography - Baby Eagles

    NASA Image and Video Library

    2018-02-08

    A baby eagle perches in a nest in a tree along State Road 3 at NASA's Kennedy Space Center in Florida. The center shares a border with the 140,000-acre Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  17. Creative Photography - Baby Eagles

    NASA Image and Video Library

    2018-02-08

    Two baby eagles perch in a nest in a tree along State Road 3 at NASA's Kennedy Space Center in Florida. The center shares a border with the 140,000-acre Merritt Island National Wildlife Refuge. More than 330 native and migratory bird species, 25 mammals, 117 fishes and 65 amphibians and reptiles call Kennedy and the wildlife refuge home.

  18. Water quality and discharge of streams in the Lehigh River Basin, Pennsylvania

    USGS Publications Warehouse

    McCarren, Edward F.; Keighton, Walter B.

    1969-01-01

    The Lehigh River, 100 miles long, is the second largest tributary to the Delaware River. It drains 1,364 square miles in four physiographic provinces. The Lehigh River basin includes mountainous and forested areas, broad agricultural valleys and areas of urban and industrial development. In the headwaters the water is of good quality and has a low concentration of solutes. Downstream, some tributaries receive coal-mine drainage and become acidic; others drain areas underlain by limestone and acquire alkaline characteristics. The alkaline streams neutralize and dilute the acid mine water where they mix. The dissolved-oxygen content of river water, which is high in the upper reaches of the stream, is reduced in the lower reaches because of lower turbulence, higher temperature, and the respiration of organisms. The Lehigh is used for public supply, recreation, waterpower, irrigation, and mining and other industrial purposes. Because the river is shallow in its upper reaches, most of the water comes in contact with the atmosphere as it churns over rocks and around islets and large boulders. Aeration of the water is rapid. When water that was low in dissolved-oxygen concentration was released from the lower strata of the Francis E. Walter Reservoir in June 1966, it quickly became aerated in the Lehigh River, and for 40 miles downstream from the dam the water was nearly saturated with oxygen. Most of the river water requires only moderate treatment for industrial use and public distribution throughout the Lehigh River valley. At times, however, some segments of the main river and its tributaries transport industrial wastes and acid coal-mine drainage. Usually the relatively high concentrations of solutes in water and the ensuing damage caused to quality by such waste discharges are more extensive and prolonged during droughts and other periods of low streamflow. For many years the Lehigh River flow has been continuously measured and its water chemically analyzed. Since

  19. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  20. Model-Aided Altimeter-Based Water Level Forecasting System in Mekong River

    NASA Astrophysics Data System (ADS)

    Chang, C. H.; Lee, H.; Hossain, F.; Okeowo, M. A.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Anderson, E.; Hwang, E.

    2017-12-01

    Mekong River, one of the massive river systems in the world, has drainage area of about 795,000 km2 covering six countries. People living in its drainage area highly rely on resources given by the river in terms of agriculture, fishery, and hydropower. Monitoring and forecasting the water level in a timely manner, is urgently needed over the Mekong River. Recently, using TOPEX/Poseidon (T/P) altimetry water level measurements in India, Biancamaria et al. [2011] has demonstrated the capability of an altimeter-based flood forecasting system in Bangladesh, with RMSE from 0.6 - 0.8 m for lead times up to 5 days on 10-day basis due to T/P's repeat period. Hossain et al. [2013] further established a daily water level forecasting system in Bangladesh using observations from Jason-2 in India and HEC-RAS hydraulic model, with RMSE from 0.5 - 1.5 m and an underestimating mean bias of 0.25 - 1.25 m. However, such daily forecasting system relies on a collection of Jason-2 virtual stations (VSs) to ensure frequent sampling and data availability. Since the Mekong River is a meridional river with few number of VSs, the direct application of this system to the Mekong River becomes challenging. To address this problem, we propose a model-aided altimeter-based forecasting system. The discharge output by Variable Infiltration Capacity hydrologic model is used to reconstruct a daily water level product at upstream Jason-2 VSs based on the discharge-to-level rating curve. The reconstructed daily water level is then used to perform regression analysis with downstream in-situ water level to build regression models, which are used to forecast a daily water level. In the middle reach of the Mekong River from Nakhon Phanom to Kratie, a 3-day lead time forecasting can reach RMSE about 0.7 - 1.3 m with correlation coefficient around 0.95. For the lower reach of the Mekong River, the water flow becomes more complicated due to the reversal flow between the Tonle Sap Lake and the Mekong River

  1. Simulation of ground-water flow in the Mojave River basin, California

    USGS Publications Warehouse

    Stamos, Christina L.; Martin, Peter; Nishikawa, Tracy; Cox, Brett F.

    2001-01-01

    The proximity of the Mojave River ground-water basin to the highly urbanized Los Angeles region has led to rapid growth in population and, consequently, to an increase in the demand for water. The Mojave River, the primary source of surface water for the region, normally is dry-except for a small stretch of perennial flow and periods of flow after intense storms. Thus, the region relies almost entirely on ground water to meet its agricultural and municipal needs. Ground-water withdrawal since the late 1800's has resulted in discharge, primarily from pumping wells, that exceeds natural recharge. To better understand the relation between the regional and the floodplain aquifer systems and to develop a management tool that could be used to estimate the effects that future stresses may have on the ground-water system, a numerical ground-water flow model of the Mojave River ground-water basin was developed, in part, on the basis of a previously developed analog model. The ground-water flow model has two horizontal layers; the top layer (layer 1) corresponds to the floodplain aquifer and the bottom layer (layer 2) corresponds to the regional aquifer. There are 161 rows and 200 columns with a horizontal grid spacing of 2,000 by 2,000 feet. Two stress periods (wet and dry) per year are used where the duration of each stress period is a function of the occurrence, quantity of discharge, and length of stormflow from the headwaters each year. A steady-state model provided initial conditions for the transient-state simulation. The model was calibrated to transient-state conditions (1931-94) using a trial-and-error approach. The transient-state simulation results are in good agreement with measured data. Under transient-state conditions, the simulated floodplain aquifer and regional aquifer hydrographs matched the general trends observed for the measured water levels. The simulated streamflow hydrographs matched wet stress period average flow rates and times of no flow at the

  2. Long-term survival despite low genetic diversity in the critically endangered Madagascar fish-eagle

    USGS Publications Warehouse

    Johnson, J.A.; Tingay, R.E.; Culver, M.; Hailer, F.; Clarke, M.L.; Mindell, D.P.

    2009-01-01

    The critically endangered Madagascar fish-eagle (Haliaeetus vociferoides) is considered to be one of the rarest birds of prey globally and at significant risk of extinction. In the most recent census, only 222 adult individuals were recorded with an estimated total breeding population of no more than 100-120 pairs. Here, levels of Madagascar fish-eagle population genetic diversity based on 47 microsatellite loci were compared with its sister species, the African fish-eagle (Haliaeetus vocifer), and 16 of these loci were also characterized in the white-tailed eagle (Haliaeetus albicilla) and the bald eagle (Haliaeetus leucocephalus). Overall, extremely low genetic diversity was observed in the Madagascar fish-eagle compared to other surveyed Haliaeetus species. Determining whether this low diversity is the result of a recent bottleneck or a more historic event has important implications for their conservation. Using a Bayesian coalescent-based method, we show that Madagascar fish-eagles have maintained a small effective population size for hundreds to thousands of years and that its low level of neutral genetic diversity is not the result of a recent bottleneck. Therefore, efforts made to prevent Madagascar fish-eagle extinction should place high priority on maintenance of habitat requirements and reducing direct and indirect human persecution. Given the current rate of deforestation in Madagascar, we further recommend that the population be expanded to occupy a larger geographical distribution. This will help the population persist when exposed to stochastic factors (e.g. climate and disease) that may threaten a species consisting of only 200 adult individuals while inhabiting a rapidly changing landscape. ?? 2008 The Authors.

  3. Long-term survival despite low genetic diversity in the critically endangered Madagascar fish-eagle.

    PubMed

    Johnson, Jeff A; Tingay, Ruth E; Culver, Melanie; Hailer, Frank; Clarke, Michèle L; Mindell, David P

    2009-01-01

    The critically endangered Madagascar fish-eagle (Haliaeetus vociferoides) is considered to be one of the rarest birds of prey globally and at significant risk of extinction. In the most recent census, only 222 adult individuals were recorded with an estimated total breeding population of no more than 100-120 pairs. Here, levels of Madagascar fish-eagle population genetic diversity based on 47 microsatellite loci were compared with its sister species, the African fish-eagle (Haliaeetus vocifer), and 16 of these loci were also characterized in the white-tailed eagle (Haliaeetus albicilla) and the bald eagle (Haliaeetus leucocephalus). Overall, extremely low genetic diversity was observed in the Madagascar fish-eagle compared to other surveyed Haliaeetus species. Determining whether this low diversity is the result of a recent bottleneck or a more historic event has important implications for their conservation. Using a Bayesian coalescent-based method, we show that Madagascar fish-eagles have maintained a small effective population size for hundreds to thousands of years and that its low level of neutral genetic diversity is not the result of a recent bottleneck. Therefore, efforts made to prevent Madagascar fish-eagle extinction should place high priority on maintenance of habitat requirements and reducing direct and indirect human persecution. Given the current rate of deforestation in Madagascar, we further recommend that the population be expanded to occupy a larger geographical distribution. This will help the population persist when exposed to stochastic factors (e.g. climate and disease) that may threaten a species consisting of only 200 adult individuals while inhabiting a rapidly changing landscape.

  4. Fraser River watershed, Colorado : assessment of available water-quantity and water-quality data through water year 1997

    USGS Publications Warehouse

    Apodaca, Lori Estelle; Bails, Jeffrey B.

    1999-01-01

    The water-quantity and water-quality data for the Fraser River watershed through water year 1997 were compiled for ground-water and surface-water sites. In order to assess the water-quality data, the data were related to land use/land cover in the watershed. Data from 81 water-quantity and water-quality sites, which consisted of 9 ground-water sites and 72 surface-water sites, were available for analysis. However, the data were limited and frequently contained only one or two water-quality analyses per site.The Fraser River flows about 28 miles from its headwaters at the Continental Divide to the confluence with the Colorado River. Ground-water resources in the watershed are used for residential and municipal drinking-water supplies. Surface water is available for use, but water diversions in the upper parts of the watershed reduce the flow in the river. Land use/land cover in the watershed is predominantly forested land, but increasing urban development has the potential to affect the quantity and quality of the water resources.Analysis of the limited ground-water data in the watershed indicates that changes in the land use/land cover affect the shallow ground-water quality. Water-quality data from eight shallow monitoring wells in the alluvial aquifer show that iron and manganese concentrations exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Radon concentrations from these monitoring wells exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level. The proposed radon contaminant level is currently being revised. The presence of volatile organic compounds at two monitoring wells in the watershed indicates that land use affects the shallow ground water. In addition, bacteria detected in three samples are at concentrations that would be a concern for public health if the water was to be used as a drinking supply. Methylene blue active substances were detected in the ground water at some sites and are a

  5. Decomposition analysis of water footprint changes in a water-limited river basin: a case study of the Haihe River basin, China

    NASA Astrophysics Data System (ADS)

    Zhi, Y.; Yang, Z. F.; Yin, X. A.

    2014-05-01

    Decomposition analysis of water footprint (WF) changes, or assessing the changes in WF and identifying the contributions of factors leading to the changes, is important to water resource management. Instead of focusing on WF from the perspective of administrative regions, we built a framework in which the input-output (IO) model, the structural decomposition analysis (SDA) model and the generating regional IO tables (GRIT) method are combined to implement decomposition analysis for WF in a river basin. This framework is illustrated in the WF in Haihe River basin (HRB) from 2002 to 2007, which is a typical water-limited river basin. It shows that the total WF in the HRB increased from 4.3 × 1010 m3 in 2002 to 5.6 × 1010 m3 in 2007, and the agriculture sector makes the dominant contribution to the increase. Both the WF of domestic products (internal) and the WF of imported products (external) increased, and the proportion of external WF rose from 29.1 to 34.4%. The technological effect was the dominant contributor to offsetting the increase of WF. However, the growth of WF caused by the economic structural effect and the scale effect was greater, so the total WF increased. This study provides insights about water challenges in the HRB and proposes possible strategies for the future, and serves as a reference for WF management and policy-making in other water-limited river basins.

  6. Modeling water quality, temperature, and flow in Link River, south-central Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.

    2016-09-09

    The 2.1-km (1.3-mi) Link River connects Upper Klamath Lake to the Klamath River in south-central Oregon. A CE-QUAL-W2 flow and water-quality model of Link River was developed to provide a connection between an existing model of the upper Klamath River and any existing or future models of Upper Klamath Lake. Water-quality sampling at six locations in Link River was done during 2013–15 to support model development and to provide a better understanding of instream biogeochemical processes. The short reach and high velocities in Link River resulted in fast travel times and limited water-quality transformations, except for dissolved oxygen. Reaeration through the reach, especially at the falls in Link River, was particularly important in moderating dissolved oxygen concentrations that at times entered the reach at Link River Dam with marked supersaturation or subsaturation. This reaeration resulted in concentrations closer to saturation downstream at the mouth of Link River.

  7. Water resources of the Big Black River basin, Mississippi

    USGS Publications Warehouse

    Wasson, B.E.

    1971-01-01

    Abundant supplies of water of good quality are available in the Big Black River basin from either ground-water or surface-water sources. For 90 percent of the time flow in the lower part of the Big Black River below Pickens is not less than 85 cfs (cubic feet per second), and low flows of more than 5 cfs are available in five of the eastern tributary streams in the upper half of the basin. Chemical quality of water in the streams is excellent, except for impairment caused by pollution at several places. The Big Black River basin is underlain by several thousand feet of clay, silt, sand, gravel, and limestone. This sedimentary material is mostly loose to semiconsolidated and is stratified. The beds dip to the southwest at the rate of 20 to 50 feet per mile. The Big Black River flows southwestward but at a lower gradient; therefore, any specific formation is at a greater depth below the river the farther one goes down stream. The formations crop out in northwest-southeast trending belts. Most of the available ground water is contained in six geologic units; thickness of these individual units ranges from 100 to 1,000 feet. The aquifers overlap to the extent that a well drilled to the base of fresh water will, in most places, penetrate two or more aquifers. Well depths range from less than 10 to 2,400 feet. Water suitable for most needs can be obtained from the aquifers available at most localities. Dissolved-solids content of water within an aquifer increases down the dip. Also, generally the deeper a well is the higher will be the dissolved-solids content of the water. Shallow ground water (less than 200 ft deep) in the basin usually contains about 100 mg/l (milligrams per liter) of dissolved solids. Most water in the basin from more than 2,500 feet below land surface contains m ore than 1,000 mg/l of dissolved solids. In several areas fresh water is deeper than 2,500 feet, but near the mouth of the Big Black River brackish water is only about 300 feet below land

  8. Water resources of the Zumbro River watershed, southeastern Minnesota

    USGS Publications Warehouse

    Anderson, H.W.; Farrell, D.F.; Broussard, W.L.; Hult, M.F.

    1975-01-01

    The Zumbro River drains 1,428 square miles and falls from about 1,300 feet altitude in its headwaters to 665 feet at its mouth. The remaining 248 square miles included in the watershed is drained by small creeks flowing directly into the Mississippi River. Distribution of water use is about as follows: domestic, 50 percent; farm (for irrigation and livestock), 18 percent; and industrial, 32 percent. Total usage, in water-budget terms, is 0.24 inch over the entire watershed, or less than 1 percent of inflow (average annual precipitation). Total quantity of water, thus, is of lesser concern than local availability and quality of water. The dominant ions (calcium, magnesium, and bicarbonate) and dissolved solids are reduced by dilution during periods of high water discharge in the Zumbro River at Zumbro Falls. Similarly, in the South Fork Zumbro River near Rochester, dominant ions, dissolved solids, and those ions that are increased by waste disposal (sodium, chloride, and nitrates) are all reduced by dilution at high water discharge. For the Zumbro River the smallest monthly range and the most uniform daily mean discharge usually occurs in January, whereas the greatest range usually occurs in March. The lowest flows usually occur in the winter and the highest during the spring ice breakup. The lowest observed flow, 47 cfs, occurred on February 18, 1961 and the highest, 23,600 cfs, occurred on March 29, 1962. Seventeen of 22 municipalities obtain at least part of their water supply from the Prairie du Chien-Jordan aquifer. Although only one town uses the Galena aquifer, a large number of private domestic wells are completed in it in the western part of the watershed. (Woodard-USGS)

  9. California GAMA Special Study: Importance of River Water Recharge to Selected Groundwater Basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, Ate; Moran, Jean E.; Singleton, Michael J.

    River recharge represents 63%, 86% and 46% of modern groundwater in the Mojave Desert, Owens Valley, and San Joaquin Valley, respectively. In pre-modern groundwater, river recharge represents a lower fraction: 36%, 46%, and 24% respectively. The importance of river water recharge in the San Joaquin valley has nearly doubled and is likely the result of a total increase of recharge of 40%, caused by river water irrigation return flows. This emphasizes the importance of recharge of river water via irrigation for renewal of groundwater resources. Mountain front recharge and local precipitation contribute to recharge of desert groundwater basins in partmore » as the result of geological features focusing scarce precipitation promoting infiltration. River water recharges groundwater systems under lower temperatures and with larger water table fluctuations than local precipitation recharge. Surface storage is limited in time and volume, as evidenced by cold river recharge temperatures resulting from fast recharge, compared to the large capacity for subsurface storage. Groundwater banking of seasonal surface water flows therefore appears to be a natural and promising method for increasing the resilience of water supply systems. The distinct isotopic and noble gas signatures of river water recharge, compared to local precipitation recharge, reflecting the source and mechanism of recharge, are valuable constraints for numerical flow models.« less

  10. River Pollution: Part II. Biological Methods for Assessing Water Quality.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1984-01-01

    Discusses methods used in the biological assessment of river quality and such indicators of clean and polluted waters as the Trent Biotic Index, Chandler Score System, and species diversity indexes. Includes a summary of a river classification scheme based on quality criteria related to water use. (JN)

  11. Water quality assessment of highly polluted rivers in a semi-arid Mediterranean zone Oued Fez and Sebou River (Morocco)

    NASA Astrophysics Data System (ADS)

    Perrin, J. L.; Raïs, N.; Chahinian, N.; Moulin, P.; Ijjaali, M.

    2014-03-01

    Oued Fez (one of the Sebou River tributaries - Morocco) allowed us to study and quantify the effect of the lack of wastewater treatment on surface water quality in semi-arid hydrological context. The analysis is based on field data collected from June 2009 to December 2011. Concentration and load patterns of nitrogen, phosphorus and chromium (used in the processing of leather) are compared in stable hydrological conditions during low flow and high flow periods in an eight-location sampling network. The Oued Fez and the Sebou River are characterised by severe pollution downstream from the city of Fez, particularly TN (mainly NH4 and Norg), TP (mainly Ppart) and TCr. The most polluted sites are those directly under the influence of domestic and industrial waste water inputs, particularly tannery effluents. Obviously, the concentrations measured at these locations are above all environmental quality standards. Pollutant loads are very heavy in the Sebou River and can contaminate the river course for kilometres. Moreover, as the water of the Sebou River is used for the irrigation of vegetables, serious problems of public health could arise. A better understanding of contaminant dynamics and self-purifying processes in these rivers will help implement actions and steps aimed at improving water quality in the Sebou River, which is the primary water supply source in Morocco and is used for agricultural and industrials purposes as well as for drinking water.

  12. Dissolved silica in the tidal Potomac River and Estuary, 1979-81 water years

    USGS Publications Warehouse

    Blanchard, Stephen F.

    1988-01-01

    The Potomac River at Chain Bridge is the major riverine source of dissolved silica (DSi) to the tidal Potomac River and Estuary. DSi concentrations at Chain Bridge are positively correlated with river discharge; river discharge is an important factor controlling rates of supply, dilution, and residence time. When river flow is high, the longitudinal DSi distribution is conservative. When river flow is low, other processes, such as phytoplankton uptake, benthic flux, resuspension, ground-water discharge, and water-column dissolution of diatoms, tend to be more influential than the river. Elevated concentrations of DSi in sewage-treatment-plant effluent in the Washington, D.C., area raise the DSi concentration of receiving Potomac River water. The tidal river zone serves as a net sink for DSi as a result of phytoplankton uptake. Ultimately, the biogenic silica from the tidal river is transported to the transition zone, where it is mineralized. As a result, the DSi concentration in the transition zone increases during summer. The DSi concentrations in the estuarine zone are largely controlled by dilution by Chesapeake Bay water and by phytoplankton uptake.

  13. Assessment of Water Resource Sustainability in Energy Production for Hydraulic Fracturing in the Eagle Ford Shale Play, Texas

    NASA Astrophysics Data System (ADS)

    Obkirchner, G.; Knappett, P.; Burnett, D.; Bhatia, M.; Mohtar, R.

    2017-12-01

    The Eagle Ford shale is one of the largest producers of shale oil globally. It is located in a semi-arid region of South Central Texas where hydraulic fracturing for oil and gas production accounts for 16% of total water consumption in Region L Groundwater Management Area (GMA). Because water is largely supplied through groundwater sources, it is critical to understand, monitor, and predict future groundwater budgets to keep up with growing demands from the municipal and energy sectors to improve its management and sustainability. Within the Texas A&M University Water-Energy-Food (WEF) Nexus Initiative and research group, tools have been developed that quantify the interrelations between water, energy, and transportation within Region L and calculate the environmental needs/outcomes to reach optimum levels of oil and gas production. These tools will be combined with a groundwater budget model to fully integrate groundwater limitations and enhance the resiliency of energy production. With about half of oil and gas production wells located in high to extremely high water stress areas, monitoring and modeling must be drastically improved to predict the impacts of various spatial distributions of pumping rates on future aquifer conditions. These changing conditions will impact the cost of water production in an aquifer. Combining the WEF Nexus tools with hydrologic models creates a multi-disciplinary sustainability assessment model that calculates social and economic constraints from an area's limited water resources. This model will allow industry, governments and scientists to plan through evaluating the impacts of any number of growth, conservation and reuse scenarios across different water usage sectors on groundwater supplies.

  14. Reconnaissance of the Manistee River, a cold-water river in the northwestern part of Michigan's Southern Peninsula

    USGS Publications Warehouse

    Hendrickson, G.E.; Doonan, C.J.

    1972-01-01

    The cold-water streams of the northern states provide unique recreational values to the American people (wilderness or semi-wilderness atmosphere, fast-water canoeing, trout fishing), but expanding recreational needs must be balanced against the growing demand of water for public and industrial supplies, irrigation, and dilution of sewage and other wastes. In order to make intelligent decisions regarding use and management of water resources for recreation and other demands, an analysis of hydrologic factors related to recreation is essential.The Manistee River is one of Michigan's well-known trout streams-a stream having numerous public access sites and campgrounds. Upstream from Cameron Bridge (see location map) the Manistee is rated as a first-class trout stream but below Cameron Bridge the river is rated only as a fair trout stream by the Michigan Department of Natural Resources. As a Michigan canoe trail it is second only to the Au Sable River in popularity. Esthetically, the Manistee is one of Michigan's most attractive rivers, its waters flowing cool and clean, and around each bend a pleasant wilderness scene. This report deals with that part of the river upstream from State Highway M-66 at Smithville. Several hard-surface roads give access to the upper river as shown on the location map. Numerous dirt roads and trails give access to the river at intermediate points. The recreational values of the Manistee depend on its characteristics of streamflow, water quality, and bed and banks. This atlas describes these characteristics and shows how they relate to recreational use.Much of the information presented here was obtained from basic records of the U.S. Geological Survey's Water Resources Division. Additional information was obtained from field reconnaissance surveys in 1968 and 1969. The study was made in cooperation with the Michigan Geological Survey, Gerald E. Eddy, Chief. Assistance was also obtained from other sections of the Michigan Department of

  15. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    USGS Publications Warehouse

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  16. Contributions of flumequine and nitroarenes to the genotoxicity of river and ground waters.

    PubMed

    Ma, Fujun; Yuan, Guanxiang; Meng, Liping; Oda, Yoshimitsu; Hu, Jianying

    2012-07-01

    The SOS/umuC assay was performed in conjunction with analytical measurements to identify potential genotoxins in river and adjacent ground waters in the Jialu River basin, China. The major genotoxic activities of the river and adjacent ground waters occurred in the same two fractions (F4 and F11) when assayed using the Salmonella typhimurium strain TA1535/pSK1002. This indicates that ground water near the Jialu River was influenced by the river water. LC-MS/MS analysis indicated that flumequine accounted for 86% and 76% of the genotoxicity in fraction F11 of the river and adjacent ground waters, respectively. When HPLC fractions were tested using the strain NM3009, three fractions showed genotoxic activities for river water sample, while no fractions from ground water samples elicited genotoxic activities. The specific response to the strain NM3009 in one fraction compared with the strain TA1535/pSK1002 suggested the presence of nitroarenes. However, we failed to identify the exact nitroarenes when GC-MS analysis was used to analyze nitroarenes which are well detected in air and soil samples in previous papers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Landscapes for Energy and Wildlife: Conservation Prioritization for Golden Eagles across Large Spatial Scales

    PubMed Central

    Tack, Jason D.; Fedy, Bradley C.

    2015-01-01

    Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development. PMID:26262876

  18. Landscapes for energy and wildlife: conservation prioritization for golden eagles across large spatial scales

    USGS Publications Warehouse

    Tack, Jason D.; Fedy, Bradley C.

    2015-01-01

    Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development.

  19. Landscapes for Energy and Wildlife: Conservation Prioritization for Golden Eagles across Large Spatial Scales.

    PubMed

    Tack, Jason D; Fedy, Bradley C

    2015-01-01

    Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development.

  20. Historical water-quality data from the Harlem River, New York

    USGS Publications Warehouse

    Fisher, Shawn C.

    2016-04-22

    Data specific to the Harlem River, New York, have been summarized and are presented in this report. The data illustrate improvements in the quality of water for the past 65 years and emphasize the importance of a continuous water-quality record for establishing trends in environmental conditions. Although there is a paucity of sediment-quality data, the New York City Department of Environmental Protection (NYCDEP) Bureau of Wastewater Treatment has maintained a water-quality monitoring network in the Harlem River (and throughout the harbor of New York City) to which 61 combined sewer outfalls discharge effluent. In cooperation with the NYCDEP, the U.S. Geological Survey evaluated water-quality data collected by the NYCDEP dating back to 1945, which indicate trends in water quality and reveal improvement following the 1972 passage of the Clean Water Act. These improvements are indicated by the steady increase in median dissolved oxygen concentrations and an overall decrease in fecal indicator bacteria concentrations starting in the late 1970s. Further, the magnitude of the highest fecal indicator bacteria concentrations (that is, the 90th percentile) in samples collected from the Harlem River have decreased significantly over the past four decades. Other parameters of water quality used to gauge the health of a water body include total suspended solids and nutrient (inorganic forms of nitrogen and phosphorus) concentrations—mean concentrations for these indicators have also decreased in the past decades. The limited sediment data available for one sample in the Harlem River indicate concentrations of copper, zinc, and lead are above sediment-quality thresholds set by the New York State Department of Environmental Conservation. However, more data are needed to better understand the changes in both sediment and water quality in the Harlem River, both as the tide cycles and during precipitation events. As a partner in the Urban Waters Federal Partnership, the U

  1. EAGLE The controlled source experiment

    NASA Astrophysics Data System (ADS)

    Maguire, P. K. H.; Eagle Controlled Source Group

    2003-04-01

    In January 2003, a wide-angle reflection / refraction seismic project was carried out over the north-eastern section of the Main Ethiopian Rift as part of the international EAGLE (Ethiopia Afar Geoscientific Lithospheric Experiment) programme. EAGLE comprises a combination of passive and controlled source seismic experiments to determine the geometry and kinematics of a continental rift immediately prior to break-up, enabling the development of magmatic margin break-up models. A total of ˜900 seismic instruments were deployed along two 450km profiles, one along the axis of the Ethiopian Rift into the south-west corner of Afar; and a second across the rift, extending north and south across the uplifted, flood basalt covered, Ethiopian plateau. The two profiles intersect over the Nazret volcanic segment in the rift. This may be indicative of the transition from continental style rifting in which strain is accommodated on the rift bounding border faults, to a state where strain and magmatism have migrated to a narrow zone within the rift, a necessary pre-cursor to break-up. A further ˜300 instruments were deployed in a 100x100km^2 array around the intersection of the two profiles. A total of 16 borehole and 2 lake shots were fired into the network over a period of four days. The principal objectives of the controlled source project were to examine crustal strain, the distribution of crustal magmatic intrusions, the influence of pre-rift crustal property variations on rift development and also to provide a crustal seismic velocity distribution to improve images of the deep mantle, as well as earthquake locations derived from the EAGLE passive arrays.

  2. Metal concentrations of river water and sediments in West Java, Indonesia.

    PubMed

    Yasuda, Masaomi; Yustiawati; Syawal, M Suhaemi; Sikder, Md Tajuddin; Hosokawa, Toshiyuki; Saito, Takeshi; Tanaka, Shunitz; Kurasaki, Masaaki

    2011-12-01

    To determine the water environment and pollutants in West Java, the contents of metals and general water quality of the Ciliwung River in the Jakarta area were measured. High Escherichia coli number (116-149/mL) was detected downstream in the Ciliwung River. In addition to evaluate mercury pollution caused by gold mining, mercury contents of water and sediment samples from the Cikaniki River, and from paddy samples were determined. The water was not badly polluted. However, toxic metals such as mercury were detected at levels close to the baseline environmental standard of Indonesia (0.83-1.07 μg/g of sediments in the Cikaniki River). From analyses of the paddy samples (0.08 μg/g), it is considered that there is a health risk caused by mercury.

  3. Satellite radar altimetry water elevations performance over a 200 m wide river: Evaluation over the Garonne River

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Frappart, F.; Leleu, A.-S.; Marieu, V.; Blumstein, D.; Desjonquères, Jean-Damien; Boy, F.; Sottolichio, A.; Valle-Levinson, A.

    2017-01-01

    For at least 20 years, nadir altimetry satellite missions have been successfully used to first monitor the surface elevation of oceans and, shortly after, of large rivers and lakes. For the last 5-10 years, few studies have demonstrated the possibility to also observe smaller water bodies than previously thought feasible (river smaller than 500 m wide and lake below 10 km2). The present study aims at quantifying the nadir altimetry performance over a medium river (200 m or lower wide) with a pluvio-nival regime in a temperate climate (the Garonne River, France). Three altimetry missions have been considered: ENVISAT (from 2002 to 2010), Jason-2 (from 2008 to 2014) and SARAL (from 2013 to 2014). Compared to nearby in situ gages, ENVISAT and Jason-2 observations over the lower Garonne River mainstream (110 km upstream of the estuary) have the smallest errors, with water elevation anomalies root mean square errors (RMSE) around 50 cm and 20 cm, respectively. The few ENVISAT upstream measurements have RMSE ranging from 80 cm to 160 cm. Over the estuary, ENVISAT and SARAL water elevation anomalies RMSE are around 30 cm and 10 cm, respectively. The most recent altimetry mission, SARAL, does not provide river elevation measurements for most satellite overflights of the river mainstream. The altimeter remains "locked" on the top of surrounding hilly areas and does not observe the steep-sided river valley, which could be 50-100 m lower. This phenomenon is also observed, for fewer dates, on Jason-2 and ENVISAT measurements. In these cases, the measurement is not "erroneous", it just does not correspond to water elevation of the river that is covered by the satellite. ENVISAT is less prone to get 'locked' on the top of the topography due to some differences in the instrument measurement parameters, trading lower accuracy for more useful measurements. Such problems are specific to continental surfaces (or near the coasts), but are not observed over the open oceans, which are

  4. Studies on the current state of water quality in the Segamat River

    NASA Astrophysics Data System (ADS)

    Razelan, Faridah Mohd; Tahir, Wardah; E. M Yahaya, Nasehir Khan

    2018-04-01

    Nowadays, pollution has become a major concern in developed and developing countries. In a study on the current state of Segamat River water quality; on-site data collection and observation and also laboratory data analysis have been implemented. Studies showed that the downstream of the Segamat River has recorded a significant reduction in quality of water during the dry season compared to the wet season. The deterioration of water quality is caused by the activities along the river such as palm oil plantation, municipal waste and waste from settlements. It was also recorded that the point sources were dominating the pollution at Segamat River during the dry season. However, during the wet season, the water quality was impaired by the non-point sources which originated from the upstream of the river.

  5. Water resources of the Blackstone River basin, Massachusetts

    USGS Publications Warehouse

    Izbicki, John A.

    2000-01-01

    By 2020, demand for water in the Blackstone River Basin is expected to be 52 million gallons per day, one-third greater than the demand of 39 million gallons per day in 1980. Most of this increase is expected to be supplied by increased withdrawals of ground water from stratified-drift aquifers in the eastern and northern parts of the basin. Increased withdrawals from stratified-drift aquifers along the Blackstone River and in the western part of the basin also are expected.The eastern and northern parts of the Blackstone River Basin contain numerous small, discontinuous aquifers which, as a group, comprise the largest ground-water resource of the study area. Fifteen aquifers, ranging in areal extent from 0.57 to 4.3 square miles, were identified. These aquifers have maximum saturated thicknesses ranging from less than 10 feet to 105 feet and maximum transmissivities ranging from less than 1,000 to more than 20,000 feet squared per day. Yields of nine study aquifers were estimated by use of digital ground-water-flow models. Yields depend on the hydraulic properties of the aquifer and the amount of streamflow available for depletion by wells. If streamflow is maintained at 98-percent duration, long-term yields from the aquifers that would be expected to be equaled or exceeded 50 percent of the time range from 0.22 to 11 million gallons per day, and long-term yields equaled or exceeded 95 percent of the time range from 0.06 to 1.0 million gallons per day. If streamflow is maintained at 99.5-percent duration, long-term yields equaled or exceeded 50 percent of the time range from 0.22 to 11 million gallons per day, long-term yields equaled or exceeded 95 percent of the time range from 0.04 to 1.4 million gallons per day, and longterm yields equaled or exceeded 98 percent of the time range from 0.02 to 0.39 million gallons per day. Maintaining streamflow at 98-percent duration is a more restrictive criterion than maintaining streamflow at 99.5-percent duration. The

  6. Organochlorine pesticide, PCB, and PBB residues and necropsy data for bald eagles from 29 states - 1975-77

    USGS Publications Warehouse

    Kaiser, T. Earl; Reichel, William L.; Locke, Louis N.; Cromartie, Eugene; Krynitsky, Alexander J.; Lamont, Thair; Mulhern, Bernard M.; Prouty, Richard M.; Stafford, Charles J.; Swineford, Douglas M.

    1980-01-01

    During 1975-77, 168 bald eagles (Haliaeetus leucocephalus) found moribund or dead in 29 states were analyzed for organochlorine pesticides and polychlorinated biphenyls (PCBs); 32 specimens from 13 states were analyzed for polybrominated biphenyls (PBBs). PCBs were present in 166 bald eagle carcasses and DDE was found in 165. TDE and dieldrin were identified in 137 samples, trans-nonachlor in 118, and oxychlordane in 90. Brains of five eagles contained possible lethal levels of dieldrin, and two eagles possibly died of endrin poisoning. Nine eagle livers, analyzed because of suspected lead poisoning, contained high levels of lead. Twenty percent of the eagles died from shooting, the most common cause of death; this cause of death, however, has declined.

  7. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Dan J.; Heindel, Jeff A.; Redding, Jeremy

    2006-05-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound inmore » Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2004 and December 31, 2004 for the hatchery element of the program are presented in this report. In 2004, twenty-seven anadromous sockeye salmon returned to the Sawtooth Valley. Traps on Redfish Lake Creek and the upper Salmon River at the Sawtooth Fish Hatchery intercepted one and four adults, respectively. Additionally, one adult sockeye salmon was collected at the East Fork Salmon River weir, 18 were seined from below the Sawtooth Fish Hatchery weir, one adult sockeye salmon was observed below the Sawtooth Fish Hatchery weir but not captured, and two adult sockeye salmon were observed in Little Redfish Lake but not captured. Fish were captured/collected between July 24 and September 14, 2004. The captured/collected adult sockeye salmon (12 females and 12 males) originated from a variety of release strategies and were transferred

  8. The Upper Colorado River; National Water-Quality Assessment Program; surface-water-monitoring network

    USGS Publications Warehouse

    Spahr, Norman E.; Driver, Nancy E.; Stephens, Verlin C.

    1996-01-01

    The U.S. Geological Survey began full implementation of the National Water-Quality Assessment (NAWQA) program in 1991. The long-term goals of the NAWQA program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams, rivers, and aquifers; (2) describe how water quality is changing over time; and (3) improve understanding of the primary natural and human factors that affect water-quality conditions (Leahy and others, 1990). To meet these goals, 60 study units representing the Nation's most important river basins and aquifers are being investigated. The program design balances the unique assessment requirements of individual study units with a nationally consistent design structure that incorporates a multiscale, interdisciplinary approach for assessment of surface and ground water.

  9. History of water quality parameters - a study on the Sinos River/Brazil.

    PubMed

    Konzen, G B; Figueiredo, J A S; Quevedo, D M

    2015-05-01

    Water is increasingly becoming a valuable resource, constituting one of the central themes of environmental, economic and social discussions. The Sinos River, located in southern Brazil, is the main river from the Sinos River Basin, representing a source of drinking water supply for a highly populated region. Considering its size and importance, it becomes necessary to conduct a study to follow up the water quality of this river, which is considered by some experts as one of the most polluted rivers in Brazil. As for this study, its great importance lies in the historical analysis of indicators. In this sense, we sought to develop aspects related to the management of water resources by performing a historical analysis of the Water Quality Index (WQI) of the Sinos River, using statistical methods. With regard to the methodological procedures, it should be pointed out that this study performs a time analysis of monitoring data on parameters related to a punctual measurement that is variable in time, using statistical tools. The data used refer to analyses of the water quality of the Sinos River (WQI) from the State Environmental Protection Agency Henrique Luiz Roessler (Fundação Estadual de Proteção Ambiental Henrique Luiz Roessler, FEPAM) covering the period between 2000 and 2008, as well as to a theoretical analysis focusing on the management of water resources. The study of WQI and its parameters by statistical analysis has shown to be effective, ensuring its effectiveness as a tool for the management of water resources. The descriptive analysis of the WQI and its parameters showed that the water quality of the Sinos River is concerning low, which reaffirms that it is one of the most polluted rivers in Brazil. It should be highlighted that there was an overall difficulty in obtaining data with the appropriate periodicity, as well as a long complete series, which limited the conduction of statistical studies such as the present one.

  10. Simulation of blue and green water resources in the Wei River basin, China

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Zuo, D.

    2014-09-01

    The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool), calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program) based on river discharge in the Wei River basin (WRB). Sensitivity and uncertainty analyses were also performed to improve the model performance. Water resources components of blue water flow, green water flow and green water storage were estimated at the HRU (Hydrological Response Unit) scales. Water resources in HRUs were also aggregated to sub-basins, river catchments, and then city/region scales for further analysis. The results showed that most parts of the WRB experienced a decrease in blue water resources between the 1960s and 2000s, with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (Guanzhong Plain), one of the most important grain production basements in China. Variations of green water flow and green water storage were relatively small on the spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources and planning of cultivating seasons in the Wei River basin.

  11. Research note: isolation of a herpesvirus from a bald eagle nestling

    USGS Publications Warehouse

    Docherty, D.E.; Romaine, R.I.; Knight, R.L.

    1983-01-01

    Cloacal swabs collected from wild bald eagle nestlings (Haliaeetus leucocephalus) were tested for viruses. A virus isolated from one of these samples had a lipid coat and contained DNA. Electron microscopy confirmed that it was a herpesvirus. This appears to be the first report of a herpesvirus isolation from a wild bald eagle.

  12. Accounting for Consumptive Use of Lower Colorado River Water in Arizona, California, Nevada, and Utah

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Wilson, Richard P.

    1994-01-01

    In the Colorado River valley between the east end of Lake Mead and the international boundary with Mexico (see figure), the river is the principal source of water for agricultural, domestic, municipal, industrial, hydroelectric-power generation, and recreational purposes. Water is stored in surface reservoirs and in the river aquifer---permeable sediments and sedimentary rocks that fill the lower Colorado River valley and adjacent tributary valleys. The hydraulic connection between the river and the river aquifer, overbank flow prior to building of the dams, and infiltration as the reservoirs filled allowed the sediments and sedimentary rocks to become saturated with water from the river. Ratios of isotopes of hydrogen and oxygen in water from wells indicate that most of the water in the river aquifer beneath the flood plain and in many places beneath the adjacent alluvial slopes originated from the river. The water table in the river aquifer extends from the river, beneath the flood plain, and under the alluvial slopes until it intersects bedrock. Precipitation in the surrounding mountains and inflow from tributary valleys also contribute small quantities of water to the river aquifer. Consumptive use of river water in the valley results from evapotranspiration by vegetation (crops and phreatophytes) on the flood plain, pumpage from wells to meet domestic and municipal needs, and pumpage from the river for export to areas in California, Arizona, and Nevada outside of the river valley. Most crops are grown on the flood plain; in a few areas, land on the adjacent terraces has been cultivated. Crops were grown on about 70 percent of the total vegetated area in 1984. Phreatophytes---natural vegetation that obtains water from the river aquifer---covered the remaining vegetated areas on the uncultivated flood plain. Most of the water used for irrigation is diverted or pumped directly from the river and reservoirs. Most of the water used for domestic and municipal

  13. Regional water table (2000) and ground-water-level changes in the Mojave River and the Morongo ground-water basins, southwestern Mojave Desert, California

    USGS Publications Warehouse

    Smith, Gregory A.

    2003-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems, and consequently, water availability. During 2000, the U. S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and, when compared with previous data, changes in ground-water levels. A water-level contour map was drawn using data from about 500 wells, providing coverage for most of the basins. Twenty-nine hydrographs show long-term (up to 70 years) water-level conditions throughout the basins, and 13 short-term (1996 to 2000) hydrographs show the effects of recharge and discharge along the Mojave River. In addition, a water-level-change map was compiled to compare 1998 and 2000 water-levels throughout the basins. In the Mojave River ground-water basins, water-level data showed little change from 1998 to 2000, with the exception of areas along the Mojave River. Water levels along the Mojave River were typically in decline or unchanged, with exceptions near the Hodge and the Lenwood outlet, where water levels rose in response to artificial recharge. The Morongo ground-water basin had virtually no change in water levels from 1998 to 2000, with the exception of Yucca Valley, where artificial recharge and ground-water withdrawal continues.

  14. A global analysis of the environmental cost of river water withdrawals

    NASA Astrophysics Data System (ADS)

    Soligno, Irene; Ridolfi, Luca; Laio, Francesco

    2017-04-01

    World freshwater ecosystems are considerably declining, at a faster rate than other ecosystems. Water withdrawals are identified as one of the main drivers of increasing water stress in several river basins worldwide. So far, much effort has been devoted to quantify water withdrawals and fluvial water consumptions at a global scale; however, comparisons are not simple because the irregular spatiotemporal distribution of freshwater resources entails that the same volume of consumed water does not have the same environmental "cost" in different times or places. In order to take into account this spatial and temporal heterogeneity, our work proposes a novel index to evaluate the environmental cost of a reference amount of water withdrawn from a generic river section. The index depends on (i) the local environmental relevance of the impacted fluvial ecosystem (e.g., nutrient/sediment transport capacity, width of the riparian region, biodiversity richness) and (ii) the portion of the river network impacted by the reference water withdrawal, that is the downstream drainage network. In the present work, the index is applied at a global scale with a 0.5° x 0.5° spatial resolution and employing annual average data of river discharge. Globally, regions and countries more environmentally vulnerable to water depletion are identified. Since the proposed index systematically assesses the environmental cost by accounting for the downstream propagation effect of a water withdrawal on the fluvial ecosystem, it aims to support decision-making in global transboundary river basins as well.

  15. GROUNDWATER-SURFACE WATER EXCHANGE AND IMPLICATIONS FOR LARGE RIVER RESTORATION

    EPA Science Inventory

    Movement of river water into and out of high-porosity alluvial deposits can have an important influence on surface water quality and aquatic habitat. In our study of a 60-km reach of the Willamette River in Oregon, USA, we: 1) used tracers to estimate the rate of exchange betw...

  16. The Influence of Climate Change on Irrigated Water Demands and Surface Water Availability of the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Zhang, J.

    2017-12-01

    Balancing irrigated water demands and surface water availability is critical for sustainable water resources management. In China, irrigation is the largest water user, and there is concern that irrigated water demands will be affected by climate change. If the relationship between climate change, irrigated water demands and surface water availability is quantified, then effective measures can be developed to maintain food production while ensuring water sustainability. This research focuses on the Yellow River, the second longest in China, and analyzes the impact of historical and projected climate change on agricultural water demands and surface water availability. Corn and wheat are selected as representative crops to estimate the effect of temperature and precipitin changes on irrigated water demands. The VIC model is used to simulate daily streamflow throughout the Yellow River, providing estimates of surface water availability. Overall, results indicate the irrigated water need and surface water availability are impacted by climate change, with spatially varying impacts depending on spatial patterns of climate trends and river network position. This research provides insight into water security in the Yellow River basin, indicating where water efficiency measures are needed and where they are not.

  17. Polybrominated diphenyl ethers in bald (Haliaeetus leucocephalus) and golden (Aquila chrysaetos) eagles from Washington and Idaho, USA.

    PubMed

    Spears, Brian Lee; Isanhart, John

    2014-12-01

    Little is known about the exposure and accumulation of polybrominated diphenyl ethers (PBDEs) in the 2 species of eagles inhabiting North America. The authors analyzed the livers of 33 bald eagles and 7 golden eagles collected throughout Washington and Idaho, USA, for 51 PBDE congeners. Total PBDEs ranged from 2.4 ng/g to 9920 ng/g wet weight. Bald eagles and eagles associated with large urban areas had the highest PBDE concentrations; golden eagles and eagles from more sparsely populated areas had the lowest concentrations. Congener patterns in the present study (brominated diphenyl ether [BDE]-47, BDE-99, BDE-100, BDE-153, and BDE-154 dominating concentrations) were similar to those reported for other bird species, especially raptors. However, the authors also found elevated contributions of BDE-209 in golden eagles and BDE-77 in both species. Patterns in bald eagle samples reflected those in fillets of fish collected from the same general locations throughout Washington, suggesting local exposure to runoff-based contamination, whereas patterns in golden eagle samples suggest a difference in food chain uptake facilitated by atmospheric transport and deposition of BDE-209 and its degradation products into the terrestrial system. Data from the present study represent some of the first reported on burdens of PBDEs in juvenile and adult eagles from North America. The high PBDE liver concentrations associated with large metropolitan areas and accumulation of deca-BDE congeners are a cause for concern. Published 2014 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and as such, is in the public domain in the United States of America.

  18. Where does the water come from? Examining water stable isotopes across river basins

    EPA Science Inventory

    Global warming is expected to dramatically alter the timing and quantity of water within the nation’s river systems; however, these impacts will be heterogeneous both within river basins and across regions. A detailed understanding of the spatial and temporal dynamics of wa...

  19. Reproduction and distribution of bald eagles in Voyageurs National Park, Minnesota, 1973-1993

    USGS Publications Warehouse

    Grim, Leland H.; Kallemeyn, Larry W.

    1995-01-01

    The bald eagle (Haliaeetus leucocephalus) is classified as a threatened species in Minnesota. In 1973, the National Park Service began monitoring the distribution and reproduction of bald eagles in and immediately adjacent to Voyageurs National Park to obtain data that park management could use to protect bald eagles from the effects of use of the park by visitors and from the expansion of park facilities. Thirty-seven breeding areas were identified during 1973-93. Annual productivity ranged from 0.00 to 1.42 fledglings/occupied nest and averaged 0.68 during the 21 breeding seasons. The annual number of breeding pairs tripled, the mean number of fledged eaglets increased 5 times, and reproductive success doubled during the study. However, in more than 15 of the breeding seasons, the mean productivity and the annual reproductive success in Voyageurs National Park were below the 1 fledgling/occupied nest and the 70% reproductive success that are representative of healthy bald eagle populations. We suspect that toxic substances, human disturbance, severe weather, and lack of food in early spring may have kept bald eagles in Voyageurs National Park from achieving a breeding success that was similar to that of conspecifics in the nearby Chippewa National Forest. The cumulative effect of these variables on reproduction and on habitat of bald eagles in Voyageurs National Park is unknown and should be determined.

  20. Environmental flows and water quality objectives for the River Murray.

    PubMed

    Gippel, C; Jacobs, T; McLeod, T

    2002-01-01

    Over the past decade, there intense consideration of managing flows in the River Murray to provide environmental benefits. In 1990 the Murray-Darling Basin Ministerial Council adopted a water quality policy: To maintain and, where necessary, improve existing water quality in the rivers of the Murray-Darling Basin for all beneficial uses - agricultural, environmental, urban, industrial and recreational, and in 1994 a flow policy: To maintain and where necessary improve existing flow regimes in the waterways of the Murray-Darling Basin to protect and enhance the riverine environment. The Audit of Water Use followed in 1995, culminating in the decision of the Ministerial Council to implement an interim cap on new diversions for consumptive use (the "Cap") in a bid to halt declining river health. In March 1999 the Environmental Flows and Water Quality Objectives for the River Murray Project (the Project) was set up, primarily to establish be developed that aims to achieve a sustainable river environment and water quality, in accordance with community needs, and including an adaptive approach to management and operation of the River. It will lead to objectives for water quality and environmental flows that are feasible, appropriate, have the support of the scientific, management and stakeholder communities, and carry acceptable levels of risk. This paper describes four key aspects of the process being undertaken to determine the objectives, and design the flow options that will meet those objectives: establishment of an appropriate technical, advisory and administrative framework; establishing clear evidence for regulation impacts; undergoing assessment of environmental flow needs; and filling knowledge gaps. A review of the impacts of flow regulation on the health of the River Murray revealed evidence for decline, but the case for flow regulation as the main cause is circumstantial or uncertain. This is to be expected, because the decline of the River Murray results

  1. Ecosystem based river basin management planning in critical water catchment in Mongolia

    NASA Astrophysics Data System (ADS)

    Tugjamba, Navchaa; Sereeter, Erdenetuul; Gonchigjav, Sarantuya

    2014-05-01

    Developing the ecosystem based adaptation strategies to maintain water security in critical water catchments in Mongolia would be very significant. It will be base by reducing the vulnerability. "Ecosystem Based adaptation" is quite a new term in Mongolia and the ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way. To strengthen equitable economic development, food security, climate resilience and protection of the environment, the implementation of sustainable river basin management in critical water catchments is challenging in Mongolia. The Ulz river basin is considered one of the critical water catchments due to the temperature has increased by in average 1.30Ñ over the period 1976 to 2011. It is more intense than the global warming rate (0.740C/100 years) and a bit higher than the warming rate over whole Mongolia as well. From long-term observations and measurements it is clear that Ulz River has low water in a period of 1970-1980 and since the end of 1980s and middle of 1990s there were dominated years of the flood. However, under the influence of the global warming, climate changes of Mongolia and continuation of drought years with low water since the end of 1990s until today river water was sharply fallen and dried up. For the last ten years rivers are dried up and annual mean run-off is less by 3-5 times from long term mean value. The Ulz is the transboundary river basin and taking its origin from Ikh and Baga Burd springs on territory of Norovlin soum of Khentii province that flows through Khentii and Dornod provinces to the northeast, crossing the state border it flows in Baruun Tari located in Tari Lake concavity in Russia. Based on the integrative baseline study on the 'The Ulz River Basin Environmental and Socioeconomic condition', ecosystem based river basin management was planned. 'Water demand Calculator 3' (WDC) software was used to

  2. Satellite tracking of two lesser spotted eagles Aquila pomarina, migrating from Namibia

    USGS Publications Warehouse

    Meyburg, B.-U.; Ellis, D.H.; Meyburg, C.; Mendelsohn, J.; Scheller, W.

    2001-01-01

    One immature and one subadult Lesser Spotted Eagle, Aquila pomarina, were followed by satellite telemetry from their non-breeding areas in Namibia. Both birds were fitted with transmitters (PTTs) in February 1994 and tracked, the immature for six months and two weeks, over distances of 10084 and 16773 km, respectively. During their time in Namibia both birds? movements were in response to good local rainfall. The immature eagle left Namibia at the end of February, the subadult at the end of March. They flew to their respective summer quarters in Hungary and the Ukraine, arriving there 2.5 and 1.5 months later than the breeding adults. The immature eagle took over two months longer on the homeward journey than a breeding male followed by telemetry in a previous study. On returning, the immature eagle followed the narrow flightpath through Africa used by other Lesser Spotted Eagles on their outward migration. It reached this corridor, which runs roughly between longitudes 31? and 36? East from Suez to Lake Tanganyika, veering from the shortest route in a direction east-northeast through Angola and Zambia to the southern end of Lake Tanganyika. The route taken by the subadult bird on its return migration differed markedly from that of all Lesser Spotted Eagles tracked to date, running further west through the Democratic Republic of Congo where, level with the equator, it flew over the eastern rainforest of that country. The outward migration, however, followed the same corridor and coincided in time with the migration of adults.

  3. Water Quality Evaluation of the Yellow River Basin Based on Gray Clustering Method

    NASA Astrophysics Data System (ADS)

    Fu, X. Q.; Zou, Z. H.

    2018-03-01

    Evaluating the water quality of 12 monitoring sections in the Yellow River Basin comprehensively by grey clustering method based on the water quality monitoring data from the Ministry of environmental protection of China in May 2016 and the environmental quality standard of surface water. The results can reflect the water quality of the Yellow River Basin objectively. Furthermore, the evaluation results are basically the same when compared with the fuzzy comprehensive evaluation method. The results also show that the overall water quality of the Yellow River Basin is good and coincident with the actual situation of the Yellow River basin. Overall, gray clustering method for water quality evaluation is reasonable and feasible and it is also convenient to calculate.

  4. Effects of river-floodplain exchange on water quality and nutrient export in the dam-impacted Kafue River (Zambia)

    NASA Astrophysics Data System (ADS)

    Zurbrugg, R.; Wamulume, J.; Blank, N.; Nyambe, I.; Wehrli, B.; Senn, D. B.

    2010-12-01

    Biogeochemical processes in river-floodplain ecosystems are strongly influenced by hydrology and, in particular, river-floodplain exchange. In tropical systems, where the hydrology is dominated by distinct dry and rainy seasons, annual flood waters trigger organic matter mineralization within and nutrient export from the dried and rewetted floodplain, and the magnitude of hydrological exchange between a river and its floodplain has the potential to substantially influence nutrient and carbon exports and water quality in the river. In this study we examined the extent and the effects of hydrological river-floodplain exchange in the Kafue River and its floodplain, the Kafue Flats, in Zambia. The Kafue Flats is a 7000 km2 seasonal wetland whose hydrological regime has been impacted by upstream and downstream large dams constructed in the 1970s, leading to changes in the flooding pattern in this high-biodiversity ecosystem. Field campaigns, carried out during flood recession (May 2008, 2009, 2010) and covering a ~400 km river stretch, revealed a steep decline in dissolved oxygen from 6 mg/L to 1 mg/L over a ~20 km stretch of river beginning approximately 200 km downstream from the first dam, with low oxygen persisting for an additional 150 km downstream. To further explore this phenomenon discharge measurements (ADCP) were conducted in May 2009 and May 2010. River discharge decreased from ~600 m3/s at the upstream dam to 100 m3/s midway through the Kafue Flats, and increased to >800 m3/s towards the end of the floodplain (400 km downstream). River cross section data indicate that the dramatic decrease in discharge occured primarily because of variations in channel area and channel carrying capacity, with channel constrictions forcing ~85% of the discharge out of the river channel and into the floodplain. Using specific conductivity and δ18O-H2O as tracers for floodplain water, we estimate that the downstream increases in flow occur through lateral inflows of receding

  5. Nesting bald eagles attack researcher

    Treesearch

    Teryl G. Grubb

    1976-01-01

    Because of the large and relatively stable Bald Eagle (Haliaeetus leucocephalus) population on Kodiak Island, Alaska, studies on nesting, productivity, and other aspects of the species' life history have been a part of a continuing research program on the Kodiak National Wildlife Refuge (Hensel and Troyer 1964, Condor 66: 282; Troyer and...

  6. 77 FR 61661 - Price for the American Eagle Silver Proof and Uncirculated Coins and the America the Beautiful...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... DEPARTMENT OF THE TREASURY United States Mint Price for the American Eagle Silver Proof and... price of silver, the United States Mint is raising the price of its American Eagle Silver Proof and... price 2012 American Eagle Silver Proof $59.95 2012 American Eagle Silver Uncirculated 50.95 2011...

  7. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  8. How is the River Water Quality Response to Climate Change Impacts?

    NASA Astrophysics Data System (ADS)

    Nguyen, T. T.; Willems, P.

    2015-12-01

    Water quality and its response to climate change have been become one of the most important issues of our society, which catches the attention of many scientists, environmental activists and policy makers. Climate change influences the river water quality directly and indirectly via rainfall and air temperature. For example, low flow decreases the volume of water for dilution and increases the residence time of the pollutants. By contrast, high flow leads to increases in the amount of pollutants and sediment loads from catchments to rivers. The changes in hydraulic characteristics, i.e. water depth and velocity, affect the transportation and biochemical transformation of pollutants in the river water body. The high air temperature leads to increasing water temperature, shorter growing periods of different crops and water demands from domestic households and industries, which eventually effects the level of river pollution. This study demonstrates the quantification of the variation of the water temperature and pollutant concentrations along the Molse Neet river in the North East of Belgium as a result of the changes in the catchment rainfall-runoff, air temperature and nutrient loads. Firstly, four climate change scenarios were generated based on a large ensemble of available global and regional climate models and statistical downscaling based on a quantile perturbation method. Secondly, the climatic changes to rainfall and temperature were transformed to changes in the evapotranspiration and runoff flow through the conceptual hydrological model PDM. Thirdly, the adjustment in nutrient loads from agriculture due to rainfall and growing periods of crops were calculated by means of the semi-empirical SENTWA model. Water temperature was estimated from air temperature by a stochastic model separating the temperature into long-term annual and short-term residual components. Next, hydrodynamic and water quality models of the river, implemented in InfoWorks RS, were

  9. Relations of surface-water quality to streamflow in the Raritan River basin, New Jersey, water years 1976-93

    USGS Publications Warehouse

    Buxton, Debra E.; Hunchak-Kariouk, Kathryn; Hickman, R. Edward

    1999-01-01

    Relations of water quality to streamflow were determined for 18 water-quality constituents at 21 surface-water stations within the drainage area of the Raritan River Basin for water years 1976-93. Surface-water-quality and streamflow data were evaluated for trends (through time) in constituent concentrations during high and low flows, and relations between constituent concentration and streamflow, and between constituent load and streamflow, were determined. Median concentrations were calculated for the entire period of study (water years 1976-93) and for the last 5 years of the period of study (water years 1989-93) to determine whether any large variation in concentration exists between the two periods. Medians also were used to determine the seasonal Kendall’s tau statistic, which was then used to evaluate trends in concentrations during high and low flows. Trends in constituent concentrations during high and low flows were evaluated to determine whether the distribution of the observations changes through time for intermittent (nonpoint storm runoff) or constant (point sources and ground water) sources, respectively. Highand low-flow trends in concentrations were determined for some constituents at 13 of the 21 water-quality stations; 8 stations have insufficient data to determine trends. Seasonal effects on the relations of concentration to streamflow are evident for 16 of the 18 constituents. Negative slopes of relations of concentration to streamflow, which indicate a decrease in concentration at high flows, predominate over positive slopes because of the dilution of instream concentrations by storm runoff. The slopes of the regression lines of load to streamflow were determined in order to show the relative contributions to the instream load from constant (point sources and ground water) and intermittent sources (storm runoff). Greater slope values indicate larger contributions from storm runoff to instream load, which most likely indicate an increased

  10. Three ancient Montana fluvial systems: Pennsylvanian Tyler, Lower Cretaceous Muddy, and Upper Cretaceous Eagle - their reservoir and source rock distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, B.

    The importance of using Holocene geology as a model in mapping reservoir and source rock distribution is demonstrated in three Montana river-related systems: alluvial valley, barrier bar, and distributary channel-prodelta. The Pennsylvanian Tyler Formation was deposited by a westward-flowing meandering-stream system controlled by an east-west-trending rift valley, and surrounded by backswamp deposits. It is underlain by its probable hydrocarbon source, the marine Mississippian Heath shale and limestone, and overlain locally by the lagoonal Pennsylvanian Bear Gulch Limestone. To date, about 90 million bbl of recoverable oil have been found in Tyler sands. The oil-producing Lower Cretaceous Muddy sandstones in themore » northern Powder River basin are considered to be barrier bars, encased in organic-rich shales, which are most probably the source rock. The Upper Cretaceous Eagle Sandstone in north-central Montana is a distributary channel system, similar to that of the modern Mississippi, which dumped highly carbonaceous materials into an organic-rich delta system. The Eagle now contains possibly enormous amounts of biogenic methane. By using Galveston Island and the modern Mississippi delta as models, in conjunction with employing electric log shapes and porosity logs, it is possible to map ancient fluvial patterns in the study areas. One can then predict the location of possible hydrocarbon accumulations in porous and permeable sand bodies, along with their encasing hydrocarbon source rocks.« less

  11. Studies on water resources carrying capacity in Tuhai river basin based on ecological footprint

    NASA Astrophysics Data System (ADS)

    Wang, Chengshuai; Xu, Lirong; Fu, Xin

    2017-05-01

    In this paper, the method of the water ecological footprint (WEF) was used to evaluate water resources carrying capacity and water resources sustainability of Tuhai River Basin in Shandong Province. The results show that: (1) The WEF had a downward trend in overall volatility in Tuhai River Basin from 2003 to 2011. Agricultural water occupies high proportion, which was a major contributor to the WEF, and about 86.9% of agricultural WEF was used for farmland irrigation; (2) The water resources carrying capacity had a downward trend in general, which was mostly affected by some natural factors in this basin such as hydrology and meteorology in Tuhai River Basin; (3) Based on analysis of water resources ecological deficit, it can be concluded that the water resources utilization mode was in an unhealthy pattern and it was necessary to improve the utilization efficiency of water resources in Tuhai River Basin; (4) In view of water resources utilization problems in the studied area, well irrigation should be greatly developed at the head of Yellow River Irrigation Area(YRIA), however, water from Yellow River should be utilized for irrigation as much as possible, combined with agricultural water-saving measures and controlled exploiting groundwater at the tail of YRIA. Therefore, the combined usage of surface water and ground water of YRIA is an important way to realize agricultural water saving and sustainable utilization of water resources in Tuhai River Basin.

  12. The Eagle Ford Shale, Texas: an initial insight into Late Cretaceous organic-rich mudrock palaeoenvironments

    NASA Astrophysics Data System (ADS)

    Forshaw, Joline; Jarvis, Ian; Trabucho-Alexandre, João; Tocher, Bruce; Pearce, Martin

    2014-05-01

    The hypothesised reduction of oxygen within the oceans during the Cretaceous is believed to have led to extended intervals of regional anoxia in bottom waters, resulting in increased preservation of organic matter and the deposition of black shales. Episodes of more widespread anoxia, and even euxinia, in both bottom and surface waters are associated with widespread black shale deposition during Ocean Anoxic Events (OAEs). The most extensive Late Cretaceous OAE, which occurred ~ 94 Ma during Cenomanian-Turonian boundary times, and was particularly well developed in the proto-North Atlantic and Tethyan regions, lasted for around 500 kyr (OAE2). Although the causes of this and other events are still hotly debated, research is taking place internationally to produce a global picture of the causes and consequences of Cretaceous OAEs. Understanding OAEs will enable a better interpretation of the climate fluctuations that ensued, and their association with the widespread deposition of black shales, rising temperatures, increased pCO2, enhanced weathering, and increased nutrient fluxes. The Eagle Ford Formation, of Cenomanian - Turonian age, is a major shale gas play in SW and NE Texas, extending over an area of more than 45,000 km2. The formation, which consists predominantly of black shales (organic-rich calcareous mudstones), was deposited during an extended period of relative tectonic quiescence in the northern Gulf Coast of the Mexico Basin, bordered by reefs along the continental shelf. The area offers an opportunity to study the effects of OAE2 in an organic-rich shelf setting. The high degree of organic matter preservation in the formation has produced excellent oil and gas source rocks. Vast areas of petroleum-rich shales are now being exploited in the Southern States of the US for shale gas, and the Eagle Ford Shale is fast becoming one of the countries largest producers of gas, oil and condensate. The Eagle Ford Shale stratigraphy is complex and heterogeneous

  13. An adaptive-management framework for optimal control of hiking near golden eagle nests in Denali National Park

    USGS Publications Warehouse

    Martin, Julien; Fackler, Paul L.; Nichols, James D.; Runge, Michael C.; McIntyre, Carol L.; Lubow, Bruce L.; McCluskie, Maggie C.; Schmutz, Joel A.

    2011-01-01

    Unintended effects of recreational activities in protected areas are of growing concern. We used an adaptive-management framework to develop guidelines for optimally managing hiking activities to maintain desired levels of territory occupancy and reproductive success of Golden Eagles (Aquila chrysaetos) in Denali National Park (Alaska, U.S.A.). The management decision was to restrict human access (hikers) to particular nesting territories to reduce disturbance. The management objective was to minimize restrictions on hikers while maintaining reproductive performance of eagles above some specified level. We based our decision analysis on predictive models of site occupancy of eagles developed using a combination of expert opinion and data collected from 93 eagle territories over 20 years. The best predictive model showed that restricting human access to eagle territories had little effect on occupancy dynamics. However, when considering important sources of uncertainty in the models, including environmental stochasticity, imperfect detection of hares on which eagles prey, and model uncertainty, restricting access of territories to hikers improved eagle reproduction substantially. An adaptive management framework such as ours may help reduce uncertainty of the effects of hiking activities on Golden Eagles

  14. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Inland River Basins (Invited)

    NASA Astrophysics Data System (ADS)

    Li, X.; Cheng, G.; Tian, W.; Zhang, Y.; Zhou, J.; Pan, X.; Ge, Y.; Hu, X.

    2013-12-01

    Inland river basins take about 11.4% of the land area of the world and most of them are distributed over arid regions. Understanding the hydrological cycle of inland river basin is important for water resource management in water scarcity regions. This paper illustrated hydrological cycle of a typical inland river basin in China, the Heihe River Basin (HRB). First, water balance in upper, middle and lower reaches of the HRB was conceptualized by analyzing dominant hydrological processes in different parts of the river basin. Then, we used a modeling approach to study the water cycle in the HRB. In the upper reaches, we used the GBHM-SHAW, a distributed hydrological model with a new frozen soil parameterization. In the middle and lower reaches, we used the GWSiB, a three-dimensionally coupled land surface-groundwater model. Modeling results were compared with water balance observations in different landscapes and cross-validated with other results to ensure the reliability. The results show that the hydrological cycle in HRB has some distinctive characteristics. Mountainous area generates almost all of the runoff for the whole river basin. High-elevation zones have much larger runoff/precipitation ratio. Cryospheric hydrology plays an important role. Although snow melting and glacier runoff take less than 25% of total runoff, these processes regulate inter-annual variation of runoff and thus provide stable water resource for oases downstream. Forest area contributes almost no runoff but it smoothes runoff and reduces floods by storing water in soil and releasing it out slowly. In the middle reaches, artificial hydrological cycle is much more dominated than natural one. River water and groundwater, recharged by runoff from mountainous area, is the water resource to support the agriculture and nurture the riparian ecosystem. Precipitation, approximately 150 mm in average, is only a supplement to agriculture use but sufficient to sustain desert vegetation. Water

  15. Comparison of 2008-2009 water years and historical water-quality data, upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Solberg, Patricia A.; Moore, Bryan; Blacklock, Ty D.

    2012-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, U.S. Forest Service, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of sites: (1) sites that are considered long term and (2) sites that are considered rotational. Data from the long-term sites assist in defining temporal changes in water quality (how conditions may change over time). The rotational sites assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and address local and short-term concerns. Biannual summaries of the water-quality data from the monitoring network provide a point of reference for stakeholder discussions regarding the location and purpose of water-quality monitoring sites in the upper Gunnison River Basin. This report compares and summarizes the data collected during water years 2008 and 2009 to the historical data available at these sites. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network sites. The remainder of the report is organized around the data collected at individual sites. Data collected during water years 2008 and 2009 are compared to historical data, State water-quality standards, and Federal water-quality guidelines

  16. Modeling Late-Summer Distribution of Golden Eagles (Aquila chrysaetos) in the Western United States

    PubMed Central

    Gardner, Grant

    2016-01-01

    Increasing development across the western United States (USA) elevates concerns about effects on wildlife resources; the golden eagle (Aquila chrysaetos) is of special concern in this regard. Knowledge of golden eagle abundance and distribution across the western USA must be improved to help identify and conserve areas of major importance to the species. We used distance sampling and visual mark-recapture procedures to estimate golden eagle abundance from aerial line-transect surveys conducted across four Bird Conservation Regions in the western USA between 15 August and 15 September in 2006–2010, 2012, and 2013. To assess golden eagle-habitat relationships at this scale, we modeled counts of golden eagles seen during surveys in 2006–2010, adjusted for probability of detection, and used land cover and other environmental factors as predictor variables within 20-km2 sampling units randomly selected from survey transects. We found evidence of positive relationships between intensity of use by golden eagles and elevation, solar radiation, and mean wind speed, and of negative relationships with the proportion of landscape classified as forest or as developed. The model accurately predicted habitat use observed during surveys conducted in 2012 and 2013. We used the model to construct a map predicting intensity of use by golden eagles during late summer across our ~2 million-km2 study area. The map can be used to help prioritize landscapes for conservation efforts, identify areas where mitigation efforts may be most effective, and identify regions for additional research and monitoring. In addition, our map can be used to develop region-specific (e.g., state-level) density estimates based on the latest information on golden eagle abundance from a late-summer survey and aid designation of geographic management units for the species. PMID:27556735

  17. Modeling Late-Summer Distribution of Golden Eagles (Aquila chrysaetos) in the Western United States.

    PubMed

    Nielson, Ryan M; Murphy, Robert K; Millsap, Brian A; Howe, William H; Gardner, Grant

    2016-01-01

    Increasing development across the western United States (USA) elevates concerns about effects on wildlife resources; the golden eagle (Aquila chrysaetos) is of special concern in this regard. Knowledge of golden eagle abundance and distribution across the western USA must be improved to help identify and conserve areas of major importance to the species. We used distance sampling and visual mark-recapture procedures to estimate golden eagle abundance from aerial line-transect surveys conducted across four Bird Conservation Regions in the western USA between 15 August and 15 September in 2006-2010, 2012, and 2013. To assess golden eagle-habitat relationships at this scale, we modeled counts of golden eagles seen during surveys in 2006-2010, adjusted for probability of detection, and used land cover and other environmental factors as predictor variables within 20-km2 sampling units randomly selected from survey transects. We found evidence of positive relationships between intensity of use by golden eagles and elevation, solar radiation, and mean wind speed, and of negative relationships with the proportion of landscape classified as forest or as developed. The model accurately predicted habitat use observed during surveys conducted in 2012 and 2013. We used the model to construct a map predicting intensity of use by golden eagles during late summer across our ~2 million-km2 study area. The map can be used to help prioritize landscapes for conservation efforts, identify areas where mitigation efforts may be most effective, and identify regions for additional research and monitoring. In addition, our map can be used to develop region-specific (e.g., state-level) density estimates based on the latest information on golden eagle abundance from a late-summer survey and aid designation of geographic management units for the species.

  18. Bald eagles and sea otters in the Aleutian Archipelago: indirect effects of trophic cascades.

    USGS Publications Warehouse

    Anthony, R.G.; Estes, J.A.; Ricca, M.A.; Miles, A.K.; Forsman, E.D.

    2008-01-01

    Because sea otters (Enhydra lutris) exert a wide array of direct and indirect effects on coastal marine ecosystems throughout their geographic range, we investigated the potential influence of sea otters on the ecology of Bald Eagles (Haliaeetus leucocephalus) in the Aleutian Islands, Alaska, USA. We studied the diets, productivity, and density of breeding Bald Eagles on four islands during 1993–1994 and 2000–2002, when sea otters were abundant and scarce, respectively. Bald Eagles depend on nearshore marine communities for most of their prey in this ecosystem, so we predicted that the recent decline in otter populations would have an indirect negative effect on diets and demography of Bald Eagles. Contrary to our predictions, we found no effects on density of breeding pairs on four islands from 1993–1994 to 2000–2002. In contrast, diets and diet diversity of Bald Eagles changed considerably between the two time periods, likely reflecting a change in prey availability resulting from the increase and subsequent decline in sea otter populations. The frequency of sea otter pups, rock greenling (Hexagammus lagocephalus), and smooth lumpsuckers (Aptocyclus ventricosus) in the eagle's diet declined with corresponding increases in Rock Ptarmigan (Lagopus mutus), Glaucous-winged Gulls (Larus glaucescens), Atka mackerel (Pleurogrammus monopterygius), and various species of seabirds during the period of the recent otter population decline. Breeding success and productivity of Bald Eagles also increased during this time period, which may be due to the higher nutritional quality of avian prey consumed in later years. Our results provide further evidence of the wide-ranging indirect effects of sea otter predation on nearshore marine communities and another apex predator, the Bald Eagle. Although the indirect effects of sea otters are widely known, this example is unique because the food-web pathway transcended five species and several trophic levels in linking one apex

  19. Stable Cl isotope composition of the Changjiang River water

    NASA Astrophysics Data System (ADS)

    Lang, Y.; Liu, C. Q.; LI, S. L.; Aravena, R.; Ding, H.; WANG, B.; Benjamin, C.

    2017-12-01

    To understand chemical wreathing, nutrient cycling, and the impact of human activities on eco-environments of the Changjiang River (Yangtze River) Basin, we carried out a geochemical study on water chemistry and multiple isotopes (C, N, S, Sr…...) of Changjiang River water in the summer season. Some of the research results about the water chemistry, boron isotope geochemistry and suspended matter have been published (Chetelat et al., 2008; Li et al., 2010). Ten samples were selected for the measurement of δ37Cl values, among which 7 samples were collected from main stream and 3 samples from tributaries. The range of δ37Cl values varies between 0.02‰ and 0.33‰ in the main stream and between 0.16‰ and 0.71‰ in the tributary waters. The δ37Cl values in general are negatively correlated with Cl- concentrations for both main stream and tributary waters. δ37Cl value of Wujiang, which is one of the large tributaries in the upper reach of Changjiang and dominated by carbonate rocks in lithology of the watershed, has the maximum value but minimum value of Cl- concentration in this study. The lowest δ37Cl value was measured for the water collected from the estuary of Changjiang River. The variation of δ37Cl values in the waters would be attributed to mixing of different sources of chlorine, which most likely include rain water, ground water, seawater, and pollutants. Systematic characterization of different Cl sources in terms of their chlorine isotope composition is imperative for better understanding of sources and processes of chlorine cycling. Acknowledgements: This work was financially supported by NSFC through project 41073099. (Omit references)

  20. Tracing Water Sources and Quantifying Evaporation in the Brazos River, Central Texas

    NASA Astrophysics Data System (ADS)

    VanPlantinga, A.; Hunt, L. E.; Winning, D.; Robertson, J.; Stockert, E.; Roark, E.; Grossman, E. L.

    2013-12-01

    Situated in the subtropical dry zone, Central Texas is sensitive to the effects of climate change, notably drought; furthermore, developments over the last century in agriculture, urban infrastructure, and river engineering have altered the landscape extensively. This study models water source mixing and seasonal variation in evaporation in Brazos River waters in Central Texas. The Brazos River from Waco to College Station, Texas is generally characterized as having dissolved salt load derived mostly from Lake Whitney (a flood-control and hydroelectric storage reservoir) and groundwater baseflow from the adjacent shallow alluvial aquifer. Brazos River water δ18O, δD, and conductivity were measured bi-weekly in Brazos County, Texas from January 2012 through August 2013. Conductivity, δ18O, and δD vary seasonally and are positively correlated. The Brazos River δ18O-δD data from Brazos County fall along a local evaporation line (δD = 5.66 * δ18O - 2.47, r2 = 0.95) that intersects and surpasses values for Lake Whitney. In contrast, the δ18O-conductivity trend for the Brazos River does not intersect data for Lake Whitney. These observations suggest mixing with an evaporated water source of lower conductivity. The relative contribution of other Brazos River water sources is uncertain. Percent evaporation of original rain sampled as Brazos River water was estimated using a Rayleigh distillation model and the method of Gonfiantini (1986) while assuming 1) a closed system with an atmospheric exchange component, and 2) δ18O and δD values of local rain are -5.33‰ and -32.6‰, respectively. Modeled percent evaporation of original rain varies from winter (JFM; 1%-20%) to spring (AMJ; 9-25%) to summer (JAS; 16-33%), to fall (OND; 15-24%). Rayleigh distillation modeling estimates are consistently higher (~5%) than those estimated by Gonfiantini's method. A simple mass-balance model predicts that Brazos River water percent evaporation and δ18O enrichment are 2

  1. Bald eagle winter roost characteristics in Lava Beds National Monument, California

    USGS Publications Warehouse

    Stohlgren, Thomas J.

    1993-01-01

    This study provided a survey of bald eagle (Haliaeetus leucocephalus) winter roost habitat (in 4 km2 of potential roost areas) in southern Lava Beds National Monument, California. A systematic-clustered sampling design (n=381 plots) was used to compare forest stand characteristics in two primary roost areas (Caldwell Butte and Eagle Nest Butte) and two potential roost areas (Hidden Valley and Island Butte). A 100 percent inventory of roost trees in Caldwell Butte (n=103 trees) and Eagle Nest Butte (n=44 trees) showed they were spatially clumped and restricted to 12.7 percent and 2.8 percent, respectively, of the study areas. Roost trees, primarily ponderosa pine (Pinus ponderosa), averaged 81.1 ± 1.3 cm dbh (mean ± 1 S.E.) compared to non-roost trees (>35 cm dbh) that averaged 52.2 ± 1.0 cm dbh. Roost trees were generally taller and more open-structured than non-roost trees. All four study sites had adequate numbers of mid-sized trees (10 to 50 cm dbh) to replace the current stock of older, larger roost trees. However, seedling and small trees (<10 cm dbh) in the roost areas were spatially clumped and few, suggesting that maintaining a continuous population of roost trees may be a problem in the distant future. Long-term studies of changing winter roost habitat and eagle use are essential to protect the bald eagle in the northwestern US.

  2. 76 FR 53717 - Pricing for the 2011 American Eagle Silver Uncirculated Coin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-29

    ... DEPARTMENT OF THE TREASURY United States Mint Pricing for the 2011 American Eagle Silver Uncirculated Coin AGENCY: United States Mint, Department of the Treasury. ACTION: Notice. SUMMARY: The United States Mint is announcing the pricing of the 2011 American Eagle Silver Uncirculated Coin. The price of...

  3. Imaging high stage river-water intrusion into a contaminated aquifer along a major river corridor using 2D time-lapse surface electrical resistivity tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallin, Erin L.; Johnson, Timothy C.; Greenwood, William J.

    2013-03-29

    The Hanford 300 Area is located adjacent to the Columbia River in south-central Washington State, USA, and was a former site for nuclear fuel processing operations. Waste disposal practices resulted in persistent unsaturated zone and groundwater contamination, the primary contaminant of concern being uranium. Uranium behavior at the site is intimately linked with river stage driven groundwater-river water exchange such that understanding the nature of river water intrusion into the 300 Area is critical for predicting uranium desorption and transport. In this paper we use time-lapse electrical resistivity tomography (ERT) to image the inland intrusion of river during high stagemore » conditions. We demonstrate a modified time-lapse inversion approach, whereby the transient water table elevation is explicitly modeled by removing regularization constraints across the water table boundary. This implementation was critical for producing meaningful imaging results. We inverted approximately 1200 data sets (400 per line over 3 lines) using high performance computing resources to produce a time-lapse sequence of changes in bulk conductivity caused by river water intrusion during the 2011 spring runoff cycle over approximately 125 days. The resulting time series for each mesh element was then analyzed using common time series analysis to reveal the timing and location of river water intrusion beneath each line. The results reveal non-uniform flows characterized by preferred flow zones where river water enters and exits quickly with stage increase and decrease, and low permeability zones with broader bulk conductivity ‘break through’ curves and longer river water residence times. The time-lapse ERT inversion approach removes the deleterious effects of changing water table elevation and enables remote and spatial continuous groundwater-river water exchange monitoring using surface based ERT arrays under conditions where groundwater and river water conductivity are in

  4. Post-industrial river water quality-Fit for bathing again?

    PubMed

    Kistemann, Thomas; Schmidt, Alexandra; Flemming, Hans-Curt

    2016-10-01

    For the Ruhr River, bathing has been prohibited for decades. However, along with significant improvements of the hygienic water quality, there is an increasing demand of using the river for recreational purposes, in particular for bathing. In the "Safe Ruhr" interdisciplinary research project, demands, options and chances for lifting the bathing ban for the Ruhr River were investigated. As being the prominent reason for persisting recreational restrictions, microbiological water quality was in the focus of interest. Not only the faecal indicator organisms (FIOs) as required by the European Bathing Water Directive were considered, but also pathogens such as Salmonella, Pseudomonas aeruginosa, Legionella pneumophila, Campylobacter, Leptospira, enteroviruses and protozoan parasites. In this introductory paper, we firstly relate current recreational desires to historical experiences of river bathing. After recapitulating relevant microbial river contamination sources (predominantly sewage treatment plants, combined sewer overflows, and surface runoffs), we review existing knowledge about the relationships of FIOs and pathogens in rivers designated for recreational purposes, and then trace the evolution, rationale and validity of recreational freshwater quality criteria which are, despite obvious uncertainties, mostly relying on the FIO paradigm. In particular, the representativeness of FIOs is critically discussed. The working programme of Safe Ruhr, aiming at initiating and facilitating a process towards legalisation of Ruhr River bathing, is outlined. Sources of contamination can be technically handled which leaves the actual measures to political decisions. As contaminations are transient, only occasionally exceeding legal limits, a flexible bathing site management, warning bathers of non-safe situations, may amend technical interventions and offer innovative solutions. As a result, a situation-adapted system for lifting of the bathing ban for Ruhr River appears

  5. 75 FR 56093 - Eagle Rock Desoto Pipeline, LP; Notice of Motion for Extension of Rate Case Filing Deadline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... pipelines to extend the cycle for such reviews from three to five years.\\1\\ Therefore, Eagle Rock requests... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR09-1-002] Eagle Rock... notice that on September 8, 2010, Eagle Rock Desoto Pipeline, L.P. (Eagle Rock) filed a request to extend...

  6. Water quality assessment in terms of water quality index (WQI): case study of the Kolong River, Assam, India

    NASA Astrophysics Data System (ADS)

    Bora, Minakshi; Goswami, Dulal C.

    2017-10-01

    The Kolong River of Nagaon district, Assam has been facing serious degradation leading to its current moribund condition due to a drastic human intervention in the form of an embankment put across it near its take-off point from the Brahmaputra River in the year 1964. The blockage of the river flow was adopted as a flood control measure to protect its riparian areas, especially the Nagaon town, from flood hazard. The river, once a blooming distributary of the mighty Brahmaputra, had high navigability and rich riparian biodiversity with a well established agriculturally productive watershed. However, the present status of Kolong River is highly wretched as a consequence of the post-dam effects thus leaving it as stagnant pools of polluted water with negligible socio-economic and ecological value. The Central Pollution Control Board, in one of its report has placed the Kolong River among 275 most polluted rivers of India. Thus, this study is conducted to analyze the seasonal water quality status of the Kolong River in terms of water quality index (WQI). The WQI scores shows very poor to unsuitable quality of water samples in almost all the seven sampling sites along the Kolong River. The water quality is found to be most deteriorated during monsoon season with an average WQI value of 122.47 as compared to pre-monsoon and post-monsoon season having average WQI value of 85.73 and 80.75, respectively. Out of the seven sampling sites, Hatimura site (S1) and Nagaon Town site (S4) are observed to be the most polluted sites.

  7. Water resources planning for a river basin with recurrent wildfires.

    PubMed

    Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V; Pacheco, F A L

    2015-09-01

    Situated in the north of Portugal, the Beça River basin is subject to recurrent wildfires, which produce serious consequences on soil erosion and nutrient exports, namely by deteriorating the water quality in the basin. In the present study, the ECO Lab tool embedded in the Mike Hydro Basin software was used for the evaluation of river water quality, in particular the dissolved concentration of phosphorus in the period 1990-2013. The phosphorus concentrations are influenced by the burned area and the river flow discharge, but the hydrologic conditions prevail: in a wet year (2000, 16.3 km(2) of burned area) with an average flow of 16.4 m(3)·s(-1) the maximum phosphorus concentration was as low as 0.02 mg·L(-1), while in a dry year (2005, 24.4 km(2) of burned area) with an average flow of 2 m(3)·s(-1) the maximum concentration was as high as 0.57 mg·L(-1). Phosphorus concentrations in the water bodies exceeded the bounds of good ecological status in 2005 and between 2009 and 2012, water for human consumption in 2009 and water for multiple uses in 2010. The River Covas, a right margin tributary of Beça River, is the most appropriate stream as regards the use of water for human consumption, because it presents the biggest water potential with the best water quality. Since wildfires in the basin result essentially from natural causes and climate change forecasts indicate an increase in their frequency and intensity in the near future, forestry measures are proposed to include as a priority the conversion of stands of maritime pine in mixed stands of conifer and hardwood species. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Water consumption and allocation strategies along the river oases of Tarim River based on large-scale hydrological modelling

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Disse, Markus; Yu, Ruide

    2016-04-01

    With the mainstream of 1,321km and located in an arid area in northwest China, the Tarim River is China's longest inland river. The Tarim basin on the northern edge of the Taklamakan desert is an extremely arid region. In this region, agricultural water consumption and allocation management are crucial to address the conflicts among irrigation water users from upstream to downstream. Since 2011, the German Ministry of Science and Education BMBF established the Sino-German SuMaRiO project, for the sustainable management of river oases along the Tarim River. The project aims to contribute to a sustainable land management which explicitly takes into account ecosystem functions and ecosystem services. SuMaRiO will identify realizable management strategies, considering social, economic and ecological criteria. This will have positive effects for nearly 10 million inhabitants of different ethnic groups. The modelling of water consumption and allocation strategies is a core block in the SuMaRiO cluster. A large-scale hydrological model (MIKE HYDRO Basin) was established for the purpose of sustainable agricultural water management in the main stem Tarim River. MIKE HYDRO Basin is an integrated, multipurpose, map-based decision support tool for river basin analysis, planning and management. It provides detailed simulation results concerning water resources and land use in the catchment areas of the river. Calibration data and future predictions based on large amount of data was acquired. The results of model calibration indicated a close correlation between simulated and observed values. Scenarios with the change on irrigation strategies and land use distributions were investigated. Irrigation scenarios revealed that the available irrigation water has significant and varying effects on the yields of different crops. Irrigation water saving could reach up to 40% in the water-saving irrigation scenario. Land use scenarios illustrated that an increase of farmland area in the

  9. Residues of organochlorine pesticides and polychlorinated biphenyls and autopsy data for bald eagles, 1973-74

    USGS Publications Warehouse

    Prouty, R.M.; Reichel, W.L.; Locke, L.N.; Belisle, A.A.; Cromartie, E.; Kaiser, T.E.; Lamont, T.G.; Mulhern, B.M.; Swineford, D.M.

    1977-01-01

    Thirty-nine bald eagles found sick or dead in 13 States during 1969 and 1970 were analyzed for pesticide residues. Residues of DDE, dieldrin, polychlorinated biphenyls (PCB's), and mercury were detected in all bald eagle carcasses; DDD residues were detected in 38; DDT, heptachlor epoxide, and dichlorobenzophenone (DCBP) were detected less frequently. Six eagles contained possible lethal levels of dieldrin in the brain, and one contained a lethal concentration of DDE (385 ppm) in the brain together with 235 ppm of PCB's. Autopsy revealed that 18 bald eagles were illegally shot; other causes of death were impact injuries, electrocution, emaciation, and infectious diseases.

  10. Method to identify wells that yield water that will be replaced by water from the Colorado River downstream from Laguna Dam in Arizona and California

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Wilson, Richard P.; Carpenter, Michael C.; Fink, James B.

    2000-01-01

    Accounting for the use of Colorado River water is required by the U.S. Supreme Court decree, 1964, Arizona v. California. Water pumped from wells on the flood plain and from certain wells on alluvial slopes outside the flood plain is presumed to be river water and is accounted for as Colorado River water. The accounting-surface method developed for the area upstream from Laguna Dam was modified for use downstream from Laguna Dam to identify wells outside the flood plain of the lower Colorado River that yield water that will be replaced by water from the river. Use of the same method provides a uniform criterion of identification for all users pumping water from wells by determining if the static water-level elevation in the well is above or below the elevation of the accounting surface. Wells that have a static water-level elevation equal to or below the accounting surface are presumed to yield water that will be replaced by water from the Colorado River. Wells that have a static water-level elevation above the accounting surface are presumed to yield river water stored above river level. The method is based on the concept of a river aquifer and an accounting surface within the river aquifer. The river aquifer consists of permeable sediments and sedimentary rocks that are hydraulically connected to the Colorado River so that water can move between the river and the aquifer in response to withdrawal of water from the aquifer or differences in water-level elevations between the river and the aquifer. The subsurface limit of the river aquifer is the nearly impermeable bedrock of the bottom and sides of the basins that underlie the Yuma area and adjacent valleys. The accounting surface represents the elevation and slope of the unconfined static water table in the river aquifer outside the flood plain of the Colorado River that would exist if the river were the only source of water to the river aquifer. The accounting surface was generated by using water

  11. Characteristics of water quality of rivers related to land-use in Penang Island Malaysia

    NASA Astrophysics Data System (ADS)

    Yen, Lim Jia; Matsumoto, Yoshitaka; Yin, Chee Su; Wern, Hong Chern; Inoue, Takanobu; Usami, Akiko; Iwatsuki, Eiji; Yagi, Akihiko

    2017-10-01

    A study of the Water Quality Index (WQI) of rivers in Penang Island, Malaysia conducted by Universiti Sains Malaysia from October 2012 to January 2013 shows that almost all rivers in Penang Island were slightly polluted or polluted. However, WQI does not clarify each water quality indices, for example nutrients and organic pollutants, that reflect the land-use and pollution source in the catchment. Therefore, in this research, the main objectives are to investigate the interaction of land-use and the water quality of rivers in Penang Island, the quantity of pollutant loads discharged, and identification of the pollution sources along the rivers. The procedure starts from the selection of rivers and parameters for investigation, carrying out field survey and sampling, measuring and analyzing each sample, and lastly, providing a conclusion. The three rivers selected are Pinang River, Keluang River and Burung River. In this research, the results show that total organic carbon (TOC) increases generally as the rivers flow towards the river mouths, which means the degree of organic pollution increases along the rivers. In Pinang River, TOC increases as the tributaries from housing areas flow into the mainstream whereas in Keluang River, a marked increase of TOC is shown in the location where the wastewater from a sewage treatment plant discharges. In Burung River, TOC increases as the river flows through the paddy fields. In the principal component analysis, all sampling points of the three rivers are able to be classified into five groups based on the characteristics of water quality. For example, upstream of Keluang River and Burung River show mutual characteristics in terms of man-made pollution index and heavy metal pollution index. As a conclusion, the results in this research show that the characteristics of water quality in Penang Island are highly affected by land-use surrounding the rivers.

  12. Water Quality in the Tanana River Basin, Alaska, Water Years 2004-06

    USGS Publications Warehouse

    Moran, Edward H.

    2007-01-01

    OVERVIEW This report contains water-quality data collected from 84 sites in Tanana River basin during water years 2004 through 2006 (October 2003 through September 2006) as part of a cooperative study between the U.S. Geological Survey (USGS) and Alaska Department of Environmental Conservation (ADEC) Alaska Monitoring and Assessment Program (AKMAP), supported in part through the U.S. Environmental Protection Agency (USEPA) Office of Water, Cooperative Assistance Agreement X7-97078801. A broad range of chemical analyses are presented for 93 sets of samples collected at 59 tributaries to the Tanana River and at 25 locations along the mainstem. These data are to provide a means to assess baseline characteristics and establish indicators that are ecologically important, affordable, and relevant to society.

  13. Water-quality investigation, Salinas River, California

    USGS Publications Warehouse

    Irwin, G.A.

    1976-01-01

    Concentrations of dissolved solids in the Salinas River, California, are variable and range from 164 to 494 milligrams per liter near Bradley and from 170 to 1,090 milligrams per liter near Spreckels. Higher concentrations near Spreckels are caused mainly by sewage inflow about 150 feet (50 meters) upstream. Concentrations of nitrogen, phosphorus, total organic carbon, selected trace elements, and pesticides also generally increase downstream from Pozo to Spreckels and are related to sewage effluent; however, high concentrations occur elsewhere in the river. Specific conductance and water discharge regression results indicate that relations were all significant at the 1-percent probability level at Paso Robles, Bradley, and Spreckels with the explained variance ranging from 66 to 74 percent. Concentations of nitrogen, phosphorus, total organic carbon, and trace elements are only infrequently related to water discharge. (Woodard-USGS)

  14. Spatial and temporal variations of water quality in the Belaya River Basin

    NASA Astrophysics Data System (ADS)

    Fashchevskaia, Tatiana; Motovilov, Yuri

    2016-04-01

    The aim of this research is to identify the spatiotemporal regularities of the maintenance of nitrogen compounds in the streams of the Belaya River basin. The dynamics of human activities in the catchment and intra and inter-annual changes in the water quality are analyzed for the period 1969-2007 years. The Belaya River is situated in the South Ural region and is one of the biggest tributary in the Volga River basin with catchment area of 142 000 km2. The Belaya River provides drinking water for a lot of settlements, it is used for industrial and agricultural water supply, fishery use, it is also a wastewater receiver for industry and housing and communal services. More than sixty years the diverse economic activities are carried out in the Belaya River basin, the intensity of this activity is characterized by high temporal variability. The leading industries in the region are oil mining, petroleum processing, chemistry and petro chemistry, mechanical engineering, metallurgy, power industry, timber industry. About 50% of the river basin is used for agriculture. Inter-annual dynamics of the nitrogen content in the river waters was identified on the basis of the long-term hydrological monitoring statistics at the 32 sites. It was found that the dynamics of the intensity of economic activities in the Belaya River basin is the cause statistically significant changes in the content of nitrogen compounds of the river network. Statistically homogeneous time intervals have been set for each monitoring site. Within these time intervals there were obtained averaged reliable quantitative estimations of water quality. Calculations showed that from the end of 1980 to 2007 the average long-term content of nutrients in the river waters is reduced in comparison with the previous period: ammonium nitrogen - in 1,6-7,5 times, nitrite nitrogen - 1,9-37,3 times, but the average concentration of nitrate nitrogen is increased in 1,4-6,6 times. Empirical probability distributions of

  15. Water management for development of water quality in the Ruhr River basin.

    PubMed

    Klopp, R

    2000-01-01

    On the Ruhr, a small river running through hilly country and with a mean flow of 76 m3/s, 27 water works use the method of artificial groundwater recharge to produce 350 million m3 of drinking water annually. On the basis of a special act, the Ruhr River Association is responsible for water quality and water quantity management in the Ruhr basin. The present 94 municipal sewage treatment plants ensure that the raw water is sufficiently good to be turned into drinking water. In the Ruhr's lower reaches, where dry weather results in a 20% share of the entire water flow being treated wastewater, comparatively high concentration of substances of domestic or industrial origin are likely, including substances which municipal wastewater treatment measures cannot entirely remove. These substances include ammonium, coliform bacteria or pathogens, boron and organic trace substances. Although water treatment measures have greatly contributed to the considerable improvement of the Ruhr's water quality in the last few decades, it is desirable to continue to aim at a high standard of drinking water production technologies since the Ruhr is a surface water body influenced by anthropogenic factors. However, in the case of substances infiltrating into drinking water, legislation is required if a reduction of pollution appears to be necessary.

  16. 76 FR 20971 - Eagle Rock Desoto Pipeline, L.P.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-120-001] Eagle Rock Desoto Pipeline, L.P.; Notice of Filing Take notice that on April 7, 2011, Eagle Rock Desoto Pipeline, L.P. filed a revised Statement of Operating Conditions to comply with an unpublished delegated letter...

  17. 77 FR 15457 - Pricing for the 2012 American Eagle Silver Proof Coin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... DEPARTMENT OF THE TREASURY United States Mint Pricing for the 2012 American Eagle Silver Proof Coin AGENCY: United States Mint, Department of the Treasury. ACTION: Notice. SUMMARY: The United States Mint is announcing the price of the 2012 American Eagle Silver Proof Coin. The coins will be offered...

  18. 76 FR 53717 - Pricing for the 2011 American Eagle Silver Proof Coin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-29

    ... DEPARTMENT OF THE TREASURY United States Mint Pricing for the 2011 American Eagle Silver Proof Coin AGENCY: United States Mint, Department of the Treasury. ACTION: Notice. SUMMARY: The United States Mint is announcing the re-pricing of the 2011 American Eagle Silver Proof Coin. The price of the coins...

  19. 76 FR 33026 - Pricing for the 2011 American Eagle Silver Proof Coin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-07

    ... DEPARTMENT OF THE TREASURY United States Mint Pricing for the 2011 American Eagle Silver Proof Coin AGENCY: United States Mint, Department of the Treasury. ACTION: Notice. SUMMARY: The United States Mint is announcing the price of the 2011 American Eagle Silver Proof Coin. The coin will be offered for...

  20. Mississippi National River and Recreation Area Water Trail Plan.

    DOT National Transportation Integrated Search

    2017-05-05

    The Water Trail Plan describes the current conditions of and future plans for the Mississippi National River and Recreation Area (NRRA), a 72-mile stretch of the Mississippi River running through the Twin Cities region of Minnesota. In 2012, the NRRA...

  1. Water-quality trends in New England rivers during the 20th century

    USGS Publications Warehouse

    Robinson, Keith W.; Campbell, Jean P.; Jaworski, Norbert A.

    2003-01-01

    Water-quality data from the Merrimack, Blackstone, and Connecticut Rivers in New England during parts of the 20th century were examined for trends in concentrations of sulfate, chloride, residue upon evaporation, nitrate, and total phosphorus. The concentrations of all five of these constituents show statistically significant trends during the century. Annual concentrations of sulfate and total phosphorus decreased during the second half of the century, whereas annual concentrations of nitrate, chloride, and residues increased throughout the century. In the Merrimack River, annual chloride concentrations increased by an order of magnitude. Annual nitrate concentrations also increased by an order of magnitude in the Merrimack and Connecticut Rivers. These changes in the water quality probably are related to changing human activities. Most notable is the relation between increasing use of road de-icing salts and chloride concentrations in rivers. In addition, changes in concentrations of nitrate and phosphorus probably are related to agricultural use of nitrogen and phosphorus fertilizers. For all the water-quality constituents assessed, concentrations were greatest in the Blackstone River. The Blackstone River Basin is smaller and more highly urbanized than the other basins studied. Data-collection programs that span multiple decades can provide valuable insight on the effects of changing human population and societal activities on the water quality of rivers. This study was done as part of the U.S. Geological Survey's National Water-Quality Assessment Program.

  2. Water resources of the Roseau River Watershed, Northwestern Minnesota

    USGS Publications Warehouse

    Winter, Thomas C.; Maclay, R.W.; Pike, G.M.

    1967-01-01

    This report is a general appraisal of the water resources in the Roseau River watershed unit. Detailed studies of water movement through the ground-water reservoir are needed for more exact determination of the amount of water immediately available and the specific effects of water-management practices.

  3. Transboundary water resources management and livelihoods: interactions in the Senegal river

    NASA Astrophysics Data System (ADS)

    Bruckmann, Laurent; Beltrando, Gérard

    2016-04-01

    In Sub-Saharan Africa, 90 % of wetlands provide ecosystem services to societies, especially for agriculture and fishing. However, tropical rivers are increasingly regulated to provide hydroelectricity and irrigated agriculture. Modifications of flows create new hydrological conditions that affect floodplains ecology and peoples' livelihoods. In the Senegal river valley, large dams were built during the 1980's to secure water resources after a decade of water scarcity in the 1970's: Manantali in the upper basin with a reservoir of 12km3 and Diama close to estuary to avoid saltwater intrusion during dry season. Senegal river water resources are known under the supervision of Senegal River Basin Development Organization (OMVS), which defines water allocation between different goals (electricity, irrigation, traditional activities). This study, based on the concept of socio-hydrology, analyses socio-ecological changes following thirty years of dam management. The work enlightens adaptation mechanisms of livelihoods from people living along the river floodplain and feedback on water ressources. The study uses a mixed method approach, combining hydrological analyses, literature review and data collection from surveys on stakeholders and key informants level in the middle Senegal valley. Our results suggest that in all the Senegal river valley, socio-ecological changes are driven by new hydrological conditions. If dam management benefit for peoples with electrification and development of an irrigated agriculture, it has also emphasized the floodplain degradation. Flooded area has decline and are more irregular, causing an erosion of floodplain supporting services (traditional activities as fishing, grazing and flood-recession agriculture). These conditions reduce peoples' livelihood possibilities and irrigation is the only regular activity. As a feedback, irrigated agriculture increases withdrawals in the river and, recently, in aquifers posing a new uncertainty on water

  4. Human activities and its Responses to Glacier Melt Water Over Tarim River Basin

    NASA Astrophysics Data System (ADS)

    He, Hai; Zhou, Shenbei; Bai, Minghao

    2017-04-01

    Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced

  5. Water Budget Closure Based on GRACE Measurements and Reconstructed Evapotranspiration Using GLDAS and Water Use Data over the Yellow River and Changjiang River Basins

    NASA Astrophysics Data System (ADS)

    Lv, M.; Ma, Z.; Yuan, X.

    2017-12-01

    It is important to evaluate the water budget closure on the basis of the currently available data including precipitation, evapotranspiration (ET), runoff, and GRACE-derived terrestrial water storage change (TWSC) before using them to resolve water-related issues. However, it remains challenging to achieve the balance without the consideration of human water use (e.g., inter-basin water diversion and irrigation) for the estimation of other water budget terms such as the ET. In this study, the terrestrial water budget closure is tested over the Yellow River Basin (YRB) and Changjiang River Basin (CJB, Yangtze River Basin) of China. First, the actual ET is reconstructed by using the GLDAS-1 land surface models, the high quality observation-based precipitation, naturalized streamflow, and the irrigation water (hereafter, ETrecon). The ETrecon, evaluated using the mean annual water-balance equation, is of good quality with the absolute relative errors less than 1.9% over the two studied basins. The total basin discharge (Rtotal) is calculated as the residual of the water budget among the observation-based precipitation, ETrecon, and the GRACE-TWSC. The value of the Rtotal minus the observed total basin discharge is used to evaluate the budget closure, with the consideration of inter-basin water diversion. After the ET reconstruction, the mean absolute imbalance value reduced from 3.31 cm/year to 1.69 cm/year and from 15.40 cm/year to 1.96 cm/year over the YRB and CJB, respectively. The estimation-to-observation ratios of total basin discharge improved from 180.8% to 86.8% over the YRB, and from 67.0% to 101.1% over the CJB. The proposed ET reconstruction method is applicable to other human-managed river basins to provide an alternative estimation.

  6. Satellite tracking of two Lesser Spotted Eagles, Aquila pomarina, migrating from Namibia

    USGS Publications Warehouse

    Meyburg, B.-U.; Ellis, D.H.; Meyburg, C.; Mendelsohn, J.M.; Scheller, W.

    2001-01-01

    One immature and one subadult Lesser Spotted Eagle, Aquila pomarina, were followed by satellite telemetry from their nonbreeding areas in Namibia. Both birds were fitted with transmitters (PTTs) in February 1994 and tracked, the immature for six months and three weeks, the subadult for eight months and two weeks, over distances of 10 084 and 16 773 km, respectively. During their time in Namibia both birds' movements were in response to good local rainfall. The immature eagle left Namibia at the end of February, the subadult at the end of March. They flew to their respective summer quarters in Hungary and the Ukraine, arriving there 2.5 and 1.5 months later than the breeding adults. The immature eagle took over two months longer on the homeward journey than a breeding male followed by telemetry in a previous study. On returning, the immature eagle followed the narrow flightpath through Africa used by other Lesser Spotted Eagles on their outward migration. It reached this corridor, which runs roughly between longitudes 31?? and 36?? East from Suez to Lake Tanganyika, veering from the shortest route in a direction east-northeast through Angola and Zambia to the southern end of Lake Tanganyika. The route taken by the subadult bird on its return migration differed markedly from that of all Lesser Spotted Eagles tracked to date, running further west through the Democratic Republic of Congo where, level with the equator, it flew over the eastern rainforest of that country. The outward migration, however, followed the same corridor and coincided in time with the migration of adults. [A German translation of the abstract is provided on p. 40.].

  7. Simulation of interaction between ground water in an alluvial aquifer and surface water in a large braided river

    USGS Publications Warehouse

    Leake, S.A.; Lilly, M.R.

    1995-01-01

    The Fairbanks, Alaska, area has many contaminated sites in a shallow alluvial aquifer. A ground-water flow model is being developed using the MODFLOW finite-difference ground-water flow model program with the River Package. The modeled area is discretized in the horizontal dimensions into 118 rows and 158 columns of approximately 150-meter square cells. The fine grid spacing has the advantage of providing needed detail at the contaminated sites and surface-water features that bound the aquifer. However, the fine spacing of cells adds difficulty to simulating interaction between the aquifer and the large, braided Tanana River. In particular, the assignment of a river head is difficult if cells are much smaller than the river width. This was solved by developing a procedure for interpolating and extrapolating river head using a river distance function. Another problem is that future transient simulations would require excessive numbers of input records using the current version of the River Package. The proposed solution to this problem is to modify the River Package to linearly interpolate river head for time steps within each stress period, thereby reducing the number of stress periods required.

  8. Biotelemetry data for golden eagles (Aquila chrysaetos) captured in coastal southern California, November 2014–February 2016

    USGS Publications Warehouse

    Tracey, Jeff A.; Madden, Melanie C.; Sebes, Jeremy B.; Bloom, Peter H.; Katzner, Todd E.; Fisher, Robert N.

    2016-04-21

    The status of golden eagles (Aquila chrysaetos) in coastal southern California is unclear. To address this knowledge gap, the U.S. Geological Survey (USGS) in collaboration with local, State, and other Federal agencies began a multi-year survey and tracking program of golden eagles to address questions regarding habitat use, movement behavior, nest occupancy, genetic population structure, and human impacts on eagles. Golden eagle trapping and tracking efforts began in October 2014 and continued until early March 2015. During the first trapping season that focused on San Diego County, we captured 13 golden eagles (8 females and 5 males). During the second trapping season that began in November 2015, we focused on trapping sites in San Diego, Orange, and western Riverside Counties. By February 23, 2016, we captured an additional 14 golden eagles (7 females and 7 males). In this report, biotelemetry data were collected between November 22, 2014, and February 23, 2016. The location data for eagles ranged as far north as San Luis Obispo, California, and as far south as La Paz, Baja California, Mexico.

  9. Reduction of Genetic Diversity of the Harpy Eagle in Brazilian Tropical Forests.

    PubMed

    Banhos, Aureo; Hrbek, Tomas; Sanaiotti, Tânia M; Farias, Izeni Pires

    2016-01-01

    Habitat loss and fragmentation intensify the effects of genetic drift and endogamy, reducing genetic variability of populations with serious consequences for wildlife conservation. The Harpy Eagle (Harpia harpyja) is a forest dwelling species that is considered near threatened and suffers from habitat loss in the forests of the Neotropical region. In this study, 72 historical and current samples were assessed using eight autosomal microsatellite markers to investigate the distribution of genetic diversity of the Harpy Eagle of the Amazonian and Atlantic forests in Brazil. The results showed that the genetic diversity of Harpy Eagle decreased in the regions where deforestation is intense in the southern Amazon and Atlantic Forest.

  10. Reduction of Genetic Diversity of the Harpy Eagle in Brazilian Tropical Forests

    PubMed Central

    2016-01-01

    Habitat loss and fragmentation intensify the effects of genetic drift and endogamy, reducing genetic variability of populations with serious consequences for wildlife conservation. The Harpy Eagle (Harpia harpyja) is a forest dwelling species that is considered near threatened and suffers from habitat loss in the forests of the Neotropical region. In this study, 72 historical and current samples were assessed using eight autosomal microsatellite markers to investigate the distribution of genetic diversity of the Harpy Eagle of the Amazonian and Atlantic forests in Brazil. The results showed that the genetic diversity of Harpy Eagle decreased in the regions where deforestation is intense in the southern Amazon and Atlantic Forest. PMID:26871719

  11. Hydrology and water quality in the Green River and surrounding agricultural areas near Green River in Emery and Grand Counties, Utah, 2004-05

    USGS Publications Warehouse

    Gerner, S.J.; Spangler, L.E.; Kimball, B.A.; Wilberg, D.E.; Naftz, D.L.

    2006-01-01

    Water from the Colorado River and its tributaries is used for municipal and industrial purposes by about 27 million people and irrigates nearly 4 million acres of land in the Western United States. Water users in the Upper Colorado River Basin consume water from the Colorado River and its tributaries, reducing the amount of water in the river. In addition, application of water to agricultural land within the basin in excess of crop needs can increase the transport of dissolved solids to the river. As a result, dissolved-solids concentrations in the Colorado River have increased, affecting downstream water users. During 2004-05, the U.S. Geological Survey, in cooperation with the Natural Resources Conservation Service, investigated the occurrence and distribution of dissolved solids in water from the agricultural areas near Green River, Utah, and in the adjacent reach of the Green River, a principle tributary of the Colorado River.The flow-weighted concentration of dissolved solids diverted from the Green River for irrigation during 2004 and 2005 was 357 milligrams per liter and the mean concentration of water collected from seeps and drains where water was returning to the river during low-flow conditions was 4,170 milligrams per liter. The dissolved-solids concentration in water from the shallow part of the ground-water system ranged from 687 to 55,900 milligrams per liter.Measurable amounts of dissolved solids discharging to the Green River are present almost exclusively along the river banks or near the mouths of dry washes that bisect the agricultural areas. The median dissolved-solids load in discharge from the 17 drains and seeps visited during the study was 0.35 ton per day. Seasonal estimates of the dissolved-solids load discharging from the study area ranged from 2,800 tons in the winter to 6,400 tons in the spring. The estimate of dissolved solids discharging from the study area annually is 15,700 tons.Water samples collected from selected sites within

  12. Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland.

    PubMed

    Chittoor Viswanathan, Vidhya; Molson, John; Schirmer, Mario

    2015-11-01

    Changes in river water quality were investigated along the lower reach of the Thur River, Switzerland, following river restoration and a summer storm event. River restoration and hydrological storm events can each cause dramatic changes to water quality by affecting various bio-geochemical processes in the river, but have to date not been well documented, especially in combination. Evaluating the success of river restoration is often restricted in large catchments due to a lack of high frequency water quality data, which are needed for process understanding. These challenges were addressed in this study by measuring water quality parameters including dissolved oxygen (DO), temperature, pH, electrical conductivity (EC), nitrate and dissolved organic carbon (DOC) with a high temporal frequency (15 min-1h) over selected time scales. In addition, the stable isotopes of water (δD and δ(18)O-H2O) as well as those of nitrate (δ(15)N-NO3(-) and δ(18)O-NO3(-)) were measured to follow changes in water quality in response to the hydrological changes in the river. To compare the spatial distribution of pre- and post-restoration water quality, the sampling stations were chosen upstream and downstream of the restored section. The diurnal and seasonal changes were monitored by conducting 24-hour campaigns in three seasons (winter, summer and autumn) in 2012 and 2013. The amplitude of the diurnal changes of the various observed parameters showed significant seasonal and spatial variability. Biological processes--mainly photosynthesis and respiration--were found to be the major drivers of these diurnal cycles. During low flow in autumn, a reduction of nitrate (attributed to assimilation by autotrophs) in the pre-dawn period and a production of DOC during the daytime (attributed to photosynthesis) were observed downstream of the restored site. Further, a summer storm event was found to override the influence of these biological processes that control the diurnal changes. High

  13. Effects of water-resource development on Yellowstone River streamflow, 1928-2002

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Chase, Katherine J.

    2015-01-01

    Major floods in 1996 and 1997 intensified public concern about the effects of human activities on the Yellowstone River in Montana. In 1999, the Yellowstone River Conservation District Council, whose members are primarily representatives from the conservation districts bordering the main stem of the Yellowstone River, was formed to promote wise use and conservation of the Yellowstone River’s natural resources. The Yellowstone River Conservation District Council is working with the U.S. Army Corps of Engineers to understand the cumulative hydrologic effects of water-resource development in the Yellowstone River Basin. The U.S. Army Corps of Engineers, Yellowstone River Conservation District Council, and U.S. Geological Survey began cooperatively studying the Yellowstone River in 2010, publishing four reports describing streamflow information for selected sites in the Yellowstone River Basin, 1928–2002. Detailed information about the methods used, as well as summary streamflow statistics, are available in the four reports. The purpose of this fact sheet is to highlight findings from the published reports and describe the effects of water use and structures, primarily dams, on the Yellowstone River streamflow.

  14. 77 FR 40704 - Price for the 2012 American Eagle Silver Uncirculated Coin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... DEPARTMENT OF THE TREASURY United States Mint Price for the 2012 American Eagle Silver... States Mint is announcing the price of the 2012 American Eagle Silver Uncirculated Coin. The coin will be offered for sale at a price of $45.95. FOR FURTHER INFORMATION CONTACT: B. B. Craig, Associate Director...

  15. Hydrogeology and Simulated Effects of Ground-Water Withdrawals in the Big River Area, Rhode Island

    USGS Publications Warehouse

    Granato, Gregory E.; Barlow, Paul M.; Dickerman, David C.

    2003-01-01

    The Rhode Island Water Resources Board is considering expanded use of ground-water resources from the Big River area because increasing water demands in Rhode Island may exceed the capacity of current sources. This report describes the hydrology of the area and numerical simulation models that were used to examine effects of ground-water withdrawals during 1964?98 and to describe potential effects of different withdrawal scenarios in the area. The Big River study area covers 35.7 square miles (mi2) and includes three primary surface-water drainage basins?the Mishnock River Basin above Route 3, the Big River Basin, and the Carr River Basin, which is a tributary to the Big River. The principal aquifer (referred to as the surficial aquifer) in the study area, which is defined as the area of stratified deposits with a saturated thickness estimated to be 10 feet or greater, covers an area of 10.9 mi2. On average, an estimated 75 cubic feet per second (ft3/s) of water flows through the study area and about 70 ft3/s flows out of the area as streamflow in either the Big River (about 63 ft3/s) or the Mishnock River (about 7 ft3/s). Numerical simulation models are used to describe the hydrology of the area under simulated predevelopment conditions, conditions during 1964?98, and conditions that might occur in 14 hypothetical ground-water withdrawal scenarios with total ground-water withdrawal rates in the area that range from 2 to 11 million gallons per day. Streamflow depletion caused by these hypothetical ground-water withdrawals is calculated by comparison with simulated flows for the predevelopment conditions, which are identical to simulated conditions during the 1964?98 period but without withdrawals at public-supply wells and wastewater recharge. Interpretation of numerical simulation results indicates that the three basins in the study area are in fact a single ground-water resource. For example, the Carr River Basin above Capwell Mill Pond is naturally losing water

  16. Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate House, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  17. Chemical quality of surface water in the Allegheny River basin, Pennsylvania and New York

    USGS Publications Warehouse

    McCarren, Edward F.

    1967-01-01

    The Allegheny River is the principal source of water to many industries and to communities in the upper Ohio River Valley. The river and its many tributaries pass through 19 counties in northwestern and western Pennsylvania. The population in these counties exceeds 3 million. A major user of the Allegheny River is the city of Pittsburgh, which has a population greater than The Allegheny River is as basic to the economy of the upper Ohio River Valley in western Pennsylvania as are the rich deposits of bituminous coal, gas, and oil that underlie the drainage basin. During the past 5 years many streams that flow into the Allegheny have been low flowing because of droughts affecting much of the eastern United States. Consequently, the concentration of solutes in some streams has been unusually high because of wastes from coal mines and oil wells. These and other water-quality problems in the Allegheny River drainage basin are affecting the economic future of some areas in western Pennsylvania. Because of environmental factors such as climate, geology, and land and water uses, surface-water quality varies considerably throughout the river basin. The natural quality of headwater streams, for example, is affected by saltwater wastes from petroleum production. One of the streams most affected is Kinzua Creek, which had 2,900 parts per million chloride in a sample taken at Westline on September 2, 1959. However, after such streams as the Conewango, Brokenstraw, Tionesta, Oil, and French Creeks merge with the Allegheny River, the dissolved-solids and chloride concentrations are reduced by dilution. Central segments of the main river receive water from the Clarion River, Redbank, Mahoning, and Crooked Creeks after they have crossed the coal fields of west-central Pennsylvania. At times, therefore, these streams carry coal-mine wastes that are acidic. The Kiskiminetas River, which crosses these coal fields, discharged sulfuric acid into the Allegheny at a rate of 299 tons a

  18. Tracking changes of river morphology in Ayeyarwady River in Myanmar using earth observations and surface water mapping tool

    NASA Astrophysics Data System (ADS)

    Piman, T.; Schellekens, J.; Haag, A.; Donchyts, G.; Apirumanekul, C.; Hlaing, K. T.

    2017-12-01

    River morphology changes is one of the key issues in Ayeyarwady River in Myanmar which cause impacts on navigation, riverine habitats, agriculture lands, communities and livelihoods near the bank of the river. This study is aimed to track the changes in river morphology in the middle reach of Ayeyarwady River over last 30 years from 1984-2014 to improve understanding of riverbank dynamic, erosion and deposition procress. Earth observations including LandSat-7, LandSat-8, Digital Elevation Model from SRTM Plus and, ASTER-2 GoogleMap and Open Street Map were obtained for the study. GIS and remote sensing tools were used to analyze changes in river morphology while surface water mapping tool was applied to determine how the dynamic behaviour of the surface river and effect of river morphology changes. The tool consists of two components: (1) a Google Earth Engine (GEE) javascript or python application that performs image analysis and (2) a user-friendly site/app using Google's appspot.com that exposes the application to the users. The results of this study shown that the fluvial morphology in the middle reach of Ayeyarwady River is continuously changing under the influence of high water flows in particularly from extreme flood events and land use change from mining and deforestation. It was observed that some meandering sections of the riverbank were straightened, which results in the movement of sediment downstream and created new sections of meandering riverbank. Several large islands have formed due to the stabilization by vegetation and is enforced by sedimentation while many small bars were formed and migrated dynamically due to changes in water levels and flow velocity in the wet and dry seasons. The main channel was changed to secondary channel in some sections of the river. This results a constant shift of the navigation route. We also found that some villages were facing riverbank erosion which can force villagers to relocate. The study results demonstrated

  19. Water-Food Nexus on Lancang-Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Do, P.; Tian, F.; Hu, H.

    2017-12-01

    Water-Food-Energy nexus on Lancang-Mekong river basin In the Lancang-Mekong river basin, the connexions between climate and the water-food-energy nexus are strong. One of them can be reflected by the hydropower energy and irrigation sectors, impacted since these last years by intense droughts and increasing salinity. The purpose of this study is to understand quantitatively how the current hydropower impact on the streamflow and the irrigated crops will be influenced by the climate change for the next 30 years. A hydropower-crop model is computed to reproduce hydropower generation and revenue, revenue from crop and crop area in 2050. The outcomes will be used for water management in the region and strengthen the cooperation mechanisms between Mekong riparian countries.

  20. River Basin Water Assessment and Balance in fast developing areas in Viet Nam

    NASA Astrophysics Data System (ADS)

    Le, Van Chin; Ranzi, Roberto

    2010-05-01

    Uneven precipitation in space and time together with mismanagement and lack of knowledge about quantity and quality of water resources, have caused water shortages for water supply to large cities and irrigation areas in many regions of Viet Nam in the dry season. The rainy season (from June to October) counts for 80% of the total annual rainfall, while the water volume of dry season (from November to May of the following year) accounts for 20% only. Lack of sufficient water volumes occurs in some areas where the pressure of a fast increasing population (1.3% per year on average in the last decade in Viet Nam), intensive agricultural and industrial uses is one of the major problems facing sustainable development. For those areas an accurate water assessment and balance at the riverbasin scale is needed to manage the exploitation and appropriate use of water resources and plan future development. The paper describes the preliminary phase of the pilot development of the river basin water balance for the Day River Basin in the Red River delta in Viet Nam. The Day river basin includes a 7,897 km² area in the south-western part of the Red River in Viet Nam. The total population in the Day river basin exceeds 8 millions inhabitants, including the Hanoi capital, Nam Dinh and other large towns. Agricultural land covered 390,294 ha in 2000 and this area is going to be increased by 14,000 ha in 2010 due to land reclamation and expansion toward the sea. Agricultural uses exploit about 90% of surface water resources in the Day river basin but have to compete with industrial and civil needs in the recent years. At the background of the brief characterization of the Day River Basin, we concentrate on the application of a water balance model integrated by an assessment of water quality after consumptive uses for civil, agricultural and industrial needs to assist water management in the basin. In addition, future development scenarios are taken into account, considering less

  1. Framework for Assessing Water Resource Sustainability in River Basins

    NASA Astrophysics Data System (ADS)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  2. Trans-Himalayan water contributions to river discharge

    NASA Astrophysics Data System (ADS)

    Andermann, Christoff; Stieglitz, Thomas; Schuessler, Jan A.; Parajouli, Binod

    2017-04-01

    Hydrological processes in high mountains are not well understood. Groundwater is commonly considered to be of little importance in the mountain water balance, while direct runoff, snow and ice melt are thought to be the principal hydrological buffer. We present new insights into hydrological fluxes between major reservoirs in a trans-Himalayan catchment. The study area is the Kali Gandaki catchment, rising in the dry Tibetan interior, carving through the high Himalayas and draining the full width of the foothills to the Ganges foreland. The catchment has a well-defined monsoon climate, with pronounced annual wet and dry seasons and a clear separation of wind- and leeward regions. We have sampled the main river and its tributaries as well as several springs during the four hydrological seasons (winter, pre-monsoon, monsoon, post-monsoon). We have measured major element abundances as well as 222Rn in situ, as a tracer for groundwater contribution. These measurements are placed in a context of topographic analyses as well as continuous discharge and precipitation measurements. Furthermore, we have equipped two sites with continuous water samplers, sampling over > 4 monsoon seasons, allowing us to resolve the seasonal hydrological dynamic range on a very high temporal resolution. Chemical fluxes vary spatially over several orders of magnitude, showing a systematic downstream dilution trend for most major elements during all hydrological seasons. High initial concentrations derive from evaporite deposits in the uppermost part of the catchment, constituting a large scale, natural salt tracer experiment. The well-defined decline of solute concentrations along the main river, paired with constraints on the composition of lateral water inputs downstream allow the calculation of the spatial distribution of additional hydrological fluxes, by applying end member mixing modeling. Continuous river stage and bulk dissolved load (electrical conductivity) monitoring depict well

  3. Hydrogeologic framework and groundwater/surface-water interactions of the Chehalis River basin, Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.

    2011-01-01

    The Chehalis River has the largest drainage basin of any river entirely contained within the State of Washington with a watershed of approximately 2,700 mi2 and has correspondingly diverse geology and land use. Demands for water resources have prompted the local citizens and governments of the Chehalis River basin to coordinate with Federal, State and Tribal agencies through the Chehalis Basin Partnership to develop a long-term watershed management plan. The recognition of the interdependence of groundwater and surface-water resources of the Chehalis River basin became the impetus for this study, the purpose of which is to describe the hydrogeologic framework and groundwater/surface-water interactions of the Chehalis River basin. Surficial geologic maps and 372 drillers' lithostratigraphic logs were used to generalize the basin-wide hydrogeologic framework. Five hydrogeologic units that include aquifers within unconsolidated glacial and alluvial sediments separated by discontinuous confining units were identified. These five units are bounded by a low permeability unit comprised of Tertiary bedrock. A water table map, and generalized groundwater-flow directions in the surficial aquifers, were delineated from water levels measured in wells between July and September 2009. Groundwater generally follows landsurface-topography from the uplands to the alluvial valley of the Chehalis River. Groundwater gradients are highest in tributary valleys such as the Newaukum River valley (approximately 23 cubic feet per mile), relatively flat in the central Chehalis River valley (approximately 6 cubic feet per mile), and become tidally influenced near the outlet of the Chehalis River to Grays Harbor. The dynamic interaction between groundwater and surface-water was observed through the synoptic streamflow measurements, termed a seepage run, made during August 2010, and monitoring of water levels in wells during the 2010 Water Year. The seepage run revealed an overall gain of 56

  4. Environmental contaminants in bald eagle eggs from the Aleutian archipelago

    USGS Publications Warehouse

    Anthony, R.G.; Miles, A.K.; Ricca, M.A.; Estes, J.A.

    2007-01-01

    We collected 136 fresh and unhatched eggs from bald eagle (Haliaeetus leucocephalus) nests and assessed productivity on eight islands in the Aleutian archipelago, 2000 to 2002. Egg contents were analyzed for a broad spectrum of organochlorine (OC) contaminants, mercury (Hg), and stable isotopes of carbon (??13C) and nitrogen (??15N). Concentrations of polychlorinated biphenyls (??PCBs), p,p???- dichlorodiphenyldichloroethylene (DDE), and Hg in bald eagle eggs were elevated throughout the archipelago, but the patterns of distribution differed among the various contaminants. Total PCBs were highest in areas of past military activities on Adak and Amchitka Islands, indicating local point sources of these compounds. Concentrations of DDE and Hg were higher on Amchitka Island, which was subjected to much military activity during World War II and the middle of the 20th century. Concentrations of ??PCBs also were elevated on islands with little history of military activity (e.g., Amlia, Tanaga, Buldir), suggesting non-point sources of PCBs in addition to point sources. Concentrations of DDE and Hg were highest in eagle eggs from the most western Aleutian Islands (e.g., Buldir, Kiska) and decreased eastward along the Aleutian chain. This east-to-west increase suggested a Eurasian source of contamination, possibly through global transport and atmospheric distillation and/or from migratory seabirds. Eggshell thickness and productivity of bald eagles were normal and indicative of healthy populations because concentrations of most contaminants were below threshold levels for effects on reproduction. Contrary to our predictions, contaminant concentrations were not correlated with stable isotopes of carbon (??13C) or nitrogen (??15N) in eggs. These latter findings indicate that contaminant concentrations were influenced more by point sources and geographic location than trophic status of eagles among the different islands. ?? 2007 SETAC.

  5. Quantifying Emissions from the Eagle Ford Shale Using Ethane Enhancement

    NASA Astrophysics Data System (ADS)

    Roest, G. S.; Schade, G. W.

    2014-12-01

    Emissions from unconventional oil and natural gas exploration in the Eagle Ford Shale have been conjectured as a contributing factor to increasing ozone concentrations in the San Antonio Metropolitan Area, which is on track to be designated as a nonattainment area by the EPA. Primary species found in natural gas emissions are alkanes, with C3 and heavier alkanes acting as short-lived VOCs contributing to regional ozone formation. Methane emissions from the industry are also a forcing mechanism for climate change as methane is a potent greenhouse gas. Recent studies have highlighted a high variability and uncertainties in oil and natural gas emissions estimates in emissions inventories. Thus, accurately quantifying oil and natural gas emissions from the Eagle Ford Shale is necessary to assess the industry's impacts on climate forcing and regional air quality. We estimate oil and natural gas emissions in the Eagle Ford Shale using in situ ethane measurements along southwesterly trajectories from the Gulf of Mexico, dominantly during the summertime. Ethane enhancement within the drilling area is estimated by comparing ethane concentrations upwind of the shale, near the Texas coastline, to downwind measurements in the San Antonio Metropolitan Area, Odessa, and Amarillo. Upwind ethane observations indicate low background levels entering Texas in the Gulf of Mexico air masses. Significant ethane enhancement is observed between the coast and San Antonio, and is attributed to oil and natural gas operations due to the concurrent enhancements of heavier alkanes. Using typical boundary layer depths and presuming homogenous emissions across the Eagle Ford shale area, the observed ethane enhancements are used to extrapolate an estimate of oil and natural gas industry emissions in the Eagle Ford. As oil and natural gas production in the area is projected to grow rapidly over the coming years, the impacts of these emissions on regional air quality will need to be thoroughly

  6. Surface-geophysical characterization of ground-water systems of the Caloosahatchee River basin, southern Florida

    USGS Publications Warehouse

    Cunningham, Kevin J.; Locker, Stanley D.; Hine, Albert C.; Bukry, David; Barron, John A.; Guertin, Laura A.

    2001-01-01

    The Caloosahatchee River Basin, located in southwestern Florida, includes about 1,200 square miles of land. The Caloosahatchee River receives water from Lake Okeechobee, runoff from the watershed, and seepage from the underlying ground-water systems; the river loses water through drainage to the Gulf of Mexico and withdrawals for public-water supply and agricultural and natural needs. Water-use demands in the Caloosahatchee River Basin have increased dramatically, and the Caloosahatchee could be further stressed if river water is used to accommodate restoration of the Everglades. Water managers and planners need to know how much water will be used within the river basin and how much water is contributed by Lake Okeechobee, runoff, and ground water. In this study, marine seismic-reflection and ground-penetrating radar techniques were used as a means to evaluate the potential for flow between the river and ground-water systems. Seven test coreholes were drilled to calibrate lithostratigraphic units, their stratal geometries, and estimated hydraulic conductivities to surface-geophysical profiles. A continuous marine seismic-reflection survey was conducted over the entire length of the Caloosahatchee River and extending into San Carlos Bay. Lithostratigraphic units that intersect the river bottom and their characteristic stratal geometries were identified. Results show that subhorizontal reflections assigned to the Tamiami Formation intersect the river bottom between Moore Haven and about 9 miles westward. Oblique and sigmoidal progradational reflections assigned to the upper Peace River Formation probably crop out at the floor of the river in the Ortona area between the western side of Lake Hicpochee and La Belle. These reflections image a regional-scale progradational deltaic depositional system containing quartz sands with low to moderate estimated hydraulic conductivities. In an approximate 6-mile length of the river between La Belle and Franklin Lock, deeper

  7. Detection of genogroup IV norovirus in wastewater and river water in Japan.

    PubMed

    Kitajima, M; Haramoto, E; Phanuwan, C; Katayama, H; Ohgaki, S

    2009-11-01

    To test wastewater and river water in Japan for genogroup IV norovirus (GIV NoV). Influent and effluent samples from a wastewater treatment plant and the Tamagawa River water samples were collected monthly for a year. The water samples were concentrated by the adsorption-elution method, using an HA electronegative filter with acid rinse procedure, followed by quantitative detection of GIV NoV using TaqMan-based real-time RT-PCR. Both wastewater and river water samples showed a high positive ratio of GIV NoV during winter and spring. The highest concentration in wastewater and river water was 6.9 x 10(4) and 1.5 x 10(4) copies l(-1), respectively. Presence of GIV NoV in the environments demonstrates that not only GI and GII NoVs but also GIV strains are circulating and that routine monitoring of GIV NoV in water environments is recommended to understand its epidemics, environmental distribution and potential health risks. This is the first study providing quantitative data on the occurrence of GIV NoV in environmental water over a 1-year period.

  8. 77 FR 43662 - Price for the 2012 American Eagle Silver Proof Coin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... DEPARTMENT OF THE TREASURY United States Mint Price for the 2012 American Eagle Silver Proof Coin... is lowering the price of the 2012 American Eagle Silver Proof Coin. The product will now be offered for sale at a price of $54.95. FOR FURTHER INFORMATION CONTACT: B. B. Craig, Associate Director for...

  9. Growing Leaders in Native American Communities: An Interview with Gerald Eagle Bear

    ERIC Educational Resources Information Center

    Hill, Sara

    2006-01-01

    In the summer of 2005, I interviewed Gerald Eagle Bear about his work to promote civic and cultural engagement among Native American youth. Eagle Bear is program manager of the Oyate Networking Project, an affiliate of Christian Children's Fund, in Mission, South Dakota. The organization focuses on early childhood education, youth violence…

  10. Global River Water Temperature Modelling at Hyper-Resolution

    NASA Astrophysics Data System (ADS)

    Wanders, N.; van Vliet, M. T. H.; Wada, Y.; Van Beek, L. P.

    2017-12-01

    The temperature of river water plays a crucial role in many physical, chemical and biological aquatic processes. The influence of changing water temperatures is not only felt locally, but also has regional and downstream impacts. Sectors that might be affected by sudden or gradual changes in the water temperature are: energy production, industry and recreation. Although it is very important to have detailed information on this environmental variable, high-resolution simulations of water temperature on a large scale are currently lacking. Here we present a novel hyper-resolution water temperature dataset at the global scale. We developed the 1-D energy routing model WARM, to simulate river temperature for the period 1980-2014 at 10 km and 50 km resolution. The WARM model accounts for surface water abstraction, reservoirs, riverine flooding and formation of ice, therefore enabling a realistic representation of the water temperature. The water temperature simulations have been validated against 358 river monitoring stations globally for the period 1980 to 2014. The results indicate the increase in resolution significantly improves the simulation performance with a decrease in the water temperature RMSE from 3.5°C to 3.0°C and an increase in the mean correlation of the daily discharge simulations, from R=0.4 to 0.6. We find an average global increase in water temperature of 0.22°C per decade between 1960-2014, with increasing trends towards the end of the simulations period. Strong increasing trends in maxima in the Northern Hemisphere (0.62°C per decade) and minima in the Southern Hemisphere (0.45°C per decade). Finally, we show the impact of major heatwaves and drought events on the water temperature and water availability. The high resolution not only improves the model performance; it also positively impacts the relevancy of the simulation for local and regional scale studies and impact assessments. This new global water temperature dataset could help to

  11. Water quality assessment of the River Nile system: an overview.

    PubMed

    Wahaab, Rifaat A; Badawy, Mohamed I

    2004-03-01

    The main objective of the present article is to assess and evaluate the characteristics of the Nile water system, and identify the major sources of pollution and its environmental and health consequences. The article is also aimed to highlight the importance of water management via re-use and recycle of treated effluents for industrial purpose and for cultivation of desert land. An intensive effort was made by the authors to collect, assess and compile the available data about the River Nile. Physico-chemical analyses were conducted to check the validity of the collected data. For the determination of micro-pollutants, Gas Chromatography (GC) and High Performance Liquid Chromatography (HPLC) were used. Heavy metals were also determined to investigate the level of industrial pollution in the river system. The available data revealed that the river receives a large quantity of industrial, agriculture and domestic wastewater. It is worth mentioning that the river is still able to recover in virtually all the locations, with very little exception. This is due to the high dilution ratio. The collected data confirmed the presence of high concentrations of chromium and manganese in all sediment samples. The residues of organo-chlorine insecticides were detected in virtually all locations. However, the levels of such residues are usually below the limit set by the WHO for use as drinking water. The most polluted lakes are Lake Maryut and Lake Manzala. Groundwater pollution is closely related to adjacent (polluted) surface waters. High concentrations of nutrients, E. coli, sulfur, heavy metals, etc. have been observed in the shallow groundwater, largely surpassing WHO standards for drinking water use. A regular and continuous monitoring scheme shall be developed for the River Nile system. The environmental law shall be enforced to prohibit the discharge of wastewater (agricultural, domestic or industrial) to River Nile system.

  12. 76 FR 27182 - Pricing for American Eagle and American Buffalo Bullion Presentation Cases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... DEPARTMENT OF THE TREASURY United States Mint Pricing for American Eagle and American Buffalo Bullion Presentation Cases AGENCY: United States Mint, Department of the Treasury. ACTION: Notice. SUMMARY: The United States Mint is announcing the price increase of the American Eagle/Buffalo Bullion...

  13. Quality of surface water in the Suwannee River Basin, Florida, August 1968 through December 1977

    USGS Publications Warehouse

    Hull, Robert W.; Dysart, Joel E.; Mann, William B.

    1981-01-01

    In the 9,950-square mile area of the Suwannee River basin in Florida and Georgia, 17 surface-water stations on 9 streams and several springs were sampled for selected water-quality properties and constituents from August 1968 through December 1977. Analyses from these samples indicate that: (1) the water quality of tributary wetlands controls the water quality of the upper Suwannee River headwaters; (2) groundwater substantially affects the water quality of the Suwannee River basin streams below these headquarters; (3) the water quality of the Suwannee River, and many of its tributaries, is determined by several factors and is not simply related to discharge; and (4) development in the Suwannee River basin has had observable effects on the quality of surface waters

  14. Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates & Gate-Lifting Mechanisms, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  15. Does the order of invasive species removal matter? The case of the eagle and the pig.

    PubMed

    Collins, Paul W; Latta, Brian C; Roemer, Gary W

    2009-09-14

    Invasive species are recognized as a primary driver of native species endangerment and their removal is often a key component of a conservation strategy. Removing invasive species is not always a straightforward task, however, especially when they interact with other species in complex ways to negatively influence native species. Because unintended consequences may arise if all invasive species cannot be removed simultaneously, the order of their removal is of paramount importance to ecological restoration. In the mid-1990s, three subspecies of the island fox Urocyon littoralis were driven to near extinction on the northern California Channel Islands owing to heightened predation by golden eagles Aquila chrysaetos. Eagles were lured to the islands by an abundant supply of feral pigs Sus scrofa and through the process of apparent competition pigs indirectly facilitated the decline in foxes. As a consequence, both pigs and eagles had to be removed to recover the critically endangered fox. Complete removal of pigs was problematic: removing pigs first could force eagles to concentrate on the remaining foxes, increasing their probability of extinction. Removing eagles first was difficult: eagles are not easily captured and lethal removal was politically distasteful. Using prey remains collected from eagle nests both before and after the eradication of pigs, we show that one pair of eagles that eluded capture did indeed focus more on foxes. These results support the premise that if the threat of eagle predation had not been mitigated prior to pig removal, fox extinction would have been a more likely outcome. If complete eradication of all interacting invasive species is not possible, the order in which they are removed requires careful consideration. If overlooked, unexpected consequences may result that could impede restoration.

  16. Wastewater discharge impact on drinking water sources along the Yangtze River (China).

    PubMed

    Wang, Zhuomin; Shao, Dongguo; Westerhoff, Paul

    2017-12-01

    Unplanned indirect (de facto) wastewater reuse occurs when wastewater is discharged into surface waters upstream of potable drinking water treatment plant intakes. This paper aims to predict percentages and trends of de facto reuse throughout the Yangtze River watershed in order to understand the relative contribution of wastewater discharges into the river and its tributaries towards averting water scarcity concerns. The Yangtze River is the third longest in the world and supports more than 1/15 of the world's population, yet the importance of wastewater on the river remains ill-defined. Municipal wastewater produced in the Yangtze River Basin increased by 41% between 1998 and 2014, from 2580m 3 /s to 3646m 3 /s. Under low flow conditions in the Yangtze River near Shanghai, treated wastewater contributions to river flows increased from 8% in 1998 to 14% in 2014. The highest levels of de facto reuse appeared along a major tributary (Han River) of the Yangtze River, where de facto reuse can exceed 20%. While this initial analysis of de facto reuse used water supply and wastewater data from 110 cities in the basin and 11 gauging stations with >50years of historic streamflow data, the outcome was limited by the lack of gauging stations at more locations (i.e., data had to be predicted using digital elevation mapping) and lack of precise geospatial location of drinking water intakes or wastewater discharges. This limited the predictive capability of the model relative to larger datasets available in other countries (e.g., USA). This assessment is the first analysis of de facto wastewater reuse in the Yangtze River Basin. It will help identify sections of the river at higher risk for wastewater-related pollutants due to presence of-and reliance on-wastewater discharge that could be the focus of field studies and model predictions of higher spatial and temporal resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Spatial and temporal patterns in golden eagle diets in the western United States, with implications for conservation planning

    USGS Publications Warehouse

    Bedrosian, Geoffrey; Watson, James W.; Steenhof, Karen; Kochert, Michael N.; Preston, Charles R.; Woodbridge, Brian; Williams, Gary E.; Keller, Kent R.; Crandall, Ross H.

    2017-01-01

    Detailed information on diets and predatory ecology of Golden Eagles (Aquila chrysaetos) is essential to prioritize prey species management and to develop landscape-specific conservation strategies, including mitigation of the effects of energy development across the western United States. We compiled published and unpublished data on Golden Eagle diets to (1) summarize available information on Golden Eagle diets in the western U.S., (2) compare diets among biogeographic provinces, and (3) discuss implications for conservation planning and future research. We analyzed 35 studies conducted during the breeding season at 45 locations from 1940–2015. Golden Eagle diet differed among western ecosystems. Lower dietary breadth was associated with desert and shrub-steppe ecosystems and higher breadth with mountain ranges and the Columbia Plateau. Correlations suggest that percentage of leporids in the diet is the factor driving overall diversity of prey and percentage of other prey groups in the diet of Golden Eagles. Leporids were the primary prey of breeding Golden Eagles in 78% of study areas, with sciurids reported as primary prey in 18% of study areas. During the nonbreeding season, Golden Eagles were most frequently recorded feeding on leporids and carrion. Golden Eagles can be described as both generalist and opportunistic predators; they can feed on a wide range of prey species but most frequently feed on abundant medium-sized prey species in a given habitat. Spatial variations in Golden Eagle diet likely reflect regional differences in prey community, whereas temporal trends likely reflect responses to long-term change in prey populations. Evidence suggests dietary shifts from traditional (leporid) prey can have adverse effects on Golden Eagle reproductive rates. Land management practices that support or restore shrub-steppe ecosystem diversity should benefit Golden Eagles. More information is needed on nonbreeding-season diet to determine what food resources

  18. River water quality assessment using environmentric techniques: case study of Jakara River Basin.

    PubMed

    Mustapha, Adamu; Aris, Ahmad Zaharin; Juahir, Hafizan; Ramli, Mohammad Firuz; Kura, Nura Umar

    2013-08-01

    Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p=0.930, p=0.001) and BOD5 and COD (r p=0.839, p=0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future

  19. Physico-chemical and genotoxicity analysis of Guaribas river water in the Northeast Brazil.

    PubMed

    de Castro E Sousa, João Marcelo; Peron, Ana Paula; da Silva, Felipe Cavalcanti Carneiro; de Siqueira Dantas, Ellifran Bezerra; de Macedo Vieira Lima, Ataíde; de Oliveira, Victor Alves; Matos, Leomá Albuquerque; Paz, Márcia Fernanda Correia Jardim; de Alencar, Marcus Vinicius Oliveira Barros; Islam, Muhammad Torequl; de Carvalho Melo-Cavalcante, Ana Amélia; Bonecker, Cláudia Costa; Júlio, Horácio Ferreira

    2017-06-01

    River pollution in Brazil is significant. This study aimed to evaluate the physico-chemical and genotoxic profiles of the Guaribas river water, located in Northeast Brazil (State of Piauí, Brazil). The study conducted during the dry and wet seasons to understand the frequency of pollution throughout the year. Genotoxicity analysis was done with the blood of Oreochromis niloticus by using the comet assay. Water samples were collected from upstream, within and downstream the city Picos. The results suggest a significant (p < 0.05) genotoxic effect of the Guaribas river water when compared to the control group. In comparison to the control group, in the river water we found a significant increase in metals such as - Fe, Zn, Cr, Cu and Al. In conclusion, Guaribas river carries polluted water, especially a large quantity of toxic metals, which may impart the genotoxic effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Known breeding distribution and abundance of golden eagles in Eastern North America

    Treesearch

    Francois Morneau; Junior A. Tremblay; Charles Todd; Tony E. Chubbs; Charles Maisonneuve; Jerome Lemaitre; Todd Katzner

    2015-01-01

    Aquila chrysaetos (Golden Eagle) breeds in both eastern and western North America. However, the former population has received much less attention than the latter. The purpose of this paper is to document the known distribution and abundance of eastern Golden Eagles within their breeding range and to identify gaps in knowledge for future studies....

  1. Final Opportunity to Rehabilitate an Urban River as a Water Source for Mexico City

    PubMed Central

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A.; Solano-Ortiz, Rosa; Silva, Miguel A.; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973–2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008–2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City. PMID:25054805

  2. Final opportunity to rehabilitate an urban river as a water source for Mexico City.

    PubMed

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A; Solano-Ortiz, Rosa; Silva, Miguel A; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.

  3. [Volatile organic compounds of the tap water in the Watarase, Tone and Edo River system].

    PubMed

    Ohmichi, Kimihide; Ohmichi, Masayoshi; Machida, Kazuhiko

    2004-01-01

    The chlorination of river water in purification plants is known to produce carcinogens such as trihalomethanes (THMs). We studied the river system of the Watarase, Tone, and Edo Rivers in regard to the formation of THMs. This river system starts from the base of the Ashio copper mine and ends at Tokyo Bay. Along the rivers, there are 14 local municipalities in Gunma, Saitama, Ibaragi and Chiba Prefectures, as well as Tokyo. This area is the center of the Kanto plain and includes the main sources of water pollution from human activities. We also analyzed various chemicals in river water and tap water to clarify the status of the water environment, and we outline the problems of the water environment in the research area (Fig. 1). Water samples were taken from 18 river sites and 42 water faucets at public facilities in 14 local municipalities. We analyzed samples for volatile organic compounds such as THMs, by gas chromatography mass spectrometry (GC-MS), and evaluations of chemical oxygen demand (COD) were made with reference to Japanese drinking water quality standards. Concentrations of THMs in the downstream tap water samples were higher than those in the samples from the upperstream. This tendency was similar to the COD of the river water samples, but no correlation between the concentration of THMs in tap water and the COD in tap water sources was found. In tap water of local government C, trichloroethylene was detected. The current findings suggest that the present water filtration plant procedures are not sufficient to remove some hazardous chemicals from the source water. Moreover, it was confirmed that the water filtration produced THMs. Also, trichloroethylene was detected from the water environment in the research area, suggesting that pollution of the water environment continues.

  4. Assessment of the hydraulic connection between ground water and the Peace River, west-central Florida

    USGS Publications Warehouse

    Lewelling, B.R.; Tihansky, A.B.; Kindinger, J.L.

    1998-01-01

    The hydraulic connection between the Peace River and the underlying aquifers along the length of the Peace River from Bartow to Arcadia was assessed to evaluate flow exchanges between these hydrologic systems. Methods included an evaluation of hydrologic and geologic records and seismic-reflection profiles, seepage investigations, and thermal infrared imagery interpretation. Along the upper Peace River, a progressive long-term decline in streamflow has occurred since 1931 due to a lowering of the potentiometric surface of the Upper Floridan aquifer by as much as 60 feet because of intensive ground-water withdrawals for phosphate mining and agriculture. Another effect from lowering the potentiometric surface has been the cessation of flow at several springs located near and within the Peace River channel, including Kissengen Spring, that once averaged a flow of about 19 million gallons a day. The lowering of ground-water head resulted in flow reversals at locations where streamflow enters sinkholes along the streambed and floodplain. Hydrogeologic conditions along the Peace River vary from Bartow to Arcadia. Three distinctive hydrogeologic areas along the Peace River were delineated: (1) the upper Peace River near Bartow, where ground-water recharge occurs; (2) the middle Peace River near Bowling Green, where reversals of hydraulic gradients occur; and (3) the lower Peace River near Arcadia, where ground-water discharge occurs. Seismic-reflection data were used to identify geologic features that could serve as potential conduits for surface-water and ground-water exchange. Depending on the hydrologic regime, this exchange could be recharge of surface water into the aquifer system or discharge of ground water into the stream channel. Geologic features that would provide pathways for water movement were identified in the seismic record; they varied from buried irregular surfaces to large-scale subsidence flexures and vertical fractures or enlarged solution conduits

  5. Temporal water quality response in an urban river: a case study in peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    VishnuRadhan, Renjith; Zainudin, Zaki; Sreekanth, G. B.; Dhiman, Ravinder; Salleh, Mohd. Noor; Vethamony, P.

    2017-05-01

    Ambient water quality is a prerequisite for the health and self-purification capacity of riverine ecosystems. To understand the general water quality situation, the time series data of selected water quality parameters were analyzed in an urban river in Peninsular Malaysia. In this regard, the stations were selected from the main stem of the river as well as from the side channel. The stations located at the main stem of the river are less polluted than that in the side channel. Water Quality Index scores indicated that the side channel station is the most polluted, breaching the Class IV water quality criteria threshold during the monitoring period, followed by stations at the river mouth and the main channel. The effect of immediate anthropogenic waste input is also evident at the side channel station. The Organic Pollution Index of side channel station is (14.99) 3 times higher than at stations at river mouth (4.11) and 6 times higher than at the main channel (2.57). The two-way ANOVA showed significant difference among different stations. Further, the factor analysis on water quality parameters yielded two significant factors. They discriminated the stations into two groups. The land-use land cover classification of the study area shows that the region near the sampling sites is dominated by urban settlements (33.23 %) and this can contribute significantly to the deterioration of ambient river water quality. The present study estimated the water quality condition and response in the river and the study can be an immediate yardstick for base lining river water quality, and a basis for future water quality modeling studies in the region.

  6. Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River (Wuhan section) and correlations with water quality parameters.

    PubMed

    Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei

    2015-03-31

    A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water.

  7. Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River (Wuhan section) and correlations with water quality parameters

    PubMed Central

    Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei

    2015-01-01

    A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water. PMID:25825837

  8. Flight Testing of Guidance, Navigation and Control Systems on the Mighty Eagle Robotic Lander Testbed

    NASA Technical Reports Server (NTRS)

    Hannan, Mike; Rickman, Doug; Chavers, Greg; Adam, Jason; Becker, Chris; Eliser, Joshua; Gunter, Dan; Kennedy, Logan; O'Leary, Patrick

    2015-01-01

    During 2011 a series of progressively more challenging flight tests of the Mighty Eagle autonomous terrestrial lander testbed were conducted primarily to validate the GNC system for a proposed lunar lander. With the successful completion of this GNC validation objective the opportunity existed to utilize the Mighty Eagle as a flying testbed for a variety of technologies. In 2012 an Autonomous Rendezvous and Capture (AR&C) algorithm was implemented in flight software and demonstrated in a series of flight tests. In 2012 a hazard avoidance system was developed and flight tested on the Mighty Eagle. Additionally, GNC algorithms from Moon Express and a MEMs IMU were tested in 2012. All of the testing described herein was above and beyond the original charter for the Mighty Eagle. In addition to being an excellent testbed for a wide variety of systems the Mighty Eagle also provided a great learning opportunity for many engineers and technicians to work a flight program.

  9. Will water scarcity in semiarid regions limit hydraulic fracturing of shale plays?

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Reedy, Robert C.; Nicot, Jean Philippe

    2014-12-01

    There is increasing concern about water constraints limiting oil and gas production using hydraulic fracturing (HF) in shale plays, particularly in semiarid regions and during droughts. Here we evaluate HF vulnerability by comparing HF water demand with supply in the semiarid Texas Eagle Ford play, the largest shale oil producer globally. Current HF water demand (18 billion gallons, bgal; 68 billion liters, bL in 2013) equates to ˜16% of total water consumption in the play area. Projected HF water demand of ˜330 bgal with ˜62 000 additional wells over the next 20 years equates to ˜10% of historic groundwater depletion from regional irrigation. Estimated potential freshwater supplies include ˜1000 bgal over 20 yr from recharge and ˜10 000 bgal from aquifer storage, with land-owner lease agreements often stipulating purchase of freshwater. However, pumpage has resulted in excessive drawdown locally with estimated declines of ˜100-200 ft in ˜6% of the western play area since HF began in 2009-2013. Non-freshwater sources include initial flowback water, which is ≤5% of HF water demand, limiting reuse/recycling. Operators report shifting to brackish groundwater with estimated groundwater storage of 80 000 bgal. Comparison with other semiarid plays indicates increasing brackish groundwater and produced water use in the Permian Basin and large surface water inputs from the Missouri River in the Bakken play. The variety of water sources in semiarid regions, with projected HF water demand representing ˜3% of fresh and ˜1% of brackish water storage in the Eagle Ford footprint indicates that, with appropriate management, water availability should not physically limit future shale energy production.

  10. World`s first SPB LNG carrier ``POLAR EAGLE``

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Eiji; Nakajima, Yoshiyuki; Yamada, Koichiro

    1994-12-31

    The world`s first Self-supporting Prismatic-shape IMO type B (SPB) LNG Carrier named ``POLAR EAGLE`` has been delivered to Phillips 66 Natural Gas Company and Marathon Oil Company in June, 1993. The cargo containment system installed onboard the vessel, SPB cargo containment system, was developed by Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI) and fully complies with IMO Gas Carrier Code for a type B independent tank. ``POLAR EAGLE`` was constructed in the authors` Aichi works and delivered 34 months after the contract of the vessel. Its performance was confirmed through various kinds of tests and inspections during construction of the vessel.more » Results of typical tests and inspections are introduced.« less

  11. Predatory threat of harpy eagles for yellow-breasted capuchin monkeys in the Atlantic Forest.

    PubMed

    Suscke, Priscila; Verderane, Michele; de Oliveira, Robson Santos; Delval, Irene; Fernández-Bolaños, Marcelo; Izar, Patrícia

    2017-01-01

    We describe seven encounters between different harpy eagle individuals (Harpia harpyja) and a group of yellow-breasted capuchin monkeys (Sapajus xanthosternos) in Una Biological Reserve. These interactions lasted 58 min on average. In each of those encounters, the capuchin monkeys used particular behavioral strategies against the harpy eagle that were not employed in reaction to other aerial predators. We did not observe any successful predation events, but after one of those encounters an infant disappeared from the capuchin group. As a whole, these observations indicate that the presence of harpy eagles in the group's home range increases predation risk for capuchin monkeys. The present report also suggests a reoccupation by H. harpyja of this area, as no previous recent records identify harpy eagle occurrence in Una Biological Reserve.

  12. Identifying wells downstream from Laguna Dam that yield water that will be replaced by water from the Colorado River, Arizona and California

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    2000-01-01

    This report summarizes a comprehensive study and development of the method documented in Owen-Joyce and others (2000). That report and one for the area upstream from Laguna Dam (Wilson and Owen-Joyce, 1994) document the accounting-surface method to identify wells that yield water that will be replaced by water from the Colorado River. Downstream from Laguna Dam, the Colorado River is the source for nearly all recharge to the river aquifer. The complex surface-water and ground-water system that exists in the area is, in part, the result of more than 100 years of water-resources development. Agriculture is the principal economy and is possible only with irrigation. The construction and operation of canals provides the means to divert and distribute Colorado River water to irrigate agricultural lands on the flood plains and mesas along the Colorado and Gila Rivers, in Imperial and Coachella Valleys, and in the area upstream from Dome along the Gila River. Water is withdrawn from wells for irrigation, dewatering, and domestic use. The area downstream from Laguna Dam borders additional areas of agricultural development in Mexico where Colorado River water also is diverted for irrigation.

  13. Chemical characteristics of Delaware River water, Trenton, New Jersey, to Marcus Hook, Pennsylvania

    USGS Publications Warehouse

    Durfor, Charles N.; Keighton, Walter B.

    1954-01-01

    This progress report gives the results of an investigation of the quality of water in the Delaware River from Trenton, N. J. to Marcus Hook, Pa., for the period August 1949 to December 1952. The Delaware River is the principal source of water for the many industries and municipal water supplies along this reach of the river and both industries and municipalities use it for the disposal of their wastes. Consequently, a study of the quality of the water and variations in the quality caused by changes in streamflow, tidal effects, pollution and other factors is important to the many users. In both New Jersey and Pennsylvania steps are being taken to abate pollution, thus it is of more than passing interest to measure the effects of waste treatment on the quality of the Delaware River water. At average or higher rates of streamflow the mineral content of the water increases slightly from Trenton to Marcus Hook. There is little variation in the concentration of dissolved minerals from bank to bank or from top to bottom of the river. At times of protracted low rates of flow the effect of ocean water mixing with the river water may be noted as far upstream as Philadelphia. At such times the salinity is often greater near the bottom of the river than near the top. The increase in chloride concentration upstream from Philadelphia is small compared to the rapid increase downstream from Philadelphia. Temperatures of offshore water vary with the season, but on a given day are substantially uniform throughout the reach of the river from Trenton to Marcus Hook. The water contains less dissolved oxygen as it flows downstream indicating that oxygen is being consumed by oxidizable matter. From Philadelphia downstream there are periods, especially in late summer, when the dissolved oxygen is barely sufficient to meet the oxygen demands of the pollution load.

  14. Water Resources Data, Pennsylvania, Water Year 1999. Volume 1. Delaware River Basin

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2000-01-01

    IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio River and St. Lawrence River Basins.This report, Volume 1, contains: (1) discharge records for 74 continuous-record streamflow-gaging stations, 7 partial-record stations, and 13 special study and miscellaneous streamflow sites; (2) elevation and contents records for 14 lakes and reservoirs; (3) water-quality records for 29 gaging stations and 11 ungaged streamsites; (4) water-quality records for 87 special-study stations;(5) water-level records for 55 network observation wells; and (6) water-quality analyses of ground water from 11 ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-99-1." These water data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA

  15. Water Resources Data, Pennsylvania, Water Year 2001. Volume 1. Delaware River Basin

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2002-01-01

    IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio River and St. Lawrence River Basins.This report, Volume 1, contains: (1) discharge records for 77 continuous-record streamflow-gaging stations, 7 partial-record stations, and 46 special study and miscellaneous streamflow sites; (2) elevation and contents records for 13 lakes and reservoirs; (3) water-quality records for 28 gaging stations and 11 ungaged streamsites; (4) water-quality records for 27 special-study stations; (5) water-level records for 56 network observation wells; and (6) water-quality analyses of ground water from 111 ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-01-1." These water data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield

  16. Water resources data, Pennsylvania, water year 2000, Volume 1. Delaware River Basin

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2001-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio River and St. Lawrence River Basins.This report, Volume 1, contains: (1) discharge records for 76 continuous-record streamflow-gaging stations, 7 partial-record stations, and 13 special study and miscellaneous streamflow sites; (2) elevation and contents records for 14 lakes and reservoirs; (3) water-quality records for 28 gaging stations and 14 ungaged streamsites; (4) water-quality records for 77 special-study stations; (5) water-level records for 53 network observation wells; and (6) water-quality analyses of ground water from 101 ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-00-1." These water data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.The

  17. Relationship between land use and water quality in Pesanggrahan River

    NASA Astrophysics Data System (ADS)

    Effendi, Hefni; Muslimah, Sri; Ayu Permatasari, Prita

    2018-05-01

    Pesanggrahan River watershed has several activities such as residential and commercial area in its catchment area. The purpose of this study was to analyse water quality related to spatial land use in Pesanggrahan River using GIS Analysis. River water quality in some locations, did not meet water quality standard of class III. From pollution load estimation it was revealed that segment 2 (Bogor City) has the highest BOD, COD, and TSS of 15,043 kg/day, 25,619 kg/day, and 18,104 kg/day respectively. On the other hand, the most developed area in Pesanggrahan Watershed is located in segment 7 (24.5%). Hence, it can be concluded that although an area has a fairly small developed area, high urban activity can cause high BOD, COD, and TSS.

  18. Analysis of Streamflow Trends, Ground-Water and Surface-Water Interactions, and Water Quality in the Upper Carson River Basin, Nevada and California

    USGS Publications Warehouse

    Maurer, Douglas K.; Paul, Angela P.; Berger, David L.; Mayers, C. Justin

    2008-01-01

    Changes in land and water use and increasing development of water resources in the Carson River basin may affect flow of the river and, in turn, affect downstream water users dependent on sustained river flows to Lahontan Reservoir. To address these concerns, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, Churchill County, and the Truckee-Carson Irrigation District, began a study in April 2006 to compile data on changes in land and water use, ground-water levels and pumping, streamflow, and water quality, and to make preliminary analyses of ground-water and surface-water interactions in the Carson River basin upstream of Lahontan Reservoir. The part of the basin upstream of Lahontan Reservoir is called the upper Carson River basin in this report. In 2005, irrigated agricultural land covered about 39,000 acres in Carson Valley, 3,100 acres in Dayton Valley, and 1,200 acres in Churchill Valley. Changes in land use in Carson Valley from the 1970s to 2005 included the development of about 2,700 acres of native phreatophytes, the development of 2,200 acres of irrigated land, 900 acres of land irrigated in the 1970s that appeared fallow in 2005, and the irrigation of about 2,100 acres of new agricultural land. In Dayton and Churchill Valleys, about 1,000 acres of phreatophytes and 900 acres of irrigated land were developed, about 140 acres of phreatophytes were replaced by irrigation, and about 600 acres of land irrigated in the 1970s were not irrigated in 2006. Ground-water pumping in the upper Carson River basin increases during dry years to supplement surface-water irrigation. Total annual pumping exceeded 20,000 acre-ft in the dry year of 1976, exceeded 30,000 acre-ft in the dry years from 1987 to 1992, and increased rapidly during the dry years from 1999 to 2004, and exceeded 50,000 acre-ft in 2004. As many as 67 public supply wells and 46 irrigation wells have been drilled within 0.5 mile of the Carson River. Pumping from these

  19. Geochemical reconnaissance study of Vassar Meadow (Adams Rib) wetlands and vicinity, Eagle County, Colorado

    USGS Publications Warehouse

    Owen, Douglass E.; Breit, George N.

    1995-01-01

    Wetlands are known to be efficient filters of metals dissolved in ground and surface waters. This paper presents the results of geochemical reconnaissance sampling done at the request of the U.S. Environmental Protection Agency in wetlands in Vassar Meadow, Eagle County, Colorado. Ten wetlands were sampled and found to be variously enriched in chromium, molybdenum, and uranium. The uranium and chromium concentrations (and, to a lesser extent, molybdenum) represent an environmental concern should they be released as a result of anthropogenic disturbance. The metal accumulation in these wetlands documents that the wetlands have been functioning as filters that protect water quality in East Brush Creek by lowering the dissolved metal content in water.

  20. [Major ion chemistry of surface water in the Xilin River Basin and the possible controls].

    PubMed

    Tang, Xi-Wen; Wu, Jin-Kui

    2014-01-01

    Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in the steppe region in Inner Mongolia is urgently needed. Major ions are widely used to identify the hydrological processes in a river basin. Based on the analysis results of 239 river water samples collected in 13 sections along the Xilin River system during 2006 to 2008, combined with data from groundwater and precipitation samples collected in the same period and the meteorological and hydrological data in the Xilin River Basin, hydrochemical characteristics and the chemistry of major ions of the Xilin River water have been studied by means of Piper triangle plots and Gibbs diagrams. The results showed that: (1) the total dissolved solid (TDS) in river water mainly ranged between 136.7 mg x L(-1) and 376.5 mg x L(-1), and (2) it had an increasing trend along the river flow path. (3) The major cations and anions of river water were Ca2+ and HCO3-, respectively, and the chemical type of the river water varied from HCO3- -Ca2+ in the headwater area to HCO(3-)-Ca2+ Mg2+ in the lower part. (4) The variation in the concentration of major irons in surface water was not significant at the temporal scale. Usually, the concentration values of major irons were much higher in May than those in other months during the runoff season, while the values were a bit lower in 2007 than those in 2006 and 2008. Except for SO4(2-), the concentrations of other ions such as Ca2+, Na+, Mg2+, K+, Cl- and HCO3- showed a upward trend along the river flow path. Comparing major ion concentrations of the river water with those of local groundwater and precipitation, the concentration in river water was between those of precipitation and groundwater but was much closer to the concentration of groundwater. This indicated that the surface water was recharged by a mixture of precipitation and groundwater, and groundwater showed a larger impact. The Gibbs plot revealed that the chemical

  1. 76 FR 34103 - In the Matter of Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility); Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    .... 10-899-02-ML-BD01] In the Matter of Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility... gas centrifuge uranium enrichment facility--denoted as the Eagle Rock Enrichment Facility (EREF)--in... Information for Contention Preparation; In the Matter of Areva Enrichment Services, LLC (Eagle Rock Enrichment...

  2. [Spatio-temporal characteristics and source identification of water pollutants in Wenruitang River watershed].

    PubMed

    Ma, Xiao-xue; Wang, La-chun; Liao, Ling-ling

    2015-01-01

    Identifying the temp-spatial distribution and sources of water pollutants is of great significance for efficient water quality management pollution control in Wenruitang River watershed, China. A total of twelve water quality parameters, including temperature, pH, dissolved oxygen (DO), total nitrogen (TN), ammonia nitrogen (NH4+ -N), electrical conductivity (EC), turbidity (Turb), nitrite-N (NO2-), nitrate-N(NO3-), phosphate-P(PO4(3-), total organic carbon (TOC) and silicate (SiO3(2-)), were analyzed from September, 2008 to October, 2009. Geographic information system(GIS) and principal component analysis(PCA) were used to determine the spatial distribution and to apportion the sources of pollutants. The results demonstrated that TN, NH4+ -N, PO4(3-) were the main pollutants during flow period, wet period, dry period, respectively, which was mainly caused by urban point sources and agricultural and rural non-point sources. In spatial terms, the order of pollution was tertiary river > secondary river > primary river, while the water quality was worse in city zones than in the suburb and wetland zone regardless of the river classification. In temporal terms, the order of pollution was dry period > wet period > flow period. Population density, land use type and water transfer affected the water quality in Wenruitang River.

  3. Baseflow recession analysis across the Eagle Ford shale play (Texas, USA)

    NASA Astrophysics Data System (ADS)

    Arciniega, Saul; Brena-Naranjo, Agustin; Hernandez-Espriu, Jose Antonio; Pedrozo-Acuña, Adrian

    2016-04-01

    Baseflow is an important process of the hydrological cycle as it can be related to aquatic ecosystem health and groundwater recharge. The temporal and spatial dynamics of baseflow are typically governed by fluctuations in the water table of shallow aquifers hence groundwater pumping and return flow can greatly modify baseflow patterns. More recently, in some regions of the world the exploitation of gas trapped in shale formations by means of hydraulic fracturing (fracking) has raised major concerns on the quantitative and qualitative groundwater impacts. Although fracking implies massive amounts of groundwater withdrawals, its contribution on baseflow decline has not yet been fully investigated. Furthermore, its impact with respect to other human activities or climate extremes such as irrigation or extreme droughts, respectively, remain largely unknown. This work analyzes baseflow recession time-space patterns for a set of watersheds located across the largest shale producer in the world, the Eagle Ford shale play in Texas (USA). The period of study (1985-2014) includes a pre-development and post-development period. The dataset includes 56 hydrometric time series located inside and outside the shale play. Results show that during the development and expansion of the Eagle Ford play, around 70 % of the time series displayed a significant decline wheras no decline was observed during the pre-development)

  4. Water resources of the Redwood River watershed, southwestern Minnesota

    USGS Publications Warehouse

    Van Voast, Wayne A.; Jerabek, L.A.; Novitzki, R.P.

    1970-01-01

    The land surface slopes gently northeastward and eastward from altitudes greater than 1900 feet at the southwestern edge to less than 850 feet at the mouth of the Redwood River in the east. The area has slight local relief shaped by continental glaciation. The Redwood River and its tributaries, many of which are ephemeral, and ponds and lakes in the area provide water for local use and habitat for wildlife. The glacial drift and sedimentary rocks yield generally adequate water supplies for municipalities, households, and farms.

  5. 76 FR 65563 - Pricing for 2011 American Eagle Silver Proof and Uncirculated Coins

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... DEPARTMENT OF THE TREASURY United States Mint Pricing for 2011 American Eagle Silver Proof and Uncirculated Coins AGENCY: United States Mint, Department of the Treasury. ACTION: Notice. SUMMARY: The United States Mint is announcing the re-pricing of the 2011 American Eagle Silver Proof and Uncirculated Coins...

  6. 76 FR 27753 - American Eagle Savings Bank, Boothwyn, PA; Approval of Conversion Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision [AC-61: OTS Nos. 07212] American Eagle Savings Bank, Boothwyn, PA; Approval of Conversion Application Notice is hereby given that on May 3, 2011, the Office of Thrift Supervision approved the application of American Eagle Savings Bank, Boothwyn...

  7. Breeding bald eagles in captivity

    USGS Publications Warehouse

    Maestrelli, J.R.; Wiemeyer, Stanley N.

    1975-01-01

    A 7-year-old female Bald Eagle from Alabama was paired with a 4-year-old Alaskan male in a large flight pen during December 1969. Both birds were free of physical defects when originally placed in the pen but the female was blind in one eye prior to the 1973 breeding season.....Nesting first occurred during 1971 when at least two eggs were laid; all but one, which showed no sign of embryonic development after being incubated for 56 days, were broken by the adult birds. Two of three eggs laid in 1972 hatched. Both young died a few days after hatching following a period of inclement weather. Three eggs were laid and hatched during 1973. Antagonism between the nestlings was observed soon after hatching and may have been responsible for the unobserved death of one nestling, two days after the third young hatched. The two remaining young were raised by the adult birds and eventually left the nest 85 days after the first egg hatched. Incubation periods for the 1972-73 clutches averaged 35 days. No renesting attempts were made by the eagles during the 3.year period.

  8. EAGLE: relay mirror technology development

    NASA Astrophysics Data System (ADS)

    Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.

    2002-06-01

    EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.

  9. Developing the remote sensing-based water environmental model for monitoring alpine river water environment over Plateau cold zone

    NASA Astrophysics Data System (ADS)

    You, Y.; Wang, S.; Yang, Q.; Shen, M.; Chen, G.

    2017-12-01

    Alpine river water environment on the Plateau (such as Tibetan Plateau, China) is a key indicator for water security and environmental security in China. Due to the complex terrain and various surface eco-environment, it is a very difficult to monitor the water environment over the complex land surface of the plateau. The increasing availability of remote sensing techniques with appropriate spatiotemporal resolutions, broad coverage and low costs allows for effective monitoring river water environment on the Plateau, particularly in remote and inaccessible areas where are lack of in situ observations. In this study, we propose a remote sense-based monitoring model by using multi-platform remote sensing data for monitoring alpine river environment. In this study some parameterization methodologies based on satellite remote sensing data and field observations have been proposed for monitoring the water environmental parameters (including chlorophyll-a concentration (Chl-a), water turbidity (WT) or water clarity (SD), total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC)) over the china's southwest highland rivers, such as the Brahmaputra. First, because most sensors do not collect multiple observations of a target in a single pass, data from multiple orbits or acquisition times may be used, and varying atmospheric and irradiance effects must be reconciled. So based on various types of satellite data, at first we developed the techniques of multi-sensor data correction, atmospheric correction. Second, we also built the inversion spectral database derived from long-term remote sensing data and field sampling data. Then we have studied and developed a high-precision inversion model over the southwest highland river backed by inversion spectral database through using the techniques of multi-sensor remote sensing information optimization and collaboration. Third, take the middle reaches of the Brahmaputra river as the study area, we validated the key

  10. Golden Eagle fatalities and the continental-scale consequences of local wind-energy generation

    USGS Publications Warehouse

    Katzner, Todd E.; Nelson, David M.; Braham, Melissa A.; Doyle, Jacqueline M.; Fernandez, Nadia B.; Duerr, Adam E.; Bloom, Peter H.; Fitzpatrick, Matthew C.; Miller, Tricia A.; Culver, Renee C. E.; Braswell, Loan; DeWoody, J. Andrew

    2017-01-01

    Renewable energy production is expanding rapidly despite mostly unknown environmental effects on wildlife and habitats. We used genetic and stable isotope data collected from Golden Eagles (Aquila chrysaetos) killed at the Altamont Pass Wind Resource Area (APWRA) in California in demographic models to test hypotheses about the geographic extent and demographic consequences of fatalities caused by renewable energy facilities. Geospatial analyses of δ2H values obtained from feathers showed that ≥25% of these APWRA-killed eagles were recent immigrants to the population, most from long distances away (>100 km). Data from nuclear genes indicated this subset of immigrant eagles was genetically similar to birds identified as locals from the δ2H data. Demographic models implied that in the face of this mortality, the apparent stability of the local Golden Eagle population was maintained by continental-scale immigration. These analyses demonstrate that ecosystem management decisions concerning the effects of local-scale renewable energy can have continental-scale consequences.

  11. Golden Eagle fatalities and the continental-scale consequences of local wind-energy generation.

    PubMed

    Katzner, Todd E; Nelson, David M; Braham, Melissa A; Doyle, Jacqueline M; Fernandez, Nadia B; Duerr, Adam E; Bloom, Peter H; Fitzpatrick, Matthew C; Miller, Tricia A; Culver, Renee C E; Braswell, Loan; DeWoody, J Andrew

    2017-04-01

    Renewable energy production is expanding rapidly despite mostly unknown environmental effects on wildlife and habitats. We used genetic and stable isotope data collected from Golden Eagles (Aquila chrysaetos) killed at the Altamont Pass Wind Resource Area (APWRA) in California in demographic models to test hypotheses about the geographic extent and demographic consequences of fatalities caused by renewable energy facilities. Geospatial analyses of δ 2 H values obtained from feathers showed that ≥25% of these APWRA-killed eagles were recent immigrants to the population, most from long distances away (>100 km). Data from nuclear genes indicated this subset of immigrant eagles was genetically similar to birds identified as locals from the δ 2 H data. Demographic models implied that in the face of this mortality, the apparent stability of the local Golden Eagle population was maintained by continental-scale immigration. These analyses demonstrate that ecosystem management decisions concerning the effects of local-scale renewable energy can have continental-scale consequences. © 2016 Society for Conservation Biology.

  12. Monitoring bald eagles using lists of nests: Response to Watts and Duerr

    USGS Publications Warehouse

    Sauer, John R.; Otto, Mark C.; Kendall, William L.; Zimmerman, Guthrie S.

    2011-01-01

    The post-delisting monitoring plan for bald eagles (Haliaeetus leucocephalus) roposed use of a dual-frame sample design, in which sampling of known nest sites in combination with additional area-based sampling is used to estimate total number of nesting bald eagle pairs. Watts and Duerr (2010) used data from repeated observations of bald eagle nests in Virginia, USA to estimate a nest turnover rate and used this rate to simulate decline in number of occupied nests in list nests over time. Results of Watts and Duerr suggest that, given the rates of loss of nests from the list of known nest sites in Virginia, the list information will be of little value to sampling unless lists are constantly updated. Those authors criticize the plan for not placing sufficient emphasis on updating and maintaining lists of bald eagle nests. Watts and Duerr's metric of turnover rate does not distinguish detectability or temporary nonuse of nests from permanent loss of nests and likely overestimates turnover rate. We describe a multi-state capture–recapture model that allows appropriate estimation of rates of loss of nests, and we use the model to estimate rates of loss from a sample of nests from Maine, USA. The post-delisting monitoring plan addresses the need to maintain and update the lists of nests, and we show that dual frame sampling is an effective approach for sampling nesting bald eagle populations.

  13. Looking Back at 'Eagle Crater'(Left-eye)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the left-eye version of the first 360-degree view from the Mars Exploration Rover Opportunity's new position outside 'Eagle Crater,' the small crater where the rover landed about two months ago. Scientists are busy analyzing Opportunity's new view of the plains of Meridiani Planum. The plentiful ripples are a clear indication that wind is the primary geologic process currently in effect on the plains. The rover's tracks can be seen leading away from Eagle Crater. At the far left are two depressions--each about a meter (about 3.3 feet) across---that feature bright spots in their centers. One possibility is that the bright material is similar in composition to the rocks in Eagle Crater's outcrop and the surrounding darker material is what's referred to as 'lag deposit,' or erosional remnants, which are much harder and more difficult to wear away. These twin dimples might be revealing pieces of a larger outcrop that lies beneath. The depression closest to Opportunity is whimsically referred to as 'Homeplate' and the one behind it as 'First Base.' The rover's panoramic camera is set to take detailed images of the depressions today, on Opportunity's 58th sol. The backshell and parachute that helped protect the rover and deliver it safely to the surface of Mars are also visible near the horizon, at the left of the image. This image was taken by the rover's navigation camera.

  14. Water quality of streams and springs, Green River Basin, Wyoming

    USGS Publications Warehouse

    DeLong, L.L.

    1986-01-01

    Data concerning salinity, phosphorus, and trace elements in streams and springs within the Green River Basin in Wyoming are summarized. Relative contributions of salinity are shown through estimates of annual loads and average concentrations at 11 water quality measurements sites for the 1970-77 water years. A hypothetical diversion of 20 cu ft/sec from the Big Sandy River was found to lower dissolved solids concentration in the Green River at Green River, Wyoming. This effect was greatest during the winter months, lowering dissolved solids concentration as much as 13%. Decrease in dissolved solids concentrations during the remainder of the year was generally less than 2%. Unlike the dilution effect that overland runoff has on perennial streams, runoff in ephemeral and intermittent streams within the basin was found to be enriched by the flushing of salts from normally dry channels and basin surfaces. Relative concentrations of sodium and sulfate in streams within the basin appear to be controlled by solubility. A downstream trend of increasing relative concentrations of sodium, sulfate, or both with increasing dissolved solids concentration was evident in all streams sampled. Estimates of total phosphorus concentration at water quality measurement sites indicate that phosphorus is removed from the Green River water as it passes through Fontenelle and Flaming Gorge Reservoirs. Total phosphorus concentration at some stream sites is directly or inversely related to streamflow, but at most sites a simple relation between concentration and streamflow is not discernable. (USGS)

  15. Importance of Boreal Rivers in Providing Iron to Marine Waters

    PubMed Central

    Kritzberg, Emma S.; Bedmar Villanueva, Ana; Jung, Marco; Reader, Heather E.

    2014-01-01

    This study reports increasing iron concentrations in rivers draining into the Baltic Sea. Given the decisive role of iron to the structure and biogeochemical function of aquatic ecosystems, this trend is likely one with far reaching consequences to the receiving system. What those consequences may be depends on the fate of the iron in estuarine mixing. We here assess the stability of riverine iron by mixing water from seven boreal rivers with artificial sea salts. The results show a gradual loss of iron from suspension with increasing salinity. However, the capacity of the different river waters to maintain iron in suspension varied greatly, i.e. between 1 and 54% of iron was in suspension at a salinity of 30. The variability was best explained by iron:organic carbon ratios in the riverine waters – the lower the ratio the more iron remained in suspension. Water with an initially low iron:organic carbon ratio could keep even higher than ambient concentrations of Fe in suspension across the salinity gradient, as shown in experiments with iron amendments. Moreover, there was a positive relationship between the molecular size of the riverine organic matter and the amount of iron in suspension. In all, the results point towards a remarkably high transport capacity of iron from boreal rivers, suggesting that increasing concentrations of iron in river mouths may result in higher concentrations of potentially bioavailable iron in the marine system. PMID:25233197

  16. Perfluoroalkyl acids in the water cycle from a freshwater river basin to coastal waters in eastern China.

    PubMed

    Zhu, Xiaobin; Jin, Ling; Yang, Jingping; Wu, Jianfeng; Zhang, Beibei; Zhang, Xiaowei; Yu, Nanyang; Wei, Si; Wu, Jichun; Yu, Hongxia

    2017-02-01

    The distribution of perfluoroalkyl acids (PFAAs), one class of persistent organic pollutants, in groundwater, especially in confined aquifers remains poorly understood. In this study, we investigated the occurrence of 12 PFAAs through a water cycle from the Huai River Basin to the Yellow Sea, including confined aquifers, unconfined aquifers, rivers, and coastal waters. We found the ubiquity of PFAAs in all types of samples, including those from confined aquifers (2.7-6.8 ng/L). Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were the major PFAAs in all samples, accounting for an average of 49.1% (0.8-84.8%) and 33.3% (6.3-92.2%) of total PFAAs, respectively. Comparing the concentration of PFOA with that of PFOS, we found a higher concentration of PFOA in rivers and a higher concentration of PFOS in confined aquifers. Short-chain perfluoropentanoic acid accounted for an average of 10.3% (1.9-24.6%) of total PFAAs in rivers and coastal waters. Branched isomers of both PFOA and PFOS were detected in most samples (36/42 and 39/42, respectively). One-way analysis of variance indicated a significant difference in the profiles of PFAAs among the different types of water samples. Principal component analysis suggested that rainwater and recent uses of PFAAs could be the major sources of PFAAs in confined aquifers, while recent and current uses of PFAAs could be the major source of PFAAs in unconfined aquifers, rivers and coastal waters. The risk quotients of PFOA and PFOS in groundwater and rivers were 2-3 orders of magnitude lower than unity, indicating no immediate risks via drinking water consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Density currents in the Chicago River: Characterization, effects on water quality, and potential sources

    USGS Publications Warehouse

    Jackson, P. Ryan; Garcia, Carlos M.; Oberg, Kevin A.; Johnson, Kevin K.; Garcia, Marcelo H.

    2008-01-01

    Bidirectional flows in a river system can occur under stratified flow conditions and in addition to creating significant errors in discharge estimates, the upstream propagating currents are capable of transporting contaminants and affecting water quality. Detailed field observations of bidirectional flows were made in the Chicago River in Chicago, Illinois in the winter of 2005-06. Using multiple acoustic Doppler current profilers simultaneously with a water-quality profiler, the formation of upstream propagating density currents within the Chicago River both as an underflow and an overflow was observed on three occasions. Density differences driving the flow primarily arise from salinity differences between intersecting branches of the Chicago River, whereas water temperature is secondary in the creation of these currents. Deicing salts appear to be the primary source of salinity in the North Branch of the Chicago River, entering the waterway through direct runoff and effluent from a wastewater-treatment plant in a large metropolitan area primarily served by combined sewers. Water-quality assessments of the Chicago River may underestimate (or overestimate) the impairment of the river because standard water-quality monitoring practices do not account for density-driven underflows (or overflows). Chloride concentrations near the riverbed can significantly exceed concentrations at the river surface during underflows indicating that full-depth parameter profiles are necessary for accurate water-quality assessments in urban environments where application of deicing salt is common.

  18. Storing and sharing water in sand rivers: a water balance modelling approach

    NASA Astrophysics Data System (ADS)

    Love, D.; van der Zaag, P.; Uhlenbrook, S.

    2009-04-01

    Sand rivers and sand dams offer an alternative to conventional surface water reservoirs for storage. The alluvial aquifers that make up the beds of sand rivers can store water with minimal evaporation (extinction depth is 0.9 m) and natural filtration. The alluvial aquifers of the Mzingwane Catchment are the most extensive of any tributaries in the Limpopo Basin. The lower Mzingwane aquifer, which is currently underutilised, is recharged by managed releases from Zhovhe Dam (capacity 133 Mm3). The volume of water released annually is only twice the size of evaporation losses from the dam; the latter representing nearly one third of the dam's storage capacity. The Lower Mzingwane valley currently support commercial agro-businesses (1,750 ha irrigation) and four smallholder irrigation schemes (400 ha with provision for a further 1,200 ha). In order to support planning for optimising water use and storage over evaporation and to provide for more equitable water allocation, the spreadsheet-based balance model WAFLEX was used. It is a simple and userfriendly model, ideal for use by institutions such as the water management authorities in Zimbabwe which are challenged by capacity shortfalls and inadequate data. In this study, WAFLEX, which is normally used for accounting the surface water balance, is adapted to incorporate alluvial aquifers into the water balance, including recharge, baseflow and groundwater flows. Results of the WAFLEX modelling suggest that there is surplus water in the lower Mzingwane system, and thus there should not be any water conflicts. Through more frequent timing of releases from the dam and maintaining the alluvial aquifers permanently saturated, less evaporation losses will occur in the system and the water resources can be better shared to provide more irrigation water for smallholder farmers in the highly resource-poor communal lands along the river. Sand dams are needed to augment the aquifer storage system and improve access to water. An

  19. Social and ecological aspects of the water resources management of the transboundary rivers of Central Asia

    NASA Astrophysics Data System (ADS)

    Normatov, P.

    2014-09-01

    The Zeravshan River is a transboundary river whose water is mainly used for irrigation of agricultural lands of the Republic of Uzbekistan. Sufficiently rich hydropower resources in upstream of the Zeravshan River characterize the Republic of Tajikistan. Continuous monitoring of water resources condition is necessary for planning the development of this area taking into account hydropower production and irrigation needs. Water quality of Zeravshan River is currently one of the main problems in the relationship between the Republics of Uzbekistan and Tajikistan, and it frequently triggers conflict situations between the two countries. In most cases, the problem of water quality of the Zeravshan River is related to river pollution by wastewater of the Anzob Mountain-concentrating Industrial Complex (AMCC) in Tajikistan. In this paper results of research of chemical and bacteriological composition of the Zeravshan River waters are presented. The minimum impact of AMCC on quality of water of the river was experimentally established.

  20. Movements by juvenile and immature Steller's Sea Eagles Haliaeetus pelagicus tracked by satellite

    USGS Publications Warehouse

    McGrady, M.J.; Ueta, M.; Potapov, E.R.; Utekhina, I.; Marterov, V.; Ladyguine, A.; Zykov, V.; Cibor, J.; Fuller, Mark R.; Seegar, J.K.

    2003-01-01

    Twenty-four juvenile Steller's Sea Eagles Haliaeetus pelagicus were tracked via satellite from natal areas in Magadan, Kabarovsk, Amur, Sakhalin and Kamchatka. Nestling dispersal occurred between 9 September and 6 December (n = 24), mostly 14 September-21 October, and did not differ among regions or years. Most eagles made stopovers of 4-28 days during migration. Migration occurred 9 September-18 January, mostly along previously described routes, taking 4-116 days to complete (n = 18). Eagles averaged 47.8 km/day excluding stopovers; 22.9 km/day including stopovers. The mean degrees of latitude spanned during migration was: Kamchatka, 2.1; Magadan, 11.6; Amur, 7.3; and Sakhalin, 1.1. Eagle winter range sizes varied. Eagles concentrated in 1-3 subareas within overall winter ranges. The mean size of the first wintering subareas was 274 km2, the second 529 km2, and the third 1181 km2. Second wintering areas were south of first wintering areas. Spring migration started between 2 February and 31 March. Two eagles from Magadan were tracked onto summering grounds, well south of their natal areas. Both had early and late summering areas. One bird was followed for 25 months. It initiated its second autumn migration in the first half of October and arrived on its wintering grounds on 26 December. The second autumn migration covered 1839 km (20.9-22.4 km/day). Unlike its first winter when it used two subareas, this bird used only one subarea in 1998-99, but this was located near wintering areas used in 1997-98. It left its wintering ground between 13 April and 13 May, and arrived on its summering grounds between 7 June and 8 July. Unlike most satellite radiotracking studies, data are presented from a relatively large number of birds from across their breeding range, including new information on eagle movements on the wintering grounds and during the second year

  1. Preimpoundment water quality in the Tioga River Basin, Pennsylvania and New York

    USGS Publications Warehouse

    Ward, Janice R.

    1981-01-01

    The addition of Hammond Lake water to the outflow from Tioga Lake will probably improve the water quality of the Tioga River below Tioga Dam. Releases from the multi-level withdrawal system will allow the water quality of the river to stabilize, and not be subject to the extreme low-flow conditions that have historically damaged aquatic life.

  2. Reconnaissance of the Pigeon River, a cold-water river in the north-central part of Michigan's southern peninsula

    USGS Publications Warehouse

    Hendrickson, G.E.; Doonan, C.J.

    1970-01-01

    The cold-water streams of the northern states provide unique recreational values to the American people (wilderness or semi-wilderness atmosphere, fast-water canoeing, and trout fishing), but the expanding recreational needs must be balanced against the growing demand of water for public and industrial supplies, for irrigation, and for the dilution of sewage and other wastes. In order to make intelligent decisions regarding use and management of the water resource for recreation and other demands, an analysis of the hydrologic factors related to recreational values is essential.The Pigeon River is one of Michigan's outstanding trout streams and is the favorite of a large number of anglers who return year after year. Camping is also popular and is usually, but not always, associated with fishing. Boating is very rare on the Pigeon because of numerous portages around log jams. Cabin-living and resorting are relatively minor on this river as yet, but much of the private river front may be developed in future years.The Pigeon is located in the north-central part of the southern peninsula of Michigan (see index map). Headwaters are a few miles northeast of Gaylord, and the mouth is at Mullet Lake, a few miles northeast of Indian River. Interstate Highway 75 roughly parallels the river about 5 to 10 miles to the west. Exits from this highway at Gaylord, Vanderbilt, Wolverine, and Indian River, provide easy access to the Pigeon.The recreational value of the river depends on the streamflow characteristics, quality of water, and character of stream channel, and bed and banks. The purpose of this atlas is to describe these characteristics, and to show how they relate to recreational uses.Most of the information presented here was obtained from a field reconnaissance in June, 1966, and from basic records of the U.S. Geological Survey's Water Resources Division. The area of field study is limited to the channel, bed, and banks of the main stem of the Pigeon from source to

  3. Reconnaissance of the Pere Marquette River, a cold water river in the central part of Michigan's Southern Peninsula

    USGS Publications Warehouse

    Hendrickson, G.E.; Doonan, C.J.

    1971-01-01

    The cold-water streams of the northern states provide unique recreational values to the American people (wilderness or semi-wilderness atmosphere, fast-water canoeing, and trout fishing) but the expanding recreational needs must be balanced against the growing demand of water for public and industrial supplies, for irrigation, and for the dilution of sewage and other wastes. In order to make intelligent decisions regarding use and management of the water resource for recreation and other demands, an analysis of the hydrologic factors related to recreational values is essential.The Pere Marquette, an outstanding river for brown and steelhead trout fishing, is also a popular canoe trail. Larger boats, some equipped with motors, are common in the lower reaches where the river is wide and deep. Cabins are abundant on the river near Baldwin but are relatively sparse elsewhere. The broad swampy floodplain that borders most of the river between Walhalla and Ludington apparently offers few favorable cabin sites.The Pere Marquette is located in the west-central part of the Southern Peninsula of Michigan, and flows westward from the headwaters near Chase in Lake County to the mouth at Ludington, in Mason County. The river is south of, and roughly parallel to, U.S. Highway 10 from Chase to Ludington. Access to the river is by roads leading south from U.S. 10 at Nirvana, Idlewild, Baldwin, Branch, Walhalla, Scottville, and many intermediate points.The recreational value of the river depends on the streamflow characteristics, quality of water, and character of stream channel and bed and banks. The purpose of this report is to describe these characteristics and show how they relate to recreational USGS.Most of the information presented here was obtained from a field reconnaissance in July and August, 1966, and from basic records of the U.S. Geological Survey's Water Resources Division. The area of field study is limited to the channel, bed, and banks of the Middle Branch and

  4. Water-table contours and depth to water in the southeastern part of the Sweetwater River basin, central Wyoming, 1982

    USGS Publications Warehouse

    Borchert, William B.

    1987-01-01

    This map describes the southeastern part of the Sweetwater River basin; the major aquifer consists of the upper part of the White River formations, all of Tertiary age, and to a small extent, the alluvium of the Quaternary age along the Sweetwater River. The saturated thickness of the aquifer in most of the area, but not including the alluvium ranges from 500 to 3000 ft. The maximum saturated thickness of the alluvium penetrated by test holes was 63 ft. The water-table contours and depths to water are based primarily on groundwater-level measurements made during 1982 in 104 wells, most of which are located south of the Sweetwater River. Land-surface altitudes of springs and water-surface altitudes along the Sweetwater River and perennial reaches of creeks flowing northward from the Green and Ferris Mountains also were used as control for mapping the water table. The perennial reaches shown on the map are assumed hydraulically connected with the water table. They were identified from streamflow gain-and-loss measurements made during April and May 1982. (Author 's abstract)

  5. Modelling daily water temperature from air temperature for the Missouri River.

    PubMed

    Zhu, Senlin; Nyarko, Emmanuel Karlo; Hadzima-Nyarko, Marijana

    2018-01-01

    The bio-chemical and physical characteristics of a river are directly affected by water temperature, which thereby affects the overall health of aquatic ecosystems. It is a complex problem to accurately estimate water temperature. Modelling of river water temperature is usually based on a suitable mathematical model and field measurements of various atmospheric factors. In this article, the air-water temperature relationship of the Missouri River is investigated by developing three different machine learning models (Artificial Neural Network (ANN), Gaussian Process Regression (GPR), and Bootstrap Aggregated Decision Trees (BA-DT)). Standard models (linear regression, non-linear regression, and stochastic models) are also developed and compared to machine learning models. Analyzing the three standard models, the stochastic model clearly outperforms the standard linear model and nonlinear model. All the three machine learning models have comparable results and outperform the stochastic model, with GPR having slightly better results for stations No. 2 and 3, while BA-DT has slightly better results for station No. 1. The machine learning models are very effective tools which can be used for the prediction of daily river temperature.

  6. Assessment of frequency and duration of point counts when surveying for golden eagle presence

    USGS Publications Warehouse

    Skipper, Ben R.; Boal, Clint W.; Tsai, Jo-Szu; Fuller, Mark R.

    2017-01-01

    We assessed the utility of the recommended golden eagle (Aquila chrysaetos) survey methodology in the U.S. Fish and Wildlife Service 2013 Eagle Conservation Plan Guidance. We conducted 800-m radius, 1-hr point-count surveys broken into 20-min segments, during 2 sampling periods in 3 areas within the Intermountain West of the United States over 2 consecutive breeding seasons during 2012 and 2013. Our goal was to measure the influence of different survey time intervals and sampling periods on detectability and use estimates of golden eagles among different locations. Our results suggest that a less intensive effort (i.e., survey duration shorter than 1 hr and point-count survey radii smaller than 800 m) would likely be inadequate for rigorous documentation of golden eagle occurrence pre- or postconstruction of wind energy facilities. Results from a simulation analysis of detection probabilities and survey effort suggest that greater temporal and spatial effort could make point-count surveys more applicable for evaluating golden eagle occurrence in survey areas; however, increased effort would increase financial costs associated with additional person-hours and logistics (e.g., fuel, lodging). Future surveys can benefit from a pilot study and careful consideration of prior information about counts or densities of golden eagles in the survey area before developing a survey design. If information is lacking, survey planning may be best served by assuming low detection rates and increasing the temporal and spatial effort.

  7. Bacterial flora analysis of coliforms in sewage, river water, and ground water using MALDI-TOF mass spectrometry.

    PubMed

    Suzuki, Yoshihiro; Niina, Kouki; Matsuwaki, Tomonori; Nukazawa, Kei; Iguchi, Atsushi

    2018-01-28

    The aim of this study was to rapidly and effectively analyze coliforms, which are the most fundamental indicators of water quality for fecal pollution, using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Coliform bacteria were isolated from municipal sewage, river water, and groundwater. For each sample, 100 isolates were determined by MALDI-TOF MS. In addition, these same 100 isolates were also identified via 16S rRNA gene sequence analysis. Obtained MALDI-TOF MS data were compared with the 16S rRNA sequencing analysis, and the validity of MALDI-TOF MS for classification of coliform bacteria was examined. The concordance rate of bacterial identification for the 100 isolates obtained by MALDI-TOF MS analysis and 16S rRNA gene sequence analysis for sewage, river water, and ground water were 96%, 74%, and 62% at the genus level, respectively. Among the sewage, river water, and ground water samples, the coliform bacterial flora were distinct. The dominant genus of coliforms in sewage, river water, and groundwater were Klebsiella spp., Enterobacter spp., and Serratia spp., respectively. We determined that MALDI-TOF MS is a rapid and accurate tool that can be used to identify coliforms. Therefore, without using conventional 16S rRNA sequencing, it is possible to rapidly and effectively classify coliforms in water using MALDI-TOF MS.

  8. Water quality in the Mahoning River and selected tributaries in Youngstown, Ohio

    USGS Publications Warehouse

    Stoeckel, Donald M.; Covert, S. Alex

    2002-01-01

    The lower reaches of the Mahoning River in Youngstown, Ohio, have been characterized by the Ohio Environmental Protection Agency (OEPA) as historically having poor water quality. Most wastewater-treatment plants (WWTPs) in the watershed did not provide secondary sewage treatment until the late 1980s. By the late 1990s, the Mahoning River still received sewer-overflow discharges from 101 locations within the city of Youngstown, Ohio. The Mahoning River in Youngstown and Mill Creek, a principal tributary to the Mahoning River in Youngstown, have not met biotic index criteria since the earliest published assessment by OEPA in 1980. Youngstown and the OEPA are working together toward the goal of meeting water-quality standards in the Mahoning River. The U.S. Geological Survey collected information to help both parties assess water quality in the area of Youngstown and to estimate bacteria and inorganic nitrogen contributions from sewer-overflow discharges to the Mahoning River. Two monitoring networks were established in the lower Mahoning River: the first to evaluate hydrology and microbiological and chemical water quality and the second to assess indices of fish and aquatic-macroinvertebrate-community health. Water samples and water-quality data were collected from May through October 1999 and 2000 to evaluate where, when, and for how long water quality was affected by sewer-overflow discharges. Water samples were collected during dry- and wet-weather flow, and biotic indices were assessed during the first year (1999). The second year of sample collection (2000) was directed toward evaluating changes in water quality during wet-weather flow, and specifically toward assessing the effect of sewer-overflow discharges on water quality in the monitoring network. Water-quality standards for Escherichia coli (E. coli) concentration and draft criteria for nitrate plus nitrite and total phosphorus were the regulations most commonly exceeded in the Mahoning River and Mill

  9. Hemograms for and nutritional condition of migrant bald eagles tested for exposure to lead.

    PubMed

    Miller, M J; Wayland, M E; Bortolotti, G R

    2001-07-01

    Plasma proteins, hematocrit, differential blood counts were examined and nutritional condition was estimated for bald eagles (Haliaeetus leucocephalus) trapped (n = 66) during antumn migration, 1994-95 at Galloway Bay (Saskatchewan, Canada), for the purposes of estimating prevalence of exposure to lead. Sex and age differences in hematocrit and plasma proteins were not observed; however, female eagles exhibited larger median absolute heterophil counts than males. Hematologic values were similar to those previously reported from eagles in captivity. Departures from expected hematological values from a healthy population of eagles were not observed in birds with elevated levels of blood lead (> or =0.200 microg/ml). Similarly, nutritional condition was not related to blood-lead concentrations. Therefore, it appears that lead exposure in this population was below a threshold required to indicate toxicological alteration in the hematological values and index of nutritional condition that we measured.

  10. EAGLES NEST WILDERNESS, COLORADO.

    USGS Publications Warehouse

    Tweto, Ogden; Williams, Frank E.

    1984-01-01

    On the basis of a geologic and mineral survey, a primitive area that constitutes the nucleus of the Eagles Nest Wilderness, Colorado was appraised to offer little promise for the occurrence of mineral or energy resources. Among the additional areas later incorporated in the wilderness, only a strip near a major fault west and northwest of Frisco and Dillon is classed as having probable mineral-resource potential. If mineral deposits exist, they probably are of the silver-lead-zinc or fluorspar types.

  11. Spatial variability of induced ground-water recharge beneath the Russian River, California

    NASA Astrophysics Data System (ADS)

    Rosenberry, D. O.; Hatch, C. E.; Cox, M. H.; Zamora, C.; Cloud, A.; Constantz, J. E.; Seymour, D.

    2004-12-01

    The Sonoma County Water Agency extracts water from the alluvial aquifer adjacent to and beneath the Russian River via large-volume Ranney-type collector wells. To aid in this extraction, the stage of the river is increased approximately 3 meters by an inflatable dam. In addition, raising the dam allows water to be diverted into infiltration basins that are located adjacent to the river. Removal of aquifer water induces large fluxes from surface water to ground water through the beds of the infiltration basins and the river. Total extraction during maximum summer withdrawals via five collector wells indicates an average flux from surface water to ground water through the riverbed and infiltration basins of 153 cm/d. Measurements of flux using in-river and in-pond piezometers, diurnal sediment-temperature data, and seepage meters, indicate that actual seepage fluxes are spatially variable and large seepage fluxes are concentrated in specific locations, some of which may not be intuitive. For example, we expected greatest induced seepage fluxes to occur above laterals that extend beneath the river and deliver water to a collector well. Seepage flux along a transverse transect of the riverbed that was located above laterals from one of the collector wells averaged 10 cm/d. At the same time, seepage flux along a transect that was 500 m upstream, and farther from the influence of the collector-well system, averaged 40 cm/d. Seepage fluxes from the central portion of one of the recharge basins averaged 3 cm/d whereas seepage fluxes near the margin of that infiltration basin averaged 250 cm/d. Seepage fluxes derived from in-stream-piezometer Darcy calculations were surprisingly consistent with seepage fluxes derived from seepage-meter measurements. Seepage fluxes derived from temperature measurements were slightly less comparable to the piezometer and seepage-meter measurements. The 121 cm/d average of all seepage-flux measurements was similar to the spatially

  12. Far-infrared and dust properties of present-day galaxies in the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Camps, Peter; Trayford, James W.; Baes, Maarten; Theuns, Tom; Schaller, Matthieu; Schaye, Joop

    2016-10-01

    The Evolution and Assembly of GaLaxies and their Environments (EAGLE) cosmological simulations reproduce the observed galaxy stellar mass function and many galaxy properties. In this work, we study the dust-related properties of present-day EAGLE galaxies through mock observations in the far-infrared and submm wavelength ranges obtained with the 3D dust radiative transfer code SKIRT. To prepare an EAGLE galaxy for radiative transfer processing, we derive a diffuse dust distribution from the gas particles and we re-sample the star-forming gas particles and the youngest star particles into star-forming regions that are assigned dedicated emission templates. We select a set of redshift-zero EAGLE galaxies that matches the K-band luminosity distribution of the galaxies in the Herschel Reference Survey (HRS), a volume-limited sample of about 300 normal galaxies in the Local Universe. We find overall agreement of the EAGLE dust scaling relations with those observed in the HRS, such as the dust-to-stellar mass ratio versus stellar mass and versus NUV-r colour relations. A discrepancy in the f250/f350 versus f350/f500 submm colour-colour relation implies that part of the simulated dust is insufficiently heated, likely because of limitations in our sub-grid model for star-forming regions. We also investigate the effect of adjusting the metal-to-dust ratio and the covering factor of the photodissociation regions surrounding the star-forming cores. We are able to constrain the important dust-related parameters in our method, informing the calculation of dust attenuation for EAGLE galaxies in the UV and optical domain.

  13. Analysis of water quality in the Blue River watershed, Colorado, 1984 through 2007

    USGS Publications Warehouse

    Bauch, Nancy J.; Miller, Lisa D.; Yacob, Sharon

    2014-01-01

    Water quality of streams, reservoirs, and groundwater in the Blue River watershed in the central Rocky Mountains of Colorado has been affected by local geologic conditions, historical hard-rock metal mining, and recent urban development. With these considerations, the U.S. Geological Survey, in cooperation with the Summit Water Quality Committee, conducted a study to compile historical water-quality data and assess water-quality conditions in the watershed. To assess water-quality conditions, stream data were primarily analyzed from October 1995 through December 2006, groundwater data from May 1996 through September 2004, and reservoir data from May 1984 through November 2007. Stream data for the Snake River, upper Blue River, and Tenmile Creek subwatersheds upstream from Dillon Reservoir and the lower Blue River watershed downstream from Dillon Reservoir were analyzed separately. (The complete abstract is provided in the report)

  14. Development and testing of a fast conceptual river water quality model.

    PubMed

    Keupers, Ingrid; Willems, Patrick

    2017-04-15

    Modern, model based river quality management strongly relies on river water quality models to simulate the temporal and spatial evolution of pollutant concentrations in the water body. Such models are typically constructed by extending detailed hydrodynamic models with a component describing the advection-diffusion and water quality transformation processes in a detailed, physically based way. This approach is too computational time demanding, especially when simulating long time periods that are needed for statistical analysis of the results or when model sensitivity analysis, calibration and validation require a large number of model runs. To overcome this problem, a structure identification method to set up a conceptual river water quality model has been developed. Instead of calculating the water quality concentrations at each water level and discharge node, the river branch is divided into conceptual reservoirs based on user information such as location of interest and boundary inputs. These reservoirs are modelled as Plug Flow Reactor (PFR) and Continuously Stirred Tank Reactor (CSTR) to describe advection and diffusion processes. The same water quality transformation processes as in the detailed models are considered but with adjusted residence times based on the hydrodynamic simulation results and calibrated to the detailed water quality simulation results. The developed approach allows for a much faster calculation time (factor 10 5 ) without significant loss of accuracy, making it feasible to perform time demanding scenario runs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. NORAD, USNORTHCOM and the Mexican Air Force to participate in AMALGAM EAGLE

    Science.gov Websites

    . Northern Command (USNORTHCOM), will participate, with the Mexican Air Force, in AMALGAM EAGLE 15, a the Mexican Air Force to participate in AMALGAM EAGLE 15 N-NC Public Affairs PRINT | E-MAIL PETERSON tactical exercise, to be conducted Jun.30 - Jul.2, 2015, in which Mexico and the United States will respond

  16. Detecting Long-term Trend of Water Quality Indices of Dong-gang River, Taiwan Using Quantile Regression

    NASA Astrophysics Data System (ADS)

    Yang, D.; Shiau, J.

    2013-12-01

    ABSTRACT BODY: Abstract Surface water quality is an essential issue in water-supply for human uses and sustaining healthy ecosystem of rivers. However, water quality of rivers is easily influenced by anthropogenic activities such as urban development and wastewater disposal. Long-term monitoring of water quality can assess whether water quality of rivers deteriorates or not. Taiwan is a population-dense area and heavily depends on surface water for domestic, industrial, and agricultural uses. Dong-gang River is one of major resources in southern Taiwan for agricultural requirements. The water-quality data of four monitoring stations of the Dong-gang River for the period of 2000-2012 are selected for trend analysis. The parameters used to characterize water quality of rivers include biochemical oxygen demand (BOD), dissolved oxygen (DO), suspended solids (SS), and ammonia nitrogen (NH3-N). These four water-quality parameters are integrated into an index called river pollution index (RPI) to indicate the pollution level of rivers. Although widely used non-parametric Mann-Kendall test and linear regression exhibit computational efficiency to identify trends of water-quality indices, limitations of such approaches include sensitive to outliers and estimations of conditional mean only. Quantile regression, capable of identifying changes over time of any percentile values, is employed in this study to detect long-term trend of water-quality indices for the Dong-gang River located in southern Taiwan. The results show that Dong-gang River 4 stations from 2000 to 2012 monthly long-term trends in water quality.To analyze s Dong-gang River long-term water quality trends and pollution characteristics. The results showed that the bridge measuring ammonia Long-dong, BOD5 measure in that station on a downward trend, DO, and SS is on the rise, River Pollution Index (RPI) on a downward trend. The results form Chau-Jhou station also ahowed simialar trends .more and more near the

  17. Water resources planning for rivers draining into Mobile Bay

    NASA Technical Reports Server (NTRS)

    April, G. C.

    1976-01-01

    The application of remote sensing, automatic data processing, modeling and other aerospace related technologies to hydrological engineering and water resource management are discussed for the entire river drainage system which feeds the Mobile Bay estuary. The adaptation and implementation of existing mathematical modeling methods are investigated for the purpose of describing the behavior of Mobile Bay. Of particular importance are the interactions that system variables such as river flow rate, wind direction and speed, and tidal state have on the water movement and quality within the bay system.

  18. Applying a water quality index model to assess the water quality of the major rivers in the Kathmandu Valley, Nepal.

    PubMed

    Regmi, Ram Krishna; Mishra, Binaya Kumar; Masago, Yoshifumi; Luo, Pingping; Toyozumi-Kojima, Asako; Jalilov, Shokhrukh-Mirzo

    2017-08-01

    Human activities during recent decades have led to increased degradation of the river water environment in South Asia. This degradation has led to concerns for the populations of the major cities of Nepal, including those of the Kathmandu Valley. The deterioration of the rivers in the valley is directly linked to the prevalence of poor sanitary conditions, as well as the presence of industries that discharge their effluents into the river. This study aims to investigate the water quality aspect for the aquatic ecosystems and recreation of the major rivers in the Kathmandu Valley using the Canadian Council of Ministers of the Environment water quality index (CCME WQI). Ten physicochemical parameters were used to determine the CCME WQI at 20 different sampling locations. Analysis of the data indicated that the water quality in rural areas ranges from excellent to good, whereas in denser settlements and core urban areas, the water quality is poor. The study results are expected to provide policy-makers with valuable information related to the use of river water by local people in the study area.

  19. Ancient DNA provides new insights into the evolutionary history of New Zealand's extinct giant eagle.

    PubMed

    Bunce, Michael; Szulkin, Marta; Lerner, Heather R L; Barnes, Ian; Shapiro, Beth; Cooper, Alan; Holdaway, Richard N

    2005-01-01

    Prior to human settlement 700 years ago New Zealand had no terrestrial mammals--apart from three species of bats--instead, approximately 250 avian species dominated the ecosystem. At the top of the food chain was the extinct Haast's eagle, Harpagornis moorei. H. moorei (10-15 kg; 2-3 m wingspan) was 30%-40% heavier than the largest extant eagle (the harpy eagle, Harpia harpyja), and hunted moa up to 15 times its weight. In a dramatic example of morphological plasticity and rapid size increase, we show that the H. moorei was very closely related to one of the world's smallest extant eagles, which is one-tenth its mass. This spectacular evolutionary change illustrates the potential speed of size alteration within lineages of vertebrates, especially in island ecosystems.

  20. Common Raven (Corvus corax) kleptoparasitism at a Golden Eagle (Aquila chyrsaetos) nest in southern Nevada

    USGS Publications Warehouse

    Simes, Matthew; Johnson, Diego R.; Streit, Justin; Longshore, Kathleen M.; Nussear, Kenneth E.; Esque, Todd C.

    2017-01-01

    The Common Raven (Corvus corax) is a ubiquitous species in the Mojave Desert of southern Nevada and California. From 5 to 24 May 2014, using remote trail cameras, we observed ravens repeatedly kleptoparasitizing food resources from the nest of a pair of Golden Eagles (Aquila chyrsaetos) in the Spring Mountains of southern Nevada. The ravens fed on nine (30%) of the 30 prey items delivered to the nest during the chick rearing period. Kleptoparasitic behavior by the ravens decreased as the eagle nestling matured to seven weeks of age, suggesting a narrow temporal window in which ravens can successfully engage in kleptoparasitic behavior at eagle nests. The observation of kleptoparasitism by Common Ravens at the nest suggests potential risks to young Golden Eagles from Common Ravens.