Sample records for earlier melt dates

  1. Duration of the Arctic sea ice melt season: Regional and interannual variability, 1979-2001

    USGS Publications Warehouse

    Belchansky, G.I.; Douglas, David C.; Platonov, Nikita G.

    2004-01-01

    Melt onset dates, freeze onset dates, and melt season duration were estimated over Arctic sea ice, 1979–2001, using passive microwave satellite imagery and surface air temperature data. Sea ice melt duration for the entire Northern Hemisphere varied from a 104-day minimum in 1983 and 1996 to a 124-day maximum in 1989. Ranges in melt duration were highest in peripheral seas, numbering 32, 42, 44, and 51 days in the Laptev, Barents-Kara, East Siberian, and Chukchi Seas, respectively. In the Arctic Ocean, average melt duration varied from a 75-day minimum in 1987 to a 103-day maximum in 1989. On average, melt onset in annual ice began 10.6 days earlier than perennial ice, and freeze onset in perennial ice commenced 18.4 days earlier than annual ice. Average annual melt dates, freeze dates, and melt durations in annual ice were significantly correlated with seasonal strength of the Arctic Oscillation (AO). Following high-index AO winters (January–March), spring melt tended to be earlier and autumn freeze later, leading to longer melt season durations. The largest increases in melt duration were observed in the eastern Siberian Arctic, coincident with cyclonic low pressure and ice motion anomalies associated with high-index AO phases. Following a positive AO shift in 1989, mean annual melt duration increased 2–3 weeks in the northern East Siberian and Chukchi Seas. Decreasing correlations between consecutive-year maps of melt onset in annual ice during 1979–2001 indicated increasing spatial variability and unpredictability in melt distributions from one year to the next. Despite recent declines in the winter AO index, recent melt distributions did not show evidence of reestablishing spatial patterns similar to those observed during the 1979–88 low-index AO period. Recent freeze distributions have become increasingly similar to those observed during 1979–88, suggesting a recurrent spatial pattern of freeze chronology under low-index AO conditions.

  2. 5 CFR Appendix A to Subpart C of... - Present Value Conversion Factors for Earlier Commencing Date of Annuities of Current and Former...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Present Value Conversion Factors for Earlier Commencing Date of Annuities of Current and Former Spouses of Deceased Separated Employees A...—Present Value Conversion Factors for Earlier Commencing Date of Annuities of Current and Former Spouses of...

  3. 37 CFR 1.78 - Claiming benefit of earlier filing date and cross-references to other applications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Claiming benefit of earlier filing date and cross-references to other applications. 1.78 Section 1.78 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE, DEPARTMENT OF COMMERCE GENERAL RULES OF PRACTICE IN...

  4. 37 CFR 1.78 - Claiming benefit of earlier filing date and cross-references to other applications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Claiming benefit of earlier filing date and cross-references to other applications. 1.78 Section 1.78 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE, DEPARTMENT OF COMMERCE GENERAL RULES OF PRACTICE IN...

  5. Dating Howardite Melt Clasts: Evidence for an Extended Vestan Bombardment?

    NASA Technical Reports Server (NTRS)

    Cartwright, J. A.; Hodges, K. V.; Wadhwa, M.; Mittlefehldt, D. W.

    2016-01-01

    Howardites are polymict breccias that, together with eucrites and diogenites (HED), likely originate from the vestan surface (regolith/ megaregolith), and display a heterogeneous distribution of eucritic and diogenitic material. Melt clasts are also present alongside other regolithic features within howardites, and are noteworthy for their compositional variability and appearance. Melt clasts formed by impact events provide a snapshot of the timings and conditions of surface gardening and bombardment on the vestan surface. By dating such clasts, we aim to better constrain the timings of impact events on Vesta, and to establish whether the impact flux in the asteroid belt was similar to that on the Moon. As the Moon is used as the basis for characterising impact models of the inner solar system, it is necessary to verify that apparent wide-scale events are seen in other planetary bodies. In particular, the observed clustering of Apollo melt clast ages between 3.8-4.0 Ga has led to two hypotheses: 1) The Moon was subjected to a sudden event - 'Lunar Cataclysm' or period of 'Late Heavy Bombardment' (LHB), 2) The age cluster represents the end of an epoch of declining bombardment or 'Heavy Bombardment. No consensus has emerged regarding one or other hypothesis. We are testing these hypotheses by seeking evidence for such events in materials other than those derived from the Moon.

  6. Field evidence for earlier leaf-out dates in alpine grassland on the eastern Tibetan Plateau from 1990 to 2006.

    PubMed

    Zhou, H K; Yao, B Q; Xu, W X; Ye, X; Fu, J J; Jin, Y X; Zhao, X Q

    2014-08-01

    Worldwide, many plant species are experiencing an earlier onset of spring phenophases due to climate warming. Rapid recent temperature increases on the Tibetan Plateau (TP) have triggered changes in the spring phenology of the local vegetation. However, remote sensing studies of the land surface phenology have reached conflicting interpretations about green-up patterns observed on the TP since the mid-1990s. We investigated this issue using field phenological observations from 1990 to 2006, for 11 dominant plants on the TP at the levels of species, families (Gramineae-grasses and Cyperaceae-sedges) and vegetation communities (alpine meadow and alpine steppe). We found a significant trend of earlier leaf-out dates for one species (Koeleria cristata). The leaf-out dates of both Gramineae and Cyperaceae had advanced (the latter significantly, starting an average of 9 days later per year than the former), but the correlation between them was significant. The leaf-out dates of both vegetation communities also advanced, but the pattern was only significant in the alpine meadow. This study provides the first field evidence of advancement in spring leaf phenology on the TP and suggests that the phenology of the alpine steppe can differ from that of the alpine meadow. These findings will be useful for understanding ecosystem responses to climate change and for grassland management on the TP. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Skylab M551 metals melting experiment

    NASA Technical Reports Server (NTRS)

    Poorman, R. M.

    1975-01-01

    The objectives of the M551 Metals Melting Experiment were to: (1) study behavior of molten metal, (2) characterize metals melted and solidified in the low gravity space environment compared to one-gravity of earth, and (3) determine feasibility of joining metals in space. The experiment used the electron beam (EB) and chamber of the M512 apparatus to make a dwell puddle and a melt in a rotating disc of varying thickness. Hence, the EB performed cut-through, full and partial penetration melts, in addition to a resolidified button. The three disc materials were aluminum 2219-T87, 304 stainless steel, and pure tantalum to provide a wide range of density and melting conditions. Observations to date include the proof that EB welding, cutting, and melting can be done successfully in low gravity. Earlier, some welding authorities had postulated that without gravity the EB would force the molten puddle out of contact. However, the experiment proved that surface tension forces predominate. From the viewpoint of cast-solidification, small, equiaxed grains in Skylab specimens compared to large, elongated grains in ground based specimens were observed. The former are thought to be associated with constitutional supercooling and nucleation where the latter are associated with dendritic solidification. In further support of the more equiaxed grain growth in Skylab, symmetric subgrain patterns were frequently observed where there was much less symmetry in ground based specimens.

  8. How do the radiative effects of springtime clouds and water vapor modulate the melt onset of Arctic sea ice?

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Dong, X.; Xi, B.; Deng, Y.

    2017-12-01

    Earlier studies show that there is a strong positive correlation between the mean onset date of snow melt north of 70°N and the minimum Arctic sea ice extent (SIE) in September. Based on satellite records from 1980 to 2016, the September Arctic SIE minimum is most sensitive to the early melt onset over the Siberian Sea (73°-84°N, 90°-155°), which is defined as the area of focus (AOF) in this analysis. The day with melt onset exceeding 10% area of the AOF is marked as the initial melt date for a given year. With this definition, a strong positive correlation (r=0.59 at 99% confidence level) is found between the initial melt date over the AOF and the September SIE minimum over the Arctic. Daily anomalies of cloud and radiation properties are compared between six years with earliest initial melt dates (1990, 2012, 2007, 2003, 1991, 2016) and six years with latest initial melt dates (1996, 1984, 1983, 1982, 1987, 1992) using the NASA MERRA-2 reanalysis. Our results suggest that higher cloud water path (CWP) and precipitable water vapor (PWV) are clearly associated with early melt onset years through the period of mid-March to August. Major contrasts in CWP are found between the early and late onset years in a period of approximately 30 days prior to the onset to 30 days after the onset. As a result, the early melt onset years exhibit positive anomalies for downward longwave flux at the surface and negative anomalies for downward shortwave flux, shortwave cloud radiative effect (CRE) as well as net CRE. The negative net CRE is over-compensated by the positive longwave flux anomaly associated with elevated PWV, contributing to early melt onsets. The temporal evolution of CRE and PWV radiative effect during the entire melting season will be documented together with an analysis tracing the dynamical, mid-latitude origins of increased CWP and PWV prior to initial melt onsets.

  9. Estimating the time of melt onset and freeze onset over Arctic sea-ice area using active and passive microwave data

    USGS Publications Warehouse

    Belchansky, Gennady I.; Douglas, David C.; Mordvintsev, Ilia N.; Platonov, Nikita G.

    2004-01-01

    Accurate calculation of the time of melt onset, freeze onset, and melt duration over Arctic sea-ice area is crucial for climate and global change studies because it affects accuracy of surface energy balance estimates. This comparative study evaluates several methods used to estimate sea-ice melt and freeze onset dates: (1) the melt onset database derived from SSM/I passive microwave brightness temperatures (Tbs) using Drobot and Anderson's [J. Geophys. Res. 106 (2001) 24033] Advanced Horizontal Range Algorithm (AHRA) and distributed by the National Snow and Ice Data Center (NSIDC); (2) the International Arctic Buoy Program/Polar Exchange at the Sea (IABP/POLES) surface air temperatures (SATs); (3) an elaborated version of the AHRA that uses IABP/POLES to avoid anomalous results (Passive Microwave and Surface Temperature Analysis [PMSTA]); (4) another elaborated version of the AHRA that uses Tb variance to avoid anomalous results (Mean Differences and Standard Deviation Analysis [MDSDA]); (5) Smith's [J. Geophys. Res. 103 (1998) 27753] vertically polarized Tb algorithm for estimating melt onset in multiyear (MY) ice (SSM/I 19V–37V); and (6) analyses of concurrent backscattering cross section (σ°) and brightness temperature (Tb) from OKEAN-01 satellite series. Melt onset and freeze onset maps were created and compared to understand how the estimates vary between different satellite instruments and methods over different Arctic sea-ice regions. Comparisons were made to evaluate relative sensitivities among the methods to slight adjustments of the Tbcalibration coefficients and algorithm threshold values. Compared to the PMSTA method, the AHRA method tended to estimate significantly earlier melt dates, likely caused by the AHRA's susceptibility to prematurely identify melt onset conditions. In contrast, the IABP/POLES surface air temperature data tended to estimate later melt and earlier freeze in all but perennial ice. The MDSDA method was least sensitive to

  10. Melt onset over Arctic sea ice controlled by atmospheric moisture transport

    NASA Astrophysics Data System (ADS)

    Mortin, Jonas; Svensson, Gunilla; Graversen, Rune G.; Kapsch, Marie-Luise; Stroeve, Julienne C.; Boisvert, Linette N.

    2016-06-01

    The timing of melt onset affects the surface energy uptake throughout the melt season. Yet the processes triggering melt and causing its large interannual variability are not well understood. Here we show that melt onset over Arctic sea ice is initiated by positive anomalies of water vapor, clouds, and air temperatures that increase the downwelling longwave radiation (LWD) to the surface. The earlier melt onset occurs; the stronger are these anomalies. Downwelling shortwave radiation (SWD) is smaller than usual at melt onset, indicating that melt is not triggered by SWD. When melt occurs early, an anomalously opaque atmosphere with positive LWD anomalies preconditions the surface for weeks preceding melt. In contrast, when melt begins late, clearer than usual conditions are evident prior to melt. Hence, atmospheric processes are imperative for melt onset. It is also found that spring LWD increased during recent decades, consistent with trends toward an earlier melt onset.

  11. Using Melting Ice to Teach Radiometric Dating.

    ERIC Educational Resources Information Center

    Wise, Donald Underkofler

    1990-01-01

    Presented is an activity in which a mystery setting is used to motivate students to construct their own decay curves of melting ice used as an analogy to radioactive decay. Procedures, materials, apparatus, discussion topics, presentation, and thermodynamics are discussed. (CW)

  12. Melting line of polymeric nitrogen

    NASA Astrophysics Data System (ADS)

    Yakub, L. N.

    2013-05-01

    We made an attempt to predict location of the melting line of polymeric nitrogen using two equations for Helmholtz free energy: proposed earlier for cubic gauche-structure and developed recently for liquid polymerized nitrogen. The P-T relation, orthobaric densities and latent heat of melting were determined using a standard double tangent construction. The estimated melting temperature decreases with increasing pressure, alike the temperature of molecular-nonmolecular transition in solid. We discuss the possibility of a triple point (solid-molecular fluid-polymeric fluid) at ˜80 GPa and observed maximum of melting temperature of nitrogen.

  13. Spring Snow Melt Timing and Changes over Arctic Lands

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Robinson, D. A.; Hall, D. K.; Estilow, T. W.

    2006-01-01

    Spring snow cover over Arctic lands has, on average, melted approximately 4-7 days earlier since the late 1980s compared to the previous 20 years. The earlier disappearance of snow has been identified in non-mountainous regions at the 60 deg and 70 deg N parallels over Eurasia and North America using visible satellite observations of continental snow cover extent (SCE) mapped by the National Oceanic and Atmospheric Administration. The change was greater in the farthest north continental locations. Northern hemisphere SCE declined by almost 10% (May) to 20% (June) between the two intervals. At latitude 70 deg N, eight segments of longitude (each 10 deg in width) show significant (negative) trends. However, only two longitudinal segments at 60 deg N show significant trends, (one positive and one negative). SCE changes coincide with increasing spring warmth and the earlier diminution of sea ice in the last several decades. However, while sea ice has continued to decrease during this recent interval, snowmelt dates in the Arctic changed in a step-like fashion during the mid to late 1980s and have remained much the same since that time.

  14. Date of Snowmelt at High Latitudes as Determined from Visible Satellite Data and Relationship with the Arctic Oscillation

    NASA Technical Reports Server (NTRS)

    Foster, James; Robinson, Dave; Estilow, Tom; Hall, Dorothy

    2012-01-01

    Spring snow cover across Arctic lands has, on average, retreated approximately five days earlier since the late 1980s compared to the previous twenty years. However, it appears that since about 1990, the date the snowline first retreats north during the spring has remained nearly unchanged--in the last twenty years, the date of snow disappearance has not been occurring noticeably earlier. Snowmelt changes observed in the 1980s was step-like in nature, unlike a more continuous downward trend seen in Arctic sea ice extent. At latitude 70 deg N, several latitudinal segments (of 10 degrees) show significant (negative) trends. However, only two latitudinal segments at 60 deg N show significant trends, one positive and one negative. These variations appear to be related to variations in the Arctic Oscillation (AO). Additional observations and modeling investigations are needed to better explain past and present spring melt characteristics and peculiarities.

  15. Lunar Meteorite Dhofar 026: A Second-Generation Impact Melt

    NASA Astrophysics Data System (ADS)

    Cohen, B. A.; Taylor, L. A.; Nazarov, M.

    2001-03-01

    Petrology and mineral-chemistry of lunar highlands meteorite Dhofar 026 show that it is a crystalline impact melt of FAN-type material. Crystalline spherules within the meteorite are earlier impact melt fragments derived from a basaltic precursor.

  16. Phenological adjustment in arctic bird species: relative importance of snow melt and ecological factors

    USGS Publications Warehouse

    Liebezeit, Joseph R.; Gurney, K. E. B.; Budde, Michael E.; Zack, Steve; Ward, David H.

    2014-01-01

    Previous studies have documented advancement in clutch initiation dates (CIDs) in response to climate change, most notably for temperate-breeding passerines. Despite accelerated climate change in the Arctic, few studies have examined nest phenology shifts in arctic breeding species. We investigated whether CIDs have advanced for the most abundant breeding shorebird and passerine species at a long-term monitoring site in arctic Alaska. We pooled data from three additional nearby sites to determine the explanatory power of snow melt and ecological variables (predator abundance, green-up) on changes in breeding phenology. As predicted, all species (semipalmated sandpiper, Calidris pusilla, pectoral sandpiper, Calidris melanotos, red-necked phalarope, Phalaropus lobatus, red phalarope, Phalaropus fulicarius, Lapland longspur, Calcarius lapponicus) exhibited advanced CIDs ranging from 0.40 to 0.80 days/year over 9 years. Timing of snow melt was the most important variable in explaining clutch initiation advancement (“climate/snow hypothesis”) for four of the five species, while green-up was a much less important explanatory factor. We found no evidence that high predator abundances led to earlier laying dates (“predator/re-nest hypothesis”). Our results support previous arctic studies in that climate change in the cryosphere will have a strong impact on nesting phenology although factors explaining changes in nest phenology are not necessarily uniform across the entire Arctic. Our results suggest some arctic-breeding shorebird and passerine species are altering their breeding phenology to initiate nesting earlier enabling them to, at least temporarily, avoid the negative consequences of a trophic mismatch.

  17. Melt segregation from partially molten source regions - The importance of melt density and source region size

    NASA Technical Reports Server (NTRS)

    Stolper, E.; Hager, B. H.; Walker, D.; Hays, J. F.

    1981-01-01

    An investigation is conducted regarding the changes expected in the density contrast between basic melts and peridotites with increasing pressure using the limited data available on the compressibilities of silicate melts and data on the densities of mantle minerals. It is concluded that since compressibilities of silicate melts are about an order of magnitude greater than those of mantle minerals, the density contrast between basic melts and mantle minerals must diminish significantly with increasing pressure. An earlier analysis regarding the migration of liquid in partially molten source regions conducted by Walker et al. (1978) is extended, giving particular attention to the influence of the diminished density contrast between melt and residual crystals with increasing source region depth and to the influence of source region size. This analysis leads to several generalizations concerning the factors influencing the depths at which magmas will segregate from their source regions and the degrees of partial melting that can be achieved in these source regions before melt segregation occurs.

  18. An earlier explosion date for the Crab Nebula supernova

    NASA Astrophysics Data System (ADS)

    Abt, Helmut A.; Fountain, John W.

    2018-04-01

    The Chinese first reported the Crab Nebula supernova on 1054 July 5. Ecclesiastical documents from the near east reported it in April and May of 1054. More than 33 petroglyphs made by Native Americans in the US and Mexico are consistent with sightings both before and after conjunction with the Sun on 1054 May 27. We found a petroglyph showing the new star close to Venus and the Moon, which occurred on 1054 April 12 and April 13, respectively. Collins et al., using the four historical dates, derived a light curve that is like that of a Type Ia supernova. The only remaining problem with this identification is that this supernova was near maximum light for 85 d, which is unlike the behavior of any known supernova.

  19. Britte reaction of a high-temperature ion melt

    NASA Astrophysics Data System (ADS)

    Zimanowski, B.; Büttner, R.; Nestler, J.

    1997-05-01

    An experimental study on explosive interaction between transparent melt (T = 1120 K) and entrapped water (T = 300 K) has been performed. Intense explosions occurred, resulting from catastrophic fragmentation of the melt and increasing heat transfer to the water in a cascading process. In earlier experiments a quasi-isochoric brittle reaction of the melt was identified to be the major explosion mechanism. Using a transparent melt, this brittle reaction could directly be observed by high-speed cinematography. The pictures revealed two fragmentation mechanisms: a) formation of leading cracks (mm to cm scale) due to excess water pressure, and b) slower μm scaled melt fragmentation induced by strain build-up in the melt during rapid cooling.

  20. Earlier vegetation green-up has reduced spring dust storms

    PubMed Central

    Fan, Bihang; Guo, Li; Li, Ning; Chen, Jin; Lin, Henry; Zhang, Xiaoyang; Shen, Miaogen; Rao, Yuhan; Wang, Cong; Ma, Lei

    2014-01-01

    The observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating aboveground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008. We find a significant dampening effect of advanced vegetation growth on spring dust storms (r = 0.49, p = 0.01), with a one-day earlier green-up date corresponding to a decrease in annual spring dust storm outbreaks by 3%. Moreover, the higher correlation (r = 0.55, p < 0.01) between green-up date and dust storm outbreak ratio (the ratio of dust storm outbreaks to times of strong wind events) indicates that such effect is independent of changes in surface wind. Spatially, a negative correlation is detected between areas with advanced green-up dates and regional annual spring dust storms (r = −0.49, p = 0.01). This new insight is valuable for understanding dust storms dynamics under the changing climate. Our findings suggest that dust storms in Inner Mongolia will be further mitigated by the projected earlier vegetation green-up in the warming world. PMID:25343265

  1. Earlier vegetation green-up has reduced spring dust storms.

    PubMed

    Fan, Bihang; Guo, Li; Li, Ning; Chen, Jin; Lin, Henry; Zhang, Xiaoyang; Shen, Miaogen; Rao, Yuhan; Wang, Cong; Ma, Lei

    2014-10-24

    The observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating aboveground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008. We find a significant dampening effect of advanced vegetation growth on spring dust storms (r = 0.49, p = 0.01), with a one-day earlier green-up date corresponding to a decrease in annual spring dust storm outbreaks by 3%. Moreover, the higher correlation (r = 0.55, p < 0.01) between green-up date and dust storm outbreak ratio (the ratio of dust storm outbreaks to times of strong wind events) indicates that such effect is independent of changes in surface wind. Spatially, a negative correlation is detected between areas with advanced green-up dates and regional annual spring dust storms (r = -0.49, p = 0.01). This new insight is valuable for understanding dust storms dynamics under the changing climate. Our findings suggest that dust storms in Inner Mongolia will be further mitigated by the projected earlier vegetation green-up in the warming world.

  2. Recent Changes in Arctic Sea Ice Melt Onset, Freeze-Up, and Melt Season Length

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Stroeve, Julienne C.; Miller, Jeffrey

    2010-01-01

    In order to explore changes and trends in the timing of Arctic sea ice melt onset and freeze-up and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freeze-up. Using this method we analyze trends in melt onset and freeze-up for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (O.4 days/decade), trends in melt onset are negative, i.e. towards earlier melt. The trends range from -1.0day/decade for the Bering Sea to -7.3 days/decade for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend towards later autumn freeze onset. The Chukchi/Beaufort Seas and Laptev/East Siberian Seas observe the strongest trends with 7 days/decade. For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 1O days/decade are seen for Hudson Bay, the East Greenland Sea the Laptev/East Siberian Seas, and the Chukchi/Beaufort Seas. Those trends are statistically significant a1 the 99% level.

  3. 31 CFR 536.302 - Effective date.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Effective date. 536.302 Section 536... Definitions § 536.302 Effective date. The term effective date refers to the effective date of the applicable... of specially designated narcotics traffickers designated after that date, the earlier of the date on...

  4. 31 CFR 595.302 - Effective date.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Effective date. 595.302 Section 595... § 595.302 Effective date. The term effective date refers to the effective date of the applicable... of specially designated terrorists designated after that date, the earlier of the date on which a...

  5. 31 CFR 548.302 - Effective date.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Effective date. 548.302 Section 548....302 Effective date. The term effective date refers to the effective date of the applicable... pursuant to § 548.201(a), the earlier of the date of actual or constructive notice that such person's...

  6. Prospects for Dating the South Pole-Aitken Basin through Impact-Melt Rock Samples

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Coker, R. F.; Petro, N. E.

    2016-01-01

    Much of the present debate about the ages of the nearside basins arises because of the difficulty in understanding the relationship of recovered samples to their parent basin. The Apollo breccias are from basin ejecta formations, which are ballistically-emplaced distal deposits that have mixed provenances. The Nectaris, Imbrium, and Serenitatis basins all have mare-basalt fill obscuring their original melt sheets, so geochemical ties are indirect. Though the geological processes acting to vertically and laterally mix materials into regolith are the same as at the Apollo sites, the SPA interior is a fundamentally different geologic setting than the Apollo sites. The South Pole-Aitken basin was likely filled by a large impact melt sheet, possibly differentiated into cumulate horizons. It is on this distinctive melt sheet that the regolith has formed, somewhat diluting but not erasing the prominent geochemical signature seen from orbital assets. By analogy to the Apollo 16 site, a zeroth-order expectation is that bulk samples taken from regolith within SPA will contain abundant samples gardened from the SPA melt sheet. However, questions persist as to whether the SPA melt sheet has been so extensively contaminated with foreign ejecta that a simple robotic scoop sample of such regolith would be unlikely to yield the age of the basin.

  7. 31 CFR 541.302 - Effective date.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Effective date. 541.302 Section 541... § 541.302 Effective date. The term effective date refers to the effective date of the applicable....201(a)(2), the earlier of the date on which either actual notice or constructive notice is received of...

  8. 31 CFR 537.303 - Effective date.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Effective date. 537.303 Section 537....303 Effective date. The term effective date refers to the effective date of the applicable... property of persons designated pursuant to § 537.201(a)(2), the earlier of the date on which either actual...

  9. Melting of Iron to 290 Gigapascals

    NASA Astrophysics Data System (ADS)

    Sinmyo, R.; Hirose, K.; Ohishi, Y.

    2017-12-01

    The Earth's core is composed mainly of iron. Since liquid core coexists with solid core at the inner core boundary (ICB), the melting point of iron at 330 gigapascals offers a key constraint on core temperatures. However, previous results using a laser-heated diamond-anvil cell (DAC) have been largely inconsistent with each other, likely because of an intrinsic large temperature gradient and its temporal fluctuation. Here we employed an internal-resistance-heated DAC and determined the melting temperature of pure iron up to 290 gigapascals, the highest ever in static compression experiments. A small extrapolation indicates a melting point of 5500 ± 80 kelvin at the ICB, about 500-1000 degrees lower than earlier shock-compression data. It suggests a relatively low temperature for the core-mantle boundary, which avoids global melting of the lowermost mantle in the last more than 1.5 billion years.

  10. 31 CFR 594.302 - Effective date.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Effective date. 594.302 Section 594... Definitions § 594.302 Effective date. The term effective date refers to the effective date of the applicable... to § 594.201(a)(2), (a)(3), or (a)(4), the earlier of the date on which is received actual or...

  11. 31 CFR 576.303 - Effective date.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Effective date. 576.303 Section 576... General Definitions § 576.303 Effective date. The term effective date refers to the effective date of the... blocked pursuant to § 576.201(a)(2) or (a)(3), the earlier of the date of actual or constructive notice...

  12. 31 CFR 543.303 - Effective date.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Effective date. 543.303 Section 543... Definitions § 543.303 Effective date. The term effective date refers to the effective date of the applicable... § 543.201(a)(2), the earlier of the date of actual or constructive notice of such person's designation. ...

  13. 31 CFR 588.302 - Effective date.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Effective date. 588.302 Section 588... Definitions § 588.302 Effective date. The term effective date refers to the effective date of the applicable... are blocked pursuant to § 588.201(a)(2), the earlier of the date of actual or constructive notice that...

  14. 38 CFR 21.4135 - Discontinuance dates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... withdraws from correspondence, flight, farm cooperative, cooperative or job training, benefits will be... of last instruction. (iii) Job training: Date of last training. (iv) Farm cooperative training: Date... the school or the date determined under § 21.4277, whichever is earlier. (Authority: 38 U.S.C. 3474...

  15. 38 CFR 21.4135 - Discontinuance dates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... withdraws from correspondence, flight, farm cooperative, cooperative or job training, benefits will be... of last instruction. (iii) Job training: Date of last training. (iv) Farm cooperative training: Date... the school or the date determined under § 21.4277, whichever is earlier. (Authority: 38 U.S.C. 3474...

  16. 31 CFR 542.302 - Effective date.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Effective date. 542.302 Section 542....302 Effective date. With respect to a person whose property or interests in property are blocked pursuant to a designation under § 542.201(a), the effective date is the earlier of the date on which either...

  17. Causes of Glacier Melt Extremes in the Alps Since 1949

    NASA Astrophysics Data System (ADS)

    Thibert, E.; Dkengne Sielenou, P.; Vionnet, V.; Eckert, N.; Vincent, C.

    2018-01-01

    Recent record-breaking glacier melt values are attributable to peculiar extreme events and long-term warming trends that shift averages upward. Analyzing one of the world's longest mass balance series with extreme value statistics, we show that detrending melt anomalies makes it possible to disentangle these effects, leading to a fairer evaluation of the return period of melt extreme values such as 2003, and to characterize them by a more realistic bounded behavior. Using surface energy balance simulations, we show that three independent drivers control melt: global radiation, latent heat, and the amount of snow at the beginning of the melting season. Extremes are governed by large deviations in global radiation combined with sensible heat. Long-term trends are driven by the lengthening of melt duration due to earlier and longer-lasting melting of ice along with melt intensification caused by trends in long-wave irradiance and latent heat due to higher air moisture.

  18. High hunting pressure selects for earlier birth date: Wild boar as a case study

    USGS Publications Warehouse

    Gamelon, M.; Besnard, A.; Gaillard, J.-M.; Servanty, S.; Baubet, E.; Brandt, S.; Gimenez, O.

    2011-01-01

    Exploitation by humans affects the size and structure of populations. This has evolutionary and demographic consequences that have typically being studied independent of one another. We here applied a framework recently developed applying quantitative tools from population ecology and selection gradient analysis to quantify the selection on a quantitative trait-birth date-through its association with multiple fitness components. From the long-term monitoring (22 years) of a wild boar (Sus scrofa scrofa) population subject to markedly increasing hunting pressure, we found that birth dates have advanced by up to 12 days throughout the study period. During the period of low hunting pressure, there was no detectable selection. However, during the period of high hunting pressure, the selection gradient linking breeding probability in the first year of life to birth date was negative, supporting current life-history theory predicting selection for early births to reproduce within the first year of life with increasing adult mortality. ?? 2011 The Author(s). Evolution?? 2011 The Society for the Study of Evolution..

  19. Centuries of intense surface melt on Larsen C Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bevan, Suzanne L.; Luckman, Adrian; Hubbard, Bryn; Kulessa, Bernd; Ashmore, David; Kuipers Munneke, Peter; O'Leary, Martin; Booth, Adam; Sevestre, Heidi; McGrath, Daniel

    2017-12-01

    Following a southward progression of ice-shelf disintegration along the Antarctic Peninsula (AP), Larsen C Ice Shelf (LCIS) has become the focus of ongoing investigation regarding its future stability. The ice shelf experiences surface melt and commonly features surface meltwater ponds. Here, we use a flow-line model and a firn density model (FDM) to date and interpret observations of melt-affected ice layers found within five 90 m boreholes distributed across the ice shelf. We find that units of ice within the boreholes, which have densities exceeding those expected under normal dry compaction metamorphism, correspond to two climatic warm periods within the last 300 years on the Antarctic Peninsula. The more recent warm period, from the 1960s onwards, has generated distinct sections of dense ice measured in two boreholes in Cabinet Inlet, which is close to the Antarctic Peninsula mountains - a region affected by föhn winds. Previous work has classified these layers as refrozen pond ice, requiring large quantities of mobile liquid water to form. Our flow-line model shows that, whilst preconditioning of the snow began in the late 1960s, it was probably not until the early 1990s that the modern period of ponding began. The earlier warm period occurred during the 18th century and resulted in two additional sections of anomalously dense ice deep within the boreholes. The first, at 61 m in one of our Cabinet Inlet boreholes, consists of ice characteristic of refrozen ponds and must have formed in an area currently featuring ponding. The second, at 69 m in a mid-shelf borehole, formed at the same time on the edge of the pond area. Further south, the boreholes sample ice that is of an equivalent age but which does not exhibit the same degree of melt influence. This west-east and north-south gradient in the past melt distribution resembles current spatial patterns of surface melt intensity.

  20. Ar-Ar dating techniques for terrestrial meteorite impacts

    NASA Astrophysics Data System (ADS)

    Kelley, S. P.

    2003-04-01

    The ages of the largest (>100 km) known impacts on Earth are now well characterised. However the ages of many intermediate sized craters (20-100 km) are still poorly known, often the only constraints are stratigraphic - the difference between the target rock age and the age of crater filling sediments. The largest impacts result in significant melt bodies which cool to form igneous rocks and can be dated using conventional radiometric techniques. Smaller impacts give rise to thin bands of melted rock or melt clasts intimately mixed with country rock clasts in breccia deposits, and present much more of a challenge to dating. The Ar-Ar dating technique can address a wide variety of complex and heterogeneous samples associated with meteorite impacts and obtain reasonable ages. Ar-Ar results will be presented from a series of terrestrial meteorite impact craters including Boltysh (65.17±0.64 Ma, Strangways (646±42 Ma), and St Martin (220±32 Ma) and a Late Triassic spherule bed, possibly representing distal deposits from Manicouagan (214±1 Ma) crater. Samples from the Boltysh and Strangways craters demonstrate the importance of rapid cooling upon the retention of old ages in glassy impact rocks. A Late Triassic spherule bed in SW England is cemented by both carbonate and K-feldspar cements allowing Ar-Ar dating of fine grained cement to place a mimimum age upon the age of the associated impact. An age of 214.7±2.5 Ma places the deposit with errors of the age of the Manicouagan impact, raising the possibility that it may represent a distal deposit (the deposit lay around 2000 km away from the site of the Manicouagan crater during the Late Triassic). Finally the limits of the technique will be demonstrated using an attempt to date melt rocks from the St Martin Crater in Canada.

  1. Refining lunar impact chronology through high spatial resolution (40)Ar/(39)Ar dating of impact melts.

    PubMed

    Mercer, Cameron M; Young, Kelsey E; Weirich, John R; Hodges, Kip V; Jolliff, Bradley L; Wartho, Jo-Anne; van Soest, Matthijs C

    2015-02-01

    Quantitative constraints on the ages of melt-forming impact events on the Moon are based primarily on isotope geochronology of returned samples. However, interpreting the results of such studies can often be difficult because the provenance region of any sample returned from the lunar surface may have experienced multiple impact events over the course of billions of years of bombardment. We illustrate this problem with new laser microprobe (40)Ar/(39)Ar data for two Apollo 17 impact melt breccias. Whereas one sample yields a straightforward result, indicating a single melt-forming event at ca. 3.83 Ga, data from the other sample document multiple impact melt-forming events between ca. 3.81 Ga and at least as young as ca. 3.27 Ga. Notably, published zircon U/Pb data indicate the existence of even older melt products in the same sample. The revelation of multiple impact events through (40)Ar/(39)Ar geochronology is likely not to have been possible using standard incremental heating methods alone, demonstrating the complementarity of the laser microprobe technique. Evidence for 3.83 Ga to 3.81 Ga melt components in these samples reinforces emerging interpretations that Apollo 17 impact breccia samples include a significant component of ejecta from the Imbrium basin impact. Collectively, our results underscore the need to quantitatively resolve the ages of different melt generations from multiple samples to improve our current understanding of the lunar impact record, and to establish the absolute ages of important impact structures encountered during future exploration missions in the inner Solar System.

  2. The extreme melt across the Greenland ice sheet in 2012

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Hall, D. K.; Mote, T. L.; Tedesco, M.; Albert, M. R.; Keegan, K.; Shuman, C. A.; DiGirolamo, N. E.; Neumann, G.

    2012-10-01

    The discovery of the 2012 extreme melt event across almost the entire surface of the Greenland ice sheet is presented. Data from three different satellite sensors - including the Oceansat-2 scatterometer, the Moderate-resolution Imaging Spectroradiometer, and the Special Sensor Microwave Imager/Sounder - are combined to obtain composite melt maps, representing the most complete melt conditions detectable across the ice sheet. Satellite observations reveal that melt occurred at or near the surface of the Greenland ice sheet across 98.6% of its entire extent on 12 July 2012, including the usually cold polar areas at high altitudes like Summit in the dry snow facies of the ice sheet. This melt event coincided with an anomalous ridge of warm air that became stagnant over Greenland. As seen in melt occurrences from multiple ice core records at Summit reported in the published literature, such a melt event is rare with the last significant one occurring in 1889 and the next previous one around seven centuries earlier in the Medieval Warm Period. Given its rarity, the 2012 extreme melt across Greenland provides an exceptional opportunity for new studies in broad interdisciplinary geophysical research.

  3. Origin and evolution of multi-stage felsic melts in eastern Gangdese belt: Constraints from U-Pb zircon dating and Hf isotopic composition

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Zhang, Hong-Fei; Harris, Nigel; Pan, Fa-Bin; Xu, Wang-Chun

    2011-11-01

    This integrated study of whole rock geochemistry, zircon U-Pb dating and Hf isotope composition for seven felsic rocks from the Nyingchi Complex in eastern Himalayan syntaxis has revealed a complex magmatic history for the eastern Gangdese belt. This involves multiple melt sources and mechanisms that uniquely identify the tectonic evolution of this part of the Himalayan orogen. Our U-Pb zircon dating reveals five stages of magmatic or anatectic events: 165, 81, 61, 50 and 25 Ma. The Jurassic granitic gneiss (165 Ma) exhibits εHf(t) values of + 1.4 to + 3.5. The late Cretaceous granite (81 Ma) shows variable εHf(t) values from - 0.9 to + 6.2, indicating a binary mixing between juvenile and old crustal materials. The Paleocene granodioritic gneiss (61 Ma) has εHf(t) values of + 5.4 to + 8.0, suggesting that it originated from partial melting of a juvenile crustal material. The Eocene anatexis is recorded in the leucosome, which has Hf isotopic composition similar to that of the Jurassic granite, indicating that the leucosome could be derived from partial melting of the Jurassic granite. The late Oligocene biotite granite (25 Ma) shows adakitic geochemical characteristics, with Sr/Y = 49.3-56.6. The presence of a large number of inherited zircons and negative εHf(t) values suggest that it sourced from anatexis of crustal materials. In contrast to the Gangdese batholiths that are mainly derived from juvenile crustal source in central Tibet, the old crustal materials play an important role for the magma generation of the felsic rocks, suggesting the existence of a crustal basement in the eastern Gangdese belt. These correspond to specific magmatic evolution stages during the convergence between India and Asia. The middle Jurassic granitic gneiss resulted from the northward subduction of the Neo-Tethyan oceanic slab. The late Cretaceous magmatism is probably related to the ocean ridge subduction. The Paleocene-Eocene magmatism, metamorphism and anatexis are

  4. 12 CFR 563g.6 - Effective date.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false Effective date. 563g.6 Section 563g.6 Banks and... date. (a) Except as provided for in paragraph (d) of this section, an offering circular filed by a... day after filing or on such earlier date as the Office may determine for good cause shown. (b) If any...

  5. A reversal of the shift towards earlier spring phenology in several Mediterranean reptiles and amphibians during the 1998-2013 warming slowdown.

    PubMed

    Prodon, Roger; Geniez, Philippe; Cheylan, Marc; Devers, Florence; Chuine, Isabelle; Besnard, Aurelien

    2017-12-01

    Herps, especially amphibians, are particularly susceptible to climate change, as temperature tightly controls many parameters of their biological cycle-above all, their phenology. The timing of herps' activity or migration period-in particular the dates of their first appearance in spring and first breeding-and the shift to earlier dates in response to warming since the last quarter of the 20 th century has often been described up to now as a nearly monotonic trend towards earlier phenological events. In this study, we used citizen science data opportunistically collected on reptiles and amphibians in the northern Mediterranean basin over a period of 32 years to explore temporal variations in herp phenology. For 17 common species, we measured shifts in the date of the species' first spring appearance-which may be the result of current changes in climate-and regressed the first appearance date against temperatures and precipitations. Our results confirmed the expected overall trend towards earlier first spring appearances from 1983 to 1997, and show that the first appearance date of both reptiles and amphibians fits well with the temperature in late winter. However, the trend towards earlier dates was stopped or even reversed in most species between 1998 and 2013. We interpret this reversal as a response to cooling related to the North Atlantic Oscillation (NAO) in the late winter and early spring. During the positive NAO episodes, for certain species only (mainly amphibians), the effect of a warm weather, which tends to advance the phenology, seems to be counterbalanced by the adverse effects of the relative dryness. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  6. Refining lunar impact chronology through high spatial resolution 40Ar/39Ar dating of impact melts

    PubMed Central

    Mercer, Cameron M.; Young, Kelsey E.; Weirich, John R.; Hodges, Kip V.; Jolliff, Bradley L.; Wartho, Jo-Anne; van Soest, Matthijs C.

    2015-01-01

    Quantitative constraints on the ages of melt-forming impact events on the Moon are based primarily on isotope geochronology of returned samples. However, interpreting the results of such studies can often be difficult because the provenance region of any sample returned from the lunar surface may have experienced multiple impact events over the course of billions of years of bombardment. We illustrate this problem with new laser microprobe 40Ar/39Ar data for two Apollo 17 impact melt breccias. Whereas one sample yields a straightforward result, indicating a single melt-forming event at ca. 3.83 Ga, data from the other sample document multiple impact melt–forming events between ca. 3.81 Ga and at least as young as ca. 3.27 Ga. Notably, published zircon U/Pb data indicate the existence of even older melt products in the same sample. The revelation of multiple impact events through 40Ar/39Ar geochronology is likely not to have been possible using standard incremental heating methods alone, demonstrating the complementarity of the laser microprobe technique. Evidence for 3.83 Ga to 3.81 Ga melt components in these samples reinforces emerging interpretations that Apollo 17 impact breccia samples include a significant component of ejecta from the Imbrium basin impact. Collectively, our results underscore the need to quantitatively resolve the ages of different melt generations from multiple samples to improve our current understanding of the lunar impact record, and to establish the absolute ages of important impact structures encountered during future exploration missions in the inner Solar System. PMID:26601128

  7. Pulling Marbles from a Bag: Deducing the Regional Impact History of the SPA Basin from Impact Melt Rocks

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.; Coker, R. F.

    2009-01-01

    The South Pole-Aitken (SPA) basin is an important target for absolute age-dating. Vertical and lateral impact mixing ensures that regolith within SPA will contain rock fragments from SPA itself, local impact craters, and faraway giant basins. About 20% of the regolith at any given site is foreign [1, 2], but much of this material will be cold ejecta, not impact melt. We calculated the fraction of contributed impact melt using scaling laws to estimate the amount and provenance of impact melt, demonstrating that SPA melt is the dominant impact melt rock (>70%) likely to be present. We also constructed a statistical model to illustrate how many randomly-selected impact-melt fragments would need to be dated, and with what accuracy, to confidently reproduce the impact history of a site. A detailed impact history becomes recognizable after a few hundred to a thousand randomly-selected marbles, however, it will be useful to have more information (e.g. compositional, mineralogical, remote sensing) to group fragments. These exercises show that SPA melt has a high probability of being present in a scoop sample and that dating of a few hundred to a thousand impact-melt fragments will yield the impact history of the SPA basin.

  8. Earlier snowmelt and warming lead to earlier but not necessarily more plant growth.

    PubMed

    Livensperger, Carolyn; Steltzer, Heidi; Darrouzet-Nardi, Anthony; Sullivan, Patrick F; Wallenstein, Matthew; Weintraub, Michael N

    2016-01-01

    Climate change over the past ∼50 years has resulted in earlier occurrence of plant life-cycle events for many species. Across temperate, boreal and polar latitudes, earlier seasonal warming is considered the key mechanism leading to earlier leaf expansion and growth. Yet, in seasonally snow-covered ecosystems, the timing of spring plant growth may also be cued by snowmelt, which may occur earlier in a warmer climate. Multiple environmental cues protect plants from growing too early, but to understand how climate change will alter the timing and magnitude of plant growth, experiments need to independently manipulate temperature and snowmelt. Here, we demonstrate that altered seasonality through experimental warming and earlier snowmelt led to earlier plant growth, but the aboveground production response varied among plant functional groups. Earlier snowmelt without warming led to early leaf emergence, but often slowed the rate of leaf expansion and had limited effects on aboveground production. Experimental warming alone had small and inconsistent effects on aboveground phenology, while the effect of the combined treatment resembled that of early snowmelt alone. Experimental warming led to greater aboveground production among the graminoids, limited changes among deciduous shrubs and decreased production in one of the dominant evergreen shrubs. As a result, we predict that early onset of the growing season may favour early growing plant species, even those that do not shift the timing of leaf expansion. Published by Oxford University Press on behalf of the Annals of Botany Company.

  9. Melting temperatures of MgO under high pressure by micro-texture analysis

    PubMed Central

    Kimura, T.; Ohfuji, H.; Nishi, M.; Irifune, T.

    2017-01-01

    Periclase (MgO) is the second most abundant mineral after bridgmanite in the Earth's lower mantle, and its melting behaviour under pressure is important to constrain rheological properties and melting behaviours of the lower mantle materials. Significant discrepancies exist between the melting temperatures of MgO determined by laser-heated diamond anvil cell (LHDAC) and those based on dynamic compressions and theoretical predictions. Here we show the melting temperatures in earlier LHDAC experiments are underestimated due to misjudgment of melting, based on micro-texture observations of the quenched samples. The high melting temperatures of MgO suggest that the subducted cold slabs should have higher viscosities than previously thought, suggesting that the inter-connecting textural feature of MgO would not play important roles for the slab stagnation in the lower mantle. The present results also predict that the ultra-deep magmas produced in the lower mantle are peridotitic, which are stabilized near the core–mantle boundary. PMID:28580945

  10. Impact melts in the MAC88105 lunar meteorite - Inferences for the lunar magma ocean hypothesis and the diversity of basaltic impact melts

    NASA Technical Reports Server (NTRS)

    Taylor, G. J.

    1991-01-01

    The MAC88105 lunar meteorite, as represented by thin section 78, contains three major types of impact melt breccias. The most abundant type is clast-laden, fine-grained, and rich in Al2O3 (28 wt pct); these clasts constitute most of the meteorite. Their abundance and aluminous nature indicate that the MAC88105 source area was very aluminous. This is consistent with formation of the primordial lunar crust from a global magma ocean. The second type of impact melt is represented by only one clast in 78. It has a basaltic bulk composition similar to many other lunar impact melts, but is significantly richer in P2O5 than most and has a much lower MgO/(MgO + FeO). The third impact-melt type resembles a prominent melt group at Apollo 16, but has lower MgO/(MgO + FeO). These data show that basaltic impact melts are compositionally diverse. Dating samples of the Al-rich impact melts and the new types of basaltic impact melts from this meteorite can test the idea that the Moon suffered a terminal cataclysm 3.9 Ga ago.

  11. Dating Melt Rock 63545 By Rb-Sr and Sm-Nd: Age of Imbrium; Spa Dress Rehearsal

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C. Y.; Reese, Y. D.

    2011-01-01

    Apollo 16 sample 63545 was initially described as one of a group of 19 generally rounded, fine-grained, crystalline rocks that were collected as rake samples [1]. This 16 g "rocklet" was collected at Station 13 on the ejecta blanket of North Ray Crater at the foot of Smoky Mountain [2]. Originally classified as a Very High Alumina (VHA) basalt on geochemical grounds [3], it was later argued to be an impact melt rock [4]. Here we report a Rb-Sr and Sm-Nd isotopic study that shows that some portions of the rock failed to reach isotopic equilibrium on last melting in agreement with the impact melt rock interpretation. Nevertheless, by omitting mineral fractions that are discordant with the majority of the data, we arrive at the time of last melting as 3.88 plus or minus 0.05 Ga ago. This age is in agreement with the Ar-39/Ar-40 plateau age of 3839 plus or minus 23 Ma [5], if the latter is adjusted for the 1.4-1.8% revision in the age of the hornblende monitor [6]. This investigation was undertaken in part as proof-of-concept for SPA-basin sample return.

  12. Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes.

    PubMed

    Steltzer, Heidi; Landry, Chris; Painter, Thomas H; Anderson, Justin; Ayres, Edward

    2009-07-14

    Dust deposition to mountain snow cover, which has increased since the late 19(th) century, accelerates the rate of snowmelt by increasing the solar radiation absorbed by the snowpack. Snowmelt occurs earlier, but is decoupled from seasonal warming. Climate warming advances the timing of snowmelt and early season phenological events (e.g., the onset of greening and flowering); however, earlier snowmelt without warmer temperatures may have a different effect on phenology. Here, we report the results of a set of snowmelt manipulations in which radiation-absorbing fabric and the addition and removal of dust from the surface of the snowpack advanced or delayed snowmelt in the alpine tundra. These changes in the timing of snowmelt were superimposed on a system where the timing of snowmelt varies with topography and has been affected by increased dust loading. At the community level, phenology exhibited a threshold response to the timing of snowmelt. Greening and flowering were delayed before seasonal warming, after which there was a linear relationship between the date of snowmelt and the timing of phenological events. Consequently, the effects of earlier snowmelt on phenology differed in relation to topography, which resulted in increasing synchronicity in phenology across the alpine landscape with increasingly earlier snowmelt. The consequences of earlier snowmelt from increased dust deposition differ from climate warming and include delayed phenology, leading to synchronized growth and flowering across the landscape and the opportunity for altered species interactions, landscape-scale gene flow via pollination, and nutrient cycling.

  13. The melting curve of Ni to 1 Mbar

    NASA Astrophysics Data System (ADS)

    Lord, Oliver T.; Wood, Ian G.; Dobson, David P.; Vočadlo, Lidunka; Wang, Weiwei; Thomson, Andrew R.; Wann, Elizabeth T. H.; Morard, Guillaume; Mezouar, Mohamed; Walter, Michael J.

    2014-12-01

    The melting curve of Ni has been determined to 125 GPa using laser-heated diamond anvil cell (LH-DAC) experiments in which two melting criteria were used: firstly, the appearance of liquid diffuse scattering (LDS) during in situ X-ray diffraction (XRD) and secondly, plateaux in temperature vs. laser power functions in both in situ and off-line experiments. Our new melting curve, defined by a Simon-Glatzel fit to the data where TM (K) = [ (PM/18.78 ± 10.20 + 1) ]1/2.42 ± 0.66 × 1726, is in good agreement with the majority of the theoretical studies on Ni melting and matches closely the available shock wave melting data. It is however dramatically steeper than the previous off-line LH-DAC studies in which determination of melting was based on the visual observation of motion aided by the laser speckle method. We estimate the melting point (TM) of Ni at the inner-core boundary (ICB) pressure of 330 GPa to be TM = 5800 ± 700 K (2 σ), within error of the value for Fe of TM = 6230 ± 500 K determined in a recent in situ LH-DAC study by similar methods to those employed here. This similarity suggests that the alloying of 5-10 wt.% Ni with the Fe-rich core alloy is unlikely to have any significant effect on the temperature of the ICB, though this is dependent on the details of the topology of the Fe-Ni binary phase diagram at core pressures. Our melting temperature for Ni at 330 GPa is ∼2500 K higher than that found in previous experimental studies employing the laser speckle method. We find that those earlier melting curves coincide with the onset of rapid sub-solidus recrystallization, suggesting that visual observations of motion may have misinterpreted dynamic recrystallization as convective motion of a melt. This finding has significant implications for our understanding of the high-pressure melting behaviour of a number of other transition metals.

  14. Evaluation of a Melt Infiltrated SiC/SiC Ceramic Matrix Composite

    DTIC Science & Technology

    2017-12-20

    AFRL-RX-WP-TR-2018-0080 EVALUATION OF A MELT INFILTRATED SIC/SIC CERAMIC MATRIX COMPOSITE Larry P. Zawada Universal Technology...REPORT TYPE 3. DATES COVERED (From - To) 20 December 2017 Final 1 January 2009 – 20 November 2017 4. TITLE AND SUBTITLE EVALUATION OF A MELT...4 3.1 Materials Description .....................................................................................................4 3.2 Purchase and

  15. Constant electrical resistivity of Ni along the melting boundary up to 9 GPa

    NASA Astrophysics Data System (ADS)

    Silber, Reynold E.; Secco, Richard A.; Yong, Wenjun

    2017-07-01

    Characterization of transport properties of liquid Ni at high pressures has important geophysical implications for terrestrial planetary interiors, because Ni is a close electronic analogue of Fe and it is also integral to Earth's core. We report measurements of the electrical resistivity of solid and liquid Ni at pressures 3-9 GPa using a 3000 t multianvil large volume press. A four-wire method, in conjunction with a rapid acquisition meter and polarity switch, was used to overcome experimental challenges such as melt containment and maintaining sample geometry and to mitigate the extreme reactivity/solubility of liquid Ni with most thermocouple and electrode materials. Thermal conductivity is calculated using the Wiedemann-Franz law. Electrical resistivity of solid Ni exhibits the expected P dependence and is consistent with earlier experimental values. Within experimental uncertainties, our results indicate that resistivity of liquid Ni remains invariant along the P-dependent melting boundary, which is in disagreement with earlier prediction for liquid transition metals. The potential reasons for such behavior are examined qualitatively through the impact of P-independent local short-range ordering on electron mean free path and the possibility of constant Fermi surface at the onset of Ni melting. Correlation among metals obeying the Kadowaki-Woods ratio and the group of late transition metals with unfilled d-electron band displaying anomalously shallow melting curves suggests that on the melting boundary, Fe may exhibit the same resistivity behavior as Ni. This could have important implications for the heat flow in the Earth's core.

  16. Molecular dynamics study of melting and fcc-bcc transitions in Xe.

    PubMed

    Belonoshko, A B; Ahuja, R; Johansson, B

    2001-10-15

    We have investigated the phase diagram of Xe over a wide pressure-temperature range by molecular dynamics. The calculated melting curve is in good agreement with earlier experimental data. At a pressure of around 25 GPa and a temperature of about 2700 K we find a triple fcc-bcc liquid point. The calculated fcc-bcc boundary is in nice agreement with the experimental points, which, however, were interpreted as melting. This finding suggests that the transition from close-packed to bcc structure might be more common at high pressure and high temperature than was previously anticipated.

  17. Pre-melting Behaviour in fcc Metals

    NASA Astrophysics Data System (ADS)

    Pamato, M. G.; Wood, I. G.; Dobson, D. P.; Hunt, S.; Vocadlo, L.

    2016-12-01

    Although the Earth's core is accepted to be made of an iron-nickel alloy with a few percent of light elements, its exact structure and composition are still unknown. Seismological and mineralogical models in the Earth's inner core do not agree, with mineralogical models derived from ab initiocalculations predicting shear-wave velocities up to 30% greater than seismically observed values. Recent computer simulations revealed that such difference may be explained by a dramatic, non-linear, softening of the elastic constants of Fe prior to melting. Up to date, computer calculations are the only result on pre-melting of direct applicability to the Earth's core and it is essential to systematically investigate such phenomena at inner core pressures and temperatures. Measuring the pressure dependence of pre-melting effects at such conditions and to the required precision is however extremely challenging. Also, pre-melting effects have been observed or suggested to occur in other materials, particularly noble metals, which exhibit large departures from linearity (modulus defects) at elevated temperatures. The aim of this study is to investigate to what extent pre-melting behaviour occurs in the physical properties of other metals at more experimentally tractable conditions. In particular, we report measurements of density and thermal expansion coefficients of both pure and alloyed gold (Au) up to their melting points. Au is an ideal test material since it crystallises in a simple monatomic face-centred structure and has a relatively low melting temperature. Precise measurements of unit cell lattice parameters were performed using a PANalytical X'Pert Pro powder diffractometer, equipped with an incident beam monochromator (giving very high resolution diffraction patterns) and with environmental stages covering the range from 40 K to 1373 K, with a readily achievable temperature resolution of 1K. We will discuss the circumstances under which pre-melting occurs, its

  18. Partial melting of deeply subducted eclogite from the Sulu orogen in China

    PubMed Central

    Wang, Lu; Kusky, Timothy M.; Polat, Ali; Wang, Songjie; Jiang, Xingfu; Zong, Keqing; Wang, Junpeng; Deng, Hao; Fu, Jianmin

    2014-01-01

    We report partial melting of an ultrahigh pressure eclogite in the Mesozoic Sulu orogen, China. Eclogitic migmatite shows successive stages of initial intragranular and grain boundary melt droplets, which grow into a three-dimensional interconnected intergranular network, then segregate and accumulate in pressure shadow areas and then merge to form melt channels and dikes that transport magma to higher in the lithosphere. Here we show, using zircon U–Pb dating and petrological analyses, that partial melting occurred at 228–219 Myr ago, shortly after peak metamorphism at 230 Myr ago. The melts and residues are complimentarily enriched and depleted in light rare earth element (LREE) compared with the original rock. Partial melting of deeply subducted eclogite is an important process in determining the rheological structure and mechanical behaviour of subducted lithosphere and its rapid exhumation, controlling the flow of deep lithospheric material, and for generation of melts from the upper mantle, potentially contributing to arc magmatism and growth of continental crust. PMID:25517619

  19. Melting Behavior of Al/Pb/Sn/Al Multilayered Thin Films

    NASA Astrophysics Data System (ADS)

    Khan, Patan Yousaf; Devi, M. Manolata; Biswas, Krishanu

    2015-09-01

    Metals or alloy nanoparticles (NPs) have been reported to exhibit superheating on melting when coated with higher melting point material or embedded in a matrix. This is due to the suppression of the heterogeneous nucleation of the melt at the epitaxial interface. For 2D thin films, this necessary condition is not feasible because even if a thin film is sandwiched between higher melting temperature materials with coherent interfaces, the heterogeneous nucleation of melt is possible at various detects. However, it has earlier been reported that 2D thin films of the pure metal sandwiched by other materials can exhibit superheating by suppression of melt growth. In order to probe this effect in case of alloy thin films, the present investigation has been carried out on Pb/Sn multilayers sandwiched between Al layers. The present study shows that such sandwiched thin films prepared by accumulative roll bonding process cause the formation of biphasic NPs in the intermixed region of Pb and Sn. Al layers undergo severe plastic deformation, leading to the generation of dislocations and sub-grain boundaries. DSC (differential canning calorimeter) thermograms of the films indicate superheating of 3 K to 6 K (or 3 °C to 6 °C). Theoretical analysis using currently available literatures has been carried out to justify the finding in the present investigation.

  20. Ice core evidence for extensive melting of the greenland ice sheet in the last interglacial.

    PubMed

    Koerner, R M

    1989-05-26

    Evidence from ice at the bottom of ice cores from the Canadian Arctic Islands and Camp Century and Dye-3 in Greenland suggests that the Greenland ice sheet melted extensively or completely during the last interglacial period more than 100 ka (thousand years ago), in contrast to earlier interpretations. The presence of dirt particles in the basal ice has previously been thought to indicate that the base of the ice sheets had melted and that the evidence for the time of original growth of these ice masses had been destroyed. However, the particles most likely blew onto the ice when the dimensions of the ice caps and ice sheets were much smaller. Ice texture, gas content, and other evidence also suggest that the basal ice at each drill site is superimposed ice, a type of ice typical of the early growth stages of an ice cap or ice sheet. If the present-day ice masses began their growth during the last interglacial, the ice sheet from the earlier (Illinoian) glacial period must have competely or largely melted during the early part of the same interglacial period. If such melting did occur, the 6-meter higher-than-present sea level during the Sangamon cannot be attributed to disintegration of the West Antarctic ice sheet, as has been suggested.

  1. Volatile loss during homogenization of lunar melt inclusions

    NASA Astrophysics Data System (ADS)

    Ni, Peng; Zhang, Youxue; Guan, Yunbin

    2017-11-01

    Volatile abundances in lunar mantle are critical factors to consider for constraining the model of Moon formation. Recently, the earlier understanding of a ;dry; Moon has shifted to a fairly ;wet; Moon due to the detection of measurable amount of H2O in lunar volcanic glass beads, mineral grains, and olivine-hosted melt inclusions. The ongoing debate on a ;dry; or ;wet; Moon requires further studies on lunar melt inclusions to obtain a broader understanding of volatile abundances in the lunar mantle. One important uncertainty for lunar melt inclusion studies, however, is whether the homogenization of melt inclusions would cause volatile loss. In this study, a series of homogenization experiments were conducted on olivine-hosted melt inclusions from the sample 74220 to evaluate the possible loss of volatiles during homogenization of lunar melt inclusions. Our results suggest that significant loss of H2O could occur even during minutes of homogenization, while F, Cl and S in the inclusions remain unaffected. We model the trend of H2O loss in homogenized melt inclusions by a diffusive hydrogen loss model. The model can reconcile the observed experimental data well, with a best-fit H diffusivity in accordance with diffusion data explained by the ;slow; mechanism for hydrogen diffusion in olivine. Surprisingly, no significant effect for the low oxygen fugacity on the Moon is observed on the diffusive loss of hydrogen during homogenization of lunar melt inclusions under reducing conditions. Our experimental and modeling results show that diffusive H loss is negligible for melt inclusions of >25 μm radius. As our results mitigate the concern of H2O loss during homogenization for crystalline lunar melt inclusions, we found that H2O/Ce ratios in melt inclusions from different lunar samples vary with degree of crystallization. Such a variation is more likely due to H2O loss on the lunar surface, while heterogeneity in their lunar mantle source is also a possibility. A

  2. Observation of melt onset on multiyear Arctic sea ice using the ERS 1 synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Winebrenner, D. P.; Nelson, E. D.; Colony, R.; West, R. D.

    1994-01-01

    We present nearly coincident observations of backscattering from the Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) and of near-surface temperature from six drifting buoys in the Beaufort Sea, showing that the onset of melting in snow on multiyear sea ice is clearly detectable in the SAR data. Melt onset is marked by a clean, steep decrease in the backscattering cross section of multiyear ice at 5.3 GHz and VV polarization. We investigate the scattering physics responsible for the signature change and find that the cross section decrease is due solely to the appearance of liquid water in the snow cover overlying the ice. A thin layer of moist snow is sufficient to cause the observed decrease. We present a prototype algorithm to estimate the date of melt onset using the ERS 1 SAR and apply the algorithm first to the SAR data for which we have corresponding buoy temperatures. The melt onset dates estimated by the SAR algorithm agree with those obtained independently from the temperature data to within 4 days or less, with the exception of one case in which temperatures oscillated about 0 C for several weeks. Lastly, we apply the algorithm to the entire ERS 1 SAR data record acquired by the Alaska SAR Facility for the Beaufort Sea north of 73 deg N during the spring of 1992, to produce a map of the dates of melt onset over an area roughly 1000 km on a side. The progression of melt onset is primarily poleward but shows a weak meridional dependence at latitudes of approximately 76 deg-77 deg N. Melting begins in the southern part of the study region on June 13 and by June 20 has progressed to the northermost part of the region.

  3. Variability of Surface Temperature and Melt on the Greenland Ice Sheet, 2000-2011

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Comiso, Josefino, C.; Shuman, Christopher A.; Koenig, Lora S.; DiGirolamo, Nicolo E.

    2012-01-01

    Enhanced melting along with surface-temperature increases measured using infrared satellite data, have been documented for the Greenland Ice Sheet. Recently we developed a climate-quality data record of ice-surface temperature (IST) of the Greenland Ice Sheet using the Moderate-Resolution Imaging Spectroradiometer (MODIS) 1ST product -- http://modis-snow-ice.gsfc.nasa.gov. Using daily and mean monthly MODIS 1ST maps from the data record we show maximum extent of melt for the ice sheet and its six major drainage basins for a 12-year period extending from March of 2000 through December of 2011. The duration of the melt season on the ice sheet varies in different drainage basins with some basins melting progressively earlier over the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. The short time of the study period (approximately 12 years) precludes an evaluation of statistically-significant trends. However the dataset provides valuable information on natural variability of IST, and on the ability of the MODIS instrument to capture changes in IST and melt conditions indifferent drainage basins of the ice sheet.

  4. Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon

    NASA Astrophysics Data System (ADS)

    Thomas, J. B.; Bodnar, R. J.; Shimizu, N.; Sinha, A. K.

    2002-09-01

    Partition coefficients ( zircon/meltD M) for rare earth elements (REE) (La, Ce, Nd, Sm, Dy, Er and Yb) and other trace elements (Ba, Rb, B, Sr, Ti, Y and Nb) between zircon and melt have been calculated from secondary ion mass spectrometric (SIMS) analyses of zircon/melt inclusion pairs. The melt inclusion-mineral (MIM) technique shows that D REE increase in compatibility with increasing atomic number, similar to results of previous studies. However, D REE determined using the MIM technique are, in general, lower than previously reported values. Calculated D REE indicate that light REE with atomic numbers less than Sm are incompatible in zircon and become more incompatible with decreasing atomic number. This behavior is in contrast to most previously published results which indicate D > 1 and define a flat partitioning pattern for elements from La through Sm. The partition coefficients for the heavy REE determined using the MIM technique are lower than previously published results by factors of ≈15 to 20 but follow a similar trend. These differences are thought to reflect the effects of mineral and/or glass contaminants in samples from earlier studies which employed bulk analysis techniques. D REE determined using the MIM technique agree well with values predicted using the equations of Brice (1975), which are based on the size and elasticity of crystallographic sites. The presence of Ce 4+ in the melt results in elevated D Ce compared to neighboring REE due to the similar valence and size of Ce 4+ and Zr 4+. Predicted zircon/meltD values for Ce 4+ and Ce 3+ indicate that the Ce 4+/Ce 3+ ratios of the melt ranged from about 10 -3 to 10 -2. Partition coefficients for other trace elements determined in this study increase in compatibility in the order Ba < Rb < B < Sr < Ti < Y < Nb, with Ba, Rb, B and Sr showing incompatible behavior (D M < 1.0), and Ti, Y and Nb showing compatible behavior (D M > 1.0). The effect of partition coefficients on melt evolution during

  5. Fragility and super-strong character of non-stoichiometric chalcogenides: implications on melt homogenization

    NASA Astrophysics Data System (ADS)

    Ravindren, Sriram; Gunasekera, Kapila; Boolchand, Punit; Micoulaut, Matthieu

    2014-03-01

    The kinetics of homogenization of binary AsxSe100-x melts in the As concentration range 0% melts in the range 20% melt compositions in 20% melt diffusion at high temperatures, leading to the observed slow kinetics of melt homogenization. In comparing these results with earlier reports, there is evidence that fragility decreases as melts are homogenized. Furthermore, a clear scaling of m vs. Tg is observed with a negative slope for Flexible glasses and a positive slope for Rigid and Stressed-rigid ones. The absence of a melting endotherm in non-stoichiometric As-Se compositions is reported. Fragilities of the Ge-As-Se are reported and a correlation observed with fragilities of As-Se and Ge-Se. Supported by NSF grant DMR 08-53957.

  6. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    NASA Astrophysics Data System (ADS)

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  7. Change in First Leaf Date Between 1951-1960 and 2006-2015

    EPA Pesticide Factsheets

    This figure shows modeled trends in lilac and honeysuckle first leaf dates at weather stations across the contiguous 48 states. This map compares the average first leaf date during two 10-year periods, developed using data from the USA National Phenology Network. Blue circles represent later leaf dates, and red circles represent earlier. For more information: www.epa.gov/climatechange/science/indicators

  8. The Apollo 17 'melt sheet' - Chemistry, age and Rb/Sr systematics

    NASA Technical Reports Server (NTRS)

    Winzer, S. R.; Nava, D. F.; Schuhmann, S.; Philpotts, J. A.; Schuhmann, P. J.; Lum, R. K. L.; Lindstrom, M. M.; Lindstrom, D. J.

    1977-01-01

    Major, minor, and trace-element compositions, age data, and Rb/Sr systematics of Apollo 17 boulders have been compiled, and additional analyses performed on a norite breccia clast (77215) included in the Apollo 17, Station 7 boulder. The Apollo 17 boulders are found to be identical or nearly so in major, minor, and trace-element composition, suggesting that they all originated as an impact melt analogous to melt sheets found in larger terrestrial craters. The matrix dates (Ar-40/Ar-39) and Rb/Sr systematics available suggest that this impact melt formed by a single impact about 4 billion years ago. This impact excavated, shocked, brecciated, and melted norites, norite cumulates, and possibly anorthositic gabbros and dunites about 4.4 billion years old. The impact was likely a major one, possibly the Serenitatis basin-forming event.

  9. On the exchange of sensible and latent heat between the atmosphere and melting snow

    USGS Publications Warehouse

    Stoy, Paul C.; Peitzsch, Erich H.; Wood, David J. A.; Rottinghaus, Daniel; Wohlfahrtd, Georg; Goulden, Michael; Ward, Helen

    2018-01-01

    The snow energy balance is difficult to measure during the snowmelt period, yet critical for predictions of water yield in regions characterized by snow cover. Robust simplifications of the snowmelt energy balance can aid our understanding of water resources in a changing climate. Research to date has demonstrated that the net turbulent flux (FT) between a melting snowpack and the atmosphere is negligible if the sum of atmospheric vapor pressure (ea) and temperature (Ta) equals a constant, but it is unclear how frequently this situation holds across different sites. Here, we quantified the contribution of FT to the snowpack energy balance during 59 snowmelt periods across 11 sites in the FLUXNET2015 database with a detailed analysis of snowmelt in subarctic tundra near Abisko, Sweden. At the Abisko site we investigated the frequency of occurrences during which sensible heat flux (H) and latent heat flux (λE) are of (approximately) equal but opposite sign, and if the sum of these terms, FT, is therefore negligible during the snowmelt period. H approximately equaled -λE for less than 50% of the melt period and FT was infrequently a trivial term in the snowmelt energy balance at Abisko. The reason is that the relationship between observed ea and Ta is roughly orthogonal to the “line of equality” at which H equals -λE as warmer Ta during the melt period usually resulted in greater ea. This relationship holds both within melt periods at individual sites and across different sites in the FLUXNET2015 database, where FTcomprised less than 20% of the energy available to melt snow, Qm, in 44% of the snowmelt periods studied here. FT/Qm was significantly related to the mean ea during the melt period, but not mean Ta, and FT tended to be near 0 W m−2 when ea averaged ca. 0.5 kPa. FT may become an increasingly important term in the snowmelt energy balance across many global regions as warmer temperatures are projected to cause snow

  10. Comparison of Passive Microwave-Derived Early Melt Onset Records on Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Bliss, Angela C.; Miller, Jeffrey A.; Meier, Walter N.

    2017-01-01

    Two long records of melt onset (MO) on Arctic sea ice from passive microwave brightness temperatures (Tbs) obtained by a series of satellite-borne instruments are compared. The Passive Microwave (PMW) method and Advanced Horizontal Range Algorithm (AHRA) detect the increase in emissivity that occurs when liquid water develops around snow grains at the onset of early melting on sea ice. The timing of MO on Arctic sea ice influences the amount of solar radiation absorbed by the ice-ocean system throughout the melt season by reducing surface albedos in the early spring. This work presents a thorough comparison of these two methods for the time series of MO dates from 1979through 2012. The methods are first compared using the published data as a baseline comparison of the publically available data products. A second comparison is performed on adjusted MO dates we produced to remove known differences in inter-sensor calibration of Tbs and masking techniques used to develop the original MO date products. These adjustments result in a more consistent set of input Tbs for the algorithms. Tests of significance indicate that the trends in the time series of annual mean MO dates for the PMW and AHRA are statistically different for the majority of the Arctic Ocean including the Laptev, E. Siberian, Chukchi, Beaufort, and central Arctic regions with mean differences as large as 38.3 days in the Barents Sea. Trend agreement improves for our more consistent MO dates for nearly all regions. Mean differences remain large, primarily due to differing sensitivity of in-algorithm thresholds and larger uncertainties in thin-ice regions.

  11. Integrated Tree-Ring-Radiocarbon High-Resolution Timeframe to Resolve Earlier Second Millennium BCE Mesopotamian Chronology.

    PubMed

    Manning, Sturt W; Griggs, Carol B; Lorentzen, Brita; Barjamovic, Gojko; Ramsey, Christopher Bronk; Kromer, Bernd; Wild, Eva Maria

    2016-01-01

    500 years of ancient Near Eastern history from the earlier second millennium BCE, including such pivotal figures as Hammurabi of Babylon, Šamši-Adad I (who conquered Aššur) and Zimrilim of Mari, has long floated in calendar time subject to rival chronological schemes up to 150+ years apart. Texts preserved on clay tablets provide much information, including some astronomical references, but despite 100+ years of scholarly effort, chronological resolution has proved impossible. Documents linked with specific Assyrian officials and rulers have been found and associated with archaeological wood samples at Kültepe and Acemhöyük in Turkey, and offer the potential to resolve this long-running problem. Here we show that previous work using tree-ring dating to place these timbers in absolute time has fundamental problems with key dendrochronological crossdates due to small sample numbers in overlapping years and insufficient critical assessment. To address, we have integrated secure dendrochronological sequences directly with radiocarbon (14C) measurements to achieve tightly resolved absolute (calendar) chronological associations and identify the secure links of this tree-ring chronology with the archaeological-historical evidence. The revised tree-ring-sequenced 14C time-series for Kültepe and Acemhöyük is compatible only with the so-called Middle Chronology and not with the rival High, Low or New Chronologies. This finding provides a robust resolution to a century of uncertainty in Mesopotamian chronology and scholarship, and a secure basis for construction of a coherent timeframe and history across the Near East and East Mediterranean in the earlier second millennium BCE. Our re-dating also affects an unusual tree-ring growth anomaly in wood from Porsuk, Turkey, previously tentatively associated with the Minoan eruption of the Santorini volcano. This tree-ring growth anomaly is now directly dated ~1681-1673 BCE (68.2% highest posterior density range), ~20

  12. Integrated Tree-Ring-Radiocarbon High-Resolution Timeframe to Resolve Earlier Second Millennium BCE Mesopotamian Chronology

    PubMed Central

    Griggs, Carol B.; Lorentzen, Brita; Barjamovic, Gojko; Ramsey, Christopher Bronk; Kromer, Bernd; Wild, Eva Maria

    2016-01-01

    500 years of ancient Near Eastern history from the earlier second millennium BCE, including such pivotal figures as Hammurabi of Babylon, Šamši-Adad I (who conquered Aššur) and Zimrilim of Mari, has long floated in calendar time subject to rival chronological schemes up to 150+ years apart. Texts preserved on clay tablets provide much information, including some astronomical references, but despite 100+ years of scholarly effort, chronological resolution has proved impossible. Documents linked with specific Assyrian officials and rulers have been found and associated with archaeological wood samples at Kültepe and Acemhöyük in Turkey, and offer the potential to resolve this long-running problem. Here we show that previous work using tree-ring dating to place these timbers in absolute time has fundamental problems with key dendrochronological crossdates due to small sample numbers in overlapping years and insufficient critical assessment. To address, we have integrated secure dendrochronological sequences directly with radiocarbon (14C) measurements to achieve tightly resolved absolute (calendar) chronological associations and identify the secure links of this tree-ring chronology with the archaeological-historical evidence. The revised tree-ring-sequenced 14C time-series for Kültepe and Acemhöyük is compatible only with the so-called Middle Chronology and not with the rival High, Low or New Chronologies. This finding provides a robust resolution to a century of uncertainty in Mesopotamian chronology and scholarship, and a secure basis for construction of a coherent timeframe and history across the Near East and East Mediterranean in the earlier second millennium BCE. Our re-dating also affects an unusual tree-ring growth anomaly in wood from Porsuk, Turkey, previously tentatively associated with the Minoan eruption of the Santorini volcano. This tree-ring growth anomaly is now directly dated ~1681–1673 BCE (68.2% highest posterior density range), ~20

  13. Change in Ice Thaw Dates for Selected U.S. Lakes, 1905-2015

    EPA Pesticide Factsheets

    This figure shows the change in the ice-off date, or date of ice thawing and breakup, for 14 U.S. lakes during the period from 1905 to 2015. All of the lakes have red circles with negative numbers, which represent earlier thaw dates. Larger circles indicate larger changes. For more information: www.epa.gov/climatechange/science/indicators

  14. Melting Processes at the Base of the Mantle Wedge: Melt Compositions and Melting Reactions for the First Melts of Vapor-Saturated Lherzolite

    NASA Astrophysics Data System (ADS)

    Grove, T. L.; Till, C. B.

    2014-12-01

    Vapor-saturated melting experiments have been performed at pressures near the base of the mantle wedge (3.2 GPa). The starting composition is a metasomatized lherzolite containing 3 wt. % H2O. Near-solidus melts and coexisting mineral phases have been characterized in experiments that span 925 to 1100 oC with melt % varying from 6 to 9 wt. %. Olivine, orthopyroxene, clinopyroxene and garnet coexist with melt over the entire interval and rutile is also present at < 1000 oC. Melt is andesitic in composition and varies from 60 wt. % SiO2 at 950 oC to 52 wt. % at 1075 oC. The Al2O3 contents of the melt are 13 to 14 wt. %, and CaO contents range from 1 and 4 wt. %. Melting is peritectic with orthopyroxene + liquid produced by melting of garnet + olivine + high-Ca pyroxene. In addition to quenched melt, we observe a quenched silicate component that is rhyolitic (>72 % SiO2) that we interpret as a precipitate from the coexisting supercritical H2O-rich vapor. Extrapolation of the measured compositional variation toward the solidus suggests that the first melt may be very SiO2 rich (i.e., granitic). We suggest that these granitic melts are the first melts of the mantle near the slab-wedge interface. As these SiO2-rich melts ascend into shallower, hotter overlying mantle, they continue to interact with the surrounding mantle and evolve in composition. These first melts may elucidate the geochemical and physical processes that accompany the beginnings of H2O flux melting.

  15. Changes toward earlier streamflow timing across western North America

    USGS Publications Warehouse

    Stewart, I.T.; Cayan, D.R.; Dettinger, M.D.

    2005-01-01

    The highly variable timing of streamflow in snowmelt-dominated basins across western North America is an important consequence, and indicator, of climate fluctuations. Changes in the timing of snowmelt-derived streamflow from 1948 to 2002 were investigated in a network of 302 western North America gauges by examining the center of mass for flow, spring pulse onset dates, and seasonal fractional flows through trend and principal component analyses. Statistical analysis of the streamflow timing measures with Pacific climate indicators identified local and key large-scale processes that govern the regionally coherent parts of the changes and their relative importance. Widespread and regionally coherent trends toward earlier onsets of springtime snowmelt and streamflow have taken place across most of western North America, affecting an area that is much larger than previously recognized. These timing changes have resulted in increasing fractions of annual flow occurring earlier in the water year by 1-4 weeks. The immediate (or proximal) forcings for the spatially coherent parts of the year-to-year fluctuations and longer-term trends of streamflow timing have been higher winter and spring temperatures. Although these temperature changes are partly controlled by the decadal-scale Pacific climate mode [Pacific decadal oscillation (PDO)], a separate and significant part of the variance is associated with a springtime warming trend that spans the PDO phases. ?? 2005 American Meteorological Society.

  16. H2O in rhyolitic glasses and melts: Measurement, speciation, solubility, and diffusion

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue

    1999-11-01

    recent solubility models fill a gap for predicting solubility for a wide range of melt compositions. I present a solubility model for rhyolitic and quasi-rhyolitic melts over a wide range of T and P (500°-1350°C, 0-8 kbar) by incorporating the role of speciation. The solubility model is able to recover the experimental solubility data and has extrapolative value, although the partial molar volume of H2O derived from the solubility model differs from that derived from density measurements. On H2O diffusion, recent studies on H2O diffusion in a quasi-rhyolitic melt at 800°-1200°C, 0.5-5 kbar, and up to 7% total H2O not only provide important new diffusion data, but are also challenging earlier understanding of H2O diffusion based on data in rhyolitic glasses at 400°-550°C, 1 bar, and 0.2-1.8% total H2O. A comparison between the earlier model and recent data is made. The recent high-temperature diffusivities at total H2O ≤ 2% can be predicted by the earlier model. However, at higher total H2O, the earlier model fails. New work is under way to understand the diffusion mechanisms at high H2O contents.

  17. Annually-layered lake sediments reveal strongly increased release of persistent chemicals due to accelerated glacier melting

    NASA Astrophysics Data System (ADS)

    Anselmetti, Flavio S.; Blüthgen, Nancy; Bogdal, Christian; Schmid, Peter

    2010-05-01

    Melting glaciers may represent a secondary source of chemical pollutants that have previously been incorporated and stored in the ice. Of particular concern are persistent organic pollutants (POPs), such as the insecticide dichlorodiphenyl trichloroethane (DDT) and industrial chemicals like polychlorinated biphenyls (PCBs), which are hazardous environmental contaminants due to their persistent, bioaccumulative and toxic properties. They were introduced in the 1930s and eventually banned in the 1970s. After release into the environment these chemicals were atmospherically transported to even remote areas such as the Alps and were deposited and stored in glaciers. Ongoing drastic glacier melting due to global warming, which is expected to further accelerate, implies the significance of studying the fate of these 'legacy pollutants'. Proglacial lake sediments provide well-dated and high-resolution archives to reconstruct timing and quantities of such a potentially hazardous remobilization. The goal of this study is to reconstruct the historical inputs of POPs into remote alpine lakes and to investigate the accelerated release of POPs from melting glaciers. Due to their lipophilic character, these chemicals exhibit a high tendency to adsorb to particles whereas concentrations in water are expected to be low. Therefore, quantitative determination in annually-layered lake sediment provides an excellent way to investigate the temporal trend of inputs into lakes that act as particle sinks. For this purpose, sediment cores were sampled from proglacial lakes in the Bernese Alps (Switzerland), which are exclusively fed by glacial melt waters. For comparison, cores were also taken from nearby high-alpine lakes located in non-glaciated catchments, which only should record the initial atmospheric fall-out. Sediment layers were dated by annual varve counting and radionuclide measurements; they cover the time period from the mid 20th century to today. The measured time series of

  18. Lipid melting and cuticular permeability: new insights into an old problem.

    PubMed

    Gibbs, Allen G.

    2002-04-01

    The idea that the physical properties of cuticular lipids affect cuticular permeability goes back over 65 years. This proposal has achieved textbook status, despite controversy and the general lack of direct supporting evidence. Recent work supports the standard model, in which lipid melting results in increased cuticular permeability. Surprisingly, although all species studied to date can synthesize lipids that remain in a solid state at environmental temperatures, partial melting often occurs due to the deposition of lipids with low melting points. This will tend to increase water loss; the benefits may include better dispersal of lipids or other compounds across the cuticle or improved communication via cuticular pheromones. In addition, insects with high melting-point lipids are not necessarily less permeable at low temperatures. One likely reason is variation in lipid properties within the cuticle. Surface lipids differ from one region to another, and biophysical studies of model mixtures suggest the occurrence of phase separation between melted and solid lipid fractions. Lipid phase separation may have important implications for insect water balance and chemical communication.

  19. Laser-Ablation ICP-MS Analyses of Meteoritic Metal Grains in Lunar Impact-Melt Breccias

    NASA Technical Reports Server (NTRS)

    Korotev, R. L.; Jolliff, B. L.; Campbell, A. J.; Humayun, M.

    2003-01-01

    Lunar impact-melt breccias contain metal grains from the meteorites that formed the breccias. Because the breccias contain clastic material that may derive from older breccias, metal grains from earlier impacts may be present, too. The large subset of moderately mafic (8 - 12% FeO), KREEP-rich ("LKFM") melt breccias is particularly important because: (1) these are the melt breccias most likely to have been produced in basin-forming impacts, (2) it is from these breccias that many of the approx. 3.9 Gyr ages that are so common in lunar samples derive, (3) the breccias contain large proportions of FeNi metal, more than 1% in some types of Apollo 16 breccias, and (4) the metal potentially provides information about the impactors causing the apparent cataclysm at 3.9 Gyr.

  20. Ar-Ar dating and petrogenesis of the Early Miocene Taşkapı-Mecitli (Erciş-Van) granitoid, Eastern Anatolia Collisional Zone, Turkey

    NASA Astrophysics Data System (ADS)

    Oyan, Vural

    2018-06-01

    The Early Miocene Taşkapı-Mecitli granitoid that is located in the northern section of the Eastern Anatolia Collision Zone has typical I-type, metaluminous and calk-alkaline characteristics. It also contains mafic microgranular / magmatic enclaves (MMEs). New Ar-Ar dating results show that the age of the Taşkapı-Mecitli granitoid is ∼23 Ma and it crystallised in the Early Miocene, in contrast to its previously known Cretaceous age. Identical crystallisation ages (∼23 Ma), similar mineral assemblages and geochemical compositions, and indistinguishable isotopic compositions of MMEs and host rocks imply that the MMEs are most consistent with a cumulate origin formed at earlier stages of the same magmatic system that produced the Taşkapı-Mecitli granitoid. MELTS modelling suggests that magma of the Taşkapı-Mecitli granitoid was the result of fractionation under a crustal pressure of 4 kbar, with a H2O content of 1.5%. EC-AFC model calculation reveals that the Taşkapı-Mecitli granitoid includes from 0.5% to 2% crustal assimilation rates. These rates indicate that crustal contamination can be negligible when compared to fractional crystallisation in the evolution of the magma beneath the Taşkapı-Mecitli granitoid. The partial melting model calculations and MORB-normalised trace element concentrations of the least evolved samples of the Taşkapı-Mecitli granitoid are consistent with those of mafic melts obtained from partial melting of interacting mantle- lower crust with a melting degree of 18%. The age (23 Ma) of the post- or syn-collisional Taşkapı-Mecitli granitoid suggests that the collision between Arabian and Eurasian plates could be before/around ∼23 Ma (Late Oligocene to Early Miocene).

  1. Santorini eruption radiocarbon dated to 1627-1600 B.C.

    PubMed

    Friedrich, Walter L; Kromer, Bernd; Friedrich, Michael; Heinemeier, Jan; Pfeiffer, Tom; Talamo, Sahra

    2006-04-28

    Precise and direct dating of the Minoan eruption of Santorini (Thera) in Greece, a global Bronze Age time marker, has been made possible by the unique find of an olive tree, buried alive in life position by the tephra (pumice and ashes) on Santorini. We applied so-called radiocarbon wiggle-matching to a carbon-14 sequence of tree-ring segments to constrain the eruption date to the range 1627-1600 B.C. with 95.4% probability. Our result is in the range of previous, less precise, and less direct results of several scientific dating methods, but it is a century earlier than the date derived from traditional Egyptian chronologies.

  2. Dating violence and girls in the juvenile justice system.

    PubMed

    Kelly, Patricia J; Cheng, An-Lin; Peralez-Dieckmann, Esther; Martinez, Elisabeth

    2009-09-01

    The purpose of this study is to explore the prevalence and associated behaviors of dating violence among a population of girls in the juvenile justice system. A sample of 590 girls from an urban juvenile justice system completed a questionnaire assessing attitudes and self-efficacy about and occurrence of dating violence. The analysis developed a random effect model to determine a risk profile for dating violence. The strongest predictors of dating violence were (a) initial sexual experience at age 13 or earlier, (b) unwillingness of initial sexual experience, (c) drug use, and (d) low self-efficacy about preventing dating violence. The high prevalence of dating violence and associated behaviors among participants suggests the importance of implementing primary prevention programs to assist preteen girls in delaying initial sexual intercourse and in learning techniques to prevent dating violence.

  3. Melt extraction and mantle source at a Southwest Indian Ridge Dragon Bone amagmatic segment on the Marion Rise

    NASA Astrophysics Data System (ADS)

    Gao, Changgui; Dick, Henry J. B.; Liu, Yang; Zhou, Huaiyang

    2016-03-01

    This paper works on the trace and major element compositions of spatially associated basalts and peridotites from the Dragon Bone amagmatic ridge segment at the eastern flank of the Marion Platform on the ultraslow spreading Southwest Indian Ridge. The rare earth element compositions of basalts do not match the pre-alteration Dragon Bone peridotite compositions, but can be modeled by about 5 to 10% non-modal batch equilibrium melting from a DMM source. The Dragon Bone peridotites are clinopyroxene-poor harzburgite with average spinel Cr# 27.7. The spinel Cr# indicates a moderate degree of melting. However, CaO and Al2O3 of the peridotites are lower than other abyssal peridotites at the same Mg# and extent of melting. This requires a pyroxene-poor initial mantle source composition compared to either hypothetical primitive upper mantle or depleted MORB mantle sources. We suggest a hydrous melting of the initial Dragon Bone mantle source, as wet melting depletes pyroxene faster than dry. According to the rare earth element patterns, the Dragon Bone peridotites are divided into two groups. Heavy REE in Group 1 are extremely fractionated from middle REE, which can be modeled by 7% fractional melting in the garnet stability field and another 12.5 to 13.5% in the spinel stability field from depleted and primitive upper mantle sources, respectively. Heavy REE in Group 2 are slightly fractionated from middle REE, which can be modeled by 15 to 20% fractional melting in the spinel stability field from a depleted mantle source. Both groups show similar melting degree to other abyssal peridotites. If all the melt extraction occurred at the middle oceanic ridge where the peridotites were dredged, a normal 6 km thick oceanic crust is expected at the Dragon Bone segment. However, the Dragon Bone peridotites are exposed in an amagmatic ridge segment where only scattered pillow basalts lie on a partially serpentinized mantle pavement. Thus their depletion requires an earlier melting

  4. Spatial variability and trends of seasonal snowmelt processes over Antarctic sea ice observed by satellite scatterometers

    NASA Astrophysics Data System (ADS)

    Arndt, S.; Haas, C.

    2017-12-01

    Snow is one of the key drivers determining the seasonal energy and mass budgets of sea ice in the Southern Ocean. Here, we analyze radar backscatter time series from the European Remote Sensing Satellites (ERS)-1 and-2 scatterometers, from the Quick Scatterometer (QSCAT), and from the Advanced Scatterometer (ASCAT) in order to observe the regional and inter-annual variability of Antarctic snowmelt processes from 1992 to 2014. On perennial ice, seasonal backscatter changes show two different snowmelt stages: A weak backscatter rise indicating the initial warming and metamorphosis of the snowpack (pre-melt), followed by a rapid rise indicating the onset of internal snowmelt and thaw-freeze cycles (snowmelt). In contrast, similar seasonal backscatter cycles are absent on seasonal ice, preventing the periodic retrieval of spring/summer transitions. This may be due to the dominance of ice bottom melt over snowmelt, leading to flooding and ice disintegration before strong snowmelt sets in. Resulting snowmelt onset dates on perennial sea ice show the expected latitudinal gradient from early melt onsets (mid-November) in the northern Weddell Sea towards late (end-December) or even absent snowmelt conditions further south. This result is likely related to seasonal variations in solar shortwave radiation (absorption). In addition, observations with different microwave frequencies allow to detect changing snow properties at different depths. We show that short wavelengths of passive microwave observations indicate earlier pre-melt and snowmelt onset dates than longer wavelength scatterometer observations, in response to earlier warming of upper snow layers compared to lower snow layers. Similarly, pre-melt and snowmelt onset dates retrieved from Ku-Band radars were earlier by an average of 11 and 23 days, respectively, than those retrieved from C-Band. This time difference was used to correct melt onset dates retrieved from Ku-Band to compile a consistent time series from

  5. Parturition date for a given female is highly repeatable within five roe deer populations.

    PubMed

    Plard, Floriane; Gaillard, Jean-Michel; Bonenfant, Christophe; Hewison, A J Mark; Delorme, Daniel; Cargnelutti, Bruno; Kjellander, Petter; Nilsen, Erlend B; Coulson, Tim

    2013-02-23

    Births are highly synchronized among females in many mammal populations in temperate areas. Although laying date for a given female is also repeatable within populations of birds, limited evidence suggests low repeatability of parturition date for individual females in mammals, and between-population variability in repeatability has never, to our knowledge, been assessed. We quantified the repeatability of parturition date for individual females in five populations of roe deer, which we found to vary between 0.54 and 0.93. Each year, some females gave birth consistently earlier in the year, whereas others gave birth consistently later. In addition, all females followed the same lifetime trajectory for parturition date, giving birth progressively earlier as they aged. Giving birth early should allow mothers to increase offspring survival, although few females managed to do so. The marked repeatability of parturition date in roe deer females is the highest ever reported for a mammal, suggesting low phenotypic plasticity in this trait.

  6. Parturition date for a given female is highly repeatable within five roe deer populations

    PubMed Central

    Plard, Floriane; Gaillard, Jean-Michel; Bonenfant, Christophe; Hewison, A. J. Mark; Delorme, Daniel; Cargnelutti, Bruno; Kjellander, Petter; Nilsen, Erlend B.; Coulson, Tim

    2013-01-01

    Births are highly synchronized among females in many mammal populations in temperate areas. Although laying date for a given female is also repeatable within populations of birds, limited evidence suggests low repeatability of parturition date for individual females in mammals, and between-population variability in repeatability has never, to our knowledge, been assessed. We quantified the repeatability of parturition date for individual females in five populations of roe deer, which we found to vary between 0.54 and 0.93. Each year, some females gave birth consistently earlier in the year, whereas others gave birth consistently later. In addition, all females followed the same lifetime trajectory for parturition date, giving birth progressively earlier as they aged. Giving birth early should allow mothers to increase offspring survival, although few females managed to do so. The marked repeatability of parturition date in roe deer females is the highest ever reported for a mammal, suggesting low phenotypic plasticity in this trait. PMID:23234861

  7. Gaussian decomposition of high-resolution melt curve derivatives for measuring genome-editing efficiency

    PubMed Central

    Zaboikin, Michail; Freter, Carl

    2018-01-01

    We describe a method for measuring genome editing efficiency from in silico analysis of high-resolution melt curve data. The melt curve data derived from amplicons of genome-edited or unmodified target sites were processed to remove the background fluorescent signal emanating from free fluorophore and then corrected for temperature-dependent quenching of fluorescence of double-stranded DNA-bound fluorophore. Corrected data were normalized and numerically differentiated to obtain the first derivatives of the melt curves. These were then mathematically modeled as a sum or superposition of minimal number of Gaussian components. Using Gaussian parameters determined by modeling of melt curve derivatives of unedited samples, we were able to model melt curve derivatives from genetically altered target sites where the mutant population could be accommodated using an additional Gaussian component. From this, the proportion contributed by the mutant component in the target region amplicon could be accurately determined. Mutant component computations compared well with the mutant frequency determination from next generation sequencing data. The results were also consistent with our earlier studies that used difference curve areas from high-resolution melt curves for determining the efficiency of genome-editing reagents. The advantage of the described method is that it does not require calibration curves to estimate proportion of mutants in amplicons of genome-edited target sites. PMID:29300734

  8. Radiocarbon dating of the Late Cycladic building and destruction phases at Akrotiri, Thera: New evidence

    NASA Astrophysics Data System (ADS)

    Maniatis, Yannis

    2012-01-01

    Akrotiri was a flourishing prehistoric settlement on the Cycladic island of Santorini (Thera) until its life was ended by a huge volcanic eruption in the LCI period. There is much debate as to when this final destruction occurred. Based on the Egyptian historical dating this happened around 1540-1530 BC, while, based on radiocarbon and other scientific data, around 1640-1600 BC. This work is an attempt to date with radiocarbon the whole settlement's life starting from the earlier phases of occupation but focusing in the sequence of the latest events. The samples, coming from the deep shafts dug in the site for the pillars of the new shelter, are pieces of wood and charcoal from house architectural elements and other constructions, including the final earthquake victims temporary camps. Therefore, the dates obtained represent the beginning of the different cultural phases plus the latest events. The results provide novel absolute dates for the commencement of the LMC and LCI Phases at Akrotiri, giving mean ranges around 1820-1790 BC and 1775-1722 BC, respectively, while the final destruction is dated around 1622-1548 BC. These results show that the LCI phase started about 100 years earlier than estimated with the Egyptian Historical chronology while the final destruction around 60 years or less earlier.

  9. 40 CFR 63.10881 - What are my compliance dates?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mercury in § 63.10885(b). (3) Except as provided in paragraph (d) of this section, not later than 2 years... annual metal melt production of your small foundry exceeds 20,000 tons during the preceding calendar year... large foundry no later than 2 years after the date of your foundry's notification that the annual metal...

  10. The Formation and Chronology of the PAT 91501 Impact-Melt L-Chondrite with Vesicle-Metal-Sulfide Assemblages

    NASA Technical Reports Server (NTRS)

    Benedix, G. K.; Ketcham, R. A.; Wilson, L.; McCoy, T. J.; Bogard, D. D.; Garrison, D. H.; Herzog, G. F.; Xue, S.; Klein, J.; Middleton, R.

    2007-01-01

    The L chondrite Patuxent Range (PAT) 41 91501 is an 8.5-kg unshocked, homogeneous, igneous-textured impact melt that cooled slowly compared to other meteoritic impact melts in a crater floor melt sheet or sub-crater dike. We conducted mineralogical and tomographic studies of previously unstudied mm- to cm-sized metal-sulfide-vesicle assemblages and chronologic studies of the silicate host. Metal-sulfide clasts constitute about 1 vol.%, comprise zoned taenite, troilite and pentlandite, and exhibit a consistent orientation between metal and sulfide and of metal-sulfide contacts. Vesicles make up approximately 2 vol.% and exhibit a similar orientation of long axes. Ar-39-Ar-40 measurements date the time of impact at 4.461 +/- 0.008 Gyr B.P. Cosmogenic noble gases and Be-10 and Al-2l activities suggest a pre-atmospheric radius of 40-60 cm and a cosmic ray exposure age of 25-29 Myr, similar to ages of a cluster of L chondrites. PAT 91501 dates the oldest known impact on the L chondrite parent body. The dominant vesicle-forming gas was S2 (approximately 15-20 ppm), which formed in equilibrium with impact-melted sulfides. The meteorite formed in an impact melt dike beneath a crater, as did other impact melted L chondrites, such as Chico. Cooling and solidification occurred over approximately 2 hours. During this time, approximately 90% of metal and sulfide segregated from the local melt. Remaining metal and sulfide grains oriented themselves in the local gravitational field, a feature nearly unique among meteorites. Many of these metal sulfide grains adhered to vesicles to form aggregates that may have been close to neutrally buoyant. These aggregates would have been carried upward with the residual melt, inhibiting further buoyancy-driven segregation. Although similar processes operated individually in other chondritic impact melts, their interaction produced the unique assemblage observed in PAT 91501.

  11. Methods for Melting Temperature Calculation

    NASA Astrophysics Data System (ADS)

    Hong, Qi-Jun

    the melting temperature is a design criterion. We present in detail two examples of refractory materials. First, we demonstrate how key material properties that provide guidance in the design of refractory materials can be accurately determined via ab initio thermodynamic calculations in conjunction with experimental techniques based on synchrotron X-ray diffraction and thermal analysis under laser-heated aerodynamic levitation. The properties considered include melting point, heat of fusion, heat capacity, thermal expansion coefficients, thermal stability, and sublattice disordering, as illustrated in a motivating example of lanthanum zirconate (La2Zr2O7). The close agreement with experiment in the known but structurally complex compound La2Zr 2O7 provides good indication that the computation methods described can be used within a computational screening framework to identify novel refractory materials. Second, we report an extensive investigation into the melting temperatures of the Hf-C and Hf-Ta-C systems using ab initio calculations. With melting points above 4000 K, hafnium carbide (HfC) and tantalum carbide (TaC) are among the most refractory binary compounds known to date. Their mixture, with a general formula TaxHf 1-xCy, is known to have a melting point of 4215 K at the composition Ta4HfC 5, which has long been considered as the highest melting temperature for any solid. Very few measurements of melting point in tantalum and hafnium carbides have been documented, because of the obvious experimental difficulties at extreme temperatures. The investigation lets us identify three major chemical factors that contribute to the high melting temperatures. Based on these three factors, we propose and explore a new class of materials, which, according to our ab initio calculations, may possess even higher melting temperatures than Ta-Hf-C. This example also demonstrates the feasibility of materials screening and discovery via ab initio calculations for the

  12. Finding the "true" age: ways to read high-precision U-Pb zircon dates

    NASA Astrophysics Data System (ADS)

    Schaltegger, U.; Schoene, B.; Ovtcharova, M.; Sell, B. K.; Broderick, C. A.; Wotzlaw, J.

    2011-12-01

    rheological lockup by the crystals. Last crystallizing zircons in the interstitial melt may therefore postdate emplacement of the magma. The range of 206Pb/238U ages may yield a time frame for the cooling of a given magma batch, which could be added to quantitative thermal models of magma emplacement and cooling. Hf isotopes and trace elements of the dated zircon are used to trace the nature of the dated grains [4], specifically for identification of crystals that form earlier at lower crustal levels (antecrysts). Autocrystic zircons typically show, e.g., distinctly different (higher or lower) Th/U ratios. Cautiously interpreted high-precision U-Pb data of chemically abraded zircons may resolve the evolution of a magmatic system from its roots to final emplacement or eruption, trace fractional crystallization of zircon and other accessory and major phases in a magma batch, and add quantitative temporal constraints to thermal models. The proposed interpretation scheme thus adds significant information compared to conventional statistics. [1] Mattinson J., 2005, Chem. Geol. 200, 47-66; ; [2] Slama et al., 2008, Chem. Geol. 249, 1-35; [3] Miller et al., 2007, J. Volc. Geotherm. Res. 167, 282-299; [4] Schoene et al., 2010, Geochim. Cosmochim. Acta 74, 7144-7159

  13. Age-Sensitive Effect of Adolescent Dating Experience on Delinquency and Substance Use

    ERIC Educational Resources Information Center

    Kim, Ryang Hui

    2013-01-01

    This study uses a developmental perspective and focuses on examining whether the impact of adolescent dating is age-sensitive. Dating at earlier ages is hypothesized to have a stronger effect on adolescent criminal behavior or substance use, but the effect would be weaker as one ages. The data obtained from the National Longitudinal Survey of…

  14. AR-40 AR-39 Age of an Impact-Melt Lithology in DHOFAR 961

    NASA Technical Reports Server (NTRS)

    Frasl, B.; Cohen, B. A.; Li, Z.-H.; Jolliff, B.; Korotev, R.; Zeigler, R.

    2016-01-01

    The South Pole-Aitken (SPA) basin is the stratigraphically oldest identifiable lunar basin and is therefore one of the most important targets for absolute age-dating to help understand whether ancient lunar bombardment history smoothly declined or was punctuated by a cataclysm. The SPA basin also has another convenient property, a geochemically distinct interior, unobscured by extensive mare basalt fill. A case has been made for the possible origin of the Dhofar 961 lunar meteorite in the South Pole-Aitken (SPA) basin, based on comparing its composition with Lunar Prospector gamma-ray data for the interior of the SPA basin. Dhofar 961 contains several different impact-melt (IM) lithologies. Jolliff et al. described two classes of mafic impact-melt lithologies, one dominated by olivine (Lithology A) and the other by plagioclase (An 95-96.5) (Lithology B). Broad-beam analyses of these lithologies yielded (is) approximately 14.0 wt% FeO, 11.7 wt% MgO, and 15.4 wt% Al2O3. Lithologies A and B differ by approximately 2.5% Al2O3, 1.5% FeO and 1.5% MgO, consistent with the occurrence of olivine phenocrysts in A and plagioclase clasts in B. Both lithologies are considerably more mafic than the Apollo mafic impact-melt breccias, corresponding to olivine gabbronorite. Joy et al. used U-Pb dating to investigate phosphate fragments in the Dhofar 961 matrix and impact-melt clasts. Matrix phosphates have 4.34 to 4 Ga ages, consistent with ancient KREEP-driven magmatic episodes and Pre-Nectarian ((is) greater than 3.92 Ga). Phosphates found within Dhofar 961 crystalline impact melt breccia clasts range from 4.26 to 3.89 Ga, potentially recording events throughout the basin forming epoch of lunar history. The youngest reset ages in the Dhofar 961 sample represent an upper limit for the time of formation of the meteorite. Joy et al suggested this age represents the final impact that mixed and consolidated several generations of precursor rocks into the Dhofar meteorite group

  15. The prelaying interval of emperor geese on the Yukon-Kuskokwim Delta, Alaska

    USGS Publications Warehouse

    Hupp, Jerry W.; Schmutz, J.A.; Ely, Craig R.

    2006-01-01

    We marked 136 female Emperor Geese (Chen canagica) in western Alaska with VHF or satellite (PTT) transmitters from 1999 to 2003 to monitor their spring arrival and nest initiation dates on the Yukon Delta, and to estimate prelaying interval lengths once at the nesting area. Ninety-two females with functional transmitters returned to the Yukon Delta in the spring after they were marked, and we located the nests of 35 of these individuals. Prelaying intervals were influenced by when snow melted in the spring and individual arrival dates on the Yukon Delta. The median prelaying interval was 15 days (range = 12-19 days) in a year when snow melted relatively late, and 11 days (range = 4-16 days) in two warmer years when snow melted earlier. In years when snow melted earlier, prelaying intervals of <12 days for 11 of 15 females suggested they initiated rapid follicle development on spring staging areas. The prelaying interval declined by approximately 0.4 days and nest initiation date increased approximately 0.5 days for each day a female delayed her arrival. Thus, females that arrived first on the Yukon Delta had prelaying intervals up to four days longer, yet they nested up to five days earlier, than females that arrived last. The proximity of spring staging areas on the Alaska Peninsula to nesting areas on the Yukon Delta may enable Emperor Geese to alter timing of follicle development depending on annual conditions, and to invest nutrients acquired from both areas in eggs during their formation. Plasticity in timing of follicle development is likely advantageous in a variable environment where melting of snow cover in the spring can vary by 2-3 weeks annually. ?? The Cooper Ornithological Society 2006.

  16. Melting in Martian Snowbanks

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Sutter, B.

    2005-01-01

    Precipitation as snow is an emerging paradigm for understanding water flow on Mars, which gracefully resolves many outstanding uncertainties in climatic and geomorphic interpretation. Snowfall does not require a powerful global greenhouse to effect global precipitation. It has long been assumed that global average temperatures greater than 273K are required to sustain liquid water at the surface via rainfall and runoff. Unfortunately, the best greenhouse models to date predict global mean surface temperatures early in Mars' history that differ little from today's, unless exceptional conditions are invoked. Snowfall however, can occur at temperatures less than 273K; all that is required is saturation of the atmosphere. At global temperatures lower than 273K, H2O would have been injected into the atmosphere by impacts and volcanic eruptions during the Noachian, and by obliquity-driven climate oscillations more recently. Snow cover can accumulate for a considerable period, and be available for melting during local spring and summer, unless sublimation rates are sufficient to remove the entire snowpack. We decided to explore the physics that controls the melting of snow in the high-latitude regions of Mars to understand the frequency and drainage of snowmelt in the high martian latitudes.

  17. DWPF Melt Cell Crawler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.R.

    2003-04-08

    On December 2, 2002, Remote and Specialty Equipment Systems (RSES) of the Savannah River Technology Center (SRTC) was requested to build a remotely operated crawler to assist in cleaning the Defense Waste Processing Facility (DWPF) melt cell floor of glass, tools, and other debris. The crawler was to assist a grapple and vacuum system in cleaning the cell. The crawler was designed to push glass and debris into piles so that the grapple could pick up the material and place it in waste bins. The crawler was also designed to maneuver the end of the vacuum hose, if needed. Inmore » addition, the crawler was designed to clean the area beneath the cell worktable that was inaccessible to the grapple and vacuum system. Originally, the system was to be ready for deployment by December 17. The date was moved up to December 12 to better utilize the available time for clean up. The crawler was designed and built in 10 days and completed cleaning the melt cell in 8 days. Due to initial problems with the grapple and vacuum system, the crawler completed essentially all of the cleanup tasks by itself. The crawler also cleaned an area on the west side of the cell that was not initially slated for cleaning.« less

  18. Zircon (Hf, O isotopes) as melt indicator: Melt infiltration and abundant new zircon growth within melt rich layers of granulite-facies lenses versus solid-state recrystallization in hosting amphibolite-facies gneisses (central Erzgebirge, Bohemian Massif)

    NASA Astrophysics Data System (ADS)

    Tichomirowa, Marion; Whitehouse, Martin; Gerdes, Axel; Schulz, Bernhard

    2018-03-01

    In the central Erzgebirge within the Bohemian Massif, lenses of high pressure and ultrahigh pressure felsic granulites occur within meta-sedimentary and meta-igneous amphibolite-facies felsic rocks. In the felsic granulite, melt rich parts and restite form alternating layers, and were identified by petrology and bulk rock geochemistry. Mineral assemblages representing the peak P-T conditions were best preserved in melanocratic restite layers. In contrast, in the melt rich leucocratic layers, garnet and related HP minerals as kyanite are almost completely resorbed. Both layers display differences in accessory minerals: melanosomes have frequent and large monazite and Fe-Ti-minerals but lack xenotime and apatite; leucosomes have abundant apatite and xenotime while monazite is rare. Here we present a detailed petrographic study of zircon grains (abundance, size, morphology, inclusions) in granulite-facies and amphibolite-facies felsic gneisses, along with their oxygen and hafnium isotope compositions. Our data complement earlier Usbnd Pb ages and trace element data (REE, Y, Hf, U) on zircons from the same rocks (Tichomirowa et al., 2005). Our results show that the degree of melting determines the behaviour of zircon in different layers of the granulites and associated amphibolite-facies rocks. In restite layers of the granulite lenses, small, inherited, and resorbed zircon grains are preserved and new zircon formation is very limited. In contrast, new zircons abundantly grew in the melt rich leucocratic layers. In these layers, the new zircons (Usbnd Pb age, trace elements, Hf, O isotopes) best preserve the information on peak metamorphic conditions due to intense corrosion of other metamorphic minerals. The new zircons often contain inherited cores. Compared to cores, the new zircons and rims show similar or slightly lower Hf isotope values, slightly higher Hf model ages, and decreased oxygen isotope ratios. The isotope compositions (Hf, O) of new zircons indicate

  19. Variation in leaf flushing date influences autumnal senescence and next year's flushing date in two temperate tree species.

    PubMed

    Fu, Yongshuo S H; Campioli, Matteo; Vitasse, Yann; De Boeck, Hans J; Van den Berge, Joke; AbdElgawad, Hamada; Asard, Han; Piao, Shilong; Deckmyn, Gaby; Janssens, Ivan A

    2014-05-20

    Recent temperature increases have elicited strong phenological shifts in temperate tree species, with subsequent effects on photosynthesis. Here, we assess the impact of advanced leaf flushing in a winter warming experiment on the current year's senescence and next year's leaf flushing dates in two common tree species: Quercus robur L. and Fagus sylvatica L. Results suggest that earlier leaf flushing translated into earlier senescence, thereby partially offsetting the lengthening of the growing season. Moreover, saplings that were warmed in winter-spring 2009-2010 still exhibited earlier leaf flushing in 2011, even though the saplings had been exposed to similar ambient conditions for almost 1 y. Interestingly, for both species similar trends were found in mature trees using a long-term series of phenological records gathered from various locations in Europe. We hypothesize that this long-term legacy effect is related to an advancement of the endormancy phase (chilling phase) in response to the earlier autumnal senescence. Given the importance of phenology in plant and ecosystem functioning, and the prediction of more frequent extremely warm winters, our observations and postulated underlying mechanisms should be tested in other species.

  20. Partial Melting of the Indarch (EH4) Meteorite : A Textural, Chemical and Phase Relations View of Melting and Melt Migration

    NASA Technical Reports Server (NTRS)

    McCoy, Timothy J.; Dickinson, Tamara L.; Lofgren, Gary E.

    2000-01-01

    To Test whether Aubrites can be formed by melting of enstatite Chondrites and to understand igneous processes at very low oxygen fugacities, we have conducted partial melting experiments on the Indarch (EH4) chondrite at 1000-1500 C. Silicate melting begins at 1000 C. Substantial melt migration occurs at 1300-1400 C and metal migrates out of the silicate change at 1450 C and approx. 50% silicate partial melting. As a group, our experiments contain three immiscible metallic melts 9Si-, and C-rich), two immiscible sulfide melts(Fe-and FeMgMnCa-rich) and Silicate melt. Our partial melting experiments on the Indarch (EH4) enstatite Chondrite suggest that igneous processes at low fO2 exhibit serveral unique features. The complete melting of sulfides at 1000 C suggest that aubritic sulfides are not relicts. Aubritic oldhamite may have crystallized from Ca and S complexed in the silicate melt. Significant metal-sulfide melt migration might occur at relatively low degrees of silicate partial melting. Substantial elemental exchange occurred between different melts (e.g., between sulfide and silicate, Si between silicate and metal), a feature not observed during experiments at higher fO2. This exchange may help explain the formation of aubrites from known enstatite chondrites.

  1. Transient induced tungsten melting at the Joint European Torus (JET)

    NASA Astrophysics Data System (ADS)

    Coenen, J. W.; Matthews, G. F.; Krieger, K.; Iglesias, D.; Bunting, P.; Corre, Y.; Silburn, S.; Balboa, I.; Bazylev, B.; Conway, N.; Coffey, I.; Dejarnac, R.; Gauthier, E.; Gaspar, J.; Jachmich, S.; Jepu, I.; Makepeace, C.; Scannell, R.; Stamp, M.; Petersson, P.; Pitts, R. A.; Wiesen, S.; Widdowson, A.; Heinola, K.; Baron-Wiechec, A.; Contributors, JET

    2017-12-01

    Melting is one of the major risks associated with tungsten (W) plasma-facing components (PFCs) in tokamaks like JET or ITER. These components are designed such that leading edges and hence excessive plasma heat loads deposited at near normal incidence are avoided. Due to the high stored energies in ITER discharges, shallow surface melting can occur under insufficiently mitigated plasma disruption and so-called edge localised modes—power load transients. A dedicated program was carried out at the JET to study the physics and consequences of W transient melting. Following initial exposures in 2013 (ILW-1) of a W-lamella with leading edge, new experiments have been performed on a sloped surface (15{}\\circ slope) during the 2015/2016 (ILW-3) campaign. This new experiment allows significantly improved infrared thermography measurements and thus resolved important issue of power loading in the context of the previous leading edge exposures. The new lamella was monitored by local diagnostics: spectroscopy, thermography and high-resolution photography in between discharges. No impact on the main plasma was observed despite a strong increase of the local W source consistent with evaporation. In contrast to the earlier exposure, no droplet emission was observed from the sloped surface. Topological modifications resulting from the melting are clearly visible between discharges on the photographic images. Melt damage can be clearly linked to the infrared measurements: the emissivity drops in zones where melting occurs. In comparison with the previous leading edge experiment, no runaway melt motion is observed, consistent with the hypothesis that the escape of thermionic electrons emitted from the melt zone is largely suppressed in this geometry, where the magnetic field intersects the surface at lower angles than in the case of perpendicular impact on a leading edge. Utilising both exposures allows us to further test the model of the forces driving melt motion that

  2. Rise in central west Greenland surface melt unprecedented over the last three centuries

    NASA Astrophysics Data System (ADS)

    Trusel, Luke; Das, Sarah; Osman, Matthew; Evans, Matthew; Smith, Ben; McConnell, Joe; Noël, Brice; van den Broeke, Michiel

    2017-04-01

    Greenland Ice Sheet surface melting has intensified and expanded over the last several decades and is now a leading component of ice sheet mass loss. Here, we constrain the multi-century temporal evolution of surface melt across central west Greenland by quantifying layers of refrozen melt within well-dated firn and ice cores collected in 2014 and 2015, as well as from a core collected in 2004. We find significant agreement among ice core, satellite, and regional climate model melt datasets over recent decades, confirming the fidelity of the ice core melt stratigraphy as a reliable record of past variability in the magnitude of surface melt. We also find a significant correlation between the melt records derived from our new 100-m GC-2015 core (2436 m.a.s.l.) and the older (2004) 150-m D5 core (2472 m.a.s.l.) located 50 km to the southeast. This agreement demonstrates the robustness of the ice core-derived melt histories and the potential for reconstructing regional melt evolution from a single site, despite local variability in melt percolation and refreeze processes. Our array of upper percolation zone cores reveals that although the overall frequency of melt at these sites has not increased, the intensification of melt over the last three decades is unprecedented within at least the last 365 years. Utilizing the regional climate model RACMO 2.3, we show that this melt intensification is a nonlinear response to warming summer air temperatures, thus underscoring the heightened sensitivity of this sector of Greenland to further climate warming. Finally, we examine spatial correlations between the ice core melt records and modeled melt fields across the ice sheet to assess the broader representation of each ice core record. This analysis reveals wide-ranging significant correlations, including to modeled meltwater runoff. As such, our ice core melt records may furthermore offer unique, observationally-constrained insights into past variability in ice sheet mass loss.

  3. Archaean ultra-depleted komatiites formed by hydrous melting of cratonic mantle.

    PubMed

    Wilson, A H; Shirey, S B; Carlson, R W

    2003-06-19

    Komatiites are ultramafic volcanic rocks containing more than 18 per cent MgO (ref. 1) that erupted mainly in the Archaean era (more than 2.5 gigayears ago). Although such compositions occur in later periods of Earth history (for example, the Cretaceous komatiites of Gorgona Island), the more recent examples tend to have lower MgO content than their Archaean equivalents. Komatiites are also characterized by their low incompatible-element content, which is most consistent with their generation by high degrees of partial melting (30-50 per cent). Current models for komatiite genesis include the melting of rock at great depth in plumes of hot, diapirically rising mantle or the melting of relatively shallow mantle rocks at less extreme, but still high, temperatures caused by fluxing with water. Here we report a suite of ultramafic lava flows from the Commondale greenstone belt, in the southern part of the Kaapvaal Craton, which represents a previously unrecognized type of komatiite with exceptionally high forsterite content of its igneous olivines, low TiO(2)/Al(2)O(3) ratio, high silica content, extreme depletion in rare-earth elements and low Re/Os ratio. We suggest a model for their formation in which a garnet-enriched residue left by earlier cratonic volcanism was melted by hydration from a subducting slab.

  4. Melt Heterogeneity and Degassing at MT Etna from Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Salem, L. C.; Edmonds, M.; Maclennan, J.; Corsaro, R. A.

    2014-12-01

    The melts feeding Mt Etna, Italy, are rich in volatiles and drive long-lasting powerful eruptions of basaltic magma in both effusive and explosive styles of activity. The volatile systematics of the volcanic system are well understood through melt inclusion and volcanic gas studies. Etna's melts are generated from a complex mantle setting, with subduction-related chemical modifications as well as OIB-type features, and then the melts must travel through thick carbonate-rich crust. The continual influx of mantle-derived volatile-rich magma controls the major compositional and eruptive features of Mount Etna and magma mixing has been recognized as an important process driving large eruptions [Kamenetsky, 2007]. Our study focusses on the 1669 eruption, the largest in historical times. Olivine-hosted melt inclusions were analyzed for volatile, trace and major elements using electron microprobe and ion probe (SIMS). We use volatile systematics and geochemical data to deconvolve mantle-derived heterogeneity from melt mixing and crystal fractionation. Our data are well described by a mixing trend between two distinct melts: a CO2-rich (CO2~1000ppm), incompatible trace element depleted melt (La/Yb~16), and a CO2-poor, enriched melt. The mixing also generates a strong correlation between Sr and CO2 in the melt inclusions dataset, reflecting the presence of a strong Sr anomaly in one of the end-member melts. We investigate the origin of this Sr anomaly by considering plagioclase dissolution and crustal assimilation. We also investigate degassing processes in the crust and plumbing system of the volcano. We compare our results with similar studies of OIB and arc-related basalts elsewhere and assess the implications for linking eruption size and style with the nature of the mantle-derived melts. Kamenetsky et al. (2007) Geology 35, 255-258.

  5. A benchmark initiative on mantle convection with melting and melt segregation

    NASA Astrophysics Data System (ADS)

    Schmeling, Harro; Dannberg, Juliane; Dohmen, Janik; Kalousova, Klara; Maurice, Maxim; Noack, Lena; Plesa, Ana; Soucek, Ondrej; Spiegelman, Marc; Thieulot, Cedric; Tosi, Nicola; Wallner, Herbert

    2016-04-01

    In recent years a number of mantle convection models have been developed which include partial melting within the asthenosphere, estimation of melt volumes, as well as melt extraction with and without redistribution at the surface or within the lithosphere. All these approaches use various simplifying modelling assumptions whose effects on the dynamics of convection including the feedback on melting have not been explored in sufficient detail. To better assess the significance of such assumptions and to provide test cases for the modelling community we carry out a benchmark comparison. The reference model is taken from the mantle convection benchmark, cases 1a to 1c (Blankenbach et al., 1989), assuming a square box with free slip boundary conditions, the Boussinesq approximation, constant viscosity and Rayleigh numbers of 104 to 10^6. Melting is modelled using a simplified binary solid solution with linearly depth dependent solidus and liquidus temperatures, as well as a solidus temperature depending linearly on depletion. Starting from a plume free initial temperature condition (to avoid melting at the onset time) five cases are investigated: Case 1 includes melting, but without thermal or dynamic feedback on the convection flow. This case provides a total melt generation rate (qm) in a steady state. Case 2 is identical to case 1 except that latent heat is switched on. Case 3 includes batch melting, melt buoyancy (melt Rayleigh number Rm) and depletion buoyancy, but no melt percolation. Output quantities are the Nusselt number (Nu), root mean square velocity (vrms), the maximum and the total melt volume and qm approaching a statistical steady state. Case 4 includes two-phase flow, i.e. melt percolation, assuming a constant shear and bulk viscosity of the matrix and various melt retention numbers (Rt). These cases are carried out using the Compaction Boussinseq Approximation (Schmeling, 2000) or the full compaction formulation. For cases 1 - 3 very good agreement

  6. Tin in granitic melts: The role of melting temperature and protolith composition

    NASA Astrophysics Data System (ADS)

    Wolf, Mathias; Romer, Rolf L.; Franz, Leander; López-Moro, Francisco Javier

    2018-06-01

    Granite bound tin mineralization typically is seen as the result of extreme magmatic fractionation and late exsolution of magmatic fluids. Mineralization, however, also could be obtained at considerably less fractionation if initial melts already had enhanced Sn contents. We present chemical data and results from phase diagram modeling that illustrate the dominant roles of protolith composition, melting conditions, and melt extraction/evolution for the distribution of Sn between melt and restite and, thus, the Sn content of melts. We compare the element partitioning between leucosome and restite of low-temperature and high-temperature migmatites. During low-temperature melting, trace elements partition preferentially into the restite with the possible exception of Sr, Cd, Bi, and Pb, that may be enriched in the melt. In high-temperature melts, Ga, Y, Cd, Sn, REE, Pb, Bi, and U partition preferentially into the melt whereas Sc, V, Cr, Co, Ni, Mo, and Ba stay in the restite. This contrasting behavior is attributed to the stability of trace element sequestering minerals during melt generation. In particular muscovite, biotite, titanite, and rutile act as host phases for Sn and, therefore prevent Sn enrichment in the melt as long as they are stable phases in the restite. As protolith composition controls both the mineral assemblage and modal contents of the various minerals, protolith composition eventually also controls the fertility of a rock during anatexis, restite mineralogy, and partitioning behavior of trace metals. If a particular trace element is sequestered in a phase that is stable during partial melting, the resulting melt is depleted in this element whereas the restite becomes enriched. Melt generation at high temperature may release Sn when Sn-hosts become unstable. If melt has not been lost before the breakdown of Sn-hosts, Sn contents in the melt will increase but never will be high. In contrast, if melt has been lost before the decomposition of Sn

  7. The formation and chronology of the PAT 91501 impact-melt L chondrite with vesicle metal sulfide assemblages

    NASA Astrophysics Data System (ADS)

    Benedix, G. K.; Ketcham, R. A.; Wilson, L.; McCoy, T. J.; Bogard, D. D.; Garrison, D. H.; Herzog, G. F.; Xue, S.; Klein, J.; Middleton, R.

    2008-05-01

    The L chondrite Patuxent Range (PAT) 91501 is an 8.5-kg unshocked, homogeneous, igneous-textured impact melt that cooled slowly compared to other meteoritic impact melts in a crater floor melt sheet or sub-crater dike [Mittlefehldt D. W. and Lindstrom M. M. (2001) Petrology and geochemistry of Patuxent Range 91501 and Lewis Cliff 88663. Meteoritics Planet. Sci. 36, 439-457]. We conducted mineralogical and tomographic studies of previously unstudied mm- to cm-sized metal-sulfide-vesicle assemblages and chronologic studies of the silicate host. Metal-sulfide clasts constitute about 1 vol.%, comprise zoned taenite, troilite, and pentlandite, and exhibit a consistent orientation between metal and sulfide and of metal-sulfide contacts. Vesicles make up ˜2 vol.% and exhibit a similar orientation of long axes. 39Ar- 40Ar measurements probably date the time of impact at 4.461 ± 0.008 Gyr B.P. Cosmogenic noble gases and 10Be and 26Al activities suggest a pre-atmospheric radius of 40-60 cm and a cosmic ray exposure age of 25-29 Myr, similar to ages of a cluster of L chondrites. PAT 91501 dates the oldest known impact on the L chondrite parent body. The dominant vesicle-forming gas was S 2 (˜15-20 ppm), which formed in equilibrium with impact-melted sulfides. The meteorite formed in an impact melt dike beneath a crater, as did other impact melted L chondrites, such as Chico. Cooling and solidification occurred over ˜2 h. During this time, ˜90% of metal and sulfide segregated from the local melt. Remaining metal and sulfide grains oriented themselves in the local gravitational field, a feature nearly unique among meteorites. Many of these metal-sulfide grains adhered to vesicles to form aggregates that may have been close to neutrally buoyant. These aggregates would have been carried upward with the residual melt, inhibiting further buoyancy-driven segregation. Although similar processes operated individually in other chondritic impact melts, their interaction produced

  8. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species

    PubMed Central

    Fu, Yongshuo S. H.; Campioli, Matteo; Vitasse, Yann; De Boeck, Hans J.; Van den Berge, Joke; AbdElgawad, Hamada; Asard, Han; Piao, Shilong; Deckmyn, Gaby; Janssens, Ivan A.

    2014-01-01

    Recent temperature increases have elicited strong phenological shifts in temperate tree species, with subsequent effects on photosynthesis. Here, we assess the impact of advanced leaf flushing in a winter warming experiment on the current year’s senescence and next year’s leaf flushing dates in two common tree species: Quercus robur L. and Fagus sylvatica L. Results suggest that earlier leaf flushing translated into earlier senescence, thereby partially offsetting the lengthening of the growing season. Moreover, saplings that were warmed in winter–spring 2009–2010 still exhibited earlier leaf flushing in 2011, even though the saplings had been exposed to similar ambient conditions for almost 1 y. Interestingly, for both species similar trends were found in mature trees using a long-term series of phenological records gathered from various locations in Europe. We hypothesize that this long-term legacy effect is related to an advancement of the endormancy phase (chilling phase) in response to the earlier autumnal senescence. Given the importance of phenology in plant and ecosystem functioning, and the prediction of more frequent extremely warm winters, our observations and postulated underlying mechanisms should be tested in other species. PMID:24799708

  9. Recent glacier surface snowpack melt in Novaya Zemlya and Severnaya Zemlya derived from active and passive microwave remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhao, Meng

    The warming rate in the Russian High Arctic (RHA) (36˜158°E, 73˜82°N) is outpacing the pan-Arctic average, and its effect on the small glaciers across this region needs further examination. The temporal variation and spatial distribution of surface melt onset date (MOD) and total melt days (TMD) throughout the Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) archipelagoes serve as good indicators of ice mass ablation and glacier response to regional climate change in the RHA. However, due to the harsh environment, long-term glaciological observations are limited, necessitating the application of remotely sensed data to study the surface melt dynamics. The high sensitivity to liquid water and the ability to work without solar illumination and penetrate non-precipitating clouds make microwave remote sensing an ideal tool to detect melt in this region. This work extracts resolution-enhanced passive and active microwave data from different periods and retrieves a decadal melt record for NovZ and SevZ. The high correlation among passive and active data sets instills confidence in the results. The mean MOD is June 20th on SevZ and June 10th on NovZ during the period of 1992-2012. The average TMDs are 47 and 67 days on SevZ and NovZ from 1995 to 2011, respectively. NovZ had large interannual variability in the MOD, but its TMD generally increased. SevZ MOD is found to be positively correlated to local June reanalysis air temperature at 850hPa geopotential height and occurs significantly earlier (˜0.73 days/year, p-value < 0.01) from 1992 to 2011. SevZ also experienced a longer TMD trend (˜0.75 days/year, p-value < 0.05) from 1995 to 2011. Annual mean TMD on both islands are positively correlated with regional summer mean reanalysis air temperature and negatively correlated to local sea ice extent. These strong correlations might suggest that the Russian High Arctic glaciers are vulnerable to the continuously diminishing sea ice extent, the associated air temperature

  10. Melt containment member

    DOEpatents

    Rieken, Joel R.; Heidloff, Andrew J.

    2014-09-09

    A tubular melt containment member for transient containment of molten metals and alloys, especially reactive metals and alloys, includes a melt-contacting layer or region that comprises an oxygen-deficient rare earth oxide material that is less reactive as compared to the counterpart stoichiometric rare earth oxide. The oxygen-deficient (sub-stoichiometric) rare earth oxide can comprise oxygen-deficient yttria represented by Y.sub.2O.sub.3-x wherein x is from 0.01 to 0.1. Use of the oxygen-deficient rare earth oxide as the melt-contacting layer or region material reduces reaction with the melt for a given melt temperature and melt contact time.

  11. Degassing of H2O in a phonolitic melt: A closer look at decompression experiments

    NASA Astrophysics Data System (ADS)

    Marxer, Holger; Bellucci, Philipp; Nowak, Marcus

    2015-05-01

    Melt degassing during magma ascent is controlled by the decompression rate and can be simulated in decompression experiments. H2O-bearing phonolitic melts were decompressed at a super-liquidus T of 1323 K in an internally heated argon pressure vessel, applying continuous decompression (CD) as well as to date commonly used step-wise decompression (SD) techniques to investigate the effect of decompression method on melt degassing. The hydrous melts were decompressed from 200 MPa at nominal decompression rates of 0.0028-1.7 MPa·s- 1. At final pressure (Pfinal), the samples were quenched rapidly at isobaric conditions with ~ 150 K·s- 1. The bubbles in the quenched samples are often deformed and dented. Flow textures in the glass indicate melt transport at high viscosity. We suggest that this observation is due to bubble shrinkage during quench. This general problem was mostly overlooked in the interpretation of experimentally degassed samples to date. Bubble shrinkage due to decreasing molar volume (Vm) of the exsolved H2O in the bubbles occurs during isobaric rapid quench until the melt is too viscous too relax. The decrease of Vm(H2O) during cooling at Pfinal of the experiments results in a decrease of the bubble volume by a shrinking factor Bs: At nominal decompression rates > 0.17 MPa·s- 1 and a Pfinal of 75 MPa, the decompression method has only minor influence on melt degassing. SD and CD result in high bubble number densities of 104-105 mm- 3. Fast P drop leads to immediate supersaturation with H2O in the melt. At such high nominal decompression rates, the diffusional transport of H2O is limited and therefore bubble nucleation is the predominant degassing process. The residual H2O contents in the melts decompressed to 75 MPa increase with nominal decompression rate. After homogeneous nucleation is triggered, CD rates ≤ 0.024 MPa·s- 1 facilitate continuous reduction of the supersaturation by H2O diffusion into previously nucleated bubbles. Bubble number

  12. Behavior Characteristics of Type I (75/25) Octol during Melt Pouring HE Warhead M250 (Chaparral)

    DTIC Science & Technology

    1979-09-01

    COVERED BEHAVIOR CHARACTERISTICS OF TYPE 1 (75/25) "OCTOL DURING MELT POURING HE WARHEAD I M250 (CHAPARRAL) 6. PERFORMING ORG. APrPORT NUMBER 7. AUTHOR...Military Specification, HMX, MIL-H-45444B, Amendment 2, dated 12 July 1977. 4 6. Military Specification, Warhead, Guided Missile, HE, M250 , Loading...CHARACTERISTICS OF TYPE i (75/25) OCTOL DURING MELT POURING HE WARHEAD M250 (CHAPARRAL) HERMAN J. FRIGAND SEPTEMBER 1979 US ARMY ARMAMENT RESEARCH AND

  13. A benchmark initiative on mantle convection with melting and melt segregation

    NASA Astrophysics Data System (ADS)

    Schmeling, Harro; Dohmen, Janik; Wallner, Herbert; Noack, Lena; Tosi, Nicola; Plesa, Ana-Catalina; Maurice, Maxime

    2015-04-01

    In recent years a number of mantle convection models have been developed which include partial melting within the asthenosphere, estimation of melt volumes, as well as melt extraction with and without redistribution at the surface or within the lithosphere. All these approaches use various simplifying modelling assumptions whose effects on the dynamics of convection including the feedback on melting have not been explored in sufficient detail. To better assess the significance of such assumptions and to provide test cases for the modelling community we initiate a benchmark comparison. In the initial phase of this endeavor we focus on the usefulness of the definitions of the test cases keeping the physics as sound as possible. The reference model is taken from the mantle convection benchmark, case 1b (Blanckenbach et al., 1989), assuming a square box with free slip boundary conditions, the Boussinesq approximation, constant viscosity and a Rayleigh number of 1e5. Melting is modelled assuming a simplified binary solid solution with linearly depth dependent solidus and liquidus temperatures, as well as a solidus temperature depending linearly on depletion. Starting from a plume free initial temperature condition (to avoid melting at the onset time) three cases are investigated: Case 1 includes melting, but without thermal or dynamic feedback on the convection flow. This case provides a total melt generation rate (qm) in a steady state. Case 2 includes batch melting, melt buoyancy (melt Rayleigh number Rm), depletion buoyancy and latent heat, but no melt percolation. Output quantities are the Nusselt number (Nu), root mean square velocity (vrms) and qm approaching a statistical steady state. Case 3 includes two-phase flow, i.e. melt percolation, assuming a constant shear and bulk viscosity of the matrix and various melt retention numbers (Rt). These cases should be carried out using the Compaction Boussinseq Approximation (Schmeling, 2000) or the full compaction

  14. How early can the seeding dates of spring wheat be under current and future climate in Saskatchewan, Canada?

    PubMed

    He, Yong; Wang, Hong; Qian, Budong; McConkey, Brian; DePauw, Ron

    2012-01-01

    Shorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints. This paper explores early seeding dates of spring wheat on the Canadian Prairies under current and projected future climate. To achieve this, (i) weather records from 1961 to 1990 were gathered at three sites with different soil and climate conditions in Saskatchewan, Canada; (ii) four climate databases that included a baseline (treated as historic weather climate during the period of 1961-1990) and three climate change scenarios (2040-2069) developed by the Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) emission scenarios (A2, A1B and B1); (iii) seeding dates of spring wheat (Triticum aestivum L.) under baseline and projected future climate were predicted. Compared with the historical record of seeding dates, the predicted seeding dates were advanced under baseline climate for all sites using our seeding date model. Driven by the predicted temperature increase of the scenarios compared with baseline climate, all climate change scenarios projected significantly earlier seeding dates than those currently used. Compared to the baseline conditions, there is no reduction in grain yield because precipitation increases during sensitive growth stages of wheat, suggesting that there is potential to shift seeding to an earlier date. The average advancement of seeding dates varied among sites and chosen scenarios. The Swift Current (south-west) site has the highest potential for earlier seeding (7 to 11 days) whereas such advancement was small in the Melfort (north-east, 2 to 4 days) region. The extent of

  15. Numerical simulation and experimental investigation of Ti-6Al-4V melted by CW fiber laser at different pressures

    NASA Astrophysics Data System (ADS)

    Tabassum, Aasma; Zhou, Jie; Han, Bing; Ni, Xiao-wu; Sardar, Maryam

    2017-07-01

    The interaction of continuous wave (CW) fiber laser with Ti-6Al-4V alloy is investigated numerically and experimentally at different laser fluence values and ambient pressures of N2 atmosphere to determine the melting time threshold of Ti-6Al-4V alloy. A 2D-axisymmetric numerical model considering heat transfer and laminar flow is established to describe the melting process. The simulation results indicate that material melts earlier at lower pressure (8.0 Pa) than at higher pressure (8.8×104 Pa) in several milliseconds with the same laser fluence. The experimental results demonstrate that the melting time threshold at high laser fluence (above 1.89×108 W/m2) is shorter for lower pressure (vacuum), which is consistent with the simulation. While the melting time threshold at low laser fluence (below 1.89×108 W/m2) is shorter for higher pressure. The possible aspects which can affect the melting process include the increased heat loss induced by the heat conduction between the metal surface and the ambient gas with the increased pressure, and the absorption variation of the coarse surface resulted from the chemical reaction.

  16. Dating native gold by noble gas analyses

    NASA Technical Reports Server (NTRS)

    Niedermann, S.; Eugster, O.; Hofmann, B.; Thalmann, CH.; Reimold, W. U.

    1993-01-01

    Our recent work on He, Ne, and Ar in Alpine gold samples has demonstrated that gold is extremely retentive for He and could thus, in principle, be used for U/Th-He-4 dating. For vein-type gold from Brusson, Northern Italy, we derived a U/Th-He-4 age of 36 Ma, in agreement with the K-Ar formation age of associated muscovites and biotites. However, in placer gold from the Napf area, Central Switzerland, we observed large excesses of both He-4 and radiogenic Ar-40 (Ar-40 sub rad, defined as Ar-40-295.5-Ar-.36). The gas release systematics indicate two distinct noble gas components, one of which is released below about 800 C and the other one at the melting point of gold (1064 C). We now present results of He and Xe measurements in a 1 g placer gold sample from the river Kruempelgraben, as well as He and Ar data for Brusson vein-type gold and for gold from the Lily Gold Mine, South Africa. We calculate reasonable U/Th-He-4 as well as U-Xe ages based on those gases which are released at approximately 800 C. Probably the low-temperature components represent in-situ-produced radiogenic He and fission Xe, whereas the gases evolving when gold melts have been trapped during gold formation. Therefore, only the low-temperature components are relevant for dating purposes.

  17. Identifying and Characterizing Impact Melt Outcrops in the Nectaris Basin

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Lawerence, S. J.; Petro, N. E.; Bart, G. D.; Clegg-Watkins, R. N.; Denevi, B. W.; Ghent, R. R.; Klima, R. L.; Morgan, G. A.; Spudis, P. D.; hide

    2016-01-01

    The Nectaris Basin is an 820-km diameter, multi-ring impact basin located on the near side of the Moon. Nectaris is a defining stratigraphic horizon based on relationships between ejecta units, giving its name to the Nectarian epoch of lunar history. Lunar basin chronology based on higher resolution LRO imagery and topography, while assigning some important basins like Serenitatis to pre-Nectarian time, were generally consistent with those previously derived. Based on this stratigraphy, at least 11 large basins formed in the time between Nectaris and Imbrium. The absolute age of Nectaris, therefore, is a crucial marker in the lunar time-stratigraphic sequence for understanding the impact flux on the Moon, and by extension, the entire inner solar system. For several decades, workers have attempted to constrain the age of the Nectaris basin through radiometric dating of lunar samples. However, there is little agreement on which samples in our collection represent Nectaris, if any, and what the correct radiometric age of such samples is. The importance of the age of Nectaris goes far beyond assigning a stratigraphic marker to lunar chronology. Several dynamical models use Nectaris as their pin date, so that this date becomes crucial in understanding the time-correlated effects in the rest of the solar system. The importance of the Nectaris basin age, coupled with its nearside, mid-latitude location, make remnants of the impact-melt sheet an attractive target for a future mission, either for in-situ dating or for sample return. We have started exploring this possibility. We have begun a consortium data-analysis effort bringing multiple datasets and analysis methods to bear on these putative impact-melt deposits to characterize their extent, elemental composition and mineralogy, maturity and geologic setting, and to identify potential landing sites that meet both operational safety and science requirements.

  18. Diagnosis of varicoceles in men undergoing vasectomy may lead to earlier detection of hypogonadism.

    PubMed

    Liu, Joceline S; Jones, Madeline; Casey, Jessica T; Fuchs, Amanda B; Cashy, John; Lin, William W

    2014-06-01

    To determine the temporal relationship between vasectomy, varicocele, and hypogonadism diagnosis. Many young men undergo their first thorough genitourinary examination in their adult lives at the time of vasectomy consultation, providing a unique opportunity for diagnosis of asymptomatic varicoceles. Varicoceles have recently been implicated as a possible reversible contributor to hypogonadism. Hypogonadism may be associated with significant adverse effect, including decreased libido, impaired cognitive function, and increased cardiovascular events. Early diagnosis and treatment of hypogonadism may prevent these adverse sequelae. Data were collected from the Truven Health Analytics MarketScan database, a large outpatient claims database. We reviewed records between 2003 and 2010 for male patients between the ages of 25 and 50 years with International Classification of Diseases, Ninth Revision codes for hypogonadism, vasectomy, and varicocele, and queried dates of first claim. A total of 15,679 men undergoing vasectomies were matched with 156,790 men with nonvasectomy claims in the same year. Vasectomy patients were diagnosed with varicocele at an earlier age (40.9 vs 42.5 years; P=.009). We identified 224,817 men between the ages of 25 and 50 years with a claim of hypogonadism, of which 5883 (2.6%) also had a claim of varicocele. Men with hypogonadism alone were older at presentation compared with men with an accompanying varicocele (41.3 [standard deviation±6.5] vs 34.9 [standard deviation±6.1]; P<.001). Men undergoing vasectomies are diagnosed with varicoceles at a younger age than age-matched controls. Men with varicoceles present with hypogonadism earlier than men without varicoceles. Earlier diagnosis of varicocele at the time of vasectomy allows for earlier detection of hypogonadism. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Trend of earlier spring in central Europe continued

    NASA Astrophysics Data System (ADS)

    Ungersböck, Markus; Jurkovic, Anita; Koch, Elisabeth; Lipa, Wolfgang; Scheifinger, Helfried; Zach-Hermann, Susanne

    2013-04-01

    hippocastanum are well represented in the PEP725 database. Flowering of lilac Syringa vulgaris is also used in the US as spring indicator . The flowering and/or leaf unfolding dates of lilac, horse chestnut show a clear advance to an earlier entrance in the last two decades 1991 to 2000 and 2001 to 2010 compared with the reference period 1961 to 1990, being more pronounced in northwestern regions of Central Europe. The growing season defined here as time span between leaf unfolding and leaf coloration of birch and beech has been lengthening up to two weeks in 2001 to 2010 compared to 1961 to 1990 in northeastern parts of Central Europe.

  20. SLUDGE BATCH 4 BASELINE MELT RATE FURNACE AND SLURRY-FED MELT RATE FURNACE TESTS WITH FRITS 418 AND 510 (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M. E.; Jones, T. M.; Miller, D. H.

    Several Slurry-Fed Melt Rate Furnace (SMRF) tests with earlier projections of the Sludge Batch 4 (SB4) composition have been performed.1,2 The first SB4 SMRF test used Frits 418 and 320, however it was found after the test that the REDuction/OXidation (REDOX) correlation at that time did not have the proper oxidation state for manganese. Because the manganese level in the SB4 sludge was higher than previous sludge batches tested, the impact of the higher manganese oxidation state was greater. The glasses were highly oxidized and very foamy, and therefore the results were inconclusive. After resolving this REDOX issue, Frits 418,more » 425, and 503 were tested in the SMRF with the updated baseline SB4 projection. Based on dry-fed Melt Rate Furnace (MRF) tests and the above mentioned SMRF tests, two previous frit recommendations were made by the Savannah River National Laboratory (SRNL) for processing of SB4 in the Defense Waste Processing Facility (DWPF). The first was Frit 503 based on the June 2006 composition projections.3 The recommendation was changed to Frit 418 as a result of the October 2006 composition projections (after the Tank 40 decant was implemented as part of the preparation plan). However, the start of SB4 processing was delayed due to the control room consolidation outage and the repair of the valve box in the Tank 51 to Tank 40 transfer line. These delays resulted in changes to the projected SB4 composition. Due to the slight change in composition and based on preliminary dry-fed MRF testing, SRNL believed that Frit 510 would increase throughput in processing SB4 in DWPF. Frit 418, which was used in processing Sludge Batch 3 (SB3), was a viable candidate and available in DWPF. Therefore, it was used during the initial SB4 processing. Due to the potential for higher melt rates with Frit 510, SMRF tests with the latest SB4 composition (1298 canisters) and Frits 510 and 418 were performed at a targeted waste loading (WL) of 35%. The '1298 canisters

  1. High-quality Silicon Films Prepared by Zone-melting Recrystallization

    NASA Technical Reports Server (NTRS)

    Chen, C. K.; Geis, M. W.; Tsaur, B. Y.; Fan, J. C. C.

    1984-01-01

    The graphite strip heater zone melting recrystallization (ZMR) technique is described. The material properties of the ZMR films, and SOI device results are reviewed. Although our ZMR work is primarily motivated by integrated circuit applications, this work evolved in part from earlier research on laser crystallization of thick amorphous GaAs and Si films, which was undertaken with the goal of producing low cost photovoltaic materials. The ZMR growth process and its effect on the properties of the recrystallized films may contribute some insight to a general understanding of the rapid recrystallization of Si for solar cells. Adaptation of ZMR for solar cell fabrication is considered.

  2. Compositions of Magmatic and Impact Melt Sulfides in Tissint And EETA79001: Precursors of Immiscible Sulfide Melt Blebs in Shergottite Impact Melts

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Rao, M. N.; Nyquist, L.; Agee, C.; Sutton, S.

    2013-01-01

    Immiscible sulfide melt spherules are locally very abundant in shergottite impact melts. These melts can also contain samples of Martian atmospheric gases [1], and cosmogenic nuclides [2] that are present in impact melt, but not in the host shergottite, indicating some components in the melt resided at the Martian surface. These observations show that some regolith components are, at least locally, present in the impact melts. This view also suggests that one source of the over-abundant sulfur in these impact melts could be sulfates that are major constituents of Martian regolith, and that the sulfates were reduced during shock heating to sulfide. An alternative view is that sulfide spherules in impact melts are produced solely by melting the crystalline sulfide minerals (dominantly pyrrhotite, Fe(1-x)S) that are present in shergottites [3]. In this abstract we report new analyses of the compositions of sulfide immiscible melt spherules and pyrrhotite in the shergottites Tissint, and EETA79001,507, and we use these data to investigate the possible origins of the immiscible sulfide melt spherules. In particular, we use the metal/S ratios determined in these blebs as potential diagnostic criteria for tracking the source material from which the numerous sulfide blebs were generated by shock in these melts.

  3. Additive Manufacturing of Al-12Si Alloy Via Pulsed Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Chou, R.; Milligan, J.; Paliwal, M.; Brochu, M.

    2015-03-01

    Additive manufacturing (AM) of metallic materials is experiencing a research and commercialization craze in almost all industrial sectors. However, to date, AM has been limited to a small numbers of alloys. With respect to aluminum, two alloys received some attention: Al-12Si and Al-10Si-1Mg. In both cases, fully dense components have been achieved using a continuous-wave selective laser melting system. In this article, a new approach of selective laser melting using a pulsed-laser source as opposed to a continuous-wave laser is proposed. Pulse selective laser melting (P-SLM) would allow for greater control over the heat input and thus further optimization possibilities of the microstructure. P-SLM was demonstrated using the Al-12Si system. Si refinement below 200 nm was achieved throughout the component. Density up to 95% and high hardness of above 135 HV were obtained. The solidification mechanism is also explained.

  4. 38 CFR 21.322 - Commencing dates of subsistence allowance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of his or her child, or his or her adoption of a child, if the evidence of the event is received.... 5301. (Authority: 38 U.S.C. 3103(b)) (f) Incarcerated veterans. (1) Date of release from Federal, State, or local penal institution of a veteran incarcerated for conviction of a felony. (2) Earlier of the...

  5. Melting Inside the Tibetan Crust? Constraint From Electrical Conductivity of Peraluminous Granitic Melt

    NASA Astrophysics Data System (ADS)

    Guo, Xuan; Zhang, Li; Su, Xue; Mao, Zhu; Gao, Xiao-Ying; Yang, Xiaozhi; Ni, Huaiwei

    2018-05-01

    Magnetotelluric and seismological studies suggested the presence of partial melts in the middle to lower Himalaya-Tibetan crust. However, the melt fractions inferred by previous work were based on presumed electrical conductivity of melts. We performed measurements on the electrical conductivity of peraluminous granitic melts with 0.16-8.4 wt % H2O (the expected compositions in the Tibetan crust) at 600-1,300°C and 0.5-1.0 GPa. Peraluminous melt exhibits lower electrical conductivity than peralkaline melt at dry condition, but this difference diminishes at H2O > 2 wt %. With our data, the observed electrical anomalies in the Tibetan crust could be explained by 2-33 vol % of peraluminous granitic melts with H2O > 6 wt %. Possible reasons for our inferred melt fractions being higher than seismological constraints include the following: (1) The real melts are more Na and H2O rich, (2) the effect of melt reducing seismic velocities was overestimated, and (3) the anomalies at some locations are due to fluids.

  6. A Review of Quality of Life after Predictive Testing for and Earlier Identification of Neurodegenerative Diseases

    PubMed Central

    Paulsen, Jane S.; Nance, Martha; Kim, Ji-In; Carlozzi, Noelle E.; Panegyres, Peter K.; Erwin, Cheryl; Goh, Anita; McCusker, Elizabeth; Williams, Janet K.

    2013-01-01

    The past decade has witnessed an explosion of evidence suggesting that many neurodegenerative diseases can be detected years, if not decades, earlier than previously thought. To date, these scientific advances have not provoked any parallel translational or clinical improvements. There is an urgency to capitalize on this momentum so earlier detection of disease can be more readily translated into improved health-related quality of life for families at risk for, or suffering with, neurodegenerative diseases. In this review, we discuss health-related quality of life (HRQOL) measurement in neurodegenerative diseases and the importance of these “patient reported outcomes” for all clinical research. Next, we address HRQOL following early identification or predictive genetic testing in some neurodegenerative diseases: Huntington disease, Alzheimer's disease, Parkinson's disease, Dementia with Lewy bodies, frontotemporal dementia, amyotrophic lateral sclerosis, prion diseases, hereditary ataxias, Dentatorubral-pallidoluysian atrophy and Wilson's disease. After a brief report of available direct-to-consumer genetic tests, we address the juxtaposition of earlier disease identification with assumed reluctance towards predictive genetic testing. Forty-one studies examining health related outcomes following predictive genetic testing for neurodegenerative disease suggested that (a) extreme or catastrophic outcomes are rare; (b) consequences commonly include transiently increased anxiety and/or depression; (c) most participants report no regret; (d) many persons report extensive benefits to receiving genetic information; and (e) stigmatization and discrimination for genetic diseases are poorly understood and policy and laws are needed. Caution is appropriate for earlier identification of neurodegenerative diseases but findings suggest further progress is safe, feasible and likely to advance clinical care. PMID:24036231

  7. Rapakivi texture formation via disequilibrium melting in a contact partial melt zone, Antarctica

    NASA Astrophysics Data System (ADS)

    Currier, R. M.

    2017-12-01

    In the McMurdo Dry Valleys of Antarctica, a Jurassic aged dolerite sill induced partial melting of granite in the shallow crust. The melt zone can be traced in full, from high degrees of melting (>60%) along the dolerite contact, to no apparent signs of melting, 10s of meters above the contact. Within this melt zone, the well-known rapakivi texture is found, arrested in various stages of development. High above the contact, and at low degrees of melting, K-feldspar crystals are slightly rounded and unmantled. In the lower half of the melt zone, mantles of cellular textured plagioclase appear on K-feldspar, and thicken towards the contact heat source. At the highest degrees of melting, cellular-textured plagioclase completely replaces restitic K-feldspar. Because of the complete exposure and intact context, the leading models of rapakivi texture formation can be tested against this system. The previously proposed mechanisms of subisothermal decompression, magma-mixing, and hydrothermal exsolution all fail to adequately describe rapakivi generation in this melt zone. Preferred here is a closed system model that invokes the production of a heterogeneous, disequilibrium melt through rapid heating, followed by calcium and sodium rich melt reacting in a peritectic fashion with restitic K-feldspar crystals. This peritectic reaction results in the production of plagioclase of andesine-oligoclase composition—which is consistent with not just mantles in the melt zone, but globally as well. The thickness of the mantle is diffusion limited, and thus a measure of the diffusive length scale of sodium and calcium over the time scale of melting. Thermal modeling provides a time scale of melting that is consistent with the thickness of observed mantles. Lastly, the distribution of mantled feldspars is highly ordered in this melt zone, but if it were mobilized and homogenized—mixing together cellular plagioclase, mantled feldspars, and unmantled feldspars—the result would be

  8. Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: Implications for melt distribution and melt fraction in the upper mantle

    NASA Astrophysics Data System (ADS)

    Yoshino, Takashi; Laumonier, Mickael; McIsaac, Elizabeth; Katsura, Tomoo

    2010-07-01

    Electrical impedance measurements were performed on two types of partial molten samples with basaltic and carbonatitic melts in a Kawai-type multi-anvil apparatus in order to investigate melt fraction-conductivity relationships and melt distribution of the partial molten mantle peridotite under high pressure. The silicate samples were composed of San Carlos olivine with various amounts of mid-ocean ridge basalt (MORB), and the carbonate samples were a mixture of San Carlos olivine with various amounts of carbonatite. High-pressure experiments on the silicate and carbonate systems were performed up to 1600 K at 1.5 GPa and up to at least 1650 K at 3 GPa, respectively. The sample conductivity increased with increasing melt fraction. Carbonatite-bearing samples show approximately one order of magnitude higher conductivity than basalt-bearing ones at the similar melt fraction. A linear relationship between log conductivity ( σbulk) and log melt fraction ( ϕ) can be expressed well by the Archie's law (Archie, 1942) ( σbulk/ σmelt = Cϕn) with parameters C = 0.68 and 0.97, n = 0.87 and 1.13 for silicate and carbonate systems, respectively. Comparison of the electrical conductivity data with theoretical predictions for melt distribution indicates that the model assuming that the grain boundary is completely wetted by melt is the most preferable melt geometry. The gradual change of conductivity with melt fraction suggests no permeability jump due to melt percolation at a certain melt fraction. The melt fraction of the partial molten region in the upper mantle can be estimated to be 1-3% and ˜ 0.3% for basaltic melt and carbonatite melt, respectively.

  9. Earlier Age at Menopause, Work and Tobacco Smoke Exposure

    PubMed Central

    Fleming, Lora E; Levis, Silvina; LeBlanc, William G; Dietz, Noella A; Arheart, Kristopher L; Wilkinson, James D; Clark, John; Serdar, Berrin; Davila, Evelyn P; Lee, David J

    2009-01-01

    Objective Earlier age at menopause onset has been associated with increased all cause, cardiovascular, and cancer mortality risks. Risk of earlier age at menopause associated with primary and secondary tobacco smoke exposure was assessed. Design Cross-sectional study using a nationally representative sample of US women. Methods 7596 women participants (representing an estimated 79 million US women) from the National Health and Nutrition Examination Survey III were asked: time since last menstrual period, occupation, and tobacco use (including home and workplace secondhand smoke (SHS) exposure). Blood cotinine and follicle-stimulating hormone (FSH) levels were assessed. Logistic regressions for the odds of earlier age at menopause, stratified on race/ethnicity in women 25-50 years and adjusted for survey design, were controlled for age, BMI, education, tobacco smoke exposure, and occupation. Results Among 5029 US women ≥ 25 years with complete data, earlier age at menopause was found among all smokers, and among service and manufacturing industry sector workers. Among women age 25-50 years, there was an increased risk of earlier age at menopause with both primary smoking and with SHS exposure, particularly among Black women. Conclusions Primary tobacco use and SHS exposure were associated with an increased odds of earlier age at menopause in a representative sample of US women. Earlier age at menopause was found for some women worker groups with greater potential occupational SHS exposure. Thus, control of SHS exposures in the workplace may decrease the risk of mortality and morbidity associated with earlier age at menopause in US women workers. PMID:18626414

  10. Internal stress-induced melting below melting temperature at high-rate laser heating

    NASA Astrophysics Data System (ADS)

    Hwang, Yong Seok; Levitas, Valery I.

    2014-06-01

    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q ≤1.51×1010K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 1011 K/s and 936.9 K for Q = 1.46 × 1012 K/s.

  11. Auspicious birth dates among Chinese in California.

    PubMed

    Almond, Douglas; Chee, Christine Pal; Sviatschi, Maria Micaela; Zhong, Nan

    2015-07-01

    The number eight is considered lucky in Chinese culture, e.g. the Beijing Olympics began at 8:08 pm on 8/8/2008. Given the potential for discretion in selecting particular dates of labor induction or scheduled Cesarean section (C-section), we consider whether Chinese-American births in California occur disproportionately on the 8th, 18th, or 28th day of the month. We find 2.3% "too many" Chinese births on these auspicious birth dates, whereas Whites show no corresponding increase. The increase in Chinese births is driven by higher parity C-sections: the number of repeat C-sections is 6% "too high" on auspicious birth dates. Sons born to Chinese parents account for the entire increase; daughter deliveries do not seem to be timed to achieve "lucky" birth dates. We also find avoidance of repeat C-section deliveries on the 4th, 14th, and 24th of the month, considered unlucky in Chinese culture. Finally, we replicate earlier work finding that Friday the 13th delivery dates are avoided and document a particularly large decrease among Chinese. For Whites and Chinese in California, mothers with higher levels of education are particularly likely to avoid delivering on the 13th. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Monitoring Snow on ice as Critical Habitat for Ringed Seals

    NASA Astrophysics Data System (ADS)

    Kelly, B. P.; Moran, J.; Douglas, D. C.; Nghiem, S. V.

    2007-12-01

    Ringed seals are the primary prey of polar bears, and they are found in all seasonally ice covered seas of the northern hemisphere as well as in several freshwater lakes. The presence of snow covered sea ice is essential for successful ringed seal reproduction. Ringed seals abrade holes in the ice allowing them to surface and breathe under the snow cover. Where snow accumulates to sufficient depths, ringed seals excavate subnivean lairs above breathing holes. They rest, give birth, and nurse their young in those lairs. Temperatures within the lairs remain within a few degrees of freezing, well within the zone of thermal neutrality for newborn ringed seals, even at ambient temperatures of -30° C. High rates of seal mortality have been recorded when early snow melt caused lairs to collapse exposing newborn seals to predators and to subsequent extreme cold events. As melt onset dates come earlier in the Arctic Ocean, ringed seal populations (and the polar bears that depend upon them) will be increasingly challenged. We determined dates of lair abandonment by ringed seals fitted with radio transmitters in the Beaufort Sea (n = 60). We compared abandonment dates to melt onset dates measured in the field, as well as estimated dates derived from active (Ku-band backscatter) and passive (SSM/I) microwave satellite imagery. Date of snow melt significantly improved models of environmental influences on the timing of lair abandonment. We used an algorithm based on multi-channel means and variances of passive microwave data to detect melt onset dates. Those melt onset dates predicted the date of lair abandonment ± 3 days (r 2 = 0.982, p = 0.001). The predictive power of passive microwave proxies combined with their historical record suggest they could serve to monitor critical changes to ringed seal habitat.

  13. Melting Conditions of Basaltic Volcanism from Collision to Escape in the Central Anatolian Volcanic Province

    NASA Astrophysics Data System (ADS)

    Maloney, P. M.; Reid, M. R.; Cosca, M. A.; Gencalioglu Kuscu, G.

    2013-12-01

    Both Miocene and Quaternary mafic volcanics have erupted in the vicinity of the present-day Central Anatolian fault zone since the cessation of Afro-Arabian subduction and continent-continent collision, and the initiation of tectonic escape. We report results for samples from the Central Anatolian Volcanic Province (near Hasan volcano) and the Sarkisla region of the Sivas basin (250 km NE of Hasandag) analyzed with the goal of understanding the melting conditions responsible for the post-collisional magmatism in these regions. New 40Ar/39Ar dates for basalts erupted near Hasan range in age from 2.58 +/- 0.08 Ma to 62 +/- 4 ka. A majority of the dates cluster at ~400 ka, ages similar to those documented by Notsu et al, 1995. These subalkaline basalts have Zn/Fe and FC3MS [(FeO*/CaO)-3x(MgO/SiO2)] concentrations (10.0-11.4 and 0.05-0.39, respectively) expected for basalts produced by melting of peridotite (Le Roux et al, 2011, Yang and Zhou, 2013). Using olivine-opx-melt thermobarometry (Lee et al, 2009), the samples are determined to have been extracted from the mantle at 1.2-1.8 GPa and 1314-1391 °C. Clinopyroxene thermobarometry (Putirka, 2003) shows that they then crystallized at 0.7 GPa and ~1200°C. Enrichments in LILE:HFSE, most likely imparted to the magmas from mantle lithosphere which has been enriched by previous subduction zone metasomatism, is present in all of the samples. Accordingly, basalts sampled near Hasan are derived from a shallow lithospheric mantle peridotite source that has been affected by Afro-Arabian subduction prior to collision. New 40Ar/39Ar dates for basanites and basalts from the Sarkisla region show that they erupted between 17.6 +/- 0.4 Ma and 14.09 +/- 0.09 Ma. They have elsewhere been reported to be Plio-Pleistocene in age (Parlak et al., 2001). Zn/Fe and FC3MS for these basalts (Zn/Fe: 10.4-12.6, FC3MS: 0.29-0.91) range to values above the maximum value produced by peridotite melts (~10.8 and 0.65, respectively). Therefore

  14. Cloud screening and melt water detection over melting sea ice using AATSR/SLSTR

    NASA Astrophysics Data System (ADS)

    Istomina, Larysa; Heygster, Georg

    2014-05-01

    With the onset of melt in the Arctic Ocean, the fraction of melt water on sea ice, the melt pond fraction, increases. The consequences are: the reduced albedo of sea ice, increased transmittance of sea ice and affected heat balance of the system with more heat passing through the ice into the ocean, which facilitates further melting. The onset of melt, duration of melt season and melt pond fraction are good indicators of the climate state of the Arctic and its change. In the absence of reliable sea ice thickness retrievals in summer, melt pond fraction retrieval from satellite is in demand as input for GCM as an indicator of melt state of the sea ice. The retrieval of melt pond fraction with a moderate resolution radiometer as AATSR is, however, a non-trivial task due to a variety of subpixel surface types with very different optical properties, which give non-unique combinations if mixed. In this work this has been solved by employing additional information on the surface and air temperature of the pixel. In the current work, a concept of melt pond detection on sea ice is presented. The basis of the retrieval is the sensitivity of AATSR reflectance channels 550nm and 860nm to the amount of melt water on sea ice. The retrieval features extensive usage of a database of in situ surface albedo spectra. A tree of decisions is employed to select the feasible family of in situ spectra for the retrieval, depending on the melt stage of the surface. Reanalysis air temperature at the surface and brightness temperature measured by the satellite sensor are analyzed in order to evaluate the melting status of the surface. Case studies for FYI and MYI show plausible retrieved melt pond fractions, characteristic for both of the ice types. The developed retrieval can be used to process the historical AATSR (2002-2012) dataset, as well as for the SLSTR sensor onboard the future Sentinel-3 mission (scheduled for launch in 2015), to keep the continuity and obtain longer time sequence

  15. Internal stress-induced melting below melting temperature at high-rate laser heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Yong Seok, E-mail: yshwang@iastate.edu; Levitas, Valery I., E-mail: vlevitas@iastate.edu

    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamicmore » equilibrium temperatures for the heating rate Q≤1.51×10{sup 10}K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 10{sup 11 }K/s and 936.9 K for Q = 1.46 × 10{sup 12 }K/s.« less

  16. Comparison of snow melt properties across multiple spatial scales and landscape units in interior sub-Arctic boreal Alaskan watersheds

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Cherry, J. E.; Hiemstra, C. A.; Bolton, W. R.

    2013-12-01

    Interior sub-Arctic Alaskan snow cover is rapidly changing and requires further study for correct parameterization in physically based models. This project undertook field studies during the 2013 snow melt season to capture snow depth, snow temperature profiles, and snow cover extent to compare with observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor at four different sites underlain by discontinuous permafrost. The 2013 melt season, which turned out to be the latest snow melt period on record, was monitored using manual field measurements (SWE, snow depth data collection), iButtons to record temperature of the snow pack, GoPro cameras to capture time lapse of the snow melt, and low level orthoimagery collected at ~1500 m using a Navion L17a plane mounted with a Nikon D3s camera. Sites were selected across a range of landscape conditions, including a north facing black spruce hill slope, a south facing birch forest, an open tundra site, and a high alpine meadow. Initial results from the adjacent north and south facing sites indicate a highly sensitive system where snow cover melts over just a few days, illustrating the importance of high resolution temporal data capture at these locations. Field observations, iButtons and GoPro cameras show that the MODIS data captures the melt conditions at the south and the north site with accuracy (2.5% and 6.5% snow cover fraction present on date of melt, respectively), but MODIS data for the north site is less variable around the melt period, owing to open conditions and sparse tree cover. However, due to the rapid melt rate trajectory, shifting the melt date estimate by a day results in a doubling of the snow cover fraction estimate observed by MODIS. This information can assist in approximating uncertainty associated with remote sensing data that is being used to populate hydrologic and snow models (the Sacramento Soil Moisture Accounting model, coupled with SNOW-17, and the Variable

  17. Preserved Flora and Organics in Impact Melt Breccias

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Harris, R. Scott; Clemett, S. J.; Thomas-Keprta, K. L.; Zarate, M.

    2014-01-01

    At least seven glass-bearing strata of varying ages occur at different horizons in the Pampean sediments of Argentina dating back to the Miocene. In a strict sense, these impact glasses are melt-matrix breccias composed of partially digested minerals clasts and basement fragments indicative of crater excavation. Ar-40/Ar-39 dating yield ages (+/- 2 sigma) of 6 +/- 2 Ka, 114 +/- 26 Ka, 230 +/- 30 Ka, 445 +/- 21 Ka, 3.27 +/- 0.08 Ma (near Mar del Plata = MdP), 5.28 +/- 0.04 Ma, and 9.21 +/- 0.08 Ma (near Chasico = CH) Where found in place (not reworked), these ages are consistent with the local stratigraphy and faunal assemblages. A striking property of some of these impact glasses is the encapsulation of preserved fragments of floral (and even soft-tissue faunal remains). Here we identify retained organics and describe a likely process of encapsulation and preservation.

  18. Investigating evaporation of melting ice particles within a bin melting layer model

    NASA Astrophysics Data System (ADS)

    Neumann, Andrea J.

    Single column models have been used to help develop algorithms for remote sensing retrievals. Assumptions in the single-column models may affect the assumptions of the remote sensing retrievals. Studies of the melting layer that use single column models often assume environments that are near or at water saturation. This study investigates the effects of evaporation upon melting particles to determine whether the assumption of negligible mass loss still holds within subsaturated melting layers. A single column, melting layer model is modified to include the effects of sublimation and evaporation upon the particles. Other changes to the model include switching the order in which the model loops over particle sizes and model layers; including a particle sedimentation scheme; adding aggregation, accretion, and collision and coalescence processes; allowing environmental variables such as the water vapor diffusivity and the Schmidt number to vary with the changes in the environment; adding explicitly calculated particle temperature, changing the particle terminal velocity parameterization; and using a newly-derived effective density-dimensional relationship for use in particle mass calculations. Simulations of idealized melting layer environments show that significant mass loss due to evaporation during melting is possible within subsaturated environments. Short melting distances, accelerating particle fall speeds, and short melting times help constrain the amount of mass lost due to evaporation while melting is occurring, even in subsaturated profiles. Sublimation prior to melting can also be a significant source of mass loss. The trends shown on the particle scale also appear in the bulk distribution parameters such as rainfall rate and ice water content. Simulations incorporating observed melting layer environments show that significant mass loss due to evaporation during the melting process is possible under certain environmental conditions. A profile such as the

  19. Paradise Lost: Uncertainties in melting and melt extraction processes beneath oceanic spreading ridges

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.

    2014-12-01

    In many ways, decompression melting and focused melt transport beneath oceanic spreading ridges is the best understood igneous process on Earth. However, there are remaining - increasing - uncertainties in interpreting residual mantle peridotites. Indicators of degree of melting in residual peridotite are questionable. Yb concentration and spinel Cr# are affected by (a) small scale variations in reactive melt transport, (b) variable extents of melt extraction, and (c) "impregnation", i.e. partial crystallization of cooling melt in pore space. Roughly 75% of abyssal peridotites have undergone major element refertilization. Many may have undergone several melting events. The following three statements are inconsistent: (1) Peridotite melt productivity beyond cpx exhaustion is > 0.1%/GPa. (2) Crustal thickness is independent of spreading rate at rates > 2 cm/yr full rate (excluding ultra-slow spreading ridges). (3) Thermal models predict, and observations confirm, thick thermal boundary layers beneath slow spreading ridges. If (a) melt productivity is << 0.1%/GPa beyond cpx-out, and (b) cpx-out occurs > 15 km below the seafloor beneath most ridges, then the independence of crustal thickness with spreading rate can be understood. Most sampled peridotites from ridges melted beyond cpx-out. Cpx in these rocks formed via impregnation and/or exsolution during cooling. Most peridotites beneath ridges may undergo cpx exhaustion during decompression melting. This would entail an upward modification of potential temperature estimates. Alternatively, perhaps oceanic crustal thickness does vary with spreading rate but this is masked by complicated tectonics and serpentinization at slow-spreading ridges. Dissolution channels (dunites) are predicted to coalesce downstream, but numerical models of these have not shown why > 95% of oceanic crust forms in a zone < 5 km wide. There may be permeability barriers guiding deeper melt toward the ridge, but field studies have not identified

  20. Melt fracture revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, J. M.

    2003-07-16

    In a previous paper the author and Demay advanced a model to explain the melt fracture instability observed when molten linear polymer melts are extruded in a capillary rheometer operating under the controlled condition that the inlet flow rate was held constant. The model postulated that the melts were a slightly compressible viscous fluid and allowed for slipping of the melt at the wall. The novel feature of that model was the use of an empirical switch law which governed the amount of wall slip. The model successfully accounted for the oscillatory behavior of the exit flow rate, typically referredmore » to as the melt fracture instability, but did not simultaneously yield the fine scale spatial oscillations in the melt typically referred to as shark skin. In this note a new model is advanced which simultaneously explains the melt fracture instability and shark skin phenomena. The model postulates that the polymer is a slightly compressible linearly viscous fluid but assumes no slip boundary conditions at the capillary wall. In simple shear the shear stress {tau}and strain rate d are assumed to be related by d = F{tau} where F ranges between F{sub 2} and F{sub 1} > F{sub 2}. A strain rate dependent yield function is introduced and this function governs whether F evolves towards F{sub 2} or F{sub 1}. This model accounts for the empirical observation that at high shears polymers align and slide more easily than at low shears and explains both the melt fracture and shark skin phenomena.« less

  1. The impact pseudotachylitic breccia controversy: Insights from first isotope analysis of Vredefort impact-generated melt rocks

    NASA Astrophysics Data System (ADS)

    Reimold, Wolf Uwe; Hauser, Natalia; Hansen, Bent T.; Thirlwall, Matthew; Hoffmann, Marie

    2017-10-01

    origin of these breccias from local lithologies only. Here, the first Rb-Sr, Sm-Nd, and U-Pb isotopic data for Vredefort pseudotachylitic breccias and their host rocks, in comparison to data for Vredefort Granophyre (impact melt rock), are presented. They strongly support that the pseudotachylitic breccias were exclusively formed from local precursor lithologies - in agreement with earlier isotopic results for Sudbury Breccia and chemical results for Vredefort pseudotachylitic breccias. A contribution from a Granophyre-like impact melt component to form Vredefort pseudotachylitic breccia is not indicated. The most likely process for the genesis of voluminous pseudotachylitic breccias in large impact structures remains decompression melting upon formation and collapse of the central uplift, during the modification stage of impact cratering.

  2. Multi-stage barites in partially melted UHP eclogite: implications for fluid/melt activities during deep continental subduction in the Sulu orogenic belt

    NASA Astrophysics Data System (ADS)

    Wang, Songjie; Wang, Lu

    2015-04-01

    Barite (BaSO4) is well-known from deep-sea sedimentary environments but has received less attention to its presence in high-grade metamorphic rocks. Recently, barite in ultrahigh pressure (UHP) eclogite has drawn increasing attention from geologists, especially in the Dabie-Sulu orogen, since it is an important indicator for high-salinity fluid events, thus aiding in further understanding HP-UHP fluid / melt evolution. However, its formation time and mechanism in UHP eclogite are still controversial, with three representative viewpoints: (1) Liu et al. (2000) found barite-anhydrite-coesite inclusions in zircon and interpreted them to have formed by UHP metamorphic fluids; (2) Zeng et al. (2007) recognized isolated barite within K-feldspar (Kfs) and Quartz (Qz) surrounded by radial cracks in omphacite, and interpreted Kfs+Qz to be reaction products of potassium-rich fluid/melt and coesite, with the barite formed by prograde metamorphic fluids; (3) Gao et al. (2012) and Chen et al. (2014) found barite-bearing Multiphase Solid (MS) inclusions within garnet and omphacite and assumed that the barite formed by phengite breakdown possibly caused by eclogite partial melting during exhumation, though no direct evidence were proposed. The controversy above is mainly due to the lack of direct formation evidence and absence of a clear link with the metamorphic evolution of UHP eclogite along the subduction-exhumation path. We report detailed petrological and micro-structural analyses revealing four types of barites clearly linked with (1) the prograde, (2) earlier stage of partial melting and (3) later stage of crystallization differentiation, as well as (4) high-grade amphibolite-facies retrogression of a deeply subducted and partially melted intergranular coesite-bearing eclogite from Yangkou Bay, Sulu Orogen. Round barite inclusions (type-I) within UHP-stage garnet and omphacite are formed by internally buffered fluids from mineral dehydration during prograde metamorphism

  3. Partial melting of TTG gneisses: crustal contamination and the production of granitic melts

    NASA Astrophysics Data System (ADS)

    Meade, F. C.; Masotta, M.; Troll, V. R.; Freda, C.; Johnson, T. E.; Dahren, B.

    2011-12-01

    Understanding partial melting of ancient TTG gneiss terranes is crucial when considering crustal contamination in volcanic systems, as these rocks are unlikely to melt completely at magmatic temperatures (1000-1200 °C) and crustal pressures (<500 MPa). Variations in the bulk composition of the gneiss, magma temperature, pressure (depth) and the composition and abundance of any fluids present will produce a variety of melt compositions, from partial melts enriched in incompatible elements to more complete melts, nearing the bulk chemistry of the parent gneiss. We have used piston cylinder experiments to simulate partial melting in a suite of 12 gneisses from NW Scotland (Lewisian) and Eastern Greenland (Ammassalik, Liverpool Land) under magma chamber temperature and pressure conditions (P=200 MPa, T=975 °C). These gneisses form the basement to much of the North Atlantic Igneous Province, where crustal contamination of magmas was commonplace but the composition of the crustal partial melts are poorly constrained [1]. The experiments produced partial melts in all samples (e.g. Fig 1). Electron microprobe analyses of glasses indicate they are compositionally heterogeneous and are significantly different from the whole rock chemistry of the parent gneisses. The melts have variably evolved compositions but are typically trachy-dacitic to rhyolitic (granitic). This integrated petrological, experimental and in-situ geochemical approach allows quantification of the processes of partial melting of TTG gneiss in a volcanic context, providing accurate major/trace element and isotopic (Sr, Pb) end-members for modeling crustal contamination. The experimental melts and restites will be compared geochemically with a suite of natural TTG gneisses, providing constraints on the extent to which the gneisses have produced and subsequently lost melt. [1] Geldmacher et al. (2002) Scottish Journal of Geology, v.38, p.55-61.

  4. What Models and Satellites Tell Us (and Don't Tell Us) About Arctic Sea Ice Melt Season Length

    NASA Astrophysics Data System (ADS)

    Ahlert, A.; Jahn, A.

    2017-12-01

    Melt season length—the difference between the sea ice melt onset date and the sea ice freeze onset date—plays an important role in the radiation balance of the Arctic and the predictability of the sea ice cover. However, there are multiple possible definitions for sea ice melt and freeze onset in climate models, and none of them exactly correspond to the remote sensing definition. Using the CESM Large Ensemble model simulations, we show how this mismatch between model and remote sensing definitions of melt and freeze onset limits the utility of melt season remote sensing data for bias detection in models. It also opens up new questions about the precise physical meaning of the melt season remote sensing data. Despite these challenges, we find that the increase in melt season length in the CESM is not as large as that derived from remote sensing data, even when we account for internal variability and different definitions. At the same time, we find that the CESM ensemble members that have the largest trend in sea ice extent over the period 1979-2014 also have the largest melt season trend, driven primarily by the trend towards later freeze onsets. This might be an indication that an underestimation of the melt season length trend is one factor contributing to the generally underestimated sea ice loss within the CESM, and potentially climate models in general.

  5. Adakitic (tonalitic-trondhjemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to continental collision

    NASA Astrophysics Data System (ADS)

    Song, Shuguang; Niu, Yaoling; Su, Li; Wei, Chunjing; Zhang, Lifei

    2014-04-01

    Modern adakite or adakitic rocks are thought to result from partial melting of younger and thus warmer subducting ocean crust in subduction zones, with the melt interacting with or without mantle wedge peridotite during ascent, or from melting of thickened mafic lower crust. Here we show that adakitic (tonalitic-trondhjemitic) melts can also be produced by eclogite decompression during exhumation of subducted and metamorphosed oceanic/continental crust in response to continental collision, as exemplified by the adakitic rocks genetically associated with the early Paleozoic North Qaidam ultra-high pressure metamorphic (UHPM) belt on the northern margin of the Greater Tibetan Plateau. We present field evidence for partial melting of eclogite and its products, including adakitic melt, volumetrically significant plutons evolved from the melt, cumulate rocks precipitated from the melt, and associated granulitic residues. This “adakitic assemblage” records a clear progression from eclogite decompression and heating to partial melting, to melt fractionation and ascent/percolation in response to exhumation of the UHPM package. The garnetite and garnet-rich layers in the adakitic assemblage are of cumulate origin from the adakitic melt at high pressure, and accommodate much of the Nb-Ta-Ti. Zircon SHRIMP U-Pb dating shows that partial melting of the eclogite took place at ∼435-410 Ma, which postdates the seafloor subduction (>440 Ma) and temporally overlaps the UHPM (∼440-425 Ma). While the geological context and the timing of adakite melt formation we observe differ from the prevailing models, our observations and documentations demonstrate that eclogite melting during UHPM exhumation may be important in contributing to crustal growth.

  6. Evidence for melt partitioning between olivine and orthopyroxene in partially molten harzburgite

    NASA Astrophysics Data System (ADS)

    Miller, K.; Zhu, W.; Montesi, L. G.; Le Roux, V.; Gaetani, G. A.

    2013-12-01

    During melting at mid-ocean ridges, melt is driven into an equilibrium, minimum-energy configuration by surface energy gradients between solid-solid and solid-liquid phase boundaries. Such a configuration, where melt is mostly restricted to three and four-grain junctions, acts as a porous medium through which melt can percolate to the surface. For a monomineralic system, melt is distributed evenly among all grains. However, in mineralogical heterogeneous systems, melt partitions unevenly between the various solid phases to minimize the total energy of the system. In a ocean ridge melting environment, where olivine is often juxtaposed against orthopyroxene (opx), lithologic partitioning is expected to turn olivine-rich regions into high-permeability conduits, through which melt can be quickly extracted, drastically increasing the permeability of the mantle [Zhu and Hirth, 2003]. Lithologic partitioning has been demonstrated in experiments using analogue systems [Watson, 1999]; however, to date, no experiment has confirmed its existence in partially molten mantle systems. We present experimental results that determine the degree of melt partitioning between olivine and opx in partially molten harzburgites. Samples were prepared from a powdered mixture of oxides and carbonates and then hot-pressed in a solid-media piston-cylinder apparatus at 1350°C and 1.5GPa [Zhu et al., 2011] to achieve an 82/18 vol. % ratio of olivine to opx. Prior to hot-pressing, basalt was added to the powdered mixtures in various proportions to test for lithologic partitioning across a range of melt fractions. Three-dimensional, 700nm-resolution images of our samples were obtained using synchrotron X-ray microtomography on the 2BM station of the Advanced Photon Source at Argonne National Labs. Image data were filtered using an anisotropic diffusion filter to enhance phase contrast and then segmented to produce binary representations of each phase. In order to quantitatively demonstrate

  7. Simple Rules Govern the Patterns of Arctic Sea Ice Melt Ponds.

    PubMed

    Popović, Predrag; Cael, B B; Silber, Mary; Abbot, Dorian S

    2018-04-06

    Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a reliable model of pond geometry does not currently exist. Here we show that a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The only two model parameters, characteristic circle radius and coverage fraction, are chosen by comparing, between the model and the aerial photographs of the ponds, two correlation functions which determine the typical pond size and their connectedness. Using these parameters, the void model robustly reproduces the ponds' area-perimeter and area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation functions of ponds on several dates, we also find that the pond scale and the connectedness are surprisingly constant across different years and ice types. Moreover, we find that ponds resemble percolation clusters near the percolation threshold. These results demonstrate that the geometry and abundance of Arctic melt ponds can be simply described, which can be exploited in future models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic warming.

  8. Simple Rules Govern the Patterns of Arctic Sea Ice Melt Ponds

    NASA Astrophysics Data System (ADS)

    Popović, Predrag; Cael, B. B.; Silber, Mary; Abbot, Dorian S.

    2018-04-01

    Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a reliable model of pond geometry does not currently exist. Here we show that a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The only two model parameters, characteristic circle radius and coverage fraction, are chosen by comparing, between the model and the aerial photographs of the ponds, two correlation functions which determine the typical pond size and their connectedness. Using these parameters, the void model robustly reproduces the ponds' area-perimeter and area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation functions of ponds on several dates, we also find that the pond scale and the connectedness are surprisingly constant across different years and ice types. Moreover, we find that ponds resemble percolation clusters near the percolation threshold. These results demonstrate that the geometry and abundance of Arctic melt ponds can be simply described, which can be exploited in future models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic warming.

  9. Glaciation control of melting rates in the mantle: U-Th systematics of young basalts from Southern Siberia and Central Mongolia

    NASA Astrophysics Data System (ADS)

    Rasskazov, S.; Chebykin, E.

    2012-04-01

    Eastern Sayans, Siberia and Hangay, Central Mongolia are mountainous uplifts effected by Quaternary volcanism, but only the former area was covered by glaciers that were as thick as 500 m. Glaciation time intervals were marked by moraines and sub-glacial hyaloclastite-bearing volcanic edifices, whereas interglacial ones were exhibited by sub-aerial "valley" flows and cinder cones. To estimate temporal variations of maximum rates of melting and mantle upwelling in the glacial and glacial-free areas, we measured radionuclides of the U-Th system for 74 samples of the Middle-Late Pleistocene through Holocene basalts by ICP-MS technique (Chebykin et al. Russian Geol. Geophys. 2004. 45: 539-556) using mass-spectrometer Agilent 7500ce. The obtained U-Th isochron ages for the Pleistocene volcanic units in the age interval of the last 400 Kyr are mostly consistent with results of K-Ar dating. The measured (230Th/238U) ratios for the Holocene basalts from both areas are within the same range of 1.08-1.16 (parentheses denote units of activity), whereas the 50 Kyr lavas yield, respectively, the higher and lower initial (230Th0/238U) ratios (1.18-1.46 and 1.05-1.13). This discrepancy demonstrates contrast maximum rates of melting in conventional garnet peridotite sources. We suggest that this dynamical feature was provided by the abrupt Late Pleistocene deglaciation that caused the mantle decompression expressed by the earlier increasing melting beneath Eastern Sayans than beneath Hangay. In the last 400 Kyr, magmatic liquids from both Eastern Sayans and Hangay showed the overall temporal decreasing (230Th0/238U) (i.e. relative increasing rates of melting and upwelling of the mantle) with the systematically lower isotopic ratios (i.e. increased mantle activity) in the former area than in the latter. The 400 Kyr phonotephrites in Hangay showed elevated concentrations of Th (6-8 ppm) and Th/U (3.7-3.9). The high (230Th0/238U) (4.3-6.0) reflected slow fractional melting

  10. On Thermocapillary Mechanism of Spatial Separation of Metal Melts

    NASA Astrophysics Data System (ADS)

    Demin, V. A.; Mizev, A. I.; Petukhov, M. I.

    2018-02-01

    Theoretical research has been devoted to the study of binary metal melts behavior in a thin capillary. Earlier it has been found experimentally that unusually significant and quick redistribution of melts components takes place along capillary after the cooling. Numerical simulation of concentration-induced convection has been carried out to explain these experimental data. Two-component melt of both liquid metals filling vertical thin capillary with non-uniform temperature distribution on the boundaries is considered. It is assumed that the condition of absolute non-wetting is valid on the sidewalls. Because of this effect there is a free surface on vertical boundaries, where thermocapillary force is appeared due to the external longitudinal temperature gradient. It makes to move liquid elements at a big distance, compared with axial size of capillary. Effects of adsorption-desorption on the surface, thermal and concentration-capillary forces, convective motion in a volume and diffusion generate the large-scale circulation. This process includes the admixture carrying-out on the surface in the more hot higher part of the channel, its following transfer down along the boundary due to the thermocapillary force and its return in the volume over the desorption in the lower part of capillary. Intensity of motion and processes of adsorption-desorption on the free boundary have the decisive influence upon the formation of concentration fields and speed of components redistribution. Thus, one of the possible mechanisms of longitudinal division on components of liquid binary mixtures in thin channels has been demonstrated.

  11. Trends of earlier palliative care consultation in advanced cancer patients receiving palliative radiation therapy.

    PubMed

    Chang, Sanders; Sigel, Keith; Goldstein, Nathan E; Wisnivesky, Juan; Dharmarajan, Kavita V

    2018-06-06

    The American Society of Clinical Oncology recommends that all patients with metastatic disease receive dedicated palliative care (PC) services early in their illness, ideally via interdisciplinary care teams. We investigated the time trends of specialty palliative care consultations from the date of metastatic cancer diagnosis among patients receiving palliative radiation therapy (PRT). A shorter time interval between metastatic diagnosis and first PC consultation suggests earlier involvement of palliative care in a patient's life with metastatic cancer. In this IRB-approved retrospective analysis, patients treated with PRT for solid tumors (bone and brain) at a single tertiary care hospital between 2010 and 2016 were included. Cohorts were arbitrarily established by metastatic diagnosis within approximately two-year intervals: (1) 1/1/2010-3/27/2012; (2) 3/28/2012-5/21/2014; and (3) 5/22/2014-12/31/2016. Cox-proportional hazards regression modelling was used to compare trends of PC consultation among cohorts. Of 284 patients identified, 184 patients received PC consultation, whereas 15 patients died before receiving a PC consult. Median follow-up time until an event or censor was 257 days (range: 1,900). Patients in the most recent cohort had a shorter median time to first PC consult (57 days) compared to those in the first (374 days) and second (186 days) cohorts. On multivariable analysis, patients in the third cohort were more likely to undergo a PC consultation earlier in their metastatic illness (HR: 1.8, 95% CI: 1.2,2.8). Over a six-year period, palliative care consultation occurred earlier for metastatic patients treated with PRT at our institution. Copyright © 2018. Published by Elsevier Inc.

  12. 38 CFR 21.324 - Reduction or termination dates of subsistence allowance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... earlier date under other provisions. (Authority: 38 U.S.C. 5112(b), 5113) (e) Child—(1) Marriage—(i) Before October 1, 1982. Last day of the month in which the marriage occurs, unless the veteran's program..., 1982. Last day of the month in which the marriage occurs, unless discontinuance is required at an...

  13. 38 CFR 21.324 - Reduction or termination dates of subsistence allowance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... earlier date under other provisions. (Authority: 38 U.S.C. 5112(b), 5113) (e) Child—(1) Marriage—(i) Before October 1, 1982. Last day of the month in which the marriage occurs, unless the veteran's program..., 1982. Last day of the month in which the marriage occurs, unless discontinuance is required at an...

  14. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment maymore » be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.« less

  15. A non-destructive method for dating human remains

    USGS Publications Warehouse

    Lail, Warren K.; Sammeth, David; Mahan, Shannon; Nevins, Jason

    2013-01-01

    The skeletal remains of several Native Americans were recovered in an eroded state from a creek bank in northeastern New Mexico. Subsequently stored in a nearby museum, the remains became lost for almost 36 years. In a recent effort to repatriate the remains, it was necessary to fit them into a cultural chronology in order to determine the appropriate tribe(s) for consultation pursuant to the Native American Grave Protection and Repatriation Act (NAGPRA). Because the remains were found in an eroded context with no artifacts or funerary objects, their age was unknown. Having been asked to avoid destructive dating methods such as radiocarbon dating, the authors used Optically Stimulated Luminescence (OSL) to date the sediments embedded in the cranium. The OSL analyses yielded reliable dates between A.D. 1415 and A.D. 1495. Accordingly, we conclude that the remains were interred somewhat earlier than A.D. 1415, but no later than A.D. 1495. We believe the remains are from individuals ancestral to the Ute Mouache Band, which is now being contacted for repatriation efforts. Not only do our methods contribute to the immediate repatriation efforts, they provide archaeologists with a versatile, non-destructive, numerical dating method that can be used in many burial contexts.

  16. Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al.

    PubMed

    Liu, Zhong-Li; Zhang, Xiu-Lu; Cai, Ling-Cang

    2015-09-21

    A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curve of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials.

  17. Stretching and smearing of chemical heterogeneity by melting and melt migration beneath mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Liu, B.; Liang, Y.

    2017-12-01

    The size of mantle source heterogeneity is important to the interpretation of isotopic signals observed in residual peridotites and basalts. During concurrent melting and melt migration beneath a mid-ocean ridge, both porosity and melt velocity increase upward, resulting in an upward increase in the effective transport velocity for a trace element. Hence a chemical heterogeneity of finite size will be stretched during its transport in the upwelling mantle. This melt migration induced chemical deformation can be quantified by a simple stretching factor. During equilibrium melting, the isotope signals of Sr, Nd and Hf in a 1 km size enriched mantle will be stretched to 2 6 km at the top of the melting column, depending on the style of melt migration. A finite rate of diffusive exchange between residual minerals and partial melt will result in smearing of chemical heterogeneity during its transport in the upwelling melting column. A Gaussian-shaped enriched source in depleted background mantle would be gradually deformed its transit through the melting column. The width of the enriched signal spreads out between the fronts of melt and solid while its amplitude decreases. This melt migration induced smearing also cause mixing of nearby heterogeneities or absorption of enriched heterogeneity by the ambient mantle. Smaller heterogeneities in the solid is more efficiently mixed or aborted by the background mantle than larger ones. Mixing of heterogeneities in the melt depends on the size in the same sense although the erupted melt is more homogenized due to melt accumulation and magma chamber process. The mapping of chemical heterogeneities observed in residual peridotites and basalts into their source region is therefore highly nonlinear. We will show that the observed variations in Nd and Hf isotopes in the global MORB and abyssal peridotites are consistent with kilometer-scale enriched heterogeneities embedded in depleted MORB mantle.

  18. The Microwave Properties of Simulated Melting Precipitation Particles: Sensitivity to Initial Melting

    NASA Technical Reports Server (NTRS)

    Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.

    2016-01-01

    A simplified approach is presented for assessing the microwave response to the initial melting of realistically shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM), a heuristic melting simulation for ice-phase precipitation particles of any shape or size (SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass), and (2) the computation of the single-particle microwave scattering and extinction properties of these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, and 94.0GHz for radar applications and 89, 165.0, and 183.31GHz for radiometer applications. These selected frequencies are consistent with current microwave remote-sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.

  19. 38 CFR 21.324 - Reduction or termination dates of subsistence allowance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Divorce—(1) Before October 1, 1982. Last day of the calendar year in which divorce occurs, unless the... September 30, 1982. Last day of the month in which divorce occurs unless discontinuance is required at an earlier date under other provisions. (Authority: 38 U.S.C. 5112(b), 5113) (e) Child—(1) Marriage—(i...

  20. 38 CFR 21.324 - Reduction or termination dates of subsistence allowance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Divorce—(1) Before October 1, 1982. Last day of the calendar year in which divorce occurs, unless the... September 30, 1982. Last day of the month in which divorce occurs unless discontinuance is required at an earlier date under other provisions. (Authority: 38 U.S.C. 5112(b), 5113) (e) Child—(1) Marriage—(i...

  1. 38 CFR 21.324 - Reduction or termination dates of subsistence allowance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Divorce—(1) Before October 1, 1982. Last day of the calendar year in which divorce occurs, unless the... September 30, 1982. Last day of the month in which divorce occurs unless discontinuance is required at an earlier date under other provisions. (Authority: 38 U.S.C. 5112(b), 5113) (e) Child—(1) Marriage—(i...

  2. Experimental correlation of melt structures, nucleation rates, and thermal histories of silicate melts

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; DRAKE; HILDEBRAND; JONES; LEWIS; TREIMAN; WARK

    1987-01-01

    The theory and measurement of the structure of liquids is an important aspect of modern metallurgy and igneous petrology. Liquid structure exerts strong controls on both the types of crystals that may precipitate from melts and on the chemical composition of those crystals. An interesting aspect of melt structure studies is the problem of melt memories; that is, a melt can retain a memory of previous thermal history. This memory can influence both nucleation behavior and crystal composition. This melt memory may be characterized quantitatively with techniques such as Raman, infrared and NMR spectroscopy to provide information on short-range structure. Melt structure studies at high temperature will take advantage of the microgravity conditions of the Space Station to perform containerless experiments. Melt structure determinations at high temperature (experiments that are greatly facilitated by containerless technology) will provide invaluable information for materials science, glass technology, and geochemistry. In conjunction with studies of nucleation behavior and nucleation rates, information relevant to nucleation in magma chambers in terrestrial planets will be acquired.

  3. Spatial and Temporal Variation in Primary Productivity (NDVI) of Coastal Alaskan Tundra: Decreased Vegetation Growth Following Earlier Snowmelt

    NASA Technical Reports Server (NTRS)

    Gamon, John A.; Huemmrich, K. Fred; Stone, Robert S.; Tweedie, Craig E.

    2015-01-01

    In the Arctic, earlier snowmelt and longer growing seasons due to warming have been hypothesized to increase vegetation productivity. Using the Normalized Difference Vegetation Index (NDVI) from both field and satellite measurements as an indicator of vegetation phenology and productivity, we monitored spatial and temporal patterns of vegetation growth for a coastal wet sedge tundra site near Barrow, Alaska over three growing seasons (2000-2002). Contrary to expectation, earlier snowmelt did not lead to increased productivity. Instead, productivity was associated primarily with precipitation and soil moisture, and secondarily with growing degree days, which, during this period, led to reduced growth in years with earlier snowmelt. Additional moisture effects on productivity and species distribution, operating over a longer time scale, were evident in spatial NDVI patterns associated with microtopography. Lower, wetter regions dominated by graminoids were more productive than higher, drier locations having a higher percentage of lichens and mosses, despite the earlier snowmelt at the more elevated sites. These results call into question the oft-stated hypothesis that earlier arctic growing seasons will lead to greater vegetation productivity. Rather, they agree with an emerging body of evidence from recent field studies indicating that early-season, local environmental conditions, notably moisture and temperature, are primary factors determining arctic vegetation productivity. For this coastal arctic site, early growing season conditions are strongly influenced by microtopography, hydrology, and regional sea ice dynamics, and may not be easily predicted from snowmelt date or seasonal average air temperatures alone. Our comparison of field to satellite NDVI also highlights the value of in-situ monitoring of actual vegetation responses using field optical sampling to obtain detailed information on surface conditions not possible from satellite observations alone.

  4. Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhong-Li, E-mail: zl.liu@163.com; Zhang, Xiu-Lu; Cai, Ling-Cang

    A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curvemore » of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials.« less

  5. Partial melting and melt percolation in the mantle: The message from Fe isotopes

    NASA Astrophysics Data System (ADS)

    Weyer, Stefan; Ionov, Dmitri A.

    2007-07-01

    High precision Fe isotope measurements have been performed on various mantle peridotites (fertile lherzolites, harzburgites, metasomatised Fe-enriched peridotites) and volcanic rocks (mainly oceanic basalts) from different localities and tectonic settings. The peridotites yield an average δ 56Fe = 0.01‰ and are significantly lighter than the basalts (average δ 56Fe = 0.11‰). Furthermore, the peridotites display a negative correlation of δ 56Fe with Mg# indicating a link between δ 56Fe and degrees of melt extraction. Taken together, these findings imply that Fe isotopes fractionate during partial melting, with heavy isotopes preferentially entering the melt. The slope of depletion trends (δ 56Fe versus Mg#) of the peridotites was used to model Fe isotope fractionation during partial melting, resulting in αmantle-melt ≈ 1.0001-1.0003 or ln αmantle-melt ≈ 0.1-0.3‰. In contrast to most other peridotites investigated in this study, spinel lherzolites and harzburgites from three localities (Horoman, Kamchatka and Lherz) are virtually unaffected by metasomatism. These three sites display a particularly good correlation and define an isotope fractionation factor of ln αmantle-melt ≈ 0.3‰. This modelled value implies Fe isotope fractionation between residual mantle and mantle-derived melts corresponding to Δ56Fe mantle-basalt ≈ 0.2-0.3‰, i.e. significantly higher than the observed difference between averages for all the peridotites and the basalts in this study (corresponding to Δ56Fe mantle-basalt ≈ 0.1‰). Either disequilibrium melting increased the modelled αmantle-melt for these particular sites or the difference between average peridotite and basalt may be reduced by partial re-equilibration between the isotopically heavy basalts and the isotopically light depleted lithospheric mantle during melt ascent. The slope of the weaker δ 56Fe-Mg# trend defined by the combined set of all mantle peridotites from this study is more consistent with

  6. Experimental Phase Relations of Hydrous, Primitive Melts: Implications for variably depleted mantle melting in arcs and the generation of primitive high-SiO2 melts

    NASA Astrophysics Data System (ADS)

    Weaver, S.; Wallace, P. J.; Johnston, A.

    2010-12-01

    There has been considerable experimental and theoretical work on how the introduction of H2O-rich fluids into the mantle wedge affects partial melting in arcs and chemical evolution of mantle melts as they migrate through the mantle. Studies aimed at describing these processes have become largely quantitative, with an emphasis on creating models that suitably predict the production and evolution of melts and describe the thermal state of arcs worldwide. A complete experimental data set that explores the P-T conditions of melt generation and subsequent melt extraction is crucial to the development, calibration, and testing of these models. This work adds to that data set by constraining the P-T-H2O conditions of primary melt extraction from two end-member subduction zones, a continental arc (Mexico) and an intraoceanic arc (Aleutians). We present our data in context with primitive melts found worldwide and with other experimental studies of melts produced from fertile and variably depleted mantle sources. Additionally, we compare our experimental results to melt compositions predicted by empirical and thermodynamic models. We used a piston-cylinder apparatus and employed an inverse approach in our experiments, constraining the permissible mantle residues with which our melts could be in equilibrium. We confirmed our inverse approach with forced saturation experiments at the P-T-H2O conditions of melt-mantle equilibration. Our experimental results show that a primitive, basaltic andesite melt (JR-28) from monogenetic cinder cone Volcan Jorullo (Central Mexico) last equilibrated with a harzburgite mantle residue at 1.2-1.4 GPa and 1150-1175°C with H2O contents in the range of 5.5-7 wt% H2O prior to ascent and eruption. Phase relations of a tholeiitic high-MgO basaltic melt (ID-16) from the Central Aleutians (Okmok) show the conditions of last equilibration with a fertile lherzolite mantle residue at shallower (1.2 GPa) but hotter (1275°C) conditions with

  7. The melting curve of Ni to 125 GPa: implications for Earth's Fe rich core alloy

    NASA Astrophysics Data System (ADS)

    Lord, O. T.; Wood, I. G.; Dobson, D. P.; Vocadlo, L.; Thomson, A. R.; Wann, E.; Wang, W.; Edgington, A.; Morard, G.; Mezouar, N.; Walter, M. J.

    2014-12-01

    The melting curve of Ni has been determined to 125 GPa using laser-heated diamond anvil cell (LH-DAC) experiments and two melting criteria: the appearance of liquid diffuse scattering (LDS) during in situ X-ray diffraction (XRD) and simultaneous plateaux in temperature vs. laser power functions [1]. Our melting curve (Fig. 1) is in good agreement with most theoretical studies [e.g. 2] and the available shock wave data (Fig. 2). It is, however, dramatically steeper than the previous off-line LH-DAC studies in which the determination of melting was based on the visual observation of motion aided by the laser speckle method [e.g. 3]. We estimate the melting point of Ni at the inner-core boundary (ICB; 330 GPa) to be 5800±700 K (2σ), ~2500 K higher than the estimate based on the laser speckle method [3] and within error of Fe (6230±500 K) as determined in a similar in situ LH-DAC study [4]. We find that laser speckle based melting curves coincide with the onset of rapid sub-solidus recrystallization, suggesting that visual observations of motion may have misinterpreted dynamic recrystallization as melt convection. Our new melting curve suggests that the reduction in ICB temperature due to the alloying of Ni with Fe is likely to be significantly smaller than would be expected had the earlier experimental Ni melting studies been correct. We have applied our methodology to a range of other transition metals (Mo, Ti, V, Cu). In the case of Mo, Ti and V the melting curves are in good agreement with the shock compression and theoretical melting studies but hotter and steeper than those based on the laser speckle method, as with Ni. Cu is an exception in which all studies agree, including those employing the laser speckle method. These results go a long way toward resolving the the long-standing controversy over the phase diagrams of the transition metals as determined from static LH-DAC studies on the one hand, and theoretical and dynamic compression studies on the other

  8. Viscosity Measurement for Tellurium Melt

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2006-01-01

    The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.

  9. Near-Record Early Snowmelt and Signs of Environmental Change in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Stanitski, D.; Cox, C.; Sweeney, C.; Divoky, G.; George, C.; Stone, R.

    2015-12-01

    The 2015 spring transition in Barrow, AK, was notable with the second earliest date of snow melt on record (JD148, May 28) and earliest ice free conditions on a local lagoon (JD178, June 27). The 73-year time series from the NOAA Global Monitoring Division's Barrow Observatory (BRW) has shown a trend toward earlier spring snowmelt, reinforced in 2015. Anomalous early snowmelt was also observed at nearby Cooper Island where a colony of sea birds, the Black Guillemot, nests each year once snow disappears. The appearance of "first egg" is well correlated with the date of snowmelt at BRW (Fig. 1), as is the ice-out date at the Isaktoak Lagoon (ISK). In 2015, the first egg was observed on JD159 (June 8), the earliest in the 40-year record (source: Friends of Cooper Island, http://cooperisland.org/). Each day of advance in the melt date at BRW results in an annual net radiation increase at the surface of about 1%. The documented changes can influence biogeochemical cycles, permafrost temperatures, and potentially the release of stored carbon. By mid July 2015, a 1°C increase in soil temperature at 0.5-m depth was measured compared to prior years; therefore, the active layer is expected to be unusually deep by autumn. The anomalous warmth that prevailed during spring 2015 can be attributed, in part, to atmospheric circulation, influenced by two typhoons in the North Pacific and the onset of El Niño. Warming was likely amplified locally as the early melting of snow increased absorption of solar radiation. Key factors influencing the trend toward earlier spring snowmelt will be presented as well as those contributing to the anomalous 2015 spring at BRW (e.g., winter snowfall, cloud cover, advection, local sea ice extent), and the impact early melt had on the 2015 summer surface radiation budget. Analysis of interactions underlying this anomaly will aid in developing strategies for improving predictability of interannual variability of the melt season and long-term change.

  10. The importance of record length in estimating the magnitude of climatic changes: an example using 175 years of lake ice-out dates in New England

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2013-01-01

    Many studies have shown that lake ice-out (break-up) dates in the Northern Hemisphere are useful indicators of late winter/early spring climate change. Trends in lake ice-out dates in New England, USA, were analyzed for 25, 50, 75, 100, 125, 150, and 175 year periods ending in 2008. More than 100 years of ice-out data were available for 19 of the 28 lakes in this study. The magnitude of trends over time depends on the length of the period considered. For the recent 25-year period, there was a mix of earlier and later ice-out dates. Lake ice-outs during the last 50 years became earlier by 1.8 days/decade (median change for all lakes with adequate data). This is a much higher rate than for longer historical periods; ice-outs became earlier by 0.6 days/decade during the last 75 years, 0.4 days/ decade during the last 100 years, and 0.6 days/decade during the last 125 years. The significance of trends was assessed under the assumption of serial independence of historical ice-out dates and under the assumption of short and long term persistence. Hypolimnion dissolved oxygen (DO) levels are an important factor in lake eutrophication and coldwater fish survival. Based on historical data available at three lakes, 32 to 46 % of the interannual variability of late summer hypolimnion DO levels was related to ice-out dates; earlier ice-outs were associated with lower DO levels.

  11. Economic Costs Avoided by Diagnosing Melanoma Six Months Earlier Justify >100 Benign Biopsies.

    PubMed

    Aires, Daniel J; Wick, Jo; Shaath, Tarek S; Rajpara, Anand N; Patel, Vikas; Badawi, Ahmed H; Li, Cicy; Fraga, Garth R; Doolittle, Gary; Liu, Deede Y

    2016-05-01

    New melanoma drugs bring enormous benefits but do so at significant costs. Because melanoma grows deeper and deadlier over time, deeper lesions are costlier due to increased sentinel lymph node biopsy, chemotherapy, and disease-associated income loss. Prior studies have justified pigmented lesion biopsies on a "value per life" basis; by contrast we sought to assess how many biopsies are justified per melanoma found on a purely economic basis. We modeled how melanomas in the United States would behave if diagnosis were delayed by 6 months, eg, not biopsied, only observed until the next surveillance visit. Economic loss from delayed biopsy is the obverse of economic benefit of performing biopsy earlier. Growth rates were based on Liu et al. The results of this study can be applied to all patients presenting to dermatologists with pigmented skin lesions suspicious for melanoma. In-situ melanomas were excluded because no studies to date have modeled growth rates analogous to those for invasive melanoma. We assume conservatively that all melanomas not biopsied initially will be biopsied and treated 6 months later. Major modeled costs are (1) increased sentinel lymph node biopsy, (2) increased chemotherapy for metastatic lesions using increased 5-yr death as metastasis marker, and (3) income loss per melanoma death at $413,370 as previously published. Costs avoided by diagnosing melanoma earlier justify 170 biopsies per melanoma found. Efforts to penalize "unnecessary" biopsies may be economically counterproductive.

    J Drugs Dermatol. 2016;15(5):527-532.

  12. Olivine-hosted melt inclusions record efficient mixing of mantle melts in continental flood basalt provinces

    NASA Astrophysics Data System (ADS)

    Jennings, E. S.; Gibson, S. A.; Maclennan, J.; Heinonen, J. S.

    2017-12-01

    Primitive melt inclusions trapped in various minerals found in global ridge settings have been shown to record highly variable magmatic compositions. Mantle melting is expected to be near-fractional, producing a wide range of melt compositions that must accumulate and mix in crustal magma chambers. In primitive rocks, the melt inclusion variability observed in major, trace and isotope geochemistry is consistent to the first order with partial melting of variably depleted mantle, and indicate that the host phases began to crystallise prior to the completion of melt aggregation and mixing. We present new major and trace element data from a large number of rehomogenised olivine-hosted melt inclusions from the Cretaceous Paraná-Etendeka and Jurassic Karoo continental flood basalt (CFB) provinces [1]. We show that the major element chemistry of the melt inclusions can be severely disrupted by the rehomogenisation process and, as a consequence, their initial compositions cannot easily be back-calculated. However, despite the age of the samples, the trace element geochemistry of the melt inclusions is well-preserved. Despite coming from near-liquidus olivines from primitive picrites and ferropicrites, the inclusions are remarkably homogeneous; none of the anticipated variability in incompatible trace element compositions is observed. When considered alongside literature data, it appears that variability in primitive melts - as recorded by melt inclusions - is low in CFBs and OIBs relative to ridge settings, e.g. Iceland. We suggest that the tectonic setting imposes a control on the mixing of mantle melts: hot, plume-derived melts generated beneath relatively thick lithosphere may be prone to efficient mixing, perhaps due to their low viscosity, long transport pathways, and/or a superliquidus emplacement temperature [1]. This interpretation is supported by the almost non-existent variability of olivine-hosted inclusions from ferropicrite samples: these magmas represents

  13. Has climatic warming altered spring flowering date of Sonoran Desert shrubs?

    USGS Publications Warehouse

    Bowers, Janice E.

    2007-01-01

    With global warming, flowering at many locations has shifted toward earlier dates of bloom. A steady increase in average annual temperature since the late 1890s makes it likely that flowering also has advanced in the northern Sonoran Desert of the southwestern United States and northwestern Mexico. In this study, phenological models were used to predict annual date of spring bloom in the northern Sonoran Desert from 1894 to 2004; then, herbarium specimens were assessed for objective evidence of the predicted shift in flowering time. The phenological models were derived from known flowering requirements (triggers and heat sums) of Sonoran Desert shrubs. According to the models, flowering might have advanced by 20-41 d from 1894 to 2004. Analysis of herbarium specimens collected during the 20th century supported the model predictions. Over time, there was a significant increase in the proportion of shrub specimens collected in flower in March and a significant decrease in the proportion collected in May. Thus, the flowering curve - the proportion of individuals in flower in each spring month - shifted toward the start of the calendar year between 1900 and 1999. This shift could not be explained by collection activity: collectors showed no tendency to be active earlier in the year as time went on, nor did activity toward the end of spring decline in recent decades. Earlier bloom eventually could have substantial impacts on plant and animal communities in the Sonoran Desert, especially on migratory hummingbirds and population dynamics of shrubs.

  14. Scientific Knowledge Suppresses but Does Not Supplant Earlier Intuitions

    ERIC Educational Resources Information Center

    Shtulman, Andrew; Valcarcel, Joshua

    2012-01-01

    When students learn scientific theories that conflict with their earlier, naive theories, what happens to the earlier theories? Are they overwritten or merely suppressed? We investigated this question by devising and implementing a novel speeded-reasoning task. Adults with many years of science education verified two types of statements as quickly…

  15. Contrasting accessory mineral behavior in minimum-temperature melts: Empirical constraints from the Himalayan metamorphic core

    NASA Astrophysics Data System (ADS)

    Cottle, John M.; Larson, Kyle P.; Yakymchuk, Chris

    2018-07-01

    Medium-grained leucogranite in the Tama Kosi region of the Nepalese Himalayan Metamorphic Core yields a relatively narrow range of monazite 208Pb/232Th dates with a dominant population at 21.0 Ma inferred to represent crystallization of an early plutonic phase. In contrast, the pegmatitic portion of the same intrusive complex, that cross-cuts the medium-grained leucogranite, contains zircon, monazite and xenotime that each display near-identical age spectra, recording semi-continuous (re-)crystallization from 27.5 Ma to 21.0 Ma, followed by a 2 m.y. hiatus then further (re-)crystallization between 19.4 and 18.6 Ma. The "gap" in pegmatite dates corresponds well to the crystallization age of the older leucogranite, whereas the end of accessory phase growth in the pegmatite coincides with the onset of regional-scale cooling. Detailed textural, trace element and thermochronologic data indicate that the range of zircon, monazite and xenotime dates recorded in the pegmatite reflect inherited components that underwent semi-continuous (re-)crystallization during metamorphism and/or anatexis in the source region(s), whereas dates younger than the hiatus indicate accessory phase recrystallization, related to both fluid influx and a concomitant increase in temperature. In contrast, the lack of an inherited component(s) in the medium-grained leucogranite phase is inferred to be a result of complete dissolution during partial melting. A model is proposed in which influx of heat and H2O-rich fluids associated with early leucogranite emplacement temporarily delayed zircon and monazite and xenotime crystallization, respectively. These data highlight the importance of measuring spatially resolved dates, trace elements and textural patterns from multiple accessory minerals combined with model constraints to better understand the often-complex crystallization history of anatectic melts in collisional orogens.

  16. The 230Th correction is the 1st priority for accurate dates of young zircons: U/Th partitioning experiments and measurements

    NASA Astrophysics Data System (ADS)

    Krawczynski, M.; McLean, N.

    2017-12-01

    One of the most accurate and useful ways of determining the age of rocks that formed more than about 500,000 years ago is uranium-lead (U-Pb) geochronology. Earth scientists use U-Pb geochronology to put together the geologic history of entire regions and of specific events, like the mass extinction of all non-avian dinosaurs about 66 million years ago or the catastrophic eruptions of supervolcanoes like the one currently centered at Yellowstone. The mineral zircon is often utilized because it is abundant, durable, and readily incorporates uranium into its crystal structure. But it excludes thorium, whose isotope 230Th is part of the naturally occurring isotopic decay chain from 238U to 206Pb. Calculating a date from the relative abundances of 206Pb and 238U therefore requires a correction for the missing 230Th. Existing experimental and observational constraints on the way U and Th behave when zircon crystallizes from a melt are not known precisely enough, and thus currently the uncertainty in dates introduced by they `Th correction' is one of the largest sources of systematic error in determining dates. Here we present preliminary results on our study of actinide partitioning between zircon and melt. Experiments have been conducted to grow zircon from melts doped with U and Th that mimic natural magmas at a range of temperatures, and compositions. Synthetic zircons are separated from their coexisting glass and using high precision and high-spatial-resolution techniques, the abundance and distribution of U and Th in each phase is determined. These preliminary experiments are the beginning of a study that will result in precise determination of the zircon/melt uranium and thorium partition coefficients under a wide variety of naturally occurring conditions. This data will be fit to a multidimensional surface using maximum likelihood regression techniques, so that the ratio of partition coefficients can be calculated for any set of known parameters. The results of

  17. On high-pressure melting of tantalum

    NASA Astrophysics Data System (ADS)

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  18. Partial melting of metagreywackes, Part II. Compositions of minerals and melts

    NASA Astrophysics Data System (ADS)

    Montel, Jean-Marc; Vielzeuf, Daniel

    A series of experiments on the fluid-absent melting of a quartz-rich aluminous metagreywacke has been carried out. In this paper, we report the chemical composition of the phases present in the experimental charges as determined by electron microprobe. This analytical work includes biotite, plagioclase, orthopyroxene, garnet, cordierite, hercynite, staurolite, gedrite, oxide, and glass, over the range 100-1000MPa, 780-1025°C. Biotites are Na- and Mg-rich, with Ti contents increasing with temperature. The compositions of plagioclase range from An17 to An35, with a significant orthoclase component, and are always different from the starting minerals. At high temperature, plagioclase crystals correspond to ternary feldspars with Or contents in the range 11-20 mol%. Garnets are almandine pyrope grossular spessartine solid solutions, with a regular and significant increase of the grossular content with pressure. All glasses are silicic (SiO2=67.6-74.4 wt%), peraluminous, and leucocratic (FeO+MgO=0.9-2.9 wt%), with a bulk composition close to that of peraluminous leucogranites, even for degrees of melting as high as 60 vol.%. With increasing pressure, SiO2 contents decrease while K2O increases. At any pressure, the melt compositions are more potassic than the water-saturated granitic minima. The H2O contents estimated by mass balance are in the range 2.5-5.6 wt%. These values are higher than those predicted by thermodynamic models. Modal compositions were estimated by mass balance calculations and by image processing of the SEM photographs. The positions of the 20 to 70% isotects (curves of equal proportion of melt) have been located in the pressure-temperature space between 100MPa and 1000MPa. With increasing pressure, the isotects shift toward lower temperature between 100 and 200MPa, then bend back toward higher temperature. The melting interval increases with pressure; the difference in temperature between the 20% and the 70% isotects is 40°C at 100MPa, and 150

  19. Higher Childhood Red Meat Intake Frequency Is Associated with Earlier Age at Menarche.

    PubMed

    Jansen, Erica C; Marín, Constanza; Mora-Plazas, Mercedes; Villamor, Eduardo

    2016-03-09

    Early age at menarche is associated with increased breast cancer risk. Red meat consumption in adolescence predicts breast cancer risk, but it is unknown whether it is also related to earlier menarche. We studied the association between intake of red meat at ages 5-12 y and age at menarche in a prospective study. We assessed usual diets with a food-frequency questionnaire in a group of 456 girls aged 8.4 ± 1.7 y and followed them for a median 5.6 y in Bogotá, Colombia. Girls were asked periodically about the occurrence and date of menarche. Median age at menarche was estimated with use of Kaplan-Meier survival probabilities by categories of red meat intake frequency. Cox proportional hazards models were used to compare the incidence of menarche by red meat intake frequency, adjusting for potential sociodemographic and dietary confounders including total energy intake and intake frequency of other animal food groups (dairy, poultry, freshwater fish, tuna/sardines, eggs, and innards). Median age at menarche was 12.4 y. After adjustment for total energy intake, maternal parity, and socioeconomic status, red meat intake frequency was inversely associated with age at menarche. When compared with girls with red meat intake <4 times/wk, those consuming it ≥2 times/d had a significantly earlier age at menarche (HR: 1.64; 95% CI: 1.11, 2.41; P-trend = 0.0009). Incidentally, we found that girls with tuna/sardine intake >1 time/wk had a significantly later age at menarche (HR: 0.62; 95% CI: 0.42, 0.90; P = 0.01) than those with intake <1 time/mo. Intake frequency of other animal food groups was not significantly associated with age at menarche. Higher red meat intake frequency during childhood is associated with an earlier age at menarche, whereas greater fatty fish intake frequency is associated with a later menarcheal age. © 2016 American Society for Nutrition.

  20. Channelized Melting Drives Thinning Under a Rapidly Melting Antarctic Ice Shelf

    NASA Astrophysics Data System (ADS)

    Gourmelen, Noel; Goldberg, Dan N.; Snow, Kate; Henley, Sian F.; Bingham, Robert G.; Kimura, Satoshi; Hogg, Anna E.; Shepherd, Andrew; Mouginot, Jeremie; Lenaerts, Jan T. M.; Ligtenberg, Stefan R. M.; van de Berg, Willem Jan

    2017-10-01

    Ice shelves play a vital role in regulating loss of grounded ice and in supplying freshwater to coastal seas. However, melt variability within ice shelves is poorly constrained and may be instrumental in driving ice shelf imbalance and collapse. High-resolution altimetry measurements from 2010 to 2016 show that Dotson Ice Shelf (DIS), West Antarctica, thins in response to basal melting focused along a single 5 km-wide and 60 km-long channel extending from the ice shelf's grounding zone to its calving front. If focused thinning continues at present rates, the channel will melt through, and the ice shelf collapse, within 40-50 years, almost two centuries before collapse is projected from the average thinning rate. Our findings provide evidence of basal melt-driven sub-ice shelf channel formation and its potential for accelerating the weakening of ice shelves.

  1. Secondary melting events in Semarkona chondrules revealed by compositional zoning in low-Ca pyroxene

    NASA Astrophysics Data System (ADS)

    Baecker, Bastian; Rubin, Alan E.; Wasson, John T.

    2017-08-01

    mesostasis in the present chondrule. Hence, these olivines must have experienced the same heating events as the pyroxenes with overgrowths. As argued in earlier papers, the fraction of chondrules heated to low temperatures (sufficient to melt only mesostasis) during nebular heating and melting processes is much larger than the fraction heated sufficiently to melt half or more of the mafic minerals. Melting is expected to result from flash heating in which heat is transported into the chondrule by radiation.

  2. Diffusive loss of argon in response to melt vein formation in polygenetic impact melt breccias

    NASA Astrophysics Data System (ADS)

    Mercer, Cameron M.; Hodges, Kip V.

    2017-08-01

    Many planetary surfaces in the solar system have experienced prolonged bombardment. With each impact, new rocks can be assembled that incorporate freshly generated impact melts with fragments of older rocks. Some breccias can become polygenetic, containing multiple generations of impact melt products, and can potentially provide important insights into the extensive bombardment history of a region. However, the amount of chronological information that can be extracted from such samples depends on how well the mineral isotopic systems of geochronometers can preserve the ages of individual melt generations without being disturbed by younger events. We model the thermal evolution of impact melt veins and the resulting loss of Ar from K-bearing phases common in impact melt breccias to assess the potential for preserving the 40Ar/39Ar ages of individual melt generations. Our model results demonstrate that millimeter-scale, clast-free melt veins cause significant heating of adjacent host rock minerals and can cause detectable Ar loss in contact zones that are generally thinner than, and at most about the same thickness as, the vein width. The incorporation of cold clasts in melt veins reduces the magnitudes of heating and Ar loss in the host rocks, and Ar loss can be virtually undetectable for sufficiently clast-rich veins. Quantitative evidence of the timing of impacts, as measured with the 40Ar/39Ar method, can be preserved in polygenetic impact melt breccias, particularly for those containing millimeter-scale bodies of clast-bearing melt products.

  3. Defining the chemical role of H2O in mantle melts: Effect of melt composition and H2O content on the activity of SiO2

    NASA Astrophysics Data System (ADS)

    Moore, G.; Roggensack, K.

    2007-12-01

    then used, along with the mole fraction of SiO2 that is measured in the glass, to calculate an activity coefficient for SiO2 in that particular melt. The results show that for two starting compositions, H2O clearly has a strong negative effect on the activity coefficient of SiO2, consistent with some earlier intepretations. Further work is being conducted on differing starting compositions, as well as increasing the range of volatile contents, in order to better quantify their influence on this important chemical parameter of mantle melts. Ultimately, these experiments will help determine whether hydrous arc lavas, including high-Mg andesites, can be attributed to a primitive mantle origin, or whether other magmatic processes are necessary to generate their observed bulk compositions. It will also quantify the amount of H2O necessary to generate such magmas, giving insight into the potential H2O content present in the sub-arc mantle source regions, and allowing a more precise estimate of volatile fluxes in volcanic arc settings.

  4. Arctic tundra shrub invasion and soot deposition: Consequences for spring snowmelt and near-surface air temperatures

    NASA Astrophysics Data System (ADS)

    Strack, John E.; Pielke, Roger A.; Liston, Glen E.

    2007-12-01

    Invasive shrubs and soot pollution both have the potential to alter the surface energy balance and timing of snow melt in the Arctic. Shrubs reduce the amount of snow lost to sublimation on the tundra during the winter leading to a deeper end-of-winter snowpack. The shrubs also enhance the absorption of energy by the snowpack during the melt season by converting incoming solar radiation to longwave radiation and sensible heat. Soot deposition lowers the albedo of the snow, allowing it to more effectively absorb incoming solar radiation and thus melt faster. This study uses the Colorado State University Regional Atmospheric Modeling System version 4.4 (CSU-RAMS 4.4), equipped with an enhanced snow model, to investigate the effects of shrub encroachment and soot deposition on the atmosphere and snowpack in the Kuparuk Basin of Alaska during the May-June melt period. The results of the simulations suggest that a complete invasion of the tundra by shrubs leads to a 2.2°C warming of 3 m air temperatures and a 108 m increase in boundary layer depth during the melt period. The snow-free date also occurred 11 d earlier despite having a larger initial snowpack. The results also show that a decrease in the snow albedo of 0.1, owing to soot pollution, caused the snow-free date to occur 5 d earlier. The soot pollution caused a 1.0°C warming of 3 m air temperatures and a 25 m average deepening of the boundary layer.

  5. Consequences of early snowmelt in Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-01-01

    Snow melted significantly earlier in the Rocky Mountains in 2012 than in previous years, with serious consequences for plants and animals, scientists reported at the AGU Fall Meeting. David Inouye of the University of Maryland, College Park, and the Rocky Mountain Biological Laboratory said that "the timing of winter's end is changing." He has been observing snowmelt dates and flowering of plants at a site at 2900 meters altitude. This year's snowmelt occurred 23 April, whereas the previous year, snow melted 19 June, he reported.

  6. Fault rheology beyond frictional melting.

    PubMed

    Lavallée, Yan; Hirose, Takehiro; Kendrick, Jackie E; Hess, Kai-Uwe; Dingwell, Donald B

    2015-07-28

    During earthquakes, comminution and frictional heating both contribute to the dissipation of stored energy. With sufficient dissipative heating, melting processes can ensue, yielding the production of frictional melts or "pseudotachylytes." It is commonly assumed that the Newtonian viscosities of such melts control subsequent fault slip resistance. Rock melts, however, are viscoelastic bodies, and, at high strain rates, they exhibit evidence of a glass transition. Here, we present the results of high-velocity friction experiments on a well-characterized melt that demonstrate how slip in melt-bearing faults can be governed by brittle fragmentation phenomena encountered at the glass transition. Slip analysis using models that incorporate viscoelastic responses indicates that even in the presence of melt, slip persists in the solid state until sufficient heat is generated to reduce the viscosity and allow remobilization in the liquid state. Where a rock is present next to the melt, we note that wear of the crystalline wall rock by liquid fragmentation and agglutination also contributes to the brittle component of these experimentally generated pseudotachylytes. We conclude that in the case of pseudotachylyte generation during an earthquake, slip even beyond the onset of frictional melting is not controlled merely by viscosity but rather by an interplay of viscoelastic forces around the glass transition, which involves a response in the brittle/solid regime of these rock melts. We warn of the inadequacy of simple Newtonian viscous analyses and call for the application of more realistic rheological interpretation of pseudotachylyte-bearing fault systems in the evaluation and prediction of their slip dynamics.

  7. Short-range order of undercooled melts of PdZr2 intermetallic compound studied by X-ray and neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Klein, S.; Holland-Moritz, D.; Herlach, D. M.; Mauro, N. A.; Kelton, K. F.

    2013-05-01

    The short-range order in undercooled melts of the intermetallic Zr2Pd glass-forming alloy is investigated by combining electrostatic levitation (ESL) with high-energy X-ray diffraction and neutron diffraction. Experimentally determined structure factors are measured and analyzed with respect to various structures of short-range order. The comparative X-ray and neutron scattering experiments allow for investigations of topological and chemical short-range order. Based on these studies, no preference of a specific short-range order is found for the liquid Zr2Pd glass-forming alloy, even in the metastable state of the deeply undercooled melt. This is in agreement with an earlier report from X-ray diffraction and molecular-dynamics studies of a Zr75.5Pd24.5 liquid, which showed a broad distribution of cluster types. The results for the Zr2Pd liquid are discussed with respect to the glass-forming ability of this melt.

  8. Use of natural radionuclides to determine the time range of the accidental melting of an orphan radioactive source in a steel recycling plant.

    PubMed

    Cantaluppi, Chiara; Ceccotto, Federica; Cianchi, Aldo

    2012-02-01

    In the rare event that an orphan radioactive source is melted in an Electric Arc Furnace steel recycling plant, the radionuclides present are partitioned in the different products, by-products and waste. As a consequence of an unforeseen melting of a radiocesium source, cesium radioisotopes can be found in the dust, together with many natural radionuclides from the decay of radon and thoron, which are present in the atmosphere, picked up from the off-gas evacuation system and associated with the dust of the air filtration system ("baghouse"). In this work we verified that the activity concentration of ²¹²Pb in this dust is essentially constant in a specific factory so that it is possible to use it to date back to the time of the accidental melting of the orphan radioactive source. The main features of this method are described below, together with the application to a particular case in which this method was used for dating the moment in which the dust was contaminated with ¹³⁷Cs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Melt inclusions: Chapter 6

    USGS Publications Warehouse

    ,; Lowenstern, J. B.

    2014-01-01

    Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.

  10. Greater-than-bulk melting temperatures explained: Gallium melts Gangnam style

    NASA Astrophysics Data System (ADS)

    Gaston, Nicola; Steenbergen, Krista

    2014-03-01

    The experimental discovery of superheating in gallium clusters contradicted the clear and well-demonstrated paradigm that the melting temperature of a particle should decrease with its size. However the extremely sensitive dependence of melting temperature on size also goes to the heart of cluster science, and the interplay between the effects of electronic and geometric structure. We have performed extensive first-principles molecular dynamics calculations, incorporating parallel tempering for an efficient exploration of configurational phase space. This is necessary, due to the complicated energy landscape of gallium. In the nanoparticles, melting is preceded by a transitions between phases. A structural feature, referred to here as the Gangnam motif, is found to increase with the latent heat and appears throughout the observed phase changes of this curious metal. We will present our detailed analysis of the solid-state isomers, performed using extensive statistical sampling of the trajectory data for the assignment of cluster structures to known phases of gallium. Finally, we explain the greater-than-bulk melting through analysis of the factors that stabilise the liquid structures.

  11. Constraints on melt content of off-axis magma lenses at the East Pacific Rise from analysis of 3-D seismic amplitude variation with angle of incidence

    NASA Astrophysics Data System (ADS)

    Aghaei, Omid; Nedimović, Mladen R.; Marjanović, Milena; Carbotte, Suzanne M.; Pablo Canales, J.; Carton, Hélène; Nikić, Nikola

    2017-06-01

    We use 3-D multichannel seismic data to form partial angle P wave stacks and apply amplitude variation with angle (AVA) crossplotting to assess melt content and melt distribution within two large midcrustal off-axis magma lenses (OAMLs) found along the East Pacific Rise from 9°37.5'N to 9°57'N. The signal envelope of the partial angle stacks suggests that both OAMLs are partially molten with higher average melt content and more uniform melt distribution in the southern OAML than in the northern OAML. For AVA crossplotting, the OAMLs are subdivided into seven 1 km2 analysis windows. The AVA crossplotting results indicate that the OAMLs contain a smaller amount of melt than the axial magma lens (AML). For both OAMLs, a higher melt fraction is detected within analysis windows located close to the ridge axis than within the most distant windows. The highest average melt concentration is interpreted for the central sections of the OAMLs. The overall low OAML melt content could be indicative of melt lost due to recent off-axis eruptions, drainage to the AML, or limited mantle melt supply. Based on the results of this and earlier bathymetric, morphological, geochemical, and geophysical investigations, we propose that the melt-poor OAML state is largely the result of limited melt supply from the underlying mantle source reservoir with smaller contribution attributed to melt leakage to the AML. We hypothesize that the investigated OAMLs have a longer period of melt replenishment, lower eruption recurrence rates, and lower eruption volumes than the AML, though some could be single intrusion events.

  12. Toward Explaining Earlier Retirement after 1970.

    ERIC Educational Resources Information Center

    Ippolito, Richard A.

    1990-01-01

    Rule changes in the social security system and pension plans suggest that labor force participation rates for men aged 55 to 64 fell by 20 percent from 1970 through 1986 because of the increase in social security benefits and a change in private pension rules encouraging earlier retirement. (Author/JOW)

  13. Long-term trends in first arrival and first egg laying dates of some migrant and resident bird species in northern Italy

    NASA Astrophysics Data System (ADS)

    Rubolini, Diego; Ambrosini, Roberto; Caffi, Mario; Brichetti, Pierandrea; Armiraglio, Stefano; Saino, Nicola

    2007-08-01

    Climate change is affecting the phenology of seasonal events in Europe and the Northern Hemisphere, as shown by several studies of birds’ timing of migration and reproduction. Here, we analyse the long-term (1982-2006) trends of first arrival dates of four long-distance migratory birds [swift ( Apus apus), nightingale ( Luscinia megarhynchos), barn swallow ( Hirundo rustica), and house martin ( Delichon urbicum)] and first egg laying dates of two migrant (swift, barn swallow) and two resident species [starling ( Sturnus vulgaris), Italian sparrow ( Passer italiae)] at a study site in northern Italy. We also addressed the effects of local weather (temperature and precipitation) and a climate index (the North Atlantic Oscillation, NAO) on the interannual variability of phenological events. We found that the swift and the barn swallow significantly advanced both arrival and laying dates, whereas all other species did not show any significant temporal trend in either arrival or laying date. The earlier arrival of swifts was explained by increasing local temperatures in April, whereas this was not the case for arrival dates of swallows and first egg laying dates of both species. In addition, arrival dates of house martins were earlier following high NAO winters, while nightingale arrival was earlier when local spring rainfall was greater. Finally, Italian sparrow onset of reproduction was anticipated by greater spring rainfall, but delayed by high spring NAO anomalies, and swift’s onset of reproduction was anticipated by abundant rainfall prior to reproduction. There were no significant temporal trends in the interval between onset of laying and arrival in either the swift or the barn swallow. Our findings therefore indicate that birds may show idiosyncratic responses to climate variability at different spatial scales, though some species may be adjusting their calendar to rapidly changing climatic conditions.

  14. The Effect of Large Melt Fraction on the Deformation Behavior of Peridotite: Implications for the Rheology of Io' Mantle

    NASA Technical Reports Server (NTRS)

    Scott, T.; Kohlstedt, D. L.

    2004-01-01

    One key constraint needed for refinement of the interior geochemical and geodynamic models of Io is the viscosity of the convecting partially- molten silicate mantle. To date, laboratory studies of partially molten mantle rocks have reached melt fractions up to approx.0.12, a value much smaller than thought to be appropriate for the asthenosphere of Io where the degree of partial melting may be 0.15 0.40 or higher. Therefore, we have performed a series of high temperature, triaxial compressive creep experiments on dry synthetic peridotites in a gas medium apparatus at a confining pressure of 300 MPa and temperatures from 1473 to 1573 K in order to understand the influence of large amounts of melt (0.15 < phi < 0.40) on the rheological behavior of partially molten rocks.

  15. Some physical aspects of fluid-fluxed melting

    NASA Astrophysics Data System (ADS)

    Patiño Douce, A.

    2012-04-01

    Fluid-fluxed melting is thought to play a crucial role in the origin of many terrestrial magmas. We can visualize the fundamental physics of the process as follows. An infinitesimal amount of fluid infiltrates dry rock at the temperature of its dry solidus. In order to restore equilibrium the temperature must drop, so that enthalpy is released and immediately reabsorbed as enthalpy of melting. The amount of melt produced must be such that the energy balance and thermodynamic equilibrium conditions are simultaneously satisfied. We wish to understand how an initially dry rock melts in response to progressive fluid infiltration, under both batch and fractional melting constraints. The simplest physical model for this process is a binary system in which one of the components makes up a pure solid phase and the other component a pure fluid phase, and in which a binary melt phase exists over certain temperature range. Melting point depression is calculated under the assumption of ideal mixing. The equations of energy balance and thermodynamic equilibrium are solved simultaneously for temperature and melt fraction, using an iterative procedure that allows addition of fluid in infinitesimal increments. Batch melting and fractional melting are simulated by allowing successive melt increments to remain in the system (batch) or not (fractional). Despite their simplified nature, these calculations reveal some important aspects of fluid-fluxed melting. The model confirms that, if the solubility of the fluid in the melt is sufficiently high, fluid fluxed melting is an efficient mechanism of magma generation. One might expect that the temperature of the infiltrating fluid would have a significant effect on melt productivity, but the results of the calculations show this not to be the case, because a relatively small mass of low molecular weight fluid has a strong effect on the melting point of minerals with much higher molecular weights. The calculations reveal the somewhat

  16. Treatment of Asbestos Wastes Using the GeoMelt Vitrification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finucane, K.G.; Thompson, L.E.; Abuku, T.

    The disposal of waste asbestos from decommissioning activities is becoming problematic in countries which have limited disposal space. A particular challenge is the disposal of asbestos wastes from the decommissioning of nuclear sites because some of it is radioactively contaminated or activated and disposal space for such wastes is limited. GeoMelt{sup R} vitrification is being developed as a treatment method for volume and toxicity minimization and radionuclide immobilization for UK radioactive asbestos mixed waste. The common practice to date for asbestos wastes is disposal in licensed landfills. In some cases, compaction techniques are used to minimize the disposal space requirements.more » However, such practices are becoming less practical. Social pressures have resulted in changes to disposal regulations which, in turn, have resulted in the closure of some landfills and increased disposal costs. In the UK, tens of thousands of tonnes of asbestos waste will result from the decommissioning of nuclear sites over the next 20 years. In Japan, it is estimated that over 40 million tonnes of asbestos materials used in construction will require disposal. Methods for the safe and cost effective volume reduction of asbestos wastes are being evaluated for many sites. The GeoMelt{sup R} vitrification process is being demonstrated at full-scale in Japan for the Japan Ministry of Environment and plans are being developed for the GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes. The full-scale treatment operations in Japan have also included contaminated soils and debris. The GeoMelt{sup R} vitrification process result in the maximum possible volume reduction, destroys the asbestos fibers, treats problematic debris associated with asbestos wastes, and immobilizes radiological contaminants within the resulting glass matrix. Results from recent full-scale treatment operations in Japan are discussed and plans for GeoMelt treatment of UK nuclear

  17. Temperature, Sowing and Harvest Dates, and Yield of Maize in the Southwestern US

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Stack, D.; Myoung, B.; Kim, S. H.; Kim, J.

    2014-12-01

    Since sowing date of maize is sensitive to climate variability and changes, it is of a practical importance to examine how sowing dates affect maize yields in various temperature regimes in the southwestern US. A 21-year (1991-2011) simulation of maize yield using Agricultural Production Systems sIMulator (APSIM) with observed meteorological forcing, shows that earlier sowing dates are favorable for higher yields primarily by increasing the length of growing season in cold mountaineous regions. In these regions, warmer conditions in the sowing period tend to advance the sowing date and then enhance yield. Over low-elevation warm regions, yields are less correlated with sowing dates and the length of growing season, perhaps because growing season temperatures are high enough for fast growth. Instead, in the warm regions, maize yields are sensitive to temperature variations during the late growing season due to adverse effects of extreme high temperature events on maize development.

  18. Do BRCA1/2 mutation carriers have an earlier onset of natural menopause?

    PubMed

    van Tilborg, Theodora C; Broekmans, Frank J; Pijpe, Anouk; Schrijver, Lieske H; Mooij, Thea M; Oosterwijk, Jan C; Verhoef, Senno; Gómez Garcia, Encarna B; van Zelst-Stams, Wendy A; Adank, Muriel A; van Asperen, Christi J; van Doorn, Helena C; van Os, Theo A; Bos, Anna M; Rookus, Matti A; Ausems, Margreet G

    2016-08-01

    It has been hypothesized that BRCA1/2 mutation carriers have an earlier age at natural menopause (ANM), although to date findings are inconclusive. This study assessed the influence of BRCA mutation status on ANM, and aimed to explore the reasons of inconsistency in the literature. Cross-sectional assessment from an ongoing nationwide cohort study among members of BRCA1/2 mutated families. Information was obtained by a standardized questionnaire. Kaplan-Meier curves were constructed, and Cox regression was used to assess the association between BRCA1/2 mutation status and ANM. Adjustments were made for birth cohort, family, smoking, use of hormonal contraceptives, and parity. A total of 1,208 BRCA1/2 mutation carriers and 2,211 proven noncarriers were included. Overall, no association was found between BRCA1/2 mutation status and ANM (adjusted hazard ratio [HR] = 1.06 [95% CI, 0.87-1.30]). We examined if the null finding was due to informative censoring by uptake of risk-reducing salpingo-oophorectomy. Indeed, within the oldest birth cohort, in which the percentage of surgical menopause events was lowest and comparable between carriers and noncarriers, the HR for earlier natural menopause in carriers was 1.45 (95% CI, 1.09-1.94). The second oldest birth cohort, however, demonstrated a decreased HR (0.67 [95% CI, 0.46-0.98]), and thus no trend over birth cohorts was found. Various types of selection bias hamper the comparison of ANM between BRCA1/2 mutation carriers and noncarriers, genetically tested in the clinic.

  19. Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts

    USGS Publications Warehouse

    Mangan, M.; Sisson, T.

    2005-01-01

    We evaluate the melt-vapor surface tension (??) of natural, water-saturated dacite melt at 200 MPa, 950-1055??C, and 4.8-5.7 wt % H2O. We experimentally determine the critical supersaturation pressure for bubble nucleation as a function of dissolved water and then solve for ?? at those conditions using classical nucleation theory. The solutions obtained give dacite melt-vapor surface tensions that vary inversely with dissolved water from 0.042 (??0.003) J m-2 at 5.7 wt% H2O to 0.060 (??0.007) J m-2 at 5.2 wt% H2O to 0.073 (??0.003) J m-2 at 4.8 wt% H2O. Combining our dacite results with data from published hydrous haplogranite and high-silica rhyolite experiments reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). We develop a thermodynamic context for these observations in which melt-vapor surface tension is represented by a balance of work terms controlled by melt structure. Overall, our results suggest that cooling, crystallization, and vapor exsolution cause systematic changes in ?? that should be considered in dynamic modeling of magmatic processes.

  20. Temperature and composition dependencies of trace element partitioning - Olivine/melt and low-Ca pyroxene/melt

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Mckay, G. A.; Taylor, L. A.

    1988-01-01

    This paper presents a systematic thermodynamic analysis of the effects of temperature and composition on olivine/melt and low-Ca pyroxene/melt partitioning. Experiments were conducted in several synthetic basalts with a wide range of Fe/Mg, determining partition coefficients for Eu, Ca, Mn, Fe, Ni, Sm, Cd, Y, Yb, Sc, Al, Zr, and Ti and modeling accurately the changes in free energy for trace element exchange between crystal and melt as functions of the trace element size and charge. On the basis of this model, partition coefficients for olivine/melt and low-Ca pyroxene/melt can be predicted for a wide range of elements over a variety of basaltic bulk compositions and temperatures. Moreover, variations in partition coeffeicients during crystallization or melting can be modeled on the basis of changes in temperature and major element chemistry.

  1. The Role of CO2 on Silica Undersaturated Melt Structure: Implication for Melt Physical Properties

    NASA Astrophysics Data System (ADS)

    Scaillet, B.; Morizet, Y.; Paris, M.; Gaillard, F.

    2012-12-01

    Silica undersaturated melts such as nephelinite and melilitite are very peculiar magmatic materials. Their occurrence on the Earth surface is often associated with carbonatites melts. These low-silica melts can dissolve a large quantity of CO2 issued from mantle fluid metasomatism. However, the melt structure, the way CO2 dissolves into these melts and the effect of different alkalis element are poorly constrained. We present preliminary experimental results on the melt structure of synthetic nephelinite (NBO/T = 1.25) and Ca-melilitite (NBO/T = 2.50) synthesized in the NKCMAS system and equilibrated at high-pressure (200-300 MPa), high-temperature (1250°C) with an excess C-O-H fluid phase. The nephelinite glasses were synthesized with varying K2O / K2O+Na2O (0-10 mol.% K2O) ratio so as to investigate the differential effect of those two cations. All experiments were conducted under oxidizing conditions (ΔNNO+5) resulting in binary fluid phase composition with CO2 and H2O species. The silicate melt structure, CO2 solubility and speciation were investigated using Micro-Raman and Solid State NMR spectroscopies for 13C, 1H, 29Si, 27Al and 23Na nuclei. The replacement of Na by K does not change the nephelinite melt structure for volatile-free sample suggesting that the basicity of these glasses is not dramatically affected by the presence of mixed alkali. Within 5 mol.% K2O, the CO2 solubility (measured in relative to Raman signature of the melt structure) is only slightly affected with an increasing CO2 solubility with increasing K2O content. As a function of pressure, we observe an increase in CO2 solubility consistent with previous studies. The 13C NMR investigation of the CO2 speciation show three different carbonates environments for CO2 in nephelinite melts attributed to non-network carbonates: 1) 170 ppm shift assigned to NBO-carb. Na or K; 2) 169 ppm assigned to NBO-carb. Ca; and 3) 165 ppm assigned to isolated Na+..CO32- carbonates. As K2O is increased into

  2. Thermodynamics of Oligonucleotide Duplex Melting

    ERIC Educational Resources Information Center

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  3. First-principles melting of gallium clusters down to nine atoms: structural and electronic contributions to melting.

    PubMed

    Steenbergen, Krista G; Gaston, Nicola

    2013-10-07

    First-principles Born-Oppenheimer molecular dynamics simulations of small gallium clusters, including parallel tempering, probe the distinction between cluster and molecule in the size range of 7-12 atoms. In contrast to the larger sizes, dynamic measures of structural change at finite temperature demonstrate that Ga7 and Ga8 do not melt, suggesting a size limit to melting in gallium exists at 9 atoms. Analysis of electronic structure further supports this size limit, additionally demonstrating that a covalent nature cannot be identified for clusters larger than the gallium dimer. Ga9, Ga10 and Ga11 melt at greater-than-bulk temperatures, with no evident covalent character. As Ga12 represents the first small gallium cluster to melt at a lower-than-bulk temperature, we examine the structural properties of each cluster at finite temperature in order to probe both the origins of greater-than-bulk melting, as well as the significant differences in melting temperatures induced by a single atom addition. Size-sensitive melting temperatures can be explained by both energetic and entropic differences between the solid and liquid phases for each cluster. We show that the lower-than-bulk melting temperature of the 12-atom cluster can be attributed to persistent pair bonding, reminiscent of the pairing observed in α-gallium. This result supports the attribution of greater-than-bulk melting in gallium clusters to the anomalously low melting temperature of the bulk, due to its dimeric structure.

  4. Automatic Control of Silicon Melt Level

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Stickel, W. B.

    1982-01-01

    A new circuit, when combined with melt-replenishment system and melt level sensor, offers continuous closed-loop automatic control of melt-level during web growth. Installed on silicon-web furnace, circuit controls melt-level to within 0.1 mm for as long as 8 hours. Circuit affords greater area growth rate and higher web quality, automatic melt-level control also allows semiautomatic growth of web over long periods which can greatly reduce costs.

  5. Dynamic melting of metals in the diamond cell: Clues for melt viscosity?

    NASA Astrophysics Data System (ADS)

    Boehler, R.; Karandikar, A.; Yang, L.

    2011-12-01

    From the observed decreasing mobility of liquid iron at high pressure in the laser-heated diamond cell and the gradual decrease in the shear modulus in shock experiments, one may derive high viscosity in the liquid outer core of the Earth. A possible explanation could be the presence of local structures in the liquid as has been observed for several transition metals. In order to bridge the large gap in the timescales between static and dynamic melting experiments, we have developed new experimental techniques to solve the large discrepancies in the melting curves of transition metals (Fe, W, Ta, Mo) measured statically in the laser-heated diamond cell and in shock experiments. The new methods employ "single-shot" laser heating in order to reduce problems associated with mechanical instabilities and chemical reactions of the samples subjected to several thousand degrees at megabar pressures. For melt detection, both synchrotron X-ray diffraction and Scanning Electron Microscopy (SEM) on recovered samples are used. A third approach is the measurement of latent heat effects associated with melting or freezing. This method employs simultaneous CW and pulse laser heating and monitoring the temperature-time history with fast photomultipliers. Using the SEM recovery method, we measured first melting temperatures of rhenium, which at high pressure may be one of the most refractory materials. From the melt textures of Re, we did not observe a significant pressure dependence of viscosity.

  6. Understanding Melt-Memory of Commercial Polyolefins

    NASA Astrophysics Data System (ADS)

    Alamo, Rufina

    Self-nucleation (SN) or controlling self-generated seeds in a polymer melt is an avenue to increase the rate of solidification of semicrystalline polymers of commercial relevance. Self-nuclei are remains in the melt of the segmental self-assembly to form polymer crystallites providing a path to enhance primary crystal nucleation. SN has been extensively studied in homopolymers such as iPP. Recently, a strong memory effect of crystallization has been observed in melts of random ethylene copolymers well above the equilibrium melting temperature. The melt memory is associated with clusters or seeds that remain in the melt from the copolymer's sequence length partitioning. Cooling from progressively lower self-seeded melt temperatures, ethylene copolymers with a broad inter-chain comonomer composition (1 - 15 mol%) display first the expected accelerated crystallization, followed by a decrease in the rate in a range of melt temperatures where narrow copolymers show a continuous acceleration of the rate. This unusual inversion of the crystallization rate was postulated to arise from the onset of liquid-liquid phase separation (LLPS) between comonomer-rich and comonomer-poor components of the broad copolymer. The UCST type phase diagram of these commercial copolymers has been documented via SANS using a blend of components, some deuterated, to reproduce the broad distribution. Furthermore, the components that contribute to LLPS have been identified by the crystallization behavior of molar mass fractions. The influence of long chain branching on the topology of copolymer melts has been analyzed using model 3-arm stars hydrogenated polybutadienes. The effect of melt viscosity on strength of melt memory is also evident when SN data of random ethylene copolymers are compared with those of propylene-ethylene copolymers. The strong dependence of melt viscosity on melt memory, and a critical threshold crystallinity level to observe the effect of melt memory on crystallization

  7. The influence of partial melting and melt migration on the rheology of the continental crust

    NASA Astrophysics Data System (ADS)

    Cavalcante, Geane Carolina G.; Viegas, Gustavo; Archanjo, Carlos José; da Silva, Marcos Egydio

    2016-11-01

    The presence of melt during deformation produces a drastic change in the rheological behavior of the continental crust; rock strength is decreased even for melt fractions as low as ∼7%. At pressure/temperature conditions typical of the middle to lower crust, melt-bearing systems may play a critical role in the process of strain localization and in the overall strength of the continental lithosphere. In this contribution we focus on the role and dynamics of melt flow in two different mid-crustal settings formed during the Brasiliano orogeny: (i) a large-scale anatectic layer in an orthogonal collision belt, represented by the Carlos Chagas anatexite in southeastern Brazil, and (ii) a strike-slip setting, in which the Espinho Branco anatexite in the Patos shear zone (northeast Brazil) serves as an analogue. Both settings, located in eastern Brazil, are part of the Neoproterozoic tectonics that resulted in widespread partial melting, shear zone development and the exhumation of middle to lower crustal layers. These layers consist of compositionally heterogeneous anatexites, with variable former melt fractions and leucosome structures. The leucosomes usually form thick interconnected networks of magma that reflect a high melt content (>30%) during deformation. From a comparison of previous work based on detailed petrostructural and AMS studies of the anatexites exposed in these areas, we discuss the rheological implications caused by the accumulation of a large volume of melt ;trapped; in mid-crustal levels, and by the efficient melt extraction along steep shear zones. Our analyses suggest that rocks undergoing partial melting along shear settings exhibit layers with contrasting competence, implying successive periods of weakening and strengthening. In contrast, regions where a large amount of magma accumulates lack clear evidence of competence contrast between layers, indicating that they experienced only one major stage of dramatic strength drop. This comparative

  8. Partial Melting in the Inner Core

    NASA Astrophysics Data System (ADS)

    Hernlund, J. W.

    2014-12-01

    The inner core boundary (ICB) is often considered to be permeable to flow, because solid iron could melt as it upwells across the ICB. Such a mechanism has been proposed to accompany inner core convective processes (including translation from a freezing to melting hemisphere), and has also been invoked to explain the formation of a dense Fe-rich liquid F-layer above the ICB. However, the conceptions of ICB melting invoked thus far are extremely simplistic, and neglect the many lessons learned from melting in other geological contexts. Owing to some degree of solid solution in relatively incompatible light alloys in solid iron, the onset of melting in the inner core will likely occur as a partial melt, with the liquid being enriched in these light alloys relative to the co-existing solid. Such a partial melt is then subject to upward migration/percolation out of the solid matrix owing to the buoyancy of melt relative to solid. Removal of melt and viscous compaction of the pore space results in an iron-enriched dense solid, whose negative buoyancy will oppose whatever buoyancy forces initially gave rise to upwelling. Either the negative buoyancy will balance these other forces and cause upwelling to cease, or else the solid will become so depleted in light alloys that it is unable to undergo further melting. Thus a proper accounting of partial melting results in a very different melting regime in the inner core, and suppression of upwelling across the ICB. Any fluid that is able to escape into the outer core from inner core partial melting will likely be buoyant because in order to be a melt it should be enriched in incompatiable alloys relative to whatever is freezing at the ICB. Therefore inner core melting is unlikely to contribute to the formation of an F-layer, but instead will tend to de-stabilize it. I will present models that illustrate these processes, and propose that the F-layer is a relic of incomplete mixing of the core during Earth's final stages of

  9. Partial melting kinetics of plagioclase-diopside pairs

    NASA Astrophysics Data System (ADS)

    Tsuchiyama, Akira

    1985-09-01

    Partial melting experiments on plagioclase (An60) and diopside have been carried out using pairs of large crystals to investigate textures and kinetics of melting. The experiments were done at one atmosphere pressure as a function of temperature (1,190 1,307° C) and time (1.5 192 h). Melting took place mainly at the plagioclase-diopside contact planes. Reaction zones composed of fine mixtures of calcic plagioclase and melt were developed from the surface of the plagioclase crystal inward. There exists a critical temperature, below which only a few % melting can occur over the duration of the experiments. This sluggish melting is caused by slow NaSi-CaAl diffusion in plagioclase, because the plagioclase crystal must change its composition to produce albite-rich cotectic melts. Diffusion in the solid also affects the chemical composition of the melts. During initial melting, potassium is preferentially extracted from plagioclase because K-Na diffusion in plagioclase is faster than that of NaSi-CaAl. This also causes a shift in the cotectic compositions. Above the “critical temperature”, on the other hand, melting is promoted by a metastable reaction in which the plagioclase composition does not change, and which produces melts with compositional gradients along the original An60-diopside tie line. The critical temperature is determined by the intersection of the cotectic and the An60-diopside tie line. Interdiffusion coefficients of plagioclase-diopside components in the melt are estimated from melting rates above the critical temperature by using a simplified steady-state diffusion model (e.g., 10-8 cm2/sec at 1,300° C). Many examples of reaction zones due to partial melting have been described as spongy or fingerprint-like textures in xenoliths. Metastable melting above the critical temperature is considered to take place in natural melting where there is a high degree of melting. However, we cannot exclude the possibility of disequilibrium created by

  10. Melt volume flow rate and melt flow rate of kenaf fibre reinforced Floreon/magnesium hydroxide biocomposites.

    PubMed

    Lee, C H; Sapuan, S M; Lee, J H; Hassan, M R

    2016-01-01

    A study of the melt volume flow rate (MVR) and the melt flow rate (MFR) of kenaf fibre (KF) reinforced Floreon (FLO) and magnesium hydroxide (MH) biocomposites under different temperatures (160-180 °C) and weight loadings (2.16, 5, 10 kg) is presented in this paper. FLO has the lowest values of MFR and MVR. The increment of the melt flow properties (MVR and MFR) has been found for KF or MH insertion due to the hydrolytic degradation of the polylactic acid in FLO. Deterioration of the entanglement density at high temperature, shear thinning and wall slip velocity were the possible causes for the higher melt flow properties. Increasing the KF loadings caused the higher melt flow properties while the higher MH contents created stronger bonding for higher macromolecular chain flow resistance, hence lower melt flow properties were recorded. However, the complicated melt flow behaviour of the KF reinforced FLO/MH biocomposites was found in this study. The high probability of KF-KF and KF-MH collisions was expected and there were more collisions for higher fibre and filler loading causing lower melt flow properties.

  11. EARLY IMPACT MELTING AND SPACE EXPOSURE HISTORY OF THE PAT91501 LCHONDRITE

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.; Garrison, D. H.; Herzog, G. F.; Xue, S.; Klein, J.; Middleton, R.

    2004-01-01

    Collisions probably occurred frequently in the early history of the asteroid belt. Their effects, which should be recorded in meteorites, must have included heating and melting along with shock alteration of mineral textures. Some non-chondritic meteorite types e.g., eucrites and IIE and IAB irons - do indeed give evidence of extensive impact heating more than 3.4 Gyr ago. The ordinary chondrites, in contrast, show little evidence of early impact heating. The Ar-Ar and Rb-Sr ages of ordinary chondrites that experienced intense shock are for the most part relatively young, many less than 1.5 Gyr. The numerous L-chondrites with Ar- Ar ages clustering near 0.5 Gy are a well-known example. One of them, the 105-kg Chico Lchondrite, shows the effects of unusually intense heating. It is approximately 60% impact melt and likely formed as a dyke beneath a large crater when the L-chondrite parent body underwent a very large impact approximately 0.5 Gyr ago. In rare instances, older shock dates are indicated for ordinary chondrites. Dixon et al show early impact resetting of Ar-Ar ages of a few LL-chondrites including MIL 99301 at 4.23 0.03 Gyr, but in none of these stones did shock lead to extensive melting. As of 2003, searches for chondritic melts attributable to early shock had turned up only the Shaw L-chondrite, which has an Ar-Ar age of approximately 4.42 Gyr. PAT91501 is an 8.55-kg L-chondrite containing vesicles and metal-troilite nodules. It is a unique, near-total impact melt, unshocked, depleted in siderophile and chalcophile elements, and contains only approximately 10% relic chondritic material. The authors conclude that PAT91501 crystallized rapidly and from a much more homogeneous melt than did Shaw. They suggest that PAT resembles Chico and likely formed as an impact melt vein within an impact crater. To define the history of PAT, we have determined its Ar-39-Ar-40 age and measured several radioactive and stable nuclides produced during its space exposure to

  12. Electron microprobe evaluation of terrestrial basalts for whole-rock K-Ar dating

    USGS Publications Warehouse

    Mankinen, E.A.; Brent, Dalrymple G.

    1972-01-01

    Four basalt samples for whole-rock K-Ar dating were analyzed with an electron microprobe to locate potassium concentrations. Highest concentrations of potassium were found in those mineral phases which were the last to crystallize. The two reliable samples had potassium concentrated in fine-grained interstitial feldspar and along grain boundaries of earlier formed plagioclase crystals. The two unreliable samples had potassium concentrated in the glassy matrix, demonstrating the ineffectiveness of basaltic glass as a retainer of radiogenic argon. In selecting basalt samples for whole-rock K-Ar dating, particular emphasis should be placed on determining the nature and condition of the fine-grained interstitial phases. ?? 1972.

  13. Revised direct radiocarbon dating of the Vindija G1 Upper Paleolithic Neandertals.

    PubMed

    Higham, Tom; Ramsey, Christopher Bronk; Karavanić, Ivor; Smith, Fred H; Trinkaus, Erik

    2006-01-17

    The 1998/1999 direct dating of two Neandertal specimens from level G(1) of Vindija Cave in Croatia to approximately 28,000 and approximately 29,000 radiocarbon ((14)C) years ago has led to interpretations concerning the late survival of Neandertals in south-central Europe, patterns of interaction between Neandertals and in-dispersing early modern humans in Europe, and complex biocultural scenarios for the earlier phases of the Upper Paleolithic. Given improvements, particularly in sample pretreatment techniques for bone radiocarbon samples, especially ultrafiltration of collagen samples, these Vindija G(1) Neandertal fossils are redated to approximately 32,000-33,000 (14)C years ago and possibly earlier. These results and the recent redating of a number of purportedly old modern human skeletal remains in Europe to younger time periods highlight the importance of fine chronological control when studying this biocultural time period and the tenuous nature of monolithic scenarios for the establishment of modern humans and earlier phases of the Upper Paleolithic in Europe.

  14. Melt migration modeling in partially molten upper mantle

    NASA Astrophysics Data System (ADS)

    Ghods, Abdolreza

    The objective of this thesis is to investigate the importance of melt migration in shaping major characteristics of geological features associated with the partial melting of the upper mantle, such as sea-floor spreading, continental flood basalts and rifting. The partial melting produces permeable partially molten rocks and a buoyant low viscosity melt. Melt migrates through the partially molten rocks, and transfers mass and heat. Due to its much faster velocity and appreciable buoyancy, melt migration has the potential to modify dynamics of the upwelling partially molten plumes. I develop a 2-D, two-phase flow model and apply it to investigate effects of melt migration on the dynamics and melt generation of upwelling mantle plumes and focusing of melt migration beneath mid-ocean ridges. Melt migration changes distribution of the melt-retention buoyancy force and therefore affects the dynamics of the upwelling plume. This is investigated by modeling a plume with a constant initial melt of 10% where no further melting is considered. Melt migration polarizes melt-retention buoyancy force into high and low melt fraction regions at the top and bottom portions of the plume and therefore results in formation of a more slender and faster upwelling plume. Allowing the plume to melt as it ascends through the upper mantle also produces a slender and faster plume. It is shown that melt produced by decompressional melting of the plume migrates to the upper horizons of the plume, increases the upwelling velocity and thus, the volume of melt generated by the plume. Melt migration produces a plume which lacks the mushroom shape observed for the plume models without melt migration. Melt migration forms a high melt fraction layer beneath the sloping base of the impermeable oceanic lithosphere. Using realistic conditions of melting, freezing and melt extraction, I examine whether the high melt fraction layer is able to focus melt from a wide partial melting zone to a narrow region

  15. Earlier nesting by generalist predatory bird is associated with human responses to climate change.

    PubMed

    Smith, Shawn H; Steenhof, Karen; McClure, Christopher J W; Heath, Julie A

    2017-01-01

    Warming temperatures cause temporal changes in growing seasons and prey abundance that drive earlier breeding by birds, especially dietary specialists within homogeneous habitat. Less is known about how generalists respond to climate-associated shifts in growing seasons or prey phenology, which may occur at different rates across land cover types. We studied whether breeding phenology of a generalist predator, the American kestrel (Falco sparverius), was associated with shifts in growing seasons and, presumably, prey abundance, in a mosaic of non-irrigated shrub/grasslands and irrigated crops/pastures. We examined the relationship between remotely-sensed normalized difference vegetation index (NDVI) and abundance of small mammals that, with insects, constitute approximately 93% of kestrel diet biomass. We used NDVI to estimate the start of the growing season (SoGS) in irrigated and non-irrigated lands from 1992 to 2015 and tested whether either estimate of annual SoGS predicted the timing of kestrel nesting. Finally, we examined relationships among irrigated SoGS, weather and crop planting. NDVI was a useful proxy for kestrel prey because it predicted small mammal abundance and past studies showed that NDVI predicts insect abundance. NDVI-estimated SoGS advanced significantly in irrigated lands (β = -1·09 ± 0·30 SE) but not in non-irrigated lands (β = -0·57 ± 0·53). Average date of kestrel nesting advanced 15 days in the past 24 years and was positively associated with the SoGS in irrigated lands, but not the SoGS in non-irrigated lands. Advanced SoGS in irrigated lands was related to earlier planting of crops after relatively warm winters, which were more common in recent years. Despite different patterns of SoGS change between land cover types, kestrel nesting phenology shifted with earlier prey availability in irrigated lands. Kestrels may preferentially track prey in irrigated lands over non-irrigated lands because of higher quality prey on

  16. Oceanic slab melting and mantle metasomatism.

    PubMed

    Scaillet, B; Prouteau, G

    2001-01-01

    Modern plate tectonic brings down oceanic crust along subduction zones where it either dehydrates or melts. Those hydrous fluids or melts migrate into the overlying mantle wedge trigerring its melting which produces arc magmas and thus additional continental crust. Nowadays, melting seems to be restricted to cases of young (< 50 Ma) subducted plates. Slab melts are silicic and strongly sodic (trondhjemitic). They are produced at low temperatures (< 1000 degrees C) and under water excess conditions. Their interaction with mantle peridotite produces hydrous metasomatic phases such as amphibole and phlogopite that can be more or less sodium rich. Upon interaction the slab melt becomes less silicic (dacitic to andesitic), and Mg, Ni and Cr richer. Virtually all exposed slab melts display geochemical evidence of ingestion of mantle material. Modern slab melts are thus unlike Archean Trondhjemite-Tonalite-Granodiorite rocks (TTG), which suggests that both types of magmas were generated via different petrogenetic pathways which may imply an Archean tectonic model of crust production different from that of the present-day, subduction-related, one.

  17. Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation.

    PubMed

    Muschitiello, Francesco; Pausata, Francesco S R; Lea, James M; Mair, Douglas W F; Wohlfarth, Barbara

    2017-10-24

    Volcanic eruptions can impact the mass balance of ice sheets through changes in climate and the radiative properties of the ice. Yet, empirical evidence highlighting the sensitivity of ancient ice sheets to volcanism is scarce. Here we present an exceptionally well-dated annual glacial varve chronology recording the melting history of the Fennoscandian Ice Sheet at the end of the last deglaciation (∼13,200-12,000 years ago). Our data indicate that abrupt ice melting events coincide with volcanogenic aerosol emissions recorded in Greenland ice cores. We suggest that enhanced ice sheet runoff is primarily associated with albedo effects due to deposition of ash sourced from high-latitude volcanic eruptions. Climate and snowpack mass-balance simulations show evidence for enhanced ice sheet runoff under volcanically forced conditions despite atmospheric cooling. The sensitivity of past ice sheets to volcanic ashfall highlights the need for an accurate coupling between atmosphere and ice sheet components in climate models.

  18. Arctic tundra shrub invasion and soot deposition: Consequences for spring snowmelt and near-surface air temperatures

    NASA Astrophysics Data System (ADS)

    Strack, John E.

    Invasive shrubs and soot pollution both have the potential to alter the surface energy balance and timing of snow melt in the Arctic. Shrubs reduce the amount of snow lost to sublimation on the tundra during the winter leading to a deeper end-of-winter snowpack. The shrubs also enhance the absorption of energy by the snowpack during the melt season, by converting incoming solar radiation to longwave radiation and sensible heat. This results in a faster rate of snow melt, warmer near-surface air temperatures, and a deeper boundary layer. Soot deposition lowers the albedo of the snow allowing it to more effectively absorb incoming solar radiation and thus melt faster. This study uses the Colorado State University Regional Atmospheric Modeling System version 4.4 (CSU-RAMS 4.4), equipped with an enhanced snow model, to investigate the effects of shrub encroachment and soot deposition on the atmosphere and snowpack in the Kuparuk Basin of Alaska during the May-June melt period. The results of the simulations suggest that a complete invasion of the tundra by shrubs leads to a 1.5 degree C warming of 2-m air temperatures, 17 watts per meter square increase in surface sensible heat flux, and a 108 m increase in boundary layer depth during the melt period. The snow free-date also occurred 11 days earlier despite having a larger initial snowpack. The results also show that a decrease in the snow albedo of 0.1, due to soot pollution, caused the snow-free date to occur five days earlier. The soot pollution caused a 0.5 degree C warming of 2-m air temperatures and a 2 watts per meter square increase in surface sensible heat flux. In addition, the boundary layer averaged 25 m deeper in the polluted snow simulation.

  19. Ice-Shelf Melting Around Antarctica

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B.

    2013-07-01

    We compare the volume flux divergence of Antarctic ice shelves in 2007 and 2008 with 1979 to 2010 surface accumulation and 2003 to 2008 thinning to determine their rates of melting and mass balance. Basal melt of 1325 ± 235 gigatons per year (Gt/year) exceeds a calving flux of 1089 ± 139 Gt/year, making ice-shelf melting the largest ablation process in Antarctica. The giant cold-cavity Ross, Filchner, and Ronne ice shelves covering two-thirds of the total ice-shelf area account for only 15% of net melting. Half of the meltwater comes from 10 small, warm-cavity Southeast Pacific ice shelves occupying 8% of the area. A similar high melt/area ratio is found for six East Antarctic ice shelves, implying undocumented strong ocean thermal forcing on their deep grounding lines.

  20. Critical porosity of melt segregation during crustal melting: Constraints from zonation of peritectic garnets in a dacite volcano

    NASA Astrophysics Data System (ADS)

    Yu, Xun; Lee, Cin-Ty A.

    2016-09-01

    The presence of leucogranitic dikes in orogenic belts suggests that partial melting may be an important process in the lower crust of active orogenies. Low seismic velocity and low electrical resistivity zones have been observed in the lower crust of active mountain belts and have been argued to reflect the presence of partial melt in the deep crust, but volcanoes are rare or absent above many of these inferred melt zones. Understanding whether these low velocity zones are melt-bearing, and if so, why they do not commonly erupt, is essential for understanding the thermal and rheologic structure of the crust and its dynamic evolution. Central to this problem is an understanding of how much melt can be stored before it can escape from the crust via compaction and eventually erupt. Experimental and theoretical studies predict trapped melt fractions anywhere from <5% to >30%. Here, we examine Mn growth-zoning in peritectic garnets in a Miocene dacite volcano from the ongoing Betic-Rif orogeny in southern Spain to estimate the melt fraction at the time of large-scale melt extraction that subsequently led to eruption. We show that the melt fraction at segregation, corresponding approximately to the critical melt porosity, was ∼30%, implying significant amounts of melt can be stored in the lower crust without draining or erupting. However, seismic velocities in the lower crust beneath active orogenic belts (southern Spain and Tibet) as well as beneath active magmatic zones (e.g., Yellowstone hotspot) correspond to average melt porosities of <10%, suggesting that melt porosities approaching critical values are short-lived or that high melt porosity regions are localized into heterogeneously distributed sills or dikes, which individually cannot be resolved by seismic studies.

  1. Lithospheric processes that enhance melting at rifts

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L. T.; Furman, T.

    2008-12-01

    Continental rifts are commonly sites for mantle melting, whether in the form of ridge melting to create new oceanic crust, or as the locus of flood basalt activity, or in the long initial period of rifting before lavas evolve fully into MORBs. The high topography in the lithosphere-asthenosphere boundary under a rift creates mantle upwelling and adiabatic melting even in the absence of a plume. This geometry itself, however, is conducive to lithospheric instability on the sides of the rifts. Unstable lithosphere may founder into the mantle, producing more complex aesthenospheric convective patterns and additional opportunities to produce melt. Lithospheric instabilities can produce additional adiabatic melting in convection produced as they sink, and they may also devolatilize as they sink, introducing the possibility of flux melting to the rift environment. We call this process upside-down melting, since devolatilization and melting proceed as the foundering lithosphere sinks, rather than while rising, as in the more familiar adiabatic decompression melting. Both adiabatic melting and flux melting would take place along the edges of the rift and may even move magmatism outside the rift, as has been seen in Ethiopia. In volcanism postdating the flood basalts on and adjacent to the Ethiopian Plateau there is evidence for both lithospheric thinning and volatile enrichment in the magmas, potentially consistent with the upside-down melting model. Here we present a physical model for the conjunction of adiabatic decompression melting to produce new oceanic crust in the rift, while lithospheric gravitational instabilities drive both adiabatic and flux melting at its margins.

  2. Dissolution Mechanism for High Melting Point Transition Elements in Aluminum Melt

    NASA Astrophysics Data System (ADS)

    Lee, Young E.; Houser, Stephen L.

    When added cold in aluminum melt, the alloying process for compacts of transition metal elements such as Mn, Fe, Cr, Ni, Ti, Cu, and Zn takes a sequence of incubation, exothermic reactions to form intermetallic compounds, and dispersion of the alloying elements into aluminum melt. The experiments with Cr compacts show that the incubation period is affected by the content of ingredient Al and size of compacts and by size of Cr particles. Incubation period becomes longer as the content of ingredient aluminum in compact decreases, and this prolonged incubation period negatively impacts the dissolution of the alloying elements in aluminum. Once liquid aluminum forms at reaction sites, the exothermic reaction takes place quickly and significantly raises the temperature of the compacts. As the result of it, the compacts swell in volume with a sponge like structure. Such porous structure encourages the penetration of liquid aluminum from the melt. The compacts become weak mechanically, and the alloying elements are dispersed and entrained in aluminum melt as discrete and small sized units. When Cr compacts are deficient in aluminum, the unreacted Cr particles are encased by the intermetallic compounds in the dispersed particles. They are carried in the melt flow and continue the dissolution reaction in aluminum. The entire dissolution process of Cr compacts completes within 10 to 15 minutes with a full recovery when the aluminum content is 10 to 20% in compacts.

  3. The Gao-Guenie impact melt breccia—Sampling a rapidly cooled impact melt dike on an H chondrite asteroid?

    NASA Astrophysics Data System (ADS)

    Schmieder, Martin; Kring, David A.; Swindle, Timothy D.; Bond, Jade C.; Moore, Carleton B.

    2016-06-01

    The Gao-Guenie H5 chondrite that fell on Burkina Faso (March 1960) has portions that were impact-melted on an H chondrite asteroid at ~300 Ma and, through later impact events in space, sent into an Earth-crossing orbit. This article presents a petrographic and electron microprobe analysis of a representative sample of the Gao-Guenie impact melt breccia consisting of a chondritic clast domain, quenched melt in contact with chondritic clasts, and an igneous-textured impact melt domain. Olivine is predominantly Fo80-82. The clast domain contains low-Ca pyroxene. Impact melt-grown pyroxene is commonly zoned from low-Ca pyroxene in cores to pigeonite and augite in rims. Metal-troilite orbs in the impact melt domain measure up to ~2 mm across. The cores of metal orbs in the impact melt domain contain ~7.9 wt% of Ni and are typically surrounded by taenite and Ni-rich troilite. The metallography of metal-troilite droplets suggest a stage I cooling rate of order 10 °C s-1 for the superheated impact melt. The subsolidus stage II cooling rate for the impact melt breccia could not be determined directly, but was presumably fast. An analogy between the Ni rim gradients in metal of the Gao-Guenie impact melt breccia and the impact-melted H6 chondrite Orvinio suggests similar cooling rates, probably on the order of ~5000-40,000 °C yr-1. A simple model of conductive heat transfer shows that the Gao-Guenie impact melt breccia may have formed in a melt injection dike ~0.5-5 m in width, generated during a sizeable impact event on the H chondrite parent asteroid.

  4. Polarimetric C-/X-band Synthetic Aperture Radar Observations of Melting Sea Ice in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Casey, J. A.; Beckers, J. F.; Brossier, E.; Haas, C.

    2013-12-01

    Operational ice information services rely heavily on space-borne synthetic aperture radar (SAR) data for the production of ice charts to meet their mandate of providing timely and accurate sea ice information to support safe and efficient marine operations. During the summer melt period, the usefulness of SAR data for sea ice monitoring is limited by the presence of wet snow and melt ponds on the ice surface, which can mask the signature of the underlying ice. This is a critical concern for ice services whose clients (e.g. commercial shipping, cruise tourism, resource exploration and extraction) are most active at this time of year when sea ice is at its minimum extent, concentration and thickness. As a result, there is a need to further quantify the loss of ice information in SAR data during the melt season and to identify what information can still be retrieved about ice surface conditions and melt pond evolution at this time of year. To date the majority of studies have been limited to analysis of single-polarization C-band SAR data. This study will investigate the potential complimentary and unique sea ice information that polarimetric C- and X-band SAR data can provide to supplement the information available from traditional single co-polarized C-band SAR data. A time-series of polarimetric C- and X-band SAR data was acquired over Jones Sound in the Canadian Arctic Archipelago, in the vicinity of the Grise Fiord, Nunavut. Five RADARSAT-2 Wide Fine Quad-pol images and 11 TerraSAR-X StripMap dual-pol (HH/VV) images were acquired. The time-series begins at the onset of melt in early June and extends through advanced melt conditions in late July. Over this period several ponding and drainage events and two snowfall events occurred. Field observations of sea ice properties were collected using an Ice Mass Balance (IMB) buoy, hourly photos from a time-lapse camera deployed on a coastal cliff, and manual in situ measurements of snow thickness and melt pond depth

  5. Ice-shelf melting around Antarctica

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Jacobs, S.

    2008-12-01

    The traditional view on the mass balance of Antarctic ice shelves is that they loose mass principally from iceberg calving with bottom melting a much lower contributing factor. Because ice shelves are now known to play a fundamental role in ice sheet evolution, it is important to re-evaluate their wastage processes from a circumpolar perspective using a combination of remote sensing techniques. We present area average rates deduced from grounding line discharge, snow accumulation, firn depth correction and ice shelf topography. We find that ice shelf melting accounts for roughly half of ice-shelf ablation, with a total melt water production of 1027 Gt/yr. The attrition fraction due to in-situ melting varies from 9 to 90 percent around Antarctica. High melt producers include the Ronne, Ross, Getz, Totten, Amery, George VI, Pine Island, Abbot, Dotson/Crosson, Shackleton, Thwaites and Moscow University Ice Shelves. Low producers include the Larsen C, Princess Astrid and Ragnhild coast, Fimbul, Brunt and Filchner. Correlation between melt water production and grounding line discharge is low (R2 = 0.65). Correlation with thermal ocean forcing from the ocean are highest in the northern parts of West Antarctica where regressions yield R2 of 0.93-0.97. Melt rates in the Amundsen Sea exhibit a quadratic sensitivity to thermal ocean forcing. We conclude that ice shelf melting plays a dominant role in ice shelf mass balance, with a potential to change rapidly in response to altered ocean heat transport onto the Antarctic continental shelf.

  6. Melting in super-earths.

    PubMed

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  7. Influence of gene flow on divergence dating - implications for the speciation history of Takydromus grass lizards.

    PubMed

    Tseng, Shu-Ping; Li, Shou-Hsien; Hsieh, Chia-Hung; Wang, Hurng-Yi; Lin, Si-Min

    2014-10-01

    Dating the time of divergence and understanding speciation processes are central to the study of the evolutionary history of organisms but are notoriously difficult. The difficulty is largely rooted in variations in the ancestral population size or in the genealogy variation across loci. To depict the speciation processes and divergence histories of three monophyletic Takydromus species endemic to Taiwan, we sequenced 20 nuclear loci and combined with one mitochondrial locus published in GenBank. They were analysed by a multispecies coalescent approach within a Bayesian framework. Divergence dating based on the gene tree approach showed high variation among loci, and the divergence was estimated at an earlier date than when derived by the species-tree approach. To test whether variations in the ancestral population size accounted for the majority of this variation, we conducted computer inferences using isolation-with-migration (IM) and approximate Bayesian computation (ABC) frameworks. The results revealed that gene flow during the early stage of speciation was strongly favoured over the isolation model, and the initiation of the speciation process was far earlier than the dates estimated by gene- and species-based divergence dating. Due to their limited dispersal ability, it is suggested that geographical isolation may have played a major role in the divergence of these Takydromus species. Nevertheless, this study reveals a more complex situation and demonstrates that gene flow during the speciation process cannot be overlooked and may have a great impact on divergence dating. By using multilocus data and incorporating Bayesian coalescence approaches, we provide a more biologically realistic framework for delineating the divergence history of Takydromus. © 2014 John Wiley & Sons Ltd.

  8. Preliminary results of sulfide melt/silicate wetting experiments in a partially melted ordinary chondrite

    NASA Technical Reports Server (NTRS)

    Jurewicz, Stephen R.; Jones, John H.

    1994-01-01

    Recently, mechanisms for core formation in planetary bodies have received considerable attention. Most current theories emphasize the need for large degrees of silicate partial melting to facilitate the coalescence and sinking of sulfide-metal liquid blebs through a low strength semi-crystalline silicate mush. This scenario is based upon observations that sulfide-metal liquid tends to form circular blebs in partially molten meteorites during laboratory experiments. However, recent experimental work by Herpfer and Larimer indicates that some sulfide-Fe liquids have wetting angles at and slightly below 60 deg in an olivine aggregate, implying an interconnected melt structure at any melt fraction. Such melt interconnectivity provides a means for gravitational compaction and extraction of the majority of a sulfide liquid phase in small planetary bodies without invoking large degrees of silicate partial melting. Because of the important ramifications of these results, we conducted a series of experiments using H-chondrite starting material in order to evaluate sulfide-liquid/silicate wetting behavior in a more complex natural system.

  9. High-pressure melting of molybdenum.

    PubMed

    Belonoshko, A B; Simak, S I; Kochetov, A E; Johansson, B; Burakovsky, L; Preston, D L

    2004-05-14

    The melting curve of the body-centered cubic (bcc) phase of Mo has been determined for a wide pressure range using both direct ab initio molecular dynamics simulations of melting as well as a phenomenological theory of melting. These two methods show very good agreement. The simulations are based on density functional theory within the generalized gradient approximation. Our calculated equation of state of bcc Mo is in excellent agreement with experimental data. However, our melting curve is substantially higher than the one determined in diamond anvil cell experiments up to a pressure of 100 GPa. An explanation is suggested for this discrepancy.

  10. Impact melting early in lunar history

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1979-01-01

    The total amount of impact melt produced during early lunar history is examined in light of theoretically and experimentally determined relations between crater diameter (D) and impact melt volume. The time dependence of the melt production is given by the time dependent impact rate as derived from cratering statistics for two different crater-size classes. Results show that small scale cratering (D less than or equal to 30 km) leads to melt volumes which fit selected observations specifying the amount of impact melt contained in the lunar regolith and in craters with diameters less than 10 km. Larger craters (D greater than 30 km) are capable of forming the abundant impact melt breccias found on the lunar surface. The group of large craters (D greater than 30 km) produces nearly 10 times as much impact melt as all the smaller craters, and thus, the large impacts dominate the modification of the lunar surface. A contradiction between the distribution of radiometric rock ages and a model of exponentially decreasing cratering rate going back to 4.5 b.y. is reflected in uncertainty in the distribution of impact melt as a function of time on the moon.

  11. Melting ice

    NASA Astrophysics Data System (ADS)

    Benedetto, Elmo

    2018-01-01

    In this brief frontline, we want to describe the well-known fact that, when freshwater ice melts, the freshwater liquid level does not change. In the Italian Ministerial programs, fluid statics is introduced in the three years of middle school (students of 11-13 years) and during the first two years of high school (14-15 years). The Italian textbooks do not clearly explain why the abovementioned phenomenon occurs. The explanations are qualitative and they may lead to misinterpretation. I have noted that the students are very curious about this phenomenon. They sought a demonstration from books and from the web; and when they do not find it they asked me. Moreover, they have allowed me to observe that there are contradictory statements about the melting of icebergs. Some authors claim that they would not raise the sea-level, others say the opposite. Honestly speaking, I had never thought about this phenomenon and in classroom I tried to give them proof, expressing my opinion about the melting of icebergs.

  12. Melting behavior of nanometer sized gold isomers

    NASA Astrophysics Data System (ADS)

    Liu, H. B.; Ascencio, J. A.; Perez-Alvarez, M.; Yacaman, M. J.

    2001-09-01

    In the present work, the melting behavior of nanometer sized gold isomers was studied using a tight-binding potential with a second momentum approximation. The cases of cuboctahedra, icosahedra, Bagley decahedra, Marks decahedra and star-like decahedra were considered. We calculated the temperature dependence of the total energy and volume during melting and the melting point for different types and sizes of clusters. In addition, the structural evolutions of the nanosized clusters during the melting transition were monitored and revealed. It is found that the melting process has three characteristic time periods for the intermediate nanosized clusters. The whole process includes surface disordering and reordering, followed by surface melting and a final rapid overall melting. This is a new observation, which it is in contrast with previous reports where surface melting is the dominant step.

  13. A Reevaluation of Impact Melt Production

    NASA Astrophysics Data System (ADS)

    Pierazzo, E.; Vickery, A. M.; Melosh, H. J.

    1997-06-01

    The production of melt and vapor is an important process in impact cratering events. Because significant melting and vaporization do not occur in impacts at velocities currently achievable in the laboratory, a detailed study of the production of melt and vapor in planetary impact events is carried out with hydrocode simulations. Sandia's two-dimensional axisymmetric hydrocode CSQ was used to estimate the amount of melt and vapor produced for widely varying initial conditions: 10 to 80 km/sec for impact velocity, 0.2 to 10 km for the projectile radius. Runs with different materials demonstrate the material dependency of the final result. These results should apply to any size projectile (for given impact velocity and material), since the results can be dynamically scaled so long as gravity is unimportant in affecting the early-time flow. In contrast with the assumptions of previous analytical models, a clear difference in shape, impact-size dependence, and depth of burial has been found between the melt regions and the isobaric core. In particular, the depth of the isobaric core is not a good representation of the depth of the melt regions, which form deeper in the target. While near-surface effects cause the computed melt region shapes to look like “squashed spheres” the spherical shape is still a good analytical analog. One of the goals of melt production studies is to find proper scaling laws to infer melt production for any impact event of interest. We tested the point source limit scaling law for melt volumes (μ = 0.55-0.6) proposed by M. D. Bjorkman and K. A. Holsapple (1987,Int. J. Impact Eng.5, 155-163). Our results indicate that the point source limit concept does not apply to melt and vapor production. Rather, melt and vapor production follows an energy scaling law (μ = 0.67), in good agreement with previous results of T. J. Ahrens and J. D. O'Keefe [1977, inImpact and Explosion Cratering(D. J. Roddy, R. O. Pepin, and R. B. Merrill, Eds.), pp. 639

  14. Do Melt Inclusions Answer Big Questions?

    NASA Astrophysics Data System (ADS)

    Hofmann, A. W.; Sobolev, A. V.

    2009-12-01

    In a pioneering paper, Sobolev and Shimizu (1993) demonstrated the existence of ultra-depleted melt inclusions in olivine phenocrysts in MORB. They interpreted these as evidence for the preservation of parental melts formed by progressive near-fractional melting. Subsequently many cases have been described where melt inclusions from single basalt samples display enormous chemical and isotopic heterogeneity. The interpretation of these observations hinges critically on whether such melt inclusions can faithfully preserve primary or parental melt composition. If they do, melt inclusion data can truly answer big questions from small-scale observations. If they do not, they answer rather small questions. Favoring the second possibility, Danyushevsky et al. (2004) have suggested that much of the observed variability of highly incompatible trace elements in melt inclusions “may not represent geologically significant melts, but instead reflect localized, grain-scale reaction processes within the magmatic plumbing system.” We disagree and show that this mechanism cannot, for example, explain isotopic heterogeneity measured in several suites of melt inclusions, nor does it not account for the presence of ultra-depleted melts and "ghost" plagioclase signatures in other inclusions. More recently, Spandler et al. (2007) have suggested on the basis of experimental evidence that diffusion rates for REE in olivine are so rapid that parental melt compositions in melt inclusions are rapidly falsified by diffusional exchange with (evolved) host lava. We show that the very fact that extreme chemical and isotopic heterogeneities are routinely preserved in melt inclusions demonstrates that this conclusion is unwarranted, either because residence times of the olivine phenocrysts are much shorter than assumed by Spandler et al. or because the high experimental diffusion rates are caused by an unknown experimental artifact. Although there is no obvious flaw in design and execution of

  15. [Adolescent dating in Brazil: the circularity of psychological violence in different relationship contexts].

    PubMed

    Oliveira, Queiti Batista Moreira; de Assis, Simone Gonçalves; Njaine, Kathie; Pires, Thiago Oliveira

    2014-03-01

    The scope of this paper is to evaluate the perpetration of psychological violence in current male and female dating relationships and their link to psychological violence experienced in other contexts of their lives, namely family, relationships with friends and dating partners. 3,205 students in the 2nd year of high school (15 to 19 years old) in public and private schools in ten Brazilian cities filled out a closed and self-administered questionnaire. The results highlight the fact that the increase in the number of psychologically violent events perpetrated by adolescents in their intimate relationships is related to greater verbal aggression of the mother and father, and the more frequent experiences of psychological violence between parents, siblings, friends and that existing in earlier dating relationships. This reinforces the notion of circularity of psychological violence in various contexts of socialization of adolescents and highlights the continuity of aggressive behavior in other dating relationships, and those between siblings, family and friends.

  16. Stress-Driven Melt Segregation and Organization in Partially Molten Rocks III: Annealing Experiments and Surface Tension-Driven Redistribution of Melt

    NASA Astrophysics Data System (ADS)

    Parsons, R.; Hustoft, J. W.; Holtzman, B. K.; Kohlstedt, D. L.; Phipps Morgan, J.

    2004-12-01

    As discussed in the two previous abstracts in this series, simple shear experiments on synthetic upper mantle-type rock samples reveal the segregation of melt into melt-rich bands separated by melt-depleted lenses. Here, we present new results from experiments designed to understand the driving forces working for and against melt segregation. To better understand the kinetics of surface tension-driven melt redistribution, we first deform samples at similar conditions (starting material, sample size, stress and strain) to produce melt-rich band networks that are statistically similar. Then the load is removed and the samples are statically annealed to allow surface tension to redistribute the melt-rich networks. Three samples of olivine + 20 vol% chromite + 4 vol% MORB were deformed at a confining pressure of 300 MPa and a temperature of 1523 K in simple shear at shear stresses of 20 - 55 MPa to shear strains of 3.5 and then statically annealed for 0, 10, or 100 h at the same P-T conditions. Melt-rich bands are fewer in number and appear more diffuse when compared to the deformed but not annealed samples. Bands with less melt tend to disappear more rapidly than more melt-rich ones. The melt fraction in the melt-rich bands decreased from 0.2 in the quenched sample to 0.1 in the sample annealed for 100 h. After deformation, the melt fraction in the melt-depleted regions are ~0.006; after static annealing for 100 h, this value increases to 0.02. These experiments provide new quantitative constraints on the kinetics of melt migration driven by surface tension. By quantifying this driving force in the same samples in which stress-driven distribution occurred, we learn about the relative kinetics of stress-driven melt segregation. The kinetics of both of these processes must be scaled together to mantle conditions to understand the importance of stress-driven melt segregation in the Earth, and to understand the interaction of this process with melt-rock reaction

  17. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China.

    PubMed

    Liu, Zhijuan; Hubbard, Kenneth G; Lin, Xiaomao; Yang, Xiaoguang

    2013-11-01

    Northeast China (NEC) accounts for about 30% of the nation's maize production in China. In the past three decades, maize yields in NEC have increased under changes in climate, cultivar selection and crop management. It is important to investigate the contribution of these changing factors to the historical yield increases to improve our understanding of how we can ensure increased yields in the future. In this study, we use phenology observations at six sites from 1981 to 2007 to detect trends in sowing dates and length of maize growing period, and then combine these observations with in situ temperature data to determine the trends of thermal time in the maize growing period, as a measure of changes in maize cultivars. The area in the vicinity of these six sites accounts for 30% of NEC's total maize production. The agricultural production systems simulator, APSIM-Maize model, was used to separate the impacts of changes in climate, sowing dates and thermal time requirements on maize phenology and yields. In NEC, sowing dates trended earlier in four of six sites and maturity dates trended later by 4-21 days. Therefore, the period from sowing to maturity ranged from 2 to 38 days longer in 2007 than it was in 1981. Our results indicate that climate trends alone would have led to a negative impact on maize. However, results from the adaptation assessments indicate that earlier sowing dates increased yields by up to 4%, and adoption of longer season cultivars caused a substantial increase in yield ranging from 13% to 38% over the past 27 years. Therefore, earlier sowing dates and introduction of cultivars with higher thermal time requirements in NEC have overcome the negative effects of climate change and turned what would have otherwise been a loss into a significant increase in maize yield. © 2013 John Wiley & Sons Ltd.

  18. Changes in flow of Crosson and Dotson ice shelves, West Antarctica, in response to elevated melt

    NASA Astrophysics Data System (ADS)

    Lilien, David A.; Joughin, Ian; Smith, Benjamin; Shean, David E.

    2018-04-01

    Crosson and Dotson ice shelves are two of the most rapidly changing outlets in West Antarctica, displaying both significant thinning and grounding-line retreat in recent decades. We used remotely sensed measurements of velocity and ice geometry to investigate the processes controlling their changes in speed and grounding-line position over the past 20 years. We combined these observations with inverse modeling of the viscosity of the ice shelves to understand how weakening of the shelves affected this speedup. These ice shelves have lost mass continuously since the 1990s, and we find that this loss results from increasing melt beneath both shelves and the increasing speed of Crosson. High melt rates persisted over the period covered by our observations (1996-2014), with the highest rates beneath areas that ungrounded during this time. Grounding-line flux exceeded basin-wide accumulation by about a factor of 2 throughout the study period, consistent with earlier studies, resulting in significant loss of grounded as well as floating ice. The near doubling of Crosson's speed in some areas during this time is likely the result of weakening of its margins and retreat of its grounding line. This speedup contrasts with Dotson, which has maintained its speed despite increasingly high melt rates near its grounding line, likely a result of the sustained competency of the shelf. Our results indicate that changes to melt rates began before 1996 and suggest that observed increases in melt in the 2000s compounded an ongoing retreat of this system. Advection of a channel along Dotson, as well as the grounding-line position of Kohler Glacier, suggests that Dotson experienced a change in flow around the 1970s, which may be the initial cause of its continuing retreat.

  19. Effects of water, depth and temperature on partial melting of mantle-wedge fluxed by hydrous sediment-melt in subduction zones

    NASA Astrophysics Data System (ADS)

    Mallik, Ananya; Dasgupta, Rajdeep; Tsuno, Kyusei; Nelson, Jared

    2016-12-01

    This study investigates the partial melting of variable bulk H2O-bearing parcels of mantle-wedge hybridized by partial melt derived from subducted metapelites, at pressure-temperature (P-T) conditions applicable to the hotter core of the mantle beneath volcanic arcs. Experiments are performed on mixtures of 25% sediment-melt and 75% fertile peridotite, from 1200 to 1300 °C, at 2 and 3 GPa, with bulk H2O concentrations of 4 and 6 wt.%. Combining the results from these experiments with previous experiments containing 2 wt.% bulk H2O (Mallik et al., 2015), it is observed that all melt compositions, except those produced in the lowest bulk H2O experiments at 3 GPa, are saturated with olivine and orthopyroxene. Also, higher bulk H2O concentration increases melt fraction at the same P-T condition, and causes exhaustion of garnet, phlogopite and clinopyroxene at lower temperatures, for a given pressure. The activity coefficient of silica (ϒSiO2) for olivine-orthopyroxene saturated melt compositions (where the activity of silica, aSiO2 , is buffered by the reaction olivine + SiO2 = orthopyroxene) from this study and from mantle melting studies in the literature are calculated. In melt compositions generated at 2 GPa or shallower, with increasing H2O concentration, ϒSiO2 increases from <1 to ∼1, indicating a transition from non-ideal mixing as OH- in the melt (ϒSiO2 <1) to ideal mixing as molecular H2O (ϒSiO2 ∼1). At pressures >2 GPa, ϒSiO2 >1 at higher H2O concentrations in the melt, indicate requirement of excess energy to incorporate molecular H2O in the silicate melt structure, along with a preference for bridging species and polyhedral edge decorations. With vapor saturation in the presence of melt, ϒSiO2 decreases indicating approach towards ideal mixing of H2O in silicate melt. For similar H2O concentrations in the melt, ϒSiO2 for olivine-orthopyroxene saturated melts at 3 GPa is higher than melts at 2 GPa or shallower. This results in melts generated at

  20. Melting of superheated molecular crystals

    NASA Astrophysics Data System (ADS)

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-07-01

    Melting dynamics of micrometer scale, polycrystalline samples of isobutane, dimethyl ether, methyl benzene, and 2-propanol were investigated by fast scanning calorimetry. When films are superheated with rates in excess of 105 K s-1, the melting process follows zero-order, Arrhenius-like kinetics until approximately half of the sample has transformed. Such kinetics strongly imply that melting progresses into the bulk via a rapidly moving solid-liquid interface that is likely to originate at the sample's surface. Remarkably, the apparent activation energies for the phase transformation are large; all exceed the enthalpy of vaporization of each compound and some exceed it by an order of magnitude. In fact, we find that the crystalline melting kinetics are comparable to the kinetics of dielectric α-relaxation in deeply supercooled liquids. Based on these observations, we conclude that the rate of non-isothermal melting for superheated, low-molecular-weight crystals is limited by constituent diffusion into an abnormally dense, glass-like, non-crystalline phase.

  1. Nanorheology of Entangled Polymer Melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Ting; Grest, Gary S.; Rubinstein, Michael

    In this study, we use molecular simulations to probe the local viscoelasticity of an entangled polymer melt by tracking the motion of embedded nonsticky nanoparticles (NPs). As in conventional microrheology, the generalized Stokes-Einstein relation is employed to extract an effective stress relaxation function G GSE(t) from the mean square displacement of NPs. G GSE(t) for different NP diameters d are compared with the stress relaxation function G(t) of a pure polymer melt. The deviation of G GSE(t) from G(t) reflects the incomplete coupling between NPs and the dynamic modes of the melt. For linear polymers, a plateau in G GSE(t)more » emerges as d exceeds the entanglement mesh size a and approaches the entanglement plateau in G(t) for a pure melt with increasing d. For ring polymers, as d increases towards the spanning size R of ring polymers, G GSE(t) approaches G(t) of the ring melt with no entanglement plateau.« less

  2. Nanorheology of Entangled Polymer Melts

    DOE PAGES

    Ge, Ting; Grest, Gary S.; Rubinstein, Michael

    2018-02-01

    In this study, we use molecular simulations to probe the local viscoelasticity of an entangled polymer melt by tracking the motion of embedded nonsticky nanoparticles (NPs). As in conventional microrheology, the generalized Stokes-Einstein relation is employed to extract an effective stress relaxation function G GSE(t) from the mean square displacement of NPs. G GSE(t) for different NP diameters d are compared with the stress relaxation function G(t) of a pure polymer melt. The deviation of G GSE(t) from G(t) reflects the incomplete coupling between NPs and the dynamic modes of the melt. For linear polymers, a plateau in G GSE(t)more » emerges as d exceeds the entanglement mesh size a and approaches the entanglement plateau in G(t) for a pure melt with increasing d. For ring polymers, as d increases towards the spanning size R of ring polymers, G GSE(t) approaches G(t) of the ring melt with no entanglement plateau.« less

  3. Dating paleo-seismic faulting in the Taiwan Mountain Belt

    NASA Astrophysics Data System (ADS)

    Lo, C. H.; Wu, C. Y.; Chu, H. T.; Yui, T. F.

    2017-12-01

    In-situ 40Ar/39Ar laser microprobe dating was carried out on the Hoping pseudotachylite from a mylonite-fault zone in the metamorphosed basement complex of the active Taiwan Mountain Belt to determine the timing of the responsible earthquake(s). The dating results, distributed between 3.2 to 1.6 Ma with errors ranging 0.2 1.1 Ma, were derived from a combination of two Ar isotopic system end-members with inverse isochron ages of 1.55±0.05 and 2.87±0.07 Ma, respectively. Fault melt was found mixed with ultracataclasis in petrographical observations, therefore the older inverse isochron end-member may be attributed to the relic wall rock Ar isotopic system contained in micro-breccia as published 40Ar/39Ar mylonitization ages from 4.1 to 3.0 Ma. Without significant Ar loss expected, the young 1.6 Ma end-member represents the Ar isotopic system and age of the exact pseudotachylite. Seismic faulting therefore occurred during basement rock exhumation in the Taiwanese hinterland.

  4. Pressure melting and ice skating

    NASA Astrophysics Data System (ADS)

    Colbeck, S. C.

    1995-10-01

    Pressure melting cannot be responsible for the low friction of ice. The pressure needed to reach the melting temperature is above the compressive failure stress and, if it did occur, high squeeze losses would result in very thin films. Pure liquid water cannot coexist with ice much below -20 °C at any pressure and friction does not increase suddenly in that range. If frictional heating and pressure melting contribute equally, the length of the wetted contact could not exceed 15 μm at a speed of 5 m/s, which seems much too short. If pressure melting is the dominant process, the water films are less than 0.08 μm thick because of the high pressures.

  5. Quasi-equilibrium melting of quartzite upon extreme friction

    NASA Astrophysics Data System (ADS)

    Lee, Sung Keun; Han, Raehee; Kim, Eun Jeong; Jeong, Gi Young; Khim, Hoon; Hirose, Takehiro

    2017-06-01

    The friction on fault planes that controls how rocks slide during earthquakes decreases significantly as a result of complex fault-lubrication processes involving frictional melting. Fault friction has been characterized in terms of the preferential melting of minerals with low melting points--so-called disequilibrium melting. Quartz, which has a high melting temperature of about 1,726 °C and is a major component of crustal rocks, is not expected to melt often during seismic slip. Here we use high-velocity friction experiments on quartzite to show that quartz can melt at temperatures of 1,350 to 1,500 °C. This implies that quartz within a fault plane undergoing rapid friction sliding could melt at substantially lower temperatures than expected. We suggest that depression of the melting temperature is caused by the preferential melting of ultra-fine particles and metastable melting of β-quartz at about 1,400 °C during extreme frictional slip. The results for quartzite are applicable to complex rocks because of the observed prevalence of dynamic grain fragmentation, the preferential melting of smaller grains and the kinetic preference of β-quartz formation during frictional sliding. We postulate that frictional melting of quartz on a fault plane at temperatures substantially below the melting temperature could facilitate slip-weakening and lead to large earthquakes.

  6. The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology

    PubMed Central

    Gardner, Eugene J.; Lam, Vincent K.; Harris, Daniel N.; Chuang, Nelson T.; Scott, Emma C.; Pittard, W. Stephen; Mills, Ryan E.; Devine, Scott E.

    2017-01-01

    Mobile element insertions (MEIs) represent ∼25% of all structural variants in human genomes. Moreover, when they disrupt genes, MEIs can influence human traits and diseases. Therefore, MEIs should be fully discovered along with other forms of genetic variation in whole genome sequencing (WGS) projects involving population genetics, human diseases, and clinical genomics. Here, we describe the Mobile Element Locator Tool (MELT), which was developed as part of the 1000 Genomes Project to perform MEI discovery on a population scale. Using both Illumina WGS data and simulations, we demonstrate that MELT outperforms existing MEI discovery tools in terms of speed, scalability, specificity, and sensitivity, while also detecting a broader spectrum of MEI-associated features. Several run modes were developed to perform MEI discovery on local and cloud systems. In addition to using MELT to discover MEIs in modern humans as part of the 1000 Genomes Project, we also used it to discover MEIs in chimpanzees and ancient (Neanderthal and Denisovan) hominids. We detected diverse patterns of MEI stratification across these populations that likely were caused by (1) diverse rates of MEI production from source elements, (2) diverse patterns of MEI inheritance, and (3) the introgression of ancient MEIs into modern human genomes. Overall, our study provides the most comprehensive map of MEIs to date spanning chimpanzees, ancient hominids, and modern humans and reveals new aspects of MEI biology in these lineages. We also demonstrate that MELT is a robust platform for MEI discovery and analysis in a variety of experimental settings. PMID:28855259

  7. Heterozygote PCR product melting curve prediction.

    PubMed

    Dwight, Zachary L; Palais, Robert; Kent, Jana; Wittwer, Carl T

    2014-03-01

    Melting curve prediction of PCR products is limited to perfectly complementary strands. Multiple domains are calculated by recursive nearest neighbor thermodynamics. However, the melting curve of an amplicon containing a heterozygous single-nucleotide variant (SNV) after PCR is the composite of four duplexes: two matched homoduplexes and two mismatched heteroduplexes. To better predict the shape of composite heterozygote melting curves, 52 experimental curves were compared with brute force in silico predictions varying two parameters simultaneously: the relative contribution of heteroduplex products and an ionic scaling factor for mismatched tetrads. Heteroduplex products contributed 25.7 ± 6.7% to the composite melting curve, varying from 23%-28% for different SNV classes. The effect of ions on mismatch tetrads scaled to 76%-96% of normal (depending on SNV class) and averaged 88 ± 16.4%. Based on uMelt (www.dna.utah.edu/umelt/umelt.html) with an expanded nearest neighbor thermodynamic set that includes mismatched base pairs, uMelt HETS calculates helicity as a function of temperature for homoduplex and heteroduplex products, as well as the composite curve expected from heterozygotes. It is an interactive Web tool for efficient genotyping design, heterozygote melting curve prediction, and quality control of melting curve experiments. The application was developed in Actionscript and can be found online at http://www.dna.utah.edu/hets/. © 2013 WILEY PERIODICALS, INC.

  8. Estimation of Melting Points of Organics.

    PubMed

    Yalkowsky, Samuel H; Alantary, Doaa

    2018-05-01

    Unified physicochemical property estimation relationships is a system of empirical and theoretical relationships that relate 20 physicochemical properties of organic molecules to each other and to chemical structure. Melting point is a key parameter in the unified physicochemical property estimation relationships scheme because it is a determinant of several other properties including vapor pressure, and solubility. This review describes the first-principals calculation of the melting points of organic compounds from structure. The calculation is based on the fact that the melting point, T m , is equal to the ratio of the heat of melting, ΔH m , to the entropy of melting, ΔS m . The heat of melting is shown to be an additive constitutive property. However, the entropy of melting is not entirely group additive. It is primarily dependent on molecular geometry, including parameters which reflect the degree of restriction of molecular motion in the crystal to that of the liquid. Symmetry, eccentricity, chirality, flexibility, and hydrogen bonding, each affect molecular freedom in different ways and thus make different contributions to the total entropy of fusion. The relationships of these entropy determining parameters to chemical structure are used to develop a reasonably accurate means of predicting the melting points over 2000 compounds. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Pyroxene-melt equilibria. [for lunar maria basalts

    NASA Technical Reports Server (NTRS)

    Nielsen, R. L.; Drake, M. J.

    1979-01-01

    A thermodynamic analysis of pyroxene-melt equilibria is performed through use of a literature survey of analyses of high-Ca pyroxene and coexisting silicate melt pairs and analyses of low-Ca pyroxene silicate melt pairs. Reference is made to a modified version of a model developed by Bottinga and Weill (1972) which more successfully accounts for variations in melt composition than does a model which considers the melt to be composed of simple oxides which mix ideally. By using a variety of pyroxene melt relations, several pyroxene-melt and low-Ca pyroxene-high-Ca pyroxene geothermometers are developed which have internally consistant precisions of approximately + or - 20 C. Finally, it is noted that these equations may have application in modeling the evolution of mineral compositions during differentiation of basaltic magmas.

  10. Submarine melt rates under Greenland's ice tongues

    NASA Astrophysics Data System (ADS)

    Wilson, Nat; Straneo, Fiametta; Heimbach, Patrick; Cenedese, Claudia

    2017-04-01

    The few remaining ice tongues (ice-shelf like extensions) of Greenland's glaciers are undergoing rapid changes with potential implications for the stability of the ice sheet. Submarine melting is recognized as a major contributor to mass loss, yet the magnitude and spatial distribution of melt are poorly known or understood. Here, we use high resolution satellite imagery to infer the magnitude and spatial variability of melt rates under Greenland's largest remaining ice tongues: Ryder Glacier, Petermann Glacier and Nioghalvfjerdsbræ (79 North Glacier). We find that submarine plus aerial melt approximately balance the ice flux from the grounded ice sheet for the first two while at Nioghalvfjerdsbræ the total melt flux exceeds the inflow of ice indicating thinning of the ice tongue. We also show that melt rates under the ice tongues vary considerably, exceeding 60 m yr-1 near the grounding zone and decaying rapidly downstream. Channels, likely originating from upstream subglacial channels, give rise to large melt variations across the ice tongues. Using derived melt rates, we test simplified melt parameterizations appropriate for ice sheet models and find the best agreement with those that incorporate ice tongue geometry in the form of depth and slope.

  11. Date fruit consumption at term: Effect on length of gestation, labour and delivery.

    PubMed

    Razali, Nuguelis; Mohd Nahwari, Siti Hayati; Sulaiman, Sofiah; Hassan, Jamiyah

    2017-07-01

    Labour induction and augmentation with Prostaglandin and Oxytocin are well established as standard practice worldwide. They are safe when used judiciously, but may be associated with maternal and neonatal morbidities. Other safer alternatives have been studied including dates consumption during late pregnancy with various outcomes. The aim of this randomised controlled trial was to investigate the effect of date fruit consumption during late pregnancy on the onset of labour and need for induction or augmentation of labour. A total of 154 nulliparous women with an uncomplicated singleton pregnancy were randomly allocated to either dates-consumer (77) or control group (77). The women in the dates-consumer group had significantly less need for augmentation of labour and longer intervention to delivery interval. There was no significant difference in the onset of spontaneous labour. Dates consumption reduces the need for labour augmentation but does not expedite the onset of labour. Impact statement • Dates fruit consumption during late pregnancy has been shown to positively affect the outcome of labour and delivery. In this study, date consumption reduced the need for labour augmentation with oxytocin but did not expedite the onset of labour. Therefore, dates consumption in late pregnancy is a safe supplement to be considered as it reduced the need for labour intervention without any adverse effect on the mother and child. This further supports the finding of earlier studies.

  12. Dephosphorization of complexly alloyed nickel melts under vacuum induction melting conditions: I. Thermodynamics of dephosphorization

    NASA Astrophysics Data System (ADS)

    Burtsev, V. T.; Anuchkin, S. N.; Sidorov, V. V.; Rigin, V. E.

    2013-01-01

    A thermodynamic computer simulation of the oxidation potential of a gas-melt-ceramic (80 wt% MgO, 20 wt % Al2O3) system under vacuum induction furnace conditions is used to find that the major contribution to this potential at temperatures ranging from 1673 to 2273 K is made by a nickel melt with additives of nickel protoxide. This provides the possibility of oxidative dephosphorization of the metallic melt. The computation of the saturated vapor pressure of phosphorus compounds with the IIA group elements shows that the data obtained for magnesium, calcium, and barium metaphosphates and europium orthophosphate at 1873 K indicate the principal possibility of melt dephosphorization by the evaporation of these compounds under oxidative conditions.

  13. The geometry and volume of melt beneath Ethiopia

    NASA Astrophysics Data System (ADS)

    Kendall, J. M.; Hammond, J. O. S.

    2016-12-01

    A range of seismic measurements can be used to map melt distribution in the crust and uppermost mantle. These include seismic P- and S-wave velocities derived from surface- and body-wave tomography, Vp/Vs ratios obtained from receiver functions, and estimates of seismic anisotropy and attenuation. The most obvious melt parameter that seismic data might be sensitive to is volume fraction. However, such data are more sensitive to the aspect ratio of melt inclusions, which is controlled by the melt wetting angle or in other words the shape of the melt inclusion. To better understand this we perform numerical modelling, varying the shape and amount of melt, to show how various seismic phases are effected by melt. To consider the effects on seismic anisotropy we assume that the melt can be stored in pockets of melt that are either horizontally or vertically aligned (e.g., sills versus dykes). We then consider a range of seismic observations from the rifting environment of Ethiopia. Recent studies of P- and S-wave tomography, Rayleigh and Love waves, and Pn or wide angle P-wave refractions provide provide complimentary constraints on melt volume, orientation and inclusion aspect ratio. Furthermore, receiver functions and shear-wave splitting in body waves show strong anisotropy in this region and can be used to constrain the strike of vertically-aligned partial melt. We show that melt in the mantle beneath Ethiopia is likely stored in low aspect ratio disk-like inclusions, suggesting melt is not in textural equilibrium. We estimate that 2-7% vertically aligned melt is stored beneath the Main Ethiopian Rift, >6% horizontally and vertically aligned melt is stored beneath the Afar-region of the Red Sea Rift and 1-6% horizontally aligned melt is stored beneath the Danakil microplate. This supports ideas of strong shear-derived segregation of melt in narrow parts of the rift and large volumes of melt beneath Afar.

  14. Dating conflicts: rethinking dating violence and youth conflict.

    PubMed

    Adelman, Madelaine; Kil, Sang Hea

    2007-12-01

    Dating couples are tied to each other's friends who have expectations about dating, such as who constitutes an acceptable date and how to balance friendship and dating. We explore the place of friends in dating conflicts (i.e., conflicts and violence associated with heterosexual teen dating) and ask: (a) How are friends implicated in teen dating/violence not only as targets or confidants, but also as participants in conflict that stems from their friends' relationships, and (b) in what ways do dating conflicts conserve or challenge the power of gender and sexual conformity that underlies heterosexual dating and dating violence?

  15. Empirical Retrieval of Surface Melt Magnitude from Coupled MODIS Optical and Thermal Measurements over the Greenland Ice Sheet during the 2001 Ablation Season.

    PubMed

    Lampkin, Derrick; Peng, Rui

    2008-08-22

    Accelerated ice flow near the equilibrium line of west-central Greenland Ice Sheet (GIS) has been attributed to an increase in infiltrated surface melt water as a response to climate warming. The assessment of surface melting events must be more than the detection of melt onset or extent. Retrieval of surface melt magnitude is necessary to improve understanding of ice sheet flow and surface melt coupling. In this paper, we report on a new technique to quantify the magnitude of surface melt. Cloud-free dates of June 10, July 5, 7, 9, and 11, 2001 Moderate Resolution Imaging Spectroradiometer (MODIS) daily reflectance Band 5 (1.230-1.250μm) and surface temperature images rescaled to 1km over western Greenland were used in the retrieval algorithm. An optical-thermal feature space partitioned as a function of melt magnitude was derived using a one-dimensional thermal snowmelt model (SNTHERM89). SNTHERM89 was forced by hourly meteorological data from the Greenland Climate Network (GC-Net) at reference sites spanning dry snow, percolation, and wet snow zones in the Jakobshavn drainage basin in western GIS. Melt magnitude or effective melt (E-melt) was derived for satellite composite periods covering May, June, and July displaying low fractions (0-1%) at elevations greater than 2500m and fractions at or greater than 15% at elevations lower than 1000m assessed for only the upper 5 cm of the snow surface. Validation of E-melt involved comparison of intensity to dry and wet zones determined from QSCAT backscatter. Higher intensities (> 8%) were distributed in wet snow zones, while lower intensities were grouped in dry zones at a first order accuracy of ~ ±2%.

  16. Modulation of Sea Ice Melt Onset and Retreat in the Laptev Sea by the Timing of Snow Retreat in the West Siberian Plain

    NASA Astrophysics Data System (ADS)

    Crawford, A. D.; Stroeve, J.; Serreze, M. C.; Rajagopalan, B.; Horvath, S.

    2017-12-01

    As much of the Arctic Ocean transitions to ice-free conditions in summer, efforts have increased to improve seasonal forecasts of not only sea ice extent, but also the timing of melt onset and retreat. This research investigates the potential of regional terrestrial snow retreat in spring as a predictor for subsequent sea ice melt onset and retreat in Arctic seas. One pathway involves earlier snow retreat enhancing atmospheric moisture content, which increases downwelling longwave radiation over sea ice cover downstream. Another pathway involves manipulation of jet stream behavior, which may affect the sea ice pack via both dynamic and thermodynamic processes. Although several possible connections between snow and sea ice regions are identified using a mutual information criterion, the physical mechanisms linking snow retreat and sea ice phenology are most clearly exemplified by variability of snow retreat in the West Siberian Plain impacting melt onset and sea ice retreat in the Laptev Sea. The detrended time series of snow retreat in the West Siberian Plain explains 26% of the detrended variance in Laptev Sea melt onset (29% for sea ice retreat). With modest predictive skill and an average time lag of 53 (88) days between snow retreat and sea ice melt onset (retreat), West Siberian Plains snow retreat is useful for refining seasonal sea ice predictions in the Laptev Sea.

  17. Occurrence of silicate melt, carbonate-rich melt and fluid during medium pressure anatexis of metapelitic gneisses (Oberpfalz, Bavaria) revealed by melt and fluid inclusions study

    NASA Astrophysics Data System (ADS)

    Ferrero, Silvio; O'Brien, Patrick; Hecht, Lutz; Wunder, Bernd

    2014-05-01

    In the last decades our understanding of partial melting processes in the lower crust profited from the investigation of fluid inclusions (Touret et al., 2009) and more recently of anatectic melt inclusions (Cesare et al., 2011) within enclaves and high-grade terranes. The latter finding allowed us to directly analyse the original anatectic melt (Ferrero et al., 2012; Bartoli et al., 2013) preserved within peritectic phases, i.e. mainly garnet, but also ilmenite and spinel, before fractionation, mixing and contamination processes took place. Furthermore, the occurrence of primary fluid inclusions (FI) and anatectic melt inclusions (MI) within enclaves allowed the characterization of the COH fluid present during anatexis under fluid+melt immiscibility conditions (Ferrero et al., 2014). Primary crystallized MI, or "nanogranites", and FI have been identified to occur as clusters in garnet from stromatic migmatites (Zeilengneise) from Oberpfalz, Eastern Bavaria (Moldanubian Zone). During the late Carboniferous, these Grt+Bt+Sill+Crd+Spl metapelitic gneisses underwent HT/MP metamorphism, followed by a HT/LP event (Tanner & Behrmann, 1995). Nanogranites, ≤20 µm in size, consist of Qtz+Bt+Wm+Ab±Ap, and show abundant nanoporosity, localized in the quartz. Fluid inclusions are smaller, generally ≤10 µm, and contain CO2+N2+CH4 plus siderite, pyrophillite and cristobalite, mineral phases not observed in the surrounding rock or as mineral inclusion in garnet. Polycrystalline inclusions containing Cc+Wm+Opx±Qz, commonly ≤10 µm in diameter, occur in the same cluster with MI and FI. Microstructural features, negative-crystal shape and the well-developed crystalline faces of calcite within inclusions suggest that they may result from the crystallization of a carbonate-rich melt. The lack of arrays of carbonate-bearing MI, verified by cathodoluminiscence investigation, supports their primary nature, i.e. they formed during garnet growth. This would suggest the occurrence

  18. Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite

    USGS Publications Warehouse

    Grove, Timothy L.; Holbig, Eva S.; Barr, Jay A.; Till, Christy B.; Krawczynski, Michael J.

    2013-01-01

    Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.

  19. The role of subgrain boundaries in partial melting

    NASA Astrophysics Data System (ADS)

    Levine, Jamie S. F.; Mosher, Sharon; Rahl, Jeffrey M.

    2016-08-01

    Evidence for partial melting along subgrain boundaries in quartz and plagioclase is documented for rocks from the Lost Creek Gneiss of the Llano Uplift, central Texas, the Wet Mountains of central Colorado, and the Albany-Fraser Orogen, southwestern Australia. Domains of quartz or plagioclase crystals along subgrain boundaries are preferentially involved in partial melting over unstrained domains of these minerals. Material along subgrain boundaries in quartz and plagioclase has the same morphology as melt pseudomorphs present along grain boundaries and is commonly laterally continuous with this former grain boundary melt, indicating the material along subgrain boundaries can also be categorized as a melt pseudomorph. Subgrain boundaries consist of arrays of dislocations within a crystal lattice, and unlike fractures would not act as conduits for melt migration. Instead, the presence of former melt along subgrain boundaries requires that partial melting occurred in these locations because it is kinetically more favorable for melting reactions to occur there. Preferential melting in high strain locations may be attributed to strain energy, which provides a minor energetic contribution to the reaction and leads to preferential melting in locations with weakened bonds, and/or the presence of small quantities of water associated with dislocations, which may enhance diffusion rates or locally lower the temperature needed for partial melting.

  20. Impact Melt Emplacement on Mercury

    NASA Astrophysics Data System (ADS)

    Daniels, J. W.; Neish, C. D.

    2018-05-01

    This work proposes that fresh craters on rocky bodies may deposit impact melt externally ultimately according to the strength of its surface gravity, regardless of the body's surface topography and melt abundance.

  1. Control of charge order melting through local memristive migration of oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Hong; Zhang, Q. H.; Gregori, G.; Cristiani, G.; Yang, Y.; Li, X.; Gu, L.; Sun, J. R.; Shen, B.-G.; Habermeier, H.-U.

    2018-05-01

    The colossal magnetoresistance (CMR) in perovskite manganites and the resistive switching (RS) effect in metal-oxide heterostructures have both attracted intensive attention in the past decades. Up to date, however, there has been surprisingly little effort to study the CMR phenomena by employing a memristive switch or by integrating the CMR and memristive properties in a single RS device. Here, we report a memristive control of the melting of the antiferromagnetic charge ordered (AFM-CO) state in La0.5Ca0.5MnO3 -δ epitaxial films. We show that an in situ electrotailoring of the boundary condition, which results in layers of oxygen vacancies at the metal-oxide interface, can not only suppress the critical magnetic field for the AFM-CO state melting in the interfacial memristive domain, but also promote the one in the common pristine domain of the RS device in the high and low resistive states. Our study thereby highlights the pivotal roles of functional oxygen vacancies and their dynamics in strong correlation physics and electronics.

  2. Electrochemical studies in aluminum chloride melts

    NASA Technical Reports Server (NTRS)

    Osteryoung, R. A.

    1971-01-01

    A melt purification system was developed which produces a final melt far superior electrochemically than those previously reported. A residual current of less than 2 microamps/sq mn at a sweep rate of 0.5 V/sec was used as the criteria for a pure melt. The use of a second purified bulk melt and a heated pipette permitted the rapid exchange of working electrode compartments while retaining the same reference electrode system. The major portion of the work was carried out in the 1:1 AlCl3:NaCl melt at 175 and 200 C. Several measurements were made in the 2:1 melt and a few on the silver systems in intermediate compositions. Programs for PDP-8I and PDP-12 digital computers and the required electronic circuitry systems were developed to carry out various electrochemical measurements in the melt. A pair of 50 yard transmission lines were used to connect the computer to the experiment. Ensemble averaging and digital, least squares smoothing are used within the programs to improve the signal-to-noise ratio by at least an order of magnitude. Some of the computerized electrochemcial techniques used to examine the different systems were pulse polarography, double pulse polarography, staircase voltammetry, kinetic double potential step chronoamperometry and double potential step chronocoulometry.

  3. Metamorphosis Is Ancestral for Crown Euarthropods, and Evolved in the Cambrian or Earlier.

    PubMed

    Wolfe, Joanna M

    2017-09-01

    Macroevolutionary developmental biology employs fossilized ontogenetic data and phylogenetic comparative methods to probe the evolution of development at ancient nodes. Despite the prevalence of ecologically differentiated larval forms in marine invertebrates, it has been frequently presumed that the ancestors of arthropods were direct developers, and that metamorphosis may not have evolved until the Ordovician or later. Using fossils and new dated phylogenies, I infer that metamorphosis was likely ancestral for crown arthropods, contradicting this assumption. Based on a published morphological dataset encompassing 217 exceptionally preserved fossil and 96 extant taxa, fossils were directly incorporated into both the topology and age estimates, as in "tip dating" analyses. Using data from post-embryonic fossils representing 25 species throughout stem and crown arthropod lineages (as well as most of the 96 extant taxa), characters for metamorphosis were assigned based on inferred ecological changes in development (e.g., changes in habitat and adaptive landscape). Under all phylogenetic hypotheses, metamorphosis was supported as most likely ancestral to both ecdysozoans and euarthropods. Care must be taken to account for potential drastic post-embryonic morphological changes in evolutionary analyses. Many stem group euarthrpods may have had ecologically differentiated larval stages that did not preserve in the fossil record. Moreover, a complex life cycle and planktonic ecology may have evolved in the Ediacaran or earlier, and may have typified the pre-Cambrian explosion "wormworld" prior to the origin of crown group euarthropods. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  4. Icebergs Melting in Uniform and Vertically Sheared Flows

    NASA Astrophysics Data System (ADS)

    Cenedese, Claudia; Fitzmaurice, Anna; Straneo, Fiammetta

    2017-11-01

    Icebergs calving into Greenlandic Fjords frequently experience strongly sheared flows over their draft, but the impact of this flow past the iceberg on the melt plumes generated along the iceberg sides is not fully captured by existing melt parameterizations. A series of novel laboratory experiments showed that side melting of icebergs subject to relative velocities is controlled by two distinct regimes, which depend on the melt plume behavior (side-attached or side-detached). These two regimes produce a nonlinear dependence of melt rate on velocity, and different distributions of meltwater in the water column. Iceberg meltwater may either be confined to a thin surface layer, when the melt plumes are side-attached, or mixed down to the iceberg draft, when the melt plumes are side-detached. In a two-layer vertically sheared flow, the average flow speed in existing melt parameterizations gives an underestimate of the submarine melt rate, in part due to the nonlinearity of the dependence of melt rate on flow speed, but also because vertical shear in the velocity profile fundamentally changes the flow splitting around the ice block and consequently the velocity felt by the ice surface. Including this nonlinear velocity dependence in melting parameterizations applied to observed icebergs increases iceberg side melt in the side-attached regime, improving agreement with observations of iceberg submarine melt rates. AF was supported by NA14OAR4320106, CC by NSF OCE-1434041 and OCE-1658079, and FS by NSF PLR-1332911 and OCE-1434041.

  5. Fission track dating of kimberlitic zircons

    USGS Publications Warehouse

    Haggerty, S.E.; Raber, E.; Naeser, C.W.

    1983-01-01

    The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206Pb and 238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ?? 6.5 m.y.), Orapa (87.4 ?? 5.7 and 92.4 ?? 6.1 m.y.), Nzega (51.1 ?? 3.8 m.y.), Koffiefontein (90.0 ?? 8.2 m.y.), and Val do Queve (133.4 ?? 11.5 m.y.). In addition we report the first radiometric ages (707.9 ?? 59.6 and 705.5 ?? 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption. ?? 1983.

  6. Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity.

    PubMed

    Bochmann, Esther S; Steffens, Kristina E; Gryczke, Andreas; Wagner, Karl G

    2018-03-01

    Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ® was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature (T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Experimental Constraints on Fe Isotope Fractionation in Carbonatite Melt Systems

    NASA Astrophysics Data System (ADS)

    Stuff, M.; Schuessler, J. A.; Wilke, M.

    2015-12-01

    Iron isotope data from carbonatite rocks show the largest variability found in igneous rocks to date [1]. Thus, stable Fe isotopes are promising tracers for the interaction of carbonate and silicate magmas in the mantle, particularly because their fractionation is controlled by oxidation state and bonding environment. The interpretation of Fe isotope data from carbonatite rocks remains hampered, since Fe isotope fractionation factors between silicate and carbonate melts are unknown and inter-mineral fractionation can currently only be assessed by theoretical calculations [1;2]. We present results from equilibration experiments in three natrocarbonatite systems between immiscible silicate and carbonate melts, performed at 1200°C and 0.7 GPa in an internally heated gas pressure vessel at intrinsic redox conditions. The Fe isotope compositions of the silicate melt (sil.m.), quenched to a glass, and the carbonate melt (carb.m.), forming fine-grained quench crystals, were analysed by solution MC-ICP-MS. Our first data indicate a remarkable fractionation of Δ56Fesil.m.‒carb.m.= 0.29 ±0.07 ‰ near equilibrium. At short run durations, even stronger fractionation up to Δ56Fesil.m.‒carb.m. = 0.41 ±0.07 ‰ occurs, due to kinetic effects. Additionally, Δ56Fesil.m.‒carb.m. changes with bulk chemical composition, likely reflecting considerable differences between the studied systems in terms of the Fe3+/Fe2+-ratios in the two immiscible liquids. Our findings provide experimental support for a carbonatite genesis model, in which extremely negative δ56Fe values in carbonatites result from differentiation processes, such as liquid immiscibility [1]. This effect can be enhanced by disequilibrium during fast ascent of carbonatite magmas. Their sensitivity to chemical and redox composition makes Fe isotopes a potential tool for constraining the original compositions of carbonatite magmas. [1] Johnson et al. (2010) Miner. Petrol. 98, 91-110. [2] Polyakov & Mineev (2000

  8. Geochemical and isotopic study of impact melts and spherules from the Lonar impact crater, India, indicate melting of the Precambrian basement beneath the 'target' Deccan basalts

    NASA Astrophysics Data System (ADS)

    Chakrabarti, R.; Goderis, S.; Banerjee, A.; Gupta, R. D.; Claeys, P.; Vanhaecke, F. F.

    2016-12-01

    The 1.88 km diameter Lonar impact Crater, with age estimates ranging from 52 -570 ka, is located in the Buldana district of Maharashtra, India. It is an almost circular depression hosted entirely in the 65Ma old basalt flows of the Deccan Traps and is the best-known terrestrial analogue for impact craters in the Inner Solar System. Isotopic studies indicate that the basalts around Lonar correlate with the Poladpur suite, one of the mid-section volcano-stratigraphic units of the Deccan traps. Recently collected samples of the host basalt and impact melts, were analyzed for major and trace element concentrations using ICPMS, as well as for Nd and Sr isotope ratios using TIMS. Relatively more radiogenic Sr and less radiogenic Nd isotopic composition of the melt rocks compared to earlier measurements of similar rocks from Lonar are consistent with melting of the Precambrian basement beneath the Deccan basalt. Spherules ranging in size from 100 mm to 1 mm, were hand-picked under a binocular microscope from unconsolidated soil samples, collected from the south-eastern rim of the crater. Thirty-five spherule samples, screened for surface alteration using SEM were analyzed for major and trace element concentrations including PGEs using LA-ICPMS. The spherules were further classified into two groups using the Chemical Index of Alteration(CIA). Iridium and Cr concentrations of the spherules are consistent with mixing of a chondritic impactor (with 2-8% contribution) with the target rock(s). On a Nb (fluid immobile) -normalized binary plot of Th versus Cr, the composition of the spherules can be explained by mixing between the host basalt and a chondritic impactor with a definite, but minor contribution of the basement beneath Lonar, the composition of which is approximated using the average composition of the upper continental crust (UCC). Variability in the light-REE fractionation of the spherules (La/Sm(N)) can also be explained by a similar three component mixing. Overall

  9. When Is Melting Not Really Melting?

    ERIC Educational Resources Information Center

    Mangiaracina, Mike

    2017-01-01

    This 5E cycle of lessons takes students through a fun and thorough study of Silly Putty's properties, progressing from an initial observation of a "melting snowman" toy in the Engage phase to making and "marketing" their own homemade putty in the Evaluate phase. Along the way, students use evidence to construct their own…

  10. The melting and solidification of nanowires

    NASA Astrophysics Data System (ADS)

    Florio, B. J.; Myers, T. G.

    2016-06-01

    A mathematical model is developed to describe the melting of nanowires. The first section of the paper deals with a standard theoretical situation, where the wire melts due to a fixed boundary temperature. This analysis allows us to compare with existing results for the phase change of nanospheres. The equivalent solidification problem is also examined. This shows that solidification is a faster process than melting; this is because the energy transfer occurs primarily through the solid rather than the liquid which is a poorer conductor of heat. This effect competes with the energy required to create new solid surface which acts to slow down the process, but overall conduction dominates. In the second section, we consider a more physically realistic boundary condition, where the phase change occurs due to a heat flux from surrounding material. This removes the singularity in initial melt velocity predicted in previous models of nanoparticle melting. It is shown that even with the highest possible flux the melting time is significantly slower than with a fixed boundary temperature condition.

  11. Nonlinear Response of Iceberg Melting to Ocean Currents

    NASA Astrophysics Data System (ADS)

    Cenedese, C.; FitzMaurice, A.; Straneo, F.

    2017-12-01

    Icebergs calving into Greenlandic Fjords frequently experience strongly sheared flows over their draft, but the impact of this flow past the iceberg on the melt plumes generated along the iceberg sides is not fully captured by existing parameterizations. We present a series of novel laboratory experiments to determine the dependence of side submarine melt rates on a background flow. We show, for the first time, that two distinct regimes of melting exist depending on the melt plume behavior (side-attached or side-detached). These two regimes produce a nonlinear dependence of melt rate on velocity, and different distributions of meltwater in the water column. Iceberg meltwater may either be confined to a thin surface layer, when the melt plumes are side-attached, or mixed down to the iceberg draft, when the melt plumes are side-detached. In a two-layer vertically sheared flow the average flow speed in existing melt parameterizations gives an underestimate of the submarine melt rate, in part due to the nonlinearity of the dependence of melt rate on flow speed, but also because vertical shear in the velocity profile fundamentally changes the flow splitting around the ice block and consequently the velocity felt by the ice surface. Including this nonlinear velocity dependence in melting parameterizations applied to observed icebergs increases iceberg side melt in the attached regime, improving agreement with observations of iceberg submarine melt rates. We show that both attached and detached plume regimes are relevant to icebergs observed in a Greenland fjord.

  12. The Sima de los Huesos hominids date to beyond U/Th equilibrium (>350 kyr) and perhaps to 400-500 kyr: New radiometric dates

    USGS Publications Warehouse

    Bischoff, J.L.; Shamp, D.D.; Aramburu, Arantza; Arsuaga, J.L.; Carbonell, E.; Bermudez de Castro, Jose Maria

    2003-01-01

    The Sima de los Huesos site of the Atapuerca complex near Burgos, Spain contains the skeletal remains of at least 28 individuals in a mud breccia underlying an accumulation of the Middle Pleistocene cave bear (U. deningeri). Earlier dating estimates of 200 to 320 kyr were based on U-series and ESR methods applied to bones, made inaccurate by unquantifiable uranium cycling. We report here on a new discovery within the Sima de los Huesos of human bones stratigraphically underlying an in situ speleothem. U-series analyses of the speleothem shows the lower part to be at isotopic U/Th equilibrium, translating to a firm lower limit of 350 kyr for the SH hominids. Finite dates on the upper part suggest a speleothem growth rate of c. 1 cm/32 kyr. This rate, along with paleontological constraints, place the likely age of the hominids in the interval of 400 to 600 kyr. ?? 2002 Elsevier Science Ltd. All rights reserved.

  13. Risk assessments for dating violence in mid to late adolescence and early adulthood.

    PubMed

    Tapp, James; Moore, Estelle

    2016-10-01

    The objective of this paper is to review risk instruments that have been used in the assessment of the potential for violence within the dating relationships of young people. A review of the dating violence literature was conducted to identify risk assessment approaches that have been used to predict harmful behaviour within the dating relationships of people aged between 15 and 30 years. Risk assessments were evaluated on recommended quality criteria: predictive validity, accuracy (sensitivity and specificity) and inter-rater reliability. Only five studies describing assessments that focused specifically on dating violence risk factors were selected for review. Three assessments encompassed dating behaviours by victims that have been associated with an increased risk of further victimisation. Drawing on this evidence, we conclude that young people appear to be at greater risk of encountering dating violence if they have experienced violence in earlier attachment relationships; if their skills for coping with conflict and responding to coercion are limited and if the presence of peer influences reinforces offence supportive attitudes. The reliability and validity of existing intimate partner violence risk assessments that conceptually overlap with elements of dating violence risk warrant investigation to inform risk assessment developments in this field and, building on this, possible interventions to minimise future harm. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Mantle melting and melt refertilization beneath the Southwest Indian Ridge: Mineral composition of abyssal peridotites

    NASA Astrophysics Data System (ADS)

    Chen, Ling; Zhu, Jihao; Chu, Fengyou; Dong, Yan-hui; Liu, Jiqiang; Li, Zhenggang; Zhu, Zhimin; Tang, Limei

    2017-04-01

    As one of the slowest spreading ridges of the global ocean ridge system, the Southwest Indian Ridge (SWIR) is characterized by discontinued magmatism. The 53°E segment between the Gallieni fracture zone (FZ) (52°20'E) and the Gazelle FZ (53°30'E) is a typical amagmatic segment (crustal thickness <2km) (Zhou and Dick, 2013) that opens a window to the mantle thus provides a chance to detect the mantle composition directly. We examine the mineral compositions of 17 peridotite samples from the 53°E amagmatic segment. The results show that the peridotites can be divided into two groups. The Group 1 peridotites are characterized by clinopyroxenes having LREE depleted patterns that is typical for the abyssal peridotite, thus are thought to be the residue of the mantle melting. The Group 2 peridotites show the lowest HREE content within the SWIR peridotites but are anomaly enriched in LREE, with flat or U-type REE patterns, thus cannot be the pure residue of mantle melting. Mineral compositions of the Group 2 peridotites are more depleted than that of peridotites sampled near the Bouvet hot spot (Johnson et al., 1990), implying that the depleted mantle beneath the 53°E segment may be the residue of ancient melting event. This hypothesis is supported by the the low Ol/Opx ratios, coarse grain sizes (>1cm) Opx, and Mg-rich mineral compositions akin to harzburgite xenoliths that sample old continental lithospheric mantle (Kelemen et al., 1998). Melt refertilization model shows that Group 2 peridotites were affected by an enriched low-degree partial melt from the garnet stability field. These results indicate that depleted mantle which experiences ancient melting event are more sensitive to melt refertilization, thus may reduce the melt flux, leading to extremely thin crust at 53°E segment. This research was granted by the National Basic Research Programme of China (973 programme) (grant No. 2013CB429705) and the Fundamental Research Funds of Second Institute of

  15. Antarctic sub-shelf melt rates via PICO

    NASA Astrophysics Data System (ADS)

    Reese, Ronja; Albrecht, Torsten; Mengel, Matthias; Asay-Davis, Xylar; Winkelmann, Ricarda

    2018-06-01

    Ocean-induced melting below ice shelves is one of the dominant drivers for mass loss from the Antarctic Ice Sheet at present. An appropriate representation of sub-shelf melt rates is therefore essential for model simulations of marine-based ice sheet evolution. Continental-scale ice sheet models often rely on simple melt-parameterizations, in particular for long-term simulations, when fully coupled ice-ocean interaction becomes computationally too expensive. Such parameterizations can account for the influence of the local depth of the ice-shelf draft or its slope on melting. However, they do not capture the effect of ocean circulation underneath the ice shelf. Here we present the Potsdam Ice-shelf Cavity mOdel (PICO), which simulates the vertical overturning circulation in ice-shelf cavities and thus enables the computation of sub-shelf melt rates consistent with this circulation. PICO is based on an ocean box model that coarsely resolves ice shelf cavities and uses a boundary layer melt formulation. We implement it as a module of the Parallel Ice Sheet Model (PISM) and evaluate its performance under present-day conditions of the Southern Ocean. We identify a set of parameters that yield two-dimensional melt rate fields that qualitatively reproduce the typical pattern of comparably high melting near the grounding line and lower melting or refreezing towards the calving front. PICO captures the wide range of melt rates observed for Antarctic ice shelves, with an average of about 0.1 m a-1 for cold sub-shelf cavities, for example, underneath Ross or Ronne ice shelves, to 16 m a-1 for warm cavities such as in the Amundsen Sea region. This makes PICO a computationally feasible and more physical alternative to melt parameterizations purely based on ice draft geometry.

  16. Preliminary Ar-40/Ar-39 age spectrum and laser probe dating of the M1 core of the Manson Impact Structure, Iowa: A K-T boundary crater candidate

    NASA Technical Reports Server (NTRS)

    Kunk, M. J.; Snee, L. W.; French, B. M.; Harlan, S. S.; Mcgee, J. J.

    1993-01-01

    Preliminary Ar-40/Ar-39 age spectrum and laser probe dating results from new drill core from the 35-km-diameter Manson Impact Structure (MIS), Iowa indicates a reasonable possibility that the MIS is a Cretaceous-Tertiary (K-T) boundary impact event. Several different types of samples from a melt-matrix breccia, a unit of apparent crater fill intersected by the M1 core, were analyzed. Ar-40/Ar-39 results from these samples indicate a maximum age for the MIS of about 65.4 plus or minus 0.4(2 sigma) Ma. Petrographic analyses of the samples indicate a high probability that all the dated samples from the melt-matrix breccia contain relict grains that were not entirely melted or degassed at the time of impact, suggesting that the actual age of the MIS could be somewhat younger than our preliminary results indicate. The results are consistent with a previously published age estimate of shocked microcline from the MIS central uplift of 65.7 plus or minus 1.0 Ma.

  17. Constraints on lithosphere-asthenosphere melt mixing in basaltic intraplate volcanism from olivine melt inclusions from southern Payenia, Argentina

    NASA Astrophysics Data System (ADS)

    Søager, Nina; Portnyagin, Maxim; Hoernle, Kaj; Holm, Paul Martin; Garbe-Schönberg, Dieter

    2018-06-01

    We present major and trace element compositions of melt inclusions from three alkali basalts from the Río Colorado volcanic field in the Payenia backarc province, Argentina. Modeling of diffusion profiles around the inclusions showed that most inclusions equilibrated <14 days after formation, indicating a short crustal residence time for the magmas and nearly direct ascent through the crust. Despite overlapping host rock isotopic compositions, the inclusions show a large variation in their degree of enrichment, and display trends that we interpret as mixing between asthenospheric OIB-type low K2O-high Nb/U melts and enriched high K2O-low Nb/U lithospheric mantle melts similar in composition to alkaline lamprophyres. The low Nb/U magmas are excessively enriched in the elements Cs, Rb, Ba, Th, U, K, Pb and Cl relative to Nb, Ta and REEs. The enriched low Nb/U components are interpreted to have formed by percolative fractional crystallization of asthenospheric high Nb/U melts in the lithospheric mantle involving crystallization of clinopyroxene, apatite and rutile. The residual fluid-rich melts either mixed directly with new batches of high Nb/U melts or metasomatized and veined the lithospheric mantle which later re-melted during continued volcanism. The major element compositions of the high K2O-low Nb/U components are distinct for the whole rocks and melt inclusions, and most enriched inclusions have lower SiO2 and higher TiO2 contents indicating derivation by melting of amphibole-bearing veins. In contrast, most whole rock low Nb/U basalts have higher SiO2 and lower TiO2 and were most likely formed by melting of pyroxenitic veins or peridotitic metasomatized lithospheric mantle.

  18. Property Investigation of Laser Cladded, Laser Melted and Electron Beam Melted Ti-Al6-V4

    DTIC Science & Technology

    2006-05-01

    UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Figure 3: Examples of electron beam melted net shape parts; powder bed [3]. 1.4 Laser Cladding ...description, www.arcam.com. [4] K.-H. Hermann, S. Orban, S. Nowotny, Laser Cladding of Titanium Alloy Ti6242 to Restore Damaged Blades, Proceedings...Property Investigation of Laser Cladded , Laser Melted and Electron Beam Melted Ti-Al6-V4 Johannes Vlcek EADS Deutschland GmbH Corporate Research

  19. Clinopyroxene dissolution in basaltic melt

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Zhang, Youxue

    2009-10-01

    The history of magmatic systems may be inferred from reactions between mantle xenoliths and host basalt if the thermodynamics and kinetics of the reactions are quantified. To study diffusive and convective clinopyroxene dissolution in silicate melts, diffusive clinopyroxene dissolution experiments were conducted at 0.47-1.90 GPa and 1509-1790 K in a piston-cylinder apparatus. Clinopyroxene saturation is found to be roughly determined by MgO and CaO content. The effective binary diffusivities, DMgO and DCaO, and the interface melt saturation condition, C0MgO×C0CaO, are extracted from the experiments. DMgO and DCaO show Arrhenian dependence on temperature. The pressure dependence is small and not resolved within 0.47-1.90 GPa. C0MgO×C0CaO in the interface melt increases with increasing temperature, but decreases with increasing pressure. Convective clinopyroxene dissolution, where the convection is driven by the density difference between the crystal and melt, is modeled using the diffusivities and interface melt saturation condition. Previous studies showed that the convective dissolution rate depends on the thermodynamics, kinetics and fluid dynamics of the system. Comparing our results for clinopyroxene dissolution to results from a previous study on convective olivine dissolution shows that the kinetic and fluid dynamic aspects of the two minerals are quite similar. However, the thermodynamics of clinopyroxene dissolution depends more strongly on the degree of superheating and composition of the host melt than that of olivine dissolution. The models for clinopyroxene and olivine dissolution are tested against literature experiments on mineral-melt interaction. They are then applied to previously proposed reactions between Hawaii basalts and mantle minerals, mid-ocean ridge basalts and mantle minerals, and xenoliths digestion in a basalt at Kuandian, Northeast China.

  20. Scaleable Clean Aluminum Melting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Q.; Das, S.K.

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. Themore » objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.« less

  1. Do single people want to date a cancer survivor? A vignette study

    PubMed Central

    2018-01-01

    Objective Qualitative studies indicated that cancer survivors may be worried about finding a partner in the future, but whether this concern is warranted is unknown. We examined single people´s interest in dating a cancer survivor, how they perceive survivors’ traits, and their preferences about the timing of disclosing a cancer history. Methods In three experimental vignette studies, dating website members (n = 324) and college students (n = 138 and n = 131) were randomly assigned to a vignette of a person with or without a history of cancer (experiment 1 & 2), or a cancer survivor beyond or during active follow-up (experiment 3). Respondents rated their interest in dating this fictive person, this person’s traits, and indicated their preferences about the timing of disclosure. ANOVAs with main and interaction effects of condition, gender, and relationship history were conducted, partial eta squared and Cohen’s d were used to estimate the magnitude of effects. Correlations were used to investigate relationships between interest in a date and assessment of traits. Results Cancer survivors’ traits were assessed more positively, but interest to date them did not differ from healthy vignettes for both men and women. However, widowed respondents were much less interested in a date with a cancer survivor, and women showed less interest in a cancer survivor during active follow-up relative to survivors beyond follow-up. Most respondents wanted to hear about the cancer diagnosis after a few dates, hardly anyone wanted to hear about this before the first date (2% - 5%). Conclusion and implications for cancer survivors Cancer survivors do not have to expect any more problems in finding a date than people without a cancer history, and can wait a few dates before disclosing. Survivors dating widowed people and survivors in active follow-up could expect more hesitant reactions and should disclose earlier. PMID:29566002

  2. Planetesimal core formation with partial silicate melting using in-situ high P, high T, deformation x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Anzures, B. A.; Watson, H. C.; Yu, T.; Wang, Y.

    2017-12-01

    Differentiation is a defining moment in formation of terrestrial planets and asteroids. Smaller planetesimals likely didn't reach high enough temperatures for widescale melting. However, we infer that core formation must have occurred within a few million years from Hf-W dating. In lieu of a global magma ocean, planetesimals likely formed through inefficient percolation. Here, we used in-situ high temperature, high pressure, x-ray microtomography to track the 3-D evolution of the sample at mantle conditions as it underwent shear deformation. Lattice-Boltzmann simulations for permeability were used to characterize the efficiency of melt percolation. Mixtures of KLB1 peridotite plus 6.0 to 12.0 vol% FeS were pre-sintered to achieve an initial equilibrium microstructure, and then imaged through several consecutive cycles of heating and deformation. The maximum calculated melt segregation velocity was found to be 0.37 cm/yr for 6 vol.% FeS and 0.61 cm/year for 12 vol.% FeS, both below the minimum velocity of 3.3 cm/year required for a 100km planetesimal to fully differentiate within 3 million years. However, permeability is also a function of grain size and thus the samples having smaller grains than predicted for small planetesimals could have contributed to low permeability and also low migration velocity. The two-phase (sulfide melt and silicate melt) flow at higher melt fractions (6 vol.% and 12 vol.% FeS) was an extension of a similar study1 containing only sulfide melt at lower melt fraction (4.5 vol.% FeS). Contrary to the previous study, deformation did result in increased permeability until the sample was sheared by twisting the opposing Drickamer anvils by 360 degrees. Also, the presence of silicate melt caused the FeS melt to coalesce into less connected pathways as the experiment with 6 vol.% FeS was found to be less permeable than the one with 4.5 vol.% FeS but without any partial melt. The preliminary data from this study suggests that impacts as well as

  3. Empirical Retrieval of Surface Melt Magnitude from Coupled MODIS Optical and Thermal Measurements over the Greenland Ice Sheet during the 2001 Ablation Season

    PubMed Central

    Lampkin, Derrick; Peng, Rui

    2008-01-01

    Accelerated ice flow near the equilibrium line of west-central Greenland Ice Sheet (GIS) has been attributed to an increase in infiltrated surface melt water as a response to climate warming. The assessment of surface melting events must be more than the detection of melt onset or extent. Retrieval of surface melt magnitude is necessary to improve understanding of ice sheet flow and surface melt coupling. In this paper, we report on a new technique to quantify the magnitude of surface melt. Cloud-free dates of June 10, July 5, 7, 9, and 11, 2001 Moderate Resolution Imaging Spectroradiometer (MODIS) daily reflectance Band 5 (1.230-1.250μm) and surface temperature images rescaled to 1km over western Greenland were used in the retrieval algorithm. An optical-thermal feature space partitioned as a function of melt magnitude was derived using a one-dimensional thermal snowmelt model (SNTHERM89). SNTHERM89 was forced by hourly meteorological data from the Greenland Climate Network (GC-Net) at reference sites spanning dry snow, percolation, and wet snow zones in the Jakobshavn drainage basin in western GIS. Melt magnitude or effective melt (E-melt) was derived for satellite composite periods covering May, June, and July displaying low fractions (0-1%) at elevations greater than 2500m and fractions at or greater than 15% at elevations lower than 1000m assessed for only the upper 5 cm of the snow surface. Validation of E-melt involved comparison of intensity to dry and wet zones determined from QSCAT backscatter. Higher intensities (> 8%) were distributed in wet snow zones, while lower intensities were grouped in dry zones at a first order accuracy of ∼ ±2%. PMID:27873793

  4. Depth and Differentiation of the Orientale Melt Lake

    NASA Technical Reports Server (NTRS)

    Vaughan, W. M.; Head, J. W.; Hess, P. C.; Wilson, L.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-01-01

    Impact melt emplacement and evolution in lunar multi-ring basins is poorly understood since impact melt deposits in basins are generally buried by mare basalt fill and obscured by subsequent impact cratering. The relatively young Orientale basin, which is only partially flooded with mare basalt, opens a rare window into basin-scale impact melts. We describe the geology of impact melt-related facies in Orientale and suggest that the central depression of Orientale may represent a solidified impact melt lake that vertically subsided shortly after basin formation due to solidification and cooling. We use Lunar Orbiter Laser Altimeter (LOLA) data to measure the depth (approx. 1.75 km) and diameter (approx 350 km) of this central depression. If all the observed subsidence of the central depression is due to solidification and cooling, the melt lake should be approx 12.5-16 km deep, far more voluminous (approx 106 km3) than the largest known differentiated igneous intrusions on Earth. We investigate the possibility that the Orientale melt lake has differentiated and model 1) the bulk composition of the melt lake, 2) the operation of melt mixing in the melt lake, and 3) the chemical evolution of the resulting liquids on the An-Fo-Qz ternary in order to predict the lithologies that might be present in the solidified Orientale melt lake. Finally, we consider the possible significance of these lithologies.

  5. Hydrogen concentration in plagioclaes as a hygrometer of magmas: Approaches from melt inclusion analyses and hydrous melting experiments

    NASA Astrophysics Data System (ADS)

    Hamada, M.; Ushioda, M.; Fujii, T.; Takahashi, E.

    2012-12-01

    Plagioclase is one of the nominally anhydrous minerals (NAMs) which accommodates hundreds wt. ppm of hydrogen. Hydrogen in igneous plagioclase (OH) can act as a proxy of dissolved H2O in silicate melt. In order to use it as a practical hygrometer of magmas, we studied partitioning of hydrogen between plagioclase and basaltic melt dis-solving H2O (0.3˜5.5 wt.%) by two approaches: analyses of plagioclase-hosted melt inclusions (H2O≈0.3 wt.%) from mid-ocean ridge basalt (MORB) and hydrogen partitioning experiments between An96 plagioclase and hydrous basaltic melt (0.8 wt.%≦H2O≦5.5 wt.%) at 0.35 GPa. Concentration hydrogen in plagioclase and concentration of H2O in basaltic glasses were analyzed by infrared spectroscopy. As a first series of this study, plagioclase-hosted melt inclusions in MORB (50.5% SiO2, 15.1% Al2O3, 7.4% MgO) from the Rodriguez triple junction in the Indian Ocean were analyzed. The hydrogen concentration of plagioclase is less than 50 wt. ppm water, and no correlation between hydrogen concentration and anorthite content is recognized. Average H2O concentrations in melt inclusions is 0.3 wt.%. Therefore, apparent partition coefficient of hydrogen between plagioclase and melt is ≈ 0.01 in molar basis. As a second series of this study, hydrous melting experiments of arc basaltic magma were performed at 350 MPa using internally-heated pressure vessel. Starting material was hydrous glass (0.8 wt.%≦H2O≦5.5 wt.%) of an undifferentiated rock from Miyakejima volcano, a frontal-arc volcano in Izu-arc (MTL rock: 50.5% SiO2, 18.1% Al2O3, 4.9% MgO). A grain of Ca-rich plagioclase (≈1 mg, about An96) and 10 mg of powdered glasses were sealed in Au80Pd20 alloy capsule, and then kept at temperature at around the liquidus. Liquidus phase of MTL rock at 350 MPa is always plagioclase with 0 to 5.5 wt.% H2O in melt, and therefore, a grain of plagioclase and hydrous melt were nearly in equilibrium. Oxygen fugacity (fO2) during the melting experiments

  6. Research promises earlier warning for grapevine canker diseases

    USDA-ARS?s Scientific Manuscript database

    When it comes to detecting and treating vineyards for grapevine canker diseases (also called trunk diseases), like Botryosphaeria dieback (Bot canker), Esca, Eutypa dieback and Phomopsis dieback, the earlier the better, says plant pathologist Kendra Baumgartner, with the USDA’s Agricultural Research...

  7. Melting and glass transition for Ni clusters.

    PubMed

    Teng, Yuyong; Zeng, Xianghua; Zhang, Haiyan; Sun, Deyan

    2007-03-08

    The melting of NiN clusters (N = 29, 50-150) has been investigated by using molecular dynamics (MD) simulations with a quantum corrected Sutton-Chen (Q-SC) many-body potential. Surface melting for Ni147, direct melting for Ni79, and the glass transition for Ni29 have been found, and those melting points are equal to 540, 680, and 940 K, respectively. It shows that the melting temperatures are not only size-dependent but also a symmetrical structure effect; in the neighborhood of the clusters, the cluster with higher symmetry has a higher melting point. From the reciprocal slopes of the caloric curves, the specific heats are obtained as 4.1 kB per atom for the liquid and 3.1 kB per atom for the solid; these values are not influenced by the cluster size apart in the transition region. The calculated results also show that latent heat of fusion is the dominant effect on the melting temperatures (Tm), and the relationship between S and L is given.

  8. Climate change is affecting altitudinal migrants and hibernating species.

    PubMed

    Inouye, D W; Barr, B; Armitage, K B; Inouye, B D

    2000-02-15

    Calendar date of the beginning of the growing season at high altitude in the Colorado Rocky Mountains is variable but has not changed significantly over the past 25 years. This result differs from growing evidence from low altitudes that climate change is resulting in a longer growing season, earlier migrations, and earlier reproduction in a variety of taxa. At our study site, the beginning of the growing season is controlled by melting of the previous winter's snowpack. Despite a trend for warmer spring temperatures the average date of snowmelt has not changed, perhaps because of the trend for increased winter precipitation. This disjunction between phenology at low and high altitudes may create problems for species, such as many birds, that migrate over altitudinal gradients. We present data indicating that this already may be true for American robins, which are arriving 14 days earlier than they did in 1981; the interval between arrival date and the first date of bare ground has grown by 18 days. We also report evidence for an effect of climate change on hibernation behavior; yellow-bellied marmots are emerging 38 days earlier than 23 years ago, apparently in response to warmer spring air temperatures. Migrants and hibernators may experience problems as a consequence of these changes in phenology, which may be exacerbated if climate models are correct in their predictions of increased winter snowfall in our study area. The trends we report for earlier formation of permanent snowpack and for a longer period of snow cover also have implications for hibernating species.

  9. Climate change is affecting altitudinal migrants and hibernating species

    PubMed Central

    Inouye, David W.; Barr, Billy; Armitage, Kenneth B.; Inouye, Brian D.

    2000-01-01

    Calendar date of the beginning of the growing season at high altitude in the Colorado Rocky Mountains is variable but has not changed significantly over the past 25 years. This result differs from growing evidence from low altitudes that climate change is resulting in a longer growing season, earlier migrations, and earlier reproduction in a variety of taxa. At our study site, the beginning of the growing season is controlled by melting of the previous winter's snowpack. Despite a trend for warmer spring temperatures the average date of snowmelt has not changed, perhaps because of the trend for increased winter precipitation. This disjunction between phenology at low and high altitudes may create problems for species, such as many birds, that migrate over altitudinal gradients. We present data indicating that this already may be true for American robins, which are arriving 14 days earlier than they did in 1981; the interval between arrival date and the first date of bare ground has grown by 18 days. We also report evidence for an effect of climate change on hibernation behavior; yellow-bellied marmots are emerging 38 days earlier than 23 years ago, apparently in response to warmer spring air temperatures. Migrants and hibernators may experience problems as a consequence of these changes in phenology, which may be exacerbated if climate models are correct in their predictions of increased winter snowfall in our study area. The trends we report for earlier formation of permanent snowpack and for a longer period of snow cover also have implications for hibernating species. PMID:10677510

  10. Thermal evolutions of two kinds of melt pond with different salinity

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Hong; Wilkinson, Jeremy; Moon, Woosok; Hwang, Byongjun; Granskog, Mats

    2016-04-01

    Melt ponds are water pools on sea ice. Their formation reduces ice surface albedo and alter surface energy balance, by which the ice melting and freezing processes are regulated. Thus, better understanding of their radiative characteristics has been vital to improve the simulation of melting/freezing of sea ice in numerical models. A melt pond would preserve nearly fresh water if it formed on multi-year ice and no flooding of sea water occurred, whereas a melt pond would contain more salty water if it formed on thinner and porous first-year ice, if there were an inflow of sea water by streams or cracks. One would expect that the fluid dynamic/thermodynamic properties (e.g., turbulence, stability, etc.) of pond water are influenced by the salinity, so that the response of pond water to any heat input (e.g., shortwave radiation) would be different. Therefore, better understanding of the salinity-dependent thermal evolution also has significant potential to improve the numerical simulation of the sea ice melting/freezing response to radiative thermal forcing. To observe and understand the salinity-dependent thermal evolution, two ice mass balance buoys (IMBs) were deployed in two kinds (fresh and salty) of melt pond on a same ice floe on 13 August 2015 during Araon Arctic cruise. The thermistor chain, extending from the air through the pond and ice into the sea water, was deployed through a drilled borehole inside the pond. Besides, the IMBs were also accompanied with three broadband solar radiation sensors (two (up and down) in the air over melt pond and one upward-looking under sea ice) to measure the net shortwave radiation at the pond surface and the penetrating solar radiation through ice. Also, the web camera was installed to observe any updates in the conditions of equipment and surrounding environment (e.g., weather, surface state, etc.). On the date of deployment, the fresh pond had salinity of 2.3 psu, light blue color, lots of slush ice particles which

  11. Sulfur partitioning applied to LIP magmatism - A new approach for quantifying sulfur concentration in basaltic melts

    NASA Astrophysics Data System (ADS)

    Marzoli, A.; Callegaro, S.; Baker, D. R.; De Min, A.; Cavazzini, G.; Martin, W.; Renne, P. R.; Svensen, H.

    2017-12-01

    Magmatism from Large Igneous Provinces (LIPs) has often been demonstrated synchronous with mass extinctions. Prominent examples in the Phanerozoic are the end-Permian, end-Triassic and end-Cretaceous extinctions, associated with, respectively, the Siberian Traps, the CAMP and the Deccan Traps. Despite the growing body of evidence for causal and temporal links between these events, it is not yet entirely clear how a LIP can severly affect the global environment. Degassing of volatile species such as S, C and halogen compounds directly from LIP magmas, and from contact metamorphism of volatile-rich sediments heated by the intrusions appears as the most realistic mechanism. Modeling the atmospheric response to LIP gas loads requires quantitative constraints on the degassed volatiles and emission rates, but these are challenging to obtain for magmatic systems from the geologic past. We therefore propose a new method to calculate the sulfur load of basaltic melts, by measuring sulfur content in natural minerals (clinopyroxene and plagioclase) and combining it with an experimentally determined partition coefficients (KD). We measured partitioning of sulfur between crystals and melt by ion microprobe (Nordsim, Stockholm) on experimentally produced crystals and glasses. Piston cylinder experiments were performed with conditions typical of basaltic, andesitic and dacitic melts (800 or 1000 MPa; 1000°-1350°C), to constrain KD variations as a function of melt composition, oxidation state and water content. We obtained a clinopyroxene/melt sulfur KD of 0.001 for basaltic melts, which can be applied to natural continental flood basalts. Preliminary results from thoroughly-dated lava piles from the Deccan Traps and from the Siberian Traps sills confirm that most of the basalts were at or close to sulfide saturation (ca. 2000 ppm for low fO2 melts). These results can be compared with the scenario modeled by Schmidt et al. (2016) for Deccan Traps magmatism, for which sulfur from

  12. An earlier de motu cordis.

    PubMed Central

    Daly, Walter J.

    2004-01-01

    Thirteenth century medical science, like medieval scholarship in general, was directed at reconciliation of Greek philosophy/science with prevailing medieval theology and philosophy. Peter of Spain [later Pope John XXI] was the leading medical scholar of his time. Peter wrote a long book on the soul. Imbedded in it was a chapter on the motion of the heart. Peter's De Motu was based on his own medical experience and Galen's De Usu Partium and De Usu Respirationis and De Usu Pulsuum. This earlier De Motu defines a point on the continuum of intellectual development leading to us and into the future. Thirteenth century scholarship relied on past authority to a degree that continues to puzzle and beg explanation. Images Fig. 1 PMID:17060956

  13. Microstructural evidence of melting in crustal rocks (Invited)

    NASA Astrophysics Data System (ADS)

    Holness, M. B.; Cesare, B.; Sawyer, E. W.

    2010-12-01

    The signature of the former presence of melt on a microscopic scale is highly variable, subject to modification both during the melting event and during its subsequent history. Static pyrometamorphism results in melt films on grain boundaries between reactant phases. If a volume increase is involved, melting results in hydrofracture. On a longer timescale, as demonstrated by fragments of the crustal source in lava flows at El Hoyazo (SE Spain), melt occurs throughout the rock. These examples are highly unusual: the great majority of rocks that underwent melting cooled more slowly, permitting microstructural modification driven by a combination of textural equilibration, reaction and deformation. In the absence of deformation, and at constant temperature, melt-bearing rocks approach textural equilibrium, characterised by uniform grain size, smoothly curved grain boundaries and the establishment at all three-grain junctions of the equilibrium dihedral angle. The dihedral angle controls melt connectivity, with consequences for melt mobility and rock rheology. However, deformation is the rule rather than the exception in regional metamorphic terrains with profound effects on melt distribution. If deformation occurs predominantly by diffusive processes, textural equilibration can keep pace. At higher deformation rates melt is squeezed into planar pockets aligned parallel to the shearing direction or perpendicular to the extensional stress. Microstructures formed during solidification are controlled by cooling rate, H2O, and the size of the melt pockets. Large pockets solidify to look like igneous rocks. In small pores the supersaturation required for crystal growth is high and melt persist to lower temperatures, even being preserved as tiny glassy inclusions (“nanogranites”) in regional terranes. The pore size effect changes crystallization order, resulting in small, highly cuspate grains on grain boundaries with low dihedral angles. Crystallisation microstructures

  14. Hydrous melt-rock reaction in the shallow mantle wedge

    NASA Astrophysics Data System (ADS)

    Mitchell, A.; Grove, T. L.

    2017-12-01

    In subduction zone magmatism, hotter, deeper hydrous mantle melts rise and interact with the shallower, cooler depleted mantle in the uppermost part of the mantle wedge. Here, we experimentally investigate these hydrous reactions using three different ratios of a 1.6 GPa mantle melt and an overlying 1.2 GPa harzburgite from 1060 to 1260 °C. At low ratios of melt/mantle (20:80 and 5:95), the crystallizing assemblages are dunites, harzburgites, and lherzolites (as a function of temperature). When the ratio of deeper melt to overlying mantle is 70:30, the crystallizing assemblage is a wehrlite. This shows that wehrlites, which are observed in ophiolites and mantle xenoliths, can be formed by large amounts of deeper melt fluxing though the mantle wedge during ascent. In all cases, orthopyroxene dissolves in the melt, and olivine crystallizes along with pyroxenes and spinel. The amount of reaction between deeper melts and overlying mantle, simulated here by the three starting compositions, imposes a strong influence on final melt compositions, particularly in terms of depletion. At the lowest melt/mantle ratios, the resulting melt is an extremely depleted Al-poor, high-Si andesite. As the fraction of melt to mantle increases, final melts resemble primitive basaltic andesites found in arcs globally. Wall rock temperature is a key variable; over a span of <80 °C, reaction with deeper melt creates the entire range of mantle lithologies from a depleted dunite to a harzburgite to a refertilized lherzolite. Together, the experimental phase equilibria, melt compositions, and calculated reaction coefficients provide a framework for understanding how melt-wall rock reaction occurs in the natural system during melt ascent in the mantle wedge.

  15. Melt Segregation and Tidal Heating at Io

    NASA Astrophysics Data System (ADS)

    Rajendar, A.; Dufek, J.; Roberts, J. H.; Paty, C. S.

    2011-12-01

    Recent evidence of melt beneath Io's surface (Khurana et al., 2010) and repeated observation of volcanic activity and features consistent with volcanic activity at the surface (e.g. Veeder et al, 1994; Rathbun et al., 2004; Lopes-Gautier et al., 1999; Smith et al., 1979) has raised further questions about the structure of the Galilean moon and the processes that shape it. In this study we examine the thermal state, melt fraction, and multiphase dynamics of melt segregation within Io's interior. Using a coupled multiphase dynamics and tidal heating model we explore the location, spatial extent, and temporal residence times of melt in Io's subsurface, as well as response to orbital parameters. In a thermally evolving body subject to tidal forcing, in which melt production and migration takes place, feedback can occur with respect to the physical and thermal properties. We explore this feedback to produce a thermal model of Io, taking into account the rate of tidal heating and fluid motion within the interior. First, a layered model of the internal structure is assumed. The equations of motion for forced oscillations in a layered spherical body are then solved using the propagator matrix method (Sabadini and Vermeesen, 2004) to obtain the displacements and strains due to tidal motion (Roberts and Nimmo, 2008). From this, the radial distribution of tidal heat generation within Io is calculated. This radial heating profile is then used as input for a multi-phase fluid model in order to obtain an estimate of the radial temperature distribution and thus the material properties and melt fractions. In the multiphase model individual phases (melt and solid residue) separately conserve mass, momentum and enthalpy (Dufek and Bachmann, 2010) allowing us to explore melt segregation phenomena. Enthalpy closure is provided by the MELTS (Ghiorso and Sack, 1995) thermodynamics algorithm, which is called at each point in space. This accounts for the partitioning between latent and

  16. Does patient reporting lead to earlier detection of drug safety signals? A retrospective comparison of time to reporting between patients and healthcare professionals in a global database.

    PubMed

    Rolfes, Leàn; van Hunsel, Florence; Caster, Ola; Taavola, Henric; Taxis, Katja; van Puijenbroek, Eugène

    2018-03-09

    To explore if there is a difference between patients and healthcare professionals (HCPs) in time to reporting drug-adverse drug reaction (ADR) associations that led to drug safety signals. This was a retrospective comparison of time to reporting selected drug-ADR associations which led to drug safety signals between patients and HCPs. ADR reports were selected from the World Health Organization Global database of individual case safety reports, VigiBase. Reports were selected based on drug-ADR associations of actual drug safety signals. Primary outcome was the difference in time to reporting between patients and HCPs. The date of the first report for each individual signal was used as time zero. The difference in time between the date of the reports and time zero was calculated. Statistical differences in timing were analysed on the corresponding survival curves using a Mann-Whitney U test. In total, 2822 reports were included, of which 52.7% were patient reports, with a median of 25% for all included signals. For all signals, median time to signal detection was 10.4 years. Overall, HCPs reported earlier than patients: median 7.0 vs. 8.3 years (P < 0.001). Patients contributed a large proportion of reports on drug-ADR pairs that eventually became signals. HCPs reported 1.3 year earlier than patients. These findings strengthen the evidence on the value of patient reporting in signal detection and highlight an opportunity to encourage patients to report suspected ADRs even earlier in the future. © 2018 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  17. Hot melt adhesive attachment pad

    NASA Technical Reports Server (NTRS)

    Fox, R. L.; Frizzill, A. W.; Little, B. D.; Progar, D. J.; Coultrip, R. H.; Couch, R. H.; Gleason, J. R.; Stein, B. A.; Buckley, J. D.; St.clair, T. L. (Inventor)

    1984-01-01

    A hot melt adhesive attachment pad for releasably securing distinct elements together is described which is particularly useful in the construction industry or a spatial vacuum environment. The attachment pad consists primarily of a cloth selectively impregnated with a charge of hot melt adhesive, a thermo-foil heater, and a thermo-cooler. These components are securely mounted in a mounting assembly. In operation, the operator activates the heating cycle transforming the hot melt adhesive to a substantially liquid state, positions the pad against the attachment surface, and activates the cooling cycle solidifying the adhesive and forming a strong, releasable bond.

  18. Valence State Partitioning of Cr and V Between Olivine-Melt and Pyroxene-Melt in Experimental Basalts of a Eucritic Composition

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Jones, J. H.; Le, L.

    2017-01-01

    The partitioning of multivalent elements in basaltic systems can elucidate the oxygen fugacity (fO2) conditions under which basalts formed on planetary bodies (Earth, Moon, Mars, asteroids). Chromium and V are minor and trace elements in basaltic melts, partition into several minerals that crystallize from basaltic melts, exist in multiple valence states at differing fO2 conditions, and can therefore be used as oxybarometers for basaltic melts. Chromium is mostly 3+ in terrestrial basaltic melts at relatively high fO2 values (= IW+3.5), and mostly 2+ in melts at low fO2 values (= IW-1), such as those on the Moon and some asteroids. At intermediate fO2s, (i.e., IW-1 to IW+3.5), basaltic melts contain both Cr3+ and Cr2+. Vanadium in basaltic melts is mostly 4+ at high fO2, mostly 3+ at low fO2, and a mix of V3+ and V4+ at intermediate fO2 con-ditions. Understanding the partitioning of Cr and V into silicate phases with changing fO2 is therefore critical to the employment of Cr and V oxybarometers. In this abstract we examine the equilibrium partitioning of Cr and V between olivine/melt and pyroxene/melt in experimental charges of a eucritic composition produced at differing fO2 conditions. This study will add to the experimental data on DCr and DV (i.e., olivine/melt, pyroxene/melt) at differing fO2, and in turn these D values will be used to assess the fO2 of eucrite basalts and perhaps other compositionally similar planetary basalts.

  19. Basal terraces on melting ice shelves

    NASA Astrophysics Data System (ADS)

    Dutrieux, Pierre; Stewart, Craig; Jenkins, Adrian; Nicholls, Keith W.; Corr, Hugh F. J.; Rignot, Eric; Steffen, Konrad

    2014-08-01

    Ocean waters melt the margins of Antarctic and Greenland glaciers, and individual glaciers' responses and the integrity of their ice shelves are expected to depend on the spatial distribution of melt. The bases of the ice shelves associated with Pine Island Glacier (West Antarctica) and Petermann Glacier (Greenland) have similar geometries, including kilometer-wide, hundreds-of-meter high channels oriented along and across the direction of ice flow. The channels are enhanced by, and constrain, oceanic melt. New meter-scale observations of basal topography reveal peculiar glaciated landscapes. Channel flanks are not smooth, but are instead stepped, with hundreds-of-meters-wide flat terraces separated by 5-50 m high walls. Melting is shown to be modulated by the geometry: constant across each terrace, changing from one terrace to the next, and greatly enhanced on the ~45° inclined walls. Melting is therefore fundamentally heterogeneous and likely associated with stratification in the ice-ocean boundary layer, challenging current models of ice shelf-ocean interactions.

  20. Basal Terraces on Melting Ice Shelves

    NASA Astrophysics Data System (ADS)

    Dutrieux, P.; Stewart, C.; Jenkins, A.; Nicholls, K. W.; Corr, H. F. J.; Rignot, E. J.; Steffen, K.

    2014-12-01

    Ocean waters melt the margins of Antarctic and Greenland glaciers and individualglaciers' responses and the integrity of their ice shelves are expected to depend on thespatial distribution of melt. The bases of the ice shelves associated with Pine IslandGlacier (West Antarctica) and Petermann Glacier (Greenland) have similar geometries,including kilometers-wide, hundreds-of-meter-high channels oriented along and acrossthe direction of ice flow. The channels are enhanced by, and constrain, oceanic melt.New, meter-scale observations of basal topography reveal peculiar glaciated landscapes.Channel flanks are not smooth, but are instead stepped, with hundreds-of-meters-wideflat terraces separated by 5-50 m-high walls. Melting is shown to be modulated by thegeometry: constant across each terrace, changing from one terrace to the next, and greatlyenhanced on the ~45°-inclined walls. Melting is therefore fundamentally heterogeneousand likely associated with stratification in the ice-ocean boundary layer, challengingcurrent models of ice shelf-ocean interactions.

  1. Cardiac Complications, Earlier Treatment, and Initial Disease Severity in Kawasaki Disease.

    PubMed

    Abrams, Joseph Y; Belay, Ermias D; Uehara, Ritei; Maddox, Ryan A; Schonberger, Lawrence B; Nakamura, Yosikazu

    2017-09-01

    To assess if observed higher observed risks of cardiac complications for patients with Kawasaki disease (KD) treated earlier may reflect bias due to confounding from initial disease severity, as opposed to any negative effect of earlier treatment. We used data from Japanese nationwide KD surveys from 1997 to 2004. Receipt of additional intravenous immunoglobulin (IVIG) (data available all years) or any additional treatment (available for 2003-2004) were assessed as proxies for initial disease severity. We determined associations between earlier or later IVIG treatment (defined as receipt of IVIG on days 1-4 vs days 5-10 of illness) and cardiac complications by stratifying by receipt of additional treatment or by using logistic modeling to control for the effect of receiving additional treatment. A total of 48 310 patients with KD were included in the analysis. In unadjusted analysis, earlier IVIG treatment was associated with a higher risk for 4 categories of cardiac complications, including all major cardiac complications (risk ratio, 1.10; 95% CI, 1.06-1.15). Stratifying by receipt of additional treatment removed this association, and earlier IVIG treatment became protective against all major cardiac complications when controlling for any additional treatment in logistic regressions (OR, 0.90; 95% CI, 0.80-1.00). Observed higher risks of cardiac complications among patients with KD receiving IVIG treatment on days 1-4 of the illness are most likely due to underlying higher initial disease severity, and patients with KD should continue to be treated with IVIG as early as possible. Published by Elsevier Inc.

  2. The coupled response to slope-dependent basal melting

    NASA Astrophysics Data System (ADS)

    Little, C. M.; Goldberg, D. N.; Sergienko, O. V.; Gnanadesikan, A.

    2009-12-01

    Ice shelf basal melting is likely to be strongly controlled by basal slope. If ice shelves steepen in response to intensified melting, it suggests instability in the coupled ice-ocean system. The dynamic response of ice shelves governs what stable morphologies are possible, and thus the influence of melting on buttressing and grounding line migration. Simulations performed using a 3-D ocean model indicate that a simple form of slope-dependent melting is robust under more complex oceanographic conditions. Here we utilize this parameterization to investigate the shape and grounding line evolution of ice shelves, using a shallow-shelf approximation-based model that includes lateral drag. The distribution of melting substantially affects the shape and aspect ratio of unbuttressed ice shelves. Slope-dependent melting thins the ice shelf near the grounding line, reducing velocities throughout the shelf. Sharp ice thickness gradients evolve at high melting rates, yet grounding lines remain static. In foredeepened, buttressed ice shelves, changes in grounding line flux allow two additional options: stable or unstable retreat. Under some conditions, slope-dependent melting results in stable configurations even at high melt rates.

  3. Kinetic limit of heterogeneous melting in metals.

    PubMed

    Ivanov, Dmitriy S; Zhigilei, Leonid V

    2007-05-11

    The velocity and nanoscale shape of the melting front are investigated in a model that combines the molecular dynamics method with a continuum description of the electron heat conduction and electron-phonon coupling. The velocity of the melting front is strongly affected by the local drop of the lattice temperature, defined by the kinetic balance between the transfer of thermal energy to the latent heat of melting, the electron heat conduction from the overheated solid, and the electron-phonon coupling. The maximum velocity of the melting front is found to be below 3% of the room temperature speed of sound in the crystal, suggesting a limited contribution of heterogeneous melting under conditions of fast heating.

  4. Network topology of olivine-basalt partial melts

    NASA Astrophysics Data System (ADS)

    Skemer, Philip; Chaney, Molly M.; Emmerich, Adrienne L.; Miller, Kevin J.; Zhu, Wen-lu

    2017-07-01

    The microstructural relationship between melt and solid grains in partially molten rocks influences many physical properties, including permeability, rheology, electrical conductivity and seismic wave speeds. In this study, the connectivity of melt networks in the olivine-basalt system is explored using a systematic survey of 3-D X-ray microtomographic data. Experimentally synthesized samples with 2 and 5 vol.% melt are analysed as a series of melt tubules intersecting at nodes. Each node is characterized by a coordination number (CN), which is the number of melt tubules that intersect at that location. Statistically representative volumes are described by coordination number distributions (CND). Polyhedral grains can be packed in many configurations yielding different CNDs, however widely accepted theory predicts that systems with small dihedral angles, such as olivine-basalt, should exhibit a predominant CN of four. In this study, melt objects are identified with CN = 2-8, however more than 50 per cent are CN = 4, providing experimental verification of this theoretical prediction. A conceptual model that considers the role of heterogeneity in local grain size and melt fraction is proposed to explain the formation of nodes with CN ≠ 4. Correctly identifying the melt network topology is essential to understanding the relationship between permeability and porosity, and hence the transport properties of partial molten mantle rocks.

  5. Fission track dating of kimberlitic zircons

    NASA Astrophysics Data System (ADS)

    Haggerty, Stephen E.; Raber, Ellen; Naeser, Charles W.

    1983-04-01

    The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206Pb and 238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ± 6.5 m.y.), Orapa (87.4 ± 5.7 and 92.4 ± 6.1 m.y.), Nzega (51.1 ± 3.8 m.y.), Koffiefontein (90.0 ± 8.2 m.y.), and Val do Queve (133.4 ± 11.5 m.y.). In addition we report the first radiometric ages (707.9 ± 59.6 and 705.5 ± 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption.

  6. Melting relations in the system FeCO3-MgCO3 and thermodynamic modelling of Fe-Mg carbonate melts

    NASA Astrophysics Data System (ADS)

    Kang, Nathan; Schmidt, Max W.; Poli, Stefano; Connolly, James A. D.; Franzolin, Ettore

    2016-09-01

    To constrain the thermodynamics and melting relations of the siderite-magnesite (FeCO3-MgCO3) system, 27 piston cylinder experiments were conducted at 3.5 GPa and 1170-1575 °C. Fe-rich compositions were also investigated with 13 multi-anvil experiments at 10, 13.6 and 20 GPa, 1500-1890 °C. At 3.5 GPa, the solid solution siderite-magnesite coexists with melt over a compositional range of X Mg (=Mg/(Mg + Fetot)) = 0.38-1.0, while at ≥10 GPa solid solution appears to be complete. At 3.5 GPa, the system is pseudo-binary because of the limited stability of siderite or liquid FeCO3, Fe-rich carbonates decomposing at subsolidus conditions to magnetite-magnesioferrite solid solution, graphite and CO2. Similar reactions also occur with liquid FeCO3 resulting in melt species with ferric iron components, but the decomposition of the liquid decreases in importance with pressure. At 3.5 GPa, the metastable melting temperature of pure siderite is located at 1264 °C, whereas pure magnesite melts at 1629 °C. The melting loop is non-ideal on the Fe side where the dissociation reaction resulting in Fe3+ in the melt depresses melting temperatures and causes a minimum. Over the pressure range of 3.5-20 GPa, this minimum is 20-35 °C lower than the (metastable) siderite melting temperature. By merging all present and previous experimental data, standard state (298.15 K, 1 bar) thermodynamic properties of the magnesite melt (MgCO3L) end member are calculated and the properties of (Fe,Mg)CO3 melt fit by a regular solution model with an interaction parameter of -7600 J/mol. The solution model reproduces the asymmetric melting loop and predicts the thermal minimum at 1240 °C near the siderite side at X Mg = 0.2 (3.5 GPa). The solution model is applicable to pressures reaching to the bottom of the upper mantle and allows calculation of phase relations in the FeO-MgO-O2-C system.

  7. Travelling for earlier surgical treatment: the patient's view.

    PubMed Central

    Stewart, M; Donaldson, L J

    1991-01-01

    As part of the northern region's programme within the national waiting list initiative, schemes have been funded to test the feasibility and acceptability of offering patients the opportunity to travel further afield in order to receive earlier treatment. A total of 484 patients experiencing a long wait for routine surgical operations in the northern region were offered the opportunity to receive earlier treatment outside their local health district; 74% of the patients accepted the offer. The initiative was well received by the participating patients and the majority stated that if the need arose on a future occasion they would prefer to travel for treatment rather than have to wait for lengthy periods for treatment at their local hospital. These findings, interpreted in the light of the National Health Service reforms introduced in April 1991, suggest that for some types of care, patients would welcome greater flexibility in the placing of contracts, not merely reinforcement of historical patterns of referral. PMID:1823553

  8. U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art.

    PubMed

    Hoffmann, D L; Standish, C D; García-Diez, M; Pettitt, P B; Milton, J A; Zilhão, J; Alcolea-González, J J; Cantalejo-Duarte, P; Collado, H; de Balbín, R; Lorblanchet, M; Ramos-Muñoz, J; Weniger, G-Ch; Pike, A W G

    2018-02-23

    The extent and nature of symbolic behavior among Neandertals are obscure. Although evidence for Neandertal body ornamentation has been proposed, all cave painting has been attributed to modern humans. Here we present dating results for three sites in Spain that show that cave art emerged in Iberia substantially earlier than previously thought. Uranium-thorium (U-Th) dates on carbonate crusts overlying paintings provide minimum ages for a red linear motif in La Pasiega (Cantabria), a hand stencil in Maltravieso (Extremadura), and red-painted speleothems in Ardales (Andalucía). Collectively, these results show that cave art in Iberia is older than 64.8 thousand years (ka). This cave art is the earliest dated so far and predates, by at least 20 ka, the arrival of modern humans in Europe, which implies Neandertal authorship. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. An experimental study of permeability development as a function of crystal-free melt viscosity

    NASA Astrophysics Data System (ADS)

    Lindoo, A.; Larsen, J. F.; Cashman, K. V.; Dunn, A. L.; Neill, O. K.

    2016-02-01

    Permeability development in magmas controls gas escape and, as a consequence, modulates eruptive activity. To date, there are few experimental controls on bubble growth and permeability development, particularly in low viscosity melts. To address this knowledge gap, we have run controlled decompression experiments on crystal-free rhyolite (76 wt.% SiO2), rhyodacite (70 wt.% SiO2), K-phonolite (55 wt.% SiO2) and basaltic andesite (54 wt.% SiO2) melts. This suite of experiments allows us to examine controls on the critical porosity at which vesiculating melts become permeable. As starting materials we used both fine powders and solid slabs of pumice, obsidian and annealed starting materials with viscosities of ∼102 to ∼106 Pas. We saturated the experiments with water at 900° (rhyolite, rhyodacite, and phonolite) and 1025 °C (basaltic andesite) at 150 MPa for 2-72 hrs and decompressed samples isothermally to final pressures of 125 to 10 MPa at rates of 0.25-4.11 MPa/s. Sample porosity was calculated from reflected light images of polished charges and permeability was measured using a bench-top gas permeameter and application of the Forchheimer equation to estimate both viscous (k1) and inertial (k2) permeabilities. Degassing conditions were assessed by measuring dissolved water contents using micro-Fourier-Transform Infrared (μ-FTIR) techniques. All experiment charges are impermeable below a critical porosity (ϕc) that varies among melt compositions. For experiments decompressed at 0.25 MPa/s, we find the percolation threshold for rhyolite is 68.3 ± 2.2 vol.%; for rhyodacite is 77.3 ± 3.8 vol.%; and for K-phonolite is 75.6 ± 1.9 vol.%. Rhyolite decompressed at 3-4 MPa/s has a percolation threshold of 74 ± 1.8 vol.%. These results are similar to previous experiments on silicic melts and to high permeability thresholds inferred for silicic pumice. All basaltic andesite melts decompressed at 0.25 MPa/s, in contrast, have permeabilities below the detection

  10. Impact melt breccias at the Apollo 17 landing site

    NASA Technical Reports Server (NTRS)

    Ryder, Graham

    1992-01-01

    Impact melt breccias are by far the most common highland rock type collected on the Apollo 17 mission. They tend to be fine grained, with virtually no clast-free impact melt rocks having been identified. All the highland boulders sampled are impact melt breccia, with the possible exception of one South Massif boulder that might have a friable matrix (but nonetheless consists dominantly of impact melt) and a shocked igneous norite boulder from the North Massif. The impact melt breccias were originally described as metaclastic, but their melt origin became apparent as work progressed. Chemical compositions appear to allow natural groupings of the impact melt breccias. Various groupings of the impact melt breccias are discussed.

  11. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines

    PubMed Central

    Konda Gokuldoss, Prashanth; Kolla, Sri; Eckert, Jürgen

    2017-01-01

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties. PMID:28773031

  12. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines.

    PubMed

    Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen

    2017-06-19

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.

  13. Primitive Melt Inclusions from Multiple Samples from the FAMOUS Zone: Insights into the Mantle Melting Column and the Fractionation Processes

    NASA Astrophysics Data System (ADS)

    Laubier, M.; Langmuir, C. H.

    2008-12-01

    On mid-ocean ridges, the influential work by Sobolev and Shimizu (Nature, 1993) and Sobolev (Petrology, 1996) has inferred fractional melting during polybaric upwelling by showing that olivine-hosted inclusions were formed over a range of pressures. However melt inclusion studies have often concerned single MORB samples and may be seen as anecdotal in the sense that they are neither repeated nor globally verified. Recent modeling and experimental results also suggest the importance of post-entrapment processes for major and trace elements. This study presents major and trace element data in 300 olivine-hosted melt inclusions from 11 samples from the FAMOUS segment on the Mid-Atlantic Ridge. Published data from Shimizu (Phys. Earth Planet. Int., 1998) and Kamenetsky (EPSL, 1996; spinel-hosted inclusions) are also reported. In parallel, major and trace element measurements were performed in 150 glasses of the segment in order to have consistent datasets. Melt inclusions, trapped in olivine phenocrysts Mg#85-92, display complex trends in major element plots and can be divided into three groups. Group 1, the largest, is characterized by high MgO (9.4-13.4 wt.%), intermediate SiO2 and Al2O3 contents. Group 2 displays distinctively high Al2O3 (up to 18.4 wt.%), low SiO2 (as low as 46.5 wt.%) and high MgO (10.5-12.8 wt.%) contents, along with low CaO and variable TiO2, K2O and incompatible element concentrations. Group 3 consists of the melt inclusions trapped in less primitive olivines (Mg#<88.5) and displays higher SiO2, CaO and trace element contents. In the lava population, two groups can be distinguished. A small subset, that shares many features with the group 2 melt inclusions, displays high MgO and Al2O3 and low SiO2 and incompatible element contents. This type of lava - high-Al, low-Si and high-Mg - has been previously reported for various mid-ocean ridges (e.g., le Roux et al., Contrib. Min. Petrol., 2002; Eason and Sinton, EPSL, 2008). The second group plots

  14. Melt structure and self-nucleation of ethylene copolymers

    NASA Astrophysics Data System (ADS)

    Alamo, Rufina G.

    A strong memory effect of crystallization has been observed in melts of random ethylene copolymers well above the equilibrium melting temperature. These studies have been carried out by DSC, x-ray, TEM and optical microscopy on a large number of model, narrow, and broad copolymers with different comonomer types and contents. Melt memory is correlated with self-seeds that increase the crystallization rate of ethylene copolymers. The seeds are associated with molten ethylene sequences from the initial crystals that remain in close proximity and lower the nucleation barrier. Diffusion of all sequences to a randomized melt state is a slow process, restricted by topological chain constraints (loops, knots, and other entanglements) that build in the intercrystalline region during crystallization. Self-seeds dissolve above a critical melt temperature that demarcates homogeneity of the copolymer melt. There is a critical threshold level of crystallinity to observe the effect of melt memory on crystallization rate, thus supporting the correlation between melt memory and the change in melt structure during copolymer crystallization. Unlike binary blends, commercial ethylene-1-alkene copolymers with a range in inter-chain comonomer composition between 1 and about 15 mol % display an inversion of the crystallization rate in a range of melt temperatures where narrow copolymers show a continuous acceleration of the rate. With decreasing the initial melt temperature, broadly distributed copolymers show enhanced crystallization followed by a decrease of crystallization rate. The inversion demarcates the onset of liquid-liquid phase separation (LLPS) and a reduction of self-nuclei due to the strong thermodynamic drive for molecular segregation inside the binodal. The strong effect of melt memory on crystallization rate can be used to identify liquid-liquid phase separation in broadly distributed copolymers, and offers strategies to control the state of copolymer melts in ways of

  15. Dynamics of the Axial Melt Lens/Dike transition at fast spreading ridges: assimilation and hydrous partial melting

    NASA Astrophysics Data System (ADS)

    France, L.; Ildefonse, B.; Koepke, J.

    2009-04-01

    Recent detailed field studies performed in the Oman ophiolite on the gabbro/sheeted dike transition, compared to corresponding rocks from the EPR drilled by IODP (Site 1256), constrain a general model for the dynamics of the axial melt lens (AML) present at fast spreading ridges (France et al., 2008). This model implies that the AML/dike transition is a dynamic interface migrating up- and downward, and that the isotropic gabbro horizon on top of the igneous section represents its fossilization. It is also proposed that upward migrations are associated to reheating of the base of the sheeted dike complex and to assimilation processes. Plagiogranitic lithologies are observed close to the truncated base of the dikes and are interpreted to represent frozen melts generated by partial melting of previously hydrothermalized sheeted dikes. Relicts of previously hydrothermalized lithologies are also observed in the fossil melt lens, and are associated to lithologies that have crystallized under high water activities, with clinopyroxene crystallizing before plagioclase, and An-rich plagioclase. To better understand our field data, we performed hydrous partial melting experiments at shallow pressures (0.1 GPa) under slightly oxidizing conditions (NNO oxygen buffer) and water saturated conditions on hydrothermalized sheeted dike sample from the Oman ophiolite. These experiments have been performed between 850°C and 1030°C; two additional experiments in the subsolidus regime were also conducted (750°C and 800°C). Clinopyroxenes formed during incongruent melting at low temperature (<910°C) have compositions that match those from the corresponding natural rocks (reheated base of the sheeted dike and relicts of assimilated lithologies). In particular, the characteristic low TiO2 and Al2O3 contents are reproduced. The experimental melts produced at low temperatures correspond to compositions of typical natural plagiogranites. In natural settings, these silicic liquids would be

  16. Prescription stimulant use is associated with earlier onset of psychosis.

    PubMed

    Moran, Lauren V; Masters, Grace A; Pingali, Samira; Cohen, Bruce M; Liebson, Elizabeth; Rajarethinam, R P; Ongur, Dost

    2015-12-01

    A childhood history of attention deficit hyperactivity disorder (ADHD) is common in psychotic disorders, yet prescription stimulants may interact adversely with the physiology of these disorders. Specifically, exposure to stimulants leads to long-term increases in dopamine release. We therefore hypothesized that individuals with psychotic disorders previously exposed to prescription stimulants will have an earlier onset of psychosis. Age of onset of psychosis (AOP) was compared in individuals with and without prior exposure to prescription stimulants while controlling for potential confounding factors. In a sample of 205 patients recruited from an inpatient psychiatric unit, 40% (n = 82) reported use of stimulants prior to the onset of psychosis. Most participants were prescribed stimulants during childhood or adolescence for a diagnosis of ADHD. AOP was significantly earlier in those exposed to stimulants (20.5 vs. 24.6 years stimulants vs. no stimulants, p < 0.001). After controlling for gender, IQ, educational attainment, lifetime history of a cannabis use disorder or other drugs of abuse, and family history of a first-degree relative with psychosis, the association between stimulant exposure and earlier AOP remained significant. There was a significant gender × stimulant interaction with a greater reduction in AOP for females, whereas the smaller effect of stimulant use on AOP in males did not reach statistical significance. In conclusion, individuals with psychotic disorders exposed to prescription stimulants had an earlier onset of psychosis, and this relationship did not appear to be mediated by IQ or cannabis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Role of crystallizational differention in the origin of island-arc andesitic melts: evidence from data on melt inclusions and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. P.; Portnyagin, M.; Bindeman, I. N.; Bazanova, L. I.

    2012-12-01

    Several recent studies of melt inclusions in island-arc rocks revealed a strong bimodality of the melt compositions at the predominance of basic and silicic melts and the scarcity of intermediate melts with SiO2=59-66 wt% (e.g. [1]). These observations were used to interpret the origin of island-arc andesites by magma mingling, crustal assimilation and crystal accumulation rather than by fractional crystallization of basaltic magmas. In this work we addressed the question about the scarcity of andesitic melts in island-arc setting by systematic study of bulk compositions, melt inclusions and oxygen isotopes in minerals from Avachinskiy volcano in Kamchatka. We studied ~500 melt inclusions in 6 different mineral phases (Ol, Cpx, Opx, Pl, Amph, Mt), and concentrated on rapidly-quenched tephra samples from 40 Holocene eruptions of andesites and basaltic andesites. The melt inclusions span a large range of compositions from basalts to rhyolites. In comparison with host bulk tephra samples, melt inclusions tend to have more silicic compositions (up to 10 wt% of SiO2), and this disparity tend to increase with increasing SiO2 content in the host rocks. Both melt inclusion and host rock compositions form trends along the line dividing low- and middle-K island-arc series, and variations of major elements are continuous, without apparent bimodality, which is observed in data set from [1]. The MI statistical distribution is rather three-modal with maxima at ~56-58, ~66 and 74 wt% of SiO2. Much of the major element variability in MI can be explained by fractional crystallization from parental basaltic melts using numerical modeling of crystallization path. Magnetite crystallization starts at ~58 wt% of SiO2 and affects significantly on the evolutional path of melts. Abundant crystallization of magnetite lead to formation of more silica rich coexistent melts and change of crystallizing assemblage occurred at ~60 wt% of SiO2, when Opx replaced Ol, and Amph and Ap become stable

  18. MELTS_Excel: A Microsoft Excel-based MELTS interface for research and teaching of magma properties and evolution

    NASA Astrophysics Data System (ADS)

    Gualda, Guilherme A. R.; Ghiorso, Mark S.

    2015-01-01

    thermodynamic modeling software MELTS is a powerful tool for investigating crystallization and melting in natural magmatic systems. Rhyolite-MELTS is a recalibration of MELTS that better captures the evolution of silicic magmas in the upper crust. The current interface of rhyolite-MELTS, while flexible, can be somewhat cumbersome for the novice. We present a new interface that uses web services consumed by a VBA backend in Microsoft Excel©. The interface is contained within a macro-enabled workbook, where the user can insert the model input information and initiate computations that are executed on a central server at OFM Research. Results of simple calculations are shown immediately within the interface itself. It is also possible to combine a sequence of calculations into an evolutionary path; the user can input starting and ending temperatures and pressures, temperature and pressure steps, and the prevailing oxidation conditions. The program shows partial updates at every step of the computations; at the conclusion of the calculations, a series of data sheets and diagrams are created in a separate workbook, which can be saved independently of the interface. Additionally, the user can specify a grid of temperatures and pressures and calculate a phase diagram showing the conditions at which different phases are present. The interface can be used to apply the rhyolite-MELTS geobarometer. We demonstrate applications of the interface using an example early-erupted Bishop Tuff composition. The interface is simple to use and flexible, but it requires an internet connection. The interface is distributed for free from http://melts.ofm-research.org.

  19. Dating and eating. Beliefs about dating foods among university students.

    PubMed

    Amiraian, Dana E; Sobal, Jeffery

    2009-10-01

    Dating is an important courtship activity in the U.S., and food consumption is part of dating events. Students use dating scripts to guide decisions and behaviors on dates, and perform scripts on dates to construct positive impression management. This study examined how students conceptualized dating foods. A questionnaire was administered in one large university class, and data from 301 students were analyzed. Students were asked to name three dating foods, three foods that are not dating foods, what makes foods dating foods, and what makes foods not dating foods. Findings revealed that both common and uncommon foods were named as dating and not dating foods. Alcoholic beverages were sometimes named as dating foods. Women often named feminine foods (considered appropriate for females) as dating foods, but men were not more likely to name masculine foods (considered appropriate for males) as dating foods. Neat and easy-to-eat foods were often named as dating foods, while pungent foods and foods causing bad breath were named as not dating foods. These findings support the conception that dating scripts guide thinking about food choices to enhance impression management. Dating food choices are important for current health and as potential precursors for long-term eating relationships like marriage.

  20. Melting of 2D colloidal crystals

    NASA Astrophysics Data System (ADS)

    Maret, G.; Eisenmann, C.; Gasser, U.; Vongruenberg, H. H.; Keim, P.; Zahn, K.

    2004-11-01

    We study melting of 2D crystals of super-paramagnetic colloidal particles confined by gravity to a flat air-water interface. The effective system temperature is given by the strength of the dipolar inter-particle interaction controlled by an external magnetic field B. Particle positions are obtained by video-microscopy. In vertical B-field crystals are hexagonal and we find all features of the 2-step melting scenario predicted by KTHNY-theory. In particular, quantitative agreement is found for the translational and orientational order parameters related to bound and isolated dislocations and disclinations. From particle position fluctuations wave-vector (q) dependent normal-mode spring constants are obtained in agreement with phonon band structure calculations. The elastic constants (q=0 limit) soften near melting in quantitative agreement with KTHNY. By tilting B away from vertical anisotropic 2D crystals are generated; at small tilting angles they melt through a quasi-hexatic phase, while at higher tilts a centered rectangular phase is found which melts into a 2D smectic-like phase through orientation-dependent dislocations.

  1. Local melting in Al-Mg-Zn-alloys

    NASA Astrophysics Data System (ADS)

    Droenen, Per-Erik; Ryum, Nils

    1994-03-01

    The internal melting of several Al-Mg-Zn-alloys has been studied by rapid upquenching in a salt bath of specimens slowly cooled at a rate of 2 °C/h down to 375 °C. The melting reaction was studied metallographically in the light- and electron-scanning microscope, and local concentrations were measured in the microprobe. Local melting of both the equilibrium phases T and η was observed to occur. There were, however, essential differences between the melting kinetics for the two phases. While the T-phase particles melted spontaneously at temperatures at or above the invariant temperature, 489 °C, and after some period of time at lower temperatures, the η-phase particles either melted spontaneously at or above the invariant temperature, T - 475 °C, or dissolved into the matrix at temperatures below 475 °C. This difference in behavior can be accounted for if the α(Al)-η section is not a quasi-binary section. The industrial implications of the internal melting in these alloys are discussed and compared to the same reaction in the Al-Mg-Si alloys. A model is developed in the Appendix to quantify the different behaviors of these two classes of alloys.

  2. Melt spinning study

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Rathz, Thomas

    1993-01-01

    Containerless processing of materials provides an excellent opportunity to study nucleation phenomena and produce unique materials, primarily through the formation of metastable phases and deep undercoolings. Deep undercoolings can be readily achieved in falling drops of molten material. Extended solute solubilities and greatly refined microstructures can also be obtained in containerless processing experiments. The Drop Tube Facility at Marshall Space Flight Center has played an important role in enhancing that area of research. Previous experiments performed in the Drop Tube with refractory metals has shown very interesting microstructural changes associated with deep undercoolings. It is apparent also that the microstructure of the deep undercooled species may be changing due to the release of the latent heat of fusion during recalescence. For scientific purposes, it is important to be able to differentiate between the microstructures of the two types of metallic species. A review of the literature shows that although significant advances have been made with respect to the engineering aspects of rapid solidification phenomena, there is still much to be learned in terms of understanding the basic phenomena. The two major ways in which rapid solidification processing provides improved structures and hence improved properties are: (1) production of refined structures such as fine dendrites and eutectics, and (2) production of new alloy compositions, microstructures, and phases through extended solid solubility, new phase reaction sequences, and the formation of metallic-glass microstructures. The objective of this work has been to determine the optimal methodology required to extract this excess energy without affecting the thermo-physical parameters of the under-cooled melt. In normal containerless processing experiments recalescence occurs as the melt returns toward the melting point in order to solidify. A new type of experiment is sought in which the resultant

  3. Petrogenesis of melt rocks, Manicouagan impact structure, Quebec

    NASA Technical Reports Server (NTRS)

    Simonds, C. H.; Floran, R. J.; Mcgee, P. E.; Phinney, W. C.; Warner, J. L.

    1978-01-01

    It is suggested, on the basis of previous theoretical studies of shock waves, that the Manicouagan melt formed in 1 or 2 s in a 5-km-radius hemisphere near the point of impact. The melt and the less shocked debris surrounding it flowed downward and outward for a few minutes until the melt formed a lining of a 5- to 8-km deep, 15- to 22-km-radius cavity. Extremely turbulent flow thoroughly homogenized the melt and promoted the incorporation and progressive digestion of debris that had been finely fragmented (but not melted) to grain sizes of less than one mm by the passage of the shock waves. The equilibration of clasts and melt, plagioclase nucleation, and readjustment of the crater floor are discussed.

  4. Melting icebergs to produce fresh water and mechanical energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camirand, W.M.; Hautala, E.; Randall, J.M.

    1981-10-20

    Fresh water and mechanical energy are obtained from melting of icebergs. Warm surface seawater is contacted with a fluid, which is vaporized. The resulting vapor is used to generate mechanical energy and then is condensed by contacting it with cold melt water from the iceberg. The fluid is regenerated with a concomitant elevation in the temperature of the melt water. The warmer melt water is cycled to the body of the iceberg to facilitate its melting and produce additional cold melt water, which is apportioned as fresh water and water cycled to condense the aforesaid vapor. In an alternate embodimentmore » of the invention warm seawater is evaporated at reduced pressure. Mechanical energy is generated from the vapor, which is then condensed by direct and intimate contact with cold melt water from the iceberg. The resultant fresh water is a mixture of condensed vapor and melt water from the iceberg and has a temperature greater than the cold melt water. This fresh water mixture is contacted with the body of the iceberg to further melt it; part of the cold melt water is separated as fresh water and the remainder is cycled for use in condensing the vapor from the warm surface seawater.« less

  5. Shape evolution of a melting nonspherical particle

    NASA Astrophysics Data System (ADS)

    Kintea, Daniel M.; Hauk, Tobias; Roisman, Ilia V.; Tropea, Cameron

    2015-09-01

    In this study melting of irregular ice crystals was observed in an acoustic levitator. The evolution of the particle shape is captured using a high-speed video system. Several typical phenomena have been discovered: change of the particle shape, appearance of a capillary flow of the melted liquid on the particle surface leading to liquid collection at the particle midsection (where the interface curvature is smallest), and appearance of sharp cusps at the particle tips. No such phenomena can be observed during melting of spherical particles. An approximate theoretical model is developed which accounts for the main physical phenomena associated with melting of an irregular particle. The agreement between the theoretical predictions for the melting time, for the evolution of the particle shape, and the corresponding experimental data is rather good.

  6. Shallow melt apparatus for semicontinuous czochralski crystal growth

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  7. Aqueous film coating to reduce recrystallization of guaifenesin from hot-melt extruded acrylic matrices.

    PubMed

    Bruce, Caroline D; Fegely, Kurt A; Rajabi-Siahboomi, Ali R; McGinity, James W

    2010-02-01

    This study investigated the effect of aqueous film coating on the recrystallization of guaifenesin from acrylic, hot-melt extruded matrix tablets. After hot-melt extrusion, matrix tablets were film-coated with either hypromellose or ethylcellulose. The effects of the coating polymer, curing and storage conditions, polymer weight gain, and core guaifenesin concentration on guaifenesin recrystallization were investigated. The presence of either film coating on the guaifenesin-containing tablets was found to prolong the onset time of drug crystallization. The coating polymer was the most important factor determining the delay in the onset of crystallization, with the more hydrophilic polymer, hypromellose, having a higher solubilization potential for the guaifenesin and delaying crystallization for longer period (3 or 6 months in tablets stored at 40 degrees C or 25 degrees C, respectively) than the more hydrophobic ethylcellulose, which displayed a lower solubilization potential for guaifenesin (crystal growth on tablets cured for 2 hours at 60 degrees C occurred within 3 weeks, whereas uncoated tablets displayed surface crystal growth after 30 minutes). Crystal morphology was also affected by the film coating. Elevated temperatures during both curing and storage, incomplete film coalescence, and high core drug concentrations all contributed to an earlier onset of crystal growth.

  8. Predicting melt rheology for hot-melt extrusion by means of a simple Tg-measurement.

    PubMed

    Bochmann, Esther S; Üstüner, Elgin E; Gryczke, Andreas; Wagner, Karl G

    2017-10-01

    The feasibility of predicting melt rheology by using the glass transition temperature (T g ) of a desired amorphous solid dispersion (ASD) for hot-melt extrusion (HME) and other melt based processes is presented. Three groups of three different active pharmaceutical ingredients (APIs) or plasticizer/copovidone mixtures, with identical glass transition in rheological testing, were used. Their rheological behavior as a function of temperature and frequency were analyzed by means of small amplitude oscillatory shear (SAOS) on an oscillatory rheometer. The zero-shear viscosity (η 0 ) identified at 150°C was compared to T g , measured by differential scanning calorimetry (DSC) and SAOS. A strong correlation between η 0 and T g was identified, independent of the API or plasticizer used to achieve T g of the mixture. To evaluate and rate the discrepancy in η 0 of the different mixtures at same T g , hot-melt extrusion trials were conducted to measure torque and mean residence time. In this paper, carbamazepine, dipyridamole, indomethacin, ibuprofen, polyethylene glycol (PEG 1500) in vinylpyrrolidone-vinyl acetate copolymer (copovidone) as matrix polymer were used. Copyright © 2017. Published by Elsevier B.V.

  9. Snow cover volumes dynamic monitoring during melting season using high topographic accuracy approach for a Lebanese high plateau witness sinkhole

    NASA Astrophysics Data System (ADS)

    Abou Chakra, Charbel; Somma, Janine; Elali, Taha; Drapeau, Laurent

    2017-04-01

    Climate change and its negative impact on water resource is well described. For countries like Lebanon, undergoing major population's rise and already decreasing precipitations issues, effective water resources management is crucial. Their continuous and systematic monitoring overs long period of time is therefore an important activity to investigate drought risk scenarios for the Lebanese territory. Snow cover on Lebanese mountains is the most important water resources reserve. Consequently, systematic observation of snow cover dynamic plays a major role in order to support hydrologic research with accurate data on snow cover volumes over the melting season. For the last 20 years few studies have been conducted for Lebanese snow cover. They were focusing on estimating the snow cover surface using remote sensing and terrestrial measurement without obtaining accurate maps for the sampled locations. Indeed, estimations of both snow cover area and volumes are difficult due to snow accumulation very high variability and Lebanese mountains chains slopes topographic heterogeneity. Therefore, the snow cover relief measurement in its three-dimensional aspect and its Digital Elevation Model computation is essential to estimate snow cover volume. Despite the need to cover the all lebanese territory, we favored experimental terrestrial topographic site approaches due to high resolution satellite imagery cost, its limited accessibility and its acquisition restrictions. It is also most challenging to modelise snow cover at national scale. We therefore, selected a representative witness sinkhole located at Ouyoun el Siman to undertake systematic and continuous observations based on topographic approach using a total station. After four years of continuous observations, we acknowledged the relation between snow melt rate, date of total melting and neighboring springs discharges. Consequently, we are able to forecast, early in the season, dates of total snowmelt and springs low

  10. Nonlinear Influence of Background Rotation on Iceberg Melting

    NASA Astrophysics Data System (ADS)

    Meroni, A. N.; McConnochie, C. D.; Cenedese, C.; Sutherland, B. R.; Snow, K.

    2017-12-01

    The Antarctic and Greenland Ice Sheets lose mass through direct melting from ice shelves and from the calving of icebergs. Once icebergs have calved they will drift in ocean currents and gradually melt. Where and how rapidly they melt will determine where the freshwater and nutrients contained in the iceberg will be released which can then affect sea ice formation and biological activity. Standard parameterizations of iceberg melting consider the fluid velocity and temperature but not the effect of planetary rotation. Particularly for large icebergs, such as that which recently calved from the Larson C ice shelf, rotation may also be important due to the formation of Taylor columns.We present the results of laboratory experiments investigating the effect of rotation on the melting of icebergs. In particular, the possible formation of Taylor columns underneath an iceberg is investigated. At high Rossby numbers, when rotation is weak compared to advection, iceberg melting is unaffected by the background rotation rate. However, as the Rossby number is decreased, the melt rate initially increases before decreasing as the Rossby number is further decreased.This non-monotonic dependence of iceberg melting on the Rossby number is explained by considering the integrated horizontal velocity under the iceberg. For moderate Rossby numbers the Taylor column that forms only occupies a small fraction of the iceberg bottom area. Although there is near-zero relative flow in the Taylor column, which reduces the melt rate, the effective blocking by the Taylor column causes an acceleration of the flow under the remainder of the iceberg and increases the total melt rate. However, for low Rossby numbers the Taylor column occupies a larger fraction of the iceberg bottom area and the flow acceleration no longer occurs underneath the iceberg, hence it is unable to increase the melt rate. We suggest an improved parameterization of iceberg melt that includes the effects of rotation.

  11. Experimental study of the electrolysis of silicate melts

    NASA Technical Reports Server (NTRS)

    Keller, R.; Larimer, K. T.

    1991-01-01

    To produce oxygen from lunar resources, it may be feasible to melt and electrolyze local silicate ores. This possibility was explored experimentally with synthesized melts of appropriate compositions. Platinum electrodes were employed at a melt temperature of 1425 C. When silicon components of the melt were reduced, the platinum cathode degraded rapidly, which prompted the substitution of a graphite cathode substrate. Discrete particles containing iron or titanium were found in the solidified electrolyte after three hours of electrolysis. Electrolyte conductivities did not decrease substantially, but the escape of gas bubbles, in some cases, appeared to be hindered by high viscosity of the melt.

  12. Melting of isolated tin nanoparticles

    PubMed

    Bachels; Guntherodt; Schafer

    2000-08-07

    The melting of isolated neutral tin cluster distributions with mean sizes of about 500 atoms has been investigated in a molecular beam experiment by calorimetrically measuring the clusters' formation energies as a function of their internal temperature. For this purpose the possibility to adjust the temperature of the clusters' internal degrees of freedom by means of the temperature of the cluster source's nozzle was exploited. The melting point of the investigated tin clusters was found to be lowered by 125 K and the latent heat of fusion per atom is reduced by 35% compared to bulk tin. The melting behavior of the isolated tin clusters is discussed with respect to the occurrence of surface premelting.

  13. Dining Dovekies Demand, "When, Where and What's for Dinner?" The Impact of Seasonal Changes in Snow Melt and the Development of the Arctic Marine Food Web on Seabirds.

    NASA Astrophysics Data System (ADS)

    Karnovsky, N. J.; Harding, A.; Welcker, J.; Brown, Z. W.; Kitaysky, A.; Kwasniewski, S.; Walkusz, W.; Gremillet, D.

    2011-12-01

    The Atlantic sector of the Arctic is undergoing widespread climate change with increases in air and sea temperatures which impact the timing of ice retreat, snow melt and the development of the marine food web. Dovekies (Alle alle) are small seabirds that migrate to the Atlantic Sector of the Arctic to feed in ice free waters that have abundant lipid-rich zooplankton. In the Greenland Sea, the dovekies are largely dependent on the advection of Calanus copepods into the area. We hypothesized that dovekies breeding adjacent to water masses which bring smaller, less energy-rich prey into the region (Calanus finmarchicus), work harder to find food and have higher stress levels. We tested this hypothesis by attaching time-depth recorders to provisioning dovekies at three colonies adjacent to different water masses (the West Spistbergen Current, the East Greenland Current, and the Sorkapp Current). We determined the length of time dovekies at different colonies spent at-sea collecting food for themselves and their chicks. We measured circulating corticosteroid hormone levels in their blood to assess stress levels. We collected chick meals to determine the energetic content of prey fed chicks at the different colonies. We found that dovekies are sensitive to the quality of prey available to them. Dovekies exposed to less profitable prey made longer foraging trips and worked harder while at-sea to collect prey for themselves and their chicks. Furthermore, over the past 50 years, dovekies breeding along the western shores of Spitsbergen have initiated breeding earlier in spring as their nest sites have become snow-free at earlier dates. We evaluate the impact of earlier breeding and the timing of the development of the marine food web within different currents which advect and/or support Calanus copepods into the Greenland Sea. Future possible declines in dovekies may impact terrestrial food webs which are highly influenced by the annual input of nitrogen rich guano on the

  14. In situ observation of melting and crystallization of Si on porous Si3N4 substrate that repels Si melt

    NASA Astrophysics Data System (ADS)

    Itoh, Hironori; Okamura, Hideyuki; Asanoma, Susumu; Ikemura, Kouhei; Nakayama, Masaharu; Komatsu, Ryuichi

    2014-09-01

    High temperature in situ observation of melting and crystallization of spherical Si droplets on a substrate with a porous surface was carried out for the first time using an original in situ observation apparatus. The contact angle between the Si melt and the substrate was measured to be 160°, with the Si melt forming spherical droplets on the substrate. During crystallization, a ring-like pattern was observed on the surface of the spherical Si melt droplets due to crystal growth at low levels of supercooling. The solidified spherical Si crystals consisted of single or twin grains. This demonstrates that high-quality spherical Si crystals can be prepared easily and stably by using a Si melt-repelling substrate.

  15. Apollo 15 impact melts, the age of Imbrium, and the Earth-Moon impact cataclysm

    NASA Technical Reports Server (NTRS)

    Ryder, Graham; Dalrymple, G. Brent

    1992-01-01

    The early impact history of the lunar surface is of critical importance in understanding the evolution of both the primitive Moon and the Earth, as well as the corresponding populations of planetesimals in Earth-crossing orbits. Two endmember hypotheses call for greatly dissimilar impact dynamics. One is a heavy continuous (declining) bombardment from about 4.5 Ga to 3.85 Ga. The other is that an intense but brief bombardment at about 3.85 +/- Ga was responsible for producing the visible lunar landforms and for the common 3.8-3.9 Ga ages of highland rocks. The Apennine Front, the main topographic ring of the Imbrium Basin, was sampled on the Apollo 15 mission. The Apollo 15 impact melts show a diversity of chemical compositions, indicating their origin in at least several different impact events. The few attempts at dating them have generally not produced convincing ages, despite their importance. Thus, we chose to investigate the ages of melt rock samples from the Apennine Front, because of their stratigraphic importance yet lack of previous age definition.

  16. Coeval Ar-40/Ar-39 ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites

    NASA Technical Reports Server (NTRS)

    Swisher, Carl C., III; Grajales-Nishimura, Jose M.; Montanari, Alessandro; Margolis, Stanley V.; Claeys, Philippe; Alvarez, Walter; Renne, Paul; Cedillo-Pardo, Esteban; Maurrasse, Florentin J.-M. R.; Curtis, Garniss H.

    1992-01-01

    Ar-40/Ar-39 dating of drill-core samples of a glassy melt rock recovered from beneath a massive impact breccia contained with the 180-kilometer subsurface Chicxulub crater yields well-behaved incremental heating spectra with a mean plateau age of 64.98 +/- 0.05 million years ago (Ma). The glassy melt rock of andesitic composition was obtained from core 9 (1390 to 1393 meters) in the Chicxulub 1 well. The age of the melt rock is virtually indistinguishable from Ar-40/Ar-39 ages obtained on tektite glass from Beloc, Haiti, and Arroyo el Mimbral, northeastern Mexico, of 65.01 +/- 0.08 Ma (mean plateau age for Beloc) and 65.07 +/- 0.10 Ma (mean total fusion age for both sites). The Ar-40/Ar-39 ages, in conjunction with geochemical and petrological similarities, strengthen the suggestion that the Chicxulub structure is the source for the Haitian and Mexican tektites and is a viable candidate for the Cretaceous-Tertiary boundary impact site.

  17. Co-settling of Chromite and Sulfide Melt Droplets and Trace Element Partitioning between Sulfide and Silicate Melts

    NASA Astrophysics Data System (ADS)

    Manoochehri, S.; Schmidt, M. W.; Guenther, D.

    2013-12-01

    Gravitational settling of immiscible, dense sulfide melt droplets together with other cumulate phases such as chromite, combined with downward percolation of these droplets through a cumulate pile, is thought to be one of the possible processes leading to the formation of PGE rich sulfide deposits in layered mafic intrusions. Furthermore some chromitite seams in the Merensky Reef (Bushveld Complex) are considered to be acting as a filter or barrier for further downward percolation of sulfide melts into footwall layers. To investigate the feasibility of such mechanical processes and to study the partitioning behavior of 50 elements including transition metals and REEs (but not PGEs) between a silicate and a sulfide melt, two separate series of high temperature (1250-1380 °C) centrifuge-assisted experiments at 1000 g, 0.4-0.6 GPa were conducted. A synthetic silicate glass with a composition representative of the parental magma of the Bushveld Complex (~ 55 wt% SiO2) was mixed with pure FeS powder. For the first series of experiments, 15 or 25 wt% natural chromite with average grain sizes of ~ 5 or 31 μm were added to a mixture of silicate glass and FeS (10 wt%) adding 1 wt% water. For the second series, a mixture of the same glass and FeS was doped with 50 trace elements. These mixtures were first statically equilibrated and then centrifuged. In the first experimental series, sulfide melt droplets settled together with, but did not segregate from chromite grains even after centrifugation at 1000 g for 12 hours. A change in initial chromite grain size and proportions didn't have any effect on segregation. Without chromite, the starting mixture resulted in the formation of large sulfide melt pools together with finer droplets still disseminated through the silicate glass and both at the bottom of the capsule. The incomplete segregation of sulfide melt is interpreted as being due to high interfacial energies between sulfide and silicate melts/crystals which hinder

  18. Permeability and 3-Dimensional Melt Distribution in Partially Molten Rocks

    NASA Astrophysics Data System (ADS)

    Zhu, Wen-Lu; Gaetani, Glenn; Fusseis, Florian

    2010-05-01

    Quantitative knowledge of the distribution of small amounts of silicate melt in peridotite and of its influence on permeability are critical to our understanding of melt migration and segregation processes in the upper mantle, as well as interpretations of the geochemical and geophysical observations at ocean ridges. For a system containing a single solid phase of isotropic interfacial energy, chemical and mechanical equilibrium requires a constant mean curvature of solid-melt interfaces and a single dihedral angle. Under these conditions, a simple power-law relationship between permeability, grain size and melt fraction, has been derived [e.g., von Bargen and Waff, 1986]. However, microstructural observations on texturally equilibrated, partially molten rocks reveal that the melt distribution is more complex than predicted by the isotropic model. Several factors, such as non-hydrostatic stress, anisotropic interfacial energy, or the presence of a second solid phase, will alter the power-law relationship. Better estimates for the permeability of partially molten rock require an accurate assessment of 3-dimensional melt distribution at the grain-scale. Existing studies of melt distribution, carried out on 2-D slices through experimental charges, have produced divergent models for melt distribution at small melt fractions. While some studies conclude that small amounts of melt are distributed primarily along 3-grain junctions [e.g., Wark et al., 2003], others predict an important role for melt distribution along grain boundaries at low melt fractions [e.g., Faul 1997]. Using X-ray synchrotron microtomography, we have carried out the first high quality non-destructive imaging of 3-dimensional melt distribution in experimentally equilibrated olivine-basalt aggregates [Zhu et al., 2009]. Microtomographic images of melt distribution were obtained on 1 mm cylindrical cores with melt fractions of 0.2, 0.1, and 0.02, at a spatial resolution of 0.7 microns. Textual

  19. High Spatial Resolution 40Ar/39Ar Geochronology of Lunar Impact Melt Rocks

    NASA Astrophysics Data System (ADS)

    Mercer, Cameron Mark

    Impact cratering has played a key role in the evolution of the solid surfaces of Solar System bodies. While much of Earth’s impact record has been erased, its Moon preserves an extensive history of bombardment. Quantifying the timing of lunar impact events is crucial to understanding how impacts have shaped the evolution of early Earth, and provides the basis for estimating the ages of other cratered surfaces in the Solar System. Many lunar impact melt rocks are complex mixtures of glassy and crystalline “melt” materials and inherited clasts of pre-impact minerals and rocks. If analyzed in bulk, these samples can yield complicated incremental release 40Ar/39Ar spectra, making it challenging to uniquely interpret impact ages. Here, I have used a combination of high-spatial resolution 40Ar/39Ar geochronology and thermal-kinetic modeling to gain new insights into the impact histories recorded by such lunar samples. To compare my data to those of previous studies, I developed a software tool to account for differences in the decay, isotopic, and monitor age parameters used for different published 40Ar/39Ar datasets. Using an ultraviolet laser ablation microprobe (UVLAMP) system I selectively dated melt and clast components of impact melt rocks collected during the Apollo 16 and 17 missions. UVLAMP 40Ar/39Ar data for samples 77135, 60315, 61015, and 63355 show evidence of open-system behavior, and provide new insights into how to interpret some complexities of published incremental heating 40Ar/39Ar spectra. Samples 77115, 63525, 63549, and 65015 have relatively simple thermal histories, and UVLAMP 40Ar/39Ar data for the melt components of these rocks indicate the timing of impact events—spanning hundreds of millions of years—that influenced the Apollo 16 and 17 sites. My modeling and UVLAMP 40Ar/39Ar data for sample 73217 indicate that some impact melt rocks can quantitatively retain evidence for multiple melt-producing impact events, and imply that such

  20. Melting Curve of Molecular Crystal GeI4

    NASA Astrophysics Data System (ADS)

    Fuchizaki, Kazuhiro; Hamaya, Nozomu

    2014-07-01

    In situ synchrotron x-ray diffraction measurements were carried out to determine the melting curve of the molecular crystal GeI4. We found that the melting line rapidly increases with a pressure up to about 3 GPa, at which it abruptly breaks. Such a strong nonlinear shape of the melting curve can be approximately captured by the Kumari-Dass-Kechin equation. The parameters involved in the equation could be determined from the equation of state for the crystalline phase, which was also established in the present study. The melting curve predicted from the equation approaches the actual melting curve as the degree of approximation involved in obtaining the equation is improved. However, the treatment is justifiable only if the slope of the melting curve is everywhere continuous. We believe that this is not the case for GeI4's melting line at the breakpoint, as inferred from the nature of breakdown of the Kraut-Kennedy and the Magalinskii-Zubov relationships.The breakpoint may then be a triple point among the crystalline phase and two possible liquid phases.

  1. Hot-melt extrusion--basic principles and pharmaceutical applications.

    PubMed

    Lang, Bo; McGinity, James W; Williams, Robert O

    2014-09-01

    Originally adapted from the plastics industry, the use of hot-melt extrusion has gained favor in drug delivery applications both in academia and the pharmaceutical industry. Several commercial products made by hot-melt extrusion have been approved by the FDA, demonstrating its commercial feasibility for pharmaceutical processing. A significant number of research articles have reported on advances made regarding the pharmaceutical applications of the hot-melt extrusion processing; however, only limited articles have been focused on general principles regarding formulation and process development. This review provides an in-depth analysis and discussion of the formulation and processing aspects of hot-melt extrusion. The impact of physicochemical properties of drug substances and excipients on formulation development using a hot-melt extrusion process is discussed from a material science point of view. Hot-melt extrusion process development, scale-up, and the interplay of formulation and process attributes are also discussed. Finally, recent applications of hot-melt extrusion to a variety of dosage forms and drug substances have also been addressed.

  2. Melt electrospinning of biodegradable polyurethane scaffolds

    PubMed Central

    Karchin, Ari; Simonovsky, Felix I.; Ratner, Buddy D.; Sanders, Joan E.

    2014-01-01

    Electrospinning from the melt, in contrast to from solution, is an attractive tissue engineering scaffold manufacturing process as it allows for the formation of small diameter fibers while eliminating potentially cytotoxic solvents. Despite this, there is a dearth of literature on scaffold formation via melt electrospinning. This is likely due to the technical challenges related to the need for a well-controlled high temperature setup and the difficulty in developing an appropriate polymer. In this paper, a biodegradable and thermally stable polyurethane (PU) is described specifically for use in melt electrospinning. Polymer formulations of aliphatic PUs based on (CH2)4-content diisocyanates, polycaprolactone (PCL), 1,4-butanediamine and 1,4-butanediol (BD) were evaluated for utility in the melt electrospinning process. The final polymer formulation, a catalyst-purified PU based on 1,4-butane diisocyanate, PCL and BD in a 4/1/3 molar ratio with a weight-average molecular weight of about 40 kDa, yielded a nontoxic polymer that could be readily electrospun from the melt. Scaffolds electrospun from this polymer contained point bonds between fibers and mechanical properties analogous to many in vivo soft tissues. PMID:21640853

  3. Mediterranean Magmatism: Bimodal Melting Patterns Inferred By Numerical Models

    NASA Astrophysics Data System (ADS)

    Gogus, O.; Ueda, K.; Gerya, T.

    2017-12-01

    Melt production by the decompression melting of the asthenospheric mantle occurs in the course of the lithospheric foundering process. The magmatic imprints of such foundering process are often described as anorogenic magmatism and this is usually followed by the orogenic magmatism, related to the subduction events in the Mediterranean region. Here, by using numerical geodynamic experiments we explore various styles of magmatism, their interaction with each other and the amount of magma production in the ocean subduction to slab peel away/delamination configuration. Model results show that the early stage of the ocean subduction under the continental lithosphere is associated with the short pulse of wet melting-orogenic magmatism and then the melting process is mostly dominated by dry melting-anorogenic magmatism, until the slab break-off occurs. While the melt types mixes/alternates during the evolution of the model, the wet melting facilitates the production of dry melting because of its uprising and emplacement under the crust where dry melting is present. The melt production pattern and the amount does not change significantly with different depths of the slab break-off (160-200 km). Model results can explain the transition from the calc-alkaline to alkaline volcanism in the western Mediterranean (Alboran domain) where ocean subduction to delamination has been interpreted.

  4. Shallow Melt Apparatus for Semicontinuous Czochralski Crystal Growth

    DOEpatents

    Wang, T.; Ciszek, T. F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  5. Ar-40/Ar-39 Ages for Maskelynites and K-Rich Melt from Olivine-Rich Lithology in (Kanagawa) Zagami

    NASA Technical Reports Server (NTRS)

    Park, J.; Herzog, G. F.; Nyquist, L. E.; Lindsay, F.; Turrin, B.; Swisher, C. C., III; Delaney, J. S.; Shih, C.-Y.; Niihara, T.; Misawa, K.

    2013-01-01

    We report Ar/Ar release patterns for small maskelynite grains and samples of a K-rich phase separated from the basaltic shergottite Zagami. The purpose of the work is to investigate the well-known discrepancy between published Ar/Ar ages of Zagami, >200 Ma, and its age of approx. 170 Ma as determined by other methods [1-6]. Niihara et al. [7] divide less abundant darker material present in Zagami into an olivine-rich lithology (ORL), from which most of our samples came, and a pyroxene-rich one (Dark Mottled-Lithology: DML) [8, 9]. ORL consists of vermicular fayalitic olivine, coarse-grained pyroxene, maskelynite, and a glassy phase exceptionally rich in K (up to 8.5 wt%), Al, and Si, but poor in Fe and Mg. The elemental composition suggests a late-stage melt, i.e., residual material that solidified late in a fractional crystallization sequence. Below we refer to it as "K-rich melt." The K-rich melt contains laths of captured olivine, Ca-rich pyroxene, plagioclase, and opaques. It seemed to offer an especially promising target for Ar-40/Ar-39 dating.

  6. Copper isotope fractionation during partial melting and melt percolation in the upper mantle: Evidence from massif peridotites in Ivrea-Verbano Zone, Italian Alps

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Huang, Fang; Wang, Zaicong; Zhang, Xingchao; Yu, Huimin

    2017-08-01

    To investigate the behavior of Cu isotopes during partial melting and melt percolation in the mantle, we have analyzed Cu isotopic compositions of a suite of well-characterized Paleozoic peridotites from the Balmuccia and Baldissero massifs in the Ivrea-Verbano Zone (IVZ, Northern Italy). Our results show that fresh lherzolites and harzburgites have a large variation of δ65Cu ranging from -0.133 to 0.379‰, which are negatively correlated with Al2O3 contents as well as incompatible platinum-group (e.g., Pd) and chalcophile element (e.g., Cu, S, Se, and Te) contents. The high δ65Cu can be explained by Cu isotope fractionation during partial melting of a sulfide-bearing peridotite source, with the light isotope (63Cu) preferentially entering the melts. The low δ65Cu can be attributed to precipitation of sulfides enriched in 63Cu during sulfur-saturated melt percolation. Replacive dunites from the Balmuccia massif display high δ65Cu from 0.544 to 0.610‰ with lower Re, Pd, S, Se, and Te contents and lower Pd/Ir ratios relative to lherzolites, which may result from dissolution of sulfides during interactions between S-undersaturated melts and lherzolites at high melt/rock ratios. Thus, our results suggest that partial melting and melt percolation largely account for the Cu isotopic heterogeneity of the upper mantle. The correlation between δ65Cu and Cu contents of the lherzolites and harzburgites was used to model Cu isotope fractionation during partial melting of a sulfide-bearing peridotite, because Cu is predominantly hosted in sulfide. The modelling results indicate an isotope fractionation factor of αmelt-peridotite = 0.99980-0.99965 (i.e., 103lnαmelt-peridotite = -0.20 to -0.35‰). In order to explain the Cu isotopic systematics of komatiites and mid-ocean ridge basalts reported previously, the estimated αmelt-peridotite was used to simulate Cu isotopic variations in melts generated by variable degrees of mantle melting. The results suggest that high

  7. Trends in discharge and flow season timing of the Onyx River, Wright Valley, Antarctica since 1969

    USGS Publications Warehouse

    Gooseff, Michael N.; McKnight, Diane M.; Doran, Peter T.; Lyons, W. Berry

    2007-01-01

    /decade at Vanda), and increasing flow season lengths (by 7 d/decade at LWRT, and 2.7 d/decade at Vanda), influenced by earlier start and later end dates (5.2 and 0.8 d/decade, respectively at LWRT; 4.8, 1.4 d/decade, respectively at Vanda). This suggests that flow season climate patterns in the Dry Valleys are decreasing glacier melt intensity overall, but extending the period of meltwater generation

  8. Depth and degree of melting of komatiites

    NASA Astrophysics Data System (ADS)

    Herzberg, Claude

    1992-04-01

    High pressure melting experiments have permitted new constraints to be placed on the depth and degree of partial melting of komatiites. Komatiites from Gorgona Island were formed by relatively low degrees of pseudoinvariant melting involving L + Ol + Opx + Cpx + Gt on the solidus at 40 kbar, about 130 km depth. Munro-type komatiites were separated from a harzburgite residue (L + Ol + Opx) at pressures that were poorly constrained, but were probably around 50 kbar, about 165 km depth; the degree of partial melting was less than 40 percent. Secular variations in the geochemistry of komatiites could have formed in response to a reduction in the temperature and pressure of melting with time. The 3.5 Ga Barberton komatiites and the 2.7 Ga Munro-type komatiities could have formed in plumes that were hotter than the present-day mantle by 500 deg and 300 deg, respectively. When excess temperatures are this size, melting is deeper and volcanism changes from basaltic to momatiitic. The komatiities from Gorgona Island, which are Mesozoic in age, may be representative of komatiities that are predicted to occur in oceanic plateaus of Cretaceous age throughout the Pacific (Storey et al., 1991).

  9. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.

    PubMed

    Chu, Fuqiang; Wu, Xiaomin; Wang, Lingli

    2017-03-08

    Condensed droplet freezing and freezing droplet melting phenomena on the prepared ultraslippery superhydrophobic surface were observed and discussed in this study. Although the freezing delay performance of the surface is common, the melting of the freezing droplets on the surface is quite interesting. Three self-propelled movements of the melting droplets (ice- water mixture) were found including the droplet rotating, the droplet jumping, and the droplet sliding. The melting droplet rotating, which means that the melting droplet rotates spontaneously on the superhydrophobic surface like a spinning top, is first reported in this study and may have some potential applications in various engineering fields. The melting droplet jumping and sliding are similar to those occurring during condensation but have larger size scale and motion scale, as the melting droplets have extra-large specific surface area with much more surface energy available. These self-propelled movements make all the melting droplets on the superhydrophobic surface dynamic, easily removed, which may be promising for the anti-icing/frosting applications.

  10. Nanotexturing of surfaces to reduce melting point.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Ernest J.; Zubia, David; Mireles, Jose

    2011-11-01

    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understandingmore » and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.« less

  11. Dynamic and static equilibrium sea level effects of Greenland Ice Sheet melt: An assessment of partially-coupled idealized water hosing experiments (Invited)

    NASA Astrophysics Data System (ADS)

    Kopp, R. E.; Mitrovica, J. X.; Griffies, S. M.; Yin, J.; Hay, C. C.; Stouffer, R. J.

    2010-12-01

    Regional sea level can deviate from mean global sea level because of both dynamic sea level (DSL) effects, resulting from oceanic and atmospheric circulation and temperature and salinity distributions, and changes in the static equilibrium (SE) sea level configuration, produced by the gravitational, elastic, and rotational effects of mass redistribution. Both effects will contribute to future sea level change, but because they are studied by two different subdisciplines -- climate modeling and glacial rebound modeling -- projections that attempt to combine both have to date been scarce. To compare their magnitude, we simulated the effects of Greenland Ice Sheet (GIS) melt by conducting idealized North Atlantic "water-hosing" experiments in a climate model unidirectionally coupled to a SE sea level model. At current rates of GIS melt, freshwater hosing experiments in fully coupled atmosphere-ocean general circulation models (AOGCMs) do not yield clear DSL trends but do generate DSL variability; comparing that variability to expected static equilibrium "fingerprints" suggests that at least about 40 years of observations are needed to detect the "fingerprints" of ice sheet melt at current Greenland melt rates of about 0.3 mm equivalent sea level (esl)/year. Accelerated melt rates of about 2--6 mm esl/y, as may occur later in the century, should be detectable above background DSL variability within less than a decade of their onset. At these higher melt rates, AOGCMs do yield clear DSL trends. In the GFDL CM 2.1 model, DSL trends are strongest in the western North Atlantic, while SE effects come to dominate in most of the ocean when melt exceeds about 20 cm esl.

  12. Mantle Flow and Melting Processes Beneath Back-Arc Basins

    NASA Astrophysics Data System (ADS)

    Hall, P. S.

    2007-12-01

    The chemical systematics of back-arc basin basalts suggest that multiple mechanisms of melt generation and transport operate simultaneously beneath the back-arc, resulting in a continuum of melts ranging from a relatively dry, MORB-like end-member to a wet, slab-influenced end-member [e.g., Kelley et al., 2006; Langmuir et al., 2006]. Potential melting processes at work include adiabatic decompression melting akin to that at mid-ocean ridges, diapiric upwelling of hydrous and/or partially molten mantle from above the subducting lithospheric slab [e.g., Marsh, 1979; Hall and Kincaid, 2001; Gerya and Yuen, 2003], and melting of back-arc mantle due to a continuous flux of slab-derived hydrous fluid [Kelley et al., 2006]. In this study, we examine the potential for each of these melting mechanisms to contribute to the observed distribution of melts in back-arc basins within the context of upper mantle flow (driven by plate motions) beneath back-arcs, which ultimately controls temperatures within the melting region. Mantle velocities and temperatures are derived from numerical geodynamic models of subduction with back-arc spreading that explicitly include adiabatic decompression melting through a Lagrangian particle scheme and a parameterization of hydrous melting. Dynamical feedback from the melting process occurs through latent heating and viscosity increases related to dehydration. A range of parameters, including subduction rate and trench-back-arc separation distances, is explored. The thermal evolution of individual diapirs is modeled numerically as they traverse the mantle, from nucleation above the subducting slab to melting beneath the back-arc spreading center, and a range of diapir sizes and densities and considered.

  13. Chloride-bearing liquids and partial melting of mantle eclogites: experimental study and application to the diamond-forming processes.

    NASA Astrophysics Data System (ADS)

    Safonov, Oleg

    2010-05-01

    Recent studies prove that the partial melting in some eclogite xenoliths in kimberlites is closely related to formation of diamonds in these rocks at 4-6 GPa and 1150-12500C [e.g. 1, 2]. Along with specific mineral assemblages, the products of the eclogite partial melting commonly include relics of potassium-rich silicic melts (45-65 wt. % of SiO2, 4-14 wt. % of K2O and K2O/Na2O > 1.0) [1, 2]. Available experimental data, however, demonstrate that such melts can not be produced by 'dry' or hydrous melting of a common eclogite. It implies that partial melting and conjugate diamond formation in mantle eclogites was triggered by infiltration of potassic fluids/melts. Assemblages of Cl-bearing phases and carbonates in eclogite xenoliths [1], and eclogitic diamonds [3-6] suggest that these agents were chloride-carbonate-H2O melts or/and chloride-H2O-CO2 fluids. In order to characterize interaction of both types of liquids with eclogites and their minerals, experiments in the eclogite-related systems with participation of CaCO3-Na2CO3-KCl-H2O or H2O-CO2-KCl are reviewed. Melting relations in the system eclogite-CaCO3-Na2CO3-KCl-H2O follow the general scheme proposed earlier for chloride-carbonate-silicate systems [7]. Below 12000C, Grt, Cpx and phlogopite (Phl) coexist with LCC only. Formation of Phl and Ca-rich Grt after Cpx indicate active reactions of Cpx with LCC accompanied by CO2 degassing and depletion of the clinopyroxene in jadeite. Subsequent dissolution of silicates in LCC at >1200OC results in formation of potassic silica-undersaturated carbonate and Cl-bearing melt (LCS) (37-40 wt. % of SiO2, 10-12 wt. % of K2O, ~3.5 wt. % of Cl) immiscible with the LCC. Compositional feature of this melt is very comparable to those of low-Mg carbonate-silicate melt inclusions in diamonds [6]. However, it is not relevant to the melt relics preserved in the partially molten eclogite xenoliths. Melting of eclogites with participation of the H2O-CO2-KCl fluid at 5 GPa at 1200

  14. P- T phase relations of silicic, alkaline, aluminous liquids: new results and applications to mantle melting and metasomatism

    NASA Astrophysics Data System (ADS)

    Draper, David S.; Green, Trevor H.

    1999-07-01

    We report new experimental results obtained under nominally anhydrous conditions at 1.0-1.5 GPa on a synthetic melt whose composition is typical of extreme-composition xenolith glasses. These results demonstrate that part of this extreme compositional range is in equilibrium with a lherzolitic assemblage (olivine, orthopyroxene, and clinopyroxene on the liquidus), extending our earlier findings [D.S. Draper, T.H. Green P- T phase relations of silicic, alkaline, aluminous mantle-xenolith glasses under anhydrous and C-O-H fluid-saturated conditions, J. Petrol. 38 (1997) 1187-1224] showing saturation with harzburgite minerals (olivine and orthopyroxene on the liquidus). The new results strengthen the view that such liquids can readily coexist with upper mantle rocks. Our results also bear on the current debate regarding the nature of low-degree mantle melts between proponents of the diamond-aggregate technique [who argue for comparatively silica- and alkali-rich low-degree melts; e.g., M.B. Baker, M.M. Hirschmann, M.S. Ghiorso, E.M. Stolper, Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations, Nature 375 (1995) 308-311; M.B. Baker, M.M. Hirschmann, L.E. Wasylenki, E.M. Stolper, M.S. Ghiorso, Quest for low-degree mantle melts, Nature 381 (1996) 286] and those favoring the sandwich technique [who question the value of the diamond-aggregate work and argue that near-solidus melts must be nepheline- and olivine-normative; T.J. Falloon, D.H. Green, H.St.C. O'Neill, C.G. Ballhaus, Quest for low-degree mantle melts, Nature 381 (1996) 285; T.J. Falloon, D.H. Green, H.St.C. O'Neill, W.O. Hibberson, Experimental tests of low degree peridotite partial melt compositions: implications for the nature of anhydrous near-solidus peridotite melts at 1 GPa, Earth Planet. Sci. Lett. 152 (1997) 149-162]. Our results support aspects of both views. The sandwich-technique view is supported, for example, because all our liquids coexisting with mantle

  15. Unraveling the Stepwise Melting of an Ionic Liquid.

    PubMed

    Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-05-04

    Differential scanning calorimetry, X-ray diffraction, and Raman spectroscopy were used to reveal the premelting events precursors of melting of the ionic liquid triethylsulfonium bis(trifluoromethanesufonyl)imide, [S 222 ][NTf 2 ]. On heating the crystalline phase of [S 222 ][NTf 2 ], melting occurs along a sequence of at least three steps. First, the crystalline long-range order breaks down, but local order is retained. The second step is characterized by conformational freedom of the ethyl chains of cations related to premelting of nonpolar domains, and the complete melting finally occurs when anions acquire conformational freedom. This work provides a microscopic view on the mechanism of melting of [S 222 ][NTf 2 ] in line with the picture of melting taking place as a sequence of structural changes. The results of this work shed light on the understanding of the complex melting process of ionic liquids.

  16. Melting beneath Greenland outlet glaciers and ice streams

    NASA Astrophysics Data System (ADS)

    Alexander, David; Perrette, Mahé; Beckmann, Johanna

    2015-04-01

    Basal melting of fast-flowing Greenland outlet glaciers and ice streams due to frictional heating at the ice-bed interface contributes significantly to total glacier mass balance and subglacial meltwater flux, yet modelling this basal melt process in Greenland has received minimal research attention. A one-dimensional dynamic ice-flow model is calibrated to the present day longitudinal profiles of 10 major Greenland outlet glaciers and ice streams (including the Jakobshavn Isbrae, Petermann Glacier and Helheim Glacier) and is validated against published ice flow and surface elevation measurements. Along each longitudinal profile, basal melt is calculated as a function of ice flow velocity and basal shear stress. The basal shear stress is dependent on the effective pressure (difference between ice overburden pressure and water pressure), basal roughness and a sliding parametrization. Model output indicates that where outlet glaciers and ice streams terminate into the ocean with either a small floating ice tongue or no floating tongue whatsoever, the proportion of basal melt to total melt (surface, basal and submarine melt) is 5-10% (e.g. Jakobshavn Isbrae; Daugaard-Jensen Glacier). This proportion is, however, negligible where larger ice tongues lose mass mostly by submarine melt (~1%; e.g. Nioghalvfjerdsfjorden Glacier). Modelled basal melt is highest immediately upvalley of the grounding line, with contributions typically up to 20-40% of the total melt for slippery beds and up to 30-70% for resistant beds. Additionally, modelled grounding line and calving front migration inland for all outlet glaciers and ice streams of hundreds of metres to several kilometres occurs. Including basal melt due to frictional heating in outlet glacier and ice stream models is important for more accurately modelling mass balance and subglacial meltwater flux, and therefore, more accurately modelling outlet glacier and ice stream dynamics and responses to future climate change.

  17. Application of the zone-melting technique to metal chelate systems-VI A new apparatus for zone-melting chromatography.

    PubMed

    Maeda, S; Kobayashi, H; Ueno, K

    1973-07-01

    An improved apparatus has been constructed for zone-melting chromatography. An essential feature of the apparatus is that the length of the molten zone can be kept constant during a zone-melting operation, by employing heating and cooling compartments which are separated from each other by double partition plates. Each compartment is heated or cooled with jets of hot or cold air. The apparatus is suitable for organic materials melting in the range between 40 degrees and 180 degrees . The distribution of metal ion along the column after zone melting of copper acetylacetonate in 2-methoxynaphthalene was a smooth curve. The plot of the position of maximum concentration, x(max), against the number of zone passes, n, gave a relationship in accordance with theoretical prediction.

  18. Historical changes in lake ice-out dates as indicators of climate change in New England, 1850-2000

    USGS Publications Warehouse

    Hodgkins, G.A.; James, Ivan; Huntington, T.G.

    2002-01-01

    Various studies have shown that changes over time in spring ice-out dates can be used as indicators of climate change. Ice-out dates from 29 lakes in New England (USA) with 64 to 163 years of record were assembled and analysed for this study. Ice-out dates have become significantly earlier in New England since the 1800s. Changes in ice-out dates between 1850 and 2000 were 9 days and 16 days in the northern/mountainous and southern regions of New England respectively. The changes in the ice-out data over time were very consistent within each of the two regions of New England, and more consistent than four air-temperature records in each region. The ice-out dates of the two regions had a different response to changes in air temperature. The inferred late winter-early spring air-temperature warming in both regions of New England since 1850, based on linear regression analysis, was about 1.5 ??C. Published in 2002 by John Wiley & Sons, Ltd.

  19. Copper Diffusion in Silicate Melts and Melt Inclusion Study on Volatiles in The Lunar Interior

    NASA Astrophysics Data System (ADS)

    Ni, Peng

    This thesis focuses on the application of diffusion kinetics to both terrestrial and lunar geochemistry. In Chapters II and III, diffusivities of Cu in silicate melts were experimentally determined and used to discuss the role of Cu diffusion in formation of Cu ore deposits and also Cu isotope fractionation in tektites. In Chapters IV and V, lunar olivine-hosted melt inclusions are studied to understand their volatile loss during homogenization in lab, to estimate cooling rate for lunar Apollo sample 74220, and to estimate volatile abundance in the lunar mantle. Magmatic sulfide deposits and porphyry-type Cu deposits are two major types of Cu deposits that supply the world's Cu. In particular, porphyry-type Cu deposits provide ˜57% of the world's total discovered Cu. Recent studies suggest a potential role of diffusive transport of metals (e.g. Cu, Au, PGE, Mo) in the formation of magmatic sulfide deposits and porphyry-type deposits. Diffusivities of Cu in silicate melts, however, are poorly determined. In Chapters II and III of this thesis, Cu diffusion in basaltic melt and rhyolitic melts are studied by diffusion couple and chalcocite "dissolution" methods. Our results indicate high diffusivities of Cu and a general equation for Cu diffusion in silicate melts is obtained. The high diffusivity of Cu indicate that partition of Cu between the silicate phase and the sulfide or fluid phase can be assumed to be in equilibrium during the formation of magmatic sulfide deposits or porphyry-type deposits. In addition, our Cu diffusion data helps explain why Cu isotopes are more fractionated than Zn isotopes in tektites. Volatile abundances in the lunar mantle have profound implications for the origin of the Moon, which was thought to be bone-dry till about a decade ago, when trace amounts of H2O were detected in various types of lunar samples. In particular, high H2O concentrations comparable to mid-ocean ridge basalts were reported in lunar melt inclusions. There are

  20. Melting behavior of SnI4 reexamined

    NASA Astrophysics Data System (ADS)

    Fuchizaki, Kazuhiro

    2013-12-01

    The low-pressure crystalline phase of a molecular crystal, SnI4, has a rising melting curve that breaks abruptly at around 1.5 GPa, beyond which it becomes almost flat, with a slight maximum at about 3 GPa. Although the overall aspect of this melting curve can be captured by the Kumari-Dass-Kechin equation, the values for the parameters involved in the equation were definitely different from those predicted on the basis of the Clapeyron-Clausius relationship. On the other hand, the accuracy of our experimental data prevented us from judging whether the parameters are derivable from the Lindemann melting law, as shown independently by Kumari and Dass, and by Kechin. The Kraut-Kennedy and Magalinskii-Zubov relationships seem to be valid in the low-pressure region where the melting curve is rising. The breakdown of these relationships suggests a qualitative change in the intermolecular interaction upon compression, thereby making the melting behavior unusual.

  1. Melt inclusions in alluvial sapphires from Montana, USA: Formation of sapphires as a restitic component of lower crustal melting?

    NASA Astrophysics Data System (ADS)

    Palke, Aaron C.; Renfro, Nathan D.; Berg, Richard B.

    2017-05-01

    We report here compositions of glassy melt inclusions hosted in sapphires (gem quality corundum) from three alluvial deposits in Montana, USA including the Rock Creek, Dry Cottonwood Creek, and Missouri River deposits. While it is likely that sapphires in these deposits were transported to the surface by Eocene age volcanic events, their ultimate origin is still controversial with many models suggesting the sapphires are xenocrysts with a metamorphic or metasomatic genesis. Melt inclusions are trachytic, dacitic, and rhyolitic in composition. Microscopic observations allow separation between primary and secondary melt inclusions. The primary melt inclusions represent the silicate liquid that was present at the time of sapphire formation and are enriched in volatile components (8-14 wt.%). Secondary melt inclusions analyzed here for Dry Cottonwood Creek and Rock Creek sapphires are relatively volatile depleted and represent the magma that carried the sapphires to the surface. We propose that alluvial Montana sapphires from these deposits formed through a peritectic melting reaction during partial melting of a hydrated plagioclase-rich protolith (e.g. an anorthosite). The heat needed to drive this reaction was likely derived from the intrusion of mantle-derived mafic magmas near the base of the continental lithosphere during rollback of the Farallon slab around 50 Ma. These mafic magmas may have ended up as the ultimate carrier of the sapphires to the surface as evidenced by the French Bar trachybasalt near the Missouri River deposit. Alternatively, the trachytic, rhyolitic, and dacitic secondary melt inclusions at Rock Creek and Dry Cottonwood Creek suggests that the same magmas produced during the partial melting event that generated the sapphires may have also transported them to the surface. Determining the genesis of these deposits will further our understanding of sapphire deposits around the world and may help guide future sapphire prospecting techniques. This

  2. Frictional melt and seismic slip

    NASA Astrophysics Data System (ADS)

    Nielsen, S.; di Toro, G.; Hirose, T.; Shimamoto, T.

    2008-01-01

    Frictional melt is implied in a variety of processes such as seismic slip, ice skating, and meteorite combustion. A steady state can be reached when melt is continuously produced and extruded from the sliding interface, as shown recently in a number of laboratory rock friction experiments. A thin, low-viscosity, high-temperature melt layer is formed resulting in low shear resistance. A theoretical solution describing the coupling of shear heating, thermal diffusion, and extrusion is obtained, without imposing a priori the melt thickness. The steady state shear traction can be approximated at high slip rates by the theoretical form τss = σn1/4 (A/?) ? under a normal stress σn, slip rate V, radius of contact area R (A is a dimensional normalizing factor and W is a characteristic rate). Although the model offers a rather simplified view of a complex process, the predictions are compatible with experimental observations. In particular, we consider laboratory simulations of seismic slip on earthquake faults. A series of high-velocity rotary shear experiments on rocks, performed for σn in the range 1-20 MPa and slip rates in the range 0.5-2 m s-1, is confronted to the theoretical model. The behavior is reasonably well reproduced, though the effect of radiation loss taking place in the experiment somewhat alters the data. The scaling of friction with σn, R, and V in the presence of melt suggests that extrapolation of laboratory measures to real Earth is a highly nonlinear, nontrivial exercise.

  3. Do Substance Use, Psychosocial Adjustment, and Sexual Experiences Vary for Dating Violence Victims Based on Type of Violent Relationships?

    PubMed

    Zweig, Janine M; Yahner, Jennifer; Dank, Meredith; Lachman, Pamela

    2016-12-01

    We examined whether substance use, psychosocial adjustment, and sexual experiences vary for teen dating violence victims by the type of violence in their relationships. We compared dating youth who reported no victimization in their relationships to those who reported being victims of intimate terrorism (dating violence involving one physically violent and controlling perpetrator) and those who reported experiencing situational couple violence (physical dating violence absent the dynamics of power and control). This was a cross-sectional survey of 3745 dating youth from 10 middle and high schools in the northeastern United States, one third of whom reported physical dating violence. In general, teens experiencing no dating violence reported less frequent substance use, higher psychosocial adjustment, and less sexual activity than victims of either intimate terrorism or situational couple violence. In addition, victims of intimate terrorism reported higher levels of depression, anxiety, and anger/hostility compared to situational couple violence victims; they also were more likely to report having sex, and earlier sexual initiation. Youth who experienced physical violence in their dating relationships, coupled with controlling behaviors from their partner/perpetrator, reported the most psychosocial adjustment issues and the earliest sexual activity. © 2016, American School Health Association.

  4. Grain-Size Dynamics Beneath Mid-Ocean Ridges: Implications for Permeability and Melt Extraction

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Katz, R. F.; Behn, M. D.

    2014-12-01

    The permeability structure of the sub-ridge mantle plays an important role in how melt is focused and extracted at mid-ocean ridges. Permeability is controlled by porosity and the grain size of the solid mantle matrix, which is in turn controlled by the deformation conditions. To date, models of grain size evolution and mantle deformation have not been coupled to determine the influence of spatial variations in grain-size on the permeability structure at mid-ocean ridges. Rather, current models typically assume a constant grain size for the whole domain [1]. Here, we use 2-D numerical models to evaluate the influence of grain-size variability on the permeability structure beneath a mid-ocean ridge and use these results to speculate on the consequences for melt focusing and extraction. We construct a two-dimensional, single phase model for the steady-state grain size beneath a mid-ocean ridge. The model employs a composite rheology of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a brittle stress limiter. Grain size is calculated using the "wattmeter" model of Austin and Evans [2]. We investigate the sensitivity of the model to global variations in grain growth exponent, potential temperature, spreading-rate, and grain boundary sliding parameters [3,4]. Our model predicts that permeability varies by two orders of magnitude due to the spatial variability of grain size within the expected melt region of a mid-ocean ridge. The predicted permeability structure suggests grain size may promote focusing of melt towards the ridge axis. Furthermore, the calculated grain size structure should focus melt from a greater depth than models that exclude grain-size variability. Future work will involve evaluating this hypothesis by implementing grain-size dynamics within a two-phase mid-ocean ridge model. The developments of such a model will be discussed. References: [1] R. F. Katz, Journal of Petrology, volume 49, issue 12, page 2099

  5. Factors affecting date of implantation, parturition, and den entry estimated from activity and body temperature in free-ranging brown bears.

    PubMed

    Friebe, Andrea; Evans, Alina L; Arnemo, Jon M; Blanc, Stéphane; Brunberg, Sven; Fleissner, Günther; Swenson, Jon E; Zedrosser, Andreas

    2014-01-01

    Knowledge of factors influencing the timing of reproduction is important for animal conservation and management. Brown bears (Ursus arctos) are able to vary the birth date of their cubs in response to their fat stores, but little information is available about the timing of implantation and parturition in free-ranging brown bears. Body temperature and activity of pregnant brown bears is higher during the gestation period than during the rest of hibernation and drops at parturition. We compared mean daily body temperature and activity levels of pregnant and nonpregnant females during preimplantation, gestation, and lactation. Additionally we tested whether age, litter size, primiparity, environmental conditions, and the start of hibernation influence the timing of parturition. The mean date of implantation was 1 December (SD = 12), the mean date of parturition was 26 January (SD = 12), and the mean duration of the gestation period was 56 days (SD = 2). The body temperature of pregnant females was higher during the gestation and lactation periods than that of nonpregnant bears. The body temperature of pregnant females decreased during the gestation period. Activity recordings were also used to determine the date of parturition. The parturition dates calculated with activity and body temperature data did not differ significantly and were the same in 50% of the females. Older females started hibernation earlier. The start of hibernation was earlier during years with favorable environmental conditions. Dates of parturition were later during years with good environmental conditions which was unexpected. We suggest that free-ranging pregnant brown bears in areas with high levels of human activities at the beginning of the denning period, as in our study area, might prioritize investing energy in early denning than in early parturition during years with favorable environmental conditions, as a strategy to prevent disturbances caused by human.

  6. Factors Affecting Date of Implantation, Parturition, and Den Entry Estimated from Activity and Body Temperature in Free-Ranging Brown Bears

    PubMed Central

    Friebe, Andrea; Evans, Alina L.; Arnemo, Jon M.; Blanc, Stéphane; Brunberg, Sven; Fleissner, Günther; Swenson, Jon E.; Zedrosser, Andreas

    2014-01-01

    Knowledge of factors influencing the timing of reproduction is important for animal conservation and management. Brown bears (Ursus arctos) are able to vary the birth date of their cubs in response to their fat stores, but little information is available about the timing of implantation and parturition in free-ranging brown bears. Body temperature and activity of pregnant brown bears is higher during the gestation period than during the rest of hibernation and drops at parturition. We compared mean daily body temperature and activity levels of pregnant and nonpregnant females during preimplantation, gestation, and lactation. Additionally we tested whether age, litter size, primiparity, environmental conditions, and the start of hibernation influence the timing of parturition. The mean date of implantation was 1 December (SD = 12), the mean date of parturition was 26 January (SD = 12), and the mean duration of the gestation period was 56 days (SD = 2). The body temperature of pregnant females was higher during the gestation and lactation periods than that of nonpregnant bears. The body temperature of pregnant females decreased during the gestation period. Activity recordings were also used to determine the date of parturition. The parturition dates calculated with activity and body temperature data did not differ significantly and were the same in 50% of the females. Older females started hibernation earlier. The start of hibernation was earlier during years with favorable environmental conditions. Dates of parturition were later during years with good environmental conditions which was unexpected. We suggest that free-ranging pregnant brown bears in areas with high levels of human activities at the beginning of the denning period, as in our study area, might prioritize investing energy in early denning than in early parturition during years with favorable environmental conditions, as a strategy to prevent disturbances caused by human. PMID:24988486

  7. Spring temperatures influence selection on breeding date and the potential for phenological mismatch in a migratory bird

    PubMed Central

    Soukup, Sheryl Swartz; Drilling, Nancy E.; Eckerle, Kevin P.; Sakaluk, Scott K.; Thompson, Charles F.

    2016-01-01

    Climate change has affected the seasonal phenology of a variety of taxa, including that of migratory birds and their critical food resources. However, whether climate-induced changes in breeding phenology affect individual fitness, and how these changes might, therefore, influence selection on breeding date remain unresolved. Here, we use a 36-year dataset from a long-term, individual-based study of House Wrens (Troglodytes aedon) to test whether the timing of avian breeding seasons is associated with annual changes in temperature, which have increased to a small but significant extent locally since the onset of the study in 1980. Increasing temperature was associated with an advancement of breeding date in the population, as the onset of breeding within years was closely associated with daily spring temperatures. Warmer springs were also associated with a reduced incubation period, but reduced incubation periods were associated with a prolonged duration of nestling provisioning. Nest productivity, in terms of fledgling production, was not associated with temperature, but wetter springs reduced fledging success. Most years were characterized by selection for earlier breeding, but cool and wet years resulted in stabilizing selection on breeding date. Our results indicate that climate change and increasing spring temperatures can affect suites of life-history traits, including selection on breeding date. Increasing temperatures may favor earlier breeding, but the extent to which the phenology of populations might advance may be constrained by reductions in fitness associated with early breeding during cool, wet years. Variability in climatic conditions will, therefore, shape the extent to which seasonal organisms can respond to changes in their environment. PMID:27859132

  8. Under-ice melt ponds in the Arctic

    NASA Astrophysics Data System (ADS)

    Smith, Naomi; Flocco, Daniela; Feltham, Daniel

    2017-04-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Double diffusion can lead to the formation of a sheet of ice, which is called a false bottom, at the interface between the fresh water and the ocean. These false bottoms isolate under-ice melt ponds from the ocean below, trapping the fresh water against the sea ice. These ponds and false bottoms have been estimated to cover between 5 and 40% of the base of the sea ice. [Notz et al. Journal of Geophysical Research 2003] We have developed a one-dimensional thermodynamic model of sea ice underlain by an under-ice melt pond and false bottom. Not only has this allowed us to simulate the evolution of under-ice melt ponds over time, identifying an alternative outcome than previously observed in the field, but sensitivity studies have helped us to estimate the impact that these pools of fresh water have on the mass-balance sea ice. We have also found evidence of a possible positive feedback cycle whereby increasingly less ice growth is seen due to the presence of under-ice melt ponds as the Arctic warms. Since the rate of basal ablation is affected by these phenomena, their presence alters the salt and freshwater fluxes from the sea ice into the ocean. We have coupled our under-ice melt pond model to a simple model of the oceanic mixed layer to determine how this affects mixed layer properties such as temperature, salinity, and depth. In turn, this changes the oceanic forcing reaching the sea ice.

  9. Terrestrial analogues for lunar impact melt flows

    NASA Astrophysics Data System (ADS)

    Neish, C. D.; Hamilton, C. W.; Hughes, S. S.; Nawotniak, S. Kobs; Garry, W. B.; Skok, J. R.; Elphic, R. C.; Schaefer, E.; Carter, L. M.; Bandfield, J. L.; Osinski, G. R.; Lim, D.; Heldmann, J. L.

    2017-01-01

    Lunar impact melt deposits have unique physical properties. They have among the highest observed radar returns at S-Band (12.6 cm wavelength), implying that they are rough at the decimeter scale. However, they are also observed in high-resolution optical imagery to be quite smooth at the meter scale. These characteristics distinguish them from well-studied terrestrial analogues, such as Hawaiian pāhoehoe and ´a´ā lava flows. The morphology of impact melt deposits can be related to their emplacement conditions, so understanding the origin of these unique surface properties will help to inform us as to the circumstances under which they were formed. In this work, we seek to find a terrestrial analogue for well-preserved lunar impact melt flows by examining fresh lava flows on Earth. We compare the radar return and high-resolution topographic variations of impact melt flows to terrestrial lava flows with a range of surface textures. The lava flows examined in this work range from smooth Hawaiian pāhoehoe to transitional basaltic flows at Craters of the Moon (COTM) National Monument and Preserve in Idaho to rubbly and spiny pāhoehoe-like flows at the recent eruption at Holuhraun in Iceland. The physical properties of lunar impact melt flows appear to differ from those of all the terrestrial lava flows studied in this work. This may be due to (a) differences in post-emplacement modification processes or (b) fundamental differences in the surface texture of the melt flows due to the melts' unique emplacement and/or cooling environment. Information about the surface properties of lunar impact melt deposits will be critical for future landed missions that wish to sample these materials.

  10. Basal melting driven by turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    Rabbanipour Esfahani, Babak; Hirata, Silvia C.; Berti, Stefano; Calzavarini, Enrico

    2018-05-01

    Melting and, conversely, solidification processes in the presence of convection are key to many geophysical problems. An essential question related to these phenomena concerns the estimation of the (time-evolving) melting rate, which is tightly connected to the turbulent convective dynamics in the bulk of the melt fluid and the heat transfer at the liquid-solid interface. In this work, we consider a convective-melting model, constructed as a generalization of the Rayleigh-Bénard system, accounting for the basal melting of a solid. As the change of phase proceeds, a fluid layer grows at the heated bottom of the system and eventually reaches a turbulent convection state. By means of extensive lattice-Boltzmann numerical simulations employing an enthalpy formulation of the governing equations, we explore the model dynamics in two- and three-dimensional configurations. The focus of the analysis is on the scaling of global quantities like the heat flux and the kinetic energy with the Rayleigh number, as well as on the interface morphology and the effects of space dimensionality. Independently of dimensionality, we find that the convective-melting system behavior shares strong resemblances with that of the Rayleigh-Bénard one, and that the heat flux is only weakly enhanced with respect to that case. Such similarities are understood, at least to some extent, considering the resulting slow motion of the melting front (with respect to the turbulent fluid velocity fluctuations) and its generally little roughness (compared to the height of the fluid layer). Varying the Stefan number, accounting for the thermodynamical properties of the material, also seems to have only a mild effect, which implies the possibility of extrapolating results in numerically delicate low-Stefan setups from more convenient high-Stefan ones. Finally, we discuss the implications of our findings for the geophysically relevant problem of modeling Arctic ice melt ponds.

  11. Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts

    NASA Astrophysics Data System (ADS)

    Laurent, Antonin T.; Seydoux-Guillaume, Anne-Magali; Duchene, Stéphanie; Bingen, Bernard; Bosse, Valérie; Datas, Lucien

    2016-11-01

    Microgeochemical data and transmission electron microscope (TEM) imaging of S-rich monazite crystals demonstrate that S has been incorporated in the lattice of monazite as a clino-anhydrite component via the following exchange Ca2+ + S6+ = REE3+ + P5+, and that it is now partly exsolved in nanoclusters (5-10 nm) of CaSO4. The sample, an osumilite-bearing ultra-high-temperature granulite from Rogaland, Norway, is characterized by complexly patchy zoned monazite crystals. Three chemical domains are distinguished as (1) a sulphate-rich core (0.45-0.72 wt% SO2, Th incorporated as cheralite component), (2) secondary sulphate-bearing domains (SO2 >0.05 wt%, partly clouded with solid inclusions), and (3) late S-free, Y-rich domains (0.8-2.5 wt% Y2O3, Th accommodated as the huttonite component). These three domains yield distinct isotopic U-Pb ages of 1034 ± 6, 1005 ± 7, and 935 ± 7 Ma, respectively. Uranium-Th-Pb EPMA dating independently confirms these ages. This study illustrates that it is possible to discriminate different generations of monazite based on their S contents. From the petrological context, we propose that sulphate-rich monazite reflects high-temperature Fe-sulphide breakdown under oxidizing conditions, coeval with biotite dehydration melting. Monazite may therefore reveal the presence of S in anatectic melts from high-grade terrains at a specific point in time and date S mobilization from a reduced to an oxidized state. This property can be used to investigate the mineralization potential of a given geological event within a larger orogenic framework.

  12. THE MELTING MECHANISM OF DNA TETHERED TO A SURFACE

    PubMed Central

    QAMHIEH, KHAWLA; WONG, KA-YIU; LYNCH, GILLIAN C.; PETTITT, B. MONTGOMERY

    2009-01-01

    The details of melting of DNA immobilized on a chip or nanoparticle determines the sensitivity and operating characteristics of many analytical and synthetic biotechnological devices. Yet, little is known about the differences in how the DNA melting occurs between a homogeneous solution and that on a chip. We used molecular dynamics simulations to explore possible pathways for DNA melting on a chip. Simulation conditions were chosen to ensure that melting occurred in a submicrosecond timescale. The temperature was set to 400 K and the NaCl concentration was set to 0.1 M. We found less symmetry than in the solution case where for oligomeric double-stranded nucleic acids both ends melted with roughly equal probability. On a prepared silica surface we found melting is dominated by fraying from the end away from the surface. Strand separation was hindered by nonspecific surface adsorption at this temperature. At elevated temperatures the melted DNA was attracted to even uncharged organically coated surfaces demonstrating surface fouling. While hybridization is not the simple reverse of melting, this simulation has implications for the kinetics of hybridization. PMID:19802357

  13. Microstructures define melting of molybdenum at high pressures

    NASA Astrophysics Data System (ADS)

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  14. Microstructures define melting of molybdenum at high pressures

    PubMed Central

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-01-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature. PMID:28248309

  15. Thermodynamics of freezing and melting

    PubMed Central

    Pedersen, Ulf R.; Costigliola, Lorenzo; Bailey, Nicholas P.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2016-01-01

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature–pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system. PMID:27530064

  16. 21 CFR 175.230 - Hot-melt strippable food coatings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hot-melt strippable food coatings. 175.230 Section... COATINGS Substances for Use as Components of Coatings § 175.230 Hot-melt strippable food coatings. Hot-melt..., white For use only as a component of hot-melt strippable food coatings applied to frozen meats and...

  17. Greenland iceberg melt variability from high-resolution satellite observations

    NASA Astrophysics Data System (ADS)

    Enderlin, Ellyn M.; Carrigan, Caroline J.; Kochtitzky, William H.; Cuadros, Alexandra; Moon, Twila; Hamilton, Gordon S.

    2018-02-01

    Iceberg discharge from the Greenland Ice Sheet accounts for up to half of the freshwater flux to surrounding fjords and ocean basins, yet the spatial distribution of iceberg meltwater fluxes is poorly understood. One of the primary limitations for mapping iceberg meltwater fluxes, and changes over time, is the dearth of iceberg submarine melt rate estimates. Here we use a remote sensing approach to estimate submarine melt rates during 2011-2016 for 637 icebergs discharged from seven marine-terminating glaciers fringing the Greenland Ice Sheet. We find that spatial variations in iceberg melt rates generally follow expected patterns based on hydrographic observations, including a decrease in melt rate with latitude and an increase in melt rate with iceberg draft. However, we find no longitudinal variations in melt rates within individual fjords. We do not resolve coherent seasonal to interannual patterns in melt rates across all study sites, though we attribute a 4-fold melt rate increase from March to April 2011 near Jakobshavn Isbræ to fjord circulation changes induced by the seasonal onset of iceberg calving. Overall, our results suggest that remotely sensed iceberg melt rates can be used to characterize spatial and temporal variations in oceanic forcing near often inaccessible marine-terminating glaciers.

  18. Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals

    PubMed Central

    Liu, Minglu; Wang, Robert Y.

    2015-01-01

    Colloidal nanocrystals are a technologically important class of nanostructures whose phase change properties have been largely unexplored. Here we report on the melting behavior of In, Sn, and Bi nanocrystals dispersed in a polymer matrix. This polymer matrix prevents the nanocrystals from coalescing with one another and enables previously unaccessed observations on the melting behavior of colloidal nanocrystals. We measure the melting temperature, melting enthalpy, and melting entropy of colloidal nanocrystals with diameters of approximately 10 to 20 nm. All of these properties decrease as nanocrystal size decreases, although the depression rate for melting temperature is comparatively slower than that of melting enthalpy and melting entropy. We also observe an elevated melting temperature during the initial melt-freeze cycle that we attribute to surface stabilization from the organic ligands on the nanocrystal surface. Broad endothermic melting valleys and very large supercoolings in our calorimetry data suggest that colloidal nanocrystals exhibit a significant amount of surface pre-melting and low heterogeneous nucleation probabilities during freezing. PMID:26573146

  19. Binary Colloidal Alloy Test-5: Three-Dimensional Melt

    NASA Technical Reports Server (NTRS)

    Yodh, Arjun G.

    2008-01-01

    Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.

  20. Surface-tension-driven flow in a glass melt

    NASA Technical Reports Server (NTRS)

    Mcneil, Thomas J.; Cole, Robert; Shankar Subramanian, R.

    1985-01-01

    Motion driven by surface tension gradients was observed in a vertical capillary liquid bridge geometry in a sodium borate melt. The surface tension gradients were introduced by maintaining a temperature gradient on the free melt surface. The flow velocities at the free surface of the melt, which were measured using a tracer technique, were found to be proportional to the applied temperature difference and inversely proportional to the melt viscosity. The experimentally observed velocities were in reasonable accord with predictions from a theoretical model of the system.

  1. Number of Diverticulitis Episodes Before Resection and Factors Associated With Earlier Interventions

    PubMed Central

    Simianu, Vlad V.; Fichera, Alessandro; Bastawrous, Amir L.; Davidson, Giana H.; Florence, Michael G.; Thirlby, Richard C.; Flum, David R.

    2016-01-01

    IMPORTANCE Despite professional recommendations to delay elective colon resection for patients with uncomplicated diverticulitis, early surgery (after <3 preceding episodes) appears to be common. Several factors have been suggested to contribute to early surgery, including increasing numbers of younger patients, a lower threshold to operate laparoscopically, and growing recognition of “smoldering” (or nonrecovering) diverticulitis episodes. However, the relevance of these factors in early surgery has not been well tested, and most prior studies have focused on hospitalizations, missing outpatient events and making it difficult to assess guideline adherence in earlier interventions. OBJECTIVE To describe patterns of episodes of diverticulitis before surgery and factors associated with earlier interventions using inpatient, outpatient, and antibiotic prescription claims. DESIGN, SETTING, AND PARTICIPANTS This investigation was a nationwide retrospective cohort study from January 1, 2009, to December 31, 2012. The dates of the analysis were July 2014 to May 2015. Participants were immunocompetent adult patients (age range, 18-64 years) with incident, uncomplicated diverticulitis. EXPOSURE Elective colectomy for diverticulitis. MAIN OUTCOMES AND MEASURES Inpatient, outpatient, and antibiotic prescription claims for diverticulitis captured in the MarketScan (Truven Health Analytics) databases. RESULTS Of 87 461 immunocompetent patients having at least 1 claim for diverticulitis, 6.4% (n = 5604) underwent a resection. The final study cohort comprised 3054 nonimmunocompromised patients who underwent elective resection for uncomplicated diverticulitis, of whom 55.6% (n = 1699) were male. Before elective surgery, they had a mean (SD) of 1.0 (0.9) inpatient claims, 1.5 (1.5) outpatient claims, and 0.5 (1.2) antibiotic prescription claims related to diverticulitis. Resection occurred after fewer than 3 episodes in 94.9% (2897 of 3054) of patients if counting inpatient

  2. Melting and Freezing of Metal Clusters

    NASA Astrophysics Data System (ADS)

    Aguado, Andrés; Jarrold, Martin F.

    2011-05-01

    Recent developments allow heat capacities to be measured for size-selected clusters isolated in the gas phase. For clusters with tens to hundreds of atoms, the heat capacities determined as a function of temperature usually have a single peak attributed to a melting transition. The melting temperatures and latent heats show large size-dependent fluctuations. In some cases, the melting temperatures change by hundreds of degrees with the addition of a single atom. Theory has played a critical role in understanding the origin of the size-dependent fluctuations, and in understanding the properties of the liquid-like and solid-like states. In some cases, the heat capacities have extra features (an additional peak or a dip) that reveal a more complex behavior than simple melting. In this article we provide a description of the methods used to measure the heat capacities and provide an overview of the experimental and theoretical results obtained for sodium and aluminum clusters.

  3. Dysprosium-free melt-spun permanent magnets.

    PubMed

    Brown, D N; Wu, Z; He, F; Miller, D J; Herchenroeder, J W

    2014-02-12

    Melt-spun NdFeB powders can be formed into a number of different types of permanent magnet for a variety of applications in electronics, automotive and clean technology industries. The melt-spinning process produces flake powder with a fine uniform array of nanoscale Nd2Fe14B grains. These powders can be net-shape formed into isotropic polymer-bonded magnets or hot formed into fully dense magnets. This paper discusses the influence of heavy rare earth elements and microstructure on the magnetic performance, thermal stability and material cost of NdFeB magnets. Evidence indicates that melt-spun nanocrystalline NdFeB magnets are less dependent on heavy rare earth elements for high-temperature performance than the alternative coarser-grained sintered NdFeB magnets. In particular, hot-pressed melt-spun magnets are an attractive low-cost solution for applications that require thermal stability up to 175-200 °C.

  4. Production of Synthetic Nuclear Melt Glass

    PubMed Central

    Molgaard, Joshua J.; Auxier, John D.; Giminaro, Andrew V.; Oldham, Colton J.; Gill, Jonathan; Hall, Howard L.

    2016-01-01

    Realistic surrogate nuclear debris is needed within the nuclear forensics community to test and validate post-detonation analysis techniques. Here we outline a novel process for producing bulk surface debris using a high temperature furnace. The material developed in this study is physically and chemically similar to trinitite (the melt glass produced by the first nuclear test). This synthetic nuclear melt glass is assumed to be similar to the vitrified material produced near the epicenter (ground zero) of any surface nuclear detonation in a desert environment. The process outlined here can be applied to produce other types of nuclear melt glass including that likely to be formed in an urban environment. This can be accomplished by simply modifying the precursor matrix to which this production process is applied. The melt glass produced in this study has been analyzed and compared to trinitite, revealing a comparable crystalline morphology, physical structure, void fraction, and chemical composition. PMID:26779720

  5. Xenocrysts and antecrysts and their effect on the precision of 40Ar/39Ar dates of explosive volcanic eruption

    NASA Astrophysics Data System (ADS)

    Smith, V.; Mark, D.; Blockley, S.; Weh, A.

    2010-12-01

    Evolved melts that fuel large explosive eruptions encounter, and are often generated through melting, crystal-rich parts of the magmatic system that fed previous eruptions. This results in many antecrysts being incorporated into the magma prior to eruption. In addition, many xenocrysts are entrained during eruption through conduit excavation. Combining all these crystal populations produces 40Ar/39Ar dates with wide-ranges, such as those that are often reported in the literature. In order to gain very precise dates of volcanic events it is thus necessary to assess whether antecrysts and xenocrysts effect the precision of the dates, and establish ways to reduce these components. Here we use the deposits of the ~11 ka Ulleung-Oki eruption from the alkaline volcanic island of Ulleung, situated 130 km east of the Korean peninsula. The eruption deposits are widely dispersed and found in the Suigetsu lake sequence from central Japan. A precise date of the tephra would help with construction of the terrestrial radiocarbon calibration curve that spans back to the limit of radiocarbon dating (~50 ka). The new calibration model is currently being constructed using varve chronology (annual layer counting) and >600 14C determinations of terrestrial macrofossils*. However, the annual layers stop shortly after the 2 cm-thick Ulleung-Oki tephra. Precise dates of this volcanic event using a method that is independent of radiocarbon dating, would help validate the chronology of the core, and test the validity of the radiocarbon calibration curve. The tephra in the core has been correlated to proximal deposits using major and trace element composition (determined using an electron microprobe and LA-ICPMS) of the glass shards that comprise the distal ash. The proximal Ulleung-Oki eruption deposits are sandine-rich with crystals that range from ~80 microns to a few millimetres in size. These are likely to be a mixture of phenocrysts, antecrysts and xenocrysts. In order to get a very

  6. Regional variability in sea ice melt in a changing Arctic

    PubMed Central

    Perovich, Donald K.; Richter-Menge, Jacqueline A.

    2015-01-01

    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. PMID:26032323

  7. Regional variability in sea ice melt in a changing Arctic.

    PubMed

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2015-07-13

    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Spaceborne estimated long-term trends (1980s - 2013) of albedo and melting season length over the Greenland ice sheet and linkages to climate drivers

    NASA Astrophysics Data System (ADS)

    Tedesco, M.; Stroeve, J. C.

    2014-12-01

    The length of the melting season and surface albedo modulate the amount of meltwater produced over the Greenland ice sheet. The two quantities are intimately connected through a suite of non-linear processes: for example, early melting can reduce the surface albedo (through constructive grain size metamorphism), hence affecting the surface energy balance and further increasing melting. Over the past years, several studies have highlighted increased melting concurring, with a decrease of mean surface albedo over Greenland. However, few studies have examined the duration of the melting season, its implication for surface processes and linkages to climate drivers. Moreover, the majority (if not all) of the studies assessing albedo trends from spaceborne data over Greenland have focused on the last decade or so (2000 - 2013) because they use data collected over the same period by the Moderate Resolution Imaging Spectroradiometer (MODIS). Here, we evaluate and synthesize long-term trends in the length of the melting season (1979 - 2013) derived from spaceborne microwave observations together with surface albedo trends for the period 1982 - 2013 using data from the Advanced Very High Resolution Radiometer (AVHRR). To our knowledge, this is the first time that trends in Greenland albedo and melt season length are discussed for the periods considered in this study. Our results point to a lengthening of the melting season as a consequence of earlier melt onset and later refreeze and to a decrease of mean albedo (1982 - 2013) over the Greenland ice sheet, with trends being spatially variable. To account for this spatial variability, the results of an analysis at regional scales over 12 different regions (defined by elevation and drainage systems) are also reported. The robustness of the results is evaluated by means of a comparative analysis of the results obtained from both AVHRR and MODIS when overlapping data are available (2000 - 2013). Lastly, because large

  9. Silicate and Carbonatite Melts in the Mantle: Adding CO2 to the pMELTS Thermodynamic Model of Silicate Phase Equilibria

    NASA Astrophysics Data System (ADS)

    Antoshechkina, P. M.; Shorttle, O.

    2016-12-01

    The current rhyolite-MELTS algorithm includes a mixed H2O-CO2 vapor phase, and a self-consistent speciation model for CO2 and CaCO3 in the silicate liquid (Ghiorso & Gualda 2012; 2015). Although intended primarily to model crustal differentiation and degassing, GG15 captures much of the experimentally-observed melting behavior of CO2-rich mafic lithologies, including generation of small-degree carbonatite melts, a miscibility gap between carbonatite and silicate liquids at low P and a smooth transition to a single carbonated-silicate melt at high P (e.g. Dasgupta et al. 2007). However, solid and liquid carbonate phases were not used in calibration of GG15, and it is suitable only for P < 3 GPa. We present a preliminary model, based on pMELTS (Ghiorso et al. 2002), for melting of nominally-anhydrous carbonated peridotite and pyroxenite. In Antoshechkina et al. (2015; and references therein) we developed a scheme for calibration of molar volumes that directly interfaces with a MySQL database, adapted from LEPR (Hirschmann et al. 2008). Here, we further extend our database, e.g. to include multiple carbonate phases, and combine the calibration scheme with the libalphaMELTS interface to the rhyolite-MELTS, pMELTS, and H2O-CO2 fluid thermodynamic models (see magmasource.caltech.edu/alphamelts). We use a Monte-Carlo type calibration approach to fit the observed phases and compositions, though stop short of a fully Bayesian formulation. The CO2-fluid experimental database has been updated to include more recent and higher P studies, adding approximately 40 pure fluid plus liquid constraints that conform to the selection criteria used in GG15. To further expand the database, we plan to use some or all of: solid carbonate-bearing experiments; coexisting silicate and carbonatite liquids; phase-present, and phase-absent constraints. As a first approximation, we include four carbonate phases: pure calcite and aragonite, and binary solutions for dolomite-ankerite and magnesite

  10. Nanoparticle-induced unusual melting and solidification behaviours of metals

    PubMed Central

    Ma, Chao; Chen, Lianyi; Cao, Chezheng; Li, Xiaochun

    2017-01-01

    Effective control of melting and solidification behaviours of materials is significant for numerous applications. It has been a long-standing challenge to increase the melted zone (MZ) depth while shrinking the heat-affected zone (HAZ) size during local melting and solidification of materials. In this paper, nanoparticle-induced unusual melting and solidification behaviours of metals are reported that effectively solve this long-time dilemma. By introduction of Al2O3 nanoparticles, the MZ depth of Ni is increased by 68%, while the corresponding HAZ size is decreased by 67% in laser melting at a pulse energy of 0.18 mJ. The addition of SiC nanoparticles shows similar results. The discovery of the unusual melting and solidification of materials that contain nanoparticles will not only have impacts on existing melting and solidification manufacturing processes, such as laser welding and additive manufacturing, but also on other applications such as pharmaceutical processing and energy storage. PMID:28098147

  11. Evaluation of methods for characterizing the melting curves of a high temperature cobalt-carbon fixed point to define and determine its melting temperature

    NASA Astrophysics Data System (ADS)

    Lowe, David; Machin, Graham

    2012-06-01

    The future mise en pratique for the realization of the kelvin will be founded on the melting temperatures of particular metal-carbon eutectic alloys as thermodynamic temperature references. However, at the moment there is no consensus on what should be taken as the melting temperature. An ideal melting or freezing curve should be a completely flat plateau at a specific temperature. Any departure from the ideal is due to shortcomings in the realization and should be accommodated within the uncertainty budget. However, for the proposed alloy-based fixed points, melting takes place over typically some hundreds of millikelvins. Including the entire melting range within the uncertainties would lead to an unnecessarily pessimistic view of the utility of these as reference standards. Therefore, detailed analysis of the shape of the melting curve is needed to give a value associated with some identifiable aspect of the phase transition. A range of approaches are or could be used; some purely practical, determining the point of inflection (POI) of the melting curve, some attempting to extrapolate to the liquidus temperature just at the end of melting, and a method that claims to give the liquidus temperature and an impurity correction based on the analytical Scheil model of solidification that has not previously been applied to eutectic melting. The different methods have been applied to cobalt-carbon melting curves that were obtained under conditions for which the Scheil model might be valid. In the light of the findings of this study it is recommended that the POI continue to be used as a pragmatic measure of temperature but where required a specified limits approach should be used to define and determine the melting temperature.

  12. Effects of earlier sea ice breakup on survival and population size of polar bears in western Hudson Bay

    USGS Publications Warehouse

    Regehr, E.V.; Lunn, N.J.; Amstrup, Steven C.; Stirling, I.

    2007-01-01

    Some of the most pronounced ecological responses to climatic warming are expected to occur in polar marine regions, where temperature increases have been the greatest and sea ice provides a sensitive mechanism by which climatic conditions affect sympagic (i.e., with ice) species. Population-level effects of climatic change, however, remain difficult to quantify. We used a flexible extension of Cormack-Jolly-Seber capture-recapture models to estimate population size and survival for polar bears (Ursus maritimus), one of the most ice-dependent of Arctic marine mammals. We analyzed data for polar bears captured from 1984 to 2004 along the western coast of Hudson Bay and in the community of Churchill, Manitoba, Canada. The Western Hudson Bay polar bear population declined from 1,194 (95% CI = 1,020-1,368) in 1987 to 935 (95% CI = 794-1,076) in 2004. Total apparent survival of prime-adult polar bears (5-19 yr) was stable for females (0.93; 95% CI = 0.91-0.94) and males (0.90; 95% CI = 0.88-0.91). Survival of juvenile, subadult, and senescent-adult polar bears was correlated with spring sea ice breakup date, which was variable among years and occurred approximately 3 weeks earlier in 2004 than in 1984. We propose that this correlation provides evidence for a causal association between earlier sea ice breakup (due to climatic warming) and decreased polar bear survival. It may also explain why Churchill, like other communities along the western coast of Hudson Bay, has experienced an increase in human-polar bear interactions in recent years. Earlier sea ice breakup may have resulted in a larger number of nutritionally stressed polar bears, which are encroaching on human habitations in search of supplemental food. Because western Hudson Bay is near the southern limit of the species' range, our findings may foreshadow the demographic responses and management challenges that more northerly polar bear populations will experience if climatic warming in the Arctic continues as

  13. MeltMigrator: A MATLAB-based software for modeling three-dimensional melt migration and crustal thickness variations at mid-ocean ridges following a rules-based approach

    NASA Astrophysics Data System (ADS)

    Bai, Hailong; Montési, Laurent G. J.; Behn, Mark D.

    2017-01-01

    MeltMigrator is a MATLAB®-based melt migration software developed to process three-dimensional mantle temperature and velocity data from user-supplied numerical models of mid-ocean ridges, calculate melt production and melt migration trajectories in the mantle, estimate melt flux along plate boundaries, and predict crustal thickness distribution on the seafloor. MeltMigrator is also capable of calculating compositional evolution depending on the choice of petrologic melting model. Programmed in modules, MeltMigrator is highly customizable and can be expanded to a wide range of applications. We have applied it to complex mid-ocean ridge model settings, including transform faults, oblique segments, ridge migration, asymmetrical spreading, background mantle flow, and ridge-plume interaction. In this technical report, we include an example application to a segmented mid-ocean ridge. MeltMigrator is available as a supplement to this paper, and it is also available from GitHub and the University of Maryland Geodynamics Group website.

  14. Evaluation of the Lithospheric Contribution to Southern Rio Grande Rift Mafic Melts

    NASA Astrophysics Data System (ADS)

    Konter, J. G.; Crocker, L.; Anaya, L. M.; Rooney, T. O.

    2011-12-01

    As continental rifting proceeds, the accommodation of lithospheric thinning by mechanical extension and magmatic intrusion represents an important but poorly constrained tectonic process. Insight into role of the magmatic component may come from the composition of volcanic products, which can record magma-lithosphere interactions. The volcanic activity in continental rift environments is frequently characterized by bimodal associations of mafic and silicic volcanism with heterogenous lithospheric contributions. We present a new integrated data set from several mafic volcanic fields in the Rio Grande Rift, consisting of major and trace element compositions, as well as isotopes. This data set provides insight into asthenospheric melting processes and interactions with the overlying lithosphere. The melting processes and the related extensional volcanism is the result of foundering of the Farallon slab. Large volume silicic eruptions such as those in the Sierra Madre Occidental originate from a large contribution of lithospheric melting, with a subordinate asthenospheric contribution. In contrast, Late Tertiary and Quaternary basaltic volcanic fields in the Rio Grande Rift were likely sourced in the asthenosphere and did not reside in the lithosphere for substantial periods. As a result the region is the ideal natural laboratory to investigate the interaction of asthenospheric melts with the lithosphere. In particular the wide array of volcanic fields contain multiple xenolith localities, such as Kilbourne Hole, providing direct samples of lithosphere and crust. Although previous studies have focused on correlations between amount of extension related to Farallon slab foundering, volcanic compositions, and their mantle sources, we present data that suggest that some compositional signatures may pre-date current tectonic processes. Radiogenic isotope data from several volcanic fields in New Mexico show a converging pattern in Pb isotope compositions, focusing on the

  15. Nonequilibrium Simulations of Ion Dynamics in Ionomer Melts

    NASA Astrophysics Data System (ADS)

    Frischknecht, Amalie

    Ionomers, polymers containing a small fraction of covalently bound ionic groups, are of interest as possible electrolytes in batteries. However, to date ionomers do not have sufficiently high conductivities for practical application, most likely because the ions tend to form aggregates, leading to slow ion transport. To build a better understanding of the relationships among ionomer chemistry, morphology, and ion transport, we have performed a series of molecular dynamics simulations and connected aspects of these simulations with experiment. In previous work using both atomistic and coarse-grained models, we showed that precise ionomers (with a fixed spacing between ionic groups along the polymer backbone) exhibit a range of ionic aggregate morphologies, from discrete clusters to percolated aggregates. In this talk I will describe recent simulations of our coarse-grained ionomer melts in an applied electric field. From a constant applied field, we are able to extract the ion mobilities and hence conductivities. We find that ionomers with percolated ionic aggregate morphologies have higher ion mobilities and hence higher conductivities. Application of an oscillating electric field enables us to calculate the frequency-dependent conductivity of the model ionomer melts. The real part of the conductivity has a high frequency peak associated with plasma oscillations, and a very broad low frequency peak associated with ion motions in ionic aggregates. I will end with comments on the connections to atomistic simulations and to experimental probes of ion dynamics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Selective Laser Melting of Pure Copper

    NASA Astrophysics Data System (ADS)

    Ikeshoji, Toshi-Taka; Nakamura, Kazuya; Yonehara, Makiko; Imai, Ken; Kyogoku, Hideki

    2017-12-01

    Appropriate building parameters for selective laser melting of 99.9% pure copper powder were investigated at relatively high laser power of 800 W for hatch pitch in the range from 0.025 mm to 0.12 mm. The highest relative density of the built material was 99.6%, obtained at hatch pitch of 0.10 mm. Building conditions were also studied using transient heat analysis in finite element modeling of the liquidation and solidification of the powder layer. The estimated melt pool length and width were comparable to values obtained by observations using a thermoviewer. The trend for the melt pool width versus the hatch pitch agreed with experimental values.

  17. Selective Laser Melting of Pure Copper

    NASA Astrophysics Data System (ADS)

    Ikeshoji, Toshi-Taka; Nakamura, Kazuya; Yonehara, Makiko; Imai, Ken; Kyogoku, Hideki

    2018-03-01

    Appropriate building parameters for selective laser melting of 99.9% pure copper powder were investigated at relatively high laser power of 800 W for hatch pitch in the range from 0.025 mm to 0.12 mm. The highest relative density of the built material was 99.6%, obtained at hatch pitch of 0.10 mm. Building conditions were also studied using transient heat analysis in finite element modeling of the liquidation and solidification of the powder layer. The estimated melt pool length and width were comparable to values obtained by observations using a thermoviewer. The trend for the melt pool width versus the hatch pitch agreed with experimental values.

  18. Crystallographic effects during radiative melting of semitransparent materials

    NASA Astrophysics Data System (ADS)

    Webb, B. W.; Viskanta, R.

    1987-10-01

    Experiments have been performed to illustrate crystallogrpahic effects during radiative melting of unconfined vertical layers of semitransparent material. Radiative melting of a polycrystalline paraffin was performed and the instantaneous layer weight and transmittance were measured using a cantilever beam technique and thermopile radiation detector, respectively. The effects of radiative flux, initial solid subcooling, spectral distribution of the irradiation, and crystal structure of the solid as determined qualitatively by the sample solidification rate were studied. Experimental results show conclusively the dominant influence of cystallographic effects in the form of multiple internal scattering of radiation during the melting process. A theoretical model is formulated to predict the melting rate of the material. Radiation transfer is treated by solving the one-dimensional radiative transfer equation for an absorbing-scattering medium using the discrete ordinates method. Melting rate and global layer reflectance as predicted by the model agree well with experimental data. Parametric studies conducted with the model illustrate the sensitivity of the melting behavior to such variables as incident radiative flux, initial layer opacity (material extinction coefficient), and scattering asymmetry factor.

  19. Radiocarbon Dating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchholz, B A

    Radiocarbon dating can be used to determine the age of objects that contain components that were once alive. In the case of human remains, a radiocarbon date can distinguish between a crime scene and an archeological site. Documents, museum artifacts and art objects can be dated to determine if their age is correct for the historical context. A radiocarbon date does not confirm authenticity, but it can help identify a forgery.

  20. An observational and thermodynamic investigation of carbonate partial melting

    NASA Astrophysics Data System (ADS)

    Floess, David; Baumgartner, Lukas P.; Vonlanthen, Pierre

    2015-01-01

    Melting experiments available in the literature show that carbonates and pelites melt at similar conditions in the crust. While partial melting of pelitic rocks is common and well-documented, reports of partial melting in carbonates are rare and ambiguous, mainly because of intensive recrystallization and the resulting lack of criteria for unequivocal identification of melting. Here we present microstructural, textural, and geochemical evidence for partial melting of calcareous dolomite marbles in the contact aureole of the Tertiary Adamello Batholith. Petrographic observations and X-ray micro-computed tomography (X-ray μCT) show that calcite crystallized either in cm- to dm-scale melt pockets, or as an interstitial phase forming an interconnected network between dolomite grains. Calcite-dolomite thermometry yields a temperature of at least 670 °C, which is well above the minimum melting temperature of ∼600 °C reported for the CaO-MgO-CO2-H2O system. Rare-earth element (REE) partition coefficients (KDcc/do) range between 9-35 for adjacent calcite-dolomite pairs. These KD values are 3-10 times higher than equilibrium values between dolomite and calcite reported in the literature. They suggest partitioning of incompatible elements into a melt phase. The δ18O and δ13C isotopic values of calcite and dolomite support this interpretation. Crystallographic orientations measured by electron backscattered diffraction (EBSD) show a clustering of c-axes for dolomite and interstitial calcite normal to the foliation plane, a typical feature for compressional deformation, whereas calcite crystallized in pockets shows a strong clustering of c-axes parallel to the pocket walls, suggesting that it crystallized after deformation had stopped. All this together suggests the formation of partial melts in these carbonates. A Schreinemaker analysis of the experimental data for a CO2-H2O fluid-saturated system indeed predicts formation of calcite-rich melt between 650-880 °C, in

  1. Topological Constraints in Directed Polymer Melts

    NASA Astrophysics Data System (ADS)

    Serna, Pablo; Bunin, Guy; Nahum, Adam

    2015-11-01

    Polymers in a melt may be subject to topological constraints, as in the example of unlinked polymer rings. How to do statistical mechanics in the presence of such constraints remains a fundamental open problem. We study the effect of topological constraints on a melt of directed polymers, using simulations of a simple quasi-2D model. We find that fixing the global topology of the melt to be trivial changes the polymer conformations drastically. Polymers of length L wander in the transverse direction only by a distance of order (ln L )ζ with ζ ≃1.5 . This is strongly suppressed in comparison with the Brownian L1 /2 scaling which holds in the absence of the topological constraint. It is also much smaller than the predictions of standard heuristic approaches—in particular the L1 /4 of a mean-field-like "array of obstacles" model—so our results present a sharp challenge to theory. Dynamics are also strongly affected by the constraints, and a tagged monomer in an infinite system performs logarithmically slow subdiffusion in the transverse direction. To cast light on the suppression of the strands' wandering, we analyze the topological complexity of subregions of the melt: the complexity is also logarithmically small, and is related to the wandering by a power law. We comment on insights the results give for 3D melts, directed and nondirected.

  2. Topological Constraints in Directed Polymer Melts.

    PubMed

    Serna, Pablo; Bunin, Guy; Nahum, Adam

    2015-11-27

    Polymers in a melt may be subject to topological constraints, as in the example of unlinked polymer rings. How to do statistical mechanics in the presence of such constraints remains a fundamental open problem. We study the effect of topological constraints on a melt of directed polymers, using simulations of a simple quasi-2D model. We find that fixing the global topology of the melt to be trivial changes the polymer conformations drastically. Polymers of length L wander in the transverse direction only by a distance of order (lnL)^{ζ} with ζ≃1.5. This is strongly suppressed in comparison with the Brownian L^{1/2} scaling which holds in the absence of the topological constraint. It is also much smaller than the predictions of standard heuristic approaches-in particular the L^{1/4} of a mean-field-like "array of obstacles" model-so our results present a sharp challenge to theory. Dynamics are also strongly affected by the constraints, and a tagged monomer in an infinite system performs logarithmically slow subdiffusion in the transverse direction. To cast light on the suppression of the strands' wandering, we analyze the topological complexity of subregions of the melt: the complexity is also logarithmically small, and is related to the wandering by a power law. We comment on insights the results give for 3D melts, directed and nondirected.

  3. Antarctic sub-shelf melt rates via SIMPEL

    NASA Astrophysics Data System (ADS)

    Reese, Ronja; Albrecht, Torsten; Winkelmann, Ricarda

    2017-04-01

    Ocean-induced melting below ice-shelves is currently suspected to be the dominant cause of mass loss from the Antarctic Ice Sheet (e.g. Depoorter et al. 2013). Although thinning of ice shelves does not directly contribute to sea-level rise, it may have a significant indirect impact through the potential of ice shelves to buttress their adjacent ice sheet. Hence, an appropriate representation of sub-shelf melt rates is essential for modelling the evolution of ice sheets with marine terminating outlet glaciers. Due to computational limits of fully-coupled ice and ocean models, sub-shelf melt rates are often parametrized in large-scale or long-term simulations (e.g. Matin et al. 2011, Pollard & DeConto 2012). These parametrizations usually depend on the depth of the ice shelf base or its local slope but do not include the physical processes in ice shelf cavities. Here, we present the Sub Ice shelf Melt Potsdam modEL (SIMPEL) which mimics the first-order large-scale circulation in ice shelf cavities based on an ocean box model (Olbers & Hellmer, 2010), implemented in the Parallel Ice Sheet Model (Bueler & Brown 2009, Winkelmann et al. 2011, www.pism-docs.org). In SIMPEL, ocean water is transported at depth towards the grounding line where sub-shelf melt rates are highest, and then rises along the shelf base towards the calving front where refreezing can occur. Melt rates are computed by a description of ice-ocean interaction commonly used in high-resolution models (McPhee 1992, Holland & Jenkins 1999). This enables the model to capture a wide-range of melt rates, comparable to the observed range for Antarctic ice shelves (Rignot et al. 2013).

  4. Greenland ice sheet melt from MODIS and associated atmospheric variability.

    PubMed

    Häkkinen, Sirpa; Hall, Dorothy K; Shuman, Christopher A; Worthen, Denise L; DiGirolamo, Nicolo E

    2014-03-16

    Daily June-July melt fraction variations over the Greenland ice sheet (GIS) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500 hPa height. Blocking activity with a range of time scales, from synoptic waves breaking poleward (<5 days) to full-fledged blocks (≥5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the years with the greatest melt (2002 and 2012) during the MODIS era, the area-average temperature anomaly of 2 standard deviations above the 14 year June-July mean results in a melt fraction of 40% or more. Though the summer of 2007 had the most blocking days, atmospheric temperature anomalies were too small to instigate extreme melting. Short-term atmospheric blocking over Greenland contributes to melt episodesAssociated temperature anomalies are equally important for the meltDuration and strength of blocking events contribute to surface melt intensity.

  5. Microbial cell retention in a melting High Arctic snowpack, Svalbard

    NASA Astrophysics Data System (ADS)

    Zarsky, Jakub; Björkman, Mats; Kühnel, Rafael; Hell, Katherina; Hodson, Andy; Sattler, Birgit; Psenner, Roland

    2014-05-01

    to the final 38 cm. The major ion composition (IC), pH, conductivity and cell abundances were measured. Results and conlusions The removal of microbial cells from a high arctic snowpack resembles an elution sequence similar to that of hydrophobic compounds a process that helps glaciers retain a microbial biomass upon their surface, even after the demise of the snow cover. The snowpack and the glacier surface therefore act as an accumulator of cells during the melt season. This suggests that wet snowpacks, even on the surface of high arctic glaciers, are likely to be dynamic ecosystems in their own right. In our study, a clear ion elution sequence was observed that resembled earlier reports and caused high concentrations of ions in snowpack runoff at the start of the snow melt, which rapidly decreased as snow melt proceeded. Chloride, sulfate, nitrate, sodium and potassium experienced a 50 % elution before 20 - 25 % of the snowpack water content was lost. By contrast, cell removal only reached the 50 % level after ~70 % snowpack depletion. In contrast to our expectations, the calculated cell budget between the initial and final snowpack (including the cell loss by elution), revealed a significant increase of the total cell numbers, i.e. more than twice the original number. Assuming aeolian deposition processes to be low, this suggests cell proliferation as a contribution to the observed "retention effect". Precipitation was the major cell contributor to the snowpack upon Midtre Lovénbreen. An overall low cell concentration was therefore found within the snowpack stratigraphy, where snow layers frequently showed cell abundances similar to those of cloud water. This was in contrast to the nearby and more wind exposed sites examined in the Kongsfjorden area in 2007. However, layers of higher dust deposition were concomitant with one order of magnitude higher cell abundances, indicating that wind dispersal from locally exposed rocks supplements the atmospheric cell input.

  6. Summer Melts Immigrant Students' College Plans

    ERIC Educational Resources Information Center

    Naranjo, Melissa M.; Pang, Valerie Ooka; Alvarado, Jose Luis

    2016-01-01

    Many college-intending students find themselves dealing with the undermatch and summer melt phenomena. Undermatch refers to the situation where academically-successful high-school graduates choose not to go to any college or to go to a local community college not commensurate with their academic achievements. Summer melt describes how students may…

  7. [Effects of sowing date and planting density on the seed yield and oil content of winter oilseed rape].

    PubMed

    Zhang, Shu-Jie; Li, Ling; Zhang, Chun-Lei

    2012-05-01

    A field experiment was conducted to investigate the effects of different sowing date and planting density on the seed yield and seed oil content of winter oilseed rape (Brassica napus). Sowing date mainly affected the seed yield of branch raceme, while planting density affected the seed yields of both branch raceme and main raceme. The seed oil content was less affected by sowing date. The proportion of the seed yield of main raceme to the seed yield per plant increased with increasing planting density, and the seed oil content of main raceme was about 1% higher than that of branch raceme. Consequently, the seed oil production per plot increased significantly with increasing planting density. In the experimental region, the sowing date of winter oilseed rape should be earlier than mid-October. When sowing in late October, the seed yield would be decreased significantly. A planting density of 36-48 plants x m(-2) could improve the seed yield and oil content of winter oilseed rape.

  8. Anisotropic surface melting in lyotropic cubic crystals: part 2: facet-by-facet melting at Ia3d/vapor interfaces.

    PubMed

    Leroy, S; Grenier, J; Rohe, D; Even, C; Pieranski, P

    2006-05-01

    From experiments with metal crystals, in the vicinity of their crystal/liquid/vapor triple points, it is known that melting of crystals starts on their surfaces and is anisotropic. Recently, we have shown that anisotropic surface melting occurs also in lyotropic systems. In our previous paper (Eur. Phys. J. E 19, 223 (2006)), we have focused on the case of poor faceting at the Pn3m/L1 interface in C12EO2/water binary mixtures. There anisotropic melting occurs in the vicinity of a Pn3m/L3/L1 triple point. In the present paper, we focus on the opposite case of a rich devil's-staircase-type faceting at Ia3d/vapor interfaces in monoolein/water and phytantriol/water mixtures. We show that anisotropic surface melting takes place in these systems in a narrow humidity range close to the Ia3d-L2 transition. As whole (hkl) sets of facets disappear one after another when the transition is approached, surface melting occurs in a facet-by-facet type.

  9. The influence of melt composition on the partitioning of REEs, Y, Sc, Zr and Al between forsterite and melt in the system CMAS

    NASA Astrophysics Data System (ADS)

    Evans, Thomas M.; O'Neill, Hugh St. C.; Tuff, James

    2008-12-01

    Partition coefficients for a range of Rare Earth Elements (REEs), Y, Sc, Al and Zr were determined between forsteritic olivine (nearly end-member Mg 2SiO 4) and ten melt compositions in the system CaO-MgO-Al 2O 3-SiO 2 (CMAS) at 1 bar and 1400 °C, with concentrations of the trace elements in the olivine and the melt measured by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The REEs and Sc were added at levels sufficient to ensure that concentrations in the olivine were well above the detection limits. The REE partition coefficients (DREEol/melt) decrease with increasing silica in the melt, indicating strong bonding between REEO 1.5 and SiO 2 in the melt. The variation of DREEol/melt as a function of ionic radius is well described by the Brice equation for each composition, although a small proportion of this variation is due to the increase in the strength of the REEO 1.5-SiO 2 interactions in the melt with ionic radius. Scandium behaves very similarly to the REEs, but a global fit of the data from all ten melt compositions suggests that DScol/melt deviates somewhat from the parabolas established by the REE and Y, implying that Sc may substitute into olivine differently to that of the REEs. In contrast to the behaviour of the large trivalent cations, the concentration of Al in olivine is proportional to the square root of its concentration in the melt, indicating a coupled substitution in olivine with a high degree of short-range order. The lack of any correlation of REE partition coefficients with Al in olivine or melt suggests that the REE substitution in olivine is charge-balanced by cation vacancies. The partition coefficient of the tetravalent trace element Zr, which is highly incompatible in olivine, depends on the CaO content of the melt.

  10. Does Speech Emerge from Earlier Appearing Oral Motor Behaviors?.

    ERIC Educational Resources Information Center

    Moore, Christopher A.; Ruark, Jacki L.

    1996-01-01

    This study of the oral motor behaviors of seven toddlers (age 15 months) may be interpreted to indicate that: (1) mandibular coordination follows a developmental continuum from earlier emerging behaviors, such as chewing and sucking, through babbling, to speech, or (2) unique task demands give rise to distinct mandibular coordinative constraints…

  11. Mutual interactions of redox couples via electron exchange in silicate melts - Models for geochemical melt systems

    NASA Technical Reports Server (NTRS)

    Schreiber, Henry D.; Merkel, Robert C., Jr.; Schreiber, V. Lea; Balazs, G. Bryan

    1987-01-01

    The mutual interactions via electron exchange of redox couples in glass-forming melts were investigated both theoretically and experimentally. A thermodynamic approach for considering the mutual interactions leads to conclusion that the degree of mutual interaction in the melt should be proportional in part to the difference in relative reduction potentials of the interacting redox couples. Experimental studies verify this conclusion for numerous redox couples in several composition/temperature/oxygen fugacity regimes. Geochemical systems simultaneously possess many potentially multivalent elements; the stabilized redox states in the resulting magmas can be explained in part by mutual interactions and by redox buffering through the central Fe(III)- Fe(II) couples in the melts. The significance of these results for basaltic magmas of the earth, moon, and meteorites is addressed.

  12. Constraints on Mantle Plume Melting Conditions in the Martian Mantle Based on Improved Melting Phase Relationships of Olivine-Phyric Shergottite Yamato 980459

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Rapp, Jennifer F.; Usui, Tomohiro; Draper, David S.; Filiberto, Justin

    2016-01-01

    Martian meteorite Yamato 980459 (hereafter Y98) is an olivine-phyric shergottite that has been interpreted as closely approximating a martian mantle melt [1-4], making it an important constraint on adiabatic decompression melting models. It has long been recognized that low pressure melting of the Y98 composition occurs at extremely high temperatures relative to martian basalts (1430 degC at 1 bar), which caused great difficulties in a previous attempt to explain Y98 magma generation via a mantle plume model [2]. However, previous studies of the phase diagram were limited to pressures of 2 GPa and less [2, 5], whereas decompression melting in the present-day martian mantle occurs at pressures of 3-7 GPa, with the shallow boundary of the melt production zone occurring just below the base of the thermal lithosphere [6]. Recent experimental work has now extended our knowledge of the Y98 melting phase relationships to 8 GPa. In light of this improved petrological knowledge, we are therefore reassessing the constraints that Y98 imposes on melting conditions in martian mantle plumes. Two recently discovered olivine- phyric shergottites, Northwest Africa (NWA) 5789 and NWA 6234, may also be primary melts from the martian mantle [7, 8]. However, these latter meteorites have not been the subject of detailed experimental petrology studies, so we focus here on Y98.

  13. Using cosmogenic nuclides to date the stabilisation age of relict rockglaciers

    NASA Astrophysics Data System (ADS)

    Kronig, Olivia; Reitner, Jürgen M.; Christl, Marcus; Ivy-Ochs, Susan

    2017-04-01

    Active rockglaciers are periglacial landforms which are creeping down mountain slopes due to plastic deformation of the interstitial ice. The occurrence of active rockglaciers is an indicator of Alpine permafrost. Relict rockglaciers are not moving anymore because the ice melted, but they give evidence for the earlier existence of permafrost. In the Alps, relict rockglaciers can often be found below today's tree line raising the question of when these landforms have last been active. Judging from the present position of the relict rockglaciers, the lower permafrost limit during the time of their activity must have been hundreds of meters lower than it is today. Already in the early days of rockglacier research, the potential of relict rockglaciers as a paleoclimate proxy was recognised (Barsch 1977, Haeberli 1985). However, obtaining absolute ages on relict rockglaciers has always been a major difficulty. Lately it has been shown that with cosmogenic nuclides it is possible to date the stabilisation age of relict rockglaciers, but it has been applied only in a few cases (Ivy-Ochs et al. 2009). According to Reitner (2007), the lowest relict rockglaciers of the eastern Alps, the Tandl rockglaciers, are located in the Province of Carinthia (Austria). The Tandl rockglaciers are a complex series of rockglaciers spanning from around 2300 m down to 1220 m a.s.l. Due to their low position and based on modelling estimates on permafrost distribution in the area (Avian & Kellerer-Pirklbauer 2012), it is plausible that these low rockglaciers were active even prior to the Younger Dryas. Therefore, samples from the entire rockglacier series were taken for 10Be exposure dating. Furthermore, the close proximity of the rockglaciers to moraines associated to the Gschnitz stadial allow comparing the dating results to equilibrium line depression reconstructions. Less than 10 km to the southwest, a second rockglacier series, the Norbert rockglaciers, was sampled. In contrast to the

  14. Diffusion of hydrous species in model basaltic melt

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Guo, Xuan; Wang, Qinxia; Ding, Jiale; Ni, Huaiwei

    2017-10-01

    Water diffusion in Fe-free model basaltic melt with up to 2 wt% H2O was investigated at 1658-1846 K and 1 GPa in piston-cylinder apparatus using both hydration and diffusion couple techniques. Diffusion profiles measured by FTIR are consistent with a model in which both molecular H2O (H2Om) and hydroxyl (OH) contribute to water diffusion. OH diffusivity is roughly 13% of H2Om diffusivity, showing little dependence on temperature or water concentration. Water diffusion is dominated by the motion of OH until total H2O (H2Ot) concentration reaches 1 wt%. The dependence of apparent H2Ot diffusivity on H2Ot concentration appears to be overestimated by a previous study on MORB melt, but H2Ot diffusivity at 1 wt% H2Ot in basaltic melt is still greater than those in rhyolitic to andesitic melts. The appreciable contribution of OH to water diffusion in basaltic melt can be explained by enhanced mobility of OH, probably associated with the development of free hydroxyl bonded with network-modifying cations, as well as higher OH concentration. Calculation based on the Nernst-Einstein equation demonstrates that OH may serve as an effective charge carrier in hydrous basaltic melt, which could partly account for the previously observed strong influence of water on electrical conductivity of basaltic melt.

  15. The influence of altitude and urbanisation on trends and mean dates in phenology (1980-2009).

    PubMed

    Jochner, Susanne C; Sparks, Tim H; Estrella, Nicole; Menzel, Annette

    2012-03-01

    Long-term studies on urban phenology using network data are commonly limited by the small number of observation sites within city centres. Moreover, cities are often located on major rivers and consequently at lower altitudes than their rural surroundings. For these reasons, it is important (1) to go beyond a plain urban-rural comparison by taking the degree of urbanisation into account, and (2) to evaluate urbanisation and altitudinal effects simultaneously. Temporal phenological trends (1980-2009) for nine phenological spring events centred on the German cities of Frankfurt, Cologne and Munich were analysed. Trends of phenological onset dates were negative (i.e. earlier onset in phenology) for 96% of the 808 time series and significantly negative for 56% of the total number. Mean trends for the nine phenological events ranged between -0.23 days year(-1) for beech and -0.50 days year(-1) for hazel. The dependence of these trends and of mean dates on altitude and on the degree of urbanisation was explored. For mean dates, we demonstrated an earlier phenological onset at lower altitude and with a higher degree of urbanisation: altitude effects were highly significant and ranged between 1.34 days (100 m)(-1) (beech) and 4.27 days (100 m)(-1) (hazel). Coefficients for the log-transformed urban index were statistically significant for five events and varied greatly between events (coefficients from -1.74 for spruce to -5.08 for hazel). For trends in phenology, altitude was only significant for Norway maple, and no urban effects were significant. Hence, trends in phenology did not change significantly with higher altitudes or urbanised areas.

  16. Satellite-derived pan-Arctic melt onset dataset, 2000-2009

    NASA Astrophysics Data System (ADS)

    Wang, L.; Derksen, C.; Howell, S.; Wolken, G. J.; Sharp, M. J.; Markus, T.

    2009-12-01

    The SeaWinds Scatterometer on QuikSCAT (QS) has been in orbit for over a decade since its launch in June 1999. Due to its high sensitivity to the appearance of liquid water in snow and day/night all weather capability, QS data have been successfully used to detect melt onset and melt duration for various elements of the cryosphere. These melt datasets are especially useful in the polar regions where the application of imagery from optical sensors is hindered by polar nights and frequent cloud cover. In this study, we generate a pan-Arctic, pan-cryosphere melt onset dataset by combining estimates from previously published algorithms optimized for individual cryospheric elements and applied to QS and Special Sensor Microwave Imager (SSM/I) data for the northern high latitude land surface, ice caps, large lakes, and sea ice. Comparisons of melt onset along the boundaries between different components of the cryosphere show that in general the integrated dataset provides consistent and spatially coherent melt onset estimates across the pan-Arctic. We present the climatology and the anomaly patterns in melt onset during 2000-2009, and identify synoptic-scale linkages between atmospheric conditions and the observed patterns. We also investigate the possible trends in melt onset in the pan-Arctic during the 10-year period.

  17. Relationship between the onset date of the Meiyu and the South Asian anticyclone in April and the related mechanisms

    NASA Astrophysics Data System (ADS)

    Li, Hua; He, Shengping; Fan, Ke; Wang, Huijun

    2018-03-01

    The onset date of the Meiyu has attracted extensive attention because it marks the beginning of the rainfall season in the Yangtze-Huai River basin (YHRB). In this study, the relationship between the onset dates of the Meiyu and its precursors is investigated; and the South Asian anticyclone (SAA) in April, which is generated by atmospheric apparent sources over South Asia, is introduced. The results show that years with stronger SAA in April are concurrent with earlier onsets of the Meiyu and increased precipitation in June over the YHRB and vice versa. The mechanisms involved in this relationship are further investigated. The SAA emerges in early April, and moves eastward to the western North Pacific (WNP) in the late pentad of April due to the abrupt zonal energy transport, leading to anomalous divergence in the upper troposphere over the WNP. The divergence anomaly enhances ascending motion in situ due to Ekman pumping, leading to an anomalous cyclone at lower levels over this region. Due to the southward-moving ascending motion and the presence of the lower tropospheric cyclone in the fourth pentad of May, the precipitation moves southward to the Philippine Sea (PHS). The associated stronger convection over the PHS further triggers a meridional overturning pattern, which develops into the Pacific-Japan like pattern (PJ-like pattern). The PJ-like pattern persists from the end of May to the beginning of June, which promotes the earlier onset of the Meiyu. In addition, due to the increased heating associated with the abundant precipitation over the PHS around the fourth pentad of May, the Western Pacific subtropical high (WPSH) shifts northward earlier. Ultimately, the earlier establishment of the PJ-like pattern and the earlier northward shift of the WPSH cause stronger-than-normal southwesterly flows and additional water vapor transport to the YHRB, leading to the advanced onset of the Meiyu and additional precipitation in June.

  18. Solubilities of nitrogen and noble gases in basalt melt

    NASA Technical Reports Server (NTRS)

    Miyazaki, A.; Hiyagon, H.; Sugiura, N.

    1994-01-01

    Nitrogen and noble gases are important tracers in geochemistry and chosmochemistry. Compared to noble gases, however, physicochemical properties of nitrogen, such as solubility in melt or melt/silicate partition, are not well known. Solubility of nitrogen in basalt melt depends on redox condition of the atmosphere. For example, solubility of nitrogen in E chondrite melt under reducing conditions is as high as 2 mol percent at 1500 C, suggesting that nitrogen is chemically dissolved in silicate melts, i.e., being dissolved as free anions or replacing oxygen sites in silicate network. However, the solubility and the dissolution mechanism of nitrogen under oxidizing conditions are not well investigated. To obtain nitrogen solubility in silicate melts under various redox conditions and to understand its mechanism, we are conducting experiments by using (15)N(15)N-labeled nitrogen gas. This makes it easy to distinguish dissolved nitrogen from later contamination of atmospheric nitrogen, and hence enables us to measure the nitrogen solubility accurately. As a preliminary experiment, we have measured solubility of nitrogen in basalt melt under the atmospheric oxygen pressure.

  19. Greenland in Warm (1.5 °C) and Warmer (RCP 8.5) Worlds: The Influence of the Paris Agreement on Ice Sheet Surface Melting

    NASA Astrophysics Data System (ADS)

    Reusch, D. B.

    2017-12-01

    Melting on the surface of the Greenland ice sheet has been changing dramatically as global air temperatures have increased in recent decades, including melt extent often exceeding the 1981-2010 median through much of the melt season and the onset of intermittent melt moving to earlier in the year. To evaluate potential future change, we investigate surface melting characteristics under both "low" (limited to 1.5 °C) and "high" (RCP 8.5) warming scenarios including analysis of differences in scenario outcomes. Climatologies of melt-relevant variables are developed from two publicly available ensembles of CESM1-CAM5-BGC GCM runs: the 30-member Large Ensemble (CESM LE; Kay et al. 2015) for historical calibration and the RCP 8.5 scenario and the 11-member Low Warming ensemble (CESM LW; Sanderson et al. 2017) for the 1.5 °C scenario. For higher spatial resolution (15 km) and improved polar-centric model physics, we also apply the regional forecast model Polar WRF to decadal subsets (1996-2005; 2071-80) using GCM data archived at sub-daily resolution for boundary conditions. Models were skill-tested against ERA-Interim Reanalysis (ERAI) and AWS observations. For example, CESM LE tends to overpredict both maximum (above-freezing) and minimum daily average surface temperatures compared to observations from the GC-Net Swiss Camp AWS. Ensembles of members differing only by initial conditions allow us to also estimate intramodel uncertainty. Historical (1981-2000) CESM LE spatially averaged July temperatures are 2 +/- 0.2 °C cooler than ERAI while local anomalies in individual members reach up to +/- 2 °C. As expected, Greenland does not escape future (2081-2100) warming (and expectations of more widespread surface melting) even in the LW scenario, but positive changes versus ERAI are mostly coastal (2-3 °C) with the interior showing only minor change (+/- 1 °C). In contrast, under RCP 8.5, the entire ice sheet has warmed by 2-6 °C, or a median increase of 5 °C versus

  20. The initiation of segmented buoyancy-driven melting during continental breakup

    PubMed Central

    Gallacher, Ryan J.; Keir, Derek; Harmon, Nicholas; Stuart, Graham; Leroy, Sylvie; Hammond, James O. S.; Kendall, J-Michael; Ayele, Atalay; Goitom, Berhe; Ogubazghi, Ghebrebrhan; Ahmed, Abdulhakim

    2016-01-01

    Melting of the mantle during continental breakup leads to magmatic intrusion and volcanism, yet our understanding of the location and dominant mechanisms of melt generation in rifting environments is impeded by a paucity of direct observations of mantle melting. It is unclear when during the rifting process the segmented nature of magma supply typical of seafloor spreading initiates. Here, we use Rayleigh-wave tomography to construct a high-resolution absolute three-dimensional shear-wave velocity model of the upper 250 km beneath the Afar triple junction, imaging the mantle response during progressive continental breakup. Our model suggests melt production is highest and melting depths deepest early during continental breakup. Elevated melt production during continental rifting is likely due to localized thinning and melt focusing when the rift is narrow. In addition, we interpret segmented zones of melt supply beneath the rift, suggesting that buoyancy-driven active upwelling of the mantle initiates early during continental rifting. PMID:27752044

  1. sup 40 Ar/ sup 39 Ar ages of six Apollo 15 impact melt rocks by laser step heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalrymple, G.B.; Ryder, G.

    1991-06-01

    The authors have obtained 15 high resolution (21-51 step) {sup 40}Ar/{sup 39}Ar age spectra on six Apollo 15 impact melt rocks of different compositions using a continuous laser system on submilligram subsamples and on single crystal plagioclase clasts. Four of the six samples gave reproducible age spectra with well-defined intermediate temperature plateaus over 48% or more of the {sup 39}AR released; the plateaus are interpreted as crystallization ages. Samples 15304,7,69, 15294,6,21, and 15314,26,156 gave virtually identical plateau ages whose weighted mean is 3,870 {plus minus} 6 Ma. These three melt rocks differ in composition and likely formed in three separatemore » impact events. Sample 15356,9 gave replicate plateau ages that average 3,836 {plus minus} 12 Ma and date a fourth and younger impact event. The age spectra for samples 15308,9 and 15414,3,36 increase with increasing increment temperature and may have been formed in or affected by impacts at about 2,700 Ma and 3,870 Ma, respectively. So far there continues to be no convincing evidence in the lunar record for impact melts older than about 3.9 Ga.« less

  2. Studies of thermal dissolution of RDX in TNT melt

    NASA Astrophysics Data System (ADS)

    Suvorova, N. A.; Hamilton, V. T.; Oschwald, D. M.; Balakirev, F. F.; Smilowitz, L. B.; Henson, B. F.

    2017-01-01

    The thermal response of energetic materials is studied due to its importance in issues of material safety and surety. Secondary high explosives which melt before they thermally decompose present challenging systems to model due to the addition of material flow. Composition B is a particularly challenging system due to its multiphase nature with a low melt component (TNT) and a high melt component (RDX). The dissolution of RDX crystals in molten TNT at the temperature below RDX melting point has been investigated using hot stage microscopy. In this paper, we present data on the dissolution rate of RDX crystals in molten TNT as a function of temperature above the TNT melt.

  3. On the suitability of refractory bricks from a mediaeval brass melting and working site near Dinant (Belgium) as geomagnetic field recorders

    NASA Astrophysics Data System (ADS)

    Hus, J.; Geeraerts, R.; Plumier, J.

    2004-11-01

    Directional field archaeomagnetic data from two oval shaped kilns, of which still one was lined with refractory bricks, unearthed in a brass melting and working site in Bouvignes-sur-Meuse in Belgium, confirm the archaeologic dating as 14-15th century A.D. for the main site activities. The archaeomagnetic dates, obtained using reference secular variation curves of the geomagnetic field direction for France and Great Britain, lead to better time constraints for the cessation of kiln operations. Refractory bricks (firebricks) that are used for their chemical and thermal properties, and in particular for their resistance to high temperatures and temperature changes, are not unusual in metal melting and working sites. The firebricks from the examined site are coarse-grained and very porous inside but possess a very stable remanent magnetisation and revealed to be suitable magnetic field recorders. Although the firebricks have a single-component remanent magnetization, non-random deviations in remanence direction in function of the relative azimuth from the centre of the kiln or with the position of the bricks in the kiln wall, were observed. Several hypotheses for the origin of the deviations were considered: anisotropy, refraction, magnetic interaction, magnetic field distortion and the presence of a local disturbing magnetic source.

  4. Rapidly solidified titanium alloys by melt overflow

    NASA Technical Reports Server (NTRS)

    Gaspar, Thomas A.; Bruce, Thomas J., Jr.; Hackman, Lloyd E.; Brasmer, Susan E.; Dantzig, Jonathan A.; Baeslack, William A., III

    1989-01-01

    A pilot plant scale furnace was designed and constructed for casting titanium alloy strips. The furnace combines plasma arc skull melting techniques with melt overflow rapid solidification technology. A mathematical model of the melting and casting process was developed. The furnace cast strip of a suitable length and width for use with honeycomb structures. Titanium alloys Ti-6Al-4V and Ti-14Al-21 Nb were successfully cast into strips. The strips were evaluated by optical metallography, microhardness measurements, chemical analysis, and cold rolling.

  5. New precise dates for the ancient and sacred coral pyramidal tombs of Leluh (Kosrae, Micronesia).

    PubMed

    Richards, Zoe T; Shen, Chuan-Chou; Hobbs, Jean-Paul A; Wu, Chung-Che; Jiang, Xiuyang; Beardsley, Felicia

    2015-03-01

    Monumental tombs within ancient civilizations worldwide hold precious clues for deciphering the architectural skill, acumen, and industry of prehistoric cultures. Most tombs were constructed from abiotic materials-stone, soil, and/or clay, predominately-and were built to permanently inter royalty or high-status individuals. On the island of Kosrae in the central Pacific, monumental tombs were constructed with scleractinian coral and were confined to the prehistoric island capital of Leluh, where they served as temporary mortuary processing points. Like other prehistoric tombs, the Leluh tombs were dated by association-from the remnants of the temporarily interred. We present new dates for three sacred tombs using high-precision U-Th dates from 24 corals collected directly from the structural materials. The results suggest that the tombs were built about 700 years ago during the 14th century, about three centuries earlier than previously reported. The new dates redefine the peak occupation of Leluh and place its ruling paramountcy at the leading edge of the developing trans-oceanic political hierarchies, as well as the social and economic systems that dominated the civilizations in this part of the world.

  6. U-series dating and classification of the Apidima 2 hominin from Mani Peninsula, Southern Greece.

    PubMed

    Bartsiokas, Antonis; Arsuaga, Juan Luis; Aubert, Maxime; Grün, Rainer

    2017-08-01

    Laser ablation U-series dating results on a human cranial bone fragment from Apidima, on the western cost of the Mani Peninsula, Southern Greece, indicate a minimum age of 160,000 years. The dated cranial fragment belongs to Apidima 2, which preserves the facial skeleton and a large part of the braincase, lacking the occipital bone. The morphology of the preserved regions of the cranium, and especially that of the facial skeleton, indicates that the fossil belongs to the Neanderthal clade. The dating of the fossil at a minimum age of 160,000 years shows that most of the Neanderthal traits were already present in the MIS 6 and perhaps earlier. This makes Apidima 2 the earliest known fossil with a clear Neanderthal facial morphology. Together with the nearby younger Neanderthal specimens from Lakonis and Kalamakia, the Apidima crania are of crucial importance for the evolution of Neanderthals in the area during the Middle to Late Pleistocene. It can be expected that systematic direct dating of the other human fossils from this area will elucidate our understanding of Neanderthal evolution and demise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Stabilizing Crystal Oscillators With Melting Metals

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Miller, C. G.

    1984-01-01

    Heat of fusion provides extended period of constant temperature and frequency. Crystal surrounded by metal in spherical container. As outside temperature rises to melting point of metal, metal starts to liquefy; but temperature stays at melting point until no solid metal remains. Potential terrestrial applications include low-power environmental telemetering transmitters and instrumentation transmitters for industrial processes.

  8. Detecting and Correcting Melt Inclusion Modification

    NASA Astrophysics Data System (ADS)

    Cottrell, E.; Kelley, K. A.

    2008-12-01

    Post entrapment diffusive modification of melt inclusions may mute or erase primary signatures. Corrections for post-entrapment crystallization (PEC) and Fe-loss are routinely applied and, because recent experimental studies suggest rapid diffusion of trace components into and out of olivine-hosted inclusions, the ability to discriminate between primary and secondary signatures is now even more critical. Two tools may assist in this endeavor. XANES measurements of Fe3+/ΣFe ratios in undegassed ol-hosted basaltic melt inclusions from global arcs are 16-36% (n=16), significantly higher than the 7-10% commonly assumed, and higher than in MORB or BABB lavas (Kelley and Cottrell, this mtg). The Fe3+/ΣFe ratios indicate melt-host equilibrium, with significantly less PEC or Fe-loss than would have been otherwise assumed. We conclude that Fe2+ diffusion has been minimal; therefore the residence time of these primitive inclusions in an evolved magma must have been short. Fe3+/ΣFe correlates positively with water concentration, but not with CO2 and S concentrations or Mg#. The oxidized nature of arc lavas and melt inclusions may therefore indicate an oxidized source rather than late-stage degassing or fractionation. Trace element concentrations evolve with time if an inclusion is out of equilibrium with its host. The numerical model of Cottrell et al., 2002, makes specific predictions about how suites of melt inclusions evolve, creating a tool to detect post-entrapment modification. Recent laboratory measurements of REE diffusion in olivine greatly diverge (at 1300°C, 1015 vs 1019m2/s). If REE diffusivity is extremely fast, melt inclusion HREE diversity shouldn't survive more than a few years in a magma chamber; but if slow, HREE variance could be preserved for >104 yrs. Model analysis of published suites of ol-hosted inclusions indicates that either REE diffusion is quite slow, or the residence time of melt inclusions at high temperature is very short. Loss of variance

  9. The response of aboveground plant productivity to earlier snowmelt and summer warming in an Arctic ecosystem

    NASA Astrophysics Data System (ADS)

    Livensperger, C.; Steltzer, H.; Darrouzet-Nardi, A.; Sullivan, P.; Wallenstein, M. D.; Weintraub, M. N.

    2012-12-01

    Plant communities in the Arctic are undergoing changes in structure and function due to shifts in seasonality from changing winters and summer warming. These changes will impact biogeochemical cycling, surface energy balance, and functioning of vertebrate and invertebrate communities. To examine seasonal controls on aboveground net primary production (ANPP) in a moist acidic tundra ecosystem in northern Alaska, we shifted the growing season by accelerating snowmelt (using radiation absorbing shadecloth) and warming air and soil temperature (using 1 m2 open-top chambers), individually and in combination. After three years, we measured ANPP by harvesting up to 16 individual ramets, tillers and rhizomes for each of 7 plant species, including two deciduous shrubs, two graminoids, two evergreen shrubs and one forb during peak season. Our results show that ANPP per stem summed across the 7 species increased when snow melt occurred earlier. However, standing biomass, excluding current year growth, was also greater. The ratio of ANPP/standing biomass decreased in all treatments compared to the control. ANPP per unit standing biomass summed for the four shrub species decreases due to summer warming alone or in combination with early snowmelt; however early snowmelt alone did not lead to lower ANPP for the shrubs. ANPP per tiller or rhizome summed for the three herbaceous species increased in response to summer warming. Understanding the differential response of plants to changing seasonality will inform predictions of future Arctic plant community structure and function.

  10. Experimental constraints on mantle metasomatism caused by silicate and carbonate melts

    NASA Astrophysics Data System (ADS)

    Gervasoni, Fernanda; Klemme, Stephan; Rohrbach, Arno; Grützner, Tobias; Berndt, Jasper

    2017-06-01

    Metasomatic processes are responsible for many of the heterogeneities found in the upper mantle. To better understand the metasomatism in the lithospheric mantle and to illustrate the differences between metasomatism caused by hydrous silicate and carbonate-rich melts, we performed various interaction experiments: (1) Reactions between hydrous eclogite-derived melts and peridotite at 2.2-2.5 GPa and 900-1000 °C reproduce the metasomatism in the mantle wedge above subduction zones. (2) Reactions between carbonate-rich melts and peridotite at 2.5 GPa and 1050-1000 °C, and at 6 GPa and 1200-1250 °C simulate metasomatism of carbonatite and ultramafic silicate-carbonate melts in different regions of cratonic lithosphere. Our experimental results show that partial melting of hydrous eclogite produces hydrous Si- and Al-rich melts that react with peridotite and form bi-mineralic assemblages of Al-rich orthopyroxene and Mg-rich amphibole. We also found that carbonate-rich melts with different compositions react with peridotite and form new metasomatic wehrlitic mineral assemblages. Metasomatic reactions caused by Ca-rich carbonatite melt consume the primary peridotite and produce large amounts of metasomatic clinopyroxene; on the other hand, metasomatism caused by ultramafic silicate-carbonate melts produces less clinopyroxene. Furthermore, our experiments show that ultramafic silicate-carbonate melts react strongly with peridotite and cause crystallization of large amounts of metasomatic Fe-Ti oxides. The reactions of metasomatic melts with peridotite also change the melt composition. For instance, if the carbonatite melt is not entirely consumed during the metasomatic reactions, its melt composition may change dramatically, generating an alkali-rich carbonated silicate melt that is similar in composition to type I kimberlites.

  11. Fluid-assisted melting in a collisional orogen

    NASA Astrophysics Data System (ADS)

    Berger, A.; Burri, T.; Engi, M.; Roselle, G. T.

    2003-04-01

    The Southern Steep Belt (SSB) of the Central Alps is the location of backthrusting during syn- to post-collisional deformation. From its metamorphic evolution and lithological contents the SSB has been interpreted as a tectonic accretion channel (TAC [1]). The central part of the SSB is additionally characterized by anatexites, leucogranitic aplites and pegmatites. Dehydration melting of muscovite is rare but did occurr locally. Moreover, no evidence of dehydration melting of biotite has been formed in that products of incongruent melting reactions (garnet, opx or cordierite) are missing. The melts are mainly produced by the infiltration of an external aqueous fluid. The fluids must have originated from the breakdown of hydrous minerals at temperatures below the water saturated solidus of the quartz-feldspar-system, such that the liberated fluids could not been trapped in the melt. Using the thermal modeling program MELONPIT [2] and assuming that solid fragments ascended in combination with tectonic accreated radioactive material, a complex thermal evolution inside the TAC has been derived. During subduction of the downgoing plate, isotherms were locally inverted, then subsequently relaxed, when subduction slowed down. At the collisional stage a small region develope, where the isotherms were still bent, and where temperatures increased during decompression. Assuming that dehydration reactions were followed by upward flow of fluids released from this region fluid present partial melting was triggered. The flow direction of the fluid was controlled by the pressure gradient and the steeply oriented foliations in the SSB. According to the model, the area of upward flowing fluids should be limited to the SSB. This is consistent with the observed regional distribution of leucosomes derived from in-situ melts. [1] Engi et al. (2001) Geology 29: 1143-1146 [2] Roselle et al. (2002) Am. J. Sci. 302: 381-409

  12. Melting dynamics of ice in the mesoscopic regime

    PubMed Central

    Citroni, Margherita; Fanetti, Samuele; Falsini, Naomi; Foggi, Paolo; Bini, Roberto

    2017-01-01

    How does a crystal melt? How long does it take for melt nuclei to grow? The melting mechanisms have been addressed by several theoretical and experimental works, covering a subnanosecond time window with sample sizes of tens of nanometers and thus suitable to determine the onset of the process but unable to unveil the following dynamics. On the other hand, macroscopic observations of phase transitions, with millisecond or longer time resolution, account for processes occurring at surfaces and time limited by thermal contact with the environment. Here, we fill the gap between these two extremes, investigating the melting of ice in the entire mesoscopic regime. A bulk ice Ih or ice VI sample is homogeneously heated by a picosecond infrared pulse, which delivers all of the energy necessary for complete melting. The evolution of melt/ice interfaces thereafter is monitored by Mie scattering with nanosecond resolution, for all of the time needed for the sample to reequilibrate. The growth of the liquid domains, over distances of micrometers, takes hundreds of nanoseconds, a time orders of magnitude larger than expected from simple H-bond dynamics. PMID:28536197

  13. WHO Melting-Point Reference Substances

    PubMed Central

    Bervenmark, H.; Diding, N. Å.; Öhrner, B.

    1963-01-01

    Batches of 13 highly purified chemicals, intended for use as reference substances in the calibration of apparatus for melting-point determinations, have been subjected to a collaborative assay by 15 laboratories in 13 countries. All the laboratories performed melting-point determinations by the capillary methods described in the proposed text for the second edition of the Pharmacopoea Internationalis and some, in addition, carried out determinations by the microscope hot stage (Kofler) method, using both the “going-through” and the “equilibrium” technique. Statistical analysis of the data obtained by the capillary method showed that the within-laboratory variation was small and that the between-laboratory variation, though constituting the greatest part of the whole variance, was not such as to warrant the exclusion of any laboratory from the evaluation of the results. The average values of the melting-points obtained by the laboratories can therefore be used as constants for the substances in question, which have accordingly been established as WHO Melting-Point Reference Substances and included in the WHO collection of authentic chemical substances. As to the microscope hot stage method, analysis of the results indicated that the values obtained by the “going-through” technique did not differ significantly from those obtained by the capillary method, but the values obtained by the “equilibrium” technique were mostly significantly lower. PMID:20604137

  14. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal.

    PubMed

    Levitas, Valery I; Henson, Bryan F; Smilowitz, Laura B; Asay, Blaine W

    2006-05-25

    We theoretically predict a new phenomenon, namely, that a solid-solid phase transformation (PT) with a large transformation strain can occur via internal stress-induced virtual melting along the interface at temperatures significantly (more than 100 K) below the melting temperature. We show that the energy of elastic stresses, induced by transformation strain, increases the driving force for melting and reduces the melting temperature. Immediately after melting, stresses relax and the unstable melt solidifies. Fast solidification in a thin layer leads to nanoscale cracking which does not affect the thermodynamics or kinetics of the solid-solid transformation. Thus, virtual melting represents a new mechanism of solid-solid PT, stress relaxation, and loss of coherence at a moving solid-solid interface. It also removes the athermal interface friction and deletes the thermomechanical memory of preceding cycles of the direct-reverse transformation. It is also found that nonhydrostatic compressive internal stresses promote melting in contrast to hydrostatic pressure. Sixteen theoretical predictions are in qualitative and quantitative agreement with experiments conducted on the PTs in the energetic crystal HMX. In particular, (a) the energy of internal stresses is sufficient to reduce the melting temperature from 551 to 430 K for the delta phase during the beta --> delta PT and from 520 to 400 K for the beta phase during the delta --> beta PT; (b) predicted activation energies for direct and reverse PTs coincide with corresponding melting energies of the beta and delta phases and with the experimental values; (c) the temperature dependence of the rate constant is determined by the heat of fusion, for both direct and reverse PTs; results b and c are obtained both for overall kinetics and for interface propagation; (d) considerable nanocracking, homogeneously distributed in the transformed material, accompanies the PT, as predicted by theory; (e) the nanocracking does not

  15. Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system.

    PubMed

    Cedillos-Barraza, Omar; Manara, Dario; Boboridis, K; Watkins, Tyson; Grasso, Salvatore; Jayaseelan, Daniel D; Konings, Rudy J M; Reece, Michael J; Lee, William E

    2016-12-01

    TaC, HfC and their solid solutions are promising candidate materials for thermal protection structures in hypersonic vehicles because of their very high melting temperatures (>4000 K) among other properties. The melting temperatures of slightly hypostoichiometric TaC, HfC and three solid solution compositions (Ta 1-x Hf x C, with x = 0.8, 0.5 and 0.2) have long been identified as the highest known. In the current research, they were reassessed, for the first time in the last fifty years, using a laser heating technique. They were found to melt in the range of 4041-4232 K, with HfC having the highest and TaC the lowest. Spectral radiance of the hot samples was measured in situ, showing that the optical emissivity of these compounds plays a fundamental role in their heat balance. Independently, the results show that the melting point for HfC 0.98 , (4232 ± 84) K, is the highest recorded for any compound studied until now.

  16. Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system

    NASA Astrophysics Data System (ADS)

    Cedillos-Barraza, Omar; Manara, Dario; Boboridis, K.; Watkins, Tyson; Grasso, Salvatore; Jayaseelan, Daniel D.; Konings, Rudy J. M.; Reece, Michael J.; Lee, William E.

    2016-12-01

    TaC, HfC and their solid solutions are promising candidate materials for thermal protection structures in hypersonic vehicles because of their very high melting temperatures (>4000 K) among other properties. The melting temperatures of slightly hypostoichiometric TaC, HfC and three solid solution compositions (Ta1-xHfxC, with x = 0.8, 0.5 and 0.2) have long been identified as the highest known. In the current research, they were reassessed, for the first time in the last fifty years, using a laser heating technique. They were found to melt in the range of 4041-4232 K, with HfC having the highest and TaC the lowest. Spectral radiance of the hot samples was measured in situ, showing that the optical emissivity of these compounds plays a fundamental role in their heat balance. Independently, the results show that the melting point for HfC0.98, (4232 ± 84) K, is the highest recorded for any compound studied until now.

  17. Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system

    PubMed Central

    Cedillos-Barraza, Omar; Manara, Dario; Boboridis, K.; Watkins, Tyson; Grasso, Salvatore; Jayaseelan, Daniel D.; Konings, Rudy J. M.; Reece, Michael J.; Lee, William E.

    2016-01-01

    TaC, HfC and their solid solutions are promising candidate materials for thermal protection structures in hypersonic vehicles because of their very high melting temperatures (>4000 K) among other properties. The melting temperatures of slightly hypostoichiometric TaC, HfC and three solid solution compositions (Ta1−xHfxC, with x = 0.8, 0.5 and 0.2) have long been identified as the highest known. In the current research, they were reassessed, for the first time in the last fifty years, using a laser heating technique. They were found to melt in the range of 4041–4232 K, with HfC having the highest and TaC the lowest. Spectral radiance of the hot samples was measured in situ, showing that the optical emissivity of these compounds plays a fundamental role in their heat balance. Independently, the results show that the melting point for HfC0.98, (4232 ± 84) K, is the highest recorded for any compound studied until now. PMID:27905481

  18. High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique

    NASA Astrophysics Data System (ADS)

    Conde, M. M.; Rovere, M.; Gallo, P.

    2017-12-01

    An exhaustive study by molecular dynamics has been performed to analyze the factors that enhance the precision of the technique of direct coexistence for a system of ice and liquid water. The factors analyzed are the stochastic nature of the method, the finite size effects, and the influence of the initial ice configuration used. The results obtained show that the precision of estimates obtained through the technique of direct coexistence is markedly affected by the effects of finite size, requiring systems with a large number of molecules to reduce the error bar of the melting point. This increase in size causes an increase in the simulation time, but the estimate of the melting point with a great accuracy is important, for example, in studies on the ice surface. We also verified that the choice of the initial ice Ih configuration with different proton arrangements does not significantly affect the estimate of the melting point. Importantly this study leads us to estimate the melting point at ambient pressure of two of the most popular models of water, TIP4P/2005 and TIP4P/Ice, with the greatest precision to date.

  19. Zipper model for the melting of thin films

    NASA Astrophysics Data System (ADS)

    Abdullah, Mikrajuddin; Khairunnisa, Shafira; Akbar, Fathan

    2016-01-01

    We propose an alternative model to Lindemann’s criterion for melting that explains the melting of thin films on the basis of a molecular zipper-like mechanism. Using this model, a unique criterion for melting is obtained. We compared the results of the proposed model with experimental data of melting points and heat of fusion for many materials and obtained interesting results. The interesting thing reported here is how complex physics problems can sometimes be modeled with simple objects around us that seemed to have no correlation. This kind of approach is sometimes very important in physics education and should always be taught to undergraduate or graduate students.

  20. 17 CFR 248.128 - Effective date, compliance date, and prospective application.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Affiliate Marketing § 248.128 Effective date, compliance date, and prospective application. (a) Effective date. This subpart is effective September 10, 2009. (b) Mandatory compliance date. Compliance with this... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Effective date, compliance...

  1. Eutectic melting temperature of the lowermost Earth's mantle

    NASA Astrophysics Data System (ADS)

    Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.

    2009-12-01

    Partial melting of the Earth's deep mantle probably occurred at different stages of its formation as a consequence of meteoritic impacts and seismology suggests that it even continues today at the core-mantle boundary. Melts are important because they dominate the chemical evolution of the different Earth's reservoirs and more generally the dynamics of the whole planet. Unfortunately, the most critical parameter, that is the temperature profile inside the deep Earth, remains poorly constrained accross the planet history. Experimental investigations of the melting properties of materials representative of the deep Earth at relevant P-T conditions can provide anchor points to refine past and present temperature profiles and consequently determine the degree of melting at the different geological periods. Previous works report melting relations in the uppermost lower mantle region, using the multi-anvil press [1,2]. On the other hand, the pyrolite solidus was determined up to 65 GPa using optical observations in the laser-heated diamond anvil cell (LH-DAC) [3]. Finally, the melting temperature of (Mg,Fe)2SiO4 olivine is documented at core-mantle boundary (CMB) conditions by shock wave experiments [4]. Solely based on these reports, experimental data remain too sparse to draw a definite melting curve for the lower mantle in the relevant 25-135 GPa pressure range. We reinvestigated melting properties of lower mantle materials by means of in-situ angle dispersive X-ray diffraction measurements in the LH-DAC at the ESRF [5]. Experiments were performed in an extended P-T range for two starting materials: forsterite and a glass with chondrite composition. In both cases, the aim was to determine the onset of melting, and thus the eutectic melting temperatures as a function of pressure. Melting was evidenced from drastic changes of diffraction peak shape on the image plate, major changes in diffraction intensities in the integrated pattern, disappearance of diffraction rings

  2. The effect of melt composition on the partitioning of trace elements between titanite and silicate melt

    NASA Astrophysics Data System (ADS)

    Prowatke, S.; Klemme, S.

    2003-04-01

    The aim of this study is to systematically investigate the influence of melt composition on the partitioning of trace elements between titanite and different silicate melts. Titanite was chosen because of its important role as an accessory mineral, particularly with regard to intermediate to silicic alkaline and calc-alkaline magmas [e.g. 1] and of its relative constant mineral composition over a wide range of bulk compositions. Experiments at atmospheric pressure were performed at temperatures between 1150°C and 1050°C. Bulk compositions were chosen to represent a basaltic andesite (SH3 - 53% SiO2), a dacite (SH2 - 65 SiO2) and a rhyolite (SH1 - 71% SiO2). Furthermore, two additional experimental series were conducted to investigate the effect of Al-Na and the Na-K ratio of melts on partitioning. Starting materials consisted of glasses that were doped with 23 trace elements including some selected rare earth elements (La, Ce, Pr, Sm, Gd, Lu), high field strength elements (Zr, Hf, Nb, Ta) and large ion lithophile elements (Cs, Rb, Ba) and Th and U. The experimental run products were analysed for trace elements using secondary ion mass spectrometry at Heidelberg University. Preliminary results indicate a strong effect of melt composition on trace element partition coefficients. Partition coefficients for rare-earth elements uniformly show a convex-upward shape [2, 3], since titanite accommodates the middle rare-earth elements more readily than the light rare-earth elements or the heavy rare-earth elements. Partition coefficients for the rare-earth elements follow a parabolic trend when plotted against ionic radius. The shape of the parabola is very similar for all studied bulk compositions, the position of the parabola, however, is strongly dependent on bulk composition. For example, isothermal rare-earth element partition coefficients (such as La) are incompatible (D<1) in alkali-rich silicate melts and strongly compatible (D>>1) in alkali-poor melt compositions

  3. Melt transport - a personal cashing-up

    NASA Astrophysics Data System (ADS)

    Renner, J.

    2005-12-01

    The flow of fluids through rocks transports heat and material and changes bulk composition. The large-scale chemical differentiation of the Earth is related to flow of partial melts. From the perspective of current understanding of tectonic processes, prominent examples of such transport processes are the formation of oceanic crust from ascending basic melts at mid-ocean ridges, melt segregation involved in the solidification of the Earth's core, and dissolution-precipitation creep in subduction channels. Transport and deformation cannot be separated for partially molten aggregates. Permeability is only defined as an instantaneous parameter in the sense that Darcy's law is assumed to be valid; it is not an explicit parameter in the fundamental mechanical conservation laws but can be derived from them in certain circumstances as a result of averaging schemes. The governing, explicit physical properties in the mechanical equations are the shear and bulk viscosities of the solid framework and the fluid viscosity and compressibility. Constraints on the magnitude of these properties are available today from experiments at specific loading configurations, i.e., more or less well constrained initial and boundary conditions. The melt pressure remains the least controlled parameter. While the fluid viscosity is often much lower than the solid's the two-phase aggregate may exhibit considerable strength owing to the difficulty of moving the fluid through the branched pore network. The extremes in behavior depend on the time scale of loading, as known from daily live experiences (spounge, Danish coffee-pot, human tissue between neighboring bones). Several theoretical approaches attempted to formulate mechanical constitutive equations for two-phase aggregates. An important issue is the handling of internal variables in these equations. At experimental conditions, grain size, melt pocket orientation and crystallographic orientation -prime candidates for internal variables

  4. Results from a lab study of melting sea ice

    NASA Astrophysics Data System (ADS)

    Wiese, M.; Griewank, P.; Notz, D.

    2012-04-01

    Sea-ice melting is a complex process which is not fully understood yet. In order to study sea-ice melt in detail we perform lab experiments in an approximately 2x0.7x1.2 m large tank in a cold room. We grow sea ice with different salinities at least 10 cm thick. Then we let the ice melt at different air temperatures and oceanic heat fluxes. During the melt period, we measure the evolution of ice thickness, internal temperature, salinity and surface temperature. We will present results from roughly five months of experiments. Topics will include the influence of bulk salinity on melt rates and the surface temperature. The effects of flushing on the salinity evolution and detailed thermal profiles will also be included. To investigate these processes we focus on the energy budget and the salinity evolution. These topics are linked since the thermodynamic properties of sea ice (heat capacity, heat conductivity and latent heat of fusion) are very sensitive to salinity variations. For example the heat capacity of sea ice increases greatly as the temperature approaches the melting point. This increase results in non-linear temperature profiles and enhances heat conduction into the ice. The salinity evolution during the growth phase has been investigated and measured in multiple studies over the last decades. In contrast there are no detailed lab measurements of melting ice available to quantify the effects of flushing melt water and ponding. This is partially due to the fact that the heterogeneity of melting sea ice makes it much more difficult to measure representative values.

  5. TL dating of pottery fragments from four archaeological sites in Taquari Valley, Brazil

    NASA Astrophysics Data System (ADS)

    Cano, Nilo F.; Machado, Neli T. G.; Gennari, Roseli F.; Rocca, Rene R.; Munita, Casimiro S.; Watanabe, Shigueo

    2012-12-01

    Sixty-three pottery fragments from four archaeological sites, numbered RST110, RST101, RST114 and RST114, in the Taquari Valley, vicinity of the city of Lajeado, Rio Grande do Sul state, southern Brazil, have been dated by the thermoluminescence method. Some of them from RST110 and RST101 are as old as 1400-1200 years, whereas those from RST114 and RST107 are younger than 800 years. This result indicates that RST101 and RST110 were peopled earlier than RST114 and RST107. The recent dates found are 302, 295 and 146 years and they are possible, since the first German immigrants who arrived in this region encountered Tupi-Guarani Indians still living there. One interesting result refers to the glow curves of quartz grains RST110, RST101 and RST114 that differ from the glow curves of RST107 quartz grains.

  6. Berezinskii-Kosterlitz-Thouless transition and two-dimensional melting

    NASA Astrophysics Data System (ADS)

    Ryzhov, V. N.; Tareyeva, E. E.; Fomin, Yu D.; Tsiok, E. N.

    2017-12-01

    The main aspects of the theory of phase transitions in two-dimensional degenerate systems (Berezinskii-Kosterlitz-Thouless, or BKT, transitions) are reviewed in detail, including the transition mechanism, the renormalization group as a tool for describing the transition, and how the transition scenario can possibly depend on the core energy of topological defects (in particular, in thin superconducting films). Various melting scenarios in two-dimensional systems are analyzed, and the current status of actual experiments and computer simulations in the field is examined. Whereas in three dimensions melting always occurs as a single first-order transition, in two dimensions, as shown by Halperin, Nelson, and Young, melting via two continuous BKT transitions with an intermediate hexatic phase characterized by quasi-long-range orientational order is possible. But there is also a possibility for a first-order phase transition to occur. Recently, one further melting scenario, different from that occurring in the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young theory, has been proposed, according to which a solid can melt in two stages: a continuous BKT-type solid-hexatic transition and then a first-order hexatic-phase-isotropic-liquid phase transition. Particular attention is given to the melting scenario as a function of the potential shape and to the random pinning effect on two-dimensional melting. In particular, it is shown that random pinning can alter the melting scenario fundamentally in the case of a first-order transition. Also considered is the melting of systems with potentials having a negative curvature in the repulsion region-potentials that are successfully used in describing the anomalous properties of water in two dimensions. This review is an extended version of the report “Old and new in the physics of phase transitions” presented at the scientific session of the Physical Sciences Division of the Russian Academy of Sciences on 21 December

  7. Later endogenous circadian temperature nadir relative to an earlier wake time in older people

    NASA Technical Reports Server (NTRS)

    Duffy, J. F.; Dijk, D. J.; Klerman, E. B.; Czeisler, C. A.

    1998-01-01

    The contribution of the circadian timing system to the age-related advance of sleep-wake timing was investigated in two experiments. In a constant routine protocol, we found that the average wake time and endogenous circadian phase of 44 older subjects were earlier than that of 101 young men. However, the earlier circadian phase of the older subjects actually occurred later relative to their habitual wake time than it did in young men. These results indicate that an age-related advance of circadian phase cannot fully account for the high prevalence of early morning awakening in healthy older people. In a second study, 13 older subjects and 10 young men were scheduled to a 28-h day, such that they were scheduled to sleep at many circadian phases. Self-reported awakening from scheduled sleep episodes and cognitive throughput during the second half of the wake episode varied markedly as a function of circadian phase in both groups. The rising phase of both rhythms was advanced in the older subjects, suggesting an age-related change in the circadian regulation of sleep-wake propensity. We hypothesize that under entrained conditions, these age-related changes in the relationship between circadian phase and wake time are likely associated with self-selected light exposure at an earlier circadian phase. This earlier exposure to light could account for the earlier clock hour to which the endogenous circadian pacemaker is entrained in older people and thereby further increase their propensity to awaken at an even earlier time.

  8. Manicouagan impact melt, Quebec. I - Stratigraphy, petrology, and chemistry

    NASA Technical Reports Server (NTRS)

    Floran, R. J.; Grieve, R. A. F.; Dence, M. R.; Phinney, W. C.; Warner, J. L.; Blanchard, D. P.; Simonds, C. H.

    1978-01-01

    A sheet of clast-laden impact melt 230 m thick and 55 km in diameter forms an annular plateau surrounding an uplift of shocked anorthosite within the moderately eroded Manicouagan structure. Three gradational units of the melt sheet are characterized with respect to grain size, inclusions, texture, and mineralogy. The melt rocks as a group are chemically homogeneous with a bulk composition similar to that of latite and with no statistically significant regional chemical variations. The melt is not completely chemically homogeneous as a local mafic variant represented by two samples with poikilitic texture was found. These poikilitic rocks texturally resemble some Apollo 17 impact melt rocks and are inferred to have had a similar origin and thermal history.

  9. An empirical method for calculating melt compositions produced beneath mid-ocean ridges: for axis and off-axis (seamounts) melting application

    NASA Astrophysics Data System (ADS)

    Batiza, Rodey

    1991-12-01

    We present a new method for calculating the major element compositions of primary melts parental to mid-ocean ridge basalt (MORB). This model is based on the experimental data of Jaques and Green (1980), Falloon et al. (1988), and Falloon and Green (1987, 1988) which are ideal for this purpose. Our method is empirical and employs solid-liquid partition coefficients (Di) from the experiments. We empirically determine Di=f(P,F) and use this to calculate melt compositions produced by decompression-induced melting along an adiabat (column melting). Results indicate that most MORBs can be generated by 10-20% partial melting at initial pressures (P0) of 12-21 kbar. Our primary MORB melts have MgO=10-12 wt %. We fractionate these at low pressure to an MgO content of 8.0 wt% in order to interpret natural MORB liquids. This model allows us to calculate Po, Pf, To, Tf, and F for natural MORB melts. We apply the model to interpret MORB compositions and mantle upwelling patterns beneath a fast ridge (East Pacific Rise (EPR) 8°N to 14°N), a slow ridge (mid-Atlantic Ridge (MAR) at 26°S), and seamounts near the EPR (Lamont seamount chain). We find mantle temperature differences of up to 50°-60°C over distances of 30-50 km both across axis and along axis at the EPR. We propose that these are due to upward mantle flow in a weakly conductive (versus adiabatic) temperature gradient. We suggest that the EPR is fed by a wide (~100 km) zone of upwelling due to plate separation but has a central core of faster buoyant flow. An along-axis thermal dome between the Siqueiros transform and the 11°45' Overlapping Spreading Center (OSC) may represent such an upwelling; however, in general there is a poor correlation between mantle temperature, topography, and the segmentation pattern at the EPR. For the Lamont seamounts we find regular across-axis changes in Po and F suggesting that the melt zone pinches out off axis. This observation supports the idea that the EPR is fed by a broad

  10. An empirical method for calculating melt compositions produced beneath mid-ocean ridges: Application for axis and off-axis (seamounts) melting

    NASA Astrophysics Data System (ADS)

    Niu, Yaoling; Batiza, Rodey

    1991-12-01

    We present a new method for calculating the major element compositions of primary melts parental to mid-ocean ridge basalt (MORB). This model is based on the experimental data of Jaques and Green (1980), Falloon et al. (1988), and Falloon and Green (1987, 1988) which are ideal for this purpose. Our method is empirical and employs solid-liquid partition coefficients (Di) from the experiments. We empirically determine Di = ƒ(P,F) and use this to calculate melt compositions produced by decompression-induced melting along an adiabat (column melting). Results indicate that most MORBs can be generated by 10-20% partial melting at initial pressures (P0) of 12-21 kbar. Our primary MORB melts have MgO = 10-12 wt %. We fractionate these at low pressure to an MgO content of 8.0 wt % in order to interpret natural MORB liquids. This model allows us to calculate Po, Pƒ, To, Tƒ, and F for natural MORB melts. We apply the model to interpret MORB compositions and mantle upwelling patterns beneath a fast ridge (East Pacific Rise (EPR)8°N to 14°N), a slow ridge (mid-Atlantic Ridge (MAR) at 26°S), and seamounts near the EPR (Lament seamount chain). We find mantle temperature differences of up to 50°-60°C over distances of 30-50 km both across axis and along axis at the EPR. We propose that these are due to upward mantle flow in a weakly conductive (versus adiabatic) temperature gradient. We suggest that the EPR is fed by a wide (-100 km) zone of upwelling due to plate separation but has a central core of faster buoyant flow. An along-axis thermal dome between the Siqueiros transform and the 11°45' Overlapping Spreading center (OSC) may represent such an upwelling; however, in general there is a poor correlation between mantle temperature, topography, and the segmentation pattern at the EPR. For the Lament seamounts we find regular across-axis changes in Po and F suggesting that the melt zone pinches out off axis. This observation supports the idea that the EPR is fed by a

  11. Reversibility between glass and melting transitions of poly(oxyethylene)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qui, Wulin; Pyda, Marek; Nowak-Pyda, Elisabieta

    2005-01-01

    The heat capacities, C{sub p}, of poly(oxyethylene), POE, with molar masses from 1500 to 900,000 Da, were analyzed by differential scanning calorimetry (DSC), quasi-isothermal, temperature-modulated DSC (TMDSC), and wide-angle X-ray diffraction (WAXD). There is no change in crystal structure before melting, but the lattice parameters increase rapidly in the melting region. Perfected extended-chain and once- or twice-folded crystals of the oligomers with a molar mass above 1100 Da melt practically fully irreversibly and permit direct measurement of the thermodynamic C{sub p}. The folded-chain crystals of high molar mass show some locally reversible melting. The reversing, apparent C{sub p} depends onmore » molar mass and amplitude and frequency of modulation. After separation from the latent heat effects, the reversible, thermodynamic C{sub p} depends on the melting temperature for low molar masses and increases beyond the vibrational C{sub p} due to conformational motion. Molar masses of 8000-20,000 have almost the same C{sub p}. These observations permit a quantitative discussion of the thermodynamic C{sub p} and the locally reversible melting of the globally metastable POE in the melting range. The increase in C{sub p} between 250 K and the melting temperature is interpreted as a glass transition within the crystal.« less

  12. Vitrification of waste with conitnuous filling and sequential melting

    DOEpatents

    Powell, James R.; Reich, Morris

    2001-09-04

    A method of filling a canister with vitrified waste starting with a waste, such as high-level radioactive waste, that is cooler than its melting point. Waste is added incrementally to a canister forming a column of waste capable of being separated into an upper zone and a lower zone. The minimum height of the column is defined such that the waste in the lower zone can be dried and melted while maintaining the waste in the upper zone below its melting point. The maximum height of the column is such that the upper zone remains porous enough to permit evolved gases from the lower zone to flow through the upper zone and out of the canister. Heat is applied to the waste in the lower zone to first dry then to raise and maintain its temperature to a target temperature above the melting point of the waste. Then the heat is applied to a new lower zone above the melted waste and the process of adding, drying and melting the waste continues upward in the canister until the entire canister is filled and the entire contents are melted and maintained at the target temperature for the desired period. Cooling of the melted waste takes place incrementally from the bottom of the canister to the top, or across the entire canister surface area, forming a vitrified product.

  13. The Melt Transition in Mature, Fluid-Saturated Gouge

    NASA Astrophysics Data System (ADS)

    Rempel, A. W.

    2006-12-01

    Mechanisms that link the evolution of fault strength and temperature during earthquakes have been studied extensively, with accumulating constraints from theoretical, field and laboratory investigations promoting increased confidence in our understanding of the dominant physical interactions. In mature fault zones that have accommodated many large earthquakes and are characterized by gouge layers that greatly exceed the thickness of the ~ mm-scale "principal slip surfaces" in which shear is localized, the thermal pressurization of pore fluids is expected to be particularly important for reducing the fault strength and limiting the extent of shear heating. Nevertheless, for sufficiently large slip distances and reasonable estimates of hydraulic transport properties and other controlling variables, the predicted temperature increases are sometimes able to reach the onset of melting, particularly at mid to lower seismogenic depths (e.g. 10km). Reported field observations of quenched glassy melt products, known as pseudotachylytes, are much more common on young faults, particularly where slip is initiated between coherent rock surfaces, rather than in exhumed mature fault zones, where thermal pressurization is likely to be more important and macroscopic melting appears to be rare. Those pseudotachylyte layers that are recovered from mature fault zones display a range of thicknesses and crystal contents, which indicate that significant shear heating continued long after the onset of melting, with work performed against the viscous resistance of a partially molten slurry. Models that describe the transition to melting in a finite shear zone that is initially saturated with pore fluids are presented with two main conceptual challenges: 1. the energy input for frictional heating is generally assumed to be proportional to the effective stress, which vanishes when macroscopic melt layers are produced and thermodynamic considerations require that the melt pressure balance the

  14. Melt Analysis of Mismatch Amplification Mutation Assays (Melt-MAMA): A Functional Study of a Cost-Effective SNP Genotyping Assay in Bacterial Models

    PubMed Central

    Birdsell, Dawn N.; Pearson, Talima; Price, Erin P.; Hornstra, Heidie M.; Nera, Roxanne D.; Stone, Nathan; Gruendike, Jeffrey; Kaufman, Emily L.; Pettus, Amanda H.; Hurbon, Audriana N.; Buchhagen, Jordan L.; Harms, N. Jane; Chanturia, Gvantsa; Gyuranecz, Miklos; Wagner, David M.; Keim, Paul S.

    2012-01-01

    Single nucleotide polymorphisms (SNPs) are abundant in genomes of all species and biologically informative markers extensively used across broad scientific disciplines. Newly identified SNP markers are publicly available at an ever-increasing rate due to advancements in sequencing technologies. Efficient, cost-effective SNP genotyping methods to screen sample populations are in great demand in well-equipped laboratories, but also in developing world situations. Dual Probe TaqMan assays are robust but can be cost-prohibitive and require specialized equipment. The Mismatch Amplification Mutation Assay, coupled with melt analysis (Melt-MAMA), is flexible, efficient and cost-effective. However, Melt-MAMA traditionally suffers from high rates of assay design failures and knowledge gaps on assay robustness and sensitivity. In this study, we identified strategies that improved the success of Melt-MAMA. We examined the performance of 185 Melt-MAMAs across eight different pathogens using various optimization parameters. We evaluated the effects of genome size and %GC content on assay development. When used collectively, specific strategies markedly improved the rate of successful assays at the first design attempt from ∼50% to ∼80%. We observed that Melt-MAMA accurately genotypes across a broad DNA range (∼100 ng to ∼0.1 pg). Genomic size and %GC content influence the rate of successful assay design in an independent manner. Finally, we demonstrated the versatility of these assays by the creation of a duplex Melt-MAMA real-time PCR (two SNPs) and conversion to a size-based genotyping system, which uses agarose gel electrophoresis. Melt-MAMA is comparable to Dual Probe TaqMan assays in terms of design success rate and accuracy. Although sensitivity is less robust than Dual Probe TaqMan assays, Melt-MAMA is superior in terms of cost-effectiveness, speed of development and versatility. We detail the parameters most important for the successful application of Melt

  15. Thermophysical and Optical Properties of Semiconducting Ga2Te3 Melt

    NASA Technical Reports Server (NTRS)

    Li, Chao; Su, Ching-Hua; Lehoczky, Sandor L.; Scripa, Rosalie N.; Ban, Heng

    2005-01-01

    The majority of bulk semiconductor single crystals are presently grown from their melts. The thermophysical and optical properties of the melts provide a fundamental understanding of the melt structure and can be used to optimize the growth conditions to obtain higher quality crystals. In this paper, we report several thermophysical and optical properties for Ga2Te3 melts, such as electrical conductivity, viscosity, and optical transmission for temperatures ranging from the melting point up to approximately 990 C. The conductivity and viscosity of the melts are determined using the transient torque technique. The optical transmission of the melts is measured between the wavelengths of 300 and 2000 nm by an dual beam reversed-optics spectrophotometer. The measured properties are in good agreement with the published data. The conductivities indicate that the Ga2Te3 melt is semiconductor-like. The anomalous behavior in the measured properties are used as an indication of a structural transformation in the Ga2Te3 melt and discussed in terms of Eyring's and Bachinskii's predicted behaviors for homogeneous melts.

  16. Target rocks, impact glasses, and melt rocks from the Lonar crater, India: Highly siderophile element systematics and Sr-Nd-Os isotopic signatures

    NASA Astrophysics Data System (ADS)

    Schulz, Toni; Luguet, Ambre; Wegner, Wencke; Acken, David; Koeberl, Christian

    2016-07-01

    The Lonar crater is a ~0.57-Myr-old impact structure located in the Deccan Traps of the Indian peninsula. It probably represents the best-preserved impact structure hosted in continental flood basalts, providing unique opportunities to study processes of impact cratering in basaltic targets. Here we present highly siderophile element (HSE) abundances and Sr-Nd and Os isotope data for target basalts and impactites (impact glasses and impact melt rocks) from the Lonar area. These tools may enable us to better constrain the interplay of a variety of impact-related processes such as mixing, volatilization, and contamination. Strontium and Nd isotopic compositions of impactites confirm and extend earlier suggestions about the incorporation of ancient basement rocks in Lonar impactites. In the Re-Os isochron plot, target basalts exhibit considerable scatter around a 65.6 Myr Re-Os reference isochron, most likely reflecting weathering and/or magma replenishment processes. Most impactites plot at distinctly lower 187Re/188Os and 187Os/188Os ratios compared to the target rocks and exhibit up to two orders of magnitude higher abundances of Ir, Os, and Ru. Moreover, the impactites show near-chondritic interelement ratios of HSE. We interpret our results in terms of an addition of up to 0.03% of a chondritc component to most impact glasses and impact melt rocks. The magnitude of the admixture is significantly lower than the earlier reported 12-20 wt% of extraterrestrial component for Lonar impact spherules, reflecting the typical difference in the distribution of projectile component between impact glass spherules and bulk impactites.

  17. Experimental determination of carbon solubility in Fe-Ni-S melts

    NASA Astrophysics Data System (ADS)

    Zhang, Zhou; Hastings, Patrick; Von der Handt, Anette; Hirschmann, Marc M.

    2018-03-01

    To investigate the effect of metal/sulfide and Ni/Fe ratio on the C storage capacity of sulfide melts, we determine carbon solubility in Fe-Ni-S melts with various (Fe + Ni)/S and Ni/Fe via graphite-saturated high-pressure experiments from 2-7 GPa and 1200-1600 °C. Consistent with previous results, C solubility is high (4-6 wt.%) in metal-rich sulfide melts and diminishes with increasing S content. Melts with near M/S = 1 (XS > 0.4) have <0.5 wt.% C in equilibrium with graphite. C solubility is diminished modestly with increased Ni/Fe ratio, but the effect is most pronounced for S-poor melts, and becomes negligible in near-monosulfide compositions. Immiscibility between S-rich and C-rich melts is observed in Ni-poor compositions, but above ∼18 wt.% Ni there is complete miscibility. Because mantle sulfide compositions are expected to have high Ni concentrations, sulfide-carbide immiscibility is unlikely in natural mantle melts. An empirical parameterization of C solubility in Ni-Fe-S melts as a function of S and Ni contents allows estimation of the C storage capacity of sulfide in the mantle. Importantly, as the metal/sulfide (M/S) ratio of the melt increases, C storage increases both because C solubility increases and because the mass fraction of melt is enhanced by addition of metal from surrounding silicates. Under comparatively oxidized conditions where melts are near M/S = 1, as prevails at <250 km depth, bulk C storage is <3 ppm. In the deeper, more reduced mantle where M/S increases, up to 200 ppm C in typical mantle with 200 ± 100 ppm S can be stored in Fe-Ni-S melts. Thus, metal-rich sulfide melts are the principal host of carbon in the deep upper mantle and below. Residual carbon is present either as diamond or, if conditions are highly reduced and total C concentrations are low, solid alloy.

  18. Reading-Related Skills in Earlier- and Later-Schooled Children

    ERIC Educational Resources Information Center

    Cunningham, Anna J.; Carroll, Julia M.

    2011-01-01

    We investigate the effects of age-related factors and formal instruction on the development of reading-related skills in children aged 4 and 7 years. Age effects were determined by comparing two groups of children at the onset of formal schooling; one aged 7 (later-schooled) and one aged 4 (earlier-schooled). Schooling effects were measured by…

  19. Device and method for skull-melting depth measurement

    DOEpatents

    Lauf, R.J.; Heestand, R.L.

    1993-02-09

    A method of skull-melting comprises the steps of: (a) providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice connecting the interior and the underside; (b) disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; (c) providing a signal energy transducer in signal communication with the waveguide; (d) introducing into the vessel a molten working material; (e) carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; (f) activating the signal energy transducer so that a signal is propagated through the waveguide; and, (g) controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  20. Solidification microstructures in single-crystal stainless steel melt pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. Thesemore » results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.« less

  1. Constraining late stage melt-peridotite interaction in the lithospheric mantle of southern Ethiopia: evidence from lithium elemental and isotopic compositions

    NASA Astrophysics Data System (ADS)

    Alemayehu, Melesse; Zhang, Hong-Fu; Seitz, Hans-Michael

    2017-10-01

    Lithium (Li) elemental and isotopic compositions for mineral separates of coexisting olivine, orthopyroxene and clinopyroxene of mantle xenoliths from the Quaternary volcanic rocks of southern Ethiopian rift (Dillo and Megado) reveal the influence of late stage melt-peridotite interaction on the early depleted and variably metasomatized lithospheric mantle. Two types of lherzolites are reported (LREE-depleted La/Sm(N) = 0.11-0.37 × Cl and LREE-enriched, La/Sm(N) = 1.88-15.72 × Cl). The depleted lherzolites have variable range in Li concentration (olivine: 2.1-5.4 ppm; opx: 1.1-2.3 ppm; cpx: 1.0-1.8 ppm) and in Li isotopic composition (δ7Li in olivine: -9.4 to 1.5‰; in opx: -4.5 to 3.6‰; in cpx: -17.0 to 4.8‰), indicating strong disequilibrium in Li partitioning and Li isotope fractionation between samples. The enriched lherzolites have limited range in both Li abundances (olivine: 2.7-3.0 ppm; opx: 1.1-3.1 ppm; cpx: 1.1-2.3 ppm) and Li isotopic compositions (δ7Li in olivine: -1.3 to +1.3‰; in opx: -2.0 to +5.0‰; in cpx: -7.5 to +4.8‰), suggest that the earlier metasomatic event which lead to LREE enrichment could also homogenize the Li contents and its isotopes. The enriched harzburgite and clinopyroxenite minerals show limited variation in Li abundances and variable Li isotopic compositions. The Li enrichments of olivine and clinopyroxene correlate neither with the incompatible trace element enrichment nor with the Sr-Nd isotopic compositions of clinopyroxene. These observations indicate that the metasomatic events which are responsible for the LREE enrichment and for the Li addition are distinct, whereby the LREE-enrichment pre-dates the influx of Li. The presence of large Li isotopic disequilibria within and between minerals of depleted and enriched peridotites suggest that the lithospheric mantle beneath the southern Ethiopian rift has experienced recent melt-peridotite interaction. Thus, the Li data set reported in this study offer new

  2. Perceptual sensitivity to spectral properties of earlier sounds during speech categorization.

    PubMed

    Stilp, Christian E; Assgari, Ashley A

    2018-02-28

    Speech perception is heavily influenced by surrounding sounds. When spectral properties differ between earlier (context) and later (target) sounds, this can produce spectral contrast effects (SCEs) that bias perception of later sounds. For example, when context sounds have more energy in low-F 1 frequency regions, listeners report more high-F 1 responses to a target vowel, and vice versa. SCEs have been reported using various approaches for a wide range of stimuli, but most often, large spectral peaks were added to the context to bias speech categorization. This obscures the lower limit of perceptual sensitivity to spectral properties of earlier sounds, i.e., when SCEs begin to bias speech categorization. Listeners categorized vowels (/ɪ/-/ɛ/, Experiment 1) or consonants (/d/-/g/, Experiment 2) following a context sentence with little spectral amplification (+1 to +4 dB) in frequency regions known to produce SCEs. In both experiments, +3 and +4 dB amplification in key frequency regions of the context produced SCEs, but lesser amplification was insufficient to bias performance. This establishes a lower limit of perceptual sensitivity where spectral differences across sounds can bias subsequent speech categorization. These results are consistent with proposed adaptation-based mechanisms that potentially underlie SCEs in auditory perception. Recent sounds can change what speech sounds we hear later. This can occur when the average frequency composition of earlier sounds differs from that of later sounds, biasing how they are perceived. These "spectral contrast effects" are widely observed when sounds' frequency compositions differ substantially. We reveal the lower limit of these effects, as +3 dB amplification of key frequency regions in earlier sounds was enough to bias categorization of the following vowel or consonant sound. Speech categorization being biased by very small spectral differences across sounds suggests that spectral contrast effects occur

  3. Melt-growth dynamics in CdTe crystals

    DOE PAGES

    Zhou, X. W.; Ward, D. K.; Wong, B. M.; ...

    2012-06-01

    We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt growth dynamics and fine scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect behavior due to the lack of an interatomic potential capable of predicting both crystalline growth and property trends of many transitional structures encountered during the melt → crystal transformation. Here, we demonstrate successful molecular dynamics simulations of melt growth in CdTe using a BOP that significantly improves over other potentials on property trends of different phases. Our simulations result in a detailed understanding of defect formation during themore » melt growth process. Equally important, we show that the new BOP enables defect formation mechanisms to be studied at a scale level comparable to empirical molecular dynamics simulation methods with a fidelity level approaching quantum-mechanical methods.« less

  4. The contribution of glacier melt to streamflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaner, Neil; Voisin, Nathalie; Nijssen, Bart

    2012-09-13

    Ongoing and projected future changes in glacier extent and water storage globally have lead to concerns about the implications for water supplies. However, the current magnitude of glacier contributions to river runoff is not well known, nor is the population at risk to future glacier changes. We estimate an upper bound on glacier melt contribution to seasonal streamflow by computing the energy balance of glaciers globally. Melt water quantities are computed as a fraction of total streamflow simulated using a hydrology model and the melt fraction is tracked down the stream network. In general, our estimates of the glacier meltmore » contribution to streamflow are lower than previously published values. Nonetheless, we find that globally an estimated 225 (36) million people live in river basins where maximum seasonal glacier melt contributes at least 10% (25%) of streamflow, mostly in the High Asia region.« less

  5. Smoking is associated with earlier time to revision of total knee arthroplasty.

    PubMed

    Lim, Chin Tat; Goodman, Stuart B; Huddleston, James I; Harris, Alex H S; Bhowmick, Subhrojyoti; Maloney, William J; Amanatullah, Derek F

    2017-10-01

    Smoking is associated with early postoperative complications, increased length of hospital stay, and an increased risk of revision after total knee arthroplasty (TKA). However, the effect of smoking on time to revision TKA is unknown. A total of 619 primary TKAs referred to an academic tertiary center for revision TKA were retrospectively stratified according to the patient smoking status. Smoking status was then analyzed for associations with time to revision TKA using a Chi square test. The association was also analyzed according to the indication for revision TKA. Smokers (37/41, 90%) have an increased risk of earlier revision for any reason compared to non-smokers (274/357, 77%, p=0.031). Smokers (37/41, 90%) have an increased risk of earlier revision for any reason compared to ex-smokers (168/221, 76%, p=0.028). Subgroup analysis did not reveal a difference in indication for revision TKA (p>0.05). Smokers are at increased risk of earlier revision TKA when compared to non-smokers and ex-smokers. The risk for ex-smokers was similar to that of non-smokers. Smoking appears to have an all-or-none effect on earlier revision TKA as patients who smoked more did not have higher risk of early revision TKA. These results highlight the need for clinicians to urge patients not to begin smoking and encourage smokers to quit smoking prior to primary TKA. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. High-pressure melting of MgSiO3.

    PubMed

    Belonoshko, A B; Skorodumova, N V; Rosengren, A; Ahuja, R; Johansson, B; Burakovsky, L; Preston, D L

    2005-05-20

    The melting curve of MgSiO(3) perovskite has been determined by means of ab initio molecular dynamics complemented by effective pair potentials, and a new phenomenological model of melting. Using first principles ground state calculations, we find that the MgSiO(3) perovskite phase transforms into post perovskite at pressures above 100 GPa, in agreement with recent theoretical and experimental studies. We find that the melting curve of MgSiO(3), being very steep at pressures below 60 GPa, rapidly flattens on increasing pressure. The experimental controversy on the melting of the MgSiO(3) perovskite at high pressures is resolved, confirming the data by Zerr and Boehler.

  7. Lithological, Chemical and Chronological Constraints on Melt Extraction from the Mantle Section of the ~492 Ma Shetland Ophiolite Complex, Scotland

    NASA Astrophysics Data System (ADS)

    O'Driscoll, B.; Walker, R. J.; Clay, P. L.; Day, J. M.; Ash, R. D.; Daly, J. S.

    2015-12-01

    The mantle sections of ophiolites offer a means of studying the composition and structure of the oceanic mantle. In particular, the relations between different lithologies can be established in the field, permitting an assessment of the relative timing of processes such as melt extraction and melt-rock reaction. The Shetland Ophiolite Complex (SOC) contains a well-preserved mantle section that is dominated by harzburgite (≥70 vol.%), with dominantly chondritic present-day 187Os/188Os compositions1. Melt extraction and melt-rock reaction is evident in the form of dunite and chromitite layers and lenses, with thicknesses ranging from millimetres-to-metres. These lithologies are characteristic of supra-subduction zone processing and are considered to relate to closure of the Iapetus Ocean at ~492 Ma1. However, evidence of much earlier melt extraction has been suggested for some SOC harzburgites, which have relatively unradiogenic 187Os/188Os compositions that yield TRD model ages as old as ~1.4 Ga1. In order to assess the scales at which such compositional heterogeneities are preserved in the mantle, a small (45 m2) area of the SOC mantle section was selected for detailed lithological mapping and sampling. A selection of harzburgites (n=8), dunites (n=6) and pyroxenites (n=2) from this area has been analysed for their Os isotope and highly-siderophile element (HSE) compositions. Six of the harzburgites and four of the dunites have relative HSE abundances and gOs values that are approximately chondritic, with gOs ranging only from -0.6 to +2.7 (n=10). Two dunites have more radiogenic gOs (up to +7.5), that is correlated with enhanced concentrations of accessory base-metal sulphides, suggesting formation via melt percolation and melt-rock reaction. The two remaining harzburgites have less radiogenic gOs (-3.5 and -4), yielding Mesoproterozoic TRD ages. The new data indicate that a comparable range of Os isotope compositions to that previously measured across the

  8. High Pressure Dehydration of Antigorite in Nature: Embrittlement and melt formation?

    NASA Astrophysics Data System (ADS)

    Evans, B. W.; Cowan, D. S.

    2011-12-01

    Trommsdorff and others in 1998 provided field evidence from the Cerro del Almirez ultramafic complex, S. Spain, for the only known example of the high-pressure terminal breakdown reaction of antigorite: Atg = Ol + Opx + Chl + H2O. Pressure-temperature conditions for this reaction have since been refined to around 1.8 GPa and 650-700C. Associated mafic rocks are eclogites. Reaction products were a mixture of more-or-less granoblastic chlorite meta-harzburgite and rock of the same composition with a spinifex-like texture comprising up to 10 cm long needles of olivine and interstitial bundles of enstatite prisms. This texture was interpreted as metamorphic in origin (jackstraw olivine), and this view has apparently generally been accepted. Two earlier studies interpreted the spinifex-like rocks as quenched ultramafic liquid, analogous to komatiites. Given the release of ca. 6-7 wt.% H2O by this reaction, one must surely contemplate the possibility of dehydration embrittlement and frictional slip in shear zones, as many have suggested for antigorite breakdown in subduction zones. The depth and location of earthquake hypocenters have been shown to correlate well with the P-T trace of the experimentally determined antigorite breakdown reaction. A temperature rise of only 300C is needed at 1.8 GPa to initiate partial melting of hydrous peridotite, and another 350C to render it fully molten. These kinds of increase in temperature have been described from pseudotachylytes. We are therefore inclined to interpret the spinifex rocks at Cerro del Almirez as products of quench crystallization of ultramafic pseudotachylyte melt. This view is supported by the curved, branching, and sub-parallel nature of some of the olivine needles. Curved needles (up to 30 degrees) are not a feature of metamorphic jackstraw olivine, although otherwise the textures are very similar. Our view is also supported by the high contents of Cr and Ti (now exsolved into chromite and ilmenite) in the

  9. Single-Track Melt-Pool Measurements and Microstructures in Inconel 625

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriyo; Ma, Li; Levine, Lyle E.; Ricker, Richard E.; Stoudt, Mark R.; Heigel, Jarred C.; Guyer, Jonathan E.

    2018-06-01

    We use single-track laser melting experiments and simulations on Inconel 625 to estimate the dimensions and microstructure of the resulting melt pool. Our work is based on a design-of-experiments approach which uses multiple laser power and scan speed combinations. Single-track experiments generated melt pools of certain dimensions that showed reasonable agreement with our finite-element calculations. Phase-field simulations were used to predict the size and segregation of the cellular microstructure that formed along the melt-pool boundaries for the solidification conditions that changed as a function of melt-pool dimensions.

  10. Single-Track Melt-Pool Measurements and Microstructures in Inconel 625

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriyo; Ma, Li; Levine, Lyle E.; Ricker, Richard E.; Stoudt, Mark R.; Heigel, Jarred C.; Guyer, Jonathan E.

    2018-02-01

    We use single-track laser melting experiments and simulations on Inconel 625 to estimate the dimensions and microstructure of the resulting melt pool. Our work is based on a design-of-experiments approach which uses multiple laser power and scan speed combinations. Single-track experiments generated melt pools of certain dimensions that showed reasonable agreement with our finite-element calculations. Phase-field simulations were used to predict the size and segregation of the cellular microstructure that formed along the melt-pool boundaries for the solidification conditions that changed as a function of melt-pool dimensions.

  11. The Role of Garnet Pyroxenite in High-Fe Mantle Melt Generation: High Pressure Melting Experiments

    NASA Astrophysics Data System (ADS)

    Tuff, J.; Takahashi, E.; Gibson, S.

    2004-12-01

    Evidence for the existence of heterogeneous or 'marble cake' convecting mantle1 is provided recently by rare, high MgO ( ˜ 15 wt.%) primitive magmas with anomalously high abundances of FeO* ( ˜ 13.5 to 16 wt. %2,3; where FeO* = total Fe as FeO). These high-Fe mantle melts show a limited occurrence in the initial stage of magmatism in large igneous provinces (e.g. Deccan, Ethiopia and Paraná-Etendeka) and some have incompatible trace-element and radiogenic-isotopic ratios (Sr, Nd and Pb) that resemble those of ocean-island basalts. This suggests that they are predominantly derived from the convecting mantle2. The ferropicrites are mildly- to sub-alkaline and have low contents of Al2O3 (< 10 wt.%) and heavy rare-earth elements (e.g. Lu < 0.18ppm) that are consistent with the increased stability of garnet, due to the high FeO* content in the ferropicrite mantle source. It has been proposed that the source of the high FeO* may be garnet-pyroxenite streaks derived from subducted mafic oceanic crust2. We have undertaken melting experiments between 1 atmosphere and 7 GPa in order to determine the anhydrous phase relations of an uncontaminated ferropicrite lava from the base of the Early-Cretaceous Paraná-Etendeka continental flood-basalt province. The sample has high contents of MgO ( ˜ 14.9 wt.%), FeO* (14.9 wt.%) and NiO (0.07 wt.%). Olivine phenocrysts have maximum Fo contents of 85 and are in equilibrium with the host rock, assuming a Kd of 0.32 and we believe that the sample is representative of a primary Fe-rich mantle plume derived melt. In total, 75 experimental runs were carried out. Melting phase relations as well as compositions and modal proportions of all coexisting phases were successfully determined in 60 run products. Phase relations indicate that the ferropicrite melt was generated either at ˜ 2.2 GPa from an olivine-pyroxene residue or ˜ 5 GPa from a garnet-pyroxene residue. A low bulk-rock Al2O3 content (9 wt.%) and high [Gd/Yb]n ratio (3.1) are

  12. Basal melt rates of Filchner Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Humbert, A.; Nicholls, K. W.; Corr, H. F. J.; Steinhage, D.; Stewart, C.; Zeising, O.

    2017-12-01

    Thinning of ice shelves around Antarctica has been found to be partly driven by an increase in basal melt as a result of warmer waters entering the sub-ice shelf cavity. In-situ observations of basal melt rate are, however, sparse. A new robust and efficient phase sensitive radio echo sounder (pRES) allows to measure change in ice thickness and vertical strain at high accuracy, so that the contribution of basal melt to the change in thickness can be estimated. As modeling studies suggest that the cavity beneath Filchner Ice Shelf, Antarctica, might be prone to intrusion of warm water pulses within this century, we wished to derive a baseline dataset and an understanding of its present day spatial variability. Here we present results from pRES measurements over two field seasons, 2015/16-16/17, comprising 86 datasets over the southern Filchner Ice Shelf, covering an area of about 6500km2. The maximum melt rate is only slightly more than 1m/a, but the spatial distribution exhibits a complex pattern. For the purpose of testing variability of basal melt rates on small spatial scales, we performed 26 measurements over distances of about 1km, and show that the melt rates do not vary by more than 0.25m/a.

  13. How much can Greenland melt? An upper bound on mass loss from the Greenland Ice Sheet through surface melting

    NASA Astrophysics Data System (ADS)

    Liu, X.; Bassis, J. N.

    2015-12-01

    With observations showing accelerated mass loss from the Greenland Ice Sheet due to surface melt, the Greenland Ice Sheet is becoming one of the most significant contributors to sea level rise. The contribution of the Greenland Ice Sheet o sea level rise is likely to accelerate in the coming decade and centuries as atmospheric temperatures continue to rise, potentially triggering ever larger surface melt rates. However, at present considerable uncertainty remains in projecting the contribution to sea level of the Greenland Ice Sheet both due to uncertainty in atmospheric forcing and the ice sheet response to climate forcing. Here we seek an upper bound on the contribution of surface melt from the Greenland to sea level rise in the coming century using a surface energy balance model coupled to an englacial model. We use IPCC Representative Concentration Pathways (RCP8.5, RCP6, RCP4.5, RCP2.6) climate scenarios from an ensemble of global climate models in our simulations to project the maximum rate of ice volume loss and related sea-level rise associated with surface melting. To estimate the upper bound, we assume the Greenland Ice Sheet is perpetually covered in thick clouds, which maximize longwave radiation to the ice sheet. We further assume that deposition of black carbon darkens the ice substantially turning it nearly black, substantially reducing its albedo. Although assuming that all melt water not stored in the snow/firn is instantaneously transported off the ice sheet increases mass loss in the short term, refreezing of retained water warms the ice and may lead to more melt in the long term. Hence we examine both assumptions and use the scenario that leads to the most surface melt by 2100. Preliminary models results suggest that under the most aggressive climate forcing, surface melt from the Greenland Ice Sheet contributes ~1 m to sea level by the year 2100. This is a significant contribution and ignores dynamic effects. We also examined a lower bound

  14. Occurrence and mechanisms of impact melt emplacement at small lunar craters

    NASA Astrophysics Data System (ADS)

    Stopar, Julie D.; Hawke, B. Ray; Robinson, Mark S.; Denevi, Brett W.; Giguere, Thomas A.; Koeber, Steven D.

    2014-11-01

    Using observations from the Lunar Reconnaissance Orbiter Camera (LROC), we assess the frequency and occurrence of impact melt at simple craters less than 5 km in diameter. Nine-hundred-and-fifty fresh, randomly distributed impact craters were identified for study based on their maturity, albedo, and preservation state. The occurrence, frequency, and distribution of impact melt deposits associated with these craters, particularly ponded melt and lobate flows, are diagnostic of melt emplacement mechanisms. Like larger craters, those smaller than a few kilometers in diameter often exhibit ponded melt on the crater floor as well as lobate flows near the crater rim crest. The morphologies of these deposits suggest gravity-driven flow while the melt was molten. Impact melt deposits emplaced as veneers and ;sprays;, thin layers of ejecta that drape other crater materials, indicate deposition late in the cratering process; the deposits of fine sprays are particularly sensitive to degradation. Exterior melt deposits found near the rims of a few dozen craters are distributed asymmetrically around the crater and are rare at craters less than 2 km in diameter. Pre-existing topography plays a role in the occurrence and distribution of these melt deposits, particularly for craters smaller than 1 km in diameter, but does not account for all observed asymmetries in impact melt distribution. The observed relative abundance and frequency of ponded melt and flows in and around simple lunar craters increases with crater diameter, as was previously predicted from models. However, impact melt deposits are found more commonly at simple lunar craters (i.e., those less than a few kilometers in diameter) than previously expected. Ponded melt deposits are observed in roughly 15% of fresh craters smaller than 300 m in diameter and 80% of fresh craters between 600 m and 5 km in diameter. Furthermore, melt deposits are observed at roughly twice as many non-mare craters than at mare craters. We

  15. The Role of Late Summer Melt Pond Water Layers in the Ocean Mixed Layer on Enhancing Ice/Ocean Albedo Feedbacks in the Arctic

    NASA Astrophysics Data System (ADS)

    Stanton, T. P.; Shaw, W. J.

    2016-02-01

    Drainage of surface melt pond water into the top of the ocean mixed layer is seen widely in the Arctic ice pack in later summer (for example Gallaher et al 2015). Under calm conditions, this fresh water forms a thin, stratified layer immediately below the ice which is dynamically decoupled from the thicker, underlying seasonal mixed layer by the density difference between the two layers. The ephemeral surface layer is significantly warmer than the underlying ocean water owing to the higher freezing temperature of the fresh melt water. How the presence of this warm ephemeral layer enhances basal melt rate and speeds the destruction of the floes is investigated. High resolution timeseries measurements of T/S profiles in the 2m of the ocean immediately below the ice, and eddy-correlation fluxes of heat, salt and momentum 2.5m below the ice were made from an Autonomous Ocean Flux Buoy over a 2 month interval in later summer of 2015 as a component of the ONR Marginal Ice Zone project. The stratification and turbulent forcing observations are used with a 1 D turbulence closure model to understand how momentum and incoming radiative energy are stored and redistributed within the ephemeral layer. Under low wind forcing conditions both turbulent mixing energy and the water with high departure from freezing are trapped in the ephemeral layer by the strong density gradient at the base of the layer, resulting in rapid basal melting. This case is contrasted with model runs where the ephemeral layer heat is allowed to mix across the seasonal mixed layer, which results in slower basal melt rates. Consequently, the salinity-trapped warm ephemeral layer results in the formation of more open water earlier in the summer season, in turn resulting in increased cumulative heating of the ocean mixed layer, enhancing ice/ocean albedo feedbacks.

  16. Local ice melting by an antifreeze protein.

    PubMed

    Calvaresi, Matteo; Höfinger, Siegfried; Zerbetto, Francesco

    2012-07-09

    Antifreeze proteins, AFP, impede freezing of bodily fluids and damaging of cellular tissues by low temperatures. Adsorption-inhibition mechanisms have been developed to explain their functioning. Using in silico Molecular Dynamics, we show that type I AFP can also induce melting of the local ice surface. Simulations of antifreeze-positive and antifreeze-negative mutants show a clear correlation between melting induction and antifreeze activity. The presence of local melting adds a function to type I AFPs that is unique to these proteins. It may also explain some apparently conflicting experimental results where binding to ice appears both quasipermanent and reversible.

  17. Floodplains within reservoirs promote earlier spawning of white crappies Pomoxis annularis

    USGS Publications Warehouse

    Miranda, Leandro E.; Dagel, Jonah D.; Kaczka, Levi J.; Mower, Ethan; Wigen, S. L.

    2015-01-01

    Reservoirs impounded over floodplain rivers are unique because they may include within their upper reaches extensive shallow water stored over preexistent floodplains. Because of their relatively flat topography and riverine origin, floodplains in the upper reaches of reservoirs provide broad expanses of vegetation within a narrow range of reservoir water levels. Elsewhere in the reservoir, topography creates a band of shallow water along the contour of the reservoir where vegetation often does not grow. Thus, as water levels rise, floodplains may be the first vegetated habitats inundated within the reservoir. We hypothesized that shallow water in reservoir floodplains would attract spawning white crappies Pomoxis annularis earlier than reservoir embayments. Crappie relative abundance over five years in floodplains and embayments of four reservoirs increased as spawning season approached, peaked, and decreased as fish exited shallow water. Relative abundance peaked earlier in floodplains than embayments, and the difference was magnified with higher water levels. Early access to suitable spawning habitat promotes earlier spawning and may increase population fitness. Recognition of the importance of reservoir floodplains, an understanding of how reservoir water levels can be managed to provide timely connectivity to floodplains, and conservation of reservoir floodplains may be focal points of environmental management in reservoirs.

  18. View northeast, wharf A, portion AA, details showing earlier piers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northeast, wharf A, portion AA, details showing earlier piers and braces sloping toward water, reused charred plates for existing decking - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  19. Geothermal Flux, Basal Melt Rates, and Subglacial Lakes in Central East Antarctica

    NASA Astrophysics Data System (ADS)

    Carter, S. P.; Blankenship, D. D.; Morse, D. L.

    2002-12-01

    The lakes beneath the East Antarctic ice sheet represent a unique environment on Earth, entirely untouched by human interference. Life forms which survive in this cold, lightless, high pressure environment may resemble the life forms which survived through "snowball earth" and evolved into the life forms we know today (Kirchvink, 2000). Recent airborne radar surveys over Dome C and the South Pole regions allow us to assess where these lakes are most likely to exist and infer melting and freezing rates at base of the ice sheet. Lakes appear as strong, flat basal reflectors in airborne radar sounding data. In order to determine the absolute strength of the reflector it is important to accurately estimate signal loss due to absorption by the ice. As this quantity is temperature sensitive, especially in regions where liquid water is likely to exist, we have developed a one dimensional heat transfer model, incorporating surface temperature, accumulation, ice sheet thickness, and geothermal flux. Of the four quantities used for our temperature model, geothermal flux has usually proven to be the most difficult to asses, due to logistical difficulties. A technique developed by Fahnestock et al 2001 is showing promise for inferring geothermal flux, with airborne radar data. This technique assumes that internal reflectors, which result from varying electrical properties within the ice column, can be approximated as constant time horizons. Using ice core data from our study area, we can place dates upon these internal layers and develop an age versus depth relationship for the surveyed region, with margin of error of +- 50 m for each selected layer. Knowing this relationship allows us to infer the vertical strain response of the ice to the stress of vertical loading by snow accumulation. When ice is frozen to the bed the deeper ice will accommodate the increased stress of by deforming and thinning (Patterson 1994). This thinning of deeper layers occurs throughout most of our

  20. Detection of melting by X-ray imaging at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Li; Weidner, Donald J.

    2014-06-15

    The occurrence of partial melting at elevated pressure and temperature is documented in real time through measurement of volume strain induced by a fixed temperature change. Here we present the methodology for measuring volume strains to one part in 10{sup −4} for mm{sup 3} sized samples in situ as a function of time during a step in temperature. By calibrating the system for sample thermal expansion at temperatures lower than the solidus, the onset of melting can be detected when the melting volume increase is of comparable size to the thermal expansion induced volume change. We illustrate this technique withmore » a peridotite sample at 1.5 GPa during partial melting. The Re capsule is imaged with a CCD camera at 20 frames/s. Temperature steps of 100 K induce volume strains that triple with melting. The analysis relies on image comparison for strain determination and the thermal inertia of the sample is clearly seen in the time history of the volume strain. Coupled with a thermodynamic model of the melting, we infer that we identify melting with 2 vol.% melting.« less

  1. Dating Violence

    ERIC Educational Resources Information Center

    Stader, David L.

    2011-01-01

    Dating violence is a form of student-on-student victimization and is a serious school safety issue. Research indicates that at a minimum, 10 percent of high school students are victims of dating violence in one form or another. Among female high school students that date, some data indicate that as many as 30 percent may be victims of dating…

  2. Challenges in Melt Furnace Tests

    NASA Astrophysics Data System (ADS)

    Belt, Cynthia

    2014-09-01

    Measurement is a critical part of running a cast house. Key performance indicators such as energy intensity, production (or melt rate), downtime (or OEE), and melt loss must all be understood and monitored on a weekly or monthly basis. Continuous process variables such as bath temperature, flue temperature, and furnace pressure should be used to control the furnace systems along with storing the values in databases for later analysis. While using measurement to track furnace performance over time is important, there is also a time and place for short-term tests.

  3. APPARATUS FOR MELTING AND POURING METAL

    DOEpatents

    Harris, F.A.

    1958-02-25

    This patent relates to a crucible for melting and pouring a metal under controlled atmospheric conditions. The crucible has a frangible plug in the bottom and a retaining device to prevent the entrance of the broken portions of the plug into the mold without interfering with the flow of the melt. After the charge has been melted, a knockout rod is lowered through the charge and forced against the frangible plug sufficiently to break off the closure disk along a previously scored line. The disk drops onto a retaining grid large enough to permit the flow of metal around the disk and into the mold below. Thts arrangement elimnates the entry of broken portions of the plug into the mold, thereby elimnating a common cause of imperfect castings.

  4. Ab-initio calculations on melting of thorium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, D., E-mail: debojyoti@barc.gov.in; Sahoo, B. D.; Joshi, K. D.

    2016-05-23

    Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a{sub 0}){sup 3} and (1.02a{sub 0}){sup 3} and (1.04a{sub 0}){sup 3} increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a{sub 0} = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures asmore » melting point. The melting point of 2100 K is close to the experimental value of 2023 K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.« less

  5. Method and apparatus for drawing monocrystalline ribbon from a melt

    DOEpatents

    Ciszek, Theodore F.; Schwuttke, Guenter H.

    1981-11-10

    A method and apparatus for drawing a monocrystalline ribbon or web from a melt comprising utilizing a shaping die including at least two elements spaced one from the other each having a portion thereof located below the level of the melt and another portion located above the level of the melt a distance sufficient to form a raised meniscus of melt about the corresponding element.

  6. The Onset of the Cataclysm: In Situ Dating of a Nearside Basin Impact-Melt Sheet Or, There and Not Back Again

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2017-01-01

    Impact-melt samples from Apollo Luna are 3.85-4.1 Ga, tied to Imbrium, Serenitatis, Crisium, Nectaris, plus other craters? May have been caused by destabilization of material in early solar system by dynamic forces such as gas drag and gravitational interactions Coincident with the oldest rocks on the Earth and later than the earliest isotopic signs of life on Earth. Earth was already a planet with oceans, plate tectonics, and single celled life What was happening on the Moon before 3.9 Ga affected the course of life on Earth, the structure of our Solar System, and the dynamics of extra solar planetary systems.

  7. Shock-induced superheating and melting curves of geophysically important minerals

    NASA Astrophysics Data System (ADS)

    Luo, Sheng-Nian; Ahrens, Thomas J.

    2004-06-01

    Shock-state temperature and sound-speed measurements on crystalline materials, demonstrate superheating-melting behavior distinct from equilibrium melting. Shocked solid can be superheated to the maximum temperature, Tc'. At slightly higher pressure, Pc, shock melting occurs, and induces a lower shock temperature, Tc. The Hugoniot state, ( Pc, Tc), is inferred to lie along the equilibrium melting curve. The amount of superheating achieved on Hugoniot is, ΘH+= Tc'/ Tc-1. Shock-induced superheating for a number of silicates, alkali halides and metals agrees closely with the predictions of a systematic framework describing superheating at various heating rates [Appl. Phys. Lett. 82 (12) (2003) 1836]. High-pressure melting curves are constructed by integration from ( Pc, Tc) based on the Lindemann law. We calculate the volume and entropy changes upon melting at ( Pc, Tc) assuming the R ln 2 rule ( R is the gas constant) for the disordering entropy of melting [J. Chem. Phys. 19 (1951) 93; Sov. Phys. Usp. 117 (1975) 625; Poirier, J.P., 1991. Introduction to the Physics of the Earth's Interior. Cambridge University Press, Cambridge, 102 pp.]. ( Pc, Tc) and the Lindemann melting curves are in excellent accord with diamond-anvil cell (DAC) results for NaCl, KBr and stishovite. But significant discrepancies exist for transition metals. If we extrapolate the DAC melting data [Phys. Rev. B 63 (2001) 132104] for transition metals (Fe, V, Mo, W and Ta) to 200-400 GPa where shock melting occurs, shock temperature measurement and calculation would indicate ΘH+˜0.7-2.0. These large values of superheating are not consistent with the superheating systematics. The discrepancies could be reconciled by possible solid-solid phase transitions at high pressures. In particular, this work suggests that Fe undergoes a possible solid-solid phase transition at ˜200 GPa and melts at ˜270 GPa upon shock wave loading, and the melting temperature is ˜6300 K at 330 GPa.

  8. Melting in Superheated Silicon Films Under Pulsed-Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Jin Jimmy

    This thesis examines melting in superheated silicon films in contact with SiO2 under pulsed laser irradiation. An excimer-laser pulse was employed to induce heating of the film by irradiating the film through the transparent fused-quartz substrate such that most of the beam energy was deposited near the bottom Si-SiO2 interface. Melting dynamics were probed via in situ transient reflectance measurements. The temperature profile was estimated computationally by incorporating temperature- and phase-dependent physical parameters and the time-dependent intensity profile of the incident excimer-laser beam obtained from the experiments. The results indicate that a significant degree of superheating occurred in the subsurface region of the film. Surface-initiated melting was observed in spite of the internal heating scheme, which resulted in the film being substantially hotter at and near the bottom Si-SiO2 interface. By considering that the surface melts at the equilibrium melting point, the solid-phase-only heat-flow analysis estimates that the bottom Si-SiO2 interface can be superheated by at least 220 K during excimer-laser irradiation. It was found that at higher laser fluences (i.e., at higher temperatures), melting can be triggered internally. At heating rates of 1010 K/s, melting was observed to initiate at or near the (100)-oriented Si-SiO2 interface at temperatures estimated to be over 300 K above the equilibrium melting point. Based on theoretical considerations, it was deduced that melting in the superheated solid initiated via a nucleation and growth process. Nucleation rates were estimated from the experimental data using Johnson-Mehl-Avrami-Kolmogorov (JMAK) analysis. Interpretation of the results using classical nucleation theory suggests that nucleation of the liquid phase occurred via the heterogeneous mechanism along the Si-SiO2 interface.

  9. Drivers and environmental responses to the changing annual snow cycle of northern Alaska

    USGS Publications Warehouse

    Cox, Christopher J.; Stone, Robert S.; Douglas, David C.; Stanitski, Diane; Divoky, George J.; Dutton, Geoff S.; Sweeney, Colm; George, J. Craig; Longenecker, David U.

    2017-01-01

    On the North Slope of Alaska, earlier spring snowmelt and later onset of autumn snow accumulation are tied to atmospheric dynamics and sea ice conditions, and result in environmental responses.Linkages between atmospheric, ecological and biogeochemical variables in the changing Arctic are analyzed using long-term measurements near Utqiaġvik (formerly Barrow), Alaska. Two key variables are the date when snow disappears in spring, as determined primarily by atmospheric dynamics, precipitation, air temperature, winter snow accumulation and cloud cover, as well as the date of onset of snowpack in autumn that is additionally influenced by ocean temperature and sea ice extent. In 2015 and 2016 the snow melted early at Utqiaġvik due mainly to anomalous warmth during May of both years attributed to atmospheric circulation patterns, with 2016 having the record earliest snowmelt. These years are discussed in the context of a 115-year snowmelt record at Utqiaġvik with a trend toward earlier melting since the mid- 1970s (-2.86 days/decade, 1975-2016). At nearby Cooper Island, where a colony of seabirds, Black Guillemots, have been monitored since 1975, timing of egg laying is correlated with Utqiaġvik snowmelt with 2015 and 2016 being the earliest years in the 42-year record. Ice-out at a nearby freshwater lagoon is also correlated with Utqiaġvik snowmelt. The date when snow begins to accumulate in autumn at Utqiaġvik shows a trend towards later dates (+4.6 days/decade, 1975-2016), with 2016 the latest on record. The relationships between the lengthening snow-free season and regional phenology, soil temperatures, fluxes of gases from the tundra, and to regional sea ice conditions are discussed. Better understanding of these interactions is needed to predict the annual snow cycles in the region at seasonal to decadal scales, and to anticipate coupled environmental responses.

  10. Evaluation of the physicochemical properties and compaction behavior of melt granules produced in microwave-induced and conventional melt granulation in a single pot high shear processor.

    PubMed

    Loh, Z H; Sia, B Y; Heng, Paul W S; Lee, C C; Liew, Celine V

    2011-12-01

    Recently, microwave-induced melt granulation was shown to be a promising alternative to conventional melt granulation with improved process monitoring capabilities. This study aimed to compare the physicochemical and compaction properties of granules produced from microwave-induced and conventional melt granulation. Powder admixtures comprising equivalent proportions by weight of lactose 200 M and anhydrous dicalcium phosphate were granulated with polyethylene glycol 3350 under the influence of microwave-induced and conventional heating in a 10-L single pot high shear processor. The properties of the granules and compacts produced from the two processes were compared. Relative to conventional melt granulation, the rates at which the irradiated powders heated up in microwave-induced melt granulation were lower. Agglomerate growth proceeded at a slower rate, and this necessitated longer massing durations for growth induction. These factors prompted greater evaporative moisture losses from the melt granules. Additionally, nonuniform heating of the powders under the influence of microwaves led to increased inter-batch variations in the binder contents of resultant melt granules and a reliance of content homogeneity on massing duration. Agglomerate growth proceeded more rapidly under the influence of conventional heating due to the enhanced heating capabilities of the powders. Melt granules produced using the conventional method possessed higher moisture contents and improved content homogeneity. The compaction behavior of melt granules were affected by their mean sizes, porosities, flow properties, binder, and moisture contents. The last two factors were responsible for the disparities in compaction behavior of melt granules produced from microwave-induced and conventional melt granulation.

  11. Device and method for skull-melting depth measurement

    DOEpatents

    Lauf, Robert J.; Heestand, Richard L.

    1993-01-01

    A method of skull-melting comprises the steps of: a. providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice in connecting the interior and the underside; b. disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; c. providing a signal energy transducer in signal communication with the waveguide; d. introducing into the vessel a molten working material; e. carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; f. activating the signal energy transducer so that a signal is propagated through the waveguide; and, g. controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  12. [MSW incineration fly ash melting by DSC-DTA].

    PubMed

    Li, Rundong; Chi, Yong; Li, Shuiqing; Wang, Lei; Yan, Jianhua; Cen, Kefa

    2002-07-01

    Melting characteristics of two kinds of municipal solid waste incineration(MSWI) fly ash were studied in this paper by high temperature differential scanning calorimetry and differential temperature analysis. MSWI fly ash was considered as hazardous waste because it contains heavy metals and dioxins. The experiments were performed in either N2 or O2 atmosphere in temperature range of 20 degrees C-1450 degrees C at various heating rates. Two different MSW incineration fly ashes used in the experiments were collected from our country and France respectively. The process of fly ash melting exhibits two reactions occurring at temperature ranges of about 480 degrees C-670 degrees C and 1136 degrees C-1231 degrees C, respectively. The latent heat of polymorphic transformation and fusion were approximately 20 kJ/kg and 700 kJ/kg, while the total heat required for melting process was about 1800 kJ/kg. The paper also studied effect of CaO to melting. A heat flux thermodynamic model for fly ash melting was put forward and it agrees well with experimental data.

  13. Hydrodynamic instabilities of flows involving melting in under-saturated porous media

    NASA Astrophysics Data System (ADS)

    Sajjadi, M.; Azaiez, J.

    2016-03-01

    The process of melting in partially saturated porous media is modeled for flow displacements prone to hydrodynamic instabilities due to adverse mobility ratios. The effects of the development of instabilities on the melting process are investigated through numerical simulations as well as analytical solution to unravel the physics of the flow. The effects of melting parameters, namely, the melting potential of the fluid, the rate of heat transfer to the frozen phase, and the saturation of the frozen material along with the parameters defining the viscous forces, i.e., the thermal and solutal log mobility ratios are examined. Results are presented for different scenarios and the enhancement or attenuation of instabilities are discussed based on the dominant physical mechanisms. Beside an extensive qualitative analysis, the performance of different displacement scenarios is compared with respect to the melt production and the extent of contribution of instability to the enhancement of melting. It is shown that the hydrodynamic instabilities tend in general to enhance melting but the rate of enhancement depends on the interplay between the instabilities and melting at the thermal front. A larger melting potential and a smaller saturation of the frozen material tend to increase the contribution of instability to melting.

  14. Partially Melted UHP Eclogite in the Sulu Orogenic Belt, China and its rheological significance to deep continental subduction: Micro- to Macro-scale Evidence

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Kusky, Timothy; Polat, Ali; Wang, Songjie; Jiang, Xingfu; Zong, Keqing; Wang, Junpeng; Deng, Hao; Fu, Jianmin

    2015-04-01

    Partially Melted UHP Eclogite in the Sulu Orogenic Belt, China and its rheological significance to deep continental subduction: Micro- to Macro-scale Evidence Numerous studies have described partial melting processes in low-high pressure meta-sedimentary rocks, some of which may generate melts that coalesce to form plutons. However, migmatized ultrahigh pressure (UHP) eclogite has never been clearly described from the microscale to macroscale, though experimental studies prove dehydration partial melting of eclogite at high pressure condition1 and low degrees of partially melted eclogite have been reported from the Qaidam UHP orogenic belt in NW China2,3 or inferred from multiphase solid (MS) inclusions within eclogite4 in the Sulu UHP belt. We present field-based documentation of decompression partial melting of UHP eclogite from Yangkou and General's Hill, Sulu Orogen. Migmatized eclogite shows successive stages of anatexis, initially starting from intragranular and grain boundary melt droplets, which grow into a 3D interconnected intergranular network, then segregate and accumulate in pressure shadow areas, and finally merge to form melt channels and dikes that transport melts to upper lithospheric levels. In-situ phengite breakdown-induced partial melting is directly identified by MS inclusions of Kfs+ barium-bearing Kfs + Pl in garnet, connected by 4-10 μm wide veinlets consisting of Bt + Kfs + Pl next to the phengite. Intergranular veinlets of plagioclase + K-feldspar first form isolated beads of melt along grain boundaries and triple junctions of quartz, and with higher degrees of melting, eventually form interconnected 3D networks along grain boundaries in the leucosome, allowing melt to escape from the intergranular realm and collect in low-stress areas. U-Pb (zircon) dating and petrological analyses on residue and leucocratic rocks shows that partial melting occurred at 228-219 Ma, shortly after peak UHP metamorphism (~230 Ma), and at depths of 30-90 km

  15. Probing the atomic structure of basaltic melts generated by partial melting of upper mantle peridotite (KLB-1): Insights from high-resolution solid-state NMR study

    NASA Astrophysics Data System (ADS)

    Park, S. Y.; Lee, S. K.

    2015-12-01

    Probing the structural disorder in multi-component silicate glasses and melts with varying composition is essential to reveal the change of macroscopic properties in natural silicate melts. While a number of NMR studies for the structure of multi-component silicate glasses and melts including basaltic and andesitic glasses have been reported (e.g., Park and Lee, Geochim. Cosmochim. Acta, 2012, 80, 125; Park and Lee, Geochim. Cosmochim. Acta, 2014, 26, 42), many challenges still remain. The composition of multi-component basaltic melts vary with temperature, pressure, and melt fraction (Kushiro, Annu. Rev. Earth Planet. Sci., 2001, 71, 107). Especially, the eutectic point (the composition of first melt) of nepheline-forsterite-quartz (the simplest model of basaltic melts) moves with pressure from silica-saturated to highly undersaturated and alkaline melts. The composition of basaltic melts generated by partial melting of upper mantle peridotite (KLB-1, the xenolith from Kilbourne Hole) also vary with pressure. In this study we report experimental results for the effects of composition on the atomic structure of Na2O-MgO-Al2O3-SiO2 (NMAS) glasses in nepheline (NaAlSiO4)-forsterite (Mg2SiO4)-quartz (SiO2) eutectic composition and basaltic glasses generated by partial melting of upper mantle peridotite (KLB-1) using high-resolution multi-nuclear solid-state NMR. The Al-27 3QMAS (triple quantum magic angle spinning) NMR spectra of NMAS glasses in nepheline-forsterite-quartz eutectic composition show only [4]Al. The Al-27 3QMAS NMR spectra of KLB-1 basaltic glasses show mostly [4]Al and a non-negligible fraction of [5]Al. The fraction of [5]Al, the degree of configurational disorder, increases from 0 at XMgO [MgO/(MgO+Al2O3)]=0.55 to ~3% at XMgO=0.79 in KLB-1 basaltic glasses while only [4]Al are observed in nepheline-forsterite-quartz eutectic composition. The current experimental results provide that the fraction of [5]Al abruptly increases by the effect of

  16. Oceanic mantle rocks reveal evidence for an ancient, 1.2-1.3 Ga global melting event

    NASA Astrophysics Data System (ADS)

    Dijkstra, A. H.; Sergeev, D.; McTaminey, L.; Dale, C. W.; Meisel, T. C.

    2011-12-01

    It is now increasingly being recognized that many oceanic peridotites are refertilized harzburgites, and that the refertilization often masks an extremely refractory character of the original mantle rock 'protolith'. Oceanic peridotites are, when the effects of melt refertilization are undone, often too refractory to be simple mantle melting residues after the extraction of mid-ocean ridge basalts at a spreading center. Rhenium-osmium isotope analysis is a powerful method to look through the effects of refertilization and to obtain constraints on the age of the melting that produced the refractory mantle protolith. Rhenium-depletion model ages of such anomalously refractory oceanic mantle rocks - found as abyssal peridotites or as mantle xenoliths on ocean islands - are typically >1 Ga, i.e., much older than the ridge system at which they were emplaced. In my contribution I will show results from two case studies of refertilized anciently depleted mantle rocks (Macquarie Island 'abyssal' peridotites and Lanzarote mantle xenoliths). Interestingly, very refractory oceanic mantle rocks from sites all around the world show recurring evidence for a Mesoproterozoic (~1.2-1.3 Ga) melting event [1]. Therefore, oceanic mantle rocks seem to preserve evidence for ancient melting events of global significance. Alternatively, such mantle rocks may be samples of rafts of ancient continental lithospheric mantle. Laser-ablation osmium isotope 'dating' of large populations of individual osmium-bearing alloys from mantle rocks is the key to better constrain the nature and significance of these ancient depletion events. Osmium-bearing alloys form when mantle rocks are melted to high-degrees. We have now extracted over >250 detrital osmium alloys from placer gold occurrences in the river Rhine. These alloys are derived from outcrops of ophiolitic mantle rocks in the Alps, which include blocks of mantle rocks emplaced within the Tethys Ocean, and ultramafic lenses of unknown

  17. The Melting Point of Palladium Using Miniature Fixed Points of Different Ceramic Materials: Part II—Analysis of Melting Curves and Long-Term Investigation

    NASA Astrophysics Data System (ADS)

    Edler, F.; Huang, K.

    2016-12-01

    Fifteen miniature fixed-point cells made of three different ceramic crucible materials (Al2O3, ZrO2, and Al2O3(86 %)+ZrO2(14 %)) were filled with pure palladium and used to calibrate type B thermocouples (Pt30 %Rh/Pt6 %Rh). A critical point by using miniature fixed points with small amounts of fixed-point material is the analysis of the melting curves, which are characterized by significant slopes during the melting process compared to flat melting plateaus obtainable using conventional fixed-point cells. The method of the extrapolated starting point temperature using straight line approximation of the melting plateau was applied to analyze the melting curves. This method allowed an unambiguous determination of an electromotive force (emf) assignable as melting temperature. The strict consideration of two constraints resulted in a unique, repeatable and objective method to determine the emf at the melting temperature within an uncertainty of about 0.1 μ V. The lifetime and long-term stability of the miniature fixed points was investigated by performing more than 100 melt/freeze cycles for each crucible of the different ceramic materials. No failure of the crucibles occurred indicating an excellent mechanical stability of the investigated miniature cells. The consequent limitation of heating rates to values below {± }3.5 K min^{-1} above 1100° C and the carefully and completely filled crucibles (the liquid palladium occupies the whole volume of the crucible) are the reasons for successfully preventing the crucibles from breaking. The thermal stability of the melting temperature of palladium was excellent when using the crucibles made of Al2O3(86 %)+ZrO2(14 %) and ZrO2. Emf drifts over the total duration of the long-term investigation were below a temperature equivalent of about 0.1 K-0.2 K.

  18. Low-Melt Polyamic Acid Based Powder Coatings

    NASA Technical Reports Server (NTRS)

    Jolley, Scott T. (Inventor)

    2017-01-01

    The present invention is directed to a method for powder coating a metal substrate using a low-melt polyamic acid (PAA) polymer that readily imidizes to polyimides. These low-melt PAAs have been shown to be useful in resins applied as powder coatings to metal surfaces. The resin includes an end-capping material capable of providing crosslinking functionality to at least one end of the low-melt PAA polymer. The end-capping material functions dually as a polymerization chain terminator and crosslinking agent, thus producing resins that have molecular weights low enough to flow well and form good cured films applicable for use in powder coating.

  19. Supercoil Formation During DNA Melting

    NASA Astrophysics Data System (ADS)

    Sayar, Mehmet; Avsaroglu, Baris; Kabakcioglu, Alkan

    2009-03-01

    Supercoil formation plays a key role in determining the structure-function relationship in DNA. Biological and technological processes, such as protein synthesis, polymerase chain reaction, and microarrays relys on separation of the two strands in DNA, which is coupled to the unwinding of the supercoiled structure. This problem has been studied theoretically via Peyrard-Bishop and Poland-Scheraga type models, which include a simple representation of the DNA structural properties. In recent years, computational models, which provide a more realtistic representaion of DNA molecule, have been used to study the melting behavior of short DNA chains. Here, we will present a new coarse-grained model of DNA which is capable of simulating sufficiently long DNA chains for studying the supercoil formation during melting, without sacrificing the local structural properties. Our coarse-grained model successfully reproduces the local geometry of the DNA molecule, such as the 3'-5' directionality, major-minor groove structure, and the helical pitch. We will present our initial results on the dynamics of supercoiling during DNA melting.

  20. Maneuvering Melt Ponds

    NASA Image and Video Library

    2017-12-08

    On July 10, 2011, Don Perovich, of Cold Regions Research and Engineering Laboratory, maneuvered through melt ponds collecting optical data along the way to get a sense of the amount of sunlight reflected from sea ice and melt ponds in the Chukchi Sea. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram