Sample records for ear supporting cells

  1. Sox2 and Jagged1 Expression in Normal and Drug-Damaged Adult Mouse Inner Ear

    PubMed Central

    Campbell, Sean; Taylor, Ruth R.; Forge, Andrew; Hume, Clifford R.

    2007-01-01

    Inner ear hair cells detect environmental signals associated with hearing, balance, and body orientation. In humans and other mammals, significant hair cell loss leads to irreversible hearing and balance deficits, whereas hair cell loss in nonmammalian vertebrates is repaired by the spontaneous generation of replacement hair cells. Research in mammalian hair cell regeneration is hampered by the lack of in vivo damage models for the adult mouse inner ear and the paucity of cell-type-specific markers for non-sensory cells within the sensory receptor epithelia. The present study delineates a protocol to drug damage the adult mouse auditory epithelium (organ of Corti) in situ and uses this protocol to investigate Sox2 and Jagged1 expression in damaged inner ear sensory epithelia. In other tissues, the transcription factor Sox2 and a ligand member of the Notch signaling pathway, Jagged1, are involved in regenerative processes. Both are involved in early inner ear development and are expressed in developing support cells, but little is known about their expressions in the adult. We describe a nonsurgical technique for inducing hair cell damage in adult mouse organ of Corti by a single high-dose injection of the aminoglycoside kanamycin followed by a single injection of the loop diuretic furosemide. This drug combination causes the rapid death of outer hair cells throughout the cochlea. Using immunocytochemical techniques, Sox2 is shown to be expressed specifically in support cells in normal adult mouse inner ear and is not affected by drug damage. Sox2 is absent from auditory hair cells, but is expressed in a subset of vestibular hair cells. Double-labeling experiments with Sox2 and calbindin suggest Sox2-positive hair cells are Type II. Jagged1 is also expressed in support cells in the adult ear and is not affected by drug damage. Sox2 and Jagged1 may be involved in the maintenance of support cells in adult mouse inner ear. PMID:18157569

  2. Adenovirus Vectors Target Several Cell Subtypes of Mammalian Inner Ear In Vivo

    PubMed Central

    Li, Wenyan; Shen, Jun

    2016-01-01

    Mammalian inner ear harbors diverse cell types that are essential for hearing and balance. Adenovirus is one of the major vectors to deliver genes into the inner ear for functional studies and hair cell regeneration. To identify adenovirus vectors that target specific cell subtypes in the inner ear, we studied three adenovirus vectors, carrying a reporter gene encoding green fluorescent protein (GFP) from two vendors or with a genome editing gene Cre recombinase (Cre), by injection into postnatal days 0 (P0) and 4 (P4) mouse cochlea through scala media by cochleostomy in vivo. We found three adenovirus vectors transduced mouse inner ear cells with different specificities and expression levels, depending on the type of adenoviral vectors and the age of mice. The most frequently targeted region was the cochlear sensory epithelium, including auditory hair cells and supporting cells. Adenovirus with GFP transduced utricular supporting cells as well. This study shows that adenovirus vectors are capable of efficiently and specifically transducing different cell types in the mammalian inner ear and provides useful tools to study inner ear gene function and to evaluate gene therapy to treat hearing loss and vestibular dysfunction. PMID:28116172

  3. Cell density and N-cadherin interactions regulate cell proliferation in the sensory epithelia of the inner ear.

    PubMed

    Warchol, Mark E

    2002-04-01

    Sensory hair cells in the inner ears of nonmammalian vertebrates can regenerate after injury. In many species, replacement hair cells are produced by the proliferation of epithelial supporting cells. Thus, the ability of supporting cells to undergo renewed proliferation is a key determinant of regenerative ability. The present study used cultures of isolated inner ear sensory epithelia to identify cellular signals that regulate supporting cell proliferation. Small pieces of sensory epithelia from the chicken utricle were cultured in glass microwells. Under those conditions, cell proliferation was inversely related to local cell density. The signaling molecules N-cadherin, beta-catenin, and focal adhesion kinase were immunolocalized in the cultured epithelial cells, and high levels of phosphotyrosine immunoreactivity were present at cell-cell junctions and focal contacts of proliferating cells. Binding of microbeads coated with a function-blocking antibody to N-cadherin inhibited ongoing proliferation. The growth of epithelial cells was also affected by the density of extracellular matrix molecules. The results suggest that cell density, cell-cell contact, and the composition of the extracellular matrix may be critical influences on the regulation of sensory regeneration in the inner ear.

  4. Cisplatin ototoxicity blocks sensory regeneration in the avian inner ear.

    PubMed

    Slattery, Eric L; Warchol, Mark E

    2010-03-03

    Cisplatin is a chemotherapeutic agent that is widely used in the treatment of solid tumors. Ototoxicity is a common side effect of cisplatin therapy and often leads to permanent hearing loss. The sensory organs of the avian ear are able to regenerate hair cells after aminoglycoside ototoxicity. This regenerative response is mediated by supporting cells, which serve as precursors to replacement hair cells. Given the antimitotic properties of cisplatin, we examined whether the avian ear was also capable of regeneration after cisplatin ototoxicity. Using cell and organ cultures of the chick cochlea and utricle, we found that cisplatin treatment caused apoptosis of both auditory and vestibular hair cells. Hair cell death in the cochlea occurred in a unique pattern, progressing from the low-frequency (distal) region toward the high-frequency (proximal) region. We also found that cisplatin caused a dose-dependent reduction in the proliferation of cultured supporting cells as well as increased apoptosis in those cells. As a result, we observed no recovery of hair cells after ototoxic injury caused by cisplatin. Finally, we explored the potential for nonmitotic hair cell recovery via activation of Notch pathway signaling. Treatment with the gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester failed to promote the direct transdifferentiation of supporting cells into hair cells in cisplatin-treated utricles. Taken together, our data show that cisplatin treatment causes maintained changes to inner ear supporting cells and severely impairs the ability of the avian ear to regenerate either via proliferation or by direct transdifferentiation.

  5. Towards a Molecular Understanding of Noise-Induced Hearing Loss

    DTIC Science & Technology

    2016-10-01

    gene expression following different types of noise exposure and their treatments, in the inner ear. To this end, we have (a) Established the hair ...in hair cells, support cells and whole inner ears, 6 and 24 hours after noise exposure; (c) Collected and processed most of the tissue for TTS...SUBJECT TERMS Permanent threshold shift, Temporary threshold shift, Noise induced hearing loss, Ribotag, RNA-seq, hair cell, supporting cell, SAHA

  6. Ongoing cell death and immune influences on regeneration in the vestibular sensory organs

    NASA Technical Reports Server (NTRS)

    Warchol, M. E.; Matsui, J. I.; Simkus, E. L.; Ogilive, J. M.

    2001-01-01

    Hair cells in the vestibular organs of birds have a relatively short life span. Mature hair cells appear to die spontaneously and are then quickly replaced by new hair cells that arise from the division of epithelial supporting cells. A similar regenerative mechanism also results in hair cell replacement after ototoxic damage. The cellular basis of hair cell turnover in the avian ear is not understood. We are investigating the signaling pathways that lead to hair cell death and the relationship between ongoing cell death and cell production. In addition, work from our lab and others has demonstrated that the avian inner ear contains a resident population of macrophages and that enhanced numbers of macrophages are recruited to sites of hair cells lesions. Those observations suggest that macrophages and their secretory products (cytokines) may be involved in hair cell regeneration. Consistent with that suggestion, we have found that treatment with the anti-inflammatory drug dexamethasone reduces regenerative cell proliferation in the avian ear, and that certain macrophage-secreted cytokines can influence the proliferation of vestibular supporting cells and the survival of statoacoustic neurons. Those results suggest a role for the immune system in the process of sensory regeneration in the inner ear.

  7. Autonomous assembly of epithelial structures by subrenal implantation of dissociated embryonic inner-ear cells.

    PubMed

    Wang, Li; Zhang, Kaiqing; Zhu, Helen He; Gao, Wei-Qiang

    2015-05-27

    Microenvironment and cell-cell interactions play an important role during embryogenesis and are required for the stemness and differentiation of stem cells. The inner-ear sensory epithelium, containing hair cells and supporting cells, is derived from the stem cells within the otic vesicle at early embryonic stages. However, whether or not such microenvironment or cell-cell interactions within the embryonic otic tissue have the capacity to regulate the proliferation and differentiation of stem cells and to autonomously reassemble the cells into epithelial structures is unknown. Here, we report that on enzymatic digestion and dissociation to harvest all the single cells from 13.5-day-old rat embryonic (E13.5) inner-ear tissue as well as on implantation of these cells under renal capsules; the dissociated cells are able to reassemble themselves to form epithelial structures as early as 7 days after implantation. By 25 days after implantation, more mature epithelial structures are formed. Immunostaining with cell-type-specific markers reveals that hair cells and supporting cells are not only formed, but are also well aligned with the hair cells located in the apical layer surrounded by the supporting cells. These findings suggest that microenvironment and cell-cell interactions within the embryonic inner-ear tissue have the autonomous signals to induce the formation of sensory epithelial structures. This method may also provide a useful system to study the potential of stem cells to differentiate into hair cells in vivo.

  8. Artificial Induction of Sox21 Regulates Sensory Cell Formation in the Embryonic Chicken Inner Ear

    PubMed Central

    Freeman, Stephen D.; Daudet, Nicolas

    2012-01-01

    During embryonic development, hair cells and support cells in the sensory epithelia of the inner ear derive from progenitors that express Sox2, a member of the SoxB1 family of transcription factors. Sox2 is essential for sensory specification, but high levels of Sox2 expression appear to inhibit hair cell differentiation, suggesting that factors regulating Sox2 activity could be critical for both processes. Antagonistic interactions between SoxB1 and SoxB2 factors are known to regulate cell differentiation in neural tissue, which led us to investigate the potential roles of the SoxB2 member Sox21 during chicken inner ear development. Sox21 is normally expressed by sensory progenitors within vestibular and auditory regions of the early embryonic chicken inner ear. At later stages, Sox21 is differentially expressed in the vestibular and auditory organs. Sox21 is restricted to the support cell layer of the auditory epithelium, while it is enriched in the hair cell layer of the vestibular organs. To test Sox21 function, we used two temporally distinct gain-of-function approaches. Sustained over-expression of Sox21 from early developmental stages prevented prosensory specification, and abolished the formation of both hair cells and support cells. However, later induction of Sox21 expression at the time of hair cell formation in organotypic cultures of vestibular epithelia inhibited endogenous Sox2 expression and Notch activity, and biased progenitor cells towards a hair cell fate. Interestingly, Sox21 did not promote hair cell differentiation in the immature auditory epithelium, which fits with the expression of endogenous Sox21 within mature support cells in this tissue. These results suggest that interactions among endogenous SoxB family transcription factors may regulate sensory cell formation in the inner ear, but in a context-dependent manner. PMID:23071561

  9. Sensory Cells of the Fish Ear: A Hairy Enigma

    NASA Technical Reports Server (NTRS)

    Popper, A. N.; Saidel, W. M.

    1995-01-01

    Analysis of the structure of the ears in teleost fishes has led to the tentative suggestion that otolithic endorgans may function differently, in different species. Recently, evidence has demonstrated different 'types' of sensory hair cells can be found in the ears of teleost fishes, and individual hair cell types are found in discrete regions of individual sensory, epithelia. The presence of multiple hair cell types in fishes provides strong support to the hypothesis of regional differences in the responses of individual otolithic sensory epithelia. The finding of hair cell types in fishes that closely resemble those found in amniote vestibular endorgans also suggests that hair cell heterogeneity arose earlier in the evolution of the vertebrate ear than previously thought.

  10. Identification of Adeno-Associated Viral Vectors That Target Neonatal and Adult Mammalian Inner Ear Cell Subtypes

    PubMed Central

    Shu, Yilai; Tao, Yong; Wang, Zhengmin; Tang, Yong; Li, Huawei; Dai, Pu; Gao, Guangping; Chen, Zheng-Yi

    2016-01-01

    The mammalian inner ear consists of diverse cell types with important functions. Gene mutations in these diverse cell types have been found to underlie different forms of genetic hearing loss. Targeting these mutations for gene therapy development represents a future therapeutic strategy to treat hearing loss. Adeno-associated viral (AAV) vectors have become the vector of choice for gene delivery in animal models in vivo. To identify AAV vectors that target inner ear cell subtypes, we systemically screened 12 AAV vectors with different serotypes (AAV1, 2, 5, 6, 6.2, 7, 8, 9, rh.8, rh.10, rh.39, and rh.43) that carry a reporter gene GFP in neonatal and adult mice by microinjection in vivo. We found that most AAVs infect both neonatal and adult inner ear, with different specificities and expression levels. The inner ear cochlear sensory epithelial region, which includes auditory hair cells and supporting cells, is most frequently targeted for gene delivery. Expression of the transgene is sustained, and neonatal inner ear delivery does not adversely affect hearing. Adult inner ear injection of AAV has a similar infection pattern as the younger inner ear, with the exception that outer hair cell death caused by the injection procedure can lead to hearing loss. In the adult, more so than in the neonatal mice, cell types infected and efficiency of infection are correlated with the site of injection. Most infected cells survive in neonatal and adult inner ears. The study adds to the list of AAV vectors that transduce the mammalian inner ear efficiently, providing the tools that are important to study inner ear gene function and for the development of gene therapy to treat hearing loss. PMID:27342665

  11. Localization of soluble guanylate cyclase activity in the guinea pig inner ear.

    PubMed

    Takumida, M; Anniko, M; Popa, R; Zhang, D M

    2000-01-01

    The aim of this study was to characterize the nitric oxide (NO) receptor soluble guanylate cyclase (sGC), to determine the cells targeted by NO and to elucidate the function of the NO/cGMP pathway in the inner ear. sGC activity in the inner ear was localized by immunohistochemical detection of NO-stimulated cGMP. Soluble guanylate cyclase activity in the cochlea was detected in the nerve endings underneath the outer and inner hair cells, supporting cells, stria vascularis and vessels. In the vestibular organs, sGC activity was detected in the cytoplasm of sensory cells, nerve fibres, dark cells and transitional cells and vessels. These findings suggest that the NO/cGMP pathway may be involved in regulatory processes in neurotransmission, blood flow and inner ear fluid homeostasis.

  12. Creatine supports propagation and promotes neuronal differentiation of inner ear progenitor cells.

    PubMed

    Di Santo, Stefano; Mina, Amir; Ducray, Angélique; Widmer, Hans R; Senn, Pascal

    2014-05-07

    Long-term propagation of inner ear-derived progenitor/stem cells beyond the third generation and differentiation into inner ear cell types has been shown to be feasible, but challenging. We investigated whether the known neuroprotective guanidine compound creatine (Cr) promotes propagation of inner ear progenitor/stem cells as mitogen-expanded neurosphere cultures judged from the formation of spheres over passages. In addition, we studied whether Cr alone or in combination with brain-derived neurotrophic factor (BDNF) promotes neuronal differentiation of inner ear progenitors. For this purpose, early postnatal rat spiral ganglia, utricle, and organ of Corti-derived progenitors were grown as floating spheres in the absence (controls) or presence of Cr (5 mM) from passage 3 onward. Similarly, dissociated sphere-derived cultures were differentiated for 14 days in the presence or absence of Cr (5 mM) and spiral ganglia sphere-derived cultures in a combination of Cr with the neurotrophin BDNF (50 ng/ml). We found that the cumulative total number of spheres over all passages was significantly higher after Cr supplementation as compared with controls in all the three inner ear cultures. In contrast, sphere sizes were not affected by the administration of Cr. Administration of Cr during differentiation of spiral ganglia cells resulted in a significantly higher density of β-III-tubulin-positive cells compared with controls, whereas densities of myosin VIIa-positive cells in cultures of utricle and organ of Corti were not affected by the treatment. Importantly, a combination of Cr with the neurotrophin BDNF resulted in further significantly increased densities of β-III-tubulin-positive cells in cultures of spiral ganglia cells as compared with single treatments. In sum, Cr promoted continuing propagation of rat inner ear-derived progenitor cells and supported specifically in combination with BDNF the differentiation of neuronal cell types from spiral ganglion-derived spheres.

  13. Retinoic Acid Signaling Mediates Hair Cell Regeneration by Repressing p27kip and sox2 in Supporting Cells.

    PubMed

    Rubbini, Davide; Robert-Moreno, Àlex; Hoijman, Esteban; Alsina, Berta

    2015-11-25

    During development, otic sensory progenitors give rise to hair cells and supporting cells. In mammalian adults, differentiated and quiescent sensory cells are unable to generate new hair cells when these are lost due to various insults, leading to irreversible hearing loss. Retinoic acid (RA) has strong regenerative capacity in several organs, but its role in hair cell regeneration is unknown. Here, we use genetic and pharmacological inhibition to show that the RA pathway is required for hair cell regeneration in zebrafish. When regeneration is induced by laser ablation in the inner ear or by neomycin treatment in the lateral line, we observe rapid activation of several components of the RA pathway, with dynamics that position RA signaling upstream of other signaling pathways. We demonstrate that blockade of the RA pathway impairs cell proliferation of supporting cells in the inner ear and lateral line. Moreover, in neuromast, RA pathway regulates the transcription of p27(kip) and sox2 in supporting cells but not fgf3. Finally, genetic cell-lineage tracing using Kaede photoconversion demonstrates that de novo hair cells derive from FGF-active supporting cells. Our findings reveal that RA has a pivotal role in zebrafish hair cell regeneration by inducing supporting cell proliferation, and shed light on the underlying transcriptional mechanisms involved. This signaling pathway might be a promising approach for hearing recovery. Hair cells are the specialized mechanosensory cells of the inner ear that capture auditory and balance sensory input. Hair cells die after acoustic trauma, ototoxic drugs or aging diseases, leading to progressive hearing loss. Mammals, in contrast to zebrafish, lack the ability to regenerate hair cells. Here, we find that retinoic acid (RA) pathway is required for hair cell regeneration in vivo in the zebrafish inner ear and lateral line. RA pathway is activated very early upon hair cell loss, promotes cell proliferation of progenitor cells, and regulates two key genes, p27(kip) and sox2. Our results position RA as an essential signal for hair cell regeneration with relevance in future regenerative strategies in mammals. Copyright © 2015 the authors 0270-6474/15/3515752-15$15.00/0.

  14. WDR1 Presence in the Songbird Basilar Papilla

    PubMed Central

    Adler, Henry J.; Sanovich, Elena; Brittan-Powell, Elizabeth F.; Yan, Kai; Dooling, Robert J.

    2009-01-01

    WD40 repeat 1 protein (WDR1) was first reported in the acoustically injured chicken inner ear, and bioinformatics revealed that WDR1 has numerous WD40 repeats, important for protein-protein interactions. It has significant homology to actin interacting protein 1 (Aip1) in several lower species such as yeast, roundworm, fruitfly and frog. Several studies have shown that Aip1 binds cofilin/actin depolymerizing factor, and that these interactions are pivotal for actin disassembly via actin filament severing and actin monomer capping. However, the role of WDR1 in auditory function has yet to be determined. WDR1 is typically restricted to hair cells of the normal avian basilar papilla, but is redistributed towards supporting cells after acoustic overstimulation, suggesting that WDR1 may be involved in inner ear response to noise stress. One aim of the present study was to resolve the question as to whether stress factors, other than intense sound, could induce changes in WDR1 presence in the affected avian inner ear. Several techniques were used to assess WDR1 presence in the inner ears of songbird strains, including Belgian Waterslager (BW) canary, an avian strain with degenerative hearing loss thought to have a genetic basis. Reverse transcription, followed by polymerase chain reactions with WDR1-specific primers, confirmed WDR1 presence in the basilar papillae of adult BW, non-BW canaries, and zebra finches. Confocal microscopy examinations, following immunocytochemistry with anti-WDR1 antibody, localized WDR1 to the hair cell cytoplasm along the avian sensory epithelium. In addition, little, if any, staining by anti-WDR1 antibody was observed among supporting cells in the chicken or songbird ear. The present observations confirm and extend the early findings of WDR1 localization in hair cells, but not in supporting cells, in the normal avian basilar papilla. However, unlike supporting cells in the acoustically damaged chicken basilar papilla, the inner ear of the BW canary showed little, if any, WDR1 up-regulation in supporting cells. This may be due to the fact that the BW canary already has established hearing loss and/or to the possibility that the mechanism(s) involved in BW hearing loss may not be related to WDR1. PMID:18514449

  15. Time course of organ of Corti degeneration after noise exposure.

    PubMed

    Bohne, Barbara A; Kimlinger, Melissa; Harding, Gary W

    2017-02-01

    From our permanent collection of plastic-embedded flat preparations of chinchilla cochleae, 22 controls and 199 ears from noise-exposed animals were used to determine when, postexposure, hair cell (HC) and supporting cell (SC) degeneration were completed. The exposed ears were divided into four groups based on exposure parameters: 0.5- or 4-kHz octave band of noise at moderate (M) or high (H) intensities. Postexposure survival ranged from <1 h to 2.5 y. Ears fixed ≤ 0-12 h postexposure were called 'acute'. For 'chronic' ears, postexposure survival was ≥7 d for groups 0.5M and 4M, ≥ 1 mo for the 4H group and ≥7 mo for the 0.5H group. The time course of inner-ear degeneration after noise exposure was determined from data in the 0.5H and 4H groups because these groups contained ears with intermediate survival times. Outer hair cells (OHCs) began dying during the exposure. OHC loss slowed down beyond 1 mo but was still present. Conversely, much inner hair cell loss was delayed until 1-3 wk postexposure. Outer pillar and inner pillar losses were present at a low level in acute ears but increased exponentially thereafter. These results are the first to demonstrate quantitatively that hair cells (HCs) and supporting cells (SCs) may continue to degenerate for months postexposure. With short postexposure survivals, the remaining SCs often had pathological changes, including: buckled pillar bodies, shifted Deiters' cell (DC) nuclei, detachment of DCs from the basilar membrane and/or splitting of the reticular lamina. These pathological changes appeared to allow endolymph and perilymph to intermix in the fluid spaces of the organ of Corti, damaging additional HCs, SCs and nerve fibers. This mechanism may account for some postexposure degeneration. In ears exposed to moderate noise, some of these SC changes appeared to be reversible. In ears exposed to high-level noise, these changes appeared to indicate impending degeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Generation and characterization of Atoh1-Cre knock-in mouse line

    PubMed Central

    Yang, Hua; Xie, Xiaoling; Deng, Min; Chen, Xiaowei; Gan, Lin

    2010-01-01

    Summary Atoh1 encodes a basic helix-loop-helix (bHLH) transcription factor required for the development of the inner ear sensory epithelia, the dorsal spinal cord, brainstem, cerebellum, and intestinal secretory cells. In this study to create a genetic tool for the research on gene function in the ear sensory organs, we generated an Atoh1-Cre knock-in mouse line by replacing the entire Atoh1 coding sequences with the Cre coding sequences. Atoh1Cre/+mice were viable, fertile, and displayed no visible defects whereas the Atoh1Cre/Cremice died perinatally. The spatiotemporal activities of Cre recombinase were examined by crossing Atoh1-Cre mice with the R26R-lacZ conditional reporter mice. Atoh1-Cre activities were detected in the developing inner ear, the hindbrain, the spinal cord, and the intestine. In the inner ear, Atoh1-Cre activities were confined to the sensory organs in which lacZ expression is detected in nearly all of the hair cells and in many supporting cells. Thus, Atoh1-Cre mouse line serves as a useful tool for the functional study of genes in the inner ear. In addition, our results demonstrate that Atoh1 is expressed in the common progenitors destined for both hair and supporting cells. PMID:20533400

  17. Overlapping and distinct pRb pathways in the mammalian auditory and vestibular organs

    PubMed Central

    Huang, Mingqian; Sage, Cyrille; Tang, Yong; Lee, Sang Goo; Petrillo, Marco; Hinds, Philip W

    2011-01-01

    Retinoblastoma gene (Rb1) is required for proper cell cycle exit in the developing mouse inner ear and its deletion in the embryo leads to proliferation of sensory progenitor cells that differentiate into hair cells and supporting cells. In a conditional hair cell Rb1 knockout mouse, Pou4f3-Cre-pRb™/™, pRb™/™ utricular hair cells differentiate and survive into adulthood whereas differentiation and survival of pRb™/™ cochlear hair cells are impaired. To comprehensively survey the pRb pathway in the mammalian inner ear, we performed microarray analysis of pRb™/™ cochlea and utricle. The comparative analysis shows that the core pathway shared between pRb™/™ cochlea and utricle is centered on e2F, the key pathway that mediates pRb function. A majority of differentially expressed genes and enriched pathways are not shared but uniquely associated with pRb™/™ cochlea or utricle. In pRb™/™ cochlea, pathways involved in early inner ear development such as Wnt/β-catenin and Notch were enriched, whereas pathways involved in proliferation and survival are enriched in pRb™/™ utricle. Clustering analysis showed that the pRb™/™ inner ear has characteristics of a younger control inner ear, an indication of delayed differentiation. We created a transgenic mouse model (ER-Cre-pRbflox/flox) in which Rb1 can be acutely deleted postnatally. Acute Rb1 deletion in the adult mouse fails to induce proliferation or cell death in inner ear, strongly indicating that Rb1 loss in these postmitotic tissues can be effectively compensated for, or that pRb-mediated changes in the postmitotic compartment result in events that are functionally irreversible once enacted. This study thus supports the concept that pRb-regulated pathways relevant to hair cell development, encompassing proliferation, differentiation and survival, act predominantly during early development. PMID:21239885

  18. Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies

    PubMed Central

    Fritzsch, Bernd; Straka, Hans

    2014-01-01

    Among the major distance senses of vertebrates, the ear is unique in its complex morphological changes during evolution. Conceivably, these changes enable the ear to adapt toward sensing various physically well-characterized stimuli. This review develops a scenario that integrates sensory cell with organ evolution. We propose that molecular and cellular evolution of the vertebrate hair cells occurred prior to the formation of the vertebrate ear. We previously proposed that the genes driving hair cell differentiation, were aggregated in the otic region through developmental re-patterning that generated a unique vertebrate embryonic structure, the otic placode. In agreement with the presence of graviceptive receptors in many vertebrate outgroups, it is likely that the vertebrate ear originally functioned as a simple gravity-sensing organ. Based on the rare occurrence of angular acceleration receptors in vertebrate outgroups, we further propose that the canal system evolved with a more sophisticated ear morphogenesis. This evolving morphogenesis obviously turned the initial otocyst into a complex set of canals and recesses, harboring multiple sensory epithelia each adapted to the acquisition of a specific aspect of a given physical stimulus. As support for this evolutionary progression, we provide several details of the molecular basis of ear development. PMID:24281353

  19. Vestibular regeneration--experimental models and clinical implications.

    PubMed

    Albu, Silviu; Muresanu, Dafin F

    2012-09-01

    Therapies aimed at the protection and/or regeneration of inner ear hair cells are of great interest, given the significant monetary and quality of life impact of balance disorders. Different viral vectors have been shown to transfect various cell types in the inner ear. The past decade has provided tremendous advances in the use of adenoviral vectors to achieve targeted treatment delivery. Several routes of delivery have been identified to introduce vectors into the inner ear while minimizing injury to surrounding structures. Recently, the transcription factor Atoh1 was determined to play a critical role in hair cell differentiation. Adenoviral-mediated overexpression of Atoh1 in culture and in vivo has demonstrated the ability to regenerate vestibular hair cells by causing transdifferentiation of neighbouring epithelial-supporting cells. Functional recovery of the vestibular system has also been documented following adenoviral-induced Atoh1 overexpression. Experiments demonstrating gene transfer in human vestibular epithelial cells reveal that the human inner ear is a suitable target for gene therapy. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  20. Hair cell regeneration in the chick inner ear following acoustic trauma: ultrastructural and immunohistochemical studies.

    PubMed

    Umemoto, M; Sakagami, M; Fukazawa, K; Ashida, K; Kubo, T; Senda, T; Yoneda, Y

    1995-09-01

    The regeneration of hair cells in the chick inner ear following acoustic trauma was examined using transmission electron microscopy. In addition, the localization of proliferation cell nuclear antigen (PCNA) and basic fibroblast growth factor (b-FGF) was demonstrated immunohistochemically. The auditory sensory epithelium of the normal chick consists of short and tall hair cells and supporting cells. Immediately after noise exposure to a 1500-Hz pure tone at a sound pressure level of 120 decibels for 48 h, all the short hair cells disappeared in the middle region of the auditory epithelium. Twelve hours to 1 day after exposure, mitotic cells, binucleate cells and PCNA-positive supporting cells were observed, and b-FGF immunoreactivity was shown in the supporting cells and glial cells near the habenula perforata. Spindle-shaped hair cells with immature stereocilia and a kinocilium appeared 3 days after exposure; these cells had synaptic connections with the newly developed nerve endings. The spindle-shaped hair cell is considered to be a transitional cell in the lineage of the supporting cell to the mature short hair cell. These results indicate that, after acoustic trauma, the supporting cells divide and differentiate into new short hair cells via spindle-shaped hair cells. Furthermore, it is suggested that b-FGF is related to the proliferation of the supporting cells and the extension of the nerve fibers.

  1. Changes in the Adult Vertebrate Auditory Sensory Epithelium After Trauma

    PubMed Central

    Oesterle, Elizabeth C.

    2012-01-01

    Auditory hair cells transduce sound vibrations into membrane potential changes, ultimately leading to changes in neuronal firing and sound perception. This review provides an overview of the characteristics and repair capabilities of traumatized auditory sensory epithelium in the adult vertebrate ear. Injured mammalian auditory epithelium repairs itself by forming permanent scars but is unable to regenerate replacement hair cells. In contrast, injured non-mammalian vertebrate ear generates replacement hair cells to restore hearing functions. Non-sensory support cells within the auditory epithelium play key roles in the repair processes. PMID:23178236

  2. Evolution and development of the vertebrate ear

    NASA Technical Reports Server (NTRS)

    Fritzsch, B.; Beisel, K. W.

    2001-01-01

    This review outlines major aspects of development and evolution of the ear, specifically addressing issues of cell fate commitment and the emerging molecular governance of these decisions. Available data support the notion of homology of subsets of mechanosensors across phyla (proprioreceptive mechanosensory neurons in insects, hair cells in vertebrates). It is argued that this conservation is primarily related to the specific transducing environment needed to achieve mechanosensation. Achieving this requires highly conserved transcription factors that regulate the expression of the relevant structural genes for mechanosensory transduction. While conserved at the level of some cell fate assignment genes (atonal and its mammalian homologue), the ear has also radically reorganized its development by implementing genes used for cell fate assignment in other parts of the developing nervous systems (e.g., neurogenin 1) and by evolving novel sets of genes specifically associated with the novel formation of sensory neurons that contact hair cells (neurotrophins and their receptors). Numerous genes have been identified that regulate morphogenesis, but there is only one common feature that emerges at the moment: the ear appears to have co-opted genes from a large variety of other parts of the developing body (forebrain, limbs, kidneys) and establishes, in combination with existing transcription factors, an environment in which those genes govern novel, ear-related morphogenetic aspects. The ear thus represents a unique mix of highly conserved developmental elements combined with co-opted and newly evolved developmental elements.

  3. Gross and fine dissection of inner ear sensory epithelia in adult zebrafish (Danio rerio).

    PubMed

    Liang, Jin; Burgess, Shawn M

    2009-05-08

    Neurosensory epithelia in the inner ear are the crucial structures for hearing and balance functions. Therefore, it is important to understand the cellular and molecular features of the epithelia, which are mainly composed of two types of cells: hair cells (HCs) and supporting cells (SCs). Here we choose to study the inner ear sensory epithelia in adult zebrafish not only because the epithelial structures are highly conserved in all vertebrates studied, but also because the adult zebrafish is able to regenerate HCs, an ability that mammals lose shortly after birth. We use the inner ear of adult zebrafish as a model system to study the mechanisms of inner ear HC regeneration in adult vertebrates that could be helpful for clinical therapy of hearing/balance deficits in human as a result of HC loss. Here we demonstrate how to do gross and fine dissections of inner ear sensory epithelia in adult zebrafish. The gross dissection removes the tissues surrounding the inner ear and is helpful for preparing tissue sections, which allows us to examine the detailed structure of the sensory epithelia. The fine dissection cleans up the non-sensory-epithelial tissues of each individual epithelium and enables us to examine the heterogeneity of the whole epithelium easily in whole-mount epithelial samples.

  4. An in vitro model of murine middle ear epithelium.

    PubMed

    Mulay, Apoorva; Akram, Khondoker M; Williams, Debbie; Armes, Hannah; Russell, Catherine; Hood, Derek; Armstrong, Stuart; Stewart, James P; Brown, Steve D M; Bingle, Lynne; Bingle, Colin D

    2016-11-01

    Otitis media (OM), or middle ear inflammation, is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology it is clear that epithelial abnormalities underpin the disease. There is currently a lack of a well-characterised in vitro model of the middle ear (ME) epithelium that replicates the complex cellular composition of the middle ear. Here, we report the development of a novel in vitro model of mouse middle ear epithelial cells (mMECs) at an air-liquid interface (ALI) that recapitulates the characteristics of the native murine ME epithelium. We demonstrate that mMECs undergo differentiation into the varied cell populations seen within the native middle ear. Proteomic analysis confirmed that the cultures secrete a multitude of innate defence proteins from their apical surface. We showed that the mMECs supported the growth of the otopathogen, nontypeable Haemophilus influenzae (NTHi), suggesting that the model can be successfully utilised to study host-pathogen interactions in the middle ear. Overall, our mMEC culture system can help to better understand the cell biology of the middle ear and improve our understanding of the pathophysiology of OM. The model also has the potential to serve as a platform for validation of treatments designed to reverse aspects of epithelial remodelling that underpin OM development. © 2016. Published by The Company of Biologists Ltd.

  5. Diphtheria Toxin-Induced Cell Death Triggers Wnt-Dependent Hair Cell Regeneration in Neonatal Mice.

    PubMed

    Hu, Lingxiang; Lu, Jingrong; Chiang, Hao; Wu, Hao; Edge, Albert S B; Shi, Fuxin

    2016-09-07

    Cochlear hair cells (HCs), the sensory cells that respond to sound, do not regenerate after damage in adult mammals, and their loss is a major cause of deafness. Here we show that HC regeneration in newborn mouse ears occurred spontaneously when the original cells were ablated by treatment with diphtheria toxin (DT) in ears that had been engineered to overexpress the DT receptor, but was not detectable when HCs were ablated in vivo by the aminoglycoside antibiotic neomycin. A variety of Wnts (Wnt1, Wnt2, Wnt2b, Wnt4, Wnt5a, Wnt7b, Wnt9a, Wnt9b, and Wnt11) and Wnt pathway component Krm2 were upregulated after DT damage. Nuclear β-catenin was upregulated in HCs and supporting cells of the DT-damaged cochlea. Pharmacological inhibition of Wnt decreased spontaneous regeneration, confirming a role of Wnt signaling in HC regeneration. Inhibition of Notch signaling further potentiated supporting cell proliferation and HC differentiation that occurred spontaneously. The absence of new HCs in the neomycin ears was correlated to less robust Wnt pathway activation, but the ears subjected to neomycin treatment nonetheless showed increased cell division and HC differentiation after subsequent forced upregulation of β-catenin. These studies suggest, first, that Wnt signaling plays a key role in regeneration, and, second, that the outcome of a regenerative response to damage in the newborn cochlea is determined by reaching a threshold level of Wnt signaling rather than its complete absence or presence. Sensory HCs of the inner ear do not regenerate in the adult, and their loss is a major cause of deafness. We found that HCs regenerated spontaneously in the newborn mouse after diphtheria toxin (DT)-induced, but not neomycin-induced, HC death. Regeneration depended on activation of Wnt signaling, and regeneration in DT-treated ears correlated to a higher level of Wnt activation than occurred in nonregenerating neomycin-treated ears. This is significant because insufficient regeneration caused by a failure to reach a threshold level of signaling, if true in the adult, has the potential to be exploited for development of clinical approaches for the treatment of deafness caused by HC loss. Copyright © 2016 the authors 0270-6474/16/369479-11$15.00/0.

  6. Diphtheria Toxin-Induced Cell Death Triggers Wnt-Dependent Hair Cell Regeneration in Neonatal Mice

    PubMed Central

    Hu, Lingxiang; Lu, Jingrong; Chiang, Hao; Shi, Fuxin

    2016-01-01

    Cochlear hair cells (HCs), the sensory cells that respond to sound, do not regenerate after damage in adult mammals, and their loss is a major cause of deafness. Here we show that HC regeneration in newborn mouse ears occurred spontaneously when the original cells were ablated by treatment with diphtheria toxin (DT) in ears that had been engineered to overexpress the DT receptor, but was not detectable when HCs were ablated in vivo by the aminoglycoside antibiotic neomycin. A variety of Wnts (Wnt1, Wnt2, Wnt2b, Wnt4, Wnt5a, Wnt7b, Wnt9a, Wnt9b, and Wnt11) and Wnt pathway component Krm2 were upregulated after DT damage. Nuclear β-catenin was upregulated in HCs and supporting cells of the DT-damaged cochlea. Pharmacological inhibition of Wnt decreased spontaneous regeneration, confirming a role of Wnt signaling in HC regeneration. Inhibition of Notch signaling further potentiated supporting cell proliferation and HC differentiation that occurred spontaneously. The absence of new HCs in the neomycin ears was correlated to less robust Wnt pathway activation, but the ears subjected to neomycin treatment nonetheless showed increased cell division and HC differentiation after subsequent forced upregulation of β-catenin. These studies suggest, first, that Wnt signaling plays a key role in regeneration, and, second, that the outcome of a regenerative response to damage in the newborn cochlea is determined by reaching a threshold level of Wnt signaling rather than its complete absence or presence. SIGNIFICANCE STATEMENT Sensory HCs of the inner ear do not regenerate in the adult, and their loss is a major cause of deafness. We found that HCs regenerated spontaneously in the newborn mouse after diphtheria toxin (DT)-induced, but not neomycin-induced, HC death. Regeneration depended on activation of Wnt signaling, and regeneration in DT-treated ears correlated to a higher level of Wnt activation than occurred in nonregenerating neomycin-treated ears. This is significant because insufficient regeneration caused by a failure to reach a threshold level of signaling, if true in the adult, has the potential to be exploited for development of clinical approaches for the treatment of deafness caused by HC loss. PMID:27605621

  7. Cytoskeletal changes in actin and microtubules underlie the developing surface mechanical properties of sensory and supporting cells in the mouse cochlea

    PubMed Central

    Szarama, Katherine B.; Gavara, Núria; Petralia, Ronald S.; Kelley, Matthew W.; Chadwick, Richard S.

    2012-01-01

    Correct patterning of the inner ear sensory epithelium is essential for the conversion of sound waves into auditory stimuli. Although much is known about the impact of the developing cytoskeleton on cellular growth and cell shape, considerably less is known about the role of cytoskeletal structures on cell surface mechanical properties. In this study, atomic force microscopy (AFM) was combined with fluorescence imaging to show that developing inner ear hair cells and supporting cells have different cell surface mechanical properties with different developmental time courses. We also explored the cytoskeletal organization of developing sensory and non-sensory cells, and used pharmacological modulation of cytoskeletal elements to show that the developmental increase of hair cell stiffness is a direct result of actin filaments, whereas the development of supporting cell surface mechanical properties depends on the extent of microtubule acetylation. Finally, this study found that the fibroblast growth factor signaling pathway is necessary for the developmental time course of cell surface mechanical properties, in part owing to the effects on microtubule structure. PMID:22573615

  8. Gene Expression by Mouse Inner Ear Hair Cells during Development

    PubMed Central

    Scheffer, Déborah I.; Shen, Jun

    2015-01-01

    Hair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To study gene expression in hair cells, we developed a protocol for hair cell isolation by FACS. With nearly pure hair cells and surrounding cells, from cochlea and utricle and from E16 to P7, we performed a comprehensive cell type-specific RNA-Seq study of gene expression during mouse inner ear development. Expression profiling revealed new hair cell genes with distinct expression patterns: some are specific for vestibular hair cells, others for cochlear hair cells, and some are expressed just before or after maturation of mechanosensitivity. We found that many of the known hereditary deafness genes are much more highly expressed in hair cells than surrounding cells, suggesting that genes preferentially expressed in hair cells are good candidates for unknown deafness genes. PMID:25904789

  9. Pathogenesis of herpes simplex virus in B cell-suppressed mice: the relative roles of cell-mediated and humoral immunity.

    PubMed

    Kapoor, A K; Nash, A A; Wildy, P

    1982-07-01

    B cell responses of Balb/c mice were suppressed using sheep anti-mouse IgM serum. At 4 weeks, both B cell-suppressed and normal littermates were infected in the ear pinna with herpes simplex virus type 1 (HSV-1). The B cell-suppressed mice failed to produce neutralizing herpes antibodies in their sera but had a normal cell-mediated immunity (CMI) response as measured by a delayed hypersensitivity skin test. Although the infection was eliminated from the ear in both B cell-suppressed and normal mice by day 10 after infection, there was an indication that B cell-suppressed mice had a more florid primary infection of the peripheral and central nervous system and also a higher incidence of a latent infection. These results support the hypothesis that antibody is important in restricting the spread of virus to the central nervous system, whereas CMI is important in clearing the primary infection in the ear pinna.

  10. Ick Ciliary Kinase Is Essential for Planar Cell Polarity Formation in Inner Ear Hair Cells and Hearing Function.

    PubMed

    Okamoto, Shio; Chaya, Taro; Omori, Yoshihiro; Kuwahara, Ryusuke; Kubo, Shun; Sakaguchi, Hirofumi; Furukawa, Takahisa

    2017-02-22

    Cellular asymmetries play crucial roles in development and organ function. The planar cell polarity (PCP) signaling pathway is involved in the establishment of cellular asymmetry within the plane of a cell sheet. Inner ear sensory hair cells (HCs), which have several rows of staircase-like stereocilia and one kinocilium located at the vertex of the stereocilia protruding from the apical surface of each HC, exhibit a typical form of PCP. Although connections between cilia and PCP signaling in vertebrate development have been reported, their precise nature is not well understood. During inner ear development, several ciliary proteins are known to play a role in PCP formation. In the current study, we investigated a functional role for intestinal cell kinase (Ick), which regulates intraflagellar transport (IFT) at the tip of cilia, in the mouse inner ear. A lack of Ick in the developing inner ear resulted in PCP defects in the cochlea, including misorientation or misshaping of stereocilia and aberrant localization of the kinocilium and basal body in the apical and middle turns, leading to auditory dysfunction. We also observed abnormal ciliary localization of Ift88 in both HCs and supporting cells. Together, our results show that Ick ciliary kinase is essential for PCP formation in inner ear HCs, suggesting that ciliary transport regulation is important for PCP signaling. SIGNIFICANCE STATEMENT The cochlea in the inner ear is the hearing organ. Planar cell polarity (PCP) in hair cells (HCs) in the cochlea is essential for mechanotransduction and refers to the asymmetric structure consisting of stereociliary bundles and the kinocilium on the apical surface of the cell body. We reported previously that a ciliary kinase, Ick, regulates intraflagellar transport (IFT). Here, we found that loss of Ick leads to abnormal localization of the IFT component in kinocilia, PCP defects in HCs, and hearing dysfunction. Our study defines the association of ciliary transport regulation with PCP formation in HCs and hearing function. Copyright © 2017 the authors 0270-6474/17/372073-13$15.00/0.

  11. Adenoviral vector gene delivery via the round window membrane in guinea pigs.

    PubMed

    Suzuki, Mitsuya; Yamasoba, Tatsuya; Suzukawa, Keigo; Kaga, Kimitaka

    2003-10-27

    We have found that damage from a local anesthetic solution containing phenol permitted beta-galactosidase (beta-gal) gene delivery to the guinea pig inner ear via the round window membrane (RWM). RWM damage was evident as degeneration of the outer epithelium. After adenovirus lacZ vector was applied to the damaged RWM, immunohistochemistry showed strong beta-gal expression in the RWM, mesothelial cells, organ of Corti, spiral limbus, spiral ligament and spiral ganglion. In the vestibular labyrinth, expression was seen in the sensory and supporting cells, transitional cells, and the dark-cell area. Thus, adenovirus can transfect a variety of inner ear cells in the guinea pig through a damaged RWM.

  12. NOTCH SIGNALING ALTERS SENSORY OR NEURONAL CELL FATE SPECIFICATION OF INNER EAR STEM CELLS

    PubMed Central

    Jeon, Sang-Jun; Fujioka, Masato; Kim, Shi-Chan; Edge, Albert S.B.

    2011-01-01

    Multipotent progenitor cells in the otic placode give rise to the specialized cell types of the inner ear, including neurons, supporting cells and hair cells. The mechanisms governing acquisition of specific fates by the cells that form the cochleovestibular organs remain poorly characterized. Here we show that whereas blocking Notch signaling with a γ-secretase inhibitor increased the conversion of inner ear stem cells to hair cells by a mechanism that involved the upregulation of bHLH transcription factor, Math1 (mouse Atoh1), differentiation to a neuronal lineage was increased by expression of the Notch intracellular domain. The shift to a neuronal lineage could be attributed in part to the continued cell proliferation in cells that did not undergo sensory cell differentiation due to the high Notch signaling, but also involved upregulation of Ngn1. The Notch intracellular domain influenced Ngn1 indirectly by upregulation of Sox2, a transcription factor expressed in many neural progenitor cells, and directly by an interaction with an RBP-J binding site in the Ngn1 promoter/enhancer. The induction of Ngn1 was blocked partially by mutation of the RBP-J site and nearly completely when the mutation was combined with inhibition of Sox2 expression. Thus Notch signaling had a significant role in the fate specification of neurons and hair cells from inner ear stem cells, and decisions about cell fate were mediated in part by a differential effect of combinatorial signaling by Notch and Sox2 on the expression of bHLH transcription factors. PMID:21653840

  13. Structural Diversity in the Inner Ear of Teleost Fishes: Implications for Connections to the Mauthner Cell

    NASA Technical Reports Server (NTRS)

    Popper, Arthur N.; Edds-Walton, Peggy L.

    1995-01-01

    A body of literature suggests that the Mauthner cell startle response can be elicited by stimulation of the ear. While we know that there are projections to the M-cell from the ear, the specific endorgan(s) of the ear projecting to the M-cell are not known. Moreover, there are many reasons to question whether there is one pattern of inner ear to M-cell connection or whether the endorgan(s) projection to the M-cell varies in species that have different hearing capabilities of hearing structures. In this paper, we briefly review the structure of fish ears, with an emphasis on structural regionalization within the ear. We also review the central projections of the ear, along with a discussion of the limited data on projections to the M-cell.

  14. The molecular basis of neurosensory cell formation in ear development: a blueprint for hair cell and sensory neuron regeneration?

    PubMed Central

    Fritzsch, Bernd; Beisel, Kirk W.; Hansen, Laura

    2014-01-01

    Summary The inner ear of mammals uses neurosensory cells derived from the embryonic ear for mechanoelectric transduction of vestibular and auditory stimuli (the hair cells) and conducts this information to the brain via sensory neurons. As with most other neurons of mammals, lost hair cells and sensory neurons are not spontaneously replaced and result instead in age-dependent progressive hearing loss. We review the molecular basis of neurosensory development in the mouse ear to provide a blueprint for possible enhancement of therapeutically useful transformation of stem cells into lost neurosensory cells. We identify several readily available adult sources of stem cells that express, like the ectoderm-derived ear, genes known to be essential for ear development. Use of these stem cells combined with molecular insights into neurosensory cell specification and proliferation regulation of the ear, might allow for neurosensory regeneration of mammalian ears in the near future. PMID:17120192

  15. Involvement of Ubiquitin-Editing Protein A20 in Modulating Inflammation in Rat Cochlea Associated with Silver Nanoparticle-Induced CD68 Upregulation and TLR4 Activation

    NASA Astrophysics Data System (ADS)

    Feng, Hao; Pyykkö, Ilmari; Zou, Jing

    2016-05-01

    Silver nanoparticles (AgNPs) were shown to temporarily impair the biological barriers in the skin of the external ear canal, mucosa of the middle ear, and inner ear, causing partially reversible hearing loss after delivery into the middle ear. The current study aimed to elucidate the molecular mechanism, emphasizing the TLR signaling pathways in association with the potential recruitment of macrophages in the cochlea and the modulation of inflammation by ubiquitin-editing protein A20. Molecules potentially involved in these signaling pathways were thoroughly analysed using immunohistochemistry in the rat cochlea exposed to AgNPs at various concentrations through intratympanic injection. The results showed that 0.4 % AgNPs but not 0.02 % AgNPs upregulated the expressions of CD68, TLR4, MCP1, A20, and RNF11 in the strial basal cells, spiral ligament fibrocytes, and non-sensory supporting cells of Corti's organ. 0.4 % AgNPs had no effect on CD44, TLR2, MCP2, Rac1, myosin light chain, VCAM1, Erk1/2, JNK, p38, IL-1β, TNF-α, TNFR1, TNFR2, IL-10, or TGF-β. This study suggested that AgNPs might confer macrophage-like functions on the strial basal cells and spiral ligament fibrocytes and enhance the immune activities of non-sensory supporting cells of Corti's organ through the upregulation of CD68, which might be involved in TLR4 activation. A20 and RNF11 played roles in maintaining cochlear homeostasis via negative regulation of the expressions of inflammatory cytokines.

  16. Stem Cell Therapy for the Inner Ear

    PubMed Central

    Okano, Takayuki

    2012-01-01

    In vertebrates, perception of sound, motion, and balance is mediated through mechanosensory hair cells located within the inner ear. In mammals, hair cells are only generated during a short period of embryonic development. As a result, loss of hair cells as a consequence of injury, disease, or genetic mutation, leads to permanent sensory deficits. At present, cochlear implantation is the only option for profound hearing loss. However, outcomes are still variable and even the best implant cannot provide the acuity of a biological ear. The recent emergence of stem cell technology has the potential to open new approaches for hair cell regeneration. The goal of this review is to summarize the current state of inner ear stem cell research from a viewpoint of its clinical application for inner ear disorders to illustrate how complementary studies have the potential to promote and refine stem cell therapies for inner ear diseases. The review initially discusses our current understanding of the genetic pathways that regulate hair cell formation from inner ear progenitors during normal development. Subsequent sections discuss the possible use of endogenous inner ear stem cells to induce repair as well as the initial studies aimed at transplanting stem cells into the ear. PMID:22514095

  17. Nutrient-Enhanced Diet Reduces Noise-Induced Damage to the Inner Ear and Hearing Loss

    PubMed Central

    Le Prell, C. G.; Gagnon, P. M; Bennett, D. C.; Ohlemiller, K. K.

    2011-01-01

    Oxidative stress has been broadly implicated as a cause of cell death and neural degeneration in multiple disease conditions; however, the evidence for successful intervention with dietary antioxidant manipulations has been mixed. In this study, we investigated the potential for protection of cells in the inner ear using a dietary supplement with multiple antioxidant components, selected for their potential interactive effectiveness. Protection against permanent threshold shift (PTS) was observed in CBA/J mice maintained on a diet supplemented with a combination of β-carotene, vitamins C and E, and magnesium when compared to PTS in control mice maintained on a nutritionally complete control diet. Although hair cell survival was not enhanced, noise-induced loss of Type II fibrocytes in the lateral wall was significantly reduced (p<0.05), and there was a trend towards less noise-induced loss in strial cell density in animals maintained on the supplemented diet. Taken together, our data suggest that pre-noise oral treatment with the high-nutrient diet can protect cells in the inner ear and reduce PTS in mice. Demonstration of functional and morphological preservation of cells in the inner ear with oral administration of this antioxidant supplemented diet supports the possibility of translation to human patients, and suggests an opportunity to evaluate antioxidant protection in mouse models of oxidative stress-related disease and pathology. PMID:21708355

  18. Notch Inhibition Induces Cochlear Hair Cell Regeneration and Recovery of Hearing after Acoustic Trauma

    PubMed Central

    Mizutari, Kunio; Fujioka, Masato; Hosoya, Makoto; Bramhall, Naomi; Okano, Hirotaka James; Okano, Hideyuki; Edge, Albert S.B.

    2013-01-01

    SUMMARY Hearing loss due to damage to auditory hair cells is normally irreversible because mammalian hair cells do not regenerate. Here, we show that new hair cells can be induced and can cause partial recovery of hearing in ears damaged by noise trauma, when Notch signaling is inhibited by a γ-secretase inhibitor selected for potency in stimulating hair cell differentiation from inner ear stem cells in vitro. Hair cell generation resulted from an increase in the level of bHLH transcription factor, Atoh1, in response to inhibition of Notch signaling. In vivo prospective labeling of Sox2-expressing cells with a Cre/lox system unambiguously demonstrated that hair cell generation resulted from transdifferentiation of supporting cells. Manipulating cell fate of cochlear sensory cells in vivo by pharmacological inhibition of Notch signaling is thus a potential therapeutic approach to the treatment of deafness. PMID:23312516

  19. Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells.

    PubMed

    Koehler, Karl R; Nie, Jing; Longworth-Mills, Emma; Liu, Xiao-Ping; Lee, Jiyoon; Holt, Jeffrey R; Hashino, Eri

    2017-06-01

    The derivation of human inner ear tissue from pluripotent stem cells would enable in vitro screening of drug candidates for the treatment of hearing and balance dysfunction and may provide a source of cells for cell-based therapies of the inner ear. Here we report a method for differentiating human pluripotent stem cells to inner ear organoids that harbor functional hair cells. Using a three-dimensional culture system, we modulate TGF, BMP, FGF, and WNT signaling to generate multiple otic-vesicle-like structures from a single stem-cell aggregate. Over 2 months, the vesicles develop into inner ear organoids with sensory epithelia that are innervated by sensory neurons. Additionally, using CRISPR-Cas9, we generate an ATOH1-2A-eGFP cell line to detect hair cell induction and demonstrate that derived hair cells exhibit electrophysiological properties similar to those of native sensory hair cells. Our culture system should facilitate the study of human inner ear development and research on therapies for diseases of the inner ear.

  20. Creating a stem cell niche in the inner ear using self-assembling peptide amphiphiles

    PubMed Central

    Sayed, Zafar A.; Stephanopoulos, Nicholas; Berns, Eric J.; Wadhwani, Anil R.; Morrissey, Zachery D.; Chadly, Duncan M.; Kobayashi, Shun; Edelbrock, Alexandra N.; Mashimo, Tomoji; Miller, Charles A.; McGuire, Tammy L.; Stupp, Samuel I.; Kessler, John A.

    2017-01-01

    The use of human embryonic stem cells (hESCs) for regeneration of the spiral ganglion will require techniques for promoting otic neuronal progenitor (ONP) differentiation, anchoring of cells to anatomically appropriate and specific niches, and long-term cell survival after transplantation. In this study, we used self-assembling peptide amphiphile (PA) molecules that display an IKVAV epitope (IKVAV-PA) to create a niche for hESC-derived ONPs that supported neuronal differentiation and survival both in vitro and in vivo after transplantation into rodent inner ears. A feature of the IKVAV-PA gel is its ability to form organized nanofibers that promote directed neurite growth. Culture of hESC-derived ONPs in IKVAV-PA gels did not alter cell proliferation or viability. However, the presence of IKVAV-PA gels increased the number of cells expressing the neuronal marker beta-III tubulin and improved neurite extension. The self-assembly properties of the IKVAV-PA gel allowed it to be injected as a liquid into the inner ear to create a biophysical niche for transplanted cells after gelation in vivo. Injection of ONPs combined with IKVAV-PA into the modiolus of X-SCID rats increased survival and localization of the cells around the injection site compared to controls. Human cadaveric temporal bone studies demonstrated the technical feasibility of a transmastoid surgical approach for clinical intracochlear injection of the IKVAV-PA/ONP combination. Combining stem cell transplantation with injection of self-assembling PA gels to create a supportive niche may improve clinical approaches to spiral ganglion regeneration. PMID:29284013

  1. Eustachian Tube Function.

    PubMed

    Ars, Bernard; Dirckx, Joris

    2016-10-01

    The fibrocartilaginous eustachian tube is part of a system of contiguous organs including the nose, palate, rhinopharynx, and middle ear cleft. The middle ear cleft consists of the tympanic cavity, which includes the bony eustachian tube (protympanum) and the mastoid gas cells system. The tympanic cavity and mastoid gas cells are interconnected and allow gaseous exchange and pressure regulation. The fibrocartilaginous eustachian tube is a complex organ consisting of a dynamic conduit with its mucosa, cartilage, surrounding soft tissue, peritubal muscles (ie, tensor and levator veli palatine, salpingopharyngeus and tensor tympani), and superior bony support (the sphenoid sulcus). Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Epigenetic influences on sensory regeneration: histone deacetylases regulate supporting cell proliferation in the avian utricle.

    PubMed

    Slattery, Eric L; Speck, Judith D; Warchol, Mark E

    2009-09-01

    The sensory hair cells of the cochlea and vestibular organs are essential for normal hearing and balance function. The mammalian ear possesses a very limited ability to regenerate hair cells and their loss can lead to permanent sensory impairment. In contrast, hair cells in the avian ear are quickly regenerated after acoustic trauma or ototoxic injury. The very different regenerative abilities of the avian vs. mammalian ear can be attributed to differences in injury-evoked expression of genes that either promote or inhibit the production of new hair cells. Gene expression is regulated both by the binding of cis-regulatory molecules to promoter regions as well as through structural modifications of chromatin (e.g., methylation and acetylation). This study examined effects of histone deacetylases (HDACs), whose main function is to modify histone acetylation, on the regulation of regenerative proliferation in the chick utricle. Cultures of regenerating utricles and dissociated cells from the utricular sensory epithelia were treated with the HDAC inhibitors valproic acid, trichostatin A, sodium butyrate, and MS-275. All of these molecules prevent the enzymatic removal of acetyl groups from histones, thus maintaining nuclear chromatin in a "relaxed" (open) configuration. Treatment with all inhibitors resulted in comparable decreases in supporting cell proliferation. We also observed that treatment with the HDAC1-, 2-, and 3-specific inhibitor MS-275 was sufficient to reduce proliferation and that two class I HDACs--HDAC1 and HDAC2--were expressed in the sensory epithelium of the utricle. These results suggest that inhibition of specific type I HDACs is sufficient to prevent cell cycle entry in supporting cells. Notably, treatment with HDAC inhibitors did not affect the differentiation of replacement hair cells. We conclude that histone deacetylation is a positive regulator of regenerative proliferation but is not critical for avian hair cell differentiation.

  3. Identification of a gene set to evaluate the potential effects of loud sounds from seismic surveys on the ears of fishes: a study with Salmo salar

    PubMed Central

    Andrews, C D; Payne, J F; Rise, M L

    2014-01-01

    Functional genomic studies were carried out on the inner ear of Atlantic salmon Salmo salar following exposure to a seismic airgun. Microarray analyses revealed 79 unique transcripts (passing background threshold), with 42 reproducibly up-regulated and 37 reproducibly down-regulated in exposed v. control fish. Regarding the potential effects on cellular energetics and cellular respiration, altered transcripts included those with roles in oxygen transport, the glycolytic pathway, the Krebs cycle and the electron transport chain. Of these, a number of transcripts encoding haemoglobins that are important in oxygen transport were up-regulated and among the most highly expressed. Up-regulation of transcripts encoding nicotinamide riboside kinase 2, which is also important in energy production and linked to nerve cell damage, points to evidence of neuronal damage in the ear following noise exposure. Transcripts related to protein modification or degradation also indicated potential damaging effects of sound on ear tissues. Notable in this regard were transcripts associated with the proteasome–ubiquitin pathway, which is involved in protein degradation, with the transcript encoding ubiquitin family domain-containing protein 1 displaying the highest response to exposure. The differential expression of transcripts observed for some immune responses could potentially be linked to the rupture of cell membranes. Meanwhile, the altered expression of transcripts for cytoskeletal proteins that contribute to the structural integrity of the inner ear could point to repair or regeneration of ear tissues including auditory hair cells. Regarding potential effects on hormones and vitamins, the protein carrier for thyroxine and retinol (vitamin A), namely transthyretin, was altered at the transcript expression level and it has been suggested from studies in mammalian systems that retinoic acid may play a role in the regeneration of damaged hair cells. The microarray experiment identified the transcript encoding growth hormone I as up-regulated by loud sound, supporting previous evidence linking growth hormone to hair cell regeneration in fishes. Quantitative (q) reverse transcription (RT) polymerase chain reaction (qRT-PCR) analyses confirmed dysregulation of some microarray-identified transcripts and in some cases revealed a high level of biological variability in the exposed group. These results support the potential utility of molecular biomarkers to evaluate the effect of seismic surveys on fishes with studies on the ears being placed in a priority category for development of exposure–response relationships. Knowledge of such relationships is necessary for addressing the question of potential size of injury zones. PMID:24814183

  4. ADAM10 and γ-secretase regulate sensory regeneration in the avian vestibular organs.

    PubMed

    Warchol, Mark E; Stone, Jennifer; Barton, Matthew; Ku, Jeffrey; Veile, Rose; Daudet, Nicolas; Lovett, Michael

    2017-08-01

    The loss of sensory hair cells from the inner ear is a leading cause of hearing and balance disorders. The mammalian ear has a very limited ability to replace lost hair cells, but the inner ears of non-mammalian vertebrates can spontaneously regenerate hair cells after injury. Prior studies have shown that replacement hair cells are derived from epithelial supporting cells and that the differentiation of new hair cells is regulated by the Notch signaling pathway. The present study examined molecular influences on regeneration in the avian utricle, which has a particularly robust regenerative ability. Chicken utricles were placed in organotypic culture and hair cells were lesioned by application of the ototoxic antibiotic streptomycin. Cultures were then allowed to regenerate in vitro for seven days. Some specimens were treated with small molecule inhibitors of γ-secretase or ADAM10, proteases which are essential for transmission of Notch signaling. As expected, treatment with both inhibitors led to increased numbers of replacement hair cells. However, we also found that inhibition of both proteases resulted in increased regenerative proliferation. Subsequent experiments showed that inhibition of γ-secretase or ADAM10 could also trigger proliferation in undamaged utricles. To better understand these phenomena, we used RNA-Seq profiling to characterize changes in gene expression following γ-secretase inhibition. We observed expression patterns that were consistent with Notch pathway inhibition, but we also found that the utricular sensory epithelium contains numerous γ-secretase substrates that might regulate cell cycle entry and possibly supporting cell-to-hair cell conversion. Together, our data suggest multiple roles for γ-secretase and ADAM10 in vestibular hair cell regeneration. Copyright © 2017. Published by Elsevier Inc.

  5. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear.

    PubMed

    Kilpatrick, L A; Li, Q; Yang, J; Goddard, J C; Fekete, D M; Lang, H

    2011-06-01

    Murine models are ideal for studying cochlear gene transfer, as many hearing loss-related mutations have been discovered and mapped within the mouse genome. However, because of the small size and delicate nature, the membranous labyrinth of the mouse is a challenging target for the delivery of viral vectors. To minimize injection trauma, we developed a procedure for the controlled release of adeno-associated viruses (AAVs) into the scala media of adult mice. This procedure poses minimal risk of injury to structures of the cochlea and middle ear, and allows for near-complete preservation of low and middle frequency hearing. In this study, transduction efficiency and cellular specificity of AAV vectors (serotypes 1, 2, 5, 6 and 8) were investigated in normal and drug-deafened ears. Using the cytomegalovirus promoter to drive gene expression, a variety of cell types were transduced successfully, including sensory hair cells and supporting cells, as well as cells in the auditory nerve and spiral ligament. Among all five serotypes, inner hair cells were the most effectively transduced cochlear cell type. All five serotypes of AAV vectors transduced cells of the auditory nerve, though serotype 8 was the most efficient vector for transduction. Our findings indicate that efficient AAV inoculation (via the scala media) can be performed in adult mouse ears, with hearing preservation a realistic goal. The procedure we describe may also have applications for intra-endolymphatic drug delivery in many mouse models of human deafness.

  6. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear

    PubMed Central

    Kilpatrick, Lauren A.; Li, Qian; Yang, John; Goddard, John C; Fekete, Donna M.; Lang, Hainan

    2010-01-01

    Murine models are ideal for studying cochlear gene transfer as many hearing loss-related mutations have been discovered and mapped within the mouse genome. However, due to its small size and delicate nature, the membranous labyrinth of the mouse is a challenging target for delivery of viral vectors. To minimize injection trauma, we developed a procedure for the controlled release of adeno-associated viruses (AAV) into the scala media of adult mice. This procedure poses minimal risk of injury to structures of the cochlea and middle ear and allows for near-complete preservation of low and middle frequency hearing. In the present study, transduction efficiency and cellular specificity of AAV vectors (serotypes 1, 2, 5, 6, and 8) were investigated in normal and drug-deafened ears. Using the cytomegalovirus (CMV) promoter to drive gene expression, a variety of cell types were transduced successfully, including sensory hair cells and supporting cells, as well as cells in the auditory nerve and spiral ligament. Among all five serotypes, inner hair cells (IHCs) were the most effectively transduced cochlear cell type. All five serotypes of AAV vectors transduced cells of the auditory nerve, though serotype 8 was the most efficient vector for transduction. Our findings indicate that efficient AAV inoculation (via the scala media) can be performed in adult mouse ears, with hearing preservation a realistic goal. The procedure we describe may also have applications for intra-endolymphatic drug delivery in many mouse models of human deafness. PMID:21209625

  7. Hearing and hearing loss: Causes, effects, and treatments

    NASA Astrophysics Data System (ADS)

    Schmiedt, Richard A.

    2003-04-01

    Hearing loss can have multiple causes. The outer and middle ears are conductive pathways for acoustic energy to the inner ear (cochlea) and help shape our spectral sensitivity. Conductive hearing loss is mechanical in nature such that the energy transfer to the cochlea is impeded, often from eardrum perforations or middle ear fluid buildup. Beyond the middle ear, the cochlea comprises three interdependent systems necessary for normal hearing. The first is that of basilar-membrane micromechanics including the outer hair cells. This system forms the basis of the cochlear amplifier and is the most vulnerable to noise and drug exposure. The second system comprises the ion pumps in the lateral wall tissues of the cochlea. These highly metabolic cells provide energy to the cochlear amplifier in the form of electrochemical potentials. This second system is particularly vulnerable to the effects of aging. The third system comprises the inner hair cells and their associated sensory nerve fibers. This system is the transduction stage, changing mechanical vibrations to nerve impulses. New treatments for hearing loss are on the horizon; however, at present the best strategy is avoidance of cochlear trauma and the proper use of hearing aids. [Work supported by NIA and MUSC.

  8. Adipose-derived stromal cells enhance auditory neuron survival in an animal model of sensory hearing loss.

    PubMed

    Schendzielorz, Philipp; Vollmer, Maike; Rak, Kristen; Wiegner, Armin; Nada, Nashwa; Radeloff, Katrin; Hagen, Rudolf; Radeloff, Andreas

    2017-10-01

    A cochlear implant (CI) is an electronic prosthesis that can partially restore speech perception capabilities. Optimum information transfer from the cochlea to the central auditory system requires a proper functioning auditory nerve (AN) that is electrically stimulated by the device. In deafness, the lack of neurotrophic support, normally provided by the sensory cells of the inner ear, however, leads to gradual degeneration of auditory neurons with undesirable consequences for CI performance. We evaluated the potential of adipose-derived stromal cells (ASCs) that are known to produce neurotrophic factors to prevent neural degeneration in sensory hearing loss. For this, co-cultures of ASCs with auditory neurons have been studied, and autologous ASC transplantation has been performed in a guinea pig model of gentamicin-induced sensory hearing loss. In vitro ASCs were neuroprotective and considerably increased the neuritogenesis of auditory neurons. In vivo transplantation of ASCs into the scala tympani resulted in an enhanced survival of auditory neurons. Specifically, peripheral AN processes that are assumed to be the optimal activation site for CI stimulation and that are particularly vulnerable to hair cell loss showed a significantly higher survival rate in ASC-treated ears. ASC transplantation into the inner ear may restore neurotrophic support in sensory hearing loss and may help to improve CI performance by enhanced AN survival. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  9. Differential Effects of AAV.BDNF and AAV.Ntf3 in the Deafened Adult Guinea Pig Ear

    PubMed Central

    Budenz, Cameron L.; Wong, Hiu Tung; Swiderski, Donald L.; Shibata, Seiji B.; Pfingst, Bryan E.; Raphael, Yehoash

    2015-01-01

    Cochlear hair cell loss results in secondary regression of peripheral auditory fibers (PAFs) and loss of spiral ganglion neurons (SGNs). The performance of cochlear implants (CI) in rehabilitating hearing depends on survival of SGNs. Here we compare the effects of adeno-associated virus vectors with neurotrophin gene inserts, AAV.BDNF and AAV.Ntf3, on guinea pig ears deafened systemically (kanamycin and furosemide) or locally (neomycin). AAV.BDNF or AAV.Ntf3 was delivered to the guinea pig cochlea one week following deafening and ears were assessed morphologically 3 months later. At that time, neurotrophins levels were not significantly elevated in the cochlear fluids, even though in vitro and shorter term in vivo experiments demonstrate robust elevation of neurotrophins with these viral vectors. Nevertheless, animals receiving these vectors exhibited considerable re-growth of PAFs in the basilar membrane area. In systemically deafened animals there was a negative correlation between the presence of differentiated supporting cells and PAFs, suggesting that supporting cells influence the outcome of neurotrophin over-expression aimed at enhancing the cochlear neural substrate. Counts of SGN in Rosenthal's canal indicate that BDNF was more effective than NT-3 in preserving SGNs. The results demonstrate that a transient elevation in neurotrophin levels can sustain the cochlear neural substrate in the long term. PMID:25726967

  10. In situ tissue engineering with synthetic self-assembling peptide nanofiber scaffolds, PuraMatrix, for mucosal regeneration in the rat middle-ear

    PubMed Central

    Akiyama, Naotaro; Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko

    2013-01-01

    Middle-ear mucosa maintains middle-ear pressure. However, the majority of surgical cases exhibit inadequate middle-ear mucosal regeneration, and mucosal transplantation is necessary in such cases. The aim of the present study was to assess the feasibility of transplantation of isolated mucosal cells encapsulated within synthetic self-assembling peptide nanofiber scaffolds using PuraMatrix, which has been successfully used as scaffolding in tissue engineering, for the repair of damaged middle-ear. Middle-ear bullae with mucosa were removed from Sprague Dawley (SD) transgenic rats, transfected with enhanced green fluorescent protein (EGFP) transgene and excised into small pieces, then cultured up to the third passage. After surgical elimination of middle-ear mucosa in SD recipient rats, donor cells were encapsulated within PuraMatrix and transplanted into these immunosuppressed rats. Primary cultured cells were positive for pancytokeratin but not for vimentin, and retained the character of middle-ear epithelial cells. A high proportion of EGFP-expressing cells were found in the recipient middle-ear after transplantation with PuraMatrix, but not without PuraMatrix. These cells retained normal morphology and function, as confirmed by histological examination, immunohistochemistry, and electron microscopy, and multiplied to form new epithelial and subepithelial layers together with basement membrane. The present study demonstrated the feasibility of transplantation of cultured middle-ear mucosal epithelial cells encapsulated within PuraMatrix for regeneration of surgically eliminated mucosa of the middle-ear in SD rats. PMID:23926427

  11. In situ tissue engineering with synthetic self-assembling peptide nanofiber scaffolds, PuraMatrix, for mucosal regeneration in the rat middle-ear.

    PubMed

    Akiyama, Naotaro; Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko

    2013-01-01

    Middle-ear mucosa maintains middle-ear pressure. However, the majority of surgical cases exhibit inadequate middle-ear mucosal regeneration, and mucosal transplantation is necessary in such cases. The aim of the present study was to assess the feasibility of transplantation of isolated mucosal cells encapsulated within synthetic self-assembling peptide nanofiber scaffolds using PuraMatrix, which has been successfully used as scaffolding in tissue engineering, for the repair of damaged middle-ear. Middle-ear bullae with mucosa were removed from Sprague Dawley (SD) transgenic rats, transfected with enhanced green fluorescent protein (EGFP) transgene and excised into small pieces, then cultured up to the third passage. After surgical elimination of middle-ear mucosa in SD recipient rats, donor cells were encapsulated within PuraMatrix and transplanted into these immunosuppressed rats. Primary cultured cells were positive for pancytokeratin but not for vimentin, and retained the character of middle-ear epithelial cells. A high proportion of EGFP-expressing cells were found in the recipient middle-ear after transplantation with PuraMatrix, but not without PuraMatrix. These cells retained normal morphology and function, as confirmed by histological examination, immunohistochemistry, and electron microscopy, and multiplied to form new epithelial and subepithelial layers together with basement membrane. The present study demonstrated the feasibility of transplantation of cultured middle-ear mucosal epithelial cells encapsulated within PuraMatrix for regeneration of surgically eliminated mucosa of the middle-ear in SD rats.

  12. Gfi1-Cre knock-in mouse line: A tool for inner ear hair cell-specific gene deletion

    PubMed Central

    Yang, Hua; Gan, Jean; Xie, Xiaoling; Deng, Min; Feng, Liang; Chen, Xiaowei; Gao, Zhiqiang; Gan, Lin

    2010-01-01

    Summary Gfi1encodes a zinc-finger transcription factor essential for the development and maintenance of haematopoiesis and the inner ear. In mouse inner ear, Gfi1 expression is confined to hair cells during development and in adulthood. To construct a genetic tool for inner ear hair cell-specific gene deletion, we generated a Gfi1-Cre mouse line by knocking-in Cre coding sequences into the Gfi1 locus and inactivating the endogenous Gfi1. The specificity and efficiency of Gfi1-Cre recombinase-mediated recombination in the developing inner ear was revealed through the expression of the conditional R26R-lacZ reporter gene. The onset of lacZ expression in the Gfi1Cre/+ inner ear was first detected at E13.5 in the vestibule and at E15.5 in the cochlea, coinciding with the generation of hair cells. Throughout inner ear development, lacZ expression was detected only in hair cells. Thus, Gfi1-Cre knock-in mouse line provides a useful tool for gene manipulations specifically in inner ear hair cells. PMID:20533399

  13. Hair cell regeneration: Look to the future

    NASA Astrophysics Data System (ADS)

    Rubel, Edwin W.

    2005-04-01

    Less than 2 decades ago it was discovered that birds can regenerate hair cells in the auditory and vestibular parts of the inner ear after the native hair cells are destroyed by exposure to excessive noise or by mechanical trauma of aminoglycoside antibiotics. This discovery issued in a new era of hearing research-it suggested that some day it may be possible to actually restore hearing in people with congenital or acquired hearing loss due to the degeneration of sensory cells or supporting cells in the inner ear. Fifteen years is a very short time in the history of science. Consider the fact that we have actively sought chemical treatments to prevent or cure cancers for well over a half century and the ``war on Cancer,'' resulted in enormous public and private support. Progress has been great, and some forms of cancer can be treated with great success, but the overall 5-year survival rates have only risen from about 50% to 63%. Progress will continue and many more forms of cancer will be cured and prevented during the next half century. Similarly, during the first 15 years of hair cell regeneration research enormous progress has been made, and we now know that postnatal mammalian ears have the capacity to produce new hair cells. We are indeed a long way from restoring hearing through hair cell regeneration, but the future is pretty clear. I will review the progress of this field with an eye toward the future and what it means for treatments of today. In particular, I will address the potential cost versus benefits of bilateral implantation when applied to babies and young children.

  14. The MYC Road to Hearing Restoration

    PubMed Central

    Kopecky, Benjamin; Fritzsch, Bernd

    2012-01-01

    Current treatments for hearing loss, the most common neurosensory disorder, do not restore perfect hearing. Regeneration of lost organ of Corti hair cells through forced cell cycle re-entry of supporting cells or through manipulation of stem cells, both avenues towards a permanent cure, require a more complete understanding of normal inner ear development, specifically the balance of proliferation and differentiation required to form and to maintain hair cells. Direct successful alterations to the cell cycle result in cell death whereas regulation of upstream genes is insufficient to permanently alter cell cycle dynamics. The Myc gene family is uniquely situated to synergize upstream pathways into downstream cell cycle control. There are three Mycs that are embedded within the Myc/Max/Mad network to regulate proliferation. The function of the two ear expressed Mycs, N-Myc and L-Myc were unknown less than two years ago and their therapeutic potentials remain speculative. In this review, we discuss the roles the Mycs play in the body and what led us to choose them to be our candidate gene for inner ear therapies. We will summarize the recently published work describing the early and late effects of N-Myc and L-Myc on hair cell formation and maintenance. Lastly, we detail the translational significance of our findings and what future work must be performed to make the ultimate hearing aid: the regeneration of the organ of Corti. PMID:24710525

  15. Isolation of sphere-forming stem cells from the mouse inner ear.

    PubMed

    Oshima, Kazuo; Senn, Pascal; Heller, Stefan

    2009-01-01

    The mammalian inner ear has very limited ability to regenerate lost sensory hair cells. This deficiency becomes apparent when hair cell loss leads to hearing loss as a result of either ototoxic insult or the aging process. Coincidently, with this inability to regenerate lost hair cells, the adult cochlea does not appear to harbor cells with a proliferative capacity that could serve as progenitor cells for lost cells. In contrast, adult mammalian vestibular sensory epithelia display a limited ability for hair cell regeneration, and sphere-forming cells with stem cell features can be isolated from the adult murine vestibular system. The neonatal inner ear, however, does harbor sphere-forming stem cells residing in cochlear and vestibular tissues. Here, we provide protocols to isolate sphere-forming stem cells from neonatal vestibular and cochlear sensory epithelia as well as from the spiral ganglion. We further describe procedures for sphere propagation, cell differentiation, and characterization of inner ear cell types derived from spheres. Sphere-forming stem cells from the mouse inner ear are an important tool for the development of cellular replacement strategies of damaged inner ears and are a bona fide progenitor cell source for transplantation studies.

  16. Hemispheric dominance and cell phone use.

    PubMed

    Seidman, Michael D; Siegel, Bianca; Shah, Priyanka; Bowyer, Susan M

    2013-05-01

    A thorough understanding of why we hold a cell phone to a particular ear may be of importance when studying the impact of cell phone safety. To determine if there is an obvious association between sidedness of cell phone use and auditory hemispheric dominance (AHD) or language hemispheric dominance (LHD). It is known that 70% to 95% of the population are right-handed, and of these, 96% have left-brain LHD. We have observed that most people use their cell phones in their right ear. An Internet survey was e-mailed to individuals through surveymonkey.com. The survey used a modified Edinburgh Handedness Inventory protocol. Sample questions surveyed which hand was used to write with, whether the right or left ear was used for phone conversations, as well as whether a brain tumor was present. General community. An Internet survey was randomly e-mailed to 5000 individuals selected from an otology online group, patients undergoing Wada testing and functional magnetic resonance imaging, as well as persons on the university listserv, of which 717 surveys were completed. Determination of hemispheric dominance based on preferred ear for cell phone use. A total of 717 surveys were returned. Ninety percent of the respondents were right handed, and 9% were left handed. Sixty-eight percent of the right-handed people used the cell phone in their right ear, 25% in the left ear, and 7% had no preference. Seventy-two of the left-handed respondents used their left ear, 23% used their right ear, and 5% had no preference. Cell phone use averaged 540 minutes per month over the past 9 years. An association exists between hand dominance laterality of cell phone use (73%) and our ability to predict hemispheric dominance. Most right-handed people have left-brain LHD and use their cell phone in their right ear. Similarly, most left-handed people use their cell phone in their left ear. Our study suggests that AHD may differ from LHD owing to the difference in handedness and cell phone ear use. Literature suggests a possible relationship between cell phone use and cancer. The fact that few tumors were identified in this population does not rule out an association.

  17. GATA3 controls the specification of prosensory domain and neuronal survival in the mouse cochlea

    PubMed Central

    Luo, Xiong-jian; Deng, Min; Xie, Xiaoling; Huang, Liang; Wang, Hui; Jiang, Lichun; Liang, Guoqing; Hu, Fang; Tieu, Roger; Chen, Rui; Gan, Lin

    2013-01-01

    HDR syndrome (also known as Barakat syndrome) is a developmental disorder characterized by hypoparathyroidism, sensorineural deafness and renal disease. Although genetic mapping and subsequent functional studies indicate that GATA3 haplo-insufficiency causes human HDR syndrome, the role of Gata3 in sensorineural deafness and auditory system development is largely unknown. In this study, we show that Gata3 is continuously expressed in the developing mouse inner ear. Conditional knockout of Gata3 in the developing inner ear disrupts the morphogenesis of mouse inner ear, resulting in a disorganized and shortened cochlear duct with significant fewer hair cells and supporting cells. Loss of Gata3 function leads to the failure in the specification of prosensory domain and subsequently, to increased cell death in the cochlear duct. Moreover, though the initial generation of cochleovestibular ganglion (CVG) cells is not affected in Gata3-null mice, spiral ganglion neurons (SGNs) are nearly depleted due to apoptosis. Our results demonstrate the essential role of Gata3 in specifying the prosensory domain in the cochlea and in regulating the survival of SGNs, thus identifying a molecular mechanism underlying human HDR syndrome. PMID:23666531

  18. Concise review: Inner ear stem cells--an oxymoron, but why?

    PubMed

    Ronaghi, Mohammad; Nasr, Marjan; Heller, Stefan

    2012-01-01

    Hearing loss, caused by irreversible loss of cochlear sensory hair cells, affects millions of patients worldwide. In this concise review, we examine the conundrum of inner ear stem cells, which obviously are present in the inner ear sensory epithelia of nonmammalian vertebrates, giving these ears the ability to functionally recover even from repetitive ototoxic insults. Despite the inability of the mammalian inner ear to regenerate lost hair cells, there is evidence for cells with regenerative capacity because stem cells can be isolated from vestibular sensory epithelia and from the neonatal cochlea. Challenges and recent progress toward identification of the intrinsic and extrinsic signaling pathways that could be used to re-establish stemness in the mammalian organ of Corti are discussed. Copyright © 2011 AlphaMed Press.

  19. Concise Review: Inner Ear Stem Cells—An Oxymoron, But Why?

    PubMed Central

    Ronaghi, Mohammad; Nasr, Marjan; Heller, Stefan

    2012-01-01

    Hearing loss, caused by irreversible loss of cochlear sensory hair cells, affects millions of patients worldwide. In this concise review, we examine the conundrum of inner ear stem cells, which obviously are present in the inner ear sensory epithelia of nonmammalian vertebrates, giving these ears the ability to functionally recover even from repetitive ototoxic insults. Despite the inability of the mammalian inner ear to regenerate lost hair cells, there is evidence for cells with regenerative capacity because stem cells can be isolated from vestibular sensory epithelia and from the neonatal cochlea. Challenges and recent progress toward identification of the intrinsic and extrinsic signaling pathways that could be used to re-establish stemness in the mammalian organ of Corti are discussed. PMID:22102534

  20. Three-dimensional Organotypic Cultures of Vestibular and Auditory Sensory Organs.

    PubMed

    Gnedeva, Ksenia; Hudspeth, A J; Segil, Neil

    2018-06-01

    The sensory organs of the inner ear are challenging to study in mammals due to their inaccessibility to experimental manipulation and optical observation. Moreover, although existing culture techniques allow biochemical perturbations, these methods do not provide a means to study the effects of mechanical force and tissue stiffness during development of the inner ear sensory organs. Here we describe a method for three-dimensional organotypic culture of the intact murine utricle and cochlea that overcomes these limitations. The technique for adjustment of a three-dimensional matrix stiffness described here permits manipulation of the elastic force opposing tissue growth. This method can therefore be used to study the role of mechanical forces during inner ear development. Additionally, the cultures permit virus-mediated gene delivery, which can be used for gain- and loss-of-function experiments. This culture method preserves innate hair cells and supporting cells and serves as a potentially superior alternative to the traditional two-dimensional culture of vestibular and auditory sensory organs.

  1. Localization of efferent neurotransmitters in the inner ear of the homozygous Bronx waltzer mutant mouse.

    PubMed

    Kong, W J; Scholtz, A W; Hussl, B; Kammen-Jolly, K; Schrott-Fischer, A

    2002-05-01

    Naturally occurring mutant mice provide an excellent model for the study of genetic malformations of the inner ear. Mice homozygous for the Bronx waltzer (bv/bv) mutation are severely hearing impaired or deaf and exhibit a 'waltzing' gait. Functional aspects of cochlear and vestibular efferents in the bv/bv mutant mouse are not well known. The present study was designed to evaluate several candidates of efferent neurotransmitters or neuromodulators including choline acetyltransferase (ChAT), gamma-aminobutyric acid (GABA), and calcitonin gene-related peptide (CGRP) in the inner ear of the bv/bv mutant mouse. Ultrastructural investigations at both light and electron microscopic level were performed. Ultrastructural morphologic evaluations of the cochlea and the vestibular end-organs were also undertaken. It is demonstrated that ChAT, GABA and CGRP immunoreactivities are present in the cochlea and in vestibular end-organs of bv/bv mutant mice. In the organ of Corti, immunoreactivity of ChAT, GABA and CGRP is confined to the inner spiral fibers, tunnel-crossing fibers, and the vesiculated nerve endings synapsing with outer hair cells. Interestingly, immunoreactivity was detectable even where inner hair cells appeared missing. Results also revealed malformations of the outer hair cells with synaptic contacts to efferent nerve endings consistently intact. In the neurosensory epithelia of the vestibular end-organs, the presence of ChAT, GABA, and CGRP immunoreactivity was localized at the vestibular efferents, with the exception of the macula of saccule. In one 8-month-old macula of utricle where the depletion of hair cells appeared highest, ChAT immunostaining was still discernible. Ultrastructural investigation demonstrated that vesiculated efferent nerve endings make synaptic contact with the outer hair cells in the organ of Corti and with type II hair cells in the vestibular end-organs. The present study provides further support that the efferent system in the bv/bv mutant inner ear is morphologically as well as functionally mature. These findings also demonstrate that if and when the onset of efferent degeneration in the bv/bv mutant inner ear occurs, it transpires subsequent to pathological conditions in the hair cells. The present findings give further indication that the efferent systems of the bv/bv mutant inner ear are independent of the afferent systems in many aspects including development, maturation as well as degeneration.

  2. Desmoplastic small round cell tumor of the middle ear: A case report.

    PubMed

    Xu, Jing; Yao, Mengwei; Yang, Xinxin; Liu, Tao; Wang, Shaohua; Ma, Dengdian; Li, Xiaoyu

    2018-04-01

    Desmoplastic small round cell tumor (DSRCT) is a rare, aggressive and malignant tumor. This report describes a case involving DSRCT of the middle ear which no case has been reported in the literature till date. A 59-year-old Chinese man with a 40-year history of repeated suppuration of his right ear and 1-year history of drooping of the angle of mouth. The CT of the middle ear and brain scan and enhanced MRI showed space occupying lesion in the right middle ear. Desmoplastic small round cell tumor of the middle ear. After relevant examinations, radical mastoidectomy and subtotal temporal bone resection were performed on the right ear under general anesthesia. The patient underwent postoperative adjuvant chemoradiation therapy. The patient was counterchecked regularly,there was norecurrence of DSRCT of the middle ear. Four years after surgery, the CT and MRI of the middle ear mastoid showed right middle ear soft tissue shadow,but postoperative pathological results showed proliferative fibrous and vascular tissues with chronic inflammatory cell infiltration and necrosis. DSRCT is a relatively aggressive, malignant mesenchymal tumor, with a very poor prognosis.The diagnosis of DSRCT relies on immunohistological data. Early diagnosis, radical surgery, chemotherapy, and radiotherapy are considered a reasonable way to prolong survival.

  3. Evidence that protons act as neurotransmitters at vestibular hair cell-calyx afferent synapses.

    PubMed

    Highstein, Stephen M; Holstein, Gay R; Mann, Mary Anne; Rabbitt, Richard D

    2014-04-08

    Present data support the conclusion that protons serve as an important neurotransmitter to convey excitatory stimuli from inner ear type I vestibular hair cells to postsynaptic calyx nerve terminals. Time-resolved pH imaging revealed stimulus-evoked extrusion of protons from hair cells and a subsequent buildup of [H(+)] within the confined chalice-shaped synaptic cleft (ΔpH ∼ -0.2). Whole-cell voltage-clamp recordings revealed a concomitant nonquantal excitatory postsynaptic current in the calyx terminal that was causally modulated by cleft acidification. The time course of [H(+)] buildup limits the speed of this intercellular signaling mechanism, but for tonic signals such as gravity, protonergic transmission offers a significant metabolic advantage over quantal excitatory postsynaptic currents--an advantage that may have driven the proliferation of postsynaptic calyx terminals in the inner ear vestibular organs of contemporary amniotes.

  4. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival

    NASA Technical Reports Server (NTRS)

    Wallis, Deeann; Hamblen, Melanie; Zhou, Yi; Venken, Koen J T.; Schumacher, Armin; Grimes, H. Leighton; Zoghbi, Huda Y.; Orkin, Stuart H.; Bellen, Hugo J.

    2003-01-01

    Gfi1 was first identified as causing interleukin 2-independent growth in T cells and lymphomagenesis in mice. Much work has shown that Gfi1 and Gfi1b, a second mouse homolog, play pivotal roles in blood cell lineage differentiation. However, neither Gfi1 nor Gfi1b has been implicated in nervous system development, even though their invertebrate homologues, senseless in Drosophila and pag-3 in C. elegans are expressed and required in the nervous system. We show that Gfi1 mRNA is expressed in many areas that give rise to neuronal cells during embryonic development in mouse, and that Gfi1 protein has a more restricted expression pattern. By E12.5 Gfi1 mRNA is expressed in both the CNS and PNS as well as in many sensory epithelia including the developing inner ear epithelia. At later developmental stages, Gfi1 expression in the ear is refined to the hair cells and neurons throughout the inner ear. Gfi1 protein is expressed in a more restricted pattern in specialized sensory cells of the PNS, including the eye, presumptive Merkel cells, the lung and hair cells of the inner ear. Gfi1 mutant mice display behavioral defects that are consistent with inner ear anomalies, as they are ataxic, circle, display head tilting behavior and do not respond to noise. They have a unique inner ear phenotype in that the vestibular and cochlear hair cells are differentially affected. Although Gfi1-deficient mice initially specify inner ear hair cells, these hair cells are disorganized in both the vestibule and cochlea. The outer hair cells of the cochlea are improperly innervated and express neuronal markers that are not normally expressed in these cells. Furthermore, Gfi1 mutant mice lose all cochlear hair cells just prior to and soon after birth through apoptosis. Finally, by five months of age there is also a dramatic reduction in the number of cochlear neurons. Hence, Gfi1 is expressed in the developing nervous system, is required for inner ear hair cell differentiation, and its loss causes programmed cell death.

  5. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells.

    PubMed

    White, Patricia M; Doetzlhofer, Angelika; Lee, Yun Shain; Groves, Andrew K; Segil, Neil

    2006-06-22

    Sensory hair cells of the mammalian organ of Corti in the inner ear do not regenerate when lost as a consequence of injury, disease, or age-related deafness. This contrasts with other vertebrates such as birds, where the death of hair cells causes surrounding supporting cells to re-enter the cell cycle and give rise to both new hair cells and supporting cells. It is not clear whether the lack of mammalian hair cell regeneration is due to an intrinsic inability of supporting cells to divide and differentiate or to an absence or blockade of regenerative signals. Here we show that post-mitotic supporting cells purified from the postnatal mouse cochlea retain the ability to divide and trans-differentiate into new hair cells in culture. Furthermore, we show that age-dependent changes in supporting cell proliferative capacity are due in part to changes in the ability to downregulate the cyclin-dependent kinase inhibitor p27(Kip1) (also known as Cdkn1b). These results indicate that postnatal mammalian supporting cells are potential targets for therapeutic manipulation.

  6. Intrinsic regenerative potential of murine cochlear supporting cells.

    PubMed

    Sinkkonen, Saku T; Chai, Renjie; Jan, Taha A; Hartman, Byron H; Laske, Roman D; Gahlen, Felix; Sinkkonen, Wera; Cheng, Alan G; Oshima, Kazuo; Heller, Stefan

    2011-01-01

    The lack of cochlear regenerative potential is the main cause for the permanence of hearing loss. Albeit quiescent in vivo, dissociated non-sensory cells from the neonatal cochlea proliferate and show ability to generate hair cell-like cells in vitro. Only a few non-sensory cell-derived colonies, however, give rise to hair cell-like cells, suggesting that sensory progenitor cells are a subpopulation of proliferating non-sensory cells. Here we purify from the neonatal mouse cochlea four different non-sensory cell populations by fluorescence-activated cell sorting (FACS). All four populations displayed proliferative potential, but only lesser epithelial ridge and supporting cells robustly gave rise to hair cell marker-positive cells. These results suggest that cochlear supporting cells and cells of the lesser epithelial ridge show robust potential to de-differentiate into prosensory cells that proliferate and undergo differentiation in similar fashion to native prosensory cells of the developing inner ear.

  7. Evidence against the mucosal traction theory in cholesteatoma.

    PubMed

    Pauna, Henrique F; Monsanto, Rafael C; Schachern, Patricia; Paparella, Michael M; Chole, Richard A; Cureoglu, Sebahattin

    2017-10-08

    To investigate the distribution of ciliated epithelium in the human middle ear and its potential role in the formation of cholesteatoma. Comparative human temporal bone study. We selected temporal bones from 14 donors with a diagnosis of cholesteatoma, 15 with chronic otitis media without retraction pockets, 14 with chronic otitis media with retraction pockets, 14 with cystic fibrosis (CF), and 16 controls. We mapped the distribution of the ciliated cells in the mucosal lining of the middle ear and tympanic membrane using three-dimensional reconstruction analysis, and counted the number of ciliated cells in the middle ear mucosa. Ciliated cells are extremely sparse in the epithelial lining of the lateral surface of the ossicles in the epitympanum and the medial surface of the tympanic membrane. Furthermore, there is a significant decrease in the number of ciliated cells in these areas in temporal bones with cholesteatoma, chronic otitis media, chronic otitis media with retraction pockets, and CF compared to controls. Ciliated cells most commonly are located at the hypotympanum and the Eustachian tube opening but not the tympanic membrane or epitympanum. The paucity of ciliated epithelial cells on the medial side of the tympanic membrane and the lateral surface of the ossicles in the epitympanum in cases with cholesteatoma and/or chronic otitis media do not support the mucosal migration theory of cholesteatoma formation. NA. Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  8. Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice

    PubMed Central

    Bucks, Stephanie A; Cox, Brandon C; Vlosich, Brittany A; Manning, James P; Nguyen, Tot B; Stone, Jennifer S

    2017-01-01

    Vestibular hair cells in the inner ear encode head movements and mediate the sense of balance. These cells undergo cell death and replacement (turnover) throughout life in non-mammalian vertebrates. However, there is no definitive evidence that this process occurs in mammals. We used fate-mapping and other methods to demonstrate that utricular type II vestibular hair cells undergo turnover in adult mice under normal conditions. We found that supporting cells phagocytose both type I and II hair cells. Plp1-CreERT2-expressing supporting cells replace type II hair cells. Type I hair cells are not restored by Plp1-CreERT2-expressing supporting cells or by Atoh1-CreERTM-expressing type II hair cells. Destruction of hair cells causes supporting cells to generate 6 times as many type II hair cells compared to normal conditions. These findings expand our understanding of sensorineural plasticity in adult vestibular organs and further elucidate the roles that supporting cells serve during homeostasis and after injury. DOI: http://dx.doi.org/10.7554/eLife.18128.001 PMID:28263708

  9. [The Evolutionary Origin of Placodes and Neural Crest Cells

    NASA Technical Reports Server (NTRS)

    Bronner-Fraser, Marianne

    2003-01-01

    The long-term goal of this NASA-supported research is to understand the evolutionary origin of placodes and neural crest cells, with particular reference to evolution of the inner ear, and their evolutionary and developmental relationships. The cephalochordcate amphioxus, the closest living invertebrate relative of the vertebrates is used as a stand-in for the ancestral vertebrate. The research, which has supported one graduate student, Jr-Kai Yu, has resulted in ten publications by the Holland laboratory in peer-reviewed journals.

  10. Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm.

    PubMed

    Fritzsch, Bernd; Pan, Ning; Jahan, Israt; Elliott, Karen L

    2015-07-01

    The mammalian inner ear develops from a placodal thickening into a complex labyrinth of ducts with five sensory organs specialized to detect position and movement in space. The mammalian ear also develops a spiraled cochlear duct containing the auditory organ, the organ of Corti (OC), specialized to translate sound into hearing. Development of the OC from a uniform sheet of ectoderm requires unparalleled precision in the topological developmental engineering of four different general cell types, namely sensory neurons, hair cells, supporting cells, and general otic epithelium, into a mosaic of ten distinctly recognizable cell types in and around the OC, each with a unique distribution. Moreover, the OC receives unique innervation by ear-derived spiral ganglion afferents and brainstem-derived motor neurons as efferents and requires neural-crest-derived Schwann cells to form myelin and neural-crest-derived cells to induce the stria vascularis. This transformation of a sheet of cells into a complicated interdigitating set of cells necessitates the orchestrated expression of multiple transcription factors that enable the cellular transformation from ectoderm into neurosensory cells forming the spiral ganglion neurons (SGNs), while simultaneously transforming the flat epithelium into a tube, the cochlear duct, housing the OC. In addition to the cellular and conformational changes forming the cochlear duct with the OC, changes in the surrounding periotic mesenchyme form passageways for sound to stimulate the OC. We review molecular developmental data, generated predominantly in mice, in order to integrate the well-described expression changes of transcription factors and their actions, as revealed in mutants, in the formation of SGNs and OC in the correct position and orientation with suitable innervation. Understanding the molecular basis of these developmental changes leading to the formation of the mammalian OC and highlighting the gaps in our knowledge might guide in vivo attempts to regenerate this most complicated cellular mosaic of the mammalian body for the reconstitution of hearing in a rapidly growing population of aging people suffering from hearing loss.

  11. Loss of CD28 on Peripheral T Cells Decreases the Risk for Early Acute Rejection after Kidney Transplantation

    PubMed Central

    Dedeoglu, Burç; Meijers, Ruud W. J.; Klepper, Mariska; Hesselink, Dennis A.; Baan, Carla C.; Litjens, Nicolle H. R.; Betjes, Michiel G. H.

    2016-01-01

    Background End-stage renal disease patients have a dysfunctional, prematurely aged peripheral T-cell system. Here we hypothesized that the degree of premature T-cell ageing before kidney transplantation predicts the risk for early acute allograft rejection (EAR). Methods 222 living donor kidney transplant recipients were prospectively analyzed. EAR was defined as biopsy proven acute allograft rejection within 3 months after kidney transplantation. The differentiation status of circulating T cells, the relative telomere length and the number of CD31+ naive T cells were determined as T-cell ageing parameters. Results Of the 222 patients analyzed, 30 (14%) developed an EAR. The donor age and the historical panel reactive antibody score were significantly higher (p = 0.024 and p = 0.039 respectively) and the number of related donor kidney transplantation was significantly lower (p = 0.018) in the EAR group. EAR-patients showed lower CD4+CD28null T-cell numbers (p<0.01) and the same trend was observed for CD8+CD28null T-cell numbers (p = 0.08). No differences regarding the other ageing parameters were found. A multivariate Cox regression analysis showed that higher CD4+CD28null T-cell numbers was associated with a lower risk for EAR (HR: 0.65, p = 0.028). In vitro, a significant lower percentage of alloreactive T cells was observed within CD28null T cells (p<0.001). Conclusion Immunological ageing-related expansion of highly differentiated CD28null T cells is associated with a lower risk for EAR. PMID:26950734

  12. Isolation and characterization of the progenitor cells from the blastema tissue formed at experimentally-created rabbit ear hole.

    PubMed

    Baghaban Eslaminejad, Mohamadreza; Bordbar, Sima

    2013-02-01

    Objective(s) : Throughout evolution, mammalians have increasingly lost their ability to regenerate structures however rabbits are exceptional since they develop a blastema in their ear wound for regeneration purposes. Blastema consists of a group of undifferentiated cells capable of dividing and differentiating into the ear tissue. The objective of the present study is to isolate, culture expand, and characterize blastema progenitor cells in terms of their in vitro differentiation capacity. Five New Zealand white male rabbits were used in the present study. Using a punching apparatus, a 4-mm hole was created in the animal ears. Following 4 days, the blastema ring which was created in the periphery of primary hole in the ears was removed and cultivated. The cells migrated from the blastema were expanded through 3 successive subcultures and characterized in terms of their potential differentiation, growth characteristics, and culture requirements. The primary cultures tended to be morphologically heterogeneous having spindly-shaped fibroblast-like cells as well as flattened cells. Fibroblast-like cells survived and dominated the cultures. These cells tended to have the osteogenic, chondrogenic, and adipogenic differentiation potentials. They were highly colonogenic and maximum proliferation was achieved when the cells were plated at density of 100 cells/cm2 in a medium which contained 10% fetal bovine serum (FBS). Taken together, blastema tissue-derived stem cells from rabbit ear are of mesenchymal stem cell-like population. Studies similar to this will assist scientist better understanding the nature of blastema tissue formed at rabbit ear to regenerate the wound.

  13. Squamous cell carcinoma and consequent otitis in a Long-eared Hedgehog (Hemiechinus auritus)--case report.

    PubMed

    Gál, Janos; Landauer, Krisztina; Palade, Elena Alina; Ivaskevics, Katalin; Rusvai, Miklós; Demeter, Zoltán

    2009-03-01

    The authors describe a squamous cell carcinoma arising from the ear canal of a Long-eared Hedgehog (Hemiechinus auritus). No metastasis could be identified elsewhere in the animal. Due to the irritation caused by the tumorous proliferation the animal constantly scratched the affected area, which led to secondary bacterial infection of the middle ear accompanied by the stagnation of an increased volume of local secretions. Using routine haematoxylin and eosin and immunohistochemical staining techniques, the tumour was identified as a squamous cell carcinoma. This work constitutes the first description of such a tumour in a Long-eared Hedgehog.

  14. Identification of a role for the nuclear receptor EAR-2 in the maintenance of clonogenic status within the leukemia cell hierarchy

    PubMed Central

    Ichim, CV; Atkins, HL; Iscove, NN; Wells, RA

    2016-01-01

    Identification of genes that regulate clonogenicity of acute myelogenous leukemia (AML) cells is hindered by the difficulty of isolating pure populations of cells with defined proliferative abilities. By analyzing the growth of clonal siblings in low passage cultures of the cell line OCI/AML4 we resolved this heterogeneous population into strata of distinct clonogenic potential, permitting analysis of the transcriptional signature of single cells with defined proliferative abilities. By microarray analysis we showed that the expression of the orphan nuclear receptor EAR-2 (NR2F6) is greater in leukemia cells with extensive proliferative capacity than in those that have lost proliferative ability. EAR-2 is expressed highly in long-term hematopoietic stem cells, relative to short-term hematopoietic stem and progenitor cells, and is downregulated in AML cells after induction of differentiation. Exogenous expression of EAR-2 increased the growth of U937 cells and prevented the proliferative arrest associated with terminal differentiation, and blocked differentiation of U937 and 32Dcl3 cells. Conversely, silencing of EAR-2 by short-hairpin RNA initiated terminal differentiation of these cell lines. These data identify EAR-2 as an important factor in the regulation of clonogenicity and differentiation, and establish that analysis of clonal siblings allows the elucidation of differences in gene expression within the AML hierarchy. PMID:21637284

  15. DNA damage signaling regulates age-dependent proliferative capacity of quiescent inner ear supporting cells

    PubMed Central

    Laos, Maarja; Anttonen, Tommi; Kirjavainen, Anna; Hällström, Taija af; Laiho, Marikki; Pirvola, Ulla

    2014-01-01

    Supporting cells (SCs) of the cochlear (auditory) and vestibular (balance) organs hold promise as a platform for therapeutic regeneration of the sensory hair cells. Prior data have shown proliferative restrictions of adult SCs forced to re-enter the cell cycle. By comparing juvenile and adult SCs in explant cultures, we have here studied how proliferative restrictions are linked with DNA damage signaling. Cyclin D1 overexpression, used to stimulate cell cycle re-entry, triggered higher proliferative activity of juvenile SCs. Phosphorylated form of histone H2AX (γH2AX) and p53 binding protein 1 (53BP1) were induced in a foci-like pattern in SCs of both ages as an indication of DNA double-strand break formation and activated DNA damage response. Compared to juvenile SCs, γH2AX and the repair protein Rad51 were resolved with slower kinetics in adult SCs, accompanied by increased apoptosis. Consistent with the in vitro data, in a Rb mutant mouse model in vivo, cell cycle re-entry of SCs was associated with γH2AX foci induction. In contrast to cell cycle reactivation, pharmacological stimulation of SC-to-hair-cell transdifferentiation in vitro did not trigger γH2AX. Thus, DNA damage and its prolonged resolution are critical barriers in the efforts to stimulate proliferation of the adult inner ear SCs. PMID:25063730

  16. Inner Ear Drug Delivery for Auditory Applications

    PubMed Central

    Swan, Erin E. Leary; Mescher, Mark J.; Sewell, William F.; Tao, Sarah L.; Borenstein, Jeffrey T.

    2008-01-01

    Many inner ear disorders cannot be adequately treated by systemic drug delivery. A blood-cochlear barrier exists, similar physiologically to the blood-brain barrier, which limits the concentration and size of molecules able to leave the circulation and gain access to the cells of the inner ear. However, research in novel therapeutics and delivery systems has led to significant progress in the development of local methods of drug delivery to the inner ear. Intratympanic approaches, which deliver therapeutics to the middle ear, rely on permeation through tissue for access to the structures of the inner ear, whereas intracochlear methods are able to directly insert drugs into the inner ear. Innovative drug delivery systems to treat various inner ear ailments such as ototoxicity, sudden sensorineural hearing loss, autoimmune inner ear disease, and for preserving neurons and regenerating sensory cells are being explored. PMID:18848590

  17. A Study in Kuwait of Health Risks Associated with Using Cell Phones

    ERIC Educational Resources Information Center

    Al-Khamees, Nedaa

    2007-01-01

    Previous studies have suggested a link between cell phone use and various symptoms. Analysis of 3,274 completed questionnaires from throughout Kuwait show a significant effect of exposure to cell phones for burning sensation on the ear, temporal pain, pain in the back of the head, auricular pain, noises in the ear, ear numbness, heartbeat…

  18. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage.

    PubMed

    Mizuno, Mitsuru; Kobayashi, Shinji; Takebe, Takanori; Kan, Hiroomi; Yabuki, Yuichiro; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Nakabayashi, Seiichiro; Ik, Lee Jeong; Maegawa, Jiro; Taniguchi, Hideki

    2014-03-01

    In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies. © AlphaMed Press.

  19. Middle ear application of a sodium hyaluronate gel loaded with neomycin in a Guinea pig model.

    PubMed

    Saber, Amanj; Laurell, Göran; Bramer, Tobias; Edsman, Katarina; Engmér, Cecilia; Ulfendahl, Mats

    2009-02-01

    Establishing methods for topical administration of drugs to the inner ear have great clinical relevance and potential even in a relatively short perspective. To evaluate the efficacy of sodium hyaluronate (HYA) as a vehicle for drugs that could be used for treatment of inner ear disorders. The cochlear hair cell loss and round window membrane (RWM) morphology were investigated after topical application of neomycin and HYA into the middle ear. Sixty-five albino guinea pigs were used and divided into groups depending on the type of the treatment. Neomycin was chosen as tracer for drug release and pharmacodynamic effect. HYA loaded with 3 different concentrations of neomycin was injected to the middle ear cavity of guinea pigs. Phalloidin stained surface preparations of the organ of Corti were used to estimate hair cell loss induced by neomycin. The thickness of the midportion of the RWM was measured and compared with that of controls using light and electron microscopy. All animal procedures were pe rformed in accordance with the ethical standards of Karolinska Institutet. Neomycin induced a considerable hair cell loss in guinea pigs receiving a middle ear injection of HYA loaded with the drug, demonstrating that neomycin was released from the gel and delivered to the inner ear. The resulting hair cell loss showed a clear dose-dependence. Only small differences in hair cell loss were noted between animals receiving neomycin solution and animals exposed to neomycin in HYA suggesting that the vehicle neither facilitated nor hindered drug transport between the middle ear cavity and the inner ear. One week after topical application, the thickness of the RWM had increased and was dependent upon the concentration of neomycin administered to the middle ear. At 4 weeks the thickness of the RWM had returned to normal. HYA is a safe vehicle for drugs aimed to pass into the inner ear through the RWM. Neomycin was released from HYA and transported into the inner ear as evidenced by hair cell loss.

  20. Restrictions in Cell Cycle Progression of Adult Vestibular Supporting Cells in Response to Ectopic Cyclin D1 Expression

    PubMed Central

    Loponen, Heidi; Ylikoski, Jukka; Albrecht, Jeffrey H.; Pirvola, Ulla

    2011-01-01

    Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27Kip1 and p21Cip1 expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells. PMID:22073316

  1. Restrictions in cell cycle progression of adult vestibular supporting cells in response to ectopic cyclin D1 expression.

    PubMed

    Loponen, Heidi; Ylikoski, Jukka; Albrecht, Jeffrey H; Pirvola, Ulla

    2011-01-01

    Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27(Kip1) and p21(Cip1) expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells.

  2. Hair cell regeneration in sensory epithelia from the inner ear of a urodele amphibian.

    PubMed

    Taylor, Ruth R; Forge, Andrew

    2005-03-28

    The capacity of urodele amphibians to regenerate a variety of body parts is providing insight into mechanisms of tissue regeneration in vertebrates. In this study the ability of the newt, Notophthalmus viridescens, to regenerate inner ear hair cells in vitro was examined. Intact otic capsules were maintained in organotypic culture. Incubation in 2 mM gentamicin for 48 hours resulted in ablation of all hair cells from the saccular maculae. Thus, any hair cell recovery was not due to repair of damaged hair cells. Immature hair cells were subsequently observed at approximately 12 days posttreatment. Their number increased over the following 7-14 days to reach approximately 30% of the normal number. Following incubation of damaged tissue with bromodeoxyuridine (BrdU), labeled nuclei were confined strictly within regions of hair cell loss, indicating that supporting cells entered S-phase. Double labeling of tissue with two different hair cell markers and three different antibodies to BrdU in various combinations, however, all showed that the nuclei of cells that labeled with hair cell markers did not label for BrdU. This suggested that the new hair cells were not derived from those cells that had undergone mitosis. When mitosis was blocked with aphidicolin, new hair cells were still generated. The results suggest that direct phenotypic conversion of supporting cells into hair cells without an intervening mitotic event is a major mechanism of hair cell regeneration in the newt. A similar mechanism has been proposed for the hair cell recovery phenomenon observed in the vestibular organs of mammals. Copyright 2005 Wiley-Liss, Inc.

  3. BONE MARROW MESENCHYMAL STEM CELLS ARE PROGENITORS IN VITRO FOR INNER EAR HAIR CELLS

    PubMed Central

    Jeon, Sang-Jun; Oshima, Kazuo; Heller, Stefan; Edge, Albert S.B.

    2011-01-01

    Stem cells have been demonstrated in the inner ear but they do not spontaneously divide to replace damaged sensory cells. Mesenchymal stem cells (MSC) from bone marrow have been reported to differentiate into multiple lineages including neurons, and we therefore asked whether MSCs could generate sensory cells. Overexpression of the prosensory transcription factor, Math1, in sensory epithelial precursor cells induced expression of myosin VIIa, espin, Brn3c, p27Kip, and jagged2, indicating differentiation to inner ear sensory cells. Some of the cells displayed F-actin positive protrusions in the morphology characteristic of hair cell stereociliary bundles. Hair cell markers were also induced by culture of mouse MSC-derived cells in contact with embryonic chick inner ear cells, and this induction was not due to a cell fusion event, because the chick hair cells could be identified with a chick-specific antibody and chick and mouse antigens were never found in the same cell. PMID:17113786

  4. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    PubMed Central

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019

  5. Probing the Xenopus laevis inner ear transcriptome for biological function

    PubMed Central

    2012-01-01

    Background The senses of hearing and balance depend upon mechanoreception, a process that originates in the inner ear and shares features across species. Amphibians have been widely used for physiological studies of mechanotransduction by sensory hair cells. In contrast, much less is known of the genetic basis of auditory and vestibular function in this class of animals. Among amphibians, the genus Xenopus is a well-characterized genetic and developmental model that offers unique opportunities for inner ear research because of the amphibian capacity for tissue and organ regeneration. For these reasons, we implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis. Results Microarray analysis uncovered genes within the X. laevis inner ear transcriptome associated with inner ear function and impairment in other organisms, thereby supporting the inclusion of Xenopus in cross-species genetic studies of the inner ear. The use of gene categories (inner ear tissue; deafness; ion channels; ion transporters; transcription factors) facilitated the assignment of functional significance to probe set identifiers. We enhanced the biological relevance of our microarray data by using a variety of curation approaches to increase the annotation of the Affymetrix GeneChip® Xenopus laevis Genome array. In addition, annotation analysis revealed the prevalence of inner ear transcripts represented by probe set identifiers that lack functional characterization. Conclusions We identified an abundance of targets for genetic analysis of auditory and vestibular function. The orthologues to human genes with known inner ear function and the highly expressed transcripts that lack annotation are particularly interesting candidates for future analyses. We used informatics approaches to impart biologically relevant information to the Xenopus inner ear transcriptome, thereby addressing the impediment imposed by insufficient gene annotation. These findings heighten the relevance of Xenopus as a model organism for genetic investigations of inner ear organogenesis, morphogenesis, and regeneration. PMID:22676585

  6. Targeted Deletion of Sox10 by Wnt1-cre Defects Neuronal Migration and Projection in the Mouse Inner Ear

    PubMed Central

    Mao, YanYan; Reiprich, Simone; Wegner, Michael; Fritzsch, Bernd

    2014-01-01

    Sensory nerves of the brainstem are mostly composed of placode-derived neurons, neural crest-derived neurons and neural crest-derived Schwann cells. This mixed origin of cells has made it difficult to dissect interdependence for fiber guidance. Inner ear-derived neurons are known to connect to the brain after delayed loss of Schwann cells in ErbB2 mutants. However, the ErbB2 mutant related alterations in the ear and the brain compound interpretation of the data. We present here a new model to evaluate exclusively the effect of Schwann cell loss on inner ear innervation. Conditional deletion of the neural crest specific transcription factor, Sox10, using the rhombic lip/neural crest specific Wnt1-cre driver spares Sox10 expression in the ear. We confirm that neural crest-derived cells provide a stop signal for migrating spiral ganglion neurons. In the absence of Schwann cells, spiral ganglion neurons migrate into the center of the cochlea and even out of the ear toward the brain. Spiral ganglion neuron afferent processes reach the organ of Corti, but many afferent fibers bypass the organ of Corti to enter the lateral wall of the cochlea. In contrast to this peripheral disorganization, the central projection to cochlear nuclei is normal. Compared to ErbB2 mutants, conditional Sox10 mutants have limited cell death in spiral ganglion neurons, indicating that the absence of Schwann cells alone contributes little to the embryonic survival of neurons. These data suggest that neural crest-derived cells are dispensable for all central and some peripheral targeting of inner ear neurons. However, Schwann cells provide a stop signal for migratory spiral ganglion neurons and facilitate proper targeting of the organ of Corti by spiral ganglion afferents. PMID:24718611

  7. In vivo over-expression of KGF mimic human middle ear cholesteatoma.

    PubMed

    Yamamoto-Fukuda, Tomomi; Akiyama, Naotaro; Shibata, Yasuaki; Takahashi, Haruo; Ikeda, Tohru; Koji, Takehiko

    2015-10-01

    We reported previously that keratinocyte growth factor (KGF), a mesenchymal cell-derived paracrine growth factor, plays an important role in middle ear cholesteatoma formation, which is characterized by marked proliferation of epithelial cells. Here, we investigated whether KGF, the main factor that induces cholesteatoma, overexpression in vivo results in the formation of cholesteatoma. Flag-hKGF cDNA driven by CMV14 promoter was transfected through electroporation into the external auditory canal (EAC) of rats once (short-term model) or five times on every fourth day (long-term model). Ears transfected with empty vector were used as controls. Successful transfection of plasmids into epithelial and stromal cells was confirmed by Flag immunohistochemistry. In the short-term model, the intensity of KGF protein was the strongest in hKGF transfected ear at day 4. KGF expression induced epithelial cell proliferation, reaching a peak level at day 4 and then decreased later, while in the long-term model, KGF expression in the EAC led to middle ear cholesteatoma formation. In conclusion, we described here a new experimental model of human middle ear cholesteatoma, and demonstrated that KGF and KGF receptor paracrine action play an essential role in middle ear cholesteatoma formation in an in vivo model.

  8. THE POTENTIAL ROLE OF ENDOGENOUS STEM CELLS IN REGENERATION OF THE INNER EAR

    PubMed Central

    Martinez-Monedero, Rodrigo; Oshima, Kazuo; Heller, Stefan; Edge, Albert S.B.

    2007-01-01

    Stem cells in various mammalian tissues retain the capacity to renew themselves and may be able to restore damaged tissue. Their existence has been proven by genetic tracer studies that demonstrate their differentiation into multiple tissue types and by their ability to self-renew through proliferation. Stem cells from the adult nervous system proliferate to form clonal floating colonies called spheres in vitro, and recent studies have demonstrated sphere formation by cells in the cochlea in addition to the vestibular system and the auditory ganglia, indicating that these tissues contain cells with stem cell properties. The presence of stem cells in the inner ear raises the hope of regeneration of mammalian inner ear cells but is difficult to correlate with the lack spontaneous regeneration seen in the inner ear after tissue damage. Loss of stem cells postnatally in the cochlea may correlate with the loss of regenerative capacity and may limit our ability to stimulate regeneration. Retention of sphere forming capacity in adult vestibular tissues suggests that the limited capacity for repair may be attributed to the continued presence of progenitor cells. Future strategies for regeneration must consider the distribution of endogenous stem cells in the inner ear and whether cells with the capacity for regeneration are retained. PMID:17321086

  9. Improved cellular thermotolerance in cloned Holstein cattle derived with cytoplasts from a thermotolerant breed.

    PubMed

    Lee, Jai-Wei; Li, Hung; Wu, Hung-Yi; Liu, Shyh-Shyan; Shen, Perng-Chin

    2016-03-01

    The objective of this study was to compare the thermotolerance of ear fibroblasts derived from various SCNT cattle. Specimens were produced from cloned embryos that had been reconstructed using donor cells (d) from the same Holstein cow (Hd) and the ooplasm (o) from Holstein cattle (Ho) or Taiwan yellow cattle (Yo). Polymorphism in the D-loop region of mitochondrial DNA in ear fibroblasts derived from SCNT cattle reconstructed with the Y ooplasm and H donor cells (SCNT-Yo-Hd) indicates that the cytoplasm originated from Bos indicus. The rates of apoptosis in heat-shocked ear fibroblasts derived from SCNT-Yo-Hd cattle (1.9%) and purebred Y cattle (1.5%) were significantly (P < 0.05) lower than those of cells derived from SCNT cattle reconstructed with the H ooplasm (SCNT-Ho-Hd: 3.4%), donor cells (4.0%), and purebred Holstein (4.1%) cattle. At the protein level, the relative abundances of apoptosis-inducing factor, B cell lymphoma 2-associated X protein, endonuclease G, cytochrome c, cysteinyl aspartate-specific proteinases 3, 8 and 9 in ear fibroblasts derived from SCNT-Yo-Hd cattle were significantly (P < 0.05) lower than those of cells derived from SCNT-Ho-Hd cattle after heat shock. In contrast, the relative abundances of heat shock proteins 27, 70 and B cell lymphoma 2 in ear fibroblasts derived from SCNT-Yo-Hd cattle were higher (P < 0.05) than those of fibroblasts derived from SCNT-Ho-Hd cattle. Moreover, heat-shocked ear fibroblasts derived from SCNT-Yo-Hd cattle have a significantly (P < 0.05) lower percentage of apoptosis-inducing factor-positive nuclei than do heat-shocked ear fibroblasts derived from SCNT-Ho-Hd cattle (11.1% vs. 18.5%). Taken together, these results report that ear fibroblasts derived from SCNT cattle reconstructed using the Y ooplasm are more thermotolerant than ear fibroblasts derived from SCNT cattle reconstructed using the H ooplasm. This is an indication that the cytoplasm may be a major determinant of thermal sensitivity in bovine ear fibroblasts. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. An European inter-laboratory validation of alternative endpoints of the murine local lymph node assay: first round.

    PubMed

    Ehling, G; Hecht, M; Heusener, A; Huesler, J; Gamer, A O; van Loveren, H; Maurer, Th; Riecke, K; Ullmann, L; Ulrich, P; Vandebriel, R; Vohr, H-W

    2005-08-15

    The new OECD guideline 429 (skin sensitization: local lymph node assay) is based upon a protocol, which utilises the incorporation of radioactivity into DNA as a measure for cell proliferation in vivo. The guideline also enables the use of alternative endpoints in order to assess draining lymph node (LN) cell proliferation. Here we describe the first round of an inter-laboratory validation of alternative endpoints in the LLNA conducted in seven laboratories. The validation study was managed and supervised by the Swiss Agency for Therapeutic Products, Swissmedic. Statistical analyses of all data were performed by an independent centre at the University of Bern, Department of Statistics. Ear-draining, LN weight and cell count were used to assess proliferation instead of radioactive labeling of lymph node cells. In addition, the acute inflammatory skin reaction was measured by ear swelling and weight of circular biopsies of the ears to identify skin irritating properties of the test items. Hexylcinnamaldehyde (HCA) and three blinded test items were applied to female, 8--10 weeks old NMRI and BALB/c mice. Results were sent via the independent study coordinator to the statistician. The results of this first round showed that the alternative endpoints of the LLNA are sensitive and robust parameters. The use of ear weights added an important parameter assessing the skin irritation potential, which supports the differentiation of pure irritative from contact allergenic potential. There were absolute no discrepancies between the categorisation of the three test substances A--C determined by each single participating laboratories. The results highlighted also that many parameters do have an impact on the strength of the responses. Therefore, such parameters have to be taken into consideration for the categorisation of compounds due to their relative sensitizing potencies.

  11. Vitamin D receptor deficiency impairs inner ear development in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Hye-Joo; Biology Department, Princess Nourah University, Riyadh 11671

    The biological actions of vitamin D are largely mediated through binding to the vitamin D receptor (VDR), a member of the nuclear hormone receptor family, which regulates gene expression in a wide variety of tissues and cells. Mutations in VDR gene have been implicated in ear disorders (hearing loss and balance disorder) but the mechanisms are not well established. In this study, to investigate the role of VDR in inner ear development, morpholino-mediated gene knockdown approaches were used in zebrafish model system. Two paralogs for VDR, vdra and vdrb, have been identified in zebrafish. Knockdown of vdra had no effectmore » on ear development, whereas knockdown of vdrb displayed morphological ear defects including smaller otic vesicles with malformed semicircular canals and abnormal otoliths. Loss-of-vdrb resulted in down-regulation of pre-otic markers, pax8 and pax2a, indicating impairment of otic induction. Furthermore, zebrafish embryos lacking vdrb produced fewer sensory hair cells in the ears and showed disruption of balance and motor coordination. These data reveal that VDR signaling plays an important role in ear development. - Highlights: • VDR signaling is involved in ear development. • Knockdown of vdrb causes inner ear malformations during embryogenesis. • Knockdown of vdrb affects otic placode induction. • Knockdown of vdrb reduces the number of sensory hair cells in the inner ear. • Knockdown of vdrb disrupts balance and motor coordination.« less

  12. Expression of keratinocyte growth factor (KGF) and its receptor in a middle-ear cavity problem.

    PubMed

    Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko

    2012-01-01

    To investigate the pathogenesis of one of the most troublesome conditions following ear surgery, a middle-ear cavity problem. Keratinocyte growth factor (KGF) and its receptor (KGFR), the ratio of proliferating epithelial cells using Ki-67, and the extent of infiltration of B cells and T cells were examined immunohistochemically in 10 ears with a cavity problem, 70 ears with cholesteatoma and 8 ears with normal skin at the retroauricular incision. KGF was positive in 40% of cavity problem specimens, 37.5% of normal skin specimens, and was positive in 88% of cholesteatoma specimens (cavity problem vs. cholesteatoma, p=0.0004). The positive rate of KGFR in the cavity problem group (33.3%) was between those in cholesteatoma (60%) and normal skin (0%). In contrast to the cholesteatoma specimens, a significantly smaller number of Ki-67 labeling index (LI) was detected in the cavity problem specimens. B cell LI was significantly higher but T cell LI was significantly lower in the cavity problem specimens than in the cholesteatoma group. Our present study indicated that the discordance of paracrine action between stromal KGF and epithelial KGFR with a large number of infiltrating B cells may play an important role in the pathogenesis of a cavity problem. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Sensory hair cell regeneration in the zebrafish lateral line.

    PubMed

    Lush, Mark E; Piotrowski, Tatjana

    2014-10-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. Copyright © 2014 Wiley Periodicals, Inc.

  14. Implementation of a method to visualize noise-induced hearing loss in mass stranded cetaceans

    NASA Astrophysics Data System (ADS)

    Morell, Maria; Brownlow, Andrew; McGovern, Barry; Raverty, Stephen A.; Shadwick, Robert E.; André, Michel

    2017-02-01

    Assessment of the impact of noise over-exposure in stranded cetaceans is challenging, as the lesions that lead to hearing loss occur at the cellular level and inner ear cells are very sensitive to autolysis. Distinguishing ante-mortem pathology from post-mortem change has been a major constraint in diagnosing potential impact. Here, we outline a methodology applicable to the detection of noise-induced hearing loss in stranded cetaceans. Inner ears from two mass strandings of long-finned pilot whales in Scotland were processed for scanning electron microscopy observation. In one case, a juvenile animal, whose ears were fixed within 4 hours of death, revealed that many sensory cells at the apex of the cochlear spiral were missing. In this case, the absence of outer hair cells would be compatible with overexposure to underwater noise, affecting the region which transduces the lowest frequencies of the pilot whales hearing spectrum. Perfusion of cochlea with fixative greatly improved preservation and enabled diagnostic imaging of the organ of Corti, even 30 hours after death. This finding supports adopting a routine protocol to detect the pathological legacy of noise overexposure in mass stranded cetaceans as a key to understanding the complex processes and implications that lie behind such stranding events.

  15. Morin hydrate promotes inner ear neural stem cell survival and differentiation and protects cochlea against neuronal hearing loss.

    PubMed

    He, Qiang; Jia, Zhanwei; Zhang, Ying; Ren, Xiumin

    2017-03-01

    We aimed to investigate the effect of morin hydrate on neural stem cells (NSCs) isolated from mouse inner ear and its potential in protecting neuronal hearing loss. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and bromodeoxyuridine incorporation assays were employed to assess the effect of morin hydrate on the viability and proliferation of in vitro NSC culture. The NSCs were then differentiated into neurons, in which neurosphere formation and differentiation were evaluated, followed by neurite outgrowth and neural excitability measurements in the subsequent in vitro neuronal network. Mechanotransduction of cochlea ex vivo culture and auditory brainstem responses threshold and distortion product optoacoustic emissions amplitude in mouse ototoxicity model were also measured following gentamicin treatment to investigate the protective role of morin hydrate against neuronal hearing loss. Morin hydrate improved viability and proliferation, neurosphere formation and neuronal differentiation of inner ear NSCs, and promoted in vitro neuronal network functions. In both ex vivo and in vivo ototoxicity models, morin hydrate prevented gentamicin-induced neuronal hearing loss. Morin hydrate exhibited potent properties in promoting growth and differentiation of inner ear NSCs into functional neurons and protecting from gentamicin ototoxicity. Our study supports its clinical potential in treating neuronal hearing loss. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. Inner ear development: Building a spiral ganglion and an organ of Corti out of unspecified ectoderm

    PubMed Central

    Fritzsch, Bernd; Pan, Ning; Jahan, Israt; Elliott, Karen L.

    2014-01-01

    The mammalian inner ear develops from a placodal thickening into a complex labyrinth of ducts with five sensory organs specialized to detect position and movement in space. In addition, the mammalian ear develops a spiraled cochlear duct containing the auditory organ, the organ of Corti (OC), specialized to translate sound into hearing. Developing the OC out of a uniform sheet of ectoderm requires an unparalleled precision in topological developmental engineering of four different general cell types, sensory neurons, hair cells, supporting cells, and general otic epithelium, into a mosaic of ten distinctly recognizable cell types in and around the OC, each with a unique distribution. In addition, the OC receives a unique innervation by ear-derived spiral ganglion afferents and brainstem-derived motor neurons as efferents, and requires neural crest-derived Schwann cells to form myelin and neural crest-derived cells to induce the stria vascularis. To achieve this transformation of a sheet of cells into a complicated interdigitating set of cells necessitates the orchestrated expression of multiple transcription factors that enable the cellular transformation from ectoderm into neurosensory cells forming the spiral ganglion neurons (SGN) while simultaneously transforming the flat epithelium into a tube, the cochlear duct housing the OC. In addition to the cellular and conformational changes to make the cochlear duct with the OC, additional changes in the surrounding periotic mesenchyme form passageways for sound to stimulate the OC. This article reviews molecular developmental data generated predominantly in mice. The available data are ordered into a plausible scenario that integrates the well described expression changes of transcription factors and their actions revealed in mouse mutants for formation of SGNs and OC in the right position and orientation with the right kind of innervation. Understanding the molecular basis of these developmental changes leading to the formation of the mammalian OC and highlighting the gaps in our knowledge may guide in vivo attempts to regenerate this most complicated cellular mosaic of the mammalian body to reconstitute hearing in a rapidly growing population of aging people suffering from hearing loss. PMID:25381571

  17. A review of gene delivery and stem cell based therapies for regenerating inner ear hair cells.

    PubMed

    Devarajan, Keerthana; Staecker, Hinrich; Detamore, Michael S

    2011-09-13

    Sensory neural hearing loss and vestibular dysfunction have become the most common forms of sensory defects, affecting millions of people worldwide. Developing effective therapies to restore hearing loss is challenging, owing to the limited regenerative capacity of the inner ear hair cells. With recent advances in understanding the developmental biology of mammalian and non-mammalian hair cells a variety of strategies have emerged to restore lost hair cells are being developed. Two predominant strategies have developed to restore hair cells: transfer of genes responsible for hair cell genesis and replacement of missing cells via transfer of stem cells. In this review article, we evaluate the use of several genes involved in hair cell regeneration, the advantages and disadvantages of the different viral vectors employed in inner ear gene delivery and the insights gained from the use of embryonic, adult and induced pluripotent stem cells in generating inner ear hair cells. Understanding the role of genes, vectors and stem cells in therapeutic strategies led us to explore potential solutions to overcome the limitations associated with their use in hair cell regeneration.

  18. Unique features of a new nickel-hydrogen 2-cell CPV

    NASA Technical Reports Server (NTRS)

    Wheeler, James R.

    1995-01-01

    Two-cell nickel-hydrogen common pressure vessel (CPV) units with some unusual design features have been successfully built and tested. The features of interest are half-normal platinum loading for the negative electrodes, the use of rabbit-ear terminals for a CPV unit, and the incorporation of a wall wick. The units have a nominal capacity of 20 Ah and are 3.5 inches in diameter. Electric performance data are provided. The data support the growing viability of the two-cell CPV design concept.

  19. Magnetic Nanoparticles as Mechanical Actuators of Inner Ear Hair Cells

    DTIC Science & Technology

    2016-01-13

    AFRL-AFOSR-VA-TR-2016-0039 Magnetic nanoparticles as mechanical actuators of inner ear hair cells Dolores Bozovic UNIVERSITY OF CALIFORNIA LOS...4. TITLE AND SUBTITLE Magnetic nanoparticles as mechanical actuators of inner ear hair cells 5a. CONTRACT NUMBER N.A. 5b. GRANT NUMBER FA9550-12...13. SUPPLEMENTARY NOTES 14. ABSTRACT The collaborative project was designed to edevelop the use of magnetic nanoparticles to manipulate auditory hair

  20. miR-124 promotes the neuronal differentiation of mouse inner ear neural stem cells

    PubMed Central

    Jiang, Di; Du, Jintao; Zhang, Xuemei; Zhou, Wei; Zong, Lin; Dong, Chang; Chen, Kaitian; Chen, Yu; Chen, Xihui; Jiang, Hongyan

    2016-01-01

    MicroRNAs (miRNAs or miRs) act as key regulators in neuronal development, synaptic morphogenesis and plasticity. However, their role in the neuronal differentiation of inner ear neural stem cells (NSCs) remains unclear. In this study, 6 miRNAs were selected and their expression patterns during the neuronal differentiation of inner ear NSCs were examined by RT-qPCR. We demonstrated that the culture of spiral ganglion stem cells present in the inner ears of newborn mice gave rise to neurons in vitro. The expression patterns of miR-124, miR-132, miR-134, miR-20a, miR-17-5p and miR-30a-5p were examined during a 14-day neuronal differentiation period. We found that miR-124 promoted the neuronal differentiation of and neurite outgrowth in mouse inner ear NSCs, and that the changes in the expression of tropomyosin receptor kinase B (TrkB) and cell division control protein 42 homolog (Cdc42) during inner ear NSC differentiation were associated with miR-124 expression. Our findings indicate that miR-124 plays a role in the neuronal differentiation of inner ear NSCs. This finding may lead to the development of novel strategies for restoring hearing in neurodegenerative diseases. PMID:28025992

  1. Cilia distribution and polarity in the epithelial lining of the mouse middle ear cavity

    PubMed Central

    Luo, Wenwei; Yi, Hong; Taylor, Jeannette; Li, Jian-dong; Chi, Fanglu; Todd, N. Wendell; Lin, Xi; Ren, Dongdong; Chen, Ping

    2017-01-01

    The middle ear conducts sound to the cochlea for hearing. Otitis media (OM) is the most common illness in childhood. Moreover, chronic OM with effusion (COME) is the leading cause of conductive hearing loss. Clinically, COME is highly associated with Primary Ciliary Dyskinesia, implicating significant contributions of cilia dysfunction to COME. The understanding of middle ear cilia properties that are critical to OM susceptibility, however, is limited. Here, we confirmed the presence of a ciliated region near the Eustachian tube orifice at the ventral region of the middle ear cavity, consisting mostly of a lumen layer of multi-ciliated and a layer of Keratin-5-positive basal cells. We also found that the motile cilia are polarized coordinately and display a planar cell polarity. Surprisingly, we also found a region of multi-ciliated cells that line the posterior dorsal pole of the middle ear cavity which was previously thought to contain only non-ciliated cells. Our study provided a more complete understanding of cilia distribution and revealed for the first time coordinated polarity of cilia in the epithelium of the mammalian middle ear, thus illustrating novel structural features that are likely critical for middle ear functions and related to OM susceptibility. PMID:28358397

  2. Ear-Shaped Stable Auricular Cartilage Engineered from Extensively Expanded Chondrocytes in an Immunocompetent Experimental Animal Model

    PubMed Central

    Pomerantseva, Irina; Bichara, David A.; Tseng, Alan; Cronce, Michael J.; Cervantes, Thomas M.; Kimura, Anya M.; Neville, Craig M.; Roscioli, Nick; Vacanti, Joseph P.; Randolph, Mark A.

    2016-01-01

    Advancement of engineered ear in clinical practice is limited by several challenges. The complex, largely unsupported, three-dimensional auricular neocartilage structure is difficult to maintain. Neocartilage formation is challenging in an immunocompetent host due to active inflammatory and immunological responses. The large number of autologous chondrogenic cells required for engineering an adult human-sized ear presents an additional challenge because primary chondrocytes rapidly dedifferentiate during in vitro culture. The objective of this study was to engineer a stable, human ear-shaped cartilage in an immunocompetent animal model using expanded chondrocytes. The impact of basic fibroblast growth factor (bFGF) supplementation on achieving clinically relevant expansion of primary sheep chondrocytes by in vitro culture was determined. Chondrocytes expanded in standard medium were either combined with cryopreserved, primary passage 0 chondrocytes at the time of scaffold seeding or used alone as control. Disk and human ear-shaped scaffolds were made from porous collagen; ear scaffolds had an embedded, supporting titanium wire framework. Autologous chondrocyte-seeded scaffolds were implanted subcutaneously in sheep after 2 weeks of in vitro incubation. The quality of the resulting neocartilage and its stability and retention of the original ear size and shape were evaluated at 6, 12, and 20 weeks postimplantation. Neocartilage produced from chondrocytes that were expanded in the presence of bFGF was superior, and its quality improved with increased implantation time. In addition to characteristic morphological cartilage features, its glycosaminoglycan content was high and marked elastin fiber formation was present. The overall shape of engineered ears was preserved at 20 weeks postimplantation, and the dimensional changes did not exceed 10%. The wire frame within the engineered ear was able to withstand mechanical forces during wound healing and neocartilage maturation and prevented shrinkage and distortion. This is the first demonstration of a stable, ear-shaped elastic cartilage engineered from auricular chondrocytes that underwent clinical-scale expansion in an immunocompetent animal over an extended period of time. PMID:26529401

  3. Distinct capacity for differentiation to inner ear cell types by progenitor cells of the cochlea and vestibular organs

    PubMed Central

    McLean, Will J.; McLean, Dalton T.; Eatock, Ruth Anne

    2016-01-01

    Disorders of hearing and balance are most commonly associated with damage to cochlear and vestibular hair cells or neurons. Although these cells are not capable of spontaneous regeneration, progenitor cells in the hearing and balance organs of the neonatal mammalian inner ear have the capacity to generate new hair cells after damage. To investigate whether these cells are restricted in their differentiation capacity, we assessed the phenotypes of differentiated progenitor cells isolated from three compartments of the mouse inner ear – the vestibular and cochlear sensory epithelia and the spiral ganglion – by measuring electrophysiological properties and gene expression. Lgr5+ progenitor cells from the sensory epithelia gave rise to hair cell-like cells, but not neurons or glial cells. Newly created hair cell-like cells had hair bundle proteins, synaptic proteins and membrane proteins characteristic of the compartment of origin. PLP1+ glial cells from the spiral ganglion were identified as neural progenitors, which gave rise to neurons, astrocytes and oligodendrocytes, but not hair cells. Thus, distinct progenitor populations from the neonatal inner ear differentiate to cell types associated with their organ of origin. PMID:27789624

  4. Optimization of gene delivery methods in Xenopus laevis kidney (A6) and Chinese hamster ovary (CHO) cell lines for heterologous expression of Xenopus inner ear genes

    PubMed Central

    Ramirez-Gordillo, Daniel; Trujillo-Provencio, Casilda; Knight, V. Bleu; Serrano, Elba E.

    2014-01-01

    The Xenopus inner ear provides a useful model for studies of hearing and balance because it shares features with the mammalian inner ear, and because amphibians are capable of regenerating damaged mechanosensory hair cells. The structure and function of many proteins necessary for inner ear function have yet to be elucidated and require methods for analysis. To this end, we seek to characterize Xenopus inner ear genes outside of the animal model through heterologous expression in cell lines. As part of this effort, we aimed to optimize physical (electroporation), chemical (lipid-mediated; Lipofectamine™ 2000, Metafectene® Pro), and biological (viral-mediated; BacMam virus Cellular Lights™ Tubulin-RFP) gene delivery methods in amphibian (Xenopus; A6) cells and mammalian (Chinese hamster ovary (CHO)) cells. We successfully introduced the commercially available pEGFP-N3, pmCherry-N1, pEYFP-Tubulin, and Cellular Lights™ Tubulin-RFP fluorescent constructs to cells and evaluated their transfection or transduction efficiencies using the three gene delivery methods. In addition, we analyzed the transfection efficiency of a novel construct synthesized in our laboratory by cloning the Xenopus inner ear calcium-activated potassium channel β1 subunit, then subcloning the subunit into the pmCherry-N1 vector. Every gene delivery method was significantly more effective in CHO cells. Although results for the A6 cell line were not statistically significant, both cell lines illustrate a trend towards more efficient gene delivery using viral-mediated methods; however the cost of viral transduction is also much higher. Our findings demonstrate the need to improve gene delivery methods for amphibian cells and underscore the necessity for a greater understanding of amphibian cell biology. PMID:21959846

  5. Penicillin treatment accelerates middle ear inflammation in experimental pneumococcal otitis media.

    PubMed Central

    Kawana, M; Kawana, C; Giebink, G S

    1992-01-01

    Most Streptococcus pneumoniae strains are killed by very low concentrations of penicillin and other beta-lactam antibiotics, yet middle ear inflammation and effusion persist for days to weeks after treatment in most cases of pneumococcal otitis media. To study the effect of beta-lactam antibiotic treatment on pneumococci and the middle ear inflammatory response during pneumococcal otitis media, we measured concentrations of pneumococci, inflammatory cells, and lysozyme in middle ear fluid (MEF) by using the chinchilla model. Procaine penicillin G given intramuscularly 12 and 36 h after inoculation of pneumococci into the middle ear caused a significant acceleration in the MEF inflammatory cell concentration compared with that in untreated controls, with a significant peak in the inflammatory cell concentration 24 h after pneumococcal inoculation. The lysozyme concentration in MEF also increased more rapidly in treated than in control animals. Viable pneumococci were not detected in MEF after the second dose of penicillin, but the total pneumococcal cell concentration remained unchanged for at least 45 days. Therefore, penicillin treatment accelerated middle ear inflammation while killing pneumococci, but treatment did not accelerate clearance of the nonviable pneumococcal cells from MEF. Further studies will need to define the contribution of these responses to acute and chronic tissue injury. PMID:1563782

  6. CCL11 elicits secretion of RNases from mouse eosinophils and their cell-free granules

    PubMed Central

    Shamri, Revital; Melo, Rossana C. N.; Young, Kristen M.; Bivas-Benita, Maytal; Xenakis, Jason J.; Spencer, Lisa A.; Weller, Peter F.

    2012-01-01

    Rapid secretion of eosinophil-associated RNases (EARs), such as the human eosinophilic cationic protein (ECP), from intracellular granules is central to the role of eosinophils in allergic diseases and host immunity. Our knowledge regarding allergic inflammation has advanced based on mouse experimental models. However, unlike human eosinophils, capacities of mouse eosinophils to secrete granule proteins have been controversial. To study mechanisms of mouse eosinophil secretion and EAR release, we combined an RNase assay of mouse EARs with ultrastructural studies. In vitro, mouse eosinophils stimulated with the chemokine eotaxin-1 (CCL11) secreted enzymatically active EARs (EC50 5 nM) by piecemeal degranulation. In vivo, in a mouse model of allergic airway inflammation, increased airway eosinophil infiltration (24-fold) correlated with secretion of active RNases (3-fold). Moreover, we found that eosinophilic inflammation in mice can involve eosinophil cytolysis and release of cell-free granules. Cell-free mouse eosinophil granules expressed functional CCR3 receptors and secreted their granule proteins, including EAR and eosinophil peroxidase in response to CCL11. Collectively, these data demonstrate chemokine-dependent secretion of EARs from both intact mouse eosinophils and their cell-free granules, findings pertinent to understanding the pathogenesis of eosinophil-associated diseases, in which EARs are key factors.—Shamri, R., Melo, R. C. N., Young, K. M., B.-B, M., Xenakis, J. J., Spencer, L. A., Weller, P. F. CCL11 elicits secretion of RNases from mouse eosinophils and their cell-free granules. PMID:22294786

  7. Inner ear supporting cells protect hair cells by secreting HSP70

    PubMed Central

    May, Lindsey A.; Kramarenko, Inga I.; Brandon, Carlene S.; Voelkel-Johnson, Christina; Roy, Soumen; Truong, Kristy; Francis, Shimon P.; Monzack, Elyssa L.; Lee, Fu-Shing; Cunningham, Lisa L.

    2013-01-01

    Mechanosensory hair cells are the receptor cells of hearing and balance. Hair cells are sensitive to death from exposure to therapeutic drugs with ototoxic side effects, including aminoglycoside antibiotics and cisplatin. We recently showed that the induction of heat shock protein 70 (HSP70) inhibits ototoxic drug–induced hair cell death. Here, we examined the mechanisms underlying the protective effect of HSP70. In response to heat shock, HSP70 was induced in glia-like supporting cells but not in hair cells. Adenovirus-mediated infection of supporting cells with Hsp70 inhibited hair cell death. Coculture with heat-shocked utricles protected nonheat-shocked utricles against hair cell death. When heat-shocked utricles from Hsp70–/– mice were used in cocultures, protection was abolished in both the heat-shocked utricles and the nonheat-shocked utricles. HSP70 was detected by ELISA in the media surrounding heat-shocked utricles, and depletion of HSP70 from the media abolished the protective effect of heat shock, suggesting that HSP70 is secreted by supporting cells. Together our data indicate that supporting cells mediate the protective effect of HSP70 against hair cell death, and they suggest a major role for supporting cells in determining the fate of hair cells exposed to stress. PMID:23863716

  8. Evaluation of intratympanic formulations for inner ear delivery: methodology and sustained release formulation testing

    PubMed Central

    Liu, Hongzhuo; Feng, Liang; Tolia, Gaurav; Liddell, Mark R.; Hao, Jinsong; Li, S. Kevin

    2013-01-01

    A convenient and efficient in vitro diffusion cell method to evaluate formulations for inner ear delivery via the intratympanic route is currently not available. The existing in vitro diffusion cell systems commonly used to evaluate drug formulations do not resemble the physical dimensions of the middle ear and round window membrane. The objectives of this study were to examine a modified in vitro diffusion cell system of a small diffusion area for studying sustained release formulations in inner ear drug delivery and to identify a formulation for sustained drug delivery to the inner ear. Four formulations and a control were examined in this study using cidofovir as the model drug. Drug release from the formulations in the modified diffusion cell system was slower than that in the conventional diffusion cell system due to the decrease in the diffusion surface area of the modified diffusion cell system. The modified diffusion cell system was able to show different drug release behaviors among the formulations and allowed formulation evaluation better than the conventional diffusion cell system. Among the formulations investigated, poly(lactic-co-glycolic acid)–poly(ethylene glycol)–poly(lactic-co-glycolic acid) triblock copolymer systems provided the longest sustained drug delivery, probably due to their rigid gel structures and/or polymer-to-cidofovir interactions. PMID:23631539

  9. Human Xenografts Are Not Rejected in a Naturally Occurring Immunodeficient Porcine Line: A Human Tumor Model in Pigs

    PubMed Central

    Basel, Matthew T.; Balivada, Sivasai; Beck, Amanda P.; Kerrigan, Maureen A.; Pyle, Marla M.; Dekkers, Jack C.M.; Wyatt, Carol R.; Rowland, Robert R.R.; Anderson, David E.; Bossmann, Stefan H.

    2012-01-01

    Abstract Animal models for cancer therapy are invaluable for preclinical testing of potential cancer treatments; however, therapies tested in such models often fail to translate into clinical settings. Therefore, a better preclinical model for cancer treatment testing is needed. Here we demonstrate that an immunodeficient line of pigs can host and support the growth of xenografted human tumors and has the potential to be an effective animal model for cancer therapy. Wild-type and immunodeficient pigs were injected subcutaneously in the left ear with human melanoma cells (A375SM cells) and in the right ear with human pancreatic carcinoma cells (PANC-1). All immunodeficient pigs developed tumors that were verified by histology and immunohistochemistry. Nonaffected littermates did not develop tumors. Immunodeficient pigs, which do not reject xenografted human tumors, have the potential to become an extremely useful animal model for cancer therapy because of their similarity in size, anatomy, and physiology to humans. PMID:23514746

  10. Wnt Responsive Lgr5-Expressing Stem Cells Are Hair Cell Progenitors in the Cochlea

    PubMed Central

    Shi, Fuxin; Kempfle, Judith; Edge, Albert S. B.

    2012-01-01

    Auditory hair cells are surrounded on their basolateral aspects by supporting cells, and these two cell types together constitute the sensory epithelium of the organ of Corti, which is the hearing apparatus of the ear. We show here that Lgr5, a marker for adult stem cells, was expressed in a subset of supporting cells in the newborn and adult murine cochlea. Lgr5-expressing supporting cells, sorted by flow cytometry and cultured in a single cell suspension, as compared to unsorted cells, displayed an enhanced capacity for self-renewing neurosphere formation in response to Wnt and were converted to hair cells at a higher (>10-fold) rate. The greater differentiation of hair cell in the neurosphere assay showed that Lgr5-positive cells had the capacity to act as cochlear progenitor cells, and lineage tracing confirmed that Lgr5-expressing cells accounted for the cells that formed neurospheres and differentiated to hair cells. The responsiveness to Wnt of cells with a capacity for division and sensory cell formation suggests a potential route to new hair cell generation in the adult cochlea. PMID:22787049

  11. Mucin Production and Mucous Cell Metaplasia in Otitis Media

    PubMed Central

    Lin, Jizhen; Caye-Thomasen, Per; Tono, Tetsuya; Zhang, Quan-An; Nakamura, Yoshihisa; Feng, Ling; Huang, Jianmin; Ye, Shengnan; Hu, Xiaohua; Kerschner, Joseph E.

    2012-01-01

    Otitis media (OM) with mucoid effusion, characterized by mucous cell metaplasia/hyperplasia in the middle ear cleft and thick fluid accumulation in the middle ear cavity, is a subtype of OM which frequently leads to chronic OM in young children. Multiple factors are involved in the developmental process of OM with mucoid effusion, especially disorders of mucin production resulting from middle ear bacterial infection and Eustachian tube dysfunction. In this review, we will focus on several aspects of this disorder by analyzing the cellular and molecular events such as mucin production and mucous cell differentiation in the middle ear mucosa with OM. In addition, infectious agents, mucin production triggers, and relevant signaling pathways will be discussed. PMID:22685463

  12. Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies

    NASA Technical Reports Server (NTRS)

    Fritzsch, B.; Beisel, K. W.; Bermingham, N. A.

    2000-01-01

    This brief overview shows that a start has been made to molecularly dissect vertebrate ear development and its evolutionary conservation to the development of the insect hearing organ. However, neither the patterning process of the ear nor the patterning process of insect sensory organs is sufficiently known at the moment to provide more than a first glimpse. Moreover, hardly anything is known about otocyst development of the cephalopod molluscs, another triploblast lineage that evolved complex 'ears'. We hope that the apparent conserved functional and cellular components present in the ciliated sensory neurons/hair cells will also be found in the genes required for vertebrate ear and insect sensory organ morphogenesis (Fig. 3). Likewise, we expect that homologous pre-patterning genes will soon be identified for the non-sensory cell development, which is more than a blocking of neuronal development through the Delta/Notch signaling system. Generation of the apparently unique ear could thus represent a multiplication of non-sensory cells by asymmetric and symmetric divisions as well as modification of existing patterning process by implementing novel developmental modules. In the final analysis, the vertebrate ear may come about by increasing the level of gene interactions in an already existing and highly conserved interactive cascade of bHLH genes. Since this was apparently achieved in all three lineages of triploblasts independently (Fig. 3), we now need to understand how much of the morphogenetic cascades are equally conserved across phyla to generate complex ears. The existing mutations in humans and mice may be able to point the direction of future research to understand the development of specific cell types and morphologies in the formation of complex arthropod, cephalopod, and vertebrate 'ears'.

  13. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control

    PubMed Central

    Raft, Steven; Groves, Andrew K.

    2014-01-01

    The vertebrate inner ear is composed of multiple sensory receptor epithelia, each of which is specialized for detection of sound, gravity or angular acceleration. Each receptor epithelium contains mechanosensitive hair cells, which are connected to the brainstem by bipolar sensory neurons. Hair cells and their associated neurons are derived from the embryonic rudiment of the inner ear epithelium, but the precise spatial and temporal patterns of their generation, as well as the signals that coordinate these events, have only recently begun to be understood. Gene expression, lineage tracing, and mutant analyses suggest that both neurons and hair cells are generated from a common domain of neural and sensory competence in the embryonic inner ear rudiment. Members of the Shh, Wnt and FGF families, together with retinoic acid signals, regulate transcription factor genes within the inner ear rudiment to establish the axial identity of the ear and regionalize neurogenic activity. Close-range signaling, such as that of the Notch pathway, specifies the fate of sensory regions and individual cell types. We also describe positive and negative interactions between basic helix-loop-helix and SoxB family transcription factors that specify either neuronal or sensory fates in a context-dependent manner. Finally, we review recent work on inner ear development in zebrafish, which demonstrates that the relative timing of neurogenesis and sensory epithelial formation is not phylogenetically constrained. PMID:24902666

  14. Epitope predictions indicate the presence of two distinct types of epitope-antibody-reactivities determined by epitope profiling of intravenous immunoglobulins.

    PubMed

    Luštrek, Mitja; Lorenz, Peter; Kreutzer, Michael; Qian, Zilliang; Steinbeck, Felix; Wu, Di; Born, Nadine; Ziems, Bjoern; Hecker, Michael; Blank, Miri; Shoenfeld, Yehuda; Cao, Zhiwei; Glocker, Michael O; Li, Yixue; Fuellen, Georg; Thiesen, Hans-Jürgen

    2013-01-01

    Epitope-antibody-reactivities (EAR) of intravenous immunoglobulins (IVIGs) determined for 75,534 peptides by microarray analysis demonstrate that roughly 9% of peptides derived from 870 different human protein sequences react with antibodies present in IVIG. Computational prediction of linear B cell epitopes was conducted using machine learning with an ensemble of classifiers in combination with position weight matrix (PWM) analysis. Machine learning slightly outperformed PWM with area under the curve (AUC) of 0.884 vs. 0.849. Two different types of epitope-antibody recognition-modes (Type I EAR and Type II EAR) were found. Peptides of Type I EAR are high in tyrosine, tryptophan and phenylalanine, and low in asparagine, glutamine and glutamic acid residues, whereas for peptides of Type II EAR it is the other way around. Representative crystal structures present in the Protein Data Bank (PDB) of Type I EAR are PDB 1TZI and PDB 2DD8, while PDB 2FD6 and 2J4W are typical for Type II EAR. Type I EAR peptides share predicted propensities for being presented by MHC class I and class II complexes. The latter interaction possibly favors T cell-dependent antibody responses including IgG class switching. Peptides of Type II EAR are predicted not to be preferentially presented by MHC complexes, thus implying the involvement of T cell-independent IgG class switch mechanisms. The high extent of IgG immunoglobulin reactivity with human peptides implies that circulating IgG molecules are prone to bind to human protein/peptide structures under non-pathological, non-inflammatory conditions. A webserver for predicting EAR of peptide sequences is available at www.sysmed-immun.eu/EAR.

  15. Otic Langerhans' Cell Histiocytosis in an Adult: A Case Report and Review of the Literature

    PubMed Central

    Gungadeen, Anil; Kullar, Peter; Yates, Philip

    2013-01-01

    Objective. To present a case of otic Langerhans' cell histiocytosis in an adult. Also included the diagnosis and management of the condition and a review of the relevant literature. Case Report. We report a case of a 41-year-old man with a history of persistent unilateral ear discharge associated with an aural polyp. Radiological imaging showed bony lesions of the skull and a soft-tissue mass within the middle ear. Histological analysis of the polyp demonstrated Langerhans' cell histiocytosis. His otological symptoms were completely resolved with the systemic therapy. Conclusions. Otic Langerhans' cell histiocytosis can present in adults. Persistent ear symptoms along with evidence of soft-tissue masses within the ear and bony lesions of the skull or elsewhere should prompt the otolaryngologists to include Langerhans' cell histiocytosis in their differential diagnosis. Management should be with systemic therapy rather than local surgical treatment. PMID:23762704

  16. Chemical Ototoxicity of the Fish Inner Ear and Lateral Line.

    PubMed

    Coffin, Allison B; Ramcharitar, John

    2016-01-01

    Hair cell-driven mechanosensory systems are crucial for successful execution of a number of behaviors in fishes, and have emerged as good models for exploring questions relevant to human hearing. This review focuses on ototoxic effects in the inner ear and lateral line system of fishes. We specifically examine studies where chemical ototoxins such as aminoglycoside antibiotics have been employed as tools to disable the lateral line. Lateral line ablation results in alterations to feeding behavior and orientation to water current in a variety of species. However, neither behavior is abolished in the presence of additional sensory cues, supporting the hypothesis that many fish behaviors are driven by multisensory integration. Within biomedical research, the larval zebrafish lateral line has become an important model system for understanding signaling mechanisms that contribute to hair cell death and for developing novel pharmacological therapies that protect hair cells from ototoxic damage. Furthermore, given that fishes robustly regenerate damaged hair cells, ototoxin studies in fishes have broadened our understanding of the molecular and genetic events in an innately regenerative system, offering potential targets for mammalian hair cell regeneration. Collectively, studies of fish mechanosensory systems have yielded insight into fish behavior and in mechanisms of hair cell death, protection, and regeneration.

  17. Cell proliferation and hair cell addition in the ear of the goldfish, Carassius auratus

    NASA Technical Reports Server (NTRS)

    Lanford, P. J.; Presson, J. C.; Popper, A. N.

    1996-01-01

    Cell proliferation and hair cell addition have not been studied in the ears of otophysan fish, a group of species who have specialized hearing capabilities. In this study we used the mitotic S-phase marker bromodeoxyuridine (BrdU) to identify proliferating cells in the ear of one otophysan species, Carassius auratus (the goldfish). Animals were sacrificed at 3 h or 5 days postinjection with BrdU and processed for immunocytochemistry. The results of the study show that cell proliferation occurs in all of the otic endorgans and results in the addition of new hair cells. BrdU-labeled cells were distributed throughout all epithelia, including the primary auditory endorgan (saccule), where hair cell phenotypes vary considerably along the rostrocaudal axis. This study lays the groundwork for our transmission electron microscopy study of proliferative cells in the goldfish ear (Presson et al., Hearing Research 100 (1996) 10-20) as well as future studies of hair cell development in this species. The ability to predict, based on epithelial location, the future phenotype of developing hair cells in the saccule of the goldfish make that endorgan a particularly powerful model system for the investigation of early hair cell differentiation.

  18. Novel Afferent Terminal Structure in the Crista Ampullaris of the Goldfish, Carassius auratus

    NASA Technical Reports Server (NTRS)

    Lanford, Pamela J.; Popper, Arthur N.

    1996-01-01

    Using transmission electron microscopy, we have identified a new type of afferent terminal structure in the crista ampullaris of the goldfish Carassius auratus. In addition to the bouton-type afferent terminals previously described in the ear of this species, the crista also contained enlarged afferent terminals that enveloped a portion of the basolateral hair cell membrane. The hair cell membrane was evaginated and protruded into the afferent terminal in a glove-and-finger configuration. The membranes of the two cells were regularly aligned in the protruded region of the contact and had a distinct symmetrical electron density. The electron-dense profiles of these contacts were easily identified and were present in every crista sampled. In some cases, efferent terminals synapsed onto the afferents at a point where the hair cell protruded into the terminal. The ultrastructural similarities of the goldfish crista afferents to calyx afferents found in amniotes (birds, reptiles, and mammals) are discussed. The results of the study support the hypothesis that structural variation in the vertebrate inner ear may have evolved much earlier in evolution than previously supposed.

  19. Roles of autolysin and pneumolysin in middle ear inflammation caused by a type 3 Streptococcus pneumoniae strain in the chinchilla otitis media model.

    PubMed Central

    Sato, K; Quartey, M K; Liebeler, C L; Le, C T; Giebink, G S

    1996-01-01

    Streptococcus pneumoniae cell wall and pneumolysin are important contributors to pneumococcal pathogenicity in some animal models. To further explore these factors in middle ear inflammation caused by pneumococci, penicillin-induced inflammatory acceleration was studied by using three closely related pneumococcal strains: a wild-type 3 strain (WT3), its pneumolysin-negative derivative (P-1), and into autolysin-negative derivative (A-1). Both middle ears of chinchillas were inoculated with one of the three pneumococcal strains. During the first 12 h, all three strains grew in vivo at the same rate, and all three strains induced similar inflammatory cell responses in middle ear fluid (MEF). Procaine penicillin G was given as 12 h to one-half of the animals in each group, and all treated chinchillas had sterile MEF at 24 h. Penicillin significantly accelerated MEF inflammatory cell influx into WT3-and P-1-infected ears at 18 and 24 h in comparison with the rate for penicillin-treated A-1-infected ears. Inflammatory cell influx was slightly, but not significantly, greater after treatment of WT3 infection than after treatment of P-1 infection. Interleukin (IL)-1beta and IL-6, but not IL-8, concentrations in MEF at 24 h reflected the penicillin effect on MEF inflammatory cells; however, differences between treatment groups were not significant. Results suggest that pneumococcal otitis media pathogenesis is triggered principally by the inflammatory effects of intact and lytic cell wall products in the middle ear, with at most a modes additional pneumolysin effect. Investigation strategies that limit the release of these products or neutralize them warrant further investigation. PMID:8606070

  20. Parvoviral Left-End Hairpin Ears Are Essential during Infection for Establishing a Functional Intranuclear Transcription Template and for Efficient Progeny Genome Encapsidation

    PubMed Central

    Li, Lei; Cotmore, Susan F.

    2013-01-01

    The 121-nucleotide left-end telomere of Minute Virus of Mice (MVM) can be folded into a Y-shaped hairpin with short axial ears that are highly conserved within genus Parvovirus. To explore their potential role(s) during infection, we constructed infectious plasmid clones that lacked one or other ear. Although these were nonviable when transfected into A9 cells, excision of the viral genome and DNA amplification appeared normal, and viral transcripts and proteins were expressed, but progeny virion production was minimal, supporting the idea of a potential role for the ears in genome packaging. To circumvent the absence of progeny that confounded further analysis of these mutants, plasmids were transfected into 293T cells both with and without an adenovirus helper construct, generating single bursts of progeny. These virions bound to A9 cells and were internalized but failed to initiate viral transcription, protein expression, or DNA replication. No defects in mutant virion stability or function could be detected in vitro. Significantly, mutant capsid gene expression and DNA replication could be rescued by coinfection with wild-type virions carrying a replication-competent, capsid-gene-replacement vector. To pinpoint where such complementation occurred, prior transfection of plasmids expressing only MVM nonstructural proteins was explored. NS1 alone, but not NS2, rescued transcription and protein expression from both P4 and P38 promoters, whereas NS1 molecules deleted for their C-terminal transactivation domain did not. These results suggest that the mutant virions reach the nucleus, uncoat, and are converted to duplex DNA but require an intact left-end hairpin structure to form the initiating transcription complex. PMID:23903839

  1. Proneurotrophin-3 may induce Sortilin dependent death in inner ear neurons

    PubMed Central

    Tauris, Jacob; Gustafsen, Camilla; Christensen, Erik Ilsø; Jansen, Pernille; Nykjaer, Anders; Nyengaard, Jens R.; Teng, Kenneth K.; Schwarz, Elisabeth; Ovesen, Therese; Madsen, Peder; Petersen, Claus Munck

    2010-01-01

    The precursor of the neurotrophin NGF (proNGF) serves physiological functions distinct from its mature counterpart as it induces neuronal apoptosis through activation of a p75 neurotrophin receptor (p75NTR) and Sortilin death-signalling complex. The neurotrophins BDNF and NT3 provide essential trophic support to auditory neurons. Injury to the neurotrophin secreting cells in the inner ear is followed by irreversible degeneration of spiral ganglion neurons with consequences such as impaired hearing or deafness. Lack of mature neurotrophins may explain the degeneration of spiral ganglion neurons, but another mechanism is possible since unprocessed proNTs released from the injured cells may contribute to the degeneration by induction of apoptosis. Recent studies demonstrate that proBDNF, like proNGF, is a potent inducer of Sortilin:p75NTR mediated apoptosis. In addition, a coincident upregulation of proBDNF and p75NTR has been observed in degenerating spiral ganglion neurons, but the Sortilin expression in the inner ear is unresolved. Here we demonstrate that Sortilin and p75NTR are coexpressed in neurons of the neonatal inner ear. Furthermore, we establish that proNT3 exhibits high affinity binding to Sortilin and has the capacity to enhance cell surface Sortilin:p75NTR complex formation as well as to mediate apoptosis in neurons coexpressing p75NTR and Sortilin. Based on examination of wt and Sortilin deficient mouse embryos, Sortilin does not significantly influence the developmental selection of spiral ganglion neurons. However, our results suggest that proNT3 and proBDNF may play important roles in the response to noise-induced injuries or ototoxic damage via the Sortilin:p75NTR death-signalling complex. PMID:21261755

  2. Scanning electron microscopic study of the otolithic organs in the bichir (Polypterus bichir) and shovel-nose sturgeon (Scaphirhynchus platorynchus).

    PubMed

    Popper, A N

    1978-09-01

    The anatomy and ultrastructure of the sacculus, lagena, and utriculus of the ear of Polypterus bichir and Scaphirhynchus platorynchus were studied using the scanning electron microscope. The otolithic organs each contain a single dense calcareous otolith in close contact with a sensory epithelium (macula). The maculae have sensory hair cells typical of those found in other vertebrates, surrounded by microvilli-covered supporting cells. The hair cells on each macula are divided into several groups, with all of the cells in each group morphologically polarized in the same direction. The cells of the utricular macula in both species are divided into opposing groups in a pattern similar to that found in other vertebrates. The saccular and lagenar maculae are located in a single large chamber in both species. In Scaphirhychus the two maculae are on the same plane, while in Polypterus they are at right angles to one another. The hair cells on the saccular maculae of both species are divided into two oppositely oriented groups. In Scaphirhynchus the cells on the posterior half of the macula are oriented dorsally on the dorsal half of the macula and ventrally on the ventral half. The anterior region of the macula is rotated and the cells of the dorsal and ventral groups are shifted so that they are oriented on the animal's horizon plane. A similar pattern is found in Polypterus, except that this macula is shaped like a "J" with the vertical portion of the J having horizontal cells and the bottom portion vertical cells. The lagenar maculae in both species have dorsally oriented cells on the anterior side of the macula and ventrally oriented cells on the posterior half of the macula. While these data are not sufficient for clarifying the taxonomic relationship between the two species studied, it is clear that the ears in these species have a number of significant differences from the teleost ear that could have functional and/or taxonomic significance.

  3. Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows.

    PubMed

    Kato, Y; Tani, T; Tsunoda, Y

    2000-11-01

    Twenty-four calves were cloned from six somatic cell types of female and male adult, newborn and fetal cows. The clones were derived from female cumulus (n = 3), oviduct (n = 2) and uterine (n = 2) cells, female and male skin cells (n = 10), and male ear (n = 5) and liver (n = 2) cells. On the basis of the number of cloned embryos transferred (n = 172) to surrogate cows, the overall rate of success was 14%, but based on the number of surrogate mothers that became pregnant (n = 50), the success rate was 48%. Cell nuclei from uterus, ear and liver cells, which have not been tested previously, developed into newborn calves after nuclear transfer into enucleated oocytes. To date, seven female and six male calves have survived: six of the females were from adult cells (cumulus (n = 3), oviduct (n = 2) and skin (n = 1) cells) and one was from newborn skin cells, whereas the male calves were derived from adult ear cells (n = 3), newborn liver and skin cells (n = 2), and fetal cells (n = 1). Clones derived from adult cells frequently aborted in the later stages of pregnancy and calves developing to term showed a higher number of abnormalities than did those derived from newborn or fetal cells. The telomeric DNA lengths in the ear cells of three male calves cloned from the ear cells of a bull aged 10 years were similar to those of the original bull. However, the telomeric DNA lengths from the white blood cells of the clones, although similar to those in an age-matched control, were shorter than those of the original bull, which indicates that telomeric shortening varies among tissues.

  4. Insights into inner ear-specific gene regulation: epigenetics and non-coding RNAs in inner ear development and regeneration

    PubMed Central

    Avraham, Karen B.

    2016-01-01

    The vertebrate inner ear houses highly specialized sensory organs, tuned to detect and encode sound, head motion and gravity. Gene expression programs under the control of transcription factors orchestrate the formation and specialization of the non-sensory inner ear labyrinth and its sensory constituents. More recently, epigenetic factors and non-coding RNAs emerged as an additional layer of gene regulation, both in inner ear development and disease. In this review, we provide an overview on how epigenetic modifications and non-coding RNAs, in particular microRNAs (miRNAs), influence gene expression and summarize recent discoveries that highlight their critical role in the proper formation of the inner ear labyrinth and its sensory organs. In contrast to non-mammalian vertebrates, adult mammals lack the ability to regenerate inner ear mechano-sensory hair cells. Finally, we discuss recent insights into how epigenetic factors and miRNAs may facilitate, or in the case of mammals, restrict sensory hair cell regeneration. PMID:27836639

  5. Immunolocalization of aquaporin CHIP in the guinea pig inner ear.

    PubMed

    Stanković, K M; Adams, J C; Brown, D

    1995-12-01

    Aquaporin CHIP (AQP-CHIP) is a water channel protein previously identified in red blood cells and water transporting epithelia. The inner ear is an organ of hearing and balance whose normal function depends critically on maintenance of fluid homeostasis. In this study, AQP-CHIP, or a close homologue, was found in specific cells of the inner ear, as assessed by immunocytochemistry with the use of affinity-purified polyclonal antibodies against AQP-CHIP.AQP-CHIP was predominantly found in fibrocytes in close association with bone, including most of the cells lining the bony labyrinth and in fibrocytes lining the endolymphatic duct and sac. AQP-CHIP-positive cells not directly apposing bone include cells under the basilar membrane, some type III fibrocytes of the spiral ligament, fibrocytes of the spiral limbus, and the trabecular perilymphatic tissue extending from the membranous to the bony labyrinth. AQP-CHIP was also found in the periosteum of the middle ear and cranial bones, as well as in chondrocytes of the oval window and stapes. The distribution of AQP-CHIP in the inner ear suggests that AQP-CHIP may have special significance for maintenance of bone and the basilar membrane, and for function of the spiral ligament.

  6. Concomitant differentiation of a population of mouse embryonic stem cells into neuron-like cells and Schwann cell-like cells in a slow-flow microfluidic device

    PubMed Central

    Ramamurthy, Poornapriya; White, Joshua B.; Park, Joong Yull; Hume, Richard I.; Ebisu, Fumi; Mendez, Flor; Takayama, Shuichi; Barald, Kate F

    2016-01-01

    Background To send meaningful information to the brain, an inner ear cochlear implant (CI) must become closely coupled to as large and healthy a population of remaining Spiral Ganglion Neurons (SGN) as possible. Inner ear gangliogenesis depends on macrophage migration inhibitory factor (MIF), a directionally attractant neurotrophic cytokine made by both Schwann and supporting cells (Bank et al., 2012). MIF-induced mouse embryonic stem cell (mESC)-derived “neurons” could potentially substitute for lost or damaged SGN. mESC-derived “Schwann cells” produce MIF as do all Schwann cells (Huang et al., 2002; Roth et al., 2007, 2008) and could attract SGN to “ cell coated” implant. Results Neuron- and Schwann cell-like cells were produced from a common population of mESC in an ultra-slow flow microfluidic device. As the populations interacted; “neurons” grew over the “Schwann cell” lawn and early events in myelination were documented. Blocking MIF on the Schwann cell side greatly reduced directional neurite outgrowth. MIF-expressing “Schwann cells” were used to “coat” a CI: mouse SGN and MIF-induced “neurons” grew directionally to the CI and to a wild type but not MIF-knock out Organ of Corti explant. Conclusions Two novel stem cell-based approaches for treating the problem of sensorineural hearing loss are described. PMID:27761977

  7. Expression of membrane-bound and cytosolic guanylyl cyclases in the rat inner ear.

    PubMed

    Seebacher, T; Beitz, E; Kumagami, H; Wild, K; Ruppersberg, J P; Schultz, J E

    1999-01-01

    Membrane-bound guanylyl cyclases (GCs) are peptide hormone receptors whereas the cytosolic isoforms are receptors for nitric oxide. In the inner ear, the membrane-bound GCs may be involved in the regulation of fluid homeostasis and the cytosolic forms possibly play a role in signal processing and regulation of local blood flow. In this comprehensive study, we examined, qualitatively and quantitatively, the transcription pattern of all known GC isoforms in the inner ear from rat by RT-PCR. The tissues used were endolymphatic sac, stria vascularis, organ of Corti, organ of Corti outer hair cells, cochlear nerve, Reissner's membrane, vestibular dark cells, and vestibular sensory cells. We show that multiple particulate (GC-A, GC-B, GC-D, GC-E, GC-F and GC-G) and several subunits of the heterodimeric cytosolic GCs (alpha1, alpha2, beta1 and beta2) are expressed, albeit at highly different levels. GC-C was not found. GC-A and the soluble subunits alpha1 and beta1 were transcribed ubiquitously. GC-B was present in all tissues except stria vascularis, which contained GC-A and traces of GC-E and GC-G. GC-B was by far the predominant membrane-bound isoform in the organ of Corti (86%), Reissner's membrane (75%) and the vestibulum (80%). Surprisingly, GC-E, a retinal isoform, was detected in significant amounts in the cochlear nerve (8%) and in the organ of Corti (4%). Although the cytosolic GC is a heterodimer composed of an alpha and a beta subunit, the mRNA transcription of these subunits was not stoichiometric. Particularly in the vestibulum, the transcription of the beta1 subunits was at least four-fold higher than of the alpha1 subunit. The data are compatible with earlier suggestions that membrane receptor GCs may be involved in the control of inner ear electrolyte and fluid composition whereas NO-stimulated GC isoforms mainly participate in the regulation of blood flow and supporting cell physiology.

  8. Limited hair cell induction from human induced pluripotent stem cells using a simple stepwise method.

    PubMed

    Ohnishi, Hiroe; Skerleva, Desislava; Kitajiri, Shin-ichiro; Sakamoto, Tatsunori; Yamamoto, Norio; Ito, Juichi; Nakagawa, Takayuki

    2015-07-10

    Disease-specific induced pluripotent stem cells (iPS) cells are expected to contribute to exploring useful tools for studying the pathophysiology of inner ear diseases and to drug discovery for treating inner ear diseases. For this purpose, stable induction methods for the differentiation of human iPS cells into inner ear hair cells are required. In the present study, we examined the efficacy of a simple induction method for inducing the differentiation of human iPS cells into hair cells. The induction of inner ear hair cell-like cells was performed using a stepwise method mimicking inner ear development. Human iPS cells were sequentially transformed into the preplacodal ectoderm, otic placode, and hair cell-like cells. As a first step, preplacodal ectoderm induction, human iPS cells were seeded on a Matrigel-coated plate and cultured in a serum free N2/B27 medium for 8 days according to a previous study that demonstrated spontaneous differentiation of human ES cells into the preplacodal ectoderm. As the second step, the cells after preplacodal ectoderm induction were treated with basic fibroblast growth factor (bFGF) for induction of differentiation into otic-placode-like cells for 15 days. As the final step, cultured cells were incubated in a serum free medium containing Matrigel for 48 days. After preplacodal ectoderm induction, over 90% of cultured cells expressed the genes that express in preplacodal ectoderm. By culture with bFGF, otic placode marker-positive cells were obtained, although their number was limited. Further 48-day culture in serum free media resulted in the induction of hair cell-like cells, which expressed a hair cell marker and had stereocilia bundle-like constructions on their apical surface. Our results indicate that hair cell-like cells are induced from human iPS cells using a simple stepwise method with only bFGF, without the use of xenogeneic cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Response of the flat cochlear epithelium to forced expression of Atoh1.

    PubMed

    Izumikawa, Masahiko; Batts, Shelley A; Miyazawa, Toru; Swiderski, Donald L; Raphael, Yehoash

    2008-06-01

    Following hair cell elimination in severely traumatized cochleae, differentiated supporting cells are often replaced by a simple epithelium with cuboidal or flat appearance. Atoh1 (previously Math1) is a basic helix-loop-helix transcription factor critical to hair cell differentiation during mammalian embryogenesis. Forced expression of Atoh1 in the differentiated supporting cell population can induce transdifferentiation leading to hair cell regeneration. Here, we examined the outcome of adenovirus mediated over-expression of Atoh1 in the non-sensory cells of the flat epithelium. We determined that seven days after unilateral elimination of hair cells with neomycin, differentiated supporting cells are absent, replaced by a flat epithelium. Nerve processes were also missing from the auditory epithelium, with the exception of infrequent looping nerve processes above the habenula perforata. We then inoculated an adenovirus vector with Atoh1 insert into the scala media of the deafened cochlea. The inoculation resulted in upregulation of Atoh1 in the flat epithelium. However, two months after the inoculation, Atoh1-treated ears did not exhibit clear signs of hair cell regeneration. Combined with previous data on induction of supporting cell to hair cell transdifferentiation by forced expression of Atoh1, these results suggest that the presence of differentiated supporting cells in the organ of Corti is necessary for transdifferentiation to occur.

  10. Hair cell regeneration

    PubMed Central

    Edge, Albert SB; Chen, Zheng-Yi

    2017-01-01

    The mammalian inner ear largely lacks the capacity to regenerate hair cells, the sensory cells required for hearing and balance. Recent studies in both lower vertebrates and mammals have uncovered genes and pathways important in hair cell development and have suggested ways that the sensory epithelia could be manipulated to achieve hair cell regeneration. These approaches include the use of inner ear stem cells, transdifferentiation of nonsensory cells, and induction of a proliferative response in the cells that can become hair cells. PMID:18929656

  11. Generation of inner ear sensory cells from bone marrow-derived human mesenchymal stem cells.

    PubMed

    Durán Alonso, M Beatriz; Feijoo-Redondo, Ana; Conde de Felipe, Magnolia; Carnicero, Estela; García, Ana Sánchez; García-Sancho, Javier; Rivolta, Marcelo N; Giráldez, Fernando; Schimmang, Thomas

    2012-11-01

    Hearing loss is the most common sensory disorder in humans, its main cause being the loss of cochlear hair cells. We studied the potential of human mesenchymal stem cells (hMSCs) to differentiate towards hair cells and auditory neurons. hMSCs were first differentiated to neural progenitors and subsequently to hair cell- or auditory neuron-like cells using in vitro culture methods. Differentiation of hMSCs to an intermediate neural progenitor stage was critical for obtaining inner ear sensory lineages. hMSCs generated hair cell-like cells only when neural progenitors derived from nonadherent hMSC cultures grown in serum-free medium were exposed to EGF and retinoic acid. Auditory neuron-like cells were obtained when treated with retinoic acid, and in the presence of defined growth factor combinations containing Sonic Hedgehog. The results show the potential of hMSCs to give rise to inner ear sensory cells.

  12. Temporal and spatial expression patterns of Hedgehog receptors in the developing inner and middle ear.

    PubMed

    Shin, Jeong-Oh; Ankamreddy, Harinarayana; Jakka, Naga Mahesh; Lee, Seokwon; Kim, Un-Kyung; Bok, Jinwoong

    2017-01-01

    The mammalian inner ear is a complex organ responsible for balance and hearing. Sonic hedgehog (Shh), a member of the Hedgehog (Hh) family of secreted proteins, has been shown to play important roles in several aspects of inner ear development, including dorsoventral axial specification, cochlear elongation, tonotopic patterning, and hair cell differentiation. Hh proteins initiate a downstream signaling cascade by binding to the Patched 1 (Ptch1) receptor. Recent studies have revealed that other types of co-receptors can also mediate Hh signaling, including growth arrest-specific 1 (Gas1), cell-adhesion molecules-related/down-regulated by oncogenes (Cdon), and biregional Cdon binding protein (Boc). However, little is known about the role of these Hh co-receptors in inner ear development. In this study, we examined the expression patterns of Gas1, Cdon, and Boc, as well as that of Ptch1, in the developing mouse inner ear from otocyst (embryonic day (E) 9.5) until birth and in the developing middle ear at E15.5. Ptch1, a readout of Hh signaling, was expressed in a graded pattern in response to Shh signaling throughout development. Expression patterns of Gas1, Cdon, and Boc differed from that of Ptch1, and each Hh co-receptor was expressed in specific cells and domains in the developing inner and middle ear. These unique and differential expression patterns of Hh co-receptors suggest their roles in mediating various time- and space-specific functions of Shh during ear development.

  13. Assessment of Masses of the External Ear With Diffusion-Weighted MR Imaging.

    PubMed

    Razek, Ahmed Abdel Khalek Abdel

    2018-02-01

    To assess masses of the external ear with diffusion-weighted MR imaging. Retrospective analysis of 43 consecutive patients with soft tissue mass of the external ear. They underwent single shot diffusion-weighted MR imaging of the ear. The apparent diffusion coefficient (ADC) value of the mass of the external ear was calculated. The final diagnosis was performed by biopsy. The ADC value correlated with the biopsy results. The mean ADC value of malignancy (=27) of external ear (0.95 ± 0.19 × 10 mm/s) was significantly lower (p = 0.001) than that of benign (n = 16) lesions (1.49 ± 0.08 × 10 mm/s). The cutoff ADC used for differentiation of malignancy from benign lesions was 1.18 × 10 mm/s with an area under the curve of 0.959, an accuracy of 93%, a sensitivity of 92%, and specificity of 93%. There was a significant difference in the ADC of well and moderately differentiated malignancy versus poorly and undifferentiated squamous cell carcinoma (p = 0.001), and stages I and II versus stages III and IV (p = 0.04) of squamous cell carcinoma. ADC value is a non-invasive promising imaging parameter that can be used for differentiation of malignancy of the external ear from benign lesions, and grading and staging of squamous cell carcinoma of the external ear.

  14. Human middle-ear model with compound eardrum and airway branching in mastoid air cells

    PubMed Central

    Keefe, Douglas H.

    2015-01-01

    An acoustical/mechanical model of normal adult human middle-ear function is described for forward and reverse transmission. The eardrum model included one component bound along the manubrium and another bound by the tympanic cleft. Eardrum components were coupled by a time-delayed impedance. The acoustics of the middle-ear cleft was represented by an acoustical transmission-line model for the tympanic cavity, aditus, antrum, and mastoid air cell system with variable amounts of excess viscothermal loss. Model parameters were fitted to published measurements of energy reflectance (0.25–13 kHz), equivalent input impedance at the eardrum (0.25–11 kHz), temporal-bone pressure in scala vestibuli and scala tympani (0.1–11 kHz), and reverse middle-ear impedance (0.25–8 kHz). Inner-ear fluid motion included cochlear and physiological third-window pathways. The two-component eardrum with time delay helped fit intracochlear pressure responses. A multi-modal representation of the eardrum and high-frequency modeling of the middle-ear cleft helped fit ear-canal responses. Input reactance at the eardrum was small at high frequencies due to multiple modal resonances. The model predicted the middle-ear efficiency between ear canal and cochlea, and the cochlear pressures at threshold. PMID:25994701

  15. Human middle-ear model with compound eardrum and airway branching in mastoid air cells.

    PubMed

    Keefe, Douglas H

    2015-05-01

    An acoustical/mechanical model of normal adult human middle-ear function is described for forward and reverse transmission. The eardrum model included one component bound along the manubrium and another bound by the tympanic cleft. Eardrum components were coupled by a time-delayed impedance. The acoustics of the middle-ear cleft was represented by an acoustical transmission-line model for the tympanic cavity, aditus, antrum, and mastoid air cell system with variable amounts of excess viscothermal loss. Model parameters were fitted to published measurements of energy reflectance (0.25-13 kHz), equivalent input impedance at the eardrum (0.25-11 kHz), temporal-bone pressure in scala vestibuli and scala tympani (0.1-11 kHz), and reverse middle-ear impedance (0.25-8 kHz). Inner-ear fluid motion included cochlear and physiological third-window pathways. The two-component eardrum with time delay helped fit intracochlear pressure responses. A multi-modal representation of the eardrum and high-frequency modeling of the middle-ear cleft helped fit ear-canal responses. Input reactance at the eardrum was small at high frequencies due to multiple modal resonances. The model predicted the middle-ear efficiency between ear canal and cochlea, and the cochlear pressures at threshold.

  16. An experimental study of inner ear injury in an animal model of eosinophilic otitis media.

    PubMed

    Matsubara, Atsushi; Nishizawa, Hisanori; Kurose, Akira; Nakagawa, Takashi; Takahata, Junko; Sasaki, Akira

    2014-03-01

    As the periods of intratympanic injection of ovalbumin (OVA) to the middle ear became longer, marked eosinophil infiltration in the perilymphatic space was observed. Moreover severe morphological damage of the organ of Corti was observed in the 28-day antigen-stimulation side. These results indicate that eosinophilic inflammation occurred in the inner ear and caused profound hearing loss. The purpose of the present study was to elucidate the inner ear damage in a new animal model of eosinophilic otitis media (EOM) which we recently constructed. We constructed the animal model of EOM by intraperitoneal and intratympanic injection of OVA. Infiltrating cells and the inner ear damage were examined by histological study. In the inner ear, a few eosinophils were seen in the scala tympani of the organ of Corti and the dilation of capillaries of the stria vascularis was observed in the 7-day stimulation side. In the 14-day antigen stimulation side, some eosinophils and macrophages were seen in not only the scala tympani but also the scala vestibule. In the 28-day antigen-stimulation side, severe morphological damage of the organ of Corti and many eosinophils, red blood cells, and plasma cells infiltrating the perilymph were observed.

  17. Three cases of successful microvascular ear replantation after bite avulsion injury.

    PubMed

    Schonauer, Fabrizio; Blair, James W; Moloney, Dominique M; Teo, T C; Pickford, Mark A

    2004-01-01

    We present three cases of sub-total amputation of the external ear caused by bite avulsion injury. The ears were all successfully replanted despite us being unable to perform a venous anastomosis in one case. These outcomes support attempted microsurgical replantation for total or sub-total amputations of the ear, as successful replantation is the most effective surgical option.

  18. Whole-mount Confocal Microscopy for Adult Ear Skin: A Model System to Study Neuro-vascular Branching Morphogenesis and Immune Cell Distribution.

    PubMed

    Yamazaki, Tomoko; Li, Wenling; Mukouyama, Yoh-Suke

    2018-03-29

    Here, we present a protocol of a whole-mount adult ear skin imaging technique to study comprehensive three-dimensional neuro-vascular branching morphogenesis and patterning, as well as immune cell distribution at a cellular level. The analysis of peripheral nerve and blood vessel anatomical structures in adult tissues provides some insights into the understanding of functional neuro-vascular wiring and neuro-vascular degeneration in pathological conditions such as wound healing. As a highly informative model system, we have focused our studies on adult ear skin, which is readily accessible for dissection. Our simple and reproducible protocol provides an accurate depiction of the cellular components in the entire skin, such as peripheral nerves (sensory axons, sympathetic axons, and Schwann cells), blood vessels (endothelial cells and vascular smooth muscle cells), and inflammatory cells. We believe this protocol will pave the way to investigate morphological abnormalities in peripheral nerves and blood vessels as well as the inflammation in the adult ear skin under different pathological conditions.

  19. Vitamin D receptor deficiency impairs inner ear development in zebrafish.

    PubMed

    Kwon, Hye-Joo

    2016-09-16

    The biological actions of vitamin D are largely mediated through binding to the vitamin D receptor (VDR), a member of the nuclear hormone receptor family, which regulates gene expression in a wide variety of tissues and cells. Mutations in VDR gene have been implicated in ear disorders (hearing loss and balance disorder) but the mechanisms are not well established. In this study, to investigate the role of VDR in inner ear development, morpholino-mediated gene knockdown approaches were used in zebrafish model system. Two paralogs for VDR, vdra and vdrb, have been identified in zebrafish. Knockdown of vdra had no effect on ear development, whereas knockdown of vdrb displayed morphological ear defects including smaller otic vesicles with malformed semicircular canals and abnormal otoliths. Loss-of-vdrb resulted in down-regulation of pre-otic markers, pax8 and pax2a, indicating impairment of otic induction. Furthermore, zebrafish embryos lacking vdrb produced fewer sensory hair cells in the ears and showed disruption of balance and motor coordination. These data reveal that VDR signaling plays an important role in ear development. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Oxidative metabolic products released from polymorphonuclear leukocytes in middle ear fluid during experimental pneumococcal otitis media.

    PubMed Central

    Kawana, M; Kawana, C; Yokoo, T; Quie, P G; Giebink, G S

    1991-01-01

    To determine whether oxidative metabolic products of phagocytic cells are present in the middle ear during experimental pneumococcal otitis media, we measured the concentration of myeloperoxidase (MPO) in middle ear fluid (MEF) and the capacity of neutrophils isolated from MEF and peripheral blood to produce MPO and superoxide anion (O2-) after in vitro stimulation. Free MPO in MEF was significantly increased 24 and 48 h after either viable or nonviable pneumococci were inoculated into the middle ear. In vitro-stimulated production of MPO and O2- from middle ear neutrophils was significantly less than that from peripheral blood neutrophils 24 h after nonviable pneumococci were inoculated but similar to it after 48 h. Twenty-four hours after viable pneumococci were inoculated, middle ear neutrophils stimulated in vitro produced less MPO but the same amount of O2- as did blood neutrophils. Oxidative metabolic products, therefore, are released from phagocytic cells into the MEF during pneumococcal otitis media, and future studies will need to define the contribution of these products to acute and chronic middle ear tissue injury. PMID:1657782

  1. Clear cell hidradenocarcinoma of the ear helix: report of primary ear helix adnexal carcinoma with regional lymph node metastasis.

    PubMed

    Bae, Tae Hui; Kang, Shin Hyuk; Kim, Han Koo; Kim, Woo Seob; Kim, Mi Kyung

    2014-07-01

    Clear cell hidradenocarcinoma is a rare tumor of eccrine sweat gland origin that has a predilection for the head and neck. It has an indolent growth pattern and a higher incidence of regional and distant metastases. Metastasizing adnexal carcinomas are rare; thus, currently there is no uniform treatment guideline. We report a case of an 89-year-old female patient with clear cell hidradenocarcinoma manifesting in the right ear helix that metastasized to the right parotid gland who was treated by wide local excision and radiation therapy.

  2. Mature middle and inner ears express Chd7 and exhibit distinctive pathologies in a mouse model of CHARGE syndrome.

    PubMed

    Hurd, Elizabeth A; Adams, Meredith E; Layman, Wanda S; Swiderski, Donald L; Beyer, Lisa A; Halsey, Karin E; Benson, Jennifer M; Gong, Tzy-Wen; Dolan, David F; Raphael, Yehoash; Martin, Donna M

    2011-12-01

    Heterozygous mutations in the gene encoding chromodomain-DNA-binding-protein 7 (CHD7) cause CHARGE syndrome, a multiple anomaly condition which includes vestibular dysfunction and hearing loss. Mice with heterozygous Chd7 mutations exhibit semicircular canal dysgenesis and abnormal inner ear neurogenesis, and are an excellent model of CHARGE syndrome. Here we characterized Chd7 expression in mature middle and inner ears, analyzed morphological features of mutant ears and tested whether Chd7 mutant mice have altered responses to noise exposure and correlated those responses to inner and middle ear structure. We found that Chd7 is highly expressed in mature inner and outer hair cells, spiral ganglion neurons, vestibular sensory epithelia and middle ear ossicles. There were no obvious defects in individual hair cell morphology by prestin immunostaining or scanning electron microscopy, and cochlear innervation appeared normal in Chd7(Gt)(/+) mice. Hearing thresholds by auditory brainstem response (ABR) testing were elevated at 4 and 16 kHz in Chd7(Gt)(/+) mice, and there were reduced distortion product otoacoustic emissions (DPOAE). Exposure of Chd7(Gt)(/+) mice to broadband noise resulted in variable degrees of hair cell loss which inversely correlated with severity of stapedial defects. The degrees of hair cell loss and threshold shifts after noise exposure were more severe in wild type mice than in mutants. Together, these data indicate that Chd7(Gt)(/+) mice have combined conductive and sensorineural hearing loss, correlating with changes in both middle and inner ears. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Mature middle and inner ears express Chd7 and exhibit distinctive pathologies in a mouse model of CHARGE syndrome

    PubMed Central

    Hurd, Elizabeth A.; Adams, Meredith E.; Layman, Wanda S.; Swiderski, Donald L.; Beyer, Lisa A.; Halsey, Karin E.; Benson, Jennifer M.; Gong, Tzy-Wen; Dolan, David F.; Raphael, Yehoash; Martin, Donna M.

    2011-01-01

    Heterozygous mutations in the gene encoding chromodomain-DNA-binding-protein 7 (CHD7) cause CHARGE syndrome, a multiple anomaly condition which includes vestibular dysfunction and hearing loss. Mice with heterozygous Chd7 mutations exhibit semicircular canal dysgenesis and abnormal inner ear neurogenesis, and are an excellent model of CHARGE syndrome. Here we characterized Chd7 expression in mature middle and inner ears, analyzed morphological features of mutant ears and tested whether Chd7 mutant mice have altered responses to noise exposure and correlated those responses to inner and middle ear structure. We found that Chd7 is highly expressed in mature inner and outer hair cells, spiral ganglion neurons, vestibular sensory epithelia and middle ear ossicles. There were no obvious defects in individual hair cell morphology by Prestin immunostaining or scanning electron microscopy, and cochlear innervation appeared normal in Chd7Gt/+ mice. Hearing thresholds by auditory brainstem response (ABR) testing were elevated at 4 and 16 kHz in Chd7Gt/+ mice, and there were reduced distortion product otoacoustic emissions (DPOAE). Exposure of Chd7Gt/+ mice to broadband noise resulted in variable degrees of hair cell loss which inversely correlated with severity of stapedial defects. The degrees of hair cell loss and threshold shifts after noise exposure were more severe in wild type mice than in mutants. Together, these data indicate that Chd7Gt/+ mice have combined conductive and sensorineural hearing loss, correlating with changes in both middle and inner ears. PMID:21875659

  4. Guinea pig adenovirus infection does not inhibit cochlear transfection with human adenoviral vectors in a model of hearing loss.

    PubMed

    Hankenson, F Claire; Wathen, Asheley B; Eaton, Kathryn A; Miyazawa, Toru; Swiderski, Donald L; Raphael, Yehoash

    2010-04-01

    Routine surveillance of guinea pigs maintained within a barrier facility detected guinea pig adenovirus (GPAdV) in sentinel animals. These guinea pigs served as models of induced hearing loss followed by regeneration of cochlear sensory (hair) cells through transdifferentiation of nonsensory cells by using human adenoviral (hAV) gene therapy. To determine whether natural GPAdV infection affected the ability of hAV vectors to transfect inner ear cells, adult male pigmented guinea pigs (n = 7) were enrolled in this study because of their prolonged exposure to GPAdV-seropositive conspecifics. Animals were deafened chemically (n = 2), received an hAV vector carrying the gene for green fluorescent protein (hAV-GFP) surgically without prior deafening (n = 2), or were deafened chemically with subsequent surgical inoculation of hAV-GFP (n = 3). Cochleae were evaluated by using fluorescence microscopy, and GFP expression in supporting cells indicated that the hAV-GFP vector was able to transfect inner ears in GPAdV-seropositive guinea pigs that had been chemically deafened. Animals had histologic evidence of interstitial pneumonia, attributable to prior infection with GPAdV. These findings confirmed that the described guinea pigs were less robust animal models with diminished utility for the overall studies. Serology tests confirmed that 5 of 7 animals (71%) were positive for antibodies against GPAdV at necropsy, approximately 7 mo after initial detection of sentinel infection. Control animals (n = 5) were confirmed to be seronegative for GPAdV with clinically normal pulmonary tissue. This study is the first to demonstrate that natural GPAdV infection does not negatively affect transfection with hAV vectors into guinea pig inner ear cells, despite the presence of other health complications attributed to the viral infection.

  5. Potassium recycling pathways in the human cochlea.

    PubMed

    Weber, P C; Cunningham, C D; Schulte, B A

    2001-07-01

    Potential pathways for recycling potassium (K+) used in the maintenance of inner ear electrochemical gradients have been elucidated in animal models. However, little is known about K+ transport in the human cochlea. This study was designed to characterize putative K+ recycling pathways in the human ear and to determine whether observations from animal models can be extrapolated to humans. A prospective laboratory study using an immunohistochemical approach to analyze the distribution of key ion transport mediators in the human cochlea. Human temporal bones were fixed in situ within 1 to 6 hours of death and subsequently harvested at autopsy. Decalcification was accomplished with the aid of microwaving. Immunohistochemical staining was then performed to define the presence and cell type-specific distribution of Na,K-ATPase, sodium-potassium-chloride cotransporter (NKCC), and carbonic anhydrase (CA) in the inner ear. Staining patterns visualized in the human cochlea closely paralleled those seen in other species. Anti-Na,K-ATPase stained strongly the basolateral plasma membrane of strial marginal cells and nerve endings underlying hair cells. This antibody also localized Na,K-ATPase to type II, type IV, and type V fibrocytes in the spiral ligament and in limbal fibrocytes. NKCC was present in the basolateral membrane of strial marginal cells as well as in type II, type V, and limbal fibrocytes. Immunoreactive carbonic anhydrase was present in type I and type III fibrocytes and in epithelial cells lining Reissner's membrane and the spiral prominence. The distribution of several major ion transport proteins in the human cochlea is similar but not identical to that described in various rodent models. These results support the presence of a complex system for recycling and regulating K+ homeostasis in the human cochlea, similar to that described in other mammalian species.

  6. [Investigation of neural stem cell-derived donor contribution in the inner ear following blastocyst injection].

    PubMed

    Volkenstein, S; Brors, D; Hansen, S; Mlynski, R; Dinger, T C; Müller, A M; Dazert, S

    2008-03-01

    Utilising the enormous proliferation and multi-lineage differentiation potentials of somatic stem cells represents a possible therapeutical strategy for diseases of non-regenerative tissues like the inner ear. In the current study, the possibility of murine neural stem cells to contribute to the developing inner ear following blastocyst injection was investigated. Fetal brain-derived neural stem cells from the embryonic day 14 cortex of male mice were isolated and expanded for four weeks in neurobasal media supplemented with bFGF and EGF. Neural stem cells of male animals were harvested, injected into blastocysts and the blastocysts were transferred into pseudo-pregnant foster animals. Each blastocyst was injected with 5-15 microspheres growing from single cell suspension from neurospheres dissociated the day before. The resulting mice were investigated six months POST PARTUM for the presence of donor cells. Brainstem evoked response audiometry (BERA) was performed in six animals. To visualize donor cells Lac-Z staining was performed on sliced cochleas of two animals. In addition, the cochleas of four female animals were isolated and genomic DNA of the entire cochlea was analyzed for donor contribution by Y-chromosome-specific PCR. All animals had normal thresholds in brainstem evoked response audiometry. The male-specific PCR product indicating the presence of male donor cells were detected in the cochleas of three of the four female animals investigated. In two animals, male donor cells were detected unilateral, in one animal bilateral. The results suggest that descendants of neural stem cells are detectable in the inner ear after injection into blastocysts and possess the ability to integrate into the developing inner ear without obvious loss in hearing function.

  7. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  8. An abbreviated history of the ear: from Renaissance to present.

    PubMed Central

    Hachmeister, Jorge E.

    2003-01-01

    In this article we discuss important discoveries in relation to the anatomy and physiology of the ear from Renaissance to present. Before the Renaissance, there was a paucity of knowledge of the anatomy of the ear, because of the relative inaccessibility of the temporal bone and the general perception that human dissections should not be conducted. It was not until the sixteenth century that the middle ear was described with detail. Further progress would be made between the sixteenth and eighteenth century in describing the inner ear. In the nineteenth century, technological advancement permitted a description of the cells and structures that constitute the cochlea. Von Helmholtz made further progress in hearing physiology when he postulated his resonance theory and later von Békésy when he observed a traveling wave in human cadavers within the cochlea. Brownell later made a major advance when he discovered that the ear has a mechanism for sound amplification, via outer hair cell electromotility. Images Figure 1 Figure 2 PMID:15369636

  9. Micro-optical coherence tomography of the mammalian cochlea

    PubMed Central

    Iyer, Janani S.; Batts, Shelley A.; Chu, Kengyeh K.; Sahin, Mehmet I.; Leung, Hui Min; Tearney, Guillermo J.; Stankovic, Konstantina M.

    2016-01-01

    The mammalian cochlea has historically resisted attempts at high-resolution, non-invasive imaging due to its small size, complex three-dimensional structure, and embedded location within the temporal bone. As a result, little is known about the relationship between an individual’s cochlear pathology and hearing function, and otologists must rely on physiological testing and imaging methods that offer limited resolution to obtain information about the inner ear prior to performing surgery. Micro-optical coherence tomography (μOCT) is a non-invasive, low-coherence interferometric imaging technique capable of resolving cellular-level anatomic structures. To determine whether μOCT is capable of resolving mammalian intracochlear anatomy, fixed guinea pig inner ears were imaged as whole temporal bones with cochlea in situ. Anatomical structures such as the tunnel of Corti, space of Nuel, modiolus, scalae, and cell groupings were visualized, in addition to individual cell types such as neuronal fibers, hair cells, and supporting cells. Visualization of these structures, via volumetrically-reconstructed image stacks and endoscopic perspective videos, represents an improvement over previous efforts using conventional OCT. These are the first μOCT images of mammalian cochlear anatomy, and they demonstrate μOCT’s potential utility as an imaging tool in otology research. PMID:27633610

  10. Responses to Cell Loss Become Restricted as the Supporting Cells in Mammalian Vestibular Organs Grow Thick Junctional Actin Bands That Develop High Stability

    PubMed Central

    Burns, Joseph C.

    2014-01-01

    Sensory hair cell (HC) loss is a major cause of permanent hearing and balance impairments for humans and other mammals. Yet, fish, amphibians, reptiles, and birds readily replace HCs and recover from such sensory deficits. It is unknown what prevents replacement in mammals, but cell replacement capacity declines contemporaneously with massive postnatal thickening of F-actin bands at the junctions between vestibular supporting cells (SCs). In non-mammals, SCs can give rise to regenerated HCs, and the bands remain thin even in adults. Here we investigated the stability of the F-actin bands between SCs in ears from chickens and mice and Madin-Darby canine kidney cells. Pharmacological experiments and fluorescence recovery after photobleaching (FRAP) of SC junctions in utricles from mice that express a γ-actin–GFP fusion protein showed that the thickening F-actin bands develop increased resistance to depolymerization and exceptional stability that parallels a sharp decline in the cell replacement capacity of the maturing mammalian ear. The FRAP recovery rate and the mobile fraction of γ-actin–GFP both decreased as the bands thickened with age and became highly stabilized. In utricles from neonatal mice, time-lapse recordings in the vicinity of dying HCs showed that numerous SCs change shape and organize multicellular actin purse strings that reseal the epithelium. In contrast, adult SCs appeared resistant to deformation, with resealing responses limited to just a few neighboring SCs that did not form purse strings. The exceptional stability of the uniquely thick F-actin bands at the junctions of mature SCs may play an important role in restricting dynamic repair responses in mammalian vestibular epithelia. PMID:24478379

  11. Responses to cell loss become restricted as the supporting cells in mammalian vestibular organs grow thick junctional actin bands that develop high stability.

    PubMed

    Burns, Joseph C; Corwin, Jeffrey T

    2014-01-29

    Sensory hair cell (HC) loss is a major cause of permanent hearing and balance impairments for humans and other mammals. Yet, fish, amphibians, reptiles, and birds readily replace HCs and recover from such sensory deficits. It is unknown what prevents replacement in mammals, but cell replacement capacity declines contemporaneously with massive postnatal thickening of F-actin bands at the junctions between vestibular supporting cells (SCs). In non-mammals, SCs can give rise to regenerated HCs, and the bands remain thin even in adults. Here we investigated the stability of the F-actin bands between SCs in ears from chickens and mice and Madin-Darby canine kidney cells. Pharmacological experiments and fluorescence recovery after photobleaching (FRAP) of SC junctions in utricles from mice that express a γ-actin-GFP fusion protein showed that the thickening F-actin bands develop increased resistance to depolymerization and exceptional stability that parallels a sharp decline in the cell replacement capacity of the maturing mammalian ear. The FRAP recovery rate and the mobile fraction of γ-actin-GFP both decreased as the bands thickened with age and became highly stabilized. In utricles from neonatal mice, time-lapse recordings in the vicinity of dying HCs showed that numerous SCs change shape and organize multicellular actin purse strings that reseal the epithelium. In contrast, adult SCs appeared resistant to deformation, with resealing responses limited to just a few neighboring SCs that did not form purse strings. The exceptional stability of the uniquely thick F-actin bands at the junctions of mature SCs may play an important role in restricting dynamic repair responses in mammalian vestibular epithelia.

  12. A Protocol for Decellularizing Mouse Cochleae for Inner Ear Tissue Engineering.

    PubMed

    Neal, Christopher A; Nelson-Brantley, Jennifer G; Detamore, Michael S; Staecker, Hinrich; Mellott, Adam J

    2018-01-01

    In mammals, mechanosensory hair cells that facilitate hearing lack the ability to regenerate, which has limited treatments for hearing loss. Current regenerative medicine strategies have focused on transplanting stem cells or genetic manipulation of surrounding support cells in the inner ear to encourage replacement of damaged stem cells to correct hearing loss. Yet, the extracellular matrix (ECM) may play a vital role in inducing and maintaining function of hair cells, and has not been well investigated. Using the cochlear ECM as a scaffold to grow adult stem cells may provide unique insights into how the composition and architecture of the extracellular environment aids cells in sustaining hearing function. Here we present a method for isolating and decellularizing cochleae from mice to use as scaffolds accepting perfused adult stem cells. In the current protocol, cochleae are isolated from euthanized mice, decellularized, and decalcified. Afterward, human Wharton's jelly cells (hWJCs) that were isolated from the umbilical cord were carefully perfused into each cochlea. The cochleae were used as bioreactors, and cells were cultured for 30 days before undergoing processing for analysis. Decellularized cochleae retained identifiable extracellular structures, but did not reveal the presence of cells or noticeable fragments of DNA. Cells perfused into the cochlea invaded most of the interior and exterior of the cochlea and grew without incident over a duration of 30 days. Thus, the current method can be used to study how cochlear ECM affects cell development and behavior.

  13. Bone Marrow Stem Cells and Ear Framework Reconstruction.

    PubMed

    Karimi, Hamid; Emami, Seyed-Abolhassan; Olad-Gubad, Mohammad-Kazem

    2016-11-01

    Repair of total human ear loss or congenital lack of ears is one of the challenging issues in plastic and reconstructive surgery. The aim of the present study was 3D reconstruction of the human ear with cadaveric ear cartilages seeded with human mesenchymal stem cells. We used cadaveric ear cartilages with preserved perichondrium. The samples were divided into 2 groups: group A (cartilage alone) and group B (cartilage seeded with a mixture of fibrin powder and mesenchymal stem cell [1,000,000 cells/cm] used and implanted in back of 10 athymic rats). After 12 weeks, the cartilages were removed and shape, size, weight, flexibility, and chondrocyte viability were evaluated. P value <0.05 was considered significant. In group A, size and weight of cartilages clearly reduced (P < 0.05) and then shape and flexibility (torsion of cartilages in clockwise and counterclockwise directions) were evaluated, which were found to be significantly reduced (P > 0.05). After staining with hematoxylin and eosin and performing microscopic examination, very few live chondrocytes were found in group A. In group B, size and weight of samples were not changed (P < 0.05); the shape and flexibility of samples were well maintained (P < 0.05) and on performing microscopic examination of cartilage samples, many live chondrocytes were found in cartilage (15-20 chondrocytes in each microscopic field). In samples with human stem cell, all variables (size, shape, weight, and flexibility) were significantly maintained and abundant live chondrocytes were found on performing microscopic examination. This method may be used for reconstruction of full defect of auricles in humans.

  14. Cellular thermotolerance is inheritable from Holstein cattle cloned with ooplasts of Taiwan native yellow cattle.

    PubMed

    Kesorn, Piyawit; Lee, Jai-Wei; Wu, Hung-Yi; Ju, Jyh-Cherng; Peng, Shao-Yu; Liu, Shyh-Shyan; Wu, Hsi-Hsun; Shen, Perng-Chih

    2017-01-15

    We have previously demonstrated that the somatic cells from cattle cloned with Holstein (H) donor cells and Taiwan native yellow cattle (Y) ooplasm (Yo-Hd) had better thermotolerance than those from cattle cloned with both Holstein donor cells and ooplasm (Ho-Hd). The present study aimed to investigate whether the cellular thermotolerance of these cloned cattle is transmissible to their offspring (Ho-Hd-F1 and Yo-Hd-F1). Thermotolerance of ear fibroblasts derived from these cloned cattle and their offspring were analyzed. Polymorphisms in mitochondrial DNA (mtDNA) D-loop of ear fibroblasts derived from Yo-Hd and Yo-Hd-F1 indicated that the cytoplasm is originated from Bos indicus (Y). After heat shock, the apoptotic rates, B-cell lymphoma 2-associated X protein/B-cell lymphoma 2 ratios, and relative expression levels of cysteine-aspartic proteases (caspases)-3, -8, and -9 of ear fibroblasts with Y-originated cytoplasm (including Y, Yo-Hd, and Yo-Hd-F1) were lower (P < 0.05) than those of ear fibroblasts with H-originated cytoplasm (including H, Ho-Hd, and Ho-Hd-F1). In contrast, the relative level of HSP-70 was higher (P < 0.05) in ear fibroblasts with Y-originated cytoplasm than that of with H-originated cytoplasm. Based on our results, thermotolerance of ear fibroblasts derived from Yo-Hd and Yo-Hd-F1 cattle is better and can be transmitted, at least at the cellular level, to their offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Biocompatibility of Liposome Nanocarriers in the Rat Inner Ear After Intratympanic Administration

    NASA Astrophysics Data System (ADS)

    Zou, Jing; Feng, Hao; Sood, Rohit; Kinnunen, Paavo K. J.; Pyykko, Ilmari

    2017-05-01

    Liposome nanocarriers (LPNs) are potentially the future of inner ear therapy due to their high drug loading capacity and efficient uptake in the inner ear after a minimally invasive intratympanic administration. However, information on the biocompatibility of LPNs in the inner ear is lacking. The aim of the present study is to document the biocompatibility of LPNs in the inner ear after intratympanic delivery. LPNs with or without gadolinium-tetra-azacyclo-dodecane-tetra-acetic acid (Gd-DOTA) were delivered to the rats through transtympanic injection. The distribution of the Gd-DOTA-containing LPNs in the middle and inner ear was tracked in vivo using MRI. The function of the middle and inner ear barriers was evaluated using gadolinium-enhanced MRI. The auditory function was measured using auditory brainstem response (ABR). The potential inflammatory response was investigated by analyzing glycosaminoglycan and hyaluronic acid secretion and CD44 and TLR2 expression in the inner ear. The potential apoptosis was analyzed using terminal transferase (TdT) to label the free 3'OH breaks in the DNA strands of apoptotic cells with TMR-dUTP (TUNEL staining). As a result, LPNs entered the inner ear efficiently after transtympanic injection. The transtympanic injection of LPNs with or without Gd-DOTA neither disrupted the function of the middle and inner ear barriers nor caused hearing impairment in rats. The critical inflammatory biological markers in the inner ear, including glycosaminoglycan and hyaluronic acid secretion and CD44 and TLR2 expression, were not influenced by the administration of LPNs. There was no significant cell death associated with the administration of LPNs. The transtympanic injection of LPNs is safe for the inner ear, and LPNs may be applied as a drug delivery matrix in the clinical therapy of sensorineural hearing loss.

  16. Tissue-specific roles of Tbx1 in the development of the outer, middle and inner ear, defective in 22q11DS patients

    PubMed Central

    Arnold, Jelena S.; Braunstein, Evan M.; Ohyama, Takahiro; Groves, Andrew K.; Adams, Joe C.; Brown, M. Christian; Morrow, Bernice E.

    2007-01-01

    Most 22q11.2 deletion syndrome (22q11DS) patients have middle and outer ear anomalies, whereas some have inner ear malformations. Tbx1, a gene hemizygously deleted in 22q11DS patients and required for ear development, is expressed in multiple tissues during embryogenesis. To determine the role of Tbx1 in the first pharyngeal pouch (PPI) in forming outer and middle ears, we tissue-specifically inactivated the gene using Foxg1-Cre. In the conditional mutants, PPI failed to outgrow, preventing the middle ear bone condensations from forming. Tbx1 was also inactivated in the otic vesicle (OV), resulting in the failure of inner ear sensory organ formation, and in duplication of the cochleovestibular ganglion (CVG). Consistent with the anatomical defects, the sensory genes, Otx1 and Bmp4 were downregulated, whereas the CVG genes, Fgf3 and NeuroD, were upregulated. To delineate Tbx1 cell-autonomous roles, a more selective ablation, exclusively in the OV, was performed using Pax2-Cre. In contrast to the Foxg1-Cre mutants, Pax2-Cre conditional mutant mice survived to adulthood and had normal outer and middle ears but had the same inner ear defects as the Tbx1 null mice, with the same gene expression changes. These results demonstrate that Tbx1 has non-cell autonomous roles in PPI in the formation of outer and middle ears and cell-autonomous roles in the OV. Periotic mesenchymal markers, Prx2 and Brn4 were normal in both conditional mutants, whereas they were diminished in Tbx1−/− embryos. Thus, Tbx1 in the surrounding mesenchyme in both sets of conditional mutants cannot suppress the defects in the OV that occur in the null mutants. PMID:16600992

  17. Perfusion-decellularization of human ear grafts enables ECM-based scaffolds for auricular vascularized composite tissue engineering.

    PubMed

    Duisit, Jérôme; Amiel, Hadrien; Wüthrich, Tsering; Taddeo, Adriano; Dedriche, Adeline; Destoop, Vincent; Pardoen, Thomas; Bouzin, Caroline; Joris, Virginie; Magee, Derek; Vögelin, Esther; Harriman, David; Dessy, Chantal; Orlando, Giuseppe; Behets, Catherine; Rieben, Robert; Gianello, Pierre; Lengelé, Benoît

    2018-06-01

    Human ear reconstruction is recognized as the emblematic enterprise in tissue engineering. Up to now, it has failed to reach human applications requiring appropriate tissue complexity along with an accessible vascular tree. We hereby propose a new method to process human auricles in order to provide a poorly immunogenic, complex and vascularized ear graft scaffold. 12 human ears with their vascular pedicles were procured. Perfusion-decellularization was applied using a SDS/polar solvent protocol. Cell and antigen removal was examined by histology and DNA was quantified. Preservation of the extracellular matrix (ECM) was assessed by conventional and 3D-histology, proteins and cytokines quantifications. Biocompatibility was assessed by implantation in rats for up to 60 days. Adipose-derived stem cells seeding was conducted on scaffold samples and with human aortic endothelial cells whole graft seeding in a perfusion-bioreactor. Histology confirmed cell and antigen clearance. DNA reduction was 97.3%. ECM structure and composition were preserved. Implanted scaffolds were tolerated in vivo, with acceptable inflammation, remodeling, and anti-donor antibody formation. Seeding experiments demonstrated cell engraftment and viability. Vascularized and complex auricular scaffolds can be obtained from human source to provide a platform for further functional auricular tissue engineered constructs, hence providing an ideal road to the vascularized composite tissue engineering approach. The ear is emblematic in the biofabrication of tissues and organs. Current regenerative medicine strategies, with matrix from donor tissues or 3D-printed, didn't reach any application for reconstruction, because critically missing a vascular tree for perfusion and transplantation. We previously described the production of vascularized and cell-compatible scaffolds, from porcine ear grafts. In this study, we ---- applied findings directly to human auricles harvested from postmortem donors, providing a perfusable matrix that retains the ear's original complexity and hosts new viable cells after seeding. This approach unlocks the ability to achieve an auricular tissue engineering approach, associated with possible clinical translation. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Wild-type cells rescue genotypically Math1-null hair cells in the inner ears of chimeric mice.

    PubMed

    Du, Xiaoping; Jensen, Patricia; Goldowitz, Daniel; Hamre, Kristin M

    2007-05-15

    The transcription factor Math1 has been shown to be critical in the formation of hair cells (HCs) in the inner ear. However, the influence of environmental factors in HC specification suggests that cell extrinsic factors are also crucial to their development. To test whether extrinsic factors impact development of Math1-null (Math1(beta-Gal/beta-Gal)) HCs, we examined neonatal (postnatal ages P0-P4.5) Math1-null chimeric mice in which genotypically mutant and wild-type cells intermingle to form the inner ear. We provide the first direct evidence that Math1-null HCs are able to be generated and survive in the conducive chimeric environment. beta-Galactosidase expression was used to identify genetically mutant cells while cells were phenotypically defined as HCs by morphological characteristics notably the expression of HC-specific markers. Genotypically mutant HCs were found in all sensory epithelia of the inner ear at all ages examined. Comparable results were obtained irrespective of the wild-type component of the chimeric mice. Thus, genotypically mutant cells retain the competence to differentiate into HCs. The implication is that the lack of the Math1 gene in HC precursors can be overcome by environmental influences, such as cell-cell interactions with wild-type cells, to ultimately result in the formation of HCs.

  19. Response of the JAK-STAT signaling pathway to oxygen deprivation in the red eared slider turtle, Trachemys scripta elegans.

    PubMed

    Bansal, Saumya; Biggar, Kyle K; Krivoruchko, Anastasia; Storey, Kenneth B

    2016-11-15

    The red-eared slider turtle, Trachemys scripta elegans, is a model organism commonly used to study the environmental stress of anoxia. It exhibits multiple biochemical adaptations to ensure its survival during the winter months where quantities of oxygen are largely depleted. We proposed that JAK-STAT signaling would display stress responsive regulation to mediate the survival of the red-eared slider turtle, Trachemys scripta elegans, during anoxic stress. Importantly, the JAK-STAT signaling pathway is involved in transmitting extracellular signals to the nucleus resulting in the expression of select genes that aid cell survival and growth. Immunoblotting was used to compare the relative phosphorylation levels of JAK proteins, STAT proteins, and two of its inhibitors, SOCS and PIAS, in response to anoxia. A clear activation of the JAK-STAT pathway was observed in the liver tissue while no significant changes were found in the skeletal muscle. To further support our findings we also found an increase in mRNA transcripts of downstream targets of STATs, namely bcl-xL and bcl-2, using PCR analysis in the liver tissues. These findings suggest an important role for the JAK-STAT pathway in exhibiting natural anoxia tolerance by the red-eared slider turtle. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Middle Ear Fluid Cytokine and Inflammatory Cell Kinetics in the Chinchilla Otitis Media Model

    PubMed Central

    Sato, Katsuro; Liebeler, Carol L.; Quartey, Moses K.; Le, Chap T.; Giebink, G. Scott

    1999-01-01

    Streptococcus pneumoniae is the most frequent microbe causing middle ear infection. The pathophysiology of pneumococcal otitis media has been characterized by measurement of local inflammatory mediators such as inflammatory cells, lysozyme, oxidative metabolic products, and inflammatory cytokines. The role of cytokines in bacterial infection has been elucidated with animal models, and interleukin (IL)-1β, IL-6, and IL-8 and tumor necrosis factor alpha (TNF-α) are recognized as being important local mediators in acute inflammation. We characterized middle ear inflammatory responses in the chinchilla otitis media model after injecting a very small number of viable pneumococci into the middle ear, similar to the natural course of infection. Middle ear fluid (MEF) concentrations of IL-1β, IL-6, IL-8, and TNF-α were measured by using anti-human cytokine enzyme-linked immunosorbent assay reagents. IL-1β showed the earliest peak, at 6 h after inoculation, whereas IL-6, IL-8, and TNF-α concentrations were increasing 72 h after pneumococcal inoculation. IL-6, IL-8, and TNF-α but not IL-1β concentrations correlated significantly with total inflammatory cell numbers in MEF, and all four cytokines correlated significantly with MEF neutrophil concentration. Several intercytokine correlations were significant. Cytokines, therefore, participate in the early middle ear inflammatory response to S. pneumoniae. PMID:10085040

  1. Intradermal immunization in the ear with cholera toxin and its non-toxic β subunit promotes efficient Th1 and Th17 differentiation dependent on migrating DCs.

    PubMed

    Meza-Sánchez, David; Pérez-Montesinos, Gibrán; Sánchez-García, Javier; Moreno, José; Bonifaz, Laura C

    2011-10-01

    The nature of CD4(+) T-cell responses after skin immunization and the role of migrating DCs in the presence of adjuvants in the elicited response are interesting issues to be investigated. Here, we evaluated the priming of CD4(+) T cells following ear immunization with low doses of model antigens in combination with either cholera toxin (CT) or the non-toxic β CT subunit (CTB) as an adjuvant. Following immunization with CT, we found efficient antigen presentation that is reflected in the production of IFN-γ and IL-17 by CD4(+) T cells over IL-4 or IL-5 production. The CTB-induced activation of DCs in the ear occurred without visible inflammation, which reflects a similar type of CD4(+) T-cell differentiation. In both cases, the elicited response was dependent on the presence of migrating skin cells. Remarkably, immunization with CT or with CTB led to the induction of a delayed-type hypersensitivity (DTH) response in the ear. The DTH response that was induced by CT immunization was dependent on IL-17 and partially dependent on IFN-γ activity. These results indicate that both CT and CTB induce an efficient CD4(+) T-cell response to a co-administered antigen following ear immunization that is dependent on migrating DCs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The genetics of hair-cell function in zebrafish.

    PubMed

    Nicolson, Teresa

    2017-09-01

    Our ears are remarkable sensory organs, providing the important senses of balance and hearing. The complex structure of the inner ear, or 'labyrinth', along with the assorted neuroepithelia, have evolved to detect head movements and sounds with impressive sensitivity. The rub is that the inner ear is highly vulnerable to genetic lesions and environmental insults. According to National Institute of Health estimates, hearing loss is one of the most commonly inherited or acquired sensorineural diseases. To understand the causes of deafness and balance disorders, it is imperative to understand the underlying biology of the inner ear, especially the inner workings of the sensory receptors. These receptors, which are termed hair cells, are particularly susceptible to genetic mutations - more than two dozen genes are associated with defects in this cell type in humans. Over the past decade, a substantial amount of progress has been made in working out the molecular basis of hair-cell function using vertebrate animal models. Given the transparency of the inner ear and the genetic tools that are available, zebrafish have become an increasingly popular animal model for the study of deafness and vestibular dysfunction. Mutagenesis screens for larval defects in hearing and balance have been fruitful in finding key components, many of which have been implicated in human deafness. This review will focus on the genes that are required for hair-cell function in zebrafish, with a particular emphasis on mechanotransduction. In addition, the generation of new tools available for the characterization of zebrafish hair-cell mutants will be discussed.

  3. The deltaA gene of zebrafish mediates lateral inhibition of hair cells in the inner ear and is regulated by pax2.1.

    PubMed

    Riley, B B; Chiang, M; Farmer, L; Heck, R

    1999-12-01

    Recent studies of inner ear development suggest that hair cells and support cells arise within a common equivalence group by cell-cell interactions mediated by Delta and Notch proteins. We have extended these studies by analyzing the effects of a mutant allele of the zebrafish deltaA gene, deltaA(dx2), which encodes a dominant-negative protein. deltaA(dx2/dx2 )homozygous mutants develop with a 5- to 6-fold excess of hair cells and a severe deficiency of support cells. In addition, deltaA(dx2/dx2) mutants show an increased number of cells expressing pax2.1 in regions where hair cells are normally produced. Immunohistological analysis of wild-type and deltaA(dx2/dx2) mutant embryos confirmed that pax2.1 is expressed during the initial stages of hair cell differentiation and is later maintained at high levels in mature hair cells. In contrast, pax2.1 is not expressed in support cells. To address the function of pax2.1, we analyzed hair cell differentiation in no isthmus mutant embryos, which are deficient for pax2.1 function. no isthmus mutant embryos develop with approximately twice the normal number of hair cells. This neurogenic defect correlates with reduced levels of expression of deltaA and deltaD in the hair cells in no isthmus mutants. Analysis of deltaA(dx2/dx2); no isthmus double mutants showed that no isthmus suppresses the deltaA(dx2) phenotype, probably by reducing levels of the dominant-negative mutant protein. This interpretation was supported by analysis of T(msxB)(b220), a deletion that removes the deltaA locus. Reducing the dose of deltaA(dx2) by generating deltaA(dx2)/T(msxB)(b220 )trans-heterozygotes weakens the neurogenic effects of deltaA(dx2), whereas T(msxB)(b220) enhances the neurogenic defects of no isthmus. mind bomb, another strong neurogenic mutation that may disrupt reception of Delta signals, causes a 10-fold increase in hair cell production and is epistatic to both no isthmus and deltaA(dx2). These data indicate that deltaA expressed by hair cells normally prevents adjacent cells from adopting the same cell fate, and that pax2.1 is required for normal levels of Delta-mediated lateral inhibition.

  4. The division of attention and the human auditory evoked potential

    NASA Technical Reports Server (NTRS)

    Hink, R. F.; Van Voorhis, S. T.; Hillyard, S. A.; Smith, T. S.

    1977-01-01

    The sensitivity of the scalp-recorded, auditory evoked potential to selective attention was examined while subjects responded to stimuli presented to one ear (focused attention) and to both ears (divided attention). The amplitude of the N1 component was found to be largest to stimuli in the ear upon which attention was to be focused, smallest to stimuli in the ear to be ignored, and intermediate to stimuli in both ears when attention was divided. The results are interpreted as supporting a capacity model of attention.

  5. Surgical management of polyotia.

    PubMed

    Pan, Bo; Qie, Shuyan; Zhao, Yanyong; Tang, Xiaojun; Lin, Lin; Yang, Qinghua; Zhuang, Hongxing; Jiang, Haiyue

    2010-08-01

    Polyotia is an extremely rare type of congenital external ear malformation, which is defined as an accessory ear that is large enough to resemble an additional pinna. The terms 'mirror ear' or 'accessory ear' are sometime used. We present our methods in correcting this malformation and summarise the aetiology. The posterior part of the polyotia may presents with a normal ear, a constricted ear or a microtic ear. Free auricular composite tissue transplantation was used to correct the constricted ear. Ear reconstruction was applied in cases of microtia. The anterior auricle was mainly used to form the tragus. 7 cases polyotia were treated between 2004 and 2008. After free auricular composite tissue transplantation the size of the constricted ear and the contralateral ear was similar. In microtia cases the reconstructed ears were natural looking and had a satisfactory three-dimensional contour. The extra tissue of the anterior ear was excised and the tragus was reconstructed. Through operative intervention tailored to the individual case natural-looking and symmetric ears were acquired. The aetiology of polyotia probably relates to abnormal migration of neural crest cell. Copyright 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. [Facial nerve monitoring during middle ear surgery: Results of a French survey].

    PubMed

    Mazzaschi, O; Juvanon, J-M; Mondain, M; Lavieile, J-P; Ayache, D

    2014-01-01

    Facial nerve injury is a rare complication of middle ear surgery. To date there is no widely accepted consensus on the use of intraoperative facial nerve monitoring during middle ear surgery, whereas its use has been proved as a valuable adjunct in neurotologic surgery. The purpose of our study was to identify introperative facial nerve monitoring practice patterns in France for middle ear surgery. A 19-item survey has been made up by three experienced otologists under the auspices of the French Otology and Neurotology Association. With the support of the French Society of Otolaryngology--Head and Neck Surgery, the survey was electronically sent by email to 1249 practicing ENT with a valid email address. Answers were analyzed two months later. Among 1249 email sent, 299 were opened (24%) and 83 answers were collected (6,6%). Of the respondents, 66% had access to intraoperative facial nerve monitoring. Otolaryngologists involved in academic setting were influenced by their teaching duty in 27%. Intraoperative facial nerve monitoring should not be required for stapes surgery, ossiculoplasty, myringoplasty for, respectively, 92%, 93 % and 98% of the respondents. In cochlear implantation, 78% of ear surgeons used facial nerve monitoring. Answers were more controversial for chronic ear surgery, ear atresia and middle ear implant. Revision surgery and CT scan can influence answers. Despite a low response rate, results of this national survey revealed interesting findings. For most of the respondents, intraoperative facial nerve monitoring was not indicated in stapes surgery, myringoplasty and ossiculoplasty. The use of intraoperative facial nerve monitoring for cochlear implantation was supported by the majority of respondents. Variations in response rate were more significant for chronic ear surgery, including middle ear cholesteatoma, and for ear atresia surgery.

  7. Benefits to Speech Perception in Noise From the Binaural Integration of Electric and Acoustic Signals in Simulated Unilateral Deafness

    PubMed Central

    Ma, Ning; Morris, Saffron; Kitterick, Pádraig Thomas

    2016-01-01

    Objectives: This study used vocoder simulations with normal-hearing (NH) listeners to (1) measure their ability to integrate speech information from an NH ear and a simulated cochlear implant (CI), and (2) investigate whether binaural integration is disrupted by a mismatch in the delivery of spectral information between the ears arising from a misalignment in the mapping of frequency to place. Design: Eight NH volunteers participated in the study and listened to sentences embedded in background noise via headphones. Stimuli presented to the left ear were unprocessed. Stimuli presented to the right ear (referred to as the CI-simulation ear) were processed using an eight-channel noise vocoder with one of the three processing strategies. An Ideal strategy simulated a frequency-to-place map across all channels that matched the delivery of spectral information between the ears. A Realistic strategy created a misalignment in the mapping of frequency to place in the CI-simulation ear where the size of the mismatch between the ears varied across channels. Finally, a Shifted strategy imposed a similar degree of misalignment in all channels, resulting in consistent mismatch between the ears across frequency. The ability to report key words in sentences was assessed under monaural and binaural listening conditions and at signal to noise ratios (SNRs) established by estimating speech-reception thresholds in each ear alone. The SNRs ensured that the monaural performance of the left ear never exceeded that of the CI-simulation ear. The advantages of binaural integration were calculated by comparing binaural performance with monaural performance using the CI-simulation ear alone. Thus, these advantages reflected the additional use of the experimentally constrained left ear and were not attributable to better-ear listening. Results: Binaural performance was as accurate as, or more accurate than, monaural performance with the CI-simulation ear alone. When both ears supported a similar level of monaural performance (50%), binaural integration advantages were found regardless of whether a mismatch was simulated or not. When the CI-simulation ear supported a superior level of monaural performance (71%), evidence of binaural integration was absent when a mismatch was simulated using both the Realistic and the Ideal processing strategies. This absence of integration could not be accounted for by ceiling effects or by changes in SNR. Conclusions: If generalizable to unilaterally deaf CI users, the results of the current simulation study would suggest that benefits to speech perception in noise can be obtained by integrating information from an implanted ear and an NH ear. A mismatch in the delivery of spectral information between the ears due to a misalignment in the mapping of frequency to place may disrupt binaural integration in situations where both ears cannot support a similar level of monaural speech understanding. Previous studies that have measured the speech perception of unilaterally deaf individuals after CI but with nonindividualized frequency-to-electrode allocations may therefore have underestimated the potential benefits of providing binaural hearing. However, it remains unclear whether the size and nature of the potential incremental benefits from individualized allocations are sufficient to justify the time and resources required to derive them based on cochlear imaging or pitch-matching tasks. PMID:27116049

  8. Benefits to Speech Perception in Noise From the Binaural Integration of Electric and Acoustic Signals in Simulated Unilateral Deafness.

    PubMed

    Ma, Ning; Morris, Saffron; Kitterick, Pádraig Thomas

    2016-01-01

    This study used vocoder simulations with normal-hearing (NH) listeners to (1) measure their ability to integrate speech information from an NH ear and a simulated cochlear implant (CI), and (2) investigate whether binaural integration is disrupted by a mismatch in the delivery of spectral information between the ears arising from a misalignment in the mapping of frequency to place. Eight NH volunteers participated in the study and listened to sentences embedded in background noise via headphones. Stimuli presented to the left ear were unprocessed. Stimuli presented to the right ear (referred to as the CI-simulation ear) were processed using an eight-channel noise vocoder with one of the three processing strategies. An Ideal strategy simulated a frequency-to-place map across all channels that matched the delivery of spectral information between the ears. A Realistic strategy created a misalignment in the mapping of frequency to place in the CI-simulation ear where the size of the mismatch between the ears varied across channels. Finally, a Shifted strategy imposed a similar degree of misalignment in all channels, resulting in consistent mismatch between the ears across frequency. The ability to report key words in sentences was assessed under monaural and binaural listening conditions and at signal to noise ratios (SNRs) established by estimating speech-reception thresholds in each ear alone. The SNRs ensured that the monaural performance of the left ear never exceeded that of the CI-simulation ear. The advantages of binaural integration were calculated by comparing binaural performance with monaural performance using the CI-simulation ear alone. Thus, these advantages reflected the additional use of the experimentally constrained left ear and were not attributable to better-ear listening. Binaural performance was as accurate as, or more accurate than, monaural performance with the CI-simulation ear alone. When both ears supported a similar level of monaural performance (50%), binaural integration advantages were found regardless of whether a mismatch was simulated or not. When the CI-simulation ear supported a superior level of monaural performance (71%), evidence of binaural integration was absent when a mismatch was simulated using both the Realistic and the Ideal processing strategies. This absence of integration could not be accounted for by ceiling effects or by changes in SNR. If generalizable to unilaterally deaf CI users, the results of the current simulation study would suggest that benefits to speech perception in noise can be obtained by integrating information from an implanted ear and an NH ear. A mismatch in the delivery of spectral information between the ears due to a misalignment in the mapping of frequency to place may disrupt binaural integration in situations where both ears cannot support a similar level of monaural speech understanding. Previous studies that have measured the speech perception of unilaterally deaf individuals after CI but with nonindividualized frequency-to-electrode allocations may therefore have underestimated the potential benefits of providing binaural hearing. However, it remains unclear whether the size and nature of the potential incremental benefits from individualized allocations are sufficient to justify the time and resources required to derive them based on cochlear imaging or pitch-matching tasks.

  9. 3D Printed Bionic Ears

    PubMed Central

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  10. Malformation of stria vascularis in the developing inner ear of the German waltzing guinea pig.

    PubMed

    Jin, Zhe; Mannström, Paula; Järlebark, Leif; Ulfendahl, Mats

    2007-05-01

    Auditory function and cochlear morphology have previously been described in the postnatal German waltzing guinea pig, a strain with recessive deafness. In the present study, cochlear histopathology was further investigated in the inner ear of the developing German waltzing guinea pig (gw/gw). The lumen of the cochlear duct diminished progressively from embryonic day (E) 35 to E45 and was absent at E50 because of the complete collapse of Reissner's membrane onto the hearing organ. The embryonic stria vascularis, consisting of a simple epithelium, failed to transform into the complex trilaminar tissue seen in normal animals and displayed signs of degeneration. Subsequent degeneration of the sensory epithelium was observed from E50 and onwards. Defective and insufficient numbers of melanocytes were observed in the developing gw/gw stria vascularis. A gene involved in cochlear melanocyte development, Pax3, was markedly reduced in lateral wall tissue of the cochlea of both E40 and adult gw/gw individuals, whereas its expression was normal in the skin and diaphragm muscle of adult gw/gw animals. The Pax3 gene may thus be involved in the pathological process but is unlikely to be the primary mutated gene in the German waltzing guinea pig. TUNEL assay showed no signs of apoptotic cell death in the developing stria vascularis of this type of guinea pig. Thus, malformation of the stria vascularis appears to be the primary defect in the inner ear of the German waltzing guinea pig. Defective and insufficient numbers of melanocytes might migrate to the developing stria vascularis but fail to provide the proper support for the subsequent development of marginal and basal cells, thereby leading to stria vascularis malformation and dysfunction in the inner ear of the German waltzing guinea pig.

  11. Inner ear symptoms and disease: Pathophysiological understanding and therapeutic options

    PubMed Central

    Ciuman, Raphael R.

    2013-01-01

    In recent years, huge advances have taken place in understanding of inner ear pathophysiology causing sensorineural hearing loss, tinnitus, and vertigo. Advances in understanding comprise biochemical and physiological research of stimulus perception and conduction, inner ear homeostasis, and hereditary diseases with underlying genetics. This review describes and tabulates the various causes of inner ear disease and defines inner ear and non-inner ear causes of hearing loss, tinnitus, and vertigo. The aim of this review was to comprehensively breakdown this field of otorhinolaryngology for specialists and non-specialists and to discuss current therapeutic options in distinct diseases and promising research for future therapies, especially pharmaceutic, genetic, or stem cell therapy. PMID:24362017

  12. Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin

    PubMed Central

    Vlasits, Anna L.; Simon, Julian A.; Raible, David W.; Rubel, Edwin W; Owens, Kelly N.

    2012-01-01

    Loss of mechanosensory hair cells in the inner ear accounts for many hearing loss and balance disorders. Several beneficial pharmaceutical drugs cause hair cell death as a side effect. These include aminoglycoside antibiotics, such as neomycin, kanamycin and gentamicin, and several cancer chemotherapy drugs, such as cisplatin. Discovering new compounds that protect mammalian hair cells from toxic insults is experimentally difficult because of the inaccessibility of the inner ear. We used the zebrafish lateral line sensory system as an in vivo screening platform to survey a library of FDA-approved pharmaceuticals for compounds that protect hair cells from neomycin, gentamicin, kanamycin and cisplatin. Ten compounds were identified that provide protection from at least two of the four toxins. The resulting compounds fall into several drug classes, including serotonin and dopamine-modulating drugs, adrenergic receptor ligands, and estrogen receptor modulators. The protective compounds show different effects against the different toxins, supporting the idea that each toxin causes hair cell death by distinct, but partially overlapping, mechanisms. Furthermore, some compounds from the same drug classes had different protective properties, suggesting that they might not prevent hair cell death by their known target mechanisms. Some protective compounds blocked gentamicin uptake into hair cells, suggesting that they may block mechanotransduction or other routes of entry. The protective compounds identified in our screen will provide a starting point for studies in mammals as well as further research discovering the cellular signaling pathways that trigger hair cell death. PMID:22967486

  13. Ear fibroblasts derived from Taiwan yellow cattle are more heat resistant than those from Holstein cattle.

    PubMed

    Wu, Hung-Yi; Peng, Shao-Yu; Li, Hung; Lee, Jai-Wei; Kesorn, Piyawit; Wu, Hsi-Hsun; Ju, Jyh-Cherng; Shen, Perng-Chih

    2017-05-01

    The objective of this study was to compare the thermotolerances of ear fibroblasts derived from Holstein (H) and Taiwan yellow cattle (Y) and their apoptosis-related protein expressions with (1, 3, 6, 12, and 24h) or without heat shock treatment. The results showed that the vaginal temperatures of Y (38.4-38.5°C) were (P<0.05) lower than that of H (38.8°C) during the hot season. The apoptotic rates of ear fibroblasts derived from Y (6h: 1.1%; 12h: 1.6%; 24h: 2.6%) were lower (P<0.05) than those of cells derived from H (6h: 1.8%; 12h: 4.0%; 24h: 6.9%), respectively, after heat shock (42°C). The expression level of apoptosis inducing factor (AIF) in ear fibroblasts derived from H was higher (P<0.05) than those derived from Y after the heat shock treatment for 6h and 12h, respectively. The level of cytochrome c of ear fibroblasts derived from H was higher (P<0.05) than those derived from Y after the heat shock treatment for 1-12h, respectively. The abundances of Caspase-3, Caspase-8 and Caspase-9 of ear fibroblasts derived from H were higher (P<0.05) than those of cells derived from Y after 12h and 24h of heat shock, respectively; the Bcl-2/Bax ratios of ear fibroblasts derived from H were lower (P<0.05) than those from Y-derived fibroblasts after heated for 1-24h. The expression level of HSP-70 of Y-derived ear fibroblasts was also higher (P<0.05) than that from H after the same duration of heat shock treatments. Taken together, the thermotolerance of ear fibroblasts derived from Taiwan yellow cattle was better than that of cells derived from Holstein cattle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Signatures from Tissue-specific MPSS Libraries Identify Transcripts Preferentially Expressed in the Mouse Inner Ear

    PubMed Central

    Peters, Linda M.; Belyantseva, Inna A.; Lagziel, Ayala; Battey, James F.; Friedman, Thomas B.; Morell, Robert J.

    2007-01-01

    Specialization in cell function and morphology is influenced by the differential expression of mRNAs, many of which are expressed at low abundance and restricted to certain cell types. Detecting such transcripts in cDNA libraries may require sequencing millions of clones. Massively parallel signature sequencing (MPSS) is well-suited for identifying transcripts that are expressed in discrete cell types and in low abundance. We have made MPSS libraries from microdissections of three inner ear tissues. By comparing these MPSS libraries to those of 87 other tissues included in the Mouse Reference Transcriptome (MRT) online resource, we have identified genes that are highly enriched in, or specific to, the inner ear. We show by RT-PCR and in situ hybridization that signatures unique to the inner ear libraries identify transcripts with highly specific cell-type localizations. These transcripts serve to illustrate the utility of a resource that is available to the research community. Utilization of these resources will increase the number of known transcription units and expand our knowledge of the tissue-specific regulation of the transcriptome. PMID:17049805

  15. [Research progress of Lgr5-positive stem cells in the formation of organoid in 3D culture].

    PubMed

    He, Q Q; Li, A; Wang, M H; Gao, X

    2018-06-07

    Stem cell is critical to regeneration of tissue or organ of human. How to promote repair or regeneration in the tissues/organ using its pluripotency is always an important issue. Lgr5-possitive cell is one type of the stem cell-like cells capable of pluripotent differentiation in various tissues/organs of both humans and mice. Current study showed that single or small amount Lgr5-possitive stem cells can grow and form a plurality of organs in 3D culture system, and some organs can present similar biological and physiological properties with the progenitor they were derived. These studies provided new insight into future orientation, for example, Lgr5-possitive inner ear cells were confirmed as inner ear pluripotent cells population, the experiences obtained from organoid studies of Lgr5-possitive cells have certainly showed potential in the future study of inner ear stem cells. This review will focus on the recent progress associated with Lgr 5-positive stem cells forming organoids in the 3D culture.

  16. Functional evaluation of a cell replacement therapy in the inner ear

    PubMed Central

    Hu, Zhengqing; Ulfendahl, Mats; Prieskorn, Diane M.; Olivius, N. Petri; Miller, Josef M.

    2015-01-01

    Hypothesis Cell replacement therapy in the inner ear will contribute to the functional recovery of hearing loss. Background Cell replacement therapy is a potentially powerful approach to replace degenerated or severely damaged spiral ganglion neurons. This study aimed at stimulating the neurite outgrowth of the implanted neurons and enhancing the potential therapeutic of inner ear cell implants. Methods Chronic electrical stimulation (CES) and exogenous neurotrophic growth factor (NGF) were applied to 46 guinea pigs transplanted with embryonic dorsal root ganglion (DRG) neurons four days post deafening. The animals were evaluated with the electrically-evoked auditory brain stem responses (EABRs) at experimental day 7, 11, 17, 24, 31. The animals were euthanized at day 31 and the inner ears were dissected out for immunohistochemistry investigation. Results Implanted DRG cells, identified by EGFP fluorescence and a neuronal marker, were found close to Rosenthal's canal in the adult inner ear for up to four weeks following transplantation. Extensive neurite projections clearly, greater than in non-treated animals, were observed to penetrate the bony modiolus and reach the spiral ganglion region in animals supplied with CES and/or NGF. There was, however, no significant difference in the thresholds of EABRs between DRG-transplanted-animals supplied with CES and/or NGF and DRG-transplanted animals without CES or NGF supplement. Conclusions The results suggest that CES and/or NGF can stimulate neurite outgrowth from implanted neurons, although based on EABR measurement these interventions did not induce functional connections to the central auditory pathway. Additional time or novel approaches may enhance functional responsiveness of implanted cells in the adult cochlea. PMID:19395986

  17. Junctional E-cadherin/p120-catenin Is Correlated with the Absence of Supporting Cells to Hair Cells Conversion in Postnatal Mice Cochleae.

    PubMed

    Luo, Wen-Wei; Wang, Xin-Wei; Ma, Rui; Chi, Fang-Lu; Chen, Ping; Cong, Ning; Gu, Yu-Yan; Ren, Dong-Dong; Yang, Juan-Mei

    2018-01-01

    Notch inhibition is known to generate supernumerary hair cells (HCs) at the expense of supporting cells (SCs) in the mammalian inner ear. However, inhibition of Notch activity becomes progressively less effective at inducing SC-to-HC conversion in the postnatal cochlea and balance organs as the animal ages. It has been suggested that the SC-to-HC conversion capacity is inversely correlated with E-cadherin accumulation in postnatal mammalian utricles. However, whether E-cadherin localization is linked to the SC-to-HC conversion capacity in the mammalian inner ear is poorly understood. In the present study, we treated cochleae from postnatal day 0 (P0) with the Notch signaling inhibitor DAPT and observed apparent SC-to-HC conversion along with E-cadherin/p120ctn disruption in the sensory region. In addition, the SC-to-HC conversion capacity and E-cadherin/p120ctn disorganization were robust in the apex but decreased toward the base. We further demonstrated that the ability to regenerate HCs and the disruption of E-cadherin/p120ctn concomitantly decreased with age and ceased at P7, even after extended DAPT treatments. This timing is consistent with E-cadherin/p120ctn accumulation in the postnatal cochleae. These results suggest that the decreasing capacity of SCs to transdifferentiate into HCs correlates with E-cadherin/p120ctn localization in the postnatal cochleae, which might account for the absence of SC-to-HC conversion in the mammalian cochlea.

  18. Perspectives for the treatment of sensorineural hearing loss by cellular regeneration of the inner ear.

    PubMed

    Almeida-Branco, Mario S; Cabrera, Sonia; Lopez-Escamez, Jose A

    2015-01-01

    Sensorineural hearing loss is a caused by the loss of the cochlear hair cells with the consequent deafferentation of spiral ganglion neurons. Humans do not show endogenous cellular regeneration in the inner ear and there is no exogenous therapy that allows the replacement of the damaged hair cells. Currently, treatment is based on the use of hearing aids and cochlear implants that present different outcomes, some difficulties in auditory discrimination and a limited useful life. More advanced technology is hindered by the functional capacity of the remaining spiral ganglion neurons. The latest advances with stem cell therapy and cellular reprogramming have developed several possibilities to induce endogenous regeneration or stem cell transplantation to replace damaged inner ear hair cells and restore hearing function. With further knowledge of the cellular and molecular biology of the inner ear and its embryonic development, it will be possible to use induced stem cells as in vitro models of disease and as replacement cellular therapy. Investigation in this area is focused on generating cellular therapy with clinical use for the treatment of profound sensorineural hearing loss. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  19. Hair cell regeneration in the avian auditory epithelium.

    PubMed

    Stone, Jennifer S; Cotanche, Douglas A

    2007-01-01

    Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regenerated hair cells arise from adjacent non-sensory (supporting) cells. Hair cell regeneration was initially described as a proliferative response whereby supporting cells re-enter the mitotic cycle, forming daughter cells that differentiate into either hair cells or supporting cells and thereby restore cytoarchitecture and function in the sensory epithelium. However, further analyses of the avian auditory epithelium (and amphibian vestibular epithelium) revealed a second regenerative mechanism, direct transdifferentiation, during which supporting cells change their gene expression and convert into hair cells without dividing. In the chicken auditory epithelium, these two distinct mechanisms show unique spatial and temporal patterns, suggesting they are differentially regulated. Current efforts are aimed at identifying signals that maintain supporting cells in a quiescent state or direct them to undergo direct transdifferentiation or cell division. Here, we review current knowledge about supporting cell properties and discuss candidate signaling molecules for regulating supporting cell behavior, in quiescence and after damage. While significant advances have been made in understanding regeneration in non-mammals over the last 20 years, we have yet to determine why the mammalian auditory epithelium lacks the ability to regenerate hair cells spontaneously and whether it is even capable of significant regeneration under additional circumstances. The continued study of mechanisms controlling regeneration in the avian auditory epithelium may lead to strategies for inducing significant and functional regeneration in mammals.

  20. Expression of alpha and beta subunit isoforms of Na,K-ATPase in the mouse inner ear and changes with mutations at the Wv or Sld loci.

    PubMed

    Schulte, B A; Steel, K P

    1994-07-01

    Mice homozygous for mutations at the viable dominant spotting (Wv) and Steel-dickie (Sld) loci exhibit a similar phenotype which includes deafness. The auditory dysfunction derives from failure of the stria vascularis to develop normally and to generate a high positive endocochlear potential (EP). Because strial function is driven by Na,K-ATPase its expression was investigated in inner ears of Wv/Wv and Sld/Sld mice and their wild-type littermates by immunostaining with antisera against four of the enzyme's subunit isoforms. Wild-type mice from two different genetic backgrounds showed an identical distribution of subunit isoforms among inner ear transport cells. Several epithelial cell types coexpressed the alpha 1 and beta 1 subunits. Vestibular dark cells showed no reactivity for beta 1 but expressed abundant beta 2, whereas, strial marginal cells stained strongly for both beta isoforms. The only qualitative difference between mutant and wild-type mice was the absence of beta 1 subunit in marginal cells of the mutant's stria. However, it is unlikely that this difference accounts for failure of mutants to generate a high EP because the beta 1 subunit is not present in the stria vascularis of either rats or gerbils with normal EP values. Strong immunostaining for Na,K-ATPase in lateral wall fibrocytes of normal mice along with diminished immunoreactivity in the mutants supports the concept that these strategically located transport fibrocytes actively resorb K+ leaked across Reissner's membrane into scala vestibuli or effluxed from hair cells and nerves into scala tympani. It is further speculated that the resorbed K+ normally is siphoned down its concentration gradient into the intrastrial space through gap junctions between fibrocytes and strial basal and intermediate cells where it is recycled back to endolymph via marginal cells. Thus, failure of mutants to generate a positive EP could be explained by the absence of intermediate cells which may form the final link in the conduit for moving K+ from perilymph to the intrastrial compartment.

  1. Conditional Deletion of N-Myc Disrupts Neurosensory and Non-sensory Development of the Ear

    PubMed Central

    Kopecky, Benjamin; Santi, Peter; Johnson, Shane; Schmitz, Heather; Fritzsch, Bernd

    2011-01-01

    Ear development requires interactions of transcription factors for proliferation and differentiation. The proto-oncogene N-Myc is a member of the Myc family that regulate proliferation. To investigate the function of N-Myc, we conditionally knocked out N-Myc in the ear using Tg(Pax2-Cre) and Foxg 1KiCre. N-Myc CKOs had reduced growth of the ear, abnormal morphology including fused sensory epithelia, disrupted histology, and disorganized neuronal innervation. Using Thin-Sheet Laser Imaging Microscopy (TSLIM), 3D reconstruction and quantification of the cochlea revealed a greater than fifty percent size reduction. Immunochemistry and in situ hybridization showed a gravistatic organ-cochlear fusion and a “circularized” apex with no clear inner and outer hair cells. Furthermore, the abnormally developed cochlea had cross innervation from the vestibular ganglion near the basal tip. These findings are put in the context of the possible functional relationship of N-Myc with a number of other cell proliferative and fate determining genes during ear development. PMID:21448975

  2. Acoustical transmission-line model of the middle-ear cavities and mastoid air cells.

    PubMed

    Keefe, Douglas H

    2015-04-01

    An acoustical transmission line model of the middle-ear cavities and mastoid air cell system (MACS) was constructed for the adult human middle ear with normal function. The air-filled cavities comprised the tympanic cavity, aditus, antrum, and MACS. A binary symmetrical airway branching model of the MACS was constructed using an optimization procedure to match the average total volume and surface area of human temporal bones. The acoustical input impedance of the MACS was calculated using a recursive procedure, and used to predict the input impedance of the middle-ear cavities at the location of the tympanic membrane. The model also calculated the ratio of the acoustical pressure in the antrum to the pressure in the middle-ear cavities at the location of the tympanic membrane. The predicted responses were sensitive to the magnitude of the viscothermal losses within the MACS. These predicted input impedance and pressure ratio functions explained the presence of multiple resonances reported in published data, which were not explained by existing MACS models.

  3. Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection

    PubMed Central

    Zhang, Jianzhi; Dyer, Kimberly D.; Rosenberg, Helene F.

    2000-01-01

    The mammalian RNase A superfamily comprises a diverse array of ribonucleolytic proteins that have a variety of biochemical activities and physiological functions. Two rapidly evolving RNases of higher primates are of particular interest as they are major secretory proteins of eosinophilic leukocytes and have been found to possess anti-pathogen activities in vitro. To understand how these RNases acquired this function during evolution and to develop animal models for the study of their functions in vivo, it is necessary to investigate these genes in many species. Here, we report the sequences of 38 functional genes and 23 pseudogenes of the eosinophil-associated RNase (EAR) family from 5 rodent species. Our phylogenetic analysis of these genes showed a clear pattern of evolution by a rapid birth-and-death process and gene sorting, a process characterized by rapid gene duplication and deactivation occurring differentially among lineages. This process ultimately generates distinct or only partially overlapping inventories of the genes, even in closely related species. Positive Darwinian selection also contributed to the diversification of these EAR genes. The striking similarity between the evolutionary patterns of the EAR genes and those of the major histocompatibility complex, immunoglobulin, and T cell receptor genes stands in strong support of the hypothesis that host-defense and generation of diversity are among the primary physiological function of the rodent EARs. The discovery of a large number of divergent EARs suggests the intriguing possibility that these proteins have been specifically tailored to fight against distinct rodent pathogens. PMID:10758160

  4. Ascorbic acid reduces noise-induced nitric oxide production in the guinea pig ear.

    PubMed

    Heinrich, Ulf-Rüdiger; Fischer, Ilka; Brieger, Jürgen; Rümelin, Andreas; Schmidtmann, Irene; Li, Huige; Mann, Wolf J; Helling, Kai

    2008-05-01

    Noise-induced hearing loss can be caused, among other causes, by increased nitric oxide (NO) production in the inner ear leading to nitroactive stress and cell destruction. Some studies in the literature suggest that the degree of hearing loss (HL) could be reduced in an animal model through ascorbic acid supplementation. To identify the effect of ascorbic acid on tissue-dependent NO content in the inner ear of the guinea pig, we determined the local NO production in the organ of Corti and the lateral wall separately 6 hours after noise exposure. Prospective animal study in guinea pigs. Over a period of 7 days, male guinea pigs were supplied with minimum (25 mg/kg body weight/day) and maximum (525 mg/kg body weight/day) ascorbic acid doses, and afterwards exposed to noise (90 dB sound pressure level for 1 hour). The acoustic-evoked potentials were recorded before and after noise exposure. The organ of Corti and the lateral wall were incubated differently for 6 hours in culture medium, and the degree of NO production was determined by chemiluminescence. Ascorbic acid treatment reduced the hearing threshold shift after noise exposure depending on concentration. When the maximum ascorbic acid dose was substituted, NO production was significantly reduced in the lateral wall after noise exposure and slightly reduced in the organ of Corti. Oral supplementation of the natural radical scavenger ascorbic acid reduces the NO-production rate in the inner ear in noisy conditions. This finding supports the concept of inner ear protection by ascorbic acid supplementation.

  5. The stat3/socs3a pathway is a key regulator of hair cell regeneration in zebrafish. [corrected].

    PubMed

    Liang, Jin; Wang, Dongmei; Renaud, Gabriel; Wolfsberg, Tyra G; Wilson, Alexander F; Burgess, Shawn M

    2012-08-01

    All nonmammalian vertebrates studied can regenerate inner ear mechanosensory receptors (i.e., hair cells) (Corwin and Cotanche, 1988; Lombarte et al., 1993; Baird et al., 1996), but mammals possess only a very limited capacity for regeneration after birth (Roberson and Rubel, 1994). As a result, mammals experience permanent deficiencies in hearing and balance once their inner ear hair cells are lost. The mechanisms of hair cell regeneration are poorly understood. Because the inner ear sensory epithelium is highly conserved in all vertebrates (Fritzsch et al., 2007), we chose to study hair cell regeneration mechanism in adult zebrafish, hoping the results would be transferrable to inducing hair cell regeneration in mammals. We defined the comprehensive network of genes involved in hair cell regeneration in the inner ear of adult zebrafish with the powerful transcriptional profiling technique digital gene expression, which leverages the power of next-generation sequencing ('t Hoen et al., 2008). We also identified a key pathway, stat3/socs3, and demonstrated its role in promoting hair cell regeneration through stem cell activation, cell division, and differentiation. In addition, transient pharmacological inhibition of stat3 signaling accelerated hair cell regeneration without overproducing cells. Taking other published datasets into account (Sano et al., 1999; Schebesta et al., 2006; Dierssen et al., 2008; Riehle et al., 2008; Zhu et al., 2008; Qin et al., 2009), we propose that the stat3/socs3 pathway is a key response in all tissue regeneration and thus an important therapeutic target for a broad application in tissue repair and injury healing.

  6. Ear asymmetries in middle-ear, cochlear, and brainstem responses in human infants

    PubMed Central

    Keefe, Douglas H.; Gorga, Michael P.; Jesteadt, Walt; Smith, Lynette M.

    2008-01-01

    In 2004, Sininger and Cone-Wesson examined asymmetries in the signal-to-noise ratio (SNR) of otoacoustic emissions (OAE) in infants, reporting that distortion-product (DP)OAE SNR was larger in the left ear, whereas transient-evoked (TE)OAE SNR was larger in the right. They proposed that cochlear and brainstem asymmetries facilitate development of brain-hemispheric specialization for sound processing. Similarly, in 2006 Sininger and Cone-Wesson described ear asymmetries mainly favoring the right ear in infant auditory brainstem responses (ABRs). The present study analyzed 2640 infant responses to further explore these effects. Ear differences in OAE SNR, signal, and noise were evaluated separately and across frequencies (1.5, 2, 3, and 4 kHz), and ABR asymmetries were compared with cochlear asymmetries. Analyses of ear-canal reflectance and admittance showed that asymmetries in middle-ear functioning did not explain cochlear and brainstem asymmetries. Current results are consistent with earlier studies showing right-ear dominance for TEOAE and ABR. Noise levels were higher in the right ear for OAEs and ABRs, causing ear asymmetries in SNR to differ from those in signal level. No left-ear dominance for DPOAE signal was observed. These results do not support a theory that ear asymmetries in cochlear processing mimic hemispheric brain specialization for auditory processing. PMID:18345839

  7. Requirement for Jagged1-Notch2 signaling in patterning the bones of the mouse and human middle ear.

    PubMed

    Teng, Camilla S; Yen, Hai-Yun; Barske, Lindsey; Smith, Bea; Llamas, Juan; Segil, Neil; Go, John; Sanchez-Lara, Pedro A; Maxson, Robert E; Crump, J Gage

    2017-05-31

    Whereas Jagged1-Notch2 signaling is known to pattern the sensorineural components of the inner ear, its role in middle ear development has been less clear. We previously reported a role for Jagged-Notch signaling in shaping skeletal elements derived from the first two pharyngeal arches of zebrafish. Here we show a conserved requirement for Jagged1-Notch2 signaling in patterning the stapes and incus middle ear bones derived from the equivalent pharyngeal arches of mammals. Mice lacking Jagged1 or Notch2 in neural crest-derived cells (NCCs) of the pharyngeal arches display a malformed stapes. Heterozygous Jagged1 knockout mice, a model for Alagille Syndrome (AGS), also display stapes and incus defects. We find that Jagged1-Notch2 signaling functions early to pattern the stapes cartilage template, with stapes malformations correlating with hearing loss across all frequencies. We observe similar stapes defects and hearing loss in one patient with heterozygous JAGGED1 loss, and a diversity of conductive and sensorineural hearing loss in nearly half of AGS patients, many of which carry JAGGED1 mutations. Our findings reveal deep conservation of Jagged1-Notch2 signaling in patterning the pharyngeal arches from fish to mouse to man, despite the very different functions of their skeletal derivatives in jaw support and sound transduction.

  8. Responses of the ear to low frequency sounds, infrasound and wind turbines.

    PubMed

    Salt, Alec N; Hullar, Timothy E

    2010-09-01

    Infrasonic sounds are generated internally in the body (by respiration, heartbeat, coughing, etc) and by external sources, such as air conditioning systems, inside vehicles, some industrial processes and, now becoming increasingly prevalent, wind turbines. It is widely assumed that infrasound presented at an amplitude below what is audible has no influence on the ear. In this review, we consider possible ways that low frequency sounds, at levels that may or may not be heard, could influence the function of the ear. The inner ear has elaborate mechanisms to attenuate low frequency sound components before they are transmitted to the brain. The auditory portion of the ear, the cochlea, has two types of sensory cells, inner hair cells (IHC) and outer hair cells (OHC), of which the IHC are coupled to the afferent fibers that transmit "hearing" to the brain. The sensory stereocilia ("hairs") on the IHC are "fluid coupled" to mechanical stimuli, so their responses depend on stimulus velocity and their sensitivity decreases as sound frequency is lowered. In contrast, the OHC are directly coupled to mechanical stimuli, so their input remains greater than for IHC at low frequencies. At very low frequencies the OHC are stimulated by sounds at levels below those that are heard. Although the hair cells in other sensory structures such as the saccule may be tuned to infrasonic frequencies, auditory stimulus coupling to these structures is inefficient so that they are unlikely to be influenced by airborne infrasound. Structures that are involved in endolymph volume regulation are also known to be influenced by infrasound, but their sensitivity is also thought to be low. There are, however, abnormal states in which the ear becomes hypersensitive to infrasound. In most cases, the inner ear's responses to infrasound can be considered normal, but they could be associated with unfamiliar sensations or subtle changes in physiology. This raises the possibility that exposure to the infrasound component of wind turbine noise could influence the physiology of the ear. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Regeneration and replacement in the vertebrate inner ear.

    PubMed

    Matsui, Jonathan I; Parker, Mark A; Ryals, Brenda M; Cotanche, Douglas A

    2005-10-01

    Deafness affects more than 40 million people in the UK and the USA, and many more world-wide. The primary cause of hearing loss is damage to or death of the sensory receptor cells in the inner ear, the hair cells. Birds can readily regenerate their cochlear hair cells but the mammalian cochlea has shown no ability to regenerate after damage. Current research efforts are focusing on gene manipulation, gene therapy and stem cell transplantation for repairing or replacing damaged mammalian cochlear hair cells, which could lead to therapies for treating deafness in humans.

  10. Advances in translational inner ear stem cell research.

    PubMed

    Warnecke, Athanasia; Mellott, Adam J; Römer, Ariane; Lenarz, Thomas; Staecker, Hinrich

    2017-09-01

    Stem cell research is expanding our understanding of developmental biology as well as promising the development of new therapies for a range of different diseases. Within hearing research, the use of stem cells has focused mainly on cell replacement. Stem cells however have a broad range of other potential applications that are just beginning to be explored in the ear. Mesenchymal stem cells are an adult derived stem cell population that have been shown to produce growth factors, modulate the immune system and can differentiate into a wide variety of tissue types. Potential advantages of mesenchymal/adult stem cells are that they have no ethical constraints on their use. However, appropriate regulatory oversight seems necessary in order to protect patients from side effects. Disadvantages may be the lack of efficacy in many preclinical studies. But if proven safe and efficacious, they are easily translatable to clinical trials. The current review will focus on the potential application on mesenchymal stem cells for the treatment of inner ear disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Modulation of experimental atopic dermatitis by topical application of Gami-Cheongyeul-Sodok-Eum

    PubMed Central

    2013-01-01

    Background Gami-Cheongyeul-Sodok-Eum (GCSE), an herbal formula of traditional Korean medicine, comprises nine herb components. GCSE has various biological activities such as anti-inflammatory, anti-bacterial and anti-viral activities. However, it is still unclear whether GCSE has any immunomodulatory effect on atopic dermatitis (AD). Methods GCSE was treated to primary B cells and CD4+ T cells isolated from atopic mice to compare its inhibitory effects on IgE secretion and cytokine expression. Experimental AD was established by alternative treatment of 2, 4-dinitrochlorobenzene (DNCB) and house dust mite extract to the ears of BALB/c mice. GCSE was topically applied to ears of atopic mice every day for 3 weeks. AD progression was analyzed by measuring ear thickness, serum IgE level, histological examination of ear tissue by H&E staining and cytokine profile of CD4+ T cells and CD19+ B cells by real time PCR and ELISA. Results Treatment of GCSE significantly reduced IgE production and expression of AD associated pathogenic cytokines such as IL-4, IL-5, IL-10, IL-13, IL-17, TNF-α, and IFN-γ by lymphocytes isolated from AD-induced mice. Topical application of GCSE on the ears of AD-induced mice significantly reduced ear thickness, clinical score and lymphocytes infiltration to ears as compared to control group. GCSE treatment also reduced serum IgE level and the levels of major pathogenic cytokines such as IL-4, IL-5, IL-10, IL-13 and IL-17. In addition, GCSE treatment significantly increased Foxp3 expression level. Conclusions The protective effect of GCSE in experimental AD is mediated by inhibition of IgE production, by reduction in the levels of pathogenic cytokines and by induction of Foxp3, all of which are suggesting the beneficial effect of GCSE on modulating atopic dermatitis. PMID:24499290

  12. Group Playing by Ear in Higher Education: The Processes That Support Imitation, Invention and Group Improvisation

    ERIC Educational Resources Information Center

    Varvarigou, Maria

    2017-01-01

    This article explores how group playing by ear (GEP) through imitation of recorded material and opportunities for inventive work during peer interaction was used to support first year undergraduate western classical music students' aural, group creativity and improvisation skills. The framework that emerged from the analysis of the data describes…

  13. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kyoung Ho; Yeo, Sang Won, E-mail: swyeo@catholic.ac.kr; Troy, Frederic A., E-mail: fatroy@ucdavis.edu

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC withmore » epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.« less

  14. Fibroblast cell line establishment, cryopreservation and interspecies embryos reconstruction in red panda ( Ailurus fulgens).

    PubMed

    Tao, Yong; Liu, Jianming; Zhang, Yunhai; Zhang, Meiling; Fang, Junshun; Han, Wei; Zhang, Zhizhong; Liu, Ya; Ding, Jianping; Zhang, Xiaorong

    2009-05-01

    In evolution, the red panda (Ailurus fulgens) plays a pivotal role in the higher level phylogeny of arctoides carnivore mammals. The red panda inhabits certain Asian countries only and its numbers are decreasing. Therefore, the development of feasible ways to preserve this species is necessary. Genetic resource cryopreservation and somatic cell nuclear transfer (SCNT) have been used extensively to rescue this endangered species. The present study describes the establishment, for the first time, of a red panda ear fibroblast cell line, which was then cryopreserved, thawed and cultured. Through micromanipulation, interspecies embryos were reconstructed using the cryopreserved-thawed fibroblasts of the red panda as the donor and rabbit oocytes as recipients. A total of 194 enucleated rabbit oocytes were reconstructed with red panda ear fibroblasts; enucleated oocytes were activated without fusion as the control. The results show that the fibroblast cell line was established successfully by tissue culture and then cryopreserved in liquid nitrogen. Supplementation with 20% fetal bovine serum and 8% dimethyl sulphoxide in basic medium facilitated the cryopreservation. The interspecies embryos were successfully reconstructed. The cleavage, morulae and blastocyst rates after in vitro culture were 71, 47 and 23% (31/194), respectively. This study indicated that a somatic cell line could be established and cryopreserved from red panda and that rabbit cytoplast supports mitotic cleavage of the red panda karyoplasts and is capable of reprogramming the nucleus to achieve blastocysts.

  15. NOD2/RICK-Dependent β-Defensin 2 Regulation Is Protective for Nontypeable Haemophilus influenzae-Induced Middle Ear Infection

    PubMed Central

    Woo, Jeong-Im; Oh, Sejo; Webster, Paul; Lee, Yoo Jin; Lim, David J.; Moon, Sung K.

    2014-01-01

    Middle ear infection, otitis media (OM), is clinically important due to the high incidence in children and its impact on the development of language and motor coordination. Previously, we have demonstrated that the human middle ear epithelial cells up-regulate β-defensin 2, a model innate immune molecule, in response to nontypeable Haemophilus influenzae (NTHi), the most common OM pathogen, via TLR2 signaling. NTHi does internalize into the epithelial cells, but its intracellular trafficking and host responses to the internalized NTHi are poorly understood. Here we aimed to determine a role of cytoplasmic pathogen recognition receptors in NTHi-induced β-defensin 2 regulation and NTHi clearance from the middle ear. Notably, we observed that the internalized NTHi is able to exist freely in the cytoplasm of the human epithelial cells after rupturing the surrounding membrane. The human middle ear epithelial cells inhibited NTHi-induced β-defensin 2 production by NOD2 silencing but augmented it by NOD2 over-expression. NTHi-induced β-defensin 2 up-regulation was attenuated by cytochalasin D, an inhibitor of actin polymerization and was enhanced by α-hemolysin, a pore-forming toxin. NOD2 silencing was found to block α-hemolysin-mediated enhancement of NTHi-induced β-defensin 2 up-regulation. NOD2 deficiency appeared to reduce inflammatory reactions in response to intratympanic inoculation of NTHi and inhibit NTHi clearance from the middle ear. Taken together, our findings suggest that a cytoplasmic release of internalized NTHi is involved in the pathogenesis of NTHi infections, and NOD2-mediated β-defensin 2 regulation contributes to the protection against NTHi-induced otitis media. PMID:24625812

  16. Ototoxicity of boric acid powder in a rat animal model.

    PubMed

    Salihoglu, Murat; Dogru, Salim; Cesmeci, Enver; Caliskan, Halil; Kurt, Onuralp; Kuçukodaci, Zafer; Gungor, Atila

    2017-04-22

    Boric acid, which has antiseptic and acidic properties, is used to treat external and middle ear infections. However, we have not found any literature about the effect of boric acid powder on middle ear mucosa and inner ear. The purpose of this study is to investigate possible ototoxic effects of boric acid powder (BAP) on cochlear outer hair cell function and histological changes in middle ear mucosa in a rat animal model. Twenty healthy, mature Wistar albino rats were used in this study. The rats were divided into two groups, Group A and Group B, each of which consisted of 10 rats. Initially, the animals in each group underwent distortion product otoacoustic emissions (DPOAE) testing of their right and left ears. After the first DPOAE test, a surgical microscope was used to make a small perforation in both ears of the rats in each group, and a second DPOAE test was used to measure both ears in all of the rats. BAP was applied to the right middle ear of the rats using tympanic membrane perforation, and the DPOAEs were measured immediately after the BAP application. The histological changes and DPOAEs were evaluated three days later in Group A and 40 days later in Group B. No significant differences were found at all of the DPOAE frequencies. In Group A, mild inflammation of the middle ear mucosa was found on the third day after BAP application. In Group B, BAP caused mild inflammatory changes on the 40th day, which declined over time. Those changes did not lead to significant fibrosis within the mucosa. In rats, BAP causes mild inflammation in middle ear mucosa and it has no ototoxic effects on cochlear outer hair cell function in the inner ear of rats. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  17. Molecular evolution of the vertebrate mechanosensory cell and ear.

    PubMed

    Fritzsch, Bernd; Beisel, Kirk W; Pauley, Sarah; Soukup, Garrett

    2007-01-01

    The molecular basis of mechanosensation, mechanosensory cell development and mechanosensory organ development is reviewed with an emphasis on its evolution. In contrast to eye evolution and development, which apparently modified a genetic program through intercalation of genes between the master control genes on the top (Pax6, Eya1, Six1) of the hierarchy and the structural genes (rhodopsin) at the bottom, the as yet molecularly unknown mechanosensory channel precludes such a firm conclusion for mechanosensors. However, recent years have seen the identification of several structural genes which are involved in mechanosensory tethering and several transcription factors controlling mechanosensory cell and organ development; these warrant the interpretation of available data in very much the same fashion as for eye evolution: molecular homology combined with potential morphological parallelism. This assertion of molecular homology is strongly supported by recent findings of a highly conserved set of microRNAs that appear to be associated with mechanosensory cell development across phyla. The conservation of transcription factors and their regulators fits very well to the known or presumed mechanosensory specializations which can be mostly grouped as variations of a common cellular theme. Given the widespread distribution of the molecular ability to form mechanosensory cells, it comes as no surprise that structurally different mechanosensory organs evolved in different phyla, presenting a variation of a common theme specified by a conserved set of transcription factors in their cellular development. Within vertebrates and arthropods, some mechanosensory organs evolved into auditory organs, greatly increasing sensitivity to sound through modifications of accessory structures to direct sound to the specific sensory epithelia. However, while great attention has been paid to the evolution of these accessory structures in vertebrate fossils, comparatively less attention has been spent on the evolution of the inner ear and the central auditory system. Recent advances in our molecular understanding of ear and brain development provide novel avenues to this neglected aspect of auditory neurosensory evolution.

  18. The role of Foxi family transcription factors in otic placode and neural crest cell development

    PubMed Central

    Edlund, Renée K.; Birol, Onur; Groves, Andrew K.

    2015-01-01

    The mammalian outer, middle and inner ears have different embryonic origins and evolved at different times in the vertebrate lineage. The outer ear is derived from first and second branchial arch ectoderm and mesoderm, the middle ear ossicles are derived from neural crest mesenchymal cells that invade the first and second branchial arches, whereas the inner ear and its associated vestibule-acoustic (VIIIth) ganglion are derived from the otic placode. In this review, we discuss recent findings in the development of these structures and describe the contributions of members of a Forkhead transcription factor family, the Foxi family to their formation. Foxi transcription factors are critical for formation of the otic placode, survival of the branchial arch neural crest, and developmental remodeling of the branchial arch ectoderm. PMID:25662269

  19. Expression of macrophage migration inhibitory factor and CD74 in the inner ear and middle ear in lipopolysaccharide-induced otitis media.

    PubMed

    Ishihara, Hisashi; Kariya, Shin; Okano, Mitsuhiro; Zhao, Pengfei; Maeda, Yukihide; Nishizaki, Kazunori

    2016-10-01

    Significant expression of macrophage migration inhibitory factor and its receptor (CD74) was observed in both the middle ear and inner ear in experimental otitis media in mice. Modulation of macrophage migration inhibitory factor and its signaling pathway might be useful in the management of inner ear inflammation due to otitis media. Inner ear dysfunction secondary to otitis media has been reported. However, the specific mechanisms involved are not clearly understood. The aim of this study is to investigate the expression of macrophage migration inhibitory factor and CD74 in the middle ear and inner ear in lipopolysaccharide-induced otitis media. BALB/c mice received a transtympanic injection of either lipopolysaccharide or phosphate-buffered saline (PBS). The mice were sacrificed 24 h after injection, and temporal bones were processed for polymerase chain reaction (PCR) analysis, histologic examination, and immunohistochemistry. PCR examination revealed that the lipopolysaccharide-injected mice showed a significant up-regulation of macrophage migration inhibitory factor in both the middle ear and inner ear as compared with the PBS-injected control mice. The immunohistochemical study showed positive reactions for macrophage migration inhibitory factor and CD74 in infiltrating inflammatory cells, middle ear mucosa, and inner ear in the lipopolysaccharide-injected mice.

  20. Sources of DPOAEs revealed by suppression experiments, inverse fast Fourier transforms, and SFOAEs in impaired ears

    NASA Astrophysics Data System (ADS)

    Konrad-Martin, Dawn; Neely, Stephen T.; Keefe, Douglas H.; Dorn, Patricia A.; Cyr, Emily; Gorga, Michael P.

    2002-04-01

    DPOAE sources are modeled by intermodulation distortion generated near the f2 place and a reflection of this distortion near the DP place. In a previous paper, inverse fast Fourier transforms (IFFTs) of DPOAE filter functions in normal ears were consistent with this model [Konrad-Martin et al., J. Acoust. Soc. Am. 109, 2862-2879 (2001)]. In the present article, similar measurements were made in ears with specific hearing-loss configurations. It was hypothesized that hearing loss at f2 or DP frequencies would influence the relative contributions to the DPOAE from the corresponding basilar membrane places, and would affect the relative magnitudes of SFOAEs at frequencies equal to f2 and fDP. DPOAEs were measured with f2=4 kHz, f1 varied, and a suppressor near fDP. L2 was 25-55 dB SPL (L1=L2+10 dB). SFOAEs were measured at f2 and at 2.7 kHz (the average fDP produced by the f1 sweep) for stimulus levels of 20-60 dB SPL. SFOAE results supported predictions of the pattern of amplitude differences between SFOAEs at 4 and 2.7 kHz for sloping losses, but did not support predictions for the rising- and flat-loss categories. Unsuppressed IFFTs for rising losses typically had one peak. IFFTs for flat or sloping losses typically have two or more peaks; later peaks were more prominent in ears with sloping losses compared to normal ears. Specific predictions were unambiguously supported by the results for only four of ten cases, and were generally supported in two additional cases. Therefore, the relative contributions of the two DPOAE sources often were abnormal in impaired ears, but not always in the predicted manner.

  1. Relationship Between Hair Cell Loss and Hearing Loss in Fishes.

    PubMed

    Smith, Michael E

    2016-01-01

    Exposure to intense sound or ototoxic chemicals can damage the auditory hair cells of vertebrates, resulting in hearing loss. Although the relationship between such hair cell damage and auditory function is fairly established for terrestrial vertebrates, there are limited data available to understand this relationship in fishes. Although investigators have measured either the morphological damage of the inner ear or the functional deficits in the hearing of fishes, very few have directly measured both in an attempt to find a relationship between the two. Those studies that have examined both auditory hair cell damage in the inner ear and the resulting hearing loss in fishes are reviewed here. In general, there is a significant linear relationship between the number of hair cells lost and the severity of hearing threshold shifts, although this varies between species and different hair cell-damaging stimuli. After trauma to the fish ear, auditory hair cells are able to regenerate to control level densities. With this regeneration also comes a restoration of hearing. Thus there is also a significant relationship between hair cell recovery and hearing recovery in fishes.

  2. RNA analysis of inner ear cells from formalin fixed paraffin embedded (FFPE) archival human temporal bone section using laser microdissection--a technical report.

    PubMed

    Kimura, Yurika; Kubo, Sachiho; Koda, Hiroko; Shigemoto, Kazuhiro; Sawabe, Motoji; Kitamura, Ken

    2013-08-01

    Molecular analysis using archival human inner ear specimens is challenging because of the anatomical complexity, long-term fixation, and decalcification. However, this method may provide great benefit for elucidation of otological diseases. Here, we extracted mRNA for RT-PCR from tissues dissected from archival FFPE human inner ears by laser microdissection. Three human temporal bones obtained at autopsy were fixed in formalin, decalcified by EDTA, and embedded in paraffin. The samples were isolated into spiral ligaments, outer hair cells, spiral ganglion cells, and stria vascularis by laser microdissection. RNA was extracted and heat-treated in 10 mM citrate buffer to remove the formalin-derived modification. To identify the sites where COCH and SLC26A5 mRNA were expressed, semi-nested RT-PCR was performed. We also examined how long COCH mRNA could be amplified by semi-nested RT-PCR in archival temporal bone. COCH was expressed in the spiral ligament and stria vascularis. However, SLC26A5 was expressed only in outer hair cells. The maximum base length of COCH mRNA amplified by RT-PCR was 98 bp in 1 case and 123 bp in 2 cases. We detected COCH and SLC26A5 mRNA in specific structures and cells of the inner ear from archival human temporal bone. Our innovative method using laser microdissection and semi-nested RT-PCR should advance future RNA study of human inner ear diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Curcumin inhibits epigen and amphiregulin upregulated by 2,4,6-trinitrochlorobenzene associated with attenuation of skin swelling.

    PubMed

    Sakai, Hiroyasu; Sato, Ken; Sato, Fumiaki; Kai, Yuki; Mandokoro, Kazutaka; Matsumoto, Kenjiro; Kato, Shinichi; Yumoto, Tetsuro; Narita, Minoru; Chiba, Yoshihiko

    2017-08-01

    Contact dermatitis model involving repeated application of hapten is used as a tool to assess dermatitis, as characterized by thickening. Involvement of cell proliferation, elicited by repeated hapten-stimulation, in this swelling has been unclear. Curcumin is reported to reduce inflammation. We examined involvement of cell proliferation and the role of extracellular regulated kinase (ERK) in 2,4,6-trinitrochlorobenzene (TNCB) challenge-induced ear swelling. We also examined the effects of curcumin in this model. Mice were sensitized with TNCB to the abdominal skin. Then, they were challenged with TNCB to the ear three times. The ERK activation inhibitor U0126 or curcumin was applied 30 min before each TNCB challenge. TNCB challenge-induced increased epidermal cell number and dermal thickening. Gene expressions of epithelial mitogen (EPGN), amphiregulin (AREG) and heparin-binding-epidermal growth factor (HB-EGF) were increased in the ears after the last TNCB challenge. Ki-67 immunoreactivity was increased in the dermis in TNCB-challenged ears. TNCB-induced swelling was inhibited by U0126 and curcumin. Curcumin also attenuated TNCB-induced ERK phosphorylation and expression of EPGN and AREG genes. Ear swelling induced by TNCB challenge might be mediated, in part, by the EPGN- and AREG-ERK proliferation pathway and was inhibited by curcumin.

  4. T-cell lymphoma of the tympanic bulla in a feline leukemia virus-negative cat

    PubMed Central

    de Lorimier, Louis-Philippe; Alexander, Suzanne D.; Fan, Timothy M.

    2003-01-01

    This report constitutes the first description of a T-cell lymphoma of the tympanic bulla in a cat. This feline leukemia virus (FeLV)-negative cat originally presented with signs referable to middle ear disease; it deteriorated rapidly after definitive diagnosis. Lymphoma of the middle ear is extremely rare in all species. PMID:14703086

  5. Shaping sound in space: the regulation of inner ear patterning.

    PubMed

    Groves, Andrew K; Fekete, Donna M

    2012-01-01

    The inner ear is one of the most morphologically elaborate tissues in vertebrates, containing a group of mechanosensitive sensory organs that mediate hearing and balance. These organs are arranged precisely in space and contain intricately patterned sensory epithelia. Here, we review recent studies of inner ear development and patterning which reveal that multiple stages of ear development - ranging from its early induction from the embryonic ectoderm to the establishment of the three cardinal axes and the fine-grained arrangement of sensory cells - are orchestrated by gradients of signaling molecules.

  6. Shaping sound in space: the regulation of inner ear patterning

    PubMed Central

    Groves, Andrew K.; Fekete, Donna M.

    2012-01-01

    The inner ear is one of the most morphologically elaborate tissues in vertebrates, containing a group of mechanosensitive sensory organs that mediate hearing and balance. These organs are arranged precisely in space and contain intricately patterned sensory epithelia. Here, we review recent studies of inner ear development and patterning which reveal that multiple stages of ear development – ranging from its early induction from the embryonic ectoderm to the establishment of the three cardinal axes and the fine-grained arrangement of sensory cells – are orchestrated by gradients of signaling molecules. PMID:22186725

  7. Active middle ear implant after lateral petrosectomy and radiotherapy for ear cancer.

    PubMed

    Cristalli, Giovanni; Sprinzl, Georg M; Wolf-Magele, Astrid; Marchesi, Paolo; Mercante, Giuseppe; Spriano, Giuseppe

    2014-04-01

    Tumor of the temporal bone is a rare disease with a very poor prognosis. Surgery and postoperative radiotherapy are usually the recommended treatments for squamous cell carcinoma (SCC) of the external and middle ear, which may cause conductive hearing loss. The purpose of this study was to evaluate the audiologic results and compliance of active middle ear implant (AMEI) and establish the feasibility of the procedure in a patient treated for middle ear cancer. A 73-year-old patient treated with lateral petrosectomy, neck dissection, reconstruction/obliteration by pedicled pectoralis major myocutaneous flap, and postoperative full dose radiotherapy for external and middle ear SCC was selected for AMEI. Preoperative audiometric and speech audiometry tests were performed on both ears before and after the activation. Pure tone free field audiometry. Binaural free field speech audiogram. Aided pure tone free field audiometry AMEI results show an increase in air conduction. Speech audiogram showed better discrimination scores in AMEI-aided situations. No complications were observed. AMEI after surgery followed by radiotherapy for middle ear cancer is feasible. Acoustic results in obliterated ear are satisfactory.

  8. Gerbil middle-ear sound transmission from 100 Hz to 60 kHz1

    PubMed Central

    Ravicz, Michael E.; Cooper, Nigel P.; Rosowski, John J.

    2008-01-01

    Middle-ear sound transmission was evaluated as the middle-ear transfer admittance HMY (the ratio of stapes velocity to ear-canal sound pressure near the umbo) in gerbils during closed-field sound stimulation at frequencies from 0.1 to 60 kHz, a range that spans the gerbil’s audiometric range. Similar measurements were performed in two laboratories. The HMY magnitude (a) increased with frequency below 1 kHz, (b) remained approximately constant with frequency from 5 to 35 kHz, and (c) decreased substantially from 35 to 50 kHz. The HMY phase increased linearly with frequency from 5 to 35 kHz, consistent with a 20–29 μs delay, and flattened at higher frequencies. Measurements from different directions showed that stapes motion is predominantly pistonlike except in a narrow frequency band around 10 kHz. Cochlear input impedance was estimated from HMY and previously-measured cochlear sound pressure. Results do not support the idea that the middle ear is a lossless matched transmission line. Results support the ideas that (1) middle-ear transmission is consistent with a mechanical transmission line or multiresonant network between 5 and 35 kHz and decreases at higher frequencies, (2) stapes motion is pistonlike over most of the gerbil auditory range, and (3) middle-ear transmission properties are a determinant of the audiogram. PMID:18646983

  9. Association of microRNA 146 with middle ear hyperplasia in pediatric otitis media.

    PubMed

    Samuels, Tina L; Yan, Justin; Khampang, Pawjai; MacKinnon, Alexander; Hong, Wenzhou; Johnston, Nikki; Kerschner, Joseph E

    2016-09-01

    Toll-like receptor signaling activated by bacterial otitis media pathogens in the middle ear has been shown to play a key role in OM susceptibility, pathogenesis and recovery. Recent studies implicate microRNA 146 (miR-146) in regulation of inflammation via negative feedback of toll-like receptor signaling (TLR) in a wide variety of tissues, however its involvement in otitis media is unknown. Human middle ear epithelial cells were stimulated with proinflammatory cytokines, interleukin 1 beta or tumor necrosis factor alpha, for two to twenty-four hours. Middle ear biopsies were collected from children with otitis media with effusion (n = 20), recurrent otitis media (n = 9), and control subjects undergoing cochlear implantation (n = 10). miR-146a, miR-146b expression was assayed by quantitative PCR (qPCR). Expression of miR-146 targets involved in TLR signaling, IRAK1 and TRAF6, was assayed by qPCR in middle ear biopsies. Middle ear biopsies were cryosectioned and epithelial thickness measured by a certified pathologist. Proinflammatory cytokines induced expression of miR-146 in middle ear epithelial cells in vitro. Middle ear miR-146a and miR-146b expression was elevated in otitis media patients relative to control subjects and correlated with middle ear epithelial thickness. A trend towards inverse correlation was observed between miR-146 and TRAF6 expression in the clinical population. This report is the first to assess miRNA expression in a clinical population with OM. Findings herein suggest miR-146 may play a role in OM. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Klippel-Feil syndrome and associated ear anomalies.

    PubMed

    Yildirim, Nadir; Arslanoğlu, Atilla; Mahiroğullari, Mahir; Sahan, Murat; Ozkan, Hüseyin

    2008-01-01

    Klippel-Feil syndrome (KFS) is a congenital segmentation anomaly of the cervical vertebrae that manifests as short neck, low hair line, and limited neck mobility. Various systemic malformations may also accompany the syndrome including wide variety of otopathologies affecting all 3 compartments of the ear (external, middle, and inner ear) as well as internal acoustic canal and vestibular aqueduct. We aimed to investigate these involvements and their clinical correlates in a group of patients with KFS. We present 20 KFS cases, of which 12 (% 60) displayed most of the reported ear abnormalities such as microtia, external ear canal stenosis, chronic ear inflammations and their sequels, anomalies of the tympanic cavity and ossicles, inner ear dysplasies, deformed internal acoustic canal, and wide vestibular aqueduct, which are demonstrated using the methods of otoscopy, audiologic testing, and temporal bone computed tomography. This series represents one of the highest reported rate of ear involvement in KFS. We found no correlation between the identified ear pathologies and the skeletal and extraskeletal malformations. The genetic nature of the syndrome was supported by the existence of affected family members in 4 (20%) of the cases.

  11. Aronia melanocarpa Concentrate Ameliorates Pro-Inflammatory Responses in HaCaT Keratinocytes and 12-O-Tetradecanoylphorbol-13-Acetate-Induced Ear Edema in Mice.

    PubMed

    Goh, Ah Ra; Youn, Gi Soo; Yoo, Ki-Yeon; Won, Moo Ho; Han, Sang-Zin; Lim, Soon Sung; Lee, Keun Wook; Choi, Soo Young; Park, Jinseu

    2016-07-01

    Abnormal expression of pro-inflammatory mediators such as cell adhesion molecules and cytokines has been implicated in various inflammatory skin diseases, including atopic dermatitis. In this study, we investigated the anti-inflammatory activity of Aronia melanocarpa concentrate (AC) and its action mechanisms using in vivo and in vitro skin inflammation models. Topical application of AC on mouse ears significantly suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema formation, as judged by measuring ear thickness and weight, and histological analysis. Topical administration of AC also reduced the expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in TPA-stimulated mouse ears. Pretreatment with AC suppressed TNF-α-induced ICAM-I expression and subsequent monocyte adhesiveness in human keratinocyte cell line HaCaT. In addition, AC significantly decreased intracellular reactive oxygen species (ROS) generation as well as mitogen-activated protein kinase (MAPK) activation in TNF-α-stimulated HaCaT cells. AC and its constituent cyanidin 3-glucoside also attenuated TNF-α-induced IKK activation, IκB degradation, p65 phosphorylation/nuclear translocation, and p65 DNA binding activity in HaCaT cells. Overall, our results indicate that AC exerts anti-inflammatory activities by inhibiting expression of pro-inflammatory mediators in vitro and in vivo possibly through suppression of ROS-MAPK-NF-κB signaling pathways. Therefore, AC may be developed as a therapeutic agent to treat various inflammatory skin diseases.

  12. Genetics Home Reference: scalp-ear-nipple syndrome

    MedlinePlus

    ... ear nipple syndrome Sources for This Page Marneros AG, Beck AE, Turner EH, McMillin MJ, Edwards MJ, ... qualified healthcare professional . About Selection Criteria for Links Data Files & API Site Map Subscribe Customer Support USA. ...

  13. Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model.

    PubMed

    O'Loughlin, Aonghus; Kulkarni, Mangesh; Vaughan, Erin E; Creane, Michael; Liew, Aaron; Dockery, Peter; Pandit, Abhay; O'Brien, Timothy

    2013-01-01

    Diabetic foot ulceration is the leading cause of amputation in people with diabetes mellitus. Peripheral vascular disease is present in the majority of patients with diabetic foot ulcers. Despite standard treatments there exists a high amputation rate. Circulating angiogenic cells previously known as early endothelial progenitor cells are derived from peripheral blood and support angiogenesis and vasculogenesis, providing a potential topical treatment for non-healing diabetic foot ulcers. A scaffold fabricated from Type 1 collagen facilitates topical cell delivery to a diabetic wound. Osteopontin is a matricellular protein involved in wound healing and increases the angiogenic potential of circulating angiogenic cells. A collagen scaffold seeded with circulating angiogenic cells was developed. Subsequently the effect of autologous circulating angiogenic cells that were seeded in a collagen scaffold and topically delivered to a hyperglycemic cutaneous wound was assessed. The alloxan-induced diabetic rabbit ear ulcer model was used to determine healing in response to the following treatments: collagen seeded with autologous circulating angiogenic cells exposed to osteopontin, collagen seeded with autologous circulating angiogenic cells, collagen alone and untreated wound. Stereology was used to assess angiogenesis in wounds. The cells exposed to osteopontin and seeded on collagen increased percentage wound closure as compared to other groups. Increased angiogenesis was observed with the treatment of collagen and collagen seeded with circulating angiogenic cells. These results demonstrate that topical treatment of full thickness cutaneous ulcers with autologous circulating angiogenic cells increases wound healing. Cells exposed to the matricellular protein osteopontin result in superior wound healing. The wound healing benefit is associated with a more efficient vascular network. This topical therapy provides a potential novel therapy for the treatment of non-healing diabetic foot ulcers in humans.

  14. Early postnatal virus inoculation into the scala media achieved extensive expression of exogenous green fluorescent protein in the inner ear and preserved auditory brainstem response thresholds.

    PubMed

    Wang, Yunfeng; Sun, Yu; Chang, Qing; Ahmad, Shoeb; Zhou, Binfei; Kim, Yeunjung; Li, Huawei; Lin, Xi

    2013-01-01

    Gene transfer into the inner ear is a promising approach for treating sensorineural hearing loss. The special electrochemical environment of the scala media raises a formidable challenge for effective gene delivery at the same time as keeping normal cochlear function intact. The present study aimed to define a suitable strategy for preserving hearing after viral inoculation directly into the scala media performed at various postnatal developmental stages. We assessed transgene expression of green fluorescent protein (GFP) mediated by various types of adeno-associated virus (AAV) and lentivirus (LV) in the mouse cochlea. Auditory brainstem responses were measured 30 days after inoculation to assess effects on hearing. Patterns of GFP expression confirmed extensive exogenous gene expression in various types of cells lining the endolymphatic space. The use of different viral vectors and promoters resulted in specific cellular GFP expression patterns. AAV2/1 with cytomegalovirus promoter apparently gave the best results for GFP expression in the supporting cells. Histological examination showed normal cochlear morphology and no hair cell loss after either AAV or LV injections. We found that hearing thresholds were not significantly changed when the injections were performed in mice younger than postnatal day 5, regardless of the type of virus tested. Viral inoculation and expression in the inner ear for the restoration of hearing must not damage cochlear function. Using normal hearing mice as a model, we have achieved this necessary step, which is required for the treatment of many types of congenital deafness that require early intervention. Copyright © 2013 John Wiley & Sons, Ltd.

  15. An European inter-laboratory validation of alternative endpoints of the murine local lymph node assay: 2nd round.

    PubMed

    Ehling, G; Hecht, M; Heusener, A; Huesler, J; Gamer, A O; van Loveren, H; Maurer, Th; Riecke, K; Ullmann, L; Ulrich, P; Vandebriel, R; Vohr, H-W

    2005-08-15

    The original local lymph node assay (LLNA) is based on the use of radioactive labelling to measure cell proliferation. Other endpoints for the assessment of proliferation are also authorized by the OECD Guideline 429 provided there is appropriate scientific support, including full citations and description of the methodology (OECD, 2002. OECD Guideline for the Testing of Chemicals; Skin Sensitization: Local Lymph Node Assay, Guideline 429. Paris, adopted 24th April 2002.). Here, we describe the outcome of the second round of an inter-laboratory validation of alternative endpoints in the LLNA conducted in nine laboratories in Europe. The validation study was managed and supervised by the Swiss Agency for Therapeutic Products (Swissmedic) in Bern. Ear-draining lymph node (LN) weight and cell counts were used to assess LN cell proliferation instead of [3H]TdR incorporation. In addition, the acute inflammatory skin reaction was measured by ear weight determination of circular biopsies of the ears to identify skin irritation properties of the test items. The statistical analysis was performed in the department of statistics at the university of Bern. Similar to the EC(3) values defined for the radioactive method, threshold values were calculated for the endpoints measured in this modification of the LLNA. It was concluded that all parameters measured have to be taken into consideration for the categorisation of compounds due to their sensitising potencies. Therefore, an assessment scheme has been developed which turned out to be of great importance to consistently assess sensitisation versus irritancy based on the data of the different parameters. In contrast to the radioactive method, irritants have been picked up by all the laboratories applying this assessment scheme.

  16. Cell-free extract from porcine induced pluripotent stem cells can affect porcine somatic cell nuclear reprogramming.

    PubMed

    No, Jin-Gu; Choi, Mi-Kyung; Kwon, Dae-Jin; Yoo, Jae Gyu; Yang, Byoung-Chul; Park, Jin-Ki; Kim, Dong-Hoon

    2015-01-01

    Pretreatment of somatic cells with undifferentiated cell extracts, such as embryonic stem cells and mammalian oocytes, is an attractive alternative method for reprogramming control. The properties of induced pluripotent stem cells (iPSCs) are similar to those of embryonic stem cells; however, no studies have reported somatic cell nuclear reprogramming using iPSC extracts. Therefore, this study aimed to evaluate the effects of porcine iPSC extracts treatment on porcine ear fibroblasts and early development of porcine cloned embryos produced from porcine ear skin fibroblasts pretreated with the porcine iPSC extracts. The Chariot(TM) reagent system was used to deliver the iPSC extracts into cultured porcine ear skin fibroblasts. The iPSC extracts-treated cells (iPSC-treated cells) were cultured for 3 days and used for analyzing histone modification and somatic cell nuclear transfer. Compared to the results for nontreated cells, the trimethylation status of histone H3 lysine residue 9 (H3K9) in the iPSC-treated cells significantly decreased. The expression of Jmjd2b, the H3K9 trimethylation-specific demethylase gene, significantly increased in the iPSC-treated cells; conversely, the expression of the proapoptotic genes, Bax and p53, significantly decreased. When the iPSC-treated cells were transferred into enucleated porcine oocytes, no differences were observed in blastocyst development and total cell number in blastocysts compared with the results for control cells. However, H3K9 trimethylation of pronuclear-stage-cloned embryos significantly decreased in the iPSC-treated cells. Additionally, Bax and p53 gene expression in the blastocysts was significantly lower in iPSC-treated cells than in control cells. To our knowledge, this study is the first to show that an extracts of porcine iPSCs can affect histone modification and gene expression in porcine ear skin fibroblasts and cloned embryos.

  17. Immuno-Modulatory and Anti-Inflammatory Effects of Dihydrogracilin A, a Terpene Derived from the Marine Sponge Dendrilla membranosa.

    PubMed

    Ciaglia, Elena; Malfitano, Anna Maria; Laezza, Chiara; Fontana, Angelo; Nuzzo, Genoveffa; Cutignano, Adele; Abate, Mario; Pelin, Marco; Sosa, Silvio; Bifulco, Maurizio; Gazzerro, Patrizia

    2017-07-28

    We assessed the immunomodulatory and anti-inflammatory effects of 9,11-dihydrogracilin A (DHG), a molecule derived from the Antarctic marine sponge Dendrilla membranosa . We used in vitro and in vivo approaches to establish DHG properties. Human peripheral blood mononuclear cells (PBMC) and human keratinocytes cell line (HaCaT cells) were used as in vitro system, whereas a model of murine cutaneous irritation was adopted for in vivo studies. We observed that DHG reduces dose dependently the proliferative response and viability of mitogen stimulated PBMC. In addition, DHG induces apoptosis as revealed by AnnexinV staining and downregulates the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), signal transducer and activator of transcription (STAT) and extracellular signal-regulated kinase (ERK) at late time points. These effects were accompanied by down-regulation of interleukin 6 (IL-6) production, slight decrease of IL-10 and no inhibition of tumor necrosis factor-alpha (TNF-α) secretion. To assess potential properties of DHG in epidermal inflammation we used HaCaT cells; this compound reduces cell growth, viability and migration. Finally, we adopted for the in vivo study the croton oil-induced ear dermatitis murine model of inflammation. Of note, topical use of DHG significantly decreased mouse ear edema. These results suggest that DHG exerts anti-inflammatory effects and its anti-edema activity in vivo strongly supports its potential therapeutic application in inflammatory cutaneous diseases.

  18. Changes in immunostaining of inner ears after antigen challenge into the scala tympani.

    PubMed

    Ichimiya, I; Kurono, Y; Hirano, T; Mogi, G

    1998-04-01

    To study the mechanisms of immune responses and immune injuries in inner ears, labyrinthitis was induced by inoculation of keyhole limpet hemocyanin (KLH) into the scala tympani of systemically sensitized guinea pigs. Inner ears were then immunostained for KLH, immunoglobulin G (IgG), albumin, connexin26 (Cx26), and sodium-potassium adenosine triphosphate (Na,K-ATPase). Inflammatory cells containing KLH were observed in the scala tympani and in the collecting venule of the spiral modiolar vein (SMV). Spiral ligament, spiral limbus, and blood vessels including the SMV were diffusely positive for IgG and albumin. Immunoreactivity for Cx26 and Na,K-ATPase was decreased compared with the normal ears in the fibrocytes of the spiral ligament. These results suggest that inflammatory cells and blood constituents could extravasate into the cochlea from blood vessels and that fibrocyte damage in the spiral ligament could cause cochlear dysfunction.

  19. Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion.

    PubMed

    Kaur, Tejbeer; Zamani, Darius; Tong, Ling; Rubel, Edwin W; Ohlemiller, Kevin K; Hirose, Keiko; Warchol, Mark E

    2015-11-11

    Macrophages are recruited into the cochlea in response to injury caused by acoustic trauma or ototoxicity, but the nature of the interaction between macrophages and the sensory structures of the inner ear remains unclear. The present study examined the role of fractalkine signaling in regulating the injury-evoked behavior of macrophages following the selective ablation of cochlear hair cells. We used a novel transgenic mouse model in which the human diphtheria toxin receptor (huDTR) is selectively expressed under the control of Pou4f3, a hair cell-specific transcription factor. Administration of diphtheria toxin (DT) to these mice resulted in nearly complete ablation of cochlear hair cells, with no evident pathology among supporting cells, spiral ganglion neurons, or cells of the cochlear lateral wall. Hair cell death led to an increase in macrophages associated with the sensory epithelium of the cochlea. Their numbers peaked at 14 days after DT and then declined at later survival times. Increased macrophages were also observed within the spiral ganglion, but their numbers remained elevated for (at least) 56 d after DT. To investigate the role of fractalkine signaling in macrophage recruitment, we crossed huDTR mice to a mouse line that lacks expression of the fractalkine receptor (CX3CR1). Disruption of fractalkine signaling reduced macrophage recruitment into both the sensory epithelium and spiral ganglion and also resulted in diminished survival of spiral ganglion neurons after hair cell death. Our results suggest a fractalkine-mediated interaction between macrophages and the neurons of the cochlea. It is known that damage to the inner ear leads to recruitment of inflammatory cells (macrophages), but the chemical signals that initiate this recruitment and the functions of macrophages in the damaged ear are unclear. Here we show that fractalkine signaling regulates macrophage recruitment into the cochlea and also promotes the survival of cochlear afferents after selective hair cell lesion. Because these afferent neurons carry sound information from the cochlea to the auditory brainstem, their survival is a key determinant of the success of cochlear prosthetics. Our data suggest that fractalkine signaling in the cochlea is neuroprotective, and reveal a previously uncharacterized interaction between cells of the cochlea and the innate immune system. Copyright © 2015 the authors 0270-6474/15/3515050-12$15.00/0.

  20. Ear keloids as a primary candidate for the application of mitomycin C after shave excision: in vivo and in vitro study.

    PubMed

    Chi, Seong Geun; Kim, Jun Young; Lee, Weon Ju; Lee, Seok-Jong; Kim, Do Won; Sohn, Mi Yeung; Kim, Gun Wook; Kim, Moon Bum; Kim, Byung Soo

    2011-02-01

    Although many methods have been developed to treat ear keloids, new therapeutic options are still needed. To determine the effects of topical mitomycin C (MC) on shave-removed wounds and fibroblasts of ear keloids. Fourteen ear keloids in 12 patients were shaved, and MC (1 mg/mL) was applied to the resected bed for 5 minutes. The application was repeated 3 weeks later. All patients were assessed 2, 4, and 6 months after the procedure to evaluate the cosmetic results, recurrence, and postsurgical complications. An in vitro study to determine the effects of MC on fibroblasts of the excised keloids was conducted using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the measurement of total cell counts, and immunoassay of DNA synthesis. Only one recurrence occurred (on the ear helix), and the patients were satisfied with the cosmetic outcomes. The results of the MTT assay, total cell counts, and DNA synthesis immunoassay confirmed the suppressive effects of MC on the keloid fibroblasts. The application of topical MC to the resected bed of shave-removed ear keloids was successful in preventing recurrences and providing an acceptable cosmetic outcome. © 2011 by the American Society for Dermatologic Surgery, Inc.

  1. Local treatment of the inner ear: a study of three different polymers aimed for middle ear administration.

    PubMed

    Engmér Berglin, Cecilia; Videhult Pierre, Pernilla; Ekborn, Andreas; Bramer, Tobias; Edsman, Katarina; Hultcrantz, Malou; Laurell, Göran

    2015-01-01

    A formulation based on sodium hyaluronate (NaHYA) was the most promising candidate vehicle for intra-tympanic drug administration regarding conductive hearing loss, inflammatory reactions, and elimination. Recent advances in inner ear research support the idea of using the middle ear cavity for drug administration to target the inner ear. This paper presents rheological and safety assessments of three candidate polymer formulations for intra-tympanic drug administration. The formulations were based on sodium carboxymethyl cellulose (NaCMC), sodium hyaluronate (NaHYA), and poloxamer 407 (POL). Rheological studies were performed with a controlled rate instrument of the couette type. Safety studies were performed in guinea pigs subjected to an intra-tympanic injection of the formulations. Hearing function was explored with ABR before and 1, 2, and 3 weeks after the injection. Elimination of the formulations marked with coal was explored with an endoscopic digital camera 1, 2, and 3 weeks after injection. Middle and inner ear morphology was examined with light microscopy 6 days after injection. The results speak in favor of NaHYA, since it did not cause prolonged hearing threshold elevations. The results of the elimination and morphological investigations support the conclusion of NaHYA being the most promising candidate for intra-tympanic administration.

  2. Cyclopiazonic Acid Is a Pathogenicity Factor for Aspergillus flavus and a Promising Target for Screening Germplasm for Ear Rot Resistance.

    PubMed

    Chalivendra, Subbaiah C; DeRobertis, Catherine; Chang, Perng-Kuang; Damann, Kenneth E

    2017-05-01

    Aspergillus flavus, an opportunistic pathogen, contaminates maize and other key crops with carcinogenic aflatoxins (AFs). Besides AFs, A. flavus makes many more secondary metabolites (SMs) whose toxicity in insects or vertebrates has been studied. However, the role of SMs in the invasion of plant hosts by A. flavus remains to be investigated. Cyclopiazonic acid (CPA), a neurotoxic SM made by A. flavus, is a nanomolar inhibitor of endoplasmic reticulum calcium ATPases (ECAs) and a potent inducer of cell death in plants. We hypothesized that CPA, by virtue of its cytotoxicity, may serve as a key pathogenicity factor that kills plant cells and supports the saprophytic life style of the fungus while compromising the host defense response. This proposal was tested by two complementary approaches. A comparison of CPA levels among A. flavus isolates indicated that CPA may be a determinant of niche adaptation, i.e., isolates that colonize maize make more CPA than those restricted only to the soil. Further, mutants in the CPA biosynthetic pathway are less virulent in causing ear rot than their wild-type parent in field inoculation assays. Additionally, genes encoding ECAs are expressed in developing maize seeds and are induced by A. flavus infection. Building on these results, we developed a seedling assay in which maize roots were exposed to CPA, and cell death was measured as Evans Blue uptake. Among >40 maize inbreds screened for CPA tolerance, inbreds with proven susceptibility to ear rot were also highly CPA sensitive. The publicly available data on resistance to silk colonization or AF contamination for many of the lines was also broadly correlated with their CPA sensitivity. In summary, our studies show that i) CPA serves as a key pathogenicity factor that enables the saprophytic life style of A. flavus and ii) maize inbreds are diverse in their tolerance to CPA. Taking advantage of this natural variation, we are currently pursuing both genome-wide and candidate gene approaches to identify novel components of maize resistance to Aspergillus ear rot.

  3. Neurogenin 1 Null Mutant Ears Develop Fewer, Morphologically Normal Hair Cells in Smaller Sensory Epithelia Devoid of Innervation

    PubMed Central

    Ma, Qiufu; Anderson, David J.

    2000-01-01

    The proneuronal gene neurogenin 1 (ngn1) is essential for development of the inner-ear sensory neurons that are completely absent in ngn1 null mutants. Neither afferent, efferent, nor autonomic nerve fibers were detected in the ears of ngn1 null mutants. We suggest that efferent and autonomic fibers are lost secondarily to the absence of afferents. In this article we show that ngn1 null mutants develop smaller sensory epithelia with morphologically normal hair cells. In particular, the saccule is reduced dramatically and forms only a small recess with few hair cells along a duct connecting the utricle with the cochlea. Hair cells of newborn ngn1 null mutants show no structural abnormalities, suggesting that embryonic development of hair cells is independent of innervation. However, the less regular pattern of dispersal within sensory epithelia may be caused by some effects of afferents or to the stunted growth of the sensory epithelia. Tracing of facial and stato-acoustic nerves in control and ngn1 null mutants showed that only the distal, epibranchial, placode-derived sensory neurons of the geniculate ganglion exist in mutants. Tracing further showed that these geniculate ganglion neurons project exclusively to the solitary tract. In addition to the normal complement of facial branchial and visceral motoneurons, ngn1 null mutants have some trigeminal motoneurons and contralateral inner-ear efferents projecting, at least temporarily, through the facial nerve. These data suggest that some neurons in the brainstem (e.g., inner-ear efferents, trigeminal motoneurons) require afferents to grow along and redirect to ectopic cranial nerve roots in the absence of their corresponding sensory roots. PMID:11545141

  4. Animal models of middle ear cholesteatoma.

    PubMed

    Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko

    2011-01-01

    Middle ear acquired cholesteatoma is a pathological condition associated with otitis media, which may be associated with temporal bone resorption, otorrhea and hearing loss, and occasionally various other complications. Cholesteatoma is characterized by the enhanced proliferation of epithelial cells with aberrant morphologic characteristics. Unfortunately, our understanding of the mechanism underlying its pathogenesis is limited. To investigate its pathogenesis, different animal models have been used. This paper provides a brief overview of the current status of research in the field of pathogenesis of middle ear acquired cholesteatoma, four types of animal models previously reported on, up-to-date cholesteatoma research using these animal models, our current studies of the local hybrid ear model, and the future prospect of new animal models of middle ear cholesteatoma.

  5. Animal Models of Middle Ear Cholesteatoma

    PubMed Central

    Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko

    2011-01-01

    Middle ear acquired cholesteatoma is a pathological condition associated with otitis media, which may be associated with temporal bone resorption, otorrhea and hearing loss, and occasionally various other complications. Cholesteatoma is characterized by the enhanced proliferation of epithelial cells with aberrant morphologic characteristics. Unfortunately, our understanding of the mechanism underlying its pathogenesis is limited. To investigate its pathogenesis, different animal models have been used. This paper provides a brief overview of the current status of research in the field of pathogenesis of middle ear acquired cholesteatoma, four types of animal models previously reported on, up-to-date cholesteatoma research using these animal models, our current studies of the local hybrid ear model, and the future prospect of new animal models of middle ear cholesteatoma. PMID:21541229

  6. Leupeptin reduces impulse noise induced hearing loss

    PubMed Central

    2011-01-01

    Background Exposure to continuous and impulse noise can induce a hearing loss. Leupeptin is an inhibitor of the calpains, a family of calcium-activated proteases which promote cell death. The objective of this study is to assess whether Leupeptin could reduce the hearing loss resulting from rifle impulse noise. Methods A polyethelene tube was implanted into middle ear cavities of eight fat sand rats (16 ears). Following determination of auditory nerve brainstem evoked response (ABR) threshold in each ear, the animals were exposed to the noise of 10 M16 rifle shots. Immediately after the exposure, saline was then applied to one (control) ear and non-toxic concentrations of leupeptin determined in the first phase of the study were applied to the other ear, for four consecutive days. Results Eight days after the exposure, the threshold shift (ABR) in the control ears was significantly greater (44 dB) than in the leupeptin ears (27 dB). Conclusion Leupeptin applied to the middle ear cavity can reduce the hearing loss resulting from exposure to impulse noise. PMID:22206578

  7. Inner Ear Gene Transfection in Neonatal Mice Using Adeno-Associated Viral Vector: A Comparison of Two Approaches

    PubMed Central

    Xia, Li; Yin, Shankai; Wang, Jian

    2012-01-01

    Local gene transfection is a promising technique for the prevention and/or correction of inner ear diseases, particularly those resulting from genetic defects. Adeno-associated virus (AAV) is an ideal viral vector for inner ear gene transfection because of its safety, stability, long-lasting expression, and its high tropism for many different cell types. Recently, a new generation of AAV vectors with a tyrosine mutation (mut-AAV) has demonstrated significant improvement in transfection efficiency. A method for inner ear gene transfection via the intact round window membrane (RWM) has been developed in our laboratory. This method has not been tested in neonatal mice, an important species for the study of inherited hearing loss. Following a preliminary study to optimize the experimental protocol in order to reduce mortality, the present study investigated inner ear gene transfection in mice at postnatal day 7. We compared transfection efficiency, the safety of the scala tympani injection via RWM puncture, and the trans-RWM diffusion following partial digestion with an enzyme technique. The results revealed that approximately 47% of inner hair cells (IHCs) and 17% of outer hair cells (OHCs) were transfected via the trans-RWM approach. Transfection efficiency via RWM puncture (58% and 19% for IHCs and OHCs, respectively) was slightly higher, but the difference was not significant. PMID:22912830

  8. Expression of calcium-binding proteins S100A8, S100A9 and S100A12 in otitis media.

    PubMed

    Hong, Wenzhou; Khampang, Pawjai; Samuels, Tina L; Kerschner, Joseph E; Yan, Ke; Simpson, Pippa

    2017-10-01

    Calgranulins (calcium-binding proteins S100A8, S100A9 and S100A12) are predominant cytoplasmic proteins of neutrophils and produced by various cells, playing multiple functions in innate immunity and the inflammatory process. Although up-regulated expression of S100A8 and S100A9 genes were observed in an animal model of otitis media (OM), their expressions have not been studied in human middle ear epithelial cells in response to the OM pathogen or in patients with recurrent or chronic OM (recurrent OM/RecOM or chronic OM with effusion/COME). Gene expressions were compared between Streptococcus pneumoniae (SP)-infected and non-infected human middle ear epithelial cells (HMEECs) as well as between chronic OM patients and control patients (CI). Gene expressions were profiled by quantitative real time PCR (qPCR). S100 proteins in OM patient and CI middle ear biopsies were detected by immunostaining. S100A8, S100A9 and S100A12 gene expressions were elevated in SP-infected HMEECs in time-dependent manner. S100A8 and S100A9 but not S100A12 gene expression was significantly elevated in the middle ear mucosa of OM patients. S100A8 and S100A9 protein were observed in middle ear mucosa of OM, but not CI patients. Minimal co-localization was observed between S100A8 and S100A9 with neutrophil elastase and cytokeratin in ME sections of OM patients. Elevated S100A8 and S100A9 gene expression in SP-infected HMEECs and in the middle ear mucosa of OM, minor co-localized with neutrophil markers suggests that middle ear epithelial cell secretion of S100A8 and S100A9 may play a role in the pathogenesis of recurrent and chronic OM. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Responses of the ear to low frequency sounds, infrasound and wind turbines

    PubMed Central

    Salt, Alec N.; Hullar, Timothy E.

    2010-01-01

    Infrasonic sounds are generated internally in the body (by respiration, heartbeat, coughing, etc) and by external sources, such as air conditioning systems, inside vehicles, some industrial processes and, now becoming increasingly prevalent, wind turbines. It is widely assumed that infrasound presented at an amplitude below what is audible has no influence on the ear. In this review, we consider possible ways that low frequency sounds, at levels that may or may not be heard, could influence the function of the ear. The inner ear has elaborate mechanisms to attenuate low frequency sound components before they are transmitted to the brain. The auditory portion of the ear, the cochlea, has two types of sensory cells, inner hair cells (IHC) and outer hair cells (OHC), of which the IHC are coupled to the afferent fibers that transmit “hearing” to the brain. The sensory stereocilia (“hairs”) on the IHC are “fluid coupled” to mechanical stimuli, so their responses depend on stimulus velocity and their sensitivity decreases as sound frequency is lowered. In contrast, the OHC are directly coupled to mechanical stimuli, so their input remains greater than for IHC at low frequencies. At very low frequencies the OHC are stimulated by sounds at levels below those that are heard. Although the hair cells in other sensory structures such as the saccule may be tuned to infrasonic frequencies, auditory stimulus coupling to these structures is inefficient so that they are unlikely to be influenced by airborne infrasound. Structures that are involved in endolymph volume regulation are also known to be influenced by infrasound, but their sensitivity is also thought to be low. There are, however, abnormal states in which the ear becomes hypersensitive to infrasound. In most cases, the inner ear’s responses to infrasound can be considered normal, but they could be associated with unfamiliar sensations or subtle changes in physiology. This raises the possibility that exposure to the infrasound component of wind turbine noise could influence the physiology of the ear. PMID:20561575

  10. A simplified method for correcting Tanzer's group II constricted ears: Construction of the superior crus as a strut with cartilage expansion grafting.

    PubMed

    Kim, Young Soo; Chung, Seum

    2016-04-01

    A constricted ear, also known as a cup ear or lop ear, is a deformity characterized by curling of the upper portion of the ear, including the helix, scapha, and antihelix. In Tanzer's classification, group II constricted ears have deformities involving the helix and the scapha. Although partial or total absence of the superior crus of the antihelix has been noted in group II constricted ears, most plastic surgeons have corrected group II constricted ears using the expansion technique and skin flaps, without formation of the superior crus. However, the expansion technique does not always yield satisfactory results in group II constricted ears. Between May 2011 and April 2014, the authors operated on 21 patients with group II constricted ears using the technique described in this study. The follow-up period ranged from 2 months to 2 years. In our procedure for correcting group II constricted ears, we focused on restoring the superior crus of the antihelix. As a strong superior crus acts as a strut in the upper third of the ear, it supports the helical rim and creates the scapha. Eventually, the newly formed superior crus enables the helical rim to expand in the upper third of the constricted ear. In this article, we present our method of correcting group II constricted ears, in which the superior crus is constructed as a strut and cartilage expansion grafts are used. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Acceleration induced water removal from ear canals.

    NASA Astrophysics Data System (ADS)

    Kang, Hosung; Averett, Katelee; Jung, Sunghwan

    2017-11-01

    Children and adults commonly experience having water trapped in the ear canals after swimming. To remove the water, individuals will shake their head sideways. Since a child's ear canal has a smaller diameter, it requires more acceleration of the head to remove the trapped water. In this study, we theoretically and experimentally investigated the acceleration required to break the surface meniscus of the water in artificial ear canals and hydrophobic-coated glass tubes. In experiments, ear canal models were 3D-printed from a CT-scanned human head. Also, glass tubes were coated with silane to match the hydrophobicity in ear canals. Then, using a linear stage, we measured the acceleration values required to forcefully eject the water from the artificial ear canals and glass tubes. A theoretical model was developed to predict the critical acceleration at a given tube diameter and water volume by using a modified Rayleigh-Taylor instability. Furthermore, this research can shed light on the potential of long-term brain injury and damage by shaking the head to push the water out of the ear canal. This research was supported by National Science Foundation Grant CBET-1604424.

  12. Influence of EARLI1-like genes on flowering time and lignin synthesis of Arabidopsis thaliana.

    PubMed

    Shi, Y; Zhang, X; Xu, Z-Y; Li, L; Zhang, C; Schläppi, M; Xu, Z-Q

    2011-09-01

    EARLI1 encodes a 14.7 kDa protein in the cell wall, is a member of the PRP (proline-rich protein) family and has multiple functions, including resistance to low temperature and fungal infection. RNA gel blot analyses in the present work indicated that expression of EARLI1-like genes, EARLI1, At4G12470 and At4G12490, was down-regulated in Col-FRI-Sf2 RNAi plants derived from transformation with Agrobacterium strain ABI, which contains a construct encoding a double-strand RNA targeting 8CM of EARLI1. Phenotype analyses revealed that Col-FRI-Sf2 RNAi plants of EARLI1 flowered earlier than Col-FRI-Sf2 wild-type plants. The average bolting time of Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants was 39.7 and 19.4 days, respectively, under a long-day photoperiod. In addition, there were significant differences in main stem length, internode number and rosette leaf number between Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants. RT-PCR showed that EARLI1-like genes might delay flowering time through the autonomous and long-day photoperiod pathways by maintaining the abundance of FLC transcripts. In Col-FRI-Sf2 RNAi plants, transcription of FLC was repressed, while expression of SOC1 and FT was activated. Microscopy observations showed that EARLI1-like genes were also associated with morphogenesis of leaf cells in Arabidopsis. Using histochemical staining, EARLI1-like genes were found to be involved in regulation of lignin synthesis in inflorescence stems, and Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants had 9.67% and 8.76% dry weight lignin, respectively. Expression analysis revealed that cinnamoyl-CoA reductase, a key enzyme in lignin synthesis, was influenced by EARLI1-like genes. These data all suggest that EARLI1-like genes could control the flowering process and lignin synthesis in Arabidopsis. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Molecular biology of hearing

    PubMed Central

    Stöver, Timo; Diensthuber, Marc

    2012-01-01

    The inner ear is our most sensitive sensory organ and can be subdivided into three functional units: organ of Corti, stria vascularis and spiral ganglion. The appropriate stimulus for the organ of hearing is sound, which travels through the external auditory canal to the middle ear where it is transmitted to the inner ear. The inner ear houses the hair cells, the sensory cells of hearing. The inner hair cells are capable of mechanotransduction, the transformation of mechanical force into an electrical signal, which is the basic principle of hearing. The stria vascularis generates the endocochlear potential and maintains the ionic homeostasis of the endolymph. The dendrites of the spiral ganglion form synaptic contacts with the hair cells. The spiral ganglion is composed of neurons that transmit the electrical signals from the cochlea to the central nervous system. In recent years there has been significant progress in research on the molecular basis of hearing. An increasing number of genes and proteins related to hearing are being identified and characterized. The growing knowledge of these genes contributes not only to greater appreciation of the mechanism of hearing but also to a deeper understanding of the molecular basis of hereditary hearing loss. This basic research is a prerequisite for the development of molecular diagnostics and novel therapies for hearing loss. PMID:22558056

  14. Transfection using hydroxyapatite nanoparticles in the inner ear via an intact round window membrane in chinchilla

    NASA Astrophysics Data System (ADS)

    Wu, Xuewen; Ding, Dalian; Jiang, Haiyan; Xing, Xiaowei; Huang, Suping; Liu, Hong; Chen, Zhedong; Sun, Hong

    2012-01-01

    Hydroxyapatite nanoparticles (nHAT) are known to have excellent biocompatibility, and have attracted increasing attention as new candidates of non-viral vectors for gene therapy. In our previous studies, nHAT carrying a therapeutic gene and a reporter gene were successfully transfected into the spiral ganglion neurons in the inner ear of guinea pigs in vivo as well as in the cultured cell lines, although the transfection efficiencies were never higher than 30%. In this study, the surface modification of nHAT with polyethylenimine (PEI) was made (PEI-nHAT, diameter = 73.09 ± 27.32 nm) and a recombinant plasmid carrying enhanced green fluorescent protein (EGFP) gene and neurotrophin-3 (NT-3) gene was constructed as pEGFPC2-NT3. The PEI modified nHAT and the recombinant plasmid was then connected to form the nHAT-based vector-gene complex (PEI-nHAT-pEGFPC2-NT3). This complex was then placed onto the intact round window membranes of the chinchillas for inner ear transfection. Auditory brainstem response (ABR) was tested to evaluate auditory function. Green fluorescence of EGFP was observed using confocal microscopy 48 h after administering vector-gene complexes. There was no significant threshold shift in tone burst-evoked ABR at any tested frequency. Abundant, condensed green fluorescence was found in dark cells on both sides of the crista and around the macula of the utricle. Scattered EGFP signals were also detected in vestibular hair cells, some Schwann cells in the cochlear spiral ganglion region, some outer pillar cells in the organ of Corti, and a few cells in the stria vascularis. The density of green fluorescence-marked cells was obviously higher in the vestibular dark cell area than in other areas of the inner ear, suggesting that vestibular dark cells may have the ability to actively engulf the nHAT-based vector-gene complexes. Considering the high transfection efficiency in the vestibular system, PEI-nHAT may be a potential vector for gene therapy of inner ear diseases, especially vestibular disorders, and deserves further study.

  15. [Expression patterns of non-viral transfection with GFP in the organ of Corti in vitro and in vivo. Gene therapy of the inner ear with non-viral vectors].

    PubMed

    Praetorius, M; Pfannenstiel, S; Klingmann, C; Baumann, I; Plinkert, P K; Staecker, H

    2008-05-01

    Diseases of the inner ear such as presbycusis, tinnitus, sudden hearing loss, and vertigo affect many patients, but so far there are no specific therapy options. Gene therapy might become a potential modality of treatment. Viral vectors are standard in animal models to date. Future considerations, however, call for a further evaluation of non-viral transfection methods. The non-viral transfection agents Metafectene, Superfect, Effectene, and Mirus TransIT were incubated with a plasmid coding for GFP. In vivo, the plasmid-agent mix was injected via the membrane of the round window, and 48 h later the inner ear was perfused, harvested, decalcified, and histologically evaluated for GFP expression. Cationic lipids (Metafectene) and dendrimers (Superfect) were able to transfect cells in the area of the organ of Corti and lead to GFP expression. The polyamine (Mirus TransIT) did show expression of GFP in the area of Rosenthal's canal and in the area of the inner hair cell. The combination of a non-liposomal lipid with a DNA condensing component (Effectene) did not show transfection of the organ of Corti. In the area of the spiral ganglia cells, GFP expression was seen with all the transfection agents. Non-viral transfection agents are able to introduce a reporter gene in cells of the inner ear in vitro and in vivo. There are, however, differences in the efficiency of the transfection. They might be an alternative in gene therapy of the inner ear. Further investigations to elucidate their potential are needed.

  16. Synergy between TGF-beta 3 and NT-3 to promote the survival of spiral ganglia neurones in vitro.

    PubMed

    Marzella, P L; Clark, G M; Shepherd, R K; Bartlett, P F; Kilpatrick, T J

    1998-01-09

    Transforming growth factor-betas (TGF-betas) have been implicated in normal inner ear development and in promoting neuronal survival. Early rat post-natal spiral ganglion cells (SGC) in dissociated cell culture were used as a model of auditory innervation to test the trophic factors TGF-beta3 and neurotrophin-3 (NT-3) for their ability, individually or in combination, to promote neuronal survival. The findings from this study suggest that TGF-beta3 supports neuronal survival in a concentration-dependent manner. Moreover TGF-beta3 and NT-3-potentiated spiral ganglion neuronal survival in a synergistic fashion.

  17. Hair Cell Heterogeneity in the Goldfish Saccule

    NASA Technical Reports Server (NTRS)

    Saidel, William M.; Lanford, Pamela J.; Yan, Hong Y.; Popper, Arthur N.

    1995-01-01

    A set of cytological studies performed in the utricle and saccule of Astronotus ocellatus (Teleostei, Percomorphi, Cichlidae) identified two basic types of hair cells and others with some intermediate characteristics. This paper reports on applying the same techniques to the saccule of Carassius auratus (Teleostei, Otophysi, Cyprinidae) and demonstrates similar types of hair cells to those found in Astronotus. Since Carassius and Astronous are species of extreme taxonomic distance within the Euteteostei, two classes of mechanoreceptive hair cells are likely to represent the primitive condition for sensory receptors in the euteleost inner ear and perhaps in all bony fish ears.

  18. A drop-tower experiment to determine the threshold of gravity for inducing motion sickness in fish

    NASA Astrophysics Data System (ADS)

    Anken, R. H.; Hilbig, R.

    2004-01-01

    It has been repeatedly shown earlier that some fish of a given batch reveal motion sickness (a kinetosis) at the transition from 1 g to microgravity. In the course of parabolic aircraft flight experiments, it has been demonstrated that kinetosis susceptibility is correlated with asymmetric inner ear otoliths (i.e., differently weighed statoliths on the right and the left side of the head) or with genetically predispositioned malformed cells within the sensory epithelia of the inner ear. Hitherto, the threshold of gravity perception for inducing kinetotic behavior as well as the relative importance of asymmetric otoliths versus malformed epithelia for kinetosis susceptibility has yet not been determined. The following experiment using the ZARM drop-tower facility in Bremen, Germany, is proposed to be carried out in order to answer the aforementioned questions. Larval cichlid fish ( Oreochromis mossambicus) will be kept in a camcorder-equipped centrifuge during the microgravity phases of the drops and thus receive various gravity environments ranging from 0.1 to 0.9 g. Videographed controls will be housed outside of the centrifuge receiving 0 g. Based on the video-recordings, animals will be grouped into kinetotically and normally swimming samples. Subsequently, otoliths will be dissected and their size and asymmetry will be measured. Further investigations will focus on the numerical quantification of inner ear supporting and sensory cells as well as on the quantification of inner ear carbonic anhydrase reactivity. A correlation between: (1) the results to be obtained concerning the g-loads inducing kinetosis and (2) the corresponding otolith asymmetry/morphology of sensory epithelia/carbonic anhydrase reactivity will further contribute to the understanding of the origin of kinetosis susceptibility. Besides an outline of the proposed principal experiments, the present study reports on a first series of drop-tower tests, which were undertaken to elucidate the feasibility of the proposal (especially concerning the question, if some 4.7 s of microgravity are sufficient to induce kinetotic behavior in larval fish).

  19. Determination of the threshold of gravity for inducing kinetosis in fish: A drop-tower experiment

    NASA Astrophysics Data System (ADS)

    Anken, Ralf H.; Hilbig, R.

    2004-06-01

    It has been repeatedly shown earlier that some fish of a given batch reveal motion sickness (a kinetosis) at the transition from 1g to microgravity. In the course of parabolic aircraft flight experiments, it has been demonstrated that kinetosis susceptibility is correlated with asymmetric inner ear otoliths (i.e., differently weighed statoliths on the right and the left side of the head) or with genetically predispositioned malformed cells within the sensory epithelia of the inner ear. Hitherto, the threshold of gravity perception for inducing kinetotic behaviour as well as the relative importance of asymmetric otoliths versus malformed epithelia for kinetosis susceptibility has yet not been determined. The following experiment using the ZARM droptower facility in Bremen, Germany, is proposed to be carried out in order to answer the aforementioned questions. Larval cichlid fish ( Oreochromis mossambicus) will be kept in a camcorder-equipped centrifuge during the microgravity phases of the drops and thus receive various gravity environments ranging from 0.1 to 0.9g. Videographed controls will be housed outside of the centrifuge receiving 0g. Based on the videorecordings, animals will be grouped into kinetotically and normally swimming samples. Subsequently, otoliths will be dissected and their size and asymmetry will be measured. Further investigations will focus on the numerical quantification of inner ear supporting and sensory cells as well as on the quantification of inner ear carbonic anhydrase reactivity. A correlation between (1) the results to be obtained concerning the g-loads inducing kinetosis and (2) the corresponding otolith asymmetry/morphology of sensory epithelia/carbonic anhydrase reactivity will further contribute to the understanding of the origin of kinetosis susceptibility. Besides an outline of the proposed principal experiments, the present study reports on a first series of drop-tower tests which were undertaken to elucidate the feasibility of the proposal (especially concerning the question, if some 4.7s of microgravity are sufficient to induce kinetotic behaviour in larval fish).

  20. Expression of S100 beta in sensory and secretory cells of the vertebrate inner ear

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Martin, D. S.

    1995-01-01

    We evaluated anti-S100 beta expression in the chick (Gallus domesticus) inner ear and determined that: 1) the monomer anti-S100 beta is expressed differentially in the vestibular and auditory perikarya; 2) expression of S100 beta in the afferent nerve terminals is time-related to synapse and myelin formation; 3) the expression of the dimer anti-S100 alpha alpha beta beta and monomer anti-S100 beta overlaps in most inner ear cell types. Most S100 alpha alpha beta beta positive cells express S100 beta, but S100 beta positive cells do not always express S100 alpha alpha beta beta. 4) the expression of S100 beta is diffused over the perikaryal cytoplasm and nuclei of the acoustic ganglia but is concentrated over the nuclei of the vestibular perikarya. 6) S100 beta is expressed in secretory cells, and it is co-localized with GABA in sensory cells. 7) Color thresholding objective quantitation indicates that the amount of S100 beta was higher (mean 22, SD +/- 4) at E19 than at E9 (mean 34, SD +/- 3) in afferent axons. 8) Moreover, S100 beta was unchanged between E11-E19 in the perikaryal cytoplasm, but did change over the nuclei. At E9, 74%, and at E21, 5% of vestibular perikarya were positive. The data suggest that S100 beta may be physically associated with neuronal and ionic controlling cells of the vertebrate inner ear, where it could provide a dual ionic and neurotrophic modulatory function.

  1. A central to peripheral progression of cell cycle exit and hair cell differentiation in the developing mouse cristae.

    PubMed

    Slowik, Amber D; Bermingham-McDonogh, Olivia

    2016-03-01

    The inner ear contains six distinct sensory organs that each maintains some ability to regenerate hair cells into adulthood. In the postnatal cochlea, there appears to be a relationship between the developmental maturity of a region and its ability to regenerate as postnatal regeneration largely occurs in the apical turn, which is the last region to differentiate and mature during development. In the mature cristae there are also regional differences in regenerative ability, which led us to hypothesize that there may be a general relationship between the relative maturity of a region and the regenerative competence of that region in all of the inner ear sensory organs. By analyzing adult mouse cristae labeled embryonically with BrdU, we found that hair cell birth starts in the central region and progresses to the periphery with age. Since the peripheral region of the adult cristae also maintains active Notch signaling and some regenerative competence, these results are consistent with the hypothesis that the last regions to develop retain some of their regenerative ability into adulthood. Further, by analyzing embryonic day 14.5 inner ears we provide evidence for a wave of hair cell birth along the longitudinal axis of the cristae from the central regions to the outer edges. Together with the data from the adult inner ears labeled with BrdU as embryos, these results suggest that hair cell differentiation closely follows cell cycle exit in the cristae, unlike in the cochlea where they are uncoupled. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A central to peripheral progression of cell cycle exit and hair cell differentiation in the developing mouse cristae

    PubMed Central

    Slowik, Amber D; Bermingham-McDonogh, Olivia

    2016-01-01

    The inner ear contains six distinct sensory organs that each maintains some ability to regenerate hair cells into adulthood. In the postnatal cochlea, there appears to be a relationship between the developmental maturity of a region and its ability to regenerate as postnatal regeneration largely occurs in the apical turn, which is the last region to differentiate and mature during development. In the mature cristae there are also regional differences in regenerative ability, which led us to hypothesize that there may be a general relationship between the relative maturity of a region and the regenerative competence of that region in all of the inner ear sensory organs. By analyzing adult mouse cristae labeled embryonically with BrdU, we found that hair cell birth starts in the central region and progresses to the periphery with age. Since the peripheral region of the adult cristae also maintains active Notch signaling and some regenerative competence, these results are consistent with the hypothesis that the last regions to develop retain some of their regenerative ability into adulthood. Further, by analyzing embryonic day 14.5 inner ears we provide evidence for a wave of hair cell birth along the longitudinal axis of the cristae from the central regions to the outer edges. Together with the data from the adult inner ears labeled with BrdU as embryos, these results suggest that hair cell differentiation closely follows cell cycle exit in the cristae, unlike in the cochlea where they are uncoupled. PMID:26826497

  3. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration.

    PubMed

    Lee, Sang Goo; Huang, Mingqian; Obholzer, Nikolaus D; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A; Megason, Sean G; Li, Huawei; Chen, Zheng-Yi

    2016-01-01

    Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration.

  4. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration

    PubMed Central

    Obholzer, Nikolaus D.; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A.; Megason, Sean G.; Li, Huawei; Chen, Zheng-Yi

    2016-01-01

    Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration. PMID:27351484

  5. Adult Human Nasal Mesenchymal-Like Stem Cells Restore Cochlear Spiral Ganglion Neurons After Experimental Lesion

    PubMed Central

    Bas, Esperanza; Van De Water, Thomas R.; Lumbreras, Vicente; Rajguru, Suhrud; Goss, Garrett; Hare, Joshua M.

    2014-01-01

    A loss of sensory hair cells or spiral ganglion neurons from the inner ear causes deafness, affecting millions of people. Currently, there is no effective therapy to repair the inner ear sensory structures in humans. Cochlear implantation can restore input, but only if auditory neurons remain intact. Efforts to develop stem cell-based treatments for deafness have demonstrated progress, most notably utilizing embryonic-derived cells. In an effort to bypass limitations of embryonic or induced pluripotent stem cells that may impede the translation to clinical applications, we sought to utilize an alternative cell source. Here, we show that adult human mesenchymal-like stem cells (MSCs) obtained from nasal tissue can repair spiral ganglion loss in experimentally lesioned cochlear cultures from neonatal rats. Stem cells engraft into gentamicin-lesioned organotypic cultures and orchestrate the restoration of the spiral ganglion neuronal population, involving both direct neuronal differentiation and secondary effects on endogenous cells. As a physiologic assay, nasal MSC-derived cells engrafted into lesioned spiral ganglia demonstrate responses to infrared laser stimulus that are consistent with those typical of excitable cells. The addition of a pharmacologic activator of the canonical Wnt/β-catenin pathway concurrent with stem cell treatment promoted robust neuronal differentiation. The availability of an effective adult autologous cell source for inner ear tissue repair should contribute to efforts to translate cell-based strategies to the clinic. PMID:24172073

  6. Overexpression of EAR1 and SSH4 that encode PPxY proteins in the multivesicular body provides stability to tryptophan permease Tat2, allowing yeast cells to grow under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Hiraki, Toshiki; Usui, Keiko; Abe, Fumiyoshi

    2010-12-01

    Tryptophan uptake in yeast Saccharomyces cerevisiae is susceptible to high hydrostatic pressure and it limits the growth of tryptophan auxotrophic (Trp-) strains under pressures of 15-25 MPa. The susceptibility of tryptophan uptake is accounted for by the pressure-induced degradation of tryptophan permease Tat2 occurring in a Rsp5 ubiquitin ligase-dependent manner. Ear1 and Ssh4 are multivesicular body proteins that physically interact with Rsp5. We found that overexpression of either of the EAR1 or SSH4 genes enabled the Trp- cells to grow at 15-25 MPa. EAR1 and SSH4 appeared to provide stability to the Tat2 protein when overexpressed. The result suggests that Ear1 and Ssh4 negatively regulate Rsp5 on ubiquitination of Tat2. Currently, high hydrostatic pressure is widely used in bioscience and biotechnology for structurally perturbing macromolecules such as proteins and lipids or in food processing and sterilizing microbes. We suggest that hydrostatic pressure is an operative experimental parameter to screen yeast genes specifically for regulation of Tat2 through the function of Rsp5 ubiquitin ligase.

  7. A long-term high-fat diet increases oxidative stress, mitochondrial damage and apoptosis in the inner ear of D-galactose-induced aging rats.

    PubMed

    Du, Zhengde; Yang, Yang; Hu, Yujuan; Sun, Yu; Zhang, Sulin; Peng, Wei; Zhong, Yi; Huang, Xiang; Kong, Weijia

    2012-05-01

    In humans, chronic dyslipidemia associated with elevated triglycerides may reduce auditory function. However, there is little evidence available in the literature concerning the effects of a long-term high-fat diet (HFD) on the inner ears of animals. The purpose of this study was to investigate the effect of 12 month-HFD on the inner ear of Sprague-Dawley rats and on the D-galactose (D-gal)-induced aging process in the inner ear. We found that 12 month-HFD markedly elevated the auditory brainstem response (ABR) threshold in the high-frequency region. The HFD significantly increased the generation of reactive oxygen species (ROS) and the expressions of NADPH oxidase (NOX) and the uncoupling proteins (UCP). Furthermore, an elevated accumulation of the mitochondrial DNA (mtDNA) common deletion (CD) and mitochondrial ultrastructural changes in the inner ear suggested that there was mitochondrial damage in response to the excessive fat intake. The expression level of cleaved caspase-3 and the number of terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end-labelling (TUNEL)-positive cells in the inner ear were increased by the HFD. The effects of D-gal on the inner ears were similar with 12 month-HFD. We found that rats receiving both the HFD and D-gal exhibited a greater shift in the ABR threshold, larger increases in the expression levels of NOX, UCP and cleaved caspase-3 and an increased number of TUNEL-positive cells in the inner ear. The present study demonstrated that HFD may induce oxidative stress, mitochondrial damage and apoptosis in the inner ear, and it provided evidence regarding the link between HFD and an increased risk of age-related hearing loss. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Interleukin 10 is an essential modulator of mucoid metaplasia in a mouse otitis media model

    PubMed Central

    Tsuchiya, Katsuyuki; Komori, Masahiro; Zheng, Qing Yin; Ferrieri, Patricia; Lin, Jizhen

    2009-01-01

    Inflammatory cytokines are involved in the development of mucus cell metaplasia/hyperplasia (MCM) in otitis media (OM). However, which cytokines play an essential role in MCM OM is not clear at the moment. In this study, we hypothesized that interleukin-10 (IL-10) played an indispensable role in MCM of bacterial OM and used IL-10 knockout mice to test this hypothesis. In wild-type mice, both S. pneumoniae and H. influenzae triggered the development of MCM in the middle ear mucosa. In IL-10 knockout mice, the number of goblet cells and mucin-producing cells in the middle ear was significantly reduced after bacterial middle ear infection compared with that in wild-type mice. We, therefore, concluded that IL-10 plays an essential role in MCM of bacterial OM. IL-10 is a potential target for the treatment of MCM in OM. PMID:18771082

  9. Effects of NSAIDs on the Inner Ear: Possible Involvement in Cochlear Protection

    PubMed Central

    Hoshino, Tomofumi; Tabuchi, Keiji; Hara, Akira

    2010-01-01

    Cyclooxygenase and lipoxygenase, two important enzymes involved in arachidonic acid metabolism, are major targets of non-steroidal anti-inflammatory drugs (NSAIDs). Recent investigations suggest that arachidonic cascades and their metabolites may be involved in maintaining inner ear functions. The excessive use of aspirin may cause tinnitus in humans and impairment of the outer hair cell functions in experimental animals. On the other hand, NSAIDs reportedly exhibit protective effects against various kinds of inner ear disorder. The present review summarizes the effects of NSAIDs on cochlear pathophysiology. NSAIDs are a useful ameliorative adjunct in the management of inner ear disorders. PMID:27713301

  10. Three-Dimensional Cell Printing of Large-Volume Tissues: Application to Ear Regeneration.

    PubMed

    Lee, Jung-Seob; Kim, Byoung Soo; Seo, Donghwan; Park, Jeong Hun; Cho, Dong-Woo

    2017-03-01

    The three-dimensional (3D) printing of large-volume cells, printed in a clinically relevant size, is one of the most important challenges in the field of tissue engineering. However, few studies have reported the fabrication of large-volume cell-printed constructs (LCCs). To create LCCs, appropriate fabrication conditions should be established: Factors involved include fabrication time, residence time, and temperature control of the cell-laden hydrogel in the syringe to ensure high cell viability and functionality. The prolonged time required for 3D printing of LCCs can reduce cell viability and result in insufficient functionality of the construct, because the cells are exposed to a harsh environment during the printing process. In this regard, we present an advanced 3D cell-printing system composed of a clean air workstation, a humidifier, and a Peltier system, which provides a suitable printing environment for the production of LCCs with high cell viability. We confirmed that the advanced 3D cell-printing system was capable of providing enhanced printability of hydrogels and fabricating an ear-shaped LCC with high cell viability. In vivo results for the ear-shaped LCC also showed that printed chondrocytes proliferated sufficiently and differentiated into cartilage tissue. Thus, we conclude that the advanced 3D cell-printing system is a versatile tool to create cell-printed constructs for the generation of large-volume tissues.

  11. Ectodysplasin signalling deficiency in mouse models of hypohidrotic ectodermal dysplasia leads to middle ear and nasal pathology

    PubMed Central

    Azar, Ali; Piccinelli, Chiara; Brown, Helen; Headon, Denis; Cheeseman, Michael

    2016-01-01

    Hypohidrotic ectodermal dysplasia (HED) results from mutation of the EDA, EDAR or EDARADD genes and is characterized by reduced or absent eccrine sweat glands, hair follicles and teeth, and defective formation of salivary, mammary and craniofacial glands. Mouse models with HED also carry Eda, Edar or Edaradd mutations and have defects that map to the same structures. Patients with HED have ear, nose and throat disease, but this has not been investigated in mice bearing comparable genetic mutations. We report that otitis media, rhinitis and nasopharyngitis occur at high frequency in Eda and Edar mutant mice and explore the pathogenic mechanisms related to glandular function, microbial and immune parameters in these lines. Nasopharynx auditory tube glands fail to develop in HED mutant mice and the functional implications include loss of lysozyme secretion, reduced mucociliary clearance and overgrowth of nasal commensal bacteria accompanied by neutrophil exudation. Heavy nasopharynx foreign body load and loss of gland protection alters the auditory tube gating function and the auditory tubes can become pathologically dilated. Accumulation of large foreign body particles in the bulla stimulates granuloma formation. Analysis of immune cell populations and myeloid cell function shows no evidence of overt immune deficiency in HED mutant mice. Our findings using HED mutant mice as a model for the human condition support the idea that ear and nose pathology in HED patients arises as a result of nasal and nasopharyngeal gland deficits, reduced mucociliary clearance and impaired auditory tube gating function underlies the pathological sequelae in the bulla. PMID:27378689

  12. Effect of Hypergravity on Carbonanhydrase Reactivity in inner Ear Ioncytes of developing Cichlid Fish

    NASA Astrophysics Data System (ADS)

    Beier, M.; Anken, R.; Rahmann, H.

    It has been shown earlier that hypergravity slows down inner ear otolith growth in developing fish. Otolith growth in terms of mineralisation mainly depends on the enzyme carboanhydrase (CAH), which is responsible for the provision of the pH- value necessary for calcium carbonate deposition and thus also is presumed to play a prominent role in Ménière's disease (a sensory - motor disorder inducing vertigo and kinetosis). Larval siblings of cichlid fish (Oreochromis mossambicus) were subjected to hypergravity (3g; 6 hours) during development and separated into normally and kinetotically swimming individuals following the transfer to 1g (i.e., stopping the centrifuge; kinetotically behaving fish performed spinning movements). Subsequently, CAH was histochemically demonstrated in inner ear ionocytes (cells involved in the endolymphatic ion exchange) and enzyme reactivity was determined densitometrically. The results showed that CAH-reactivity was significantly increased in normally behaving hyper-g specimens as compared to controls kept at 1g, whereas no difference in enzyme reactivity was evident between the controls and kinetotically behaving fish. On the background of earlier studies, according to which (1) hypergravity induces a decrease of otolith growth and (2) the otolithic calcium incorporation (visualized using the calcium -tracer alizarin complexone) of kinetotically swimming hyper - g fish was lower as compared to normally behaving hyper - g animals, the present study strongly supports the concept that an increase in CAH-reactivity may result in a decrease of otolithic calcium deposition. The mechanism regulating CAH-activity hitherto remains to be determined. Acknowledgement: This work was financially supported by the German Aerospace Center (DLR) (FKZ: 50 WB 9997).

  13. Macrophage migration inhibitory factor acts as a neurotrophin in the developing inner ear.

    PubMed

    Bank, Lisa M; Bianchi, Lynne M; Ebisu, Fumi; Lerman-Sinkoff, Dov; Smiley, Elizabeth C; Shen, Yu-chi; Ramamurthy, Poornapriya; Thompson, Deborah L; Roth, Therese M; Beck, Christine R; Flynn, Matthew; Teller, Ryan S; Feng, Luming; Llewellyn, G Nicholas; Holmes, Brandon; Sharples, Cyrrene; Coutinho-Budd, Jaeda; Linn, Stephanie A; Chervenak, Andrew P; Dolan, David F; Benson, Jennifer; Kanicki, Ariane; Martin, Catherine A; Altschuler, Richard; Koch, Alisa E; Koch, Alicia E; Jewett, Ethan M; Germiller, John A; Barald, Kate F

    2012-12-01

    This study is the first to demonstrate that macrophage migration inhibitory factor (MIF), an immune system 'inflammatory' cytokine that is released by the developing otocyst, plays a role in regulating early innervation of the mouse and chick inner ear. We demonstrate that MIF is a major bioactive component of the previously uncharacterized otocyst-derived factor, which directs initial neurite outgrowth from the statoacoustic ganglion (SAG) to the developing inner ear. Recombinant MIF acts as a neurotrophin in promoting both SAG directional neurite outgrowth and neuronal survival and is expressed in both the developing and mature inner ear of chick and mouse. A MIF receptor, CD74, is found on both embryonic SAG neurons and adult mouse spiral ganglion neurons. Mif knockout mice are hearing impaired and demonstrate altered innervation to the organ of Corti, as well as fewer sensory hair cells. Furthermore, mouse embryonic stem cells become neuron-like when exposed to picomolar levels of MIF, suggesting the general importance of this cytokine in neural development.

  14. Long-term consequences of Sox9 depletion on inner ear development

    PubMed Central

    Park, Byung-Yong; Saint-Jeannet, Jean-Pierre

    2010-01-01

    The transcription factor Sox9 has been implicated in inner ear formation in several species. To investigate the long-term consequences of Sox9 depletion on inner ear development we analyzed the inner ear architecture of Sox9-depleted Xenopus tadpoles generated by injection of increasing amounts of Sox9 morpholino antisense oligonucleotides. We found that Sox9-depletion resulted in major defects in the development of vestibular structures, semicircular canals and utricle, while the ventrally located saccule was less severely affected in these embryos. Consistent with this phenotype we observed a specific loss of the dorsal expression of Wnt3a expression in the otic vesicle of Sox9 morphants, associated with an increase in cell death and a reduction in cell proliferation in the region of the presumptive otic epithelium. We propose that in addition to its early role in placode specification, Sox9 is also required for the maintenance of progenitors in the otic epithelium. PMID:20201105

  15. Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals

    PubMed Central

    Gawriluk, Thomas R.; Simkin, Jennifer; Thompson, Katherine L.; Biswas, Shishir K.; Clare-Salzler, Zak; Kimani, John M.; Kiama, Stephen G.; Smith, Jeramiah J.; Ezenwa, Vanessa O.; Seifert, Ashley W.

    2016-01-01

    Why mammals have poor regenerative ability has remained a long-standing question in biology. In regenerating vertebrates, injury can induce a process known as epimorphic regeneration to replace damaged structures. Using a 4-mm ear punch assay across multiple mammalian species, here we show that several Acomys spp. (spiny mice) and Oryctolagus cuniculus completely regenerate tissue, whereas other rodents including MRL/MpJ ‘healer' mice heal similar injuries by scarring. We demonstrate ear-hole closure is independent of ear size, and closure rate can be modelled with a cubic function. Cellular and genetic analyses reveal that injury induces blastema formation in Acomys cahirinus. Despite cell cycle re-entry in Mus musculus and A. cahirinus, efficient cell cycle progression and proliferation only occurs in spiny mice. Together, our data unite blastema-mediated regeneration in spiny mice with regeneration in other vertebrates such as salamanders, newts and zebrafish, where all healthy adults regenerate in response to injury. PMID:27109826

  16. Optimal Electromechanical Reshaping of the Auricular Ear and Long-term Outcomes in an In Vivo Rabbit Model

    PubMed Central

    Manuel, Cyrus T.; Tjoa, Tjoson; Nguyen, Tony; Su, Erica; Wong, Brian J. F.

    2016-01-01

    IMPORTANCE The prominent ear is a common external ear anomaly that is usually corrected through surgery. Electromechanical reshaping (EMR) may provide the means to reshape cartilage through the use of direct current (in milliamperes) applied percutaneously with needle electrodes and thus to reduce reliance on open surgery. OBJECTIVE To determine the long-term outcomes (shape change, cell viability, and histology) of a more refined EMR voltage and time settings for reshaping rabbit auricle. DESIGN, SETTING, AND SUBJECTS The intact ears of 14 New Zealand white rabbits were divided into 2 groups. Group 1 received 4 V for 5 minutes (5 ears), 5 V for 4 minutes (5 ears), or no voltage for 5 minutes (control; 4 ears). Group 2 received an adjusted treatment of 4 V for 4 minutes (7 ears) or 5 V for 3 minutes (7 ears). A custom mold with platinum electrodes was used to bend the pinna and to perform EMR. Pinnae were splinted for 6 months along the region of the bend. Rabbits were killed humanely and the ears were harvested the day after splint removal. Data were collected from March 14, 2013, to July 8, 2014, and analyzed from August 29, 2013, to March 1, 2015. MAIN OUTCOMES AND MEASURES Bend angle and mechanical behavior via palpation were recorded through photography and videography. Tissue was sectioned for histologic examination and confocal microscopy to assess changes to microscopic structure and cell viability. RESULTS Rabbits ranged in age from 6 to 8 months and weighed 3.8 to 4.0 g. The mean (SD) bend angles were 81° (45°) for the controls and, in the 5 EMR groups, 72° (29°) for 4 V for 4 minutes, 101° (19°) for 4 V for 5 minutes, 78° (18°) for 5 V for 3 minutes, and 126° (21°) for 5 V for 4 minutes. At 5 V, an increase in application time from 3 to 4 minutes provided significant shape change (78° [18°] and 126° [21°], respectively; P = .003). Pinnae stained with hematoxylin-eosin displayed localized areas of cell injury and fibrosis in and around electrode insertion sites. This circumferential zone of injury (range, 1.3–2.1 mm) corresponded to absence of red florescence on the cell viability assay. CONCLUSIONS AND RELEVANCE In this in vivo study, EMR produces shape changes in the intact pinnae of rabbits. A short application of 4 V or 5 V can achieve adequate reshaping of the pinnae. Tissue injury around the electrodes is modest in spatial distribution. This study provides a more optimal set of EMR variables and a critical step toward evaluation of EMR in clinical trials. LEVEL OF EVIDENCE NA. PMID:27101542

  17. Antibodies Mediate Formation of Neutrophil Extracellular Traps in the Middle Ear and Facilitate Secondary Pneumococcal Otitis Media

    PubMed Central

    Short, Kirsty R.; von Köckritz-Blickwede, Maren; Langereis, Jeroen D.; Chew, Keng Yih; Job, Emma R.; Armitage, Charles W.; Hatcher, Brandon; Fujihashi, Kohtaro; Reading, Patrick C.; Hermans, Peter W.

    2014-01-01

    Otitis media (OM) (a middle ear infection) is a common childhood illness that can leave some children with permanent hearing loss. OM can arise following infection with a variety of different pathogens, including a coinfection with influenza A virus (IAV) and Streptococcus pneumoniae (the pneumococcus). We and others have demonstrated that coinfection with IAV facilitates the replication of pneumococci in the middle ear. Specifically, we used a mouse model of OM to show that IAV facilitates the outgrowth of S. pneumoniae in the middle ear by inducing middle ear inflammation. Here, we seek to understand how the host inflammatory response facilitates bacterial outgrowth in the middle ear. Using B cell-deficient infant mice, we show that antibodies play a crucial role in facilitating pneumococcal replication. We subsequently show that this is due to antibody-dependent neutrophil extracellular trap (NET) formation in the middle ear, which, instead of clearing the infection, allows the bacteria to replicate. We further demonstrate the importance of these NETs as a potential therapeutic target through the transtympanic administration of a DNase, which effectively reduces the bacterial load in the middle ear. Taken together, these data provide novel insight into how pneumococci are able to replicate in the middle ear cavity and induce disease. PMID:24191297

  18. The LuxS/AI-2 Quorum-Sensing System of Streptococcus pneumoniae Is Required to Cause Disease, and to Regulate Virulence- and Metabolism-Related Genes in a Rat Model of Middle Ear Infection.

    PubMed

    Yadav, Mukesh K; Vidal, Jorge E; Go, Yoon Y; Kim, Shin H; Chae, Sung-Won; Song, Jae-Jun

    2018-01-01

    Objective: Streptococcus pneumoniae colonizes the nasopharynx of children, and from nasopharynx it could migrate to the middle ear and causes acute otitis media (AOM). During colonization and AOM, the pneumococcus forms biofilms. In vitro biofilm formation requires a functional LuxS/AI-2 quorum-sensing system. We investigated the role of LuxS/AI-2 signaling in pneumococcal middle ear infection, and identified the genes that are regulated by LuxS/AI-2 during pneumococcal biofilm formation. Methods: Streptococcus pneumoniae D39 wild-type and an isogenic D39Δ luxS strain were utilized to evaluate in vitro biofilm formation, and in vivo colonization and epithelial damage using a microtiter plate assay and a rat model of pneumococcal middle ear infection, respectively. Biofilm structures and colonization and epithelial damage were evaluated at the ultrastructural level by scanning electron microscopy and confocal microscopy. Microarrays were used to investigate the global genes that were regulated by LuxS/AI-2 during biofilm formation. Results: The biofilm biomass and density of D39Δ luxS were significantly ( p < 0.05) lower than those of D39 wild-type. SEM and confocal microscopy revealed that D39Δ luxS formed thin biofilms in vitro compared with D39 wild-type. The in vivo model of middle ear infection showed that D39Δ luxS resulted in ~60% less ( p < 0.05) bacterial colonization than the wild-type. SEM analysis of the rat middle ears revealed dense biofilm-like cell debris deposited on the cilia in wild-type D39-infected rats. However, little cell debris was deposited in the middle ears of the D39Δ luxS -inoculated rats, and the cilia were visible. cDNA-microarray analysis revealed 117 differentially expressed genes in D39Δ luxS compared with D39 wild-type. Among the 66 genes encoding putative proteins and previously characterized proteins, 60 were significantly downregulated, whereas 6 were upregulated. Functional annotation revealed that genes involved in DNA replication and repair, ATP synthesis, capsule biosynthesis, cell division, the cell cycle, signal transduction, transcription regulation, competence, virulence, and carbohydrate metabolism were downregulated in the absence of LuxS/AI-2. Conclusion: The S. pneumoniae LuxS/AI-2 quorum-sensing system is necessary for biofilm formation and the colonization of the ear epithelium, and caused middle ear infection in the rat model. LuxS/AI-2 regulates the expression of the genes involved in virulence and bacterial fitness during pneumococcal biofilm formation.

  19. Immunohistological analysis of eotaxin and RANTES in the model animal of eosinophilic otitis media.

    PubMed

    Kudo, Naomi; Matsubara, Atsushi; Nishizawa, Hisanori; Miura, Tomoya

    2017-05-01

    The most crucial clinical problem of Eosinophilic Otitis Media (EOM) is sensorineural hearing loss. A previous report revealed that repeated antigen stimulation of middle ear causes eosinophilic inflammation not only in the middle ear but also in the inner ear. The purpose of the present study was to elucidate the mechanism of eosinophil infiltration to the inner ear in the animal model of EOM. Continuous OVA stimulation to the middle ear of guinea pigs was performed for 7 days, 14 days, and 28 days. Histological observation was made for eosinophil infiltration and morphological change of the inner ear. Immunostaining for eotaxin and RANTES was performed to study immunoreactivity of those chemokines. In the 7-day stimulation side, a few eosinophils were found in the scala tympani, without obvious morphological damage of the inner ear. Moreover, immunoreactivity of both eotaxin and RANTES was significantly higher in the OVA stimulation sides than control sides. For both eotaxin and RANTES, the number of immunopositive cells was significantly increased in the 14-day stimulation side over the 7-day stimulation side. Eotaxin and RANTES seem to play some important roles for the eosinophil infiltration in the middle and inner ear of model animal of EOM.

  20. Middle-Ear Pressure Gain and Cochlear Partition Differential Pressure in Chinchilla

    PubMed Central

    Ravicz, Michael E.; Slama, Michaël C.C.; Rosowski, John J.

    2009-01-01

    An important step to describe the effects of inner-ear impedance and pathologies on middle- and inner-ear mechanics is to quantify middle- and inner-ear function in the normal ear. We present middle-ear pressure gain GMEP and trans-cochlear-partition differential sound pressure ΔPCP in chinchilla from 100 Hz to 30 kHz derived from measurements of intracochlear sound pressures in scala vestibuli PSV and scala tympani PST and ear-canal sound pressure near the tympanic membrane PTM. These measurements span the chinchilla's auditory range. GMEP had constant magnitude of about 20 dB between 300 Hz and 20 kHz and phase that implies a 40-μs delay, values with some similarities to previous measurements in chinchilla and other species. ΔPCP was similar to GMEP below about 10 kHz and lower in magnitude at higher frequencies, decreasing to 0 dB at 20 kHz. The high-frequency rolloff correlates with the audiogram and supports the idea that middle-ear transmission limits high-frequency hearing, providing a stronger link between inner-ear macromechanics and hearing. We estimate the cochlear partition impedance ZCP from these and previous data. The chinchilla may be a useful animal model for exploring the effects of nonacoustic inner-ear stimulation such as “bone conduction” on cochlear mechanics. PMID:19945521

  1. Design and development of nanocomposite scaffolds for auricular reconstruction.

    PubMed

    Nayyer, Leila; Birchall, Martin; Seifalian, Alexander M; Jell, Gavin

    2014-01-01

    Auricular reconstruction using sculpted autologous costal cartilage is effective, but complex and time consuming and may incur donor site sequelae and morbidity. Conventional synthetic alternatives are associated with infection and extrusion in up to about 15% of cases. We present a novel POSS-PCU nanocomposite auricular scaffold, which aims to reduce extrusion rates by mimicking the elastic modulus of human ears and by encouraging desirable cellular interactions. The fabrication, physicochemical properties (including nanoscale topography) and cellular interactions of these scaffolds were compared to Medpor®, the current synthetic standard. Our scaffold had a more similar elastic modulus (5.73 ± 0.17MPa) to ear cartilage (5.02 ± 0.17MPa) compared with Medpor®, which was much stiffer (140.9 ± 0.04MPa). POSS-PCU supported fibroblast ingrowth and proliferation; significantly higher collagen production was also produced by cells on the POSS-PCU than those on Medpor®. This porous POSS-PCU nanocomposite scaffold is therefore a promising alternative biomaterial for auricular surgical reconstruction. In this paper, a novel POSS-PCU nanocomposite auricular scaffold is described to reduce extrusion rates by having a much closer elastic modulus of human ears than the currently available synthetic standard. Enabling desirable cellular interactions may lead to the successful clinical application of these novel scaffolds. © 2013.

  2. Losses, Expansions, and Novel Subunit Discovery of Adaptor Protein Complexes in Haptophyte Algae.

    PubMed

    Lee, Laura J Y; Klute, Mary J; Herman, Emily K; Read, Betsy; Dacks, Joel B

    2015-11-01

    The phylum Haptophyta (Diaphoratickes) contains marine algae that perform biomineralization, extruding large, distinctive calcium carbonate scales (coccoliths) that completely cover the cell. Coccolith production is an important part of global carbon cycling; however, the membrane trafficking pathway by which they are secreted has not yet been elucidated. In most eukaryotes, post-Golgi membrane trafficking involves five heterotetrameric adaptor protein (AP) complexes, which impart cargo selection specificity. To better understand coccolith secretion, we performed comparative genomic, phylogenetic, and transcriptomic analyses of the AP complexes in Emiliania huxleyi strains 92A, Van556, EH2, and CCMP1516, and related haptophytes Gephyrocapsa oceanica and Isochrysis galbana; the latter has lost the ability to biomineralize. We show that haptophytes have a modified membrane trafficking system (MTS), as we found both AP subunit losses and duplications. Additionally, we identified a single conserved subunit of the AP-related TSET complex, whose expression suggests a functional role in membrane trafficking. Finally, we detected novel alpha adaptin ear and gamma adaptin ear proteins, the first of their kind to be described outside of opisthokonts. These novel ear proteins and the sculpting of the MTS may support the capacity for biomineralization in haptophytes, enhancing their ability to perform this highly specialized form of secretion. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Zebrafish Foxi1 provides a neuronal ground state during inner ear induction preceding the Dlx3b/4b-regulated sensory lineage.

    PubMed

    Hans, Stefan; Irmscher, Anne; Brand, Michael

    2013-05-01

    Vertebrate inner ear development is a complex process that involves the induction of a common territory for otic and epibranchial precursors and their subsequent segregation into otic and epibranchial cell fates. In zebrafish, the otic-epibranchial progenitor domain (OEPD) is induced by Fgf signaling in a Foxi1- and Dlx3b/4b-dependent manner, but the functional differences of Foxi1 and Dlx3b/4b in subsequent cell fate specifications within the developing inner ear are poorly understood. Based on pioneer tracking (PioTrack), a novel Cre-dependent genetic lineage tracing method, and genetic data, we show that the competence to embark on a neuronal or sensory fate is provided sequentially and very early during otic placode induction. Loss of Foxi1 prevents neuronal precursor formation without affecting hair cell specification, whereas loss of Dlx3b/4b inhibits hair cell but not neuronal precursor formation. Consistently, in Dlx3b/4b- and Sox9a-deficient b380 mutants almost all otic epithelial fates are absent, including sensory hair cells, and the remaining otic cells adopt a neuronal fate. Furthermore, the progenitors of the anterior lateral line ganglia also arise from the OEPD in a Foxi1-dependent manner but are unaffected in the absence of Dlx3b/4b or in b380 mutants. Thus, in addition to otic fate Foxi1 provides neuronal competence during OEPD induction prior to and independently of the Dlx3b/4b-mediated sensory fate of the developing inner ear.

  4. Using the Real-Ear-to-Coupler Difference within the American Academy of Audiology Pediatric Amplification Guideline: Protocols for Applying and Predicting Earmold RECDs.

    PubMed

    Moodie, Sheila; Pietrobon, Jonathan; Rall, Eileen; Lindley, George; Eiten, Leisha; Gordey, Dave; Davidson, Lisa; Moodie, K Shane; Bagatto, Marlene; Haluschak, Meredith Magathan; Folkeard, Paula; Scollie, Susan

    2016-03-01

    Real-ear-to-coupler difference (RECD) measurements are used for the purposes of estimating degree and configuration of hearing loss (in dB SPL ear canal) and predicting hearing aid output from coupler-based measures. Accurate measurements of hearing threshold, derivation of hearing aid fitting targets, and predictions of hearing aid output in the ear canal assume consistent matching of RECD coupling procedure (i.e., foam tip or earmold) with that used during assessment and in verification of the hearing aid fitting. When there is a mismatch between these coupling procedures, errors are introduced. The goal of this study was to quantify the systematic difference in measured RECD values obtained when using a foam tip versus an earmold with various tube lengths. Assuming that systematic errors exist, the second goal was to investigate the use of a foam tip to earmold correction for the purposes of improving fitting accuracy when mismatched RECD coupling conditions occur (e.g., foam tip at assessment, earmold at verification). Eighteen adults and 17 children (age range: 3-127 mo) participated in this study. Data were obtained using simulated ears of various volumes and earmold tubing lengths and from patients using their own earmolds. Derived RECD values based on simulated ear measurements were compared with RECD values obtained for adult and pediatric ears for foam tip and earmold coupling. Results indicate that differences between foam tip and earmold RECDs are consistent across test ears for adults and children which support the development of a correction between foam tip and earmold couplings for RECDs that can be applied across individuals. The foam tip to earmold correction values developed in this study can be used to provide improved estimations of earmold RECDs. This may support better accuracy in acoustic transforms related to transforming thresholds and/or hearing aid coupler responses to ear canal sound pressure level for the purposes of fitting behind-the-ear hearing aids. American Academy of Audiology.

  5. Translations on USSR Science and Technology, Biomedical and Behavioral Sciences, Number 44

    DTIC Science & Technology

    1978-09-07

    one can sometimes even taste sweet honeydew , or "manna" on the ears and grains. However, " honeydew " is unnoticeable or barely noticeable in most cases...affliction is severe: Appearance of a sweet or slightly sweet exudate—" honeydew " or "manna"—on ears and kernels due to carbo- hydrate hydrolysis and...34 honeydew " on rye ears infected by ergot, but it is distinctly different in that single-celled colorless spores typical of the latter are absent

  6. Alternative splicing of inner-ear-expressed genes.

    PubMed

    Wang, Yanfei; Liu, Yueyue; Nie, Hongyun; Ma, Xin; Xu, Zhigang

    2016-09-01

    Alternative splicing plays a fundamental role in the development and physiological function of the inner ear. Inner-ear-specific gene splicing is necessary to establish the identity and maintain the function of the inner ear. For example, exon 68 of Cadherin 23 (Cdh23) gene is subject to inner-ear-specific alternative splicing, and as a result, Cdh23(+ 68) is only expressed in inner ear hair cells. Alternative splicing along the tonotopic axis of the cochlea contributes to frequency tuning, particularly in lower vertebrates, such as chickens and turtles. Differential splicing of Kcnma1, which encodes for the α subunit of the Ca(2+)-activated K(+) channel (BK channel), has been suggested to affect the channel gating properties and is important for frequency tuning. Consequently, deficits in alternative splicing have been shown to cause hearing loss, as we can observe in Bronx Waltzer (bv) mice and Sfswap mutant mice. Despite the advances in this field, the regulation of alternative splicing in the inner ear remains elusive. Further investigation is also needed to clarify the mechanism of hearing loss caused by alternative splicing deficits.

  7. KGFR as a possible therapeutic target in middle ear cholesteatoma.

    PubMed

    Yamamoto-Fukuda, Tomomi; Akiyama, Naotaro; Shibata, Yasuaki; Takahashi, Haruo; Ikeda, Tohru; Kohno, Michiaki; Koji, Takehiko

    2014-11-01

    We demonstrated that repression of keratinocyte growth factor (KGF) receptor (KGFR) could be a potentially useful strategy in the conservative treatment of middle ear cholesteatoma. Recently, the use of a selective inhibitor of the KGFR, SU5402, in an in vitro experiment resulted in the inhibition of the differentiation and proliferation of epithelial cells through KGF secretion by fibroblasts isolated from the cholesteatoma. In this study, we investigated the effects of the KGFR inhibitor during middle ear cholesteatoma formation in vivo. Based on the role of KGF in the development of cholesteatoma, Flag-hKGF cDNA driven by CMV14 promoter was transfected through electroporation into the external auditory canal of rats five times on every fourth day. Ears transfected with empty vector were used as controls. KGFR selective inhibitor (SU5402) or MEK inhibitor (PD0325901) was administered in the right ear of five rats after vector transfection. In the control, 2% DMSO in PBS was administered in the other ears after vector transfection. The use of a selective KGFR inhibitor, SU5402, completely prevented middle ear cholesteatoma formation in the rats.

  8. Exposure to non-ionizing electromagnetic fields emitted from mobile phones induced DNA damage in human ear canal hair follicle cells.

    PubMed

    Akdag, Mehmet; Dasdag, Suleyman; Canturk, Fazile; Akdag, Mehmet Zulkuf

    2018-01-01

    The aim of this study was to investigate effect of radiofrequency radiation (RFR) emitted from mobile phones on DNA damage in follicle cells of hair in the ear canal. The study was carried out on 56 men (age range: 30-60 years old)in four treatment groups with n = 14 in each group. The groups were defined as follows: people who did not use a mobile phone (Control), people use mobile phones for 0-30 min/day (second group), people use mobile phones for 30-60 min/day (third group) and people use mobile phones for more than 60 min/day (fourth group). Ear canal hair follicle cells taken from the subjects were analyzed by the Comet Assay to determine DNA damages. The Comet Assay parameters measured were head length, tail length, comet length, percentage of head DNA, tail DNA percentage, tail moment, and Olive tail moment. Results of the study showed that DNA damage indicators were higher in the RFR exposure groups than in the control subjects. In addition, DNA damage increased with the daily duration of exposure. In conclusion, RFR emitted from mobile phones has a potential to produce DNA damage in follicle cells of hair in the ear canal. Therefore, mobile phone users have to pay more attention when using wireless phones.

  9. Pathogenesis of Middle Ear Cholesteatoma

    PubMed Central

    Yamamoto-Fukuda, Tomomi; Hishikawa, Yoshitaka; Shibata, Yasuaki; Kobayashi, Toshimitsu; Takahashi, Haruo; Koji, Takehiko

    2010-01-01

    Middle ear cholesteatoma is characterized by enhanced proliferation of epithelial cells with aberrant morphological characteristics. To investigate the origin of the cholesteatoma cells, we analyzed spontaneously occurring cholesteatomas associated with a new transplantation model in Mongolian gerbils (gerbils). Cholesteatomas were induced in gerbils with a transplanted tympanic membrane by using the external auditory canal (EAC) ligation method. After the pars flaccida of the tympanic membranes were completely removed from male gerbils, corresponding portions of tympanic membranes of female gerbils were transplanted to the area of defect, and then we ligated the EAC (hybrid-model group). As a control group, the EAC of normal male and female gerbils was ligated without myringoplasty. In all ears of each group, the induced cholesteatomas were seen. In situ PCR was then performed to detect the mouse X chromosome-linked phosphoglycerate kinase-1 (pgk-1) gene on the paraffin sections. One pgk-1 spot in the epithelial nuclei was detected in male cholesteatoma, and two pgk-1 spots were detected in female cholesteatoma, respectively. On the other hand, in the hybrid-model group, we detected not only one but also two pgk-1 spots in the epithelial nuclei of cholesteatoma. These results strengthened the evidence that the origin of epithelial cells in cholesteatoma is the tympanic membrane in this model, but not the residential middle ear epithelial cells or the skin of the EAC. PMID:20413684

  10. Pathogenesis of middle ear cholesteatoma: a new model of experimentally induced cholesteatoma in Mongolian gerbils.

    PubMed

    Yamamoto-Fukuda, Tomomi; Hishikawa, Yoshitaka; Shibata, Yasuaki; Kobayashi, Toshimitsu; Takahashi, Haruo; Koji, Takehiko

    2010-06-01

    Middle ear cholesteatoma is characterized by enhanced proliferation of epithelial cells with aberrant morphological characteristics. To investigate the origin of the cholesteatoma cells, we analyzed spontaneously occurring cholesteatomas associated with a new transplantation model in Mongolian gerbils (gerbils). Cholesteatomas were induced in gerbils with a transplanted tympanic membrane by using the external auditory canal (EAC) ligation method. After the pars flaccida of the tympanic membranes were completely removed from male gerbils, corresponding portions of tympanic membranes of female gerbils were transplanted to the area of defect, and then we ligated the EAC (hybrid-model group). As a control group, the EAC of normal male and female gerbils was ligated without myringoplasty. In all ears of each group, the induced cholesteatomas were seen. In situ PCR was then performed to detect the mouse X chromosome-linked phosphoglycerate kinase-1 (pgk-1) gene on the paraffin sections. One pgk-1 spot in the epithelial nuclei was detected in male cholesteatoma, and two pgk-1 spots were detected in female cholesteatoma, respectively. On the other hand, in the hybrid-model group, we detected not only one but also two pgk-1 spots in the epithelial nuclei of cholesteatoma. These results strengthened the evidence that the origin of epithelial cells in cholesteatoma is the tympanic membrane in this model, but not the residential middle ear epithelial cells or the skin of the EAC.

  11. Human papillomavirus E6/E7 oncogenes promote mouse ear regeneration by increasing the rate of wound re-epithelization and epidermal growth.

    PubMed

    Valencia, Concepción; Bonilla-Delgado, José; Oktaba, Katarzyna; Ocádiz-Delgado, Rodolfo; Gariglio, Patricio; Covarrubias, Luis

    2008-12-01

    Mammals have limited regeneration capacity. We report here that, in transgenic mice (Tg(bK6-E6/E7)), the expression of the E6/E7 oncogenes of human papilloma virus type 16 (HPV16) under the control of the bovine keratin 6 promoter markedly improves the mouse's capacity to repair portions of the ear after being wounded. Increased repair capacity correlates with an increased number of epidermal proliferating cells. In concordance with the expected effects of the E6 and E7 oncogenes, levels of p53 decreased and those of p16 in epidermal cells increased. In addition, we observed that wound re-epithelization proceeded faster in transgenic than in wild-type animals. After the initial re-epithelization, epidermal cell migration from the intact surrounding tissue appears to be a major contributor to the growing epidermis, especially in the repairing tissue of transgenic mice. We also found that there is a significantly higher number of putative epidermal stem cells in Tg(bK6-E6/E7) than in wild-type mice. Remarkably, hair follicles and cartilage regenerated within the repaired ear tissue, without evidence of tumor formation. We propose that the ability to regenerate ear portions is limited by the capacity of the epidermis to repair itself and grow.

  12. [Establishment of fibroblast cell line and its biological characteristics in Matou goat].

    PubMed

    Li, Tianda; Liu, Chousheng; Wang, Zhigang; Zhang, Liping; Sun, Xiuzhu; Zhao, Junjin; Meng, Fei; Luo, Guihe; Zhu, Jinqing

    2008-12-01

    Taking Matou goat ear margin as the study material, we succeeded in established a fibroblast cell line by the method of explant culture directly. Observations on morphology, dynamic growth, determination of viability, analysis of karyotype, test of microorganism and other characteristics were detected. Results showed: Population Doubling Time (PDT) of cells was approximately 36 h; Cell viability was 96.7% after thawing; The status of cell After passage was constant; Analysis of chromosomal karyotyps indicated that diploid (2n=60) account for 98% in the cell line. Every index in the cell line met all the standard quality controls of ATCC in USA. The established of Matou goat ear fibroblast cell line has not only important genetic resources preserved at the cell level, but also valuable material for genome, postgenome and somatic cell nuclear transfer research.

  13. AhR modulates the IL-22-producing cell proliferation/recruitment in imiquimod-induced psoriasis mouse model.

    PubMed

    Cochez, Perrine M; Michiels, Camille; Hendrickx, Emilie; Van Belle, Astrid B; Lemaire, Muriel M; Dauguet, Nicolas; Warnier, Guy; de Heusch, Magali; Togbe, Dieudonnée; Ryffel, Bernhard; Coulie, Pierre G; Renauld, Jean-Christophe; Dumoutier, Laure

    2016-06-01

    IL-22 has a detrimental role in skin inflammatory processes, for example in psoriasis. As transcription factor, AhR controls the IL-22 production by several cell types (i.e. Th17 cells). Here, we analyzed the role of Ahr in IL-22 production by immune cells in the inflamed skin, using an imiquimod-induced psoriasis mouse model. Our results indicate that IL-22 is expressed in the ear of imiquimod-treated Ahr(-/-) mice but less than in wild-type mice. We then studied the role of AhR on three cell populations known to produce IL-22 in the skin: γδ T cells, Th17 cells, and ILC3, and a novel IL-22-producing cell type identified in this setting: CD4(-) CD8(-) TCRβ(+) T cells. We showed that AhR is required for IL-22 production by Th17, but not by the three other cell types, in the imiquimod-treated ears. Moreover, AhR has a role in the recruitment of γδ T cells, ILC3, and CD4(-) CD8(-) TCRβ(+) T cells into the inflamed skin or in their local proliferation. Taken together, AhR has a direct role in IL-22 production by Th17 cells in the mouse ear skin, but not by γδ T cells, CD4(-) CD8(-) TCRβ(+) T cells and ILCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Predicting binaural responses from monaural responses in the gerbil medial superior olive

    PubMed Central

    Plauška, Andrius; Borst, J. Gerard

    2016-01-01

    Accurate sound source localization of low-frequency sounds in the horizontal plane depends critically on the comparison of arrival times at both ears. A specialized brainstem circuit containing the principal neurons of the medial superior olive (MSO) is dedicated to this comparison. MSO neurons are innervated by segregated inputs from both ears. The coincident arrival of excitatory inputs from both ears is thought to trigger action potentials, with differences in internal delays creating a unique sensitivity to interaural time differences (ITDs) for each cell. How the inputs from both ears are integrated by the MSO neurons is still debated. Using juxtacellular recordings, we tested to what extent MSO neurons from anesthetized Mongolian gerbils function as simple cross-correlators of their bilateral inputs. From the measured subthreshold responses to monaural wideband stimuli we predicted the rate-ITD functions obtained from the same MSO neuron, which have a damped oscillatory shape. The rate of the oscillations and the position of the peaks and troughs were accurately predicted. The amplitude ratio between dominant and secondary peaks of the rate-ITD function, captured in the width of its envelope, was not always exactly reproduced. This minor imperfection pointed to the methodological limitation of using a linear representation of the monaural inputs, which disregards any temporal sharpening occurring in the cochlear nucleus. The successful prediction of the major aspects of rate-ITD curves supports a simple scheme in which the ITD sensitivity of MSO neurons is realized by the coincidence detection of excitatory monaural inputs. PMID:27009164

  15. A simple method for purification of vestibular hair cells and non-sensory cells, and application for proteomic analysis.

    PubMed

    Herget, Meike; Scheibinger, Mirko; Guo, Zhaohua; Jan, Taha A; Adams, Christopher M; Cheng, Alan G; Heller, Stefan

    2013-01-01

    Mechanosensitive hair cells and supporting cells comprise the sensory epithelia of the inner ear. The paucity of both cell types has hampered molecular and cell biological studies, which often require large quantities of purified cells. Here, we report a strategy allowing the enrichment of relatively pure populations of vestibular hair cells and non-sensory cells including supporting cells. We utilized specific uptake of fluorescent styryl dyes for labeling of hair cells. Enzymatic isolation and flow cytometry was used to generate pure populations of sensory hair cells and non-sensory cells. We applied mass spectrometry to perform a qualitative high-resolution analysis of the proteomic makeup of both the hair cell and non-sensory cell populations. Our conservative analysis identified more than 600 proteins with a false discovery rate of <3% at the protein level and <1% at the peptide level. Analysis of proteins exclusively detected in either population revealed 64 proteins that were specific to hair cells and 103 proteins that were only detectable in non-sensory cells. Statistical analyses extended these groups by 53 proteins that are strongly upregulated in hair cells versus non-sensory cells and vice versa by 68 proteins. Our results demonstrate that enzymatic dissociation of styryl dye-labeled sensory hair cells and non-sensory cells is a valid method to generate pure enough cell populations for flow cytometry and subsequent molecular analyses.

  16. Bone morphogenetic protein 4 antagonizes hair cell regeneration in the avian auditory epithelium.

    PubMed

    Lewis, Rebecca M; Keller, Jesse J; Wan, Liangcai; Stone, Jennifer S

    2018-07-01

    Permanent hearing loss is often a result of damage to cochlear hair cells, which mammals are unable to regenerate. Non-mammalian vertebrates such as birds replace damaged hair cells and restore hearing function, but mechanisms controlling regeneration are not understood. The secreted protein bone morphogenetic protein 4 (BMP4) regulates inner ear morphogenesis and hair cell development. To investigate mechanisms controlling hair cell regeneration in birds, we examined expression and function of BMP4 in the auditory epithelia (basilar papillae) of chickens of either sex after hair cell destruction by ototoxic antibiotics. In mature basilar papillae, BMP4 mRNA is highly expressed in hair cells, but not in hair cell progenitors (supporting cells). Supporting cells transcribe genes encoding receptors for BMP4 (BMPR1A, BMPR1B, and BMPR2) and effectors of BMP4 signaling (ID transcription factors). Following hair cell destruction, BMP4 transcripts are lost from the sensory epithelium. Using organotypic cultures, we demonstrate that treatments with BMP4 during hair cell destruction prevent supporting cells from upregulating expression of the pro-hair cell transcription factor ATOH1, entering the cell cycle, and fully transdifferentiating into hair cells, but they do not induce cell death. By contrast, noggin, a BMP4 inhibitor, increases numbers of regenerated hair cells. These findings demonstrate that BMP4 antagonizes hair cell regeneration in the chicken basilar papilla, at least in part by preventing accumulation of ATOH1 in hair cell precursors. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Intravital imaging of a spheroid-based orthotopic model of melanoma in the mouse ear skin

    PubMed Central

    Chan, Keefe T.; Jones, Stephen W.; Brighton, Hailey E.; Bo, Tao; Cochran, Shelly D.; Sharpless, Norman E.; Bear, James E.

    2017-01-01

    Multiphoton microscopy is a powerful tool that enables the visualization of fluorescently tagged tumor cells and their stromal interactions within tissues in vivo. We have developed an orthotopic model of implanting multicellular melanoma tumor spheroids into the dermis of the mouse ear skin without the requirement for invasive surgery. Here, we demonstrate the utility of this approach to observe the primary tumor, single cell actin dynamics, and tumor-associated vasculature. These methods can be broadly applied to investigate an array of biological questions regarding tumor cell behavior in vivo. PMID:28748125

  18. Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea.

    PubMed

    Chai, Renjie; Kuo, Bryan; Wang, Tian; Liaw, Eric J; Xia, Anping; Jan, Taha A; Liu, Zhiyong; Taketo, Makoto M; Oghalai, John S; Nusse, Roeland; Zuo, Jian; Cheng, Alan G

    2012-05-22

    Inner ear hair cells are specialized sensory cells essential for auditory function. Previous studies have shown that the sensory epithelium is postmitotic, but it harbors cells that can behave as progenitor cells in vitro, including the ability to form new hair cells. Lgr5, a Wnt target gene, marks distinct supporting cell types in the neonatal cochlea. Here, we tested the hypothesis that Lgr5(+) cells are Wnt-responsive sensory precursor cells. In contrast to their quiescent in vivo behavior, Lgr5(+) cells isolated by flow cytometry from neonatal Lgr5(EGFP-CreERT2/+) mice proliferated and formed clonal colonies. After 10 d in culture, new sensory cells formed and displayed specific hair cell markers (myo7a, calretinin, parvalbumin, myo6) and stereocilia-like structures expressing F-actin and espin. In comparison with other supporting cells, Lgr5(+) cells were enriched precursors to myo7a(+) cells, most of which formed without mitotic division. Treatment with Wnt agonists increased proliferation and colony-formation capacity. Conversely, small-molecule inhibitors of Wnt signaling suppressed proliferation without compromising the myo7a(+) cells formed by direct differentiation. In vivo lineage tracing supported the idea that Lgr5(+) cells give rise to myo7a(+) hair cells in the neonatal Lgr5(EGFP-CreERT2/+) cochlea. In addition, overexpression of β-catenin initiated proliferation and led to transient expansion of Lgr5(+) cells within the cochlear sensory epithelium. These results suggest that Lgr5 marks sensory precursors and that Wnt signaling can promote their proliferation and provide mechanistic insights into Wnt-responsive progenitor cells during sensory organ development.

  19. Gravity and the cells of gravity receptors in mammals

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1983-01-01

    A model of the mammalian gravity receptor system is presented, with attention given to the effects of weightlessness. Two receptors are on each side of the head, with end organs in the saccule and utricle of the vestibular membranous labyrinth of the inner ear, embedded in the temporal bone. Each end organ has a macula, containing hair cells and supporting cells, and an otoconial complex, an otoconial membrane and mineral masses called otoconia. X ray powder diffraction examinations have revealed that the otoconia can behave like crystals, i.e., with piezoelectric properties, due to the mineral deposits. Bending of the hair cells because of acceleration can put pressure on the otoconial mineral, producing an electrical signal in the absence of a gravitational field. The possibility that pyroelectricity, as well as piezoelectricity, is present in the otoconial complexes, is discussed.

  20. Piezo- and Flexoelectric Membrane Materials Underlie Fast Biological Motors in the Ear

    PubMed Central

    Breneman, Kathryn D.; Rabbitt, Richard D.

    2010-01-01

    The mammalian inner ear is remarkably sensitive to quiet sounds, exhibits over 100dB dynamic range, and has the exquisite ability to discriminate closely spaced tones even in the presence of noise. This performance is achieved, in part, through active mechanical amplification of vibrations by sensory hair cells within the inner ear. All hair cells are endowed with a bundle of motile microvilli, stereocilia, located at the apical end of the cell, and the more specialized outer hair cells (OHC’s) are also endowed with somatic electromotility responsible for changes in cell length in response to perturbations in membrane potential. Both hair bundle and somatic motors are known to feed energy into the mechanical vibrations in the inner ear. The biophysical origin and relative significance of the motors remains a subject of intense research. Several biological motors have been identified in hair cells that might underlie the motor(s), including a cousin of the classical ATP driven actin-myosin motor found in skeletal muscle. Hydrolysis of ATP, however, is much too slow to be viable at audio frequencies on a cycle-by-cycle basis. Heuristically, the OHC somatic motor behaves as if the OHC lateral wall membrane were a piezoelectric material and the hair bundle motor behaves as if the plasma membrane were a flexoelectric material. We propose these observations from a continuum materials perspective are literally true. To examine this idea, we formulated mathematical models of the OHC lateral wall “piezoelectric” motor and the more ubiquitous “flexoelectric” hair bundle motor. Plausible biophysical mechanisms underlying piezo- and flexoelectricity were established. Model predictions were compared extensively to the available data. The models were then applied to study the power conversion efficiency of the motors. Results show that the material properties of the complex membranes in hair cells provide them with the ability to convert electrical power available in the inner ear cochlea into useful mechanical amplification of sound induced vibrations at auditory frequencies. We also examined how hair cell amplification might be controlled by the brain through efferent synaptic contacts on hair cells and found a simple mechanism to tune hearing to signals of interest to the listener by electrical control of these motors. PMID:21188296

  1. Effect of Microgravity on Afferent Innervation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Presentations and publications are: (1) an audiovisual summary web presentation on results from SLM-MIR avian experiments. A color presentation summarizing results from the SLM-MIR and STS-29 avian experiments; (2) color threshold and ratio of S 100B MAP5, NF68/200, GABA and GAD; (3) chicken (Gallus domesticus) inner ear afferents; (4) microgravity in the STS-29 Space Shuttle Discovery affected the vestibular system of chick embryos; (5) expression of S 100B in sensory and secretory cells of the vertebrate inner ear; (6) otoconia biogenesis, phylogeny, composition and functional attributes;(7) the glycan keratin sulfate in inner ear crystals; (8) elliptical-P cells in the avian perilymphatic interface of the tegmentum vasculosum; and (9) LAMP2c and S100B upregulation in brain stem after VIIIth nerve deafferentation.

  2. Inner ear changes in mucopolysaccharidosis type I/Hurler syndrome.

    PubMed

    Kariya, Shin; Schachern, Patricia A; Nishizaki, Kazunori; Paparella, Michael M; Cureoglu, Sebahattin

    2012-10-01

    Mucopolysaccharidosis type I/Hurler syndrome is an autosomal recessive disease caused by a deficiency of α-L-iduronidase activity. Recurrent middle ear infections and hearing loss are common complications in Hurler syndrome. Although sensorineural and conductive components occur, the mechanism of sensorineural hearing loss has not been determined. The purpose of this study is to evaluate the quantitative inner ear histopathology of the temporal bones of patients with Hurler syndrome. Eleven temporal bones from 6 patients with Hurler syndrome were examined. Age-matched healthy control samples consisted of 14 temporal bones from 7 cases. Temporal bones were serially sectioned in the horizontal plane and stained with hematoxylin and eosin. The number of spiral ganglion cells, loss of cochlear hair cells, area of stria vascularis, and cell density of spiral ligament were evaluated using light microscopy. There was no significant difference between Hurler syndrome and healthy controls in the number of spiral ganglion cells, area of stria vascularis, or cell density of spiral ligament. The number of cochlear hair cells in Hurler syndrome was significantly decreased compared with healthy controls. Auditory pathophysiology in the central nerve system in Hurler syndrome remains unknown; however, decreased cochlear hair cells may be one of the important factors for the sensorineural component of hearing loss.

  3. Late steps of egg cell differentiation are accelerated by pollination in Zea mays L.

    PubMed

    Mól, R; Idzikowska, K; Dumas, C; Matthys-Rochon, E

    2000-04-01

    Egg cells were analysed cytologically during the female receptivity period in maize (Zea mays L., line A 188). Three classes of egg cell were distinguished: type A--small, non-vacuolated cells with a central nucleus; type B--larger cells with small vacuoles surrounding the perinuclear cytoplasm located in the middle of the cell; type C--big cells with a large apical vacuole and the mid-basal perinuclear cytoplasm. The less-dense cytoplasm of the vacuolated egg cells usually contained numerous cup- or bell-shaped mitochondria. The three egg types appear to correspond to three late stages of egg cell differentiation. The frequencies of each of the three egg types were monitored in developing maize ears before and after pollination. In young ears, with the silks just extending out of the husks, small A-type cells were found in about 86% of ovules. Their frequency decreased to about 58% at the optimum silk length, remained unchanged in non-pollinated ears, and fell to 16% at the end of the female receptivity period. However, after pollination and before fertilisation the frequency of these cells decreased to about 33%, and the larger vacuolated egg cells (types B and C) prevailed. At various stages of the receptivity period, pollination accelerated changes in the egg population, increasing the number of ovules bearing larger, vacuolated egg cells. Experiments with silk removal demonstrated that putative pollination signals act immediately after pollen deposition and are not species-specific.

  4. In vivo and in vitro biophysical properties of hair cells from the lateral line and inner ear of developing and adult zebrafish.

    PubMed

    Olt, Jennifer; Johnson, Stuart L; Marcotti, Walter

    2014-05-15

    Hair cells detect and process sound and movement information, and transmit this with remarkable precision and efficiency to afferent neurons via specialized ribbon synapses. The zebrafish is emerging as a powerful model for genetic analysis of hair cell development and function both in vitro and in vivo. However, the full exploitation of the zebrafish is currently limited by the difficulty in obtaining systematic electrophysiological recordings from hair cells under physiological recording conditions. Thus, the biophysical properties of developing and adult zebrafish hair cells are largely unknown. We investigated potassium and calcium currents, voltage responses and synaptic activity in hair cells from the lateral line and inner ear in vivo and using near-physiological in vitro recordings. We found that the basolateral current profile of hair cells from the lateral line becomes more segregated with age, and that cells positioned in the centre of the neuromast show more mature characteristics and those towards the edge retain a more immature phenotype. The proportion of mature-like hair cells within a given neuromast increased with zebrafish development. Hair cells from the inner ear showed a developmental change in current profile between the juvenile and adult stages. In lateral line hair cells from juvenile zebrafish, exocytosis also became more efficient and required less calcium for vesicle fusion. In hair cells from mature zebrafish, the biophysical characteristics of ion channels and exocytosis resembled those of hair cells from other lower vertebrates and, to some extent, those in the immature mammalian vestibular and auditory systems. We show that although the zebrafish provides a suitable animal model for studies on hair cell physiology, it is advisable to consider that the age at which the majority of hair cells acquire a mature-type configuration is reached only in the juvenile lateral line and in the inner ear from >2 months after hatching. © 2014 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  5. Planar cell polarity (PCP) proteins and spermatogenesis.

    PubMed

    Chen, Haiqi; Cheng, C Yan

    2016-11-01

    In adult mammalian testes, spermatogenesis is comprised of several discrete cellular events that work in tandem to support the transformation and differentiation of diploid spermatogonia to haploid spermatids in the seminiferous epithelium during the seminiferous epithelial cycle. These include: self-renewal of spermatogonial stem cells via mitosis and their transformation into differentiated spermatogonia, meiosis I/II, spermiogenesis and the release of sperms at spermiation. Studies have shown that these cellular events are under precise and coordinated controls of multiple proteins and signaling pathways. These events are also regulated by polarity proteins that are known to confer classical apico-basal (A/B) polarity in other epithelia. Furthermore, spermatid development is likely supported by planar cell polarity (PCP) proteins since polarized spermatids are aligned across the plane of seminiferous epithelium in an orderly fashion, analogous to hair cells in the cochlea of the inner ear. Thus, the maximal number of spermatids can be packed and supported by a fixed population of differentiated Sertoli cells in the limited space of the seminiferous epithelium in adult testes. In this review, we briefly summarize recent findings regarding the role of PCP proteins in the testis. This information should be helpful in future studies to better understand the role of PCP proteins in spermatogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Altered Expression of Middle and Inner Ear Cytokines in Mouse Otitis Media

    PubMed Central

    MacArthur, Carol J.; Pillers, De-Ann M.; Pang, Jiaqing; Kempton, J. Beth; Trune, Dennis R.

    2010-01-01

    Objectives/Hypothesis The inner ear is at risk for sensorineural hearing loss in both acute and chronic otitis media (OM), but the underlying mechanisms underlying sensorineural hearing loss are unknown. Previous gene expression array studies showed cytokine genes might be upregulated in the cochleas of mice with acute and chronic otitis media. This implies that the inner ear could manifest a direct inflammatory response to OM that may cause sensorineural damage. Therefore, to better understand inner ear cytokine gene expression during OM, quantitative RT-PCR and immunohistochemistry were performed on mouse models to evaluate middle and inner ear inflammatory and remodeling cytokines. Study Design Basic science experiment. Methods An acute OM model was created in Balb/c mice by a transtympanic injection of S. pneumoniae in one ear; the other ear used as a control. C3H/HeJ mice were screened for unilateral chronic OM with the non-infected ear serving as control. Results Both acute and chronic OM caused both the middle ear and inner tissues in these two mouse models to over express numerous cytokine genes related to tissue remodeling (TNFα, FGF, BMP) and angiogenesis (VEGF), as well as inflammatory cell proliferation (IL-1α,β, IL-2, IL-6). Immunohistochemistry confirmed that both the middle ear and inner ear tissues expressed these cytokines. Conclusion Cochlear tissues are capable of expressing cytokine mRNA that contributes to the inflammation and remodeling that occur in association with middle ear disease. This provides a potential molecular basis for the transient and permanent sensorineural hearing loss often reported with acute and chronic OM. Level of Evidence N/A PMID:21271590

  7. The biological significance of acoustic stimuli determines ear preference in the music frog.

    PubMed

    Xue, Fei; Fang, Guangzhan; Yang, Ping; Zhao, Ermi; Brauth, Steven E; Tang, Yezhong

    2015-03-01

    Behavioral and neurophysiological studies support the idea that right ear advantage (REA) exists for perception of conspecific vocal signals in birds and mammals. Nevertheless, few studies have focused on anuran species that typically communicate through vocalization. The present study examined the direction and latencies of orientation behaviors in Emei music frogs (Babina daunchina) produced in response to six auditory stimuli emitted by a speaker placed directly behind the subjects. The stimuli included male advertisement calls produced from within burrow nests, which have been shown to be highly sexually attractive (HSA), calls produced from outside burrows, which are of low sexual attractiveness (LSA), screech calls produced when frogs are attacked by snakes, white noise, thunder and silence. For all sound stimuli except the screech, the frogs preferentially turned to the right. Right ear preference was strongest for HSA calls. For the screech and thunder stimuli, there was an increased tendency for subjects to move further from the speaker rather than turning. These results support the idea that in anurans, right ear preference is associated with perception of positive or neutral signals such as the conspecific advertisement call and white noise, while a left ear preference is associated with perception of negative signals such as predatory attack. © 2015. Published by The Company of Biologists Ltd.

  8. Primary angiocentric/angioinvasive T-cell lymphoma of the tympanic bulla in a feline leukaemia virus-positive cat.

    PubMed

    Santagostino, Sara F; Mortellaro, Carlo M; Buchholz, Julia; Lugli, Margherita; Forlani, Annalisa; Ghisleni, Gabriele; Roccabianca, Paola

    2015-01-01

    Case summary A 5-year-old neutered female feline leukaemia virus (FeLV)-positive domestic shorthair cat with a 5 month history of otitis media was referred for head tilt, stertor and dyspnoea. Computed tomography scan revealed soft tissue opacities inside the right tympanic bulla, with bone remodelling, and concurrent nasopharyngeal and intracranial invasion. Endoscopically guided bioptic samples were collected from the nasopharynx and middle ear. Histology revealed dense sheets of round, large, neoplastic cells, often surrounding or invading vascular walls. Neoplastic cells expressed CD3, FeLV p27 and gp70 antigens. A middle ear angiocentric/angioinvasive T-cell lymphoma was diagnosed. After improvement of clinical conditions following radiation therapy, the cat died unexpectedly. At necropsy, hepatic and splenic spread was detected. Relevance and novel information Primary middle ear tumours are rare and their diagnosis is often delayed as clinical signs mimic more common otological conditions. Multiple bioptic specimens are pivotal for a definitive diagnosis. The young age of the cat, serology and immunohistochemistry revealed a possible transforming role of FeLV.

  9. In vitro models of viral-induced congenital deafness.

    PubMed

    Davis, G L

    1981-10-01

    Cytomegalovirus (CMV) infects 1 to 2 percent of liveborn infants in the United States and causes varying degrees of perceptive hearing loss. There are eight reported pathologic studies of temporal bones in CMV-infected neonates. Viral replication occurs in nonsensory endolabyrinthine epithelium, but viral antigen is also found in the organ of Corti and spiral ganglion neurons, and CMV has been cultured from perilymph. Further clinicopathologic correlation is frustrated, since the inner ear cannot be biopsied during life, and the number of temporal bones available for study is limited, owing to the decrease in the number of autopsies being performed. Inoculation of CMV into newborn mice, and extracorporeal preparations of mouse and guinea pig fetal inner ears, either in organ culture or as grafts on chick chorioallantoic membranes, yields viral perilabyrinthitis. The different ultrastructural appearances of CMV replicating in epithelial and mesenchymal cells show that animal CMV replicates in mesenchymal cells and human CMV replicates in epithelial cells of the inner ear. These different ultrastructural patterns indicate that the chromophobe (transitional) cells of the stria vascularis of the guinea pig are of mesenchymal origin.

  10. Tissue resistivities determine the current flow in the cochlea.

    PubMed

    Micco, Alan Gerard; Richter, Claus-Peter

    2006-10-01

    In individuals with severe to profound hearing loss, cochlear implants bypass normal inner ear function by applying electrical current directly into the cochlea, thereby stimulating cochlear nerve fibers. Stimulating discrete populations of spiral ganglion cells in cochlear implant users' ears is similar to the encoding of small acoustic frequency bands in a normal-hearing person's ear. Thus, spiral ganglion cells stimulated by an electrode convey the information contained by a small acoustic frequency band. Problems that refer to the current spread and subsequent nonselective stimulation of spiral ganglion cells in the cochlea are reviewed. Cochlear anatomy and tissue properties determine the current path in the cochlea. Current spreads largely via scala tympani and across turns. While most of the current leaves the cochlea via the modiolus, the facial canal and the round window constitute additional natural escape paths for the current from the cochlea. Moreover, degenerative processes change tissue resistivities and thus may affect current spread in the cochlea. Electrode design and coding strategies may result in more spatial stimulation of spiral ganglion cells, resulting in a better performance of the electrode-tissue interface.

  11. Differential Expression of Unconventional Myosins in Apoptotic and Regenerating Chick Hair Cells Confirms Two Regeneration Mechanisms

    PubMed Central

    DUNCAN, LUKE J.; MANGIARDI, DOMINIC A.; MATSUI, JONATHAN I.; ANDERSON, JULIA K.; McLAUGHLIN-WILLIAMSON, KATE; COTANCHE, DOUGLAS A.

    2008-01-01

    Hair cells of the inner ear are damaged by intense noise, aging, and aminoglycoside antibiotics. Gentamicin causes oxidative damage to hair cells, inducing apoptosis. In mammals, hair cell loss results in a permanent deficit in hearing and balance. In contrast, avians can regenerate lost hair cells to restore auditory and vestibular function. This study examined the changes of myosin VI and myosin VIIa, two unconventional myosins that are critical for normal hair cell formation and function, during hair cell death and regeneration. During the late stages of apoptosis, damaged hair cells are ejected from the sensory epithelium. There was a 4–5-fold increase in the labeling intensity of both myosins and a redistribution of myosin VI into the stereocilia bundle, concurrent with ejection. Two separate mechanisms were observed during hair cell regeneration. Proliferating supporting cells began DNA synthesis 60 hours after gentamicin treatment and peaked at 72 hours postgentamicin treatment. Some of these mitotically produced cells began to differentiate into hair cells at 108 hours after gentamicin (36 hours after bromodeoxyuridine (BrdU) administration), as demonstrated by the colabeling of myosin VI and BrdU. Myosin VIIa was not expressed in the new hair cells until 120 hours after gentamicin. Moreover, a population of supporting cells expressed myosin VI at 78 hours after gentamicin treatment and myosin VIIa at 90 hours. These cells did not label for BrdU and differentiated far too early to be of mitotic origin, suggesting they arose by direct transdifferentiation of supporting cells into hair cells. PMID:17048225

  12. BODIPY-Conjugated Xyloside Primes Fluorescent Glycosaminoglycans in the Inner Ear of Opsanus tau.

    PubMed

    Holman, Holly A; Tran, Vy M; Kalita, Mausam; Nguyen, Lynn N; Arungundram, Sailaja; Kuberan, Balagurunathan; Rabbitt, Richard D

    2016-12-01

    We report on a new xyloside conjugated to BODIPY, BX and its utility to prime fluorescent glycosaminoglycans (BX-GAGs) within the inner ear in vivo. When BX is administered directly into the endolymphatic space of the oyster toadfish (Opsanus tau) inner ear, fluorescent BX-GAGs are primed and become visible in the sensory epithelia of the semicircular canals, utricle, and saccule. Confocal and 2-photon microscopy of vestibular organs fixed 4 h following BX treatment, reveal BX-GAGs constituting glycocalyces that envelop hair cell kinocilium, nerve fibers, and capillaries. In the presence of GAG-specific enzymes, the BX-GAG signals are diminished, suggesting that chondroitin sulfates are the primary GAGs primed by BX. Results are consistent with similar click-xylosides in CHO cell lines, where the xyloside enters the Golgi and preferentially initiates chondroitin sulfate B production. Introduction of BX produces a temporary block of hair cell mechanoelectrical transduction (MET) currents in the crista, reduction in background discharge rate of afferent neurons, and a reduction in sensitivity to physiological stimulation. A six-degree-of-freedom pharmacokinetic mathematical model has been applied to interpret the time course and spatial distribution of BX and BX-GAGs. Results demonstrate a new optical approach to study GAG biology in the inner ear, for tracking synthesis and localization in real time.

  13. Bioinformatic Integration of Molecular Networks and Major Pathways Involved in Mice Cochlear and Vestibular Supporting Cells.

    PubMed

    Requena, Teresa; Gallego-Martinez, Alvaro; Lopez-Escamez, Jose A

    2018-01-01

    Background : Cochlear and vestibular epithelial non-hair cells (ENHCs) are the supporting elements of the cellular architecture in the organ of Corti and the vestibular neuroepithelium in the inner ear. Intercellular and cell-extracellular matrix interactions are essential to prevent an abnormal ion redistribution leading to hearing and vestibular loss. The aim of this study is to define the main pathways and molecular networks in the mouse ENHCs. Methods : We retrieved microarray and RNA-seq datasets from mouse epithelial sensory and non-sensory cells from gEAR portal (http://umgear.org/index.html) and obtained gene expression fold-change between ENHCs and non-epithelial cells (NECs) against HCs for each gene. Differentially expressed genes (DEG) with a log2 fold change between 1 and -1 were discarded. The remaining genes were selected to search for interactions using Ingenuity Pathway Analysis and STRING platform. Specific molecular networks for ENHCs in the cochlea and the vestibular organs were generated and significant pathways were identified. Results : Between 1723 and 1559 DEG were found in the mouse cochlear and vestibular tissues, respectively. Six main pathways showed enrichment in the supporting cells in both tissues: (1) "Inhibition of Matrix Metalloproteases"; (2) "Calcium Transport I"; (3) "Calcium Signaling"; (4) "Leukocyte Extravasation Signaling"; (5) "Signaling by Rho Family GTPases"; and (6) "Axonal Guidance Si". In the mouse cochlea, ENHCs showed a significant enrichment in 18 pathways highlighting "axonal guidance signaling (AGS)" ( p = 4.37 × 10 -8 ) and "RhoGDI Signaling" ( p = 3.31 × 10 -8 ). In the vestibular dataset, there were 20 enriched pathways in ENHCs, the most significant being "Leukocyte Extravasation Signaling" ( p = 8.71 × 10 -6 ), "Signaling by Rho Family GTPases" ( p = 1.20 × 10 -5 ) and "Calcium Signaling" ( p = 1.20 × 10 -5 ). Among the top ranked networks, the most biologically significant network contained the "auditory and vestibular system development and function" terms. We also found 108 genes showing tonotopic gene expression in the cochlear ENHCs. Conclusions : We have predicted the main pathways and molecular networks for ENHCs in the organ of Corti and vestibular neuroepithelium. These pathways will facilitate the design of molecular maps to select novel candidate genes for hearing or vestibular loss to conduct functional studies.

  14. Effect of low level laser therapy (LLLT) on vestibular system after gentamicin ototoxicity

    NASA Astrophysics Data System (ADS)

    Rhee, ChungKu; Hyun, Jai-Hwan; Suh, Myung-Whan; Ahn, Jin Chul; Jung, Jae Yun

    2013-03-01

    Aim: To develop a bilateral vestibulopathy animal model induced by gentamicin using RS rat and to see the effect of LLLT on this bilateral vestibulopathy model. Method: RS rats were divided into 3 groups, control group (C), laser group (L), and histology group (H). All animals in the 3 groups received gentamicin (GM) 110 mg/kg, intravenously once daily for 3 days. The animals underwent sinusoidal oscillation about a vertical axis before the GM injection, 1, 3, and 7 days post injections. Transcanal low level laser therapy (LLLT) was irradiated to left ear canal for 7 days, starting 1 day post the GM injection. The H group animals were irradiated into the left ear of L group for 3 days, starting 1 day post GM injections for 3 days. C and L groups were sacrifice on 9th day and H group was sacrificed on 7th day. Results: The gain of the C group was significantly decreased in 3 and 7 days. The gain of the right ear of L group was decreased significantly in 3 and 7 days. The gain of left ear of L group was decreased in 3 days post LLLT but the decreased gain was improved significantly comparing to the level of 7 days gain of right ear and it was much closer to the pre-GM level. The average number of cells in cupula of H group after laser treatment for 3 days was significantly lower in non laser treated right ear comparing to the laser treated left ear and ears of the normal rats. Conclusion: The present study demonstrated that LLLT restores vestibular function and vestibular hair cells in rats post gentamicin induced ototoxic damage. LLLT may have clinical implications in the treatment of various vestibular dysfunction. Further studies are essential to verify the exact mechanisms and the most effective application of LLLT to rescue vestibular dysfunction.

  15. Characteristics of laser-induced shock wave injury to the inner ear of rats

    NASA Astrophysics Data System (ADS)

    Kurioka, Takaomi; Matsunobu, Takeshi; Niwa, Katsuki; Tamura, Atsushi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro

    2014-12-01

    Recently, the number of blast injuries of the inner ear has increased in the general population. In blast-induced inner ear injury, a shock wave (SW) component in the blast wave is considered to play an important role in sensorineural hearing loss. However, the mechanisms by which an SW affects inner ear tissue remain largely unknown. We aimed to establish a new animal model for SW-induced inner ear injury by using laser-induced SWs (LISWs) on rats. The LISWs were generated by irradiating an elastic laser target with 694-nm nanosecond pulses of a ruby laser. After LISW application to the cochlea through bone conduction, auditory measurements revealed the presence of inner ear dysfunction, the extent of which depended on LISW overpressure. A significantly lower survival rate of hair cells and spiral ganglion neurons, as well as severe oxidative damage, were observed in the inner ear exposed to an LISW. Although considerable differences in the pressure characteristics exist between LISWs and SWs in real blast waves, the functional and morphological changes shown by the present LISW-based model were similar to those observed in real blast-induced injury. Thus, our animal model is expected to be useful for laboratory-based research of blast-induced inner ear injury.

  16. Characteristics of laser-induced shock wave injury to the inner ear of rats.

    PubMed

    Kurioka, Takaomi; Matsunobu, Takeshi; Niwa, Katsuki; Tamura, Atsushi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro

    2014-12-01

    Recently, the number of blast injuries of the inner ear has increased in the general population. In blast-induced inner ear injury, a shock wave (SW) component in the blast wave is considered to play an important role in sensorineural hearing loss. However, the mechanisms by which an SW affects inner ear tissue remain largely unknown. We aimed to establish a new animal model for SW-induced inner ear injury by using laser-induced SWs (LISWs) on rats. The LISWs were generated by irradiating an elastic laser target with 694-nm nanosecond pulses of a ruby laser. After LISW application to the cochlea through bone conduction, auditory measurements revealed the presence of inner ear dysfunction, the extent of which depended on LISW overpressure. A significantly lower survival rate of hair cells and spiral ganglion neurons, as well as severe oxidative damage, were observed in the inner ear exposed to an LISW. Although considerable differences in the pressure characteristics exist between LISWs and SWs in real blast waves, the functional and morphological changes shown by the present LISW-based model were similar to those observed in real blast-induced injury. Thus, our animal model is expected to be useful for laboratory-based research of blast-induced inner ear injury.

  17. Non-Invasive Multiphoton Imaging of Islets Transplanted Into the Pinna of the NOD Mouse Ear Reveals the Immediate Effect of Anti-CD3 Treatment in Autoimmune Diabetes.

    PubMed

    Benson, Robert A; Garcon, Fabien; Recino, Asha; Ferdinand, John R; Clatworthy, Menna R; Waldmann, Herman; Brewer, James M; Okkenhaug, Klaus; Cooke, Anne; Garside, Paul; Wållberg, Maja

    2018-01-01

    We present a novel and readily accessible method facilitating cellular time-resolved imaging of transplanted pancreatic islets. Grafting of islets to the mouse ear pinna allows non-invasive, in vivo longitudinal imaging of events in the islets and enables improved acquisition of experimental data and use of fewer experimental animals than is possible using invasive techniques, as the same mouse can be assessed for the presence of islet infiltrating cells before and after immune intervention. We have applied this method to investigating therapeutic protection of beta cells through the well-established use of anti-CD3 injection, and have acquired unprecedented data on the nature and rapidity of the effect on the islet infiltrating T cells. We demonstrate that infusion of anti-CD3 antibody leads to immediate effects on islet infiltrating T cells in islet grafts in the pinna of the ear, and causes them to increase their speed and displacement within 20 min of infusion. This technique overcomes several technical challenges associated with intravital imaging of pancreatic immune responses and facilitates routine study of beta islet cell development, differentiation, and function in health and disease.

  18. Role of Laryngopharyngeal Reflux in the Pathogenesis of Otitis Media with Effusion.

    PubMed

    Doğru, Mehmet; Kuran, Gökhan; Haytoğlu, Süheyl; Dengiz, Ramazan; Arıkan, Osman Kürşat

    2015-04-01

    To determine whether there is an association between otitis media with effusion and laryngopharyngeal reflux in children. This study included 31 children with otitis media with effusion. The pepsinogen level in the middle ear fluid of all patients was measured by sandwich enzyme-linked immunosorbent assay. Each patient's middle ear fluid was investigated for Helicobacter pylori (H. pylori) using the Campylobacter-like organism (CLO) test. The middle ear pepsinogen levels were compared with those in the serum. The correlation between pepsinogen levels and H. pylori positivity in the middle ear fluid was investigated. The mean middle ear pepsinogen level (211.69 ng/mL) was significantly higher than that in the serum (24.18 ng/mL) in patients with otitis media with effusion. The middle ear aspirates of six patients (19%) were positive for H. pylori, and the correlation between H. pylori positivity and increased pepsinogen levels in the middle ear fluid was statistically significant in patients with otitis media with effusion. We detected higher pepsinogen levels and H. pylori positivity rates in the middle ear fluid than in the serum of patients with otitis media with effusion. These results support the role of laryngopharyngeal reflux in the pathogenesis of otitis media with effusion.

  19. Ear Advantage for Musical Location and Relative Pitch: Effects of Musical Training and Attention.

    PubMed

    Hutchison, Joanna L; Hubbard, Timothy L; Hubbard, Nicholas A; Rypma, Bart

    2017-06-01

    Trained musicians have been found to exhibit a right-ear advantage for high tones and a left-ear advantage for low tones. We investigated whether this right/high, left/low pattern of musical processing advantage exists in listeners who had varying levels of musical experience, and whether such a pattern might be modulated by attentional strategy. A dichotic listening paradigm was used in which different melodic sequences were presented to each ear, and listeners attended to (a) the left ear or the right ear or (b) the higher pitched tones or the lower pitched tones. Listeners judged whether tone-to-tone transitions within each melodic sequence moved upward or downward in pitch. Only musically experienced listeners could adequately judge the direction of successive pitch transitions when attending to a specific ear; however, all listeners could judge the direction of successive pitch transitions within a high-tone stream or a low-tone stream. Overall, listeners exhibited greater accuracy when attending to relatively higher pitches, but there was no evidence to support a right/high, left/low bias. Results were consistent with effects of attentional strategy rather than an ear advantage for high or low tones. Implications for a potential performer/audience paradox in listening space are considered.

  20. Stimulus change detection in phasic auditory units in the frog midbrain: frequency and ear specific adaptation.

    PubMed

    Ponnath, Abhilash; Hoke, Kim L; Farris, Hamilton E

    2013-04-01

    Neural adaptation, a reduction in the response to a maintained stimulus, is an important mechanism for detecting stimulus change. Contributing to change detection is the fact that adaptation is often stimulus specific: adaptation to a particular stimulus reduces excitability to a specific subset of stimuli, while the ability to respond to other stimuli is unaffected. Phasic cells (e.g., cells responding to stimulus onset) are good candidates for detecting the most rapid changes in natural auditory scenes, as they exhibit fast and complete adaptation to an initial stimulus presentation. We made recordings of single phasic auditory units in the frog midbrain to determine if adaptation was specific to stimulus frequency and ear of input. In response to an instantaneous frequency step in a tone, 28% of phasic cells exhibited frequency specific adaptation based on a relative frequency change (delta-f=±16%). Frequency specific adaptation was not limited to frequency steps, however, as adaptation was also overcome during continuous frequency modulated stimuli and in response to spectral transients interrupting tones. The results suggest that adaptation is separated for peripheral (e.g., frequency) channels. This was tested directly using dichotic stimuli. In 45% of binaural phasic units, adaptation was ear specific: adaptation to stimulation of one ear did not affect responses to stimulation of the other ear. Thus, adaptation exhibited specificity for stimulus frequency and lateralization at the level of the midbrain. This mechanism could be employed to detect rapid stimulus change within and between sound sources in complex acoustic environments.

  1. Stimulus change detection in phasic auditory units in the frog midbrain: frequency and ear specific adaptation

    PubMed Central

    Ponnath, Abhilash; Hoke, Kim L.

    2013-01-01

    Neural adaptation, a reduction in the response to a maintained stimulus, is an important mechanism for detecting stimulus change. Contributing to change detection is the fact that adaptation is often stimulus specific: adaptation to a particular stimulus reduces excitability to a specific subset of stimuli, while the ability to respond to other stimuli is unaffected. Phasic cells (e.g., cells responding to stimulus onset) are good candidates for detecting the most rapid changes in natural auditory scenes, as they exhibit fast and complete adaptation to an initial stimulus presentation. We made recordings of single phasic auditory units in the frog midbrain to determine if adaptation was specific to stimulus frequency and ear of input. In response to an instantaneous frequency step in a tone, 28 % of phasic cells exhibited frequency specific adaptation based on a relative frequency change (delta-f = ±16 %). Frequency specific adaptation was not limited to frequency steps, however, as adaptation was also overcome during continuous frequency modulated stimuli and in response to spectral transients interrupting tones. The results suggest that adaptation is separated for peripheral (e.g., frequency) channels. This was tested directly using dichotic stimuli. In 45 % of binaural phasic units, adaptation was ear specific: adaptation to stimulation of one ear did not affect responses to stimulation of the other ear. Thus, adaptation exhibited specificity for stimulus frequency and lateralization at the level of the midbrain. This mechanism could be employed to detect rapid stimulus change within and between sound sources in complex acoustic environments. PMID:23344947

  2. Gentamicin alters Akt-expression and its activation in the guinea pig cochlea.

    PubMed

    Heinrich, U-R; Strieth, S; Schmidtmann, I; Li, H; Helling, K

    2015-12-17

    Gentamicin treatment induces hair cell death or survival in the inner ear. Besides the well-known toxic effects, the phosphatidylinositol-3 kinase/Akt (PI3K/Akt) pathway was found to be involved in cell protection. After gentamicin application, the spatiotemporal expression patterns of Akt and its activated form (p-Akt) were determined in male guinea pigs. A single dose of 0.1 mL gentamicin (4 mg/ear/animal) was intratympanically injected. The auditory brainstem responses (ABRs) were recorded prior to application and 1, 2 and 7 days afterward. At these three time points the cochleae (n=10 in each case) were removed, transferred to fixative and embedded in paraffin. Seven ears were used as untreated controls. Gentamicin, Akt and p-Akt were identified immunohistochemically in various regions of the cochlea and their staining intensities were quantified on sections using digital image analysis. The application of gentamicin resulted in hearing loss with a concomitant up-regulation of Akt-expression in the organ of Corti and spiral ganglion cells and an additional activation in spiral ganglion cells. At the level of individual ears, clear intracellular correlations were found between Akt- and p-Akt-expression in the stria vascularis and interdental cells and, to a minor extent, in the spiral ligament and the organ of Corti. Furthermore, statistical evidence for the connection between gentamicin up-take and hearing loss was detected. The increase in Akt- and p-Akt-expression in the organ of Corti and spiral ganglion cells indicates a selected response of the cochlea against gentamicin toxicity. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Histochemical localisation of carbonic anhydrase in the inner ear of developing cichlid fish, Oreochromis mossambicus

    NASA Astrophysics Data System (ADS)

    Beier, M.; Hilbig, R.; Anken, R.

    2008-12-01

    Inner ear otolith growth in terms of mineralisation mainly depends on the enzyme carbonic anhydrase (CAH). CAH is located in specialised, mitochondria-rich macular cells (ionocytes), which are involved in the endolymphatic ion exchange, and the enzyme is responsible for the provision of the pH-value necessary for otolithic calcium carbonate deposition. In the present study, for the first time the localisation of histochemically demonstrated CAH was analysed during the early larval development of a teleost, the cichlid fish Oreochromis mossambicus. CAH-reactivity was observed already in stage 7 animals (onset of otocyst development; staging follows Anken et al. [Anken, R., Kappel, T., Slenzka, K., Rahmann, H. The early morphogenetic development of the cichlid fish, Oreochromis mossambicus (Perciformes, Teleostei). Zool. Anz. 231, 1-10, 1993]). Neuroblasts (from which sensory and supporting cells are derived) proved to be CAH-positive. Already at stage 12 (hatch), CAH-positive regions could be attributed to ionocyte containing regions both in the so-called meshwork and patches area of the macula (i.e., clearly before ionocytes can be identified on ultrastructural level or by employing immunocytochemistry). In contrast to the circumstances observed in mammalian species, sensory hair cells stained negative for CAH in the cichlid. With the onset of stage 16 (finray primordia in dorsal fin, yolk-sac being increasingly absorbed), CAH-reactivity was observed in the vestibular nerve. This indicates the onset of myelinisation and thus commencement of operation. The localisation of CAH in the inner ear of fish (especially the differences in comparison to mammals) is discussed on the basis of its role in otolith calcification. Since the vestibular system is a detector of acceleration and thus gravity, also aspects regarding effects of altered gravity on CAH and hence on the mineralisation of otoliths in an adaptive process are addressed.

  4. Evolutionary escalation: the bat-moth arms race.

    PubMed

    Ter Hofstede, Hannah M; Ratcliffe, John M

    2016-06-01

    Echolocation in bats and high-frequency hearing in their insect prey make bats and insects an ideal system for studying the sensory ecology and neuroethology of predator-prey interactions. Here, we review the evolutionary history of bats and eared insects, focusing on the insect order Lepidoptera, and consider the evidence for antipredator adaptations and predator counter-adaptations. Ears evolved in a remarkable number of body locations across insects, with the original selection pressure for ears differing between groups. Although cause and effect are difficult to determine, correlations between hearing and life history strategies in moths provide evidence for how these two variables influence each other. We consider life history variables such as size, sex, circadian and seasonal activity patterns, geographic range and the composition of sympatric bat communities. We also review hypotheses on the neural basis for anti-predator behaviours (such as evasive flight and sound production) in moths. It is assumed that these prey adaptations would select for counter-adaptations in predatory bats. We suggest two levels of support for classifying bat traits as counter-adaptations: traits that allow bats to eat more eared prey than expected based on their availability in the environment provide a low level of support for counter-adaptations, whereas traits that have no other plausible explanation for their origination and maintenance than capturing defended prey constitute a high level of support. Specific predator counter-adaptations include calling at frequencies outside the sensitivity range of most eared prey, changing the pattern and frequency of echolocation calls during prey pursuit, and quiet, or 'stealth', echolocation. © 2016. Published by The Company of Biologists Ltd.

  5. Lgr5+ Cells Regenerate Hair Cells via Proliferation and Direct Transdifferentiation in Damaged Neonatal Mouse Utricle

    PubMed Central

    Wang, Tian; Chai, Renjie; Kim, Grace S.; Pham, Nicole; Jansson, Lina; Nguyen, Duc-Huy; Kuo, Bryan; May, Lindsey; Zuo, Jian; Cunningham, Lisa L.; Cheng, Alan G.

    2015-01-01

    Recruitment of endogenous progenitors is critical during tissue repair. The inner ear utricle requires mechanosensory hair cells (HCs) to detect linear acceleration. After damage, non-mammalian utricles regenerate HCs via both proliferation and direct transdifferentiation. In adult mammals, limited transdifferentiation from unidentified progenitors occurs to regenerate extrastriolar Type II HCs. Here, we show that HC damage in neonatal mouse utricle activates the Wnt target gene Lgr5 in striolar supporting cells. Lineage tracing and time-lapse microscopy reveal that Lgr5+ cells transdifferentiate into HC-like cells in vitro. In contrast to adults, HC ablation in neonatal utricles in vivo recruits Lgr5+ cells to regenerate striolar HCs through mitotic and transdifferentiation pathways. Both Type I and II HCs are regenerated, and regenerated HCs display stereocilia and synapses. Lastly, stabilized β-catenin in Lgr5+ cells enhances mitotic activity and HC regeneration. Thus Lgr5 marks Wnt-regulated, damage-activated HC progenitors and may help uncover factors driving mammalian HC regeneration. PMID:25849379

  6. AGE-RELATED FUNCTIONAL AND HISTOPATHOLOGICAL CHANGES OF THE EAR IN THE MPS I MOUSE

    PubMed Central

    Schachern, Patricia A.; Cureoglu, Sebahattin; Tsuprun, Vladimir; Paparella, Michael M.; Whitley, Chester

    2007-01-01

    Objective Mucopolysaccharidosis type I (MPS I) is an autosomal recessive disorder caused by a mutation in the gene encoding the enzyme α-L-iduronidase. This enzyme is responsible for degradation of dermatan and heparan sulfates. Enzyme deficiency results in their accumulation in lysosomes of virtually all organs, resulting in severe somatic and neurological changes. Clinical findings of otitis media with mixed hearing loss are common. Cellular and molecular mechanisms of ear pathology and hearing loss are not understood. The purpose of this study is to describe the age-related audiologic and histopathologic changes of the ear in the mouse model of MPS I. Methods Auditory brainstemresponses (ABR) were obtained to clicks and tone bursts at 1-32 kHz, and pathological changes to middle and inner ears were studied with light and electron microscopy in fifty-three mice that included: 1) wild type (+/+) - five at 2 months, five at 4 to 6 months, and five at 13 to 19 months; 2) heterozygotes (+/−) - four at 2 months; five at 4 to 6 months; and eight at 13 to 19 months; and 3) homozygotes (−/−); five at 2 months; six at 4 to 6 months; and five at 13 to 19 months. Histopathology was also done on five newborn −/− mice. Results In newborns no lysosomal storage was observed and the ear appeared age appropriately normal. In all other −/− mice, cells with lysosomal storage vacuoles were observed in spiral ligament, spiral prominence, spiral limbus, basilar membrane, epithelial and mesothelial cells of Reissner’s membrane, endothelial cells of vessels, and some ganglion cells; their number increased with aging. Hair cell loss was not observed at 2 or 6 months, but there was total loss of the organ of Corti in year-old mice. Hearing of −/− mice was significantly decreased at all ages compared to +/+ and +/−. Hearing loss progressed from mild to moderate loss at 2 months to profound at 6 months and total deafness by one year of age. Conclusions Progressive age-related changes suggest early therapeutic intervention to prevent sensory cell damage and hearing loss. PMID:17101178

  7. Maintained expression of the planar cell polarity molecule Vangl2 and reformation of hair cell orientation in the regenerating inner ear.

    PubMed

    Warchol, Mark E; Montcouquiol, Mireille

    2010-09-01

    The avian inner ear possesses a remarkable ability to regenerate sensory hair cells after ototoxic injury. Regenerated hair cells possess phenotypes and innervation that are similar to those found in the undamaged ear, but little is known about the signaling pathways that guide hair cell differentiation during the regenerative process. The aim of the present study was to examine the factors that specify the orientation of hair cell stereocilia bundles during regeneration. Using organ cultures of the chick utricle, we show that hair cells are properly oriented after having regenerated entirely in vitro and that orientation is not affected by surgical removal of the striolar reversal zone. These results suggest that the orientation of regenerating stereocilia is not guided by the release of a diffusible morphogen from the striolar reversal zone but is specified locally within the regenerating sensory organ. In order to determine the nature of the reorientation cues, we examined the expression patterns of the core planar cell polarity molecule Vangl2 in the normal and regenerating utricle. We found that Vangl2 is asymmetrically expressed on cells within the sensory epithelium and that this expression pattern is maintained after ototoxic injury and throughout regeneration. Notably, treatment with a small molecule inhibitor of c-Jun-N-terminal kinase disrupted the orientation of regenerated hair cells. Both of these results are consistent with the hypothesis that noncanonical Wnt signaling guides hair cell orientation during regeneration.

  8. Influence of different boundary conditions at the tympanic annulus on finite element models of the human middle ear

    NASA Astrophysics Data System (ADS)

    Lobato, Lucas; Paul, Stephan; Cordioli, Júlio

    2018-05-01

    The tympanic annulus is a fibrocartilage ligament that supports the tympanic membrane in a sulcus at the end of the outer ear canal. Among many FE models of the middle ear found in literature, the effect of different boundary conditions at tympanic annulus on middle ear mechanics was not found. In order to investigate the influence of different representations of this detail in FE models, three different ways to connect the tympanic annulus to the outer ear canal were modelled in a reduced middle ear system. This reduced system includes tympanic membrane, tympanic annulus, manubrium, malleus and anterior ligament of malleus. The numerical frequency response function Humbo (umbo velocity vs sound pressure at tympanic membrane) was analyzed through the different boundary conditions and compared to numerical and experimental data from the literature. Also a numerical modal analysis was performed to improve the analysis. It was found that the boundary conditions used to represent the connection between Tympanic Annulus and Outer Ear Canal can change the global stiffness of the system and its natural frequencies as well as change the modal shape of high order modes.

  9. Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell.

    PubMed

    Martin, P; Mehta, A D; Hudspeth, A J

    2000-10-24

    Hearing and balance rely on the ability of hair cells in the inner ear to sense miniscule mechanical stimuli. In each cell, sound or acceleration deflects the mechanosensitive hair bundle, a tuft of rigid stereocilia protruding from the cell's apical surface. By altering the tension in gating springs linked to mechanically sensitive transduction channels, this deflection changes the channels' open probability and elicits an electrical response. To detect weak stimuli despite energy losses caused by viscous dissipation, a hair cell can use active hair-bundle movement to amplify its mechanical inputs. This amplificatory process also yields spontaneous bundle oscillations. Using a displacement-clamp system to measure the mechanical properties of individual hair bundles from the bullfrog's ear, we found that an oscillatory bundle displays negative slope stiffness at the heart of its region of mechanosensitivity. Offsetting the hair bundle's position activates an adaptation process that shifts the region of negative stiffness along the displacement axis. Modeling indicates that the interplay between negative bundle stiffness and the motor responsible for mechanical adaptation produces bundle oscillation similar to that observed. Just as the negative resistance of electrically excitable cells and of tunnel diodes can be embedded in a biasing circuit to amplify electrical signals, negative stiffness can be harnessed to amplify mechanical stimuli in the ear.

  10. Mammalian Otolin: A Multimeric Glycoprotein Specific to the Inner Ear that Interacts with Otoconial Matrix Protein Otoconin-90 and Cerebellin-1

    PubMed Central

    Deans, Michael R.; Peterson, Jonathan M.; Wong, G. William

    2010-01-01

    Background The mammalian otoconial membrane is a dense extracellular matrix containing bio-mineralized otoconia. This structure provides the mechanical stimulus necessary for hair cells of the vestibular maculae to respond to linear accelerations and gravity. In teleosts, Otolin is required for the proper anchoring of otolith crystals to the sensory maculae. Otoconia detachment and subsequent entrapment in the semicircular canals can result in benign paroxysmal positional vertigo (BPPV), a common form of vertigo for which the molecular basis is unknown. Several cDNAs encoding protein components of the mammalian otoconia and otoconial membrane have recently been identified, and mutations in these genes result in abnormal otoconia formation and balance deficits. Principal Findings Here we describe the cloning and characterization of mammalian Otolin, a protein constituent of otoconia and the otoconial membrane. Otolin is a secreted glycoprotein of ∼70 kDa, with a C-terminal globular domain that is homologous to the immune complement C1q, and contains extensive posttranslational modifications including hydroxylated prolines and glycosylated lysines. Like all C1q/TNF family members, Otolin multimerizes into higher order oligomeric complexes. The expression of otolin mRNA is restricted to the inner ear, and immunohistochemical analysis identified Otolin protein in support cells of the vestibular maculae and semi-circular canal cristae. Additionally, Otolin forms protein complexes with Cerebellin-1 and Otoconin-90, two protein constituents of the otoconia, when expressed in vitro. Otolin was also found in subsets of support cells and non-sensory cells of the cochlea, suggesting that Otolin is also a component of the tectorial membrane. Conclusion Given the importance of Otolin in lower organisms, the molecular cloning and biochemical characterization of the mammalian Otolin protein may lead to a better understanding of otoconial development and vestibular dysfunction. PMID:20856818

  11. The cone-dominant retina and the inner ear of zebrafish express the ortholog of CLRN1, the causative gene of human Usher syndrome type 3A.

    PubMed

    Phillips, Jennifer B; Västinsalo, Hanna; Wegner, Jeremy; Clément, Aurélie; Sankila, Eeva-Marja; Westerfield, Monte

    2013-12-01

    Clarin-1 (CLRN1) is the causative gene in Usher syndrome type 3A, an autosomal recessive disorder characterized by progressive vision and hearing loss. CLRN1 encodes Clarin-1, a glycoprotein with homology to the tetraspanin family of proteins. Previous cell culture studies suggest that Clarin-1 localizes to the plasma membrane and interacts with the cytoskeleton. Mouse models demonstrate a role for the protein in mechanosensory hair bundle integrity, but the function of Clarin-1 in hearing remains unclear. Even less is known of its role in vision, because the Clrn1 knockout mouse does not exhibit a retinal phenotype and expression studies in murine retinas have provided conflicting results. Here, we describe cloning and expression analysis of the zebrafish clrn1 gene, and report protein localization of Clarin-1 in auditory and visual cells from embryonic through adult stages. We detect clrn1 transcripts as early as 24h post-fertilization, and expression is maintained through adulthood. In situ hybridization experiments show clrn1 transcripts enriched in mechanosensory hair cells and supporting cells of the inner ear and lateral line organ, photoreceptors, and cells of the inner retina. In mechanosensory hair cells, Clarin-1 is polarized to the apical cell body and the synapses. In the retina, Clarin-1 localizes to lateral cell contacts between photoreceptors and is associated with the outer limiting membrane and subapical processes emanating from Müller glial cells. We also find Clarin-1 protein in the outer plexiform, inner nuclear and ganglion cell layers of the retina. Given the importance of Clarin-1 function in the human retina, it is imperative to find an animal model with a comparable requirement. Our data provide a foundation for exploring the role of Clarin-1 in retinal cell function and survival in a diurnal, cone-dominant species. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Impact of Staphylococcus epidermidis lysates on middle ear epithelial proinflammatory and mucogenic response.

    PubMed

    Val, Stéphanie; Mubeen, Humaira; Tomney, Amarel; Chen, Saisai; Preciado, Diego

    2015-02-01

    Chronic otitis media with effusion (COME) develops after sustained inflammation and is characterized by secretory middle ear epithelial metaplasia and effusion, most frequently mucoid. Staphylococcus epidermidis, typically considered a commensal organism, is very frequently recovered in chronic middle ear fluid and in middle ear biofilms. Although it has been shown to drive inflammation in sinonasal epithelium, the impact of S. epidermidis on COME is markedly understudied. The goal of this study was to examine the in vitro effects of S. epidermidis lysates on murine and human middle ear epithelial cells. Staphylococcus epidermidis lysates were generated and used to stimulate submerged and differentiated human and murine epithelial cells (MEECs) for 24 to 48 hours. Quantitative real time-polymerase chain reaction, Western blot, enzyme-linked immunosorbent assay, and immunocytochemistry techniques were performed to interrogate the mucin gene MUC5AC and MUC5B expression and protein production, chemokine response, as well as NF-κB activation. Luciferase reporter assays were performed to further evaluate nuclear factor κB (NF-κB) activation and query specific promoter responses after S. epidermidis exposure. Staphylococcus epidermidis induced a time- and dose-dependent MUC5AC and MUC5B overexpression along with a parallel overexpression of Cxcl2 in mouse MEEC and IL-8 in human MEEC. Further investigations in mMEEC showed a 1.3 to 1.5 induction of the MUC5AC and MUC5B promoters. As potential mechanisms for these responses, induction of an oxidative stress marker, along with early nuclear translocation and activation of NF-κB, was found. Finally, chronic exposure induced marked epithelial thickening of cells differentiated at the air liquid interface. Staphylococcus epidermidis lysates activate a proinflammatory response in MEEC, including mucin gene expression and protein production. Although typically considered a nonpathogenic commensal organism in the ear, these results suggest that they may play a role in the perpetuation of an inflammatory and mucogenic response in COME.

  13. Functional recovery in the avian ear after hair cell regeneration.

    PubMed

    Smolders, J W

    1999-01-01

    Trauma to the inner ear in birds, due to acoustic overstimulation or ototoxic aminoglycosides, can lead to hair cell loss which is followed by regeneration of new hair cells. These processes are paralleled by hearing loss followed by significant functional recovery. After acoustic trauma, functional recovery is rapid and nearly complete. The early and major part of functional recovery after sound trauma occurs before regenerated hair cells become functional. Even very intense sound trauma causes loss of only a proportion of the hair cell population, mainly so-called short hair cells residing on the abneural mobile part of the avian basilar membrane. Uncoupling of the tectorial membrane from the hair cells during sound overexposure may serve as a protection mechanism. The rapid functional recovery after sound trauma appears not to be associated with regeneration of the lost hair cells, but with repair processes involving the surviving hair cells. Small residual functional deficits after recovery are most likely associated with the missing upper fibrous layer of the tectorial membrane which fails to regenerate after sound trauma. After aminoglycoside trauma, functional recovery is slower and parallels the structural regeneration more closely. Aminoglycosides cause damage to both types of hair cells, starting at the basal (high frequency) part of the basilar papilla. However, functional hearing loss and recovery also occur at lower frequencies, associated with areas of the papilla where hair cells survive. Functional recovery in these low frequency areas is complete, whereas functional recovery in high frequency areas with complete hair cell loss is incomplete, despite regeneration of the hair cells. Permanent residual functional deficits remain. This indicates that in low frequency regions functional recovery after aminoglycosides involves repair of nonlethal injury to hair cells and/or hair cell-neural synapses. In the high frequency regions functional recovery involves regenerated hair cells. The permanent functional deficits after the regeneration process in these areas are most likely associated with functional deficits in the regenerated hair cells or shortcomings in the synaptic reconnections of nerve fibers with the regenerated hair cells. In conclusion, the avian inner ear appears to be much more resistant to trauma than the mammalian ear and possesses a considerable capacity for functional recovery based on repair processes along with its capacity to regenerate hair cells. The functional recovery in areas with regenerated hair cells is considerable but incomplete.

  14. [A case of petrous ridge meningioma manifested as pneumocephalus followed by Eustachian tube insufflation].

    PubMed

    Yamaguchi, Shinya; Gi, Hidefuku; Uno, Jyunji; Ikai, Yoshiaki; Inoha, Satoshi; Nagaoka, Shintarou; Nishio, Shunji

    2009-05-01

    A 50-year-old female, who had a headache after Eustachian tube insufflation for her ear congestion, came to our hospital. CT and MRI revealed pneumocephalus and petrous ridge meningioma which destroyed petrous bone and air cells. Eustachian tube insufflation was considered to make the air coming into the middle ear, mastoid air cell and then into the intracranial space destroying the tumor. At surgery, there was subdural hematoma around the tumor. Total removal of the tumor and the hematoma membrane was performed. Histologically, the tumor was transitional meningioma and the cluster of meningioma cells were noted in the subdural hematoma membrane.

  15. Size and Cell Number of the Utricle in kinetotically swimming Fish: A parabolic Aircraft Flight Study

    NASA Astrophysics Data System (ADS)

    Baeuerle, A.; Anken, R.; Baumhauer, N.; Hilbig, R.; Rahmann, H.

    Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness (SMS, a kinetosis). Since it has been repeatedly shown earlier that some fish of a given batch also reveal a kinetotic behaviour during PAFs (especially so-called spinning movements and looping responses), and due to the homology of the vestibular apparatus among all vertebrates, fish can be used as model systems to investigate the origin of susceptibility to motion sickness. Therefore, we examined the utricular maculae (they are responsible for the internalisation of gravity in teleosteans) of fish swimming kinetotically during the μg-phases in the course of PAFs in comparison with animals from the same batch who swam normally. On the light microscopical level, it was found that the total number of both sensory and supporting cells of the utricular maculae did not differ between kinetotic animals as compared to normally swimming fish. Cell density (sensory and supporting cells/100μm -μm), however, was reduced in kinetotic animals (p<0.0001), which seemed to be due to malformed epithelial cells (increase in cell size) of the kinetotic specimens. Susceptibility to kinetoses may therefore originate in asymmetric inner ear otoliths as has been suggested earlier, but also in genetically predispositioned, malformed sensory epithelia. This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).

  16. The comparative anatomy of the pig middle ear cavity: a model for middle ear inflammation in the human?

    PubMed Central

    PRACY, J. P.; WHITE, A.; MUSTAFA, Y.; SMITH, D.; PERRY, M. E.

    1998-01-01

    This study was undertaken to develop a functional model of otitis media with effusion (OME) in the pig (Sus scrofa), with the purpose of investigating the origin of lymphocytes populating the middle ear during the course of an inflammatory process. The relevance of the model to the human condition of OME is to a large extent dependent on the anatomical and physiological similarities between the middle ear cavity and the pharyngeal lymphoid tissue of the pig and man. Anatomical specimens were collected from 7 young Large White pigs to determine the gross anatomy of the middle ear cavity and the histological characteristics of the middle ear mucosa. It was found that the anatomy of the 3 parts of the middle ear cavity in man and in the pig is broadly similar, although some minor differences were observed. The porcine eustachian tube was seen to be cartilaginous throughout its length in contrast to the part osseous, part cartilaginous structure found in man; the porcine ossicles were slightly different in shape to those of man and the air cell system was situated inferior to the tympanic cavity in the pig as opposed to posteriorly in man. This paper describes the structure and morphology of the pig middle ear cavity and compares and contrasts it with that of man. The minor differences observed are of anatomical importance but do not diminish the usefulness of the pig middle ear cleft as a potential model for human middle ear disorders. PMID:9688502

  17. Pinnaplasty: reshaping ears to improve hearing aid retention.

    PubMed

    Gault, David; Grob, Marion; Odili, Joy

    2007-01-01

    The hearing aid is extremely important to the deaf. A small number have difficulty in retaining the device because the ear is prominent or cup-shaped. This report describes 11 children whose ear shape was modified to improve hearing aid retention and one adult in whom an over set back ear was released to allow fitment of a postaural device. In eight of the 11 children treated, conservative measures such as double-sided tape and retention bands (Huggies) had been tried previously without success. The creation of an antihelical fold in a misshapen ear lacking such a fold provides a reinforcing strut which is useful to support a hearing aid. In patients whose ear had been excessively tethered by previous surgery, projection was restored by inserting a cartilage block behind the ear. In one child with ears tethered by previous surgery, costal cartilage was used not only to release both ears, but also to reconstruct a new helical rim on one side. Surgery enabled a normal postaural hearing aid to be worn in 17 of the 19 ears treated. The two failures deserve special mention. In one patient with a unilateral deformity and severe mental retardation, the dressings were pulled off immediately after surgery. In another patient with a bilateral problem, the appearance and hearing aid retention was improved, but there was not enough room in the postauricular sulcus on one side for the battery component to fit comfortably and an in-the-ear device is now used on that side. Pinnaplasty is a helpful strategy to improve hearing aid retention. Care must be taken not to overdo the set back so that enough room is left to retain the hearing device.

  18. Impact of swimming on chronic suppurative otitis media in Aboriginal children: a randomised controlled trial.

    PubMed

    Stephen, Anna T N; Leach, Amanda J; Morris, Peter S

    2013-07-08

    To measure the impact of 4 weeks of daily swimming on rates of ear discharge among Aboriginal children with a tympanic membrane perforation (TMP) and on the microbiology of the nasopharynx and middle ear. A randomised controlled trial involving 89 Aboriginal children (aged 5-12 2013s) with a TMP, conducted in two remote Northern Territory Aboriginal communities from August to December 2009. 4 school weeks of daily swimming lessons (45 minutes) in a chlorinated pool. Proportions of children with ear discharge and respiratory and opportunistic bacteria in the nasopharynx and middle ear. Of 89 children randomly assigned to the swimming or non-swimming groups, 58 (26/41 swimmers and 32/48 non-swimmers) had ear discharge at baseline. After 4 weeks, 24 of 41 swimmers had ear discharge compared with 32 of 48 non-swimmers (risk difference, - 8% (95% CI, - 28% to 12%). There were no statistically significant changes in the microbiology of the nasopharynx or middle ear in swimmers or non-swimmers. Streptococcus pneumoniae and non-typeable Haemophilus influenzae were the dominant organisms cultured from the nasopharynx, and H. influenzae, Staphylococcus aureus and Pseudomonas aeruginosa were the dominant organisms in the middle ear. Swimming lessons for Aboriginal children in remote communities should be supported, but it is unlikely that they will substantially reduce rates of chronic suppurative otitis media and associated bacteria in the nasopharynx and middle ear. However, swimming was not associated with increased risk of ear discharge and we found no reason to discourage it. Australian New Zealand Clinical Trials Registry ACTRN12613000634774.

  19. [Construction of recombinant adenovirus and mediated reported gene expression in the guinea pig cochlea].

    PubMed

    Liu, Yingpeng; Wang, Guopeng; Shen, Anmin; Wang, Jianting; Chen, Pei; Li, Zeweng; Gong, Shusheng

    2007-08-01

    To purify P0 protein from guinea pig's inner ear by preparative SDS-PAGE and study the possible role it may play in the etiology of autoimmune inner ear disease. A mixture of membraneous proteins of inner ear was separated by preparative SDS-PAGE. The corresponding band at 30kd was cut and electrically eluted. The protein collected was identified by analytical SDS-PAGE and Western blot assay. A group of 20 guinea pigs were immunized with P0 protein emulsified in complete Freund's adjuvant, another 10 guinea pigs were immunized with complete Freund 's adjuvant only as control. The guinea pigs' hearing thresholds, serum IgG level and morphological changes in the inner ear were investigated. The distribution of P0 protein in the cochlear was detected by immunohistochemical technique. The purity of the protein was demonstrated by a single band at the 30 kD site in SDS-PAGE, which was identified as P0 protein by western blot analysis assay. About 17.5% P0-immunized guinea pigs showed increased hearing thresholds, elevated IgG level (F =6.48, P <0. 01), as well as a decreased number of spiral ganglion cells and inflammatory cell infiltration in the cochlear nerve region. The P0 protein is distributed in the cochlear nerve and spiral ganglion only. P0 protein from guinea pig's inner ear can be successfully purified by preparative SDS-PAGE and an animal model of experimental autoimmune inner ear disease induced by P0 protein is successfully established.

  20. Role of skeletal muscle in ear development.

    PubMed

    Rot, Irena; Baguma-Nibasheka, Mark; Costain, Willard J; Hong, Paul; Tafra, Robert; Mardesic-Brakus, Snjezana; Mrduljas-Djujic, Natasa; Saraga-Babic, Mirna; Kablar, Boris

    2017-10-01

    The current paper is a continuation of our work described in Rot and Kablar, 2010. Here, we show lists of 10 up- and 87 down-regulated genes obtained by a cDNA microarray analysis that compared developing Myf5-/-:Myod-/- (and Mrf4-/-) petrous part of the temporal bone, containing middle and inner ear, to the control, at embryonic day 18.5. Myf5-/-:Myod-/- fetuses entirely lack skeletal myoblasts and muscles. They are unable to move their head, which interferes with the perception of angular acceleration. Previously, we showed that the inner ear areas most affected in Myf5-/-:Myod-/- fetuses were the vestibular cristae ampullaris, sensitive to angular acceleration. Our finding that the type I hair cells were absent in the mutants' cristae was further used here to identify a profile of genes specific to the lacking cell type. Microarrays followed by a detailed consultation of web-accessible mouse databases allowed us to identify 6 candidate genes with a possible role in the development of the inner ear sensory organs: Actc1, Pgam2, Ldb3, Eno3, Hspb7 and Smpx. Additionally, we searched for human homologues of the candidate genes since a number of syndromes in humans have associated inner ear abnormalities. Mutations in one of our candidate genes, Smpx, have been reported as the cause of X-linked deafness in humans. Our current study suggests an epigenetic role that mechanical, and potentially other, stimuli originating from muscle, play in organogenesis, and offers an approach to finding novel genes responsible for altered inner ear phenotypes.

  1. Comparative distribution of sulphur, thiols and disulphides in the porcine stratum corneum.

    PubMed

    Meyer, W; Zschemisch, N H; Lehmann, H; Busche, R; Kunz, U

    2005-01-01

    Biochemical, histochemical and cytochemical analyses were used to determine the sulphur contents and the thiol and disulphide distribution in the stratum corneum (SC) of the wild boar (WB), a large domestic pig breed (DP) and the Goettingen miniature pig (GMP). The sulphur contents (% DW) were different in the three animal types (WB: 1.70-1.38 body, 0.54 ear; DP: 0.84-0.53 body, 0.50 ear; GMP: 2.28-2.51 body, 2.66 ear). The results of the histochemical analysis of SH- and -S-S- groups were clear, and densitometrical extinctions were highest in most body regions of the GMP for thiols and disulphides, followed by the DP for thiols, and the WB for disulphides. Absolute SC thickness was highest in the body of the GMP (62-80 mum), and generally lowest in the ear (20-38 mum) of all animal types. Relative SC thickness was the same for all animals in the body (40-66%), but lower in the ear (30%). Only -S-S- concentrations were correlated with SC thickness, and primarily in the GMP. Cytochemical analysis showed that high sulphur concentrations were obvious particularly in the CCE of corneal cells in the DP, as compared to the cytoplasm. Intracellular sulphur distribution was homogenous in the WB, and in the GMP, although in the latter at a higher concentration level. The results indicate breed-related effects on keratinisation in porcine corneal cells. Only the SC of the outer side of the ear of DP females is recommended as a model for humans.

  2. Behavior of poly(glycerol sebacate) plugs in chronic tympanic membrane perforations.

    PubMed

    Sundback, C A; McFadden, J; Hart, A; Kulig, K M; Wieland, A M; Pereira, M J N; Pomerantseva, I; Hartnick, C J; Masiakos, P T

    2012-10-01

    The tympanic membrane (TM), separating the external and middle ear, consists of fibrous connective tissue sandwiched between epithelial layers. To treat chronic ear infections, tympanostomy drainage tubes are placed in surgically created holes in TMs which can become chronic perforations upon extrusion. Perforations are repaired using a variety of techniques, but are limited by morbidity, unsatisfactory closure rates, or minimal regeneration of the connective tissue. A more effective, minimally-invasive therapy is necessary to enhance the perforation closure rate. Current research utilizing decellularized or alignate materials moderately enhance closure but the native TM architecture is not restored. Poly(glycerol sebacate) (PGS) is a biocompatible elastomer which supports cell migration and enzymatically degrades in contact with vascularized tissue. PGS spool-shaped plugs were manufactured using a novel process. Using minimally invasive procedures, these elastomeric plugs were inserted into chronic chinchilla TM perforations. As previously reported, effective perforation closure occurred as both flange surfaces were covered by confluent cell layers; >90% of perforations were closed at 6-week postimplantation. This unique in vivo environment has little vascularized tissue. Consequently, PGS degradation was minimal over 16-week implantation, hindering regeneration of the TM fibrous connective tissue. PGS degradation must be enhanced to promote complete TM regeneration. Copyright © 2012 Wiley Periodicals, Inc.

  3. Otophyma: a case report and review of the literature of lymphedema (elephantiasis) of the ear.

    PubMed

    Carlson, J Andrew; Mazza, Jill; Kircher, Kenneth; Tran, Tien Anh

    2008-02-01

    Phymas (swellings, masses, or bulbs) are considered the end-stage of rosacea and mostly affect the nose (rhinophyma), and rarely involve the chin (gnatophyma), the cheek (metophyma), eyelids (blepharophyma), or ears (otophyma). Herein, we report the case of a 57-year-old man who developed unilateral enlargement of his left ear over 2 years. Biopsy revealed changes of rosaceous lymphedema associated with Demodex infestation. Corticosteroid and minocycline therapies resulted in partial reduction of the ear enlargement. Literature review examining for cases of lymphedema (elephantiasis) of the ear revealed that chronic inflammatory disorders (rosacea (most frequent), psoriasis, eczema), bacterial cellulitis (erysipelas), pediculosis, trauma, and primary (congenital) lymphedema can all lead to localized, lymphedematous enlargement of the ear. Depending on the severity, medical treatment directed at the inflammatory condition for mild, diffuse enlargement to surgical debulking for extensive diffuse enlargement or tumor formation can improve the signs and symptoms of otophyma. Decreased immune surveillance secondary to rosaceous lymphedema may explain why Demodex infestation is common in rosacea and support the suspicion that phymatous skin is predisposed to skin cancer development.

  4. A historical to present-day account of efforts to answer the question, “What puts the brakes on mammalian hair cell regeneration?”

    PubMed Central

    Burns, Joseph C.; Corwin, Jeffrey T.

    2013-01-01

    Hearing and balance deficits often affect humans and other mammals permanently, because their ears stop producing hair cells within a few days after birth. But production occurs throughout life in the ears of sharks, bony fish, amphibians, reptiles, and birds allowing them to replace lost hair cells and quickly recover after temporarily experiencing the kinds of sensory deficits that are irreversible for mammals. Since the mid 1970's, researchers have been asking what puts the brakes on hair cell regeneration in mammals? Here we evaluate the headway that has been made and assess current evidence for various alternative mechanistic hypotheses that have been proposed to account for the limits to hair cell regeneration in mammals. PMID:23333259

  5. Evidence of Bioactive Compounds from Vernonia polyanthes Leaves with Topical Anti-Inflammatory Potential

    PubMed Central

    Rodrigues, Kamilla C. M.; Chibli, Lucas A.; Santos, Bruna C. S.; Temponi, Vanessa S.; Pinto, Nícolas C. C.; Scio, Elita; Del-Vechio-Vieira, Glauciemar; Alves, Maria S.; Sousa, Orlando V.

    2016-01-01

    Vernonia polyanthes Less. (Asteraceae), popularly known as “assa-peixe”, is a plant species used in Brazilian traditional medicine for the treatment of cutaneous damage, cicatrization, inflammation, and rheumatism. Based on these ethnopharmacological findings, the current study evaluated the topical anti-inflammatory effects of the hexane (HEVP) and ethyl acetate (EAEVP) extracts from V. polyanthes leaves in experimental models of skin inflammation. Chemical characterization was carried out by HPLC–UV/DAD analysis. Anti-inflammatory activity was evaluated using Croton oil-, arachidonic acid (AA)-, phenol-, ethyl phenylpropiolate (EPP)-, and capsaicin-induced ear edema models in mice. Histopathological evaluation and measurements of myeloperoxidase (MPO) and N-acetyl-β-d-glucosaminidase (NAG) enzymes were also performed. Rutin, luteolin, and apigenin were identified in EAEVP. Topically applied HEVP and EAEVP significantly (p < 0.05, p < 0.01 or p < 0.001) reduced edema induced by five different irritants at the doses tested (0.1, 0.5 and 1.0 mg/ear). Histopathological analysis revealed a reduction of edema, inflammatory cell infiltration, and vasodilation. In addition, the enzymes activity (MPO and NAG) in the ear tissues was reduced by the topical treatment of HEVP and EAEVP (p < 0.05, p < 0.01 or p < 0.001). The results suggest that V. polyanthes leaves are effective against cutaneous damage, which support its traditional use and open up new possibilities for the treatment of skin disorders. PMID:27916942

  6. Functionality of a maize chitinase potentially involved in ear rot pathogen resistance

    USDA-ARS?s Scientific Manuscript database

    Chitinases are thought to play a role in plant resistance to fungal pathogens by degrading the fungal cell wall, but few have been investigated to any great extent. The gene for a maize (Zea mays) chitinase “chitinase 2” previously reported to be induced by two ear rot pathogens in infected tissues ...

  7. The application of direct current electrical stimulation of the ear and cervical spine kinesitherapy in tinnitus treatment.

    PubMed

    Mielczarek, Marzena; Konopka, Wieslaw; Olszewski, Jurek

    2013-02-01

    The aim of the study was to evaluate the effectiveness of electrical stimulations of the hearing organ in tinnitus treatment adapting the frequency of stimulation according to tinnitus frequency, to assess the influence of cervical spine kinesitherapy on tinnitus, as well as to evaluate hearing after electrical stimulations alone and together with cervical spine kinesitherapy. The study comprised 80 tinnitus, sensorineural hearing loss patients (119 tinnitus ears) divided into two groups. In group I (n - 58 tinnitus ears) electrical stimulation of the hearing organ was performed, in group II (n - 61 tinnitus ears) electrical stimulation together with cervical spine kinesitherapy. Hydrotransmissive, selective electrical stimulations were conducted using direct, rectangular current. The passive electrode was placed on the forehead, the active--a silver probe--was immersed in the external ear canal in 0.9% saline solution. The treatment involved fifteen applications of electrical stimulations (each lasted for 4 min) administered three or four times a week (whole treatment lasted approximately 30 days). The evaluation of the results considered a case history (change from permanent to temporary tinnitus), questionnaires (the increase/decrease of the total points) and the audiometric evaluation of hearing level. Before the treatment, group I comprised 51 ears (87.93%) with permanent, and 7 ears (12.07%) with temporary tinnitus; group II - 55 ears (90.17%) with permanent and 6 ears (9.83%) with temporary tinnitus. After the treatment, in both groups the number of ears with permanent tinnitus decreased considerably obtaining the pauses or disappearing of tinnitus. Directly after the treatment, group I comprised 25 ears (43.11%) with permanent, and 10 ears (17.24%) with temporary tinnitus, in 23 ears (39.65%) tinnitus disappeared; group II - 33 ears (54.1%) with permanent and 11 ears (18.03%) with temporary tinnitus, in 17 ears (27.87%) tinnitus disappeared. Regarding questionnaires, improvement was observed in group I - in 43.11% of ears, in group II - 32.8%. In both groups audiometric improvement of hearing was recognized. (1) Electrical stimulation of the hearing organ, with the application of current frequencies according to tinnitus frequencies (selective electrical stimulation), was an efficient method in severe tinnitus treatment. (2) Cervical spine kinesitherapy in the treatment of tinnitus, using electrical stimulation, did not have any supporting influence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Preserved Acoustic Hearing in Cochlear Implantation Improves Speech Perception

    PubMed Central

    Sheffield, Sterling W.; Jahn, Kelly; Gifford, René H.

    2015-01-01

    Background With improved surgical techniques and electrode design, an increasing number of cochlear implant (CI) recipients have preserved acoustic hearing in the implanted ear, thereby resulting in bilateral acoustic hearing. There are currently no guidelines, however, for clinicians with respect to audio-metric criteria and the recommendation of amplification in the implanted ear. The acoustic bandwidth necessary to obtain speech perception benefit from acoustic hearing in the implanted ear is unknown. Additionally, it is important to determine if, and in which listening environments, acoustic hearing in both ears provides more benefit than hearing in just one ear, even with limited residual hearing. Purpose The purposes of this study were to (1) determine whether acoustic hearing in an ear with a CI provides as much speech perception benefit as an equivalent bandwidth of acoustic hearing in the non-implanted ear, and (2) determine whether acoustic hearing in both ears provides more benefit than hearing in just one ear. Research Design A repeated-measures, within-participant design was used to compare performance across listening conditions. Study Sample Seven adults with CIs and bilateral residual acoustic hearing (hearing preservation) were recruited for the study. Data Collection and Analysis Consonant-nucleus-consonant word recognition was tested in four conditions: CI alone, CI + acoustic hearing in the nonimplanted ear, CI + acoustic hearing in the implanted ear, and CI + bilateral acoustic hearing. A series of low-pass filters were used to examine the effects of acoustic bandwidth through an insert earphone with amplification. Benefit was defined as the difference among conditions. The benefit of bilateral acoustic hearing was tested in both diffuse and single-source background noise. Results were analyzed using repeated-measures analysis of variance. Results Similar benefit was obtained for equivalent acoustic frequency bandwidth in either ear. Acoustic hearing in the nonimplanted ear provided more benefit than the implanted ear only in the wideband condition, most likely because of better audiometric thresholds (>500 Hz) in the nonimplanted ear. Bilateral acoustic hearing provided more benefit than unilateral hearing in either ear alone, but only in diffuse background noise. Conclusions Results support use of amplification in the implanted ear if residual hearing is present. The benefit of bilateral acoustic hearing (hearing preservation) should not be tested in quiet or with spatially coincident speech and noise, but rather in spatially separated speech and noise (e.g., diffuse background noise). PMID:25690775

  9. Measurement of Cefaclor and Amoxicillin-Clavulanic Acid Levels in Middle-Ear Fluid in Patients with Acute Otitis Media

    PubMed Central

    Scaglione, F.; Caronzolo, D.; Pintucci, J. P.; Fraschini, F.

    2003-01-01

    Concentrations of cefaclor (CFC) or amoxicillin-clavulanic acid (AMX/CA) in middle-ear fluid collected preserving the stability and clearing the cell contents has been compared to those obtained using the traditional method. Sixty-seven children with effusive otitis media were treated orally with CFC (20 mg/kg of body weight) or AMX/CA (20 mg/kg) (4:1 ratio). The concentrations in cell-free fluid (C−) appear higher than those in the total fluid (C+) (as assayed traditionally). PMID:12937009

  10. Tympanomastoid cholesterol granulomas: Immunohistochemical evaluation of angiogenesis.

    PubMed

    Iannella, Giannicola; Di Gioia, Cira; Carletti, Raffaella; Magliulo, Giuseppe

    2017-08-01

    This study investigates the immunohistochemical expression of vascular endothelial growth factor (VEGF) and CD34 in patients treated for middle ear and mastoid cholesterol granulomas to evaluate the angiogenesis and vascularization of this type of lesion. A correlation between the immunohistochemical data and the radiological and intraoperative evidence of temporal bone marrow invasion and blood source connection was performed to validate this hypothesis. Retrospective study. Immunohistochemical expression of VEGF and CD34 in a group of 16 patients surgically treated for cholesterol granuloma was examined. Middle ear cholesteatomas with normal middle ear mucosa and external auditory canal skin were used as the control groups. The radiological and intraoperative features of cholesterol granulomas were also examined. In endothelial cells, there was an increased expression of angiogenetic growth factor receptors in all the cholesterol granulomas in this study. The quantitative analysis of VEGF showed a mean value of 37.5, whereas the CD34 quantitative analysis gave a mean value of 6.8. Seven patients presented radiological or intraoperative evidence of bone marrow invasion, hematopoietic potentialities, or blood source connections that might support the bleeding theory. In all of these cases there was computed tomography or intraoperative evidence of bone erosion of the middle ear and/or temporal bone structures. The mean values of VEGF and CD34 were 41.1 and 7.7, respectively. High values of VEGF and CD34 are present in patients with cholesterol granulomas. Upregulation of VEGF and CD34 is indicative of a remarkable angiogenesis and a widespread vascular concentration in cholesterol granulomas. 3b. Laryngoscope, 127:E283-E290, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Fitting and verification of frequency modulation systems on children with normal hearing.

    PubMed

    Schafer, Erin C; Bryant, Danielle; Sanders, Katie; Baldus, Nicole; Algier, Katherine; Lewis, Audrey; Traber, Jordan; Layden, Paige; Amin, Aneeqa

    2014-06-01

    Several recent investigations support the use of frequency modulation (FM) systems in children with normal hearing and auditory processing or listening disorders such as those diagnosed with auditory processing disorders, autism spectrum disorders, attention-deficit hyperactivity disorder, Friedreich ataxia, and dyslexia. The American Academy of Audiology (AAA) published suggested procedures, but these guidelines do not cite research evidence to support the validity of the recommended procedures for fitting and verifying nonoccluding open-ear FM systems on children with normal hearing. Documenting the validity of these fitting procedures is critical to maximize the potential FM-system benefit in the above-mentioned populations of children with normal hearing and those with auditory-listening problems. The primary goal of this investigation was to determine the validity of the AAA real-ear approach to fitting FM systems on children with normal hearing. The secondary goal of this study was to examine speech-recognition performance in noise and loudness ratings without and with FM systems in children with normal hearing sensitivity. A two-group, cross-sectional design was used in the present study. Twenty-six typically functioning children, ages 5-12 yr, with normal hearing sensitivity participated in the study. Participants used a nonoccluding open-ear FM receiver during laboratory-based testing. Participants completed three laboratory tests: (1) real-ear measures, (2) speech recognition performance in noise, and (3) loudness ratings. Four real-ear measures were conducted to (1) verify that measured output met prescribed-gain targets across the 1000-4000 Hz frequency range for speech stimuli, (2) confirm that the FM-receiver volume did not exceed predicted uncomfortable loudness levels, and (3 and 4) measure changes to the real-ear unaided response when placing the FM receiver in the child's ear. After completion of the fitting, speech recognition in noise at a -5 signal-to-noise ratio and loudness ratings at a +5 signal-to-noise ratio were measured in four conditions: (1) no FM system, (2) FM receiver on the right ear, (3) FM receiver on the left ear, and (4) bilateral FM system. The results of this study suggested that the slightly modified AAA real-ear measurement procedures resulted in a valid fitting of one FM system on children with normal hearing. On average, prescriptive targets were met for 1000, 2000, 3000, and 4000 Hz within 3 dB, and maximum output of the FM system never exceeded and was significantly lower than predicted uncomfortable loudness levels for the children. There was a minimal change in the real-ear unaided response when the open-ear FM receiver was placed into the ear. Use of the FM system on one or both ears resulted in significantly better speech recognition in noise relative to a no-FM condition, and the unilateral and bilateral FM receivers resulted in a comfortably loud signal when listening in background noise. Real-ear measures are critical for obtaining an appropriate fit of an FM system on children with normal hearing. American Academy of Audiology.

  12. 40 CFR 211.204-4 - Supporting information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... level as measured at the ear is 92 dBA. 2. The NRR is (value on label) decibels (dB). 3. The level of... must be affixed to the bulk container or dispenser in the same manner as the label, and in a readily... entering a person's ear, when hearing protector is worn as directed, is closely approximated by the...

  13. Supporting Early Childhood Educators' Use of Embedded Communication Strategies by Providing Feedback via Bug-in-Ear Technology

    ERIC Educational Resources Information Center

    Riggie, Jennifer

    2013-01-01

    The purpose of this study was to examine the relationship between coaching provided with bug-in-ear technology, the frequency of the early childhood educators' use of targeted communication strategies and children's expressive communication. Four multiple-baseline single-case design experiments were completed to evaluate these relationships.…

  14. Assessment of PLGA-PEG-PLGA Copolymer Hydrogel for Sustained Drug Delivery in the Ear

    PubMed Central

    Feng, Liang; Ward, Jonette A.; Li, S. Kevin; Tolia, Gaurav; Hao, Jinsong; Choo, Daniel I.

    2014-01-01

    Temperature sensitive copolymer systems were previously studied using modified diffusion cells in vitro for intratympanic injection, and the PLGA-PEG-PLGA copolymer systems were found to provide sustained drug delivery for several days. The objectives of the present study were to assess the safety of PLGA-PEG-PLGA copolymers in intratympanic injection in guinea pigs in vivo and to determine the effects of additives glycerol and poloxamer in PLGA-PEG-PLGA upon drug release in the diffusion cells in vitro for sustained inner ear drug delivery. In the experiments, the safety of PLGA-PEG-PLGA copolymers to inner ear was evaluated using auditory brainstem response (ABR). The effects of the additives upon drug release from PLGA-PEG-PLGA hydrogel were investigated in the modified Franz diffusion cells in vitro with cidofovir as the model drug. The phase transition temperatures of the PLGA-PEG-PLGA copolymers in the presence of the additives were also determined. In the ABR safety study, the PLGA-PEG-PLGA copolymer alone did not affect hearing when delivered at 0.05-mL dose but caused hearing loss after 0.1-mL injection. In the drug release study, the incorporation of the bioadhesive additive, poloxamer, in the PLGA-PEG-PLGA formulations was found to decrease the rate of drug release whereas the increase in the concentration of the humectant additive, glycerol, provided the opposite effect. In summary, the PLGA-PEG-PLGA copolymer did not show toxicity to the inner ear at the 0.05-mL dose and could provide sustained release that could be controlled by using the additives for inner ear applications. PMID:24438444

  15. Role of pepsin and pepsinogen: linking laryngopharyngeal reflux with otitis media with effusion in children.

    PubMed

    Luo, Hua-Nan; Yang, Qi-Mei; Sheng, Ying; Wang, Zheng-Hui; Zhang, Qing; Yan, Jing; Hou, Jin; Zhu, Kang; Cheng, Ying; Wang, Bo-Tao; Xu, Ying-Long; Zhang, Xiang-Hong; Ren, Xiao-Yong; Xu, Min

    2014-07-01

    To analyze the relationship between laryngopharyngeal reflux (LPR) represented by pepsin and pepsinogen, and pathogenesis of otitis media with effusion (OME). Prospective case-control study. Children with OME who required adenoidectomy and tympanostomy/tympanostomy tubes placement were enrolled in OME group, whereas children with adenoid hypertrophy (AH) who required adenoidectomy and individuals who required cochlear implantation (CI) were enrolled in AH and CI groups, respectively. Pepsinogen mRNA and protein levels were assessed by real-time fluorescence-based quantitative polymerase chain reaction and immunohistochemistry in adenoid specimens from the OME and AH groups. Pepsin and pepsinogen concentrations were evaluated by enzyme-linked immunosorbent assay in middle ear fluid and plasma from the OME and CI groups. The levels of pepsinogen protein expressed in cytoplasm of epithelial cells and clearance under epithelial cells in adenoid specimens from the OME group were significantly higher than those in the AH group. Furthermore, the concentrations of pepsin and pepsinogen in the OME group were 51.93±11.58 ng/mL and 728±342.6 ng/mL, respectively, which were significantly higher than those in the CI group (P<.001). In addition, the concentrations of pepsin in dry ears were significantly lower than those in serous and mucus ears in the OME group (F=22.77, P<.001).Finally, the concentration of pepsinogen in middle ear effusion was positively correlated with the expression intensity of pepsinogen protein in cytoplasm of epithelial cells (r=0.73, P<.05) in the OME group. Pepsin and pepsinogen in middle ear effusion are probably caused by LPR and may be involved in the pathogenesis of OME. 3b. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yoke-Chen; Wang, James D.; Svoboda, Kathy K.

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing frommore » 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. - Highlights: ► We demonstrated ER stress response in the mouse ear vesicant model. ► We described the asymmetrical nature of wound repair in the MEVM. ► We identified the distribution of various ER stress markers in the MEVM.« less

  17. Adenosine receptor subtypes in the airways responses to 5'-adenosine monophosphate inhalation of sensitized guinea-pigs.

    PubMed

    Smith, N; Broadley, K J

    2008-09-01

    Endogenous adenosine levels are raised in the lungs during asthma attacks. 5'-adenosine monophosphate (5'-AMP) inhalation in asthmatics causes bronchoconstriction and in sensitized guinea-pigs induces early (EAR) and late asthmatic responses (LAR), airway hyper-reactivity (AHR) and inflammatory cell recruitment to the lungs. The aim of this study was to investigate the roles of A(1), A(2A), A(2B) and A(3) adenosine receptors in these responses to inhaled 5'-AMP in sensitized guinea-pigs. Comparisons were made with the effect of dexamethasone treatment on 5'-AMP-induced responses. Functional airways responses to inhaled 5'-AMP (3 and 300 mM) of actively sensitized, conscious guinea-pigs were determined by whole-body plethysmography following administration of selective adenosine receptor antagonists or their vehicles. AHR to inhaled histamine (1 mM) and inflammatory cell influx in bronchoalveolar lavage fluid were determined. 5'-AMP at 3 mM caused an immediate bronchoconstriction (EAR), whereas 300 mM caused bronchodilatation. Both responses were followed at 6 h by a LAR, together with inflammatory cell influx and AHR to histamine. The A(2A) receptor antagonist, ZM241385, further enhanced cell influx after 5'-AMP inhalation (3 and 300 mM), and blocked the immediate bronchodilator response to 300 mM 5'-AMP, exposing an EAR. The A(2B) receptor antagonist, MRS1706 (in the presence of ZM241385), inhibited the LAR, AHR and cell influx, following inhalation of 5'-AMP (300 mM). The A(3) receptor antagonist, MRS1220, inhibited 5'-AMP-induced inflammatory cell influx. The A(1) receptor antagonist, DPCPX (in the presence of ZM241385), inhibited the EAR following 5'-AMP inhalation (300 mM). Dexamethasone inhibited the LAR, AHR and cell influx following inhalation of 5'-AMP (300 mM). All four adenosine receptor subtypes play various roles in the airways responses to inhaled 5'-AMP in sensitized guinea-pigs.

  18. Confocal imaging of whole vertebrate embryos reveals novel insights into molecular and cellular mechanisms of organ development

    NASA Astrophysics Data System (ADS)

    Hadel, Diana M.; Keller, Bradley B.; Sandell, Lisa L.

    2014-03-01

    Confocal microscopy has been an invaluable tool for studying cellular or sub-cellular biological processes. The study of vertebrate embryology is based largely on examination of whole embryos and organs. The application of confocal microscopy to immunostained whole mount embryos, combined with three dimensional (3D) image reconstruction technologies, opens new avenues for synthesizing molecular, cellular and anatomical analysis of vertebrate development. Optical cropping of the region of interest enables visualization of structures that are morphologically complex or obscured, and solid surface rendering of fluorescent signal facilitates understanding of 3D structures. We have applied these technologies to whole mount immunostained mouse embryos to visualize developmental morphogenesis of the mammalian inner ear and heart. Using molecular markers of neuron development and transgenic reporters of neural crest cell lineage we have examined development of inner ear neurons that originate from the otic vesicle, along with the supporting glial cells that derive from the neural crest. The image analysis reveals a previously unrecognized coordinated spatial organization between migratory neural crest cells and neurons of the cochleovestibular nerve. The images also enable visualization of early cochlear spiral nerve morphogenesis relative to the developing cochlea, demonstrating a heretofore unknown association of neural crest cells with extending peripheral neurite projections. We performed similar analysis of embryonic hearts in mouse and chick, documenting the distribution of adhesion molecules during septation of the outflow tract and remodeling of aortic arches. Surface rendering of lumen space defines the morphology in a manner similar to resin injection casting and micro-CT.

  19. Sensational placodes: Neurogenesis in the otic and olfactory systems

    PubMed Central

    Maier, Esther C.; Saxena, Ankur; Alsina, Berta; Bronner, Marianne E.; Whitfield, Tanya T.

    2014-01-01

    For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives. PMID:24508480

  20. Molecular mechanisms involved in cochlear implantation trauma and the protection of hearing and auditory sensory cells by inhibition of c-Jun-N-terminal kinase signaling.

    PubMed

    Eshraghi, Adrien A; Gupta, Chhavi; Van De Water, Thomas R; Bohorquez, Jorge E; Garnham, Carolyn; Bas, Esperanza; Talamo, Victoria Maria

    2013-03-01

    To investigate the molecular mechanisms involved in electrode insertion trauma (EIT) and to test the otoprotective effect of locally delivered AM-111. An animal model of cochlear implantation. Guinea pigs' hearing thresholds were measured by auditory brainstem response (ABR) before and after cochlear implantation in four groups: EIT; pretreated with hyaluronate gel 30 minutes before EIT (EIT+Gel); pretreated with hyaluronate gel/AM-111 30 minutes before EIT (EIT+AM-111); and unoperated contralateral ears as controls. Neurofilament, synapsin, and fluorescein isothiocyanate (FITC)-phalloidin staining for hair cell counts were performed at 90 days post-EIT. Immunostaining for 4-hydroxy-2-nonenal (HNE), activated caspase-3, CellROX, and phospho-c-Jun were performed at 24 hours post-EIT. ABR thresholds increased post-EIT in the cochleae of EIT only and EIT+Gel treated animals. There was no significant increase in hearing thresholds in cochleae from either EIT+AM-111 treated or unoperated control ears. AM-111 protection of organ of Corti sensory elements (i.e., hair cells [HCs], supporting cells [SCs], nerve fibers, and synapses) was documented at 3 months post-EIT. Immunostaining of 24-hour post-EIT specimens demonstrated increased levels of HNE in HCs and SCs; increased levels of CellROX and activation of caspase-3 was observed only in SCs, and phosphorylation of c-Jun occurred only in HCs of the EIT-only and EIT+Gel specimens. There was no immunostaining for either HNE, CellROX, caspase-3, or phospho-c-Jun in the organ of Corti specimens from AM-111 treated cochleae. Molecular mechanisms involved in programmed cell death of HCs are different than the ones involved in programmed cell death of SCs. Local delivery of AM-111 provided a significant level of protection against EIT-induced hearing losses, HC losses, and damage to neural elements. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  1. Round window administration of gentamicin: a new method for the study of ototoxicity of cochlear hair cells.

    PubMed

    Husmann, K R; Morgan, A S; Girod, D A; Durham, D

    1998-11-01

    Damage to inner ear sensory hair cells after systemic administration of ototoxic drugs has been documented in humans and animals. Birds have the ability to regenerate new hair cells to replace those damaged by drugs or noise. Unfortunately, the systemic administration of gentamicin damages both ears in a variable fashion with potentially confounding systemic drug effects. We developed a method of direct application of gentamicin to one cochlea of hatchling chickens, allowing the other ear to serve as a within-animal control. We tested variables including the vehicle for application, location of application, dosage, and duration of gentamicin exposure. After 5 or 28 days survival, the percent length damage to the cochlea and regeneration of hair cells was evaluated using scanning electron microscopy. Controls consisted of the opposite unexposed cochlea and additional animals which received saline instead of gentamicin. Excellent damage was achieved using gentamicin-soaked Gelfoam pledgets applied to the round window membrane. The percent length damage could be varied from 15 to 100% by changing the dosage of gentamicin, with exposures as short as 30 min. No damage was observed in control animals. Regeneration of hair cells was observed in both the base and apex by 28 days survival.

  2. SQUAMOUS CELL CARCINOMA IN TWO SNOW LEOPARDS (UNCIA UNCIA) WITH UNUSUAL AURICULAR PRESENTATION.

    PubMed

    Quintard, Benoît; Greunz, Eva Maria; Lefaux, Brice; Lemberger, Karin; Leclerc, Antoine

    2017-06-01

    Squamous cell carcinoma (SCC) is well documented in snow leopards ( Uncia uncia ) and most common locations are oral, facial, or pedal. These two cases illustrate an unusual auricular presentation, which is more often reported in white domestic cats. The animals were aged and presented clinical signs of otitis such as head shaking and ear scratching. Clinical examinations showed auricular canal masses with chronic purulent otitis. In both cases, clinical deterioration led to euthanasia and histology of the ear canal was consistent with SCC and showed numerous vascular emboli. These cases illustrate an unreported aggressive localization for SCC in snow leopards, which should be included in the differential diagnosis of otitis in this species. Auricular SCC may be underdiagnosed as the ear canal is infrequently sampled for histopathology. This auricular localization should be considered when metastases are found upon necropsy without internal primary tumor.

  3. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.

    PubMed

    Wang, Xuelin; Wang, Liling; Zhou, Jianjun; Hu, Yujin

    2014-08-01

    A three-dimensional finite element model is developed for the simulation of the sound transmission through the human auditory periphery consisting of the external ear canal, middle ear and cochlea. The cochlea is modelled as a straight duct divided into two fluid-filled scalae by the basilar membrane (BM) having an orthotropic material property with dimensional variation along its length. In particular, an active feed-forward mechanism is added into the passive cochlear model to represent the activity of the outer hair cells (OHCs). An iterative procedure is proposed for calculating the nonlinear response resulting from the active cochlea in the frequency domain. Results on the middle-ear transfer function, BM steady-state frequency response and intracochlear pressure are derived. A good match of the model predictions with experimental data from the literatures demonstrates the validity of the ear model for simulating sound pressure gain of middle ear, frequency to place map, cochlear sensitivity and compressive output for large intensity input. The current model featuring an active cochlea is able to correlate directly the sound stimulus in the ear canal with the vibration of BM and provides a tool to explore the mechanisms by which sound pressure in the ear canal is converted to a stimulus for the OHCs.

  4. The role of intracochlear drug delivery devices in the management of inner ear disease.

    PubMed

    Ayoob, Andrew M; Borenstein, Jeffrey T

    2015-03-01

    Diseases of the inner ear include those of the auditory and vestibular systems, and frequently result in disabling hearing loss or vertigo. Despite a rapidly expanding pipeline of potential cochlear therapeutics, the inner ear remains a challenging organ for targeted drug delivery, and new technologies are required to deliver these therapies in a safe and efficacious manner. In addition to traditional approaches for direct inner ear drug delivery, novel microfluidics-based systems are under development, promising improved control over pharmacokinetics over longer periods of delivery, ultimately with application towards hair cell regeneration in humans. Advances in the development of intracochlear drug delivery systems are reviewed, including passive systems, active microfluidic technologies and cochlear prosthesis-mediated delivery. This article provides a description of novel delivery systems and their potential future clinical applications in treating inner ear disease. Recent progresses in microfluidics and miniaturization technologies are enabling the development of wearable and ultimately implantable drug delivery microsystems. Progress in this field is being spurred by the convergence of advances in molecular biology, microfluidic flow control systems and models for drug transport in the inner ear. These advances will herald a new generation of devices, with near-term applications in preclinical models, and ultimately with human clinical use for a range of diseases of the inner ear.

  5. Rhesus Cochlear and Vestibular Functions Are Preserved After Inner Ear Injection of Saline Volume Sufficient for Gene Therapy Delivery.

    PubMed

    Dai, Chenkai; Lehar, Mohamed; Sun, Daniel Q; Rvt, Lani Swarthout; Carey, John P; MacLachlan, Tim; Brough, Doug; Staecker, Hinrich; Della Santina, Alexandra M; Hullar, Timothy E; Della Santina, Charles C

    2017-08-01

    Sensorineural losses of hearing and vestibular sensation due to hair cell dysfunction are among the most common disabilities. Recent preclinical research demonstrates that treatment of the inner ear with a variety of compounds, including gene therapy agents, may elicit regeneration and/or repair of hair cells in animals exposed to ototoxic medications or other insults to the inner ear. Delivery of gene therapy may also offer a means for treatment of hereditary hearing loss. However, injection of a fluid volume sufficient to deliver an adequate dose of a pharmacologic agent could, in theory, cause inner ear trauma that compromises functional outcome. The primary goal of the present study was to assess that risk in rhesus monkeys, which closely approximates humans with regard to middle and inner ear anatomy. Secondary goals were to identify the best delivery route into the primate ear from among two common surgical approaches (i.e., via an oval window stapedotomy and via the round window) and to determine the relative volumes of rhesus, rodent, and human labyrinths for extrapolation of results to other species. We measured hearing and vestibular functions before and 2, 4, and 8 weeks after unilateral injection of phosphate-buffered saline vehicle (PBSV) into the perilymphatic space of normal rhesus monkeys at volumes sufficient to deliver an atoh1 gene therapy vector. To isolate effects of injection, PBSV without vector was used. Assays included behavioral observation, auditory brainstem responses, distortion product otoacoustic emissions, and scleral coil measurement of vestibulo-ocular reflexes during whole-body rotation in darkness. Three groups (N = 3 each) were studied. Group A received a 10 μL transmastoid/trans-stapes injection via a laser stapedotomy. Group B received a 10 μL transmastoid/trans-round window injection. Group C received a 30 μL transmastoid/trans-round window injection. We also measured inner ear fluid space volume via 3D reconstruction of computed tomography (CT) images of adult C57BL6 mouse, rat, rhesus macaque, and human temporal bones (N = 3 each). Injection was well tolerated by all animals, with eight of nine exhibiting no signs of disequilibrium and one animal exhibiting transient disequilibrium that resolved spontaneously by 24 h after surgery. Physiologic results at the final, 8-week post-injection measurement showed that injection was well tolerated. Compared to its pretreatment values, no treated ear's ABR threshold had worsened by more than 5 dB at any stimulus frequency; distortion product otoacoustic emissions remained detectable above the noise floor for every treated ear (mean, SD and maximum deviation from baseline: -1.3, 9.0, and -18 dB, respectively); and no animal exhibited a reduction of more than 3 % in vestibulo-ocular reflex gain during high-acceleration, whole-body, passive yaw rotations in darkness toward the treated side. All control ears and all operated ears with definite histologic evidence of injection through the intended site showed similar findings, with intact hair cells in all five inner ear sensory epithelia and intact auditory/vestibular neurons. The relative volumes of mouse, rat, rhesus, and human inner ears as measured by CT were (mean ± SD) 2.5 ± 0.1, 5.5 ± 0.4, 59.4 ± 4.7 and 191.1 ± 4.7 μL. These results indicate that injection of PBSV at volumes sufficient for gene therapy delivery can be accomplished without destruction of inner ear structures required for hearing and vestibular sensation.

  6. Cytodifferentiation of hair cells during the development of a basal chordate.

    PubMed

    Gasparini, Fabio; Caicci, Federico; Rigon, Francesca; Zaniolo, Giovanna; Burighel, Paolo; Manni, Lucia

    2013-10-01

    Tunicates are unique animals for studying the origin and evolution of vertebrates because they are considered vertebrates' closest living relatives and share the vertebrate body plan and many specific features. Both possess neural placodes, transient thickenings of the cranial ectoderm that give rise to various types of sensory cells, including axonless secondary mechanoreceptors. In vertebrates, these are represented by the hair cells of the inner ear and the lateral line, which have an apical apparatus typically bearing cilia and stereovilli. In tunicates, they are found in the coronal organ, which is a mechanoreceptor located at the base of the oral siphon along the border of the velum and tentacles and is formed of cells bearing a row of cilia and short microvilli. The coronal organ represents the best candidate homolog for the vertebrate lateral line. To further understand the evolution of secondary sensory cells, we analysed the development and cytodifferentiation of coronal cells in the tunicate ascidian Ciona intestinalis for the first time. Here, coronal sensory cells can be identified as early as larval metamorphosis, before tentacles form, as cells with short cilia and microvilli. Sensory cells gradually differentiate, acquiring hair cell features with microvilli containing actin and myosin VIIa; in the meantime, the associated supporting cells develop. The coronal organ grows throughout the animal's lifespan, accompanying the growth of the tentacle crown. Anti-phospho Histone H3 immunostaining indicates that both hair cells and supporting cells can proliferate. This finding contributes to the understanding of the evolution of secondary sensory cells, suggesting that both ancestral cell types were able to proliferate and that this property was progressively restricted to supporting cells in vertebrates and definitively lost in mammals. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Development of a finite element model of the middle ear.

    PubMed

    Williams, K R; Blayney, A W; Rice, H J

    1996-01-01

    A representative finite element model of the healthy ear is developed commencing with a description of the decoupled isotropic tympanic membrane. This model was shown to vibrate in a manner similar to that found both numerically (1, 2) and experimentally (8). The introduction of a fibre system into the membrane matrix significantly altered the modes of vibration. The first mode "remains as a piston like movement as for the isotropic membrane. However, higher modes show a simpler vibration pattern similar to the second mode but with a varying axis of movement and lower amplitudes. The introduction of a malleus and incus does not change the natural frequencies or mode shapes of the membrane for certain support conditions. When constraints are imposed along the ossicular chain by simulation of a cochlear impedance term then significantly altered modes can occur. More recently a revised model of the ear has been developed by the inclusion of the outer ear canal. This discretisation uses geometries extracted from a Nuclear Magnetic resonance scan of a healthy subject and a crude inner ear model using stiffness parameters ultimately fixed through a parameter tuning process. The subsequently tuned model showed behaviour consistent with previous findings and should provide a good basis for subsequent modelling of diseased ears and assessment of the performance of middle ear prostheses.

  8. IL-33 and IgE stimulate mast cell production of IL-2 and regulatory T cell expansion in allergic dermatitis.

    PubMed

    Salamon, P; Shefler, I; Moshkovits, I; Munitz, A; Horwitz Klotzman, D; Mekori, Y A; Hershko, A Y

    2017-11-01

    We have previously shown that mast cells (MCs) suppress chronic allergic dermatitis in mice. The underlying mechanism involves MC-derived IL-2, which supports regulatory T cell (Treg) response at the site of inflammation. However, it is not clear what are the factors that drive MCs to produce IL-2. To understand the mechanisms that lead to IL-2 production from MCs in chronic allergic dermatitis. Isolated murine bone marrow-derived MCs (BMMCs) were incubated with various stimulators, and IL-2 production was assessed by RT-PCR and ELISA. The response of signalling pathways was evaluated by MAPK inhibitors and Western blot analysis. The effect of MC-IL-2 on Tregs was studied by incubation of splenic T cells with conditioned media obtained from activated BMMCs. Dermatitis was elicited by repeated exposures of mouse ears to oxazolone. MCs in mouse and human skin samples were evaluated by immunostaining. BMMCs released IL-2 in response to IL-33, and IL-2 production was further enhanced by concomitant FcεRI activation. The effect of IL-33 was mediated by activation of the MAPK family members. IL-2 in conditioned media from IL-33 and IgE-stimulated BMMCs led to considerable expansion of Tregs in vitro. IL-33 levels were elevated in oxazolone-challenged ears along with increased numbers of IL-2-expressing MCs. Human skin with chronic inflammation also contained IL-2-expressing MCs that colocalized with IL-33 staining in the dermis. IL-33, in collaboration with IgE, is critical for MC-IL-2 production in allergic skin disease, thus leading to Treg stimulation and suppression of allergic dermatitis. © 2017 John Wiley & Sons Ltd.

  9. THE EFFECTS OF RADIATION THERAPY ON THE EAR WITH PARTICULAR REFERENCE TO RADIATION OTITIS MEDIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borsanyi, S.J.

    Between l957 and 1961 over l00 patients who were treated by a Co/sup 60/ teletherapy unit for malignant tumors of the head and neck were observed. The ears were included in the field of irradiation (4000 to 6000 r to the region of the inner ear). Between 50 and 60% of the patients developed ear symptoms during or shortly after completion of treatment. The most common symptoms were a sensation of fullness in the ear, some loss of hearing, earache, and tinnitus. Examination of ears revealed mild to moderate hyperemia of ear drums, with slight retraction in eariy stages andmore » bulging at iater stages. There was a moderate conductive hearing loss also. This disease entity is termed radiation otitis media and its pathophysiologic mechanism is similar to that of serous otitis media. Sterile fluid fills the middle ear, containing also some desquamated epithelial cells. Radiation otitis media usually clears up in a few weeks after the completion of treatment. In the management of this condition, vasoconstrictors, mild analgesics, and gentie politzeration were sufficient. However, in a few cases bacterial invasion of the sterile fluid occurred, resulting in purulent otitis media which required the use of antibiotics. Hearing of 20 patients was tested at weekly intervals during and after the completion of radiation. Cut of the 40 ears, 16 showed a conductive hearing loss, averaging 20 db. Six ears showed a worsening of the original loss of preceptive hearing. However, this was also primarily due to the development of a conductive component. There were no microscopicaiiy detectable immediate changes in the cochlea or labyrinth exposed to radiation in cancerocidal doses. (H.H.D.)« less

  10. Adoptive Cellular Gene Therapy for the Treatment of Experimental Autoimmune Polychondritis Ear Disease.

    PubMed

    Zhou, Bin; Liao, Yonggan; Guo, Yunkai; Tarner, Ingo H; Liao, Chunfen; Chen, Sisi; Kermany, Mohammad Habiby; Tu, Hanjun; Zhong, Sen; Chen, Peijie

    2017-01-01

    In the past, the clinical therapy for autoimmune diseases, such as autoimmune polychondritis ear disease, was mostly limited to nonspecific immunosuppressive agents, which could lead to variable responses. Currently, gene therapy aims at achieving higher specificity and less adverse effects. This concept utilizes the adoptive transfer of autologous T cells that have been retrovirally transduced ex vivo to express and deliver immunoregulatory gene products to sites of autoimmune inflammation. In the animal model of collagen-induced autoimmune polychondritis ear disease (CIAPED), the adoptive transfer of IL-12p40-expressing collagen type II (CII)-specific CD4+ T-cell hybridomas resulted in a significantly lower disease incidence and severity compared with untreated or vector-only-treated animals. In vivo cell detection using bioluminescent labels showed that transferred CII-reactive T-cell hybridomas accumulated in the inflamed earlobes of the mice with CIAPED. In vitro analysis demonstrated that IL-12p40-transduced T cells did not affect antigen-specific T-cell activation or systemic anti-CII Ab responses. However, IL-12p40-transduced T cells suppressed IFN-γ and augmented IL-4 production, indicating their potential to act therapeutically by interrupting Th1-mediated inflammatory responses via augmenting Th2 responses. These results indicate that the local delivery of IL-12p40 by T cells could inhibit CIAPED by suppressing autoimmune responses at the site of inflammation. © 2017 S. Karger AG, Basel.

  11. Ephrin-B2 governs morphogenesis of endolymphatic sac and duct epithelia in the mouse inner ear.

    PubMed

    Raft, Steven; Andrade, Leonardo R; Shao, Dongmei; Akiyama, Haruhiko; Henkemeyer, Mark; Wu, Doris K

    2014-06-01

    Control over ionic composition and volume of the inner ear luminal fluid endolymph is essential for normal hearing and balance. Mice deficient in either the EphB2 receptor tyrosine kinase or the cognate transmembrane ligand ephrin-B2 (Efnb2) exhibit background strain-specific vestibular-behavioral dysfunction and signs of abnormal endolymph homeostasis. Using various loss-of-function mouse models, we found that Efnb2 is required for growth and morphogenesis of the embryonic endolymphatic epithelium, a precursor of the endolymphatic sac (ES) and duct (ED), which mediate endolymph homeostasis. Conditional inactivation of Efnb2 in early-stage embryonic ear tissues disrupted cell proliferation, cell survival, and epithelial folding at the origin of the endolymphatic epithelium. This correlated with apparent absence of an ED, mis-localization of ES ion transport cells relative to inner ear sensory organs, dysplasia of the endolymph fluid space, and abnormally formed otoconia (extracellular calcite-protein composites) at later stages of embryonic development. A comparison of Efnb2 and Notch signaling-deficient mutant phenotypes indicated that these two signaling systems have distinct and non-overlapping roles in ES/ED development. Homozygous deletion of the Efnb2 C-terminus caused abnormalities similar to those found in the conditional Efnb2 null homozygote. Analyses of fetal Efnb2 C-terminus deletion heterozygotes found mis-localized ES ion transport cells only in the genetic background exhibiting vestibular dysfunction. We propose that developmental dysplasias described here are a gene dose-sensitive cause of the vestibular dysfunction observed in EphB-Efnb2 signaling-deficient mice. Published by Elsevier Inc.

  12. Sensitising potential of four textile dyes and some of their metabolites in a modified local lymph node assay.

    PubMed

    Stahlmann, Ralf; Wegner, Matthias; Riecke, Kai; Kruse, Matthias; Platzek, Thomas

    2006-02-15

    We studied the sensitising and allergenic potentials of the textile dyes disperse yellow 3, disperse orange 30, disperse red 82, disperse yellow 211 and two metabolites of disperse yellow 3, 4-aminoacetanilide and 2-amino-p-cresol, using modified protocols of the murine "local lymph node assay" (LLNA). Test substances were applied either to the dorsum of the mice ears (sensitisation protocol) or they were first applied to the skin of their backs and 2 weeks later to their ears (sensitisation-challenge protocol). In addition to the endpoints weight and cell number of the draining ear lymph nodes we analysed lymphocyte subpopulations by flow cytometry. In the sensitisation protocol, disperse yellow 3 and its metabolite 4-aminoacetanilide did not induce significant effects, whereas in the sensitisation-challenge protocol cell number and lymph node weight increased significantly indicating a sensitising potential in NMRI mice. Hence, two-phase treatment (skin of the back, ear) increased the sensitivity of this assay. The second metabolite of disperse yellow 3, 2-amino-p-cresol, showed distinct effects in both treatment protocols; this applied mainly to the parameters cell number and lymph node weight. The dye disperse red 82 caused ambiguous increases in lymph node weight and cell number in the sensitisation protocol which were not reproduced in the sensitisation-challenge protocol, ruling out a relevant sensitising potential for this dye in NMRI mice. Disperse yellow 211 and disperse orange 30 did not induce relevant changes under our experimental conditions. Phenotyping of lymphocytes did not influence the assessment of these dyes.

  13. Ephrin-B2 governs morphogenesis of endolymphatic sac and duct epithelia in the mouse inner ear

    PubMed Central

    Raft, Steven; Andrade, Leonardo R.; Shao, Dongmei; Akiyama, Haruhiko; Henkemeyer, Mark; Wu, Doris K.

    2014-01-01

    Control over ionic composition and volume of the inner ear luminal fluid endolymph is essential for normal hearing and balance. Mice deficient in either the EphB2 receptor tyrosine kinase or the cognate transmembrane ligand ephrin-B2 (Efnb2) exhibit background strain-specific vestibular behavioral dysfunction and signs of abnormal endolymph homeostasis. Using various loss-of-function mouse models, we found that Efnb2 is required for growth and morphogenesis of the embryonic endolymphatic epithelium, a precursor of the endolymphatic sac (ES) and duct (ED), which mediate endolymph homeostasis. Conditional inactivation of Efnb2 in early-stage embryonic ear tissues disrupted cell proliferation, cell survival, and epithelial folding at the origin of the endolymphatic epithelium. This correlated with apparent absence of an ED, mis-localization of ES ion transport cells relative to inner ear sensory organs, dysplasia of the endolymph fluid space, and abnormally formed otoconia (extracellular calcite protein composites) at later stages of embryonic development. A comparison of Efnb2 and Notch signaling deficient mutant phenotypes indicated that these two signaling systems have distinct and non overlapping roles in ES/ED development. Homozygous deletion of the Efnb2 C terminus caused abnormalities similar to those found in the conditional Efnb2 null homozygote. Analyses of fetal Efnb2 C-terminus deletion heterozygotes found mis-localized ES ion transport cells only in the genetic background exhibiting vestibular dysfunction. We propose that developmental dysplasias described here are a gene dose sensitive cause of the vestibular dysfunction observed in EphB-Efnb2 signaling-deficient mice. PMID:24583262

  14. Contralateral suppression of transient-evoked otoacoustic emissions in children with sickle cell disease.

    PubMed

    Stuart, Andrew; Preast, June L

    2012-01-01

    In previous studies, otoacoustic emissions (OAEs) have been found to be larger in normal-hearing children with sickle cell disease (SCD). It was hypothesized that some dysfunction or reduction in the medial olivocochlear efferent suppression of outer hair cell activity was responsible for this phenomenon. To test this hypothesis, contralateral suppression of transient-evoked otoacoustic emissions (TEOAEs) was examined in children with and without SCD. Thirteen African American school-aged normal-hearing children with homozygous SCD and 13 age- and gender-matched control children participated. TEOAEs were obtained bilaterally with 80 dB peSPL nonlinear click stimuli. To examine contralateral suppression, TEOAEs were obtained with 60 dB peSPL linear click stimuli with and without a contralateral 65 dB SPL white noise suppressor. Overall and half-octave band TEOAE levels were found to be larger in children with SCD relative to the normal control children (p < 0.05), consistent with previous reports of increased OAE levels. There was no significant difference (p > 0.05) in the absolute or proportional amount of TEOAE suppression as a function of group and ear. There were also no significant correlations or linear predictive relationships between TEOAE suppression and TEOAE level for either ear or group (p > 0.05). These findings do not support the notion that increased OAE levels in children with SCD are a consequence of abnormal medial olivocochlear system function as assessed with contralateral suppression of TEOAEs.

  15. Hands-on resonance-enhanced photoacoustic detection

    NASA Astrophysics Data System (ADS)

    Euler, Manfred

    2001-10-01

    The design of an improved photoacoustic converter cell using kitchen equipment is described. It operates by changing manually the Helmholtz resonance frequency of bottles by adjusting the distance between the bottleneck and the outer ear. The experiment helps to gain insights in ear performance, in photoacoustic detection methods, in resonance phenomena and their role for detecting small periodic signals in the presence of noise.

  16. Influence of Hearing Risk Information on the Motivation and Modification of Personal Listening Device Use.

    PubMed

    Serpanos, Yula C; Berg, Abbey L; Renne, Brittany

    2016-12-01

    The purpose of this study was (a) to investigate the behaviors, knowledge, and motivators associated with personal listening device (PLD) use and (b) to determine the influence of different types of hearing health risk education information (text with or without visual images) on motivation to modify PLD listening use behaviors in young adults. College-age students (N = 523) completed a paper-and-pencil survey tapping their behaviors, knowledge, and motivation regarding listening to music or media at high volume using PLDs. Participants rated their motivation to listen to PLDs at lower volume levels following each of three information sets: text only, behind-the-ear hearing aid image with text, and inner ear hair cell damage image with text. Acoustically pleasing and emotional motives were the most frequently cited (38%-45%) reasons for listening to music or media using a PLD at high volume levels. The behind-the-ear hearing aid image with text information was significantly (p < .0001) more motivating to participants than text alone or the inner ear hair cell damage image with text. Evocative imagery using hearing aids may be an effective approach in hearing protective health campaigns for motivating safer listening practices with PLDs in young adults.

  17. Carcinoma of the middle ear and external auditory canal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, S.S.; Kim, J.A.; Goodchild, N.

    1983-07-01

    Thirty-one patients with malignant tumors of the middle ear and external auditory canal (EAC) were observed at the University of Virginia Hospital from 1956 through 1980. Of 27 patients with carcinoma, 21 had squamous cell carcinoma, 4 had basal cell carcinoma and 2 had adenoid cystic carcinoma. The 27 patients with carcinoma are reviewed with regard to clinical presentation, treatment modality, results and complications. The majority (67%) of patients had a history of chronic ear drainage, 22% had a previous mastoidectomy or polypectomy and 7% had an associated cholesteatoma. Eighty percent of patients with carcinoma limited to EAC were alivemore » and well at 5 years, compared to 43% of patients with involvement of the middle ear. Fifty-six percent of patients without invasion of the petrous bone were alive at 5 years compared to only 20% of patients with petrous bone involvement. The data strongly suggest that survival depends on the extent of disease. The corrected disease free 5 year survival rates were 14% for patients who had surgery alone and 50% for those who had surgery and radiotherapy. Of the three patients with advanced disease who received radiotherapy alone, none survived five years.« less

  18. Shaping magnetic fields to direct therapy to ears and eyes.

    PubMed

    Shapiro, B; Kulkarni, S; Nacev, A; Sarwar, A; Preciado, D; Depireux, D A

    2014-07-11

    Magnetic fields have the potential to noninvasively direct and focus therapy to disease targets. External magnets can apply forces on drug-coated magnetic nanoparticles, or on living cells that contain particles, and can be used to manipulate them in vivo. Significant progress has been made in developing and testing safe and therapeutic magnetic constructs that can be manipulated by magnetic fields. However, we do not yet have the magnet systems that can then direct those constructs to the right places, in vivo, over human patient distances. We do not yet know where to put the external magnets, how to shape them, or when to turn them on and off to direct particles or magnetized cells-in blood, through tissue, and across barriers-to disease locations. In this article, we consider ear and eye disease targets. Ear and eye targets are too deep and complex to be targeted by a single external magnet, but they are shallow enough that a combination of magnets may be able to direct therapy to them. We focus on how magnetic fields should be shaped (in space and time) to direct magnetic constructs to ear and eye targets.

  19. Topical atorvastatin ameliorates 12-O-tetradecanoylphorbol-13-acetate induced skin inflammation by reducing cutaneous cytokine levels and NF-κB activation.

    PubMed

    Kulkarni, Nagaraj M; Muley, Milind M; Jaji, Mallikarjun S; Vijaykanth, G; Raghul, J; Reddy, Neetin Kumar D; Vishwakarma, Santosh L; Rajesh, Navin B; Mookkan, Jeyamurugan; Krishnan, Uma Maheswari; Narayanan, Shridhar

    2015-06-01

    Atorvastatin is a 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor used in the treatment of atherosclerosis and dyslipidemia. Studies have evaluated the utility of statins in the treatment of skin inflammation but with varied results. In the present study, we investigated the effect of atorvastatin on TNF-α release and keratinocyte proliferation in vitro and in acute and chronic 12-O-tetradecanoylphorbol-13-acetate (TPA) induced skin inflammation in vivo. Atorvastatin significantly inhibited lipopolysacharide induced TNF-α release in THP-1 cells and keratinocyte proliferation in HaCaT cells. In an acute study, topical atorvastatin showed dose dependent reduction in TPA induced skin inflammation with highest efficacy observed at 500 µg/ear dose. In chronic study, topical atorvastatin significantly reduced TPA induced ear thickness, ear weight, cutaneous cytokines, MPO activity and improved histopathological features comparable to that of dexamethasone. Atorvastatin also inhibited TPA stimulated NF-κB activation in mouse ear. In conclusion, our results suggest that atorvastatin ameliorates TPA induced skin inflammation in mice at least in part, due to inhibition of cytokine release and NF-κB activation and may be beneficial for the treatment skin inflammation like psoriasis.

  20. Usher proteins in inner ear structure and function.

    PubMed

    Ahmed, Zubair M; Frolenkov, Gregory I; Riazuddin, Saima

    2013-11-01

    Usher syndrome (USH) is a neurosensory disorder affecting both hearing and vision in humans. Linkage studies of families of USH patients, studies in animals, and characterization of purified proteins have provided insight into the molecular mechanisms of hearing. To date, 11 USH proteins have been identified, and evidence suggests that all of them are crucial for the function of the mechanosensory cells of the inner ear, the hair cells. Most USH proteins are localized to the stereocilia of the hair cells, where mechano-electrical transduction (MET) of sound-induced vibrations occurs. Therefore, elucidation of the functions of USH proteins in the stereocilia is a prerequisite to understanding the exact mechanisms of MET.

  1. A Study to Determine the Evolution of Advances in Medical Technology Expected in the Next 25 Years and Possible Impacts on Coast Guard Operations and Support Programs. Appendix A. Medicine: The 20-Year Outlook.

    DTIC Science & Technology

    1980-05-01

    increased risk of breast cancer . Diuretics usually are preferred because of fewer side effects and better patient compliance. Availability of sustained...exposing cancer cells to glutaraldehyde. Diagnosis Availa’e tests to detect earl7 cancer range from self-administered ( breast self-examination...gastrointestinal tuors, lung and breast cancer , and kidney 5"OncoloqT: 3lood Test for Ear17 Ca," Medical Wiorld News, Vol. 17, No. 4 (February 23, 1976), pp. 6

  2. The influence of the mechanical behaviour of the middle ear ligaments: a finite element analysis.

    PubMed

    Gentil, F; Parente, M; Martins, P; Garbe, C; Jorge, R N; Ferreira, A; Tavares, João Manuel R S

    2011-01-01

    The interest in computer modelling of biomechanical systems, mainly by using the finite element method (FEM), has been increasing, in particular for analysis of the mechanical behaviour of the human ear. In this work, a finite element model of the middle ear was developed to study the dynamic structural response to harmonic vibrations for distinct sound pressure levels applied on the eardrum. The model includes different ligaments and muscle tendons with elastic and hyperelastic behaviour for these supportive structures. Additionally, the nonlinear behaviour of the ligaments and muscle tendons was investigated, as they are the connection between ossicles by contact formulation. Harmonic responses of the umbo and stapes footplate displacements, between 100 Hz and 10 kHz, were obtained and compared with previously published work. The stress state of ligaments (superior, lateral, and anterior of malleus and superior and posterior of incus) was analysed, with the focus on balance of the supportive structures of the middle ear, as ligaments make the link between the ossicular chain and the walls of the tympanic cavity. The results obtained in this work highlight the importance of using hyperelastic models to simulate the mechanical behaviour for the ligaments and tendons.

  3. Words matter: Implementing the electronically activated recorder in schizotypy.

    PubMed

    Minor, Kyle S; Davis, Beshaun J; Marggraf, Matthew P; Luther, Lauren; Robbins, Megan L

    2018-03-01

    In schizophrenia-spectrum populations, analyzing the words people use has offered promise for unlocking information about affective states and social behaviors. The electronically activated recorder (EAR) is an application-based program that is combined with widely used smartphone technology to capture a person's real-world interactions via audio recordings. It improves on the ecological validity of current methodologies by providing objective and naturalistic samples of behavior. This study is the first to implement the EAR in people endorsing elevated traits of schizophrenia-spectrum personality disorders (i.e., schizotypy), and we expected the EAR to (a) differentiate high and low schizotypy groups on affective disturbances and social engagement and (b) show that high schizotypy status moderates links between affect and social behavior using a multimethod approach. Lexical analysis of EAR recordings revealed greater negative affect and decreased social engagement in those high in schizotypy. When assessing specific traits, EAR and ecological momentary assessment (EMA) converged to show that positive schizotypy predicted negative affect. Finally, high schizotypy status moderated links between negative affect and social engagement when the EAR was combined with EMA. Adherence did not influence results, as both groups wore the EAR more than 90% of their waking hours. Findings supported using the EAR to assess real-world expressions of personality and functioning in schizotypy. Evidence also showed that the EAR can be used alongside EMA to provide a mixed-method, real-world assessment that is high in ecological validity and offers a window into the daily lives of those with elevated traits of schizophrenia-spectrum personality disorders. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. Acoustic stimulation promotes DNA fragmentation in the Guinea pig cochlea.

    PubMed

    Kamio, Tomonobu; Watanabe, Ken-Ichi; Okubo, Kimihiro

    2012-01-01

    Apoptosis can be described as programmed cell death. Apoptosis regulates cell turnover and is involved in various pathological conditions. The characteristic features of apoptosis are shrinkage of the cell body, chromatin condensation, and nucleic acid fragmentation. During apoptosis, double-stranded DNA is broken down into single-stranded DNA (ssDNA) by proteases. Acoustic trauma is commonly encountered in otorhinolaryngology clinics. Intense noise can cause inner ear damage, such as hearing disturbance, tinnitus, ear fullness, and decreased speech discrimination. In this study, we used immunohistochemical and electrophysiological methods to examine the fragmentation of DNA in the cochleas of guinea pigs that had been exposed to intense noise. Twenty-four guinea pigs weighing 250 to 350 g were used. The animals were divided into 4 groups: (I) a control group (n=6), (II) a group that was exposed to noise for 2 hours (n=6), (III) a group that was exposed to noise for 5 hours (n=6), and (IV) a group that was exposed to noise for 20 hours. The stimulus was a pure tone delivered at a frequency of 2 kHz. The sound pressure level was 120 dBSPL. No threshold shifts were apparent in group I. Group II showed a significant elevation of the hearing threshold (ANOVA, p<0.05(*)). The ABR threshold level was also significantly elevated immediately after the acoustic stimulation in groups III and IV (ANOVA, p<0.01(**)). In groups I, II, and IV, the lateral wall of the ear did not show immunoreactivity to ssDNA but did in group III. No immunoreactivity was apparent in the organ of Corti in group I or II. However, the supporting cells and outer hair cells in groups III and IV showed reactions for ssDNA. The fine structure of the organ of Corti had been destroyed in group IV. The lateral wall showed immunoreactivity for ssDNA only in group III, whereas the organ of Corti showed reactions for ssDNA in groups III and IV. Our study suggests that apoptotic changes occur in patients that suffer acoustic trauma. Once the apoptotic pathway has started, it is irreversible. Thus, early diagnosis and treatment are necessary. Earplugs should also be worn at rock concerts.

  5. A historical to present-day account of efforts to answer the question: "what puts the brakes on mammalian hair cell regeneration?".

    PubMed

    Burns, Joseph C; Corwin, Jeffrey T

    2013-03-01

    Hearing and balance deficits often affect humans and other mammals permanently, because their ears stop producing hair cells within a few days after birth. But production occurs throughout life in the ears of sharks, bony fish, amphibians, reptiles, and birds allowing them to replace lost hair cells and quickly recover after temporarily experiencing the kinds of sensory deficits that are irreversible for mammals. Since the mid 1970s, researchers have been asking what puts the brakes on hair cell regeneration in mammals. Here we evaluate the headway that has been made and assess current evidence for alternative mechanistic hypotheses that have been proposed to account for the limits to hair cell regeneration in mammals. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. MEKK4 Signaling Regulates Sensory Cell Development and Function in the Mouse Inner Ear

    PubMed Central

    Haque, Khujista; Pandey, Atul K.; Zheng, Hong-Wei; Riazuddin, Saima; Sha, Su-Hua

    2016-01-01

    Mechanosensory hair cells (HCs) residing in the inner ear are critical for hearing and balance. Precise coordination of proliferation, sensory specification, and differentiation during development is essential to ensure the correct patterning of HCs in the cochlear and vestibular epithelium. Recent studies have revealed that FGF20 signaling is vital for proper HC differentiation. However, the mechanisms by which FGF20 signaling promotes HC differentiation remain unknown. Here, we show that mitogen-activated protein 3 kinase 4 (MEKK4) expression is highly regulated during inner ear development and is critical to normal cytoarchitecture and function. Mice homozygous for a kinase-inactive MEKK4 mutation exhibit significant hearing loss. Lack of MEKK4 activity in vivo also leads to a significant reduction in the number of cochlear and vestibular HCs, suggesting that MEKK4 activity is essential for overall development of HCs within the inner ear. Furthermore, we show that loss of FGF20 signaling in vivo inhibits MEKK4 activity, whereas gain of Fgf20 function stimulates MEKK4 expression, suggesting that Fgf20 modulates MEKK4 activity to regulate cellular differentiation. Finally, we demonstrate, for the first time, that MEKK4 acts as a critical node to integrate FGF20-FGFR1 signaling responses to specifically influence HC development and that FGFR1 signaling through activation of MEKK4 is necessary for outer hair cell differentiation. Collectively, this study provides compelling evidence of an essential role for MEKK4 in inner ear morphogenesis and identifies the requirement of MEKK4 expression in regulating the specific response of FGFR1 during HC development and FGF20/FGFR1 signaling activated MEKK4 for normal sensory cell differentiation. SIGNIFICANCE STATEMENT Sensory hair cells (HCs) are the mechanoreceptors within the inner ear responsible for our sense of hearing. HCs are formed before birth, and mammals lack the ability to restore the sensory deficits associated with their loss. In this study, we show, for the first time, that MEKK4 signaling is essential for the development of normal cytoarchitecture and hearing function as MEKK4 signaling-deficient mice exhibit a significant reduction of HCs and a hearing loss. We also identify MEKK4 as a critical hub kinase for FGF20-FGFR1 signaling to induce HC differentiation in the mammalian cochlea. These results reveal a new paradigm in the regulation of HC differentiation and provide significant new insights into the mechanism of Fgf signaling governing HC formation. PMID:26818521

  7. The Auditory System of the Dipteran Parasitoid Emblemasoma auditrix (Sarcophagidae).

    PubMed

    Tron, Nanina; Stölting, Heiko; Kampschulte, Marian; Martels, Gunhild; Stumpner, Andreas; Lakes-Harlan, Reinhard

    2016-01-01

    Several taxa of insects evolved a tympanate ear at different body positions, whereby the ear is composed of common parts: a scolopidial sense organ, a tracheal air space, and a tympanal membrane. Here, we analyzed the anatomy and physiology of the ear at the ventral prothorax of the sarcophagid fly, Emblemasoma auditrix (Soper). We used micro-computed tomography to analyze the ear and its tracheal air space in relation to the body morphology. Both tympana are separated by a small cuticular bridge, face in the same frontal direction, and are backed by a single tracheal enlargement. This enlargement is connected to the anterior spiracles at the dorsofrontal thorax and is continuous with the tracheal network in the thorax and in the abdomen. Analyses of responses of auditory afferents and interneurons show that the ear is broadly tuned, with a sensitivity peak at 5 kHz. Single-cell recordings of auditory interneurons indicate a frequency- and intensity-dependent tuning, whereby some neurons react best to 9 kHz, the peak frequency of the host's calling song. The results are compared to the convergently evolved ear in Tachinidae (Diptera). © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  8. The Auditory System of the Dipteran Parasitoid Emblemasoma auditrix (Sarcophagidae)

    PubMed Central

    Tron, Nanina; Stölting, Heiko; Kampschulte, Marian; Martels, Gunhild; Stumpner, Andreas; Lakes-Harlan, Reinhard

    2016-01-01

    Several taxa of insects evolved a tympanate ear at different body positions, whereby the ear is composed of common parts: a scolopidial sense organ, a tracheal air space, and a tympanal membrane. Here, we analyzed the anatomy and physiology of the ear at the ventral prothorax of the sarcophagid fly, Emblemasoma auditrix (Soper). We used micro-computed tomography to analyze the ear and its tracheal air space in relation to the body morphology. Both tympana are separated by a small cuticular bridge, face in the same frontal direction, and are backed by a single tracheal enlargement. This enlargement is connected to the anterior spiracles at the dorsofrontal thorax and is continuous with the tracheal network in the thorax and in the abdomen. Analyses of responses of auditory afferents and interneurons show that the ear is broadly tuned, with a sensitivity peak at 5 kHz. Single-cell recordings of auditory interneurons indicate a frequency- and intensity-dependent tuning, whereby some neurons react best to 9 kHz, the peak frequency of the host’s calling song. The results are compared to the convergently evolved ear in Tachinidae (Diptera). PMID:27538415

  9. Current concepts in the pathogenesis and treatment of chronic suppurative otitis media

    PubMed Central

    Mittal, Rahul; Lisi, Christopher V.; Gerring, Robert; Mittal, Jeenu; Mathee, Kalai; Narasimhan, Giri; Azad, Rajeev K.; Yao, Qi; Grati, M'hamed; Yan, Denise; Eshraghi, Adrien A.; Angeli, Simon I.; Telischi, Fred F.

    2015-01-01

    Otitis media (OM) is an inflammation of the middle ear associated with infection. Despite appropriate therapy, acute OM (AOM) can progress to chronic suppurative OM (CSOM) associated with ear drum perforation and purulent discharge. The effusion prevents the middle ear ossicles from properly relaying sound vibrations from the ear drum to the oval window of the inner ear, causing conductive hearing loss. In addition, the inflammatory mediators generated during CSOM can penetrate into the inner ear through the round window. This can cause the loss of hair cells in the cochlea, leading to sensorineural hearing loss. Pseudomonas aeruginosa and Staphylococcus aureus are the most predominant pathogens that cause CSOM. Although the pathogenesis of AOM is well studied, very limited research is available in relation to CSOM. With the emergence of antibiotic resistance as well as the ototoxicity of antibiotics and the potential risks of surgery, there is an urgent need to develop effective therapeutic strategies against CSOM. This warrants understanding the role of host immunity in CSOM and how the bacteria evade these potent immune responses. Understanding the molecular mechanisms leading to CSOM will help in designing novel treatment modalities against the disease and hence preventing the hearing loss. PMID:26248613

  10. EARS2 mutations cause fatal neonatal lactic acidosis, recurrent hypoglycemia and agenesis of corpus callosum.

    PubMed

    Danhauser, Katharina; Haack, Tobias B; Alhaddad, Bader; Melcher, Marlen; Seibt, Annette; Strom, Tim M; Meitinger, Thomas; Klee, Dirk; Mayatepek, Ertan; Prokisch, Holger; Distelmaier, Felix

    2016-06-01

    Mitochondrial aminoacyl tRNA synthetases are essential for organelle protein synthesis. Genetic defects affecting the function of these enzymes may cause pediatric mitochondrial disease. Here, we report on a child with fatal neonatal lactic acidosis and recurrent hypoglycemia caused by mutations in EARS2, encoding mitochondrial glutamyl-tRNA synthetase 2. Brain ultrasound revealed agenesis of corpus callosum. Studies on patient-derived skin fibroblasts showed severely decreased EARS2 protein levels, elevated reactive oxygen species (ROS) production, and altered mitochondrial morphology. Our report further illustrates the clinical spectrum of the severe neonatal-onset form of EARS2 mutations. Moreover, in this case the live-cell parameters appeared to be more sensitive to mitochondrial dysfunction compared to standard diagnostics, which indicates the potential relevance of fibroblast studies in children with mitochondrial diseases.

  11. Study on the change law of hyperspectral data and pigments for rice in mature process

    NASA Astrophysics Data System (ADS)

    Huang, Jingfeng; Tang, Yanlin; Wang, Renchao

    2004-01-01

    The hyperspectral reflectances of the canopy, the sword leaf, the third unfolding leaf from the top and ear of the main stem of two varieties of rice are measured by a ASD FieldSpec Pro FR in field and indoor under 3 nitrogen support levels in mature process. The concentrations of chlorophyll and carotenoid of leaves and ears corresponding to the spectra were determined by biochemical method. The spectral differences are significant for the canopy and leaves of rice under differet nitrogen support level, and the concentrations of chlorophyll and carotenoid of leaves increase with the increasing of nitrogen applying. There exist significant differences for the pigment concentrations of the leaves of rice under different nitrogen levels. The spectral reflectances of the canopy are gradually getting bigger in the visible region and smaller in the near infrared region as the growth stage goes on. 'Blue shift' phenomena for the spectra red edge position of the canopy, leaves and ears were proved. The concentrations of chlorophyll and carotenoid of leaves and ears are very significantly correlative to the spectral vegetation indices VI1(= R990/R553), VI2(=R1200/R553), VI3(=R750/R553), VI4(=R670/R440), VI5(= R553/R670), PRVI(=R800/R553), PSSRa, PSNDa and λred (the red edge position). The results show that these VIs can be used to estimate the concentrations of chlorophyll and carotenoid of leaves and ears of rice.

  12. Strategies of immunization against mucosal infections.

    PubMed

    Russell, M W; Martin, M H; Wu, H Y; Hollingshead, S K; Moldoveanu, Z; Mestecky, J

    2000-12-08

    The presence of secretory (S-) IgA in middle-ear fluid and localization of IgA-secreting cells in its mucosae suggest that the middle ear is an effector site of the mucosal immune system. Several strategies have been devised to induce potent, long-lasting, and recallable mucosal S-IgA antibodies, as well as circulating IgG antibodies and Th1- or Th2-type help, according to the most appropriate responses for a particular infection. Application of immunogens to inductive sites in the upper respiratory tract may be most effective for generating responses in the middle ear and nasopharynx for protection against the organisms responsible for otitis media.

  13. Ultrastructural study of cytochemical localization of carbonic anhydrase in the inner ear.

    PubMed

    Hsu, C J

    1991-01-01

    Vibratome sections were stained for cytochemical localization of carbonic anhydrase (CA) activity in vestibular neuro-epithelium, spiral ligament and spiral limbus. The new finding is the localization of reaction products in the interdental cells of the spiral limbus, Claudius' cells, mesothelial cells of the lower border of spiral ligament, vestibular sensory cells and perilymphatic cells, which have not earlier been proved to have CA activity. The interdental cells showed the products only on the basolateral infoldings. Claudius' cells showed prominent products in the microvilli. In the vestibular sensory cells, the products were present only in the stereocilia and cuticular areas. The perilymphatic fibrocytes under the vestibular sensory epithelium, like the fibrocytes of the spiral ligament, revealed diffuse products throughout the whole cell. In the vestibular supporting cells and transitional cells, the reaction products were localized diffusely in the cytosol, but not in the secretory granules. In the long cell projections of the transitional cells, type II fibrocytes at spiral prominence, mesothelial cells at the uppermost region of the spiral ligament and Borghesan's zone, the localization of the reaction products was the same as that of the basolateral infoldings of the vestibular dark cells and marginal cells of stria vascularis shown previously.

  14. Inner ear progenitor cells can be generated in vitro from human bone marrow mesenchymal stem cells.

    PubMed

    Boddy, Sarah L; Chen, Wei; Romero-Guevara, Ricardo; Kottam, Lucksy; Bellantuono, Illaria; Rivolta, Marcelo N

    2012-11-01

    Mouse mesenchymal stem cells (MSCs) can generate sensory neurons and produce inner ear hair cell-like cells. An equivalent source from humans is highly desirable, given their potential application in patient-specific regenerative therapies for deafness. In this study, we explored the ability of human MSCs (hMSCs) to differentiate into otic lineages. hMSCs were exposed to culture media conditioned by human fetal auditory stem cells. Conditioned media induced the expression of otic progenitor markers PAX8, PAX2, GATA3 and SOX2. After 4 weeks, cells coexpressed ATOH1, MYO7A and POU4F3 (indicators of hair cell lineage) or neuronal markers NEUROG1, POU4F1 and NEFH. Inhibition of WNT signaling prevented differentiation into otic progenitors, while WNT activation partially phenocopied results seen with the conditioned media. This study demonstrates that hMSCs can be driven to express key genes found in the otic lineages and thereby promotes their status as candidates for regenerative therapies for deafness.

  15. World Health Organization and Its Initiative for Ear and Hearing Care.

    PubMed

    Chadha, Shelly; Cieza, Alarcos

    2018-06-01

    The World Health Organization (WHO) addresses ear diseases and hearing loss through its program on prevention of deafness and hearing loss. Recently, the World Health Assembly called for action at global and national levels to tackle the rising prevalence and adverse impact of unaddressed hearing loss. Following a public health approach toward this issue, WHO is focusing on i) raising awareness among policymakers and civil society; and ii) providing technical support to countries for promoting hearing care. Meeting this challenge requires a coordinated global effort with all stakeholders working together to make ear and hearing care accessible to all. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. The Hyperactivity of Efferent Auditory System in Patients with Schizophrenia: A Transient Evoked Otoacoustic Emissions Study

    PubMed Central

    Wahab, Suzaily; Abdul Rahman, Abdul Hamid; Sidek, Dinsuhaimi; Zakaria, Mohd. Normani

    2016-01-01

    Objective Electrophysiological studies, which are mostly focused on afferent pathway, have proven that auditory processing deficits exist in patients with schizophrenia. Nevertheless, reports on the suppressive effect of efferent auditory pathway on cochlear outer hair cells among schizophrenia patients are limited. The present, case-control, study examined the contralateral suppression of transient evoked otoacoustic emissions (TEOAEs) in patients with schizophrenia. Methods Participants were twenty-three healthy controls and sixteen schizophrenia patients with normal hearing, middle ear and cochlear outer hair cells function. Absolute non-linear and linear TEOAEs were measured in both ears by delivering clicks stimuli at 80 dB SPL and 60 dB SPL respectively. Subsequently, contralateral suppression was determined by subtracting the absolute TEOAEs response obtained at 60 dBpe SPL during the absence and presence of contralateral white noise delivered at 65 dB HL. No attention tasks were conducted during measurements. Results We found no significant difference in absolute TEOAEs responses at 80 dB SPL, in either diagnosis or ear groups (p>0.05). However, the overall contralateral suppression was significantly larger in schizophrenia patients (p<0.05). Specifically, patients with schizophrenia demonstrated significantly increased right ear contralateral suppression compared to healthy control (p<0.05). Conclusion The present findings suggest increased inhibitory effect of efferent auditory pathway especially on the right cochlear outer hair cells. Further studies to investigate increased suppressive effects are crucial to expand the current understanding of auditory hallucination mechanisms in schizophrenia patients. PMID:26766950

  17. Innate immune recognition of molds and homology to the inner ear protein, cochlin, in patients with autoimmune inner ear disease

    PubMed Central

    Pathak, Shresh; Hatam, Lynda J.; Bonagura, Vincent; Vambutas, Andrea

    2013-01-01

    Autoimmune Inner Ear Disease (AIED) is characterized by bilateral, fluctuating sensorineural hearing loss with periods of hearing decline triggered by unknown stimuli. Here we examined whether an environmental exposure to mold in these AIED patients is sufficient to generate a pro-inflammatory response that may, in part, explain periods of acute exacerbation of disease. We hypothesized that molds may stimulate an aberrant immune response in these patients as both several Aspergillus species and penecillium share homology with the LCCL domain of the inner ear protein, cochlin. We showed the presence of higher levels of anti-mold IgG in plasma of AIED patients at dilution of 1:256 (p=0.032) and anti-cochlin IgG 1:256 (p=0.0094 and at 1:512 p=0.024) as compared with controls. Exposure of peripheral blood mononuclear cells (PBMC) of AIED patients to mold resulted in an up-regulation of IL-1β mRNA expression, enhanced IL-1β and IL-6 secretion, and generation of IL-17 expressing cells in mold-sensitive AIED patients, suggesting mold acts as a PAMP in a subset of these patients. Naïve B cells secreted IgM when stimulated with conditioned supernatant from AIED patients’ monocytes treated with mold extract. In conclusion, the present studies indicate that fungal exposure can trigger autoimmunity in a subset of susceptible AIED patients. PMID:23912888

  18. Norisoboldine, an alkaloid from Radix linderae, inhibits NFAT activation and attenuates 2,4-dinitrofluorobenzene-induced dermatitis in mice.

    PubMed

    Gao, Shuang; Li, Wencai; Lin, Guochao; Liu, Guangrong; Deng, Wenjuan; Zhai, Chuntao; Bian, Chunliang; He, Gaiying; Hu, Zhenlin

    2016-10-01

    The nuclear factor of activated T-cells (NFAT) is a family of transcription factors, essential for T-cell activation. Norisoboldine (NOR), an isoquinoline alkaloid from Radix linderae, has been demonstrated to possess anti-inflammatory activity. This study examines NOR's effect on NFAT activation and its therapeutic potential for atopic dermatitis (AD). The transcriptional activity of NFAT was examined with luciferase reporter assay, using K562-luc cells, stimulated with 20 ng/mL PMA plus 1 μM ionomycin. NFAT dephosphorylation was examined by immuno-blotting in K562-luc cells and Jurkat cells. Interleukin-2 (IL-2) expression in Jurkat cells was examined by real-time PCR. A mouse model of dermatitis, induced by 2,4-dinitrochlorobenzene (DNCB), was used to test NOR's therapeutic potential for AD. NOR, dose-dependently, inhibited PMA and ionomycin-induced NFAT reporter gene expression in K562-luc cells in the range of 2-50 μM. NOR also inhibited PMA and ionomycin-induced NFAT dephosphorylation in K562-luc cells and Jurkat cells. Consequently, NOR suppressed PMA plus ionomycin-induced IL-2 expression in Jurkat cells. The administration of NOR (10 mg/kg, i.p.), alleviated DNCB-induced dermatitis in mice, by the reduction of ear swelling and attenuation of inflammatory infiltration into ear tissue. Moreover, mRNA levels of INF-γ, TNF-α, IL-4 and IL-6 in ears of NOR-treated mice were reduced by 78.4, 77.8, 72.3 and 73.9%, respectively, compared with untreated controls. This study demonstrates that NOR inhibits NFAT activation in T-cells and alleviates AD-like inflammatory reaction in a DNCB-induced dermatitis model, highlighting NOR as a potential therapeutic agent for AD.

  19. 15 CFR 744.11 - License requirements that apply to entities acting contrary to the national security or foreign...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., reexport, or transfer (in-country) any item subject to the EAR to an entity that is listed on the Entity... reexports to that party of items that are subject to the EAR are prohibited by or require a license from... United States. (1) Supporting persons engaged in acts of terror. (2) Actions that could enhance the...

  20. Continued Expression of GATA3 Is Necessary for Cochlear Neurosensory Development

    PubMed Central

    Duncan, Jeremy S.; Fritzsch, Bernd

    2013-01-01

    Hair cells of the developing mammalian inner ear are progressively defined through cell fate restriction. This process culminates in the expression of the bHLH transcription factor Atoh1, which is necessary for differentiation of hair cells, but not for their specification. Loss of several genes will disrupt ear morphogenesis or arrest of neurosensory epithelia development. We previously showed in null mutants that the loss of the transcription factor, Gata3, results specifically in the loss of all cochlear neurosensory development. Temporal expression of Gata3 is broad from the otic placode stage through the postnatal ear. It therefore remains unclear at which stage in development Gata3 exerts its effect. To better understand the stage specific effects of Gata3, we investigated the role of Gata3 in cochlear neurosensory specification and differentiation utilizing a LoxP targeted Gata3 line and two Cre lines. Foxg1Cre∶Gata3f/f mice show recombination of Gata3 around E8.5 but continue to develop a cochlear duct without differentiated hair cells and spiral ganglion neurons. qRT-PCR data show that Atoh1 was down-regulated but not absent in the duct whereas other hair cell specific genes such as Pou4f3 were completely absent. In addition, while Sox2 levels were lower in the Foxg1Cre:Gata3f/f cochlea, Eya1 levels remained normal. We conclude that Eya1 is unable to fully upregulate Atoh1 or Pou4f3, and drive differentiation of hair cells without Gata3. Pax2-Cre∶Gata3f/f mice show a delayed recombination of Gata3 in the ear relative to Foxg1Cre:Gata3f/f. These mice exhibited a cochlear duct containing patches of partially differentiated hair cells and developed only few and incorrectly projecting spiral ganglion neurons. Our conditional deletion studies reveal a major role of Gata3 in the signaling of prosensory genes and in the differentiation of cochlear neurosenory cells. We suggest that Gata3 may act in combination with Eya1, Six1, and Sox2 in cochlear prosensory gene signaling. PMID:23614009

  1. Minnesota wolf ear lengths as possible indicators of taxonomic differences

    USGS Publications Warehouse

    Mech, L. David

    2011-01-01

    Genetic findings suggest that 2 types of wolves, Canis lupus (Gray Wolf) and C. lycaon (Eastern Wolf), and/or their hybrids occupy Minnesota (MN), and this study examines adult wolf ear lengths as a possible distinguisher between these two. Photographic evidence suggested that the Eastern Wolf possesses proportionately longer ears than Gray Wolves. Ear lengths from 22 northwestern MN wolves from the early 1970s and 22 Alaskan wolves were used to represent Gray Wolves, and the greatest length of the sample (12.8 cm) was used as the least length to demarcate Eastern Wolf from Gray Wolf influence in the samples. Twenty-three percent of 112 adult wolves from Algonquin Park in eastern Ontario and 30% of 106 recent adult wolves in northeastern MN possessed ears >12.8 cm. The northeastern MN sample differed significantly from that of current and past northwestern MN wolves. Ear-lengths of wolves in the eastern half of the northeastern MN wolf population were significantly longer than those in the western half of that study area, even though the mean distance between the 2 areas was only 40 km, and the mean length of my 2004–2009 sample was significantly longer than that of 1999–2003. These findings support the hypothesis that Eastern Wolves tend to possess longer ears than do Gray Wolves and suggest a dynamic hybridization process is still underway in MN.

  2. Inner Ear Morphology in the Atlantic Molly Poecilia mexicana—First Detailed Microanatomical Study of the Inner Ear of a Cyprinodontiform Species

    PubMed Central

    Schulz-Mirbach, Tanja; Heß, Martin; Plath, Martin

    2011-01-01

    Background Fishes show an amazing diversity in hearing abilities, inner ear structures, and otolith morphology. Inner ear morphology, however, has not yet been investigated in detail in any member of the diverse order Cyprinodontiformes. We, therefore, studied the inner ear of the cyprinodontiform freshwater fish Poecilia mexicana by analyzing the position of otoliths in situ, investigating the 3D structure of sensory epithelia, and examining the orientation patterns of ciliary bundles of the sensory hair cells, while combining μ-CT analyses, scanning electron microscopy, and immunocytochemical methods. P. mexicana occurs in different ecotypes, enabling us to study the intra-specific variability (on a qualitative basis) of fish from regular surface streams, and the Cueva del Azufre, a sulfidic cave in southern Mexico. Results The inner ear of Poecilia mexicana displays a combination of several remarkable features. The utricle is connected rostrally instead of dorso-rostrally to the saccule, and the macula sacculi, therefore, is very close to the utricle. Moreover, the macula sacculi possesses dorsal and ventral bulges. The two studied ecotypes of P. mexicana showed variation mainly in the shape and curvature of the macula lagenae, in the curvature of the macula sacculi, and in the thickness of the otolithic membrane. Conclusions Our study for the first time provides detailed insights into the auditory periphery of a cyprinodontiform inner ear and thus serves a basis—especially with regard to the application of 3D techniques—for further research on structure-function relationships of inner ears within the species-rich order Cyprinodontiformes. We suggest that other poeciliid taxa, or even other non-poeciliid cyprinodontiforms, may display similar inner ear morphologies as described here. PMID:22110746

  3. Inner ear morphology in the Atlantic molly Poecilia mexicana--first detailed microanatomical study of the inner ear of a cyprinodontiform species.

    PubMed

    Schulz-Mirbach, Tanja; Hess, Martin; Plath, Martin

    2011-01-01

    Fishes show an amazing diversity in hearing abilities, inner ear structures, and otolith morphology. Inner ear morphology, however, has not yet been investigated in detail in any member of the diverse order Cyprinodontiformes. We, therefore, studied the inner ear of the cyprinodontiform freshwater fish Poecilia mexicana by analyzing the position of otoliths in situ, investigating the 3D structure of sensory epithelia, and examining the orientation patterns of ciliary bundles of the sensory hair cells, while combining μ-CT analyses, scanning electron microscopy, and immunocytochemical methods. P. mexicana occurs in different ecotypes, enabling us to study the intra-specific variability (on a qualitative basis) of fish from regular surface streams, and the Cueva del Azufre, a sulfidic cave in southern Mexico. The inner ear of Poecilia mexicana displays a combination of several remarkable features. The utricle is connected rostrally instead of dorso-rostrally to the saccule, and the macula sacculi, therefore, is very close to the utricle. Moreover, the macula sacculi possesses dorsal and ventral bulges. The two studied ecotypes of P. mexicana showed variation mainly in the shape and curvature of the macula lagenae, in the curvature of the macula sacculi, and in the thickness of the otolithic membrane. Our study for the first time provides detailed insights into the auditory periphery of a cyprinodontiform inner ear and thus serves a basis--especially with regard to the application of 3D techniques--for further research on structure-function relationships of inner ears within the species-rich order Cyprinodontiformes. We suggest that other poeciliid taxa, or even other non-poeciliid cyprinodontiforms, may display similar inner ear morphologies as described here.

  4. Ultrastructure observation of middle ear mucosa with laser irradiation

    NASA Astrophysics Data System (ADS)

    Kang, Mengkui; Yang, Shulan; Fang, Yaoyun; Sun, Jianhe

    1998-08-01

    In order to study the effects of He-Ne laser on the mucosa of middle ear mucosa from 9 patients with chronic otitis media, all of who had slight damp eardrum, were irradiated by low power He-Ne laser ten minutes per day for ten days. Specimen was taken before and after irradiation and observed under scanning electron microscope. It was found that the surface structure of the mucosa was more integral, the arrangement of the epithelial cell was closer together and microvilli arose among the noncilliated cells after irradiation. The inflammatory cell disappeared arid the morphologic structure appeared normal. These data provided the therapeutic evidence for the lower power He-Ne laser irradiation on patients with chronic purulent otitis midia.

  5. The neurotrophins act synergistically with LIF and members of the TGF-beta superfamily to promote the survival of spiral ganglia neurons in vitro.

    PubMed

    Marzella, P L; Gillespie, L N; Clark, G M; Bartlett, P F; Kilpatrick, T J

    1999-12-01

    A number of growth factor families have been implicated in normal inner ear development, auditory neuron survival and protection. Several growth factors, including transforming growth factor-beta5 (TGF-beta5) and TGF-beta3, neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF) and leukemia inhibitory factor (LIF) were tested for their ability, individually or in combination, to promote auditory neuron survival in dissociated cell cultures of early rat post-natal spiral ganglion cells (SGCs). The results indicate that at discrete concentrations all growth factors act in an additive fashion and some in synergy when promoting neuronal survival. These findings support the hypothesis that growth factors from different families may be interdependent when sustaining neuronal integrity.

  6. Mechanical and electrical tuning in a tonotopically organized insect ear

    NASA Astrophysics Data System (ADS)

    Hummel, Jennifer; Schöneich, Stefan; Hedwig, Berthold; Kössl, Manfred; Nowotny, Manuela

    2015-12-01

    The high-frequency hearing organ of bushcrickets - the crista acustica (CA) - is tonotopically organized. Details about the mechano-electrical transduction mechanisms within the sensory-cell complex, however, remain unknown. In the recent study, we investigated and compared the anatomical, mechanical and electrophysiological properties of the CA and reveal a strong correlation of the mechanical and neuronal frequency tuning, which is supported by an anatomical gradient along the CA. Only in the distal high-frequency region of the CA a discrepancy between a strong mechanical response to low frequencies <30 kHz and a neuronal response that was restricted to frequencies >30 kHz was found. Therefore, we suggest that there might be additional intrinsic tuning mechanisms in the sensory cells of the distal region to distinguish the frequency content of sound.

  7. Comparison between Scalp EEG and Behind-the-Ear EEG for Development of a Wearable Seizure Detection System for Patients with Focal Epilepsy

    PubMed Central

    Gu, Ying; Cleeren, Evy; Dan, Jonathan; Claes, Kasper; Hunyadi, Borbála

    2017-01-01

    A wearable electroencephalogram (EEG) device for continuous monitoring of patients suffering from epilepsy would provide valuable information for the management of the disease. Currently no EEG setup is small and unobtrusive enough to be used in daily life. Recording behind the ear could prove to be a solution to a wearable EEG setup. This article examines the feasibility of recording epileptic EEG from behind the ear. It is achieved by comparison with scalp EEG recordings. Traditional scalp EEG and behind-the-ear EEG were simultaneously acquired from 12 patients with temporal, parietal, or occipital lobe epilepsy. Behind-the-ear EEG consisted of cross-head channels and unilateral channels. The analysis on Electrooculography (EOG) artifacts resulting from eye blinking showed that EOG artifacts were absent on cross-head channels and had significantly small amplitudes on unilateral channels. Temporal waveform and frequency content during seizures from behind-the-ear EEG visually resembled that from scalp EEG. Further, coherence analysis confirmed that behind-the-ear EEG acquired meaningful epileptic discharges similarly to scalp EEG. Moreover, automatic seizure detection based on support vector machine (SVM) showed that comparable seizure detection performance can be achieved using these two recordings. With scalp EEG, detection had a median sensitivity of 100% and a false detection rate of 1.14 per hour, while, with behind-the-ear EEG, it had a median sensitivity of 94.5% and a false detection rate of 0.52 per hour. These findings demonstrate the feasibility of detecting seizures from EEG recordings behind the ear for patients with focal epilepsy. PMID:29295522

  8. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation.

    PubMed

    Yang, Zijiang; Concannon, John; Ng, Kelvin S; Seyb, Kathleen; Mortensen, Luke J; Ranganath, Sudhir; Gu, Fangqi; Levy, Oren; Tong, Zhixiang; Martyn, Keir; Zhao, Weian; Lin, Charles P; Glicksman, Marcie A; Karp, Jeffrey M

    2016-07-26

    Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy.

  9. Penicillin reduces eustachian tube gland tissue changes in acute otitis media.

    PubMed

    Andersen, Henrik; Thomsen, Jens; Cayé-Thomasen, Per

    2005-08-01

    The volume of the mucous paratubal glands and the number of the mucus-producing goblet cells in the middle ear and Eustachian tube (ET) are increased after experimental acute otitis media (AOM). The present investigation examines a potential effect of penicillin on the changes in goblet cell density and gland structures of the ET during and after AOM. Middle ear inoculation of Streptococcus pneumoniae in 50 rats. Two days later, 25 rats were given penicillin V as one daily dose for 5 days. Twenty-five rats received no treatment. Five animals from each group were sacrificed on days 4, 8, 16, 90, and 180. The ET was dissected and decalcified, followed by paraffin embedding, serial transverse sectioning, and PAS/alcian blue staining. The goblet cell density and the paratubal gland composition and volume were determined in every 20th section, using a light microscope. Penicillin reduced the increase of goblet cell density from day 8 and through 6 months, whereas the increase of the paratubal mucous gland volume was unaffected by treatment. We conclude that penicillin reduces the increase of ET goblet cell density during and after acute otitis media, whereas the paratubal gland volume remains unaffected. An increased mucosal secretory capacity and indicated excessive secretion of mucus may contribute to the deteriorated ET function found after AOM and thus predispose, sustain, or aggravate middle ear disease. This may be prevented by penicillin treatment.

  10. [A study of otitis externa associated with Malassezia].

    PubMed

    Shiota, Ryoko; Kaneko, Takamasa; Yano, Hiroaki; Takeshita, Kimiko; Nishioka, Keiko; Makimura, Koichi

    2009-01-01

    Malassezia-positive smears can be recognized from otitis externa, however, there are few references in the literature to the relation between Malassezia and otitis externa. Therefore, the bacterial and clinical characteristics of 72 cases (63 patients) with otitis externa were investigated at the Department of Otorhinolaryngology, Takinomiya General Hospital to analyze this. Thirty-seven cases were bacterial otitis externa, 20 cases were fungal otitis externa, and 15 cases were etiological agents unknown in this study. The causative organisms in fungal otitis externa were the genera Aspergillus (10 cases), Malassezia (5) and Candida (5), respectively. We suspected that 5 cases were caused by Malassezia because Malassezia cell counts were greater than 10 per field (x 400), and a large number of Malassezia were isolated from all cases. In these cases, many squamous epithelial cells were observed by direct examination, and cells from the middle or basal layer of the ear canal were also recognized in three cases. Therefore, accelerated turnover of epidermal cells of the ear canal was suggested. The main symptoms were itching and fullness in the ear, with observations of redness and erosion in objective deterioration, and we felt that these conditions were similar to seborrheic dermatitis (SD). In addition, these five cases were confirmed as fungus-related otitis externa by their improvement with antifungal agents.

  11. Modeling pre-metastatic lymphvascular niche in the mouse ear sponge assay

    NASA Astrophysics Data System (ADS)

    García-Caballero, Melissa; van de Velde, Maureen; Blacher, Silvia; Lambert, Vincent; Balsat, Cédric; Erpicum, Charlotte; Durré, Tania; Kridelka, Frédéric; Noel, Agnès

    2017-01-01

    Lymphangiogenesis, the formation of new lymphatic vessels, occurs in primary tumors and in draining lymph nodes leading to pre-metastatic niche formation. Reliable in vivo models are becoming instrumental for investigating alterations occurring in lymph nodes before tumor cell arrival. In this study, we demonstrate that B16F10 melanoma cell encapsulation in a biomaterial, and implantation in the mouse ear, prevents their rapid lymphatic spread observed when cells are directly injected in the ear. Vascular remodeling in lymph nodes was detected two weeks after sponge implantation, while their colonization by tumor cells occurred two weeks later. In this model, a huge lymphangiogenic response was induced in primary tumors and in pre-metastatic and metastatic lymph nodes. In control lymph nodes, lymphatic vessels were confined to the cortex. In contrast, an enlargement and expansion of lymphatic vessels towards paracortical and medullar areas occurred in pre-metastatic lymph nodes. We designed an original computerized-assisted quantification method to examine the lymphatic vessel structure and the spatial distribution. This new reliable and accurate model is suitable for in vivo studies of lymphangiogenesis, holds promise for unraveling the mechanisms underlying lymphatic metastases and pre-metastatic niche formation in lymph nodes, and will provide new tools for drug testing.

  12. Dynamic expression of Lgr6 in the developing and mature mouse cochlea

    PubMed Central

    Zhang, Yanping; Chen, Yan; Ni, Wenli; Guo, Luo; Lu, Xiaoling; Liu, Liman; Li, Wen; Sun, Shan; Wang, Lei; Li, Huawei

    2015-01-01

    The Wnt/β-catenin signaling pathway plays important roles in mammalian inner ear development. Lgr5, one of the downstream target genes of the Wnt/β-catenin signaling pathway, has been reported to be a marker for inner ear hair cell progenitors. Lgr6 shares approximately 50% sequence homology with Lgr5 and has been identified as a stem cell marker in several organs. However, the detailed expression profiles of Lgr6 have not yet been investigated in the mouse inner ear. Here, we first used Lgr6-EGFP-Ires-CreERT2 mice to examine the spatiotemporal expression of Lgr6 protein in the cochlear duct during embryonic and postnatal development. Lgr6-EGFP was first observed in one row of prosensory cells in the middle and basal turn at embryonic day 15.5 (E15.5). From E18.5 to postnatal day 3 (P3), the expression of Lgr6-EGFP was restricted to the inner pillar cells (IPCs). From P7 to P15, the Lgr6-EGFP expression level gradually decreased in the IPCs and gradually increased in the inner border cells (IBCs). At P20, Lgr6-EGFP was only expressed in the IBCs, and by P30 Lgr6-EGFP expression had completely disappeared. Next, we demonstrated that Wnt/β-catenin signaling is required to maintain the Lgr6-EGFP expression in vitro. Finally, we demonstrated that the Lgr6-EGFP-positive cells isolated by flow cytometry could differentiate into myosin 7a-positive hair cells after 10 days in-culture, and this suggests that the Lgr6-positive cells might serve as the hair cell progenitor cells in the cochlea. PMID:26029045

  13. Understanding the evolution and development of neurosensory transcription factors of the ear to enhance therapeutic translation

    PubMed Central

    Pan, Ning; Kopecky, Benjamin; Jahan, Israt; Fritzsch, Bernd

    2012-01-01

    Reconstructing a functional organ of Corti is the ultimate target towards curing hearing loss. Despite the impressive technical gains made over the last few years, many complications remain ahead for the two main restoration avenues: in vitro transformation of pluripotent cells into hair cell-like cells and adenovirus-mediated gene therapy. Most notably, both approaches require a more complete understanding of the molecular networks that ensure specific cell types form in the correct places to allow proper function of the restored organ of Corti. Important to this understanding are the basic helix-loop-helix (bHLH) transcription factors (TFs) that are highly diverse and serve to increase functional complexity but their evolutionary implementation in the inner ear neurosensory development is less conspicuous. To this end, we review the evolutionary and developmentally dynamic interactions of the three bHLH TFs that have been identified as the main players in neurosensory evolution and development, Neurog1, Neurod1 and Atoh1. These three TFs belong to the neurogenin/atonal family and evolved from a molecular precursor that likely regulated single sensory cell development in the ectoderm of metazoan ancestors but are now also expressed in other parts of the body, including the brain. They interact extensively via intracellular and intercellular cross-regulation to establish the two main neurosensory cell types of the ear, the hair cells and sensory neurons. Furthermore, the level and duration of their expression affect the specification of hair cell subtypes (inner hair cells vs. outer hair cells). We propose that appropriate manipulation of these TFs through their characterized binding sites may offer a solution by itself, or in conjunction with the two other approaches currently pursued by others, to restore the organ of Corti. PMID:22688958

  14. Engraftment of Human Pluripotent Stem Cell-derived Progenitors in the Inner Ear of Prenatal Mice.

    PubMed

    Takeda, Hiroki; Hosoya, Makoto; Fujioka, Masato; Saegusa, Chika; Saeki, Tsubasa; Miwa, Toru; Okano, Hideyuki; Minoda, Ryosei

    2018-01-31

    There is, at present, no curative treatment for genetic hearing loss. We have previously reported that transuterine gene transfer of wild type CONNEXIN30 (CX30) genes into otocysts in CX30-deleted mice could restore hearing. Cell transplantation therapy might be another therapeutic option, although it is still unknown whether stem cell-derived progenitor cells could migrate into mouse otocysts. Here, we show successful cell transplantation of progenitors of outer sulcus cell-like cells derived from human-derived induced pluripotent stem cells into mouse otocysts on embryonic day 11.5. The delivered cells engrafted more frequently in the non-sensory region in the inner ear of CX30-deleted mice than in wild type mice and survived for up to 1 week after transplantation. Some of the engrafted cells expressed CX30 proteins in the non-sensory region. This is the first report that demonstrates successful engraftment of exogenous cells in prenatal developing otocysts in mice. Future studies using this mouse otocystic injection model in vivo will provide further clues for developing treatment modalities for congenital hearing loss in humans.

  15. Flattop regulates basal body docking and positioning in mono- and multiciliated cells

    PubMed Central

    Gegg, Moritz; Böttcher, Anika; Burtscher, Ingo; Hasenoeder, Stefan; Van Campenhout, Claude; Aichler, Michaela; Walch, Axel; Grant, Seth G N; Lickert, Heiko

    2014-01-01

    Planar cell polarity (PCP) regulates basal body (BB) docking and positioning during cilia formation, but the underlying mechanisms remain elusive. In this study, we investigate the uncharacterized gene Flattop (Fltp) that is transcriptionally activated during PCP acquisition in ciliated tissues. Fltp knock-out mice show BB docking and ciliogenesis defects in multiciliated lung cells. Furthermore, Fltp is necessary for kinocilium positioning in monociliated inner ear hair cells. In these cells, the core PCP molecule Dishevelled 2, the BB/spindle positioning protein Dlg3, and Fltp localize directly adjacent to the apical plasma membrane, physically interact and surround the BB at the interface of the microtubule and actin cytoskeleton. Dlg3 and Fltp knock-outs suggest that both cooperatively translate PCP cues for BB positioning in the inner ear. Taken together, the identification of novel BB/spindle positioning components as potential mediators of PCP signaling might have broader implications for other cell types, ciliary disease, and asymmetric cell division. DOI: http://dx.doi.org/10.7554/eLife.03842.001 PMID:25296022

  16. Cochlear pathology in chronic suppurative otitis media.

    PubMed

    Walby, A P; Barrera, A; Schuknecht, H F

    1983-01-01

    Chronic suppurative otitis media (COM) is reported to cause elevation of bone-conduction thresholds either by damage to cochlear sensorineural structures or by alteration in the mechanics of sound transmission in the ear. A retrospective study was made of the medical records of 87 patients with unilateral uncomplicated COM to document that abnormality in bone conduction does exist. In a separate study the cochlear pathology in 12 pairs of temporal bones with unilateral COM was studied by light microscopy. Infected ears showed higher than normal mean bone-conduction thresholds by amounts ranging from 1 dB at 500 Hz to 9.5 dB at 4,000 Hz. The temporal bones showed no greater loss of specialized sensorineural structures in infected ears than in normal control ears. Because there is no evidence that COM caused destruction of hair cells or cochlear neurons, alteration in the mechanics of sound transmission becomes a more plausible explanation for the hearing losses.

  17. Defects in middle ear cavitation cause conductive hearing loss in the Tcof1 mutant mouse.

    PubMed

    Richter, Carol A; Amin, Susan; Linden, Jennifer; Dixon, Jill; Dixon, Michael J; Tucker, Abigail S

    2010-04-15

    Conductive hearing loss (CHL) is one of the most common forms of human deafness. Despite this observation, a surprising gap in our understanding of the mechanisms underlying CHL remains, particularly with respect to the molecular mechanisms underlying middle ear development and disease. Treacher Collins syndrome (TCS) is an autosomal dominant disorder of facial development that results from mutations in the gene TCOF1. CHL is a common feature of TCS but the causes of the hearing defect have not been studied. In this study, we have utilized Tcof1 mutant mice to dissect the developmental mechanisms underlying CHL. Our results demonstrate that effective cavitation of the middle ear is intimately linked to growth of the auditory bulla, the neural crest cell-derived structure that encapsulates all middle ear components, and that defects in these processes have a profoundly detrimental effect on hearing. This research provides important insights into a poorly characterized cause of human deafness, and provides the first mouse model for the study of middle ear cavity defects, while also being of direct relevance to a human genetic disorder.

  18. Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration

    PubMed Central

    Walters, Brad; Zuo, Jian

    2012-01-01

    The organ of Corti in the mammalian inner ear is comprised of mechanosensory hair cells (HCs) and nonsensory supporting cells (SCs), both of which are believed to be terminally postmitotic beyond late embryonic ages. Consequently, regeneration of HCs and SCs does not occur naturally in the adult mammalian cochlea, though recent evidence suggests that these cells may not be completely or irreversibly quiescent in at earlier postnatal ages. Furthermore, regenerative processes can be induced by genetic and pharmacological manipulations, but, more and more reports suggest that regenerative potential declines as the organ of Corti continues to age. In numerous mammalian systems, such effects of aging on regenerative potential are well established. However, in the cochlea, the problem of regeneration has not been traditionally viewed as one of aging. This is an important consideration as current models are unable to elicit widespread regeneration or full recovery of function at adult ages yet regenerative therapies will need to be developed specifically for adult populations. Still, the advent of gene targeting and other genetic manipulations has established mice as critically important models for the study of cochlear development and HC regeneration and suggests that auditory HC regeneration in adult mammals may indeed be possible. Thus, this review will focus on the pursuit of regeneration in the postnatal and adult mouse cochlea and highlight processes that occur during postnatal development, maturation, and aging that could contribute to an age-related decline in regenerative potential. Second, we will draw upon the wealth of knowledge pertaining to age related senescence in tissues outside of the ear to synthesize new insights and potentially guide future research aimed at promoting HC regeneration in the adult cochlea. PMID:23164734

  19. Ear health and hearing surveillance in girls and women with Turner's syndrome: recommendations from the Turner's Syndrome Support Society.

    PubMed

    Kubba, H; Smyth, A; Wong, S C; Mason, A

    2017-06-01

    Turner's syndrome (TS) is a common chromosomal disorder, affecting one in 2000 newborn girls, in which part or all of one X chromosome is missing. Ear and hearing problems are very common in girls and women with TS. The aim of this review was to review the published literature to suggest recommendations for otological health surveillance. A keyword search of Ovid Medline was performed for published literature on the subject and evidence rated according to the GRADE criteria. Middle ear disorders are very common and persistent in girls and women with TS as are progressive sensorineural hearing loss and balance disorders. Otolaryngologists should be aware of the high prevalence and challenging nature of all forms of ear disease in individuals with TS. Early intervention may offer benefits to health and education, and we advocate routine lifelong annual hearing screening in this group. © 2016 John Wiley & Sons Ltd.

  20. The physics of hearing: fluid mechanics and the active process of the inner ear.

    PubMed

    Reichenbach, Tobias; Hudspeth, A J

    2014-07-01

    Most sounds of interest consist of complex, time-dependent admixtures of tones of diverse frequencies and variable amplitudes. To detect and process these signals, the ear employs a highly nonlinear, adaptive, real-time spectral analyzer: the cochlea. Sound excites vibration of the eardrum and the three miniscule bones of the middle ear, the last of which acts as a piston to initiate oscillatory pressure changes within the liquid-filled chambers of the cochlea. The basilar membrane, an elastic band spiraling along the cochlea between two of these chambers, responds to these pressures by conducting a largely independent traveling wave for each frequency component of the input. Because the basilar membrane is graded in mass and stiffness along its length, however, each traveling wave grows in magnitude and decreases in wavelength until it peaks at a specific, frequency-dependent position: low frequencies propagate to the cochlear apex, whereas high frequencies culminate at the base. The oscillations of the basilar membrane deflect hair bundles, the mechanically sensitive organelles of the ear's sensory receptors, the hair cells. As mechanically sensitive ion channels open and close, each hair cell responds with an electrical signal that is chemically transmitted to an afferent nerve fiber and thence into the brain. In addition to transducing mechanical inputs, hair cells amplify them by two means. Channel gating endows a hair bundle with negative stiffness, an instability that interacts with the motor protein myosin-1c to produce a mechanical amplifier and oscillator. Acting through the piezoelectric membrane protein prestin, electrical responses also cause outer hair cells to elongate and shorten, thus pumping energy into the basilar membrane's movements. The two forms of motility constitute an active process that amplifies mechanical inputs, sharpens frequency discrimination, and confers a compressive nonlinearity on responsiveness. These features arise because the active process operates near a Hopf bifurcation, the generic properties of which explain several key features of hearing. Moreover, when the gain of the active process rises sufficiently in ultraquiet circumstances, the system traverses the bifurcation and even a normal ear actually emits sound. The remarkable properties of hearing thus stem from the propagation of traveling waves on a nonlinear and excitable medium.

  1. The physics of hearing: fluid mechanics and the active process of the inner ear

    NASA Astrophysics Data System (ADS)

    Reichenbach, Tobias; Hudspeth, A. J.

    2014-07-01

    Most sounds of interest consist of complex, time-dependent admixtures of tones of diverse frequencies and variable amplitudes. To detect and process these signals, the ear employs a highly nonlinear, adaptive, real-time spectral analyzer: the cochlea. Sound excites vibration of the eardrum and the three miniscule bones of the middle ear, the last of which acts as a piston to initiate oscillatory pressure changes within the liquid-filled chambers of the cochlea. The basilar membrane, an elastic band spiraling along the cochlea between two of these chambers, responds to these pressures by conducting a largely independent traveling wave for each frequency component of the input. Because the basilar membrane is graded in mass and stiffness along its length, however, each traveling wave grows in magnitude and decreases in wavelength until it peaks at a specific, frequency-dependent position: low frequencies propagate to the cochlear apex, whereas high frequencies culminate at the base. The oscillations of the basilar membrane deflect hair bundles, the mechanically sensitive organelles of the ear's sensory receptors, the hair cells. As mechanically sensitive ion channels open and close, each hair cell responds with an electrical signal that is chemically transmitted to an afferent nerve fiber and thence into the brain. In addition to transducing mechanical inputs, hair cells amplify them by two means. Channel gating endows a hair bundle with negative stiffness, an instability that interacts with the motor protein myosin-1c to produce a mechanical amplifier and oscillator. Acting through the piezoelectric membrane protein prestin, electrical responses also cause outer hair cells to elongate and shorten, thus pumping energy into the basilar membrane's movements. The two forms of motility constitute an active process that amplifies mechanical inputs, sharpens frequency discrimination, and confers a compressive nonlinearity on responsiveness. These features arise because the active process operates near a Hopf bifurcation, the generic properties of which explain several key features of hearing. Moreover, when the gain of the active process rises sufficiently in ultraquiet circumstances, the system traverses the bifurcation and even a normal ear actually emits sound. The remarkable properties of hearing thus stem from the propagation of traveling waves on a nonlinear and excitable medium.

  2. Distinct Genetic Architectures for Male and Female Inflorescence Traits of Maize

    PubMed Central

    Brown, Patrick J.; Upadyayula, Narasimham; Mahone, Gregory S.; Tian, Feng; Bradbury, Peter J.; Myles, Sean; Holland, James B.; Flint-Garcia, Sherry; McMullen, Michael D.; Buckler, Edward S.; Rocheford, Torbert R.

    2011-01-01

    We compared the genetic architecture of thirteen maize morphological traits in a large population of recombinant inbred lines. Four traits from the male inflorescence (tassel) and three traits from the female inflorescence (ear) were measured and studied using linkage and genome-wide association analyses and compared to three flowering and three leaf traits previously studied in the same population. Inflorescence loci have larger effects than flowering and leaf loci, and ear effects are larger than tassel effects. Ear trait models also have lower predictive ability than tassel, flowering, or leaf trait models. Pleiotropic loci were identified that control elongation of ear and tassel, consistent with their common developmental origin. For these pleiotropic loci, the ear effects are larger than tassel effects even though the same causal polymorphisms are likely involved. This implies that the observed differences in genetic architecture are not due to distinct features of the underlying polymorphisms. Our results support the hypothesis that genetic architecture is a function of trait stability over evolutionary time, since the traits that changed most during the relatively recent domestication of maize have the largest effects. PMID:22125498

  3. Deep features for efficient multi-biometric recognition with face and ear images

    NASA Astrophysics Data System (ADS)

    Omara, Ibrahim; Xiao, Gang; Amrani, Moussa; Yan, Zifei; Zuo, Wangmeng

    2017-07-01

    Recently, multimodal biometric systems have received considerable research interest in many applications especially in the fields of security. Multimodal systems can increase the resistance to spoof attacks, provide more details and flexibility, and lead to better performance and lower error rate. In this paper, we present a multimodal biometric system based on face and ear, and propose how to exploit the extracted deep features from Convolutional Neural Networks (CNNs) on the face and ear images to introduce more powerful discriminative features and robust representation ability for them. First, the deep features for face and ear images are extracted based on VGG-M Net. Second, the extracted deep features are fused by using a traditional concatenation and a Discriminant Correlation Analysis (DCA) algorithm. Third, multiclass support vector machine is adopted for matching and classification. The experimental results show that the proposed multimodal system based on deep features is efficient and achieves a promising recognition rate up to 100 % by using face and ear. In addition, the results indicate that the fusion based on DCA is superior to traditional fusion.

  4. Effects of the phosphodiesterase type 4 inhibitor roflumilast on early and late allergic response and airway hyperresponsiveness in Aspergillus-fumigatus-sensitized mice.

    PubMed

    Hoymann, Heinz-Gerd; Wollin, Lutz; Muller, Meike; Korolewitz, Regina; Krug, Norbert; Braun, Armin; Beume, Rolf

    2009-01-01

    Inhibitory effects of roflumilast on responses characteristic of allergic asthma were investigated in a fungal asthma model in BALB/c mice. Mice were sensitized with Aspergillus antigen (Afu) and exposed to Afu or vehicle, and given roflumilast 1 or 5 mg/kg. Early airway response (EAR) and late airway hyperresponsiveness (AHR) to methacholine were measured via plethysmography. Bronchoalveolar lavage (BAL) was used to assess inflammatory cell count. In Afu-exposed mice, roflumilast dose-dependently reduced the EAR [26% at 1 mg/kg (NS) and 94% at 5 mg/kg (p < 0.01)] and AHR [46% at 1 mg/kg (NS) and 128% at 5 mg/kg (p < 0.05)]. Roflumilast 5 mg/kg reduced neutrophil, eosinophil and lymphocyte counts [87% (p < 0.01), 40% (NS) and 67% (p < 0.01), respectively] in BAL fluid versus controls. In this model, roflumilast inhibited the EAR, suppressed AHR and reduced inflammatory cell infiltration. 2009 S. Karger AG, Basel.

  5. Activation of NLRP3 inflammasome in human middle ear cholesteatoma and chronic otitis media.

    PubMed

    Kariya, Shin; Okano, Mitsuhiro; Zhao, Pengfei; Kataoka, Yuko; Yoshinobu, Junko; Maeda, Yukihide; Ishihara, Hisashi; Higaki, Takaya; Nishizaki, Kazunori

    2016-01-01

    The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome plays an important role in the pathogenesis of middle ear diseases. Modulation of inflammasome-mediated inflammation may be a novel therapeutic strategy for cholesteatoma and chronic otitis media. NLRP3 inflammasome is a critical molecule mediating interleukin (IL)-1β responses. However, the expression of NLRP3 in the pathogenesis of cholesteatoma and chronic otitis media has not been fully examined. This study sought to assess the expression of NLRP3, ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain and a pyrin domain), and caspase-1 in middle ear tissues in patients with cholesteatoma or chronic otitis media. Middle ear tissue samples were obtained from patients with cholesteatoma or chronic otitis media. Control middle ear samples were collected during cochlear implant surgery of patients without middle ear inflammation. The expression of NLRP3, ASC, and caspase-1 were examined by reverse transcription polymerase chain reaction (RT-PCR) assay and immunohistochemical study. The levels of mRNA of NLRP3, ASC, and caspase-1 were significantly elevated in cholesteatoma and chronic otitis media as compared with that of normal controls. The proteins of NLRP3, ASC, and caspase-1 were observed in infiltrating inflammatory cells in cholesteatoma and chronic otitis media.

  6. Extracellular and intracellular melanin in inflammatory middle ear disease.

    PubMed

    Fritz, Mark A; Roehm, Pamela C; Bannan, Michael A; Lalwani, Anil K

    2014-06-01

    Melanin is a pigmented polymer with a known role in dermal solar protection. In vertebrates, melanogenesis has been reported in leukocyte populations, suggesting a potential role in innate immunity. In this study, we report the novel finding of melanin associated with chronic inflammation and speculate on its potential role in the middle ear and mastoid. Retrospective review of case series. Medical records of six patients who demonstrated melanin in the ear were reviewed. Six patients from 1 to 63 years of age were identified with extracellular melanin and melanin-laden histiocytes within the middle ear and/or mastoid air cells at time of surgery. Concurrent intraoperative findings included cholesteatoma (n = 3), chronic suppurative otitis media (n = 2), and coalescent mastoiditis (n = 1). Histologically, extracellular melanin and melanin-laden histiocytes were identified by Fontana-Masson stain; absence of melanocytes was confirmed by the absence of Melan-A staining. One patient had a positive stain for CD163 (a marker for macrophages). This case series is the first demonstration of melanin within middle ear mucosa without melanocytes in immediate proximity or metastatic melanocytic lesions. Melanin's presence in the setting of inflammation suggests that there may be a heretofore unreported link between the pigmentary and immune systems in the middle ear. 4.

  7. A morel improved growth and suppressed Fusarium infection in sweet corn.

    PubMed

    Yu, Dan; Bu, Fangfang; Hou, Jiaojiao; Kang, Yongxiang; Yu, Zhongdong

    2016-12-01

    A post-fire morel collected from Populus simonii stands in Mt. Qingling was identified as Morchella crassipes Mes-20 by using nuclear ribosomal DNA internal transcribed spacer phylogeny. It was inoculated into sweet corn to observe colonized roots in purified culture and in greenhouse experiments. The elongation and maturation zones of sweet corn were remarkably colonized at the cortex intercellular and intracellular cells, vessel cells, and around the Casparian strip, forming ectendomycorrhiza-like structures. Colonization was also observed in the zone of cell division proximal to the root cap. Greenhouse assays with sweet corn showed that this morel stimulated the development of the root system and significantly increased the dry root biomass. M. crassipes also significantly reduced the incidence of Fusarium verticillioides in the kernels of mature ears when inoculated into young ears before Fusarium inoculation and prevented Fusarium infection in corn ears compared with that of the control in the greenhouse. When grown under axenic conditions, M. crassipes produced the phytohormones abscisic acid, indole-3-acetic acid, and salicylic acid. The benefits to plants elicited by M. crassipes may result from these phytohormones which may improve the drought resistance, biomass growth and resistance to Fusarium.

  8. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c.

    PubMed

    Pan, Bifeng; Askew, Charles; Galvin, Alice; Heman-Ackah, Selena; Asai, Yukako; Indzhykulian, Artur A; Jodelka, Francine M; Hastings, Michelle L; Lentz, Jennifer J; Vandenberghe, Luk H; Holt, Jeffrey R; Géléoc, Gwenaëlle S

    2017-03-01

    Because there are currently no biological treatments for hearing loss, we sought to advance gene therapy approaches to treat genetic deafness. We focused on Usher syndrome, a devastating genetic disorder that causes blindness, balance disorders and profound deafness, and studied a knock-in mouse model, Ush1c c.216G>A, for Usher syndrome type IC (USH1C). As restoration of complex auditory and balance function is likely to require gene delivery systems that target auditory and vestibular sensory cells with high efficiency, we delivered wild-type Ush1c into the inner ear of Ush1c c.216G>A mice using a synthetic adeno-associated viral vector, Anc80L65, shown to transduce 80-90% of sensory hair cells. We demonstrate recovery of gene and protein expression, restoration of sensory cell function, rescue of complex auditory function and recovery of hearing and balance behavior to near wild-type levels. The data represent unprecedented recovery of inner ear function and suggest that biological therapies to treat deafness may be suitable for translation to humans with genetic inner ear disorders.

  9. Caffeic acid phenethyl ester inhibits diesel exhaust particle-induced inflammation of human middle ear epithelial cells via NOX4 inhibition.

    PubMed

    Jo, Sun-Young; Lee, Naree; Hong, Sung-Moon; Jung, Hak Hyun; Chae, Sung-Won

    2013-09-01

    Otitis media is one of the most common diseases in pediatric populations. Recent research on its pathogenesis has focused on air pollution. Chronic exposure to particulate air pollution is associated with the impairment of middle ear function. However, the mechanisms and the underlying inhibitory pathways, especially in the human middle ear, remain unknown. Caffeic acid phenethyl ester (CAPE) is a biologically active ingredient of propolis, a product of honeybee hives, which has anti-oxidative and anti-inflammatory activities. The aim of this study was to evaluate the inhibitory effect of CAPE on diesel exhaust particle (DEP)-induced inflammation of human middle ear epithelial cells and to determine the underlying pathway of the action of CAPE. The inflammatory damage caused by DEPs and the anti-inflammatory effects of CAPE were determined by measuring the levels of tumor necrosis factor alpha and nicotinamide adenine dinucleotide phosphate oxidase (NOX) 4 with real-time reverse transcription polymerase chain reaction and Western blot analysis. The oxidative stress induced by DEPs and the anti-oxidative effects of CAPE were directly evaluated by measuring reactive oxygen species production by use of flow cytometric analysis of 2',7'-dichlorofluorescein diacetate. The effects of CAPE were compared with those of N-acetyl-L-cysteine, which has anti-oxidative and anti-inflammatory effects. Use of CAPE significantly inhibited DEP-induced up-regulation of tumor necrosis factor alpha and NOX4 expression in a dose- and time-dependent manner. The accumulation of reactive oxygen species induced by DEPs was decreased by pretreatment with CAPE. The anti-inflammatory and anti-oxidative effects of CAPE were similar to those of N-acetyl-L-cysteine. The inflammation induced by DEP is reduced by CAPE via the inhibition of NOX4 expression. These findings suggest that CAPE might be used as a therapeutic agent against DEP-induced inflammation of human middle ear epithelial cells.

  10. Broadened population-level frequency tuning in the auditory cortex of tinnitus patients.

    PubMed

    Sekiya, Kenichi; Takahashi, Mariko; Murakami, Shingo; Kakigi, Ryusuke; Okamoto, Hidehiko

    2017-03-01

    Tinnitus is a phantom auditory perception without an external sound source and is one of the most common public health concerns that impair the quality of life of many individuals. However, its neural mechanisms remain unclear. We herein examined population-level frequency tuning in the auditory cortex of unilateral tinnitus patients with similar hearing levels in both ears using magnetoencephalography. We compared auditory-evoked neural activities elicited by a stimulation to the tinnitus and nontinnitus ears. Objective magnetoencephalographic data suggested that population-level frequency tuning corresponding to the tinnitus ear was significantly broader than that corresponding to the nontinnitus ear in the human auditory cortex. The results obtained support the hypothesis that pathological alterations in inhibitory neural networks play an important role in the perception of subjective tinnitus. NEW & NOTEWORTHY Although subjective tinnitus is one of the most common public health concerns that impair the quality of life of many individuals, no standard treatment or objective diagnostic method currently exists. We herein revealed that population-level frequency tuning was significantly broader in the tinnitus ear than in the nontinnitus ear. The results of the present study provide an insight into the development of an objective diagnostic method for subjective tinnitus. Copyright © 2017 the American Physiological Society.

  11. Inner Ear Disease and Benign Paroxysmal Positional Vertigo: A Critical Review of Incidence, Clinical Characteristics, and Management

    PubMed Central

    Riga, M.; Bibas, A.; Xenellis, J.; Korres, S.

    2011-01-01

    Background. This study is a review of the incidence, clinical characteristics, and management of secondary BPPV. The different subtypes of secondary BPPV are compared to each other, as well as idiopathic BPPV. Furthermore, the study highlights the coexistence of BPPV with other inner ear pathologies. Methods. A comprehensive search for articles including in the abstract information on incidence, clinical characteristics, and management of secondary BPPV was conducted within the PubMed library. Results. Different referral patterns, different diagnostic criteria used for inner ear diseases, and different patient populations have led to greatly variable incidence results. The differences regarding clinical characteristics and treatment outcomes may support the hypothesis that idiopathic BPPV and the various subtypes of secondary BPPV do not share the exact same pathophysiological mechanisms. Conclusions. Secondary BPPV is often under-diagnosed, because dizziness may be atypical and attributed to the primary inner ear pathology. Reversely, a limited number of BPPV patients may not be subjected to a full examination and characterized as idiopathic, while other inner ear diseases are underdiagnosed. A higher suspicion index for the coexistence of BPPV with other inner ear pathologies, may lead to a more integrated diagnosis and consequently to a more efficient treatment of these patients. PMID:21837242

  12. Trans-Oval-Window Implants, A New Approach for Drug Delivery to the Inner Ear: Extended Dexamethasone Release From Silicone-based Implants.

    PubMed

    Sircoglou, Julie; Gehrke, Maria; Tardivel, Meryem; Siepmann, Florence; Siepmann, Juergen; Vincent, Christophe

    2015-09-01

    The purpose of this study was to develop a new strategy to deliver drugs to the inner ear from dexamethasone (DXM)-loaded silicone implants and to evaluate the distribution of the drug in the cochlea with confocal microscopy. Systemic drug administration for the treatment of inner ear disorders is tricky because of the blood-cochlear barrier, a difficult anatomical access, the small size of the cochlea, and can cause significant adverse effects. An effective way to overcome these obstacles is to administer drugs locally. In vitro, the drug release from DXM-loaded silicone-based thin films and tiny implants into artificial perilymph was thoroughly analyzed by high-performance liquid chromatography. In vivo, a silicone implant loaded with 10% DXM and 5% polyethylene glycol 400 was implanted next to the stapes's footplate of gerbils. Delivery of DXM into the inner ear was proved by confocal microscopy imaging of the whole cochlea and the organ of Corti. The study showed a continuous and prolonged release during 90 days in vitro. This was confirmed by confocal microscopy that allowed detection of DXM by fluorescence labeling in the cell body of the hair cells for at least 30 days. Interestingly, fluorescence was already observed after 20 minutes of implantation, reached a climax at day 7, and could still be detected 30 days after implantation. Thus, we developed a new device for local corticosteroids delivery into the oval window with an extended drug release of DXM to the inner ear.

  13. Contact sensitizing potential of pyrogallol and 5-amino-o-cresol in female BALB/c Mice

    PubMed Central

    Guo, T.L.; Germolec, D.R.; Zhang, Ling X.; Auttachoat, W.; Smith, M.J.; White, K.L.

    2013-01-01

    Hair dye components such as pyrogallol and cresol have been shown previously to promote allergic reactions such as rashes, dermal inflammation, irritation and dermatitis. The objective of this study was to determine the contact sensitization potential of pyrogallol (PYR) and 5-amino-o-cresol (AOC) when applied dermally to female BALB/c mice. Measurement of the contact hypersensitivity response was initially accomplished using the local lymph node assay. For PYR, significant increases in the proliferation of lymph node cells were observed at concentrations of 0.5% (w/v) and higher. For AOC, borderline increases, albeit significant, in auricular lymph node cell proliferation were observed at 5% and 10%. Results from the irritancy assay suggested that PYR, but not AOC, was an irritant. To further delineate whether PYR was primarily an irritant or a contact sensitizer, the mouse ear swelling test (MEST) was conducted. A significant increase in mouse ear thickness was observed at 72 hr following challenge with 0.5% PYR in mice that had been sensitized with 5% PYR. In contrast, no effects were observed in the MEST in mice sensitized and challenged with the highest achievable concentration of AOC (10%). Additional studies examining lymph node subpopulations and CD86 (B7.2) expression by B cells further support the indication that PYR was a sensitizer in BALB/c mice. The results demonstrate that PYR is both a sensitizer and an irritant in female BALB/c mice. However, the contact sensitization potential of AOC is minimal in this strain of mouse. PMID:24172597

  14. Fgf8 and Fgf3 are required for zebrafish ear placode induction, maintenance and inner ear patterning.

    PubMed

    Léger, Sophie; Brand, Michael

    2002-11-01

    The vertebrate inner ear develops from initially 'simple' ectodermal placode and vesicle stages into the complex three-dimensional structure which is necessary for the senses of hearing and equilibrium. Although the main morphological events in vertebrate inner ear development are known, the genetic mechanisms controlling them are scarcely understood. Previous studies have suggested that the otic placode is induced by signals from the chordamesoderm and the hindbrain, notably by fibroblast growth factors (Fgfs) and Wnt proteins. Here we study the role of Fgf8 as a bona-fide hindbrain-derived signal that acts in conjunction with Fgf3 during placode induction, maintenance and otic vesicle patterning. Acerebellar (ace) is a mutant in the fgf8 gene that results in a non-functional Fgf8 product. Homozygous mutants for acerebellar (ace) have smaller ears that typically have only one otolith, abnormal semi-circular canals, and behavioral defects. Using gene expression markers for the otic placode, we find that ace/fgf8 and Fgf-signaling are required for normal otic placode formation and maintenance. Conversely, misexpression of fgf8 or Fgf8-coated beads implanted into the vicinity of the otic placode can increase ear size and marker gene expression, although competence to respond to the induction appears restricted. Cell transplantation experiments and expression analysis suggest that Fgf8 is required in the hindbrain in the rhombomere 4-6 area to restore normal placode development in ace mutants, in close neighbourhood to the forming placode, but not in mesodermal tissues. Fgf3 and Fgf8 are expressed in hindbrain rhombomere 4 during the stages that are critical for placode induction. Joint inactivation of Fgf3 and Fgf8 by mutation or antisense-morpholino injection causes failure of placode formation and results in ear-less embryos, mimicking the phenotype we observe after pharmacological inhibition of Fgf-signaling. Fgf8 and Fgf3 together therefore act during induction and differentiation of the ear placode. In addition to the early requirement for Fgf signaling, the abnormal differentiation of inner ear structures and mechanosensory hair cells in ace mutants, pharmacological inhibition of Fgf signaling, and the expression of fgf8 and fgf3 in the otic vesicle demonstrate independent Fgf function(s) during later development of the otic vesicle and lateral line organ. We furthermore addressed a potential role of endomesomerm by studying mzoep mutant embryos that are depleted of head endomesodermal tissue, including chordamesoderm, due to a lack of Nodal-pathway signaling. In these embryos, early placode induction proceeds largely normally, but the ear placode extends abnormally to midline levels at later stages, suggesting a role for the midline in restricting placode development to dorsolateral levels. We suggest a model of zebrafish inner ear development with several discrete steps that utilize sequential Fgf signals during otic placode induction and vesicle patterning. Copyright 2002 Elsevier Science Ireland Ltd.

  15. Training to use voice onset time as a cue to talker identification induces a left-ear/right-hemisphere processing advantage.

    PubMed

    Francis, Alexander L; Driscoll, Courtney

    2006-09-01

    We examined the effect of perceptual training on a well-established hemispheric asymmetry in speech processing. Eighteen listeners were trained to use a within-category difference in voice onset time (VOT) to cue talker identity. Successful learners (n=8) showed faster response times for stimuli presented only to the left ear than for those presented only to the right. The development of a left-ear/right-hemisphere advantage for processing a prototypically phonetic cue supports a model of speech perception in which lateralization is driven by functional demands (talker identification vs. phonetic categorization) rather than by acoustic stimulus properties alone.

  16. The mechanosensory structure of the hair cell requires clarin-1, a protein encoded by Usher syndrome III causative gene.

    PubMed

    Geng, Ruishuang; Melki, Sami; Chen, Daniel H-C; Tian, Guilian; Furness, David N; Oshima-Takago, Tomoko; Neef, Jakob; Moser, Tobias; Askew, Charles; Horwitz, Geoff; Holt, Jeffrey R; Imanishi, Yoshikazu; Alagramam, Kumar N

    2012-07-11

    Mutation in the clarin-1 gene (Clrn1) results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 gene (Clrn1(-/-)) show loss of hair cell function and a possible defect in ribbon synapse. We investigated the role of clarin-1 using various in vitro and in vivo approaches. We show by immunohistochemistry and patch-clamp recordings of Ca(2+) currents and membrane capacitance from inner hair cells that clarin-1 is not essential for formation or function of ribbon synapse. However, reduced cochlear microphonic potentials, FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide] loading, and transduction currents pointed to diminished cochlear hair bundle function in Clrn1(-/-) mice. Electron microscopy of cochlear hair cells revealed loss of some tall stereocilia and gaps in the v-shaped bundle, although tip links and staircase arrangement of stereocilia were not primarily affected by Clrn1(-/-) mutation. Human clarin-1 protein expressed in transfected mouse cochlear hair cells localized to the bundle; however, the pathogenic variant p.N48K failed to localize to the bundle. The mouse model generated to study the in vivo consequence of p.N48K in clarin-1 (Clrn1(N48K)) supports our in vitro and Clrn1(-/-) mouse data and the conclusion that CLRN1 is an essential hair bundle protein. Furthermore, the ear phenotype in the Clrn1(N48K) mouse suggests that it is a valuable model for ear disease in CLRN1(N48K), the most prevalent Usher syndrome III mutation in North America.

  17. Connecting the ear to the brain: molecular mechanisms of auditory circuit assembly

    PubMed Central

    Appler, Jessica M.; Goodrich, Lisa V.

    2011-01-01

    Our sense of hearing depends on precisely organized circuits that allow us to sense, perceive, and respond to complex sounds in our environment, from music and language to simple warning signals. Auditory processing begins in the cochlea of the inner ear, where sounds are detected by sensory hair cells and then transmitted to the central nervous system by spiral ganglion neurons, which faithfully preserve the frequency, intensity, and timing of each stimulus. During the assembly of auditory circuits, spiral ganglion neurons establish precise connections that link hair cells in the cochlea to target neurons in the auditory brainstem, develop specific firing properties, and elaborate unusual synapses both in the periphery and in the CNS. Understanding how spiral ganglion neurons acquire these unique properties is a key goal in auditory neuroscience, as these neurons represent the sole input of auditory information to the brain. In addition, the best currently available treatment for many forms of deafness is the cochlear implant, which compensates for lost hair cell function by directly stimulating the auditory nerve. Historically, studies of the auditory system have lagged behind other sensory systems due to the small size and inaccessibility of the inner ear. With the advent of new molecular genetic tools, this gap is narrowing. Here, we summarize recent insights into the cellular and molecular cues that guide the development of spiral ganglion neurons, from their origin in the proneurosensory domain of the otic vesicle to the formation of specialized synapses that ensure rapid and reliable transmission of sound information from the ear to the brain. PMID:21232575

  18. Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears

    NASA Technical Reports Server (NTRS)

    Fritzsch, B.; Signore, M.; Simeone, A.

    2001-01-01

    We investigated the development of inner ear innervation in Otx1 null mutants, which lack a horizontal canal, between embryonic day 12 (E12) and postnatal day 7 (P7) with DiI and immunostaining for acetylated tubulin. Comparable to control animals, horizontal crista-like fibers were found to cross over the utricle in Otx1 null mice. In mutants these fibers extend toward an area near the endolymphatic duct, not to a horizontal crista. Most Otx1 null mutants had a small patch of sensory hair cells at this position. Measurement of the area of the utricular macula suggested it to be enlarged in Otx1 null mutants. We suggest that parts of the horizontal canal crista remain incorporated in the utricular sensory epithelium in Otx1 null mutants. Other parts of the horizontal crista appear to be variably segregated to form the isolated patch of hair cells identifiable by the unique fiber trajectory as representing the horizontal canal crista. Comparison with lamprey ear innervation reveals similarities in the pattern of innervation with the dorsal macula, a sensory patch of unknown function. SEM data confirm that all foramina are less constricted in Otx1 null mutants. We propose that Otx1 is not directly involved in sensory hair cell formation of the horizontal canal but affects the segregation of the horizontal canal crista from the utricle. It also affects constriction of the two main foramina in the ear, but not their initial formation. Otx1 is thus causally related to horizontal canal morphogenesis as well as morphogenesis of these foramina.

  19. [Atypical inflammation of the middle ear].

    PubMed

    Garov, E V; Kryukov, A I; Zelenkova, V N; Sidorina, N G; Kaloshina, A S

    The objective of the present study was to characterize the patients presenting with atypical inflammation of the middle ear and consider the currently available methods for their examination. A total of 20 patients at the age from 16 to 66 years were admitted to the Department of Ear Microsurgery during the period from 2008 and 2016 for the treatment of atypical inflammation of the middle ear. Eleven of them (18 ears) were found to have tuberculous lesions (TL) of the middle ear while the remaining 9 patients (11 ears) suffered giant cell vasculitis (GCV). All the patients underwent the general clinical and otorhinolaryngological examination, computed tomography of the temporal bones and the thoracic cavity organs, cytological, bacteriological, pathomorphological, and molecular-genetic studies including PCR diagnostics, rheumatological tests, as well as counseling by a phthisiotherapist and rheumatologist. The primary localization of TL in the middle ear was documented in 6 patients including its association with lung lesions in 5 cases. The clinical picture of the disease in 5 patients was that of smoldering exudative pathology and in 6 ones was accompanied by suppurative perforative otitis media. According to the laboratory analyses, bacteriological diagnostics proved efficient in 9% of the patients, pathomorphological and cytological diagnostics in 18% and 27.3% of the cases respectively while the effectiveness of PCR diagnostics was estimated at 55%. The diagnosis in individual patients was established within the period from 1 month to 1.5 years after they first sought medical advice in connection with complaints of the ear disease. Tuberculosis of the middle ear began to develop as exudative middle otitis that acquired the form of bilateral pathology in 4 patients. Three patients had a concomitant pulmonary disease. In 4 patuents, the diagnois of middle ear tuberculosis was established based on the presence of the specific antibodies and in 5 ones based on the results of the pathomorphological study. All the studies were carried out in duplicate. The period between the beginning of the disease and the establishment of the definitive diagnosis varied from 1 month to 1 year.

  20. Making connections in the inner ear: recent insights into the development of spiral ganglion neurons and their connectivity with sensory hair cells

    PubMed Central

    Coate, Thomas M.; Kelley, Matthew W.

    2013-01-01

    In mammals, auditory information is processed by the hair cells (HCs) located in the cochlea and then rapidly transmitted to the CNS via a specialized cluster of bipolar afferent connections known as the spiral ganglion neurons (SGNs). Although many anatomical aspects of SGNs are well described, the molecular and cellular mechanisms underlying their genesis, how they are precisely arranged along the cochlear duct, and the guidance mechanisms that promote the innervation of their hair cell targets are only now being understood. Building upon foundational studies of neurogenesis and neurotrophins, we review here new concepts and technologies that are helping to enrich our understanding of the development of the nervous system within the inner ear. PMID:23660234

  1. Study of the sensitising potential of various textile dyes using a biphasic murine local lymph node assay.

    PubMed

    Ahuja, V; Platzek, T; Fink, H; Sonnenburg, A; Stahlmann, R

    2010-09-01

    Disperse dyes, which are suitable for dyeing synthetic fibres, are responsible for the great majority of allergic contact dermatitis (ACD) cases to textile dyes. The aim of the present study was to investigate the sensitising potential of various disperse dyes using a biphasic protocol of the local lymph node assay (LLNA). Briefly, mice were shaved over a surface of approximately 2 cm(2) on their backs and treated using a "sensitisation-challenge protocol". The shaved surface was treated once daily on days 1-3 with 50 microl of the test solution. Animals remained untreated on days 4-14. On days 15-17, mice were treated with 25 microl of the test solution on the dorsum of both ears. Mice were killed on day 19 with deep CO(2) anaesthesia, the lymph nodes prepared and various end points, such as ear thickness, ear punch weight, lymph node weight, lymph node cell count and the proportion of various lymphocyte subpopulations, were determined by flow cytometry. The results were compared to control group treated with the vehicle alone. Our results showed that almost all of the tested textile dyes caused a significant increase in lymph node cell count and lymph node weight. We also observed an increase in ear thickness and ear punch weight in most of the concentrations tested for various textile dyes. We observed a decrease in CD4+ and CD8+ cells and an increase in CD19+, CD45+ and CD45+/1A+ cells in most of the cases, which is characteristic for allergens. The CD4+/CD69+ cells increased in only few experiments mainly with Disperse Blue 124 and Disperse Blue 106. Based on our results, the disperse dyes could be arranged in four groups on the basis of their sensitising potency in the following decreasing order (in parenthesis: lowest concentration causing a significant increase in lymph node cell number): group 1, strong: Disperse Blue 124 and Disperse Blue 106 (0.003%); group 2, moderate: Disperse Red 1 and Disperse Blue 1 (3%); group 3, weak: Disperse Orange 37 and Disperse Blue 35 (10%); and group 4, very weak: Disperse yellow 3 and Disperse Orange 3 (increase at 30% or no increase at 30%). In conclusion, our study shows that the biphasic LLNA protocol was proficient enough to study the sensitisation potential of tested textile dyes and provides data allowing to discriminate them according to their potency.

  2. Immunomodulatory effects of aged garlic extract.

    PubMed

    Kyo, E; Uda, N; Kasuga, S; Itakura, Y

    2001-03-01

    Using various kinds of models, we examined the effects of aged garlic extract (AGE) on immune functions. In the immunoglobulin (Ig)E-mediated allergic mouse model, AGE significantly decreased the antigen-specific ear swelling induced by picryl chloride ointment to the ear and intravenous administration of antitrinitrophenyl antibody. In the transplanted carcinoma cell model, AGE significantly inhibited the growth of Sarcoma-180 (allogenic) and LL/2 lung carcinoma (syngenic) cells transplanted into mice. Concomitantly, increases in natural killer (NK) and killer activities of spleen cells were observed in Sarcoma-180--bearing mice administered AGE. In the psychological stress model, AGE significantly prevented the decrease in spleen weight and restored the reduction of anti-SRBC hemolytic plaque-forming cells caused by the electrical stress. These studies strongly suggest that AGE could be a promising candidate as an immune modifier, which maintains the homeostasis of immune functions; further studies are warranted to determine when it is most beneficial.

  3. Daple coordinates organ-wide and cell-intrinsic polarity to pattern inner-ear hair bundles

    PubMed Central

    Siletti, Kimberly; Hudspeth, A. J.

    2017-01-01

    The establishment of planar polarization by mammalian cells necessitates the integration of diverse signaling pathways. In the inner ear, at least two systems regulate the planar polarity of sensory hair bundles. The core planar cell polarity (PCP) proteins coordinate the orientations of hair cells across the epithelial plane. The cell-intrinsic patterning of hair bundles is implemented independently by the G protein complex classically known for orienting the mitotic spindle. Although the primary cilium also participates in each of these pathways, its role and the integration of the two systems are poorly understood. We show that Dishevelled-associating protein with a high frequency of leucine residues (Daple) interacts with PCP and cell-intrinsic signals. Regulated by the cell-intrinsic pathway, Daple is required to maintain the polarized distribution of the core PCP protein Dishevelled and to position the primary cilium at the abneural edge of the apical surface. Our results suggest that the primary cilium or an associated structure influences the domain of cell-intrinsic signals that shape the hair bundle. Daple is therefore essential to orient and pattern sensory hair bundles. PMID:29229865

  4. Computed tomographic features of the osseous structures of the external acoustic meatus, tympanic cavity, and tympanic bulla of llamas (Lama glama).

    PubMed

    Concha-Albornoz, Ismael; Stieger-Vanegas, Susanne M; Cebra, Christopher K

    2012-01-01

    To evaluate the osseous structures of the external acoustic meatus, tympanic cavity, and tympanic bulla of llamas (Lama glama) by use of computed tomography (CT) and establish measurement values for use in detection of abnormalities associated with the external or middle ear in llamas. 10 adult llama heads without any evidence of ear disease. Heads of 10 healthy llamas euthanized by use of a captive bolt striking the dorsal aspect of the skull were collected. Transverse images of the heads were acquired with 1-mm slice thickness, and images were reconstructed in sagittal and dorsal planes. Measurements of the bony structures of the external and middle ear of each head were obtained. The osseous external acoustic meatus curved ventrally as it tracked medially. Its narrowest portion was located at the level of the tympanic annulus. The tympanic bulla conformation differed widely from the bubble-shaped tympanic bulla in dogs and cats. The bulla was divided by the stylohyoid fossa into a larger caudolateral and a smaller caudomedial process; its interior had a honeycombed structure with pneumatized cells similar to the honeycombed appearance of the human mastoid process. Results provided new information regarding the shape and dimensions of the osseous external and middle ear structures in adult llamas without ear disease. Specific landmarks for location of the external acoustic meatus, tympanic cavity, and tympanic bulla in relation to each other were identified. Knowledge of the CT appearance of normal structures will help clinicians to identify changes attributable to middle ear otitis, external ear canal stenosis, or congenital malformations of the ear in this species.

  5. Inner ear manifestations in CHARGE: Abnormalities, treatments, animal models, and progress toward treatments in auditory and vestibular structures.

    PubMed

    Choo, Daniel I; Tawfik, Kareem O; Martin, Donna M; Raphael, Yehoash

    2017-12-01

    The inner ear contains the sensory organs for hearing and balance. Both hearing and balance are commonly affected in individuals with CHARGE syndrome (CS), an autosomal dominant condition caused by heterozygous pathogenic variants in the CHD7 gene. Semicircular canal dysplasia or aplasia is the single most prevalent feature in individuals with CHARGE leading to deficient gross motor skills and ambulation. Identification of CHD7 as the major gene affected in CHARGE has enabled acceleration of research in this field. Great progress has been made in understanding the role of CHD7 in the development and function of the inner ear, as well as in related organs such as the middle ear and auditory and vestibular neural pathways. The goals of current research on CHD7 and CS are to (a) improve our understanding of the pathology caused by CHD7 pathogenic variants and (b) to provide better tools for prognosis and treatment. Current studies utilize cells and whole animals, from flies to mammals. The mouse is an excellent model for exploring mechanisms of Chd7 function in the ear, given the evolutionary conservation of ear structure, function, Chd7 expression, and similarity of mutant phenotypes between mice and humans. Newly recognized developmental functions for mouse Chd7 are shedding light on how abnormalities in CHD7 might lead to CS symptoms in humans. Here we review known human inner ear phenotypes associated with CHD7 pathogenic variants and CS, summarize progress toward diagnosis and treatment of inner ear-related pathologies, and explore new avenues for treatment based on basic science discoveries. © 2017 Wiley Periodicals, Inc.

  6. Phenol induced acute cutaneous inflammation (AI) in mice: Diminished response in mast cell-deficient (W/W sup v ) mice and evidence of a role for tumor necrosis factor-alpha (TNF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wershil, B.K.; Wang, Z.S.; Gordon, J.R.

    1991-03-11

    AI can be induced by a variety of chemical agents. The authors examined AI in mast cell-deficient (WBB6F{sub 1}-W/W{sup v}) and congenic normal (WBB6F{sub 1}-+/+) mice; AI was induced by the epicutaneous application to the ear of phenol (2 mg), benzalkonium chloride (BC; 1 mg) and ethyl phenylpropiolate (EPP, 2 or 5 mg). Phenol induced significantly greater swelling in +/+ than in W/W{sup v} mice. No difference in swelling was seen in +/+ versus W/W{sup v} mice with BC or EEP. Phenol application induced significantly greater neutrophil infiltration in +/+ than in W/W{sup v} mice. Mast cells represent a richmore » source of TNF and TNF has been shown to participate in the neutrophil accumulation seen in mast cell-dependent, IgE-mediated cutaneous late phase reactions. The authors injected +/+ mice i.d. with 20 {mu}l of 1:100 dilution of a polyclonal rabbit anti-mouse TNF antiserum or 20 {mu}l of medium and then applied 2 mg phenol at the same sites. At 24 hrs, significantly less neutrophil accumulation was seen in the ear treated with anti-TNF antibodies than in the control ear. The authors conclude that mast cells may participate in phenol-induced AI, and that TNF contributes to this response.« less

  7. Hair cell heterogeneity and ultrasonic hearing: recent advances in understanding fish hearing.

    PubMed Central

    Popper, A N

    2000-01-01

    The past decade has seen a wealth of new data on the auditory capabilities and mechanisms of fishes. We now have a significantly better appreciation of the structure and function of the auditory system in fishes with regard to their peripheral and central anatomy, physiology, behaviour, sound source localization and hearing capabilities. This paper deals with two of the newest of these findings, hair cell heterogeneity and the detection of ultrasound. As a result of this recent work, we now know that fishes have several different types of sensory hair cells in both the ear and lateral line and there is a growing body of evidence to suggest that these hair cell types arose very early in the evolution of the octavolateralis system. There is also some evidence to suggest that the differences in the hair cell types have functional implications for the way the ear and lateral line of fishes detect and process stimuli. Behavioural studies have shown that, whereas most fishes can only detect sound to 1-3 kHz, several species of the genus Alosa (Clupeiformes, i.e. herrings and their relatives) can detect sounds up to 180 kHz (or even higher). It is suggested that this capability evolved so that these fishes can detect one of their major predators, echolocating dolphins. The mechanism for ultrasound detection remains obscure, though it is hypothesized that the highly derived utricle of the inner ear in these species is involved. PMID:11079414

  8. Estimation of sex from the anthropometric ear measurements of a Sudanese population.

    PubMed

    Ahmed, Altayeb Abdalla; Omer, Nosyba

    2015-09-01

    The external ear and its prints have multifaceted roles in medico-legal practice, e.g., identification and facial reconstruction. Furthermore, its norms are essential in the diagnosis of congenital anomalies and the design of hearing aids. Body part dimensions vary in different ethnic groups, so the most accurate statistical estimations of biological attributes are developed using population-specific standards. Sudan lacks comprehensive data about ear norms; moreover, there is a universal rarity in assessing the possibility of sex estimation from ear dimensions using robust statistical techniques. Therefore, this study attempts to establish data for normal adult Sudanese Arabs, assessing the existence of asymmetry and developing a population-specific equation for sex estimation. The study sample comprised 200 healthy Sudanese Arab volunteers (100 males and 100 females) in the age range of 18-30years. The physiognomic ear length and width, lobule length and width, and conchal length and width measurements were obtained by direct anthropometry, using a digital sliding caliper. Moreover, indices and asymmetry were assessed. Data were analyzed using basic descriptive statistics and discriminant function analyses employing jackknife validations of classification results. All linear dimensions used were sexually dimorphic except lobular lengths. Some of the variables and indices show asymmetry. Ear dimensions showed cross-validated sex classification accuracy ranging between 60.5% and 72%. Hence, the ear measurements cannot be used as an effective tool in the estimation of sex. However, in the absence of other more reliable means, it still can be considered a supportive trait in sex estimation. Further, asymmetry should be considered in identification from the ear measurements. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Cytotoxic effects of dimethyl sulphoxide (DMSO) on cochlear organotypic cultures

    PubMed Central

    Qi, Weidong; Ding, Dalian; Salvi*, Richard J.

    2008-01-01

    The amphipathic molecule dimethyl sulphoxide (DMSO) is a solvent often used to dissolve compounds applied to the inner ear; however, little is known about its potential cytotoxic side effects. To address this question, we applied 0.1 to 6% DMSO for 24 h to cochlear organotypic cultures from postnatal day 3 rats and examined its cytotoxic effects. DMSO concentrations of 0.1% and 0.25% caused little or no damage. However, concentrations between 0.5 and 6% resulted in stereocilia damage, hair cell swelling and a dose-dependent loss of hair cells. Hair cell damage began in the basal turn of the cochlea and spread towards the apex with increasing concentration. Surprisingly, DMSO-induced damage was greater for inner hair cells than outer hair cell whereas nearby supporting cells were largely unaffected. Most hair cell death was associated with nuclear shrinkage and fragmentation, morphological features consistent with apoptosis. DMSO treatment induced TUNEL positive staining in many hair cells and activated both initiator caspase-9 and caspase-8 and executioner caspase-3; this suggests that apoptosis is initiated by both intrinsic mitochondrial and extrinsic membrane cell death signaling pathways. PMID:18207679

  10. Progressive Hearing Loss in Mice Carrying a Mutation in Usp53

    PubMed Central

    Kazmierczak, Marcin; Harris, Suzan L.; Kazmierczak, Piotr; Shah, Prahar; Starovoytov, Valentin; Ohlemiller, Kevin K.

    2015-01-01

    Disordered protein ubiquitination has been linked to neurodegenerative disease, yet its role in inner ear homeostasis and hearing loss is essentially unknown. Here we show that progressive hearing loss in the ethylnitrosourea-generated mambo mouse line is caused by a mutation in Usp53, a member of the deubiquitinating enzyme family. USP53 contains a catalytically inactive ubiquitin-specific protease domain and is expressed in cochlear hair cells and a subset of supporting cells. Although hair cell differentiation is unaffected in mambo mice, outer hair cells degenerate rapidly after the first postnatal week. USP53 colocalizes and interacts with the tight junction scaffolding proteins TJP1 and TJP2 in polarized epithelial cells, suggesting that USP53 is part of the tight junction complex. The barrier properties of tight junctions of the stria vascularis appeared intact in a biotin tracer assay, but the endocochlear potential is reduced in adult mambo mice. Hair cell degeneration in mambo mice precedes endocochlear potential decline and is rescued in cochlear organotypic cultures in low potassium milieu, indicating that hair cell loss is triggered by extracellular factors. Remarkably, heterozygous mambo mice show increased susceptibility to noise injury at high frequencies. We conclude that USP53 is a novel tight junction-associated protein that is essential for the survival of auditory hair cells and normal hearing in mice, possibly by modulating the barrier properties and mechanical stability of tight junctions. SIGNIFICANCE STATEMENT Hereditary hearing loss is extremely prevalent in the human population, but many genes linked to hearing loss remain to be discovered. Forward genetics screens in mice have facilitated the identification of genes involved in sensory perception and provided valuable animal models for hearing loss in humans. This involves introducing random mutations in mice, screening the mice for hearing defects, and mapping the causative mutation. Here, we have identified a mutation in the Usp53 gene that causes progressive hearing loss in the mambo mouse line. We demonstrate that USP53 is a catalytically inactive deubiquitinating enzyme and a novel component of tight junctions that is necessary for sensory hair cell survival and inner ear homeostasis. PMID:26609154

  11. Spiral Ganglion Stem Cells Can Be Propagated and Differentiated Into Neurons and Glia

    PubMed Central

    Zecha, Veronika; Wagenblast, Jens; Arnhold, Stefan; Edge, Albert S. B.; Stöver, Timo

    2014-01-01

    Abstract The spiral ganglion is an essential functional component of the peripheral auditory system. Most types of hearing loss are associated with spiral ganglion cell degeneration which is irreversible due to the inner ear's lack of regenerative capacity. Recent studies revealed the existence of stem cells in the postnatal spiral ganglion, which gives rise to the hope that these cells might be useful for regenerative inner ear therapies. Here, we provide an in-depth analysis of sphere-forming stem cells isolated from the spiral ganglion of postnatal mice. We show that spiral ganglion spheres have characteristics similar to neurospheres isolated from the brain. Importantly, spiral ganglion sphere cells maintain their major stem cell characteristics after repeated propagation, which enables the culture of spheres for an extended period of time. In this work, we also demonstrate that differentiated sphere-derived cell populations not only adopt the immunophenotype of mature spiral ganglion cells but also develop distinct ultrastructural features of neurons and glial cells. Thus, our work provides further evidence that self-renewing spiral ganglion stem cells might serve as a promising source for the regeneration of lost auditory neurons. PMID:24940560

  12. P2X antagonists inhibit styryl dye entry into hair cells.

    PubMed

    Crumling, M A; Tong, M; Aschenbach, K L; Liu, L Qian; Pipitone, C M; Duncan, R K

    2009-07-21

    The styryl pyridinium dyes, FM1-43 and AM1-43, are fluorescent molecules that can permeate the mechanotransduction channels of hair cells, the sensory receptors of the inner ear. When these dyes are applied to hair cells, they enter the cytoplasm rapidly, resulting in a readily detectable intracellular fluorescence that is often used as a molecular indication of mechanotransduction channel activity. However, such dyes can also permeate the ATP receptor, P2X(2). Therefore, we explored the contribution of P2X receptors to the loading of hair cells with AM1-43. The chick inner ear was found to express P2X receptors and to release ATP, similar to the inner ear of mammals, allowing for the endogenous stimulation of P2X receptors. The involvement of these receptors was evaluated pharmacologically, by exposing the sensory epithelium of the chick inner ear to 5 microM AM1-43 under different experimental conditions and measuring the fluorescence in hair cells after fixation of the tissue. Pre-exposure of the tissue to 5 mM EGTA for 15 min, which should eliminate most of the gating "tip links" of the mechanotransduction channels, deceased fluorescence by only 44%. In contrast, P2X receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid [PPADS], suramin, 2',3'-O-(2,4,6-trinitrophenyl) ATP [TNP-ATP], and d-tubocurarine) had greater effects on dye loading. PPADS, suramin, and TNP-ATP all decreased intracellular AM1-43 fluorescence in hair cells by at least 69% when applied at a concentration of 100 microM. The difference between d-tubocurarine-treated and control fluorescence was statistically insignificant when d-tubocurarine was applied at a concentration that blocks the mechanotransduction channel (200 microM). At a concentration that also blocks P2X(2) receptors (2 mM), d-tubocurarine decreased dye loading by 72%. From these experiments, it appears that AM1-43 can enter hair cells through endogenously activated P2X receptors. Thus, the contribution of P2X receptors to dye entry should be considered when using styryl pyridinium dyes to detect hair cell mechanotransduction channel activity, especially in the absence of explicit mechanical stimulation of stereocilia.

  13. Pathophysiology of the inner ear after blast injury caused by laser-induced shock wave

    PubMed Central

    Niwa, Katsuki; Mizutari, Kunio; Matsui, Toshiyasu; Kurioka, Takaomi; Matsunobu, Takeshi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro; Kobayashi, Yasushi

    2016-01-01

    The ear is the organ that is most sensitive to blast overpressure, and ear damage is most frequently seen after blast exposure. Blast overpressure to the ear results in sensorineural hearing loss, which is untreatable and is often associated with a decline in the quality of life. In this study, we used a rat model to demonstrate the pathophysiological and structural changes in the inner ear that replicate pure sensorineural hearing loss associated with blast injury using laser-induced shock wave (LISW) without any conductive hearing loss. Our results indicate that threshold elevation of the auditory brainstem response (ABR) after blast exposure was primarily caused by outer hair cell dysfunction induced by stereociliary bundle disruption. The bundle disruption pattern was unique; disturbed stereocilia were mostly observed in the outermost row, whereas those in the inner and middle rows stereocilia remained intact. In addition, the ABR examination showed a reduction in wave I amplitude without elevation of the threshold in the lower energy exposure group. This phenomenon was caused by loss of the synaptic ribbon. This type of hearing dysfunction has recently been described as hidden hearing loss caused by cochlear neuropathy, which is associated with tinnitus or hyperacusis. PMID:27531021

  14. Intracellular Adenosine Triphosphate Delivery Enhanced Skin Wound Healing in Rabbits

    PubMed Central

    Wang, Jianpu; Zhang, Qunwei; Wan, Rong; Mo, Yiqun; Li, Ming; Tseng, Michael T.; Chien, Sufan

    2016-01-01

    Small unilamellar lipid vesicles were used to encapsulate adenosine triphosphate (ATP-vesicles) for intracellular energy delivery. This technique was tested in full-thickness skin wounds in 16 adult rabbits. One ear was rendered ischemic by using a minimally invasive surgery. The other ear served as a normal control. Four circular full-thickness wounds were created on the ventral side of each ear. ATP-vesicles or saline was used and the wounds were covered with Tegaderm (3M, St. Paul, MN). Dressing was changed and digital photos were taken daily until all the wounds were healed. The mean healing times of ATP-vesicles–treated wounds were significantly shorter than that of saline-treated wounds on ischemic and nonischemic ears. Histologic study indicated better-developed granular tissue and reepithelial-ization in the ATP-vesicles–treated wounds. The wounds treated by ATP-vesicles exhibited extremely fast granular tissue growth. More CD31 positive cells were seen in the ATP-vesicles–treated wounds. This preliminary study shows that direct intracellular delivery of ATP can accelerate the healing process of skin wounds on ischemic and nonischemic rabbit ears. The extremely fast granular tissue growth was something never seen or reported in the past. PMID:19158531

  15. Pathophysiology of the inner ear after blast injury caused by laser-induced shock wave.

    PubMed

    Niwa, Katsuki; Mizutari, Kunio; Matsui, Toshiyasu; Kurioka, Takaomi; Matsunobu, Takeshi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro; Kobayashi, Yasushi

    2016-08-17

    The ear is the organ that is most sensitive to blast overpressure, and ear damage is most frequently seen after blast exposure. Blast overpressure to the ear results in sensorineural hearing loss, which is untreatable and is often associated with a decline in the quality of life. In this study, we used a rat model to demonstrate the pathophysiological and structural changes in the inner ear that replicate pure sensorineural hearing loss associated with blast injury using laser-induced shock wave (LISW) without any conductive hearing loss. Our results indicate that threshold elevation of the auditory brainstem response (ABR) after blast exposure was primarily caused by outer hair cell dysfunction induced by stereociliary bundle disruption. The bundle disruption pattern was unique; disturbed stereocilia were mostly observed in the outermost row, whereas those in the inner and middle rows stereocilia remained intact. In addition, the ABR examination showed a reduction in wave I amplitude without elevation of the threshold in the lower energy exposure group. This phenomenon was caused by loss of the synaptic ribbon. This type of hearing dysfunction has recently been described as hidden hearing loss caused by cochlear neuropathy, which is associated with tinnitus or hyperacusis.

  16. Treatment of peripheral vestibular dysfunction using photobiomodulation

    NASA Astrophysics Data System (ADS)

    Lee, Min Young; Hyun, Jai-Hwan; Suh, Myung-Whan; Ahn, Jin-Chul; Chung, Phil-Sang; Jung, Jae Yun; Rhee, Chung Ku

    2017-08-01

    Gentamicin, which is still used in modern medicine, is a known vestibular toxic agent, and various degrees of balance problems have been observed after exposure to this pharmacologic agent. Photobiomodulation is a candidate therapy for vertigo due to its ability to reach deep inner ear organs such as the cochlea. Previous reports have suggested that photobiomodulation can improve hearing and cochlea function. However, few studies have examined the effect of photobiomodulation on balance dysfunction. We used a rat model to mimic human vestibulopathy resulting from gentamicin treatment and evaluated the effect of photobiomodulation on vestibular toxicity. Slow harmonic acceleration (SHA) rotating platform testing was used for functional evaluation and both qualitative and quantitative epifluorescence analyses of cupula histopathology were performed. Animals were divided into gentamicin only and gentamicin plus laser treatment groups. Laser treatment was applied to one ear, and function and histopathology were evaluated in both ears. Decreased function was observed in both ears after gentamicin treatment, demonstrated by low gain and no SHA asymmetry. Laser treatment minimized the damage resulting from gentamicin treatment as shown by SHA asymmetry and recovered gain in the treated ear. Histology results reflected the functional results, showing increased hair cell density and epifluorescence intensity in laser-treated cupulae.

  17. Protecting Mammalian Hair Cells from Aminoglycoside-Toxicity: Assessing Phenoxybenzamine's Potential.

    PubMed

    Majumder, Paromita; Moore, Paulette A; Richardson, Guy P; Gale, Jonathan E

    2017-01-01

    Aminoglycosides (AGs) are widely used antibiotics because of their low cost and high efficacy against gram-negative bacterial infection. However, AGs are ototoxic, causing the death of sensory hair cells in the inner ear. Strategies aimed at developing or discovering agents that protect against aminoglycoside ototoxicity have focused on inhibiting apoptosis or more recently, on preventing antibiotic uptake by the hair cells. Recent screens for ototoprotective compounds using the larval zebrafish lateral line identified phenoxybenzamine as a potential protectant for aminoglycoside-induced hair cell death. Here we used live imaging of FM1-43 uptake as a proxy for aminoglycoside entry, combined with hair-cell death assays to evaluate whether phenoxybenzamine can protect mammalian cochlear hair cells from the deleterious effects of the aminoglycoside antibiotic neomycin. We show that phenoxybenzamine can block FM1-43 entry into mammalian hair cells in a reversible and dose-dependent manner, but pre-incubation is required for maximal inhibition of entry. We observed differential effects of phenoxybenzamine on FM1-43 uptake in the two different types of cochlear hair cell in mammals, the outer hair cells (OHCs) and inner hair cells (IHCs). The requirement for pre-incubation and reversibility suggests an intracellular rather than an extracellular site of action for phenoxybenzamine. We also tested the efficacy of phenoxybenzamine as an otoprotective agent. In mouse cochlear explants the hair cell death resulting from 24 h exposure to neomycin was steeply dose-dependent, with 50% cell death occurring at ~230 μM for both IHC and OHC. We used 250 μM neomycin in subsequent hair-cell death assays. At 100 μM with 1 h pre-incubation, phenoxybenzamine conferred significant protection to both IHCs and OHCs, however at higher concentrations phenoxybenzamine itself showed clear signs of ototoxicity and an additive toxic effect when combined with neomycin. These data do not support the use of phenoxybenzamine as a therapeutic agent in mammalian inner ear. Our findings do share parallels with the observations from the zebrafish lateral line model but they also highlight the necessity for validation in the mammalian system and the potential for differential effects on sensory hair cells from different species, in different systems and even between cells in the same organ.

  18. Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation.

    PubMed

    Simon, Alice; Amaro, Maria Inês; Healy, Anne Marie; Cabral, Lucio Mendes; de Sousa, Valeria Pereira

    2016-10-15

    In the present study, in vitro permeation experiments in a Franz diffusion cell were performed using different synthetic polymeric membranes and pig ear skin to evaluate a rivastigmine (RV) transdermal drug delivery system. In vitro-in vivo correlations (IVIVC) were examined to determine the best model membrane. In vitro permeation studies across different synthetic membranes and skin were performed for the Exelon(®) Patch (which contains RV), and the results were compared. Deconvolution of bioavailability data using the Wagner-Nelson method enabled the fraction of RV absorbed to be determined and a point-to-point IVIVC to be established. The synthetic membrane, Strat-M™, showed a RV permeation profile similar to that obtained with pig ear skin (R(2)=0.920). Studies with Strat-M™ resulted in a good and linear IVIVC (R(2)=0.991) when compared with other synthetic membranes that showed R(2) values less than 0.90. The R(2) for pig ear skin was 0.982. Strat-M™ membrane was the only synthetic membrane that adequately simulated skin barrier performance and therefore it can be considered to be a suitable alternative to human or animal skin in evaluating transdermal drug transport, potentially reducing the number of studies requiring human or animal samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. An evaluation of a nurse-led ear care service in primary care: benefits and costs.

    PubMed Central

    Fall, M; Walters, S; Read, S; Deverill, M; Lutman, M; Milner, P; Rodgers, R

    1997-01-01

    BACKGROUND: Nurses trained in ear care provide a new model for the provision of services in general practice, with the aim of cost-effective treatment of minor ear and hearing problems that affect well-being and quality of life. AIM: To compare a prospective observational cohort study measuring health outcomes and resource use for patients with ear or hearing problems treated by nurses trained in ear care with similar patients treated by standard practice. METHOD: A total of 438 Rotherham and 196 Barnsley patients aged 16 years or over received two self-completion questionnaires: questionnaire 1 (Q1) on the day of consultation and questionnaire 2 (Q2) after three weeks. Primary measured outcomes were changes in discomfort and pain; secondary outcomes included the effect on normal life, health status, patient satisfaction, and resources used. RESULTS: After adjusting for differences at Q1, by Q2 there was no statistical evidence of a difference in discomfort and pain reduction, or differential change in health status between areas. Satisfaction with treatment was significantly higher (P = 0.0001) in Rotherham (91%) than in Barnsley (82%). Average total general practitioner (GP) consultations were lower in Rotherham at 0.4 per patient with an average cost of 6.28 Pounds compared with Barnsley at 1.4 per patient and an average cost of 22.53 Pounds (P = 0.04). Barnsley GPs prescribed more drugs per case (6% of total costs compared with 1.5%) and used more systemic antibiotics (P = 0.001). CONCLUSIONS: Nurses trained in ear care reduce costs, GP workload, and the use of systemic antibiotics, while increasing patient satisfaction with care. With understanding and support from GPs, such nurses are an example of how expanded nursing roles bring benefits to general practice. Nurses trained in ear care reduce treatment costs, reduce the use of antibiotics, educate patients in ear care, increase patient satisfaction, and raise ear awareness. PMID:9519514

  20. Red ear syndrome precipitated by a dietary trigger: a case report

    PubMed Central

    2014-01-01

    Introduction Red ear syndrome is a rare condition characterized by episodic attacks of erythema of the ear accompanied by burning ear pain. Symptoms are brought on by touch, exertion, heat or cold, stress, neck movements and washing or brushing of hair. Diagnosis and treatment of this condition are challenging. The case we report here involves a woman whose symptoms were brought on by a dietary trigger: orange juice as well as stress, causing significant physical and psychological morbidity. Avoidance of triggers resulted in symptomatic improvement. Case presentation A 22-year-old Caucasian woman who was a student presented twice to our department with evolving symptoms, the first time with hyperacusis (abnormal sound sensitivity arising from within the auditory system to sounds of moderate volume), intermittent right tinnitus and subjective hearing difficulties. She presented five years later with highly distressing episodes of erythematous ears, which were associated with burning pain around the ear and temporal areas, and intolerance to noise. After keeping a symptom diary, she identified orange juice and stress as triggers of her symptoms. No local head and neck pathology was present. Investigations and imaging were negative. Avoidance of triggers led to great symptomatic improvement. To the best of our knowledge, dietary triggers have not previously been reported as a trigger for this syndrome. This case shows a direct temporal link to a dietary trigger and supports a primary pathogenesis. Recognition and management of primary headache disorder and simple dietary and lifestyle changes brought about symptomatic relief. Conclusion Red ear syndrome is a little-known clinical syndrome of unknown etiology and management. To the best of our knowledge, our present case report is the first to describe primary red ear syndrome triggered by orange juice. Clinical benefit derived from avoidance of this trigger, which is already known to precipitate migraines, gives some insight into the pathogenesis of red ear syndrome. PMID:25303997

  1. Between-Frequency and Between-Ear Gap Detections and Their Relation to Perception of Stop Consonants.

    PubMed

    Mori, Shuji; Oyama, Kazuki; Kikuchi, Yousuke; Mitsudo, Takako; Hirose, Nobuyuki

    2015-01-01

    The objective of this study was to examine the hypothesis that between-channel gap detection, which includes between-frequency and between-ear gap detection, and perception of stop consonants, which is mediated by the length of voice-onset time (VOT), share common mechanisms, namely relative-timing operation in monitoring separate perceptual channels. The authors measured gap detection thresholds and identification functions of /ba/ and /pa/ along VOT in 49 native young adult Japanese listeners. There were three gap detection tasks. In the between-frequency task, the leading and trailing markers differed in terms of center frequency (Fc). The leading marker was a broadband noise of 10 to 20,000 Hz. The trailing marker was a 0.5-octave band-passed noise of 1000-, 2000-, 4000-, or 8000-Hz Fc. In the between-ear task, the two markers were spectrally identical but presented to separate ears. In the within-frequency task, the two spectrally identical markers were presented to the same ear. The /ba/-/pa/ identification functions were obtained in a task in which the listeners were presented synthesized speech stimuli of varying VOTs from 10 to 46 msec and asked to identify them as /ba/ or /pa/. The between-ear gap thresholds were significantly positively correlated with the between-frequency gap thresholds (except those obtained with the trailing marker of 4000-Hz Fc). The between-ear gap thresholds were not significantly correlated with the within-frequency gap thresholds, which were significantly correlated with all the between-frequency gap thresholds. The VOT boundaries and slopes of /ba/-/pa/ identification functions were not significantly correlated with any of these gap thresholds. There was a close relation between the between-ear and between-frequency gap detection, supporting the view that these two types of gap detection share common mechanisms of between-channel gap detection. However, there was no evidence for a relation between the perception of stop consonants and the between-frequency/ear gap detection in native Japanese speakers.

  2. Mastoiditis and facial paralysis as initial manifestations of temporal bone systemic diseases - the significance of the histopathological examination.

    PubMed

    Maniu, Alma Aurelia; Harabagiu, Oana; Damian, Laura Otilia; Ştefănescu, Eugen HoraŢiu; FănuŢă, Bogdan Marius; Cătană, Andreea; Mogoantă, Carmen Aurelia

    2016-01-01

    Several systemic diseases, including granulomatous and infectious processes, tumors, bone disorders, collagen-vascular and other autoimmune diseases may involve the middle ear and temporal bone. These diseases are difficult to diagnose when symptoms mimic acute otomastoiditis. The present report describes our experience with three such cases initially misdiagnosed. Their predominating symptoms were otological with mastoiditis, hearing loss, and subsequently facial nerve palsy. The cases were considered an emergency and the patients underwent tympanomastoidectomy, under the suspicion of otitis media with cholesteatoma, in order to remove a possible abscess and to decompress the facial nerve. The common features were the presence of severe granulation tissue filling the mastoid cavity and middle ear during surgery, without cholesteatoma. The definitive diagnoses was made by means of biopsy of the granulation tissue from the middle ear, revealing granulomatosis with polyangiitis (formerly known as Wegener's granulomatosis) in one case, middle ear tuberculosis and diffuse large B-cell lymphoma respectively. After specific associated therapy facial nerve functions improved, and atypical inflammatory states of the ear resolved. As a group, systemic diseases of the middle ear and temporal bone are uncommon, but aggressive lesions. After analyzing these cases and reviewing the literature, we would like to stress upon the importance of microscopic examination of the affected tissue, required for an accurate diagnosis and effective treatment.

  3. Maize kernel antioxidants and their potential involvement in Fusarium ear rot resistance.

    PubMed

    Picot, Adeline; Atanasova-Pénichon, Vessela; Pons, Sebastien; Marchegay, Gisèle; Barreau, Christian; Pinson-Gadais, Laëtitia; Roucolle, Joël; Daveau, Florie; Caron, Daniel; Richard-Forget, Florence

    2013-04-10

    The potential involvement of antioxidants (α-tocopherol, lutein, zeaxanthin, β-carotene, and ferulic acid) in the resistance of maize varieties to Fusarium ear rot was the focus of this study. These antioxidants were present in all maize kernel stages, indicating that the fumonisin-producing fungi (mainly Fusarium verticillioides and Fusarium proliferatum ) are likely to face them during ear colonization. The effect of these compounds on fumonisin biosynthesis was studied in F. verticillioides liquid cultures. In carotenoid-treated cultures, no inhibitory effect of fumonisin accumulation was observed while a potent inhibitory activity was obtained for sublethal doses of α-tocopherol (0.1 mM) and ferulic acid (1 mM). Using a set of genotypes with moderate to high susceptibility to Fusarium ear rot, ferulic acid was significantly lower in immature kernels of the very susceptible group. Such a relation was nonexistent for tocopherols and carotenoids. Also, ferulic acid in immature kernels ranged from 3 to 8.5 mg/g, i.e., at levels consistent with the in vitro inhibitory concentration. Overall, our data support the fact that ferulic acid may contribute to resistance to Fusarium ear rot and/or fumonisin accumulation.

  4. The inhibitory effect of naringenin on atopic dermatitis induced by DNFB in NC/Nga mice.

    PubMed

    Kim, Tae-Ho; Kim, Gun-Dong; Ahn, Hyun-Jong; Cho, Jeong-Je; Park, Yong Seek; Park, Cheung-Seog

    2013-10-10

    Atopic dermatitis (AD) is a chronic and relapsing inflammatory dermatitis characterized by pruritic and eczematous skin lesions. Here, we investigated the therapeutic effect of the fruit flavonoid naringenin on DNFB induced atopic dermatitis mice model. AD-like skin lesion was induced by repetitive skin contact with DNFB in NC/Nga mice and the effects of the fruit flavonoid naringenin were evaluated on the basis of histopathological findings of skin, ear swelling and cytokine production of CD4(+)T cells. Intraperitoneal injection of naringenin for one week after DNFB challenge significantly lowered ear swelling and improved back skin lesions. In addition, naringenin significantly suppressed production of interferon-gamma (IFN-γ) by activated CD4(+) T cells and serum IgE level. Furthermore, naringenin reduced DNFB-induced infiltration of eosinophils, mast cells, CD4(+) T cells, and CD8(+) T cells in skin lesions. Naringenin may suppress the development of AD-like skin lesions in DNFB-treated NC/Nga mice by reducing IFN-γ production of activated CD4(+) T cells, serum IgE levels and infiltration of immune cells to skin lesion. © 2013.

  5. The MOC reflex during active listening to speech.

    PubMed

    Garinis, Angela C; Glattke, Theodore; Cone, Barbara K

    2011-10-01

    The purpose of this study was to test the hypothesis that active listening to speech would increase medial olivocochlear (MOC) efferent activity for the right vs. the left ear. Click-evoked otoacoustic emissions (CEOAEs) were evoked by 60-dB p.e. SPL clicks in 13 normally hearing adults in 4 test conditions for each ear: (a) in quiet; (b) with 60-dB SPL contralateral broadband noise; (c) with words embedded (at -3-dB signal-to-noise ratio [SNR]) in 60-dB SPL contralateral noise during which listeners directed attention to the words; and (d) for the same SNR as in the 3rd condition, with words played backwards. There was greater suppression during active listening compared with passive listening that was apparent in the latency range of 6- to 18-ms poststimulus onset. Ear differences in CEOAE amplitude were observed in all conditions, with right-ear amplitudes larger than those for the left. The absolute difference between CEOAE amplitude in quiet and with contralateral noise, a metric of suppression, was equivalent for right and left ears. When the amplitude differences were normalized, suppression was greater for noise presented to the right and the effect measured for a probe in the left ear. The findings support the theory that cortical mechanisms involved in listening to speech affect cochlear function through the MOC efferent system.

  6. Dichotic listening during forced-attention in a patient with left hemispherectomy.

    PubMed

    Wester, K; Hugdahl, K; Asbjørnsen, A

    1991-02-01

    A young left-handed girl with an extensive posttraumatic lesion in the left hemisphere was tested with dichotic listening (DL) under three different attentional instructions. The major aim of the study was to evaluate a structural vs attentional explanation for dichotic listening. As both her expressive and receptive language functions were intact after the lesion, it was assumed that the right hemisphere was the language-dominant one. In the free-report condition, she was free to divert attention to and to report from both ear inputs. In the forced-right condition, she was instructed to attend to and report only from the right ear input. In the forced-left condition, she was instructed to attend to and to report only from the left-ear input. Her performance was compared with data from a previously collected sample of normal left-handed females. Analysis showed that the patient, in contrast to the normal sample, revealed a complete right-ear extinction phenomenon, irrespective of attentional instruction. Furthermore, she showed superior correct reports from the left ear, compared with those of the normal sample, also irrespective of attentional instruction. It is concluded that these results support a structural, rather than attentional explanation for the right-ear advantage (REA) typically observed in dichotic listening. The utility of validating the dichotic listening technique on patients with brain lesions is discussed.

  7. Comparative acoustic performance and mechanical properties of silk membranes for the repair of chronic tympanic membrane perforations.

    PubMed

    Allardyce, Benjamin J; Rajkhowa, Rangam; Dilley, Rodney J; Xie, Zhigang; Campbell, Luke; Keating, Adrian; Atlas, Marcus D; von Unge, Magnus; Wang, Xungai

    2016-12-01

    The acoustic and mechanical properties of silk membranes of different thicknesses were tested to determine their suitability as a repair material for tympanic membrane perforations. Membranes of different thickness (10-100μm) were tested to determine their frequency response and their resistance to pressure loads in a simulated ear canal model. Their mechanical rigidity to pressure loads was confirmed by tensile testing. These membranes were tested alongside animal cartilage, currently the strongest available myringoplasty graft as well as paper, which is commonly used for simpler procedures. Silk membranes showed resonant frequencies within the human hearing range and a higher vibrational amplitude than cartilage, suggesting that silk may offer good acoustic energy transfer characteristics. Silk membranes were also highly resistant to simulated pressure changes in the middle ear, suggesting they can resist retraction, a common cause of graft failure resulting from chronic negative pressures in the middle ear. Part of this strength can be explained by the substantially higher modulus of silk films compared with cartilage. This allows for the production of films that are much thinner than cartilage, with superior acoustic properties, but that still provide the same level of mechanical support as thicker cartilage. Together, these in vitro results suggest that silk membranes may provide good hearing outcomes while offering similar levels of mechanical support to the reconstructed middle ear. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Neural and receptor cochlear potentials obtained by transtympanic electrocochleography in auditory neuropathy.

    PubMed

    Santarelli, Rosamaria; Starr, Arnold; Michalewski, Henry J; Arslan, Edoardo

    2008-05-01

    Transtympanic electrocochleography (ECochG) was recorded bilaterally in children and adults with auditory neuropathy (AN) to evaluate receptor and neural generators. Test stimuli were clicks from 60 to 120dB p.e. SPL. Measures obtained from eight AN subjects were compared to 16 normally hearing children. Receptor cochlear microphonics (CMs) in AN were of normal or enhanced amplitude. Neural compound action potentials (CAPs) and receptor summating potentials (SPs) were identified in five AN ears. ECochG potentials in those ears without CAPs were of negative polarity and of normal or prolonged duration. We used adaptation to rapid stimulus rates to distinguish whether the generators of the negative potentials were of neural or receptor origin. Adaptation in controls resulted in amplitude reduction of CAP twice that of SP without affecting the duration of ECochG potentials. In seven AN ears without CAP and with prolonged negative potential, adaptation was accompanied by reduction of both amplitude and duration of the negative potential to control values consistent with neural generation. In four ears without CAP and with normal duration potentials, adaptation was without effect consistent with receptor generation. In five AN ears with CAP, there was reduction in amplitude of CAP and SP as controls but with a significant decrease in response duration. Three patterns of cochlear potentials were identified in AN: (1) presence of receptor SP without CAP consistent with pre-synaptic disorder of inner hair cells; (2) presence of both SP and CAP consistent with post-synaptic disorder of proximal auditory nerve; (3) presence of prolonged neural potentials without a CAP consistent with post-synaptic disorder of nerve terminals. Cochlear potential measures may identify pre- and post-synaptic disorders of inner hair cells and auditory nerves in AN.

  9. 17β-Estradiol reduces nitric oxide production in the Guinea pig cochlea.

    PubMed

    Heinrich, U-R; Brieger, J; Striedter, C; Fischer, I; Schmidtmann, I; Li, H; Mann, W J; Helling, K

    2013-11-01

    Intense noise exposure and the application of ototoxic substances result in increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as nitric oxide (NO). In order to reduce the free NO concentration in the inner ear under pathological conditions, the use of natural cytoprotective substances such as 17β-estradiol is a promising therapeutic concept. In male guinea pigs the organ of Corti and the lateral wall were isolated from the cochlea and afterwards incubated for 6 h in cell-culture medium. 17β-Estradiol was adjusted in 2 concentrations to organ cultures of the right ears (12 animals per concentration). The left ears were used as controls. The NO production was quantified in the supernatant by chemiluminescence after incubation. Depending on the concentration, 17β-estradiol reduced NO in the organ of Corti by 43% (p=0.015) and 46% (p=0.026), respectively. In the lateral wall, the NO concentration was reduced by 24%, but without statistical significance (p=0.86). However, when analyzing the association between the 2 cochlear regions for each animal separately, the NO concentrations were lower in nearly all 17β-estradiol-treated ears compared to controls. In order to demonstrate the flexibility of the organ culture system, the NO donor DETA NONOate and the nitric oxide synthase inhibitors L-NAME and L-NMMA were applied. The electron microscopic analysis revealed a well-preserved cochlear cell morphology after incubation. The ability of 17β-estradiol to influence the NO production preferentially in the organ of Corti might offer new therapeutic perspectives for inner ear protection. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Vezatin, an integral membrane protein of adherens junctions, is required for the sound resilience of cochlear hair cells

    PubMed Central

    Bahloul, Amel; Simmler, Marie-Christine; Michel, Vincent; Leibovici, Michel; Perfettini, Isabelle; Roux, Isabelle; Weil, Dominique; Nouaille, Sylvie; Zuo, Jian; Zadro, Cristina; Licastro, Danilo; Gasparini, Paolo; Avan, Paul; Hardelin, Jean-Pierre; Petit, Christine

    2009-01-01

    Loud sound exposure is a significant cause of hearing loss worldwide. We asked whether a lack of vezatin, an ubiquitous adherens junction protein, could result in noise-induced hearing loss. Conditional mutant mice bearing non-functional vezatin alleles only in the sensory cells of the inner ear (hair cells) indeed exhibited irreversible hearing loss after only one minute exposure to a 105 dB broadband sound. In addition, mutant mice spontaneously underwent late onset progressive hearing loss and vestibular dysfunction related to substantial hair cell death. We establish that vezatin is an integral membrane protein with two adjacent transmembrane domains, and cytoplasmic N- and C-terminal regions. Late recruitment of vezatin at junctions between MDCKII cells indicates that the protein does not play a role in the formation of junctions, but rather participates in their stability. Moreover, we show that vezatin directly interacts with radixin in its actin-binding conformation. Accordingly, we provide evidence that vezatin associates with actin filaments at cell–cell junctions. Our results emphasize the overlooked role of the junctions between hair cells and their supporting cells in the auditory epithelium resilience to sound trauma. PMID:20049712

  11. Gene therapy in the inner ear using adenovirus vectors.

    PubMed

    Husseman, Jacob; Raphael, Yehoash

    2009-01-01

    Therapies for the protection and regeneration of auditory hair cells are of great interest given the significant monetary and lifestyle impact of hearing loss. The past decade has seen tremendous advances in the use of adenoviral vectors to achieve these aims. Preliminary data demonstrated the functional capacity of this technique as adenoviral-induced expression of neurotrophic and growth factors protected hair cells and spiral ganglion neurons from ototoxic insults. Subsequent efforts confirmed the feasibility of adenoviral transfection of cells in the auditory neuroepithelium via cochleostomy into the scala media. Most recently, efforts have focused on regeneration of depleted hair cells. Mammalian hearing loss is generally considered a permanent insult as the auditory epithelium lacks a basal layer capable of producing new hair cells. Recently, the transcription factor Atoh1 has been found to play a critical role in hair cell differentiation. Adenoviral-mediated overexpression of Atoh1 in culture and in vivo have shown the ability to regenerate auditory and vestibular hair cells by causing transdifferentiation of neighboring epithelial-supporting cells. Functional recovery of both the auditory and vestibular systems has been documented following adenoviral induced Atoh1 overexpression. Copyright (c) 2009 S. Karger AG, Basel.

  12. Assessment of microcirculation dynamics during cutaneous wound healing phases in vivo using optical microangiography

    PubMed Central

    Yousefi, Siavash; Qin, Jia; Dziennis, Suzan; Wang, Ruikang K.

    2014-01-01

    Abstract. Cutaneous wound healing consists of multiple overlapping phases starting with blood coagulation following incision of blood vessels. We utilized label-free optical coherence tomography and optical microangiography (OMAG) to noninvasively monitor healing process and dynamics of microcirculation system in a mouse ear pinna wound model. Mouse ear pinna is composed of two layers of skin separated by a layer of cartilage and because its total thickness is around 500 μm, it can be utilized as an ideal model for optical imaging techniques. These skin layers are identical to human skin structure except for sweat ducts and glands. Microcirculatory system responds to the wound injury by recruiting collateral vessels to supply blood flow to hypoxic region. During the inflammatory phase, lymphatic vessels play an important role in the immune response of the tissue and clearing waste from interstitial fluid. In the final phase of wound healing, tissue maturation, and remodeling, the wound area is fully closed while blood vessels mature to support the tissue cells. We show that using OMAG technology allows noninvasive and label-free monitoring and imaging each phase of wound healing that can be used to replace invasive tissue sample histology and immunochemistry technologies. PMID:25036212

  13. Live-cell imaging of actin dynamics reveals mechanisms of stereocilia length regulation in the inner ear

    PubMed Central

    Drummond, Meghan C.; Barzik, Melanie; Bird, Jonathan E.; Zhang, Duan-Sun; Lechene, Claude P.; Corey, David P.; Cunningham, Lisa L.; Friedman, Thomas B.

    2015-01-01

    The maintenance of sensory hair cell stereocilia is critical for lifelong hearing; however, mechanisms of structural homeostasis remain poorly understood. Conflicting models propose that stereocilia F-actin cores are either continually renewed every 24–48 h via a treadmill or are stable, exceptionally long-lived structures. Here to distinguish between these models, we perform an unbiased survey of stereocilia actin dynamics in more than 500 utricle hair cells. Live-imaging EGFP-β-actin or dendra2-β-actin reveal stable F-actin cores with turnover and elongation restricted to stereocilia tips. Fixed-cell microscopy of wild-type and mutant β-actin demonstrates that incorporation of actin monomers into filaments is required for localization to stereocilia tips. Multi-isotope imaging mass spectrometry and live imaging of single differentiating hair cells capture stereociliogenesis and explain uniform incorporation of 15N-labelled protein and EGFP-β-actin into nascent stereocilia. Collectively, our analyses support a model in which stereocilia actin cores are stable structures that incorporate new F-actin only at the distal tips. PMID:25898120

  14. Damage and Recovery of Hair Cells in Fish Canal (But Not Superficial) Neuromasts after Gentamicin Exposure

    NASA Technical Reports Server (NTRS)

    Song, Jiakun; Yan, Hong Young; Popper, Arthur N.

    1995-01-01

    Recent evidence demonstrating the presence of two types of sensory hair cells in the ear of a telcost fish (Astronotus ocellatus, the oscar) indicates that hair cell heterogeneity may exist not only in amniotic vertebrates but also in anamniotes. Here we report that a similar heterogeneity between hair cell types may also occur in the other mechanosensory organ of the oscar, the lateral line. We exposed oscars to the aminoglycoside (ototoxic) antibiotic gentamicin sulfate and found damaged sensory hair cells in one class of the lateral line receptors, the canal neuromasts, but not in the other class, the superficial neuromasts. This effect was not due to the canal environment. Moreover, new ciliary bundles on hair cells of the canal neuromasts were found after, and during, gentamicin exposure. The pattern of hair cell destruction and recovery in canal neuromasts is similar to that of type 1-like hair cells found in the striolar region of the utricle and lagena of the oscar after gentamicin treatment. These results suggest that the hair cells in the canal and superficial neuromasts may be similar to type 1-like and type 2 hair cells, respectively, in the fish ear.

  15. Optical-fiber-coupled inferometric measurement of tympanic membrane temperature: a new diagnostic tool for acute otitis media

    NASA Astrophysics Data System (ADS)

    DeRowe, Ari; Ophir, Eyal; Sade, Sharon; Fishman, Gadi; Ophir, Dov; Grankin, Mila; Katzir, Abraham

    1998-07-01

    A novel infrared (IR) transparent optical fiber coupled to a hand held otoscope and a radiometer was constructed and used to measure the temperatures of the tympanic membrane (TM) and to distinguish between diseased and healthy middle ears. A greater temperature difference between TM readings was found when Acute Otitis Media (AOM) existed in one of the ears examined. This supports the hypothesis that acute inflammation of the middle ear will result in elevated local temperature when measured in such a way that the reading is taken only from the TM without interference of the external canal. The use of an optical fiber enabled temperature measurements of the TM with high spatial resolution eliminating the external ear canal interference. A small patient population was examined and the initial results were statistically significant. In the hands of the primary care physician, this tool would prevent misdiagnosis of AOM preventing indiscriminate use of antibiotics and avoiding complications by early diagnosis.

  16. Frequency specificity and left-ear advantage of medial olivocochlear efferent modulation: a study based on stimulus frequency otoacoustic emission.

    PubMed

    Xing, Dongjia; Gong, Qin

    2017-09-06

    The medial olivocochlear (MOC) bundle is an auditory nucleus that projects efferent nerve fibers to the outer hair cells (OHCs) for synaptic innervation. The aim of the present study was to investigate the possible existence of frequency and ear specificity in MOC efferent modulation, as well as how MOC activation influences cochlear tuning. Stimulus frequency otoacoustic emissions (SFOAEs) were used to study MOC efferent modulation. Therefore, the current experiment was designed to compare the degree of SFOAE suppression in the both ears of 20 individuals at 1, 2, 4, and 8 kHz. We also compared changes in Q10 values of SFOAE suppression tuning curves at 1, 2, and 4 kHz under contralateral acoustic stimulation (CAS) and no-CAS conditions. We observed a significant reduction in SFOAE magnitude in the CAS condition compared with the no-CAS condition at 1 and 2 kHz in the left ear. A significant difference in CAS suppression was also found between the left and right ears at 1 and 2 kHz, with larger CAS suppression in the left ear. CAS further produced a statistically significant increase in the Q10 value at 1 kHz and a significant reduction in Q10 values at 2 and 4 kHz. These findings suggest a left-ear advantage in terms of CAS-induced MOC efferent SFOAE suppression, with larger MOC efferent modulation for lower frequencies, and cochlear tuning was sharpened by means of MOC activation at lower frequencies and broadened at higher frequencies.

  17. Cisplatin and Aminoglycoside Antibiotics: Hearing Loss and Its Prevention

    PubMed Central

    Schacht, Jochen; Talaska, Andra E.; Rybak, Leonard P.

    2013-01-01

    This review introduces the pathology of aminoglycoside antibiotic and the cisplatin chemotherapy classes of drugs, discusses oxidative stress in the inner ear as a primary trigger for cell damage, and delineates the ensuing cell death pathways. Among potentially ototoxic (damaging the inner ear) therapeutics, the platinum-based anti-cancer drugs and the aminoglycoside antibiotics are of critical clinical importance. Both drugs cause sensorineural hearing loss in patients, a side effect that can be reproduced in experimental animals. Hearing loss is reflected primarily in damage to outer hair cells, beginning in the basal turn of the cochlea. In addition, aminoglycosides might affect the vestibular system while cisplatin seems to have a much lower likelihood to do so. Finally, based on an understanding the mechanisms of ototoxicity pharmaceutical ways of protection of the cochlea are presented PMID:23045231

  18. The Mechanosensory Structure of the Hair Cell Requires Clarin-1, a Protein Encoded by Usher Syndrome III Causative Gene

    PubMed Central

    Geng, Ruishuang; Melki, Sami; Chen, Daniel H.-C.; Tian, Guilian; Furness, David; Oshima-Takago, Tomoko; Neef, Jakob; Moser, Tobias; Askew, Charles; Horwitz, Geoff; Holt, Jeffrey; Imanishi, Yoshikazu; Alagramam, Kumar N.

    2012-01-01

    Mutation in the clarin-1 gene results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 (Clrn1−/−) gene show loss of hair cell function and a possible defect in ribbon synapse. We investigated the role of clarin-1 using various in vitro and in vivo approaches. We show by immunohistochemistry and patch-clamp recordings of Ca2+ currents and membrane capacitance from IHCs that clarin-1 is not essential for formation or function of ribbon synapse. However, reduced cochlear microphonic potentials, FM1-43 loading and transduction currents pointed to diminished cochlear hair bundle function in Clrn1−/− mice. Electron microscopy of cochlear hair cells revealed loss of some tall stereocilia and gaps in the v-shaped bundle, although tip-links and staircase arrangement of stereocilia were not primarily affected by Clrn1−/− mutation. Human clarin-1 protein expressed in transfected mouse cochlear hair cells localized to the bundle; however, the pathogenic variant, p.N48K, failed to localize to the bundle. The mouse model generated to study the in vivo consequence of p. N48K in clarin-1 (Clrn1N48K) supports our in vitro and Clrn1−/− mouse data and the conclusion that CLRN1 is an essential hair bundle protein. Further, the ear phenotype in the Clrn1N48K mouse suggests that it is a valuable model for ear disease in CLRN1N48K, the most prevalent Usher III mutation in North America. PMID:22787034

  19. Aural symptoms in patients with temporomandibular joint disorders: multiple frequency tympanometry provides objective evidence of changes in middle ear impedance.

    PubMed

    Riga, Maria; Xenellis, John; Peraki, Eleni; Ferekidou, Elisa; Korres, Stavros

    2010-12-01

    The association of temporomandibular joint (TMJ) disorders with aural symptoms, such as tinnitus, otic fullness, and subjective decrease of hearing acuity, is a well-established clinical observation. Although several hypotheses have been made about the otic-conductive origin of these complaints, conventional 226-Hz tympanometry has failed to demonstrate any middle ear abnormalities. The aim of this study was to evaluate patients with TMJ disorders with multiple frequency tympanometry (MFT). Prospective clinical study. Outpatient clinic. The population of this study consisted of 40 patients with unilateral TMJ disorders diagnosed for longer than 1 month. After verifying that there were no abnormal otoscopic findings, 226-Hz tympanometry, conventional pure-tone audiometry, brainstem auditory evoked potentials, and MFT were performed. Resonant frequency (RF) values. With the exception of MFT, no abnormal audiologic findings were revealed. The ear ipsilateral to the lesion demonstrated significantly higher (p = 0.002) RF values in comparison to the contralateral ear. The difference in RF values was more obvious in patients aged 45 years or younger. The results of this study imply an increase in the stiffness of the middle ear, which has not been detected by conventional tympanometry. This represents the first concrete documentation of minor alterations in the conductive properties of the middle ear and seems to support the various hypotheses on the middle-ear origin of aural complaints in patients with TMJ disorders. Further studies are needed before a clear insight on the presumably multifactorial pathophysiology of these complaints can finally be reached.

  20. The Boron Efflux Transporter ROTTEN EAR Is Required for Maize Inflorescence Development and Fertility[C][W][OPEN

    PubMed Central

    Chatterjee, Mithu; Tabi, Zara; Galli, Mary; Malcomber, Simon; Buck, Amy; Muszynski, Michael; Gallavotti, Andrea

    2014-01-01

    Although boron has a relatively low natural abundance, it is an essential plant micronutrient. Boron deficiencies cause major crop losses in several areas of the world, affecting reproduction and yield in diverse plant species. Despite the importance of boron in crop productivity, surprisingly little is known about its effects on developing reproductive organs. We isolated a maize (Zea mays) mutant, called rotten ear (rte), that shows distinct defects in vegetative and reproductive development, eventually causing widespread sterility in its inflorescences, the tassel and the ear. Positional cloning revealed that rte encodes a membrane-localized boron efflux transporter, co-orthologous to the Arabidopsis thaliana BOR1 protein. Depending on the availability of boron in the soil, rte plants show a wide range of phenotypic defects that can be fully rescued by supplementing the soil with exogenous boric acid, indicating that rte is crucial for boron transport into aerial tissues. rte is expressed in cells surrounding the xylem in both vegetative and reproductive tissues and is required for meristem activity and organ development. We show that low boron supply to the inflorescences results in widespread defects in cell and cell wall integrity, highlighting the structural importance of boron in the formation of fully fertile reproductive organs. PMID:25035400

  1. Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia

    NASA Technical Reports Server (NTRS)

    Fritzsch, Bernd

    2003-01-01

    The molecular and cellular origin of the primary neurons of the inner ear, the vestibular and spiral neurons, is reviewed including how they connect to the specific sensory epithelia and what the molecular nature of their survival is. Primary neurons of the ear depend on a single basic Helix-Loop-Helix (bHLH) protein for their formation, neurogenin 1 (ngn1). An immediate downstream gene is the bHLH gene neuronal differentiation (NeuroD). Targeted null mutations of ngn1 results in absence of primary neuron formation; targeted null mutation of NeuroD results in loss of almost all spiral and many vestibular neurons. NeuroD and a later expressed gene, Brn3a, play a role in pathfinding to and within sensory epithelia. The molecular nature of this pathfinding property is unknown. Reduction of hair cells in ngn1 null mutations suggests a clonal relationship with primary neurons. This relationship may play some role in specifying the identity of hair cells and the primary neurons that connect with them. Primary neuron neurites growth to sensory epithelia is initially independent of trophic factors released from developing sensory epithelia, but becomes rapidly dependent on those factors. Null mutations of specific neurotrophic factors lose distinct primary neuron populations which undergo rapid embryonic cell death.

  2. Concise Review: Translating Regenerative Biology into Clinically Relevant Therapies: Are We on the Right Path?

    PubMed Central

    2017-01-01

    Abstract Despite approaches in regenerative medicine using stem cells, bio‐engineered scaffolds, and targeted drug delivery to enhance human tissue repair, clinicians remain unable to regenerate large‐scale, multi‐tissue defects in situ. The study of regenerative biology using mammalian models of complex tissue regeneration offers an opportunity to discover key factors that stimulate a regenerative rather than fibrotic response to injury. For example, although primates and rodents can regenerate their distal digit tips, they heal more proximal amputations with scar tissue. Rabbits and African spiny mice re‐grow tissue to fill large musculoskeletal defects through their ear pinna, while other mammals fail to regenerate identical defects and instead heal ear holes through fibrotic repair. This Review explores the utility of these comparative healing models using the spiny mouse ear pinna and the mouse digit tip to consider how mechanistic insight into reparative regeneration might serve to advance regenerative medicine. Specifically, we consider how inflammation and immunity, extracellular matrix composition, and controlled cell proliferation intersect to establish a pro‐regenerative microenvironment in response to injuries. Understanding how some mammals naturally regenerate complex tissue can provide a blueprint for how we might manipulate the injury microenvironment to enhance regenerative abilities in humans. Stem Cells Translational Medicine 2018;7:220–231 PMID:29271610

  3. No effect of prolonged pulsed high frequency ultrasound imaging of the basilar membrane on cochlear function or hair cell survival found in an initial study.

    PubMed

    Landry, Thomas G; Bance, Manohar L; Adamson, Robert B; Brown, Jeremy A

    2018-06-01

    Miniature high frequency ultrasound devices show promise as tools for clinical middle ear and basal cochlea imaging and vibrometry. However, before clinical use it is important to verify that the ultrasound exposure does not damage the cochlea. In this initial study, electrophysiological responses of the cochlea were measured for a range of stimulus frequencies in both ears of anesthetized chinchillas, before and after exposing the organ of Corti region of one ear to pulsed focused ultrasound for 30 min. Measurements were again taken after an 11 day survival period. Cochlear tissue was examined with a confocal microscope for signs of damage to the cochlear hair cells. No significant change in response thresholds due to exposure was found, and no signs of ultrasound-induced tissue damage were observed, although one animal (out of ten) did have a region of extensive tissue damage in the exposed cochlea. However, after further analysis this was concluded to be not likely a result of the ultrasound exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Tauroursodeoxycholic acid attenuates gentamicin-induced cochlear hair cell death in vitro.

    PubMed

    Jia, Zhanwei; He, Qiang; Shan, Chunguang; Li, Fengyi

    2018-09-15

    Gentamycin is one of the most clinically used aminoglycoside antibiotics which induce intrinsic apoptosis of hair cells. Tauroursodeoxycholic acid (TUDCA) is known as safe cell-protective agent in disorders associated with apoptosis. We aimed to investigate the protective effects of TUDCA against gentamicin-induced ototoxicity. House Ear Institute-Organ of Corti 1(HEI-OC1) cells and explanted cochlear tissue were treated with gentamicin and TUDCA, followed by serial analyses including cell viability assay, hair cell staining, qPCR, ELISA and western blotting to determine the cell damage by the parameters relevant to cell apoptosis and endoplasmic reticulum stress. TUDCA significantly attenuated gentamicin-induced cell damage in cultured HEI-OC1 cells and explanted cochlear hair cells. TUDCA alleviated gentamicin-induced cell apoptosis, supported by the decreased Bax/Bcl2 ratio compared with that of gentamicin treated alone. TUDCA decreased gentamicin-induced nitric oxide production and protein nitration in both models. In addition, TUDCA suppressed gentamicin-induced endoplasmic reticulum stress as reflected by inversing the expression levels of Binding immunoglobulin protein (Bip), CCAAT/-enhancer-binding protein homologous protein (CHOP) and Caspase 3. TUDCA attenuated gentamicin-induced hair cell death by inhibiting protein nitration activation and ER stress, providing new insights into the new potential therapies for sensorineural deafness. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Beyond generalized hair cells: Molecular cues for hair cell types

    PubMed Central

    Jahan, Israt; Pan, Ning; Kersigo, Jennifer; Fritzsch, Bernd

    2012-01-01

    Basic helix-loop-helix (bHLH) transcription factors (TFs) are crucial for inner ear neurosensory development. The proneural TF Atoh1 regulates the differentiation of hair cells (HCs) whereas Neurog1 and Neurod1 regulate specification and differentiation of neurons, respectively, but also affect HC development. Expression of Delta and Jagged ligands in nascent HCs and Notch receptors in supporting cells induce supporting cell differentiation through the regulation of neurogenic bHLH TFs (such as Hes1, Hes5) and suppression of limited Atoh1 expression. In sensorineural hearing loss, HCs are lost followed by supporting cells and progressive degeneration of neurons, at least in rodents. Regaining complete hearing may require reconstituting the organ of Corti (OC) from scratch, including the two types of HCs, inner (IHC) and outer (OHC) hair cells with the precise sorting of two types of afferent (type I and II) and efferent (lateral, LOC and medial, MOC olivo-cochlear) innervation. We review effects of bHLH TF dosage and their cross-regulation to differentiate HC types in the OC. We categorize findings of specific gene expressions in HCs: 1. as markers without meaning for the regeneration task, 2. as stabilizers who are needed to maintain or complete differentiation, and 3. as decision making genes, expressed and acting early enough to be useful in this process. Only one TF has been characterized that fits the last aspect: Atoh1. We propose that temporal and intensity variations of Atoh1 are naturally modulated to differentiate specific types of HCs. Importantly, the molecular means to modify the Atoh1 expression are at least partially understood and can be readily implemented in the attempts to regenerate specific types of HCs. PMID:23201032

  6. Microgravity in the STS-29 space shuttle discovery affected the vestibular system of chick embryos

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Martin, D.; Jones, T.; Vellinger, J.; Deuser, M.; Hester, P.; Hullinger, R.

    1996-01-01

    Out of 32 embryos flown (16 @ E2 + 16 @ E9) for 5 days, 16 survived. All sixteen E2 were dead at landing. Eight were opened and eight were incubated at 1.0G. Autopsy showed that 4 E2 survived over 24 hours in space. Eight E14 hatched without anatomical malformations, and 8 E14 were fixed. The height of the macular epithelia was 31 mu m (mean) in control and 26 mu m in flight chicks. The cross-sectional area of macular nuclei of control was 17 mu m(2) for hair cells and 14 mu m(2) in supporting cells. In flight, cross-sectional area was 17 mu m(2) in hair cells and 15 mu m(2) in supporting cells (n=250). The shape factor of cartilage cells (1.0 = perfect circle) between control (mean = 0.70) and flight (mean = 0.72), and the area of cartilaginous cells between controls (mean = 9 mu m(2)) and flight (mean = 9 mu m(2)) did not differ (n=300). The nuclei of support cells were closer to the basement membrane in flight than in control chicks. The immunoreactivity of otoconia with anti keratan, fibronectin or chrondroitin sulfate was not different between flight and control ears. There were more afferent fibers inside the macular epithelia of flight (p<0.05) than control. Three of 8 flight animals had elevated vestibular thresholds (VT), with normal mean response amplitudes and latencies. Modified afferent innervation patterns requiring weeks to compensate are sufficient to elevate VT, and should be investigated further. Other reversible (sublethal) microgravity effects on sensory epithelia (vacuoles, swelling, etc) require quantification.

  7. Characterization of the Transcriptomes of Lgr5+ Hair Cell Progenitors and Lgr5- Supporting Cells in the Mouse Cochlea.

    PubMed

    Cheng, Cheng; Guo, Luo; Lu, Ling; Xu, Xiaochen; Zhang, ShaSha; Gao, Junyan; Waqas, Muhammad; Zhu, Chengwen; Chen, Yan; Zhang, Xiaoli; Xuan, Chuanying; Gao, Xia; Tang, Mingliang; Chen, Fangyi; Shi, Haibo; Li, Huawei; Chai, Renjie

    2017-01-01

    Cochlear supporting cells (SCs) have been shown to be a promising resource for hair cell (HC) regeneration in the neonatal mouse cochlea. Previous studies have reported that Lgr5+ SCs can regenerate HCs both in vitro and in vivo and thus are considered to be inner ear progenitor cells. Lgr5+ progenitors are able to regenerate more HCs than Lgr5- SCs, and it is important to understand the mechanism behind the proliferation and HC regeneration of these progenitors. Here, we isolated Lgr5+ progenitors and Lgr5- SCs from Lgr5-EGFP-CreERT2/Sox2-CreERT2/Rosa26-tdTomato mice via flow cytometry. As expected, we found that Lgr5+ progenitors had significantly higher proliferation and HC regeneration ability than Lgr5- SCs. Next, we performed RNA-Seq to determine the gene expression profiles of Lgr5+ progenitors and Lgr5- SCs. We analyzed the genes that were enriched and differentially expressed in Lgr5+ progenitors and Lgr5- SCs, and we found 8 cell cycle genes, 9 transcription factors, and 24 cell signaling pathway genes that were uniquely expressed in one population but not the other. Last, we made a protein-protein interaction network to further analyze the role of these differentially expressed genes. In conclusion, we present a set of genes that might regulate the proliferation and HC regeneration ability of Lgr5+ progenitors, and these might serve as potential new therapeutic targets for HC regeneration.

  8. Biotin status affects nickel allergy via regulation of interleukin-1beta production in mice.

    PubMed

    Kuroishi, Toshinobu; Kinbara, Masayuki; Sato, Naoki; Tanaka, Yukinori; Nagai, Yasuhiro; Iwakura, Yoichiro; Endo, Yasuo; Sugawara, Shunji

    2009-05-01

    Biotin, a water-soluble B complex vitamin, is possibly involved in chronic inflammatory diseases, although the detailed mechanisms are unclear. In this study, we investigated the effects of biotin status on nickel (Ni) allergy in mice. Mice were fed a basal or biotin-deficient (BD) diet for 8 wk and sensitized with an intraperitoneal injection of NiCl(2) and lipopolysaccharide. Ten days after sensitization, NiCl(2) was intradermally injected into pinnas and ear swelling was measured. For in vitro analysis, we cultured a murine macrophage cell line, J774.1, under a biotin-sufficient (C, meaning control) or BD condition for 4 wk and analyzed interleukin (IL)-1 production. Significantly higher ear swelling was induced in BD mice than C mice. Adaptive transfer of splenocytes from both C and BD mice induced Ni allergy in unsensitized mice. Regardless of donor mice, ear swelling was significantly higher in BD recipient mice than C recipient mice. Ni allergy was not induced in either C or BD IL-1(-/-) mice. Splenocytes from BD mice produced a significantly higher amount of IL-1beta than those from C mice. Production and mRNA expression of IL-1beta were significantly higher in BD J774.1 cells than in C cells. Biotin supplementation inhibited the augmentation of IL-1beta production in vitro. In vivo supplementation of biotin in drinking water dose-dependently decreased ear swelling in C and BD mice. These results indicate that biotin status affects Ni allergy in the elicitation phase via the upregulation of IL-1beta production in mice, suggesting that biotin supplementation may have therapeutic effects on human metal allergy.

  9. The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15.

    PubMed

    Ahmed, Zubair M; Goodyear, Richard; Riazuddin, Saima; Lagziel, Ayala; Legan, P Kevin; Behra, Martine; Burgess, Shawn M; Lilley, Kathryn S; Wilcox, Edward R; Riazuddin, Sheikh; Griffith, Andrew J; Frolenkov, Gregory I; Belyantseva, Inna A; Richardson, Guy P; Friedman, Thomas B

    2006-06-28

    Sound and acceleration are detected by hair bundles, mechanosensory structures located at the apical pole of hair cells in the inner ear. The different elements of the hair bundle, the stereocilia and a kinocilium, are interconnected by a variety of link types. One of these links, the tip link, connects the top of a shorter stereocilium with the lateral membrane of an adjacent taller stereocilium and may gate the mechanotransducer channel of the hair cell. Mass spectrometric and Western blot analyses identify the tip-link antigen, a hitherto unidentified antigen specifically associated with the tip and kinocilial links of sensory hair bundles in the inner ear and the ciliary calyx of photoreceptors in the eye, as an avian ortholog of human protocadherin-15, a product of the gene for the deaf/blindness Usher syndrome type 1F/DFNB23 locus. Multiple protocadherin-15 transcripts are shown to be expressed in the mouse inner ear, and these define four major isoform classes, two with entirely novel, previously unidentified cytoplasmic domains. Antibodies to the three cytoplasmic domain-containing isoform classes reveal that each has a different spatiotemporal expression pattern in the developing and mature inner ear. Two isoforms are distributed in a manner compatible for association with the tip-link complex. An isoform located at the tips of stereocilia is sensitive to calcium chelation and proteolysis with subtilisin and reappears at the tips of stereocilia as transduction recovers after the removal of calcium chelators. Protocadherin-15 is therefore associated with the tip-link complex and may be an integral component of this structure and/or required for its formation.

  10. Identification of a structural constituent and one possible site of postembryonic formation of a teleost otolithic membrane

    PubMed Central

    Davis, James G.; Burns, Frank R.; Navaratnam, Dasakumar; Lee, A. Masaji; Ichimiya, Shingo; Oberholtzer, J. Carl; Greene, Mark I.

    1997-01-01

    A gelatinous otolithic membrane (OM) couples a single calcified otolith to the sensory epithelium in the bluegill sunfish (Lepomis macrochirus) saccule, one of the otolithic organs in the inner ear. Though the OM is an integral part of the anatomic network of endorgan structures that result in vestibular function in the inner ear, the identity of the proteins that make up this sensory accessory membrane in teleosts, or in any vertebrate, is not fully known. Previously, we identified a cDNA from the sunfish saccular otolithic organ that encoded a new member of the collagen family of structural proteins. In this study, we examined biochemical features and the localization of the saccular collagen (SC) protein in vivo using polyclonal antisera that recognize the noncollagenous domains of the SC protein. The SC protein, in vivo, was identified as a 95-kDa glycoprotein in sunfish whole-saccule lysate and in homogenates of microdissected saccular OMs. Immunohistochemical analyses demonstrated that the SC protein was localized within one of the two distinct layers of the sunfish saccular OM. The SC protein was also detected within the cytoplasm of supporting cells at the edges of the saccular sensory epithelium, indicating that these cells are a primary site for the synthesis of this structural protein. Further studies of the organization of this matrix molecule in the OM may help clarify the role of this sensory accessory membrane in vestibular sensory function. PMID:9012849

  11. Influence of apoptosis on the cutaneous and peripheral lymph node inflammatory response in dogs with visceral leishmaniasis.

    PubMed

    Moreira, Pamela Rodrigues Reina; Bandarra, Marcio de Barros; Magalhães, Geórgia Modé; Munari, Danísio Prado; Machado, Gisele Fabrino; Prandini, Marcelo Martinasso; Alessi, Antonio Carlos; de Oliveira Vasconcelos, Rosemeri

    2013-02-18

    In canine visceral leishmaniasis (CVL), the abnormalities most commonly observed in clinical examination on the animals are lymphadenomegaly and skin lesions. Dogs are the main domestic reservoir for the protozoon Leishmania (L.) chagasi and the skin is the main site of contamination by the vector insect. Some protozoa use apoptosis as an immunological escape mechanism. The aim of this study was to correlate the presence of apoptosis with the parasite load and with the inflammatory response in the skin and lymph nodes of dogs naturally infected with Leishmania (L.) chagasi. Thirty-three dogs from the municipality of Araçatuba (São Paulo, Brazil) were used, an endemic area for CVL. Muzzle, ear and abdominal skin and the popliteal, subscapular, iliac and mesenteric lymph nodes of symptomatic (S), oligosymptomatic (O) and asymptomatic (A) dogs were analyzed histologically. The parasite load and percentage apoptosis were evaluated using an immunohistochemical technique. Microscopically, the lymph nodes presented chronic lymphadenitis and the skin presented plasmacytic infiltrate and granulomatous foci in the superficial dermis, especially in the ear and muzzle regions. The inflammation was most severe in group S. The parasite load and apoptotic cell density were also greatest in this group. The cause of the lymphoid atrophy in these dogs was correlated with T lymphocyte apoptosis, thus leaving the dogs more susceptible to CVL. The peripheral lymph nodes presented the greatest inflammatory response. Independent of the clinical picture, the predominant inflammatory response was granulomatous and plasmacytic, both in the skin and in the peripheral lymph nodes. The ear skin presented the greatest intensity of inflammation and parasite load, followed by the muzzle skin, in group S. The ear skin area presented a non-significant difference in cell profile, with predominance of macrophages, and a significant difference from group A to groups O and S. It was seen that in these areas, there were high densities of parasites and cells undergoing apoptosis, in group S. The association between apoptosis and parasite load was not significant in the lymph nodes, but in the muzzle regions and at the ear tips, a positive correlation was seen between the parasite load and the density of cells undergoing apoptosis. The dogs in group S had the highest parasite load and the greatest number of apoptotic cells, thus suggesting that the parasite had an immune evasion mechanism, which could be proven statistically in the skin. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Real-time visualization of macromolecule uptake by epidermal Langerhans cells in living animals.

    PubMed

    Frugé, Rachel E; Krout, Colleen; Lu, Ran; Matsushima, Hironori; Takashima, Akira

    2012-03-01

    As a skin-resident member of the dendritic cell family, Langerhans cells (LCs) are generally regarded to function as professional antigen-presenting cells. Here we report a simple method to visualize the endocytotic activity of LCs in living animals. BALB/c mice received subcutaneous injection of FITC-conjugated dextran (DX) probes into the ear skin and were then examined under confocal microscopy. Large numbers of FITC(+) epidermal cells became detectable 12-24 hours after injection as background fluorescence signals began to disappear. Most (>90%) of the FITC(+) epidermal cells expressed Langerin, and >95% of Langerin(+) epidermal cells exhibited significant FITC signals. To assess intracellular localization, Alexa Fluor 546-conjugated DX probes were locally injected into IAβ-enhanced green fluorescent protein (EGFP) knock-in mice and Langerin-EGFP-diphtheria toxin receptor mice--three dimensional rotation images showed close association of most of the internalized DX probes with major histocompatibility complex (MHC) class II molecules, but not with Langerin molecules. These observations support the current view that LCs constantly sample surrounding materials, including harmful and innocuous antigens, at the environmental interface. Our data also validate the potential utility of the newly developed imaging approach to monitor LC function in wild-type animals.

  13. Outgrowth of fibroblast cells from goat skin explants in three different culture media and the establishment of cell lines.

    PubMed

    Singh, Mahipal; Sharma, Anil K

    2011-02-01

    Three different commercially available media, known to support human and porcine-specific fibroblast cultures, were tested for their growth potential on goat skin explants. Although outgrowth of fibroblasts was observed in all media tested, irrespective of breed, porcine-specific media exhibited higher rate of growth. Using this media, three fibroblast cell lines (GSF289, GSF737, and GSF2010) from ear skin explants of normal healthy dairy goats of Kiko and Saanen breed were successfully established in culture. Liquid nitrogen stocks of these frozen cells had a viability rate of 96.2% in in vitro cultures. These cells were morphologically indistinguishable from the cell stocks prior to freezing. Analysis of the growth of a fifth passage culture revealed an 'S' shaped growth curve with a population doubling time of 25 h. The cell lines were found negative for microbial, fungal, and mycoplasma contaminations. These goat skin fibroblast lines and the simple method of their isolation and freezing with high rate of viability will provide additional tools to study molecular mechanisms that regulate fibroblast function and for genetic manipulation of small ruminants.

  14. Performance of computer vision in vivo flow cytometry with low fluorescence contrast

    NASA Astrophysics Data System (ADS)

    Markovic, Stacey; Li, Siyuan; Niedre, Mark

    2015-03-01

    Detection and enumeration of circulating cells in the bloodstream of small animals are important in many areas of preclinical biomedical research, including cancer metastasis, immunology, and reproductive medicine. Optical in vivo flow cytometry (IVFC) represents a class of technologies that allow noninvasive and continuous enumeration of circulating cells without drawing blood samples. We recently developed a technique termed computer vision in vivo flow cytometry (CV-IVFC) that uses a high-sensitivity fluorescence camera and an automated computer vision algorithm to interrogate relatively large circulating blood volumes in the ear of a mouse. We detected circulating cells at concentrations as low as 20 cells/mL. In the present work, we characterized the performance of CV-IVFC with low-contrast imaging conditions with (1) weak cell fluorescent labeling using cell-simulating fluorescent microspheres with varying brightness and (2) high background tissue autofluorescence by varying autofluorescence properties of optical phantoms. Our analysis indicates that CV-IVFC can robustly track and enumerate circulating cells with at least 50% sensitivity even in conditions with two orders of magnitude degraded contrast than our previous in vivo work. These results support the significant potential utility of CV-IVFC in a wide range of in vivo biological models.

  15. Molecular Responses of the Spiral Ganglion to Aminoglycosides

    ERIC Educational Resources Information Center

    Balaban, Carey D.

    2005-01-01

    Aminoglycosides are toxic to both the inner ear hair cells and the ganglion cells that give rise to the eighth cranial nerve. According to recent studies, these cells have a repertoire of molecular responses to aminoglycoside exposure that engages multiple neuroprotective mechanisms. The responses appear to involve regulation of ionic homeostasis,…

  16. Evaluation of an ex vivo murine local lymph node assay: multiple endpoint comparison.

    PubMed

    Piccotti, Joseph R; Knight, Stephanie A; Gillhouse, Kimberly; Lagattuta, Mark S; Bleavins, Michael R

    2006-01-01

    The local lymph node assay (LLNA) is used to assess the skin sensitization potential of chemicals. In the standard assay, mice are treated topically on the dorsum of both ears with test substance for 3 days. Following 2 days of rest, the initiation of the hypersensitivity response is evaluated by injecting (3)H-thymidine into a tail vein, and then measuring the levels of radioisotope incorporated into the DNA of lymph node cells draining the ears. In the current study, BALB/c mice were treated with the contact sensitizers hexylcinnamic aldehyde (HCA) and oxazolone, and the nonsensitizer methyl salicylate. The proliferative response of lymph node cells was evaluated in an ex vivo assay, in which isolated cells were cultured in vitro with (3)H-thymidine. Treatment of mice with HCA at 5-50% resulted in concentration-related increases in (3)H-thymidine incorporation, with stimulation indices ranging from 3 to 14. Low animal-to-animal variability was seen in three replicate assays testing HCA at 25%. As anticipated, the proliferative response induced by the potent sensitizer oxazolone at 0.25% was greater than HCA at all concentrations tested. Stimulation indices of 1.5 and 3 were seen in two independent experiments with methyl salicylate. These equivocal findings were likely due to the irritancy properties of the compound. Importantly, measuring ex vivo (3)H-thymidine incorporation was more sensitive than evaluating lymph node weight and cellularity, and in vitro bromodeoxyuridine incorporation. Furthermore, the results of the ex vivo LLNA were comparable to the standard assay. This study provided evidence that supports the use of an ex vivo LLNA for hazard assessment of contact hypersensitivity. Copyright 2006 John Wiley & Sons, Ltd.

  17. The quest for restoring hearing: Understanding ear development more completely.

    PubMed

    Jahan, Israt; Pan, Ning; Elliott, Karen L; Fritzsch, Bernd

    2015-09-01

    Neurosensory hearing loss is a growing problem of super-aged societies. Cochlear implants can restore some hearing, but rebuilding a lost hearing organ would be superior. Research has discovered many cellular and molecular steps to develop a hearing organ but translating those insights into hearing organ restoration remains unclear. For example, we cannot make various hair cell types and arrange them into their specific patterns surrounded by the right type of supporting cells in the right numbers. Our overview of the topologically highly organized and functionally diversified cellular mosaic of the mammalian hearing organ highlights what is known and unknown about its development. Following this analysis, we suggest critical steps to guide future attempts toward restoration of a functional organ of Corti. We argue that generating mutant mouse lines that mimic human pathology to fine-tune attempts toward long-term functional restoration are needed to go beyond the hope generated by restoring single hair cells in postnatal sensory epithelia. © 2015 WILEY Periodicals, Inc.

  18. Evolution of Gravity Receptors in the Ear

    NASA Technical Reports Server (NTRS)

    Popper, Arthur N. (Principal Investigator)

    1996-01-01

    The general status of a grant to investigate the origins and evolution of two hair cell types in the ears of a teleost fish, Astronotus ocellatus (the oscar), is presented. First, it was demonstrated that the cells in the rostral end of the saccule of the , Carassius auratus, are type 1-like, while those at the caudal end are type 2 cells. It was demonstrated that the dichotomy of hair cell types found in the utricle of the oscar is also found in the goldfish. Second, the lateral line system of the oscar was examined using gentamicin sulphate, an ototocix drug that destroys type 1- like hair cells but does not appear to damage type 2 hair cells. It was demonstrated that the hair cells found in neuromasts of lateral line canal organs were totally destroyed within 1 day of treatment, while the hair cells in free neuromasts were undamaged after 12 days of treatment. Third, it was demonstrated that the calyx, the specialized nerve ending, is not unique to amniotes and that it is present at least in the cristae of semicirular canals in goldfish. These results have demonstrated that: (1) there are multiple hair cell types in the vestibular endorgans of the ear of fishes, (2) these hair cell types are very similar to those found in the mammalian vestibular endorgans, (3) the nerve calyx is also present in fishes, and (4) multiple hair cell types and the calyx have evolved far earlier in the course of vertebrate evolution than heretofore thought. Understanding the structure of the vestibular endorgans has important implications for being able to understand how these organs respond to gravistatic, acceleration and acoustic input. The vestibular endorgans of fishes may provide an ideal system in which to analyze functional differences in hair cells. Not only are the two hair cell types similar to those found in mammals, they are located in very discrete regions in each endorgan. Thus, it is relatively easy to gain access to cells of one or the other type. The presence of two cell types in the lateral line have equally significant implications for studies of the vestibular system.

  19. Survival of partially differentiated mouse embryonic stem cells in the scala media of the guinea pig cochlea.

    PubMed

    Hildebrand, Michael S; Dahl, Hans-Henrik M; Hardman, Jennifer; Coleman, Bryony; Shepherd, Robert K; de Silva, Michelle G

    2005-12-01

    The low regenerative capacity of the hair cells of the mammalian inner ear is a major obstacle for functional recovery following sensorineural hearing loss. A potential treatment is to replace damaged tissue by transplantation of stem cells. To test this approach, undifferentiated and partially differentiated mouse embryonic stem (ES) cells were delivered into the scala media of the deafened guinea pig cochlea. Transplanted cells survived in the scala media for a postoperative period of at least nine weeks, evidenced by histochemical and direct fluorescent detection of enhanced green fluorescent protein (EGFP). Transplanted cells were discovered near the spiral ligament and stria vascularis in the endolymph fluid of the scala media. In some cases, cells were observed close to the damaged organ of Corti structure. There was no evidence of significant immunological rejection of the implanted ES cells despite the absence of immunosuppression. Our surgical approach allowed efficient delivery of ES cells to the scala media while preserving the delicate structures of the cochlea. This is the first report of the survival of partially differentiated ES cells in the scala media of the mammalian cochlea, and it provides support for the potential of cell-based therapies for sensorineural hearing impairment.

  20. Survival of Partially Differentiated Mouse Embryonic Stem Cells in the Scala Media of the Guinea Pig Cochlea

    PubMed Central

    Hildebrand, Michael S.; Dahl, Hans-Henrik M.; Hardman, Jennifer; Coleman, Bryony; Shepherd, Robert K.

    2005-01-01

    The low regenerative capacity of the hair cells of the mammalian inner ear is a major obstacle for functional recovery following sensorineural hearing loss. A potential treatment is to replace damaged tissue by transplantation of stem cells. To test this approach, undifferentiated and partially differentiated mouse embryonic stem (ES) cells were delivered into the scala media of the deafened guinea pig cochlea. Transplanted cells survived in the scala media for a postoperative period of at least nine weeks, evidenced by histochemical and direct fluorescent detection of enhanced green fluorescent protein (EGFP). Transplanted cells were discovered near the spiral ligament and stria vascularis in the endolymph fluid of the scala media. In some cases, cells were observed close to the damaged organ of Corti structure. There was no evidence of significant immunological rejection of the implanted ES cells despite the absence of immunosuppression. Our surgical approach allowed efficient delivery of ES cells to the scala media while preserving the delicate structures of the cochlea. This is the first report of the survival of partially differentiated ES cells in the scala media of the mammalian cochlea, and it provides support for the potential of cell-based therapies for sensorineural hearing impairment. PMID:16208453

  1. Ewing Sarcoma of the External Ear Canal

    PubMed Central

    Kecelioglu Binnetoglu, Kiymet; Gerin, Fatma; Sari, Murat

    2016-01-01

    Background. Ewing sarcoma (ES) is a high-grade malignant tumor that has skeletal and extraskeletal forms and consists of small round cells. In the head and neck region, reported localization of extraskeletal ES includes the larynx, thyroid gland, submandibular gland, nasal fossa, pharynx, skin, and parotid gland, but not the external ear canal. Methods. We present the unique case of a 2-year-old boy with extraskeletal ES arising from the external ear canal, mimicking auricular hematoma. Results. Surgery was performed and a VAC/IE (vincristine, adriamycin, cyclophosphamide alternating with ifosfamide, and etoposide) regimen was used for adjuvant chemotherapy for 12 months. Conclusion. The clinician should consider extraskeletal ES when diagnosing tumors localized in the head and neck region because it may be manifested by a nonspecific clinical picture mimicking common otorhinolaryngologic disorders. PMID:27313930

  2. Ankrd6 is a mammalian functional homolog of Drosophila planar cell polarity gene diego and regulates coordinated cellular orientation in the mouse inner ear.

    PubMed

    Jones, Chonnettia; Qian, Dong; Kim, Sun Myoung; Li, Shuangding; Ren, Dongdong; Knapp, Lindsey; Sprinzak, David; Avraham, Karen B; Matsuzaki, Fumio; Chi, Fanglu; Chen, Ping

    2014-11-01

    The coordinated polarization of neighboring cells within the plane of the tissue, known as planar cell polarity (PCP), is a recurring theme in biology. It is required for numerous developmental processes for the form and function of many tissues and organs across species. The genetic pathway regulating PCP was first discovered in Drosophila, and an analogous but distinct pathway is emerging in vertebrates. It consists of membrane protein complexes known as core PCP proteins that are conserved across species. Here we report that the over-expression of the murine Ankrd6 (mAnkrd6) gene that shares homology with Drosophila core PCP gene diego causes a typical PCP phenotype in Drosophila, and mAnkrd6 can rescue the loss of function of diego in Drosophila. In mice, mAnkrd6 protein is asymmetrically localized in cells of the inner ear sensory organs, characteristic of components of conserved core PCP complexes. The loss of mAnkrd6 causes PCP defects in the inner ear sensory organs. Moreover, canonical Wnt signaling is significantly increased in mouse embryonic fibroblasts from mAnkrd6 knockout mice in comparison to wild type controls. Together, these results indicated that mAnkrd6 is a functional homolog of the Drosophila diego gene for mammalian PCP regulation and act to suppress canonical Wnt signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Effect of electronic cigarettes on human middle ear.

    PubMed

    Song, Jae-Jun; Go, Yoon Young; Mun, Ji Yoen; Lee, Sehee; Im, Gi Jung; Kim, Yoo Yon; Lee, Jun Ho; Chang, Jiwon

    2018-06-01

    Electronic cigarettes (e-cigarettes) are the most commonly used electronic nicotine delivery systems and are a relatively new product designed for smoking cessation. The market scale of electronic cigarettes is growing rapidly, but the potential impact of e-cigarettes on public health has not yet been verified. In this study, we examined the effect of e-liquids on a human middle ear epithelial cell (HMEEC) line. The main components of e-liquids are propylene glycol, vegetable glycerin and flavoring agents with or without nicotine. We analyzed 73 bottles of e-liquids from 12 different manufacturers, evaluated the trace elements in e-liquids, and identified the cytotoxicity of e-liquids on HMEECs in the presence or absence of nicotine. In the trace elements analysis, nickel, arsenic, cadmium, and lead were detected in the e-liquids. E-liquids without nicotine decreased cell viability, and the average IC 50 value of total e-liquids (n = 73) was 2.48 ± 0.93%. Among the different flavors, menthol-flavored e-liquids significantly reduced cell viability, and their average IC 50 value (n = 28) was 1.85 ± 0.80%. The average IC 50 values were distinct among manufacturers and the proportion of the solvents. The present study provides evidence that e-cigarettes influence and reduce human middle ear cell viability even without the application of nicotine. Additionally, the cytotoxicity of e-liquids was affected by the flavoring agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Inner ear dysfunction in caspase-3 deficient mice

    PubMed Central

    2011-01-01

    Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/-) mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P < 0.05) compared to Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P < 0.05) in Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule. PMID:21988729

  5. Vaticaffinol, a resveratrol tetramer, exerts more preferable immunosuppressive activity than its precursor in vitro and in vivo through multiple aspects against activated T lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Li-Li; Wu, Xue-Feng; Liu, Hai-Liang

    2013-03-01

    In the present study, we aimed to investigate the immunosuppressive activity of vaticaffinol, a resveratrol tetramer isolated from Vatica mangachapoi, on T lymphocytes both in vitro and in vivo, and further explored its potential molecular mechanism. Resveratrol had a wide spectrum of healthy beneficial effects with multiple targets. Interestingly, its tetramer, vaticaffinol, exerted more intensive immunosuppressive activity than resveratrol. Vaticaffinol significantly inhibited T cells proliferation activated by concanavalin A (Con A) or anti-CD3 plus anti-CD28 in a dose- and time-dependent manner. It also induced Con A-activated T cells undergoing apoptosis through mitochondrial pathway. Moreover, this compound prevented cells from enteringmore » S phase and G2/M phase during T cells activation. In addition, vaticaffinol inhibited ERK and AKT signaling pathways in Con A-activated T cells. Furthermore, vaticaffinol significantly ameliorated ear swelling in a mouse model of picryl chloride-induced ear contact dermatitis in vivo. In most of the aforementioned experiments, however, resveratrol had only slight effects on the inhibition of T lymphocytes compared with vaticaffinol. Taken together, our findings suggest that vaticaffinol exerts more preferable immunosuppressive activity than its precursor resveratrol both in vitro and in vivo by affecting multiple targets against activated T cells. - Graphical abstract: Vaticaffinol, a resveratrol tetramer isolated from Vatica mangachapoi, exerts more intensive immunosuppressive activity than its precursor resveratrol does in vitro and in vivo. Its mechanism may involve multiple effects against activated T cells: regulation of signalings involved in cell proliferation, G0/G1 arrest of T cells, as well as an apoptosis induction in activated effector T cells. Highlights: ► Vaticaffinol, a resveratrol tetramer, exerts more potent activity than its precursor. ► It inhibited T cells proliferation and prevented them from entering cell cycles. ► It led to apoptosis of activated T cells through mitochondrial pathway. ► It down-regulated ERK and AKT signaling pathways in Con A-activated T cells. ► It significantly ameliorated picryl chloride-induced ear swelling.« less

  6. Optical Imaging with a High Resolution Microendoscope to Identify Cholesteatoma of the Middle Ear

    PubMed Central

    Levy, Lauren L.; Jiang, Nancy; Smouha, Eric; Richards-Kortum, Rebecca; Sikora, Andrew G.

    2013-01-01

    Objective High resolution optical imaging is an imaging modality which allows visualization of structural changes in epithelial tissue in real time. Our prior studies using contrast-enhanced microendoscopy to image squamous cell carcinoma in the head and neck demonstrated that the contrast agent, proflavine, has high affinity for keratinized tissue. Thus, high-resolution microendoscopy with proflavine provides a potential mechanism to identify ectopic keratin production, such as that associated with cholesteatoma formation and distinguish between uninvolved mucosa and residual keratin at the time of surgery. Study Design Ex vivo imaging of histopathologically-confirmed samples of cholesteatoma and uninvolved middle-ear epithelium. Methods Seven separate specimens collected from patients who underwent surgical treatment for cholesteatoma were imaged ex vivo with the fiberoptic endoscope after surface staining with proflavine. Following imaging, the specimens were submitted for hematoxylin &eosin staining to allow histopathological correlation. Results Cholesteatoma and surrounding middle ear epithelium have distinct imaging characteristics. Keratin-bearing areas of cholesteatoma lack nuclei and appear as confluent hyperfluorescence, while nuclei are easily visualized in specimens containing normal middle ear epithelium. Hyperfluorescence and loss of cellular detail is the imaging hallmark of keratin allowing for discrimination of cholesteatoma from normal middle ear epithelium. Conclusions This study demonstrates the feasibility of high-resolution optical imaging to discriminate cholesteatoma from uninvolved middle ear mucosa, based on the unique staining properties of keratin. Use of real-time imaging may facilitate more complete extirpation of cholesteatoma by identifying areas of residual disease. PMID:23299781

  7. The scarless heart and the MRL mouse.

    PubMed

    Heber-Katz, Ellen; Leferovich, John; Bedelbaeva, Khamilia; Gourevitch, Dmitri; Clark, Lise

    2004-05-29

    The ability to regenerate tissues and limbs in its most robust form is seen in many non-mammalian species. The serendipitous discovery that the MRL mouse has a profound capacity for regeneration in some ways rivalling the classic newt and axolotl species raises the possibility that humans, too, may have an innate regenerative ability. The adult MRL mouse regrows cartilage, skin, hair follicles and myocardium with near perfect fidelity and without scarring. This is seen in the ability to close through-and-through ear holes, which are generally used for lifelong identification of mice, and the anatomic and functional recovery of myocardium after a severe cryo-injury. We present histological, biochemical and genetic data indicating that the enhanced breakdown of scar-like tissue may be an underlying factor in the MRL regenerative response. Studies as to the source of the cells in the regenerating MRL tissue are discussed. Such studies appear to support multiple mechanisms for cell replacement.

  8. EphB2 guides axons at the midline and is necessary for normal vestibular function

    NASA Technical Reports Server (NTRS)

    Cowan, C. A.; Yokoyama, N.; Bianchi, L. M.; Henkemeyer, M.; Fritzsch, B.

    2000-01-01

    Mice lacking the EphB2 receptor tyrosine kinase display a cell-autonomous, strain-specific circling behavior that is associated with vestibular phenotypes. In mutant embryos, the contralateral inner ear efferent growth cones exhibit inappropriate pathway selection at the midline, while in mutant adults, the endolymph-filled lumen of the semicircular canals is severely reduced. EphB2 is expressed in the endolymph-producing dark cells in the inner ear epithelium, and these cells show ultrastructural defects in the mutants. A molecular link to fluid regulation is provided by demonstrating that PDZ domain-containing proteins that bind the C termini of EphB2 and B-ephrins can also recognize the cytoplasmic tails of anion exchangers and aquaporins. This suggests EphB2 may regulate ionic homeostasis and endolymph fluid production through macromolecular associations with membrane channels that transport chloride, bicarbonate, and water.

  9. Radiological differences between HIV-positive and HIV-negative children with cholesteatoma.

    PubMed

    McGuire, J K; Fagan, J J; Wojno, M; Manning, K; Harris, T

    2018-07-01

    HIV-positive children are possibly more prone to developing cholesteatoma. Chronic inflammation of the middle ear cleft may be more common in patients with HIV and this may predispose HIV-positive children to developing cholesteatoma. There are no studies that describe the radiological morphology of the middle ear cleft in HIV-positive compared to HIV-negative children with cholesteatoma. Compare the radiological differences of the middle ear cleft in HIV-positive and HIV-negative children with cholesteatoma. A retrospective, cross-sectional, observational analytical review of patients with cholesteatoma at our institute over a 6 year period. Forty patients were included in the study, 11 of whom had bilateral cholesteatoma and therefore 51 ears were eligible for our evaluation. HIV-positive patients had smaller (p=0.02) mastoid air cell systems (MACS). Forty percent of HIV-positive patients had sclerotic mastoids, whereas the rate was 3% in HIV-negative ears (p<0.02). Eighty-two percent of the HIV-positive patients had bilateral cholesteatoma compared to 7% of the control group (p<0.02). There was no difference between the 2 groups with regards to opacification of the middle ear cleft, bony erosion of middle ear structures, Eustachian tube obstruction or soft tissue occlusion of the post-nasal space. HIV-positive paediatric patients with cholesteatoma are more likely to have smaller, sclerotic mastoids compared to HIV-negative patients. They are significantly more likely to have bilateral cholesteatoma. This may have implications in terms of surveillance of HIV-positive children, as well as, an approach to management, recurrence and follow-up. HIV infection should be flagged as a risk factor for developing cholesteatoma. Copyright © 2018. Published by Elsevier B.V.

  10. Extended lateral thoracic fasciocutaneous biosynthetic flap for reconstruction of full-thickness partial external ear defects: an experimental study.

    PubMed

    Kuvat, Samet Vasfi; Taşkın, Ümit; Yücebaş, Kadir; Tansuker, Hasan Deniz; Oktay, Mehmet Faruk; Kozanoğlu, Erol; Aydın, Salih

    2017-01-01

    External ear reconstruction is a controversial topic in reconstructive plastic surgery. Here, we prepared a pedicled biosynthetic flap for full-thickness, partial ear defects in rabbits. We operated on six adult female New Zealand rabbits weighing 3-4 kg. The dimensions of the lateral thoracic fasciocutaneous flap were 7 × 6 cm. The flap was elevated based on one of the bilaterally located internal thoracic arteries, which were dissected proximally. The pedicled flap was folded in two, and polypropylene mesh was sandwiched in the middle. The flap was adapted to a defect of 3.5 × 3 cm in diameter. In fact, the defect was created before elevation of the flap. Rabbits were followed up for 4 weeks, at the end of which they were killed and their ears were evaluated histopathologically. The survival rate of the rabbits was 100 %. All pedicled biosynthetic flaps were viable, but one showed partial (20 %) necrosis (1/6) and one was partially detached (1/6). Macroscopic (color, thickness, texture) and histological (polymorphonuclear leukocyte invasion in the skin, subcutaneous tissue, and at the junction between the polypropylene mesh and the flap) features of the flap were compared to the ipsilateral ear. A new technique was developed for partial external ear reconstruction with sufficient inner skeletal support and outer skin lining. Level of evidence Level NA.

  11. Molecular architecture underlying fluid absorption by the developing inner ear

    PubMed Central

    Honda, Keiji; Kim, Sung Huhn; Kelly, Michael C; Burns, Joseph C; Constance, Laura; Li, Xiangming; Zhou, Fei; Hoa, Michael; Kelley, Matthew W; Morell, Robert J

    2017-01-01

    Mutations of SLC26A4 are a common cause of hearing loss associated with enlargement of the endolymphatic sac (EES). Slc26a4 expression in the developing mouse endolymphatic sac is required for acquisition of normal inner ear structure and function. Here, we show that the mouse endolymphatic sac absorbs fluid in an SLC26A4-dependent fashion. Fluid absorption was sensitive to ouabain and gadolinium but insensitive to benzamil, bafilomycin and S3226. Single-cell RNA-seq analysis of pre- and postnatal endolymphatic sacs demonstrates two types of differentiated cells. Early ribosome-rich cells (RRCs) have a transcriptomic signature suggesting expression and secretion of extracellular proteins, while mature RRCs express genes implicated in innate immunity. The transcriptomic signature of mitochondria-rich cells (MRCs) indicates that they mediate vectorial ion transport. We propose a molecular mechanism for resorption of NaCl by MRCs during development, and conclude that disruption of this mechanism is the root cause of hearing loss associated with EES. PMID:28994389

  12. Zebrafish atoh1 genes: classic proneural activity in the inner ear and regulation by Fgf and Notch.

    PubMed

    Millimaki, Bonny B; Sweet, Elly M; Dhason, Mary S; Riley, Bruce B

    2007-01-01

    Hair cells of the inner ear develop from an equivalence group marked by expression of the proneural gene Atoh1. In mouse, Atoh1 is necessary for hair cell differentiation, but its role in specifying the equivalence group (proneural function) has been questioned and little is known about its upstream activators. We have addressed these issues in zebrafish. Two zebrafish homologs, atoh1a and atoh1b, are together necessary for hair cell development. These genes crossregulate each other but are differentially required during distinct developmental periods, first in the preotic placode and later in the otic vesicle. Interactions with the Notch pathway confirm that atoh1 genes have early proneural function. Fgf3 and Fgf8 are upstream activators of atoh1 genes during both phases, and foxi1, pax8 and dlx genes regulate atoh1b in the preplacode. A model is presented in which zebrafish atoh1 genes operate in a complex network leading to hair cell development.

  13. Effects of astaxanthin on dinitrofluorobenzene-induced contact dermatitis in mice.

    PubMed

    Kim, Hyungwoo; Ahn, Yong-Tae; Lee, Guem San; Cho, Su In; Kim, Jong-Myoung; Lee, Chu; Lim, Byung Kwan; Ju, Seong-A; An, Won Gun

    2015-09-01

    Astaxanthin (AST) is known to exhibit antioxidative and antitumor properties, therefore, the present study investigated its other potential medical applications. AST was observed to exhibit anti‑allergic and anti‑inflammatory effects in a dinitrofluorobenzene (DNFB)‑induced contact dermatitis (CD) mouse model and RBL‑2H3 cell lines. The topical application of AST effectively inhibited the enlargement of ear thickness and increase in weight, which occurred following repeated application of DNFB. Furthermore, topical application of different concentrations of AST inhibited inflammatory hyperplasia, edema, spongiosis, and the infiltration of mononuclear cells and mast cells in the ear tissue. In addition, the levels of TNF‑α and IFN‑γ produced were decreased by application of AST in vivo, and treatment of RBL‑2H3 cells with AST inhibited the release of histamine and β‑hexosaminidase in vitro. Taken together, these data suggested that AST may be used to treat patients with allergic skin diseases through a mechanism, which may be associated with that involved in anti‑inflammatory or anti-allergic activities.

  14. Generation of sensory hair cells by genetic programming with a combination of transcription factors.

    PubMed

    Costa, Aida; Sanchez-Guardado, Luis; Juniat, Stephanie; Gale, Jonathan E; Daudet, Nicolas; Henrique, Domingos

    2015-06-01

    Mechanosensory hair cells (HCs) are the primary receptors of our senses of hearing and balance. Elucidation of the transcriptional networks regulating HC fate determination and differentiation is crucial not only to understand inner ear development but also to improve cell replacement therapies for hearing disorders. Here, we show that combined expression of the transcription factors Gfi1, Pou4f3 and Atoh1 can induce direct programming towards HC fate, both during in vitro mouse embryonic stem cell differentiation and following ectopic expression in chick embryonic otic epithelium. Induced HCs (iHCs) express numerous HC-specific markers and exhibit polarized membrane protrusions reminiscent of stereociliary bundles. Transcriptome profiling confirms the progressive establishment of a HC-specific gene signature during in vitro iHC programming. Overall, this work provides a novel approach to achieve robust and highly efficient HC production in vitro, which could be used as a model to study HC development and to drive inner ear HC regeneration. © 2015. Published by The Company of Biologists Ltd.

  15. COMPARISON BETWEEN COMPUTED TOMOGRAPHIC CHARACTERISTICS OF THE MIDDLE EAR IN NONBRACHYCEPHALIC AND BRACHYCEPHALIC DOGS WITH OBSTRUCTIVE AIRWAY SYNDROME.

    PubMed

    Salgüero, Raquel; Herrtage, Michael; Holmes, Mark; Mannion, Paddy; Ladlow, Jane

    2016-01-01

    Prevalence of subclinical middle ear lesions in dogs that undergo computed tomography (CT) and magnetic resonance imaging of the head has been reported up to 41%. A predisposition in brachycephalics has been suggested, however evidence-based studies are lacking. Aims of this retrospective cross-sectional study were to compare CT characteristics of the middle ear in groups of nonbrachycephalic and brachycephalic dogs that underwent CT of the head for conditions unrelated to ear disease, and test associations between thickness of the soft palate and presence of subclinical middle ear lesions. One observer recorded CT findings for each dog without knowledge of group status. A total of 65 dogs met inclusion criteria (25 brachycephalic, 40 nonbrachycephalic). Brachycephalic dogs had a significantly thicker bulla wall (P = 2.38 × 10(-26)) and smaller luminal volume (P = 5.74 × 10(-20)), when compared to nonbrachycephalic dogs. Soft palate thickness was significantly greater in the brachycephalic group (P = 2.76 × 10(-9)). Nine of 25 brachycephalic dogs had material in the lumen of the tympanic cavity, compared to zero of 45 of nonbrachycephalics. Within the brachycephalic group, a significant difference in mean soft palate thickness was identified for dogs with material in the middle ear (12.2 mm) vs. air-filled bullae (9 mm; P = 0.016). Findings from the current study supported previous theories that brachycephalic dogs have a greater prevalence of subclinical middle ear effusion and smaller bulla luminal size than nonbrachycephalic dogs. Authors recommend that the bulla lumen volume formula previously developed for mesaticephalic dogs, (-0.612 + 0.757 [lnBW]) be adjusted to 1/3(-0.612 + 0.757 [lnBW]) for brachycephalic breeds. © 2016 American College of Veterinary Radiology.

  16. Limits on normal cochlear 'third' windows provided by previous investigations of additional sound paths into and out of the cat inner ear.

    PubMed

    Rosowski, John J; Bowers, Peter; Nakajima, Hideko H

    2018-03-01

    While most models of cochlear function assume the presence of only two windows into the mammalian cochlea (the oval and round windows), a position that is generally supported by several lines of data, there is evidence for additional sound paths into and out of the inner ear in normal mammals. In this report we review the existing evidence for and against the 'two-window' hypothesis. We then determine how existing data and inner-ear anatomy restrict transmission of sound through these additional sound pathways in cat by utilizing a well-tested model of the cat inner ear, together with anatomical descriptions of the cat cochlear and vestibular aqueducts (potential additional windows to the cochlea). We conclude: (1) The existing data place limits on the size of the cochlear and vestibular aqueducts in cat and are consistent with small volume-velocities through these ducts during ossicular stimulation of the cochlea, (2) the predicted volume velocities produced by aqueducts with diameters half the size of the bony diameters match the functional data within ±10 dB, and (3) these additional volume velocity paths contribute to the inner ear's response to non-acoustic stimulation and conductive pathology. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Exposure to low-dose barium by drinking water causes hearing loss in mice.

    PubMed

    Ohgami, Nobutaka; Hori, Sohjiro; Ohgami, Kyoko; Tamura, Haruka; Tsuzuki, Toyonori; Ohnuma, Shoko; Kato, Masashi

    2012-10-01

    We continuously ingest barium as a general element by drinking water and foods in our daily life. Exposure to high-dose barium (>100mg/kg/day) has been shown to cause physiological impairments. Direct administration of barium to inner ears by vascular perfusion has been shown to cause physiological impairments in inner ears. However, the toxic influence of oral exposure to low-dose barium on hearing levels has not been clarified in vivo. We analyzed the toxic influence of oral exposure to low-dose barium on hearing levels and inner ears in mice. We orally administered barium at low doses of 0.14 and 1.4 mg/kg/day to wild-type ICR mice by drinking water. The doses are equivalent to and 10-fold higher than the limit level (0.7 mg/l) of WHO health-based guidelines for drinking water, respectively. After 2-week exposure, hearing levels were measured by auditory brain stem responses and inner ears were morphologically analyzed. After 2-month exposure, tissue distribution of barium was measured by inductively coupled plasma mass spectrometry. Low-dose barium in drinking water caused severe hearing loss in mice. Inner ears including inner and outer hair cells, stria vascularis and spiral ganglion neurons showed severe degeneration. The Barium-administered group showed significantly higher levels of barium in inner ears than those in the control group, while barium levels in bone did not show a significant difference between the two groups. Barium levels in other tissues including the cerebrum, cerebellum, heart, liver and kidney were undetectably low in both groups. Our results demonstrate for the first time that low-dose barium administered by drinking water specifically distributes to inner ears resulting in severe ototoxicity with degeneration of inner ears in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Induction of atopic eczema/dermatitis syndrome-like skin lesions by repeated topical application of a crude extract of Dermatophagoides pteronyssinus in NC/Nga mice.

    PubMed

    Kang, Jong Soon; Lee, Kiho; Han, Sang-Bae; Ahn, Ji-Mi; Lee, Hyunju; Han, Mi Hwa; Yoon, Yeo Dae; Yoon, Won Kee; Park, Song-Kyu; Kim, Hwan Mook

    2006-10-01

    Mite antigen has been considered to play important roles in the development of atopic eczema/dermatitis syndrome (AEDS). In the present study, we attempted to induce an AEDS-like skin lesion in mice using Dermatophagoides pteronyssinus crude extract (DPE) as an antigen and performed pathophysiological evaluations. Ears of mice were tape-stripped and DPE was painted 3 times a week. Eczematous skin lesion and ear swelling were apparent in NC/Nga mice treated with DPE after 2 weeks, whereas neither skin lesion nor ear swelling were observed in BALB/c mice even after 30 days. Histological evaluation demonstrated that edema, epidermal hyperplasia and the accumulation of inflammatory cells were apparent in the ears of DPE-treated NC/Nga mice. In contrast to skin lesion and ear swelling, total serum IgE levels were increased in both NC/Nga and BALB/c mice. Treatment with DPE also increased auricular lymph node weight in both NC/Nga mice and BALB/c mice. To further characterize, we analyzed cytokine mRNA expression in ears and lymph nodes of DPE-treated NC/Nga mice. Increased expression of IL-4 and TNF-alpha mRNA was observed in both ears and lymph nodes of NC/Nga mice treated with DPE. Additionally, there was no change in the responsiveness of BALB/c mice to DPE treatment by adaptive transfer of serum from DPE-treated NC/Nga mice to BALB/c mice. Taken together, our results indicate that eczematous skin lesion and ear swelling caused by repeated application of DPE in NC/Nga mice has a Th2-dominant background and that inflammation is involved in this process. The animal model of AEDS established in this report may be used to investigate the pathogenesis of AEDS and evaluate the potential therapeutic agents for AEDS.

  19. Zika virus transmission to mouse ear by mosquito bite: a laboratory model that replicates the natural transmission process.

    PubMed

    Secundino, Nagila Francinete Costa; Chaves, Barbara Aparecida; Orfano, Alessandra Silva; Silveira, Karine Renata Dias; Rodrigues, Nilton Barnabe; Campolina, Thais Bonifácio; Nacif-Pimenta, Rafael; Villegas, Luiz Eduardo Martinez; Silva, Breno Melo; Lacerda, Marcus Vinícius Guimarães; Norris, Douglas Eric; Pimenta, Paulo Filemon Paolucci

    2017-07-20

    Zika disease has transformed into a serious global health problem due to the rapid spread of the arbovirus and alarming severity including congenital complications, microcephaly and Guillain-Barré syndrome. Zika virus (ZIKV) is primarily transmitted to humans through the bite of an infective mosquito, with Aedes aegypti being the main vector. We successfully developed a ZIKV experimental transmission model by single infectious Ae. aegypti bite to a laboratory mouse using circulating Brazilian strains of both arbovirus and vector. Mosquitoes were orally infected and single Ae. aegypti were allowed to feed on mouse ears 14 days post-infection. Additionally, salivary gland (SG) homogenates from infected mosquitoes were intrathoracically inoculated into naïve Ae. aegypti. Mosquito and mouse tissue samples were cultured in C6/36 cells and processed by quantitative real-time PCR. A total of 26 Ae. aegypti were allowed to feed individually on mouse ears. Of these, 17 mosquitoes fed, all to full engorgement. The transmission rate of ZIKV by bite from these engorged mosquitoes to mouse ears was 100%. The amount of virus inoculated into the ears by bites ranged from 2 × 10 2 -2.1 × 10 10 ZIKV cDNA copies and was positively correlated with ZIKV cDNA quantified from SGs dissected from mosquitoes post-feeding. Replicating ZIKV was confirmed in macerated SGs (2.45 × 10 7 cDNA copies), mouse ear tissue (1.15 × 10 3 cDNA copies, and mosquitoes 14 days post-intrathoracic inoculation (1.49 × 10 7 cDNA copies) by cytopathic effect in C6/36 cell culture and qPCR. Our model illustrates successful transmission of ZIKV by an infectious mosquito bite to a live vertebrate host. This approach offers a comprehensive tool for evaluating the development of infection in and transmission from mosquitoes, and the vertebrate-ZIKV interaction and progression of infection following a natural transmission process.

  20. Ethnopharmacological study and topical anti-inflammatory activity of crude extract from Poikilacanthus glandulosus (Nees) Ariza leaves.

    PubMed

    de Brum, Thiele Faccim; Camponogara, Camila; da Silva Jesus, Roberta; Belke, Bianca Vargas; Piana, Mariana; Boligon, Aline Augusti; Pires, Fernanda Brum; Oliveira, Sara Marchesan; da Rosa, Marcelo Barcellos; de Freitas Bauermann, Liliane

    2016-12-04

    Ethnopharmacological studies are important tools as records and documentation of the empirical uses of medicinal plants in traditional communities with the purpose of generating useful knowledge to lead to the development of new medicines, biodiversity conservation and enhancement of knowledge and local culture. Poikilacanthus glandulosus is widely used by the population of City of Santiago, in Brazil, nevertheless, it does not have any validation regarding its use and its medicinal effects. The objective of this study was to perform one ethnopharmacological survey about P. glandulosus in the City of Santiago and determine the anti-inflammatory activity in order to prove its uses in popular medicine. Personal and ethnopharmacological data were collected through a prepared questionnaire. The phytochemical analysis was performed observing the individual methodology for each reaction and by HPLC-UV. The antiedematogenic and anti-inflammatory (cell infiltration and histological procedure) activities of the P. glandulosus (0.01-1000μg/ear) were evaluated in the ear edema model induced by topical application of croton oil. P. glandulosus is known in City of Santiago as "Gaiana" and its macerated leaves and branches are prepared with alcohol or sugarcane liquor especially for insect bites, cicatrization and inflammation. HPLC analysis revealed the presence of maslinic acid (2.024±0.10mg/g), uvaol (0.124±0.02mg/g) and sitosterol (0.502±0.05mg/g). The topical application of crude extract of P. glandulosus reduced in a dose-dependent manner the croton oil-induced ear edema and myeloperoxidase activity (neutrophils infiltration marker) with maximum inhibition of 87±2% and 64±12%, respectively at 1000µg/ear. Dexamethasone (100µg/ear), used as a positive control, inhibited croton oil-induced ear edema in 89±3% and decreased myeloperoxidase activity in 50±3%. Both P. glandulosus as dexamethasone reduced cell infiltration when evaluated by histological procedure CONCLUSION: This work allowed us to understand the specie P. glandulosus through ethnopharmacological study and it showed that the crude extract presented antiedematogenic and anti-inflammatory actions, proving their traditional use as anti-inflammatory. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

Top