Sample records for earlier hst observations

  1. Augmenting The HST Pure Parallel Observations

    NASA Astrophysics Data System (ADS)

    Patterson, Alan; Soutchkova, G.; Workman, W.

    2012-05-01

    Pure Parallel (PP) programs, designated GO/PAR, are a subgroup of General Observer (GO) programs. PP execute simultaneously with prime GO observations to which they are "attached". The PP observations can be performed with ACS/WFC, WFC3/UVIS or WFC3/IR and can be attached only to GO visits in which the instruments are either COS or STIS. The current HST Parallel Observation Processing System (POPS) was introduced after the Servicing Mission 4. It increased the HST productivity by 10% in terms of the utilization of HST prime orbits and was highly appreciated by the HST observers, allowing them to design efficient, multi-orbit survey projects for collecting large amounts of data on identifiable targets. The results of the WFC3 Infrared Spectroscopic Parallel Survey (WISP), Hubble Infrared Pure Parallel Imaging Extragalactic Survey (HIPPIES), and The Brightest-of-Reionizing Galaxies Pure Parallel Survey (BoRG) exemplify this benefit. In Cycle 19, however, the full advantage of GO/PARs came under risk. Whereas each of the previous cycles provided over one million seconds of exposure time for PP, in Cycle 19 that number reduced to 680,000 seconds. This dramatic decline occurred because of fundamental changes in the construction of COS prime observations. To preserve the science output of PP, the PP Working Group was tasked to find a way to recover the lost time and maximize the total time available for PP observing. The solution was to expand the definition of a PP opportunity to allow PP exposures to span one or more primary exposure readouts. So starting in HST Cycle 20, PP opportunities will no longer be limited to GO visits with a single uninterrupted exposure in an orbit. The resulting enhancements in HST Cycle 20 to the PP opportunity identification and matching process are expected to restore the PP time to previously achieved and possibly even greater levels.

  2. Cataclysmic variables to be monitored for HST observations

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2012-09-01

    Drs. Boris Gaensicke (Warwick University), Joseph Patterson (Columbia University, Center for Backyard Astrophysics), and Arne Henden (AAVSO), on behalf of a consortium of 16 astronomers, requested the help of AAVSO observers in monitoring the ~40 cataclysmic variables in support of Hubble Space Telescope observations in the coming months. The HST COS (Cosmic Origins Spectrograph) will be carrying out far-ultraviolet spectroscopy of ~40 CVs sequentially, with the aim to measure the temperatures, atmospheric compositions, rotation rates, and eventually masses of their white dwarfs. The primary purpose of the monitoring is to know whether each target is in quiescence immediately prior to the observation window; if it is in outburst it will be too bright for the HST instrumentation. Based on the information supplied by the AAVSO, the HST scheduling team will make the decision (usually) the evening before the scheduled observing time as to whether to go forward with the HST observations. For CCD observers, simultaneous photometry [shortly before, during, and after the HST observations] would be ideal. B filter would be best for a light curve, although for the magnitude estimates, V would be best. Finder charts may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. If the target is seen in outburst, please contact the AAVSO immediately and post a message to the Observations and Campaigns & Observations Reports forum (http://www.aavso.org/forum). This campaign will run the better part of a year or longer. See full Alert Notice for more details and list of objects.

  3. Observing with HST V: Improvements to the Scheduling of HST Parallel Observations

    NASA Astrophysics Data System (ADS)

    Taylor, D. K.; Vanorsow, D.; Lucks, M.; Henry, R.; Ratnatunga, K.; Patterson, A.

    1994-12-01

    Recent improvements to the Hubble Space Telescope (HST) ground system have significantly increased the frequency of pure parallel observations, i.e. the simultaneous use of multiple HST instruments by different observers. Opportunities for parallel observations are limited by a variety of timing, hardware, and scientific constraints. Formerly, such opportunities were heuristically predicted prior to the construction of the primary schedule (or calendar), and lack of complete information resulted in high rates of scheduling failures and missed opportunities. In the current process the search for parallel opportunities is delayed until the primary schedule is complete, at which point new software tools are employed to identify places where parallel observations are supported. The result has been a considerable increase in parallel throughput. A new technique, known as ``parallel crafting,'' is currently under development to streamline further the parallel scheduling process. This radically new method will replace the standard exposure logsheet with a set of abstract rules from which observation parameters will be constructed ``on the fly'' to best match the constraints of the parallel opportunity. Currently, parallel observers must specify a huge (and highly redundant) set of exposure types in order to cover all possible types of parallel opportunities. Crafting rules permit the observer to express timing, filter, and splitting preferences in a far more succinct manner. The issue of coordinated parallel observations (same PI using different instruments simultaneously), long a troublesome aspect of the ground system, is also being addressed. For Cycle 5, the Phase II Proposal Instructions now have an exposure-level PAR WITH special requirement. While only the primary's alignment will be scheduled on the calendar, new commanding will provide for parallel exposures with both instruments.

  4. Monitoring of Mira (omi Cet) in support of HST Observations

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita; Templeton, Matthew R.

    2007-09-01

    Dr. Margarita Karovska (Harvard-Smithsonian Center for Astrophysics) and collaborators are performing a comprehensive study of the Mira AB interacting system, using the HST WFPC2 camera. Mira AB is composed of the prototype Mira variable omi Cet and its companion VZ Cet, separated by about 0.5 arcsecond. As part of this project they plan to obtain a large number of high-angular resolution images at wavelengths ranging from UV to optical. The main objectives of the HST/WFPC2 observations are 1) to determine the properties of the material ejected in December 2004 as it flows throughout the binary and interacts with the Mira A (omi Cet, Mira) circumstellar material and wind; 2) to determine the physical characteristics of mass transfer in this system and especially the role of the accretion stream between Mira A and its accreting companion Mira B (VZ Cet); 3) to determine the response of the system to the increased accretion rate onto Mira B following the outburst. The HST observations are scheduled for September 23, 1900-2300 UT. Both visual and instrumental observers are requested to observe this object, currently at minimum around visual magnitude 9-9.5. Observations should be made approximately two weeks on either side of the September 23 observation date. Visual observer should observe as usual, making not more than 3 observations spaced about 10 days apart. PEP and CCD observers should use the bluest-wavelength filters they have, and should make nightly observations, with intensive observations during the HST observations themselves. UBV and RIJH observations would be very valuable. Please make sure to use an aperture that covers both omi Cet and VZ Cet when evaluating CCD images. Observations should be submitted to the AAVSO International Database as OMI CET.

  5. IM Nor monitoring requested for HST COS observations

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2017-02-01

    Dr. Ed Sion (Villanova University) and colleagues have requested AAVSO observers' assistance in monitoring the symbiotic-type recurrent nova IM Nor in support of observations with the Hubble Space Telescope Cosmic Origins Spectrograph scheduled for 2017 February 13 - 17 UT. These observations are part of a study on short orbital period recurrent novae as Supernovae Type Ia progenitors. It is essential to know 24 hours prior to the HST COS observations that IM Nor is not in outburst, in order to protect the instrumentation. Also, photometry is needed throughout the HST window to insure knowledge of the brightness of the system. Observers are asked to monitor IM Nor with nightly snapshot images (V preferred) from now through February 20, and to report their observations promptly. It will be especially important to know the brightness of IM Nor each night through February 17 UT. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  6. HST/WFC3 Observations of Giant Hot Exoplanets

    NASA Technical Reports Server (NTRS)

    Deming, D.; Agol, E.; Burrows, A.; Charbonneau, D.; Clampin, M.; Desert, J.-M.; Gilliland, R.; Knutson, H.; Madhusudhan, N.; Mandell, A.; hide

    2011-01-01

    Low resolution thermal emission spectra of several dozen extrasolar planets have been measured using Spitzer, and HST observations of a few key exoplanets have reported molecular abundances via transmission spectroscopy. However, current models for the atmospheric structure of these worlds exhibit degeneracies wherein different combinations of temperature and molecular abundance profiles can fit the same Spitzer data. The advent of the IR capability on HST/WFC3 allows us to address this problem. We are currently obtaining transmission spectroscopy of the 1.4-micron water band in a sample of 13 planets, using the G141 grism on WFC3. This is the largest pure-exoplanet program ever executed on HST (115 orbits). Among the abundant molecules, only water absorbs significantly at 1.4-microns, and our measurement of water abundance will enable us to break the degeneracies in the Spitzer results with minimal model assumptions. We are also using the G141 grism to observe secondary eclipses for 7 very hot giant exoplanets at 1.S-microns, including several bright systems in the Kepler and CoRoT fields. The strong temperature sensitivity of the thermal continuum at 1.S-microns provides high leverage on atmospheric temperature for these worlds, again helping to break degeneracies in interpreting the Spitzer data. We here describe preliminary results for several exoplanets observed in this program.

  7. Monitoring of V380 Oph requested in support of HST observations

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2012-08-01

    On behalf of a large Hubble Space Telescope consortium of which they are members, Dr. Joseph Patterson (Columbia University, Center for Backyard Astrophysics) and Dr. Arne Henden (AAVSO) requested observations from the amateur astronomer community in support of upcoming HST observations of the novalike VY Scl-type cataclysmic variable V380 Oph. The HST observations will likely take place in September but nightly visual observations are needed beginning immediately and continuing through at least October 2012. The astronomers plan to observe V380 Oph while it is in its current low state. Observations beginning now are needed to determine the behavior of this system at minimum and to ensure that the system is not in its high state at the time of the HST observations. V380 Oph is very faint in its low state: magnitude 17 to 19 and perhaps even fainter. Nightly snapshot observations, not time series, are requested, as is whatever technique - adding frames, lengthening exposur! es, etc. - necessary to measure the magnitude. It is not known whether V380 Oph is relatively inactive at minimum or has flares of one to two magnitudes; it is this behavior that is essential to learn in order to safely execute the HST observations. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details. NOTE: This campaign was subsequently cancelled when it was learned V830 Oph was not truly in its low state. See AAVSO Alert Notice 468 for details.

  8. Post-processing of the HST STIS coronagraphic observations

    NASA Astrophysics Data System (ADS)

    Ren, Bin; Pueyo, Laurent; Perrin, Marshall D.; Debes, John H.; Choquet, Élodie

    2017-09-01

    In the past 20 years, the Hubble Space Telescope (HST) STIS coronagraphic instrument has observed more than 100 stars, obtaining more than 4,000 readouts since its installment on HST in 1997 and the numbers are still increasing. We reduce the whole STIS coronagraphic archive at the most commonly observed positions (Wedge A0.6 and A1.0) with new post-processing methods, and present our results here. We are able to recover all of the 32 previously reported circumstellar disks, and obtain better contrast close to the star. For some of the disks, our results are limited by the over subtraction of the methods, and therefore the major regions of the disks can be recovered except the faintest regions. We also explain our efforts in the calibration of its new BAR5 occulting position, enabling STIS to explore inner regions as close as 0.2 00 .

  9. HST/WFC3 Observations of Uranus' 2014 Storm Clouds

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick Gerard Joseph; Simon, Amy A.; Wong, Michael H.; Orton, Glenn S.; Toledo, Daniel

    2016-10-01

    In November 2014 Uranus was observed with the Wide Field Camera 3 (WFC3) instrument of the Hubble Space Telescope as part of the Hubble 2020: Outer Planet Atmospheres Legacy program, OPAL. OPAL annually maps Jupiter, Uranus and Neptune (and also Saturn from 2018) in several visible/near-IR wavelength filters. The Uranus 2014 OPAL observations were made on the 8 - 9th November at a time when a huge convective storm system, first observed by amateur astronomers, was present at 30 - 40°N. The entire visible atmosphere, including the storm system, was imaged in seven filters spanning 467 - 924 nm, capturing variations in the coloration of Uranus' clouds and also vertical distribution due to wavelength dependent changes in Rayleigh scattering and methane absorption. Here we analyse these new HST observations with the NEMESIS radiative-transfer and retrieval code, in multiple-scattering mode, to determine the vertical cloud structure in and around the convective storm cloud system.The same storm system was also observed in the H-band (1.4 - 1.9 µm) with the SINFONI Integral Field Unit Spectrometer on the Very Large Telescope (VLT) on 31st October and 11th November (Irwin et al., 2016, 10.1016/j.icarus.2015.09.010). To constrain better the cloud particle sizes and scattering properties over a wide wavelength range we also conducted a limb-darkening analysis of the background cloud structure in the 30 - 40°N latitude band by simultaneously fitting: a) these HST/OPAL observations at a range of zenith angles; b) the VLT/SINFONI observations at a range of zenith angles; and c) IRTF/SpeX observations of this latitude band made in 2009 at a single zenith angle of 23°, spanning the wavelength range 0.8 - 1.8 µm (Irwin et al., 2015, 10.1016/j.icarus.2014.12.020).We find that the HST observations and the combined HST/VLT/IRTF observations are well modeled with a three-component cloud comprised of: 1) a thin 'deep' cloud at a pressure of ~2 bars; 2) a methane-ice cloud at the

  10. A rule-based shell to hierarchically organize HST observations

    NASA Technical Reports Server (NTRS)

    Bose, Ashim; Gerb, Andrew

    1995-01-01

    An observing program on the Hubble Space Telescope (HST) is described in terms of exposures that are obtained by one or more of the instruments onboard the HST. These exposures are organized into a hierarchy of structures for purposes of efficient scheduling of observations. The process by which exposures get organized into the higher-level structures is called merging. This process relies on rules to determine which observations can be 'merged' into the same higher level structure, and which cannot. The TRANSformation expert system converts proposals for astronomical observations with HST into detailed observing plans. The conversion process includes the task of merging. Within TRANS, we have implemented a declarative shell to facilitate merging. This shell offers the following features: (1) an easy way of specifying rules on when to merge and when not to merge, (2) a straightforward priority mechanism for resolving conflicts among rules, (3) an explanation facility for recording the merging history, (4) a report generating mechanism to help users understand the reasons for merging, and (5) a self-documenting mechanism that documents all the merging rules that have been defined in the shell, ordered by priority. The merging shell is implemented using an object-oriented paradigm in CLOS. It has been a part of operational TRANS (after extensive testing) since July 1993. It has fulfilled all performance expectations, and has considerably simplified the process of implementing new or changed requirements for merging. The users are pleased with its report-generating and self-documenting features.

  11. Guaranteed time observations support for Faint Object Spectrograph (FOS) on HST

    NASA Technical Reports Server (NTRS)

    Harms, Richard

    1994-01-01

    The goals of the GTO effort are for investigations defined in previous years by the IDT to be carried out as HST observations and for the results to be communicated to the scientific community and to the public. The search for possible black holes in the nuclei of both normal and active nucleus galaxies has had to be delayed to the post-servicing era. FOS spectropolarimetric observations of the nuclear region of the peculiar Seyfert galaxy Mrk 231 reveal that the continuum polarization peaks at 18% in the near UV and then declines rapidly toward shorter wavelengths. The papers on the absorption line analysis for our galactic halo address the spatial distribution of high and intermediate level ions in the halo and illustrate the patchy and heterogeneous nature of the halo. The papers on the scattering characteristics of the HST/FOS have provided us with data that shows that the HST mirror surfaces are quite smooth, even at the UV wavelengths. WF-PC and FOC images of the halo PN K648 have been fully analyzed.

  12. HST/WFC3 Observations of Giant Hot Exoplanets

    NASA Technical Reports Server (NTRS)

    Deming, D.

    2010-01-01

    Low resolution thermal emission spectra of roger two dozen extrasolar planets have been measured using Spitzer, and HST observations of a few key exoplanets have defined molecular abundances via transmission spectroscopy. However, current models for the atmospheric structure of these worlds exhibit degeneracies wherein different combinations of temperature and molecular abundance profiles can fit the same Spitzer data. The advent of the IR capability on HST/WFC3 allows us to address this problem. We are currently obtaining transmission spectroscopy of the 1.4-micron water band in a sample of 13 planets, using the G141 grism on WFC3, Among the abundant molecules, only water absorbs at this wavelength, and our measurement of water abundance will enable us to break the degeneracies in the Spitzer results with minimal model assumptions. We will also use the G141 grism to observe secondary eclipses for 7 very hot giant exoplanets at 1.5-microns, including several bright systems in the Kepler and CoRoT fields. The strong temperature sensitivity of the thermal continuum at 1.5-microns provides high leverage on atmospheric temperature for these worlds, again helping to break degeneracies in interpreting the Spitzer data. We here describe preliminary results for several exoplanets observed in this program,

  13. Monitoring of CH Cyg requested for Chandra and HST observations

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2012-03-01

    Dr. Margarita Karovska, Harvard-Smithsonian Center for Astrophysics, has requested visual and photometric observations of the symbiotic variable CH Cyg in preparation for and support of Chandra and HST observations scheduled for later in March 2012. Dr. Karovska's observations will be a followup investigation of the central region of CH Cyg and its jet that was discovered a couple of years ago. AAVSO observations are requested in order to monitor the state of the system and correlate with the satellite observations. Visual observations and CCD/PEP observations in all bands - U through J and H - are requested. Daily observations now through April 2012 and high-speed photometry through March would be appreciated. CH Cyg is currently at visual magnitude 7.7. Halpha, OIII region, and optical spectroscopy are also requested. More details on the exact dates and times of the satellite observations will be announced when they become available, but daily monitoring should begin now. [HST observations scheduled for 2012 March 18; Chandra delayed some days due to X-class solar flare of 2012 March 7.] Coordinates: RA 19 24 33.07 Dec. +50 14 29.1 (J2000.0). Finder charts may be created and data from the AAVSO International Database may be viewed, plotted, or downloaded (www.aavso.org).

  14. HST observations of Jupiter's UV aurora during Juno's orbits PJ03, PJ04 and PJ05

    NASA Astrophysics Data System (ADS)

    Grodent, Denis; Gladstone, G. randall; Clarke, John T.; Bonfond, Bertrand; Gérard, Jean-Claude; Radioti, Aikaterini; Nichols, Jonathan D.; Bunce, Emma J.; Roth, Lorenz; Saur, Joachim; Kimura, Tomoki; Orton, Glenn S.; Badman, Sarah V.; Mauk, Barry; Connerney, John E. P.; McComas, David J.; Kurth, William S.; Adriani, Alberto; Hansen, Candice; Yao, Zhonghua

    2017-04-01

    The intense ultraviolet auroral emissions of Jupiter are currently being monitored in the frame of a large Hubble Space Telescope (HST) program meant to support the NASA Juno prime mission. The present study addresses the three first Juno orbits (PJ03, 04 and 05) during which HST obtained parallel observations. These three campaigns basically consist of a 2-week period bracketing the time of Juno's closest approach of Jupiter (CA). At least one HST visit is scheduled every day during the week before and the week following CA. During the 12-hour period centered on CA and depending on observing constraints, several HST visits are programmed in order to obtain as many simultaneous observations with Juno-UVS as possible. In addition, at least one HST visit is obtained near Juno's apojove, when UVS is continuously monitoring Jupiter's global auroral power, without spatial resolution, for about 12 hours. We are using the Space Telescope Imaging Spectrograph (STIS) in time-tag mode in order to provide spatially resolved movies of Jupiter's highly dynamic aurora with timescales ranging from seconds to several days. We discuss the preliminary exploitation of the HST data and present these results in such a way as to provide a global magnetospheric context for the different Juno instruments studying Jupiter's magnetosphere, as well as for the numerous ground based and space based observatories participating to the Juno mission.

  15. VizieR Online Data Catalog: HST and Magellan observations of Haumea system (Hastings+, 2016)

    NASA Astrophysics Data System (ADS)

    Hastings, D. M.; Ragozzine, D.; Fabrycky, D. C.; Burkhart, L. D.; Fuentes, C.; Margot, J.-L.; Brown, M. E.; Holman, M.

    2017-01-01

    The Hubble Space Telescope (HST) observations of the Haumea system comprised five HST orbits' worth of 100s exposures of the Wide Field Planetary Camera 2 from 2009 February 4 (Program 11971) and 10 HST orbits' worth of 44s exposures of the Wide Field Camera 3 from 2010 June 28 (Program 12243). This system was also observed on the night of UT 2009 June 2 with the Magellan Baade telescope at Las Campanas Observatory in Chile. We used the Raymond and Beverly Sackler Magellan Instant Camera (MagIC). Observations were taken from the beginning of the night until it was unobservable, for a total of ~5hr. We centered the system on one of the four quadrants defined by the instrument's four amplifiers. The seeing was constant during the observations and consistently close to 0.5'', smaller than Hi'iaka's separation of 1.4''. The SITe CCD detector has a pixel scale of 0.069''/pixel. We set the exposure times at 120s to avoid saturation and optimize readout time. The filter selected was Johnson-Cousins R. Standard calibrations were taken at the beginning and end of the night. The telescope guiding system ensured that the pointing was constant to within an FWHM over the course of the observations. Table1 presents the relative normalized photometry inferred from our observations. (1 data file).

  16. See Change: Classifying single observation transients from HST using SNCosmo

    NASA Astrophysics Data System (ADS)

    Sofiatti Nunes, Caroline; Perlmutter, Saul; Nordin, Jakob; Rubin, David; Lidman, Chris; Deustua, Susana E.; Fruchter, Andrew S.; Aldering, Greg Scott; Brodwin, Mark; Cunha, Carlos E.; Eisenhardt, Peter R.; Gonzalez, Anthony H.; Jee, Myungkook J.; Hildebrandt, Hendrik; Hoekstra, Henk; Santos, Joana; Stanford, S. Adam; Stern, Dana R.; Fassbender, Rene; Richard, Johan; Rosati, Piero; Wechsler, Risa H.; Muzzin, Adam; Willis, Jon; Boehringer, Hans; Gladders, Michael; Goobar, Ariel; Amanullah, Rahman; Hook, Isobel; Huterer, Dragan; Huang, Jiasheng; Kim, Alex G.; Kowalski, Marek; Linder, Eric; Pain, Reynald; Saunders, Clare; Suzuki, Nao; Barbary, Kyle H.; Rykoff, Eli S.; Meyers, Joshua; Spadafora, Anthony L.; Hayden, Brian; Wilson, Gillian; Rozo, Eduardo; Hilton, Matt; Dixon, Samantha; Yen, Mike

    2016-01-01

    The Supernova Cosmology Project (SCP) is executing "See Change", a large HST program to look for possible variation in dark energy using supernovae at z>1. As part of the survey, we often must make time-critical follow-up decisions based on multicolor detection at a single epoch. We demonstrate the use of the SNCosmo software package to obtain simulated fluxes in the HST filters for type Ia and core-collapse supernovae at various redshifts. These simulations allow us to compare photometric data from HST with the distribution of the simulated SNe through methods such as Random Forest, a learning method for classification, and Gaussian Kernel Estimation. The results help us make informed decisions about triggered follow up using HST and ground based observatories to provide time-critical information needed about transients. Examples of this technique applied in the context of See Change are shown.

  17. HST archive primer, version 4.1

    NASA Technical Reports Server (NTRS)

    Fruchter, A. (Editor); Baum, S. (Editor)

    1994-01-01

    This version of the HST Archive Primer provides the basic information a user needs to know to access the HST archive via StarView the new user interface to the archive. Using StarView, users can search for observations interest, find calibration reference files, and retrieve data from the archive. Both the terminal version of StarView and the X-windows version feature a name resolver which simplifies searches of the HST archive based on target name. In addition, the X-windows version of StarView allows preview of all public HST data; compressed versions of public images are displayed via SAOIMAGE, while spectra are plotted using the public plotting package, XMGR. Finally, the version of StarView described here features screens designed for observers preparing Cycle 5 HST proposals.

  18. Imaging Variable Stars with HST

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2011-05-01

    The Hubble Space Telescope (HST) observations of astronomical sources, ranging from objects in our solar system to objects in the early Universe, have revolutionized our knowledge of the Universe its origins and contents.I will highlight results from HST observations of variable stars obtained during the past twenty or so years. Multiwavelength observations of numerous variable stars and stellar systems were obtained using the superb HST imaging capabilities and its unprecedented angular resolution, especially in the UV and optical. The HST provided the first detailed images probing the structure of variable stars including their atmospheres and circumstellar environments. AAVSO observations and light curves have been critical for scheduling of many of these observations and provided important information and context for understanding of the imaging results of many variable sources. I will describe the scientific results from the imaging observations of variable stars including AGBs, Miras, Cepheids, semi-regular variables (including supergiants and giants), YSOs and interacting stellar systems with a variable stellar components. These results have led to an unprecedented understanding of the spatial and temporal characteristics of these objects and their place in the stellar evolutionary chains, and in the larger context of the dynamic evolving Universe.

  19. Imaging Variable Stars with HST

    NASA Astrophysics Data System (ADS)

    Karovska, M.

    2012-06-01

    (Abstract only) The Hubble Space Telescope (HST) observations of astronomical sources, ranging from objects in our solar system to objects in the early Universe, have revolutionized our knowledge of the Universe its origins and contents. I highlight results from HST observations of variable stars obtained during the past twenty or so years. Multiwavelength observations of numerous variable stars and stellar systems were obtained using the superb HST imaging capabilities and its unprecedented angular resolution, especially in the UV and optical. The HST provided the first detailed images probing the structure of variable stars including their atmospheres and circumstellar environments. AAVSO observations and light curves have been critical for scheduling of many of these observations and provided important information and context for understanding of the imaging results of many variable sources. I describe the scientific results from the imaging observations of variable stars including AGBs, Miras, Cepheids, semiregular variables (including supergiants and giants), YSOs and interacting stellar systems with a variable stellar components. These results have led to an unprecedented understanding of the spatial and temporal characteristics of these objects and their place in the stellar evolutionary chains, and in the larger context of the dynamic evolving Universe.

  20. HST Observations of the Uranian Ring Plane Crossing: Early Results

    NASA Astrophysics Data System (ADS)

    Showalter, Mark R.; Lissauer, J. J.; French, R. G.; Hamilton, D. P.; Nicholson, P. D.; de Pater, I.

    2007-10-01

    Between early May and mid-August 2007, Earth was on the north side of the Uranian ring plane while the Sun was still shining on the rings’ southern face. This has provided an exceedingly rare opportunity to view the ring system via transmitted light. The ɛ ring, which typically out-shines every other component of the inner ring-moon system, has been rendered essentially invisible. We have been conducting regular imaging of the Uranian system throughout this period with the Wide Field/Planetary Camera on HST to address numerous scientific goals. (1) To search the inner Uranian system for the "shepherding” moons long believed to confine the narrow rings; (2) to study the packing density of the main rings via direct observations of their vertical thickness; (3) to search for the inner dust rings that appeared in a few Voyager images; (4) to determine the vertical thickness of the faint outer rings μ and ν (5) to obtain the most sensitive determinations of the outer rings’ colors and try to understand why ring ν is red but ring μ is blue; (6) to search for additional outer dust rings under optimal viewing geometry; and (7) to continue monitoring the seemingly chaotic orbital variations of the inner Uranian moons, particularly Mab. HST observations span mid-May to mid-September. We will present our initial results from this observing program.

  1. HST/FGS High Angular Resolution Observations of Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Hestroffer, Daniel; Tanga, P.; Cellino, A.; Kaasalainen, M.; Torppa, J.; Marchis, F.; Richardson, D. C.; Elankumaran, P.; Berthier, J.; Colas, F.; Lounis, S.

    2006-09-01

    Binary or multiple asteroids are important bodies that provide insight into the physical properties of asteroids in general. The knowledge of the components orbit in a binary provides the total mass with high accuracy and generally permits a rough bulk-density estimate [1,2]. We have observed 10 selected binary or multiple asteroids (22 Kalliope, 45 Eugenia, 87 Sylvia, 90 Antiope, 107 Camilla, 121 Hermione, 283 Emma, 379 Huenna, 617 Patroclus, 762 Pulcova) with the HST/FGS interferometer in order to obtain high resolution data on the size and shape of their primaries (HST proposal ID 10614). All these systems except the Jupiter Trojan 617 Patroclus are located in the main-belt of asteroids. Combining these HST/FGS data to topographic models obtained from lightcurve inversion [3,4] yields the volume and hence the bulk density of these bodies with unprecedented accuracy [5]. This work will allow us to obtain important information on their internal structure, and insight into the possible gravitational re-accumulation process after a catastrophic disruptive collision [e.g. 6,7,8].In particular, one can see whether or not the surfaces of theses bodies closely follow an effective equipotential surface, and under what circumstances such a correspondence is or is not attained . We will present the preliminary results for the data reduction and the size and bulk density determination. [1] Merline et al. (2003). In: Asteroids III, pp 289. [2] Marchis et al. (2005) ACM 2005, Buzios, Brazil. [3] Kaasalainen et al. (2002) Icarus 159, 359. [4] Torppa et al. (2003) Icarus 164, 346. [5] Hestroffer et al. (2003) ACM 2002, ESA-SP 500, 493. [6] Michel et al. (2004) P&SS 52, 1109. [7] Durda et al. (2004) Icarus 167, 342. [8] Paolicchi et al. (1993) Cel. Mech., 57, 49.

  2. The HST Frontier Fields

    NASA Astrophysics Data System (ADS)

    Lotz, Jennifer; Mountain, M.; Grogin, N. A.; Koekemoer, A. M.; Capak, P. L.; Mack, J.; Coe, D. A.; Barker, E. A.; Adler, D. S.; Avila, R. J.; Anderson, J.; Casertano, S.; Christian, C. A.; Gonzaga, S.; Ferguson, H. C.; Fruchter, A. S.; Jenkner, H.; Jordan, I. J.; Hammer, D.; Hilbert, B.; Lawton, B. L.; Lee, J. C.; Lucas, R. A.; MacKenty, J. W.; Mutchler, M. J.; Ogaz, S.; Reid, I. N.; Royle, P.; Robberto, M.; Sembach, K.; Smith, L. J.; Sokol, J.; Surace, J. A.; Taylor, D.; Tumlinson, J.; Viana, A.; Williams, R. E.; Workman, W.

    2014-01-01

    Using Director's Discretionary observing time, HST is undertaking a revolutionary deep field observing program to peer deeper into the Universe than ever before. The Frontier Fields will combine the power of HST with the natural gravitational telescopes of high-magnification clusters of galaxies to produce the deepest observations of clusters and their lensed galaxies and the second-deepest observations of blank fields ever obtained. Up to six strong-lensing clusters (Abell 2744, MACSJ0416.1-2403, MACSJ0717.5+3745, MACSJ1149.5+2223, AbellS1063, and Abell 370) will be targeted with coordinated parallels of adjacent blank fields with ACS/WFC and WFC3/IR cameras to ~29th ABmag depths in seven bandpasses over the next three years. These observations will reveal distant galaxy populations ~10-100 times fainter than any previously observed, and improve our statistical understanding of galaxies during the epoch of reionization. Here we present Hubble Space Telescope observations of the first set of the Frontier Fields, Abell 2744, and describe the HST Frontier Fields observing strategy and schedule. All data for this observing program is nonproprietary and available immediately upon entry into the Mikulski Archive for Space Telescopes.

  3. Evidence of Plumes on Europa from far-ultraviolet observations with HST

    NASA Astrophysics Data System (ADS)

    Sparks, William B.; McGrath, Melissa; Schmidt, Britney; Bergeron, Eddie; Hand, Kevin; Spencer, John; Cracraft, Misty; Deustua, Susana

    2018-01-01

    Evidence for plumes of water emerging from the icy surface of Europa has been found by the Hubble Space Telescope (HST) using two different UV observing techniques. Roth et al. (2014) found line emission from the dissociation products of water. Sparks et al. (2016, 2017) found evidence for off-limb continuum absorption as Europa transited Jupiter. We describe the transit method which obtains far ultraviolet images of Europa as it passes in front of the smooth face of Jupiter, seeking off-limb absorption patches that may be due to plumes on Europa. This approach exploits the time resolution, sensitivity and spatial resolution of HST, coupled to the high cross-sections for molecules of interest at these wavelengths. We show that a well-localized plume candidate appears more than once, and that it is at the same position as a nighttime thermal anomaly seen by the Galileo spacecraft, the warmest point on the observed Europa nightside. The favored interpretation of the thermal anomaly is a modification to the local thermal inertia, which could be causally related to plume activity. Future plans for additional work in this area are described.

  4. CI Aql monitoring needed to support HST observations

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2016-10-01

    Dr. Edward Sion (Villanova University) has requested AAVSO observers' assistance in monitoring the recurrent nova CI Aql in support of observations with the Hubble Space Telescope Cosmic Origins Spectrograph scheduled for October 31 - November 2, 2016, and November 3 - November 5, 2016. These observations are part of a study on short orbital period recurrent novae as Supernovae Type Ia progenitors. It is essential to know 24 hours prior to the HST COS observations that CI Aql is not in outburst, in order to protect the instrumentation. Observers are asked to keep an eye on CI Aql with nightly snapshot images (V preferred) from now until November 12, and to report their observations promptly. It will be especially important to know the brightness of CI Aql each night for October 28 through November 7 UT. Visual observations are welcome. CI Aql (Nova Aql 1917) has had recurrent outbursts in 1941 and 2000, brightening to V 8.5. At minimum it is V 16-16.5 or fainter. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  5. Combining Statistical Samples of Resolved-ISM Simulated Galaxies with Realistic Mock Observations to Fully Interpret HST and JWST Surveys

    NASA Astrophysics Data System (ADS)

    Faucher-Giguere, Claude-Andre

    2016-10-01

    HST has invested thousands of orbits to complete multi-wavelength surveys of high-redshift galaxies including the Deep Fields, COSMOS, 3D-HST and CANDELS. Over the next few years, JWST will undertake complementary, spatially-resolved infrared observations. Cosmological simulations are the most powerful tool to make detailed predictions for the properties of galaxy populations and to interpret these surveys. We will leverage recent major advances in the predictive power of cosmological hydrodynamic simulations to produce the first statistical sample of hundreds of galaxies simulated with 10 pc resolution and with explicit interstellar medium and stellar feedback physics proved to simultaneously reproduce the galaxy stellar mass function, the chemical enrichment of galaxies, and the neutral hydrogen content of galaxy halos. We will process our new set of full-volume cosmological simulations, called FIREBOX, with a mock imaging and spectral synthesis pipeline to produce realistic mock HST and JWST observations, including spatially-resolved photometry and spectroscopy. By comparing FIREBOX with recent high-redshift HST surveys, we will study the stellar build up of galaxies, the evolution massive star-forming clumps, their contribution to bulge growth, the connection of bulges to star formation quenching, and the triggering mechanisms of AGN activity. Our mock data products will also enable us to plan future JWST observing programs. We will publicly release all our mock data products to enable HST and JWST science beyond our own analysis, including with the Frontier Fields.

  6. Request to monitor the CV SDSS161033 (1605-00) for HST observations AND TU Cas comparison stars

    NASA Astrophysics Data System (ADS)

    Price, Aaron

    2005-06-01

    AAVSO Alert Notice 319 contains two topics. First: Dr. Paula Szkody (University of Washington) has requested AAVSO assistance in monitoring the suspected UGWZ dwarf nova SDSS J161033 [V386 Ser] for upcoming HST observations. This campaign is similar to the one recently run on SDSS J2205 and SDSS J013132 (AAVSO Alert Notice 318). HST mission planners need to be absolutely sure that SDSS J161033 is not in outburst immediately prior to the scheduled observation; AAVSO observations will be crucial to carrying out the HST program. Nightly V observations are requested June 24-July 1 UT. We are making an unusual request in that we are asking for the FITS images themselves to be uploaded to the AAVSO's FTP site. Second: AAVSO Alert Notice 318 did not specify which stars on the TU Cas PEP chart should be used as comparison and check stars. Also, there was an error on the chart regarding the location of the "83" comparison star [the chart that is available online reflects a corrected location]. Please use the "89" and the "74" stars as your comparison and check stars, respectively. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  7. HST/STIS Observations of Ganymede's Auroral Ovals at Eastern Elongation

    NASA Technical Reports Server (NTRS)

    Saur, J.; Duling, S.; Roth, L.; Feldman, P. D.; Strobel, D. F.; Retherford, K. D.; McGrath, M. A.; Wennmacher, A.

    2011-01-01

    We report on new Space Telescope Imaging Spectrograph (STIS) observations of Ganymede s auroral emissions obtained (to be obtained) during two visits with the Hubble Space Telescope (HST). The observations of the first visit, a five orbits, were obtained on November 19, 2010 and the second visit, also a five orbits, is scheduled for opposition in October/November 2011. We will present results of the full campaign, in case of a successful execution of the second visit. Our observations cover more than half a cycle of system III longitudes of Ganymede s positions within Jupiter s magnetosphere for each visit. We analyze the observations with respect to brightness and locations of Ganymede auroral ovals. Our goal is to set constrains on the interaction of Ganymede s mini-magnetosphere with Jupiter s magnetosphere, Ganymede s magnetic field and plasma environment, and if possible on Ganymede s neutral atmosphere.

  8. APIS : an interactive database of HST-UV observations of the outer planets

    NASA Astrophysics Data System (ADS)

    Lamy, Laurent; Henry, Florence; Prangé, Renée; Le Sidaner, Pierre

    2014-05-01

    Remote UV measurement of the outer planets offer a wealth of informations on rings, moons, planetary atmospheres and magnetospheres. Auroral emissions in particular provide highly valuable constraints on the auroral processes at work and the underlying coupling between the solar wind, the magnetosphere, the ionosphere and the moons. Key observables provided by high resolution spectro-imaging include the spatial topology and the dynamics of active magnetic field lines, the radiated and the precipitated powers or the energy of precipitating particles. The Hubble Space Telescope (HST) acquired thousands of Far-UV spectra and images of the aurorae of Jupiter, Saturn and Uranus since 1993, feeding in numerous magnetospheric studies. But their use remains generally limited, owing to the difficulty to access and use raw and value-added data. APIS, the egyptian god of fertilization, is also the acronym of a new database (Auroral Planetary Imaging and Spectroscopy), aimed at facilitating the use of HST planetary auroral observations. APIS is based at the Virtual Observatory (VO) of Paris and provides a free and interactive access to a variety of high level data through a simple research interface and standard VO tools (as Aladin, Specview). We will present the capabilities of APIS and illustrate them with several examples.

  9. APIS : an interactive database of HST-UV observations of the outer planets

    NASA Astrophysics Data System (ADS)

    Lamy, L.; Henry, F.; Prangé, R.; Le Sidaner, P.

    2013-09-01

    Remote UV measurement of the outer planets are a wealth of informations on rings, moons, planetary atmospheres and magnetospheres. Auroral emissions in particular provide highly valuable constraints on the auroral processes at work and the underlying coupling between the solar wind, the magnetosphere, the ionosphere and the moons. Key observables provided by high resolution spectro-imaging include the spatial topology and the dynamics of active magnetic field lines, the radiated and the precipitated powers or the energy of precipitating particles. The Hubble Space Telescope (HST) acquired thousands of Far-UV spectra and images of the aurorae of Jupiter, Saturn and Uranus since 1993, feeding in numerous magnetospheric studies. But their use remains generally limited, owing to the difficulty to access and use raw and value-added data. APIS, the egyptian god of fertilization, is also the acronym of a new database (Auroral Planetary Imaging and Spectroscopy, Figure 1), aimed at facilitating the use of HST planetary auroral observations. APIS is based at the Virtual Observatory (VO) of Paris and provides a free and interactive access to a variety of high level data through a simple research interface and standard VO tools. We will present the capabilities of APIS and illustrate them with several examples.

  10. HST Observations Reveal the Curious Geometry of Circumgalactic Gas

    NASA Astrophysics Data System (ADS)

    Kacprzak, Glenn G.; Muzahid, Sowgat; Churchill, Christopher W.; Nielsen, Nikole M.; Charlton, Jane C.

    2016-06-01

    We have discovered that warm gas flows along galaxy major and minor axes detected out to 200 kpc. Our results are derived from a sample of HST-imaged isolated galaxies with nearby background quasars used to probe their 105K CGM detected in HST/COS UV spectra (traced by OVI absorption). We constrain the geometry of the gas to reside between 20-40 degrees of the projected major axis and within 60 degrees of the projected minor axis, with little-to-no gas found in between. Furthermore, strong absorption systems tend to be found along the minor axes of star-forming galaxies. All of our results are consistent with the current view of the CGM originating from major axis-fed inflows/recycled gas and from minor axis-driven outflows.

  11. HST Observations Reveal the Curious Geometry of Circumgalactic Gas

    NASA Astrophysics Data System (ADS)

    Kacprzak, Glenn G.; Muzahid, Sowgat; Churchill, Christopher W.; Nielsen, Nikole M.; Charlton, Jane C.

    2017-03-01

    We have discovered that warm gas flows along galaxy major and minor axes detected out to 200 kpc. Our results are derived from a sample of HST-imaged isolated galaxies with nearby background quasars used to probe their 105K CGM detected in HST/COS UV spectra (traced by Ovi absorption). We constrain the geometry of the gas to reside between 20-40 degrees of the projected major axis and within 60 degrees of the projected minor axis, with little-to-no gas found in between. Furthermore, strong absorption systems tend to be found along the minor axes of star-forming galaxies. All of our results are consistent with the current view of the CGM originating from major axis-fed inflows/recycled gas and from minor axis-driven outflows.

  12. HST observations of globular clusters in M 31. 1: Surface photometry of 13 objects

    NASA Technical Reports Server (NTRS)

    Pecci, F. Fusi; Battistini, P.; Bendinelli, O.; Bonoli, F.; Cacciari, C.; Djorgovski, S.; Federici, L.; Ferraro, F. R.; Parmeggiani, G.; Weir, N.

    1994-01-01

    We present the initial results of a study of globular clusters in M 31, using the Faint Object Camera (FOC) on the Hubble Space Telescope (HST). The sample of objects consists of 13 clusters spanning a range of properties. Three independent image deconvolution techniques were used in order to compensate for the optical problems of the HST, leading to mutually fully consistent results. We present detailed tests and comparisons to determine the reliability and limits of these deconvolution methods, and conclude that high-quality surface photometry of M 31 globulars is possible with the HST data. Surface brightness profiles have been extracted, and core radii, half-light radii, and central surface brightness values have been measured for all of the clusters in the sample. Their comparison with the values from ground-based observations indicates the later to be systematically and strongly biased by the seeing effects, as it may be expected. A comparison of the structural parameters with those of the Galactic globulars shows that the structural properties of the M 31 globulars are very similar to those of their Galactic counterparts. A candidate for a post-core-collapse cluster, Bo 343 = G 105, has been already identified from these data; this is the first such detection in the M 31 globular cluster system.

  13. Mining the HST Treasury: The ASTRAL Reference Spectra for Evolved M Stars

    NASA Technical Reports Server (NTRS)

    Carpenter, K. G.; Ayres, T.; Harper, G.; Kober, G.; Wahlgren, G. M.

    2012-01-01

    The "Advanced Spectral Library (ASTRAL) Project: Cool Stars" (PI = T. Ayres) is an HST Cycle 18 Treasury Program designed to collect a definitive set of representative, high-resolution (R greater than 100,000) and high signal/noise (S/N greater than 100) UV spectra of eight F-M evolved cool stars. These extremely high-quality STIS UV echelle spectra are available from the HST archive and through the University of Colorado (http://casa.colorado.edu/ayres/ASTRAL/) portal and will enable investigations of a broad range of problems -- stellar, interstellar. and beyond -- for many years. In this current paper, we concentrate on producing a roadrnap to the very rich spectra of the two evolved M stars in the sample, the M3.4 giant Gamma Crucis (GaCrux) and the M2Iab supergiant Alpha Orionis (Betelgeuse) and illustrate the huge increase in coverage and quality that these spectra provide over that previously available from IUE and earlier HST observations. These roadmaps will facilitate the study of the spectra, outer atmospheres, and winds of not only these stars. but also numerous other cool, low-gravity stars and make a very interesting comparison to the already-available atlases of the K2III giant Arcturus.

  14. HST/WFC3 observations of Uranus' 2014 storm clouds and comparison with VLT/SINFONI and IRTF/Spex observations

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick G. J.; Wong, Michael H.; Simon, Amy A.; Orton, G. S.; Toledo, Daniel

    2017-05-01

    In November 2014 Uranus was observed with the Wide Field Camera 3 (WFC3) instrument of the Hubble Space Telescope as part of the Hubble 2020: Outer Planet Atmospheres Legacy program, OPAL. OPAL annually maps Jupiter, Uranus and Neptune (and will also map Saturn from 2018) in several visible/near-infrared wavelength filters. The Uranus 2014 OPAL observations were made on the 8/9th November at a time when a huge cloud complex, first observed by de Pater et al. (2015) and subsequently tracked by professional and amateur astronomers (Sayanagi et al., 2016), was present at 30-40°N. We imaged the entire visible atmosphere, including the storm system, in seven filters spanning 467-924 nm, capturing variations in the coloration of Uranus' clouds and also vertical distribution due to wavelength dependent changes in Rayleigh scattering and methane absorption optical depth. Here we analyse these new HST observations with the NEMESIS radiative-transfer and retrieval code in multiple-scattering mode to determine the vertical cloud structure in and around the storm cloud system. The same storm system was also observed in the H-band (1.4-1.8 μm) with the SINFONI Integral Field Unit Spectrometer on the Very Large Telescope (VLT) on 31st October and 11th November, reported by Irwin et al. (2016, 10.1016/j.icarus.2015.09.010). To constrain better the cloud particle sizes and scattering properties over a wide wavelength range we also conducted a limb-darkening analysis of the background cloud structure in the 30-40°N latitude band by simultaneously fitting: a) these HST/OPAL observations at a range of zenith angles; b) the VLT/SINFONI observations at a range of zenith angles; and c) IRTF/SpeX observations of this latitude band made in 2009 at a single zenith angle of 23°, spanning the wavelength range 0.8-1.8 μm (Irwin et al., 2015, 10.1016/j.icarus.2014.12.020). We find that the HST observations, and the combined HST/VLT/IRTF observations at all locations are well modelled with

  15. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1983-01-01

    This is a photograph of a 1/15 scale model of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  16. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being raised to a vertical position in the cargo bay of the Space Shuttle orbiter. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  17. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being positioned for release from the Space Shuttle orbiter by the Remote Manipulator System (RMS). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  18. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1985-04-01

    This image illustrates the overall Hubble Space Telescope (HST) configuration. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  19. Preliminary Results from Recent Simultaneous Chandra/HST Observations of Jupiter Auroral Zones

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Gladstone, R.; Waite, H.; Majeed, T.; Ford, P.; Grodent, D.; Bwardwaj, A.; Howell, R.; Cravens, T.; MacDowell, R.

    2003-01-01

    Jupiter was observed by the Chandra X-ray Observatory in late February, 2003, for 144 ks, using both the ACIS-S and HRC-I imaging x-ray cameras. Five orbits of HST STIS observations of the planet's northern auroral zone were obtained during the ACIS-S observations. These data are providing a wealth of information about Jupiter's auroral activity, including the first x-ray spectra from the x-ray hot spots inside the auroral ovals. We will also discuss the approximately 45 minute quasi-periodicity in the auroral x-ray emission - which correlates well with simultaneous observations of radio bursts by the Ulysses spacecraft - and a possible phase relation between the emission from the northern and southern x-ray aurora.

  20. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-10-01

    This illustration depicts the design features of the Hubble Space Telescope's (HST's) Support Systems Module (SSM). The SSM is one of the three major elements of the HST and encloses the other two elements, the Optical Telescope Assembly (OTA) and the Scientific Instruments (SI's). The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5-feet (13-meters) long and weighs 25,000 pounds (11,600 kilograms). Two communication anternas, two solar array panels that collect energy for the HST, and storage bays for electronic gear are on the outside. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  1. Galaxy evolution in the densest environments: HST imaging

    NASA Astrophysics Data System (ADS)

    Jorgensen, Inger

    2013-10-01

    We propose to process in a consistent fashion all available HST/ACS and WFC3 imaging of seven rich clusters of galaxies at z=1.2-1.6. The clusters are part of our larger project aimed at constraining models for galaxy evolution in dense environments from observations of stellar populations in rich z=1.2-2 galaxy clusters. The main objective is to establish the star formation {SF} history and structural evolution over this epoch during which large changes in SF rates and galaxy structure are expected to take place in cluster galaxies.The observational data required to meet our main objective are deep HST imaging and high S/N spectroscopy of individual cluster members. The HST imaging already exists for the seven rich clusters at z=1.2-1.6 included in this archive proposal. However, the data have not been consistently processed to derive colors, magnitudes, sizes and morphological parameters for all potential cluster members bright enough to be suitable for spectroscopic observations with 8-m class telescopes. We propose to carry out this processing and make all derived parameters publicly available. We will use the parameters derived from the HST imaging to {1} study the structural evolution of the galaxies, {2} select clusters and galaxies for spectroscopic observations, and {3} use the photometry and spectroscopy together for a unified analysis aimed at the SF history and structural changes. The analysis will also utilize data from the Gemini/HST Cluster Galaxy Project, which covers rich clusters at z=0.2-1.0 and for which we have similar HST imaging and high S/N spectroscopy available.

  2. The BUFFALO HST Survey

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles; Jauzac, Mathilde; Capak, Peter; Koekemoer, Anton; Oesch, Pascal; Richard, Johan; Sharon, Keren q.; BUFFALO

    2018-01-01

    Beyond Ultra-deep Frontier Fields And Legacy Observations (BUFFALO) is an astronomical survey built around the six Hubble Space Telescope (HST) Frontier Fields clusters designed to learn about early galactic assembly and clustering and prepare targets for observations with the James Webb Space Telescope. BUFFALO will place significant new constraints on how and when the most massive and luminous galaxies in the universe formed and how early galaxy formation is linked to dark matter assembly. The same data will also probe the temperature and cross section of dark matter in the massive Frontier Fields galaxy clusters, and tell us how the dark matter, cluster gas, and dynamics of the clusters influence the galaxies in and around them. These studies are possible because the Spitzer Space Telescope, Chandra X-ray Observatory, XMM-Newton, and ground based telescopes have already invested heavily in deep observations around the Frontier Fields, so that the addition of HST observations can yield significant new results.

  3. HST Grism Observations of a Gravitationally Lensed Redshift 9.5 Galaxy

    NASA Astrophysics Data System (ADS)

    Hoag, A.; Bradač, M.; Brammer, G.; Huang, K.-H.; Treu, T.; Mason, C. A.; Castellano, M.; Di Criscienzo, M.; Jones, T.; Kelly, P.; Pentericci, L.; Ryan, R.; Schmidt, K.; Trenti, M.

    2018-02-01

    We present deep spectroscopic observations of a Lyman break galaxy (LBG) candidate (hereafter MACS1149-JD) at z ∼ 9.5 with the Hubble Space Telescope (HST) WFC3/IR grisms. The grism observations were taken at four distinct position angles, totaling 34 orbits with the G141 grism, although only 19 of the orbits are relatively uncontaminated along the trace of MACS1149-JD. We fit a three-parameter (z, F160W mag, and Lyα equivalent width [EW]) LBG template to the three least contaminated grism position angles using a Markov chain Monte Carlo approach. The grism data alone are best fit with a redshift of {z}{grism}={9.53}-0.60+0.39 (68% confidence), in good agreement with our photometric estimate of {z}{phot}={9.51}-0.12+0.06 (68% confidence). Our analysis rules out Lyα emission from MACS1149-JD above a 3σ EW of 21 Å, consistent with a highly neutral IGM. We explore a scenario where the red Spitzer/IRAC [3.6]–[4.5] color of the galaxy previously pointed out in the literature is due to strong rest-frame optical emission lines from a very young stellar population rather than a 4000 Å break. We find that while this can provide an explanation for the observed IRAC color, it requires a lower redshift (z ≲ 9.1), which is less preferred by the HST imaging data. The grism data are consistent with both scenarios, indicating that the red IRAC color can still be explained by a 4000 Å break, characteristic of a relatively evolved stellar population. In this interpretation, the photometry indicates that a {340}-35+29 Myr stellar population is already present in this galaxy only ∼500 Myr after the big bang.

  4. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope after being released into orbit, with the high gain anternas and solar arrays deployed and the aperture doors opened. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  5. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1989-01-01

    This illustration depicts a side view of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  6. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1986-01-01

    This is an artist's concept of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  7. HST Observations of the Luminous IRAS Source FSC10214+4724: A gravitationally Lensed Infrared Quasar

    NASA Technical Reports Server (NTRS)

    Eisenhardt, P. R.; Armus, L.; Hogg, D. W.; Soifer, B. T.; Neugebauer, G.; Werner, M. W.

    1995-01-01

    Observations of a distant object in space with the data being taken by the Hubble Space Telescope (HST) Wide Field Planetary Camera. Scientific examination and hypothesis related to this object which appears to be either an extremely luminous dust embedded quasar, or a representative of a new class of astronomical objects (a primeval galaxy).

  8. The 3D-HST Survey: An Introduction

    NASA Astrophysics Data System (ADS)

    Momcheva, Ivelina G.; Van Dokkum, P. G.; Brammer, G.; Franx, M.; Skelton, R.; Lundgren, B.; Whitaker, K. E.; 3D-HST Team

    2013-01-01

    3D-HST is a near-IR spectroscopic survey with the Hubble Space Telescope designed to study galaxy evolution at 1HST Treasury program is surveying ~600 sq. arcmin of well-studied extragalactic fields (AEGIS, COSMOS, GOODS-S, UKIDSS-UDS) with two orbits of primary WFC3/G141 grism coverage and two to four orbits with ACS/G800L grism coverage. When completed in early 2013, 3D-HST would provide the critical third dimension - redshift - for some ~10,000 galaxies at z>1. In this talk, I will review the observational details, reduction pipeline, data quality and the wide range of public data products, including added-value photometric and spectroscopic catalogs. Data from the 3D-HST survey are non-proprietary and are useful for a wide variety of science investigations. Our first public data release will be in early 2013 and we would like to advertise this unique data set to the community.

  9. Energy balance in Saturn's upper atmosphere: Joint Lyman-α airglow observations with HST and Cassini

    NASA Astrophysics Data System (ADS)

    Ben-Jaffel, L.; Baines, K. H.; Ballester, G.; Holberg, H. B.; Koskinen, T.; Moses, J. I.; West, R. A.; Yelle, R. V.

    2017-12-01

    We are conducting Hubble Space Telescope UV spectroscopy of Saturn's disk-reflected Lyman-α line (Ly-α) at the same time as Cassini airglow measurements. Saturn's Ly-α emission is composed of solar and interplanetary (IPH) Ly-α photons scattered by its upper atmosphere. The H I Ly-a line probes different upper atmospheric layers down to the homopause, providing an independent way to investigate the H I abundance and energy balance. However, this is a degenerate, multi-parameter, radiative-transfer problem that depends on: H I column density, scattering process by thermal and superthermal hydrogen, time-variable solar and IPH sources, and instrument calibration. Our joint HST-Cassini campaign should break the degeneracy in the Saturn airglow problem. First, line integrated fluxes simultaneously measured by HST/STIS (dayside) and Cassini/UVIS (nightside), avoiding solar variability, should resolve the solar and IPH sources. Second, high-resolution spectroscopy with STIS will reveal superthermal line broadening not accessible with a low-resolution spectrometer like UVIS. Third, a second visit observing the same limb of Saturn will cross-calibrate the instruments and, with the STIS linewidth information, will yield the H I abundance, a key photochemical parameter not measured by Cassini. Finally, the STIS latitudinal mapping of the Ly-α linewidth will be correlated with Cassini's latitudinal temperature profile of the thermosphere, to provide an independent constraint on the thermospheric energy budget, a fundamental outstanding problem for giant planets. Here, we report the first results from the HST-Cassini campaign.

  10. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This illustration shows the Hubble Space Telescope's (HST's) major configuration elements. The spacecraft has three interacting systems: The Support System Module (SSM), an outer structure that houses the other systems and provides services such as power, communication, and control; The Optical Telescope Assembly (OTA), which collects and concentrates the incoming light in the focal plane for use by the Scientific Instruments (SI); and five SIs. The SI Control and Data Handling (CDH) unit controls the five SI's, four that are housed in an aft section focal plane structure and one that is placed along the circumference of the spacecraft. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  11. Astronaut Jeffrey Hoffman on RMS during third of five HST EVAs

    NASA Image and Video Library

    1993-12-07

    STS061-105-026 (7 Dec. 1993) --- Astronaut Jeffrey A. Hoffman signals directions to European Space Agency (ESA) astronaut Claude Nicollier, as the latter controls the Remote Manipulator System (RMS) arm during the third of five Extravehicular Activities (EVA) on the Hubble Space Telescope (HST) servicing mission. Astronauts Hoffman and F. Story Musgrave earlier changed out the Wide Field\\Planetary Camera (WF\\PC).

  12. Technical Consultation of the Hubble Space Telescope (HST) System Health Assessment: Analysis of HST Health

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Heard, Brent N.; Hodson, Robert F.; Pettit, Duane H.; Pandolf, John E.; Azzolini, John D.; Dennehy, Cornelius J.; Farley, Rodger E.; Kirchman, Frank J.; Spidaliere, Peter D.

    2005-01-01

    The NESC conducted an abridged independent examination of available information and personnel interviews to evaluate the current and anticipated state of the spacecraft subsystems and the parameters that describe the HST's health. These examinations included the projected timeliness of a robotic SM and whether the GSFC baseline concept is likely to provide the capability to extend the useful scientific life of the HST by an additional 5 years. The NESC team collected a broad spectrum of pertinent HST Program analyses, reports, briefings, and the results of the IPAO and the Aerospace Corporation AOA assessments as they relate to the degradation of the HST s health. This review included the state of the HST subsystems having the potential to impact the viability of the HST, but will not be serviced under the baseline robotic SM.

  13. Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome instability in Saccharomyces cerevisiae.

    PubMed

    Hachinohe, Mayumi; Hanaoka, Fumio; Masumoto, Hiroshi

    2011-04-01

    The acetylation of histone H3 on lysine 56 (H3-K56) occurs during S phase and contributes to the processes of DNA damage repair and histone gene transcription. Hst3 and Hst4 have been implicated in the removal of histone H3-K56 acetylation in Saccharomyces cerevisiae. Here, we show that Hst3 and Hst4 regulate the replicative lifespan of S. cerevisiae mother cells. An hsthst4Δ double-mutant strain, in which acetylation of histone H3-K56 persists throughout the genome during the cell cycle, exhibits genomic instability, which is manifested by a loss of heterozygosity with cell aging. Furthermore, we show that in the absence of other proteins Hst3 and Hst4 can deacetylate nucleosomal histone H3-K56 in a nicotinamide adenine dinucleotide(NAD)(+) -dependent manner. Our results suggest that Hst3 and Hst4 regulate replicative lifespan through their ability to deacetylate histone H3-K56 to minimize genomic instability. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  14. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1986-01-01

    This image illustrates the Hubble Space Telescope's (HST's) Optical Telescope Assembly (OTA). One of the three major elements of the HST, the OTA consists of two mirrors (a primary mirror and a secondary mirror), support trusses, and the focal plane structure. The mirrors collect and focus light from selected celestial objects and are housed near the center of the telescope. The primary mirror captures light from objects in space and focuses it toward the secondary mirror. The secondary mirror redirects the light to a focal plane where the Scientific Instruments are located. The primary mirror is 94.5 inches (2.4 meters) in diameter and the secondary mirror is 12.2 inches (0.3 meters) in diameter. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth Orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from the Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5 feet (13 meters) long and weighs 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  15. HST Keyword Dictionary

    NASA Astrophysics Data System (ADS)

    Swade, D. A.; Gardner, L.; Hopkins, E.; Kimball, T.; Lezon, K.; Rose, J.; Shiao, B.

    STScI has undertaken a project to place all HST keyword information in one source, the keyword database, and to provide a mechanism for making this keyword information accessible to all HST users, the keyword dictionary, which is a WWW interface to the keyword database.

  16. Discovery of a Supernova in HST imaging of the MACSJ0717 Frontier Field

    NASA Astrophysics Data System (ADS)

    Rodney, Steven A.; Lotz, Jennifer; Strolger, Louis-Gregory

    2013-10-01

    We report the discovery of a supernova (SN) in Hubble Space Telescope (HST) observations centered on the galaxy cluster MACSJ0717. It was discovered in the F814W (i) band of the Advanced Camera for Surveys (ACS), in observations that were collected as part of the ongoing HST Frontier Fields (HFF) program (PI:J.Lotz, HST PID 13498). The FrontierSN ID for this object is SN HFF13Zar (nicknamed "SN Zara").

  17. APT, The Phase I tool for HST Cycle 12

    NASA Astrophysics Data System (ADS)

    Blacker, Brett S.; Bertch, Maria; Curtis, Gary; Douglas, Robert E., Jr.; Krueger, Anthony P.

    2002-12-01

    In the continuing effort to streamline our systems and improve service to the science community, the Space Telescope Science Institute (STScI) is developing and releasing, APT The Astronomer’s Proposal Tool as the new interface for Hubble Space Telescope (HST) Phase I and Phase II proposal submissions for HST Cycle 12. APT, was formerly called the Scientist’s Expert Assistant (SEA), which started as a prototype effort to try and bring state of the art technology, more visual tools and power into the hands of proposers so that they can optimize the scientific return of their programs as well as HST. Proposing for HST and other missions, consists of requesting observing time and/or archival research funding. This step is called Phase I, where the scientific merit of a proposal is considered by a community based peer-review process. Accepted proposals then proceed thru Phase II, where the observations are specified in sufficient detail to enable scheduling on the telescope. In this paper, we will present our concept and implementation plans for our Phase I development and submission tool, APT. More importantly, we will go behind the scenes and discuss why it’s important for the Science Policies Division (SPD) and other groups at the STScI to have a new submission tool and submission output products. This paper is an update of the status of the HST Phase I Proposal Processing System that was described in the published paper “A New Era for HST Phase I Development and Submission.”

  18. Updating the HST/ACS G800L Grism Calibration

    NASA Astrophysics Data System (ADS)

    Hathi, Nimish P.; Pirzkal, Norbert; Grogin, Norman A.; Chiaberge, Marco; ACS Team

    2018-06-01

    We present results from our ongoing work on obtaining newly derived trace and wavelength calibrations of the HST/ACS G800L grism and comparing them to previous set of calibrations. Past calibration efforts were based on 2003 observations. New observations of an emission line Wolf-Rayet star (WR96) were recently taken in HST Cycle 25 (PID: 15401). These observations are used to analyze and measure various grism properties, including wavelength calibration, spectral trace/tilt, length/size of grism orders, and spacing between various grism orders. To account for the field dependence, we observe WR96 at 3 different observing positions over the HST/ACS field of view. The three locations are the center of chip 1, the center of chip 2, and the center of the WFC1A-2K subarray (center of WFC Amp A on chip 1). This new data will help us to evaluate any differences in the G800L grism properties compared to previous calibration data, and to apply improved data analysis techniques to update these old measurements.

  19. VizieR Online Data Catalog: HST observations of star clusters in NGC 3256 (Mulia+, 2016)

    NASA Astrophysics Data System (ADS)

    Mulia, A. J.; Chandar, R.; Whitmore, B. C.

    2016-09-01

    Our observations come from the ACS on Hubble Space Telescope (HST). NGC 3256 was observed using the filters F555W (~V in the Johnson-Cousins system; exposed for 2552s), FR656N (Hα; 2552s), and F330W (~U; 11358s) as part of the program GO-9735 (PI: Whitmore). The V and U band images were taken in 2003 November using the Wide Field Camera (WFC) and High Resolution Camera (HRC), respectively. The Hα observations were taken in 2004 March. WFC observations using F435W (~B) and F814W (~I) filters were taken in 2005 November as part of program GO-10592 (PI: Evans) for 1320 and 760s, respectively. (1 data file).

  20. Deep space target location with Hubble Space Telescope (HST) and Hipparcos data

    NASA Technical Reports Server (NTRS)

    Null, George W.

    1988-01-01

    Interplanetary spacecraft navigation requires accurate a priori knowledge of target positions. A concept is presented for attaining improved target ephemeris accuracy using two future Earth-orbiting optical observatories, the European Space Agency (ESA) Hipparcos observatory and the Nasa Hubble Space Telescope (HST). Assuming nominal observatory performance, the Hipparcos data reduction will provide an accurate global star catalog, and HST will provide a capability for accurate angular measurements of stars and solar system bodies. The target location concept employs HST to observe solar system bodies relative to Hipparcos catalog stars and to determine the orientation (frame tie) of these stars to compact extragalactic radio sources. The target location process is described, the major error sources discussed, the potential target ephemeris error predicted, and mission applications identified. Preliminary results indicate that ephemeris accuracy comparable to the errors in individual Hipparcos catalog stars may be possible with a more extensive HST observing program. Possible future ground and spacebased replacements for Hipparcos and HST astrometric capabilities are also discussed.

  1. Quantifying the AGN-driven outflows in ULIRGs (QUADROS) II: evidence for compact outflow regions from HST [OIII] imaging observations

    NASA Astrophysics Data System (ADS)

    Tadhunter, C.; Zaurín, J. Rodríguez; Rose, M.; Spence, R. A. W.; Batcheldor, D.; Berg, M. A.; Ramos Almeida, C.; Spoon, H. W. W.; Sparks, W.; Chiaberge, M.

    2018-05-01

    The true importance of the warm, AGN-driven outflows for the evolution of galaxies remains uncertain. Measurements of the radial extents of the outflows are key for quantifying their masses and kinetic powers, and also establishing whether the AGN outflows are galaxy-wide. Therefore, as part of a larger project to investigate the significance of warm, AGN-driven outflows in the most rapidly evolving galaxies in the local universe, here we present deep Hubble Space Telescope (HST) narrow-band [OIII]λ5007 observations of a complete sample of 8 nearby ULIRGs with optical AGN nuclei. Combined with the complementary information provided by our ground-based spectroscopy, the HST images show that the warm gas outflows are relatively compact for most of the objects in the sample: in three objects the outflow regions are barely resolved at the resolution of HST (0.065 < R[OIII] < 0.12 kpc); in a further four cases the outflows are spatially resolved but with flux weighted mean radii in the range 0.65 < R[OIII] < 1.2 kpc; and in only one object (Mrk273) is there clear evidence for a more extended outflow, with a maximum extent of R[OIII] ˜ 5 kpc. Overall, our observations show little evidence for the galaxy-wide outflows predicted by some models of AGN feedback.

  2. Overview of HST observvations of Jupiter's ultraviolet aurora during Juno orbits 03 to 07

    NASA Astrophysics Data System (ADS)

    Grodent, D. C.; Bonfond, B.; Tao, Z.; Gladstone, R.; Gerard, J. C. M. C.; Radioti, K.; Clarke, J. T.; Nichols, J. D.; Bunce, E. J.; Roth, L.; Saur, J.; Kimura, T.; Orton, G.; Badman, S. V.; Mauk, B.; Connerney, J. E. P.; McComas, D. J.; Kurth, W. S.; Adriani, A.; Hansen, C. J.; Valek, P. W.; Palmaerts, B.; Dumont, M.; Bolton, S. J.; Levin, S.; Bagenal, F.

    2017-12-01

    Jupiter's permanent ultraviolet auroral emissions have been systematically monitored from Earth orbit with the Hubble Space Telescope (HST) during an 8-month period. The first part of this HST large program (GO-14634) was meant to coordinate with the NASA Juno mission during orbits 03 through 07. The HST program will resume in Feb 2018, in time for Juno's PJ11 perijove, right after HST's solar and lunar avoidance periods. HST observations are designed to provide a Jovian auroral activity background for all instruments on board Juno and for the numerous ground based and space based observatories participating to the Juno mission. In particular, several HST visits were programmed in order to obtain as many simultaneous observations with Juno-UVS as possible, sometimes in the same hemisphere, sometimes in the opposite one. In addition, the timing of some HST visits was set to take advantage of Juno's multiple crossings of the current sheet and of the magnetic field lines threading the auroral emissions. These observations are obtained with the Space Telescope Imaging Spectrograph (STIS) in time-tag mode. They consist in spatially resolved movies of Jupiter's highly dynamic aurora with timescales ranging from seconds to several days. Here, we present an overview of the present -numerous- HST results. They demonstrate that while Jupiter is always showing the same basic auroral components, it is also displaying an ever-changing auroral landscape. The complexity of the auroral morphology is such that no two observations are alike. Still, in this apparent chaos some patterns emerge. This information is giving clues on magnetospheric processes at play at the local and global scales, the latter being only accessible to remote sensing instruments such as HST.

  3. HST/COS Observations Of Lyman-α Emission From =0.03 Star Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Leitherer, C.; Salzer, J.; COS Science Team

    2012-01-01

    Although HI Lyman-alpha (Lyα, 1216 Å) is expected to be the strongest recombination line in HII nebulae, it is resonantly scattered by neutral hydrogen and is easily destroyed by dust. And yet, some star-forming galaxies show Lyα in emission. As evidenced by high dispersion HST/GHRS+STIS FUV spectroscopy of a handful of local (z<0.03) galaxies, the velocity shift between the neutral gas and the ionized gas plays a key role in driving the observed Lyα escape. We present HST/COS/G130M 1150-1450 Å (observed-frame) spectroscopy of 20 new targets located at a mean redshift of =0.03. The targets were selected from the KISSR survey on the basis of their GALEX FUV continuum luminosity. The observations cover the central 1-2 kpc of each galaxy, a wide range in metallicity ([O/H]=-0.83 to 0.38), and at least two orders of magnitude in FUV continuum luminosity. Seven objects show Lyα emission in the form of a P-Cygni or double-peaked profile. For 6/7 of the latter objects we are able to show that the emission is accompanied of O I gas outflows with speeds of up to 200 km/s. Two objects have Lyα luminosities comparable to the GALEX Lyα luminosities of targets at =0.3, but we find no Lyα emitters with EW(Lyα)>20 Å, such as those discovered with GALEX at z=0.2-0.35. We compare the observed Lyα/Hα line intensity ratios with predictions from dust-free cases A and B recombination under normal HII region conditions. We find evidence of O I gas inflow in the most metal-poor objects. This work is supported by NASA grant N1317.

  4. Transformation reborn: A new generation expert system for planning HST operations

    NASA Technical Reports Server (NTRS)

    Gerb, Andrew

    1991-01-01

    The Transformation expert system (TRANS) converts proposals for astronomical observations with the Hubble Space Telescope (HST) into detailed observing plans. It encodes expert knowledge to solve problems faced in planning and commanding HST observations to enable their processing by the Science Operations Ground System (SOGS). Among these problems are determining an acceptable order of executing observations, grouping of observations to enhance efficiency and schedulability, inserting extra observations when necessary, and providing parameters for commanding HST instruments. TRANS is currently an operational system and plays a critical role in the HST ground system. It was originally designed using forward-chaining provided by the OPS5 expert system language, but has been reimplemented using a procedural knowledge base. This reimplementation was forced by the explosion in the amount of OPS5 code required to specify the increasingly complicated situations requiring expert-level intervention by the TRANS knowledge base. This problem was compounded by the difficulty of avoiding unintended interaction between rules. To support the TRANS knowledge base, XCL, a small but powerful extension to Commom Lisp was implemented. XCL allows a compact syntax for specifying assignments and references to object attributes. XCL also allows the capability to iterate over objects and perform keyed lookup. The reimplementation of TRANS has greatly diminished the effort needed to maintain and enhance it. As a result of this, its functions have been expanded to include warnings about observations that are difficult or impossible to schedule or command, providing data to aid SPIKE, an intelligent planning system used for HST long-term scheduling, and providing information to the Guide Star Selection System (GSSS) to aid in determination of the long range availability of guide stars.

  5. Observations Of Planetary Nebula NGC 3242 Using STIS From HST19 GO 12600

    NASA Astrophysics Data System (ADS)

    Miller, Timothy R.; Dufour, Reginald J.; Henry, Richard B. C.; Kwitter, Karen B.; Shaw, Richard A.; Balick, Bruce; Corradi, Romano

    2014-06-01

    During HST Cycle 19, we obtained long-slit spectra using STIS of the planetary nebula NGC 3242 with higher spatial resolution than previously published. The full wavelength range is around 1100-10200Å, covering many nebular lines for determining numerous ionic abundances and electron densities and temperatures. In this work, we first analyze the low- and moderate-resolution UV emission lines of carbon, nitrogen and oxygen. In particular, the resolved lines of C_III] 1907 and C_III] 1909 have yielded a direct measurement of one of the dominant ionic species for carbon and a determination of the density occupied by doubly-ionized carbon and other similar ions. Next, the spatial emission profile of these lines reveals variations in the inferred density along the line of sight from about 2800-11500 cm-3, compared with a value ~3800 cm-3, when averaged over the entire slit. Similarly, the electron temperature is around 12000K for the entire slit and ranges from about 11400-14000K when the slit is divided into smaller sub-regions. Lastly, these sub-regions of the nebula have been modeled in detail with the photoionization code CLOUDY. This modeling will assess the density profile that produces the observed density variation, reproduce the temperature fluctuations, and constrain the central star temperature. We acknowledge the gracious support from HST and the University of Oklahoma.

  6. HST/STIS Observations of the Local Interstellar Medium toward Very Nearby Stars: A Detailed Analysis of the a Centuari Sight Line

    NASA Astrophysics Data System (ADS)

    Dann, Julian; Redfield, Seth; Ayres, Thomas R.

    2017-01-01

    The Local Interstellar Medium (LISM), a region extending about 100 parsecs and in which the Sun is currently immersed, can only be studied using UV/optical absorption features against bright background stars. Perhaps in the future in-situ measurements will be possible (e.g., the Voyager spacecraft or Breakthrough Starshot-style missions). Using high-resolution observations with the Space Telescope Imaging Spectrograph (STIS) on-board the Hubble Space Telescope (HST), we have analyzed several very nearby sight lines to measure physical properties of the LISM. The data used in this study is a part of the Advanced Spectral Library (ASTRAL) Project, an HST Large Treasury Project, in which we have analyzed the spectra of fourteen nearby stars. LISM absorption features in these stellar spectra reveal key information about the abundances, temperature, and turbulence in the intervening gas. We have fit ion transitions in the near-UV for MgII, FeII, CII, DI, SiII, and OII. These absorption features provide direct measurements of the radial velocity, Doppler broadening parameter, and the column density along the line of sight. The presence of multiple local minima in the deep and narrow ISM profile is evidence of multiple clouds moving at different radial velocities.Included in our data set is the a Centauri sight line. We provide a detailed analysis of these new observations and a comparison with previous HST observations that were observed more than 20 years ago. A discussion of the physical properties along this line of sight is provided within the context of a Breakthrough Starshot mission. These high resolution and high signal-to-noise spectra will be important for making accurate estimations of the interstellar environment to help inform such an interstellar mission.We would like to acknowledge NASA HST Grant GO-12278 and GO-13346 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for

  7. Fundamental Stellar Parameters with HST/FGS Dynamical Masses and HST/STIS Spectroscopy of M Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Dieterich, Sergio; Henry, Todd J.; Benedict, George Fritz; Jao, Wei-Chun; White, Russel; RECONS Team

    2017-01-01

    Mass is the most fundamental stellar parameter, and yet model independent dynamical masses can only be obtained for a small subset of closely separated binaries. The high angular resolution needed to characterize individual components of those systems means that little is known about the details of their atmospheric properties. We discuss the results of HST/STIS observations yielding spatially resolved optical spectra for six closely separated M dwarf systems, all of which have HST/FGS precision dynamical masses for the individual components ranging from 0.4 to 0.076 MSol. We assume coevality and equal metallicity for the components of each system and use those constraints to perform stringent tests of the leading atmospheric and evolutionary model families throughout the M dwarf mass range. We find the latest models to be in good agreement with observations. We discuss specific spectral diagnostic features such as the well-known gravity sensitive Na and K lines and address ways to break the temperature-metallicity-gravity degeneracy that often hinders the interpretation of these features. We single out a comparison between the systems GJ 469 AB and G 250-29 AB, which have nearly identical mass configurations but different metallicities, thus causing marked differences in atmospheric properties and overall luminosities.This work is funded by NASA grant HST-GO-12938. and By the NSF Astronomy and Astrophysics Postdoctoral Fellowship program through NSF grant AST-1400680.

  8. VizieR Online Data Catalog: Spectroscopy and HST imaging in ONC (O'Dell+, 2015)

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.; Ferland, G. J.; Henney, W. J.; Peimbert, M.; Garcia-Diaz, Ma. T.; Rubin, R. H.

    2016-02-01

    We are able to draw on both new and existing observational data for both imaging and spectroscopy. Since the ionization range of the Orion Nebula is quite low, we use the high signal-to-noise ratio (S/N) F658N and F502N images in our analysis Our new imaging observations were made with Hubble Space Telescope (HST)'s WFC3 as part of program GO 12543. Observations were made (2012 January 7) with the narrowband emission line filters F487N (Hβ409s), F502N ([OIII]348s), F656N (Hα349s), F658N ([NII]602s), and F673N ([SII]700s), in addition to observations with the continuum sampling intermediate-width filter F547M (348s). The characteristics of these filters and their calibration have been described by O'Dell et al. (2013AJ....145...92O). The images are the highest angular resolution (0.04''/pixel sampling) optical images of a portion of the Huygens Region. When used alone, we employed the original images in combination with one another. When used for comparison with earlier (undersampled) WFPC2 images (0.0996''/pixel), we processed them with IRAF task "Gauss" to match their broader image cores. We have been able to use earlier HST observations made with the WFPC2 (program GO 5085 (FOV5) on MJD49737; program GO 5469 on MJD49797; program GO 11038 (FOV1) on MJD54406; program GO 12543 on MJD55935). The most useful data set of spectra is the compilation of north-south orientation long-slit spectra by Garcia-Diaz et al. (2008RMxAA..44..181G). In addition to their original observations (Garcia-Diaz & Henney, 2007AJ....133..952G) in low-ionization lines, they recalibrate the high-ionization spectra of Doi et al. 2004 (cat. J/AJ/127/3456) and present combined results for emission lines from a wide variety of ionization states ([OI]630.0nm, [SII]671.6nm+673.1nm, [NII]658.4nm, [SIII]631.2nm, Hα656.3nm, [OIII]500.7nm) calibrated to 2km/s accuracy and a resolution of about 10km/s. We will refer to this as the Spectroscopic Atlas, or simply the Atlas. New observations were made at

  9. Design and simulation of EVA tools for first servicing mission of HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1994-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the Space Shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A Space Shuttle repair mission in January 1994 installed small corrective mirrors that restored the full intended optical capability of the HST. The First Servicing Mission (FSM) involved considerable Extra Vehicular Activity (EVA). Special EVA tools for the FSM were designed and developed for this specific purpose. In an earlier report, the details of the Data Acquisition System developed to test the performance of the various EVA tools in ambient as well as simulated space environment were presented. The general schematic of the test setup is reproduced in this report for continuity. Although the data acquisition system was used extensively to test a number of fasteners, only the results of one test each carried on various fasteners and the Power Ratchet Tool are included in this report.

  10. NICMOS Focus and HST Breathing

    NASA Astrophysics Data System (ADS)

    Suchkov, A.; Hershey, J.

    1998-09-01

    The program 7608 monitored on a biweekly basis NICMOS camera foci from June 9, 1997, through February 18, 1998. Each of the biweekly observations included 17 measurements of focus position (focus sweeps), individually for each of the three cameras. The measurements for camera 1 and camera 3 foci covered one or two HST orbital periods. Comparison of these measurements with the predictions of the three OTA focus breathing models has shown the following. (1). Focus variations seen in NICMOS focus sweeps correlate well with the OTA focus thermal breathing as predicted by breathing models (“4- temperature”, “full-temperature”, and “attitude” models). Thus they can be attributed mostly to the HST orbital temperature variation. (2). The amount of breathing (breathing amplitude) has been found to be on average larger in the first orbit after a telescope slew to a new target. This is explained as being due to additional thermal perturbations caused by the change in the HST attitude as the telescope repoints to a new target. (3). In the first orbit, the amount of focus change predicted by the 4-temperature model is about the same as that seen in the focus sweeps data (breathing scale factor ~1). However the full-temperature model predicts a two times smaller breathing amplitude (breathing scale factor ~1.7). This suggests that the light shield temperatures are more responsive to the attitude change than temperatures from the other temperature sensors. The results of this study may help to better understand the HST thermal cycles and to improve the models describing the impact of those on both the OTA and NICMOS focus.

  11. HST/NICMOS Pa-alpha observations of G0.18-0.04: The Sickle

    NASA Astrophysics Data System (ADS)

    Cotera, Angela; HST Palpha GC Survey Team

    2009-01-01

    We will present HST Pa-alpha observations of the Galactic center HII region G0.18-0.04, also known as the Sickle. Previous Spitzer IRAC observations determined that the Sickle is comprised of fingers of dust and gas which are strong analogs of the well known photoevaporated pillars in M16. The new observations enable us to further compare and contrast the Sickle pillars with those from M16 and other regions with similar features. In addition, we will use the Pa alpha data to search for evidence of ongoing star formation in the Sickle, and test whether triggered star formation in the Galactic Center is occurring at this location. The region inclusive of the Sickle contains some of the most unusual features in the Galactic Center, and the new observations support the idea that this site may be unique within the inner 200 pc. We will examine the correlation of the massive star population, the ionized gas, the PAH emission, warm dust and the non-thermal emission within this enigmatic region.

  12. Observing with HST I: A New, Friendlier Proposal Submission System

    NASA Astrophysics Data System (ADS)

    Asson, D.; Roman, A.; Durkin, M.; Krueger, A.; Lucas, R.

    1994-12-01

    The new Remote Proposal Submission system (RPS2) has drastically changed the method of proposal preparation and submission for Hubble Space Telescope observing. Just as COSTAR cleared up and enhanced HST's sight, the components of RPS2 clear up and give new insight into how a proposal actually executes on the telescope and how it is scheduled. In previous cycles, proposal preparation was a kind of art form. The period between submission and delivery of science data was often opaque to the proposer. One of the goals of the Space Telescope Science Institute is to open a window on the proposal review process for the astronomer. Feedback is now given on the schedulability windows, detailed timing, and feasibility of a proposal. Many errors and problems that went undetected until much later in the review process can now be caught and fixed by the proposer. The quality of the errors reported have also been enhanced. A new template has also been introduced to simplify a previously complicated task by removing redundant, confusing, and obsolete elements.

  13. APT, The Phase I Tool for HST Cycle 12

    NASA Astrophysics Data System (ADS)

    Blacker, B.; Berch, M.; Curtis, G.; Douglas, R.; Downes, R.; Krueger, A.; O'Dea, C.

    2002-12-01

    In our continuing effort to streamline our systems and improve service to the science community, the Space Telescope Science Institute (STScI) is developing and releasing, APT - The Astronomer's Proposal Tool as the new interface for Hubble Space Telescope (HST) Phase I and Phase II proposal submissions for HST Cycle 12. The goal of the APT, is to bring state of the art technology, more visual tools and power into the hands of proposers so that they can optimize the scientific return of their HST programs. Proposing for HST and other missions, consists of requesting observing time and/or archival research funding. This step is called Phase I, where the scientific merit of a proposal is considered by a community based peer-review process. Accepted proposals then proceed thru Phase II, where the observations are specified in sufficient detail to enable scheduling on the telescope. In this paper we will present our concept and implementation plans for our Phase I development and submission tool, APT. In addition, we will go behind the scenes and discuss the implications for the Science Policies Division (SPD) and other groups at the STScI caused by a new submission tool and submission output products. The Space Telescope Science Institute (STScI) is operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration.

  14. PandExo: A Community Tool for Transiting Exoplanet Science with JWST & HST

    NASA Astrophysics Data System (ADS)

    Batalha, Natasha E.; Mandell, Avi; Pontoppidan, Klaus; Stevenson, Kevin B.; Lewis, Nikole K.; Kalirai, Jason; Earl, Nick; Greene, Thomas; Albert, Loïc; Nielsen, Louise D.

    2017-06-01

    As we approach the James Webb Space Telescope (JWST) era, several studies have emerged that aim to (1) characterize how the instruments will perform and (2) determine what atmospheric spectral features could theoretically be detected using transmission and emission spectroscopy. To some degree, all these studies have relied on modeling of JWST’s theoretical instrument noise. With under two years left until launch, it is imperative that the exoplanet community begins to digest and integrate these studies into their observing plans, as well as think about how to leverage the Hubble Space Telescope (HST) to optimize JWST observations. To encourage this and to allow all members of the community access to JWST & HST noise simulations, we present here an open-source Python package and online interface for creating observation simulations of all observatory-supported timeseries spectroscopy modes. This noise simulator, called PandExo, relies on some aspects of Space Telescope Science Institute’s Exposure Time Calculator, Pandeia. We describe PandExo and the formalism for computing noise sources for JWST. Then we benchmark PandExo's performance against each instrument team’s independently written noise simulator for JWST, and previous observations for HST. We find that PandExo is within 10% agreement for HST/WFC3 and for all JWST instruments.

  15. Artist concept of the Hubble Space Telescope (HST) after STS-31 deployment

    NASA Image and Video Library

    1988-09-21

    Artist concept shows the Hubble Space Telescope (HST) placed in orbit above the Earth's distorting layer of atmosphere by Discovery, Orbiter Vehicle (OV) 103, during mission STS-31. Tracking and data relay satellite (TDRS) is visible in the background and ground station is visible below on the Earth's surface. HST is the first of the great observatories to go into service and one of NASA's highest priority scientific spacecraft. Capable of observing in both visible and ultraviolet wavelengths, HST has been termed the most important scientific instrument ever designed for use on orbit. It will literally be able to look back in time, observing the universe as it existed early in its lifetime and providing information on how matter has evolved over the eons. The largest scientific payload ever built, the 12 1/2-ton, 43-foot HST was developed by Lockheed Missiles & Space Company, spacecraft prime contractor, and Perkin-Elmer Corporation, prime contractor for the optical assembly. The European Space Agency (ESA) furnished the power generating solar array and one of the system's five major instruments. Marshall Space Flight Center (MSFC) manages the HST project; Goddard Space Flight Center (GSFC) will be responsible, when the spacecraft is in orbit, for controlling the telescope and processing the images and instrument data returns.

  16. 3D-HST WFC3-selected Photometric Catalogs in the Five CANDELS/3D-HST Fields: Photometry, Photometric Redshifts, and Stellar Masses

    NASA Astrophysics Data System (ADS)

    Skelton, Rosalind E.; Whitaker, Katherine E.; Momcheva, Ivelina G.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Labbé, Ivo; Franx, Marijn; van der Wel, Arjen; Bezanson, Rachel; Da Cunha, Elisabete; Fumagalli, Mattia; Förster Schreiber, Natascha; Kriek, Mariska; Leja, Joel; Lundgren, Britt F.; Magee, Daniel; Marchesini, Danilo; Maseda, Michael V.; Nelson, Erica J.; Oesch, Pascal; Pacifici, Camilla; Patel, Shannon G.; Price, Sedona; Rix, Hans-Walter; Tal, Tomer; Wake, David A.; Wuyts, Stijn

    2014-10-01

    The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ≈900 arcmin2 in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging data sets in addition to the Hubble Space Telescope (HST) data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3-8 μm. Objects were selected in the WFC3 near-IR bands, and their SEDs were determined by carefully taking the effects of the point-spread function in each observation into account. A total of 147 distinct imaging data sets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determined with the EAZY code, and stellar population parameters determined with the FAST code. We make all the imaging data that were used in the analysis available, including our reductions of the WFC3 imaging in all five fields. 3D-HST is a spectroscopic survey with the WFC3 and ACS grisms, and the photometric catalogs presented here constitute a necessary first step in the analysis of these grism data. All the data presented in this paper are available through the 3D-HST Web site (http://3dhst.research.yale.edu).

  17. Hst Observations Of The Extended Hydrogen Corona Of Mars

    NASA Astrophysics Data System (ADS)

    Clarke, John T.; Bertaux, J.; Chaufray, J.; Gladstone, R.; Quemerais, E.; Wilson, J. K.

    2009-09-01

    HST ACS/SBC UV images of the extended H Ly alpha emission from the Martian hydrogen corona have been obtained over Oct/Nov 2007, with coincident measurements of the altitude profile of the Lyman alpha emission by the SPICAM instrument on Mars Express in orbit about Mars. Careful measurement of the geocoronal emission background permit the measurement of the martian emission to a low level (less than 1 kilo-Rayleigh) out to 4 mars radii from the planet. Similar angular distributions of the emission were seen on 3 days of observations, reflecting the radiative transfer in the optically thick atmosphere, while the overall level of emission was seen to steadily decrease in both data sets over 4 weeks time. The altitude distribution of the emission out to large distances is compared with the results of a radiative transfer model that includes an exospheric population of cold and hot H atoms. In general, the dominant population of H atoms close to the planet is consistent with the measured temperature of the upper atmosphere, while far from the planet one has the highest sensitivity to a superthermal component of the exospheric H. The results will be presented with discussion of the escape rate of H from the martian atmosphere, and how this varied over 4 weeks in Fall 2007. This has implications for the rate of escape of water from the martian atmosphere, and how this can vary with time. These observations were supported by STScI grant GO-11170-01 to Boston University.

  18. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1986-01-01

    This photograph shows the Hubble Space Telescope (HST) flight article assembly with multilayer insulation, high gain anterna, and solar arrays in a clean room of the Lockheed Missile and Space Company. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  19. Dynamical Modeling of NGC 6397: Simulated HST Imaging

    NASA Astrophysics Data System (ADS)

    Dull, J. D.; Cohn, H. N.; Lugger, P. M.; Slavin, S. D.; Murphy, B. W.

    1994-12-01

    The proximity of NGC 6397 (2.2 kpc) provides an ideal opportunity to test current dynamical models for globular clusters with the HST Wide-Field/Planetary Camera (WFPC2)\\@. We have used a Monte Carlo algorithm to generate ensembles of simulated Planetary Camera (PC) U-band images of NGC 6397 from evolving, multi-mass Fokker-Planck models. These images, which are based on the post-repair HST-PC point-spread function, are used to develop and test analysis methods for recovering structural information from actual HST imaging. We have considered a range of exposure times up to 2.4times 10(4) s, based on our proposed HST Cycle 5 observations. Our Fokker-Planck models include energy input from dynamically-formed binaries. We have adopted a 20-group mass spectrum extending from 0.16 to 1.4 M_sun. We use theoretical luminosity functions for red giants and main sequence stars. Horizontal branch stars, blue stragglers, white dwarfs, and cataclysmic variables are also included. Simulated images are generated for cluster models at both maximal core collapse and at a post-collapse bounce. We are carrying out stellar photometry on these images using ``DAOPHOT-assisted aperture photometry'' software that we have developed. We are testing several techniques for analyzing the resulting star counts, to determine the underlying cluster structure, including parametric model fits and the nonparametric density estimation methods. Our simulated images also allow us to investigate the accuracy and completeness of methods for carrying out stellar photometry in HST Planetary Camera images of dense cluster cores.

  20. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1990-04-25

    In this photograph, the Hubble Space Telescope (HST) was being deployed on April 25, 1990. The photograph was taken by the IMAX Cargo Bay Camera (ICBC) mounted in a container on the port side of the Space Shuttle orbiter Discovery (STS-31 mission). The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. During four spacewalks, new instruments were installed into the HST that had optical corrections. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. Photo Credit: NASA/Smithsonian Institution/Lockheed Corporation.

  1. HST in Columbia's payload bay after repairs

    NASA Image and Video Library

    2002-03-09

    STS109-315-016 (8 March 2002) --- With five days of service and upgrade work on the Hubble Space Telescope (HST) behind them, the STS-109 crew members on board the Space Shuttle Columbia took an overall snapshot of the giant telescope in the shuttle's cargo bay. The seven-member crew completed the last of its five ambitious space walks early on March 8, 2002, with the successful installation of an experimental cooling system for Hubble’;s Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). The NICMOS has been dormant since January 1999 when its original coolant ran out. The telescope received new solar array panels, markedly different in appearance from the replaced pair, on the mission's first two space walks earlier in the week.

  2. 3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skelton, Rosalind E.; Whitaker, Katherine E.; Momcheva, Ivelina G.

    The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ≈900 arcmin{sup 2} in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging data sets in addition to the Hubble Space Telescope (HST) data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3-8 μm. Objects were selected in the WFC3 near-IR bands,more » and their SEDs were determined by carefully taking the effects of the point-spread function in each observation into account. A total of 147 distinct imaging data sets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determined with the EAZY code, and stellar population parameters determined with the FAST code. We make all the imaging data that were used in the analysis available, including our reductions of the WFC3 imaging in all five fields. 3D-HST is a spectroscopic survey with the WFC3 and ACS grisms, and the photometric catalogs presented here constitute a necessary first step in the analysis of these grism data. All the data presented in this paper are available through the 3D-HST Web site (http://3dhst.research.yale.edu)« less

  3. The Planning and Scheduling of HST: Improvements and Enhancements since Launch

    NASA Astrophysics Data System (ADS)

    Taylor, D. K.; Chance, D. R.; Jordan, I. J. E.; Patterson, A. P.; Stanley, M.; Taylor, D. C.

    2001-12-01

    The planning and scheduling (P&S) systems used in operating the Hubble Space Telescope (HST) have undergone such substantial and pervasive re-engineering that today they dimly resemble those used when HST was launched. Processes (i.e., software, procedures, networking, etc.) which allow program implementation, the generation of a Long Range Plan (LRP), and the scheduling of science and mission activities have improved drastically in nearly 12 years, resulting in a consistently high observing efficiency, a stable LRP that principal investigators can use, exceptionally clean command loads uplinked to the spacecraft, and the capability of a very fast response time due to onboard anomalies or targets of opportunity. In this presentation we describe many of the systems which comprise the P&S ("front-end") system for HST, how and why they were improved, and what benefits have been realized by either the HST user community or the STScI staff. The systems include the Guide Star System, the Remote Proposal Submission System - 2 (RPS2), Artificial Intelligence (AI) planning tools such as Spike, and the science and mission scheduling software. We also describe how using modern software languages such as Python and better development practices allow STScI staff to do more with HST (e.g., to handle much more science data when ACS is installed) without increasing the cost to HST operations.

  4. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1993-12-01

    Astronaut Hoffman held the Hubble Space Telescope (HST) Wide Field/Planetary Camera-1 (WF/PC1) that was replaced by WF/PC2 in the cargo bay of the Space Shuttle orbiter Endeavour during Extravehicular Activity (EVA). The STS-61 mission was the first of the series of the HST servicing missions. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. During four spacewalks, the STS-61 crew replaced the solar panel with its flexing problems; the WF/PC1 with WF/PC2, with built-in corrective optics; and the High-Speed Photometer with the Corrective Optics Space Telescope Axial Replacement (COSTAR) to correct the aberration for the remaining instruments. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  5. Europa in the Far-UV: Spatial and Spectral Analysis from HST Observations

    NASA Astrophysics Data System (ADS)

    Becker, Tracy M.; Retherford, Kurt D.; Roth, Lorenz; Hendrix, Amanda R.; McGrath, Melissa; Alday, Juan; Saur, Joachim; Molyneux, Philippa M.; Raut, Ujjwal; Teolis, Benjamin

    2017-10-01

    We present a spatial and spectral analysis of Europa using far-UV observations from 1999 - 2015 made by the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST). Disk-integrated observations show that the far-UV spectrum from ~130 nm - 170 nm is blue (increasing albedo with decreasing wavelength) for the studied hemispheres: the leading, trailing, and anti-Jovian hemispheres. At Lyman-alpha (121.6 nm), the albedo of the trailing hemisphere continues the blue trend, but it reddens for the leading hemisphere. At wavelengths shorter than 133.5 nm, the leading hemisphere, which is brighter than the trailing hemisphere at near-UV and visible wavelengths, becomes darker than the trailing hemisphere. We find no evidence of a sharp water-ice absorption edge at 165 nm on any hemisphere of Europa, which is intriguing since such an absorption feature has been observed on most icy moons. This suggests the possibility that radiolytic alteration by Jovian magnetospheric plasma has made the surface more strongly absorbing, masking the absorption edge. We will also present a spatial map of Lyman-alpha across the entire surface of Europa. This map can then be used to distinguish variable H emissions in the atmosphere from surface reflectance, improving our ability to detect potential plumes occurring on the disk of Europa during an observation.

  6. HST/WFC3 flux calibration ladder: Vega

    NASA Astrophysics Data System (ADS)

    Deustua, Susana E.; Bohlin, Ralph; Pirzkal, Nor; MacKenty, John

    2014-08-01

    Vega is one of only a few stars calibrated against an SI-traceable blackbody, and is the historical flux standard. Photometric zeropoints of the Hubble Space Telescope's instruments rely on Vega, through the transfer of its calibration via stellar atmosphere models to the suite of standard stars. HST's recently implemented scan mode has enabled us to develop a path to an absolute SI traceable calibration for HST IR observations. To fill in the crucial gap between 0.9 and 1.7 micron in the absolute calibration, we acquired -1st order spectra of Vega with the two WFC3 infrared grisms. At the same time, we have improved the calibration of the -1st orders of both WFC3 IR grisms, as well as extended the dynamic range of WFC3 science observations by a factor of 10000. We describe our progress to date on the WFC3 `flux calibration ladder' project to provide currently needed accurate zeropoint measurements in the IR

  7. Gemini IFU, VLA, and HST observations of the OH megamaser galaxy IRAS F23199+0123: the hidden monster and its outflow

    NASA Astrophysics Data System (ADS)

    Hekatelyne, C.; Riffel, Rogemar A.; Sales, Dinalva; Robinson, Andrew; Gallimore, Jack; Storchi-Bergmann, Thaisa; Kharb, Preeti; O'Dea, Christopher; Baum, Stefi

    2018-03-01

    We present Gemini Multi-Object Spectrograph (GMOS) Integral field Unit (IFU), Very Large Array (VLA), and Hubble Space Telescope (HST) observations of the OH megamaser (OHM) galaxy IRAS F23199+0123. Our observations show that this system is an interacting pair, with two OHM sources associated with the eastern (IRAS 23199E) member. The two members of the pair present somewhat extended radio emission at 3 and 20 cm, with flux peaks at each nucleus. The GMOS-IFU observations cover the inner ˜6 kpc of IRAS 23199E at a spatial resolution of 2.3 kpc. The GMOS-IFU flux distributions in Hα and [N II] λ6583 are similar to that of an HST [N II]+Hα narrow-band image, being more extended along the north-east-south-west direction, as also observed in the continuum HST F814W image. The GMOS-IFU Hα flux map of IRAS 23199E shows three extranuclear knots attributed to star-forming complexes. We have discovered a Seyfert 1 nucleus in this galaxy, as its nuclear spectrum shows an unresolved broad (full width at half-maximum ≈2170 km s-1) double-peaked Hα component, from which we derive a black hole mass of M_{BH} = 3.8^{+0.3}_{-0.2}× 106 M⊙. The gas kinematics shows low velocity dispersions (σ) and low [N II]/Hα ratios for the star-forming complexes and higher σ and [N II]/Hα surrounding the radio emission region, supporting interaction between the radio plasma and ambient gas. The two OH masers detected in IRAS F23199E are observed in the vicinity of these enhanced σ regions, supporting their association with the active nucleus and its interaction with the surrounding gas. The gas velocity field can be partially reproduced by rotation in a disc, with residuals along the north-south direction being tentatively attributed to emission from the front walls of a bipolar outflow.

  8. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1994-01-01

    A comparison image of the M100 Galactic Nucleus, taken by the Hubble Space Telescope (HST) Wide Field Planetary Camera-1 (WF/PC1) and Wide Field Planetary Camera-2 (WF/PC2). The HST was placed in a low-Earth orbit by the Space Shuttle Discovery, STS-31 mission, in April 1990. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. During four spacewalks, the STS-61 crew replaced the solar panel with its flexing problems; the WF/PC1 with the WF/PC2, with built-in corrective optics; and the High-Speed Photometer with the Corrective Optics Space Telescope Axial Replacement (COSTAR), to correct the aberration for the remaining instruments. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects.

  9. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1985-01-01

    In this photograph, engineers and technicians prepare the Hubble Space Telescope's (HST's) Wide Field and Planetary Camera (WF/PC) for installation at the Lockheed Missile and Space Company. The WF/PC is designed to investigate the age of the universe and to search for new planetary systems around young stars. It takes pictures of large numbers of galaxies and close-ups of planets in our solar system. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  10. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1990-04-01

    This photograph shows the Hubble Space Telescope (HST) installed in the cargo bay of the Space Shuttle Orbiter Discovery for the STS-31 Mission at The Kennedy Space Center prior to launch on April 24, 1990. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  11. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1998-01-01

    This photograph is a Hubble Space Telescope (HST) image of a sky full of glittering jewels. The HST peered into the Sagittarius star cloud, a narrow dust free region, providing this spectacular glimpse of a treasure chest full of stars.

  12. HST NICMOS Observations of the Polarization of NGC 1068

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.; Colgan, Sean W. J.; Erickson, Edwin F.; Hines, Dean C.; Schultz, A. S. B.; Trammell, Susan R.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    We have observed the polarized light at 2 microns in the center of NGC 1068 with HST (Hubble Space Telescope) NICMOS (Near Infrared Camera Multi Object Spectrometer) Camera 2. The nucleus is dominated by a bright, unresolved source, polarized at a level of 6.0 +/- 1.2% with a position angle of 122 degrees +/- 1.5 degrees. There are two polarized lobes extending tip to 8" northeast and southwest of the nucleus. The polarized flux in both lobes is quite clumpy, with the maximum polarization occurring in the southwest lobe at a level of 17% when smoothed to 0.23" resolution. The perpendiculars to the polarization vectors in these two lobes point back to the intense unresolved nuclear source to within one 0.076" Camera 2 pixel, thereby confirming that this source is the origin of the scattered light and therefore the probable AGN (Active Galactic Nuclei) central engine. Whereas the polarization of the nucleus is probably caused by dichroic absorption, the polarization in the lobes is almost certainly caused by scattering, with very little contribution from dichroic absorption. Features in the polarized lobes include a gap at a distance of about 1" from the nucleus toward the southwest lobe and a "knot" of emission about 5" northwest of the nucleus. Both features had been discussed by groundbased observers, but they are much better defined with the high spatial resolution of NICMOS. The northeast knot may be the side of a molecular cloud that is facing the nucleus, which cloud may be preventing the expansion of the northeast radio lobe at the head of the radio synchrotron-radiation-emitting jet. We also report the presence of two ghosts in the Camera 2 polarizers.

  13. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's), Goddard High-Resolution Spectrograph (GHRS). The HST's two spectrographs, the GHRS and the Faint Object Spectrograph (FOS), can detect a broader range of wavelengths than is possible from Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The GHRS can detect fine details in the light from somewhat brighter objects but only ultraviolet light. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  14. HST Observations of a Large-Amplitude, Long-Period Trojan: (11351) Leucus

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.; Levison, Harold F.; Buie, Marc W.; Grundy, William M.

    2016-10-01

    (11351) Leucus (1997 TS25) is a Trojan that is notable for having one of the longest known rotation periods of any small body, T=514 h. A possible cause for this long period would be the existence of a tidally locked binary similar to the already-known long period binary Trojan, (617) Patroclus. If this were the case, the system would become tidally circularized in a time short compared to the age of the solar system. In such a case, the components would be separated by ~0.18 arcsec at lightcurve maximum, resolvable by WFC3. We carried out observations in June 2016, coordinated with groundbased observations to schedule near a maximum to test whether (11351) Leucus is binary. We describe the results of these observations.Observations of (11351) Leucus are of particular interest because it is a target of the Lucy mission, a Discovery mission currently in phase A and one of five that may be selected in early 2017. Searches for binary Trojans also offer multiple scientific benefits independent of mission status. Orbit-derived mass and density can be used to constrain planetary migration models. Low density is characteristic of bodies found in the dynamically cold Kuiper Belt, a remnant of the solar system's protoplanetary disk. Only one undisputed density has been measured in the Trojans, that of the binary (617) Patroclus, which has a low density of 0.8 g/cm3, similar to the low densities found in the Kuiper Belt. Slow rotators offer a set of targets that are tidally evolved systems and therefore are among the most attractive potential targets for an HST search.

  15. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1985-01-01

    This is a view of a solar cell blanket deployed on a water table during the Solar Array deployment test. The Hubble Space Telescope (HST) Solar Arrays provide power to the spacecraft. The arrays are mounted on opposite sides of the HST, on the forward shell of the Support Systems Module. Each array stands on a 4-foot mast that supports a retractable wing of solar panels 40-feet (12.1-meters) long and 8.2-feet (2.5-meters) wide, in full extension. The arrays rotate so that the solar cells face the Sun as much as possible to harness the Sun's energy. The Space Telescope Operations Control Center at the Goddard Space Center operates the array, extending the panels and maneuvering the spacecraft to focus maximum sunlight on the arrays. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST Solar Array was designed by the European Space Agency and built by British Aerospace. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST.

  16. Astronaut Kathryn Thornton on HST photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-05

    S61-E-011 (5 Dec 1993) --- This view of astronaut Kathryn C. Thornton working on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Thornton, anchored to the end of the Remote Manipulator System (RMS) arm, is installing the +V2 Solar Array Panel as a replacement for the original one removed earlier. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  17. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's), Faint Object Spectrograph (FOS). The HST's two spectrographs, the Goddard High-Resolution Spectrograph and the FOS, can detect a broader range of wavelengths than is possible from the Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The FOC can detect detail in very faint objects, such as those at great distances, and light ranging from ultraviolet to red spectral bands. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  18. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's) High Speed Photometer (HSP). The HSP measures the intensity of starlight (brightness), which will help determine astronomical distances. Its principal use will be to measure extremely-rapid variations or pulses in light from celestial objects, such as pulsating stars. The HSP produces brightness readings. Light passes into one of four special signal-multiplying tubes that record the data. The HSP can measure energy fluctuations from objects that pulsate as rapidly as once every 10 microseconds. From HSP data, astronomers expect to learn much about such mysterious objects as pulsars, black holes, and quasars. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  19. Vacuum Ultraviolet Radiation and Atomic Oxygen Durability Evaluation of HST Bi-Stem Thermal Shield Materials

    NASA Technical Reports Server (NTRS)

    Dever, Joyce; deGroh, Kim K.

    2002-01-01

    Bellows-type thermal shields were used on the bi-stems of replacement solar arrays installed on the Hubble Space Telescope (HST) during the first HST servicing mission (SMI) in December 1993. These thermal shields helped reduce the problem of thermal gradient- induced jitter observed with the original HST solar arrays during orbital thermal cycling and have been in use on HST for eight years. This paper describes ground testing of the candidate solar array bi-stem thermal shield materials including backside aluminized Teflon(R)FEP (fluorinated ethylene propylene) with and without atomic oxygen (AO) and ultraviolet radiation protective surface coatings for durability to AO and combined AO and vacuum ultraviolet (VOV) radiation. NASA Glenn Research Center (GRC) conducted VUV and AO exposures of samples of candidate thermal shield materials at HST operational temperatures and pre- and post-exposure analyses as part of an overall program coordinated by NASA Goddard Space Flight Center (GSFC) to determine the on-orbit durability of these materials. Coating adhesion problems were observed for samples having the AO- and combined AO/UV-protective coatings. Coating lamination occurred with rapid thermal cycling testing which simulated orbital thermal cycling. This lack of adhesion caused production of coating flakes from the material that would have posed a serious risk to HST optics if the coated materials were used for the bi-stem thermal shields. No serious degradation was observed for the uncoated aluminized Teflon(R) as evaluated by optical microscopy, although atomic force microscopy (AFM) microhardness testing revealed that an embrittled surface layer formed on the uncoated Teflon(R) surface due to vacuum ultraviolet radiation exposure. This embrittled layer was not completely removed by AO erosion, No cracks or particle flakes were produced for the embrittled uncoated material upon exposure to VUV and AO at operational temperatures to an equivalent exposure of

  20. HST WFC3 Observations of Uranus' 2014 Storm Clouds and Comparison with VLT/SINFONI and IRTF/Spex Observations

    NASA Technical Reports Server (NTRS)

    Irwin, Patrick G. J.; Wong, Michael H.; Simon, Amy A.; Orton, G. S.; Toledo, Daniel

    2017-01-01

    In November 2014 Uranus was observed with the Wide Field Camera 3 (WFC3) instrument of the Hubble Space Telescope as part of the Hubble 2020: Outer Planet Atmospheres Legacy program, OPAL. OPAL annually maps Jupiter, Uranus and Neptune (and will also map Saturn from 2018) in several visible near- infrared wavelength filters. The Uranus 2014 OPAL observations were made on the 89th November at a time when a huge cloud complex, first observed by de Pater et al. (2015) and subsequently tracked by professional and amateur astronomers (Sayanagi et al., 2016), was present at 30-40deg N. We imaged the entire visible atmosphere, including the storm system, in seven filters spanning 467924 nm, capturing variations in the coloration of Uranus clouds and also vertical distribution due to wavelength dependent changes in Rayleigh scattering and methane absorption optical depth. Here we analyse these new HST observations with the NEMESIS radiative-transfer and retrieval code in multiple-scattering mode to determine the vertical cloud structure in and around the storm cloud system. The same storm system was also observed in the H-band (1.4-1.8 micrometers) with the SINFONI Integral Field Unit Spectrometer on the Very Large Telescope (VLT) on 31st October and 11th November, reported by Irwin et al. (2016, 10.1016j.icarus.2015.09.010). To constrain better the cloud particle sizes and scattering properties over a wide wavelength range we also conducted a limb-darkening analysis of the background cloud structure in the 30-40deg N latitude band by simultaneously fitting: a) these HSTOPAL observations at a range of zenith angles; b) the VLTSINFONI observations at a range of zenith angles; and c) IRTFSpeX observations of this latitude band made in 2009 at a single zenith angle of 23deg, spanning the wavelength range 0.8-1.8 micrometers (Irwin et al., 2015, 10.1016j.icarus.2014.12.020). We find that the HST observations, and the combined HSTVLTIRTF observations at all locations are well

  1. VizieR Online Data Catalog: WASP-31b:HST/Spitzer transmission spectral survey (Sing+, 2015)

    NASA Astrophysics Data System (ADS)

    Sing, D. K.; Wakeford, H. R.; Showman, A. P.; Nikolov, N.; Fortney, J. J.; Burrows, A. S.; Ballester, G. E.; Deming, D.; Aigrain, S.; Desert, J.-M.; Gibson, N. P.; Henry, G. W.; Knutson, H.; Lecavelier Des Etangs, A.; Pont, F.; Vidal-Madjar, A.; Williamson, M. W.; Wilson, P. A.

    2017-11-01

    We observed two transits of WASP-31b with the HST STIS G430L grating during 2012 June 13 and 26, as well as one transit with the STIS G750L during 2012 July 10. In addition to the STIS data, observations of WASP-31b were also conducted in the infrared with WFC3 on the HST. Observations began on 2012 May 13 at 12:53 using the IR G141 grism in forward spatial scan mode over five HST orbits. We analyse two transit observations obtained using the Infrared Array Camera (IRAC) instrument (Programme 90092 with P.I. Desert) on the Spitzer space telescope in the 3.6 μm and 4.5 μm channels in subarray mode (32x32 pixel, or 39 centred on the planets host). The 3.6 μm observation was performed on UT 2013 March 9 (between 06:59 and 11:37) and the 4.5 observation was performed on UT 2013 March 19 (between 12:19 and 16:58). (1 data file).

  2. HST Imaging of the (Almost) Dark ALFALFA Source AGC 229385

    NASA Astrophysics Data System (ADS)

    Brunker, Samantha; Salzer, John Joseph; McQuinn, Kristen B.; Janowiecki, Steven; Leisman, Luke; Rhode, Katherine L.; Adams, Elizabeth A.; Cannon, John M.; Giovanelli, Riccardo; Haynes, Martha P.

    2017-06-01

    We present deep HST imaging photometry of the extreme galaxy AGC 229385. This system was first discovered as an HI source in the ALFALFA all-sky HI survey. It was cataloged as an (almost) dark galaxy because it did not exhibit any obvious optical counterpart in the available wide-field survey data (e.g., SDSS). Deep optical imaging with the WIYN 3.5-m telescope revealed an ultra-low surface brightness stellar component located at the center of the HI detection. With a peak central surface brightness of 26.4 mag/sq. arcsec in g and very blue colors (g-r = -0.1), the stellar component to this gas-rich system is quite enigmatic. We have used our HST images to produce a deep CMD of the resolved stellar population present in AGC 229385. We clearly detect a red-giant branch and use it to infer a distance of 5.50 ± 0.23 Mpc. The CMD is dominated by older stars, contrary to expectations given the blue optical colors obtained from our ground-based photometry. Our new distance is substantially lower than earlier estimates, and shows that AGC 229385 is an extreme dwarf galaxy with one of the highest MHI/L ratios known.

  3. HST Observations of the Luminous IRAS Source FSC10214+4724: A Gravitationally Lensed Infrared Quasar

    NASA Technical Reports Server (NTRS)

    Eisenhardt, P. R.; Armus, L.; Hogg, D. W.; Soifer, B. T.; Neugebauer, G.; Werner, M. W.

    1995-01-01

    Hubble Space Telescope (HST) data taken of the IRAS source FSC 10214+4724 suggest that the object has been gravitationally lensed by a galaxy in the foreground and that this lensing may be magnifying the apparent brightness by roughly 100 times.

  4. The 1997 HST Calibration Workshop with a New Generation of Instruments

    NASA Technical Reports Server (NTRS)

    Casertano, S. (Editor); Jedrzejewski, R. (Editor); Keyes, T. (Editor); Stevens, M. (Editor)

    1997-01-01

    The Second Servicing mission in early 1997 has brought major changes to the Hubble Space Telescope (HST). Two of the original instruments, Faint Object Spectrograph (FOS) and Goddard High Resolution Spectrograph (GHRS), were taken out, and replaced by completely new instruments, the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera Multi-Object Spectrograph (NICMOS). Two new types of detectors were installed, and for the first time, HST gained infrared capabilities. A new Fine Guidance Sensor (FGS) was installed, with an alignment mechanism that could improve substantially both guiding and astrometric capabilities. With all these changes come new challenges. The characterization of the new instruments has required a major effort, both by their respective Investigation Definition Teams and at the Space Telescope Science Institute. All necessary final calibrations for the retired spectrographs needed to be carried out, and their properties definitively characterized. At the same time, work has continued to improve our understanding of the instruments that have remained on board. The results of these activities were discussed in the 1997 HST (Hubble Space Telescope) Calibration Workshop. The main focus of the Workshop was to provide users with the tools and the understanding they need to use HST's instruments and archival data to the best of their possibilities. This book contains the written record of the Workshop. As such, it should provide a valuable tool to all interested in using existing HST data or in proposing for new observations.

  5. Mining the HST "Advanced Spectral Library (ASTRAL) - Hot Stars": The High Definition UV Spectrum of the Ap Star HR 465

    NASA Astrophysics Data System (ADS)

    Carpenter, Kenneth G.; Ayres, T. R.; Nielsen, K. E.; Kober, G. V.; Wahlgren, G. M.; Adelman, S. J.; Cowley, C. R.

    2014-01-01

    The "Advanced Spectral Library (ASTRAL) Project: Hot Stars" is a Hubble Space Telescope (HST) Cycle 21 Treasury Program (GO-13346: Ayres PI). It is designed to collect a definitive set of representative, high-resolution ( 30,000-100,000), high signal/noise (S/N>100), and full UV coverage 1200 - 3000 A) spectra of 21 early-type stars, utilizing the high-performance Space Telescope Imaging Spectrograph (STIS). The targets span the range of spectral types between early-O and early-A, including both main sequence and evolved stars, fast and slow rotators, as well as chemically peculiar (CP) and magnetic objects. These extremely high-quality STIS UV echelle spectra will be available from the HST archive and, in post-processed and merged form, at http://casa.colorado.edu ayres/ASTRAL/. The UV "atlases" produced by this program will enable investigations of a broad range of problems -- stellar, interstellar, and beyond -- for many years to come. We offer a first look at one of the earliest datasets to come out of this observing program, a "high definition" UV spectrum of the Ap star HR 465, which was chosen as a prototypical example of an A-type magnetic CP star. HR 465 has a global magnetic field of ~2200 Gauss. Earlier analyses of IUE spectra show strong iron-peak element lines, along with heavy elements such as Ga and Pt, while being deficient in the abundance of some ions of low atomic number, such as carbon. We demonstrate the high quality of the ASTRAL data and present the identification of spectral lines for a number of elements. By comparison of the observed spectra with calculated spectra, we also provide estimates of element abundances, emphasizing heavy elements, and place these measurements in the context of earlier results for this and other Ap stars.

  6. Calibration of colour gradient bias in shear measurement using HST/CANDELS data

    NASA Astrophysics Data System (ADS)

    Er, X.; Hoekstra, H.; Schrabback, T.; Cardone, V. F.; Scaramella, R.; Maoli, R.; Vicinanza, M.; Gillis, B.; Rhodes, J.

    2018-06-01

    Accurate shape measurements are essential to infer cosmological parameters from large area weak gravitational lensing studies. The compact diffraction-limited point spread function (PSF) in space-based observations is greatly beneficial, but its chromaticity for a broad-band observation can lead to new subtle effects that could hitherto be ignored: the PSF of a galaxy is no longer uniquely defined and spatial variations in the colours of galaxies result in biases in the inferred lensing signal. Taking Euclid as a reference, we show that this colour gradient bias (CG bias) can be quantified with high accuracy using available multicolour Hubble Space Telescope (HST) data. In particular we study how noise in the HST observations might impact such measurements and find this to be negligible. We determine the CG bias using HST observations in the F606W and F814W filters and observe a correlation with the colour, in line with expectations, whereas the dependence with redshift is weak. The biases for individual galaxies are generally well below 1 per cent, which may be reduced further using morphological information from the Euclid data. Our results demonstrate that CG bias should not be ignored, but it is possible to determine its amplitude with sufficient precision, so that it will not significantly bias the weak lensing measurements using Euclid data.

  7. IMPLICATIONS FOR THE FORMATION OF BLUE STRAGGLER STARS FROM HST ULTRAVIOLET OBSERVATIONS OF NGC 188

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosnell, Natalie M.; Mathieu, Robert D.; Geller, Aaron M.

    We present results of a Hubble Space Telescope (HST) far-ultraviolet (FUV) survey searching for white dwarf (WD) companions to blue straggler stars (BSSs) in open cluster NGC 188. The majority of NGC 188 BSSs (15 of 21) are single-lined binaries with properties suggestive of mass-transfer formation via Roche lobe overflow, specifically through an asymptotic giant branch star transferring mass to a main sequence secondary, yielding a BSS binary with a WD companion. In NGC 188, a BSS formed by this mechanism within the past 400 Myr will have a WD companion that is hot and luminous enough to be directlymore » detected as a FUV photometric excess with HST. Comparing expected BSS FUV emission to observed photometry reveals four BSSs with WD companions above 12,000 K (younger than 250 Myr) and three WD companions with temperatures between 11,000 and 12,000 K. These BSS+WD binaries all formed through recent mass transfer. The location of the young BSSs in an optical color–magnitude diagram (CMD) indicates that distance from the zero-age main sequence does not necessarily correlate with BSS age. There is no clear CMD separation between mass transfer-formed BSSs and those likely formed through other mechanisms, such as collisions. The seven detected WD companions place a lower limit on the mass-transfer formation frequency of 33%. We consider other possible formation mechanisms by comparing properties of the BSS population to theoretical predictions. We conclude that 14 BSS binaries likely formed from mass transfer, resulting in an inferred mass-transfer formation frequency of approximately 67%.« less

  8. Modernizing Pickles - A Tool for Planning and Scheduling HST Astrometry

    NASA Astrophysics Data System (ADS)

    Juarez, Aaron; McArthur, B.; Benedict, G. F.

    2007-12-01

    Pickles is a Macintosh program written in C that was developed as a tool for determining pointings and rolls of the Hubble Space Telescope (HST) to place targets and astrometric reference stars in the Fine Guidance Sensor (FGS) field of regard ("pickles"). The program was developed in the late 1980s and runs under the "Classic” System. Ongoing HST astrometry projects require that this code be ported to the Intel-Mac OSX, because the Classic System is now unsupported. Pickles is a vital part of HST astrometry research. It graphically aids the investigator to determine where, when, and how the HST/FGS combination can observe an object and associated astrometric reference stars. Presently, Pickles can extract and display star positions from Guide Star Catalogs, such as the ACRS, SAO, and AGK3 catalogs via CD-ROMs. Future improvements will provide access to these catalogs and others through the internet. As an example of the past utility of Pickles, we highlight the recent determination of parallaxes for ten galactic Cepheids to determine an improved solar-metallicity Period-Luminosity relation. Support for this work was provided by NASA through grants GO-10989, -11210, and -11211 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  9. Astrometric Calibrations of HST Images in the Era of Gaia.

    NASA Astrophysics Data System (ADS)

    Kozhurina-Platais, Vera; Grogin, Norman A.; Sabbi, Elena

    2018-06-01

    It is well-known that HST images, taken with ACS/WFC and WFC3/UVIS, have substantial geometric distortion. Over the years our knowledge about this distortion has been vastly improved. Nevertheless, in certain applications it may not be good enough. Preliminary results of comparison state-of-the-art HST astrometric standards and the Gaia DR1 indicate significant scale difference, global rotation, and edge effects in the HST data. However, in terms of positional precision the HST standards are not surpassed yet. The next release of Gaia data DR2 were used to finalize and improve the HST astrometric calibrations down to 0.5 mas or better.

  10. Galaxy Groups in HST/COS-SDSS Fields

    NASA Astrophysics Data System (ADS)

    Conway, Matthew; Hamill, Colin; Apala, Elizabeth; Scott, Jennifer

    2018-01-01

    We extend the results of a study of the sightlines of 45 low redshift quasars (0.06 < z < 0.85) observed by HST/COS that lie within the footprint of the Sloan Digital Sky Survey. We have used photometric data from the SDSS DR12, along with the known absorption characteristics of the intergalactic medium and circumgalactic medium, to identify the most probable galaxy matches to absorbers in the spectroscopic dataset. Here, we use an existing catalog of galaxy group candidates in the SDSS DR8 to identify galaxy groups within our HST/COS-SDSS fields that may show line of sight absorption due to an intergroup medium. To identify galaxy group candidates that lie within the impact parameter of our quasar fields (< 3 degrees), we calculate the angular separation between the quasar coordinates and the galaxy group centroid coordinates. We investigate differences in galaxy and absorber properties among the galaxy-absorber pairs likely arising in groups and those likely associated with individual field galaxies.

  11. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This photograph shows engineers inspecting the Hubble Space Telescope's (HST's) Primary Mirror at the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025- micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  12. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1979-03-01

    This photograph shows the Hubble Space Telescope's (HST's) Primary Mirror being ground at the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025-micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  13. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This photograph shows the Hubble Space Telescope's (HST's) Primary Mirror being polished at the the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025-micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  14. THE CURIOUS MORPHOLOGY AND ORIENTATION OF ORION PROPLYD HST-10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuping, R. Y.; Kassis, Marc; Bally, John

    HST-10 is one of the largest proplyds in the Orion Nebula and is located approximately 1' SE of the Trapezium. Unlike other proplyds in Orion, however, the long-axis of HST-10 does not align with θ{sup 1} C, but is instead aligned with the rotational axis of the HST-10 disk. This cannot be easily explained using current photoevaporation models. In this Letter, we present high spatial resolution near-infrared images of the Orion proplyd HST-10 using Keck/NIRC2 with the Laser Guide Star Adaptive Optics system, along with multi-epoch analysis of HH objects near HST-10 using Hubble Space Telescope (HST) WFPC2 and Advanced Cameramore » for Surveys cameras. Our narrowband near-IR images resolve the proplyd ionization front (IF) and circumstellar disk down to 23 AU at the distance to Orion in Br γ, He I, H{sub 2}, and polycyclic aromatic hydrocarbon (PAH) emission. Br γ and He I emission primarily trace the IF (with the disk showing prominently in silhouette), while the H{sub 2} and PAH emission trace the surface of the disk itself. PAH emission also traces small dust grains within the proplyd envelope which is asymmetric and does not coincide with the IF. The curious morphology of the PAH emission may be due to UV heating by both θ{sup 1} COri and θ{sup 2} AOri. Multi-epoch HST images of the HST-10 field show proper motion of three knots associated with HH 517, clearly indicating that HST-10 has a jet. We postulate that the orientation of HST-10 is determined by the combined ram pressure of this jet and the FUV-powered photo-ablation flow from the disk surface.« less

  15. HST and ground-based observations of bright storms on Uranus during 2014-2015.

    NASA Astrophysics Data System (ADS)

    Sayanagi, K. M.; Sromovsky, L. A.; Fry, P. M.; De Pater, I.; Hammel, H. B.; Rages, K. A.; Baranec, C.; Delcroix, M.; Wesley, A.; Hueso, R.; Sanchez-Lavega, A.; Simon, A. A.; Wong, M. H.; Orton, G. S.; Irwin, P. G.

    2015-12-01

    We report the temporal evolution of bright, long-lived cloud features on Uranus. We observed and tracked the features between August 2014 and January 2015 with the Hubble Space Telescope, the Keck 2 10-m telescope, VLT, Gran Telescopio Canarias, Gemini, William Herschel Telescope, Robo-AO, Pic du Midi 1-m telescope, and multiple smaller telescopes operated by amateur astronomers. Surprisingly bright features were first revealed in the Keck adaptive-optics images in August; this initial set of observations motivated follow-up observations around the world. One of the storms (identified as "Feature F" in Sromovsky et al. 2015, and Feature 2 in de Pater et al. 2015), which was the deepest in that dataset, was bright enough that it was detected by multiple amateur observers, permitting us to trigger a Hubble Target of Opportunity (ToO) observation on October 14th, 2014. A complex of features at this latitude was also observed by Hubble as part of the Outer Planet Atmospheres Legacy (OPAL) program on November 8-9, 2014. We will present the temporal evolution of the cloud activities from August 2014 through January 2015, and analyze the vertical structure of the cloud features in the Hubble datasets. The Hubble images used in our study were collected with support of HST grants GO13712 to KMS and GO13937 to AAS. Sromovsky et al. 2015, "High S/N Keck and Gemini AO imaging of Uranus during 2012-2014: New cloud patterns, increasing activity, and improved wind measurements." Icarus 258, 192-223. de Pater et al. 2014, "Record-breaking storm activity on Uranus in 2014." Icarus 252, 121-128

  16. Continuing Studies in Support of Ultraviolet Observations of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Clark, John

    1997-01-01

    This program was a one-year extension of an earlier Planetary Atmospheres program grant, covering the period 1 August 1996 through 30 September 1997. The grant was for supporting work to complement an active program observing planetary atmospheres with Earth-orbital telescopes, principally the Hubble Space Telescope (HST). The recent concentration of this work has been on HST observations of Jupiter's upper atmosphere and aurora, but it has also included observations of Io, serendipitous observations of asteroids, and observations of the velocity structure in the interplanetary medium. The observations of Jupiter have been at vacuum ultraviolet wavelengths, including imaging and spectroscopy of the auroral and airglow emissions. The most recent HST observations have been at the same time as in situ measurements made by the Galileo orbiter instruments, as reflected in the meeting presentations listed below. Concentrated efforts have been applied in this year to the following projects: The analysis of HST WFPC 2 images of Jupiter's aurora, including the Io footprint emissions. We have performed a comparative analysis of the lo footprint locations with two magnetic field models, studied the statistical properties of the apparent dawn auroral storms on Jupiter, and found various other repeated patterns in Jupiter's aurora. Analysis and modeling of airglow and auroral Ly alpha emission line profiles from Jupiter. This has included modeling the aurora] line profiles, including the energy degradation of precipitating charged particles and radiative transfer of the emerging emissions. Jupiter's auroral emission line profile is self-absorbed, since it is produced by an internal source, and the resulting emission with a deep central absorption from the overlying atmosphere permits modeling of the depth of the emissions, plus the motion of the emitting layer with respect to the overlying atmospheric column from the observed Doppler shift of the central absorption. By contrast

  17. Watching AGN feedback at its birth: HST observations of nascent outflow host IC860

    NASA Astrophysics Data System (ADS)

    Alatalo, Katherine

    2016-10-01

    IC860 is a nearby IR-luminous early-type spiral with a unique set of properties: it is a shocked, poststarburst galaxy that hosts an AGN-driven neutral wind and a compact core of molecular gas. IC860 can serve as a rosetta stone for the early stages of triggering AGN feedback. We propose to use WFC3 on HST to obtain NUV, optical and near-IR imaging of IC860. We will create a spatially-resolved history of star formation quenching through SED-fitting of 7 requested broadband filters, and compare the spatially resolved star formation histories to in different positions within the underlying stellar features (such as spiral structure) that might define a narrative of how star formation is quenching in IC860. These observations will also resolve the super-star cluster sites to trace the most recent star formation. Finally, these observations will trace the mass of the outflow by building an absorption map of the dust. IC860 presents a unique opportunity to study a galaxy at an early stage of transitioning from blue spiral to red early-type galaxy, that also hosts an AGN-driven neutral wind and a compact, turbulent molecular gas core.

  18. Campaign of AAVSO Monitoring of the CH Cyg Symbiotic System in Support of Chandra and HST Observations

    NASA Astrophysics Data System (ADS)

    Karovska, M.

    2013-06-01

    (Abstract only) CH Cyg is one of the most interesting interacting binaries in which a compact object, a white dwarf or a neutron star, accretes from the wind of an evolved giant or supergiant. CH Cyg is a member of the symbiotic systems group, and at about 250pc it is one of the closest systems. Symbiotic systems are accreting binaries, which are likely progenitors of a fraction of Pre-Planetary and Planetary Nebulae, and of a fraction of SN type Ia (the cosmic distance scale indicators). We carried out Chandra and HST observations of CH Cyg in March 2012 as part of a follow-up investigation of the central region of CH Cyg and its precessing jet, including the multi-structures that were discovered in 2008. I will describe here the campaign of multi-wavelength observations, including photometry and spectroscopy, that were carried out by AAVSO members in support of the space-based observations.

  19. The 2005 HST Calibration Workshop Hubble After the Transition to Two-Gyro Mode

    NASA Technical Reports Server (NTRS)

    Koekemoer, Anton M. (Editor); Goodfrooij, Paul (Editor); Dressel, Linda L. (Editor)

    2006-01-01

    The 2005 HST Calibration Workshop was held at the Space Telescope Science Institute during October 26, 2005 to bring together members of the observing community, the instrument development teams, and the STScI instrument support teams to share information and techniques. Presentations included the two-gyro performance of HST and FGS, advances in the calibration of a number of instruments, the results of other instruments after their return from space, and the status of still others which are scheduled for installation during the next servicing mission. Cross-calibration between HST and JWST was discussed, as well as the new Guide Star Catalog and advances in data analysis software. This book contains the published record of the workshop, while all the talks and posters are available electronically on the workshop Web site.

  20. UV, X-ray, and Optical Variability of the Young Star T Cha Produced by Inner Disk Obscuration: Results from a Coordinated HST, XMM-Newton, LCOGT, and SMARTS Observing Campaign

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; France, Kevin; Walter, Frederick M.; Schneider, P. Christian; Brown, Timothy M.; Andrews, Sean M.; Wilner, David J.

    2018-06-01

    The young (7 Myr) 1.5 solar mass T Tauri star T Chamaeleontis shows dramatic variability. The optical extinction varies by at least 3 magnitudes on few hour time-scales with no obvious periodicity. The obscuration is produced by material at the inner edge of the circumstellar disk and therefore characterizing the absorbing material can reveal important clues regarding the transport of gas and dust within such disks. The inner disk of T Cha is particularly interesting, because T Cha has a transitional disk with a large gap at 0.2-15 AU in the dust disk and allows study of the gas and dust structure in the terrestrial planet formation zone during this important rapid phase of protoplanetary disk evolution. For this reason we have conducted a major multi-spectral-region observing campaign to study the UV/X-ray/optical variability of T Cha. During 2018 February/March we monitored the optical photometric and spectral variability using LCOGT (Chile/South Africa/Australia) and the SMARTS telescopes in Chile. These optical data provide a broad context within which to interpret our shorter UV and X-ray observations. We observed T Cha during 3 coordinated observations (each 5 HST orbits + 25 ksec XMM; on 2018 Feb 22, Feb 26, Mar 2) using the HST COS/STIS spectrographs to measure the FUV/NUV spectra and XMM-Newton to measure the corresponding X-ray energy distribution. The observed spectral changes are well correlated and demonstrate the influence of the same absorbing material in all the spectral regions observed. By examining which spectral features change and by how much we can determine the location of different emitting regions relative to the absorbers along the line-of-sight to the star. In this poster we provide an overview of the variability seen in the different spectral regions and quantify the dust and gas content of T Cha's inner disk edge.(This work is supported by grant HST-GO-15128 and time awarded by HST, XMM-Newton, LCOGT, and SMARTS. We acknowledge the

  1. HST STIS Observations of the Mixing Layer in the Cat’s Eye Nebula

    NASA Astrophysics Data System (ADS)

    Fang, Xuan; Guerrero, Martín A.; Toalá, Jesús A.; Chu, You-Hua; Gruendl, Robert A.

    2016-05-01

    Planetary nebulae (PNe) are expected to have a ˜105 K interface layer between the ≥slant 106 K inner hot bubble and the ˜104 K optical nebular shell. The PN structure and evolution, and the X-ray emission, depend critically on the efficiency of the mixing of material at this interface layer. However, neither its location nor its spatial extent have ever been determined. Using high-spatial resolution HST STIS spectroscopic observations of the N v λ λ 1239,1243 lines in the Cat’s Eye Nebula (NGC 6543), we have detected this interface layer and determined its location, extent, and physical properties for the first time in a PN. We confirm that this interface layer, as revealed by the spatial distribution of the N v λ1239 line emission, is located between the hot bubble and the optical nebular shell. We estimate a thickness of 1.5× {10}16 cm and an electron density of ˜200 cm-3 for the mixing layer. With a thermal pressure of ˜2 × 10-8 dyn cm-2, the mixing layer is in pressure equilibrium with the hot bubble and ionized nebular rim of NGC 6543. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. The observations are associated with program #12509.

  2. HST Peer Review, Where We've Been, Where We Are Now and Possibly Where the Future Lies

    NASA Astrophysics Data System (ADS)

    Blacker, Brett S.; Macchetto, Duccio; Meylan, Georges; Stanghellini, Letizia; van der Marel, Roeland P.

    2002-12-01

    In some eyes, the Phase I proposal selection process is the most important activity handled by the Space Telescope Science Institute (STScI). Proposing for HST and other missions consists of requesting observing time and/or archival research funding. This step is called Phase I, where the scientific merit of a proposal is considered by a community based peer-review process. Accepted proposals then proceed thru Phase II, where the observations are specified in sufficient detail to enable scheduling on the telescope. Each cycle the Hubble Space Telescope (HST) Telescope Allocation Committee (TAC) reviews proposals and awards observing time that is valued at $0.5B, when the total expenditures for HST over its lifetime are figured on an annual basis. This is in fact a very important endeavor that we continue to fine-tune and tweak. This process is open to the science community and we constantly receive comments and praise for this process. Several cycles ago we instituted several significant changes to the process to address concerns such as: Fewer, broader panels, with redundancy to avoid conflicts of interest; Redefinition of the TAC role, to focus on Larger programs; and incentives for the panels to award time to medium sized proposals. In the last cycle, we offered new initiatives to try to enhance the scientific output of the telescope. Some of these initiatives were: Hubble Treasury Program; AR Legacy Program; and the AR Theory Program. This paper will outline the current HST Peer review process. We will discuss why we made changes and how we made changes from our original system. We will also discuss some ideas as to where we may go in the future to generate a stronger science program for HST and to reduce the burden on the science community. This paper is an update of the status of the HST Peer Review Process that was described in the published paper "Evolution of the HST Proposal Selection Process".

  3. VizieR Online Data Catalog: HST FGS-1r parallaxes for 8 metal-poor stars (Chaboyer+, 2017)

    NASA Astrophysics Data System (ADS)

    Chaboyer, B.; McArthur, B. E.; O'Malley, E.; Benedict, G. F.; Feiden, G. A.; Harrison, T. E.; McWilliam, A.; Nelan, E. P.; Patterson, R. J.; Sarajedini, A.

    2017-08-01

    Each program star was observed with the HST Advanced Camera for Surveys-Wide Field Camera (ACS/WFC) in the F606W and F814W filters. The CTE-corrected ACS/WFC images for the program stars were retrieved from MAST. These instrumental magnitudes were corrected for exposure time, matched to form colors, and calibrated to the VEGAMag and ground-based VI systems using the Sirianni+ (2005PASP..117.1049S) photometric transformations. Ground based photometry for all of our program stars were obtained using the New Mexico State University (NMSU) 1m telescope, the MDM 1.3m telescope, and the SMARTS 0.9m telescope. See appendix A1 for further details. We used HST FGS-1r, a two-axis interferometer, to make the astrometric observations. Eighty-nine orbits of HST astrometric observations were made between 2008 December and 2013 June. Every orbit contained several observations of the target and surrounding reference stars. (4 data files).

  4. Probing high-redshift clusters with HST/ACS gravitational weak-lensing and Chandra x-ray observations

    NASA Astrophysics Data System (ADS)

    Jee, Myungkook James

    2006-06-01

    Clusters of galaxies, the largest gravitationally bound objects in the Universe, are useful tracers of cosmic evolution, and particularly detailed studies of still-forming clusters at high-redshifts can considerably enhance our understanding of the structure formation. We use two powerful methods that have become recently available for the study of these distant clusters: spaced- based gravitational weak-lensing and high-resolution X-ray observations. Detailed analyses of five high-redshift (0.8 < z < 1.3) clusters are presented based on the deep Advanced Camera for Surveys (ACS) and Chandra X-ray images. We show that, when the instrumental characteristics are properly understood, the newly installed ACS on the Hubble Space Telescope (HST) can detect subtle shape distortions of background galaxies down to the limiting magnitudes of the observations, which enables the mapping of the cluster dark matter in unprecedented high-resolution. The cluster masses derived from this HST /ACS weak-lensing study have been compared with those from the re-analyses of the archival Chandra X-ray data. We find that there are interesting offsets between the cluster galaxy, intracluster medium (ICM), and dark matter centroids, and possible scenarios are discussed. If the offset is confirmed to be uniquitous in other clusters, the explanation may necessitate major refinements in our current understanding of the nature of dark matter, as well as the cluster galaxy dynamics. CL0848+4452, the highest-redshift ( z = 1.27) cluster yet detected in weak-lensing, has a significant discrepancy between the weak- lensing and X-ray masses. If this trend is found to be severe and common also for other X-ray weak clusters at redshifts beyond the unity, the conventional X-ray determination of cluster mass functions, often inferred from their immediate X-ray properties such as the X-ray luminosity and temperature via the so-called mass-luminosity (M-L) and mass-temperature (M-T) relations, will become

  5. VizieR Online Data Catalog: HST Frontier Fields Herschel sources (Rawle+, 2016)

    NASA Astrophysics Data System (ADS)

    Rawle, T. D.; Altieri, B.; Egami, E.; Perez-Gonzalez, P. G.; Boone, F.; Clement, B.; Ivison, R. J.; Richard, J.; Rujopakarn, W.; Valtchanov, I.; Walth, G.; Weiner, B. J.; Blain, A. W.; Dessauges-Zavadsky, M.; Kneib, J.-P.; Lutz, D.; Rodighiero, G.; Schaerer, D.; Smail, I.

    2017-07-01

    We present a complete census of the 263 Herschel-detected sources within the HST Frontier Fields, including 163 lensed sources located behind the clusters. Our primary aim is to provide a robust legacy catalogue of the Herschel fluxes, which we combine with archival data from Spitzer and WISE to produce IR SEDs. We optimally combine the IR photometry with data from HST, VLA and ground-based observatories in order to identify optical counterparts and gain source redshifts. Each cluster is observed in two distinct regions, referred to as the central and parallel footprints. (2 data files).

  6. HST UV Images of Saturn's Aurora Coordinated with Cassini Solar Wind Measurements

    NASA Astrophysics Data System (ADS)

    Clarke, John

    2003-07-01

    A key measurement goal of the Cassini mission to Saturn is to obtain simultaneous solar wind and auroral imaging measurements in a campaign scheduled for Jan. 2004. Cassini will measure the solar wind approaching Saturn continuously from 9 Jan. - 6 Feb., but not closer to Saturn due to competing spacecraft orientation constraints. The only system capable of imaging Saturn's aurora in early 2004 will be HST. In this community DD proposal we request the minimum HST time needed to support the Cassini mission during the solar wind campaign with UV images of Saturn's aurora. Saturn's magnetosphere is intermediate between the "closed" Jovian case with large internal sources of plasma and the Earth's magnetosphere which is open to solar wind interactions. Saturn's aurora has been shown to exhibit large temporal variations in brightness and morphology from Voyager and HST observations. Changes of auroral emitted power exceeding one order of magnitude, dawn brightenings, and latitudinal motions of the main oval have all been observed. Lacking knowledge of solar wind conditions near Saturn, it has not been possible to determine its role in Saturn's auroral processes, nor the mechanisms controlling the auroral precipitation. During Cassini's upcoming approach to Saturn there will be a unique opportunity to answer these questions. We propose to image one complete rotation of Saturn to determine the corotational and longitudinal dependences of the auroral activity. We will then image the active sector of Saturn once every two days for a total coverage of 26 days during the Cassini campaign to measure the upstream solar wind parameters. This is the minimum coverage needed to ensure observations of the aurora under solar wind pressure variations of more than a factor of two, based on the solar wind pressure variations measured by Voyager 2 near Saturn on the declining phase of solar activity. The team of proposers has carried out a similar coordinated observing campaign of

  7. High Energy (X-ray/UV) Radiation Fields of Young, Low-Mass Stars Observed with Chandra and HST

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Brown, J. M.; Herczeg, G.; Bary, J.; Walter, F. M.; Ayres, T. R.

    2010-01-01

    Pre-main-sequence (PMS) stars are strong UV and X-ray emitters and the high energy (UV/X-ray) radiation from the central stars directly influences the physical and chemical processes in their protoplanetary disks. Gas and dust in protoplanetary systems are excited by these photons, which are the dominant ionization source for hundreds of AU around the star. X-rays penetrate deep into disks and power complex chemistry on grain surfaces. ``Transitional disks'' are a crucial and important evolutionary stage for PMS stars and protoplanetary systems. These disks have transformed most of the dust and gas in their inner regions into planetesimals or larger solid bodies. The disks show clear inner ``holes'' that almost certainly harbor infant planetary systems, given the very sharp gap boundaries inferred. Transitional disks are rare and represent a short-lived phase of PMS disk evolution. We have observed a sample of PMS stars at a variety of evolutionary stages, including the transitional disk stars GM Aur (K5) and HD135344B (F4). Chandra ACIS CCD-resolution X-ray spectra and HST STIS and COS FUV spectra are being used to reconstruct the full high energy (X-ray/EUV/FUV/NUV) spectra of these young stars, so as to allow detailed modeling of the physics and chemistry of their circumstellar environments, thereby providing constraints on the formation process of planetary systems. This work is supported by Chandra grants GO8-9024X, GO9-0015X and GO9-0020B and HST grants for GO projects 11336, 11828, and 11616 to the University of Colorado.

  8. The HST Frontier Field MACS 1159.5+2223: Flanking Observations for Intracluster Light

    NASA Astrophysics Data System (ADS)

    Gonzalez, Anthony

    2017-08-01

    We propose a 6 orbit WFC3/IR imaging program targeting the environs of the HST Frontier Field cluster MACS 1149.5+2223 to obtain a comprehensive view of the intracluster stellar population in a massive galaxy cluster. WFC3/IR enables a vast improvement over ground-based studies in mapping emission from diffuse stellar populations. Our proposed observations are designed to build upon the existing investment in the Frontier Fields to conduct a new, more complete census of the intracluster light (ICL) extending out to 750 kpc. The requested observations are constructed to span the gap between the primary and parallel HFF pointings, detecting ICL to a surface brightness of 29.5 mag per square arcsec in F160W (equivalent to 31.5 mag per square arcsec in V-band). This depth is sufficient to trace the radial ICL profile out to 750 kpc from the BCG. These data will also yield a high-fidelity calibration of the background sky level, enabling two-dimensional mapping of the distribution and color of intracluster light down to 27 mag per square arcsec in F160W. From these maps we will quantify spatial variation in the ratio of the stellar baryons to the ICM, establishing whether the observed low scatter in the global ratio masks underlying smaller scale inhomogeneities due to astrophysical processes in the cluster. The requested observations further serve as a pilot program, enabling future similar analyses with the full ensemble of HFF clusters, and developing techniques that will be required for such low surface brightness programs with upcoming facilities including Euclid and WFIRST.

  9. Volcanic resurfacing of Io: Post-repair HST imaging

    USGS Publications Warehouse

    Spencer, J.R.; McEwen, A.S.; McGrath, M.A.; Sartoretti, P.; Nash, D.B.; Noll, K.S.; Gilmore, D.

    1997-01-01

    In March 1994, we used the newly refurbished Hubble Space Telescope (HST) to obtain global imaging of Io at five wavelengths between 0.34 and 1.02 ??m, with a spatial resolution of 160 km. The images provided the clearest view of Io since Voyager and the first systematic observations in the wavelength range 0.7-1.0 ??m. We have produced absolutely calibrated global mosaics of Io's reflectance in all our five wavelengths. The near-infrared images reveal that the 0.55-to 0.7-??m absorption edge seen in Io's disk-integrated spectrum has a very different spatial distribution from the better-known 0.40-to 0.50-??m absorption edge studied by Voyager, and must be generated by a different chemical species. The 0.55-to 0.7-??m absorption edge is strongly concentrated in the pyroclastic ejecta blanket of the volcano Pele, at a few much smaller discrete spots, and probably also in the polar regions. The Pele ejecta spectrum is consistent with the idea that S2O, partially decomposed to S4 (and probably S3), may be the species responsible for the 0.55-to 0.7-??m absorption edge at Pele and elsewhere on Io, though S4 generated by other processes may also be a possibility. S2O can be produced by high-temperature decomposition of SO2 gas, and the high temperature of the Pele volcano may account for its concentration there. Spectral anomalies of comparable size and prominence are not seen around the other "Pele-type" volcanos Surt and Aten (A. S. McEwen and L. A. Soderblom, 1983, Icarus 55, 191-217), suggesting that these volcanos, if chemically similar to Pele, are much less active. The spectrum of high-latitude regions is similar to that of quenched red sulfur glass, and if this similarity is not coincidental, the glass may be preserved here by the low polar surface temperatures. Alternatively, the low polar temperatures may preserve sulfur that has been reddened by radiation. There are many changes in albedo patterns in the 15 years between Voyager and these HST observations

  10. Volcanic Resurfacing of Io: Post-Repair HST Imaging

    NASA Astrophysics Data System (ADS)

    Spencer, John R.; McEwen, Alfred S.; McGrath, Melissa A.; Sartoretti, Paola; Nash, Douglas B.; Noll, Keith S.; Gilmore, Diane

    1997-05-01

    In March 1994, we used the newly refurbished Hubble Space Telescope (HST) to obtain global imaging of Io at five wavelengths between 0.34 and 1.02 μm, with a spatial resolution of 160 km. The images provided the clearest view of Io since Voyager and the first systematic observations in the wavelength range 0.7-1.0 μm. We have produced absolutely calibrated global mosaics of Io's reflectance in all our five wavelengths. The near-infrared images reveal that the 0.55- to 0.7-μm absorption edge seen in Io's disk-integrated spectrum has a very different spatial distribution from the better-known 0.40- to 0.50-μm absorption edge studied by Voyager, and must be generated by a different chemical species. The 0.55- to 0.7-μm absorption edge is strongly concentrated in the pyroclastic ejecta blanket of the volcano Pele, at a few much smaller discrete spots, and probably also in the polar regions. The Pele ejecta spectrum is consistent with the idea that S 2O, partially decomposed to S 4(and probably S 3), may be the species responsible for the 0.55- to 0.7-μm absorption edge at Pele and elsewhere on Io, though S 4generated by other processes may also be a possibility. S 2O can be produced by high-temperature decomposition of SO 2gas, and the high temperature of the Pele volcano may account for its concentration there. Spectral anomalies of comparable size and prominence are not seen around the other "Pele-type" volcanos Surt and Aten (A. S. McEwen and L. A. Soderblom, 1983, Icarus55, 191-217), suggesting that these volcanos, if chemically similar to Pele, are much less active. The spectrum of high-latitude regions is similar to that of quenched red sulfur glass, and if this similarity is not coincidental, the glass may be preserved here by the low polar surface temperatures. Alternatively, the low polar temperatures may preserve sulfur that has been reddened by radiation. There are many changes in albedo patterns in the 15 years between Voyager and these HST

  11. Marginalizing Instrument Systematics in HST WFC3 Transit Light Curves

    NASA Astrophysics Data System (ADS)

    Wakeford, H. R.; Sing, D. K.; Evans, T.; Deming, D.; Mandell, A.

    2016-03-01

    Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7 μm probe primarily the H2O absorption band at 1.4 μm, and have provided low-resolution transmission spectra for a wide range of exoplanets. We present the application of marginalization based on Gibson to analyze exoplanet transit light curves obtained from HST WFC3 to better determine important transit parameters such as Rp/R*, which are important for accurate detections of H2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion. We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalized transit parameters for both the band-integrated and spectroscopic light curves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts {δ }λ (λ ) best describe the associated systematic in the spectroscopic light curves for most targets while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalization allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each data set, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres.

  12. Astronauts Thornton & Akers on HST photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-05

    S61-E-012 (5 Dec 1993) --- This view of astronauts Kathryn C. Thornton (top) and Thomas D. Akers working on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Thornton, anchored to the end of the Remote Manipulator System (RMS) arm, is teaming with Akers to install the +V2 Solar Array Panel as a replacement for the original one removed earlier. Akers uses tethers and a foot restraint to remain in position for the task. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  13. Astronauts Thornton & Akers on HST photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-05

    S61-E-014 (5 Dec 1993) --- This view of astronauts Kathryn C. Thornton (bottom) and Thomas D. Akers working on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Thornton, anchored to the end of the Remote Manipulator System (RMS) arm, is teaming with Akers to install the +V2 Solar Array Panel as a replacement for the original one removed earlier. Akers uses tethers and a foot restraint to remain in position for the task. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  14. The APIS service : a tool for accessing value-added HST planetary auroral observations over 1997-2015

    NASA Astrophysics Data System (ADS)

    Lamy, L.; Henry, F.; Prangé, R.; Le Sidaner, P.

    2015-10-01

    The Auroral Planetary Imaging and Spectroscopy (APIS) service http://obspm.fr/apis/ provides an open and interactive access to processed auroral observations of the outer planets and their satellites. Such observations are of interest for a wide community at the interface between planetology, magnetospheric and heliospheric physics. APIS consists of (i) a high level database, built from planetary auroral observations acquired by the Hubble Space Telescope (HST) since 1997 with its mostly used Far-Ultraviolet spectro- imagers, (ii) a dedicated search interface aimed at browsing efficiently this database through relevant conditional search criteria (Figure 1) and (iii) the ability to interactively work with the data online through plotting tools developed by the Virtual Observatory (VO) community, such as Aladin and Specview. This service is VO compliant and can therefore also been queried by external search tools of the VO community. The diversity of available data and the capability to sort them out by relevant physical criteria shall in particular facilitate statistical studies, on long-term scales and/or multi-instrumental multispectral combined analysis [1,2]. We will present the updated capabilities of APIS with several examples. Several tutorials are available online.

  15. Jovian Vortices and Barges: HST observations 1994-1998

    NASA Astrophysics Data System (ADS)

    Morales, R.; Sanchez-Lavega, A.; Lecacheux, J.; Colas, F.; Miyazaki, I.

    2000-10-01

    We have used the HST-WFPC2 archived images of Jupiter in the period 1994-1998 to study the zonal and meridional distributions, long-term motions, lifetimes, interactions and other properties of the vortices larger than 2 degrees. The latitude range covered spans from +75 to -75 degrees. High-resolution images obtained with the 890nm, 410nm and 953nm wavelength filters allowed us to make a morphological classification based on their appearance in each filter. The vortices are anticyclones, and their long-term motions have been completed with ground-based images and are compared to the mean Jovian zonal wind profile. Significant differences are found between the vortex velocities and the mean zonal winds. Some vortices exhibited important drift changes in short period times. We analyze a possible correlation between their size and zonal wind velocity. On the other hand, the "barges" lie in the cyclone domains of the wind-profile and have been identified in several latitudes. Their latitudinal size is similar in all of them (typically 1.6 degrees) but their longitudinal size ranges from 1 to 32 degrees. We discuss the temporal evolution of some of these cyclonic regions. The Spanish team was supported by Gobierno Vasco PI 034/97. The French team was supported by the "Programme National de Planetologie." RM acknowledges a fellowship from Universidad Pais Vasco.

  16. HST update - Science amid setbacks

    NASA Astrophysics Data System (ADS)

    Fienberg, Richard T.

    1991-09-01

    Recent data obtained from the Hubble Space Telescope (HST) are presented that indicate that the mission of the beleagered telescope has reached a turning point. Among these observations is a spectrogram revealing the complex dynamic structure of the Beta Pictoris's gas disk, the Lyman-alpha lines from clouds of cool hydrogen atoms in the Milky Way, the UV spectrum of Chi Lupi, the images of Eta Carinae and the Homunculus nebula ejected by the star during the 1843 outburst, and the structure of energetic jets from active galactic nuclei. The paper discusses corrective measures planned by the NASA and Hubble project astronomers to restore the observatory to near-perfect health.

  17. HST PanCET Program: A Cloudy Atmosphere for the Promising JWST Target WASP-101b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakeford, H. R.; Mandell, A.; Stevenson, K. B.

    We present results from the first observations of the Hubble Space Telescope (HST) Panchromatic Comparative Exoplanet Treasury program for WASP-101b, a highly inflated hot Jupiter and one of the community targets proposed for the James Webb Space Telescope ( JWST ) Early Release Science (ERS) program. From a single HST Wide Field Camera 3 observation, we find that the near-infrared transmission spectrum of WASP-101b contains no significant H{sub 2}O absorption features and we rule out a clear atmosphere at 13 σ . Therefore, WASP-101b is not an optimum target for a JWST ERS program aimed at observing strong molecular transmissionmore » features. We compare WASP-101b to the well-studied and nearly identical hot Jupiter WASP-31b. These twin planets show similar temperature–pressure profiles and atmospheric features in the near-infrared. We suggest exoplanets in the same parameter space as WASP-101b and WASP-31b will also exhibit cloudy transmission spectral features. For future HST exoplanet studies, our analysis also suggests that a lower count limit needs to be exceeded per pixel on the detector in order to avoid unwanted instrumental systematics.« less

  18. Star Formation Driven Outflows In Edge-On Spiral Galaxies Based on HST/ACS Observations

    NASA Astrophysics Data System (ADS)

    Rossa, Joern; Dahlem, M.; Dettmar, R.; van der Marel, R. P.

    2007-12-01

    We present new results on extraplanar diffuse ionized gas (eDIG) in four late-type, actively star-forming edge-on spirals. The high spatial resolution narrowband imaging observations were obtained with ACS on-board HST. Our H-alpha observations reveal a multitude of structures on both small and large scales. Whereas all four galaxies have been studied with ground-based telescopes before, here the small scale structure of the extended emission line gas is presented for the very first time at a spatial resolution of 0.05", corresponding to 5 pc at the mean distance to our galaxies. The eDIG morphology is very different for all four targets, as a result of their different star formation activity and galaxy mass. There is a very smooth DIG morphology observed in two of the galaxies (NGC4634 and NGC5775), whereas the other two (NGC4700 and NGC7090) show a much more complex morphology with intricate filaments, bubbles and supershells. We discuss how the morphology of the eDIG, in particular the break-up of diffuse emission into filaments in galaxy halos, depends on physical parameters such as galaxy mass and SF activity and other tracers as well as the galactic environment. Support for proposal 10416 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  19. Bright galaxies at z=9-11 from pure-parallel HST observations: Building a unique sample for JWST with Spitzer/IRAC

    NASA Astrophysics Data System (ADS)

    Bouwens, Rychard; Morashita, Takahiro; Stefanon, Mauro; Magee, Dan

    2018-05-01

    The combination of observations taken by Hubble and Spitzer revealed the unexpected presence of sources as bright as our own Milky Way as early as 400 Myr after the Big Bang, potentially highlighting a new highly efficient regime for star formation in L>L* galaxies at very early times. Yet, the sample of high-quality z>8 galaxies with both HST and Spitzer/IRAC imaging is still small, particularly at the highest luminosities. We propose here to remedy this situation and use Spitzer/IRAC to efficiently follow up the most promising z>8 sources from our Hubble Brightest of Reionizing Galaxies (BoRG) survey, which covers a footprint on the sky similar to CANDELS, provides a deeper search than ground-based surveys like UltraVISTA, and is robust against cosmic variance because of its 210 independent lines of sight. The proposed new 3.6 micron observations will continue our Spitzer cycle 12 and 13 BORG911 programs, targeting 15 additional fields, leveraging over 200 new HST orbits to identify a final sample of about 8 bright galaxies at z >= 8.5. For optimal time use (just 20 hours), our goal is to readily discriminate between z>8 sources (undetected or marginally detected in IRAC) and z 2 interlopers (strongly detected in IRAC) with just 1-2 hours per pointing. The high-quality candidates that we will identify with IRAC will be ideal targets for further studies investigating the ionization state of the distant universe through near-IR Keck/VLT spectroscopy. They will also be uniquely suited to measurement of the redshift and stellar population properties through JWST/NIRSPEC observations, with the potential to elucidate how the first generations of stars are assembled in the earliest stages of the epoch of reionization.

  20. Fungus-Specific Sirtuin HstD Coordinates Secondary Metabolism and Development through Control of LaeA

    PubMed Central

    Kawauchi, Moriyuki; Nishiura, Mika

    2013-01-01

    The sirtuins are members of the NAD+-dependent histone deacetylase family that contribute to various cellular functions that affect aging, disease, and cancer development in metazoans. However, the physiological roles of the fungus-specific sirtuin family are still poorly understood. Here, we determined a novel function of the fungus-specific sirtuin HstD/Aspergillus oryzae Hst4 (AoHst4), which is a homolog of Hst4 in A. oryzae yeast. The deletion of all histone deacetylases in A. oryzae demonstrated that the fungus-specific sirtuin HstD/AoHst4 is required for the coordination of fungal development and secondary metabolite production. We also show that the expression of the laeA gene, which is the most studied fungus-specific coordinator for the regulation of secondary metabolism and fungal development, was induced in a ΔhstD strain. Genetic interaction analysis of hstD/Aohst4 and laeA clearly indicated that HstD/AoHst4 works upstream of LaeA to coordinate secondary metabolism and fungal development. The hstD/Aohst4 and laeA genes are fungus specific but conserved in the vast family of filamentous fungi. Thus, we conclude that the fungus-specific sirtuin HstD/AoHst4 coordinates fungal development and secondary metabolism via the regulation of LaeA in filamentous fungi. PMID:23729383

  1. Marginalizing Instrument Systematics in HST WFC3 Transit Light Curves

    NASA Technical Reports Server (NTRS)

    Wakeford, H. R.; Sing, D.K.; Deming, D.; Mandell, A.

    2016-01-01

    Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7 microns probe primarily the H2O absorption band at 1.4 microns, and have provided low-resolution transmission spectra for a wide range of exoplanets. We present the application of marginalization based on Gibson to analyze exoplanet transit light curves obtained from HST WFC3 to better determine important transit parameters such as "ramp" probability (R (sub p)) divided by "ramp" total (R (sub asterisk)), which are important for accurate detections of H2O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion. We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalized transit parameters for both the band-integrated and spectroscopic light curves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time as well as corrections related to HST orbital phase. We additionally test the dependence on the shift in spectral wavelength position over the course of the observations and find that spectroscopic wavelength shifts delta (sub lambda) times lambda) best describe the associated systematic in the spectroscopic light curves for most targets while fast scan rate observations of bright targets require an additional level of processing to produce a robust transmission spectrum. The use of marginalization allows for transparent interpretation and understanding of the instrument and the impact of each systematic evaluated statistically for each data set, expanding the ability to make true and comprehensive comparisons between exoplanet atmospheres.

  2. A Search for Lyα Emission from Galaxies AT 6 < z < 8 Using Deep HST Grism Observations: Discovery of a z = 7.5 Galaxy

    NASA Astrophysics Data System (ADS)

    Larson, Rebecca L.; Finkelstein, Steven; Pirzkal, Nor; Ryan, Russell; Tilvi, Vithal; Malhotra, Sangeeta; Rhoads, James; Finkelstein, Keely; Jung, Intae; Christensen, Lise; Cimatti, Andrea; Ferreras, Ignacio; Grogin, Norman; Koekemoer, Anton; Hathi, Nimish; O'Connell, Robert; Östlin, Göran; Pasquali, Anna; Rothberg, Barry; Windhorst, Rogier; FIGS Team

    2018-01-01

    We have built an automated detection method to find Lyα emission lines in HST grism data from 6 < z < 8 galaxies in order to spectroscopically confirm their redshifts and to probe the ionization state of the intergalactic medium (IGM) during the epoch of reionization. We use 160 orbits of G102 slitless spectroscopy obtained from HST/WFC3 for the Faint Infrared Grism Survey (FIGS; PI: Malhotra) that were optimized to sample previously-identified high-redshift galaxy candidates. This dataset has already been used to identify one of these candidates, at redshift z = 7.51, which has been observed to have Lyα emission detectable with the HST Grism (Finkelstein et al. 2013; Tilvi et al. 2016). The FIGS data use five separate roll-angles of HST in an effort to mitigate the overall contamination effects of nearby galaxies and we have created a method that accounts for and removes the contamination from surrounding galaxies, while also removing any dispersed continuum light from each individual spectrum (Pirzkal et al. 2017). Using our new automated process we searched for significant (> 3σ) emission lines via two different methods. First, we compared the results for each galaxy across all roll angles and identified significant lines detected in more than one roll angle. Second, we performed a fit to all five roll angles simultaneously, accounting for the total flux of the emission line across all of our spectra. We have examined the spectra for 64 z > 7 candidates in our sample and found one new candidate Lyα emission line at a (> 5σ) level at 1.03µm (FIGS ID: GS2 1406 also named CANDELS ID: z7 PAR2 2909). After comparing this emission line with the broadband photometric colors, we conclude that this line is Lyα at z = 7.542 ± 0.003. This galaxy has the highest Lyα rest-frame equivalent width (EWLyα) yet published at z > 7 (110 ± 14 A).

  3. HST WFC3/IR Calibration Updates

    NASA Astrophysics Data System (ADS)

    Durbin, Meredith; Brammer, Gabriel; Long, Knox S.; Pirzkal, Norbert; Ryan, Russell E.; McCullough, Peter R.; Baggett, Sylvia M.; Gosmeyer, Catherine; Bourque, Matthew; HST WFC3 Team

    2016-01-01

    We report on several improvements to the characterization, monitoring, and calibration of the HST WFC3/IR detector. The detector performance has remained overall stable since its installation during HST Servicing Mission 4 in 2009. We present an updated persistence model that takes into account effects of exposure time and spatial variations in persistence across the detector, new grism wavelength solutions and master sky images, and a new SPARS sample sequence. We also discuss the stability of the IR gain, the time evolution and photometric properties of IR "snowballs," and the effect of IR "blobs" on point-source photometry.

  4. Accurate Measurements of the Local Deuterium Abundance from HST Spectra

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.

    1996-01-01

    An accurate measurement of the primordial value of D/H would provide a critical test of nucleosynthesis models for the early universe and the baryon density. I briefly summarize the ongoing HST observations of the interstellar H and D Lyman-alpha absorption for lines of sight to nearby stars and comment on recent reports of extragalactic D/H measurements.

  5. Observations of Jupiter From Cassini, Galileo and Hst

    NASA Astrophysics Data System (ADS)

    West, R. A.

    This report summarizes recent scientific results for JupiterSs atmosphere from instru- ments sensing ultraviolet and visible wavelengths (to the CCD sensitivity limit near 1000 nm) on the Hubble Space Telescope and the Galileo and Cassini spacecraft. Most prominent among these have been images of the aurora which show the morphology and temporal behavior of the main oval as well as active regions inside the oval and Galilean satellite flux tube and wake interactions. Galileo and especially Cassini ul- traviolet spectrometers added to this picture by revealing auroral brightenings and, along with in situ plasma instruments establish a link between solar wind events and jovian auroral activity. Cassini spectra of the quiescent day and night glow provide compelling evidence for a dominating influence of soft electron excitation (probably secondary electrons) at high altitude and limit the possible contribution of fluores- cence to about 15 percent of the short-wave UV flux. Although fluorescence does not dominate the emission process sunlight is the ultimate source of the emission via photo excitation of vibrationally excited H2. Energetic H2 molecules can be excited by more abundant longer wavelength solar photons. This new insight goes a long way toward resolving the mystery of how the abundant UV flux is produced. At longer wave- lengths (200-300 nm) images by HST and by the Cassini ISS instrument reveal haze morphology and motions in the polar stratosphere. The most striking new discovery in that realm proved to be the formation and evolution of a large dark oval near latitude +60, about the same size and shape as JupiterSs Great Red Spot but ephemeral and invisible at longer wavelengths. Galileo and Cassini made new observations of light- ning. Lightning on the night side can be mapped to cloud features seen on the day side and illuminated by light from Io on the night side. High spatial resolution images in methane bands made by Galileo and Cassini are

  6. VizieR Online Data Catalog: 3D-HST+CANDELS catalog (Skelton+, 2014)

    NASA Astrophysics Data System (ADS)

    Skelton, R. E.; Whitaker, K. E.; Momcheva, I. G.; Brammer, G. B.; van Dokkum, P. G.; Labbe, I.; Franx, M.; van der Wel, A.; Bezanson, R.; Da Cunha, E.; Fumagalli, M.; Forster Schreiber, N.; Kriek, M.; Leja, J.; Lundgren, B. F.; Magee, D.; Marchesini, D.; Maseda, M. V.; Nelson, E. J.; Oesch, P.; Pacifici, C.; Patel, S. G.; Price, S.; Rix, H.-W.; Tal, T.; Wake, D. A.; Wuyts, S.

    2015-09-01

    The majority of HST/WFC3 imaging comes from the 3D-HST and CANDELS surveys which, jointly, have covered ~940arcmin2 in three infrared filters: F125W, F140W, and F160W (HST cycle 11, 17, 18 and 19). See section 2 for further explanations. (1 data file).

  7. VizieR Online Data Catalog: HST BVI catalogue of star clusters in 5 HCGs (Fedotov+, 2015)

    NASA Astrophysics Data System (ADS)

    Fedotov, K.; Gallagher, S. C.; Durrell, P. R.; Bastian, N.; Konstantopoulos, I. S.; Charlton, J.; Johnson, K. E.; Chandar, R.

    2015-11-01

    The data for this project were obtained with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3). These observations are part of two programmes: ID 10787 (PI J. Charlton) and ID 11502 (PI K. Noll). The observations were carried out in the F435W (F438W for WFC3), F606W, and F814W filters, which are similar to the Johnson BVI bands. Hereafter, we refer to the HST filters as B435, B438, V606, and I814, although we did not make transformations to the Johnson-Cousins system. (2 data files).

  8. Modeling of Red Giant and AGB Stars Atmospheres: Constraints from VLTI and HST Observations

    NASA Astrophysics Data System (ADS)

    Rau, Gioia

    2018-04-01

    The chemical enrichment of the Universe is considerably affected by the contributions of low-to-intermediate mass stars through the mass-loss provided via their stellar winds. First, we will present our investigation in the near-IR with VLTI/GRAVITY (Wittkowski, Rau, et al., in prep.). Our aim was to verify at different epochs the model-predicted variability of the visibility spectra. We use CODEX model atmospheres, as well as best-fit 3D radiation hydrodynamic simulations (e.g. Freytag et al., 2017), for comparison with the observations. Our preliminary results on R Peg suggest a decreasing contribution by extended CO layers as the star transitions from maximum to minimum phase. Second, we will show a preliminary modeling of UV spectra obtained with HST/GHRS that contain chromospheric emission lines of, e.g., Mg II and Fe II. Via Sobolev with Exact Integration (SEI) modeling, we determined for the two M-giant stars γ Cru and µ Gem the characteristics of their winds (turbulence, acceleration, and opacity), and their average global mass-loss rates (Rau, Carpenter et al., in prep.). Finally, we briefly discuss the impact of instruments on board JWST in progressing this investigation.

  9. Accuracy of the HST Standard Astrometric Catalogs w.r.t. Gaia

    NASA Astrophysics Data System (ADS)

    Kozhurina-Platais, V.; Grogin, N.; Sabbi, E.

    2018-02-01

    The goal of astrometric calibration of the HST ACS/WFC and WFC3/UVIS imaging instruments is to provide a coordinate system free of distortion to the precision level of 0.1 pixel 4-5 mas or better. This astrometric calibration is based on two HST astrometric standard fields in the vicinity of the globular clusters, 47 Tuc and omega Cen, respectively. The derived calibration of the geometric distortion is assumed to be accurate down to 2-3 mas. Is this accuracy in agreement with the true value? Now, with the access to globally accurate positions from the first Gaia data release (DR1), we found that there are measurable offsets, rotation, scale and other deviations of distortion parameters in two HST standard astrometric catalogs. These deviations from the distortion-free and properly aligned coordinate system should be accounted and corrected for, so that the high precision HST positions are free of any systematic errors. We also found that the precision of the HST pixel coordinates is substantially better than the accuracy listed in the Gaia DR1. Therefore, in order to finalize the components of distortion in the HST standard catalogs, the next release of Gaia data is needed.

  10. The HST Key Project on the Extragalactic Distance Scale

    NASA Astrophysics Data System (ADS)

    Freedman, W. L.

    1994-12-01

    One of the major unresolved problems in observational cosmology is the determination of the Hubble Constant, (H_0). The Hubble Space Telescope (HST) Key Project on the Extragalactic Distance Scale aims to provide a measure of H_0 to an accuracy of 10%. Historically the route to H_0 has been plagued by systematic errors; hence there is no quick and easy route to a believeable value of H_0. Achieving plausible error limits of 10% requires careful attention to eliminating potential sources of systematic error. The strategy adopted by the Key Project team is threefold: First, to discover Cepheids in spiral galaxies located in the field and in small groups that are suitable for the calibration of several independent secondary methods. Second, to make direct Cepheid measurements of 3 spiral galaxies in the Virgo cluster and 2 members of the Fornax cluster. Third, to provide a check on the the Cepheid distance scale via independent distance estimates to nearby galaxies, and in addition, to undertake an empirical test of the sensitivity of the zero point of the Cepheid PL relation to heavy-element abundances. First results from the HST Key Project will be presented. We have now determined Cepheid distances to 4 galaxies using the HST: these are the nearby galaxies M81 and M101, the edge-on galaxy NGC 925, and the face-on spiral galaxy M100 in the Virgo cluster. Recently we have measured a Cepheid distance for M100 of 17 +/- 2 Mpc, which yields a value of H_0 = 80 +/- 17 km/sec/Mpc. This work was carried out in collaboration with the other members of the HST Key Project team, R. Kennicutt, J. Mould, F. Bresolin, S. Faber, L. Ferrarese, H. Ford, J. Graham, J. Gunn, M. Han, P. Harding, J. Hoessel, R. Hill, J. Huchra, S. Hughes, G. Illingworth, D. Kelson, B. Madore, R. Phelps, A. Saha, N. Silbermann, P. Stetson, and A. Turner.

  11. Hubble Space Telescope (HST) high gain antenna (HGA) deployment during STS-31

    NASA Image and Video Library

    1990-04-25

    Held in appendage deploy position, the Hubble Space Telescope's (HST's) high gain antenna (HGA) has been released from its stowed position along the Support System Module (SSM) forward shell. The STS-31 crew aboard Discovery, Orbiter Vehicle (OV) oversees the automatic HGA deployment prior to releasing HST. HST HGA is backdropped against the blackness of space.

  12. An Overview of the HST Advanced Camera for Surveys' On-orbit Performance

    NASA Astrophysics Data System (ADS)

    Hartig, G. F.; Ford, H. C.; Illingworth, G. D.; Clampin, M.; Bohlin, R. C.; Cox, C.; Krist, J.; Sparks, W. B.; De Marchi, G.; Martel, A. R.; McCann, W. J.; Meurer, G. R.; Sirianni, M.; Tsvetanov, Z.; Bartko, F.; Lindler, D. J.

    2002-05-01

    The Advanced Camera for Surveys (ACS) was installed in the HST on 7 March 2002 during the fourth servicing mission to the observatory, and is now beginning science operations. The ACS provides HST observers with a considerably more sensitive, higher-resolution camera with wider field and polarimetric, coronagraphic, low-resolution spectrographic and solar-blind FUV capabilities. We review selected results of the early verification and calibration program, comparing the achieved performance with the advertised specifications. Emphasis is placed on the optical characteristics of the camera, including image quality, throughput, geometric distortion and stray-light performance. More detailed analyses of various aspects of the ACS performance are presented in other papers at this meeting. This work was supported by a NASA contract and a NASA grant.

  13. Stellar Populations of Lyman Break Galaxies at z approx. to 1-3 in the HST/WFC3 Early Release Science Observations

    NASA Technical Reports Server (NTRS)

    Hathi, N. P.; Cohen, S. H.; Ryan, R. E., Jr.; Finkelstein, S. L.; McCarthy, P. J.; Windhorst, R. A.; Yan, H.; Koekemoer, A. M.; Rutkowski, M. J.; OConnell, R. W.; hide

    2012-01-01

    We analyze the spectral energy distributions (SEDs) of Lyman break galaxies . (LBGs) at z approx = 1-3 selected using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) UVIS channel filters. These HST /WFC3 obse,rvations cover about 50 arcmin2 in the GOODS-South field as a part of the WFC3 Early Release Science program. These LBGs at z approx = 1-3 are selected using dropout selection criteria similar to high redshift LBGs. The deep multi-band photometry in this field is used to identify best-fit SED models, from which we infer the following results: (1) the photometric redshift estimate of these dropout selected LBGs is accurate to within few percent; (2) the UV spectral slope f3 is redder than at high redshift (z > 3), where LBGs are less dusty; (3) on average, LBGs at .z approx = 1-3 are massive, dustier and more highly star-forming, compared to LBGs at higher redshifts with similar luminosities, though their median values are similar within 1a uncertainties. This could imply that identical dropout selection technique, at all. redshifts, find physically similar galaxies; and (4) the stellar masses of these LBGs are directly proportional to their UV luminosities with a logarithmic slope of approx 0.46, and star-formation rates are proportional to their stellar masses with a logarithmic slope of approx 0.90. These relations hold true - within luminosities probed in this study - for LBGs from z approx = 1.5 to 5. The star-forming galaxies selected using other color-based techniques show similar correlations at z approx = 2, but to avoid any selection biases, and for direct comparison with LBGs at z > 3, a true Lyman break selection at z approx = 2 is essential. The future HST UV surveys,. both wider and deeper, covering a large luminosity range are important to better understand LBG properties, and their evolution.

  14. Timescales of Disk Evolution and Planet Formation: HST, Adaptive Optics, and ISO Observations of Weak-Line and Post-T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Brandner, Wolfgang; Zinnecker, Hans; Alcalá, Juan M.; Allard, France; Covino, Elvira; Frink, Sabine; Köhler, Rainer; Kunkel, Michael; Moneti, Andrea; Schweitzer, Andreas

    2000-08-01

    We present high spatial resolution HST and ground-based adaptive optics observations and high-sensitivity ISO (ISOCAM & ISOPHOT) observations of a sample of X-ray selected weak-line (WTTS) and post- (PTTS) T Tauri stars located in the nearby Chamaeleon T and Scorpius-Centaurus OB associations. HST/NICMOS and adaptive optics observations aimed at identifying substellar companions (young brown dwarfs) at separations >=30 AU from the primary stars. No such objects were found within 300 AU of any of the target stars, and a number of faint objects at larger separations can very likely be attributed to a population of field (background) stars. ISOCAM observations of 5 to 15 Myr old WTTSs and PTTSs in ScoCen reveal infrared excesses which are clearly above photospheric levels and which have a spectral index intermediate between that of younger (1 to 5 Myr) T Tauri stars in Chamaeleon and that of pure stellar photospheres. The difference in the spectral index of the older PTTSs in ScoCen compared with the younger classical and weak-line TTSs in Cha can be attributed to a deficiency of smaller size (0.1 to 1 μm) dust grains relative to larger size (~5 μm) dust grains in the disks of the PTTSs. The lack of small dust grains is either due to the environment (effect of nearby O stars and supernova explosions) or due to disk evolution. If the latter is the case, it would hint that circumstellar disks start to become dust depleted at an age between 5 to 15 Myr. Dust depletion is very likely related to the build-up of larger particles (ultimately rocks and planetesimals) and thus an indicator for the onset of the period of planet formation. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555, observations at the European Southern Observatory, La Silla (ESO Prop ID 58.E-0169), and observations with

  15. Technicians complete assembly of Hubble Space Telescope (HST) mockup at JSC

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A technician listens to instructions as he operates the controls for the overhead crane that is lifting one of the Hubble Space Telescope (HST) high gain antennas (HGAs) into place on the HST Support System Module (SSM) forward shell. Others in a cherry picker basket wait to install the HGA on the SSM mockup. The HST mockup will be used for astronaut training and is being assembled in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A.

  16. CHARACTERIZING THE ATMOSPHERES OF THE HR8799 PLANETS WITH HST/WFC3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajan, Abhijith; Patience, Jennifer; Barman, Travis

    We present results from a Hubble Space Telescope (HST) program characterizing the atmospheres of the outer two planets in the HR8799 system. The images were taken over 15 orbits in three near-infrared (near-IR) medium-band filters—F098M, F127M, and F139M—using the Wide Field Camera 3. One of the three filters is sensitive to a water absorption band inaccessible from ground-based observations, providing a unique probe of the thermal emission from the atmospheres of these young giant planets. The observations were taken at 30 different spacecraft rolls to enable angular differential imaging (ADI), and the full data set was analyzed with the Karhunen–Loévemore » Image Projection routine, an advanced image processing algorithm adapted to work with HST data. To achieve the required high contrast at subarcsecond resolution, we utilized the pointing accuracy of HST in combination with an improved pipeline designed to combine the dithered ADI data with an algorithm designed to both improve the image resolution and accurately measure the photometry. The results include F127M (J) detections of the outer planets, HR8799b and c, and the first detection of HR8799b in the water-band (F139M) filter. The F127M photometry for HR8799c agrees well with fitted atmospheric models, resolving the longstanding difficulty in consistently modeling the near-IR flux of the planet.« less

  17. Metallicities of z ~2 Galaxies From the 3D-HST Survey

    NASA Astrophysics Data System (ADS)

    Hernandez, Betsy; Momcheva, Ivelina; 3D-HST team

    2018-01-01

    The metal content of the gas in galaxies as a function of cosmic time is a measure of the exchange of gas between the galaxy and its environment. Understanding its evolution is central to understanding the physical processes that govern the efficiency and timing of star formation in galaxies. Our sample consists of 127 galaxies from the 3D-HST survey with individually detected spectral lines at z~2. We perform a comparison of line ratios that serve as proxies for the ionization parameter and oxygen abundance (O32 and R23 respectively) between the 3D-HST sample and SDSS galaxies at z~0. We examine the mass-metallicity relation of the 3D-HST sample, deriving the metallicity using O32 and R23, based on the Kobulnicky & Kewley models. Results from the O32 versus R23 comparison in the 3D-HST sample yield a similar distribution to recent high redshift samples. The mass-metallicity (MZ) relation shows the majority of 3D-HST metallicity values fall within previous MZ relation results.

  18. Those Crafty Cepheids: Surprises From Ground-Based Photometry and HST-COS FUV Spectra

    NASA Astrophysics Data System (ADS)

    Engle, Scott G.; Guinan, E. F.; Neilson, H.; Wasatonic, R. P.; Harper, G.

    2013-06-01

    Several years ago the Secret Lives of Cepheids (SLiC) program was initiated to look for unexpected or exotic behaviors from Cepheids. Regular photometric monitoring of Cepheids already possessing robust historical datasets was started to better understand long-term pulsation period changes, but to look for possible amplitude changes as well. At the time, only two “unusual” Cepheids were known to have undergone amplitude changes - Polaris and V473 Lyr. To date, however, the SLiC program has found evidence for amplitude changes in seven other Cepheids, raising the possibility that a "Blazhko effect" could be at work in certain Cepheids, as exists in a subset of RR Lyr stars. As the program expanded, we found that previous International Ultraviolet Exporer (IUE) studies showed certain Cepheids to have UV emissions from warm-to-hot stellar atmospheres. On top of that, the emissions were variable and well-phased to the stellar pulsation period, indicating that the mechanism heating the Cepheid atmosphere was influenced by these pulsations, if not linked to them. With the installation of the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST), a modern, high-quality UV spectrograph was now operating that could efficiently obtain high-resolution spectra of the Cepheids. We have been fortunate to observe four Cepheids to date with COS, and the results are well beyond anything IUE had led us to expect. Here we will present the current optical and UV results of the SLiC program, the implications of the results, and the future direction and expansion of the program. We gratefully acknowledge support for this program from HST grants HST-GO-11726.01-A, HST-GO-12302.01-A and HST-GO-13019.01-A, as well as NSF/RUI grant AST-1009903.

  19. Lessons from X-Ray Astronomy Applied to HST

    NASA Astrophysics Data System (ADS)

    Schreier, Ethan J.; Doxsey, Rodger

    2000-09-01

    Riccardo Giacconi, probably more than any other single individual, established x-ray astronomy as an essential sub-discipline of astronomy. Its incorporation into the mainstream of astronomy was substantially completed with the Einstein Observatory which, with its imaging capabilities and its Guest Observer program, invited non-x-ray astronomers to use the facility. It was therefore perhaps fitting that when optical astronomy moved into space, with the Hubble Space Telescope, it called on Riccardo to oversee the transition. He brought with him lessons about building and operating space observatories, experience working with NASA on large science projects, a business-like approach to attacking tasks, and his unique vision and abilities. Among the guiding principles he brought to HST were: involvement of a strong scientific research staff in all aspects of the program; establishment of a vital, active research environment; attention to "science system engineering" and applying a rational scientific approach to problems; creation of an atmosphere of "ruthless intellectual honesty" and maintenance of the highest regard for process. These formed the basis both for attacking the problems of HST, and for building an Institute to do so.

  20. Hubble Space Telescope (HST) at Lockheed Facility during preflight assembly

    NASA Image and Video Library

    1988-03-31

    A mechanical arm positions the axial scientific instrument (SI) module (orbital replacement unit (ORU)) just outside the open doors of the Hubble Space Telescope (HST) Support System Module (SSM) as clean-suited technicians oversee the process. HST assembly is being completed at the Lockheed Facility in Sunnyvale, California.

  1. The European HST Science Data Archive. [and Data Management Facility (DMF)

    NASA Technical Reports Server (NTRS)

    Pasian, F.; Pirenne, B.; Albrecht, R.; Russo, G.

    1993-01-01

    The paper describes the European HST Science Data Archive. Particular attention is given to the flow from the HST spacecraft to the Science Data Archive at the Space Telescope European Coordinating Facility (ST-ECF); the archiving system at the ST-ECF, including the hardware and software system structure; the operations at the ST-ECF and differences with the Data Management Facility; and the current developments. A diagram of the logical structure and data flow of the system managing the European HST Science Data Archive is included.

  2. Guaranteed Time Observations Support for Goddard High Resolution Spectrograph (GHRS) on HST

    NASA Technical Reports Server (NTRS)

    Beaver, Edward

    1998-01-01

    We assemble this final grant report by combining our previously submitted progress reports with the last year's progress report. Section 2 is the progress report for the June 1, 1991 to Nov. 14, 1995 period. Section 4 is the progress report for the Nov. 14, 1996 to Dec. 31, 1996 period. Section 5 is the progress report for the Nov. 14 to Aug. 31, 1997 period. Section 6 is the new progress report for the Sept. 15, 1997 to Nov. 14, 1998 final period. Section 3 is a summary of our spare detector high voltage transient tests activity in 1992 in support of the renewed safe operation of the GHRS HST D1 detector. Note that we have left the format of each progress report the same as originally sent out. The slight differences in format presentation are thus intended.

  3. The Mega-MUSCLES HST Treasury Survey

    NASA Astrophysics Data System (ADS)

    Froning, Cynthia S.; France, Kevin; Loyd, R. O. Parke; Youngblood, Allison; Brown, Alexander; Schneider, Christian; Berta-Thompson, Zachory; Kowalski, Adam

    2018-01-01

    JWST will be able to observe the atmospheres of rocky planets transiting nearby M dwarfs. A few such planets are already known (around GJ1132, Proxima Cen, and Trappist-1) and TESS is predicted to find many more, including ~14 habitable zone planets. To interpret observations of these exoplanets' atmospheres, we must understand the high-energy SED of their host stars: X-ray/EUV irradiation can erode a planet's gaseous envelope and FUV/NUV-driven photochemistry shapes an atmosphere's molecular abundances, including potential biomarkers like O2, O3, and CH4. Our MUSCLES Treasury Survey (Cycles 19+22) used Hubble/COS+STIS UV observations with contemporaneous X-ray and ground-based data to construct complete SEDs for 11 low-mass exoplanet hosts. MUSCLES is the most widely used database for early-M and K dwarf (>0.3 M_sun) irradiance spectra and has supported a wide range of atmospheric stability and biomarker modeling work. However, TESS will find most of its habitable planets transiting stars less massive than this, and these will be the planets to characterize with JWST. Here, we introduce the Mega-MUSCLES project, an approved HST Cycle 25 Treasury program. Following on the successful MUSCLES survey, Mega-MUSCLES will expand our target list to focus on: (a) new M dwarf exoplanet hosts with varying properties; (b) reference M dwarfs below 0.3 solar masses that may be used as proxies for M dwarf planet hosts discovered after HST's lifetime; and (c) more rapidly rotating stars of GJ1132's mass to probe XUV evolution over gigayear timescales. We will also gather the first panchromatic SEDs of rocky planet hosts GJ1132 and Trappist-1. Here, we present an overview of the Mega-MUSCLES motivation, targets list, and status of the survey and show how it extends proven methods to a key new sample of stars, upon which critically depends the long-term goal of studying habitable planet atmospheres with JWST and beyond.

  4. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1993-07-09

    This photograph shows an STS-61 astronaut training for the Hubble Space Telescope (HST) servicing mission (STS-61) in the Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS). Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing.

  5. A Lyman Break Galaxy in the Epoch of Reionization from Hubble Space Telescope (HST) Grism Spectroscopy

    NASA Technical Reports Server (NTRS)

    Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel K.; Gardner, Jonathan P.; Dickinson, Mark; Pirzkal, Norbert; Spinrad, Hyron; Reddy, Naveen; Dey, Arjun; Hathi, Nimish; hide

    2013-01-01

    Slitless grism spectroscopy from space offers dramatic advantages for studying high redshift galaxies: high spatial resolution to match the compact sizes of the targets, a dark and uniform sky background, and simultaneous observation over fields ranging from five square arcminutes (HST) to over 1000 square arcminutes (Euclid). Here we present observations of a galaxy at z = 6.57 the end of the reioinization epoch identified using slitless HST grism spectra from the PEARS survey (Probing Evolution And Reionization Spectroscopically) and reconfirmed with Keck + DEIMOS. This high redshift identification is enabled by the depth of the PEARS survey. Substantially higher redshifts are precluded for PEARS data by the declining sensitivity of the ACS grism at greater than lambda 0.95 micrometers. Spectra of Lyman breaks at yet higher redshifts will be possible using comparably deep observations with IR-sensitive grisms.

  6. Wide Field Camera 3 Accommodations for HST Robotics Servicing Mission

    NASA Technical Reports Server (NTRS)

    Ginyard, Amani

    2005-01-01

    This slide presentation discusses the objectives of the Hubble Space Telescope (HST) Robotics Servicing and Deorbit Mission (HRSDM), reviews the Wide Field Camera 3 (WFC3), and also reviews the contamination accomodations for the WFC3. The objectives of the HRSDM are (1) to provide a disposal capability at the end of HST's useful life, (2) to upgrade the hardware by installing two new scientific instruments: replace the Corrective Optics Space Telescope Axial Replacement (COSTAR) with the Cosmic Origins Spectrograph (COS), and to replace the Wide Field/Planetary Camera-2 (WFPC2) with Wide Field Camera-3, and (3) Extend the Scientific life of HST for a minimum of 5 years after servicing. Included are slides showing the Hubble Robotic Vehicle (HRV) and slides describing what the HRV contains. There are also slides describing the WFC3. One of the mechanisms of the WFC3 is to serve partially as replacement gyroscopes for HST. There are also slides that discuss the contamination requirements for the Rate Sensor Units (RSUs), that are part of the Rate Gyroscope Assembly on the WFC3.

  7. HUBBLE SPACE TELESCOPE (HST) IMAGERY OF THE 30 DORADUS NEBULA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Hubble Space Telescope (HST) images of the 30 Doradus Nebula show its remarkable cluster of tightly-packed young stars 160,000 light years from Earth in the large Magellanic cloud galaxy. Panel A is a portion of a image made with the HST Wide Field Planetary Camera (WFPC). WFPC photographed four adjoining sky regions simultaneously which are assembled in this mosaic. Panel B is an enlargement of the central portion of the HST image which was made in violet light. It shows the compact star cluster R136, which consists of very hot and massive young stars. The star images have bright cores that are only 0.1 arc seconds wide, allowing many more stars to be distinguished than in previous ground-based telescopic photos. Panel C is a photograph of the same region as Panel B, obtained with the Max Planck 2.2 meter telescope at the European Southern Observatory in Chile. The star images are 0.6 arc seconds wide. Panel D shows how computer processing of the HST image in Panel B has sharpened its

  8. Lessons Learned from the Hubble Space Telescope (HST) Contamination Control Program

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Townsend, Jacqueline A.; Hedgeland, Randy J.

    2004-01-01

    Over the past two decades, the Hubble Space Telescope (HST) Contamination Control Program has evolved from a ground-based integration program to a space-based science-sustaining program. The contamination controls from the new-generation Scientific Instruments and Orbital Replacement Units were incorporated into the HST Contamination Control Program to maintain scientific capability over the life of the telescope. Long-term on-orbit scientific data has shown that these contamination controls implemented for the instruments, Servicing Mission activities (Orbiter, Astronauts, and mission), and on-orbit operations successfully protected the HST &om contamination and the instruments from self-contamination.

  9. Lessons Learned from the Hubble Space Telescope (HST) Contamination Control Program

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Townsend, Jacqueline A.; Hedgeland, Randy J.

    2004-01-01

    Over the past two decades, the Hubble Space Telescope (HST) Contamination Control Program has evolved from a ground-based integration program to a space-based science-sustaining program. The contamination controls from the new-generation Scientific Instruments and Orbital Replacement Units were incorporated into the HST Contamination Control Program to maintain scientific capability over the life of the telescope. Long-term on-orbit scientific data has shown that these contamination controls implemented for the instruments, Servicing Mission activities (Orbiter, Astronauts, and mission), and on-orbit operations successfully protected the HST from contamination and the instruments from self-contamination.

  10. Longitudinal variability in Jupiter's zonal winds derived from multi-wavelength HST observations

    NASA Astrophysics Data System (ADS)

    Johnson, Perianne E.; Morales-Juberías, Raúl; Simon, Amy; Gaulme, Patrick; Wong, Michael H.; Cosentino, Richard G.

    2018-06-01

    Multi-wavelength Hubble Space Telescope (HST) images of Jupiter from the Outer Planets Atmospheres Legacy (OPAL) and Wide Field Coverage for Juno (WFCJ) programs in 2015, 2016, and 2017 are used to derive wind profiles as a function of latitude and longitude. Wind profiles are typically zonally averaged to reduce measurement uncertainties. However, doing this destroys any variations of the zonal-component of winds in the longitudinal direction. Here, we present the results derived from using a "sliding-window" correlation method. This method adds longitudinal specificity, and allows for the detection of spatial variations in the zonal winds. Spatial variations are identified in two jets: 1 at 17 ° N, the location of a prominent westward jet, and the other at 7 ° S, the location of the chevrons. Temporal and spatial variations at the 24°N jet and the 5-μm hot spots are also examined.

  11. The eta Carinae Treasury Project and the HST/STIS

    NASA Technical Reports Server (NTRS)

    Martin, John C.; Davidson, Kris

    2006-01-01

    The HST Eta Carinae Treasury Project made extensive use of the HST/STIS from 1998 to the time of its failure in 2004. As one of the most prolific users of that instrument, the Treasury Project used the cross-dispersed spatial resolution of the STIS as few projects did. We present several enhancements to the existing STIS data reduction methods that are applicable to non-Treasury Project data in the STIS archive.

  12. Limb darkening laws for two exoplanet host stars derived from 3D stellar model atmospheres. Comparison with 1D models and HST light curve observations

    NASA Astrophysics Data System (ADS)

    Hayek, W.; Sing, D.; Pont, F.; Asplund, M.

    2012-03-01

    We compare limb darkening laws derived from 3D hydrodynamical model atmospheres and 1D hydrostatic MARCS models for the host stars of two well-studied transiting exoplanet systems, the late-type dwarfs HD 209458 and HD 189733. The surface brightness distribution of the stellar disks is calculated for a wide spectral range using 3D LTE spectrum formation and opacity sampling⋆. We test our theoretical predictions using least-squares fits of model light curves to wavelength-integrated primary eclipses that were observed with the Hubble Space Telescope (HST). The limb darkening law derived from the 3D model of HD 209458 in the spectral region between 2900 Å and 5700 Å produces significantly better fits to the HST data, removing systematic residuals that were previously observed for model light curves based on 1D limb darkening predictions. This difference arises mainly from the shallower mean temperature structure of the 3D model, which is a consequence of the explicit simulation of stellar surface granulation where 1D models need to rely on simplified recipes. In the case of HD 189733, the model atmospheres produce practically equivalent limb darkening curves between 2900 Å and 5700 Å, partly due to obstruction by spectral lines, and the data are not sufficient to distinguish between the light curves. We also analyze HST observations between 5350 Å and 10 500 Å for this star; the 3D model leads to a better fit compared to 1D limb darkening predictions. The significant improvement of fit quality for the HD 209458 system demonstrates the higher degree of realism of 3D hydrodynamical models and the importance of surface granulation for the formation of the atmospheric radiation field of late-type stars. This result agrees well with recent investigations of limb darkening in the solar continuum and other observational tests of the 3D models. The case of HD 189733 is no contradiction as the model light curves are less sensitive to the temperature stratification of

  13. Plasma simulations that meet the challenges of HST & JWST Active Nuclei & Starburst observations

    NASA Astrophysics Data System (ADS)

    Ferland, Gary

    2017-08-01

    Recent HST AGN monitoring programs, such as the STORM Campaign, have resulted in the definitive set of emission-line-continuum lag measurements. The goals are to measure the structure of the inner regions of an AGN, understand the physics driving the variability, and use this to place black hole mass determinations on an even firmer footing. Photoionization models make it possible to convert these observations into physical parameters such as cloud density or location. Here I propose to improve the treatment of emission from species like C IV, C III], Mg II, or Fe II in the spectral / plasma simulation code Cloudy. Like all plasma codes, Cloudy uses a modified two-level approximation to solve for the ionization of many-electron ions. I have participated in meetings on modeling Tokamak plasmas, which share many of the properties of the BLR of AGN and have the advantage of being a controlled laboratory environment. These discussions have led to the development of tests to show the density range over which the two-level approximation is valid. It fails at the densities where the strong UV lines form. I will use the atomic data available within the fusion modeling community, along with the methods they have developed, to improve Cloudy models so that they can better inform us of the message in the UV spectrum. The improvements will be part of future releases of Cloudy, which is openly available and updated on a regular basis.

  14. Aligning HST Images to Gaia: A Faster Mosaicking Workflow

    NASA Astrophysics Data System (ADS)

    Bajaj, V.

    2017-11-01

    We present a fully programmatic workflow for aligning HST images using the high-quality astrometry provided by Gaia Data Release 1. Code provided in a Jupyter Notebook works through this procedure, including parsing the data to determine the query area parameters, querying Gaia for the coordinate catalog, and using the catalog with TweakReg as reference catalog. This workflow greatly simplifies the normally time-consuming process of aligning HST images, especially those taken as part of mosaics.

  15. A New Offset Debris Ring around a Nearby Star Observed with the HST/STIS

    NASA Technical Reports Server (NTRS)

    Krist, John; Stapelfeldt, Karl; Bryden, Geoffrey

    2011-01-01

    We are conducting an HST/STIS coronagraphic imaging study of nearby stars that have Spitzer-measured infrared excesses indicating that they are surrounded by debris disks. Around one of the stars we have imaged a debris ring with a sharp inner edge and extending from about 165 AU to 250 AU. The ring center is offset from the star by -8 AU with a visually estimated intrinsic ellipticity of e-0.1 , suggestive of gravitational perturbation of the disk by a planet, like the Fomalhaut disk. Assuming a neutral disk color, the mean surface brightness of V=22.3 mag/square arcsec makes this the second faintest disk yet imaged in scattered light, second to HD 207129.

  16. The core of the nearby S0 galaxy NGC 7457 imaged with the HST planetary camera

    NASA Technical Reports Server (NTRS)

    Lauer, Tod R.; Faber, S. M.; Holtzman, Jon A.; Baum, William A.; Currie, Douglas G.; Ewald, S. P.; Groth, Edward J.; Hester, J. Jeff; Kelsall, T.

    1991-01-01

    A brief analysis is presented of images of the nearby S0 galaxy NGC 7457 obtained with the HST Planetary Camera. While the galaxy remains unresolved with the HST, the images reveal that any core most likely has r(c) less than 0.052 arcsec. The light distribution is consistent with a gamma = -1.0 power law inward to the resolution limit, with a possible stellar nucleus with luminosity of 10 million solar. This result represents the first observation outside the Local Group of a galaxy nucleus at this spatial resolution, and it suggests that such small, high surface brightness cores may be common.

  17. Identification on HST Images of Microlensed Stars from the MACHO Project

    NASA Astrophysics Data System (ADS)

    King, L. J.; Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Griest, K.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; MACHO Collaboration

    1998-12-01

    The MACHO collaboration has been searching for microlensing events toward the Galactic Bulge and the Magellanic Clouds. We have used the WFPC2/HST to obtain high resolution images of a number of fields centred on stars that have undergone microlensing events. Ground based optical images typically have a resolution in excess of one arcsecond, so that the microlensed star may be blended with other stars. On HST images the star is unblended. We show that microlensed stars can be identified by comparing the HST images with image subtracted ground based images. The unblended intrinsic magnitudes, lensed magnitudes and magnifications of the stars can be determined, providing invaluable constraints on lens models.

  18. Using modern imaging techniques to old HST data: a summary of the ALICE program.

    NASA Astrophysics Data System (ADS)

    Choquet, Elodie; Soummer, Remi; Perrin, Marshall; Pueyo, Laurent; Hagan, James Brendan; Zimmerman, Neil; Debes, John Henry; Schneider, Glenn; Ren, Bin; Milli, Julien; Wolff, Schuyler; Stark, Chris; Mawet, Dimitri; Golimowski, David A.; Hines, Dean C.; Roberge, Aki; Serabyn, Eugene

    2018-01-01

    Direct imaging of extrasolar systems is a powerful technique to study the physical properties of exoplanetary systems and understand their formation and evolution mechanisms. The detection and characterization of these objects are challenged by their high contrast with their host star. Several observing strategies and post-processing algorithms have been developed for ground-based high-contrast imaging instruments, enabling the discovery of directly-imaged and spectrally-characterized exoplanets. The Hubble Space Telescope (HST), pioneer in directly imaging extrasolar systems, has yet been often limited to the detection of bright debris disks systems, with sensitivity limited by the difficulty to implement an optimal PSF subtraction stategy, which is readily offered on ground-based telescopes in pupil tracking mode.The Archival Legacy Investigations of Circumstellar Environments (ALICE) program is a consistent re-analysis of the 10 year old coronagraphic archive of HST's NICMOS infrared imager. Using post-processing methods developed for ground-based observations, we used the whole archive to calibrate PSF temporal variations and improve NICMOS's detection limits. We have now delivered ALICE-reprocessed science products for the whole NICMOS archival data back to the community. These science products, as well as the ALICE pipeline, were used to prototype the JWST coronagraphic data and reduction pipeline. The ALICE program has enabled the detection of 10 faint debris disk systems never imaged before in the near-infrared and several substellar companion candidates, which we are all in the process of characterizing through follow-up observations with both ground-based facilities and HST-STIS coronagraphy. In this publication, we provide a summary of the results of the ALICE program, advertise its science products and discuss the prospects of the program.

  19. Wide-Field HST Observations of the Globular Cluster System in NGC 1399

    NASA Astrophysics Data System (ADS)

    Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella

    2014-01-01

    We present a comprehensive high spatial-resolution imaging study of globular clusters (GCs) in NGC 1399, the central giant elliptical cD galaxy in the Fornax galaxy cluster, obtained with HST/ACS. Using a novel technique to construct drizzled PSF libraries for HST/ACS data, we accurately determine the GC half-light radius, r_h, for the major fraction of the NGC 1399 GC system and find a trend of increasing r_h versus galactocentric distance, R_gal, out to ~10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs which are found to have a mean size ratio of r_h(red)/r_h(blue)=0.82+/-0.11 at all R_gal from the core regions of the galaxy out to ~40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanisms related to the evolution of their constituent stellar populations. Modeling the stellar mass density profile of NGC 1399 derived from its surface brightness profile shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regions. We suggest that this may be realized by an exotic GC orbit distribution function, an extended dark matter halo, and/or tidal stress induced by the increased stochasticity in the dwarf halo substructure at larger galactocentric radii. We compare our results with the GC r_h distribution functions in various galaxies and find that the fraction of extended GCs is systematically larger in late-type galaxies compared with GC systems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies. We match our GC r_h measurements with radial velocity data from the literature and split the resulting sample at the median r_h value into compact and extended GCs. We find that compact GCs show a significantly smaller line-of-sight velocity dispersion, 225+/-25 km/s, than their extended counterparts, 317+/-21 km/s. Considering the weaker statistical correlation in the GC r_h-color and the GC r

  20. A strategy for recovery: Report of the HST Strategy Panel

    NASA Technical Reports Server (NTRS)

    Brown, R. A. (Editor); Ford, H. C. (Editor)

    1991-01-01

    The panel met to identify and assess strategies for recovering the Hubble Space Telescope (HST) capabilities degraded by a spherical aberration. The panels findings and recommendations to correct the problem with HST are given. The optical solution is a pair of mirrors for each science instrument field of view. The Corrective Optics Space Telescope Axial Replacement (COSTAR) is the proposed device to carry and deploy the corrective optics. A 1993 servicing mission is planned.

  1. HST image restoration: A comparison of pre- and post-servicing mission results

    NASA Technical Reports Server (NTRS)

    Hanisch, R. J.; Mo, J.

    1992-01-01

    A variety of image restoration techniques (e.g., Wiener filter, Lucy-Richardson, MEM) have been applied quite successfully to the aberrated HST images. The HST servicing mission (scheduled for late 1993 or early 1994) will install a corrective optics system (COSTAR) for the Faint Object Camera and spectrographs and replace the Wide Field/Planetary Camera with a second generation instrument (WF/PC-II) having its own corrective elements. The image quality is expected to be improved substantially with these new instruments. What then is the role of image restoration for the HST in the long term? Through a series of numerical experiments using model point-spread functions for both aberrated and unaberrated optics, we find that substantial improvements in image resolution can be obtained for post-servicing mission data using the same or similar algorithms as being employed now to correct aberrated images. Included in our investigations are studies of the photometric integrity of the restoration algorithms and explicit models for HST pointing errors (spacecraft jitter).

  2. Astronauts Hoffman and Musgrave install the Magnetic Sensing System on HST

    NASA Image and Video Library

    1993-12-07

    STS061-77-102 (7 Dec 1993) --- Astronauts Jeffrey A. Hoffman (left) and F. Story Musgrave are partially silhouetted against the Indian Ocean as they work to install the Magnetic Sensing System (MSS) on the Hubble Space Telescope (HST). Musgrave is anchored to the end of the Space Shuttle Endeavour's Remote Manipulator System (RMS) arm. The HST is positioned along the southern end of Madagascar, 325 nautical miles away. Visible on the western coast are the sediment laden Onilahy and Fiherenana Rivers which empty into Saint Augustin Bay. North of Fiherenana River is the Mangoky River. The circular feature on the southern end of Madagascar and to the right of HST is the L'ivakoany Mountains. The eastern coast is relatively straight compared to the western coast.

  3. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2004-01-01

    This new image taken with NASA's Hubble Space Telescope (HST) is of the nearby dwarf galaxy NGC 1569. This galaxy is a hotbed of vigorous star birth activity which blows huge bubbles that riddle its main body. The bubble structure is sculpted by the galactic super-winds and outflows caused by a colossal input of energy from collective supernova explosions that are linked with a massive episode of star birth. The bubbles seen in this image are made of hydrogen gas that glows when hit by the fierce wind and radiation from hot young stars and is racked by supernova shocks. Its "star factories" are also manufacturing brilliant blue star clusters. NGC 1569 had a sudden onset of star birth about 25 million years ago, which subsided about the time the very earliest human ancestors appeared on Earth. The Marshall Space Flight Center had responsibility for the design, development, and construction of the HST.

  4. Ultraviolet spectroscopy of V Sagittae in high, intermediate and low states from HST and IUE satellites

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.

    2015-11-01

    We present the first phase resolved ultraviolet spectroscopic study of V Sge in high, intermediate and low states observed with the Hubble Space Telescope High Resolution Spectrograph (HST HRS) and International Ultraviolet Explorer (IUE) during the period 1978-1996 to diagnose the ultraviolet fluxes of C IV 1550 Å and He II 1640 Å emission lines originating in the accretion disk during different orbital phases. Different spectra showing the variations in line fluxes at different orbital phases are presented. The reddening of V Sge is determined from the 2200 Å feature. We concentrated on calculating the line fluxes of C IV & He II emission lines. From HST and IUE data, we derived an accretion luminosity and an accretion rate for V Sge. The average temperature of the outer rim of the accretion disk {˜}10000 K. Our results show that there are variations in line fluxes, accretion luminosities and accretion rates with time for V Sge. These variations are attributed to the variations of both density and temperature as a result of a changing rate of mass transfer from the secondary star to the white dwarf. These results from the HST and IUE observations are consistent with the binary model consisting of a white dwarf, a disk around the white dwarf, and a lobe-filling main-sequence companion (Hachisu & Kato, Astrophys. J. 598:527H, 2003).

  5. HST WFC3 Early Release Science: Emission-Line Galaxies from IR Grism Observations

    NASA Technical Reports Server (NTRS)

    Straughn, A. N.; Kuntschner, H.; Kuemmel, M.; Walsh, J. R.; Cohen, S. H.; Gardner, J. P.; Windhorst, R. A.; O'Connell, R. W.; Pirzkal, N.; Meurer, G.; hide

    2010-01-01

    We present grism spectra of emission line galaxies (ELGs) from 0.6-1.6 microns from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). These new infrared grism data augment previous optical Advanced Camera for Surveys G800L (0.6-0.95 micron) grism data in GOODS South, extending the wavelength coverage well past the G800L red cutoff. The ERS grism field was observed at a depth of 2 orbits per grism, yielding spectra of hundreds of faint objects, a subset of which are presented here. ELGs are studied via the Ha, [O III ], and [OII] emission lines detected in the redshift ranges 0.2 less than or equal to z less than or equal to 1.6, 1.2 less than or equal to z less than or equal to 2.4 and 2.0 less than or equal to z less than or equal to 3.6 respectively in the G102 (0.8-1.1 microns; R approximately 210) and C141 (1.1-1.6 microns; R approximately 130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., [S II] and [S III] lines). From these relatively shallow observations, line luminosities, star formation rates, and grism spectroscopic redshifts are determined for a total of 25 ELGs to M(sub AB)(F098M) approximately 25 mag. The faintest source in our sample with a strong but unidentified emission line--is MAB(F098M)=26.9 mag. We also detect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample, indicative of downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes.

  6. Confirmation and characterization of young planetary companions hidden in the HST NICMOS archive

    NASA Astrophysics Data System (ADS)

    Pueyo, Laurent

    2013-10-01

    We propose to conduct WFC3 high contrast observations of six faint planetary candidates orbiting young {1 to 100 Myrs} stars identified in archival HST NICMOS coronagraphic data as part of our team's program AR-12652. Such rare objects are of the utmost importance to comparative exo-planetology as their physical properties reflect the initial conditions of still poorly constrained planetary formation mechanisms. Moreover directly imaged systems are precious artifacts in the expanding exo-planetary treasure trove as they are readily available for spectroscopic characterization. Our statistical analysis, which combines population synthesis models and empirical inspections of the entire NICMOS field of view for all sources observed in coronaraphic mode, almost guarantees that one of these six faint candidates is associated with its putative host star. We will conduct our observation in four near infrared filter, F125W, F160W to establish the baseline luminosity of our candidates and in F127M and F139M in order to probe the depth their water absorption features, characteristic of substellar /exo-planetary like atmospheres. Because of the youth of our targets, this program, which only requires a modest 12 HST orbits, will almost certainly identify and image a young or adolescent exo-planet.

  7. Artist concept of Hubble Space Telescope (HST) orbiting Earth after deploy

    NASA Image and Video Library

    1990-04-05

    This artist concept shows the Hubble Space Telescope (HST) in operational configuration orbiting the Earth after its deploy from Discovery, Orbiter Vehicle (OV) 103 during STS-31. The high gain antennas (HGAs) and solar arrays (SAs) have been extended. HST's aperature door is open as it views the universe from a vantage point above the Earth's atmosphere. View provided by the Marshall Space Flight Center (MSFC).

  8. Central Star Properties and C-N-O Abundances in Eight Galactic Planetary Nebulae from New HST/STIS Observations

    NASA Astrophysics Data System (ADS)

    Henry, Richard B. C.; Balick, Bruce; Dufour, Reginald J.; Kwitter, Karen B.; Shaw, Richard A.; Corradi, Romano

    2015-01-01

    We present detailed photoionization models of eight Galactic planetary nebulae (IC2165, IC3568, NGC2440, NGC3242, NGC5315, NGC5882, NGC7662, & PB6) based on recently obtained HST STIS spectra. Our interim goal is to infer Teff, luminosity, and current and progenitor masses for each central star, while the ultimate goal is to constrain published stellar evolution models which predict nebular CNO abundances. The models were produced by using the code CLOUDY to match closely the measured line strengths derived from high-quality HST STIS spectra (see poster by Dufour et al., this session) extending in wavelength from 1150-10270 Angstroms. The models assumed a blackbody SED. Variable input parameters included Teff, a radially constant nebular density, a filling factor, and elemental abundances. For the eight PNs we found a birth mass range of 1.5-2.9 Msun, a range in log(L/Lsun) of 3.10-3.88, and a Teff range of 51-150k K. Finally, we compare CNO abundances of the eight successful models with PN abundances of these same elements that are predicted by published stellar evolution models. We gratefully acknowledge generous support from NASA through grants related to the Cycle 19 program GO12600.

  9. AEOLUS: A MARKOV CHAIN MONTE CARLO CODE FOR MAPPING ULTRACOOL ATMOSPHERES. AN APPLICATION ON JUPITER AND BROWN DWARF HST LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karalidi, Theodora; Apai, Dániel; Schneider, Glenn

    Deducing the cloud cover and its temporal evolution from the observed planetary spectra and phase curves can give us major insight into the atmospheric dynamics. In this paper, we present Aeolus, a Markov chain Monte Carlo code that maps the structure of brown dwarf and other ultracool atmospheres. We validated Aeolus on a set of unique Jupiter Hubble Space Telescope (HST) light curves. Aeolus accurately retrieves the properties of the major features of the Jovian atmosphere, such as the Great Red Spot and a major 5 μm hot spot. Aeolus is the first mapping code validated on actual observations of amore » giant planet over a full rotational period. For this study, we applied Aeolus to J- and H-band HST light curves of 2MASS J21392676+0220226 and 2MASS J0136565+093347. Aeolus retrieves three spots at the top of the atmosphere (per observational wavelength) of these two brown dwarfs, with a surface coverage of 21% ± 3% and 20.3% ± 1.5%, respectively. The Jupiter HST light curves will be publicly available via ADS/VIZIR.« less

  10. UV--Visible observations with HST in the JWST North Ecliptic Pole Time-Domain Field

    NASA Astrophysics Data System (ADS)

    Jansen, Rolf A.; Windhorst, Rogier; Grogin, Norman; Koekemoer, Anton; Royle, Patricia; Hathi, Nimish; Jones, Victoria; Cohen, Seth; Ashcraft, Teresa; Willmer, Christopher; Conselice, Christopher; White, Cameron; Frye, Brenda; HST-GO-15278 team; and the Webb Medium Deep Fields IDS GTO team.

    2018-01-01

    We report the first results from a UV–Visible HST imaging survey of the JWST North Ecliptic Pole (NEP) Time-Domain Field (TDF). Using CVZ and near-CVZ opportunities we observed the first two out of nine tiles with WFC3/UVIS in F275W and with ACS/WFC in F435W and F606W. Over the course of the next 13 months, this survey is designed to provide near-contiguous 3-filter coverage of the central r ≤ 5‧ of this new community field for time-domain science with JWST. The JWST NEP TDF is located within JWST's northern Continuous Viewing Zone, will span ~14‧ in diameter (~10‧ with NIRISS coverage), is devoid of sources bright enough to saturate the NIRCam detectors, has low Galactic foreground extinction, and will be roughly circular in shape (initially sampled during Cycle 1 at 4 distinct orientations with JWST/NIRCam — the JWST “windmill”). NIRISS slitless grism spectroscopy will be taken in parallel, overlapping an alternate NIRCam orientation. This is the only region in the sky where JWST can observe a clean extragalactic deep survey field of this size at arbitrary cadence or at arbitrary orientation. This will crucially enable a wide range of new and exciting time-domain science, including high redshift transient searches and monitoring (e.g., SNe), variability studies from Active Galactic Nuclei to brown dwarf atmospheres, as well as proper motions of extreme scattered Kuiper Belt and Oort Cloud Objects, and of nearby Galactic brown dwarfs, low-mass stars, and ultracool white dwarfs. Ancillary data across the electromagnetic spectrum will exist for this field when JWST science operations commence in the second half of 2019. This includes deep (mAB ~ 26 mag) wide-field (~23‧×25‧) Ugriz photometry of this field and its surroundings from LBT/LBC and Subaru/HSC, JHK from MMT/MMIRS, VLA 3 GHz and VLBA 4.5 GHz radio observations, and Chandra/ACIS X-ray images. Proposals for (sub)mm observations and spectroscopy to mAB ~ 24 mag are pending.

  11. Using AI/expert system technology to automate planning and replanning for the HST servicing missions

    NASA Technical Reports Server (NTRS)

    Bogovich, L.; Johnson, J; Tuchman, A.; Mclean, D.; Page, B.; Kispert, A.; Burkhardt, C.; Littlefield, R.; Potter, W.

    1993-01-01

    This paper describes a knowledge-based system that has been developed to automate planning and scheduling for the Hubble Space Telescope (HST) Servicing Missions. This new system is the Servicing Mission Planning and Replanning Tool (SM/PART). SM/PART has been delivered to the HST Flight Operations Team (FOT) at Goddard Space Flight Center (GSFC) where it is being used to build integrated time lines and command plans to control the activities of the HST, Shuttle, Crew and ground systems for the next HST Servicing Mission. SM/PART reuses and extends AI/expert system technology from Interactive Experimenter Planning System (IEPS) systems to build or rebuild time lines and command plans more rapidly than was possible for previous missions where they were built manually. This capability provides an important safety factor for the HST, Shuttle and Crew in case unexpected events occur during the mission.

  12. EXTRASOLAR STORMS: PRESSURE-DEPENDENT CHANGES IN LIGHT-CURVE PHASE IN BROWN DWARFS FROM SIMULTANEOUS HST AND SPITZER OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hao; Apai, Dániel; Karalidi, Theodora

    We present Spitzer /Infrared Array Camera Ch1 and Ch2 monitoring of six brown dwarfs during eight different epochs over the course of 20 months. For four brown dwarfs, we also obtained simulataneous Hubble Space Telescope ( HST )/WFC3 G141 grism spectra during two epochs and derived light curves in five narrowband filters. Probing different pressure levels in the atmospheres, the multiwavelength light curves of our six targets all exhibit variations, and the shape of the light curves evolves over the timescale of a rotation period, ranging from 1.4 to 13 hr. We compare the shapes of the light curves andmore » estimate the phase shifts between the light curves observed at different wavelengths by comparing the phase of the primary Fourier components. We use state-of-the-art atmosphere models to determine the flux contribution of different pressure layers to the observed flux in each filter. We find that the light curves that probe higher pressures are similar and in phase, but are offset and often different from the light curves that probe lower pressures. The phase differences between the two groups of light curves suggest that the modulations seen at lower and higher pressures may be introduced by different cloud layers.« less

  13. Wasp-17b versus other hot-Jupiters being surveyed with HST: A clear versus dusty/hazy atmospheres

    NASA Astrophysics Data System (ADS)

    Ballester, G. E.; Nikolov, N.; Wakeford, H.; Thompson, R.

    2014-03-01

    A large HST optical and near-IR spectral survey of eight hot-Jupiter exoplanets is being carried out (D. Sing, PI) in which we are studying planets spanning a large temperature regime (1000-3000 K). Together with previous HST observations, this program is showing hot Jupiters with lower atmospheres where the optical and near-IR transit signatures are dominated by, or have a significant contribution from, scattering by aerosols. This is the well-known case for the relatively cooler HD 189733b on which fine silicate grains may have been detected (Pont et al. 2008, 2013; Lecavelier et al. 2008; Sing et al. 2011; Evans et al. 2013), the more recent case of the hotter Hat-P-1b (Wakeford et al. 2013; Nikolov et al. 2013), and the surprising case of the very-hot-Jupiter Wasp-12b on which fine-grains of corundum may have been detected (Sing et al. 2013). Evidence for aerosols has also been found with Kepler for Kepler-7b (Demory et al. 2013). Under this large HST survey, we have recently observed transits of Wasp-17b in the optical with HST/STIS, and we are combining these data with archival HST/WFC3 near-IR (1.09-1.69 microns) transit data and with Spitzer/IRAC 4.5 and 8 um transit photometry (Ballester et al. 2014). Wasp-17b presents an interesting case of the most highly inflated hot Jupiter (0.49 MJup, 1.99 RJup) known to date that is also on a retrograde orbit (at 0.0515 AU around a hot F6V star) indicating a violent history for the system (Anderson et al. 2010). The average dayside temperature for the planet is 1580-1880 K (Anderson et al. 2011). In contrast to the above cases of dusty/hazy atmospheres, our preliminary results show a clear atmosphere on Wasp-17b. The planet presents the best case so far of a hot Jupiter that is consistent with a cloud-free atmosphere given that the optical radius is much smaller than the near-IR radius (i.e., scattering by dust or haze is not obscuring the expected transit signatures of a clear lower atmosphere). Water absorption is

  14. Twelve Years of the HST Advanced Camera for Surveys : Calibration Update

    NASA Astrophysics Data System (ADS)

    Grogin, Norman A.

    2014-06-01

    The Advanced Camera for Surveys (ACS) has been a workhorse HST imager for over twelve years, subsequent to its Servicing Mission 3B installation. The once defunct ACS Wide Field Channel (WFC) has now been operating longer since its Servicing Mission 4 repair than it had originally operated prior to its 2007 failure. Despite the accumulating radiation damage to the WFC CCDs during their long stay in low Earth orbit, ACS continues to be heavily exploited by the HST community as both a prime and a parallel detector. Conspicuous examples include the recently completed HST Multi-cycle Treasury programs, and the ongoing HST Frontier Fields (HFF) program.We review recent developments in ACS calibration that enable the continued high performance of this instrument, with particular attention the to the Wide Field Channel. Highlights include: 1) the refinement of the WFC geometric distortion solution and its time dependency; 2) the efficacy of both pixel-based and catalog-based corrections for the worsening WFC charge-transfer efficiency (CTE); 3) the extension of pixel-based CTE correction to the WFC 2K subarray mode; and 4) a novel "self-calibration" technique appropriate for large-number stacks of deep WFC exposures (such as the HFF targets) that provides superior reductions compared to the standard CALACS reduction pipeline.

  15. HST Solar Arrays photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-07

    S61-E-020 (7 Dec 1993) --- This close-up view of one of two Solar Arrays (SA) on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Endeavour's crew captured the HST on December 4, 1993, in order to service the telescope over a period of five days. Four of the crew members will work in alternating pairs outside Endeavour's shirt sleeve environment to service the giant telescope. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  16. Technicians complete assembly of Hubble Space Telescope (HST) mockup at JSC

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Technicians complete assembly of the Hubble Space Telescope (HST) mockup at JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. In the foreground, a technician holds the controls for an overhead crane attached to one of the HST's high gain antennas (HGAs). Technicians on the ground prepare the HGA to be hoisted into position on the mockup's Support System Module (SSM) forward shell as others work on SSM from a cherry picker.

  17. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2003-06-09

    The razor sharp eye of the Hubble Space Telescope (HST) easily resolves the Sombrero galaxy, Messier 104 (M104). 50,000 light-years across, the galaxy is located 28 million light-years from Earth at the southern edge of the rich Virgo cluster of galaxies. Equivalent to 800 billion suns, Sombrero is one of the most massive objects in that group. The hallmark of Sombrero is a brilliant white, bulbous core encircled by the thick dust lanes comprising the spiral structure of the galaxy. As seen from Earth, the galaxy is tilted nearly edge-on. We view it from just six degrees north of its equatorial plane. This rich system of globular clusters is estimated to be nearly 2,000 in number which is 10 times as many as in our Milky Way galaxy. Similar to the clusters in the Milky Way, the ages range from 10-13 billion years old. Embedded in the bright core of M104 is a smaller disk, which is tilted relative to the large disk. The HST paired with the Spitzer infrared telescope, offers this striking composite capturing the magnificence of the Sombrero galaxy. In the Hubble view, the galaxy resembles a broad-rimmed Mexican hat, whereas in the Spitzer striking infrared view, the galaxy looks more like a bulls eye. The full view provided by Spitzer shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star forming regions. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy as well, where there is a huge black hole believed to be a billion times more massive than our Sun. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  18. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2001-09-06

    Scientists using NASA's Hubble Space Telescope (HST) are studying the colors of star clusters to determine the age and history of starburst galaxies, a technique somewhat similar to the process of learning the age of a tree by counting its rings. One such galaxy, Galaxy NGC 3310, a hotbed of star formation showcased in this HST photograph, is forming clusters of stars at a prodigious rate. The image shows several hundred star clusters, visible as the bright blue diffuse objects tracing the galaxy's spiral arms. Each of these star clusters represents the formation of up to about a million stars, a process that takes less than 100,000 years. In addition, hundreds of individual young stars can be seen throughout the galaxy. The star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. Measurements in this image of the wide range of cluster colors show their ages range between about one million and more that one hundred million years. This suggests the starburst "turned on" more than 100 million years ago.

  19. Galaxy Environment in the 3D-HST Fields: Witnessing the Onset of Satellite Quenching at z ˜ 1-2

    NASA Astrophysics Data System (ADS)

    Fossati, M.; Wilman, D. J.; Mendel, J. T.; Saglia, R. P.; Galametz, A.; Beifiori, A.; Bender, R.; Chan, J. C. C.; Fabricius, M.; Bandara, K.; Brammer, G. B.; Davies, R.; Förster Schreiber, N. M.; Genzel, R.; Hartley, W.; Kulkarni, S. K.; Lang, P.; Momcheva, I. G.; Nelson, E. J.; Skelton, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.; Wisnioski, E.; Whitaker, K. E.; Wuyts, E.; Wuyts, S.

    2017-02-01

    We make publicly available a catalog of calibrated environmental measures for galaxies in the five 3D-Hubble Space Telescope (HST)/CANDELS deep fields. Leveraging the spectroscopic and grism redshifts from the 3D-HST survey, multiwavelength photometry from CANDELS, and wider field public data for edge corrections, we derive densities in fixed apertures to characterize the environment of galaxies brighter than {{JH}}140< 24 mag in the redshift range 0.5< z< 3.0. By linking observed galaxies to a mock sample, selected to reproduce the 3D-HST sample selection and redshift accuracy, each 3D-HST galaxy is assigned a probability density function of the host halo mass, and a probability that it is a central or a satellite galaxy. The same procedure is applied to a z = 0 sample selected from Sloan Digital Sky Survey. We compute the fraction of passive central and satellite galaxies as a function of stellar and halo mass, and redshift, and then derive the fraction of galaxies that were quenched by environment specific processes. Using the mock sample, we estimate that the timescale for satellite quenching is {t}{quench}˜ 2{--}5 {Gyr}; it is longer at lower stellar mass or lower redshift, but remarkably independent of halo mass. This indicates that, in the range of environments commonly found within the 3D-HST sample ({M}h≲ {10}14 {M}⊙ ), satellites are quenched by exhaustion of their gas reservoir in the absence of cosmological accretion. We find that the quenching times can be separated into a delay phase, during which satellite galaxies behave similarly to centrals at fixed stellar mass, and a phase where the star formation rate drops rapidly ({τ }f˜ 0.4{--}0.6 Gyr), as shown previously at z = 0. We conclude that this scenario requires satellite galaxies to retain a large reservoir of multi-phase gas upon accretion, even at high redshift, and that this gas sustains star formation for the long quenching times observed.

  20. Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745

    DOE PAGES

    van Weeren, R. J.; Ogrean, G. A.; Jones, C.; ...

    2017-01-31

    To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. Northwest of the cluster, ~0.7 Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the intracluster medium (ICM) from the direction of a galaxy filament to the southeast. Here, we detect a density discontinuity north-northeast of this core, which we speculatemore » is associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100–300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this active galactic nucleus lead into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot ≳20 keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.« less

  1. Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745

    NASA Astrophysics Data System (ADS)

    van Weeren, R. J.; Ogrean, G. A.; Jones, C.; Forman, W. R.; Andrade-Santos, F.; Pearce, Connor J. J.; Bonafede, A.; Brüggen, M.; Bulbul, E.; Clarke, T. E.; Churazov, E.; David, L.; Dawson, W. A.; Donahue, M.; Goulding, A.; Kraft, R. P.; Mason, B.; Merten, J.; Mroczkowski, T.; Nulsen, P. E. J.; Rosati, P.; Roediger, E.; Randall, S. W.; Sayers, J.; Umetsu, K.; Vikhlinin, A.; Zitrin, A.

    2017-02-01

    To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. Northwest of the cluster, ˜0.7 Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the intracluster medium (ICM) from the direction of a galaxy filament to the southeast. We detect a density discontinuity north-northeast of this core, which we speculate is associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100-300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this active galactic nucleus lead into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot ≳20 keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.

  2. Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Weeren, R. J.; Jones, C.; Forman, W. R.

    To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. Northwest of the cluster, ∼0.7 Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the intracluster medium (ICM) from the direction of a galaxy filament to the southeast. We detect a density discontinuity north-northeast of this core, which we speculate ismore » associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100–300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this active galactic nucleus lead into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot ≳20 keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.« less

  3. Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Weeren, R. J.; Ogrean, G. A.; Jones, C.

    To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. Northwest of the cluster, ~0.7 Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the intracluster medium (ICM) from the direction of a galaxy filament to the southeast. Here, we detect a density discontinuity north-northeast of this core, which we speculatemore » is associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100–300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this active galactic nucleus lead into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot ≳20 keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.« less

  4. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility inspect the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on its handling fixture. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-18

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility inspect the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on its handling fixture. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  5. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-18

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  6. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS is HST's first cryogenic instrument -- its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 derees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-16

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS is HST's first cryogenic instrument -- its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 derees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  7. Resolving the Massive Binary Wind Interaction Of Eta Carinae with HST/STIS

    NASA Technical Reports Server (NTRS)

    Gull, Theodore; Nielsen, K.; Corcoran, M.; Hillier, J.; Madura, T.; Hamaguchi, K.; Kober, G.; Owocki, S.; Russell, C.; Okazaki, A.; hide

    2009-01-01

    We have resolved the outer structures of the massive binary interacting wind of Eta Carinae using the HST/STIS. They extend as much as 0.7' (1600AU) and are highly distorted due to the very elliptical orbit of the binary system. Observations conducted from 1998.0 to 2004.3 show spatial and temporal variations consistent with a massive, low excitation wind, seen by spatially resolved, velocity-broadened [Fe II], and a high excitation extended wind interaction region, seen by[Fe III], in the shape of a distorted paraboloid. The highly excited [Fe III] structure is visible for 90% of the 5.5-year period, but disappears as periastron occurs along with the drop of X-Rays as seen by RXTE. Some components appear in [Fe II] emission across the months long minimum. We will discuss the apparent differences between the bowshock orientation derived from the RXTE light curve and these structures seen by HST/STIS. Monitoring the temporal variations with phase using high spatial resolution with appropriate spectral dispersions proves to be a valuable tool for understanding massive wind interactions.

  8. Calibration Efforts and Unique Capabilities of the HST Space Telescope Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Monroe, TalaWanda R.; Proffitt, Charles R.; Welty, Daniel; Branton, Doug; Carlberg, Joleen K.; debes, John Henry; Lockwood, Sean; Riley, Allyssa; Sohn, Sangmo Tony; Sonnentrucker, Paule G.; Walborn, Nolan R.; Jedrzejewski, Robert I.

    2018-01-01

    The Space Telescope Imaging Spectrograph (STIS) continues to offer the astronomy community the ability to carry out innovative UV and optical spectroscopic and imaging studies, two decades after its deployment on the Hubble Space Telescope (HST). Most notably, STIS provides spectroscopy in the FUV and NUV, including high spectral resolution echelle modes, imaging in the FUV, optical spectroscopy, and coronagraphic capabilities. Additionally, spatial scanning on the CCD with the long-slits is now possible to enable very high S/N spectroscopic observations without saturation while mitigating telluric and fringing concerns in the far red and near-IR. This new mode may especially benefit the diffuse interstellar bands and exoplanet transiting communities. We present recent calibration efforts for the instrument, including work to optimize the calibration of the echelle spectroscopic modes by improving the flux agreement of overlapping spectral orders affected by changes in the grating blaze function since HST Servicing Mission 4. We also discuss considerations to maintain the wavelength precision of the spectroscopic modes, and the current capabilities of CCD spectroscopic spatial trails.

  9. Automated observation scheduling for the VLT

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1988-01-01

    It is becoming increasingly evident that, in order to optimize the observing efficiency of large telescopes, some changes will be required in the way observations are planned and executed. Not all observing programs require the presence of the astronomer at the telescope: for those programs which permit service observing it is possible to better match planned observations to conditions at the telescope. This concept of flexible scheduling has been proposed for the VLT: based on current and predicted environmental and instrumental observations which make the most efficient possible use of valuable time. A similar kind of observation scheduling is already necessary for some space observatories, such as Hubble Space Telescope (HST). Space Telescope Science Institute is presently developing scheduling tools for HST, based on the use of artificial intelligence software development techniques. These tools could be readily adapted for ground-based telescope scheduling since they address many of the same issues. The concept are described on which the HST tools are based, their implementation, and what would be required to adapt them for use with the VLT and other ground-based observatories.

  10. HST Confirmation and Characterization of a Potentially Habitable World

    NASA Astrophysics Data System (ADS)

    Ehrenreich, David

    2015-10-01

    Atmospheric characterization of exoplanets in habitable zones is one of the greatest challenge of astrophysics. In fact, all known potential targets either do not transit, or they transit stars too faint or distant, making them impossible to probe with transit spectroscopy. A recently announced K2 planet candidate found in the habitable zone of a nearby M dwarf, could be a game changer as the first habitable-zone super-Earth (2.2 R_Earth) amenable to characterization. We propose to use HST to (1) validate the planet candidate by observing a high-precision near-infrared transit with WFC3 and (2) characterize its atmosphere by detecting an extended hydrogen exosphere in the far ultraviolet with STIS. Hydrogen escape is indeed a telltale sign of terrestrial planets enduring a runaway greenhouse effect. Further considerations on the habitable potential of the planet thus need to be vet against a detection of hydrogen escape. Our recent STIS Lyman-alpha observations of a moderately irradiated neptune show that extended upper atmospheres can reach much larger sizes around such planets than around very hot exoplanets. We could thus obtain a significant detection with a modest amount of HST orbits. In parallel, we started a ground-based campaign to constrain the yet unknown mass of this planet with Doppler measurements. Combining the Lyman-alpha transit depth with the measurement of the planet bulk density (from the accurate near-infrared transit and the Doppler mass), will reveal for the first time whether an exoplanet can be telluric and actually habitable, or if it is losing its water because of a runaway greenhouse effect.

  11. Temperature Variations from HST Imagery of NGC 7009

    NASA Astrophysics Data System (ADS)

    Rubin, R. H.; Bhatt, N.; Dufour, R. J.; Buckalew, B.; Barlow, M. J.; Liu, X.; Storey, P. J.; Balick, B.; Ferland, G. J.; Harrington, J. P.; Martin, P. G.

    2000-12-01

    We present new HST/WFPC2 imagery for the planetary nebula (PN) NGC 7009. Observations were made in line filters F437N, F487N, F502N, and F656N plus continuum filter F547M. The primary goal was to develop a high spatial resolution ( ~0.1'') map of the intrinsic line ratio [O 3] 4363/5007 and thereby evaluate the electron temperature (Te) and the mean-square Te variation (t2) across the nebula. In this process we developed an extinction map from the F487N (Hβ ) and F656N (Hα ) images by comparing the observed line ratios in each pixel to the theoretical ratio and computing a c(Hβ ) map which was used to correct the observed 4363/5007 ratios for reddening. As has been known, extinction is not large for this PN as we further demonstrate in our reddening map. The most difficult and uncertain step is to extract the flux for [O 3] 4363 from the F437N data. Because this line is relatively weak, the continuum contribution to the observed F437N filter data is not negligible. Additionally, it is necessary to adjust for Hγ ``leakage" in the F437N bandpass. Because the dominant contribution to the nebular continuum for NGC 7009 is recombination processes, we correct for the continuum emission as well as the Hγ ``leakage" into the F437N bandpass using our F487N (Hβ ) image. A preliminary tie-in with ground-based spectra indicates this is best done by subtracting 0.012*F487N from F437N. We present a picture of the [O 3] Te map, as well as our determinations of t2. The preliminary map is rather uniform; almost all values are between 9000 -- 10500 K, with the higher Tes closely coinciding with the inner He++-zone as seen in blue in the WFPC2 image of Balick et al. (1998, AJ, 116, 360). Improvements are in progress that utilize our recent HST/STIS long-slit spectra to provide excellent co-spatial registration with the WFPC2 data to test/refine our methodology and analysis. Supported by AURA/STScI grant related to GO-8114.

  12. Cosmic shear analysis of archival HST/ACS data. I. Comparison of early ACS pure parallel data to the HST/GEMS survey

    NASA Astrophysics Data System (ADS)

    Schrabback, T.; Erben, T.; Simon, P.; Miralles, J.-M.; Schneider, P.; Heymans, C.; Eifler, T.; Fosbury, R. A. E.; Freudling, W.; Hetterscheidt, M.; Hildebrandt, H.; Pirzkal, N.

    2007-06-01

    Context: This is the first paper of a series describing our measurement of weak lensing by large-scale structure, also termed “cosmic shear”, using archival observations from the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). Aims: In this work we present results from a pilot study testing the capabilities of the ACS for cosmic shear measurements with early parallel observations and presenting a re-analysis of HST/ACS data from the GEMS survey and the GOODS observations of the Chandra Deep Field South (CDFS). Methods: We describe the data reduction and, in particular, a new correction scheme for the time-dependent ACS point-spread-function (PSF) based on observations of stellar fields. This is currently the only technique which takes the full time variation of the PSF between individual ACS exposures into account. We estimate that our PSF correction scheme reduces the systematic contribution to the shear correlation functions due to PSF distortions to <2 × 10-6 for galaxy fields containing at least 10 stars, which corresponds to ⪉5% of the cosmological signal expected on scales of a single ACS field. Results: We perform a number of diagnostic tests indicating that the remaining level of systematics is consistent with zero for the GEMS and GOODS data confirming the success of our PSF correction scheme. For the parallel data we detect a low level of remaining systematics which we interpret to be caused by a lack of sufficient dithering of the data. Combining the shear estimate of the GEMS and GOODS observations using 96 galaxies arcmin-2 with the photometric redshift catalogue of the GOODS-MUSIC sample, we determine a local single field estimate for the mass power spectrum normalisation σ8, CDFS=0.52+0.11-0.15 (stat) ± 0.07(sys) (68% confidence assuming Gaussian cosmic variance) at a fixed matter density Ω_m=0.3 for a ΛCDM cosmology marginalising over the uncertainty of the Hubble parameter and the redshift distribution. We

  13. Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p

    PubMed Central

    Madsen, Christian T.; Sylvestersen, Kathrine B.; Young, Clifford; Larsen, Sara C.; Poulsen, Jon W.; Andersen, Marianne A.; Palmqvist, Eva A.; Hey-Mogensen, Martin; Jensen, Per B.; Treebak, Jonas T.; Lisby, Michael; Nielsen, Michael L.

    2015-01-01

    The essential vitamin biotin is a covalent and tenaciously attached prosthetic group in several carboxylases that play important roles in the regulation of energy metabolism. Here we describe increased acetyl-CoA levels and mitochondrial hyperacetylation as downstream metabolic effects of biotin deficiency. Upregulated mitochondrial acetylation sites correlate with the cellular deficiency of the Hst4p deacetylase, and a biotin-starvation-induced accumulation of Hst4p in mitochondria supports a role for Hst4p in lowering mitochondrial acetylation. We show that biotin starvation and knockout of Hst4p cause alterations in cellular respiration and an increase in reactive oxygen species (ROS). These results suggest that Hst4p plays a pivotal role in biotin metabolism and cellular energy homeostasis, and supports that Hst4p is a functional yeast homologue of the sirtuin deacetylase SIRT3. With biotin deficiency being involved in various metabolic disorders, this study provides valuable insight into the metabolic effects biotin exerts on eukaryotic cells. PMID:26158509

  14. Spectral behavior of the symbiotic nova AG Pegasi observed with IUE and HST

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.; Bobrowsky, M.

    2017-05-01

    Ultraviolet spectra from the International Ultraviolet Explorer (IUE) and from the Hubble Space Telescope (HST) of the symbiotic novae AG Peg during the period 1978-1996 are analyzed. Some spectra showing the modulations of spectral lines at different times are presented. We determined the reddening from the 2200 Å feature, finding that E(B-V) = 0.10 ± 0.02. We studied N IV] at 1486 Å, C IV 1550 Å, and O III] at 1660 Å, produced in the fast wind from the hot white dwarf. The mean wind velocity of the three emission lines is 1300 km s-1 (FWHM). The mean wind mass loss rate is ˜6 × 10-7 M⊙ yr-1. The mean temperature is ˜6.5 × 105 K. The mean ultraviolet luminosity is ˜5 × 1033 erg s-1. The modulations of line fluxes in the emitting region at different times are attributed to the variations of density and temperature of the ejected matter as a result of variations in the rate of mass loss.

  15. Status and performance of HST/Wide Field Camera 3

    NASA Astrophysics Data System (ADS)

    Kimble, Randy A.; MacKenty, John W.; O'Connell, Robert W.

    2006-06-01

    Wide Field Camera 3 (WFC3) is a powerful UV/visible/near-infrared camera currently in development for installation into the Hubble Space Telescope. WFC3 provides two imaging channels. The UVIS channel features a 4096 x 4096 pixel CCD focal plane covering 200 to 1000 nm wavelengths with a 160 x 160 arcsec field of view. The UVIS channel provides unprecedented sensitivity and field of view in the near ultraviolet for HST. It is particularly well suited for studies of the star formation history of local galaxies and clusters, searches for Lyman alpha dropouts at moderate redshift, and searches for low surface brightness structures against the dark UV sky background. The IR channel features a 1024 x 1024 pixel HgCdTe focal plane covering 800 to 1700 nm with a 139 x 123 arcsec field of view, providing a major advance in IR survey efficiency for HST. IR channel science goals include studies of dark energy, galaxy formation at high redshift, and star formation. The instrument is being prepared for launch as part of HST Servicing Mission 4, tentatively scheduled for late 2007, contingent upon formal approval of shuttle-based servicing after successful shuttle return-to-flight. We report here on the status and performance of WFC3.

  16. VizieR Online Data Catalog: HST/ACS Coma Cluster Survey. VI. (den Brok+, 2011)

    NASA Astrophysics Data System (ADS)

    den Brok, M.; Peletier, R. F.; Valentijn, E. A.; Balcells, M.; Carter, D.; Erwin, P.; Ferguson, H. C.; Goudfrooij, P.; Graham, A. W.; Hammer, D.; Lucey, J. R.; Trentham, N.; Guzman, R.; Hoyos, C.; Verdoes Kleijn, G.; Jogee, S.; Karick, A. M.; Marinova, I.; Mouhcine, M.; Weinzirl, T.

    2018-01-01

    We have used the data from the HST/ACS Coma Cluster Survey, a deep two-passband imaging survey of the Coma cluster. A full description of the observations and data reduction can be found in Paper I (Carter et al., 2008ApJS..176..424C). We have derived colour gradients for a sample of confirmed or very likely Coma cluster members. (2 data files).

  17. HST Solar Arrays photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-04

    S61-E-002 (4 Dec 1993) --- This view, backdropped against the blackness of space shows one of two original Solar Arrays (SA) on the Hubble Space Telescope (HST). The scene was photographed from inside Endeavour's cabin with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. This view features the minus V-2 panel. Endeavour's crew captured the HST on December 4, 1993 in order to service the telescope over a period of five days. Four of the crew members will work in alternating pairs outside Endeavour's shirt sleeve environment to service the giant telescope. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  18. HST Solar Arrays photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-04

    S61-E-003 (4 Dec 1993) --- This medium close-up view of one of two original Solar Arrays (SA) on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. This view shows the cell side of the minus V-2 panel. Endeavour's crew captured the HST on December 4, 1993 in order to service the telescope over a period of five days. Four of the crew members will work in alternating pairs outside Endeavour's shirt sleeve environment to service the giant telescope. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  19. 3D-HST: A Wide-field Grism Spectroscopic Survey with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Rix, Hans-Walter; Skelton, Rosalind E.; Kriek, Mariska; Nelson, Erica; Schmidt, Kasper B.; Bezanson, Rachel; da Cunha, Elisabete; Erb, Dawn K.; Fan, Xiaohui; Förster Schreiber, Natascha; Illingworth, Garth D.; Labbé, Ivo; Leja, Joel; Lundgren, Britt; Magee, Dan; Marchesini, Danilo; McCarthy, Patrick; Momcheva, Ivelina; Muzzin, Adam; Quadri, Ryan; Steidel, Charles C.; Tal, Tomer; Wake, David; Whitaker, Katherine E.; Williams, Anna

    2012-06-01

    We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the physical processes that shape galaxies in the distant universe. 3D-HST provides rest-frame optical spectra for a sample of ~7000 galaxies at 1 < z < 3.5, the epoch when ~60% of all star formation took place, the number density of quasars peaked, the first galaxies stopped forming stars, and the structural regularity that we see in galaxies today must have emerged. 3D-HST will cover three quarters (625 arcmin2) of the CANDELS Treasury survey area with two orbits of primary WFC3/G141 grism coverage and two to four orbits with the ACS/G800L grism in parallel. In the IR, these exposure times yield a continuum signal-to-noise ratio of ~5 per resolution element at H 140 ~ 23.1 and a 5σ emission-line sensitivity of ~5 × 10-17 erg s-1 cm-2 for typical objects, improving by a factor of ~2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1 to 1.6 μm at a spatial resolution of ~0farcs13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present an overview of the preliminary reduction and analysis of the grism observations, including emission-line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of σ(z) = 0.0034(1 + z), or σ(v) ≈ 1000 km s-1. We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z = 4.7, quiescent galaxies at z ~ 2, and the most distant T-type brown dwarf star known. The combination of the CANDELS and 3D-HST surveys will provide the definitive imaging and spectroscopic data set for studies of the 1 < z < 3.5 universe until the launch of the James Webb Space

  20. Hst Measurements Of Main Belt Comet 300163

    NASA Astrophysics Data System (ADS)

    Jewitt, David; Weaver, H.; Agarwal, J.; Mutchler, M.; Larson, S.

    2012-10-01

    Asteroid 300163 (semimajor axis 3.05 AU, eccentricity 0.20, inclination 3 deg., Tisserand parameter 3.20) is a source of dust, giving it the dual cometary designation P/2006 VW139. It satisfies the definition of a main-belt comet (MBC) by having the orbital character of a main-belt asteroid but the diffuse appearance of a comet. We obtained Hubble Space Telescope observations of this object in December 2011 in order to study the morphology of the ejected dust at the highest angular resolution and to determine the cause of the mass loss from the nucleus. One of the two HST observing epochs was carefully timed to coincide with the Earth's crossing of the orbital plane (out of plane angle 0.01 deg.) to obtain a measure of the vertical velocity dispersion free from the effects of projection. We find an extraordinarily thin dust sheet and infer a sub-meter per second dust ejection velocity. Observations at the second epoch show a change in the near-nucleus dust morphology that indicates continuing ejection (i.e. the dust emission is not impulsive). We use the low velocity ejection, coupled with the absence of an observable coma, to help constrain the possible source mechanisms for the dust.

  1. STS-109/Columbia/HST Pre-Launch Activities/Launch On Orbit-Landing-Crew Egress

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-109 Space Shuttle Mission begins with introduction of the seven crew members: Commander Scott D. Altman, pilot Duane G. Carey, payload commander John M. Grunsfeld, mission specialists: Nancy J. Currie, James H. Newman, Richard M. Linnehan, and Michael J. Massimino. Spacewalking NASA astronauts revive the Hubble Space Telescope's (HST) sightless infrared eyes, outfitting the observatory with an experimental refrigerator designed to resuscitate a comatose camera. During this video presentation John Grunsfeld and Rick Linnehan bolt the new cryogenic cooler inside HST and hung a huge radiator outside the observatory and replaces the telescope power switching station. In the video we can see how the shuttle robot arm operator, Nancy Currie, releases the 13-ton HST. Also, the landing of the Space Shuttle Columbia is presented.

  2. Collecting the Puzzle Pieces: Completing HST's UV+NIR Survey of the TRAPPIST-1 System ahead of JWST

    NASA Astrophysics Data System (ADS)

    de Wit, Julien

    2017-08-01

    Using the Spitzer Space Telescope, our team has discovered 7 Earth-sized planets around the nearby Ultra-cool dwarf star TRAPPIST-1. These planets are the first to be simultaneously Earth-sized, temperate, and amenable for in-depth atmospheric studies with space-based observatories (notably, JWST). TRAPPIST-1's system thus provides us with the first opportunity to probe the atmospheres of Earth-sized exoplanets and search for signs of habitability beyond our solar system, which will require spectral information from the UV to the IR to complete their atmospheric puzzles.We request 114 HST orbits to complete the UV+NIR survey of the 7 planets in preparation for their in-depth followup with JWST. The suggested low-density of the planets combined with their complex orbital resonance chain indicate that they migrated inward to their current positions and may harbor large water rich reservoir or leftover primordial H2 atmospheres. We have already ruled out the presence of clear H2 atmospheres for the 5 innermost planets using WFC3 and are requesting 16 WFC3 orbits to complete the TRAPPIST-1 NIR reconnaissance survey. Our primary request consists in 98 STIS orbits to complete the survey for extended H-exospheres around each of the planets. H-exospheres are the most accessible observables for volatile reservoirs, which have not been ruled out by our WFC3 observations. Exosphere detection is only amenable using HST unique capabilities in the UV and are pivotal to guide JWST's in-depth followup. The combined information from HST's UV and NIR observations will allow us put the first critical pieces of the atmospheric puzzle in place for these temperate earth-sized worlds.

  3. Spectacular mergers at the cosmic dawn: a HST, ALMA, and JWST synergy

    NASA Astrophysics Data System (ADS)

    Banados, Eduardo

    2016-10-01

    How did the first massive galaxies in the universe form? Theoretical models predict that these form through mergers of gas-rich galaxies at very high-redshifts. These models are often invoked to explain the existence of massive 'red and dead' galaxies by z 2. We have unexpectedly identified a sample of six z>6 QSOs with close, gas-rich companions at the same redshifts through our on-going ALMA survey of [CII] and dust emission in QSO host galaxies. This is the first unambiguous direct observational evidence of gravitational interactions within the first Gyr of the universe, supporting the aforementioned theoretical models. These newly discovered QSO-galaxy pairs are a unique sample to demonstrate key capabilities of JWST in early science, such as the multi-object and IFU modes of NIRSpec. Remarkably, three of these systems are separated by less than 10 kpc (<2 arcsec), which makes them prime targets to exploit the unparalleled IFU capabilities of JWST/NIRSpec in early science. Such observations will allow us to map the morphology and kinematics of these gravitational interactions as function of separation from the QSOs, which will enlighten our understanding of early black hole and galaxy growth. Thus, it is of critical importance to characterize the rest-frame UV/optical properties of these companions before the JWST launch. Here we propose deep WFC3/IR F140W observations to set the first firm constraints on their rest-frame UV properties, which can only be achieved by the sensitivity and resolution of HST. These timely HST observations will be essential to enable a plethora of JWST early science programs.

  4. High Resolution HST Images of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    1994-05-01

    planet Pluto and its moon, Charon, as revealed by the Hubble Space Telescope (HST). The image was taken by the European Space Agency's Faint Object Camera on February 21, 1994, when the planet was 4,400 million kilometres from the Earth; or nearly 30 times the separation between the Earth and the Sun. The HST corrected optics show the two objects as clearly separate and sharp disks. This now allows astronomers to measure directly (to within about 1 percent) Pluto's diameter of 2320 kilometres and Charon's diameter of 1270 kilometres. The HST observations show that Charon is bluer than Pluto. This means that the worlds have different surface composition and structure. A bright highlight on Pluto indicates that it may have a smoothly reflecting surface layer. A detailed analysis of the HST image also suggests that there is a bright area parallel to the equator of Pluto. However, subsequent observations are needed to confirm is this feature is real. Though Pluto was discovered in 1930, Charon was not detected until 1978. This is because this moon is so close to Pluto that the two world's are typically blurred together when viewed through ground-based telescopes. The new HST image was taken when Charon was near its maximum elongation from Pluto (0.9 arcseconds). The two worlds are 19,640 kilometres apart. This photo accompanies ESO PR 09/94. It is available from ESO as ESO PR Photo 09/94-1 and from the Space Telescope Science Institute (Baltimore, USA) as STSci-PR94-17. Reproductions should be credited to NASA, ESA and ESO. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  5. HST High Gain Antennae photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-04

    S61-E-021 (7 Dec 1993) --- This close-up view of one of two High Gain Antennae (HGA) on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Endeavour's crew captured the HST on December 4, 1993 in order to service the telescope over a period of five days. Four of the crew members have been working in alternating pairs outside Endeavour's shirt sleeve environment to service the giant telescope. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  6. The HDUV Survey: Six Lyman Continuum Emitter Candidates at z ˜ 2 Revealed by HST UV Imaging

    NASA Astrophysics Data System (ADS)

    Naidu, R. P.; Oesch, P. A.; Reddy, N.; Holden, B.; Steidel, C. C.; Montes, M.; Atek, H.; Bouwens, R. J.; Carollo, C. M.; Cibinel, A.; Illingworth, G. D.; Labbé, I.; Magee, D.; Morselli, L.; Nelson, E. J.; van Dokkum, P. G.; Wilkins, S.

    2017-09-01

    We present six galaxies at z˜ 2 that show evidence of Lyman continuum (LyC) emission based on the newly acquired UV imaging of the Hubble Deep UV legacy survey (HDUV) conducted with the WFC3/UVIS camera on the Hubble Space Telescope (HST). At the redshift of these sources, the HDUV F275W images partially probe the ionizing continuum. By exploiting the HST multiwavelength data available in the HDUV/GOODS fields, models of the UV spectral energy distributions, and detailed Monte Carlo simulations of the intergalactic medium absorption, we estimate the absolute ionizing photon escape fractions of these galaxies to be very high—typically > 60 % (> 13 % for all sources at 90% likelihood). Our findings are in broad agreement with previous studies that found only a small fraction of galaxies with high escape fraction. These six galaxies compose the largest sample yet of LyC leaking candidates at z˜ 2 whose inferred LyC flux has been observed at HST resolution. While three of our six candidates show evidence of hosting an active galactic nucleus, two of these are heavily obscured and their LyC emission appears to originate from star-forming regions rather than the central nucleus. Extensive multiwavelength data in the GOODS fields, especially the near-IR grism spectra from the 3D-HST survey, enable us to study the candidates in detail and tentatively test some recently proposed indirect methods to probe LyC leakage. High-resolution spectroscopic follow-up of our candidates will help constrain such indirect methods, which are our only hope of studying f esc at z˜ 5-9 in the JWST era. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  7. Hubble Space Telescope (HST) above OV-103's PLB during STS-31 deployment

    NASA Image and Video Library

    1990-04-25

    The Hubble Space Telescope (HST) is raised above the payload bay (PLB) in low hover position during STS-31 checkout and pre-deployment procedures aboard Discovery, Orbiter Vehicle (OV) 103. Stowed along the HST Support System Module (SSM) are the high gain antenna (HGA) (center) and the two solar arrays (one either side). In the background are the orbital maneuvering system (OMS) pods and the Earth's surface.

  8. Design and simulation of EVA tools for first servicing mission of HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1993-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the space shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A space shuttle repair mission in late 1993 will install small corrective mirrors that will restore the full intended optical capability of the HST. The first servicing mission (FSM) will involve considerable extravehicular activity (EVA). It is proposed to design special EVA tools for the FSM. This report includes details of the data acquisition system being developed to test the performance of the various EVA tools in ambient as well as simulated space environment.

  9. HST/WFPC2 Photometry in the 30 Doradus Nebula Beyond R136

    NASA Astrophysics Data System (ADS)

    Barbá, R. H.; Walborn, N. R.

    30 Doradus is the nearest and hence best resolved extragalactic starburst. Knowledge of its stellar content is vital to the interpretation of more distant starbursts, as well as to fundamental astrophysical problems such as the IMF, stellar mass limits, stellar evolution, and the structure of giant H II regions. In spite of the relative proximity of 30 Dor, it is essential to apply the highest possible spatial resolution to disentangle compact multiple systems and groups, which are characteristic of massive young regions and a source of systematic errors in astrophysical inferences if they are not resolved. Recents studies of the stellar content of 30 Doradus with HST/WFPC2 have concentrated on the central cluster core, R136 (Hunter et al. 1995, 1996, 1997; Nota et al. 1998). Followup HST/FOS spectroscopy was performed in and around R136 to a radius of about 15 arcsec, and the most spectacular concentration of the most massive young stars known was discovered (Massey & Hunter 1998; Heap et al. 1998). However, R136 and its immediate surroundings account for only a third to a half of the ionization of 30 Dor. Other very massive stars and stellar systems are distributed throughout the several-arcminute extent of the Nebula. They include objects both older and younger than R136; there is evidence that the formation of the latter has been triggered by the energetic activity of R136. So far, these important surrounding populations have been investigated only with groundbased observations (Parker 1993; Walborn & Blades 1997). In the latter spectral classification study, five spatially and/or temporally distinct stellar components were isolated within the Nebula. But numerous multiple systems remain unresolved in these populations, particularly in the younger ones. In this paper, we report HST/WFPC2 photometry of the 30 Doradus stellar content surrounding R136, with emphasis on the numerous multiple systems and compact clusterings found there. Of particular interest are

  10. HST Multi Layer Insulation Failure Review Board Findings

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline; Hansen, Patricia

    1998-01-01

    The mechanical and optical properties of the thermal control materials on the Hubble Space Telescope (HST) have degraded over the nearly seven years the telescope has been in orbit. Astronaut observations and photographs from the Second Servicing Mission (SM2) revealed large cracks in the metallized Teflon fluorinated ethylene propylene (FEP), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. Also, the absorptance of the bonded metallized Teflon FEP radiator surfaces of the telescope has increased over time. A Failure Review Board was established to determine the damage mechanism and to identify a replacement material. Samples of the top layer of the MLI and radiator material were retrieved during SM2, and a thorough investigation into the degradation followed in order to determine the primary cause of the damage. Mapping of the cracks on HST and the ground testing showed that thermal cycling with deep-layer damage from electron and proton radiation are necessary to cause the observed embrittlement. Further, strong evidence was found indicating that chain scission (reduced molecular weight) is the dominant form of damage to the metallized Teflon FEP. Given the damage to the outer layer of the multi-layer insulation (MLI) that was apparent during the second servicing mission (SM2), the decision was made to replace the outer layer during subsequent servicing missions. The replacement material had to meet the stringent thermal requirements of the spacecraft and maintain structural integrity for at least ten years. Ten candidate materials were exposed to simulated orbital environments and a replacement material was selected. This presentation will summarize the FRB results, in particular, the analysis of the retrieved specimens, the results of the simulated environmental exposures, and the selection of the replacement material. The NASA Space Environments and Effects community needs to hear these results because they reveal

  11. VizieR Online Data Catalog: >20yrs of HST obs. of Cepheids in SNIa host gal. (Hoffmann+, 2016)

    NASA Astrophysics Data System (ADS)

    Hoffmann, S. L.; Macri, L. M.; Riess, A. G.; Yuan, W.; Casertano, S.; Foley, R. J.; Filippenko, A. V.; Tucker, B. E.; Chornock, R.; Silverman, J. M.; Welch, D. L.; Goobar, A.; Amanullah, R.

    2017-01-01

    HST observations of Cepheid variables (both archival or newly obtained) span more than two decades (1994-2016; see table 1). The earliest Cepheid observations we analyzed were obtained with the Wide Field and Planetary Camera 2 (WFPC2) as part of the initial efforts to measure H0 with HST (Freedman+ 2001ApJ...553...47F; Sandage+ 2006ApJ...653..843S) and were later used by Freedman+ (2012ApJ...758...24F) to reach beyond the LMC for the Carnegie Hubble Project. We also re-analyzed observations obtained in previous phases of our project (Riess+ 2009, J/ApJS/183/109; 2011, J/ApJ/730/119) with the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) and/or the Wide Field Camera 3 (WFC3) Ultraviolet and Visible Channel (UVIS). Finally, we obtained new observations of nine SN Ia hosts using WFC3. We obtained the majority of our optical images with these modern cameras, 113 and 132 unique epochs with ACS and WFC3, respectively, while WFPC2 contributes a smaller fraction with 67 epochs. (6 data files).

  12. An intelligent planning and scheduling system for the HST servicing missions

    NASA Technical Reports Server (NTRS)

    Johnson, Jay; Bogovich, Lynn; Tuchman, Alan; Kispert, Andrew; Page, Brenda; Burkhardt, Christian; Littlefield, Ronald; Mclean, David; Potter, William; Ochs, William

    1993-01-01

    A new, intelligent planning and scheduling system has been delivered to NASA-Goddard Space Flight Center (GSFC) to provide support for the up-coming Hubble Space Telescope (HST) Servicing Missions. This new system is the Servicing Mission Planning and Replanning Tool (SM/PART). SM/PART is written in C and runs on a UNlX-based workstation (IBM RS/6000) under Motif. SM/PART effectively automates the complex task of building or rebuilding integrated timelines and command plans which are required by HST Servicing Mission personnel at their consoles during the missions. SM/PART is able to quickly build or rebuild timelines based on information stored in a Knowledge Base (KB) by using an Artificial Intelligence (AI) tool called the Planning And Resource Reasoning (PARR) shell. After a timeline has been built in the batch mode, it can be displayed and edited in an interactive mode with help from the PARR shell. Finally a detailed command plan is generated. The capability to quickly build or rebuild timelines and command plans provides an additional safety factor for the HST, Shuttle and Crew.

  13. Long range science scheduling for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Miller, Glenn; Johnston, Mark

    1991-01-01

    Observations with NASA's Hubble Space Telescope (HST) are scheduled with the assistance of a long-range scheduling system (SPIKE) that was developed using artificial intelligence techniques. In earlier papers, the system architecture and the constraint representation and propagation mechanisms were described. The development of high-level automated scheduling tools, including tools based on constraint satisfaction techniques and neural networks is described. The performance of these tools in scheduling HST observations is discussed.

  14. The Herschel Lensing Survey (HLS): HST Frontier Field Coverage

    NASA Astrophysics Data System (ADS)

    Egami, Eiichi

    2015-08-01

    The Herschel Lensing Survey (HLS; PI: Egami) is a large Far-IR/Submm imaging survey of massive galaxy clusters using the Herschel Space Observatory. Its main goal is to detect and study IR/Submm galaxies that are below the nominal confusion limit of Herschel by taking advantage of the strong gravitational lensing power of massive galaxy clusters. HLS has obtained deep PACS (100/160 um) and SPIRE (250/350/500 um) images for 54 cluster fields (HLS-deep) as well as shallower but nearly confusion-limited SPIRE-only images for 527 cluster fields (HLS-snapshot) with a total observing time of ~420 hours. Extensive multi-wavelength follow-up studies are currently on-going with a variety of observing facilities including ALMA.Here, I will focus on the analysis of the deep Herschel PACS/SPIRE images obtained for the 6 HST Frontier Fields (5 observed by HLS-deep; 1 observed by the Herschel GT programs). The Herschel/SPIRE maps are wide enough to cover the Frontier-Field parallel pointings, and we have detected a total of ~180 sources, some of which are strongly lensed. I will present the sample and discuss the properties of these Herschel-detected dusty star-forming galaxies (DSFGs) identified in the Frontier Fields. Although the majority of these Herschel sources are at moderate redshift (z<3), a small number of extremely high-redshift (z>6) candidates can be identified as "Herschel dropouts" when combined with longer-wavelength data. We have also identified ~40 sources as likely cluster members, which will allow us to study the properties of DSFGs in the dense cluster environment.A great legacy of our HLS project will be the extensive multi-wavelength database that incorporates most of the currently available data/information for the fields of the Frontier-Field, CLASH, and other HLS clusters (e.g., HST/Spitzer/Herschel images, spectroscopic/photometric redshifts, lensing models, best-fit SED models etc.). Provided with a user-friendly GUI and a flexible search engine, this

  15. Spectroscopy of Pluto and Charon with HST during the encounter year

    NASA Astrophysics Data System (ADS)

    Oszkiewicz, Dagmara Anna; Grundy, Will; Buie, Marc W.; Binzel, Richard; Weaver, Harold A.; Spencer, John R.; Stern, S. Alan

    2016-10-01

    Pluto is the largest of the handful of transneptunian bodies massive enough to retain, over the age of the solar system, an abundant inventory of volatiles including N2, CH4, and CO (Schaller et al. 2007). Sublimation and condensation act in concert with wind to efficiently transport heat (as well as the ices themselves) in response to diurnally and seasonally changing patterns of insolation (Spencer et al. 1997, Trafton et al. 1998). Recent indications suggest that observable changes could occur from one Earth year to the next (Grundy et al. 2014) and observations of Triton, with a similar inventory of volatile ices suggest that dramatic changes could occur on relatively short timescale (Hicks et al. 2000). The goal of this study is therefore to bridge the gap between sparse, multi-year spectral monitoring of Pluto and the brief, but extremely detailed snapshot provided by New Horizons spacecraft.We obtained high S/N spectra of Pluto and Charon separately with the HST's WFC3/IR grism G141. Altogether, we have collected data from ten visits at various sub-HST longitudes centered on the New Horizons encounter hemisphere. During each visit we obtained 8 dithered spectral images and 4 direct images in the F139M filter. The spectral reduction followed the recipe outlined in the WFC3 IR Grism Data Reduction Cookbook. The final spectra were combined to achieve spectral uncertainty at the level of around 0.2\\% (that is five times betterthan in our previous studies). The combined spectra were then explored for sub-latitude, sub-longitude, and phase angle dependences.

  16. HST/COS OBSERVATIONS OF GALACTIC HIGH-VELOCITY CLOUDS: FOUR ACTIVE GALACTIC NUCLEUS SIGHT LINES THROUGH COMPLEX C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shull, J. Michael; Stevans, Matthew; Danforth, Charles

    2011-10-01

    We report ultraviolet spectra of Galactic high-velocity clouds (HVCs) in Complex C, taken by the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), together with new 21 cm spectra from the Green Bank Telescope. The wide spectral coverage and higher signal-to-noise ratio, compared to previous HST spectra, provide better velocity definition of the HVC absorption, additional ionization species (including high ions), and improved abundances in this halo gas. Complex C has a metallicity of 10%-30% solar and a wide range of ions, suggesting dynamical and thermal interactions with hot gas in the Galactic halo. Spectra in the COSmore » medium-resolution G130M (1133-1468 A) and G160M (1383-1796 A) gratings detect ultraviolet absorption lines from eight elements in low-ionization states (O I, N I, C II, S II, Si II, Al II, Fe II, P II) and three elements in intermediate- and high-ionization states (Si III, Si IV, C IV, N V). Our four active galactic nucleus sight lines toward Mrk 817, Mrk 290, Mrk 876, and PG 1259+593 have high-velocity H I and O VI column densities, log N{sub Hi}= 19.39-20.05 and log N{sub Ovi}= 13.58-14.10, with substantial amounts of kinematically associated photoionized gas. The high-ion abundance ratios are consistent with cooling interfaces between photoionized and collisionally ionized gas: N(C IV)/N(O VI) {approx} 0.3-0.5, N(Si IV)/N(O VI) {approx} 0.05-0.11, N(N V)/N(O VI) {approx} 0.07-0.13, and N(Si IV)/N(Si III) {approx}0.2.« less

  17. HST Replacement Battery Initial Performance

    NASA Technical Reports Server (NTRS)

    Krol, Stan; Waldo, Greg; Hollandsworth, Roger

    2009-01-01

    The Hubble Space Telescope (HST) original Nickel-Hydrogen (NiH2) batteries were replaced during the Servicing Mission 4 (SM4) after 19 years and one month on orbit.The purpose of this presentation is to highlight the findings from the assessment of the initial sm4 replacement battery performance. The batteries are described, the 0 C capacity is reviewed, descriptions, charts and tables reviewing the State Of Charge (SOC) Performance, the Battery Voltage Performance, the battery impedance, the minimum voltage performance, the thermal performance, the battery current, and the battery system recharge ratio,

  18. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1997-01-02

    What look like giant twisters are spotted by the Hubble Space Telescope (HST). These images are, in actuality, pillars of gases that are in the process of the formation of a new star. These pillars can be billions of miles in length and may have been forming for millions of years. This one formation is located in the Lagoon Nebula and was captured by the Hubble's wide field planetary camera-2 (WFPC-2).

  19. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lift the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) prior to its installation in the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-18

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lift the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) prior to its installation in the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  20. VLA Radio Observations of the HST Frontier Fields Cluster Abell 2744: The Discovery of New Radio Relics

    NASA Astrophysics Data System (ADS)

    Pearce, C. J. J.; van Weeren, R. J.; Andrade-Santos, F.; Jones, C.; Forman, W. R.; Brüggen, M.; Bulbul, E.; Clarke, T. E.; Kraft, R. P.; Medezinski, E.; Mroczkowski, T.; Nonino, M.; Nulsen, P. E. J.; Randall, S. W.; Umetsu, K.

    2017-08-01

    Cluster mergers leave distinct signatures in the intracluster medium (ICM) in the form of shocks and diffuse cluster radio sources that provide evidence for the acceleration of relativistic particles. However, the physics of particle acceleration in the ICM is still not fully understood. Here we present new 1-4 GHz Jansky Very Large Array (VLA) and archival Chandra observations of the HST Frontier Fields Cluster Abell 2744. In our new VLA images, we detect the previously known ˜2.1 Mpc radio halo and ˜1.5 Mpc radio relic. We carry out a radio spectral analysis from which we determine the relic’s injection spectral index to be {α }{inj}=-1.12+/- 0.19. This corresponds to a shock Mach number of { M }={2.05}-0.19+0.31 under the assumption of diffusive shock acceleration. We also find evidence for spectral steepening in the post-shock region. We do not find evidence for a significant correlation between the radio halo’s spectral index and ICM temperature. In addition, we observe three new polarized diffuse sources and determine two of these to be newly discovered giant radio relics. These two relics are located in the southeastern and northwestern outskirts of the cluster. The corresponding integrated spectral indices measure -1.81 ± 0.26 and -0.63 ± 0.21 for the SE and NW relics, respectively. From an X-ray surface brightness profile we also detect a possible density jump of R={1.39}-0.22+0.34 co-located with the newly discovered SE relic. This density jump would correspond to a shock front Mach number of { M }={1.26}-0.15+0.25.

  1. VizieR Online Data Catalog: HST/COS survey of z<0.9 AGNs. I. (Danforth+, 2016)

    NASA Astrophysics Data System (ADS)

    Danforth, C. W.; Keeney, B. A.; Tilton, E. M.; Shull, J. M.; Stocke, J. T.; Stevans, M.; Pieri, M. M.; Savage, B. D.; France, K.; Syphers, D.; Smith, B. D.; Green, J. C.; Froning, C.; Penton, S. V.; Osterman, S. N.

    2016-05-01

    COS is the fourth-generation UV spectrograph on board HST and is optimized for medium-resolution (R~18000, Δv~17km/s) spectroscopy of point sources in the 1135-1800Å band. To constitute our survey, we selected 82 AGN sight lines from the archive which met the selection criteria. Most of the AGNs observed in Cycles 18-20 under the Guaranteed Time Observation programs (GTO; PI-Green) are included, along with numerous archival data sets collected under various Guest Observer programs. Observational and programatic details are presented in Table 2; see also section 2.1. (5 data files).

  2. HST Hot-Jupiter Transmission Spectral Survey: Clear Skies for Cool Saturn WASP-39b

    NASA Astrophysics Data System (ADS)

    Fischer, Patrick D.; Knutson, Heather A.; Sing, David K.; Henry, Gregory W.; Williamson, Michael W.; Fortney, Jonathan J.; Burrows, Adam S.; Kataria, Tiffany; Nikolov, Nikolay; Showman, Adam P.; Ballester, Gilda E.; Désert, Jean-Michel; Aigrain, Suzanne; Deming, Drake; Lecavelier des Etangs, Alain; Vidal-Madjar, Alfred

    2016-08-01

    We present the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) optical transmission spectroscopy of the cool Saturn-mass exoplanet WASP-39b from 0.29-1.025 μm, along with complementary transit observations from Spitzer IRAC at 3.6 and 4.5 μm. The low density and large atmospheric pressure scale height of WASP-39b make it particularly amenable to atmospheric characterization using this technique. We detect a Rayleigh scattering slope as well as sodium and potassium absorption features; this is the first exoplanet in which both alkali features are clearly detected with the extended wings predicted by cloud-free atmosphere models. The full transmission spectrum is well matched by a clear H2-dominated atmosphere, or one containing a weak contribution from haze, in good agreement with the preliminary reduction of these data presented in Sing et al. WASP-39b is predicted to have a pressure-temperature profile comparable to that of HD 189733b and WASP-6b, making it one of the coolest transiting gas giants observed in our HST STIS survey. Despite this similarity, WASP-39b appears to be largely cloud-free, while the transmission spectra of HD 189733b and WASP-6b both indicate the presence of high altitude clouds or hazes. These observations further emphasize the surprising diversity of cloudy and cloud-free gas giant planets in short-period orbits and the corresponding challenges associated with developing predictive cloud models for these atmospheres.

  3. Earlier snowmelt and warming lead to earlier but not necessarily more plant growth.

    PubMed

    Livensperger, Carolyn; Steltzer, Heidi; Darrouzet-Nardi, Anthony; Sullivan, Patrick F; Wallenstein, Matthew; Weintraub, Michael N

    2016-01-01

    Climate change over the past ∼50 years has resulted in earlier occurrence of plant life-cycle events for many species. Across temperate, boreal and polar latitudes, earlier seasonal warming is considered the key mechanism leading to earlier leaf expansion and growth. Yet, in seasonally snow-covered ecosystems, the timing of spring plant growth may also be cued by snowmelt, which may occur earlier in a warmer climate. Multiple environmental cues protect plants from growing too early, but to understand how climate change will alter the timing and magnitude of plant growth, experiments need to independently manipulate temperature and snowmelt. Here, we demonstrate that altered seasonality through experimental warming and earlier snowmelt led to earlier plant growth, but the aboveground production response varied among plant functional groups. Earlier snowmelt without warming led to early leaf emergence, but often slowed the rate of leaf expansion and had limited effects on aboveground production. Experimental warming alone had small and inconsistent effects on aboveground phenology, while the effect of the combined treatment resembled that of early snowmelt alone. Experimental warming led to greater aboveground production among the graminoids, limited changes among deciduous shrubs and decreased production in one of the dominant evergreen shrubs. As a result, we predict that early onset of the growing season may favour early growing plant species, even those that do not shift the timing of leaf expansion. Published by Oxford University Press on behalf of the Annals of Botany Company.

  4. HST High Gain Antennae photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-04

    S61-E-009 (4 Dec 1993) --- This view of one of two High Gain Antennae (HGA) on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC). The scene was down linked to ground controllers soon after the Space Shuttle Endeavour caught up to the orbiting telescope 320 miles above Earth. Shown here before grapple, the HST was captured on December 4, 1993 in order to service the telescope. Over a period of five days, four of the seven STS-61 crew members will work in alternating pairs outside Endeavour's shirt sleeve environment. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  5. Cospatial Longslit UV-Optical Spectra of Ten Galactic Planetary Nebulae with HST STIS: Description of observations, global emission-line measurements, and empirical CNO abundances

    NASA Astrophysics Data System (ADS)

    Dufour, R. J.; Kwitter, K. B.; Shaw, R. A.; Balick, B.; Henry, R. B. C.; Miller, T. R.; Corradi, R. L. M.

    2015-01-01

    This poster describes details of HST Cycle 19 (program GO 12600), which was awarded 32 orbits of observing time with STIS to obtain the first cospatial UV-optical spectra of 10 Galactic planetary nebulae (PNe). The observational goal was to measure the UV emission lines of carbon and nitrogen with unprecedented S/N and wavelength and spatial resolution along the disk of each object over a wavelength range 1150-10270 Ang . The PNe were chosen such that each possessed a near-solar metallicity but the group together spanned a broad range in N/O. This poster concentrates on describing the observations, emission-line measurements integrated along the entire slit lengths, ionic abundances, and estimated total elemental abundances using empirical ionization correction factors and the ELSA code. Related posters by co-authors in this session concentrate on analyzing CNO abundances, progenitor masses and nebular properties of the best-observed targets using photoionization modeling of the global emission-line measurements [Henry et al.] or detailed analyses of spatial variations in electron temperatures, densities, and abundances along the sub arcsecond resolution slits [Miller et al. & Shaw et al.]. We gratefully acknowledge AURA/STScI for the GO 12600 program support, both observational and financial.

  6. View of HST as it approaches Endeavour, taken from aft flight deck window

    NASA Image and Video Library

    1993-12-04

    STS061-53-026 (4 Dec 1993) --- One of the Space Shuttle Endeavour's aft flight deck windows frames this view of the Hubble Space Telescope (HST) as it approaches the Endeavour. Backdropped against western Australia, the Remote Manipulator System (RMS) arm awaits the arrival of the telescope. Once berthed in Endeavour's cargo bay, HST underwent five days of servicing provided by four space walking crew members. Shark Bay (upper left) and Perth (lower left) are visible in the frame.

  7. HST/ACS Observations of RR Lyrae Stars in Six Ultra-Deep Fields of M31

    NASA Technical Reports Server (NTRS)

    Jeffery, E. J.; Smith, E.; Brown, T. M.; Sweigart, A. V.; Kalirai, J. S.; Ferguson, H. C.; Guhathakurta, P.; Renzini, A.; Rich, R. M.

    2010-01-01

    We present HST/ACS observations of RR Lyrae variable stars in six ultra deep fields of the Andromeda galaxy (M31), including parts of the halo, disk, and giant stellar stream. Past work on the RR Lyrae stars in M31 has focused on various aspects of the stellar populations that make up the galaxy s halo, including their distances and metallicities. This study builds upon this previous work by increasing the spatial coverage (something that has been lacking in previous studies) and by searching for these variable stars in constituents of the galaxy not yet explored. Besides the 55 RR Lyrae stars we found in our initial field located 11kpc from the galactic nucleus, we find additional RR Lyrae stars in four of the remaining five ultra deep fields as follows: 21 in the disk, 24 in the giant stellar stream, 3 in the halo field 21kpc from the galactic nucleus, and 5 in one of the halo fields at 35kpc. No RR Lyrae were found in the second halo field at 35kpc. The RR Lyrae populations of these fields appear to mostly be of Oosterhoff I type, although the 11kpc field appears to be intermediate or mixed. We will discuss the properties of these stars including period and reddening distributions. We calculate metallicities and distances for the stars in each of these fields using different methods and compare the results, to an extent that has not yet been done. We compare these methods not just on RR Lyrae in our M31 fields, but also on a data set of Milky Way field RR Lyrae stars.

  8. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2000-07-01

    This is a color Hubble Space Telescope (HST) heritage image of supernova remnant N49, a neighboring galaxy, that was taken with Hubble's Wide Field Planetary Camera 2. Color filters were used to sample light emitted by sulfur, oxygen, and hydrogen. The color image was superimposed on a black and white image of stars in the same field also taken with Hubble. Resembling a fireworks display, these delicate filaments are actually sheets of debris from a stellar explosion.

  9. Far-Infrared and Nebular Star-Formation Rate of Dusty Star Forming Galaxies from Herschel, CANDELS and 3D-HST at z~1

    NASA Astrophysics Data System (ADS)

    Hasan, Farhanul; Nayyeri, Hooshang; Cooray, Asantha R.; Herschel Group: University of California Irvine. Dept. of Physics & Astronomy. Led by professor Asantha Cooray, Reed College Undergraduate Research Committee

    2017-06-01

    We present a combined Herschel/PACS and SPIRE and HST/WFC3 observations of the five CANDELS fields, EGS, GOODS-N, GOODS-S, COSMOS and UDS, to study star-formation activity in dusty star-forming galaxies (DSFGs) at z~1. We use 3D-HST photometry and Grism spectroscopic redshifts to construct the Spectral Energy Distributions (SED) of galaxies in the near UV, optical and near infrared, along with IRAC measurements at 3.6-8 μm in the mid-infrared, and Herschel data at 250-500 μm in the far-infrared. The 3D-HST grism line measurements are used to estimate the star-formation rate from nebular emission. In particular, we compare the H-alpha measured SFRs (corrected for attenuation) to that of direct observations of the far-infrared from Herschel. We further look at the infrared excess in this sample of dusty star-forming galaxies (denoted by LIR/LUV) as a function of the UV slope. We find that the population of high-z DSFGs sit above the trend expected for normal star-forming galaxies. Additionally, we study the dependence of SFR on total dust attenuation and confirm a strong correlation between SFR(Ha) and the balmer decrement (Hα/Hβ).

  10. Latch of HST aft shroud photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-04

    S61-E-010 (4 Dec 1993) --- This close-up view of a latch on the minus V3 aft shroud door of the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Endeavour's crew captured the HST on December 4, 1993 in order to service the telescope over a period of five days. Four of the crew members will work in alternating pairs outside Endeavour's shirt sleeve environment to service the giant telescope. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  11. The Integration of COTS/GOTS within NASA's HST Command and Control System

    NASA Technical Reports Server (NTRS)

    Pfarr, Thomas; Reis, James E.

    2001-01-01

    NASA's mission critical Hubble Space Telescope (HST) command and control system has been re-engineered with commercial-off-the-shelf (COTS/GOTS) and minimal custom code. This paper focuses on the design of this new HST Control Center System (CCS) and the lessons learned throughout its development. CCS currently utilizes more than 30 COTS/GOTS products with an additional 1/2 million lines of custom glueware code; the new CCS exceeds the capabilities of the original system while significantly reducing the lines of custom code by more than 50%. The lifecycle of COTS/GOTS products will be examined including the package selection process, evaluation process, and integration process. The advantages, disadvantages, issues, concerns, and lessons learned for integrating COTS/GOTS into the NASA's mission critical HST CCS will be examined in detail. This paper will reveal the many hidden costs of COTS/GOTS solutions when compared to traditional custom code development efforts; this paper will show the high cost of COTS/GOTS solutions including training expenses, consulting fees, and long-term maintenance expenses.

  12. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2004-01-01

    Residing roughly 17 million light years from Earth, in the northern constellation Coma Berenices, is a merged star system known as Messier 64 (M64). First cataloged in the 18th century by the French astronomer Messier, M64 is a result of two colliding galaxies and has an unusual appearance as well as bizarre internal motions. It has a spectacular dark band of absorbing dust in front of its bright nucleus, lending to it the nickname of the "Black Eye" or "Evil Eye" galaxy. Fine details of the dark band can be seen in this image of the central portion of M64 obtained by the Wide Field Planetary Camera (WFPC2) of NASA's Hubble Space Telescope (HST). Appearing to be a fairly normal pinwheel-shaped galaxy, the M64 stars are rotating in the same direction, clockwise, as in the majority of galaxies. However, detailed studies in the 1990's led to the remarkable discovery that the interstellar gas in the outer regions of M64 rotates in the opposite direction from the gas and stars in the irner region. Astronomers believe that the oppositely rotating gas arose when M64 absorbed a satellite galaxy that collided with it, perhaps more than one billion years ago. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST.

  13. APT: what it has enabled us to do

    NASA Astrophysics Data System (ADS)

    Blacker, Brett S.; Golombek, Daniel

    2004-09-01

    With the development and operations deployment of the Astronomer's Proposal Tool (APT), Hubble Space Telescope (HST) proposers have been provided with an integrated toolset for Phase I and Phase II. This toolset consists of editors for filling out proposal information, an Orbit Planner for determining observation feasibility, a Visit Planner for determining schedulability, diagnostic and reporting tools and an integrated Visual Target Tuner (VTT) for viewing exposure specifications. The VTT can also overlay HST"s field of view on user-selected Flexible Image Transport System (FITS) images, perform bright object checks and query the HST archive. In addition to these direct benefits for the HST user, STScI"s internal Phase I process has been able to take advantage of the APT products. APT has enabled a substantial streamlining of the process and software processing tools, which enabled a compression by three months of the Phase I to Phase II schedule, allowing to schedule observations earlier and thus further benefiting HST observers. Some of the improvements to our process include: creating a compact disk (CD) of Phase I products; being able to print all proposals on the day of the deadline; link the proposal in Portable Document Format (PDF) with a database, and being able to run all Phase I software on a single platform. In this paper we will discuss the operational results of using APT for HST's Cycles 12 and 13 Phase I process and will show the improvements for the users and the overall process that is allowing STScI to obtain scientific results with HST three months earlier than in previous years. We will also show how APT can be and is being used for multiple missions.

  14. Hubble Space Telescope (HST) grappled by OV-103's RMS during STS-31 checkout

    NASA Image and Video Library

    1990-04-25

    The Hubble Space Telescope (HST), grappled by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), is held in a pre-deployment position. During STS-31 checkout procedures, the solar array (SA) panels and the high gain antennae (HGA) will be deployed. The starboard SA (center) and the two HGA are stowed along side the Support System Module (SSM) forward shell. The sun highlights HST against the blackness of space.

  15. STS-31 pre-deployment checkout of the Hubble Space Telescope (HST) on OV-103

    NASA Image and Video Library

    1990-04-25

    The Hubble Space Telescope (HST), grappled by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), is oriented in a 90 degree pitch position during STS-31 pre-deployment checkout procedures. The solar array (SA) panel (center) and high gain antennae (HGA) (on either side) are stowed along the Support System Module (SSM) forward shell prior to deployment. The sun highlights HST against the blackness of space.

  16. STS-31 Hubble Space Telescope (HST) solar array (SA) deploy aboard OV-103

    NASA Image and Video Library

    1990-04-25

    During STS-31, the Hubble Space Telescope (HST) is held in appendage deploy position by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS) above the payload bay (PLB) and crew compartment cabin. While in this position the solar array (SA) wing bistem cassette (HST center) is deployed from its stowed location along side the Support System Module (SSM) forward shell. A high gain antenna (HGA) remains stowed along the SSM. The Earth's surface and the Earth limb creates a dramatic backdrop.

  17. HST-WFPC2 Observations of the Star Clusters in the Giant H II Regions of M33

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Park, Hong Soo; Kim, Sang Chul; Waller, William H.; Parker, Joel Wm.; Malumuth, Eliot M.; Hodge, Paul W.

    We present a photometric study of the stars in ionizing star clusters embedded in several giant H II regions of M33 (CC93, IC 142, NGC 595, MA2, NGC 604 and NGC 588). Our photometry is based on the HST-WFPC2 images of these clusters. Color-magnitude diagrams and color-color diagrams of these clusters are obtained and are used for estimating the reddenings and ages of the clusters. The luminosity functions (LFs) and initial mass functions (IMFs) of the massive stars in these clusters are also derived. The slopes of the IMFs range from Γ = -0.5 to -2.1. Interestingly, it is found that the IMFs get steeper with increasing galactocentric distance and with decreasing [O/H] abundance.

  18. Accreting Binary Populations in the Earlier Universe

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2010-01-01

    It is now understood that X-ray binaries dominate the hard X-ray emission from normal star-forming galaxies. Thanks to the deepest (2-4 Ms) Chandra surveys, such galaxies are now being studied in X-rays out to z approximates 4. Interesting X-ray stacking results (based on 30+ galaxies per redshift bin) suggest that the mean rest-frame 2-10 keV luminosity from z=3-4 Lyman break galaxies (LBGs), is comparable to the most powerful starburst galaxies in the local Universe. This result possibly indicates a similar production mechanism for accreting binaries over large cosmological timescales. To understand and constrain better the production of X-ray binaries in high-redshift LBGs, we have utilized XMM-Newton observations of a small sample of z approximates 0.1 GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs); local analogs to high-redshift LBGs. Our observations enable us to study the X-ray emission from LBG-like galaxies on an individual basis, thus allowing us to constrain object-to-object variances in this population. We supplement these results with X-ray stacking constraints using the new 3.2 Ms Chandra Deep Field-South (completed spring 2010) and LBG candidates selected from HST, Swift UVOT, and ground-based data. These measurements provide new X-ray constraints that sample well the entire z=0-4 baseline

  19. Current Calibration Efforts and Performance of the HST Space Telescope Imaging Spectrograph: Echelle Flux Calibration, the BAR5 Occulter, and Lamp Lifetimes

    NASA Astrophysics Data System (ADS)

    Monroe, TalaWanda R.; Aloisi, Alessandra; Debes, John H.; Jedrzejewski, Robert I.; Lockwood, Sean A.; Peeples, Molly S.; Proffitt, Charles R.; Riley, Allyssa; Walborn, Nolan R.

    2016-06-01

    The variety of operating modes of the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) continues to allow STIS users to obtain unique, high quality observations and cutting-edge results 19 years after its installation on HST. STIS is currently the only instrument available to the astronomy community that allows high spectral and spatial resolution spectroscopy in the FUV and NUV, including echelle modes. STIS also supports solar-blind imaging in the FUV. In the optical, STIS provides long-slit, first-order spectra that take advantage of HST's superb spatial resolution, as well as several unique unfiltered coronagraphic modes, which continue to benefit the exoplanet and debris-disk communities. The STIS instrument team monitors the instrument’s health and performance over time to characterize the effects of radiation damage and continued use of the detectors and optical elements. Additionally, the STIS team continues to improve the quality of data products for the user community. We present updates on efforts to improve the echelle flux calibration of overlapping spectral orders due to changes in the grating blaze function since HST Servicing Mission 4, and efforts to push the contrast limit and smallest inner working angle attainable with the coronagraphic BAR5 occulter. We also provide updates on the performance of the STIS calibration lamps, including work to maintain the accuracy of the wavelength calibration for all modes.

  20. HST and Merlin Observations of 3C 264--A Laboratory for Jet Physics and Unified Schemes

    NASA Astrophysics Data System (ADS)

    Baum, Stefi A.; O'Dea, Christopher P.; Giovannini, Gabriele; Cotton, William B.; de Koff, Sigrid; Feretti, Luigina; Golombek, Daniel; Lara, Lucas; Macchetto, Ferdinando D.; Miley, G. K.; Sparks, William B.; Venturi, Tiziana; Komissarov, Serguei S.

    1997-07-01

    We present new HST optical continuum and emission line WFPC2 images and MERLIN radio observations of 3C 264 at ~0.1" resolution. The jet is well resolved in both the optical and radio images. In addition, we report the discovery of an apparent optical ``ring'' at a projected radius of ~300-400 pc. The ring is most likely the manifestation of absorption by a nearly face-on circumnuclear dust disk. We discuss the evolution of the jet properties with distance. The jet collimation, brightness, and orientation change dramatically as it crosses the outer boundary of the ``ring'' suggesting an interaction between the jet and dense circumnuclear gas. We present a model for the jet propagation in which an initially relativistic jet decelerates as it crosses through a region of dense cold gas in the inner region of the galaxy. We derive the equations for brightness variations along an adiabatically expanding relativistic jet, and we model the jet brightness in 3C 264 as the combined effects of Doppler boosting, and adiabatic losses as traced through the jet velocity and width. We find that the data are consistent with a model in which the jet is initially highly relativistic (v ~ 0.98c, γ = 5) and we view it at roughly 50° inclination. We suggest that 3C 264 may serve as a laboratory for the study of relativistic entraining jets and may help us to understand the deceleration of jets, which is required in unifying schemes for FRI radio galaxies and BL Lac objects.

  1. Chandra and HST Observations of the High Energy (X-ray/UV) Radiation Fields for an Evolutionary Sequence of Pre-Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Herczeg, G. J.; Brown, J. M.; Walter, F. M.; Valenti, J.; Ardila, D.; Hillenbrand, L. A.; Edwards, S.; Johns-Krull, C. M.; Alexander, R.; Bergin, E. A.; Calvet, N.; Bethell, T. J.; Ingleby, L.; Bary, J. S.; Audard, M.; Baldovin, C.; Roueff, E.; Abgrall, H.; Gregory, S. G.; Ayres, T. R.; Linsky, J. L.

    2010-03-01

    Pre-main-sequence (PMS) stars are strong X-ray and UV emitters and the high energy radiation from the central stars directly influences the physical and chemical processes in their protoplanetary disks. Gas and dust in protoplanetary systems are excited by these photons, which are the dominant ionization source for hundreds of AU around the star. X-rays penetrate deep into disks and power complex chemistry on grain surfaces. ``Transitional disks'' are an important short-lived evolutionary stage for PMS stars and protoplanetary systems. These disks have transformed most of the dust and gas in their inner regions into planetesimals or larger solid bodies. As dust disks disappear after ages of roughly 5 Myr high levels of stellar magnetic activity persist and continue to bathe the newly-forming protoplanetary systems with intense high energy radiation. We present new X-ray and UV spectra for a sample of PMS stars at a variety of evolutionary stages, including the classical T Tauri stars DE Tau and DK Tau, the transitional disk stars GM Aur and HD135344B, the Herbig Ae star HD104237, and the weak-lined T Tauri star LkCa4, the Eta Cha cluster [age 7 Myr] members RECX1, RECX-11, and RECX-15, and TW Hya association [age 8 Myr] member TWA-2. These include the first results from our 111 orbit HST Large project and associated X-ray data. New and archival Chandra, XMM, and Swift X-ray spectra and HST COS+STIS FUV spectra are being used to reconstruct the full high energy (X-ray/EUV/FUV/NUV) spectra of these stars, thus allowing detailed modeling of the physics and chemistry of their circumstellar environments. The UV spectra provide improved emission line profiles revealing details of the magnetically-heated plasma and accretion and outflow processes. This work is supported by Chandra grants GO8-9024X, GO9-0015X and GO9-0020B and proposal 11200754 and HST GO grants 11336, 11616, and 11828.

  2. Mining the HST "Advanced Spectral Library (ASTRAL)": The Evolution of Winds from non-coronal to hybrid giant stars

    NASA Astrophysics Data System (ADS)

    Nielsen, Krister E.; Carpenter, Ken G.; Kober, Gladys V.; Rau, Gioia

    2018-01-01

    The HST/STIS treasury program ASTRAL enables investigations of the character and dynamics of the wind and chromosphere of cool stars, using high quality spectral data. This paper shows how the wind features change with spectral class by comparing the non-coronal objects (Alpha Ori, Gamma Cru) with the hybrid stars (Gamma Dra, Beta Gem). In particular we study the intrinsic strength variation of the numerous FeII profiles observed in the near-ultraviolet HST spectrum that are sensitive to the wind opacity, turbulence and flow velocity. The FeII relative emission strength and wavelengths shifts between the absorption and emission components reflects the acceleration of the wind from the base of the chromosphere. We present the analysis of the outflowing wind characteristics when transitioning from the cool non-coronal objects toward the warmer objects with chromospheric emission from significantly hotter environments.

  3. HST Archival Imaging of the Light Echoes of SN 1987A

    NASA Astrophysics Data System (ADS)

    Lawrence, S. S.; Hayon, M.; Sugerman, B. E. K.; Crotts, A. P. S.

    2002-12-01

    We have undertaken a search for light echo signals from Supernova 1987A that have been serendipitously recorded in images taken near the 30 Doradus region of the Large Magellanic Cloud by HST. We used the MAST interface to create a database of the 1282 WF/PC, WFPC2 and STIS images taken within 15 arcminutes of the supernova, between 1992 April and 2002 June. These 1282 images are grouped into 125 distinct epochs and pointings, with each epoch containing between 1 and 42 separate exposures. Sorting this database with various programs, aided by the STScI Visual Target Tuner, we have identified 63 pairs of WFPC2 imaging epochs that are not centered on the supernova but that have a significant amount of spatial overlap between their fields of view. These image data were downloaded from the public archive, cleaned of cosmic rays, and blinked to search for light echoes at radii larger than 2 arcminutes from the supernova. Our search to date has focused on those pairs of epochs with the largest degree of overlap. Of 16 pairs of epochs scanned to date, we have detected 3 strong light echoes and one faint, tentative echo signal. We will present direct and difference images of these and any further echoes, as well as the 3-D geometric, photometric and color properties of the echoing dust structures. In addition, a set of 20 epochs of WF/PC and WFPC2 imaging centered on SN 1987A remain to be searched for echoes within 2 arcminutes of the supernova. We will discuss our plans to integrate the high spatial-resolution HST snapshots of the echoes with our extensive, well-time-sampled, ground-based imaging data. We gratefully acknowledge the support of this undergraduate research project through an HST Archival Research Grant (HST-AR-09209.01-A).

  4. STS-31 Hubble Space Telescope (HST) pre-deployment procedures aboard OV-103

    NASA Image and Video Library

    1990-04-24

    During STS-31, the Hubble Space Telescope (HST) grappled by the remote manipulator system (RMS) end effector is held in appendage deploy position above Discovery, Orbiter Vehicle (OV) 103. The solar array (SA) bistem cassette has been released from its latch fittings. The bistem spreader bars begin to unfurl the SA wing. The secondary deployment mechanism (SDM) handle is visible at the SA end. Stowed against either side of the HST System Support Module (SSM) forward shell are the high-gain antennae (HGA). Puerto Rico and the Dominican Republic are recognizable at the left of the frame.

  5. HST images of the eclipsing pulsar B1957+20

    NASA Technical Reports Server (NTRS)

    Fruchter, Andrew S.; Bookbinder, Jay; Bailyn, Charles D.

    1995-01-01

    We have obtained images of the eclipsing pulsar binary PSR B1957+20 using the Planetary Camera of the Hubble Space Telescope (HST). The high spatial resolution of this instrument has allowed us to separate the pulsar system from a nearby background star which has confounded ground-based observations of this system near optical minimum. Our images limit the temperature of the backside of the companion to T less than or approximately = 2800 K, about a factor of 2 less than the average temperature of the side of the companion facing the pulsar, and provide a marginal detection of the companion at optical minimum. The magnitude of this detection is consistent with previous work which suggests that the companion nearly fills its Roche lobe and is supported through tidal dissipation.

  6. Hubble Space Telescope: The Real ‘First Light’ Observation

    NASA Astrophysics Data System (ADS)

    Benedict, G. F.; McArthur, B.

    2014-01-01

    To prove that a telescope will meet the design specifications laid down years previously, that it will eventually produce the science envisioned by those designers, they make a ‘first light’ observation, assess it, and pronounce “Here is our new telescope! It works!” That observation is often made with an instrument on the telescope that goes on to make many scientifically productive discoveries. The official Hubble Space Telescope (HST) first light image was secured by the Wide Field Planetary Camera on 5/20/1990, certainly a productive science instrument. The HST Fine Guidance Sensors (FGS), white-light interferometers, have an essential role to play in any scientific observation made with HST. They stabilize HST by locking onto guide stars. The Fine Guidance Sensors (FGS) have on their own produced useful and exciting astrometric scientific results ranging from parallaxes of Galactic Cepheids useful for the cosmic distance scale (Benedict et al. 2007, AJ, 133, 1810) to a demonstration of the degree of coplanarity in an exoplanetary system (McArthur et al. 2010, ApJ, 715, 1203). Hence, we argue that an FGS made the actual first light observation shortly after midnight on 1 May 1990 by successfully locking onto the V=12.97 star GSC 02666-01602. That FGS observation demonstrated light passing through the HST entire optical system and HST tracking. With a little (well, actually quite a lot of) tweaking, scientific results would surely flood forth. However, on May Day 1990 locking success was oddly sporadic. We had a few weeks more to enjoy our blissful ignorance of flapping solar panels and a mis-figured primary mirror, both of which contributed that night to our true first light observation problems. The events of that night and subsequent successful FGS astrometry are thanks to contributions over the years from L. Abramowicz-Reed, A. Bradley*, R. Duncombe, O. Franz, L. Fredrick, P. Hemenway, W. Jefferys, E. Nelan*, P. Shelus, D. Story*, W. van Altena, L

  7. Latch of HST aft shroud photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-04

    S61-E-005 (4 Dec 1993) --- This close-up view of a latch on the minus V3 aft shroud door of the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Endeavour's crew captured the HST on December 4, 1993 in order to service the telescope. Over a period of five days, four of the seven crew members will work in alternating pairs outside Endeavour's shirt sleeve environment to service the giant telescope. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  8. Latch of HST aft shroud photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-04

    S61-E-004 (4 Dec 1993) --- This close-up view of a latch on the minus V3 aft shroud door of the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Endeavour's crew captured the HST on December 4, 1993 in order to service the telescope. Over a period of five days, four of the seven crew members will work in alternating pairs outside Endeavour's shirt sleeve environment to service the giant telescope. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  9. STS-31 pre-deployment checkout of the Hubble Space Telescope (HST) on OV-103

    NASA Image and Video Library

    1990-04-25

    During STS-31 checkout, the Hubble Space Telescope (HST) is held in a pre-deployment position by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS). The view, taken from the crew cabin overhead window W7, shows the starboard solar array (SA) panel (center) and two high gain antennae (HGA) (on either side) stowed along side the Support System Module (SSM) forward shell. The sun highlights HST against the blackness of space.

  10. Hubble space telescope: The GO and GTO observing programs, version 3.0

    NASA Technical Reports Server (NTRS)

    Downes, Ron

    1992-01-01

    A portion of the observing time with the Hubble Space Telescope (HST) was awarded by NASA to scientists involved in the development of the HST and its instruments. These scientists are the Guaranteed Time Observers (GTO's). Observing time was also awarded to General Observers (GO's) on the basis of the proposal reviews in 1989 and 1991. The majority of the 1989 programs have been completed during 'Cycle 1', while the 1991 programs will be completed during 'Cycle 2', nominally a 12-month period beginning July 1992. This document presents abstracts of these GO and GTO programs, and detailed listings of the specific targets and exposures contained in them. These programs and exposures are protected by NASA policy, as detailed in the HST Call for Proposals (CP), and are not to be duplicated by new programs.

  11. Extreme Wolf-Rayet Galaxies with HST/COS: Understanding CIII] Emission in the Reionization Era

    NASA Astrophysics Data System (ADS)

    Stark, Daniel

    2017-08-01

    The first deep spectra of reionization-era galaxies have revealed strong UV nebular emission in high-ionization lines. This is in striking contrast to massive galaxies at lower redshifts, where emission from CIII], OIII], HeII, and CIV is rarely seen. These lines will likely be the only probe available for the most distant galaxies JWST will detect; but we are still unprepared to interpret them. Modeling predicts that intense UV nebular emission can only be produced below a tenth solar metallicity. However, recent HST/COS observations of local galaxies suggest that extreme populations of Wolf-Rayet (WR) stars, the hot exposed cores of massive O stars, may be capable of powering CIII] at metallicities as high as a half-solar. If these moderately metal-poor extreme WR galaxies are indeed a viable source of strong CIII] emission, our interpretation of CIII] detections in the reionization era will be dramatically altered; but we presently have sufficient UV coverage for only three examples. Here, we propose HST/COS G160M and G185M observations of an additional seven extreme WR galaxies spanning 0.5 dex in metallicity around half-solar. These observations will constrain the maximum CIII] equivalent width these galaxies can power as a function of metallicity. The moderate resolution gratings will robustly characterize the massive O and WR star populations, allowing us to link the nebular emission directly to the massive stars responsible. These data will provide a stringent test for the population synthesis codes which will be applied to JWST observations. Without this empirical baseline, our understanding of the most distant galaxies JWST finds will be severely limited.

  12. HST Solar Arrays photographed by Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This close-up view of one of two Solar Arrays (SA) on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and downlinked to ground controllers soon afterward. Electronic still photography is a technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  13. HST HOT-JUPITER TRANSMISSION SPECTRAL SURVEY: CLEAR SKIES FOR COOL SATURN WASP-39b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Patrick D.; Knutson, Heather A.; Sing, David K.

    We present the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) optical transmission spectroscopy of the cool Saturn-mass exoplanet WASP-39b from 0.29-1.025 μ m, along with complementary transit observations from Spitzer IRAC at 3.6 and 4.5 μ m. The low density and large atmospheric pressure scale height of WASP-39b make it particularly amenable to atmospheric characterization using this technique. We detect a Rayleigh scattering slope as well as sodium and potassium absorption features; this is the first exoplanet in which both alkali features are clearly detected with the extended wings predicted by cloud-free atmosphere models. The full transmission spectrummore » is well matched by a clear H{sub 2}-dominated atmosphere, or one containing a weak contribution from haze, in good agreement with the preliminary reduction of these data presented in Sing et al. WASP-39b is predicted to have a pressure-temperature profile comparable to that of HD 189733b and WASP-6b, making it one of the coolest transiting gas giants observed in our HST STIS survey. Despite this similarity, WASP-39b appears to be largely cloud-free, while the transmission spectra of HD 189733b and WASP-6b both indicate the presence of high altitude clouds or hazes. These observations further emphasize the surprising diversity of cloudy and cloud-free gas giant planets in short-period orbits and the corresponding challenges associated with developing predictive cloud models for these atmospheres.« less

  14. HST Multicolor (255-1042 nm) Photometry of Saturn's Main Rings. 1; Radial Profiles, Phase and Opening Angle Variations, and Regional Spectra

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; French, Richard G.; Dones, Luke; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The main rings of Saturn were observed with the Planetary Camera of the WFPC2 instrument on the Hubble Space Telescope (HST) from September 1996 to August 2000 as the'ring opening angle to Earth and Sun increased from 4 deg to 24 deg, with a spread of phase angles between 0.3 deg and 6 deg at each opening angle. The rings were routinely observed in the five HST wideband UBVRI filters (F336W, F439W, F555W, F675W, and F814W) and occasionally in the F255W, F785LP, and F1042M filters. The emphasis in this series of papers will be on radial color (implying compositional) variations. In this first paper we describe the analysis technique and calibration procedure, note revisions in a previously published Voyager ring color data analysis, and present new results based on over 100 HST images. In the 300-600 nm spectral range where the rings are red, the 555nm/336nm ratio increases by about 14% as the phase angle increases from 0.3 deg to 6 deg. This effect, never reported previously for the rings, is significantly larger than the phase reddening which characterizes other icy objects, primarily because of the redness of the rings. However, there is no discernible tendency for color to vary with ring opening angle at a given phase angle, and there is no phase variation of color where the spectrum is flat. We infer from this combination of facts that multiple intraparticle scattering, either in a regolith or between facets of an unusually rough surface, is important in these geometries, but that multiple interparticle scattering in a vertically extended layer is not. Voyager color ratios at a phase angle of 14 deg are compatible with this trend, but calibration uncertainties prevent their use in quantitative modeling. Overall ring-average spectra are compatible with those of earlier work within calibration uncertainties, but ring spectra vary noticeably with region. We refine and subdivide the regions previously defined by others. The variation seen between radial profiles of

  15. Legacy ExtraGalactic UV Survey (LEGUS): The HST View of Star Formation in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela; Lee, J. C.; Adamo, A.; Aloisi, A.; Andrews, J. E.; Brown, T. M.; Chandar, R.; Christian, C. A.; Cignoni, M.; Clayton, G. C.; Da Silva, R. L.; de Mink, S. E.; Dobbs, C.; Elmegreen, B.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S.; Gouliermis, D.; Grebel, E.; Herrero-Davo`, A.; Hilbert, B.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R.; Kim, H.; Krumholz, M. R.; Lennon, D. J.; Martin, C. D.; Nair, P.; Nota, A.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Schaerer, D.; Schiminovich, D.; Smith, L. J.; Thilker, D. A.; Tosi, M.; Van Dyk, S. D.; Walterbos, R. A.; Whitmore, B. C.; Wofford, A.

    2014-01-01

    The Treasury program LEGUS (HST/GO-13364) is the first HST UV Atlas of nearby galaxies, and is aimed at the thorough investigation of star formation and its relation with galaxy environment, from the scales of individual stars to those of ~kpc clustered structures. The 154-orbits program is obtaining NUV,U,B,V,I images of 50 star-forming galaxies in the distance range 4-12 Mpc, covering the full range of morphology, star formation rate (SFR), mass, metallicity, internal structure, and interaction state found in the local Universe. The imaging survey will yield accurate recent (<50 Myr) star formation histories (SFHs) from resolved massive stars, and the extinction-corrected ages and masses of star clusters and associations. These extensive inventories of massive stars, clustered systems, and SFHs will be used to: (1) quantify how the clustering of star formation evolves both in space and in time; (2) discriminate among models of star cluster evolution; (3) investigate the effects of SFH on the UV SFR calibrations; (4) explore the impact of environment on star formation and cluster evolution across the full range of galactic and ISM properties. LEGUS observations will inform theories of star formation and galaxy evolution, and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of the clumpy star formation at high redshift. LEGUS will generate the most homogeneous high-resolution, wide-field UV dataset to date, building and expanding on the GALEX legacy. Data products that will be delivered to the community include: catalogs of massive stars and star clusters, catalogs of star cluster properties (ages, masses, extinction), and a one-stop shop for all the ancillary data available for this well-studied galaxy sample. LEGUS will provide the reference survey and the foundation for future observations with JWST and with ALMA. This abstract accompanies another one from the same project, and presents the status of the

  16. The HST Key Project on the Extragalactic Distance Scale VI. The Cepheids in NGC925

    NASA Technical Reports Server (NTRS)

    Silbermann, N. A.; Harding, Paul; Madore, Barry F.; Kennicutt, Robert C., Jr.; Saha, Abhijit; Stetson, Peter; Freedman, Wendy L.; Mould, Jeremy R.; Graham, John A.; Hill, Robert J.; hide

    1996-01-01

    We report the detection of Cepheid Variable stars in the barred spiral galaxy NGC925, using the Hubble Space Telescope (HST) Wide Field and Planetary Camera 2 (WFPC2). Twelve V (F555W), four I (F814W) and three B (F439W) epochs of cosmic ray split observations were obtained. Eighty Cepheids were discovered, with periods from 6 to +-80 days. Light curves of the Cepheids are presented, and their corresponding period-luminosity diagrams are discussed.

  17. The Integration of COTS/GOTS within NASA's HST Command and Control System

    NASA Technical Reports Server (NTRS)

    Pfarr, Thomas; Reis, James E.; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    NASA's mission critical Hubble Space Telescope (HST) command and control system has been re-engineered with COTS/GOTS and minimal custom code. This paper focuses on the design of this new HST Control Center System (CCS) and the lessons learned throughout its development. CCS currently utilizes 31 COTS/GOTS products with an additional 12 million lines of custom glueware code; the new CCS exceeds the capabilities of the original system while significantly reducing the lines of custom code by more than 50%. The lifecycle of COTS/GOTS products will be examined including the pack-age selection process, evaluation process, and integration process. The advantages, disadvantages, issues, concerns, and lessons teamed for integrating COTS/GOTS into the NASA's mission critical HST CCS will be examined in detail. Command and control systems designed with traditional custom code development efforts will be compared with command and control systems designed with new development techniques relying heavily on COTS/COTS integration. This paper will reveal the many hidden costs of COTS/GOTS solutions when compared to traditional custom code development efforts; this paper will show the high cost of COTS/GOTS solutions including training expenses, consulting fees, and long-term maintenance expenses.

  18. HST observations of Europa's atmospheric UV emission

    NASA Astrophysics Data System (ADS)

    Saur, J. S.; Feldman, P. D.; Strobel, D. F.; Retherford, K. D.; Roth, L.; McGrath, M. A.; Gerard, J. M.; Grodent, D. C.; Schilling, N.

    2009-12-01

    The Advanced Camera for Surveys on the Hubble Space Telescope observed Europa on June 29, 2008 during five consecutive orbits. Europa was at eastern elongation and crossed the Jovian current sheet during the observing interval. The observations were performed with ACS/SBC with prism PR130L to separate the two prominent FUV oxygen lines OI 1304 A, OI 1356 A and to discriminate reflected solar light from Europa's surface. After addressing the strong red leak contained in the measurements, we find that Europa's atmospheric emission clearly depends on Europa's position in Jupiter's current sheet. We also see that the atmospheric emissions of Europa's leading side do not show pronounced asymmetries with respect to Europa's sub-Jovian and anti-Jovian side. Previous observations of the atmospheric emissions, in contrast, found a strong asymmetry on Europa's trailing side [McGrath et al. 2004].

  19. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2001-08-24

    Some 5,000 light years (2,900 trillion miles) from Earth, in the constellation Puppis, is the 1.4 light years (more than 8 trillion miles) long Calabash Nebula, referred to as the Rotten Egg Nebula because of its sulfur content which would produce an awful odor if one could smell in space. This image of the nebula captured by NASA's Hubble Space Telescope (HST) depicts violent gas collisions that produced supersonic shock fronts in a dying star. Stars, like our sun, will eventually die and expel most of their material outward into shells of gas and dust These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae. The yellow in the image depicts the material ejected from the central star zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Due to the high speeds of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and structure of such shocks for some time, previous observations have not been able to prove the theory.

  20. New Horizons: Long-Range Kuiper Belt Targets Observed by the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Benecchi, S. D.; Noll, K. S.; Weaver, H. A.; Spencer, J. R.; Stern, S. A.; Buie, M. W.; Parker, A. H.

    2014-01-01

    We report on Hubble Space Telescope (HST) observations of three Kuiper Belt Objects (KBOs), discovered in our dedicated ground-based search campaign, that are candidates for long-range observations from the New Horizons spacecraft: 2011 epochY31, 2011 HZ102, and 2013 LU35. Astrometry with HST enables both current and future critical accuracy improvements for orbit precision, required for possible New Horizons observations, beyond what can be obtained from the ground. Photometric colors of all three objects are red, typical of the Cold Classical dynamical population within which they reside; they are also the faintest KBOs to have had their colors measured. None are observed to be binary with HST above separations of approx. 0.02 arcsec (approx. 700 km at 44 AU) and delta m less than or equal to 0.5.

  1. Astronaut Kathryn Thornton during second HST extravehicular activity

    NASA Image and Video Library

    1993-12-06

    STS061-95-028 (6 Dec 1993) --- Astronaut Kathryn C. Thornton, on the end of the Space Shuttle Endeavour's Remote Manipulator System (RMS) arm, hovers over equipment associated with servicing chores on the Hubble Space Telescope (HST) during the second extravehicular activity (EVA) on the eleven-day mission. Astronauts Thornton and Thomas D. Akers changed out the solar array panels during this EVA.

  2. HST PSF simulation using Tiny Tim

    NASA Technical Reports Server (NTRS)

    Krist, J. E.

    1992-01-01

    Tiny Tim is a program which simulates Hubble Space Telescope imaging camera PSF's. It is portable (written and distributed in C) and is reasonably fast. It can model the WFPC, WFPC 2, FOC, and COSTAR corrected FOC cameras. In addition to aberrations such as defocus and spherical, it also includes WFPC obscuration shifting, mirror zonal error maps, and jitter. The program has been used at a number of sites for deconvolving HST images. Tiny Tim is available via anonymous ftp on stsci.edu in the directory software/tinytim.

  3. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1969-01-01

    This image of the Egg Nebula, also known as CRL-2688 and located roughly 3,000 light-years from us, was taken in red light with the Wide Field Planetary Camera 2 (WF/PC2) aboard the Hubble Space Telescope (HST). The image shows a pair of mysterious searchlight beams emerging from a hidden star, crisscrossed by numerous bright arcs. This image sheds new light on the poorly understood ejection of stellar matter that accompanies the slow death of Sun-like stars. The image is shown in false color.

  4. Testing Metal-Poor Stellar Models and Isochrones with HST Parallaxes of Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Chaboyer, B.; McArthur, B. E.; O'Malley, E.; Benedict, G. F.; Feiden, G. A.; Harrison, T. E.; McWilliam, A.; Nelan, E. P.; Patterson, R. J.; Sarajedini, A.

    2017-02-01

    Hubble Space Telescope (HST) fine guidance sensor observations were used to obtain parallaxes of eight metal-poor ([Fe/H] < -1.4) stars. The parallaxes of these stars determined by the new Hipparcos reduction average 17% accuracy, in contrast to our new HST parallaxes, which average 1% accuracy and have errors on the individual parallaxes ranging from 85 to 144 μas. These parallax data were combined with HST Advanced Camera for Surveys photometry in the F606W and F814W filters to obtain the absolute magnitudes of the stars with an accuracy of 0.02-0.03 mag. Six of these stars are on the main sequence (MS) (with -2.7 < [Fe/H] < -1.8) and are suitable for testing metal-poor stellar evolution models and determining the distances to metal-poor globular clusters (GCs). Using the abundances obtained by O’Malley et al., we find that standard stellar models using the VandenBerg & Clem color transformation do a reasonable job of matching five of the MS stars, with HD 54639 ([Fe/H] = -2.5) being anomalous in its location in the color-magnitude diagram. Stellar models and isochrones were generated using a Monte Carlo analysis to take into account uncertainties in the models. Isochrones that fit the parallax stars were used to determine the distances and ages of nine GCs (with -2.4 ≤ [Fe/H] ≤ -1.9). Averaging together the age of all nine clusters led to an absolute age of the oldest, most metal-poor GCs of 12.7 ± 1.0 Gyr, where the quoted uncertainty takes into account the known uncertainties in the stellar models and isochrones, along with the uncertainty in the distance and reddening of the clusters.

  5. Charge transfer efficiency in HST WFC3/UVIS: monitoring and mitigation

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia M.; Anderson, Jay; Sosey, Megan L.; Bourque, Matthew; Martlin, Catherine; Kurtz, Heather; Shanahan, Clare; Kozhurina-Platais, Vera; Sabbi, Elena; WFC3 Team

    2017-01-01

    The UVIS channel of the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) contains a 4096x4096 pixel e2v CCD array. The detectors have been performing well on-orbit but as expected, are exhibiting the cumulative effects of radiation damage. The result is a growing hot pixel population and declining charge transfer efficiency. We summarize the progression of the CTE losses, their effects on science data, and discuss two of the primary mitigation options: post-flash and a pixel-based CTE correction. The latter is now part of the automated WFC3 calibration pipeline in the Mikulski Archive for Space Telescopes (MAST), providing observers with both standard and CTE-corrected data products.

  6. Homogentisate solanesyl transferase (HST) cDNA’s in maize

    USDA-ARS?s Scientific Manuscript database

    Maize white seedling 3 (w3) has served as a model albino-seedling mutant since its discovery in 1923. We show that the w3 phenotype is caused by disruptions in homogentisate solanesyl transferase (HST), an enzyme that catalyzes the committed step in plastoquinone-9 (PQ9) biosynthesis. This reaction ...

  7. Asteroidal companions in the visible: HST data

    NASA Astrophysics Data System (ADS)

    Storrs, Alex; Vilas, Faith; Landis, Rob; Gaffey, Michael J.; Makhoul, Khaldoun; Davis, MIke; Richmond, Mike

    2016-01-01

    We present a reanalysis of HST images of five asteroids with known companions (45 Eugenia, 87 Sylvia, 93 Minerva, 107 Camilla, 121 Hermione). It is remarkable that all of these companion bodies are much redder in the visible region than their primary bodies. Storrs et al. (2009, BAAS vol. 41, no. 4, p 189) attributed this to space weathering, however, all of these bodies belong to dark C- or X-type groups. Current modeling of space weathering effects are limited to bright asteroids (e.g. Cloutis et al., Icarus 252, pp. 39-82, 2015) and show little change on the scale reported here. We suggest that the interaction of dark, possibly organic-rich surfaces with the solar wind produces reddening on a much greater scale than is observed in bright, silica-rich surfaces, and that this effect is easily reset by collisions. Thus, while both the parent and companion object accumulate the effects, the parent is much more likely to be "reset" by small collisions than the companion, due to the differences in their cross-sections.

  8. Observer's Interface for Solar System Target Specification

    NASA Astrophysics Data System (ADS)

    Roman, Anthony; Link, Miranda; Moriarty, Christopher; Stansberry, John A.

    2016-10-01

    When observing an asteroid or comet with HST, it has been necessary for the observer to manually enter the target's orbital elements into the Astronomer's Proposal Tool (APT). This allowed possible copy/paste transcription errors from the observer's source of orbital elements data. In order to address this issue, APT has now been improved with the capability to identify targets in and then download orbital elements from JPL Horizons. The observer will first use a target name resolver to choose the intended target from the Horizons database, and then download the orbital elements from Horizons directly into APT. A manual entry option is also still retained if the observer does not wish to use elements from Horizons. This new capability is available for HST observing, and it will also be supported for JWST observing. The poster shows examples of this new interface.

  9. Observer's Interface for Solar System Target Specification

    NASA Astrophysics Data System (ADS)

    Roman, Anthony; Link, Miranda; Moriarty, Christopher; Stansberry, John A.

    2016-01-01

    When observing an asteroid or comet with HST, it has been necessary for the observer to manually enter the target's orbital elements into the Astronomer's Proposal Tool (APT). This allowed possible copy/paste transcription errors from the observer's source of orbital elements data. In order to address this issue, APT has now been improved with the capability to identify targets in and then download orbital elements from JPL Horizons. The observer will first use a target name resolver to choose the intended target from the Horizons database, and then download the orbital elements from Horizons directly into APT. A manual entry option is also still retained if the observer does not wish to use elements from Horizons. This new capability is available for HST observing, and it will also be supported for JWST observing. The poster shows examples of this new interface.

  10. Human HST1 (HSTF1) gene maps to chromosome band 11q13 and coamplifies with the INT2 gene in human cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Michihiro C.; Wada, Makio; Satoh, Hitoshi

    1988-07-01

    The human HST1 gene, previously designated the hst gene, and now assigned the name HSTF1 for heparin-binding secretory transforming factor in human gene nomenclature, was originally identified as a transforming gene in DNAs from human stomach cancers by transfection assay with mouse NIH 3T3 cells. The amino acid sequence of the product deduced from DNA sequences of the HST1 cDNA and genomic clones had approximately 40% homology to human basic and acidic fibroblast growth factors and mouse Int-2-encoded protein. The authors have mapped the human HST1 gene to chromosome 11 at band q13.3 by Southern blot hybridization analysis of amore » panel of human and mouse somatic cell hybrids and in situ hybridization with an HST1 cDNA probe. The HST1 gene was found to be amplified in DNAs obtained from a stomach cancer and a vulvar carcinoma cell line, A431. In all of these samples of DNA, the INT2 gene, previously mapped to human chromosome 11q13, was also amplified to the same degree as the HST1 gene.« less

  11. An hourglass model for the flare of HST-1 in M87

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wen-Po; Zhao, Guang-Yao; Chen, Yong Jun

    To explain the multi-wavelength light curves (from radio to X-ray) of HST-1 in the M87 jet, we propose an hourglass model that is a modified two-zone system of Tavecchio and Ghisellini (hereafter TG08): a slow hourglass-shaped or Laval-nozzle-shaped layer connected by two revolving exponential surfaces surrounding a fast spine through which plasma blobs flow. Based on the conservation of magnetic flux, the magnetic field changes along the axis of the hourglass. We adopt the result of TG08—the high-energy emission from GeV to TeV can be produced through inverse Compton by the two-zone system, and the photons from radio to X-raymore » are mainly radiated by the fast inner zone system. Here, we only discuss the light curves of the fast inner blob from radio to X-ray. When a compressible blob travels down the axis of the first bulb in the hourglass, because of magnetic flux conservation, its cross section experiences an adiabatic compression process, which results in particle acceleration and the brightening of HST-1. When the blob moves into the second bulb of the hourglass, because of magnetic flux conservation, the dimming of the knot occurs along with an adiabatic expansion of its cross section. A similar broken exponential function could fit the TeV peaks in M87, which may imply a correlation between the TeV flares of M87 and the light curves from radio to X-ray in HST-1. The Very Large Array (VLA) 22 GHz radio light curve of HST-1 verifies our prediction based on the model fit to the main peak of the VLA 15 GHz radio one.« less

  12. 3D-HST Grism Spectroscopy of a Gravitationally Lensed, Low-metallicity Starburst Galaxy at z = 1.847

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel B.; Sánchez-Janssen, Rubén; Labbé, Ivo; da Cunha, Elisabete; Erb, Dawn K.; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Marchesini, Danilo; Momcheva, Ivelina; Nelson, Erica; Patel, Shannon; Quadri, Ryan; Rix, Hans-Walter; Skelton, Rosalind E.; Schmidt, Kasper B.; van der Wel, Arjen; van Dokkum, Pieter G.; Wake, David A.; Whitaker, Katherine E.

    2012-10-01

    We present Hubble Space Telescope (HST) imaging and spectroscopy of the gravitational lens SL2SJ02176-0513, a cusp arc at z = 1.847. The UV continuum of the lensed galaxy is very blue, which is seemingly at odds with its redder optical colors. The 3D-HST WFC3/G141 near-infrared spectrum of the lens reveals the source of this discrepancy to be extremely strong [O III] λ5007 and Hβ emission lines with rest-frame equivalent widths of 2000 ± 100 and 520 ± 40 Å, respectively. The source has a stellar mass ~108 M ⊙, sSFR ~ 100 Gyr-1, and detection of [O III] λ4363 yields a metallicity of 12 + log (O/H) = 7.5 ± 0.2. We identify local blue compact dwarf analogs to SL2SJ02176-0513, which are among the most metal-poor galaxies in the Sloan Digital Sky Survey. The local analogs resemble the lensed galaxy in many ways, including UV/optical spectral energy distribution, spatial morphology, and emission line equivalent widths and ratios. Common to SL2SJ02176-0513 and its local counterparts is an upturn at mid-IR wavelengths likely arising from hot dust heated by starbursts. The emission lines of SL2SJ02176-0513 are spatially resolved owing to the combination of the lens and the high spatial resolution of HST. The lensed galaxy is composed of two clumps with combined size re ~300 pc, and we resolve significant differences in UV color and emission line equivalent width between them. Though it has characteristics occasionally attributed to active galactic nuclei, we conclude that SL2SJ02176-0513 is a low-metallicity star-bursting dwarf galaxy. Such galaxies will be found in significant numbers in the full 3D-HST grism survey. Based on observations made with the NASA/ESA Hubble Space Telescope, program 12328, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  13. Cardiac Complications, Earlier Treatment, and Initial Disease Severity in Kawasaki Disease.

    PubMed

    Abrams, Joseph Y; Belay, Ermias D; Uehara, Ritei; Maddox, Ryan A; Schonberger, Lawrence B; Nakamura, Yosikazu

    2017-09-01

    To assess if observed higher observed risks of cardiac complications for patients with Kawasaki disease (KD) treated earlier may reflect bias due to confounding from initial disease severity, as opposed to any negative effect of earlier treatment. We used data from Japanese nationwide KD surveys from 1997 to 2004. Receipt of additional intravenous immunoglobulin (IVIG) (data available all years) or any additional treatment (available for 2003-2004) were assessed as proxies for initial disease severity. We determined associations between earlier or later IVIG treatment (defined as receipt of IVIG on days 1-4 vs days 5-10 of illness) and cardiac complications by stratifying by receipt of additional treatment or by using logistic modeling to control for the effect of receiving additional treatment. A total of 48 310 patients with KD were included in the analysis. In unadjusted analysis, earlier IVIG treatment was associated with a higher risk for 4 categories of cardiac complications, including all major cardiac complications (risk ratio, 1.10; 95% CI, 1.06-1.15). Stratifying by receipt of additional treatment removed this association, and earlier IVIG treatment became protective against all major cardiac complications when controlling for any additional treatment in logistic regressions (OR, 0.90; 95% CI, 0.80-1.00). Observed higher risks of cardiac complications among patients with KD receiving IVIG treatment on days 1-4 of the illness are most likely due to underlying higher initial disease severity, and patients with KD should continue to be treated with IVIG as early as possible. Published by Elsevier Inc.

  14. HST Solar Arrays photographed by Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This view, backdropped against the blackness of space shows one of two original Solar Arrays (SA) on the Hubble Space Telescope (HST). The scene was photographed with an Electronic Still Camera (ESC), and downlinked to ground controllers soon afterward. Electronic still photography is a technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  15. Flight Results from the HST SM4 Relative Navigation Sensor System

    NASA Technical Reports Server (NTRS)

    Naasz, Bo; Eepoel, John Van; Queen, Steve; Southward, C. Michael; Hannah, Joel

    2010-01-01

    On May 11, 2009, Space Shuttle Atlantis roared off of Launch Pad 39A enroute to the Hubble Space Telescope (HST) to undertake its final servicing of HST, Servicing Mission 4. Onboard Atlantis was a small payload called the Relative Navigation Sensor experiment, which included three cameras of varying focal ranges, avionics to record images and estimate, in real time, the relative position and attitude (aka "pose") of the telescope during rendezvous and deploy. The avionics package, known as SpaceCube and developed at the Goddard Space Flight Center, performed image processing using field programmable gate arrays to accelerate this process, and in addition executed two different pose algorithms in parallel, the Goddard Natural Feature Image Recognition and the ULTOR Passive Pose and Position Engine (P3E) algorithms

  16. AO 0235+164 and Surrounding Field: Surprising HST Results

    NASA Technical Reports Server (NTRS)

    Burbidge, E. M.; Beaver, E. A.; Cohen, Ross D.; Junkkarinen, V. T.; Lyons, R. W.

    1996-01-01

    Results obtained with the Hubble Space Telescope on the highly variable radio, x-ray, and gamma-ray emitting QSO (or BL Lac object) AO 0235 + 164 are presented and analyzed. WFPC2 images were obtained in 1994 June, when AO 0235 + 164 was bright (m approx. 17), and the results are described in Sec. 3. After subtraction of the PSF of the QSO, hereafter called AO following the nomenclature of Yanny et al. (1989), the companion object named A, 2 sec south of AO, is discovered not to be an elliptical galaxy as hypothesized earlier, but to be an AGN object, with a central UV-bright point-source nucleus and faint surrounding nebulosity extending to AO. The second companion object 1.3 sec east of AO discovered by Yanny et al. (1989) and named object Al, appears more like a normal spiral galaxy. We have measured the positions, luminosities, and colors of some 30 faint objects in the field around AO 0235 + 16; most are extended and may be star-forming galaxies in a loose group or cluster. Our most surprising result of the HST observations comes from FOS spectra obtained in 1995 July, discussed in Sec. 4. Because of a positioning error of the telescope and AO's faintness at that time (m approx. 20), object A was observed instead of the intended target AO. Serendipitously, we discovered A to have broad deep BALQSO-type absorptions of C IV, Si IV, N V shortward of broad emissions. A is thus ejecting high velocity, highly ionized gas into the surrounding IGM. We discuss in Sec. 5 the relationship of the objects in the central 10 sec X 1O sec region around AO, where redshifts z(sub e) = 0.94, z(sub a) = 0.524, 0.851 in AO, (sub e) = 0.524 and Z(sub BAL)=0.511 in A, are found. We hypothesize that some of the 30 faint objects in the 77 sec. x 77 sec. field may be part of a large star-forming region at z approx. 0.5, as suggested for a few objects by Yanny et al. (1989). The proximity of two highly active extragalactic objects, AO 0235+164 and its AGN companion A, is remarkable and

  17. An HST Survey of Intermediate Luminosity X-ray Objects

    NASA Astrophysics Data System (ADS)

    Roye, E. W.; Colbert, E. J. M.; Heckman, T.; Ptak, R. F.; van der Marel, R. P.

    2003-03-01

    We searched for optical counterparts to 54 Intermediate-luminosity X-ray Objects (IXOs, a.k.a. ULXs) using HST WFPC2 archive data, and have uncovered a high yield of intriguing possible correlations. A total of 124 IXOs were identified from searching all of the Chandra ACIS archival galaxy data as of July 17, 2002. Archival WFPC2 data were available for 54 of these IXOs. The optical data utilized in this study consisted of 121 HST WFPC2 associations (stacked images). We will discuss the various methods used to register the HST WFPC2 images with the Chandra X-ray images. Our preliminary analysis indicates that 37 ( ˜70%) of the 54 IXOs have at least one 4 sigma counterpart within 1" of the IXO position, and ˜25% have unique counterparts (mostly in elliptical galaxies). The detection limit of the counterparts was typically 24-25 magnitudes in B, V, and R. The absolute magnitudes of many of the found counterparts appeared to correspond roughly to either the expected magnitudes for globular clusters, or the expected magnitudes for the brightest stars. Initial results illustrate that of the 37 IXOs with counterparts, 25 ( ˜70%) were in spiral, irregular, and merger galaxies, where the counterparts were often diffuse or clump-like sources. The counterparts found in elliptical galaxies were primarily single luminous point-sources, most likely globular clusters. We will discuss the results of color analysis for fields where counterparts in multiple bands exist, particularly for cases where a single counterpart is found. A preliminary finding in elliptical galaxies is that globular clusters associated with IXOs tend to be red, suggesting that IXOs are not found in metal-poor globular clusters.

  18. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1996-01-16

    Taken by the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope (HST), this image of MyCn18, a young planetary nebula located about 8,000 light-years away, reveals its true shape to be an hourglass with an intricate pattern of "etchings" in its walls. The arc-like etchings could be the remnants of discrete shells ejected from the star when it was younger, flow instabilities, or could result from the action of a narrow beam of matter impinging on the hourglass walls. According to one theory on the formation of planetary nebulae, the hourglass shape is produced by the expansion of a fast stellar wind within a slowly expanding cloud, which is denser near its equator than near its poles. Hubble has also revealed other features in MyCn18 which are completely new and unexpected. For example, there is a pair of intersecting elliptical rings in the central region which appear to be the rims of a smaller hourglass. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green) and doubly-ionized oxygen (blue). The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of sun-like stars. An unseen companion star and accompanying gravitational effects may well be necessary in order to explain the structure of MyCn18. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  19. HST Proper Motions of Distant Globular Clusters: Constraining the Formation & Mass of the Milky Way

    NASA Astrophysics Data System (ADS)

    Sohn, S. Tony; van der Marel, Roeland P.; Deason, Alis; Bellini, Andrea; Besla, Gurtina; Watkins, Laura

    2018-04-01

    Proper motions (PMs) are required to calculate accurate orbits of globular clusters (GCs) in the Milky Way (MW) halo. We present our HST program to create a PM database for 20 GCs at distances of R GC = 10-100 kpc. Targets are discussed along with PM measurement methods. We also describe how our PM results can be used for Gaia as an external check, and discuss the synergy between HST and Gaia as astrometric instruments in the coming years.

  20. HST/COS Observations of the UV-Bright Star Y453 in the Globular Cluster M4 (NGC 6121)

    NASA Astrophysics Data System (ADS)

    Dixon, William V.; Chayer, Pierre; Benjamin, Robert A.

    2016-01-01

    Post-AGB stars represent a short-lived phase of stellar evolution during which stars cross the optical color-magnitude diagram from the cool, red tip of the assymptotic giant branch (AGB) to the hot, blue tip of the white-dwarf cooling curve. Their surface chemistry reflects the nuclear-shell burning, mixing, and mass-loss processes characteristic of AGB stars, and their high effective temperatures allow the detection of elements that are unobservable in cool giants. Post-AGB stars in globular clusters offer the additional advantages of known distance, age, and initial chemistry. To better understand the AGB evolution of low-mass stars, we have observed the post-AGB star Y453 in the globular cluster M4 (NGC 6121) with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope. The star, which has an effective temperature of at least 60,000 K, shows absorption from He, C, N, O, Ne, Si, S, Ti, Cr, Mn, Fe, Co, Ni, and Ga. While the star's C and O abundances are consistent with those measured in a sample of nitrogen-poor RGB stars in M4, its N abundance is considerably enhanced. The star's low C abundance suggests that it left the AGB before the onset of third dredge-up.This work was supported by NASA grant HST-GO-13721.001-A to the University of Wisconsin, Whitewater. P.C. is supported by the Canadian Space Agency under a contract with NRC Herzberg Astronomy and Astrophysics.

  1. Image inversion analysis of the HST OTA (Hubble Space Telescope Optical Telescope Assembly), phase A

    NASA Technical Reports Server (NTRS)

    Litvak, M. M.

    1991-01-01

    Technical work during September-December 1990 consisted of: (1) analyzing HST point source images obtained from JPL; (2) retrieving phase information from the images by a direct (noniterative) technique; and (3) characterizing the wavefront aberration due to the errors in the Hubble Space Telescope (HST) mirrors, in a preliminary manner. This work was in support of JPL design of compensating optics for the next generation wide-field planetary camera on HST. This digital technique for phase retrieval from pairs of defocused images, is based on the energy transport equation between these image planes. In addition, an end-to-end wave optics routine, based on the JPL Code 5 prescription of the unaberrated HST and WFPC, was derived for output of the reference phase front when mirror error is absent. Also, the Roddier routine unwrapped the retrieved phase by inserting the required jumps of +/- 2(pi) radians for the sake of smoothness. A least-squares fitting routine, insensitive to phase unwrapping, but nonlinear, was used to obtain estimates of the Zernike polynomial coefficients that describe the aberration. The phase results were close to, but higher than, the expected error in conic constant of the primary mirror suggested by the fossil evidence. The analysis of aberration contributed by the camera itself could be responsible for the small discrepancy, but was not verified by analysis.

  2. Safety divers prepare HST mockup in the Neutral Buoyancy Simulator at MSFC

    NASA Image and Video Library

    1993-06-01

    Safety divers in the Neutral Buoyancy Simulator (NBS) at the Marshall Space Flight Center (MSFC) prepare a mockup of the Hubble Space Telescope (HST) for one of 32 separate training sessions conducted by four of the STS-61 crew members in June. The three-week process allowed mission trainers to refine the timelines for the five separate spacewalks scheduled to be conducted on the actual mission scheduled for December 1993. The HST is separated into two pieces since the water tank depth cannot support the entire structure in one piece. The full length payload bay mockup shows the Solar Array Carrier in the foreground and the various containers that will house replacement hardware that will be carried on the mission.

  3. Re-Engineering of the Hubble Space Telescope (HST) to Reduce Operational Costs

    NASA Technical Reports Server (NTRS)

    Garvis, Michael; Dougherty, Andrew; Whittier, Wallace

    1996-01-01

    Satellite telemetry processing onboard the Hubble Space Telescope (HST) is carried out using dedicated software and hardware. The current ground system is expensive to operate and maintain. The mandate to reduce satellite ground system operations and maintenance costs by the year 2000 led NASA to upgrade the command and control systems in order to improve the data processing capabilities, reduce operator experience levels and increase system standardization. As a result, a command and control system product development team was formed to redesign and develop the HST ground system. The command and control system ground system development consists of six elements. The results of the prototyping phase carried out for the following of these elements are presented: the front end processor; middleware, and the graphical user interface.

  4. HST/WFC3: Understanding and Mitigating Radiation Damage Effects in the CCD Detectors

    NASA Astrophysics Data System (ADS)

    Baggett, S.; Anderson, J.; Sosey, M.; MacKenty, J.; Gosmeyer, C.; Noeske, K.; Gunning, H.; Bourque, M.

    2015-09-01

    At the heart of the Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) UVIS channel resides a 4096x4096 pixel e2v CCD array. While these detectors are performing extremely well after more than 5 years in low-earth orbit, the cumulative effects of radiation damage cause a continual growth in the hot pixel population and a progressive loss in charge transfer efficiency (CTE) over time. The decline in CTE has two effects: (1) it reduces the detected source flux as the defects trap charge during readout and (2) it systematically shifts source centroids as the trapped charge is later released. The flux losses can be significant, particularly for faint sources in low background images. Several mitigation options exist, including target placement within the field of view, empirical stellar photometric corrections, post-flash mode and an empirical pixel-based CTE correction. The application of a post-flash has been remarkably effective in WFC3 at reducing CTE losses in low background images for a relatively small noise penalty. Currently all WFC3 observers are encouraged to post-flash images with low backgrounds. Another powerful option in mitigating CTE losses is the pixel-based CTE correction. Analagous to the CTE correction software currently in use in the HST Advanced Camera for Surveys (ACS) pipeline, the algorithm employs an empirical observationally-constrained model of how much charge is captured and released in order to reconstruct the image. Applied to images (with or without post-flash) after they are acquired, the software is currently available as a standalone routine. The correction will be incorporated into the standard WFC3 calibration pipeline.

  5. Synergy with HST and JWST Data Management Systems

    NASA Astrophysics Data System (ADS)

    Greene, Gretchen; Space Telescope Data Management Team

    2014-01-01

    The data processing and archive systems for the JWST will contain a petabyte of science data and the best news is that users will have fast access to the latest calibrations through a variety of new services. With a synergistic approach currently underway with the STScI science operations between the Hubble Space Telescope and James Webb Space Telescope data management subsystems (DMS), operational verification is right around the corner. Next year the HST archive will provide scientists on-demand fully calibrated data products via the Mikulski Archive for Space Telescopes (MAST), which takes advantage of an upgraded DMS. This enhanced system, developed jointly with the JWST DMS is based on a new CONDOR distributed processing system capable of reprocessing data using a prioritization queue which runs in the background. A Calibration Reference Data System manages the latest optimal configuration for each scientific instrument pipeline. Science users will be able to search and discover the growing MAST archive calibrated datasets from these missions along with the other multiple mission holdings both local to MAST and available through the Virtual Observatory. JWST data systems will build upon the successes and lessons learned from the HST legacy and move us forward into the next generation of multi-wavelength archive research.

  6. Hubble Space Telescope Observations of Variations in Ganymede's Oxygen Atmosphere and Aurora

    NASA Astrophysics Data System (ADS)

    Molyneux, P. M.; Nichols, J. D.; Bannister, N. P.; Bunce, E. J.; Clarke, J. T.; Cowley, S. W. H.; Gérard, J.-C.; Grodent, D.; Milan, S. E.; Paty, C.

    2018-05-01

    We present high-sensitivity Hubble Space Telescope (HST) Cosmic Origins Spectrograph and HST Space Telescope Imaging Spectrograph measurements of atmospheric OI 130.4-nm and OI] 135.6-nm emissions at Ganymede, which exhibit significant spatial and temporal variability. These observations represent the first observations of Ganymede using HST Cosmic Origins Spectrograph and of both the leading and trailing hemispheres within a single HST campaign, minimizing the potential influence of long-term changes in the Jovian plasma sheet or in Ganymede's atmosphere on the comparison of the two hemispheres. The mean disk-averaged OI] 135.6-nm/OI 130.4-nm observed intensity ratio was 2.72 ± 0.57 on the leading hemisphere and 1.42 ± 0.16 on the trailing hemisphere. The observed leading hemisphere ratios are consistent with an O2 atmosphere, but we show that an atomic oxygen component of 10% is required to produce the observed trailing hemisphere ratios. The excess 130.4-nm emission on the trailing hemisphere relative to that expected for an O2 atmosphere was 11 R. The O column density required to produce this excess is determined based on previous estimates of the electron density and temperature at Ganymede and exceeds the limit for an optically thin atmosphere. The implication that the O atmosphere is optically thick may be investigated in future by observing Ganymede as it moves into eclipse or by determining the ratio of the individual components within the 130.4-nm triplet.

  7. First Results from HST19 GO12600: CNO Abundances in Seven Milky Way Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Kwitter, Karen B.; Dufour, Reginald J.; Shaw, Richard A.; Henry, Richard B. C.; Balick, Bruce; Corradi, Romano

    2014-06-01

    In HST Cycle 19 we observed 10 Milky Way planetary nebulae (PNe) from 1150-10270Å with STIS to obtain accurate abundances of carbon, nitrogen and oxygen. The ultimate goal of the project is to assess carbon production in the low-to-intermediate-mass (LIMS) progenitors of PNe with near-solar metallicity 0.5-1.2 x solar), but varying N/O 0.1-3), comparing observational data with theoretical models of carbon yields. Seven of our objects had data of sufficient quality to allow good empirical abundance determinations: IC2165, IC3568, NGC2440, NGC3242, NGC5315, NGC5882, and NGC7662. Each PN was observed with seven grating setting combinations with identical slit positions and slit sizes across the entire UV-optical spectral region. We created one-dimensional spectra from the two-dimensional STIS spectral images, taking care to extract the identical spatial region from each spectrum for a given object. This was done to produce one-dimensional spectral lines integrated along the slit, resulting in the highest signal-to-noise measurements for analysis. We measured line fluxes with IRAF and calculated nebular diagnostics and abundances with ELSA. The crucial value in using STIS is the ability to observe the ultraviolet lines of important CNO ions with higher signal-to-noise than in previous studies. In all objects we detected lines of C+, C+2, and C+3. We also detected N+ and N+4 in all objects; in four of the seven we also detected N+2 and N+3. We will present these data and compare them with previous determinations and analyses (largely from the old IUE datasets and studies). We gratefully acknowledge support from HST and from Williams College.

  8. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Dr. Amber Straughn, Lead Scientist for James Webb Space Telescope Education & Public Outreach at NASA's Goddard Space Flight Center, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014 Photo Credit: (NASA/Joel Kowsky)

  9. HST Solar Arrays photographed by Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This medium close-up view of one of two original Solar Arrays (SA) on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and downlinked to ground controllers soon afterward. This view shows the cell side of the minus V-2 panel. Electronic still photography is a technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  10. Thermal Performance of the Hubble Space Telescope (HST) Solar Array-3 During the Disturbance Verification Test (DVT)

    NASA Technical Reports Server (NTRS)

    Nguyen, Daniel H.; Skladany, Lynn M.; Prats, Benito D.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    The Hubble Space Telescope (HST) is one of NASA's most productive astronomical observatories. Launched in 1990, the HST continues to gather scientific data to help scientists around the world discover amazing wonders of the universe. To maintain HST in the fore front of scientific discoveries, NASA has routinely conducted servicing missions to refurbish older equipment as well as to replace existing scientific instruments with better, more powerful instruments. In early 2002, NASA will conduct its fourth servicing mission to the HST. This servicing mission is named Servicing Mission 3B (SM3B). During SM3B, one of the major refurbishment efforts will be to install new rigid-panel solar arrays as a replacement for the existing flexible-foil solar arrays. This is necessary in order to increase electrical power availability for the new scientific instruments. Prior to installing the new solar arrays on HST, the HST project must be certain that the new solar arrays will not cause any performance degradations to the observatory. One of the major concerns is any disturbance that can cause pointing Loss of Lock (LOL) for the telescope. While in orbit, the solar-array temperature transitions quickly from sun to shadow. The resulting thermal expansion and contraction can cause a "mechanical disturbance" which may result in LOL. To better characterize this behavior, a test was conducted at the European Space Research and Technology Centre (ESTEC) in the Large Space Simulator (LSS) thermal-vacuum chamber. In this test, the Sun simulator was used to simulate on-orbit effects on the solar arrays. This paper summarizes the thermal performance of the Solar Array-3 (SA3) during the Disturbance Verification Test (DVT). The test was conducted between 26 October 2000 and 30 October 2000. Included in this paper are: (1) brief description of the SA3's components and its thermal design; (2) a summary of the on-orbit temperature predictions; (3) pretest thermal preparations; (4) a

  11. Interpreting HST observations with simulations of reionization: the ionizing photon budget and the decline of Lyman-alpha emission in z>6 dropouts

    NASA Astrophysics Data System (ADS)

    D'Aloisio, Anson

    2017-08-01

    In recent years, HST surveys such as CANDELS, HUDF, BoRG/HIPPIES, ERS, and the Frontier Fields, have made possible the first robust measurements of the rest-frame UV luminosity function of z =6-10 galaxies, spanning much of the redshift range over which reionization likely occurred. These measurements provide an estimate of the galactic ionizing photon output, addressing the critical question of whether these galaxies could have reionized the Universe. In addition, follow-up spectroscopy has measured the fraction of these galaxies that show Lyman-alpha emission. Interestingly, a dramatic decrease in this fraction above z 6 has been observed, and this evolution has (controversially) been interpreted as evidence that much of reionization happened over z=6-8 (as intergalactic neutral gas leads to large damping wings that scatter the Lyman-alpha line). The clumpiness of the IGM and how it self shields to ionizing photons impacts whether the observed population of galaxies can reionize the Universe, as well as the interpretation of the evolving Lyman-alpha emitter fraction. We propose to run fully coupled radiative-hydrodynamics simulations that are the first to resolve the evaporation of small structures by passing ionization fronts and, hence, to accurately assess the level of clumpiness and self-shielding from the IGM. Our study will nail down the clumping factor used to assess whether the observed population of galaxies can drive reionization, and it will address whether neutral self-shielding clumps in recently reionized regions can scatter galaxies' Lyman-alpha lines.

  12. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1997-09-08

    This NASA Hubble Space Telescope (HST) image of the Trifid Nebula reveals a stellar nursery being torn apart by a nearby massive star. Embryonic stars are forming within an ill-fated cloud of dust and gas, which is destined to be eaten away by the glare from the massive neighbor. The cloud is about 8 light years away from the nebula' s central star. This stellar activity is a beautiful example of how the life cycle of stars like our Sun is intimately cornected with their more powerful siblings. Residing in the constellation Sagittarius, the Trifid Nebula is about 9,000 light years from Earth.

  13. Design and simulation of EVA tools and robot end effectors for servicing missions of the HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1995-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the Space Shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A Space Shuttle repair mission in January 1994 installed small corrective mirrors that restored the full intended optical capability of the HST. A Second Servicing Mission (SM2) scheduled in 1997 will involve considerable Extra Vehicular Activity (EVA). To reduce EVA time, the addition of robotic capability in the remaining servicing missions has been proposed. Toward that end, two concept designs for a general purpose end effector for robots are presented in this report.

  14. Lessons learned in setting up and running the European copy of HST archive

    NASA Astrophysics Data System (ADS)

    Pirenne, Benoit; Benvenuti, P.; Albrecht, Rudolf; Rasmussen, B. F.

    1993-11-01

    The endeavour of Hubble Space Telescope (HST) proved once more that arguments such as high costs, extremely long preparation time, inherent total failure risks, limited life time and high over-subscription rates make each scientific space mission almost always a unique event. The above arguments immediately point to the need for storing all the data produced by spacecraft in a short time for the scientific community to re-use in the long term. This calls for the organization of science archives. Together with the Space Telescope Science Institute, the European Coordinating Facility developed an archive system for the HST data. This paper is about the experience gained in setting up and running the European HST Science Data Archive system. Organization, cost versus scientific return and acceptance by the scientists are among the aspects that will be covered. In particular, we will insist on the 'four-pillar' structure principle that all archive centers should have. Namely: a user interface, a catalogue accurately describing the content of the archive, the human scientific expertise and of course the data. Long term prospects and problems due to technology changes will be evaluated and solutions will be proposed. The adaptability of the system described to other scientific space missions our ground-based observatories will be discussed.

  15. WFIRST Microlensing Exoplanet Characterization with HST Follow up

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Aparna; David Bennett, Jay Anderson, J.P. Beaulieu.

    2018-01-01

    More than 50 planets are discovered with the different ground based telescopes available for microlensing. But the analysis of ground based data fails to provide a complete solution. To fulfill that gap, space based telescopes, like Hubble space telescope and Spitzer are used. My research work focuses on extracting the planet mass, host star mass, their separation and their distance in physical units from HST Follow-up observations. I will present the challenges faced in developing this method.This is the primary method to be used for NASA's top priority project (according to 2010 decadal survey) Wide Field InfraRed Survey Telescope (WFIRST) Exoplanet microlensing space observatory, to be launched in 2025. The unique ability of microlensing is that with WFIRST it can detect sub-earth- mass planets beyond the reach of Kepler at separation 1 AU to infinity. This will provide us the necessary statistics to study the formation and evolution of planetary systems. This will also provide us with necessary initial conditions to model the formation of planets and the habitable zones around M dwarf stars.

  16. KENNEDY SPACE CENTER, FLA. - STS-82 crew members and workers at KSC's Vertical Processing Facility get a final look at the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in its flight configuration for the STS-82 mission. The crew is participating in the Crew Equipment Integration Test (CEIT). NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument - its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is scheduled Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-22

    KENNEDY SPACE CENTER, FLA. - STS-82 crew members and workers at KSC's Vertical Processing Facility get a final look at the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in its flight configuration for the STS-82 mission. The crew is participating in the Crew Equipment Integration Test (CEIT). NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument - its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is scheduled Feb. 11 aboard Discovery with a crew of seven.

  17. Resolving the Inner Arcsecond of the RY Tau Jet with HST

    NASA Astrophysics Data System (ADS)

    Skinner, Stephen L.; Schneider, P. Christian; Audard, Marc; Güdel, Manuel

    2018-03-01

    Faint X-ray emission from hot plasma (T x > 106 K) has been detected extending outward a few arcseconds along the optically delineated jets of some classical T Tauri stars including RY Tau. The mechanism and location where the jets are heated to X-ray temperatures are unknown. We present high spatial resolution Hubble Space Telescope (HST) far-ultraviolet long-slit observations of RY Tau with the slit aligned along the jet. The primary objective was to search for C IV emission from warm plasma at T C IV ∼ 105 K within the inner jet (<1″) that cannot be fully resolved by X-ray telescopes. Spatially resolved C IV emission is detected in the blueshifted jet extending outward from the star to 1″ and in the redshifted jet out to 0.″5. C IV line centroid shifts give a radial velocity in the blueshifted jet of ‑136 ± 10 km s‑1 at an offset of 0.″29 (39 au) and deceleration outward is detected. The deprojected jet speed is subject to uncertainties in the jet inclination, but values ≳200 km s‑1 are likely. The mass-loss rate in the blueshifted jet is at least {\\dot{M}}jet,{blue}}=2.3× {10}-9 M ⊙ yr‑1, consistent with optical determinations. We use the HST data along with optically determined jet morphology to place meaningful constraints on candidate jet-heating models including a hot-launch model in which the jet is heated near the base to X-ray temperatures by an unspecified (but probably magnetic) process, and downstream heating from shocks or a putative jet magnetic field.

  18. Comparison of the Properties of the Handwriting Speed Test (HST) and Detailed Assessment of Speed of Handwriting (DASH): An Exploratory Study.

    PubMed

    Francis, Anna; Wallen, Margaret; Bundy, Anita

    2017-05-01

    Handwriting speed is an important component of students' ability to adequately express their ideas, knowledge and creativity in a timely and effective manner. Psychometric properties of the Handwriting Speed Test (HST) and Detailed Assessment of Speed of Handwriting (DASH) and accuracy of the norms for identifying current Australian students with handwriting speed difficulties were examined. An exploratory, cross-sectional study was conducted involving students, with and without handwriting difficulties, in Years 3-12 (mean age: 12.0 yrs, SD = 3.0 yrs; range = 7 to 18 yrs) in New South Wales (NSW; Australia). Participants were recruited through occupational therapists and schools. Students completed the HST and all DASH subtests. Thirty-two students with, and 139 students without, handwriting difficulties participated. Intra-rater and inter-rater reliability were found to be excellent; sensitivity was low and specificity high for the HST and DASH. No significant differences were found between test scores and normative data for students without handwriting difficulties (year/age groups with n > 10). The HST and DASH are reliable assessments of handwriting speed. Further research is required into discriminant validity of the HST and DASH and need for updated norms.

  19. Stellar Activity and Outer Atmospheric Structure of Yellow Supergiants from HST STIS and GHRS Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brown, A.; Ayres, T. R.; Harper, G. M.; Osten, R. A.; Linsky, J. L.; Dupree, A. K.; Jordan, C.

    2000-05-01

    Yellow supergiants with spectral types F-G show a complex pattern of outer atmospheric structure with stellar wind and activity indicators varying significantly for stars with similar positions in the H-R diagram. The efficiency of the processes driving their stellar winds and heating their atmospheres is critically dependent on the evolutionary position and surface gravity of each star. We present high-resolution ultraviolet HST/STIS and HST/GHRS spectra for a range of intermediate mass F and G supergiants, including Alpha Car (F0 Ib), Beta Cam (G0 Ib), Beta Dra (G2 Ib), and Epsilon Gem (G8 Ib), and compare the atmospheric properties of these stars with lower luminosity giants and bright giants. We provide a systematic overview of the supergiant atmospheric properties dealing particularly with activity levels, the presence of hot ``transition region'' plasma, signatures of wind outflow, and the role of overlying cool absorbing plasma that becomes increasingly prominent for the cooler stars like Epsilon Gem. This work is supported by HST grants for program GO-08280 and by NASA grant NAG5-3226.

  20. Coordinated Hubble Space Telescope and Venus Express Observations of Venus' upper cloud deck

    NASA Astrophysics Data System (ADS)

    Jessup, Kandis Lea; Marcq, Emmanuel; Mills, Franklin; Mahieux, Arnaud; Limaye, Sanjay; Wilson, Colin; Allen, Mark; Bertaux, Jean-Loup; Markiewicz, Wojciech; Roman, Tony; Vandaele, Ann-Carine; Wilquet, Valerie; Yung, Yuk

    2015-09-01

    Hubble Space Telescope Imaging Spectrograph (HST/STIS) UV observations of Venus' upper cloud tops were obtained between 20N and 40S latitude on December 28, 2010; January 22, 2011 and January 27, 2011 in coordination with the Venus Express (VEx) mission. The high spectral (0.27 nm) and spatial (40-60 km/pixel) resolution HST/STIS data provide the first direct and simultaneous record of the latitude and local time distribution of Venus' 70-80 km SO and SO2 (SOx) gas density on Venus' morning quadrant. These data were obtained simultaneously with (a) VEx/SOIR occultation and/or ground-based James Clerk Maxwell Telescope sub-mm observations that record respectively, Venus' near-terminator SO2 and dayside SOx vertical profiles between ∼75 and 100 km; and (b) 0.36 μm VEx/VMC images of Venus' cloud-tops. Updating the (Marcq, E. et al. [2011]. Icarus 211, 58-69) radiative transfer model SO2 gas column densities of ∼2-10 μm-atm and ∼0.4-1.8 μm-atm are retrieved from the December 2010 and January 2011 HST observations, respectively on Venus' dayside (i.e., at solar zenith angles (SZA) < 60°); SO gas column densities of 0.1-0.11 μm-atm, 0.03-0.31 μm-atm and 0.01-0.13 μm-atm are also retrieved from the respective December 28, 2010, January 22, 2011 and January 27, 2011 HST observations. A decline in the observed low-latitude 0.24 and 0.36 μm cloud top brightness paralleled the declining SOx gas densities. On December 28, 2010 SO2 VMR values ∼280-290 ppb are retrieved between 74 and 81 km from the HST and SOIR data obtained near Venus' morning terminator (at SZAs equal to 70° and 90°, respectively); these values are 10× higher than the HST-retrieved January 2011 near terminator values. Thus, the cloud top SO2 gas abundance declined at all local times between the three HST observing dates. On all dates the average dayside SO2/SO ratio inferred from HST between 70 and 80 km is higher than that inferred from the sub-mm the JCMT data above 84 km confirming that

  1. HST,survey views of telescope structures on Flight Day 5 (FD-5)

    NASA Image and Video Library

    1997-02-15

    S82-E-5369 (15 Feb. 1997) --- This photograph, taken from onboard the Space Shuttle Discovery with an Electronic Still Camera (ESC) shows a tear in the thermal insulation of the Hubble Space Telescope (HST) Bay #8.

  2. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2006-06-09

    In the 19th century, astronomer V. M. Slipher first discovered a hat-like object that appeared to be rushing away from us at 700 miles per second. This enormous velocity offered some of the earliest clues that it was really another galaxy, and that the universe was expanding in all directions. The trained razor sharp eye of the Hubble Space Telescope (HST) easily resolves this Sombrero galaxy, Messier 104 (M104). The galaxy is 50,000 light-years across and is located 28 million light-years from Earth at the southern edge of the rich Virgo cluster of galaxies. Equivalent to 800 billion suns, Sombrero is one of the most massive objects in that group. The hallmark of Sombrero is a brilliant white, bulbous core encircled by the thick dust lanes comprising the spiral structure of the galaxy. As seen from Earth, the galaxy is tilted nearly edge-on. We view it from just six degrees north of its equatorial plane. At a relatively bright magnitude of +8, M104 is just beyond the limit of naked-eye visibility and is easily seen through small telescopes. This rich system of globular clusters are estimated to be nearly 2,000 in number which is 10 times as many as in our Milky Way galaxy. The ages of the clusters are similar to the clusters in the Milky Way, ranging from 10-13 billion years old. Embedded in the bright core of M104 is a smaller disk, which is tilted relative to the large disk. X-ray emission suggests that there is material falling into the compact core, where a 1-billion-solar-mass black hole resides. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  3. HST/WFC3: understanding and mitigating radiation damage effects in the CCD detectors

    NASA Astrophysics Data System (ADS)

    Baggett, S. M.; Anderson, J.; Sosey, M.; Gosmeyer, C.; Bourque, M.; Bajaj, V.; Khandrika, H.; Martlin, C.

    2016-07-01

    At the heart of the Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) UVIS channel is a 4096x4096 pixel e2v CCD array. While these detectors continue to perform extremely well after more than 7 years in low-earth orbit, the cumulative effects of radiation damage are becoming increasingly evident. The result is a continual increase of the hotpixel population and the progressive loss in charge-transfer efficiency (CTE) over time. The decline in CTE has two effects: (1) it reduces the detected source flux as the defects trap charge during readout and (2) it systematically shifts source centroids as the trapped charge is later released. The flux losses can be significant, particularly for faint sources in low background images. In this report, we summarize the radiation damage effects seen in WFC3/UVIS and the evolution of the CTE losses as a function of time, source brightness, and image-background level. In addition, we discuss the available mitigation options, including target placement within the field of view, empirical stellar photometric corrections, post-flash mode and an empirical pixel-based CTE correction. The application of a post-flash has been remarkably effective in WFC3 at reducing CTE losses in low-background images for a relatively small noise penalty. Currently, all WFC3 observers are encouraged to consider post-flash for images with low backgrounds. Finally, a pixel-based CTE correction is available for use after the images have been acquired. Similar to the software in use in the HST Advanced Camera for Surveys (ACS) pipeline, the algorithm employs an observationally-defined model of how much charge is captured and released in order to reconstruct the image. As of Feb 2016, the pixel-based CTE correction is part of the automated WFC3 calibration pipeline. Observers with pre-existing data may request their images from MAST (Mikulski Archive for Space Telescopes) to obtain the improved products.

  4. Young massive star clusters in the era of HST and integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Zeidler, Peter; Nota, Antonella; Sabbi, Elena; Grebel, Eva K.; Pasquali, Anna

    2018-01-01

    With an age of 1 – 2 Myr at a distance of 4 kpc and a total stellar mass of 3.7×104 M⊙, Westerlund 2 (Wd2) is one of the most massive young star clusters in the Milky Way. We present a detailed analysis of its prominent pre-main-sequence population using the data of a high-resolution multi-band survey in the optical and near-infrared with the Hubble Space Telescope (HST), in combination with our spectroscopic survey, observed with the VLT/MUSE integral field unit. With our derived high-resolution extinction map of the region, which is absolutely essential giving the dominating presences of the gas and dust, we derived the spatial dependence of the mass function and quantify the degree of mass segregation down to 0.65 M⊙ with a completeness level better than 50%. Studying the radial dependence of the mass function of Wd2 and quantifying the degree of mass segregation in this young massive star cluster showed that it consists of two sub-clumps, namely the main cluster and the northern clump. From the MUSE data, we can extract individual stellar spectra and spectral energy distributions of the stars, based on the astrometry, provided by our high-resolution HST photometric catalog. This data will provide us with an almost complete spectral classification of a young massive star cluster down to 1.0 M⊙. The combination of the MUSE data, together with 3 more years of approved HST data will allow us to obtain, for the first time, the 3D motions of the stars with an accuracy of 1-2 km s-2 to determine the stellar velocity dispersion in order to study the fate of Wd2. This information is of great importance to adjust the initial conditions in cluster evolution models in order to connect these young massive star clusters and the old globular cluster population. Additionally, the combination of the photometric and spectroscopic datasets allows us to study the stars and their feedback onto the surrounding HII region simultaneously, as well as peculiar objects such as

  5. Imaging of the gravitational lens system PG 1115+080 with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Kristian, Jerome; Groth, Edward J.; Shaya, Edward J.; Schneider, Donald P.; Holtzman, Jon A.; Baum, William A.; Campbell, Bel; Code, Arthur; Currie, Douglas G.; Danielson, G. E.

    1993-01-01

    This paper is the first of a series presenting observations of gravitational lenses and lens candidates, taken with the Wide Field/Planetary Camera of the HST. We have resolved the gravitational lens system PG 1115+080 into four point sources and a red, extended object that is presumably the lens galaxy; we present accurate relative intensities, colors, and positions of the four images, and lower accuracy intensity and position of the lens galaxy, all at the epoch 1991.2. Comparison with earlier data shows no compelling evidence for relative intensity variations between the QSO components having so far been observed. The new data agree with earlier conclusions that the system is rather simple, and can be produced by the single observed galaxy. The absence of asymmetry in the HST images implies that the emitting region of the quasar itself has an angular radius smaller than about 10 milliarcsec (100 pc for H0 = 50, q0 = 0.5).

  6. HST at CERN an Amazing Adventure

    NASA Astrophysics Data System (ADS)

    Restivo, Evelyn

    2009-04-01

    The High School Teacher Program (HST) at the European Organization for Nuclear Research, CERN, in Geneva, Switzerland was initiated in 1998 by a group of scientists, as a multicultural international program designed to introduce high school physics teachers to high-energy physics. The goal of the program is to provide experiences and materials that will help teachers lead their students to a better understanding of the physical world. Interacting with physics teachers from around the world leads to new approaches for dealing with educational issues that all teachers encounter. The program includes a variety of tours, a series of lectures and classroom activities about the physics expected from the Large Hadron Collider.

  7. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2003-11-28

    This image of SN 1987A, taken November 28, 2003 by the Advanced Camera for Surveys aboard NASA's Hubble Space Telescope (HST), shows many bright spots along a ring of gas, like pearls on a necklace. These cosmic pearls are being produced as superior shock waves unleashed during an explosion slam into the ring at more than a million miles per hour. The collision is heating the gas ring, causing its irnermost regions to glow. Astronomers detected the first of these hot spots in 1996, but now they see dozens of them all around the ring. With temperatures surging from a few thousand degrees to a million degrees, the flares are increasing in number. In the next few years, the entire ring will be ablaze as it absorbs the full force of the crash and is expected to become bright enough to illuminate the star's surroundings. Astronomers will then be able to obtain information on how the star ejected material before the explosion. The elongated and expanding object in the center of the ring is debris form the supernova blast which is being heated by radioactive elements, principally titanium 44, that were created in the explosion. This explosion was first observed by astronomers seventeen years ago in 1987, although the explosion took place about 160,000 years ago.

  8. VizieR Online Data Catalog: SG1120-1202 members HST imaging & 24um fluxes (Monroe+, 2017)

    NASA Astrophysics Data System (ADS)

    Monroe, J. T.; Tran, K.-V. H.; Gonzalez, A. H.

    2017-09-01

    We employ HST imaging of an ~8'x12' mosaic across three filters: F390W (WFC3/UVIS), F606W (ACS/WFC), and F814W (ACS/WFC) for a total of 44 pointings (combined primary and parallels) during cycles 14 (GO 10499) and 19 (GO 12470). We use the Spitzer MIPS 24um fluxes from Saintonge+ (2008ApJ...685L.113S) and Tran+ (2009ApJ...705..809T). The 24um observations were retrieved from the Spitzer archive. For details on spectroscopy from multi-band ground-based observations using Magellan (in 2006), MMT, and VLT/VIMOS (in 2003), we refer the reader to Tran+ (2009ApJ...705..809T). (1 data file).

  9. HST/WFPC2 and VLT/ISAAC Observations of Proplyds in the Giant H II Region NGC 3603

    NASA Astrophysics Data System (ADS)

    Brandner, Wolfgang; Grebel, Eva K.; Chu, You-Hua; Dottori, Horacio; Brandl, Bernhard; Richling, Sabine; Yorke, Harold W.; Points, Sean D.; Zinnecker, Hans

    2000-01-01

    We report the discovery of three proplyd-like structures in the giant H II region NGC 3603. The emission nebulae are clearly resolved in narrowband and broadband HST/WFPC2 observations in the optical and broadband VLT/ISAAC observations in the near-infrared. All three nebulae are tadpole shaped, with the bright ionization front at the head facing the central cluster and a fainter ionization front around the tail pointing away from the cluster. Typical sizes are 6000 AUx20,000 AU The nebulae share the overall morphology of the proplyds (PROto PLanetarY DiskS) in Orion, but are 20 to 30 times larger in size. Additional faint filaments located between the nebulae and the central ionizing cluster can be interpreted as bow shocks resulting from the interaction of the fast winds from the high-mass stars in the cluster with the evaporation flow from the proplyds. Low-resolution spectra of the brightest nebula, which is at a projected separation of 1.3 pc from the cluster, reveal that it has the spectral excitation characteristics of an ultra compact H II region with electron densities well in excess of 104 cm-3. The near-infrared data reveal a point source superposed on the ionization front. The striking similarity of the tadpole-shaped emission nebulae in NGC 3603 to the proplyds in Orion suggests that the physical structure of both types of objects might be the same. We present two-dimensional radiation hydrodynamical simulations of an externally illuminated star-disk-envelope system, which was still in its main accretion phase when first exposed to ionizing radiation from the central cluster. The simulations reproduce the overall morphology of the proplyds in NGC 3603 very well, but also indicate that mass-loss rates of up to 10-5 Msolar yr-1 are required in order to explain the size of the proplyds. Due to these high mass-loss rates, the proplyds in NGC 3603 should only survive ~105 yr. Despite this short survival time, we detect three proplyds. This indicates that

  10. HUBBLE OBSERVES SPIRAL GAS DISK IN ACTIVE GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Hubble Space Telescope image of a spiral-shaped disk of hot gas in the core of active galaxy M87. HST measurements show the disk is rotating so rapidly it contains a massive black hole at its hub. A black hole is an object that is so massive yet compact nothing can escape its gravitational pull, not even light. The object at the center of M87 fits that description. It weights as much as three billion suns, but is concentrated into a space no larger than our solar system. Now that astronomers have seen the signature of the tremendous gravitational field at the center of M87, it is clear that the region contains only a fraction of the number of stars that would be necessary to create such a powerful attraction. The giant elliptical galaxy M87 is located 50 million light-years away in the constellation Virgo. Earlier observations suggested the black hole was present, but were not decisive. A brilliant jet of high- speed electrons that emits from the nucleus (diagonal line across image) is believed to be produced by the black hole 'engine.' The image was taken with HST's Wide Field Planetary Camera 2 Credit: Holland Ford, Space Telescope Science Institute/Johns Hopkins University; Richard Harms, Applied Research Corp.; Zlatan Tsvetanov, Arthur Davidsen, and Gerard Kriss at Johns Hopkins; Ralph Bohlin and George Hartig at Space Telescope Science Institute; Linda Dressel and Ajay K. Kochhar at Applied Research Corp. in Landover, Md.; and Bruce Margon from the University of Washington in Seattle. NASA PHOTO CAPTION STScI-PR94-23a

  11. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Students and faculty from Mapletown Jr/Sr High School and Margaret Bell Middle School listen as John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Photo Credit: (NASA/Joel Kowsky)

  12. On the age and mass function of the globular cluster M 4: A different interpretation of recent deep HST observations

    NASA Astrophysics Data System (ADS)

    De Marchi, G.; Paresce, F.; Straniero, O.; Prada Moroni, P. G.

    2004-03-01

    Very deep images of the Galactic globular cluster M 4 (NGC 6121) through the F606W and F814W filters were taken in 2001 with the WFPC2 on board the HST. A first published analysis of this data set (Richer et al. \\cite{Richer2002}) produced the result that the age of M 4 is 12.7± 0.7 Gyr (Hansen et al. \\cite{Hansen2002}), thus setting a robust lower limit to the age of the universe. In view of the great astronomical importance of getting this number right, we have subjected the same data set to the simplest possible photometric analysis that completely avoids uncertain assumptions about the origin of the detected sources. This analysis clearly reveals both a thin main sequence, from which can be deduced the deepest statistically complete mass function yet determined for a globular cluster, and a white dwarf (WD) sequence extending all the way down to the 5 \\sigma detection limit at I ≃ 27. The WD sequence is abruptly terminated at exactly this limit as expected by detection statistics. Using our most recent theoretical WD models (Prada Moroni & Straniero \\cite{Prada2002}) to obtain the expected WD sequence for different ages in the observed bandpasses, we find that the data so far obtained do not reach the peak of the WD luminosity function, thus only allowing one to set a lower limit to the age of M 4 of ˜9 Gyr. Thus, the problem of determining the absolute age of a globular cluster and, therefore, the onset of GC formation with cosmologically significant accuracy remains completely open. Only observations several magnitudes deeper than the limit obtained so far would allow one to approach this objective. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA for NASA under contract NAS5-26555.

  13. Resolved Companions of Cepheids: Testing the Candidates with X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Evans, Nancy Remage; Pillitteri, Ignazio; Wolk, Scott; Karovska, Margarita; Tingle, Evan; Guinan, Edward; Engle, Scott; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.

    2016-04-01

    We have made XMM-Newton observations of 14 Galactic Cepheids that have candidate resolved (≥5″) companion stars based on our earlier HST Wide Field Camera 3 (WFC3) imaging survey. Main-sequence stars that are young enough to be physical companions of Cepheids are expected to be strong X-ray producers in contrast to field stars. XMM-Newton exposures were set to detect essentially all companions hotter than spectral type M0 (corresponding to 0.5 M⊙). The large majority of our candidate companions were not detected in X-rays, and hence are not confirmed as young companions. One resolved candidate (S Nor #4) was unambiguously detected, but the Cepheid is a member of a populous cluster. For this reason, it is likely that S Nor #4 is a cluster member rather than a gravitationally bound companion. Two further Cepheids (S Mus and R Cru) have X-ray emission that might be produced by either the Cepheid or the candidate resolved companion. A subsequent Chandra observation of S Mus shows that the X-rays are at the location of the Cepheid/spectroscopic binary. R Cru and also V659 Cen (also X-ray bright) have possible companions closer than 5″ (the limit for this study) which are the likely sources of X-rays. One final X-ray detection (V473 Lyr) has no known optical companion, so the prime suspect is the Cepheid itself. It is a unique Cepheid with a variable amplitude. The 14 stars that we observed with XMM constitute 36% of the 39 Cepheids found to have candidate companions in our HST/WFC3 optical survey. No young probable binary companions were found with separations of ≥5″ or 4000 au. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).

  14. Multi Timescale Multispectral Observation of the Jovian Aurora CYCLE3 High

    NASA Astrophysics Data System (ADS)

    Gerard, Jean-Claude

    1992-06-01

    Previous HST observations made with the FOC have demonstrated the ability of the HST to provide high spatial resolution images of the ultraviolet jovian aurora. They and other IUE and Voyager UVS observations suggest that wavelength dependence and time variations occur with different characteristic times. We propose to image the ultraviolet jovian aurora in several passbands to investigate its temporal variation on timescales ranging from ~10 min to hours. Exposures will be made when the 180 deg (Lambda III) longitude sector, where the aurora is best visible from Earth orbit, faces the Earth. Due to the expected loss of sensitivity in the far UV, this program should be preformed before the COSTAR correction. Coordinated IR measurements of emission connected to the UV aurora but originating from different altitude regions will be obtained in parallel with HST observations. Simultaneous radio observations of decametric jovian emissions and IUE UV spectra will also provide complementary data on energetic particle precipitation. The observed morphology, color ratio and characteristic time of the temporal variations will provide key information to discriminate between the various origins , identity and acceleration mechanisms of the precipitating particles. Theoretical models of particle interaction with the jovian magnetic field and atmosphere available from the proposing team will be used to derive quantitative information on these processes.

  15. Technical Consultation of the Hubble Space Telescope (HST) Nickel Hydrogen (NiH2) Battery Charge Capacity Prediction. Version 1.0

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Pandipati, Radha; Ling, Jerri; Miller, Thomas; Jeevarajan, Judith; Halpert, Gerald; Zimmerman, Albert

    2005-01-01

    The purpose of the GSFC position paper is to identify critical HST milestone dates for continued science studies followed by the attachment of a re-entry module or a robotic servicing mission. The paper examines the viability of the HST with respect to the NiH2 continued battery charge capacity. In the course of the assessment, it was recognized that the HST battery thermal control system has an average heat dissipation limitation of 30 W per bay per orbit cycle. This thermal constraint will continue to govern options for battery capacity maintenance. In addition, the HST usage represents the longest exposure ofNiH2 batteries to Low Earth Orbit (LEO) at the current level of Depth of Discharge (DOD). Finally, the current battery life is at the limit predicted by the manufacturer, Eaglepicher. Therefore, given these factors, the potential exists that the HST battery capacities could radically degrade at any point. Given this caveat on any life extrapolations, the conservative model proposed in the GSFC position paper was viewed by the NESC as having several technical assumptions such as limited utilization of flight battery capacity data, the susceptibility of the proposed prediction method to large variations when supplemented with additional information, and the failure to qualitatively or quantitatively assess life prediction sensitivities. The NESC conducted an independent evaluation of the supporting information and assumptions to generate the predictions for battery capacity loss and practicality of on-orbit battery conditioning.

  16. Probing for Exoplanets Hiding in Dusty Debris Disks: Disk Imaging, Characterization, and Exploration with HST-STIS Multi-roll Coronagraphy

    NASA Technical Reports Server (NTRS)

    Schneider, Glenn; Grady, Carol A.; Hines, Dean C.; Stark, Christopher C.; Debes, John; Carson, Joe; Kuchner, Marc J.; Perrin, Marshall; Weinberger, Alycia; Wisniewski, John P.; hide

    2014-01-01

    Spatially resolved scattered-light images of circumstellar debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, the systemic architectures, and forces perturbing the starlight-scattering circumstellar material. Using HST/STIS broadband optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in a sample of ten circumstellar debris systems, and one "mature" protoplanetrary disk all with HST pedigree, using PSF-subtracted multi-roll coronagraphy. These observations probe stellocentric distances greater than or equal to 5 AU for the nearest systems, and simultaneously resolve disk substructures well beyond corresponding to the giant planet and Kuiper belt regions within our own Solar System. They also disclose diffuse very low-surface brightness dust at larger stellocentric distances. Herein we present new results inclusive of fainter disks such as HD92945 (F (sub disk) /F (sub star) = 5x10 (sup -5) confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like sub-structures and significant asymmetries and complex morphologies include: HD181327 for which we posit a spray of ejecta from a recent massive collision in an exo-Kuiper belt; HD61005 suggested to be interacting with the local ISM; HD15115 and HD32297, discussed also in the context of putative environmental interactions. These disks, and HD15745, suggest that debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk we find out-of-plane surface brightness asymmetries at greater than or equal to 5 AU that may implicate the existence of one or more planetary perturbers. Time resolved images of the MP Mus proto-planetary disk provide spatially resolved temporal variability in the disk illumination. These and other new images from our HST

  17. AN HST PROPER-MOTION STUDY OF THE LARGE-SCALE JET OF 3C273

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Eileen T.; Georganopoulos, Markos; Sparks, William B.

    The radio galaxy 3C 273 hosts one of the nearest and best-studied powerful quasar jets. Having been imaged repeatedly by the Hubble Space Telescope (HST) over the past twenty years, it was chosen for an HST program to measure proper motions in the kiloparsec-scale resolved jets of nearby radio-loud active galaxies. The jet in 3C 273 is highly relativistic on sub-parsec scales, with apparent proper motions up to 15c observed by very long baseline interferometry. In contrast, we find that the kiloparsec-scale knots are compatible with being stationary, with a mean speed of −0.2 ± 0.5c over the whole jet. Assuming themore » knots are packets of moving plasma, an upper limit of 1c implies a bulk Lorentz factor Γ < 2.9. This suggests that the jet has either decelerated significantly by the time it reaches the kiloparsec scale, or that the knots in the jet are standing shock features. The second scenario is incompatible with the inverse Compton off the Cosmic Microwave Background (IC/CMB) model for the X-ray emission of these knots, which requires the knots to be in motion, but IC/CMB is also disfavored in the first scenario due to energetic considerations, in agreement with the recent finding of Meyer and Georganopoulos which ruled out the IC/CMB model for the X-ray emission of 3C 273 via gamma-ray upper limits.« less

  18. N-body modeling of globular clusters: detecting intermediate-mass black holes by non-equipartition in HST proper motions

    NASA Astrophysics Data System (ADS)

    Trenti, Michele

    2010-09-01

    Intermediate Mass Black Holes {IMBHs} are objects of considerable astrophysical significance. They have been invoked as possible remnants of Population III stars, precursors of supermassive black holes, sources of ultra-luminous X-ray emission, and emitters of gravitational waves. The centers of globular clusters, where they may have formed through runaway collapse of massive stars, may be our best chance of detecting them. HST studies of velocity dispersions have provided tentative evidence, but the measurements are difficult and the results have been disputed. It is thus important to explore and develop additional indicators of the presence of an IMBH in these systems. In a Cycle 16 theory project we focused on the fingerprints of an IMBH derived from HST photometry. We showed that an IMBH leads to a detectable quenching of mass segregation. Analysis of HST-ACS data for NGC 2298 validated the method, and ruled out an IMBH of more than 300 solar masses. We propose here to extend the search for IMBH signatures from photometry to kinematics. The velocity dispersion of stars in collisionally relaxed stellar systems such as globular clusters scales with main sequence mass as sigma m^alpha. A value alpha = -0.5 corresponds to equipartition. Mass-dependent kinematics can now be measured from HST proper motion studies {e.g., alpha = -0.21 for Omega Cen}. Preliminary analysis shows that the value of alpha can be used as indicator of the presence of an IMBH. In fact, the quenching of mass segregation is a result of the degree of equipartition that the system attains. However, detailed numerical simulations are required to quantify this. Therefore we propose {a} to carry out a new, larger set of realistic N-body simulations of star clusters with IMBHs, primordial binaries and stellar evolution to predict in detail the expected kinematic signatures and {b} to compare these predictions to datasets that are {becoming} available. Considerable HST resources have been invested in

  19. High-Redshift SNe with Subaru and HST

    NASA Astrophysics Data System (ADS)

    Rubin, David; Suzuki, Nao; Regnault, Nicolas; Aldering, Gregory; Amanullah, Rahman; Antilogus, Pierre; Astier, Pierre; Barbary, Kyle; Betoule, Marc; Boone, Kyle Robert; Currie, Miles; Deustua, Susana; Doi, Mamoru; Fruchter, Andrew; Goobar, Ariel; Hayden, Brian; Hazenberg, Francois; Hook, Isobel; Huang, Xiaosheng; Jiang, Jian; Kato, Takahiro; Kim, Alex; Kowalski, Marek; Lidman, Chris; Linder, Eric; Maeda, Keiichi; Morokuma, Tomoki; Nordin, Jakob; Pain, Reynald; Perlmutter, Saul; Ruiz-Lapuente, Pilar; Sako, Masao; Myers Saunders, Clare; Spadafora, Anthony L.; Tanaka, Masaomi; Tominaga, Nozomu; Yasuda, Naoki; Yoshida, Naoki

    2018-01-01

    High-redshift type Ia supernovae are crucial for constraining any time variation in dark energy. Here, we present the first discoveries and light curves from the SUbaru Supernovae with Hubble Infrared (SUSHI) program, which combines high-redshift SN discoveries from the Subaru Strategic Program (SSP, as well as other Subaru time) with HST WFC3 IR followup. This program efficiently uses the wide field and high collecting area of Subaru Hyper Suprime-Cam for optical light curves, but still obtains a precision NIR color. We are on track to double the number of well-measured SNe Ia at z > 1.1, triggering on 23 SNe Ia in our first season.

  20. Re-visiting the Amplifier Gains of the HST/ACS Wide Field Channel CCDs

    NASA Astrophysics Data System (ADS)

    Desjardins, Tyler D.; Grogin, Norman A.; ACS Team

    2018-06-01

    For the first time since HST Servicing Mission 4 (SM4) in May 2009, we present an analysis of the amplifier gains of the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) CCDs. Using a series of in-flight flat-field exposures taken in November 2017 with a tungsten calibration lamp, we utilize the photon transfer method to estimate the gains of the WFC1 and WFC2 CCD amplifiers. We find evidence that the gains of the four readout amplifiers have changed by a small, but statistically significant, 1–2% since SM4. We further present a study of historical ACS/WFC observations of the globular cluster NGC 104 (47 Tuc) in an attempt to estimate the time dependence of the gains.

  1. A HST Search to Constrain the Binary Fraction of Stripped-Envelope Supernovae

    NASA Astrophysics Data System (ADS)

    Fox, Ori

    2018-01-01

    Stripped-envelope supernovae (e.g., SNe IIb, Ib, and Ic) refer to a subset of core-collapse explosions with progenitors that have lost some fraction of their outer envelopes in pre-SN mass loss. Mounting evidence over the past decade suggests that the mass loss in a large fraction of these systems occurs due to binary interaction. An unbiased, statistically significant sample of companion-star characteristics (including deep upper limits) can constrain the binary fraction, having direct implications on the theoretical physics of both single star and binary evolution. To date, however, only two detections have been made: SNe 1993J and 2011dh. Over the past year, we have improved this sample with an HST WFC3/NUV survey for binary companions of three additional nearby stripped-envelope SNe: 2002ap, 2001ig, and 2010br. I will present a review of previous companion searches and results from our current HST survey, which include one detection and two meaningful upper limits.

  2. Observational calibration of the projection factor of Cepheids. II. Application to nine Cepheids with HST/FGS parallax measurements

    NASA Astrophysics Data System (ADS)

    Breitfelder, J.; Mérand, A.; Kervella, P.; Gallenne, A.; Szabados, L.; Anderson, R. I.; Le Bouquin, J.-B.

    2016-03-01

    Context. The distance to pulsating stars is classically estimated using the parallax-of-pulsation (PoP) method, which combines spectroscopic radial velocity (RV) measurements and angular diameter (AD) estimates to derive the distance of the star. A particularly important application of this method is the determination of Cepheid distances in view of the calibration of their distance scale. However, the conversion of radial to pulsational velocities in the PoP method relies on a poorly calibrated parameter, the projection factor (p-factor). Aims: We aim to measure empirically the value of the p-factors of a homogeneous sample of nine bright Galactic Cepheids for which trigonometric parallaxes were measured with the Hubble Space Telescope (HST) Fine Guidance Sensor. Methods: We use the SPIPS algorithm, a robust implementation of the PoP method that combines photometry, interferometry, and radial velocity measurements in a global modeling of the pulsation of the star. We obtained new interferometric angular diameter measurements using the PIONIER instrument at the Very Large Telescope Interferometer (VLTI), completed by data from the literature. Using the known distance as an input, we derive the value of the p-factor of the nine stars of our sample and study its dependence with the pulsation period. Results: We find the following p-factors: p = 1.20 ± 0.12 for RT Aur, p = 1.48 ± 0.18 for T Vul, p = 1.14 ± 0.10 for FF Aql, p = 1.31 ± 0.19 for Y Sgr, p = 1.39 ± 0.09 for X Sgr, p = 1.35 ± 0.13 for W Sgr, p = 1.36 ± 0.08 for β Dor, p = 1.41 ± 0.10 for ζ Gem, and p = 1.23 ± 0.12 for ℓ Car. Conclusions: The values of the p-factors that we obtain are consistently close to p = 1.324 ± 0.024. We observe some dispersion around this average value, but the observed distribution is statistically consistent with a constant value of the p-factor as a function of the pulsation period (χ2 = 0.669). The error budget of our determination of the p-factor values is

  3. Astronaut Story Musgrave during deployment of solar array panels on HST

    NASA Image and Video Library

    1993-12-09

    STS061-48-027 (9 Dec 1993) --- Astronaut F. Story Musgrave moves about in the Space Shuttle Endeavour's cargo bay during the deployment of the solar array panels on the Hubble Space Telescope (HST) during the final of five STS-61 space walks. The left hand of astronaut Jeffrey A. Hoffman appears at lower left corner.

  4. Dithering Observations with JWST's NIRCam

    NASA Astrophysics Data System (ADS)

    Anderson, Jay

    2011-01-01

    Preparations for planning observations with JWST are already well underway at STScI. Many of the aspects of HST observation planning will carry over to JWST, but some things will be different. With HST, users are able to define arbitrary dither patterns (or use no dithering at all) in their Phase-2 submissions. This has allowed many observers to optimize their data quality for the particular science they are focused on. But, unfortunately, when the data reach the archive, the images are often less valuable to the community than they could be, either because of a lack of good dithering or because the association-based pipeline is not optimized for the particular dither pattern used. JWST will do things differently. Except in rare circumstances, such as planetary-transit observations, JWST users will be forced to dither, and they will have a limited set of dithering options to choose from. The NIRCam teams at STScI and UAz have designed a set of dither patterns that are flexible enough to meet the various anticipated science objectives, but they will also be homogeneous enough that the archive and association products will be of uniformly high quality.

  5. Through the Looking GLASS: HST Spectroscopy of Faint Galaxies Lensed by the Frontier Fields Cluster MACSJ0717.5+3745

    NASA Astrophysics Data System (ADS)

    Schmidt, K. B.; Treu, T.; Brammer, G. B.; Bradač, M.; Wang, X.; Dijkstra, M.; Dressler, A.; Fontana, A.; Gavazzi, R.; Henry, A. L.; Hoag, A.; Jones, T. A.; Kelly, P. L.; Malkan, M. A.; Mason, C.; Pentericci, L.; Poggianti, B.; Stiavelli, M.; Trenti, M.; von der Linden, A.; Vulcani, B.

    2014-02-01

    The Grism Lens-Amplified Survey from Space (GLASS) is a Hubble Space Telescope (HST) Large Program, which will obtain 140 orbits of grism spectroscopy of the core and infall regions of 10 galaxy clusters, selected to be among the very best cosmic telescopes. Extensive HST imaging is available from many sources including the CLASH and Frontier Fields programs. We introduce the survey by analyzing spectra of faint multiply-imaged galaxies and z >~ 6 galaxy candidates obtained from the first 7 orbits out of 14 targeting the core of the Frontier Fields cluster MACSJ0717.5+3745. Using the G102 and G141 grisms to cover the wavelength range 0.8-1.7 μm, we confirm four strongly lensed systems by detecting emission lines in each of the images. For the 9 z >~ 6 galaxy candidates clear from contamination, we do not detect any emission lines down to a 7 orbit 1σ noise level of ~5 × 10-18 erg s-1 cm-2. Taking lensing magnification into account, our flux sensitivity reaches ~0.2-5 × 10-18 erg s-1cm-2. These limits over an uninterrupted wavelength range rule out the possibility that the high-z galaxy candidates are instead strong line emitters at lower redshift. These results show that by means of careful modeling of the background—and with the assistance of lensing magnification—interesting flux limits can be reached for large numbers of objects, avoiding pre-selection and the wavelength restrictions inherent to ground-based multi-slit spectroscopy. These observations confirm the power of slitless HST spectroscopy even in fields as crowded as a cluster core.

  6. Origins, Structure, and Evolution of Magnetic Activity in the Cool Half of the H--R Diagram: an HST STIS Survey

    NASA Astrophysics Data System (ADS)

    Ayres, T. R.; Brown, A.; Drake, S. A.; Dupree, A. K.; Guedel, M.; Guinan, E.; Harper, G. M.; Jordan, C.; Linsky, J. L.; Reimers, D.; Schmitt, J. H. M. M.; Simon, T.

    1999-12-01

    In HST's cycle 8, we are carrying out a major ultraviolet spectral survey of late-type stars using the powerful capabilities of the Space Telescope Imaging Spectrograph (STIS). The origin of the hot UV emissions of otherwise cool stars is a fundamental puzzle in astrophysics. Magnetic phenomena---at the heart of chromospheric and coronal activity, and perhaps wind driving as well---play a central role in many cosmic settings. Our objective is to obtain high-quality ultraviolet spectra of a diverse collection of F--K stars, of all luminosity classes. Such a major project was unthinkable before STIS, but now is practical given the high resolution, broad spectral coverage, and sensitivity of the second generation spectrograph. Here, we discuss our choice of the thirteen targets; the observing strategy (which captures the entire UV spectrum between 1150--3000 Angstroms at resolutions λ /δ λ 30--100*E3 with good S/N); and preliminary results for the several targets observed to date (ζ Dor, F7 V, 1 May 1999, 2 CVZ orbits; V711 Tau, K1 IV+G5 IV, 15 September 1999, 5 orbits; β Cam, G0 I, 19 September 1999, 4 CVZ orbits). The observation of V711 Tau (HR 1099) was carried out during a long transmission grating pointing by the Chandra X-ray Observatory, in support of its ``Emission Line Project.'' This work was supported by grant GO-08280.01-97A from STScI. Observations were from the NASA/ESA HST, collected at the STScI, operated by AURA, under contract NAS5-26555.

  7. Lessons from Coronagraphic Imaging with HST that may apply to JWST

    NASA Astrophysics Data System (ADS)

    Grady, C. A.; Hines, Dean C.; Schneider, Glenn; McElwain, Michael W.

    2017-06-01

    One of the major capabilities offered by JWST is coronagraphic imaging from space, covering the near through mid-IR and optimized for study of planet formation and the evolution of planetary systems. Planning for JWST has resulted in expectations for instrument performance, observation strategies and data reduction approaches. HST with 20 years of coronagraphic imaging offers some experience which may be useful to those planning for JWST. 1) Real astronomical sources do not necessarily conform to expectations. Debris disks may be accompanied by more distant material, and some systems may be conspicuous in scattered light when offering only modest IR excesses. Proto-planetary disks are not constantly illuminated, and thus a single epoch observation of the source may not be sufficient to reveal everything about it. 2) The early expectation with NICMOS was that shallow, 2-roll observations would reveal a wealth of debris disks imaged in scattered light, and that only a limited set of PSF observations would be required. Instead, building up a library of spatially resolved disks in scattered light has proven to require alternate observing strategies, is still on-going, and has taken far longer than expected. 3) A wealth of coronagraphic options with an instrument may not be scientifically informative, unless there is a similar time investment in acquisition of calibration data in support of the science observations. 4) Finally, no one anticipated what can be gleaned from coronagraphic imaging. We should expect similar, unexpected, and ultimately revolutionary discoveries with JWST.

  8. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2004-02-08

    This photo, captured by the NASA Hubble Space Telescope's (HST) Advanced Camera for Surveys, is Hubble's latest view of an expanding halo of light around the distant star V838 Monocerotis, or V Mon, caused by an unusual stellar outburst that occurred back in January 2002. A burst of light from the bizarre star is spreading into space and reflecting off of surrounding circumstellar dust. As different parts are sequentially illuminated, the appearance of the dust changes. This effect is referred to as a "light echo". Located about 20,000 light-years away in the winter constellation Monoceros (the Unicorn), the star brightened to more than 600,000 times our Sun's luminosity. The light echo gives the illusion of contracting, until it finally disappears by the end of the decade.

  9. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Grunsfeld flew on three of the five servicing missions to the Hubble Space Telescope. Photo Credit: (NASA/Joel Kowsky)

  10. HST/WFC3: Evolution of the UVIS Channel's Charge Transfer Efficiency

    NASA Astrophysics Data System (ADS)

    Gosmeyer, Catherine; Baggett, Sylvia M.; Anderson, Jay; WFC3 Team

    2016-06-01

    The Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) contains both an IR and a UVIS channel. After more than six years on orbit, the UVIS channel performance remains stable; however, on-orbit radiation damage has caused the charge transfer efficiency (CTE) of UVIS's two CCDs to degrade. This degradation is seen as vertical charge 'bleeding' from sources during readout and its effect evolves as the CCDs age. The WFC3 team has developed software to perform corrections that push the charge back to the sources, although it cannot recover faint sources that have been bled out entirely. Observers can mitigate this effect in various ways such as by placing sources near the amplifiers, observing bright targets, and by increasing the total background to at least 12 electrons, either by using a broader filter, lengthening exposure time, or post-flashing. We present results from six years of calibration data to re-evaluate the best level of total background for mitigating CTE loss and to re-verify that the pixel-based CTE correction software is performing optimally over various background levels. In addition, we alert observers that CTE-corrected products are now available for retrieval from MAST as part of the CALWF3 v3.3 pipeline upgrade.

  11. HST observations of Chiron: preliminary results

    NASA Astrophysics Data System (ADS)

    BENEDETTI Rossi, Gustavo; Sicardy, Bruno; Buie, Marc W.; Braga-Ribas, Felipe; Ortiz, Jose-Luis; Duffard, Rene; camargo, julio; Vieira-Martins, Roberto; Gratadour, Damien; Dumas, Christophe

    2016-10-01

    Chiron is a Centaur object, with a radius of approximately 110km. It is orbiting between Saturn and Uranus, and may be a Transneptunian Object (TNO) that has been recently (less than 10 My) scattered by gravitational perturbations from Uranus, just like its "twin brother" Chariklo. On June 3rd, 2013, a stellar occultation by Chariklo of a R=12.4 magnitude star was observed from seven sites in South America, which led to the detection of a total of twelve secondary events, revealing the presence of two narrow and dense rings (see more details at Braga-Ribas F. et al., Nature, 2014).Up to now, planetary rings have been detected exclusively around the four giant planets of our Solar System and Chariklo. In spite of hundreds of occultations by asteroids and several space missions, no other small bodies have shown the presence of rings. However, two recent papers (Ruprecht et al. 2015 and Ortiz et. al 2015) report secondary events from stellar occultations by Chiron that have been interpreted either as a dust shell or a ring system. Using the Hubble Space Telescope we obtained direct images of Chiron surroundings to search for rings, jets and/or small satellites. First results will be presented.

  12. Monitoring of the Crab Nebula with Chandra and Other Observatories Including HST

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2014-01-01

    Subsequent to the detections AGILE and Fermi/LAT of the gamma-ray flares from the Crab Nebula in the fall of 2010, this team has been monitoring the X-Ray emission from the Crab on a regular basis. X-Ray observations have taken place typically once per month when viewing constraints allow and more recently four times per year. There have been notable exceptions, e.g. in April of 2011 and March 2013 when we initiated a set of Chandra Target of opportunity observations in conjunction with bright gamma-ray flares. For much of the time regular HST observations were made in conjunction with the Chandra observations. The aim of this program to further characterize, in depth, the X-Ray and optical variations that take place in the nebula, and by so doing determine the regions which contribute to the harder X-ray variations and, if possible, determine the precise location within the Nebula of the origin of the gamma-ray flares. As part of this project members of the team have developed Singular Value Decomposition techniques to sequences of images in order to more accurately characterize features. The current status of the project will be presented highlighting studies of the inner knot and possible correlations with the flares.

  13. Cycle 24 HST+COS Target Acquisition Monitor Summary

    NASA Astrophysics Data System (ADS)

    Penton, Steven V.; White, James

    2018-06-01

    HST/COS calibration program 14847 (P14857) was designed to verify that all three COS Target Acquisition (TA) modes were performing nominally during Cycle 24. The program was designed not only to determine if any of the COS TA flight software (FSW) patchable constants need updating but also to determine the values of any required parameter updates. All TA modes were determined to be performing nominally during the Cycle 24 calendar period of October 1, 2016 - October 1, 2017. No COS SIAF, TA subarray, or FSW parameter updates were required as a result of this program.

  14. The HST Lightcurve of (486958) 2014 MU69

    NASA Astrophysics Data System (ADS)

    Benecchi, Susan D.; Buie, Marc W.; Porter, Simon Bernard; Spencer, John R.; Verbiscer, Anne J.; Stern, S. Alan; Zangari, Amanda Marie; Parker, Alex; Noll, Keith S.

    2017-10-01

    To optimally plan the fly-by sequencing of (486958) 2014 MU69 for the New Horizons spacecraft it is critical to determine, to the best of our ability, if the object is binary (as is the case for ~20% of cold classical KBOs in this size range), the rotation period, size and shape of the body. Existing HST astrometric datasets placed constraints on its diameter (21-41 km for an albedo of 0.15-0.04) and orbit, and early photometry suggested that a lightcurve with an amplitude of up to ~0.6 mags could be hidden within the measurement uncertainties. However, the sampling interval of this dataset made it impossible to further refine those estimates. We therefore designed an HST lightcurve program to be executed near its opposition in July 2017 (GO 14627, PI Benecchi) when 486958 would be brightest and provide the highest S/N data. We collected data using the WFC3 camera in the F350LP filter using an exposure time of 367 seconds and tracking on the object. 5 images were collected during each HST orbit and orbits were scheduled in groups of six. The 1st two sets of 6 orbits were separated by 0.6 days, the 2nd and 3rd by 1.4 days and the 3rd and 4th by 5.5 days. This allowed us to search for a range of periods from a few to a few tens of hours; combined with the astrometric photometry even longer periods can be investigated.The data were analyzed using two different PSF fitting techniques (an MCMC model and a TinyTim matching algorithm) which gave similar results. The lightcurve amplitude was found to be <0.15 magnitudes for any period that we could fit to the data. This places significant constraints on the axis ratio of 486958 to <1.14 assuming an equatorial view. This means that the timing of the fly-by does not need to be adjusted to look at the "larger" axis of the object, simplifying the engineering of the fly-by significantly. The small amplitude makes it difficult to uniquely identify the rotation period at this time. Stacking all of the images from this campaign

  15. Dwarfs in the Deepest Fields at Noon: Studying Size and Shape of Low-mass Galaxies out to z 3 in Five HST Legacy Fields

    NASA Astrophysics Data System (ADS)

    Guo, Yicheng

    2017-08-01

    Galaxies with stellar mass 100x-1000x times smaller than our Milky Way (hereafter dwarf galaxies or DGs) are important for understanding galaxy formation and evolution by being the most sensitive probes of both the macro-physics of dark matter halos and the micro-physics of the different physical mechanisms that regulate star formation and shape galaxies. Currently, however, observations of distant DGs have been hampered by small samples and poor quality due to their faintness. We propose an archival study of the size, morphology, and structures of DGs out to z 3.0 by combining the archived data from five of the deepest regions that HST has ever observed: eXtreme Deep Field (XDF, updated from HUDF) and the Hubble Legacy Fields (HLFs). Our program would be the first to advance the morphology studies of DGs to the Cosmic Noon (z 2), and hence place unprecedented constraints on models of galaxy structure formation. Equally important is the data product of our program: multi-wavelength photometry and morphology catalogs for all detected galaxies in these fields. These catalogs would be a timely treasure for the public to prepare for the coming JWST era by providing detailed information of small, faint, but important objects in some deepest HST fields for JWST observations.

  16. Technicians assembly the Hubble Space Telescope (HST) mockup at JSC

    NASA Technical Reports Server (NTRS)

    1989-01-01

    At JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A, technicians install a high gain antenna (HGA) on the Hubble Space Telescope (HST) mockup. On the ground a technician operates the controls for the overhead crane that is lifting the HGA into place on the Support System Module (SSM) forward shell. Others in a cherry picker basket wait for the HGA to near its final position so they can secure it on the mockup.

  17. The bipolar jet of the symbiotic star R Aquarii: A study of its morphology using the high-resolution HST WFC3/UVIS camera

    NASA Astrophysics Data System (ADS)

    Melnikov, Stanislav; Stute, Matthias; Eislöffel, Jochen

    2018-04-01

    Context. R Aqr is a symbiotic binary system consisting of a Mira variable with a pulsation period of 387 days and a hot companion which is presumably a white dwarf with an accretion disk. This binary system is the source of a prominent bipolar gaseous outflow. Aims: We use high spatial resolution and sensitive images from the Hubble Space Telescope (HST) to identify and investigate the different structural components that form the complex morphology of the R Aqr jet. Methods: We present new high-resolution HST WFC3/UVIS narrow-band images of the R Aqr jet obtained in 2013/14 using the [OIII]λ5007, [OI]λ6300, [NII]λ6583, and Hα emission lines. These images also allow us to produce detailed maps of the jet flow in several line ratios such as [OIII]λ5007/[OI]λ6300 and [NII]λ6583/[OI]λ6300 which are sensitive to the outflow temperature and its hydrogen ionisation fraction. The new emission maps together with archival HST data are used to derive and analyse the proper motion of prominent emitting features which can be traced over 20 years with the HST observations. Results: The images reveal the fine gas structure of the jet out to distances of a few tens of arcseconds from the central region, as well as in the innermost region, within a few arcseconds around the stellar source. They reveal for the first time the straight, highly collimated jet component which can be traced to up to 900 AU in the NE direction. Images in [OIII]λ5007, [OI]λ6300, and [NII]λ6583 clearly show a helical pattern in the jet beams which may derive from the small-scale precession of the jet. The highly collimated jet is accompanied by a wide opening angle outflow which is filled by low excitation gas. The position angles of the jet structures as well as their opening angles are calculated. Our measurements of the proper motions of some prominent emission knots confirm the scenario of gas acceleration during the propagation of the outflow. Finally, we produce several detailed line ratio

  18. ULTRAVIOLET SPECTROSCOPY OF PQ Gem AND V405 Aur FROM THE HST AND IUE SATELLITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanad, M. R., E-mail: mrsanad1@yahoo.com

    Ultraviolet spectra of two intermediate polars (IPs), PQ Gem and V405 Aur, observed with Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph and Faint Object Spectrograph and International Ultraviolet Explorer (IUE) satellites were analyzed during the period between 1994–2000. We estimated the reddening of the two systems from the 2200 Å feature. Six spectra of the two systems revealing modulations of line fluxes at different times are presented. PQ Gem and V405 Aur are featured by spectral lines in different ionization states. This paper focuses on the third ionized carbon emission line at 1550 Å and the first ionized heliummore » emission line at 1640 Å produced in the optically thin outer region of the accretion curtain for the two systems by calculating spectral line fluxes. From HST and IUE data, we deduced ultraviolet luminosities and ultraviolet accretion rates for the two binary stars. The average temperature of the accretion streams for PQ Gem and V405 Aur are ∼4500 K and 4100 K, respectively. The results reveal that there are modulations in fluxes of spectral lines, ultraviolet luminosities, and ultraviolet accretion rates with time for both systems. These modulations are referred to the changes of both density and temperature as a result of the variations of mass transfer rate from the secondary star to the primary star. The current results are consistent with an accretion curtain model for IPs.« less

  19. Astrometry, Radial Velocity, and Photometry: The HD 128311 System Remixed with Data from HST, HET, and APT

    NASA Astrophysics Data System (ADS)

    McArthur, Barbara. E.; Benedict, G. Fritz; Henry, Gregory W.; Hatzes, Artie; Cochran, William D.; Harrison, Tom E.; Johns-Krull, Chris; Nelan, Ed

    2014-11-01

    We have used high-cadence radial velocity measurements from the Hobby-Eberly Telescope with published velocities from the Lick 3 m Shane Telescope, combined with astrometric data from the Hubble Space Telescope (HST) Fine Guidance Sensors to refine the orbital parameters of the HD 128311 system, and determine an inclination of 55.°95 ± 14.°55 and true mass of 3.789 +0.924 -0.432 M JUP for HD 128311 c. The combined radial velocity data also reveal a short period signal which could indicate a third planet in the system with an Msin i of 0.133 ± 0.005 M JUP or stellar phenomena. Photometry from the T12 0.8 m automatic photometric telescope at the Fairborn Observatory and HST are used to determine a photometric period close to, but not within the errors of the radial velocity signal. We performed a cross-correlation bisector analysis of the radial velocity data to look for correlations with the photometric period and found none. Dynamical integrations of the proposed system show long-term stability with the new orbital parameters of over 10 million years. Our new orbital elements do not support the claims of HD 128311 b and c being in mean motion resonance. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen, and observations with T12 0.8 m automatic photoelectric telescope (APT) at Fairborn Observatory.

  20. Hα Equivalent Widths from the 3D-HST survey: evolution with redshift and dependence on stellar mass†

    NASA Astrophysics Data System (ADS)

    Fumagalli, Mattia; Patel, Shannon G.; Franx, Marijn; Brammer, Gabriel; van Dokkum, Pieter; da Cunha, Elisabete; Kriek, Mariska; Lundgren, Britt; Momcheva, Ivelina; Rix, Hans-Walter; Schmidt, Kasper B.; Skelton, Rosalind E.; Whitaker, Katherine E.; Labbe, Ivo; Nelson, Erica

    2013-07-01

    We investigate the evolution of the Hα equivalent width, EW(Hα), with redshift and its dependence on stellar mass, using the first data from the 3D-HST survey, a large spectroscopic Treasury program with the HST-WFC3. Combining our Hα measurements of 854 galaxies at 0.8observed EW(Hα) can be reproduced with the characteristic evolutionary history for galaxies, whose star formation rises with cosmic time to z ~ 2.5 and then decreases to z = 0. This implies that EW(Hα) rises to 400 Å at z = 8. The sSFR evolves faster than EW(Hα), as the mass-to-light ratio also evolves with redshift. We find that the sSFR evolves as (1+z)3.2, nearly independent of mass, consistent with previous reddening insensitive estimates. We confirm previous results that the observed slope of the sSFR-z relation is steeper than the one predicted by models, but models and observations agree in finding little mass dependence.

  1. The Star Formation History of the Very Metal-poor Blue Compact Dwarf I Zw 18 from HST/ACS Data

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Cignoni, M.; Tosi, M.; van der Marel, R. P.; Aloisi, A.; Clementini, G.; Contreras Ramos, R.; Fiorentino, G.; Marconi, M.; Musella, I.

    2013-12-01

    We have derived the star formation history (SFH) of the blue compact dwarf galaxy I Zw 18 through comparison of deep HST/ACS data with synthetic color-magnitude diagrams (CMDs). A statistical analysis was implemented for the identification of the best-fit SFH and relative uncertainties. We confirm that I Zw 18 is not a truly young galaxy, having started forming stars earlier than ~1 Gyr ago, and possibly at epochs as old as a Hubble time. In I Zw 18's main body we infer a lower limit of ≈2 × 106 M ⊙ for the mass locked up in old stars. I Zw 18's main body has been forming stars very actively during the last ~10 Myr, with an average star formation rate (SFR) as high as ≈1 M ⊙ yr-1 (or ≈2 × 10-5 M ⊙ yr-1 pc-2). On the other hand, the secondary body was much less active at these epochs, in agreement with the absence of significant nebular emission. The high current SFR can explain the very blue colors and the high ionized gas content in I Zw 18, resembling primeval galaxies in the early universe. Detailed chemical evolution models are required to quantitatively check whether the SFH from the synthetic CMDs can explain the low measured element abundances, or if galactic winds with loss of metals are needed. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., for NASA under contract NAS5-26555.

  2. Astronauts Akers and Thornton remove one of HST solar arrays during EVA

    NASA Image and Video Library

    1993-12-06

    STS061-95-075 (6 Dec 1993) --- Astronauts Kathryn C. Thornton and Thomas D. Akers work to remove one of the solar arrays on the Hubble Space Telescope (HST) on the second of five extravehicular activity?s (EVA). The two space walkers later replaced both solar array panels. Part of Australia is in the background.

  3. Structure of the 5' region of the Hst70 gene transcription unit: presence of an intron and multiple transcription initiation sites.

    PubMed Central

    Scieglinska, D; Widłak, W; Konopka, W; Poutanen, M; Rahman, N; Huhtaniemi, I; Krawczyk, Z

    2001-01-01

    The rat Hst70 gene and its mouse counterpart Hsp70.2 belong to the family of Hsp70 heat shock genes and are specifically expressed in male germ cells. Previous studies regarding the structure of the 5' region of the transcription unit of these genes as well as localization of the 'cis' elements conferring their testis-specific expression gave contradictory results [Widlak, Markkula, Krawczyk, Kananen and Huhtaniemi (1995) Biochim. Biophys. Acta 1264, 191-200; Dix, Rosario-Herrle, Gotoh, Mori, Goulding, Barret and Eddy (1996) Dev. Biol. 174, 310-321]. In the present paper we solve these controversies and show that the 5' untranslated region (UTR) of the Hst70 gene contains an intron which is localized similar to that of the mouse Hsp70.2 gene. Reverse transcriptase-mediated PCR, Northern blotting and RNase protection analysis revealed that the transcription initiation of both genes starts at two main distant sites, and one of them is localized within the intron. As a result two populations of Hst70 gene transcripts with similar sizes but different 5' UTR structures can be detected in total testicular RNA. Functional analysis of the Hst70 gene promoter in transgenic mice and transient transfection assays proved that the DNA fragment of approx. 360 bp localized upstream of the ATG transcription start codon is the minimal promoter required for testis-specific expression of the HST70/chloramphenicol acetyltransferase transgene. These experiments also suggest that the expression of the gene may depend on 'cis' regulatory elements localized within exon 1 and the intron sequences. PMID:11563976

  4. THROUGH THE LOOKING GLASS: HST SPECTROSCOPY OF FAINT GALAXIES LENSED BY THE FRONTIER FIELDS CLUSTER MACSJ0717.5+3745

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, K. B.; Treu, T.; Wang, X.

    The Grism Lens-Amplified Survey from Space (GLASS) is a Hubble Space Telescope (HST) Large Program, which will obtain 140 orbits of grism spectroscopy of the core and infall regions of 10 galaxy clusters, selected to be among the very best cosmic telescopes. Extensive HST imaging is available from many sources including the CLASH and Frontier Fields programs. We introduce the survey by analyzing spectra of faint multiply-imaged galaxies and z ≳ 6 galaxy candidates obtained from the first 7 orbits out of 14 targeting the core of the Frontier Fields cluster MACSJ0717.5+3745. Using the G102 and G141 grisms to covermore » the wavelength range 0.8-1.7 μm, we confirm four strongly lensed systems by detecting emission lines in each of the images. For the 9 z ≳ 6 galaxy candidates clear from contamination, we do not detect any emission lines down to a 7 orbit 1σ noise level of ∼5 × 10{sup –18} erg s{sup –1} cm{sup –2}. Taking lensing magnification into account, our flux sensitivity reaches ∼0.2-5 × 10{sup –18} erg s{sup –1}cm{sup –2}. These limits over an uninterrupted wavelength range rule out the possibility that the high-z galaxy candidates are instead strong line emitters at lower redshift. These results show that by means of careful modeling of the background—and with the assistance of lensing magnification—interesting flux limits can be reached for large numbers of objects, avoiding pre-selection and the wavelength restrictions inherent to ground-based multi-slit spectroscopy. These observations confirm the power of slitless HST spectroscopy even in fields as crowded as a cluster core.« less

  5. THE TIME EVOLUTION OF HH 1 FROM FOUR EPOCHS OF HST IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raga, A. C.; Esquivel, A.; Reipurth, B.

    We present an analysis of four epochs of Hα and [S ii] λλ 6716/6731 Hubble Space Telescope (HST) images of HH 1. For determining proper motions, we explore a new method based on the analysis of spatially degraded images obtained convolving the images with wavelet functions of chosen widths. With this procedure, we are able to generate maps of proper motion velocities along and across the outflow axis, as well as (angularly integrated) proper motion velocity distributions. From the four available epochs, we find the time evolution of the velocities, intensities, and spatial distribution of the line emission. We find that overmore » the last two decades HH 1 shows a clear acceleration. Also, the Hα and [S ii] intensities first dropped and then recovered in the more recent (2014) images. Finally, we show a comparison between the two available HST epochs of [O iii] λ 5007 (1994 and 2014), in which we see a clear drop in the value of the [O iii]/Hα ratio.« less

  6. HST Observations of Astrophysically Important Visual Binaries

    NASA Astrophysics Data System (ADS)

    Bond, Howard

    2013-10-01

    We propose to continue our long-term program of astrometry of close visual binaries, with the primary goal of determining purely dynamical masses for 3 important main-sequence stars and 9 white dwarfs {WDs}. A secondary aim is to set limits on third bodies in the systems down to planetary mass. Three of our targets are naked-eye stars with much fainter companions that are extremely difficult to image from the ground. Our other 2 targets are double WDs, whose small separations and faintness likewise make them difficult to measure using ground-based techniques. Observations have been completed for a 3rd double WD.The bright stars, to be imaged with WFC3, are: {1} Procyon {P = 40.83 yr}, containing a bright F star and a much fainter WD companion. With the continued monitoring proposed here, we will obtain masses to an accuracy of better than 1%, providing a testbed for theories of both Sun-like stars and WDs. {2} Sirius {P = 50.14 yr}, an A-type star also having a faint WD companion, Sirius B, the nearest and brightest of all WDs. {3} Mu Cas {P = 21.08 yr}, a nearby metal-deficient G dwarf for which accurate masses will lead to the stars' helium contents, with cosmological implications. The faint double WDs, to be observed with FGS, are: {1} G 107-70 {P = 18.84 yr}, and {2} WD 1818+126 {P = 12.19 yr}. Our astrometry of these systems will add 4 accurate masses to the handful of WD masses that are directly known from dynamical measurements. The FGS measurements will also provide precise parallaxes for the systems, a necessary ingredient in the mass determinations.

  7. HST Observations of Astrophysically Important Visual Binaries

    NASA Astrophysics Data System (ADS)

    Bond, Howard

    2015-10-01

    We propose to continue our long-term program of astrometry of close visual binaries, with the primary goal of determining purely dynamical masses for 3 important main-sequence stars and 9 white dwarfs (WDs). A secondary aim is to set limits on third bodies in the systems down to planetary mass. Three of our targets are naked-eye stars with much fainter companions that are extremely difficult to image from the ground. Our other 2 targets are double WDs, whose small separations and faintness likewise make them difficult to measure using ground-based techniques. Observations have been completed for a 3rd double WD.The bright stars, to be imaged with WFC3, are: (1) Procyon (P = 40.83 yr), containing a bright F star and a much fainter WD companion. With the continued monitoring proposed here, we will obtain masses to an accuracy of better than 1%, providing a testbed for theories of both Sun-like stars and WDs. (2) Sirius (P = 50.14 yr), an A-type star also having a faint WD companion, Sirius B, the nearest and brightest of all WDs. (3) Mu Cas (P = 21.08 yr), a nearby metal-deficient G dwarf for which accurate masses will lead to the stars' helium contents, with cosmological implications. The faint double WDs, to be observed with FGS, are: (1) G 107-70 (P = 18.84 yr), and (2) WD 1818+126 (P = 12.19 yr). Our astrometry of these systems will add 4 accurate masses to the handful of WD masses that are directly known from dynamical measurements. The FGS measurements will also provide precise parallaxes for the systems, a necessary ingredient in the mass determinations.

  8. HST Observations of Astrophysically Important Visual Binaries

    NASA Astrophysics Data System (ADS)

    Bond, Howard

    2014-10-01

    We propose to continue our long-term program of astrometry of close visual binaries, with the primary goal of determining purely dynamical masses for 3 important main-sequence stars and 9 white dwarfs (WDs). A secondary aim is to set limits on third bodies in the systems down to planetary mass. Three of our targets are naked-eye stars with much fainter companions that are extremely difficult to image from the ground. Our other 2 targets are double WDs, whose small separations and faintness likewise make them difficult to measure using ground-based techniques. Observations have been completed for a 3rd double WD.The bright stars, to be imaged with WFC3, are: (1) Procyon (P = 40.83 yr), containing a bright F star and a much fainter WD companion. With the continued monitoring proposed here, we will obtain masses to an accuracy of better than 1%, providing a testbed for theories of both Sun-like stars and WDs. (2) Sirius (P = 50.14 yr), an A-type star also having a faint WD companion, Sirius B, the nearest and brightest of all WDs. (3) Mu Cas (P = 21.08 yr), a nearby metal-deficient G dwarf for which accurate masses will lead to the stars' helium contents, with cosmological implications. The faint double WDs, to be observed with FGS, are: (1) G 107-70 (P = 18.84 yr), and (2) WD 1818+126 (P = 12.19 yr). Our astrometry of these systems will add 4 accurate masses to the handful of WD masses that are directly known from dynamical measurements. The FGS measurements will also provide precise parallaxes for the systems, a necessary ingredient in the mass determinations.

  9. Hubble Space Telescope: The GO and GTO Observing Programs. Version 1.0

    NASA Technical Reports Server (NTRS)

    Saha, Abhijit

    1990-01-01

    Selected information from the current Hubble Space Telescope (HST) science programs for the Guaranteed Time Observers (GTO's) and General Observers (GO's) is presented. Included are program abstracts, detailed listings of specific targets, and exposure information.

  10. Enabling HST UV Exploration of the Low Surface Brightness Universe: A Pilot Study with the WFC3 X Filter Set

    NASA Astrophysics Data System (ADS)

    Thilker, David

    2017-08-01

    We request 17 orbits to conduct a pilot study to examine the effectiveness of the WFC3/UVIS F300X filter for studying fundamental problems in star formation in the low density regime. In principle, the broader bandpass and higher throughput of F300X can halve the required observing time relative to F275W, the filter of choice for studying young stellar populations in nearby galaxies. Together with F475W and F600LP, this X filter set may be as effective as standard UVIS broadband filters for characterizing the physical properties of such populations. We will observe 5 low surface brightness targets with a range of properties to test potential issues with F300X: the red tail to 4000A and a red leak beyond, ghosts, and the wider bandpass. Masses and ages of massive stars, young star clusters, and clumps derived from photometry from the X filter set will be compared with corresponding measurements from standard filters. Beyond testing, our program will provide the first sample spanning a range of LSB galaxy properties for which HST UV imaging will be obtained, and a glimpse into the ensemble properties of the quanta of star formation in these strange environments. The increased observing efficiency would make more tractable programs which require several tens to hundreds of orbits to aggregate sufficient numbers of massive stars, young star clusters, and clumps to build statistical samples. We are hopeful that our pilot observations will broadly enable high-resolution UV imaging exploration of the low density frontier of star formation while HST is still in good health.

  11. Ground-Based Calibration Support for Two Approved HST Programs

    NASA Technical Reports Server (NTRS)

    Stauffer, John R.

    1998-01-01

    This final report is a summary of the study on ground-based calibration support for two approved HST programs. A large set of new rotational periods for low mass stars in the Pleiades open cluster have been published and used to help interpret chromospheric and coronal activity indicators for low mass stars in the cluster. The Caltech/TJC/NASA Keck telescope in Hawaii has also been used to obtain spectra of brown dwarf candidates in the Pleiades. Those spectra help to derive an accurate and precise new age for that fiducial open cluster.

  12. Radio jets in NGC 4151: where eMERLIN meets HST

    NASA Astrophysics Data System (ADS)

    Williams, D. R. A.; McHardy, I. M.; Baldi, R. D.; Beswick, R. J.; Argo, M. K.; Dullo, B. T.; Knapen, J. H.; Brinks, E.; Fenech, D. M.; Mundell, C. G.; Muxlow, T. W. B.; Panessa, F.; Rampadarath, H.; Westcott, J.

    2017-12-01

    We present high-sensitivity eMERLIN radio images of the Seyfert galaxy NGC 4151 at 1.51 GHz. We compare the new eMERLIN images to those from archival MERLIN observations in 1993 to determine the change in jet morphology in the 22 yr between observations. We report an increase by almost a factor of 2 in the peak flux density of the central core component, C4, thought to host the black hole, but a probable decrease in some other components, possibly due to adiabatic expansion. The core flux increase indicates an active galactic nucleus (AGN) that is currently active and feeding the jet. We detect no significant motion in 22 yr between C4 and the component C3, which is unresolved in the eMERLIN image. We present a spectral index image made within the 512 MHz band of the 1.51 GHz observations. The spectrum of the core, C4, is flatter than that of other components further out in the jet. We use HST emission-line images (H α, [O III] and [O II]) to study the connection between the jet and the emission-line region. Based on the changing emission-line ratios away from the core and comparison with the eMERLIN radio jet, we conclude that photoionization from the central AGN is responsible for the observed emission-line properties further than 4 arcsec (360 pc) from the core, C4. Within this region, a body of evidence (radio-line co-spatiality, low [O III]/H α and estimated fast shocks) suggests additional ionization from the jet.

  13. Astronauts Newman and Walz evaluate tools for use on HST servicing mission

    NASA Image and Video Library

    1993-09-16

    With the Caribbean Sea and part of the Bahama Islands chain as a backdrop, two STS-51 crewmembers evaluate procedures and gear to be used on the upcoming Hubble Space Telescope (HST)-servicing mission. Sharing the lengthy extravehicular activity in and around Discovery's cargo bay were astronauts James H. Newman (left), and Carl E. Walz, mission specialists.

  14. VizieR Online Data Catalog: Ultradiffuse galaxies found in deep HST images of HFF (Lee+, 2017)

    NASA Astrophysics Data System (ADS)

    Lee, M. G.; Kang, J.; Lee, J. H.; Jang in, S.

    2018-03-01

    Abell S1063 and Abell 2744 are located at redshift z=0.348 and z=0.308, respectively, so their HST fields cover a relatively large fraction of each cluster. They are part of the target galaxy clusters in the Hubble Frontier Fields (HFF) Program, for which deep Hubble Space Telescope (HST) images are available (Lotz+ 2017ApJ...837...97L). We used ACS/F814W(I) and WFC3/F105W(Y) images for Abell S1063 and Abell 2744 in the HFF. The effective wavelengths of the F814W and F105W filters for the redshifts of Abell S1063 and Abell 2744 (6220 and 8030Å) correspond approximately to SDSS r' and Cousins I (or SDSS i') in the rest frame, respectively. Figure 1 display color images of the HST fields for Abell S1063 and Abell 2744. In this study we adopt the cosmological parameters H0=73km/s/Mpc, ΩM=0.27, and ΩΛ=0.73. For these parameters, luminosity distance moduli of Abell S1063 and Abell 2744 are (m-M)0=41.25 (d=1775Mpc) and 40.94 (d=1540Mpc), and angular diameter distances are 978 and 901Mpc, respectively. (5 data files).

  15. Probing for exoplanets hiding in dusty debris disks: Disk imaging, characterization, and exploration with HST/STIS multi-roll coronagraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Glenn; Hinz, Phillip M.; Grady, Carol A.

    Spatially resolved scattered-light images of circumstellar debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, the systemic architectures, and forces perturbing the starlight-scattering circumstellar material. Using Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) broadband optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in a sample of 10 circumstellar debris systems and 1 'mature' protoplanetrary disk, all with HST pedigree, using point-spread-function-subtracted multi-roll coronagraphy. These observations probe stellocentric distances ≥5 AU for the nearestmore » systems, and simultaneously resolve disk substructures well beyond corresponding to the giant planet and Kuiper Belt regions within our own solar system. They also disclose diffuse very low-surface-brightness dust at larger stellocentric distances. Herein we present new results inclusive of fainter disks such as HD 92945 (F {sub disk}/F {sub star} = 5 × 10{sup –5}), confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like substructures and significant asymmetries and complex morphologies include HD 181327, for which we posit a spray of ejecta from a recent massive collision in an exo-Kuiper Belt; HD 61005, suggested to be interacting with the local interstellar medium; and HD 15115 and HD 32297, also discussed in the context of putative environmental interactions. These disks and HD 15745 suggest that debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk, we find out-of-plane surface brightness asymmetries at ≥5 AU that may implicate the existence of one or more planetary perturbers. Time-resolved images of the MP Mus protoplanetary disk provide spatially resolved temporal

  16. HST FUV/NUV Photometry of the Putative Binary Companion to the SN 1993J Progenitor

    NASA Astrophysics Data System (ADS)

    Miles, Nathan; Fox, Ori; Azalee Bostroem, K.; Zheng, WeiKang; Graham, Melissa; Van Dyk, Schuyler D.; Filippenko, Alexei V.; Matheson, Thomas; Dwarkadas, Vikram; Fransson, Claes; Smith, Nathan; Brink, Thomas

    2018-06-01

    A previous analysis of HST/COS spectra from 2012 revealed an FUV excess consistent with the presence of the hypothetical B-star companion to the SN 1993J progenitor. The spectrum, however, had low signal-to-noise and was blended with several other nearby stars within the 2.5 arcsec COS aperture. Since that time, the SN has sufficiently faded allowing for more accurate photometry to be performed. Here we present follow-up HST FUV/NUV imaging using the F140LP filter on ACS/SBC and the F218W, F275W, and F336W filters on WFC3/UVIS. This photometry isolates the UV flux from only the putative companion. We will discuss whether this new evidence removes all ambiguity about the nature of the companion once and for all.

  17. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1999-05-29

    In this sturning image provided by the Hubble Space Telescope (HST), the Omega Nebula (M17) resembles the fury of a raging sea, showing a bubbly ocean of glowing hydrogen gas and small amounts of other elements such as oxygen and sulfur. The nebula, also known as the Swan Nebula, is a hotbed of newly born stars residing 5,500 light-years away in the constellation Sagittarius. The wavelike patterns of gas have been sculpted and illuminated by a torrent of ultraviolet radiation from the young massive stars, which lie outside the picture to the upper left. The ultraviolet radiation is carving and heating the surfaces of cold hydrogen gas clouds. The warmed surfaces glow orange and red in this photograph. The green represents an even hotter gas that masks background structures. Various gases represented with color are: sulfur, represented in red; hydrogen, green; and oxygen blue.

  18. Calibration of HST wide field camera for quantitative analysis of faint galaxy images

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Griffiths, Richard E.; Casertano, Stefano; Neuschaefer, Lyman W.; Wyckoff, Eric W.

    1994-01-01

    We present the methods adopted to optimize the calibration of images obtained with the Hubble Space Telescope (HST) Wide Field Camera (WFC) (1991-1993). Our main goal is to improve quantitative measurement of faint images, with special emphasis on the faint (I approximately 20-24 mag) stars and galaxies observed as a part of the Medium-Deep Survey. Several modifications to the standard calibration procedures have been introduced, including improved bias and dark images, and a new supersky flatfield obtained by combining a large number of relatively object-free Medium-Deep Survey exposures of random fields. The supersky flat has a pixel-to-pixel rms error of about 2.0% in F555W and of 2.4% in F785LP; large-scale variations are smaller than 1% rms. Overall, our modifications improve the quality of faint images with respect to the standard calibration by about a factor of five in photometric accuracy and about 0.3 mag in sensitivity, corresponding to about a factor of two in observing time. The relevant calibration images have been made available to the scientific community.

  19. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 8: An intensive HST, IUE, and ground-based study of NGC 5548

    NASA Technical Reports Server (NTRS)

    Korista, K.; Alloin, D.; Barr, P.; Clavel, J.; Cohen, R. D.; Crenshaw, D. M.; Evans, I. N.; Horne, K.; Koratkar, A. P.; Kriss, G. A.

    1994-01-01

    We present the data and initial results from a combined HST/IUE/ground-based spectroscopic monitoring campaign on the Seyfert 1 galaxy NGC 5548 that was undertaken in order to address questions that require both higher temporal resolution and higher signal-to-noise ratios than were obtained in our previous multiwavelength monitoring of this galaxy in 1988-89. IUE spectra were obtained once every two days for a period of 74 days beginning on 14 March 1993. During the last 39 days of this campaign, spectroscopic observations were also made with the HST Faint Object Spectrograph (FOS) on a daily basis. Ground-based observations, consisting of 165 optical spectra and 77 photometric observations (both CCD imaging and aperture photometry), are reported for the period 1992 October to 1993 September, although much of the data are concentrated around the time of the satellite-based program. These data constitute a fifth year of intensive optical monitoring of this galaxy. In this contribution, we describe the acquisition and reduction of all of the satellite and ground-based data obtained in this program. We describe in detail various photometric problems with the FOS and explain how we identified and corrected for various anomalies. During the HST portion of the monitoring campaign, the 1350 A continuum flux is found to have varied by nearly a factor of two. In other wavebands, the continuum shows nearly identical behavior, except that the amplitude of variability is larger at shorter wavelengths, and the continuum light curves appear to show more short time-scale variability at shorter wavelengths. The broad emission lines also vary in flux, with amplitudes that are slightly smaller than the UV continuum variations and with a small time delay relative to the UV continuum. On the basis of simple time-series analysis of the UV and optical continuum and emission line light curves, we find (1) that the ultraviolet and optical continuum variations are virtually simultaneous

  20. The Distance to the Massive Galactic Cluster Westerlund 2 from a Spectroscopic and HST Photometric Study

    NASA Astrophysics Data System (ADS)

    Vargas Álvarez, Carlos A.; Kobulnicky, Henry A.; Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A.; Cool, Richard J.; Miller, Brendan P.

    2013-05-01

    We present a spectroscopic and photometric determination of the distance to the young Galactic open cluster Westerlund 2 using WFPC2 imaging from the Hubble Space Telescope (HST) and ground-based optical spectroscopy. HST imaging in the F336W, F439W, F555W, and F814W filters resolved many sources previously undetected in ground-based observations and yielded photometry for 1136 stars. We identified 15 new O-type stars, along with two probable binary systems, including MSP 188 (O3 + O5.5). We fit reddened spectral energy distributions based on the Padova isochrones to the photometric data to determine individual reddening parameters RV and AV for O-type stars in Wd2. We find average values langRV rang = 3.77 ± 0.09 and langAV rang = 6.51 ± 0.38 mag, which result in a smaller distance than most other spectroscopic and photometric studies. After a statistical distance correction accounting for close unresolved binaries (factor of 1.08), our spectroscopic and photometric data on 29 O-type stars yield that Westerlund 2 has a distance langdrang = 4.16 ± 0.07 (random) +0.26 (systematic) kpc. The cluster's age remains poorly constrained, with an upper limit of 3 Myr. Finally, we report evidence of a faint mid-IR polycyclic aromatic hydrocarbon ring surrounding the well-known binary candidate MSP 18, which appears to lie at the center of a secondary stellar grouping within Westerlund 2. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  1. Neptune's New Dark Vortex: Imaging with HST/WFC3

    NASA Astrophysics Data System (ADS)

    Wong, M. H.; Tollefson, J.; De Pater, I.; de Kleer, K.; Hammel, H. B.; Luszcz-Cook, S.; Hueso, R.; Sanchez-Lavega, A.; Simon, A. A.; Delcroix, M.; Sromovsky, L. A.; Fry, P. M.; Orton, G. S.; Baranec, C.

    2016-12-01

    A bright, unusually long-lived outburst of cloud activity on Neptune was observed in 2015 (Hueso et al. 2015, DPS 400.02). This led to speculation about whether the clouds were convective in nature, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2: Smith et al. 1989, Science 246, 1422). HST OPAL images at blue wavelengths finally answered this question by discovering a new dark vortex at 45 deg S. We call this feature SDS-2015, for "southern dark spot discovered in 2015" (Wong et al. 2016, CBET 4278). Dark vortices on Neptune are rare; SDS-2015 is only the fifth ever seen. All five were diverse in terms of size and shape, the distribution of bright companion clouds, and horizontal motions (oscillations and drifts). The drift of these vortices is highly sensitive to horizontal and vertical wind shear, making them valuable probes into the structure of Neptune's atmospheric jets. We will present imaging observations of SDS-2015 obtained with the WFC3/UVIS camera on the Hubble Space Telescope, covering the discovery of the vortex in September 2015 and follow-up observations in May 2016. No significant latitudinal drift was seen over this time span. We will compare size estimates, which are complicated by the continual presence of companion clouds, and by the low contrast between the vortex and its surroundings. The 2015 observations included 7 filters spanning 467-845 nm, weighted toward longer wavelengths to study general cloud motions and vertical distributions. The 2016 observations included 7 filters spanning 336-763 nm, weighted toward shorter wavelengths where the dark spot itself can be detected. A companion abstract (Tollefson et al., this meeting) will present results from radiative transfer modeling of the multispectral data. [This conference abstract is based on observations made with the NASA/ESA Hubble Space Telescope, associated with programs GO-13937 ("OPAL") and GO-14492.

  2. Imaging with HST the Time Evolution of Eta Carinae's Colliding Winds

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Madura, Thomas I.; Groh, Jose H.; Corcoran, Michael F.

    2011-01-01

    We report new HST/STIS observations that map the high-ionization forbidden line emission in the inner arcsecond of Eta Car, the first that fully image the extended wind-wind interaction region of the massive colliding wind binary. These observations were obtained after the 2009.0 periastron at orbital phases 0.084, 0.163, and 0.323 of the 5.54-year spectroscopic cycle. We analyze the variations in brightness and morphology of the emission, and find that blue-shifted emission (-400 to -200 km/s is symmetric and elongated along the northeast-southwest axis, while the red-shifted emission (+ 100 to +200 km/s) is asymmetric and extends to the north-northwest. Comparison to synthetic images generated from a 3-D dynamical model strengthens the 3-D orbital orientation found by Madura et al. (2011), with an inclination i approx. 138deg, argument of periapsis omega approx. 270deg, and an orbital axis that is aligned at the same PA on the sky as the symmetry axis of the Homunculus, 312deg. We discuss the potential that these and future mappings have for constraining the stellar parameters of the companion star and the long-term variability of the system.

  3. VizieR Online Data Catalog: Atlas of HST STIS spectra of Seyfert galaxies (Spinelli+, 2006)

    NASA Astrophysics Data System (ADS)

    Spinelli, P. F.; Storchi-Bergmann, T.; Brandt, C. H.; Calzetti, D.

    2008-05-01

    We present a compilation of spectra of 101 Seyfert galaxies obtained with the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS), covering the UV and/or optical spectral range. Information on all the available spectra have been collected in a Mastertable, which is a very useful tool for anyone interested in a quick glance at the existent STIS spectra for Seyfert galaxies in the HST archive, and it can be recovered electronically. Nuclear spectra of the galaxies have been extracted in windows of 0.2" for an optimized sampling (as this is the slit width in most cases) and combined in order to improve the signal-to-noise ratio and provide the widest possible wavelength coverage. These combined spectra are also available electronically, at http://www.if.ufrgs.br/~pat/atlas.htm . (3 data files).

  4. A study of the long-term properties of Jovian hot spots from HST and ground-based observations between 1994 and 1998

    NASA Astrophysics Data System (ADS)

    Arregui, E.; Rojas, J. F.; Sanchez-Lavega, A.; Lecacheux, J.; Colas, F.; Miyazaki, I.; Parker, D.

    2000-10-01

    We have used the HST-WFPC2 archived images of Jupiter in the period 1994-1998 together with a large set of CCD ground based images, to study the zonal distribution, long-term motions, lifetimes, interactions and other properties of the hot spot - plume regions at 7 degrees North. Red and near infrared filters covering the wavelength range 650 - 953 nm have been used since they show the hot spots with a high contrast. We have found that the hot spots have velocities ranging from 95 to 112 m/s and are grouped typically in families of three to six members. We do not found any correlation between their velocity and wavenumber. The long-term survey allowed us to identify mergers and splitting of the hot spots areas. The Spanish team was supported by Gobierno Vasco PI 034/97. The French team was supported by the "Programme National de Planetologie."

  5. A Legacy Archive Program Providing Optical/NIR-selected Multiwavelength Catalogs and High-level Science Products of the HST Frontier Fields

    NASA Astrophysics Data System (ADS)

    Marchesini, Danilo

    2015-10-01

    We propose to construct public multi-wavelength and value-added catalogs for the HST Frontier Fields (HFF), a multi-cycle imaging program of 6 deep fields centered on strong lensing galaxy clusters and 6 deep blank fields. Whereas the main goal of the HFF is to explore the first billion years of galaxy evolution, this dataset has a unique combination of area and depth that will propel forward our knowledge of galaxy evolution down to and including the foreground cluster redshift (z=0.3-0.5). However, such scientific exploitation requires high-quality, homogeneous, multi-wavelength (from the UV to the mid-infrared) photometric catalogs, supplemented by photometric redshifts, rest-frame colors and luminosities, stellar masses, star-formation rates, and structural parameters. We will use our expertise and existing infrastructure - created for the 3D-HST and CANDELS projects - to build such a data product for the 12 fields of the HFF, using all available imaging data (from HST, Spitzer, and ground-based facilities) as well as all available HST grism data (e.g., GLASS). A broad range of research topics will benefit from such a public database, including but not limited to the faint end of the cluster mass function, the field mass function at z>2, and the build-up of the quiescent population at z>4. In addition, our work will provide an essential basis for follow-up studies and future planning with, for example, ALMA and JWST.

  6. SEARCHING FOR THE HR 8799 DEBRIS DISK WITH HST /STIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerard, B.; Marois, C.; Tannock, M.

    We present a new algorithm for space telescope high contrast imaging of close-to-face-on planetary disks called Optimized Spatially Filtered (OSFi) normalization. This algorithm is used on HR 8799 Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) coronagraphic archival data, showing an over-luminosity after reference star point-spread function (PSF) subtraction that may be from the inner disk and/or planetesimal belt components of this system. The PSF-subtracted radial profiles in two separate epochs from 2011 and 2012 are consistent with one another, and self-subtraction shows no residual in both epochs. We explore a number of possible false-positive scenarios that could explainmore » this residual flux, including telescope breathing, spectral differences between HR 8799 and the reference star, imaging of the known warm inner disk component, OSFi algorithm throughput and consistency with the standard spider normalization HST PSF subtraction technique, and coronagraph misalignment from pointing accuracy. In comparison to another similar STIS data set, we find that the over-luminosity is likely a result of telescope breathing and spectral difference between HR 8799 and the reference star. Thus, assuming a non-detection, we derive upper limits on the HR 8799 dust belt mass in small grains. In this scenario, we find that the flux of these micron-sized dust grains leaving the system due to radiation pressure is small enough to be consistent with measurements of other debris disk halos.« less

  7. Horowitz shows off the hand-crafted thermal insulation he made for the HST

    NASA Image and Video Library

    1997-02-18

    S82-E-5686 (17 Feb. 1997) --- Astronaut Scott J. Horowitz, STS-82 pilot, shows the hand-crafted thermal insulation blanket to support the goal of the final Extravehicular Activity (EVA) to cover tears in Hubble Space Telescope's (HST) insulation caused by changes in thermal conditions. This view was taken with an Electronic Still Camera (ESC).

  8. The HST/ACS Coma Cluster Survey. II. Data Description and Source Catalogs

    NASA Technical Reports Server (NTRS)

    Hammer, Derek; Kleijn, Gijs Verdoes; Hoyos, Carlos; Den Brok, Mark; Balcells, Marc; Ferguson, Henry C.; Goudfrooij, Paul; Carter, David; Guzman, Rafael; Peletier, Reynier F.; hide

    2010-01-01

    The Coma cluster, Abell 1656, was the target of a HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in early 2007, the partially-completed survey still covers approximately 50% of the core high density region in Coma. Observations were performed for twenty-five fields with a total coverage area of 274 aremin(sup 2), and extend over a wide range of cluster-centric radii (approximately 1.75 Mpe or 1 deg). The majority of the fields are located near the core region of Coma (19/25 pointings) with six additional fields in the south-west region of the cluster. In this paper we present SEXTRACTOR source catalogs generated from the processed images, including a detailed description of the methodology used for object detection and photometry, the subtraction of bright galaxies to measure faint underlying objects, and the use of simulations to assess the photometric accuracy and completeness of our catalogs. We also use simulations to perform aperture corrections for the SEXTRACTOR Kron magnitudes based only on the measured source flux and its half-light radius. We have performed photometry for 76,000 objects that consist of roughly equal numbers of extended galaxies and unresolved objects. Approximately two-thirds of all detections are brighter than F814W=26.5 mag (AB), which corresponds to the 10sigma, point-source detection limit. We estimate that Coma members are 5-10% of the source detections, including a large population of compact objects (primarily GCs, but also cEs and UCDs), and a wide variety of extended galaxies from cD galaxies to dwarf low surface brightness galaxies. The initial data release for the HST-ACS Coma Treasury program was made available to the public in August 2008. The images and catalogs described in this study relate to our second data release.

  9. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    NASA Astrophysics Data System (ADS)

    1999-11-01

    Today the HST Archives contain more than 260 000 astronomical observations. More than 13 000 astronomical objects have been observed by hundreds of different groups of scientists. Direct proof of the scientific significance of this project is the record-breaking number of papers published : over 2400 to date. Some of HST's most memorable achievements are: * the discovery of myriads of very faint galaxies in the early Universe, * unprecedented, accurate measurements of distances to the farthest galaxies, * significant improvement in the determination of the Hubble constant and thus the age of the Universe, * confirmation of the existence of blacks holes, * a far better understanding of the birth, life and death of stars, * a very detailed look at the secrets of the process by which planets are created. Europe and HST ESA's contribution to HST represents a nominal investment of 15%. ESA provided one of the two imaging instruments - the Faint Object Camera (FOC) - and the solar panels. It also has 15 scientists and computer staff working at the Space Telescope Science Institute in Baltimore (Maryland). In Europe the astronomical community receives observational assistance from the Space Telescope European Coordinating Facility (ST-ECF) located in Garching, Munich. In return for ESA's investment, European astronomers have access to approximately 15% of the observing time. In reality the actual observing time competitively allocated to European astronomers is closer to 20%. Looking back at almost ten years of operation, the head of ST-ECF, European HST Project Scientist Piero Benvenuti states: "Hubble has been of paramount importance to European astronomy, much more than the mere 20% of observing time. It has given the opportunity for European scientists to use a top class instrument that Europe alone would not be able to build and operate. In specific areas of research they have now, mainly due to HST, achieved international leadership." One of the major reasons for

  10. HST Rotational Spectral Mapping Of Two L-Type Brown Dwarfs: Variability In And Out Of Water Bands Indicates High-Altitude Haze Layers

    DOE PAGES

    Yang, Hao; Apai, Dániel; Marley, Mark S.; ...

    2014-12-17

    We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759-1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 μm and 1.7 μm. We find that the water absorption bands of the two L5 dwarfs at 1.15 μm and 1.4 μm vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 μm displays variations of about half of the amplitude at othermore » wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon & Marley (2008) and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers - the driver of the variability - must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.« less

  11. HST ROTATIONAL SPECTRAL MAPPING OF TWO L-TYPE BROWN DWARFS: VARIABILITY IN AND OUT OF WATER BANDS INDICATES HIGH-ALTITUDE HAZE LAYERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hao; Apai, Dániel; Karalidi, Theodora

    We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759–1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 μm and 1.7 μm. We find that the water absorption bands of the two L5 dwarfs at 1.15 μm and 1.4 μm vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 μm displays variations of about half of the amplitude at othermore » wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon and Marley and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers—the driver of the variability—must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.« less

  12. HST Rotational Spectral Mapping Of Two L-Type Brown Dwarfs: Variability In And Out Of Water Bands Indicates High-Altitude Haze Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hao; Apai, Dániel; Marley, Mark S.

    We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759-1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 μm and 1.7 μm. We find that the water absorption bands of the two L5 dwarfs at 1.15 μm and 1.4 μm vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 μm displays variations of about half of the amplitude at othermore » wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon & Marley (2008) and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers - the driver of the variability - must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.« less

  13. HST,survey views of Hubble after berthing in payload bay on Flight Day 3

    NASA Image and Video Library

    1997-02-13

    S82-E-5140 (13 Feb. 1997) --- A back-lighted full view of the Hubble Space Telescope (HST) in the grasp of the Remote Manipulation System (RMS) following capture early today. The limb of Earth forms part of the background. This view was taken with an Electronic Still Camera (ESC).

  14. A Refreshable, On-line Cache for HST Data Retrieval

    NASA Astrophysics Data System (ADS)

    Fraquelli, Dorothy A.; Ellis, Tracy A.; Ridgaway, Michael; DPAS Team

    2016-01-01

    We discuss upgrades to the HST Data Processing System, with an emphasis on the changes Hubble Space Telescope (HST) Archive users will experience. In particular, data are now held on-line (in a cache) removing the need to reprocess the data every time they are requested from the Archive. OTFR (on the fly reprocessing) has been replaced by a reprocessing system, which runs in the background. Data in the cache are automatically placed in the reprocessing queue when updated calibration reference files are received or when an improved calibration algorithm is installed. Data in the on-line cache are expected to be the most up to date version. These changes were phased in throughout 2015 for all active instruments.The on-line cache was populated instrument by instrument over the course of 2015. As data were placed in the cache, the flag that triggers OTFR was reset so that OTFR no longer runs on these data. "Hybrid" requests to the Archive are handled transparently, with data not yet in the cache provided via OTFR and the remaining data provided from the cache. Users do not need to make separate requests.Users of the MAST Portal will be able to download data from the cache immediately. For data not in the cache, the Portal will send the user to the standard "Retrieval Options Page," allowing the user to direct the Archive to process and deliver the data.The classic MAST Search and Retrieval interface has the same look and feel as previously. Minor changes, unrelated to the cache, have been made to the format of the Retrieval Options Page.

  15. HST/WFC3 Characteristics: gain, post-flash stability, UVIS low-sensitivity pixels, persistence, IR flats and bad pixel table

    NASA Astrophysics Data System (ADS)

    Gunning, Heather C.; Baggett, Sylvia; Gosmeyer, Catherine M.; Long, Knox S.; Ryan, Russell E.; MacKenty, John W.; Durbin, Meredith

    2015-08-01

    The Wide Field Camera 3 (WFC3) is a fourth-generation imaging instrument on the Hubble Space Telescope (HST). Installed in May 2009, WFC3 is comprised of two observational channels covering wavelengths from UV/Visible (UVIS) to infrared (IR); both have been performing well on-orbit. We discuss the gain stability of both WFC3 channel detectors from ground testing through present day. For UVIS, we detail a low-sensitivity pixel population that evolves during the time between anneals, but is largely reset by the annealing procedure. We characterize the post-flash LED lamp stability, used and recommended to mitigate CTE effects for observations with less than 12e-/pixel backgrounds. We present mitigation options for IR persistence during and after observations. Finally, we give an overview on the construction of the IR flats and provide updates on the bad pixel table.

  16. Deep HST imaging of distant weak radio and field galaxies

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Gordon, J. M.; Pascarelle, S. M.; Schmidtke, P. C.; Keel, W. C.; Burkey, J. M.; Dunlop, J. S.

    1994-01-01

    We present deep Hubble Space Telescope (HST) Wide-Field Camera (WFC) V- and I-band images of three distant weak radio galaxies with z = 0.311-2.390 and seven field galaxies with z = 0.131-0.58. The images were deconvolved with both the Lucy and multiresolution CLEAN methods, which yield a restoring Full Width at Half Maximum (FWHM) of less than or equal to 0.2 sec, (nearly) preserve photons and signal-to-noise ratio at low spatial frequencies, and produce consistent light profiles down to our 2 sigma surface brightness sensitivity limit of V approximately 27.2 and I approximately 25.9 mag/sq arcsec. Multi-component image modeling was used to provide deconvolution-independent estimates of structural parameters for symmetric galaxies. We present 12-band (m(sub 2750) UBVRIgriJHK) photometry for a subset of the galaxies and bootstrap the unknown FOC/48 zero point at 2750 A in three independent ways (yielding m(sub 2750) = 21.34 +/- 0.09 mag for 1.0 e(-)/s). Two radio galaxies with z = 0.311 and 0.528, as well as one field galaxy with z = 0.58, have the colors and spectra of early-type galaxies, and a(exp 1/4)-like light profiles in the HST images. The two at z greater than 0.5 have little or no color gradients in V - I and are likely giant ellipticals, while the z = 0.311 radio galaxy has a dim exponential disk and is likely an S0. Six of the seven field galaxies have light profiles that indicate (small) inner bulges following a(exp 1/4) laws and outer exponential disks, both with little or no color gradients. These are (early-type) spiral galaxies with z = 0.131-0.528. About half have faint companions or bars. One shows lumpy structure, possibly a merger. The compact narrow-line galaxy 53W002 at z = 2.390 has less than or = 30% +/- 10% of its HST V and I flux in the central kiloparsec (due to its weak Active Galactic Nucleus (AGN)). Most of its light (V approximately equal to 23.3) occurs in a symmetric envelope with a regular a(exp 1/4)-like profile of effective

  17. HUBBLE SPACE TELESCOPE OBSERVATIONS OF DUSTY FILAMENTS IN HERCULES A: EVIDENCE FOR ENTRAINMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Dea, C. P.; Kharb, P.; Baum, S. A.

    2013-07-01

    We present U-, V-, and I-band images of the host galaxy of Hercules A (3C 348) obtained with HST/WFC3/UVIS. We find a network of dusty filaments which are more complex and extended than seen in earlier Hubble Space Telescope (HST) observations. The filaments are associated with a faint blue continuum light (possibly from young stars) and faint H{alpha} emission. It seems likely that the cold gas and dust has been stripped from a companion galaxy now seen as a secondary nucleus. There are dusty filaments aligned with the base of the jets on both eastern and western sides of themore » galaxy. The morphology of the filaments is different on the two sides-the western filaments are fairly straight, while the eastern filaments are mainly in two loop-like structures. We suggest that despite the difference in morphologies, both sets of filaments have been entrained in a slow-moving boundary layer outside the relativistic flow. As suggested by Fabian et al., magnetic fields in the filaments may stabilize them against disruption. We consider a speculative scenario to explain the relation between the radio source and the shock and cavities in the hot intracluster medium seen in the Chandra data. We suggest that the radio source originally ({approx}60 Myr ago) propagated along a position angle of {approx}35 Degree-Sign where it created the shock and cavities. The radio source axis changed to its current orientation ({approx}100 Degree-Sign ) possibly due to a supermassive black hole merger and began its current epoch of activity about 20 Myr ago.« less

  18. Observing supernova 1987A with the refurbished Hubble Space Telescope.

    PubMed

    France, Kevin; McCray, Richard; Heng, Kevin; Kirshner, Robert P; Challis, Peter; Bouchet, Patrice; Crotts, Arlin; Dwek, Eli; Fransson, Claes; Garnavich, Peter M; Larsson, Josefin; Lawrence, Stephen S; Lundqvist, Peter; Panagia, Nino; Pun, Chun S J; Smith, Nathan; Sollerman, Jesper; Sonneborn, George; Stocke, John T; Wang, Lifan; Wheeler, J Craig

    2010-09-24

    Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 with the use of the refurbished instruments on HST with data taken in 2004, just before the Space Telescope Imaging Spectrograph failed, we find that the Lyα and Hα lines from shock emission continue to brighten, whereas their maximum velocities continue to decrease. We observe broad, blueshifted Lyα, which we attribute to resonant scattering of photons emitted from hot spots on the equatorial ring. We also detect N v λλ1239, 1243 angstrom line emission, but only to the red of Lyα. The profiles of the N v lines differ markedly from that of Hα, suggesting that the N4+ ions are scattered and accelerated by turbulent electromagnetic fields that isotropize the ions in the collisionless shock.

  19. Systems Engineering and Integration for Advanced Life Support System and HST

    NASA Technical Reports Server (NTRS)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  20. Measuring the Local ISM along the Sight Lines of the Two Voyager Spacecraft with HST/STIS

    NASA Astrophysics Data System (ADS)

    Zachary, Julia; Redfield, Seth; Linsky, Jeffrey L.; Wood, Brian E.

    2018-05-01

    In 2012 August, Voyager 1 crossed the heliopause, becoming the first human-made object to exit the solar system. This milestone signifies the beginning of an important new era for local interstellar medium (LISM) exploration. We present measurements of the structure and composition of the LISM in the immediate path of the Voyager spacecraft by using high-resolution Hubble Space Telescope (HST) spectra of nearby stars that lie along the same lines of sight. We provide a comprehensive inventory of LISM absorption in the near-ultraviolet (2600–2800 Å) and far-ultraviolet (1200–1500 Å). The LISM absorption profiles are used to make comparisons between each pair of closely spaced (<15°) sight lines. With fits to several absorption lines, we make measurements of the physical properties of the LISM. We estimate electron density along the Voyager 2 sight line, and our values are consistent with recent measurements by Voyager 1. Excess absorption in the H I Lyα line displays the presence of both the heliosphere and an astrosphere around GJ 780. This is only the 14th detection of an astrosphere, and the large mass-loss rate (\\dot{M}=10 {\\dot{M}}ȯ ) is consistent with other subgiant stars. The heliospheric absorption matches the predicted strength for a sight line 58° from the upwind direction. As both HST and Voyager reach the end of their lifetimes, we have the opportunity to synthesize their respective observations, combining in situ measurements with the shortest possible line-of-sight measurements to study the Galactic ISM surrounding the Sun.

  1. STS-61 art concept of astronauts during HST servicing

    NASA Image and Video Library

    1993-11-12

    S93-48826 (November 1993) --- This artist's rendition of the 1993 Hubble Space Telescope (HST) servicing mission shows astronauts installing the new Wide Field/Planetary Camera (WF/PC 2). The instruments to replace the original camera and contains corrective optics that compensate for the telescope's flawed primary mirror. During the 11-plus day mission, astronauts are also scheduled to install the Corrective Optics Space Telescope Axial Replacement (COSTAR) -- an optics package that focuses and routes light to the other three instruments aboard the observatory -- a new set of solar array panels, and other hardware and components. The artwork was done for JPL by Paul Hudson.

  2. A compact, metal-rich, kpc-scale outflow in FBQS J0209-0438: detailed diagnostics from HST/COS extreme UV observations

    NASA Astrophysics Data System (ADS)

    Finn, Charles W.; Morris, Simon L.; Crighton, Neil H. M.; Hamann, Fred; Done, Chris; Theuns, Tom; Fumagalli, Michele; Tejos, Nicolas; Worseck, Gabor

    2014-06-01

    We present HST/COS observations of highly ionized absorption lines associated with a radio-loud quasar (QSO) at z = 1.1319. The absorption system has multiple velocity components, with an overall width of ≈600 km s-1, tracing gas that is largely outflowing from the QSO at velocities of a few 100 km s-1. There is an unprecedented range in ionization, with detections of H I, N III, N IV, N V, O IV, O IV*, O V, O VI, Ne VIII, Mg X, S V and Ar VIII. We estimate the total hydrogen number density from the column density ratio N(OIV*) / N(OIV) to be log(nH/cm-3)˜3. Combined with constraints on the ionization parameter in the O IV bearing gas from photoionization equilibrium models, we derive a distance to the absorbing complex of 2.3≲R≲6.0kpc from the centre of the QSO. A range in ionization parameter, covering ˜two orders of magnitude, suggest absorption path lengths in the range 10-4.5≲labs≲1pc. In addition, the absorbing gas only partially covers the background emission from the QSO continuum, which suggests clouds with transverse sizes ltrans≲10-2.5 pc. Widely differing absorption path lengths, combined with covering fractions less than unity across all ions pose a challenge to models involving simple cloud geometries in associated absorption systems. These issues may be mitigated by the presence of non-equilibrium effects, which can be important in small, dynamically unstable clouds, together with the possibility of multiple gas temperatures. The dynamics and expected lifetimes of the gas clouds suggest that they do not originate from close to the active galactic nuclei, but are instead formed close to their observed location. Their inferred distance, outflow velocities and gas densities are broadly consistent with scenarios involving gas entrainment or condensations in winds driven by either supernovae, or the supermassive black hole accretion disc. In the case of the latter, the present data most likely does not trace the bulk of the outflow by mass

  3. Improving Image Drizzling in the HST Archive: Advanced Camera for Surveys

    NASA Astrophysics Data System (ADS)

    Hoffmann, Samantha L.; Avila, Roberto J.

    2017-06-01

    The Mikulski Archive for Space Telescopes (MAST) pipeline performs geometric distortion corrections, associated image combinations, and cosmic ray rejections with AstroDrizzle on Hubble Space Telescope (HST) data. The MDRIZTAB reference table contains a list of relevant parameters that controls this program. This document details our photometric analysis of Advanced Camera for Surveys Wide Field Channel (ACS/WFC) data processed by AstroDrizzle. Based on this analysis, we update the MDRIZTAB table to improve the quality of the drizzled products delivered by MAST.

  4. Earlier Age at Menopause, Work and Tobacco Smoke Exposure

    PubMed Central

    Fleming, Lora E; Levis, Silvina; LeBlanc, William G; Dietz, Noella A; Arheart, Kristopher L; Wilkinson, James D; Clark, John; Serdar, Berrin; Davila, Evelyn P; Lee, David J

    2009-01-01

    Objective Earlier age at menopause onset has been associated with increased all cause, cardiovascular, and cancer mortality risks. Risk of earlier age at menopause associated with primary and secondary tobacco smoke exposure was assessed. Design Cross-sectional study using a nationally representative sample of US women. Methods 7596 women participants (representing an estimated 79 million US women) from the National Health and Nutrition Examination Survey III were asked: time since last menstrual period, occupation, and tobacco use (including home and workplace secondhand smoke (SHS) exposure). Blood cotinine and follicle-stimulating hormone (FSH) levels were assessed. Logistic regressions for the odds of earlier age at menopause, stratified on race/ethnicity in women 25-50 years and adjusted for survey design, were controlled for age, BMI, education, tobacco smoke exposure, and occupation. Results Among 5029 US women ≥ 25 years with complete data, earlier age at menopause was found among all smokers, and among service and manufacturing industry sector workers. Among women age 25-50 years, there was an increased risk of earlier age at menopause with both primary smoking and with SHS exposure, particularly among Black women. Conclusions Primary tobacco use and SHS exposure were associated with an increased odds of earlier age at menopause in a representative sample of US women. Earlier age at menopause was found for some women worker groups with greater potential occupational SHS exposure. Thus, control of SHS exposures in the workplace may decrease the risk of mortality and morbidity associated with earlier age at menopause in US women workers. PMID:18626414

  5. Discovery of Low-ionization Envelopes in the Planetary Nebula NGC 5189: Spatially-resolved Diagnostics from HST Observations

    NASA Astrophysics Data System (ADS)

    Danehkar, Ashkbiz; Karovska, Margarita; Maksym, Walter Peter; Montez, Rodolfo

    2018-01-01

    The planetary nebula NGC 5189 shows one of the most spectacular morphological structures among planetary nebulae with [WR]-type central stars. Using high-angular resolution HST/WFC3 imaging, we discovered inner, low-ionization structures within a region of 0.3 parsec × 0.2 parsec around the central binary system. We used Hα, [O III], and [S II] emission line images to construct line-ratio diagnostic maps, which allowed us to spatially resolve two distinct low-ionization envelopes within the inner, ionized gaseous environment, extending over a distance of 0.15 pc from the central binary. Both the low-ionization envelopes appear to be expanding along a NE to SW symmetric axis. The SW envelope appears smaller than its NE counterpart. Our diagnostic maps show that highly-ionized gas surrounds these low-ionization envelopes, which also include filamentary and clumpy structures. These envelopes could be a result of a powerful outburst from the central interacting binary, when one of the companions (now a [WR] star) was in its AGB evolutionary stage, with a strong mass-loss generating dense circumstellar shells. Dense material ejected from the progenitor AGB star is likely heated up as it propagates along a symmetric axis into the previously expelled low-density material. Our new diagnostic methodology is a powerful tool for high-angular resolution mapping of low-ionization structures in other planetary nebulae with complex structures possibly caused by past outbursts from their progenitors.

  6. Imaging Forming Planetary Systems: The HST/STIS Legacy and Prospects for Future Missions

    NASA Technical Reports Server (NTRS)

    Grady, Carol; Woodgate, Bruce E.; Bowers, Charles; Weinberger, Alycia; Schneider, Glenn; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The first indication that debris and protoplanetary disks associated with other, young planetary systems were sufficiently nearby to image came with the IRAS detection of infrared excesses around $\\beta$ Pic, Vega, Fomalhaut, and $\\epsilon$ Eri. Moving beyond analysis of the infrared excess to optical and near-IR imaging requires access to high Strehl ratio and high contrast imaging techniques, with the ability to efficiently reject the residual scattered and diffracted light from the star to reveal the fainter scattered light and circumstellar emission originating from the vicinity of the star. HST/STIS imaging studies have made use of incomplete Lyot coronagraphic imaging modes to reveal the warped, inner disk of $\\beta$ Pic, provide the highest spatial resolution images of young debris disk systems such as HR 4796A, have revealed the presence of azimuthally symmetric structure in HD 141569 and HD 163296, and have demonstrated that currently active, collimated outflows survive to higher stellar masses than previously expected, and through more of the star's pre-main sequence lifetime than anticipated. The HST/STIS coronagraphic imaging legacy will be discussed, together with the implications for future NIR and optical high contrast imaging capabilities.

  7. HST, flyaround of the telescope after deployment on this second servicing mission

    NASA Image and Video Library

    1997-02-19

    STS082-746-071 (11-21 Feb. 1997) --- This nearly-vertical view, photographed from the Space Shuttle Discovery, shows the Hubble Space Telescope (HST) over Shark Bay. Shallowest parts of the bay appear light blue. In this view of Australia's arid west, sets of sand dunes are clearly visible on Peron Peninsula (lower center) from southwest to northeast (bottom left to top right), blown by the prevailing wind. Hartog Island lies bottom right.

  8. Observations of the Pluto-Charon System

    NASA Technical Reports Server (NTRS)

    Tholen, David J.

    2004-01-01

    We are continuing the analysis of adaptive optics observations of the Pluto-Charon system, with the goal of confirming the orbital eccentricity reported by Tholen and Bule (1997). Previous work on these data, obtained with the Hokupa's adaptive optics system and Gemini North and reported by Tholea (2002), utilized only a portion of the full set of 348 images taken on 8 nights between 2001 and 2002, and was based on a preliminary calibration of the image scale and position angle of the detector. For each of the three observing runs, independent calibrations were performed using the motion of an asteroid past a fixed stellar source to remove any minor differences in the way the instrument was mounted on the telescope for each run. The image scales determined for each run are good to better than 1 part in 1000, while the individual position angle determinations are good at least 0.1 deg. The preliminary analysis reported at last year's DPS meeting indicated consistency with the orbit determined from the HST observations acquired a decade ago, however, a more careful analysis yields a longitude of periapsis of 132.2 degrees plus or minus 9.3 degrees, disagreeing with the HST results: Finally, possible explanation for the differences in orbital solutions are considered.

  9. HST image of Gravitational Lens G2237 + 305 or 'Einstein Cross'

    NASA Technical Reports Server (NTRS)

    1990-01-01

    European Space Agency (ESA) Faint Object Camera (FOC) science image was taken from the Hubble Space Telescope (HST) of Gravitational Lens G2237 + 305 or 'Einstein Cross'. The gravitational lens G2237 + 305 or 'Einstein Cross' shows four images of a very distant quasar which has been multiple-imaged by a relatively nearby galaxy acting as a gravitational lens. The angular separation between the upper and lower images is 1.6 arc seconds. Photo was released from Goddard Space Flight Center (GSFC) 09-12-90.

  10. A study of the stability of Jovian winds from HST images: 1995 - 1998

    NASA Astrophysics Data System (ADS)

    Garcia-Melendo, E.; Sanchez-Lavega, A.

    2000-10-01

    The resolution of the best WFPC-2 HST Jupiter images was 200 kmpix-1, which is close to the maximum resolution obtained by the narrow angle cameras on board Voyager 1 and 2, 160 kmpix-1. This property of the best HST Jupiter imaging spanning a whole Jovian rotation, encouraged the use of correlation techniques to obtain a series of high resolution zonal wind profiles with a velocity data scatter similar to that obtained from Voyager images. This approach provided a unique opportunity to study the Jovian winds during a time span of 4 years, which is about 12 times longer than the 4 month lapse between the two Voyager flybys in 1979, 16 years later, and before the Cassini encounter at the end of 2000. A total of six series of wind profiles from October 5, 1995 to July 16, 1998, in the 410nm, 889nm, and 953nm bands were obtained with an average velocity scatter between 5 and 6 m/s. Jovian winds were also explored up to planetographic latitudes close to +80 degrees north and -70 degrees south. Results show the presence of two previously unknown jets over +60N and at least an additional one to the south of 60S degrees latitude. Wind profiles obtained at different wavelengths were also virtually indistinguishable, suggesting a negligible influence of a possible height effect. One of the most conspicuous results is the strong general stability displayed by the wind profile during the four year span, although the jet stream at 26S showed important alterations in shape. Comparing the HST wind profiles with the Voyager 2 wind profile obtained in violet light by S. Limaye (Icarus, Vol. 65, 335, 1986), slight latitude differences up to 1.5 degrees latitude are suggested for the location of some westerly and easterly jet streams, specially in the planet's northern hemisphere. Important changes also occurred in the eastward jets at 6S and 23N degrees of latitude. This work was supported by E. Duran Foundation and Gobierno Vasco PI 034/97.

  11. ROSAT PSPC Observations of CL0016+16

    NASA Technical Reports Server (NTRS)

    Hughes, John P.

    1996-01-01

    This report is an update of progress on NASA grant NAG5-2156. The following papers which were published or submitted since April 1966 were supported by this grant. Preprints of each are attached: HST Observations of Oxygen-rich Supernova Remnants in the Magellanic Clouds, and SuperNova Remnants Associated with Molecular Clouds in the Large Magellanic Cloud.

  12. Galaxy Mass Assembly with VLT & HST and lessons for E-ELT/MOSAIC

    NASA Astrophysics Data System (ADS)

    Hammer, François; Flores, Hector; Puech, Mathieu

    2015-02-01

    The fraction of distant disks and mergers is still debated, while 3D-spectroscopy is revolutionizing the field. However its limited spatial resolution imposes a complimentary HST imagery and a robust analysis procedure. When applied to observations of IMAGES galaxies at z = 0.4-0.8, it reveals that half of the spiral progenitors were in a merger phase, 6 billion year ago. The excellent correspondence between methodologically-based classifications of morphologies and kinematics definitively probes a violent origin of disk galaxies as proposed by Hammer et al. (2005). Examination of nearby galaxy outskirts reveals fossil imprints of such ancient merger events, under the form of well organized stellar streams. Perhaps our neighbor, M31, is the best illustration of an ancient merger, which modeling in 2010 leads to predict the gigantic plane of satellites discovered by Ibata et al. (2013). There are still a lot of discoveries to be done until the ELT era, which will open an avenue for detailed and accurate 3D-spectroscopy of galaxies from the earliest epochs to the present.

  13. Astronauts Newman and Walz evaluate tools for use on HST servicing mission

    NASA Image and Video Library

    1993-09-16

    STS051-06-023 (16 Sept 1993) --- Astronauts James H. Newman (in bay) and Carl E. Walz, mission specialists, practice space walking techniques and evaluate tools to be used on the first Hubble Space Telescope (HST) servicing mission scheduled for later this year. Walz rehearses using the Power Ratchet Tool (PRT), one of several special pieces of gear to be put to duty during the scheduled five periods of extravehicular activity (EVA) on the STS-61 mission.

  14. Coordinated measurements of auroral processes at Saturn from the Cassini spacecraft and HST

    NASA Astrophysics Data System (ADS)

    Mitchell, D. G.; Kurth, W. S.; Hospodarsky, G. B.; Gurnett, D. A.; Krupp, N.; Saur, J.; Mauk, B. A.; Carbary, J. F.; Krimigis, S. M.; Brandt, P. C.; Dougherty, M. K.; Clarke, J. T.; Nichols, J. D.; Gerard, J.; Grodent, D.; Pryor, W. R.; Bunce, E. J.; Crary, F. J.

    2008-12-01

    One of the primary Cassini mission objectives at Saturn is to characterize Saturn's aurora-its spatial morphology, associated particle energization, radio wave generation, and magnetospheric currents, relationship with solar wind pressure and magnetic field, and its large scale mapping to the magnetosphere. By design, the Cassini orbital tour included high inclination and low periapsis orbits late in the prime mission specifically to address many of these topics. In this presentation, we will provide a snapshot of the current state of our investigation into the relationship between magnetospheric measurements of particles and fields, and the aurora. For in situ data, we will show measurements of upward traveling light ion conics (~30 keV to 200 keV), often accompanied by electron beams (<20 keV to ~1 MeV) and enhanced broadband noise (10 Hz to a few kHz), throughout the outer magnetosphere on field lines that nominally map from well into the polar cap (dipole L > 50) to well into the closed field region (dipole L < 10). Sometimes the particle phenomena and the broadband noise occur in pulses of roughly five-minute duration, separated by tens of minutes. At other times they are relatively steady over an hour or more. Magnetic signatures associated with some of the pulsed events are consistent with field aligned current structures. Correlative observations of solar wind (Cassini) and aurora (HST) have established a strong relationship between solar wind pressure and auroral activity (brightness) (Crary et al., Nature, 2005; Clarke et al., JGR, 2008). A similar correspondence between bright auroral arcs and ring current ion acceleration will be shown here. So while some auroral forms seem to be associated with the open/closed field boundary (i.e. in the cusp-Bunce et al., JGR, 2008), we also demonstrate that under some magnetospheric conditions for which protons and oxygen ions are accelerated once per Saturn magnetosphere rotation at a preferred local time between

  15. STS-31 Hubble Space Telescope (HST) (SA & HGA deployed) is grappled by RMS

    NASA Image and Video Library

    1990-04-24

    STS031-76-026 (25 April 1990) --- Most of the giant Hubble Space Telescope (HST) can be seen as it is suspended in space by Discovery's Remote Manipulator System (RMS) following the deployment of part of its solar panels and antennae. The photo was taken with a handheld Hasselblad camera. This was among the first photos NASA released on April 30, 1990, from the five-day STS 31 mission.

  16. STS-31 Hubble Space Telescope (HST) solar array panel deploy aboard OV-103

    NASA Image and Video Library

    1990-04-25

    Held in appendage deploy position by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), the Hubble Space Telescope's (HST's) starboard solar array (SA) bistem cassette is released from its stowed position on the Support System Module (SSM) forward shell. The spreader bar & bistem begin to unfurl the SA wing. View was taken by an STS-31 crewmember through an overhead window & is backdropped against the surface of the Earth.

  17. The HST/STIS Next Generation Spectral Library

    NASA Technical Reports Server (NTRS)

    Gregg, M. D.; Silva, D.; Rayner, J.; Worthey, G.; Valdes, F.; Pickles, A.; Rose, J.; Carney, B.; Vacca, W.

    2006-01-01

    During Cycles 10, 12, and 13, we obtained STIS G230LB, G430L, and G750L spectra of 378 bright stars covering a wide range in abundance, effective temperature, and luminosity. This HST/STIS Next Generation Spectral Library was scheduled to reach its goal of 600 targets by the end of Cycle 13 when STIS came to an untimely end. Even at 2/3 complete, the library significantly improves the sampling of stellar atmosphere parameter space compared to most other spectral libraries by including the near-UV and significant numbers of metal poor and super-solar abundance stars. Numerous calibration challenges have been encountered, some expected, some not; these arise from the use of the E1 aperture location, non-standard wavelength calibration, and, most significantly, the serious contamination of the near-UV spectra by red light. Maximizing the utility of the library depends directly on overcoming or at least minimizing these problems, especially correcting the UV spectra.

  18. EVA 2 activity on Flight Day 5 to survey the HST solar array panels

    NASA Image and Video Library

    1997-02-15

    STS082-719-002 (14 Feb. 1997) --- Astronaut Joseph R. Tanner (right) stands on the end of Discovery's Remote Manipulator System (RMS) arm and aims a camera at the solar array panels on the Hubble Space Telescope (HST) as astronaut Gregory J. Harbaugh assists. The second Extravehicular Activity (EVA) photograph was taken with a 70mm camera from inside Discovery's cabin.

  19. Two serendipitous low-mass LMC clusters discovered with HST1

    NASA Astrophysics Data System (ADS)

    Santiago, Basilio X.; Elson, Rebecca A. W.; Sigurdsson, Steinn; Gilmore, Gerard F.

    1998-04-01

    We present V and I photometry of two open clusters in the LMC down to V~26. The clusters were imaged with the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope (HST), as part of the Medium Deep Survey Key Project. Both are low-luminosity (M_V~-3.5), low-mass (M~10^3 Msolar) systems. The chance discovery of these two clusters in two parallel WFPC2 fields suggests a significant incompleteness in the LMC cluster census near the bar. One of the clusters is roughly elliptical and compact, with a steep light profile, a central surface brightness mu_V(0)~20.2 mag arcsec^-2, a half-light radius r_hl~0.9 pc (total visual major diameter D~3 pc) and an estimated mass M~1500 Msolar. From the colour-magnitude diagram and isochrone fits we estimate its age as tau~(2-5)x10^8 yr. Its mass function has a fitted slope of Gamma=Deltalogphi(M)/DeltalogM=-1.8+/-0.7 in the range probed (0.9<~M/Msolar<~4.5). The other cluster is more irregular and sparse, having shallower density and surface brightness profiles. We obtain Gamma=-1.2+/-0.4, and estimate its mass as M~400 Msolar. A derived upper limit for its age is tau<~5x10^8 yr. Both clusters have mass functions with slopes similar to that of R136, a massive LMC cluster, for which HST results indicate Gamma~-1.2. They also seem to be relaxed in their cores and well contained in their tidal radii.

  20. The HST Large Programme on ω Centauri. II. Internal Kinematics

    NASA Astrophysics Data System (ADS)

    Bellini, Andrea; Libralato, Mattia; Bedin, Luigi R.; Milone, Antonino P.; van der Marel, Roeland P.; Anderson, Jay; Apai, Dániel; Burgasser, Adam J.; Marino, Anna F.; Rees, Jon M.

    2018-01-01

    In this second installment of the series, we look at the internal kinematics of the multiple stellar populations of the globular cluster ω Centauri in one of the parallel Hubble Space Telescope (HST) fields, located at about 3.5 half-light radii from the center of the cluster. Thanks to the over 15 yr long baseline and the exquisite astrometric precision of the HST cameras, well-measured stars in our proper-motion catalog have errors as low as ∼10 μas yr‑1, and the catalog itself extends to near the hydrogen-burning limit of the cluster. We show that second-generation (2G) stars are significantly more radially anisotropic than first-generation (1G) stars. The latter are instead consistent with an isotropic velocity distribution. In addition, 1G stars have excess systemic rotation in the plane of the sky with respect to 2G stars. We show that the six populations below the main-sequence (MS) knee identified in our first paper are associated with the five main population groups recently isolated on the upper MS in the core of cluster. Furthermore, we find both 1G and 2G stars in the field to be far from being in energy equipartition, with {η }1{{G}}=-0.007+/- 0.026 for the former and {η }2{{G}}=0.074+/- 0.029 for the latter, where η is defined so that the velocity dispersion {σ }μ scales with stellar mass as {σ }μ \\propto {m}-η . The kinematical differences reported here can help constrain the formation mechanisms for the multiple stellar populations in ω Centauri and other globular clusters. We make our astro-photometric catalog publicly available.

  1. DISSECTING THE POWER SOURCES OF LOW-LUMINOSITY EMISSION-LINE GALAXY NUCLEI VIA COMPARISON OF HST-STIS AND GROUND-BASED SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Anca; Castillo, Christopher A.; Shields, Joseph C.

    Using a sample of ∼100 nearby line-emitting galaxy nuclei, we have built the currently definitive atlas of spectroscopic measurements of Hα and neighboring emission lines at subarcsecond scales. We employ these data in a quantitative comparison of the nebular emission in Hubble Space Telescope (HST) and ground-based apertures, which offer an order-of-magnitude difference in contrast, and provide new statistical constraints on the degree to which transition objects and low-ionization nuclear emission-line regions (LINERs) are powered by an accreting black hole at ≲10 pc. We show that while the small-aperture observations clearly resolve the nebular emission, the aperture dependence in themore » line ratios is generally weak, and this can be explained by gradients in the density of the line-emitting gas: the higher densities in the more nuclear regions potentially flatten the excitation gradients, suppressing the forbidden emission. The transition objects show a threefold increase in the incidence of broad Hα emission in the high-resolution data, as well as the strongest density gradients, supporting the composite model for these systems as accreting sources surrounded by star-forming activity. The narrow-line LINERs appear to be the weaker counterparts of the Type 1 LINERs, where the low accretion rates cause the disappearance of the broad-line component. The enhanced sensitivity of the HST observations reveals a 30% increase in the incidence of accretion-powered systems at z ≈ 0. A comparison of the strength of the broad-line emission detected at different epochs implies potential broad-line variability on a decade-long timescale, with at least a factor of three in amplitude.« less

  2. THE PANCHROMATIC STARBURST IRREGULAR DWARF SURVEY (STARBIRDS): OBSERVATIONS AND DATA ARCHIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQuinn, Kristen B. W.; Mitchell, Noah P.; Skillman, Evan D., E-mail: kmcquinn@astro.umn.edu

    2015-06-22

    Understanding star formation in resolved low mass systems requires the integration of information obtained from observations at different wavelengths. We have combined new and archival multi-wavelength observations on a set of 20 nearby starburst and post-starburst dwarf galaxies to create a data archive of calibrated, homogeneously reduced images. Named the panchromatic “STARBurst IRregular Dwarf Survey” archive, the data are publicly accessible through the Mikulski Archive for Space Telescopes. This first release of the archive includes images from the Galaxy Evolution Explorer Telescope (GALEX), the Hubble Space Telescope (HST), and the Spitzer Space Telescope (Spitzer) Multiband Imaging Photometer instrument. The datamore » sets include flux calibrated, background subtracted images, that are registered to the same world coordinate system. Additionally, a set of images are available that are all cropped to match the HST field of view. The GALEX and Spitzer images are available with foreground and background contamination masked. Larger GALEX images extending to 4 times the optical extent of the galaxies are also available. Finally, HST images convolved with a 5″ point spread function and rebinned to the larger pixel scale of the GALEX and Spitzer 24 μm images are provided. Future additions are planned that will include data at other wavelengths such as Spitzer IRAC, ground-based Hα, Chandra X-ray, and Green Bank Telescope H i imaging.« less

  3. Astronauts Newman and Walz evaluate tools for use on HST servicing mission

    NASA Image and Video Library

    1993-09-16

    STS051-06-037 (16 Sept 1993) --- Astronauts Carl E. Walz (foreground) and James H. Newman evaluate some important gear. Walz reaches for the Power Ratchet Tool (PRT) while Newman checks out mobility on the Portable Foot Restraint (PFR) near the Space Shuttle Discovery's starboard Orbital Maneuvering System (OMS) pod. The tools and equipment will be instrumental on some of the five periods of extravehicular activity (EVA) scheduled for the Hubble Space Telescope (HST) STS-61 servicing mission later this year.

  4. Observing gas in Cosmic Web filaments to constrain simulations of cosmic structure formation

    NASA Astrophysics Data System (ADS)

    Wakker, Bart

    2016-10-01

    Cosmological simulations predict that dark matter and baryons condense into multi-Mpc filamentary structures, making up the Cosmic Web. This is outlined by dark matter halos, inside which 10% of baryons are concentrated to make stars in galaxies. The other 90% of the baryons remain gaseous, with about half located outside galaxy halos. They can be traced by Lyman alpha absorbers, whose HI column density is determined by a combination of gas density and the intensity of the extragalactic ionizing background (EGB). About 1000 HST orbits have been expended to map the 50% of baryons in galaxy halos. This contrasts with 37 orbits explicitly allocated to map the other 50% (our Cycle 18 program to observe 17 AGN projected onto a single filament at cz 3500 km/s). We propose a 68-orbit program to observe 40 AGN, creating a sample of 56 sightlines covering a second filament at cz 2500 km/s. Using this dataset we will do the following: (1) measure the intensity of the EGB to within about 50%; (2) confirm that the linewidth of Lya absorbers increases near the filament axis, suggesting increasing temperature or turbulence; (3) check our earlier finding that simulations predict a transverse density HI profile (which scales with the dark-matter profile) that is much broader than is indicated by the observations.

  5. HST-WFC3 Near-Infrared Spectroscopy of Quenched Galaxies at zeta approx 1.5 from the WISP Survey: Stellar Populations Properties

    NASA Technical Reports Server (NTRS)

    Bedregal, A. G.; Scarlata, C.; Henry, A. L.; Atek, H.; Rafelski, M.; Teplitz, H. I.; Dominguez, A.; Siana, B.; Colbert, J. W.; Malkan, M.; hide

    2013-01-01

    We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3- UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 microns] photometry to assemble a sample of massive (log(Mstar/M solar mass) at approx 11.0) and quenched (specific star formation rate < 0.01 G/yr(exp -1) galaxies at zeta approx 1.5. Our sample of 41 galaxies is the largest with G102+G141 NIR spectroscopy for quenched sources at these redshifts. In contrast to the local universe, zeta approx 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are well fitted with exponentially decreasing star formation histories and short star formation timescales (tau less than or equal to 100 M/yr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 G/yr. In the (u - r)0-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the zeta appro. 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 G/yr) than the quenched galaxies off the RS (1.5 G/yr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at zeta approx 1.5 to be <43%.We speculate that the young quenched galaxies off the RS are in a transition phase between vigorous star formation at zeta > 2 and the zeta approx 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z approx. 1.5 RS is of the order of approx. 1G/yr.

  6. HST/WFC3 near-infrared spectroscopy of quenched galaxies at z ∼ 1.5 from the WISP survey: Stellar population properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedregal, A. G.; Scarlata, C.; Rutkowski, M. J.

    We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3-UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 μm] photometry to assemble a sample of massive (log (M {sub star}/M {sub ☉}) ∼ 11.0) and quenched (specific star formation rate <0.01 Gyr{sup –1}) galaxies at z ∼ 1.5. Our sample of 41 galaxies is the largest with G102+G141 NIR spectroscopy for quenched sources at these redshifts. In contrast to the local universe, z ∼ 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are wellmore » fitted with exponentially decreasing star formation histories and short star formation timescales (τ ≤ 100 Myr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 Gyr. In the (u – r){sub 0}-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the z ∼ 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 Gyr) than the quenched galaxies off the RS (1.5 Gyr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at z ∼ 1.5 to be <43%. We speculate that the young quenched galaxies off the RS are in a transition phase between vigorous star formation at z > 2 and the z ∼ 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z ∼ 1.5 RS is of the order of ∼1 Gyr.« less

  7. Trend of earlier spring in central Europe continued

    NASA Astrophysics Data System (ADS)

    Ungersböck, Markus; Jurkovic, Anita; Koch, Elisabeth; Lipa, Wolfgang; Scheifinger, Helfried; Zach-Hermann, Susanne

    2013-04-01

    Modern phenology is the study of the timing of recurring biological events in the animal and plant world, the causes of their timing with regard to biotic and abiotic forces, and the interrelation among phases of the same or different species. The relationship between phenology and climate explains the importance of plant phenology for Climate Change studies. Plants require light, water, oxygen mineral nutrients and suitable temperature to grow. In temperate zones the seasonal life cycle of plants is primarily controlled by temperature and day length. Higher spring air temperatures are resulting in an earlier onset of the phenological spring in temperate and cool climate. On the other hand changes in phenology due to climate change do have impact on the climate system itself. Vegetation is a dynamic factor in the earth - climate system and has positive and negative feedback mechanisms to the biogeochemical and biogeophysical fluxes to the atmosphere Since the mid of the 1980s spring springs earlier in Europe and autumn is shifting back to the end of the year resulting in a longer vegetation period. The advancement of spring can be clearly attributed to temperature increase in the months prior to leaf unfolding and flowering, the timing of autumn is more complex and cannot easily be attributed to one or some few parameters. To demonstrate that the observed advancement of spring since the mid of 1980s is pro-longed in 2001 to 2010 and the delay of fall and the lengthening of the growing season is confirmed in the last decade we picked out several indicator plants from the PEP725 database www.pep725.eu. The PEP725 database collects data from different European network operators and thus offers a unique compilation of phenological observations; the database is regularly updated. The data follow the same classification scheme, the so called BBCH coding system so they can be compared. Lilac Syringa vulgaris, birch Betula pendula, beech Fagus and horse chestnut Aesculus

  8. HST/STIS Transmission Spectral Survey: Probing the Atmospheres of HAT-P-1b and WASP-6b

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Sing, D. K.; Pont, F.; Burrows, A. S.; Fortney, J. J.; Ballester, G. E.; Evans, T. M.; Huitson, C. M.; Wakeford, H. R.; Wilson, P. A.; A. D., S.; Gibson, N. P.; Henry, G. W.; Knutson, H.; Etangs, A. L. d.; Showman, A. P.; Vidal-Madjar, A.; Zahnle, K.

    2014-03-01

    We present optical to near-infrared transmission spectra of HAT-P-1b and WASP-6b, part of a Large HST/STIS hot Jupiter transmission spectral survey (P.I. David Sing). The spectra for each target cover the regimes 2900-5700Å and 5240-10270Å, with resolving power of R = 500. The HAT-P-1b data is coupled with a recent HST/WFC3 transit, spanning the wavelength range 1.087-1.687microns (R=130), acquired in spatial scan mode. The WASP-6b data is complemented with Spritzer/IRAC 3.6 and 4.5 micron transit observations, part of a comparative exoplanetology program (P.I. Jean-Michel Desert). The transmission spectrum of HAT-P-1b shows a strong absorption signature shortward of 5500Å, with a strong blueward slope into the near-UV. We detect atmospheric sodium absorption at a 3.3s significance level, but see no evidence for the potassium feature. The red data implies a marginally flat spectrum with a tentative absorption enhancement at wavelength longer than ~8500Å. The combined STIS and WFC3 optical to NIR spectra differ significantly in absolute radius level (4.3+/-1.6 pressure scale heights), implying strong optical absorption in the atmosphere of HAT-P-1b. The optical to nearinfrared difference cannot be explained by stellar activity, as simultaneous stellar activity monitoring of the G0V HAT-P-1b host star and its identical companion show no significant activity that could explain the result. The red transmission spectrum of WASP-6b is flat with tentative detection of sodium and potassium. We compare both spectra with theoretical atmospheric models, which include haze, sodium and an extra optical absorber in the case of HAT-P-1b. We find that both an optical absorber and a super-solar sodium to water abundance ratio might be a scenario explaining the HAT-P-1b observations.

  9. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2002-12-01

    This series of photos, captured by the NASA Hubble Space Telescope's (HST) Advanced Camera for Surveys from May to December 2002, dramatically demonstrates the reverberation of light through space caused by an unusual stellar outburst in January 2002. A burst of light from the bizarre star is spreading into space and reflecting off of surrounding circumstellar dust. As different parts are sequentially illuminated, the appearance of the dust changes. This effect is referred to as a "light echo". The red star at the center of the eyeball like feature is the unusual erupting super giant called V838 Monocerotis, or V Mon, located about 20,000 light-years away in the winter constellation Monoceros (the Unicorn). During its outburst, the star brightened to more than 600,000 times our Sun's luminosity. The circular feature has now expanded to slightly larger than the angular size of Jupiter on the sky, and will continue to expand for several more years until the light from the back side of the nebula begins to arrive. The light echo will then give the illusion of contracting, until it finally disappears by the end of the decade.

  10. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1995-02-01

    The nearby intense star-forming region known as the Great Nebula in the Orion constellation reveals a bow shock around a very young star as seen by NASA's Hubble Space Telescope (HST). Named for the crescent-shaped wave made by a ship as it moves through the water, a bow shock can be created in space where two streams of gas collide. LL Ori emits a vigorous solar wind, a stream of charged particles moving rapidly outward from the star. Our own sun has a less energetic version of this wind. The material in the fast wind from LL Ori collides with slow moving gas evaporating away form the center of the Orion Nebula, which is located in the lower right of this image, producing the crescent shaped bow shock seen in the image. Astronomers have identified numerous shock fronts in this complex star-forming region and are using this data to understand the many complex phenomena associated with the birth of stars. A close visitor in our Milky Way Galaxy, the nebula is only 1,500 light years away from Earth. The filters used in this color composite represent oxygen, nitrogen, and hydrogen emissions.

  11. The Number Density Evolution of Extreme Emission Line Galaxies in 3D-HST: Results from a Novel Automated Line Search Technique for Slitless Spectroscopy

    NASA Astrophysics Data System (ADS)

    Maseda, Michael V.; van der Wel, Arjen; Rix, Hans-Walter; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; Lundgren, Britt F.; Skelton, Rosalind E.; Whitaker, Katherine E.

    2018-02-01

    The multiplexing capability of slitless spectroscopy is a powerful asset in creating large spectroscopic data sets, but issues such as spectral confusion make the interpretation of the data challenging. Here we present a new method to search for emission lines in the slitless spectroscopic data from the 3D-HST survey utilizing the Wide-Field Camera 3 on board the Hubble Space Telescope. Using a novel statistical technique, we can detect compact (extended) emission lines at 90% completeness down to fluxes of 1.5(3.0)× {10}-17 {erg} {{{s}}}-1 {{cm}}-2, close to the noise level of the grism exposures, for objects detected in the deep ancillary photometric data. Unlike previous methods, the Bayesian nature allows for probabilistic line identifications, namely redshift estimates, based on secondary emission line detections and/or photometric redshift priors. As a first application, we measure the comoving number density of Extreme Emission Line Galaxies (restframe [O III] λ5007 equivalent widths in excess of 500 Å). We find that these galaxies are nearly 10× more common above z ∼ 1.5 than at z ≲ 0.5. With upcoming large grism surveys such as Euclid and WFIRST, as well as grisms featured prominently on the NIRISS and NIRCam instruments on the James Webb Space Telescope, methods like the one presented here will be crucial for constructing emission line redshift catalogs in an automated and well-understood manner. This work is based on observations taken by the 3D-HST Treasury Program and the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  12. The SLUGGS Survey: HST/ACS Mosaic Imaging of the NGC 3115 Globular Cluster System

    NASA Astrophysics Data System (ADS)

    Jennings, Zachary G.; Strader, Jay; Romanowsky, Aaron J.; Brodie, Jean P.; Arnold, Jacob A.; Lin, Dacheng; Irwin, Jimmy A.; Sivakoff, Gregory R.; Wong, Ka-Wah

    2014-08-01

    We present Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) g and z photometry and half-light radii R h measurements of 360 globular cluster (GC) candidates around the nearby S0 galaxy NGC 3115. We also include Subaru/Suprime-Cam g, r, and i photometry of 421 additional candidates. The well-established color bimodality of the GC system is obvious in the HST/ACS photometry. We find evidence for a "blue tilt" in the blue GC subpopulation, wherein the GCs in the blue subpopulation get redder as luminosity increases, indicative of a mass-metallicity relationship. We find a color gradient in both the red and blue subpopulations, with each group of clusters becoming bluer at larger distances from NGC 3115. The gradient is of similar strength in both subpopulations, but is monotonic and more significant for the blue clusters. On average, the blue clusters have ~10% larger R h than the red clusters. This average difference is less than is typically observed for early-type galaxies but does match that measured in the literature for the Sombrero Galaxy (M104), suggesting that morphology and inclination may affect the measured size difference between the red and blue clusters. However, the scatter on the R h measurements is large. We also identify 31 clusters more extended than typical GCs, which we term ultra-compact dwarf (UCD) candidates. Many of these objects are actually considerably fainter than typical UCDs. While it is likely that a significant number will be background contaminants, six of these UCD candidates are spectroscopically confirmed as NGC 3115 members. To explore the prevalence of low-mass X-ray binaries in the GC system, we match our ACS and Suprime-Cam detections to corresponding Chandra X-ray sources. We identify 45 X-ray-GC matches: 16 among the blue subpopulation and 29 among the red subpopulation. These X-ray/GC coincidence fractions are larger than is typical for most GC systems, probably due to the increased depth of the X-ray data

  13. New Supernova in the HST Frontier Field MACSJ0717.5+4745

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel; Kelly, Patrick; Rodney, Steve; Schmidt, Kasper Borello; Treu, Tommaso

    2014-01-01

    We report a supernova (SN) discovery in HST imaging of the Frontier Fields galaxy cluster MACSJ0717.5+3745 (z=0.5458) acquired as part of the Grism Lens Amplified Survey from Space (GLASS). The SN is designated HFF13cha (nicknamed "SN Chapel"), and was detected in WFC3-IR F105W (Y) and F140W (JH) images taken to calibrate and align the G102 and G141 grisms. A finder chart and the discovery images are available athttp://archive.stsci.edu/pub/ffsn/macs0717/HFF13cha/snChapelHostFinder.pdf.

  14. New results form HST on fast, colimated outflows in dying stars - the primary mechanism for shaping planetary nebulae

    NASA Technical Reports Server (NTRS)

    Sahai, R.; Contreras, C.

    2003-01-01

    In this paper, we briefly describe the results from imaging surveys of young PNe and PPNe with HST, and then present new results from detailed kinematic studies of several prominent objects which support our hypothesis for shaping PNe.

  15. Perceptual sensitivity to spectral properties of earlier sounds during speech categorization.

    PubMed

    Stilp, Christian E; Assgari, Ashley A

    2018-02-28

    Speech perception is heavily influenced by surrounding sounds. When spectral properties differ between earlier (context) and later (target) sounds, this can produce spectral contrast effects (SCEs) that bias perception of later sounds. For example, when context sounds have more energy in low-F 1 frequency regions, listeners report more high-F 1 responses to a target vowel, and vice versa. SCEs have been reported using various approaches for a wide range of stimuli, but most often, large spectral peaks were added to the context to bias speech categorization. This obscures the lower limit of perceptual sensitivity to spectral properties of earlier sounds, i.e., when SCEs begin to bias speech categorization. Listeners categorized vowels (/ɪ/-/ɛ/, Experiment 1) or consonants (/d/-/g/, Experiment 2) following a context sentence with little spectral amplification (+1 to +4 dB) in frequency regions known to produce SCEs. In both experiments, +3 and +4 dB amplification in key frequency regions of the context produced SCEs, but lesser amplification was insufficient to bias performance. This establishes a lower limit of perceptual sensitivity where spectral differences across sounds can bias subsequent speech categorization. These results are consistent with proposed adaptation-based mechanisms that potentially underlie SCEs in auditory perception. Recent sounds can change what speech sounds we hear later. This can occur when the average frequency composition of earlier sounds differs from that of later sounds, biasing how they are perceived. These "spectral contrast effects" are widely observed when sounds' frequency compositions differ substantially. We reveal the lower limit of these effects, as +3 dB amplification of key frequency regions in earlier sounds was enough to bias categorization of the following vowel or consonant sound. Speech categorization being biased by very small spectral differences across sounds suggests that spectral contrast effects occur

  16. HST/WFC3 Imaging and Multi-Wavelength Characterization of Edge-On Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Gould, Carolina; Williams, Hayley; Duchene, Gaspard

    2017-10-01

    In recent years, the imaging detail in resolved protoplanetary disks has vastly improved and created a critical mass of objects to survey and compare properties, leading us to better understandings of system formation. In particular, disks with an edge-on inclination offer an important perspective, not only for the imaging convenience since the disk blocks stellar light, but scientifically an edge-on disk provides an otherwise impossible opportunity to observe vertical dust structure of a protoplanetary system. In this contribution, we compare seven HST-imaged edge-on protoplanetary disks in the Taurus, Chamaeleon and Ophiuchus star-forming regions, making note the variation in morphology (settled vs flared), dust properties revealed by multiwavelength color mapping, brightness variability over years timescales, and the presence in some systems of a blue-colored atmosphere far above the disk midplane. By using a uniform approach for their analysis, together these seven edge-on protoplanetary disk systems can give insights on evolutionary processes and inform future projects that explore this critical stage of planet formation.

  17. An HST study of galactic inerstellar zinc and chromium

    NASA Technical Reports Server (NTRS)

    Roth, Katherine C.; Blades, J. Chris

    1995-01-01

    We present a survey of interstellar Zn II and Cr II absorption extracted from the Hubble Space Telescope Goddard High Resolution Spectrograph (HST GHRS) data archive. We find clear evidence for an enhanced depletion of Zn from the gas phase with increasing fractional abundance of molecular hydrogen f(H2). Our lower limit to the Galactic interstellar metallicity is approximately 65% of the solar value as determined by the measured Zn abundances in the lowest f(H2) sightlines, (N(Zn)/N(H(sup 0)(sub tot)) = -0.19 +/- 0.04. The correspondingly high depletion of Cr with respect to solar (N(Cr/N(H(sup 0)(sub tot)) = -1.44 +/- 0.26 indicates that there are significant amounts of dust present in these lines of sight. The Galactic abundances of Zn and Cr in the ISM provide a fundamental reference point which is used to understand the metal enrichment and dust formation history of damped Lyman alpha QSO absorption-line systems, normally believed to arise from intervening precursors to modern disk galaxies. Although the spread in Zn abundances is large for both the local ISM and in damped Lyman alpha systems, we still find a substantial difference (factor of 4-10) in metallicity between the two sets. This survey and future observations of more distant objects which probe the full extent of the Milky Way halo provide a more complete picture of the enrichment and depletion characteristics of present-day galaxies.

  18. STS-31 pre-deployment checkout of the Hubble Space Telescope (HST) on OV-103

    NASA Image and Video Library

    1990-04-25

    View taken through overhead window W7 aboard Discovery, Orbiter Vehicle (OV) 103, shows the Hubble Space Telescope (HST) grappled by the remote manipulator system (RMS) and held in a 90 degree pitch position against the blackness of space. The solar array (SA) panel (center) and the high gain antennae (HGA) (on either side) are visible along the Support System Module (SSM) forward shell prior to deployment during STS-31.

  19. HST Observations of the Beta Pictoris Circumstellar Disk

    NASA Astrophysics Data System (ADS)

    Burrows, C. J.; Krist, J. E.; Stapelfeldt, K. R.; WFPC2 Investigation Definition Team

    1995-12-01

    The disk surrounding Beta Pictoris has been imaged with the Hubble Space Telescope Planetary Camera in the four photometric filters centered near 439, 555, 675 and 814 nm, and at a total of four different spacecraft roll angles. After masking the images to exclude the disk region, a composite PSF was constructed that enabled us to generate three statistically independent images of the disk for each filter. The images show the disk in reflected light from a radius of about 1.5 arcseconds to about 10 arcseconds. We have developed a full three dimensional simulation of the disk which reproduces the observed scattered light distribution and the known infrared photometry and direct imaging from IRAS and previous ground based investigations in a self-consistent manner. By least squares fitting all of the data we are able to derive geometric parameters of the disk and constrain the optical properties of its particles. The scattering is well described by small particles with a visible albedo of around 0.4 and a small scattering phase function variation. The inclination of the disk axis to the plane of the sky is only of order 1 degree. There is a relatively clear zone in the disk with the normal optical depth decreasing linearly within 40 AU from the star from a constant value of 0.005 between 40 and 100 AU. We find that the scale height of the disk is roughly constant within the inner 100 AU, while the outer disk has a linear scale height power law consistent with previous investigations. The disk density is not Gaussian in cross section, as might be expected for a Maxwellian distribution of similar particles, but exponential. We do not interpret this as evidence for pressure support, but rather as evidence for a particle mass spectrum. Several previously reported north-south disk asymmetries are evident in the data, but a significant new result is a rotationally symmetric warp in the inner disk. Detailed dynamical simulations based on the observed mass distribution and

  20. Winds of metal-poor OB stars: Updates from HST-COS UV spectroscopy

    NASA Astrophysics Data System (ADS)

    García, M.; Herrero, A.; Najarro, F.; Lennon, D. J.; Urbaneja, M. A.

    2015-01-01

    In the race to break the SMC frontier and reach metallicity conditions closer to the First Stars the information from UV spectroscopy is usually overlooked. New HST-COS observations of OB stars in the metal-poor galaxy IC1613, with oxygen content ~1/10 solar, have proved the important role of UV spectroscopy to characterize blue massive stars and their winds. The terminal velocities (υ∞) and abundances derived from the dataset have shed new light on the problem of metal-poor massive stars with strong winds. Furthermore, our results question the υ∞-υ esc and υ∞-Z scaling relations whose use in optical-only studies may introduce large uncertainties in the derived mass loss rates and wind-momenta. Finally, our results indicate that the detailed abundance pattern of each star may have a non-negligible impact on its wind properties, and scaling these as a function of one single metallicity parameter is probably too coarse an approximation. Considering, for instance, that the [α/Fe] ratio evolves with the star formation history of each galaxy, we may be in need of updating all our wind recipes.

  1. Ultraviolet spectroscopy of symbiotic nova V1016 Cyg with IUE and HST

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.

    2017-04-01

    We present International Ultraviolet Explorer (IUE) & Hubble Space Telescope Space Telescope Imaging Spectrograph (HST STIS) observations of the symbiotic nova V1016 Cyg through the period 1978 - 2000. Four spectra at different times revealing the changes in line fluxes are presented. The outflow velocity of the emitting region was calculated to be 900-2000 km s-1 (FWHM). The reddening of V1016 Cyg was determined from 2200 Å absorption feature to be E (B-V) = 0.36 ± 0.02. We calculated the fluxes of CIV 1550 Å & CIII] 1909 Å emission lines produced in a stellar wind from the hot white dwarf. We determined the average wind mass loss rate to be ˜2.3 × 10-6 M⊙, the average temperature of the emitting region to be ˜1.3 × 105 K, and an average ultraviolet luminosity to be ˜2 × 1035 erg s-1. The results show that there are modulations of line fluxes with time. We attributed these spectral modulations to the changes of density and temperature in the emitting region as a result of the variable stellar wind.

  2. Externally Induced Evaporation of Young Stellar Disks: The Case for HST 10 in Orion's Trapezium.

    NASA Astrophysics Data System (ADS)

    Johnstone, D.; Hollenbach, D.; Storzer, H.; Bally, J.; Sutherland, R.

    1996-12-01

    The Trapezium region in Orion is composed of a few high-mass stars, responsible for the ionization of the surrounding gas, and a plethora of low-mass stars with disks. Observations at infrared, optical, and radio wavelengths have led to the discovery of extended ionized envelopes around many of the young low-mass stars requiring evaporation rates dot M ~ 10(-7) Modot/yr. In this poster we explain these observations through a model for the evaporation of disks around young low-mass stars by an external source of high energy photons. In particular, the externally produced ultraviolet continuum longward of the Lyman limit is used to heat the disk surface and produce a warm neutral flow. The model results in an offset ionization front, where the neutral flow encounters Lyman continuum radiation, and a mass-loss rate which is fixed due to the self-regulating nature of FUV heating. Applying this model to the Trapezium region evaporating objects, particularly HST 10, produces a satisfactory solution to both the mass-loss rate and the size of the ionized envelopes. The resulting short destruction times for these disks constrain the gestation period for planet embryos around stars in dense clusters.

  3. Ultraviolet observation of nova LMC 2012 with STIS/HST

    NASA Astrophysics Data System (ADS)

    Shore, S. N.; Schwarz, G.; Page, K.; Osborne, J. P.; Starrfield, S.; Walter, F.; Woodward, C. E.; Bode, M.; Ness, J.-U.

    2012-05-01

    Nova LMC 2012 (ATel #4002, #4043) was observed with STIS on the Hubble Space Telescope on 2012 May 7 (MJD 56055) at three settings with medium resolution (E140M, E230M, with exposure times of 724 sec per setting) covering 1150 - 3000 A. There is only one strong emission line in the entire spectral range: N V 1240 (S/N ~ 15, 0.5 A binning, integrated (not dereddened) flux of 1.2E-13 erg/s/cm^2, FWZI ~ 7500 km/s); the blue wing is blended with Ly-alpha absorption (MW+LMC).

  4. Scientific Knowledge Suppresses but Does Not Supplant Earlier Intuitions

    ERIC Educational Resources Information Center

    Shtulman, Andrew; Valcarcel, Joshua

    2012-01-01

    When students learn scientific theories that conflict with their earlier, naive theories, what happens to the earlier theories? Are they overwritten or merely suppressed? We investigated this question by devising and implementing a novel speeded-reasoning task. Adults with many years of science education verified two types of statements as quickly…

  5. Correlation of the Hubble Space Telescope (HST) Space Telescope Imaging Spectrometer (STIS) On-Orbit Data with Pre-launch Predictions and Ground Contamination Controls

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.

    2003-01-01

    The Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) was deployed on-orbit in February 1997. The contamination program for STIS was stringently controlled as the five-year end-of-life deposition was set at 158, per optical element. Contamination was controlled through materials selection, extensive vacuum outgassing certifications, cleaning techniques, and environmental controls. In addition to ground contamination controls, on-orbit contamination controls were implemented for both the HST servicing mission activities and early post-servicing mission checkout. The extensive contamination control program will be discussed and the STIS on-orbit data will be correlated with the prelaunch analytical predictions.

  6. A Queriable Repository for HST Telemetry Data, a Case Study in using Data Warehousing for Science and Engineering

    NASA Astrophysics Data System (ADS)

    Pollizzi, J. A.; Lezon, K.

    The Hubble Space Telescope (HST) generates on the order of 7,000 telemetry values, many of which are sampled at 1Hz, and with several hundred parameters being sampled at 40Hz. Such data volumes would quickly tax even the largest of processing facilities. Yet the ability to access the telemetry data in a variety of ways, and in particular, using ad hoc (i.e., no a priori fixed) queries, is essential to assuring the long term viability and usefulness of this instrument. As part of the recent NASA initiative to re-engineer HST's ground control systems, a concept arose to apply newly available data warehousing technologies to this problem. The Space Telescope Science Institute was engaged to develop a pilot to investigate the technology and to create a proof-of-concept testbed that could be demonstrated and evaluated for operational use. This paper describes this effort and its results.

  7. The Panchromatic STARBurst IRregular Dwarf Survey (STARBIRDS): Observations and Data Archive

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B. W.; Mitchell, Noah P.; Skillman, Evan D.

    2015-06-01

    Understanding star formation in resolved low mass systems requires the integration of information obtained from observations at different wavelengths. We have combined new and archival multi-wavelength observations on a set of 20 nearby starburst and post-starburst dwarf galaxies to create a data archive of calibrated, homogeneously reduced images. Named the panchromatic “STARBurst IRregular Dwarf Survey” archive, the data are publicly accessible through the Mikulski Archive for Space Telescopes. This first release of the archive includes images from the Galaxy Evolution Explorer Telescope (GALEX), the Hubble Space Telescope (HST), and the Spitzer Space Telescope (Spitzer) Multiband Imaging Photometer instrument. The data sets include flux calibrated, background subtracted images, that are registered to the same world coordinate system. Additionally, a set of images are available that are all cropped to match the HST field of view. The GALEX and Spitzer images are available with foreground and background contamination masked. Larger GALEX images extending to 4 times the optical extent of the galaxies are also available. Finally, HST images convolved with a 5″ point spread function and rebinned to the larger pixel scale of the GALEX and Spitzer 24 μm images are provided. Future additions are planned that will include data at other wavelengths such as Spitzer IRAC, ground-based Hα, Chandra X-ray, and Green Bank Telescope H i imaging. Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

  8. Earlier vegetation green-up has reduced spring dust storms

    PubMed Central

    Fan, Bihang; Guo, Li; Li, Ning; Chen, Jin; Lin, Henry; Zhang, Xiaoyang; Shen, Miaogen; Rao, Yuhan; Wang, Cong; Ma, Lei

    2014-01-01

    The observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating aboveground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008. We find a significant dampening effect of advanced vegetation growth on spring dust storms (r = 0.49, p = 0.01), with a one-day earlier green-up date corresponding to a decrease in annual spring dust storm outbreaks by 3%. Moreover, the higher correlation (r = 0.55, p < 0.01) between green-up date and dust storm outbreak ratio (the ratio of dust storm outbreaks to times of strong wind events) indicates that such effect is independent of changes in surface wind. Spatially, a negative correlation is detected between areas with advanced green-up dates and regional annual spring dust storms (r = −0.49, p = 0.01). This new insight is valuable for understanding dust storms dynamics under the changing climate. Our findings suggest that dust storms in Inner Mongolia will be further mitigated by the projected earlier vegetation green-up in the warming world. PMID:25343265

  9. Earlier vegetation green-up has reduced spring dust storms.

    PubMed

    Fan, Bihang; Guo, Li; Li, Ning; Chen, Jin; Lin, Henry; Zhang, Xiaoyang; Shen, Miaogen; Rao, Yuhan; Wang, Cong; Ma, Lei

    2014-10-24

    The observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating aboveground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008. We find a significant dampening effect of advanced vegetation growth on spring dust storms (r = 0.49, p = 0.01), with a one-day earlier green-up date corresponding to a decrease in annual spring dust storm outbreaks by 3%. Moreover, the higher correlation (r = 0.55, p < 0.01) between green-up date and dust storm outbreak ratio (the ratio of dust storm outbreaks to times of strong wind events) indicates that such effect is independent of changes in surface wind. Spatially, a negative correlation is detected between areas with advanced green-up dates and regional annual spring dust storms (r = -0.49, p = 0.01). This new insight is valuable for understanding dust storms dynamics under the changing climate. Our findings suggest that dust storms in Inner Mongolia will be further mitigated by the projected earlier vegetation green-up in the warming world.

  10. HST Observations of NGC 7252

    NASA Astrophysics Data System (ADS)

    Whitmore, Brad; Schweizer, Francois; Leitherer, Claus; Borne, Kirk; Robert, Carmelle

    1993-05-01

    A population of about 40 blue pointlike objects has been discovered in NGC 7252 using the Planetary Camera on board of the Hubble Space Telescope. NGC 7252 (sometimes referred to as the ``Atoms-for-Peace'' galaxy) is one of the prototypical examples of a merger between two disk galaxies. Schweizer (1982: ApJ, 252, 455) has argued that the remnant will eventually become an elliptical galaxy. The luminosities, V-I colors, spatial distribution, and sizes are all compatible with the hypothesis that these objects formed <= 1 Gyr ago during the original merger, and that they are the progenitors of globular clusters similar to those we see around galaxies today. It therefore appears that the number of globular clusters is not a conserved quantity during the merger of two spiral galaxies, but increases instead. This weakens van den Bergh's objection against ellipticals being formed through disk mergers, based mainly on the fact that disk galaxies have fewer globular clusters per unit luminosity than ellipticals galaxies do. The objects found in NGC 7252 are very similar to the pointlike sources recently discovered in NGC 1275 by Holtzman et al. (1992: AJ, 103, 691). However, NGC 1275 is a peculiar galaxy in the center of the Perseus cluster. While Holtzman et al. argue that the objects in NGC 1275 may be the progenitors of globular clusters, Richer et al. (1993: AJ, 105, 877) suggest that these objects may instead be related to the strong cooling flow in the cluster. Our discovery of a population of bright blue pointlike objects in NGC 7252, a prototypical merger, makes a much stronger connection between the formation of globular clusters and the merger history of a galaxy. Other findings are: (1) NGC 7252 has a single, semi-stellar nucleus; (2) spiral arms are seen within 3.5'' (1.6 kpc) of the center, presumably formed through the continued infall of gas into a disk around the center of the galaxy; (3) dust lanes and very weak spiral structure are seen out to about 9.2'' (4.3 kpc), primarily on the NE side; and (4) a ripple is found on the west side, 5.0'' from the center.

  11. Ram Pressure Stripping: Observations Meet Simulations

    NASA Astrophysics Data System (ADS)

    Past, Matthew; Ruszkowski, Mateusz; Sharon, Keren

    2017-01-01

    Ram pressure stripping occurs when a galaxy falls into the potential well of a cluster, removing gas and dust as the galaxy travels through the intracluster medium. This interaction leads to filamentary gas tails stretching behind the galaxy and plays an important role in galaxy evolution. Previously, these “jellyfish” galaxies had only been observed in nearby clusters, but recently, higher redshift (z > 0.3) examples have been found from HST data imaging.Recent work has shown that cosmic rays injected by supernovae can cause galactic disks to thicken due to cosmic ray pressure. We run three-dimensional magneto-hydrodynamical simulations of ram pressure stripping including cosmic rays to compare to previous models. We study how the efficiency of the ram pressure stripping of the gas, and the morphology of the filamentary tails, depend on the magnitude of the cosmic ray pressure support. We generate mock X-ray images and radio polarization data. Simultaneously, we perform an exhaustive search of the HST archive to increase the sample of jellyfish galaxies and compare selected cases to simulations.

  12. The HST-pNFL program: Mapping the Fluorescent Emission of Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy

    2017-08-01

    Galactic outflows associated with star formation are believed to play a crucial role in the evolution of galaxies and the IGM. Most of our knowledge about outflows has come from down-the-barrel UV absorption spectroscopy of star-forming galaxies. However, absorption-line data alone provide only indirect information about the radial structure of the gas flows, which introduces large systematic uncertainties in some of the most important quantities, such as the outflow rate, the mass loading factor, and the momentum, metal, and energy fluxes. Recent spectroscopic observations of star-forming galaxies with large (projected physical) apertures have revealed non-resonant (fluorescent) emission in the UV, e.g., FeII* and SiII*, that can be naturally produced by spatially extended emission from the same outflowing material traced in absorption. Encouraged by the most recent observations of FeII* emission by the SDSS-IV/eBOSS survey (Zhu et al. 2015), we propose a pilot program to use narrow-band filter UVIS F280N images to map the extended FeII* 2626 and 2613 fluorescent emission in a carefully-chosen sample of 4 starburst galaxies at z=0.065, and COS G130M to obtain down-the- barrel spectra for SiII absorption and SiII* emission. This HST pilot program can provide unique information about the spatial structure of galactic outflows and can potentially lead to a revolution in our understanding of outflow physics and its impact on galaxies and the IGM.

  13. The Tarantula Nebula as a template for extragalactic star forming regions from VLT/MUSE and HST/STIS

    NASA Astrophysics Data System (ADS)

    Crowther, Paul A.; Caballero-Nieves, Saida M.; Castro, Norberto; Evans, Christopher J.

    2017-11-01

    We present VLT/MUSE observations of NGC 2070, the dominant ionizing nebula of 30 Doradus in the LMC, plus HST/STIS spectroscopy of its central star cluster R136. Integral Field Spectroscopy (MUSE) and pseudo IFS (STIS) together provides a complete census of all massive stars within the central 30×30 parsec2 of the Tarantula. We discuss the integrated far-UV spectrum of R136, of particular interest for UV studies of young extragalactic star clusters. Strong He iiλ1640 emission at very early ages (1-2 Myr) from very massive stars cannot be reproduced by current population synthesis models, even those incorporating binary evolution and very massive stars. A nebular analysis of the integrated MUSE dataset implies an age of ~4.5 Myr for NGC 2070. Wolf-Rayet features provide alternative age diagnostics, with the primary contribution to the integrated Wolf-Rayet bumps arising from R140 rather than the more numerous H-rich WN stars in R136. Caution should be used when interpreting spatially extended observations of extragalactic star-forming regions.

  14. The Morphological Diversity of DIG in Halos of Edge-on Spirals as Revealed by HST/ACS

    NASA Astrophysics Data System (ADS)

    Rossa, J.; Dahlem, M.; Dettmar, R.-J.; van der Marel, R. P.

    2012-09-01

    We present new results on extraplanar DIG (eDIG), based on high spatial resolution narrowband imaging observations of four late-type, actively star-forming edge-on spirals, obtained with ACS on-board HST. Our Hα observations reveal a multitude of structures on both small and large scales. Whereas all four galaxies have been studied with ground-based telescopes before, here the small scale structure of the extended emission line gas is presented for the very first time at a spatial resolution of 0.05'', corresponding to 5 pc at the mean distance to our galaxies. The eDIG morphology is very different for all four targets, as a result of their different star formation activity and galaxy mass. There is a very smooth DIG morphology observed in two of the galaxies (NGC 4634 and NGC 5775), whereas the other two (NGC 4700 and NGC 7090) show a much more complex morphology with intricate filaments, and bubbles and supershells. We find that the morphology of the eDIG, in particular the break-up of diffuse emission into filaments in galaxy halos, shows a strong dependence on the level of star formation activity per unit area, and eDIG can be arranged into a morphological sequence.

  15. Titan: Evidence for seasonal change - A comparison of Hubble Space Telescope and Voyager images

    NASA Technical Reports Server (NTRS)

    Caldwell, John; Cunningham, Cindy C.; Anthony, David; White, H. P.; Groth, E. J.; Hasan, H.; Noll, K.; Smith, P. H.; Tomasko, M. G.; Weaver, H. A.

    1992-01-01

    A comparison of images of Titan obtained by the HST in August, 1990 with Voyager 1 and 2 images respectively obtained 10 and 9 years earlier has indicated a reversal of the seasonal hemispheric brightness asymmetry near 440 and 550 nm wavelengths; the northern hemisphere is in the more recent observations the brighter of the two, by about 10 percent. Titan's albedo pattern is therefore adequately explained by a seasonal model.

  16. Toward Explaining Earlier Retirement after 1970.

    ERIC Educational Resources Information Center

    Ippolito, Richard A.

    1990-01-01

    Rule changes in the social security system and pension plans suggest that labor force participation rates for men aged 55 to 64 fell by 20 percent from 1970 through 1986 because of the increase in social security benefits and a change in private pension rules encouraging earlier retirement. (Author/JOW)

  17. VizieR Online Data Catalog: HST photometry in R136 (Hunter+ 1995)

    NASA Astrophysics Data System (ADS)

    Hunter, D. A.; Shaya, E. J.; Holtzman, J. A.; Light, R. M.; Oneil, Earl J., Jr.

    1996-01-01

    We have analyzed Hubble Space Telescope (HST) images of the compact, luminous star cluster R136 in the LMC that were taken with the refurbished HST and new Wide Field/Planetary Camera. These images allow us to examine the stellar population in a region of unusually intense star formation at a scale of 0.01pc. We have detected stars to 23.5 in F555W and have quantified the stellar population to an M_555.0 of 0.9 or a mass of 2.8M⊙. Comparisons of HR diagrams with isochrones that were constructed for the HST flight filter system from theoretical stellar evolutionary tracks reveal massive stars, a main sequence to at least 2.8M⊙, and stars with M_555.0>=0.5 still on pre-main sequence tracks. The average stellar population is fit with a 3-4Myr isochrone. Contrary to expectations from star formation models, however, the formation period for the massive stars and lower mass stars appear to largely overlap. We have measured the IMF for stars 2.8-15M⊙ in three annuli from 0.5-4.7pc from the center of the cluster. The slopes of the IMF in all three annuli are the same within the uncertainties, thus, showing no evidence for mass segregation beyond 0.5pc. Furthermore, the combined IMF slope, -1.22+/-0.06, is close to a normal Salpeter IMF. The lower mass limit must be lower than the limits of our measurements: <=2.8M⊙ beyond 0.5pc and <=7M⊙ within 0.1pc. This is contrary to some predictions that the lower mass limit could be as high as 10M⊙ in regions of intense massive star formation. Integrated properties of R136 are consistent with its being comparable to a rather small globular cluster when such clusters were the same age as R136. From the surface brightness profile, an upper limit for core radius of 0.02pc is set. Within a radius of 0.4pc we estimate that there have been roughly 20 crossing times and relaxation should be well along. Within 0.5pc crowding prevents us from detecting the intermediate mass population, but there is a hint of an excess of stars

  18. Can thermal instabilities drive galactic precipitation and explain observed circumgalactic structure?

    NASA Astrophysics Data System (ADS)

    Silvia, Devin

    2015-10-01

    Understanding the complex nature of the circumgalactic medium (CGM) has been a target of numerous research efforts, both observationally and theoretically. While significant progress has been made in probing the structure and thermodynamic state of the CGM through the detection of metal line absorption systems using the Hubble Space Telescope (HST), a complete picture of the physical mechanisms that produce the observed properties does not yet exist. Recent theoretical work has suggested that a delicate balance between radiative cooling and thermal feedback detemines whether or not the CGM is capable of sustaining a stable, multiphase medium that would allow cool clouds to precipitate out of the galactic halo. This new theoretical framework may provide the explanation for many observational results. In this project, we will detemine whether or not this elegant and simple precipitation model can be supported by physics-rich numerical simulations of isolated galaxies. We will use our simulations to gain a deeper understanding of the precipitation model and explore the ionization and temperature stucture of the CGM. Our analysis will include the comparison of realistic synthetic spectra to those produced by HST, using the newly-developed Trident software package.

  19. Temperature Variations from HST Imagery and Spectroscopy of NGC 7009

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.; Bhatt, N. J.; Dufour, R. J.; Buckalew, B. A.; Barlow, M. J.; Liu, X.-W.; Storey, P. J.; Balick, B.; Harrington, J. P.; Ferland, G. J.

    2002-01-01

    We present new HST/WFPC2 imagery and STIS long-slit spectroscopy of the planetary nebula NGC 7009. The primary goal was to obtain high spatial resolution of the intrinsic line ratio [O III] 4364/5008 and thereby evaluate the electron temperature (Te) and the mean-square Te variation (t(sup 2, sub A)) across the nebula. The observations here do not address Te fluctuation along the line of sight. The WFPC2 Te map is rather uniform; almost all values are between 9000 - 11,000 K, with the higher Te's closely coinciding with the inner He(++)-zone. The results indicate very small values - certainly less than 0.01 - for t(sup 2, sub A) throughout. Our STIS data allow an even more direct determination of Te and t(sup 2, sub A), albeit for a much smaller area than with WFPC2. We present results from binning the data along the slit into tiles that are 0.5 in square (matching the slit width). The average [O III] temperature using 45 tiles (excluding the central star and STIS fiducial bars) is 10,146 K; t(sup 2, sub A) is 0.0036. Although we have measured t(sup 2, sub A) in only 2-dimensions, we conclude that temperature fluctuations alone are unlikely to explain for NGC 7009 the large discrepancy between heavy element abundances inferred from emission lines that are collisionally excited compared with those that are due to recombination lines.

  20. Masses of the Planetary Nebula Central Stars in the Galactic Globular Cluster System from HST Imaging and Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacoby, George H.; Marco, Orsola De; Davies, James

    The globular cluster (GC) system of our Galaxy contains four planetary nebulae (PNe): K 648 (or Ps 1) in M15, IRAS 18333-2357 in M22, JaFu 1 in Pal 6, and JaFu 2 in NGC 6441. Because single-star evolution at the low stellar mass of present-epoch GCs was considered incapable of producing visible PNe, their origin presented a puzzle. We imaged the PN JaFu 1 with the Hubble Space Telescope (HST) to obtain photometry of its central star (CS) and high-resolution morphological information. We imaged IRAS 18333-2357 with better depth and resolution, and we analyzed its archival HST spectra to constrainmore » its CS temperature and luminosity. All PNe in Galactic GCs now have quality HST data, allowing us to improve CS mass estimates. We find reasonably consistent masses between 0.53 and 0.58 M {sub ⊙} for all four objects, though estimates vary when adopting different stellar evolutionary calculations. The CS mass of IRAS 18333-2357, though, depends strongly on its temperature, which remains elusive due to reddening uncertainties. For all four objects, we consider their CS and nebula masses, their morphologies, and other incongruities to assess the likelihood that these objects formed from binary stars. Although generally limited by uncertainties (∼0.02 M {sub ⊙}) in post-AGB tracks and core mass versus luminosity relations, the high-mass CS in K 648 indicates a binary origin. The CS of JaFu 1 exhibits compact, bright [O iii] and H α emission, like EGB 6, suggesting a binary companion or disk. Evidence is weaker for a binary origin of JaFu 2.« less

  1. HST-COS Observations of Hydrogen, Helium, Carbon, and Nitrogen Emission from the SN 1987A Reverse Shock

    NASA Astrophysics Data System (ADS)

    France, Kevin; McCray, Richard; Penton, Steven V.; Kirshner, Robert P.; Challis, Peter; Laming, J. Martin; Bouchet, Patrice; Chevalier, Roger; Garnavich, Peter M.; Fransson, Claes; Heng, Kevin; Larsson, Josefin; Lawrence, Stephen; Lundqvist, Peter; Panagia, Nino; Pun, Chun S. J.; Smith, Nathan; Sollerman, Jesper; Sonneborn, George; Sugerman, Ben; Wheeler, J. Craig

    2011-12-01

    We present the most sensitive ultraviolet observations of Supernova 1987A to date. Imaging spectroscopy from the Hubble Space Telescope-Cosmic Origins Spectrograph shows many narrow (Δv ~ 300 km s-1) emission lines from the circumstellar ring, broad (Δv ~ 10-20 × 103 km s-1) emission lines from the reverse shock, and ultraviolet continuum emission. The high signal-to-noise ratio (>40 per resolution element) broad Lyα emission is excited by soft X-ray and EUV heating of mostly neutral gas in the circumstellar ring and outer supernova debris. The ultraviolet continuum at λ > 1350 Å can be explained by H I two-photon (2s 2 S 1/2-1s 2 S 1/2) emission from the same region. We confirm our earlier, tentative detection of N V λ1240 emission from the reverse shock and present the first detections of broad He II λ1640, C IV λ1550, and N IV] λ1486 emission lines from the reverse shock. The helium abundance in the high-velocity material is He/H = 0.14 ± 0.06. The N V/Hα line ratio requires partial ion-electron equilibration (Te /Tp ≈ 0.14-0.35). We find that the N/C abundance ratio in the gas crossing the reverse shock is significantly higher than that in the circumstellar ring, a result that may be attributed to chemical stratification in the outer envelope of the supernova progenitor. The N/C abundance may have been stratified prior to the ring expulsion, or this result may indicate continued CNO processing in the progenitor subsequent to the expulsion of the circumstellar ring. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  2. Coordinated 1996 HST and IRTF Imaging of Neptune and Triton. II. Implications of Disk-Integrated Photometry

    NASA Astrophysics Data System (ADS)

    Sromovsky, L. A.; Fry, P. M.; Baines, K. H.; Dowling, T. E.

    2001-02-01

    Near-IR groundbased observations coordinated with Wide Field Planetary Camera 2 (WFPC2) HST observations (Sromovsky et al.Icarus149, 416-434, 459-488) provide new insights into the variations of Neptune and Triton over a variety of time scales. From 1996 WFPC2 imaging we find that a broad circumpolar nonaxisymmetric dark band dominates Neptune's lightcurve at 0.467 μm, while three discrete bright features dominate the lightcurve at longer wavelengths, with amplitudes of 0.5% at 0.467 μm and 22% at 0.89 μm, but of opposite phases. The 0.89-μm modulation in 1994, estimated at 39%, is close to the 50% modulation observed during the 1986 "outburst" documented by Hammel et al. (1992, Icarus99, 363-367), suggesting that the unusual 1994 cloud morphology might also have been present in 1986. Lightcurve amplitudes in J-K bands, from August 1996 IRTF observations, are comparable to those observed in 1977 (D. P. Cruikshank 1978, Astrophys. J. Lett.220, 57-59) but significantly larger than the 1981 amplitudes of M. J. S. Belton et al. (1981, Icarus45, 263-273). The 1996 disk-integrated albedos of Neptune at H-K wavelengths are 2-7 times smaller than the 1977 values of U. Fink and S. Larson (1979, Astrophys. J.233, 1021-1040), which can be explained with about 1/2-1/4 of the upper level cloud opacity being present in 1996. A simplified three-layer model of cloud structure applied to CCD wavelengths implies ˜7% reflectivity at 1.3 bars (at λ=0.55 μm, decreasing as λ -0.94) and ˜1% at 100-150 mbars. To fit the WFPC2 observations and those of E. Karkoschka (1994, Icarus111, 174-192), the putative H 2S cloud between 3.8 and 7-9 bars must have a strong decrease in reflectivity between 0.5 and 0.7 μm, as previously determined by K. H. Baines and W. H. Smith (1990, Icarus85, 65-108). To match our 1996 IRTF results, this cloud must have another substantial drop in reflectivity at near-IR wavelengths, to a level of 0-5%, corresponding to single-scattering albedos of ˜0

  3. Resolved Observations of the Patroclus-Menoetius Binary

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.; Grundy, William M.; Buie, Marc W.; Levison, Harold F.

    2017-10-01

    The Trojan binary (617) Patroclus-Menoetius is one of the targets of the Lucy Discovery mission. Lucy is scheduled to launch in October 2021. We observed this system with the Hubble Space Telescope in May and June 2017 in order to resolve the individual components and use the relative positions to update the binary orbit. The updated orbit is required to predict the upcoming mutual event season. A precise determination of the orbit phase, period, orbit plane and pole position that will result from observations of mutual events is essential for planning the Lucy mission’s encounter with this system. We present results of the successful HST observations including preliminary predictions for mutual events observable in semester 2018A.

  4. The sluggs survey: HST/ACS mosaic imaging of the NGC 3115 globular cluster system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennings, Zachary G.; Romanowsky, Aaron J.; Brodie, Jean P.

    We present Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) g and z photometry and half-light radii R {sub h} measurements of 360 globular cluster (GC) candidates around the nearby S0 galaxy NGC 3115. We also include Subaru/Suprime-Cam g, r, and i photometry of 421 additional candidates. The well-established color bimodality of the GC system is obvious in the HST/ACS photometry. We find evidence for a 'blue tilt' in the blue GC subpopulation, wherein the GCs in the blue subpopulation get redder as luminosity increases, indicative of a mass-metallicity relationship. We find a color gradient in both the red and bluemore » subpopulations, with each group of clusters becoming bluer at larger distances from NGC 3115. The gradient is of similar strength in both subpopulations, but is monotonic and more significant for the blue clusters. On average, the blue clusters have ∼10% larger R {sub h} than the red clusters. This average difference is less than is typically observed for early-type galaxies but does match that measured in the literature for the Sombrero Galaxy (M104), suggesting that morphology and inclination may affect the measured size difference between the red and blue clusters. However, the scatter on the R {sub h} measurements is large. We also identify 31 clusters more extended than typical GCs, which we term ultra-compact dwarf (UCD) candidates. Many of these objects are actually considerably fainter than typical UCDs. While it is likely that a significant number will be background contaminants, six of these UCD candidates are spectroscopically confirmed as NGC 3115 members. To explore the prevalence of low-mass X-ray binaries in the GC system, we match our ACS and Suprime-Cam detections to corresponding Chandra X-ray sources. We identify 45 X-ray-GC matches: 16 among the blue subpopulation and 29 among the red subpopulation. These X-ray/GC coincidence fractions are larger than is typical for most GC systems, probably due to the increased

  5. Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa's water vapor aurora.

    PubMed

    Roth, Lorenz; Retherford, Kurt D; Saur, Joachim; Strobel, Darrell F; Feldman, Paul D; McGrath, Melissa A; Nimmo, Francis

    2014-12-02

    We report far-ultraviolet observations of Jupiter's moon Europa taken by Space Telescope Imaging Spectrograph (STIS) of the Hubble Space Telescope (HST) in January and February 2014 to test the hypothesis that the discovery of a water vapor aurora in December 2012 by local hydrogen (H) and oxygen (O) emissions with the STIS originated from plume activity possibly correlated with Europa's distance from Jupiter through tidal stress variations. The 2014 observations were scheduled with Europa near the apocenter similar to the orbital position of its previous detection. Tensile stresses on south polar fractures are expected to be highest in this orbital phase, potentially maximizing the probability for plume activity. No local H and O emissions were detected in the new STIS images. In the south polar region where the emission surpluses were observed in 2012, the brightnesses are sufficiently low in the 2014 images to be consistent with any H2O abundance from (0-5)×10(15) cm(-2). Large high-latitude plumes should have been detectable by the STIS, independent of the observing conditions and geometry. Because electron excitation of water vapor remains the only viable explanation for the 2012 detection, the new observations indicate that although the same orbital position of Europa for plume activity may be a necessary condition, it is not a sufficient condition. However, the December 2012 detection of coincident HI Lyman-α and OI 1304-Å emission surpluses in an ∼200-km high region well separated above Europa's limb is a firm result and not invalidated by our 2014 STIS observations.

  6. Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa's water vapor aurora

    NASA Astrophysics Data System (ADS)

    Roth, Lorenz; Retherford, Kurt D.; Saur, Joachim; Strobel, Darrell F.; Feldman, Paul D.; McGrath, Melissa A.; Nimmo, Francis

    2014-12-01

    We report far-ultraviolet observations of Jupiter's moon Europa taken by Space Telescope Imaging Spectrograph (STIS) of the Hubble Space Telescope (HST) in January and February 2014 to test the hypothesis that the discovery of a water vapor aurora in December 2012 by local hydrogen (H) and oxygen (O) emissions with the STIS originated from plume activity possibly correlated with Europa's distance from Jupiter through tidal stress variations. The 2014 observations were scheduled with Europa near the apocenter similar to the orbital position of its previous detection. Tensile stresses on south polar fractures are expected to be highest in this orbital phase, potentially maximizing the probability for plume activity. No local H and O emissions were detected in the new STIS images. In the south polar region where the emission surpluses were observed in 2012, the brightnesses are sufficiently low in the 2014 images to be consistent with any H2O abundance from (0-5)×1015 cm-2. Large high-latitude plumes should have been detectable by the STIS, independent of the observing conditions and geometry. Because electron excitation of water vapor remains the only viable explanation for the 2012 detection, the new observations indicate that although the same orbital position of Europa for plume activity may be a necessary condition, it is not a sufficient condition. However, the December 2012 detection of coincident HI Lyman-α and OI 1304-Å emission surpluses in an ∼200-km high region well separated above Europa's limb is a firm result and not invalidated by our 2014 STIS observations.

  7. CO-SPATIAL LONG-SLIT UV/OPTIC AL SPECTRA OF 10 GALACTIC PLANETARY NEBULAE WITH HST/STIS. I. DESCRIPTION OF THE OBSERVATIONS, GLOBAL EMISSION-LINE MEASUREMENTS, AND CNO ABUNDANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, Reginald J.; Kwitter, Karen B.; Shaw, Richard A.

    We present observations and initial analysis from a Hubble Space Telescope (HST) Cycle 19 program using STIS to obtain the first co-spatial, UV–optical spectra of 10 Galactic planetary nebulae (PNs). Our primary objective was to measure the critical emission lines of carbon and nitrogen with unprecedented signal-to-noise ratio (S/N) and spatial resolution over the wavelength range 1150–10270 Å, with the ultimate goal of quantifying the production of these elements in low- and intermediate-mass stars. Our sample was selected from PNs with a near-solar metallicity, but spanning a broad range in N/O based on published ground-based and IUE spectra. This study,more » the first of a series, concentrates on the observations and emission-line measurements obtained by integrating along the entire spatial extent of the slit. We derived ionic and total elemental abundances for the seven PNs with the strongest UV line detections (IC 2165, IC 3568, NGC 2440, NGC 3242, NGC 5315, NGC 5882, and NGC 7662). We compare these new results with other recent studies of the nebulae and discuss the relative merits of deriving the total elemental abundances of C, N, and O using ionization correction factors (ICFs) versus summed abundances. For the seven PNs with the best UV line detections, we conclude that summed abundances from direct diagnostics of ions with measurable UV lines give the most accurate values for the total elemental abundances of C and N (although ICF abundances often produced good results for C). In some cases where significant discrepancies exist between our abundances and those from other studies, we show that the differences can often be attributed to their use of fluxes that are not co-spatial. Finally, we examined C/O and N/O versus O/H and He/H in well-observed Galactic, LMC, and SMC PNs and found that highly accurate abundances are essential for properly inferring elemental yields from their progenitor stars. Future papers will discuss photoionization

  8. An HST/STIS Optical Transmission Spectrum of Warm Neptune GJ 436b

    NASA Astrophysics Data System (ADS)

    Lothringer, Joshua D.; Benneke, Björn; Crossfield, Ian J. M.; Henry, Gregory W.; Morley, Caroline; Dragomir, Diana; Barman, Travis; Knutson, Heather; Kempton, Eliza; Fortney, Jonathan; McCullough, Peter; Howard, Andrew W.

    2018-02-01

    GJ 436b is a prime target for understanding warm Neptune exoplanet atmospheres and a target for multiple James Webb Space Telescope (JWST) Guaranteed Time Observation programs. Here, we report the first space-based optical transmission spectrum of the planet using two Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) transit observations from 0.53 to 1.03 μm. We find no evidence for alkali absorption features, nor evidence of a scattering slope longward of 0.53 μm. The spectrum is indicative of moderate to high metallicity (∼100–1000× solar), while moderate-metallicity scenarios (∼100× solar) require aerosol opacity. The optical spectrum also rules out some highly scattering haze models. We find an increase in transit depth around 0.8 μm in the transmission spectra of three different sub-Jovian exoplanets (GJ 436b, HAT-P-26b, and GJ 1214b). While most of the data come from STIS, data from three other instruments may indicate this is not an instrumental effect. Only the transit spectrum of GJ 1214b is well fit by a model with stellar plages on the photosphere of the host star. Our photometric monitoring of the host star reveals a stellar rotation rate of 44.1 days and an activity cycle of 7.4 years. Intriguingly, GJ 436 does not become redder as it gets dimmer, which is expected if star spots were dominating the variability. These insights into the nature of the GJ 436 system help refine our expectations for future observations in the era of JWST, whose higher precision and broader wavelength coverage will shed light on the composition and structure of GJ 436b’s atmosphere.

  9. Three Axis Control of the Hubble Space Telescope Using Two Reaction Wheels and Magnetic Torquer Bars for Science Observations

    NASA Technical Reports Server (NTRS)

    Hur-Diaz, Sun; Wirzburger, John; Smith, Dan

    2008-01-01

    The Hubble Space Telescope (HST) is renowned for its superb pointing accuracy of less than 10 milli-arcseconds absolute pointing error. To accomplish this, the HST relies on its complement of four reaction wheel assemblies (RWAs) for attitude control and four magnetic torquer bars (MTBs) for momentum management. As with most satellites with reaction wheel control, the fourth RWA provides for fault tolerance to maintain three-axis pointing capability should a failure occur and a wheel is lost from operations. If an additional failure is encountered, the ability to maintain three-axis pointing is jeopardized. In order to prepare for this potential situation, HST Pointing Control Subsystem (PCS) Team developed a Two Reaction Wheel Science (TRS) control mode. This mode utilizes two RWAs and four magnetic torquer bars to achieve three-axis stabilization and pointing accuracy necessary for a continued science observing program. This paper presents the design of the TRS mode and operational considerations necessary to protect the spacecraft while allowing for a substantial science program.

  10. Bulge Growth and Quenching Since Z=2.5 in Candels/3D-HST

    NASA Technical Reports Server (NTRS)

    Lang, Phillip; Wuyts, Stijn; Somerville, Rachel S.; Schreiber, Natascha M. Foerster; Genzel, Reinhard; Bell, Eric F.; Brammer, Gabe; Dekel, Avishai; Faber, Sandra M.; Ferguson, Henry C.; hide

    2014-01-01

    Exploiting the deep high-resolution imaging of all 5 CANDELS fields, and accurate redshift informationprovided by 3D-HST, we investigate the relation between structure and stellar populations fora mass-selected sample of 6764 galaxies above 1010 M, spanning the redshift range 0.5 z 2.5.For the first time, we fit 2-dimensional models comprising a single Sersic fit and two-component (i.e.,bulge + disk) decompositions not only to the H-band light distributions, but also to the stellar massmaps reconstructed from resolved stellar population modeling. We confirm that the increased bulgeprominence among quiescent galaxies, as reported previously based on rest-optical observations, remainsin place when considering the distributions of stellar mass. Moreover, we observe an increaseof the typical Sersic index and bulge-to-total ratio (with median BT reaching 40-50) among starforminggalaxies above 1011 M. Given that quenching for these most massive systems is likely tobe imminent, our findings suggest that significant bulge growth precedes a departure from the starformingmain sequence. We demonstrate that the bulge mass (and ideally knowledge of the bulge andtotal mass) is a more reliable predictor of the star-forming versus quiescent state of a galaxy thanthe total stellar mass. The same trends are predicted by the state-of-the-art semi-analytic model bySomerville et al. In the latter, bulges and black holes grow hand in hand through merging andordisk instabilities, and AGN-feedback shuts off star formation. Further observations will be requiredto pin down star formation quenching mechanisms, but our results imply they must be internal to thegalaxies and closely associated with bulge growth.

  11. Transit Observations of Venus's Atmosphere in 2012 from Terrestrial and Space Telescopes as Exoplanet Analogs

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Schneider, G.; Babcock, B. A.; Lu, M.; Penn, M. J.; Jaeggli, S. A.; Galayda, E.; Reardon, K. P.; Widemann, T.; Tanga, P.; Ehrenreich, D.; Vidal-Madjar, A.; Nicholson, P. D.; Dantowitz, R.

    2013-06-01

    We extensively observed the 8 June 2012 transit of Venus from several sites on Earth; we provide this interim status report about this and about two subsequent ToVs observed from space. From Haleakala Obs., we observed the entire June transit over almost 7 h with a coronagraph of the Venus Twilight Experiment B filter) and with a RED Epic camera to compare with simultaneous data from ESA's Venus Express, to study the Cytherean mesosphere; from Kitt Peak, we have near-IR spectropolarimetry at 1.6 µm from the aureole and during the disk crossing that compare well with carbon dioxide spectral models; from Sac Peak/IBIS we have high-resolution imaging of the Cytherean aureole for 22 min, starting even before 1st contact; from Big Bear, we have high-resolution imaging of Venus's atmosphere and the black-drop effect through 2nd contact; and we had 8 other coronagraphs around the world. For the Sept 21 ToV as seen from Jupiter, we had 14 orbits of HST to use Jupiter's clouds as a reflecting surface to search for an 0.01% diminution in light and a differential drop that would result from Venus's atmosphere by observing in both IR/UV, for which we have 170 HST exposures. As of this writing, preliminary data reduction indicates that variations in Jovian clouds and the two periods of Jupiter's rotation will be too great to allow extraction of the transit signal. For the December 20 ToV as seen from Saturn, we had 22 hours of observing time with VIMS on Cassini, for which we are looking for a signal of the 10-hr transit in total solar irradiance and of Venus's atmosphere in IR as an exoplanet-transit analog. Our Maui & Sac Peak expedition was sponsored by National Geographic Society's Committee for Research and Exploration; HST data reduction by NASA: HST-GO-13067. Some of the funds for the carbon dioxide filter for Sac Peak provided by NASA through AAS's Small Research Grant Program. We thank Rob Ratkowski of Haleakala Amateur Astronomers; Rob Lucas, Aram Friedman, Eric

  12. Early Observations with the ACS Ramp Filters

    NASA Astrophysics Data System (ADS)

    Tsvetanov, Z.; Hartig, G.; Bohlin, R.; Tran, H. D.; Martel, A.; Sirianni, M.; Clampin, M.

    2002-05-01

    The Advanced Camera for Surveys (ACS) on-board the Hubble Space Telescope (HST) is equipped with a set of ramp filters which provide imaging capability at 2% and 9% bandwidth in the range 3700-10700 Å. Each ramp filter consist of three segments where the middle segment can be used with both the Wide Field Channel (WFC) and High Resolution Channel (HRC), while the inner and outer segments can be used only with WFC. The monochromatic field of view is approximately 40'' by 80''. We will present observations of the planetary nebula (PN) NGC6543 (the Cat's Eye) taken with the ACS ramp filetrs in several key emission lines - [O II] 3727, [O III] 5007, H-alpha+[N II], and [S II] 6725. These four emission lines fall onto three separate middle ramp segments - FR388N, FR505N, and FR656N - and will allow inter-comparison between the ACS ramp filters and fixed bandpass narrow-band filters F502N and F658N for both the WFC and HRC detectors. These observations were taken as part of the HST Servicing Mission Orbital Verification program and were designed to test ramp filters performance. We will demostrate our ability to obtain monochromatic (i.e., emission line) images at arbitrary wavelength and recover the surface brightness distribution. This work was supported by a NASA contract and a NASA grant.

  13. High Contrast Imaging with NICMOS - I: Teaching an Old Dog New Tricks with Coronagraphic Polarimetry

    NASA Astrophysics Data System (ADS)

    Schneider, G.; Hines, D. C.

    2007-06-01

    HST's Near Infrared Camera and Multi-Object Spectrometer (NICMOS), with its highly stable point spread function, very high imaging Strehl ratio (panchromatically > 98% over its entire 0.8 - 2.4 micron wavelength regime) and coronagraphic imaging capability, celebrated its tenth anniversary in space earlier this year. These combined instrumental attributes uniquely contribute to its capability as a high-contrast imager as demonstrated by its continuing production of new examples of spatially resolved scattered-light imagery of both optically thick and thin circumstellar disks and sub-stellar companions to young stars and brown dwarfs well into the (several) Jovian mass range. We review these capabilities, illustrating with observationally based results, including examples obtained since HST's entry into two gyro guiding mode in mid 2005. The advent of a recently introduced, and now commissioned and calibrated, coronagraphic polarimetry mode has enabled very-high contrast 2 micron imaging polarimetry with 0.2 spatial resolution. Such imagery provides important constraints in the interpretation of disk-scattered starlight in assessing circumstellar disk geometries and the physical properties of their constituent grains. We demonstrate this new capability with observational results from two currently-executing HST programs obtaining 2 micron coronagraphic polarimetric images of circumstellar T-Tauri and debris disks.

  14. First simultaneous observations of local moon aurora and the moon footprints in Jupiter's polar aurora

    NASA Astrophysics Data System (ADS)

    Hue, V.; Roth, L.; Grodent, D. C.; Gladstone, R.; Saur, J.; Bonfond, B.

    2017-12-01

    The interaction of the co-rotating magnetospheric plasma with Jupiter's Galilean moons generates local perturbations and auroral emissions in the moons' tenuous atmospheres. Alfvén waves are launched by this local interaction and travel along Jupiter's field lines triggering various effects that finally lead to the auroral moon footprints far away in Jupiter's polar regions. Within the large Hubble Space Telescope aurora program in support of the NASA Juno mission (HST GO-14634, PI D. Grodent), HST observed the local aurora at the moons Io and Ganymede on three occasions in 2017 while the Juno Ultraviolet Spectrograph simultaneously observed Jupiter's aurora and the moon footprints. In this presentation, we will provide first results from the first-ever simultaneous moon and footprint observations for the case of Io. We compare the temporal variability of the local moon aurora and the Io footprint, addressing the question how much of the footprint variability originates from changes at the moon source and how much originates from processes in the regions that lie in between the moon and Jupiter's poles.

  15. Searching for faint AGN in the CDFS: an X-ray (Chandra) vs optical variability (HST) comparison.

    NASA Astrophysics Data System (ADS)

    Georgantopoulos, I.; Pouliasis, E.; Bonanos, A.; Sokolovsky, K.; Yang, M.; Hatzidimitriou, D.; Bellas, I.; Gavras, P.; Spetsieri, Z.

    2017-10-01

    X-ray surveys are believed to be the most efficient way to detect AGN. Recently though, optical variability studies are claimed to probe even fainter AGN. We are presenting results from an HST study aimed to identify Active Galactic Nuclei (AGN) through optical variability selection in the CDFS.. This work is part of the 'Hubble Catalogue of Variables'project of ESA that aims to identify variable sources in the Hubble Source Catalogue.' In particular, we used Hubble Space Telescope (HST) z-band images taken over 5 epochs and performed aperture photometry to derive the lightcurves of the sources. Two statistical methods (standard deviation & interquartile range) resulting in a final sample of 175 variable AGN candidates, having removed the artifacts by visual inspection and known stars and supernovae. The fact that the majority of the sources are extended and variable indicates AGN activity. We compare the efficiency of the method by comparing with the 7Ms Chandra detections. Our work shows that the optical variability probes AGN at comparable redshifts but at deeper optical magnitudes. Our candidate AGN (non detected in X-rays) have luminosities of L_x<6×10^{40} erg/sec at z˜0.7 suggesting that these are associated with low luminosity Seyferts and LINERS.

  16. Expert systems tools for Hubble Space Telescope observation scheduling

    NASA Technical Reports Server (NTRS)

    Miller, Glenn; Rosenthal, Don; Cohen, William; Johnston, Mark

    1987-01-01

    The utility of expert systems techniques for the Hubble Space Telescope (HST) planning and scheduling is discussed and a plan for development of expert system tools which will augment the existing ground system is described. Additional capabilities provided by these tools will include graphics-oriented plan evaluation, long-range analysis of the observation pool, analysis of optimal scheduling time intervals, constructing sequences of spacecraft activities which minimize operational overhead, and optimization of linkages between observations. Initial prototyping of a scheduler used the Automated Reasoning Tool running on a LISP workstation.

  17. Interallelic and Intergenic Incompatibilities of the Prdm9 (Hst1) Gene in Mouse Hybrid Sterility

    PubMed Central

    Flachs, Petr; Mihola, Ondřej; Šimeček, Petr; Gregorová, Soňa; Schimenti, John C.; Matsui, Yasuhisa; Baudat, Frédéric; de Massy, Bernard; Piálek, Jaroslav; Forejt, Jiří; Trachtulec, Zdenek

    2012-01-01

    The Dobzhansky-Muller model of incompatibilities explains reproductive isolation between species by incorrect epistatic interactions. Although the mechanisms of speciation are of great interest, no incompatibility has been characterized at the gene level in mammals. The Hybrid sterility 1 gene (Hst1) participates in the arrest of meiosis in F1 males of certain strains from two Mus musculus subspecies, e.g., PWD from M. m. musculus and C57BL/6J (henceforth B6) from M. m. domesticus. Hst1 has been identified as a meiotic PR-domain gene (Prdm9) encoding histone 3 methyltransferase in the male offspring of PWD females and B6 males, (PWD×B6)F1. To characterize the incompatibilities underlying hybrid sterility, we phenotyped reproductive and meiotic markers in males with altered copy numbers of Prdm9. A partial rescue of fertility was observed upon removal of the B6 allele of Prdm9 from the azoospermic (PWD×B6)F1 hybrids, whereas removing one of the two Prdm9 copies in PWD or B6 background had no effect on male reproduction. Incompatibility(ies) not involving Prdm9B6 also acts in the (PWD×B6)F1 hybrids, since the correction of hybrid sterility by Prdm9B6 deletion was not complete. Additions and subtractions of Prdm9 copies, as well as allelic replacements, improved meiotic progression and fecundity also in the progeny-producing reciprocal (B6×PWD)F1 males. Moreover, an increased dosage of Prdm9 and reciprocal cross enhanced fertility of other sperm-carrying male hybrids, (PWD×B6-C3H.Prdm9)F1, harboring another Prdm9 allele of M. m. domesticus origin. The levels of Prdm9 mRNA isoforms were similar in the prepubertal testes of all types of F1 hybrids of PWD with B6 and B6-C3H.Prdm9 despite their different prospective fertility, but decreased to 53% after removal of Prdm9B6. Therefore, the Prdm9B6 allele probably takes part in posttranscriptional dominant-negative hybrid interaction(s) absent in the parental strains. PMID:23133405

  18. Interallelic and intergenic incompatibilities of the Prdm9 (Hst1) gene in mouse hybrid sterility.

    PubMed

    Flachs, Petr; Mihola, Ondřej; Simeček, Petr; Gregorová, Soňa; Schimenti, John C; Matsui, Yasuhisa; Baudat, Frédéric; de Massy, Bernard; Piálek, Jaroslav; Forejt, Jiří; Trachtulec, Zdenek

    2012-01-01

    The Dobzhansky-Muller model of incompatibilities explains reproductive isolation between species by incorrect epistatic interactions. Although the mechanisms of speciation are of great interest, no incompatibility has been characterized at the gene level in mammals. The Hybrid sterility 1 gene (Hst1) participates in the arrest of meiosis in F(1) males of certain strains from two Mus musculus subspecies, e.g., PWD from M. m. musculus and C57BL/6J (henceforth B6) from M. m. domesticus. Hst1 has been identified as a meiotic PR-domain gene (Prdm9) encoding histone 3 methyltransferase in the male offspring of PWD females and B6 males, (PWD×B6)F(1). To characterize the incompatibilities underlying hybrid sterility, we phenotyped reproductive and meiotic markers in males with altered copy numbers of Prdm9. A partial rescue of fertility was observed upon removal of the B6 allele of Prdm9 from the azoospermic (PWD×B6)F(1) hybrids, whereas removing one of the two Prdm9 copies in PWD or B6 background had no effect on male reproduction. Incompatibility(ies) not involving Prdm9(B6) also acts in the (PWD×B6)F(1) hybrids, since the correction of hybrid sterility by Prdm9(B6) deletion was not complete. Additions and subtractions of Prdm9 copies, as well as allelic replacements, improved meiotic progression and fecundity also in the progeny-producing reciprocal (B6×PWD)F(1) males. Moreover, an increased dosage of Prdm9 and reciprocal cross enhanced fertility of other sperm-carrying male hybrids, (PWD×B6-C3H.Prdm9)F(1), harboring another Prdm9 allele of M. m. domesticus origin. The levels of Prdm9 mRNA isoforms were similar in the prepubertal testes of all types of F(1) hybrids of PWD with B6 and B6-C3H.Prdm9 despite their different prospective fertility, but decreased to 53% after removal of Prdm9(B6). Therefore, the Prdm9(B6) allele probably takes part in posttranscriptional dominant-negative hybrid interaction(s) absent in the parental strains.

  19. New HST/STIS Spectroscopy of Massive Members of R136 in 30 Doradus

    NASA Astrophysics Data System (ADS)

    Bostroem, Kyra; Walborn, Nolan; Crowther, Paul; Caballero-Nieves, Saida; Lennon, Daniel; Maíz Apellániz, Jesús

    2013-06-01

    We display new (in some cases, the first ever) spatially resolved optical and UV spectroscopy of a number of early O-type stars in R136, the massive core cluster of 30 Doradus in the LMC. Some of them are of the earliest spectral types, O2-O3, which accompany the more luminous WN members that are the most massive stars known, near or exceeding 300~M_⊙ initially. These results are relevant to the very top of the IMF and to the structure and formation of starburst clusters. The data are from HST/STIS programs GO 12465/13052 (PI Crowther), in which the long slit was stepped across the inner 4 arcsec (1 parsec) of R136, yielding both optical photospheric and FUV stellar-wind spectra of at least 100 resolved members, many of them for the first time. The optical data were obtained at 4 epochs to support eventual radial-velocity detection of spectroscopic binaries. This program vitally complements the VLT-FLAMES Tarantula Survey of the wider stellar content of 30 Doradus, by adding that of the massive core cluster, which is inaccessible to such observations from the ground. These combined datasets will provide unprecedented information about massive stellar evolution and starbursts.

  20. The postcollapse core of M15 imaged with the HST planetary camera

    NASA Technical Reports Server (NTRS)

    Lauer, Tod R.; Holtzman, Jon A.; Faber, S. M.; Baum, William A.; Currie, Douglas G.; Ewald, S. P.; Groth, Edward J.; Hester, J. Jeff; Kelsall, T.

    1991-01-01

    It is shown here that, despite the severe spherical aberration present in the HST, the Wide Field/Planetary Camera (WFPC) images still present useful high-resolution information on M15, the classic candidate for a cluster with a collapsed core. The stars in M15 have been resolved down to the main-sequence turnoff and have been subtracted from the images. The remaining faint, unresolved stars form a diffuse background with a surprisingly large core with r(c) = 0.13 pc. The existence of a large core interior to the power-law cusp may imply that M15 has evolved well past maximum core collapse and may rule out the presence of a massive central black hole as well.

  1. LEGUS: A Legacy ExtraGalactic UV Survey of Nearby Galaxies with HST

    NASA Astrophysics Data System (ADS)

    Lee, Janice C.; Calzetti, D.; Adamo, A.; Aloisi, A.; Andrews, J. E.; Brown, T. M.; Chandar, R.; Christian, C. A.; Cignoni, M.; Clayton, G. C.; Da Silva, R. L.; de Mink, S. E.; Dobbs, C.; Elmegreen, B.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S.; Gouliermis, D.; Grebel, E.; Herrero-Davo`, A.; Hilbert, B.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R.; Kim, H.; Krumholz, M. R.; Lennon, D. J.; Martin, C. D.; Nair, P.; Nota, A.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Schaerer, D.; Schiminovich, D.; Smith, L. J.; Thilker, D. A.; Tosi, M.; Van Dyk, S. D.; Walterbos, R. A.; Whitmore, B. C.; Wofford, A.

    2014-01-01

    We introduce LEGUS, a Hubble Space Telescope program which will provide a critical missing piece in our efforts to solve the star formation puzzle: a robust characterization of the links between star formation on two fundamental scales, those of individual young stars, stellar clusters and associations over parsec scales, and of galaxy disks over kiloparsec scales. As a 154-orbit Treasury survey, LEGUS has begun obtaining NUV,U,B,V,I imaging of 50 star-forming galaxies, at distances of 4-12 Mpc. The dataset is guaranteed to have exceptional legacy value, as the targets have been carefully selected to uniformly sample a full range of global galaxy properties, as well as have the largest suites of multi-wavelength ancillary data available. The high-resolution HST NUV and U imaging are key for deriving accurate recent (<50 Myr) star formation histories from resolved massive stars, along with the ages and masses for complete samples of star clusters and associations in each galaxy. We present an overview of the sample, the observations, and provide a first look at the science that the LEGUS team is pursuing. A companion poster presents the status of the program, and a more detailed description of the extensive data products being developed which will seed community science, and provide a foundation for studies of star formation with ALMA and JWST.

  2. Leveraging 3D-HST Grism Redshifts to Quantify Photometric Redshift Performance

    NASA Astrophysics Data System (ADS)

    Bezanson, Rachel; Wake, David A.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Labbé, Ivo; Leja, Joel; Momcheva, Ivelina G.; Nelson, Erica J.; Quadri, Ryan F.; Skelton, Rosalind E.; Weiner, Benjamin J.; Whitaker, Katherine E.

    2016-05-01

    We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than JH IR > 24 with an unprecedented and representative high-redshift galaxy sample. We find an average scatter of 0.0197 ± 0.0003(1 + z) in the Skelton et al. photometric redshifts. Photometric redshift accuracy decreases with magnitude and redshift, but does not vary monotonically with color or stellar mass. The 1σ scatter lies between 0.01 and 0.03 (1 + z) for galaxies of all masses and colors below z < 2.5 (for JH IR < 24), with the exception of a population of very red (U - V > 2), dusty star-forming galaxies for which the scatter increases to ˜0.1 (1 + z). We find that photometric redshifts depend significantly on galaxy size; the largest galaxies at fixed magnitude have photo-zs with up to ˜30% more scatter and ˜5 times the outlier rate. Although the overall photometric redshift accuracy for quiescent galaxies is better than that for star-forming galaxies, scatter depends more strongly on magnitude and redshift than on galaxy type. We verify these trends using the redshift distributions of close pairs and extend the analysis to fainter objects, where photometric redshift errors further increase to ˜0.046 (1 + z) at {H}F160W=26. We demonstrate that photometric redshift accuracy is strongly filter dependent and quantify the contribution of multiple filter combinations. We evaluate the widths of redshift probability distribution functions and find that error estimates are underestimated by a factor of ˜1.1-1.6, but that uniformly broadening the distribution does not adequately account for fitting outliers. Finally, we suggest possible applications of these data in planning for current and future surveys and simulate photometric redshift performance in the Large Synoptic Survey Telescope, Dark Energy Survey (DES), and combined DES and Vista Hemisphere surveys.

  3. Space environmental effects observed on the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Edelman, Joel E.; Mason, James B.

    1995-01-01

    The Hubble Space Telescope (HST) Repair Mission of December, 1993, was first and foremost a mission to improve the performance of the observatory. But for a specialized segment of the aerospace industry, the primary interest is in the return to Earth of numerous pieces of the HST hardware, pieces which have been replaced, repaired, improved, or superseded. The returned hardware is of interest because of the information it potentially carries about the effects of exposure to the space environment for three and a half years. Like the LDEF retrieval mission four years ago, the HST repair mission is of interest to many engineering disciplines, including all of the disciplines represented by the LDEF Special Investigation Groups (SIG's). There is particular interest in the evaluation of specific materials and systems in the returned components. Some coated surfaces have been processed with materials which are newer and still in use by, or under consideration for, other spacecraft in a variety of stages of development. Several of the systems are being returned because a specific failure or anomaly has been observed and thus there is, at the outset, a specific investigative trail that needs to be followed. These systems are much more complex than those flown on LDEF and, in two instances, comprised state-of-the-art science instruments. Further, the parts used in these systems generally were characterized more rigorously prior to flight than were those in the LDEF systems, and thus post flight testing may yield more significant results.

  4. Space environmental effects observed on the Hubble Space Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelman, J.E.; Mason, J.B.

    1995-02-01

    The Hubble Space Telescope (HST) Repair Mission of December, 1993, was first and foremost a mission to improve the performance of the observatory. But for a specialized segment of the aerospace industry, the primary interest is in the return to Earth of numerous pieces of the HST hardware, pieces which have been replaced, repaired, improved, or superseded. The returned hardware is of interest because of the information it potentially carries about the effects of exposure to the space environment for three and a half years. Like the LDEF retrieval mission four years ago, the HST repair mission is of interestmore » to many engineering disciplines, including all of the disciplines represented by the LDEF Special Investigation Groups (SIG`s). There is particular interest in the evaluation of specific materials and systems in the returned components. Some coated surfaces have been processed with materials which are newer and still in use by, or under consideration for, other spacecraft in a variety of stages of development. Several of the systems are being returned because a specific failure or anomaly has been observed and thus there is, at the outset, a specific investigative trail that needs to be followed. These systems are much more complex than those flown on LDEF and, in two instances, comprised state-of-the-art science instruments. Further, the parts used in these systems generally were characterized more rigorously prior to flight than were those in the LDEF systems, and thus post flight testing may yield more significant results.« less

  5. Bulge growth and quenching since z = 2.5 in CANDELS/3D-HST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Philipp; Wuyts, Stijn; Schreiber, Natascha M. Förster

    2014-06-10

    Exploiting the deep high-resolution imaging of all five CANDELS fields, and accurate redshift information provided by 3D-HST, we investigate the relation between structure and stellar populations for a mass-selected sample of 6764 galaxies above 10{sup 10} M {sub ☉}, spanning the redshift range 0.5 < z < 2.5. For the first time, we fit two-dimensional models comprising a single Sérsic fit and two-component (i.e., bulge + disk) decompositions not only to the H-band light distributions, but also to the stellar mass maps reconstructed from resolved stellar population modeling. We confirm that the increased bulge prominence among quiescent galaxies, as reportedmore » previously based on rest-optical observations, remains in place when considering the distributions of stellar mass. Moreover, we observe an increase of the typical Sérsic index and bulge-to-total ratio (with median B/T reaching 40%-50%) among star-forming galaxies above 10{sup 11} M {sub ☉}. Given that quenching for these most massive systems is likely to be imminent, our findings suggest that significant bulge growth precedes a departure from the star-forming main sequence. We demonstrate that the bulge mass (and ideally knowledge of the bulge and total mass) is a more reliable predictor of the star-forming versus quiescent state of a galaxy than the total stellar mass. The same trends are predicted by the state-of-the-art, semi-analytic model by Somerville et al. In this model, bulges and black holes grow hand in hand through merging and/or disk instabilities, and feedback from active galactic nuclei shuts off star formation. Further observations will be required to pin down star formation quenching mechanisms, but our results imply that they must be internal to the galaxies and closely associated with bulge growth.« less

  6. Bulge Growth and Quenching since z = 2.5 in CANDELS/3D-HST

    NASA Astrophysics Data System (ADS)

    Lang, Philipp; Wuyts, Stijn; Somerville, Rachel S.; Förster Schreiber, Natascha M.; Genzel, Reinhard; Bell, Eric F.; Brammer, Gabe; Dekel, Avishai; Faber, Sandra M.; Ferguson, Henry C.; Grogin, Norman A.; Kocevski, Dale D.; Koekemoer, Anton M.; Lutz, Dieter; McGrath, Elizabeth J.; Momcheva, Ivelina; Nelson, Erica J.; Primack, Joel R.; Rosario, David J.; Skelton, Rosalind E.; Tacconi, Linda J.; van Dokkum, Pieter G.; Whitaker, Katherine E.

    2014-06-01

    Exploiting the deep high-resolution imaging of all five CANDELS fields, and accurate redshift information provided by 3D-HST, we investigate the relation between structure and stellar populations for a mass-selected sample of 6764 galaxies above 1010 M ⊙, spanning the redshift range 0.5 < z < 2.5. For the first time, we fit two-dimensional models comprising a single Sérsic fit and two-component (i.e., bulge + disk) decompositions not only to the H-band light distributions, but also to the stellar mass maps reconstructed from resolved stellar population modeling. We confirm that the increased bulge prominence among quiescent galaxies, as reported previously based on rest-optical observations, remains in place when considering the distributions of stellar mass. Moreover, we observe an increase of the typical Sérsic index and bulge-to-total ratio (with median B/T reaching 40%-50%) among star-forming galaxies above 1011 M ⊙. Given that quenching for these most massive systems is likely to be imminent, our findings suggest that significant bulge growth precedes a departure from the star-forming main sequence. We demonstrate that the bulge mass (and ideally knowledge of the bulge and total mass) is a more reliable predictor of the star-forming versus quiescent state of a galaxy than the total stellar mass. The same trends are predicted by the state-of-the-art, semi-analytic model by Somerville et al. In this model, bulges and black holes grow hand in hand through merging and/or disk instabilities, and feedback from active galactic nuclei shuts off star formation. Further observations will be required to pin down star formation quenching mechanisms, but our results imply that they must be internal to the galaxies and closely associated with bulge growth.

  7. HST-COS Observations on Hydrogen, Helium, Carbon, and Nitrogen Emission from the SN 1987A Reverse Shock

    NASA Technical Reports Server (NTRS)

    France, Kevin; McCray, Richard; Penton, Steven V.; Kirshner, Robert P.; Challis, Peter; Laming, J. Martin; Bouchet, Patrice; Chevalier, Roger; Garnavich, Peter M.; Fransson, Claes; hide

    2011-01-01

    We present the most sensitive ultraviolet observations of Supernova 1987 A to date. Imaging spectroscopy from the Hubble Space Telescope-Cosmic Origins Spectrograph shows many narrow (Delta v approximates 300 km/s) emission lines from the circumstellar ring, broad Delta v approximates 10-20 x 10(exp 3) km/s) emission lines from the reverse shock, and ultraviolet continuum emission. The high signal-to-noise ratio (>40 per resolution element) broad Ly-alpha emission is excited by soft X-ray and EUV heating of mostly neutral gas in the circumstellar ring and outer supernova debris. The ultraviolet continuum at lambda > 1350 A can be explained by H-I two-photon (2s(exp 2)S(sub 1/2)-l(exp 2)S(sub 1/2)) emission from the same region. We confirm our earlier, tentative detection of N V lambda 1240 emission from the reverse shock and present the first detections of broad He II lambda1640, C IV lambda 1550, and N IV ] lambda1486 emission lines from the reverse shock. The helium abundance in the high-velocity material is He/H = 0.14 +/- 0.06. The N V /H alpha line ratio requires partial ion-electron equilibration (T(sub e)/T(sub p) approximately equal to 0.14-0.35). We find that the N/C abundance ratio in the gas crossing the reverse shock is significantly higher than that in the circumstellar ring, a result that may be attributed to chemical stratification in the outer envelope of the supernova progenitor. The N/C abundance may have been stratified prior to the ring expUlsion, or this result may indicate continued CNO processing in the progenitor subsequent to the expUlsion of the circumstellar ring.

  8. A vantage from space can detect earlier drought onset: an approach using relative humidity.

    PubMed

    Farahmand, Alireza; AghaKouchak, Amir; Teixeira, Joao

    2015-02-25

    Each year, droughts cause significant economic and agricultural losses across the world. The early warning and onset detection of drought is of particular importance for effective agriculture and water resource management. Previous studies show that the Standard Precipitation Index (SPI), a measure of precipitation deficit, detects drought onset earlier than other indicators. Here we show that satellite-based near surface air relative humidity data can further improve drought onset detection and early warning. This paper introduces the Standardized Relative Humidity Index (SRHI) based on the NASA Atmospheric Infrared Sounder (AIRS) observations. The results indicate that the SRHI typically detects the drought onset earlier than the SPI. While the AIRS mission was not originally designed for drought monitoring, we show that its relative humidity data offers a new and unique avenue for drought monitoring and early warning. We conclude that the early warning aspects of SRHI may have merit for integration into current drought monitoring systems.

  9. A Vantage from Space Can Detect Earlier Drought Onset: An Approach Using Relative Humidity

    PubMed Central

    Farahmand, Alireza; AghaKouchak, Amir; Teixeira, Joao

    2015-01-01

    Each year, droughts cause significant economic and agricultural losses across the world. The early warning and onset detection of drought is of particular importance for effective agriculture and water resource management. Previous studies show that the Standard Precipitation Index (SPI), a measure of precipitation deficit, detects drought onset earlier than other indicators. Here we show that satellite-based near surface air relative humidity data can further improve drought onset detection and early warning. This paper introduces the Standardized Relative Humidity Index (SRHI) based on the NASA Atmospheric Infrared Sounder (AIRS) observations. The results indicate that the SRHI typically detects the drought onset earlier than the SPI. While the AIRS mission was not originally designed for drought monitoring, we show that its relative humidity data offers a new and unique avenue for drought monitoring and early warning. We conclude that the early warning aspects of SRHI may have merit for integration into current drought monitoring systems. PMID:25711500

  10. The Radial Distribution of Star Formation in Galaxies at z1 From The 3D-HST Survey

    NASA Technical Reports Server (NTRS)

    Nelson, Erica June; Dokkum, Pieter G. Van; Momcheva, Ivelina; Brammer, Gabriel; Lundgren, Britt; Skelton, Rosalind E.; Tease, Katherine Whitaker; Cunha, Elisabete Da; Schreiber, Natascha Forster; Franx, Marijn; hide

    2013-01-01

    The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time.Thanks to the WFC3 grism on the Hubble Space Telescope (HST) it is now possible to measure this beyond thelocal Universe. Here we present the spatial distribution of H emission for a sample of 54 strongly star-forming-galaxies at z1 in the 3D-HST Treasury survey. By stacking the Halpha emission, we find that star formation occurredin approximately exponential distributions at z1, with a median Sersic index of n=1.0 plus or minus 0.2. The stacks areelongated with median axis ratios of b/a 0.58 plus or minus 0.09 in Halpha consistent with (possibly thick) disks at randomorientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, withinclination corrected velocities of 90-330 km per second. The most straightforward interpretation of our results is that starformation in strongly star-forming galaxies at z1 generally occurred in disks. The disks appear to be scaled-upversions of nearby spiral galaxies: they have EW(Halpha)100 Angstroms out to the solar orbit and they have star formation surface densities above the threshold for driving galactic scale winds.

  11. University of Washington Mobile Planetarium: Bringing HST Science to Seattle Public Schools

    NASA Astrophysics Data System (ADS)

    Gailey, Justin; Fraiser, O.; Rosenfield, P.; Byler, E.; Wisniewski, J. P.

    2013-01-01

    Digital planetariums are becoming mainstays of astronomy education as projection technology prices fall and planetarium software becomes more powerful and more freely available. In 2010, the University of Washington upgraded their star-ball projector to a digital system that is powered by Microsoft Research’s WorldWide Telescope. To increase the number of underserved elementary and high school students the UW Astronomy department reaches, we obtained an HST education and public outreach grant to create lesson content, offset transportation costs to visit the UW planetarium for Seattle Public School students, and purchase a mobile planetarium to bring to public schools. We present a pilot program to test and evaluate the efficacy of the mobile planetarium in a high school setting.

  12. HUBBLE SEES CHANGES IN GAS SHELL AROUND NOVA CYGNI 1992

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The European Space Agency's ESA Faint Object Camera utilizing the corrective optics provided by NASA's COSTAR (Corrective Optics Space Telescope Axial Replacement), has given astronomers their best look yet at a rapidly ballooning bubble of gas blasted off a star. The shell surrounds Nova Cygni 1992, which erupted on February 19, 1992. A nova is a thermonuclear explosion that occurs on the surface of a white dwarf star in a double star system. The new HST image [right] reveals an elliptical and slightly lumpy ring-like structure. The ring is the edge of a bubble of hot gas blasted into space by the nova. The shell is so thin that the FOC does not resolve its true thickness, even with HST's restored vision. An HST image taken on May 31 1993, [left] 467 days after the explosion, provided the first glimpse of the ring and a mysterious bar-like structure. But the image interpretation was severely hampered by HST's optical aberration, that scattered light from the central star which contaminated the ring's image. A comparison of the pre and post COSTAR/FOC images reveals that the ring has evolved in the seven months that have elapsed between the two observations. The ring has expanded from a diameter of approximately 74 to 96 billion miles. The bar-like structure seen in the earlier HST image has disappear. These changes might confirm theories that the bar was produced by a dense layer of gas thrown off in the orbital plane of the double star system. The gas has subsequently grown more tenuous and so the bar has faded. The ring has also grown noticeably more oblong since the earlier image. This suggests the hot gas is escaping more rapidly above and below the system's orbital plane. As the gas continues escaping the ring should grow increasingly egg-shaped in the coming years. HST's newly improved sensitivity and high resolution provides a unique opportunity to understand the novae by resolving the effects of the explosion long before they can be resolved in ground

  13. Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa’s water vapor aurora

    PubMed Central

    Retherford, Kurt D.; Saur, Joachim; Strobel, Darrell F.; Feldman, Paul D.; McGrath, Melissa A.; Nimmo, Francis

    2014-01-01

    We report far-ultraviolet observations of Jupiter’s moon Europa taken by Space Telescope Imaging Spectrograph (STIS) of the Hubble Space Telescope (HST) in January and February 2014 to test the hypothesis that the discovery of a water vapor aurora in December 2012 by local hydrogen (H) and oxygen (O) emissions with the STIS originated from plume activity possibly correlated with Europa’s distance from Jupiter through tidal stress variations. The 2014 observations were scheduled with Europa near the apocenter similar to the orbital position of its previous detection. Tensile stresses on south polar fractures are expected to be highest in this orbital phase, potentially maximizing the probability for plume activity. No local H and O emissions were detected in the new STIS images. In the south polar region where the emission surpluses were observed in 2012, the brightnesses are sufficiently low in the 2014 images to be consistent with any H2O abundance from (0–5)×1015 cm−2. Large high-latitude plumes should have been detectable by the STIS, independent of the observing conditions and geometry. Because electron excitation of water vapor remains the only viable explanation for the 2012 detection, the new observations indicate that although the same orbital position of Europa for plume activity may be a necessary condition, it is not a sufficient condition. However, the December 2012 detection of coincident HI Lyman-α and OI 1304-Å emission surpluses in an ∼200-km high region well separated above Europa’s limb is a firm result and not invalidated by our 2014 STIS observations. PMID:25404343

  14. Insight Into Illness and Cognition in Schizophrenia in Earlier and Later Life.

    PubMed

    Gerretsen, Philip; Voineskos, Aristotle N; Graff-Guerrero, Ariel; Menon, Mahesh; Pollock, Bruce G; Mamo, David C; Mulsant, Benoit H; Rajji, Tarek K

    2017-04-01

    Impaired insight into illness in schizophrenia is associated with illness severity and deficits in premorbid intellectual function, executive function, and memory. A previous study of patients aged 60 years and older found that illness severity and premorbid intellectual function accounted for variance in insight impairment. As such, we aimed to test whether similar relationships would be observed in earlier life. A retrospective analysis was performed on 1 large sample of participants (n = 171) with a DSM-IV-TR diagnosis of schizophrenia aged 19 to 79 years acquired from 2 studies: (1) a psychosocial intervention trial for older persons with schizophrenia (June 2008 to May 2014) and (2) a diffusion tensor imaging and genetics study of psychosis across the life span (February 2007 to December 2013). We assessed insight into illness using the Positive and Negative Syndrome Scale (PANSS) item G12 and explored its relationship to illness severity (PANSS total modified), premorbid intellectual function (Wechsler Test of Adult Reading [WTAR]), and cognition. Insight impairment was more severe in later life (≥ 60 years) than in earlier years (t = -3.75, P < .001). Across the whole sample, the variance of impaired insight was explained by PANSS total modified (Exp[B] = 1.070, P < .001) and WTAR scores (Exp[B] = 0.970, P = .028). Although age and cognition were correlated with impaired insight, they did not independently contribute to its variance. However, the relationships between impaired insight and illness severity and between impaired insight and cognition, particularly working memory, were stronger in later life than in earlier life. These results suggest an opportunity for intervention may exist with cognitive-enhancing neurostimulation or medications to improve insight into illness in schizophrenia across the life span. Original study registered on ClinicalTrials.gov (identifier: NCT00832845). © Copyright 2017 Physicians Postgraduate Press, Inc.

  15. Research promises earlier warning for grapevine canker diseases

    USDA-ARS?s Scientific Manuscript database

    When it comes to detecting and treating vineyards for grapevine canker diseases (also called trunk diseases), like Botryosphaeria dieback (Bot canker), Esca, Eutypa dieback and Phomopsis dieback, the earlier the better, says plant pathologist Kendra Baumgartner, with the USDA’s Agricultural Research...

  16. Measurements of Lyman-Alpha Escape From HST Far-UV Spectral SNAP Survey of 33 Starforming Galaxies: Initial Results

    NASA Astrophysics Data System (ADS)

    Redwine, Keith

    2018-01-01

    This thesis will describe and analyze far-UV spectra from nearby starforming galaxies to investigate how line features like the hydrogen Lyman-alpha (Lyα) line at 1216 Å are related to the local properties of the host galaxy. It has been suggested that Lyα can be used as a proxy for the escape of Lyman continuum (LyC) radiation, the escape of of which from bright regions of galaxies is of particular interest. Most notably, the reionization epoch of neutral atomic hydrogen in the universe over a redshift range from z∼6 to z∼12, was highly dependent on the flux of ionizing LyC photons in the interstellar and intergalactic media. Expanding our understanding of the dynamics of the Lyα escape fraction (fLyα) from the local environment of its emission could be key to determining a total LyC escape fraction (fLyC) across all morphologies of galaxies. The wide range of Lyα emitters and absorbors (occasionally both) of this Cycle 22 SNAP survey observed by the Cosmic Origins Spectrograph (COS) onboard Hubble Space Telescope (HST) provides a unique look at far-UV spectra in candidate LyC emitters. Lyα profiles are easily observable in short exposures, and line features discernable in the low-resolution G140L mode can inform and guide future observations by COS or other FUV spectroscopy.

  17. HST FOS spectroscopy of M87: Evidence for a disk of ionized gas around a massive black hole

    NASA Technical Reports Server (NTRS)

    Harms, Richard J.; Ford, Holland C.; Tsvetanov, Zlatan I.; Hartig, George F.; Dressel, Linda L.; Kriss, Gerard A.; Bohlin, Ralph; Davidsen, Arthur F.; Margon, Bruce; Kochhar, Ajay K.

    1994-01-01

    Using the Faint Object Spectrograph (FOS) on the Hubble Space Telescope (HST) to observe the central region of M87, we have obtained spectra covering approximately 4600-6800 A at a spectral dispersion approximately 4.4 A per resolution element through the .26 sec diameter entrance aperture. One spectrum was obtained centered on the nucleus of M87 and two centered 0.25 sec off the nucleus at position angles of 21 deg and 201 deg, thus sampling the anticipated major axis of the disklike structure (described in a companion Letter) expected to lie approximately perpendicular to the axis of the M87 jet. Pointing errors for these observations are estimated to be less than 0.02 sec. Radial velocities of the ionized gas in the two positions 0.25 sec on either side of the nucleus are measured to be approx. equals +/- 500 km/s relative to the M87 systemic velocity. These observations plus emission-line spectra obtained at two additional locations near the nucleus show the ionized gas to be in Keplerian rotation about a mass M = (2.4 +/- 0.7) x 10(exp 9) solar mass within the inner 0.25 sec of M87. Our results provide strong evidence for the presence of a supermassive nuclear black hole in M87.

  18. An earlier de motu cordis.

    PubMed Central

    Daly, Walter J.

    2004-01-01

    Thirteenth century medical science, like medieval scholarship in general, was directed at reconciliation of Greek philosophy/science with prevailing medieval theology and philosophy. Peter of Spain [later Pope John XXI] was the leading medical scholar of his time. Peter wrote a long book on the soul. Imbedded in it was a chapter on the motion of the heart. Peter's De Motu was based on his own medical experience and Galen's De Usu Partium and De Usu Respirationis and De Usu Pulsuum. This earlier De Motu defines a point on the continuum of intellectual development leading to us and into the future. Thirteenth century scholarship relied on past authority to a degree that continues to puzzle and beg explanation. Images Fig. 1 PMID:17060956

  19. Star formation history of the Galactic bulge from deep HST imaging of low reddening windows

    NASA Astrophysics Data System (ADS)

    Bernard, Edouard J.; Schultheis, Mathias; Di Matteo, Paola; Hill, Vanessa; Haywood, Misha; Calamida, Annalisa

    2018-07-01

    Despite the huge amount of photometric and spectroscopic efforts targeting the Galactic bulge over the past few years, its age distribution remains controversial owing to both the complexity of determining the age of individual stars and the difficult observing conditions. Taking advantage of the recent release of very deep, proper-motion-cleaned colour-magnitude diagrams (CMDs) of four low reddening windows obtained with the Hubble Space Telescope (HST), we used the CMD-fitting technique to calculate the star formation history (SFH) of the bulge at -2° > b > -4° along the minor axis. We find that over 80 per cent of the stars formed before 8 Gyr ago, but that a significant fraction of the super-solar metallicity stars are younger than this age. Considering only the stars that are within reach of the current generation of spectrographs (i.e. V≲ 21), we find that 10 per cent of the bulge stars are younger than 5 Gyr, while this fraction rises to 20-25 per cent in the metal-rich peak. The age-metallicity relation is well parametrized by a linear fit, implying an enrichment rate of dZ/dt ˜ 0.005 Gyr-1. Our metallicity distribution function accurately reproduces that observed by several spectroscopic surveys of Baade's window, with the bulk of stars having metal content in the range [Fe/H]˜-0.7 to ˜0.6, along with a sparse tail to much lower metallicities.

  20. Star formation history of the Galactic bulge from deep HST imaging of low reddening windows

    NASA Astrophysics Data System (ADS)

    Bernard, Edouard J.; Schultheis, Mathias; Di Matteo, Paola; Hill, Vanessa; Haywood, Misha; Calamida, Annalisa

    2018-04-01

    Despite the huge amount of photometric and spectroscopic efforts targetting the Galactic bulge over the past few years, its age distribution remains controversial owing to both the complexity of determining the age of individual stars and the difficult observing conditions. Taking advantage of the recent release of very deep, proper-motion-cleaned colour-magnitude diagrams (CMDs) of four low reddening windows obtained with the Hubble Space Telescope (HST), we used the CMD-fitting technique to calculate the star formation history (SFH) of the bulge at -2° > b > -4° along the minor axis. We find that over 80 percent of the stars formed before 8 Gyr ago, but that a significant fraction of the super-solar metallicity stars are younger than this age. Considering only the stars that are within reach of the current generation of spectrographs (i.e. V≲ 21), we find that 10 percent of the bulge stars are younger than 5 Gyr, while this fraction rises to 20-25 percent in the metal-rich peak. The age-metallicity relation is well parametrized by a linear fit implying an enrichment rate of dZ/dt ˜ 0.005 Gyr-1. Our metallicity distribution function accurately reproduces that observed by several spectroscopic surveys of Baade's window, with the bulk of stars having metal-content in the range [Fe/H]˜-0.7 to ˜0.6, along with a sparse tail to much lower metallicities.