Science.gov

Sample records for earlier simulation results

  1. Earlier surgical intervention in congenital heart disease results in better outcome and resource utilization.

    PubMed

    Panni, Roheena Z; Ashfaq, Awais; Amanullah, Muhammad M

    2011-12-29

    Congenital heart disease (CHD) accounts for a major proportion of disease in the pediatric age group. The objective of the study was to estimate the cost of illness associated with CHD pre, intra and postoperatively; among patients referred to a tertiary care hospital in Karachi, Pakistan. This is the first study conducted to estimate the cost of managing CHD in Pakistan. A prevalence based cost of illness study design was used to estimate the cost of cardiac surgery (corrective & palliative) for congenital heart defects in children ≤ 5 years of age from June 2006 to June 2009. A total of 120 patients were enrolled after obtaining an informed consent and the data was collected using a pre-tested questionnaire. The mean age at the time of surgery in group A (1-12 mo age) was 6.08 ± 2.80 months and in group B (1-5 yrs) was 37.10 ± 19.94 months. The cost of surgical admission was found to be significantly higher in the older group, p = 0.001. The total number and cost of post-operative outpatient visits was also higher in group B, p = 0.003. Pre and post operative hospital admissions were not found to be significantly different among the two groups, p = 0.166 and 0.627, respectively. The number of complications were found to be different between the two groups (p = 0.019). Majority of these were contributed by hemorrhage and post-operative seizures. This study concluded that significant expenditure is incurred by people with CHD; with the implication that resources could be saved by earlier detection and awareness campaigns.

  2. Adverse childhood experiences predict earlier age of drinking onset: results from a representative US sample of current or former drinkers.

    PubMed

    Rothman, Emily F; Edwards, Erika M; Heeren, Timothy; Hingson, Ralph W

    2008-08-01

    Our goal was to determine whether adverse childhood experiences predicted the age at which drinking was initiated and drinking motives in a representative sample of current or former drinkers in the United States. In 2006, a probability sample of 3592 US current or former drinkers aged 18 to 39 were surveyed. Multinomial logistic regression examined whether each of 10 adverse childhood experiences was associated with earlier ages of drinking onset, controlling for demographics, parental alcohol use, parental attitudes toward drinking, and peers' drinking in adolescence. We also examined whether there was a graded relationship between the number of adverse childhood experiences and age of drinking onset and whether adverse childhood experiences were related to self-reported motives for drinking during the first year that respondents drank. Sixty-six percent of respondents reported >or=1 adverse childhood experiences, and 19% reported experiencing >or=4. The most commonly reported adverse childhood experiences were parental separation/divorce (41.3%), living with a household member who was a problem drinker (28.7%), mental illness of a household member (24.8%), and sexual abuse (19.1%). Of the 10 specific adverse childhood experiences assessed, 5 were significantly associated with initiating drinking at or=21 years of age) after adjustment for confounders, including physical abuse, sexual abuse, having a mentally ill household member, substance abuse in the home, and parental discord or divorce. Compared with those without adverse childhood experiences, respondents with adverse childhood experiences were substantially more likely to report that they drank to cope during the first year that they used alcohol. Results suggest that children with particular adverse childhood experiences may initiate drinking earlier than their peers and that they may be more likely to drink to cope with problems (rather than for pleasure or to be

  3. [Results of Simulation Studies

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Lattice Monte Carlo and off-lattice molecular dynamics simulations of h(sub 1)t(sub 4) and h(sub 4)t(sub l) (head/tail) amphiphile solutions have been performed as a function of surfactant concentration and temperature. The lattice and off-lattice systems exhibit quite different self-assembly behavior at equivalent thermodynamic conditions. We found that in the weakly aggregating regime (no preferred-size micelles), all models yield similar micelle size distributions at the same average aggregation number, albeit at different thermodynamic conditions (temperatures). In the strongly aggregating regime, this mapping between models (through temperature adjustment) fails, and the models exhibit qualitatively different micellization behavior. Incipient micellization in a model self-associating telechelic polymer solution results in a network with a transient elastic response that decays by a two-step relaxation: the first is due to a heterogeneous jump-diffusion process involving entrapment of end-groups within well-defined clusters and this is followed by rapid diffusion to neighboring clusters and a decay (terminal relaxation) due to cluster disintegration. The viscoelastic response of the solution manifests characteristics of a glass transition and entangled polymer network.

  4. Endochondral fracture healing with external fixation in the Sost knockout mouse results in earlier fibrocartilage callus removal and increased bone volume fraction and strength.

    PubMed

    Morse, A; Yu, N Y C; Peacock, L; Mikulec, K; Kramer, I; Kneissel, M; McDonald, M M; Little, D G

    2015-02-01

    Sclerostin deficiency, via genetic knockout or anti-Sclerostin antibody treatment, has been shown to cause increased bone volume, density and strength of calluses following endochondral bone healing. However, there is limited data on the effect of Sclerostin deficiency on the formative early stage of fibrocartilage (non-bony tissue) formation and removal. In this study we extensively investigate the early fibrocartilage callus. Closed tibial fractures were performed on Sost(-/-) mice and age-matched wild type (C57Bl/6J) controls and assessed at multiple early time points (7, 10 and 14days), as well as at 28days post-fracture after bony union. External fixation was utilized, avoiding internal pinning and minimizing differences in stability stiffness, a variable that has confounded previous research in this area. Normal endochondral ossification progressed in wild type and Sost(-/-) mice with equivalent volumes of fibrocartilage formed at early day 7 and day 10 time points, and bony union in both genotypes by day 28. There were no significant differences in rate of bony union; however there were significant increases in fibrocartilage removal from the Sost(-/-) fracture calluses at day 14 suggesting earlier progression of endochondral healing. Earlier bone formation was seen in Sost(-/-) calluses over wild type with greater bone volume at day 10 (221%, p<0.01). The resultant Sost(-/-) united bony calluses at day 28 had increased bone volume fraction compared to wild type calluses (24%, p<0.05), and the strength of the fractured Sost(-/-) tibiae was greater than that that of wild type fractured tibiae. In summary, bony union was not altered by Sclerostin deficiency in externally-fixed closed tibial fractures, but fibrocartilage removal was enhanced and the resultant united bony calluses had increased bone fraction and increased strength. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  5. SARDA HITL Simulations: System Performance Results

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam

    2012-01-01

    This presentation gives an overview of the 2012 SARDA human-in-the-loop simulation, and presents a summary of system performance results from the simulation, including delay, throughput and fuel consumption

  6. Reliable results from stochastic simulation models

    Treesearch

    Donald L., Jr. Gochenour; Leonard R. Johnson

    1973-01-01

    Development of a computer simulation model is usually done without fully considering how long the model should run (e.g. computer time) before the results are reliable. However construction of confidence intervals (CI) about critical output parameters from the simulation model makes it possible to determine the point where model results are reliable. If the results are...

  7. DKIST Adaptive Optics System: Simulation Results

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Schmidt, Dirk

    2016-05-01

    The 4 m class Daniel K. Inouye Solar Telescope (DKIST), currently under construction, will be equipped with an ultra high order solar adaptive optics (AO) system. The requirements and capabilities of such a solar AO system are beyond those of any other solar AO system currently in operation. We must rely on solar AO simulations to estimate and quantify its performance.We present performance estimation results of the DKIST AO system obtained with a new solar AO simulation tool. This simulation tool is a flexible and fast end-to-end solar AO simulator which produces accurate solar AO simulations while taking advantage of current multi-core computer technology. It relies on full imaging simulations of the extended field Shack-Hartmann wavefront sensor (WFS), which directly includes important secondary effects such as field dependent distortions and varying contrast of the WFS sub-aperture images.

  8. Density- and luminosity-functions for UBV-photometric discand halo-stars in SA 54, compared with earlier RGU-results in this field

    NASA Astrophysics Data System (ADS)

    Fenkart, R.; Esin-Yilmaz, F.

    1983-12-01

    Space density- and luminosity-functions for the photometric halo- and disc-populations in the test-field SA 54 of the Basle Halo Program have been derived on the basis of UBV observations of the same 1377 stars used already for the corresponding RGU investigation by Fenkart (1968). The statistical method for separating the photometrically defined populations and for attributing absolute magnitudes to their members developed, described and first applied to SA 51 in RGU by Becker (1965) has been adapted for use in the UBV system. The (U-B, B- V) diagrams for consecutive intervals in apparent V-magnitude of figures 2a to f contain, contrary to what was first expected in this system, substantial numbers of stars in the < blanketing-region above and to the right of the late branch of the two-colour diagram main-sequence. The density-functions for different MVintervals within the overall interval < 3m, 7m> covered by this investigation for halo and disc are given in tables IIa and b, and plotted in figures 3 and 4, respectively. The corresponding luminosity-functions within the partial volume up to 1 kpc from the sun over the same overall MVinterval are given together with Glieses (1969) solar values for population I, in table III, and plotted in figure 5. The overall density-functions (3m ≦ MV ≦ 7m) for both populations can be and are compared with the corresponding ones (3m ≦ MG ≦ 8m) in RGU (last column in table II) in figures 6 and 7, for halo and disc, respectively. The coincidence of the density results between UBV and RGU is much better for both populations than the mean misidentification rate per system derived in section 5 would let us expect, suggesting a statistically fairly repartition of the misidentifications with respect to absolute magnitudes and distances.

  9. Cassini radar : system concept and simulation results

    NASA Astrophysics Data System (ADS)

    Melacci, P. T.; Orosei, R.; Picardi, G.; Seu, R.

    1998-10-01

    The Cassini mission is an international venture, involving NASA, the European Space Agency (ESA) and the Italian Space Agency (ASI), for the investigation of the Saturn system and, in particular, Titan. The Cassini radar will be able to see through Titan's thick, optically opaque atmosphere, allowing us to better understand the composition and the morphology of its surface, but the interpretation of the results, due to the complex interplay of many different factors determining the radar echo, will not be possible without an extensive modellization of the radar system functioning and of the surface reflectivity. In this paper, a simulator of the multimode Cassini radar will be described, after a brief review of our current knowledge of Titan and a discussion of the contribution of the Cassini radar in answering to currently open questions. Finally, the results of the simulator will be discussed. The simulator has been implemented on a RISC 6000 computer by considering only the active modes of operation, that is altimeter and synthetic aperture radar. In the instrument simulation, strict reference has been made to the present planned sequence of observations and to the radar settings, including burst and single pulse duration, pulse bandwidth, pulse repetition frequency and all other parameters which may be changed, and possibly optimized, according to the operative mode. The observed surfaces are simulated by a facet model, allowing the generation of surfaces with Gaussian or non-Gaussian roughness statistic, together with the possibility of assigning to the surface an average behaviour which can represent, for instance, a flat surface or a crater. The results of the simulation will be discussed, in order to check the analytical evaluations of the models of the average received echoes and of the attainable performances. In conclusion, the simulation results should allow the validation of the theoretical evaluations of the capabilities of microwave instruments, when

  10. Titan's organic chemistry: Results of simulation experiments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  11. Numerical simulations of catastrophic disruption: Recent results

    NASA Technical Reports Server (NTRS)

    Benz, W.; Asphaug, E.; Ryan, E. V.

    1994-01-01

    Numerical simulations have been used to study high velocity two-body impacts. In this paper, a two-dimensional Largrangian finite difference hydro-code and a three-dimensional smooth particle hydro-code (SPH) are described and initial results reported. These codes can be, and have been, used to make specific predictions about particular objects in our solar system. But more significantly, they allow us to explore a broad range of collisional events. Certain parameters (size, time) can be studied only over a very restricted range within the laboratory; other parameters (initial spin, low gravity, exotic structure or composition) are difficult to study at all experimentally. The outcomes of numerical simulations lead to a more general and accurate understanding of impacts in their many forms.

  12. First results from simulations of supersymmetric lattices

    NASA Astrophysics Data System (ADS)

    Catterall, Simon

    2009-01-01

    We conduct the first numerical simulations of lattice theories with exact supersymmetry arising from the orbifold constructions of \\cite{Cohen:2003xe,Cohen:2003qw,Kaplan:2005ta}. We consider the Script Q = 4 theory in D = 0,2 dimensions and the Script Q = 16 theory in D = 0,2,4 dimensions. We show that the U(N) theories do not possess vacua which are stable non-perturbatively, but that this problem can be circumvented after truncation to SU(N). We measure the distribution of scalar field eigenvalues, the spectrum of the fermion operator and the phase of the Pfaffian arising after integration over the fermions. We monitor supersymmetry breaking effects by measuring a simple Ward identity. Our results indicate that simulations of Script N = 4 super Yang-Mills may be achievable in the near future.

  13. Fast Plasma Instrument for MMS: Simulation Results

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Adrian, Mark L.; Lobell, James V.; Simpson, David G.; Barrie, Alex; Winkert, George E.; Yeh, Pen-Shu; Moore, Thomas E.

    2008-01-01

    Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. The Dual Electron Spectrometer (DES) of the Fast Plasma Instrument (FPI) for MMS meets these demanding requirements by acquiring the electron velocity distribution functions (VDFs) for the full sky with high-resolution angular measurements every 30 ms. This will provide unprecedented access to electron scale dynamics within the reconnection diffusion region. The DES consists of eight half-top-hat energy analyzers. Each analyzer has a 6 deg. x 11.25 deg. Full-sky coverage is achieved by electrostatically stepping the FOV of each of the eight sensors through four discrete deflection look directions. Data compression and burst memory management will provide approximately 30 minutes of high time resolution data during each orbit of the four MMS spacecraft. Each spacecraft will intelligently downlink the data sequences that contain the greatest amount of temporal structure. Here we present the results of a simulation of the DES analyzer measurements, data compression and decompression, as well as ground-based analysis using as a seed re-processed Cluster/PEACE electron measurements. The Cluster/PEACE electron measurements have been reprocessed through virtual DES analyzers with their proper geometrical, energy, and timing scale factors and re-mapped via interpolation to the DES angular and energy phase-space sampling measurements. The results of the simulated DES measurements are analyzed and the full moments of the simulated VDFs are compared with those obtained from the Cluster/PEACE spectrometer using a standard quadrature moment, a newly implemented spectral spherical harmonic method, and a singular value decomposition method. Our preliminary moment calculations show a remarkable agreement within the uncertainties of the measurements, with the

  14. Multiple Optical Filter Design Simulation Results

    NASA Astrophysics Data System (ADS)

    Mendelsohn, J.; Englund, D. C.

    1986-10-01

    In this paper we continue our investigation of the application of matched filters to robotic vision problems. Specifically, we are concerned with the tray-picking problem. Our principal interest in this paper is the examination of summation affects which arise from attempting to reduce the matched filter memory size by averaging of matched filters. While the implementation of matched filtering theory to applications in pattern recognition or machine vision is ideally through the use of optics and optical correlators, in this paper the results were obtained through a digital simulation of the optical process.

  15. An earlier de motu cordis.

    PubMed Central

    Daly, Walter J.

    2004-01-01

    Thirteenth century medical science, like medieval scholarship in general, was directed at reconciliation of Greek philosophy/science with prevailing medieval theology and philosophy. Peter of Spain [later Pope John XXI] was the leading medical scholar of his time. Peter wrote a long book on the soul. Imbedded in it was a chapter on the motion of the heart. Peter's De Motu was based on his own medical experience and Galen's De Usu Partium and De Usu Respirationis and De Usu Pulsuum. This earlier De Motu defines a point on the continuum of intellectual development leading to us and into the future. Thirteenth century scholarship relied on past authority to a degree that continues to puzzle and beg explanation. Images Fig. 1 PMID:17060956

  16. Medical Simulation Practices 2010 Survey Results

    NASA Technical Reports Server (NTRS)

    McCrindle, Jeffrey J.

    2011-01-01

    Medical Simulation Centers are an essential component of our learning infrastructure to prepare doctors and nurses for their careers. Unlike the military and aerospace simulation industry, very little has been published regarding the best practices currently in use within medical simulation centers. This survey attempts to provide insight into the current simulation practices at medical schools, hospitals, university nursing programs and community college nursing programs. Students within the MBA program at Saint Joseph's University conducted a survey of medical simulation practices during the summer 2010 semester. A total of 115 institutions responded to the survey. The survey resus discuss overall effectiveness of current simulation centers as well as the tools and techniques used to conduct the simulation activity

  17. Earlier snowmelt and warming lead to earlier but not necessarily more plant growth.

    PubMed

    Livensperger, Carolyn; Steltzer, Heidi; Darrouzet-Nardi, Anthony; Sullivan, Patrick F; Wallenstein, Matthew; Weintraub, Michael N

    2016-01-01

    Climate change over the past ∼50 years has resulted in earlier occurrence of plant life-cycle events for many species. Across temperate, boreal and polar latitudes, earlier seasonal warming is considered the key mechanism leading to earlier leaf expansion and growth. Yet, in seasonally snow-covered ecosystems, the timing of spring plant growth may also be cued by snowmelt, which may occur earlier in a warmer climate. Multiple environmental cues protect plants from growing too early, but to understand how climate change will alter the timing and magnitude of plant growth, experiments need to independently manipulate temperature and snowmelt. Here, we demonstrate that altered seasonality through experimental warming and earlier snowmelt led to earlier plant growth, but the aboveground production response varied among plant functional groups. Earlier snowmelt without warming led to early leaf emergence, but often slowed the rate of leaf expansion and had limited effects on aboveground production. Experimental warming alone had small and inconsistent effects on aboveground phenology, while the effect of the combined treatment resembled that of early snowmelt alone. Experimental warming led to greater aboveground production among the graminoids, limited changes among deciduous shrubs and decreased production in one of the dominant evergreen shrubs. As a result, we predict that early onset of the growing season may favour early growing plant species, even those that do not shift the timing of leaf expansion. Published by Oxford University Press on behalf of the Annals of Botany Company.

  18. Exploring Space Physics Concepts Using Simulation Results

    NASA Astrophysics Data System (ADS)

    Gross, N. A.

    2008-05-01

    The Center for Integrated Space Weather Modeling (CISM), a Science and Technology Center (STC) funded by the National Science Foundation, has the goal of developing a suite of integrated physics based computer models of the space environment that can follow the evolution of a space weather event from the Sun to the Earth. In addition to the research goals, CISM is also committed to training the next generation of space weather professionals who are imbued with a system view of space weather. This view should include an understanding of both helio-spheric and geo-space phenomena. To this end, CISM offers a yearly Space Weather Summer School targeted to first year graduate students, although advanced undergraduates and space weather professionals have also attended. This summer school uses a number of innovative pedagogical techniques including devoting each afternoon to a computer lab exercise that use results from research quality simulations and visualization techniques, along with ground based and satellite data to explore concepts introduced during the morning lectures. These labs are suitable for use in wide variety educational settings from formal classroom instruction to outreach programs. The goal of this poster is to outline the goals and content of the lab materials so that instructors may evaluate their potential use in the classroom or other settings.

  19. [An earlier diagnosis of depression].

    PubMed

    Campagne, D M

    Data of the last decade indicate that, in the Western world and also in Spain, an important part of general practicioners' consultations are related to mental health, but depression is consistently underdiagnosed. Causes are lack of time and back-up, as well as lack of specific training. In Spain, there is no national health service primary care database with actualized clinical information as to mental health. There is evident clinical interest in a more agile diagnostic, resulting from a recollection of data from voluntary selective screening and continuing evaluation of adult depression along the model used by other National Health Systems. Copyright © 2017 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Early full weight-bearing versus 6-week partial weight-bearing after open wedge high tibial osteotomy leads to earlier improvement of the clinical results: a prospective, randomised evaluation.

    PubMed

    Schröter, S; Ateschrang, A; Löwe, W; Nakayama, H; Stöckle, U; Ihle, C

    2017-01-01

    Open wedge high tibial osteotomy is a widespread treatment option in patients with varus malalignment and medial compartment osteoarthritis. There is no standardised protocol for post-operative rehabilitation available. The purpose of this study was to compare two post-operative rehabilitation protocols and to evaluate the clinical outcome of early full weight-bearing after open wedge HTO. One hundred and twenty consecutive patients with varus malalignment and medial compartment osteoarthritis received an open wedge HTO using an angular locking plate fixation between December 2008 and December 2011. All patients were assigned randomly into one of two groups with different post-operative rehabilitation protocols (11-day vs. 6-week 20-kg partial weight-bearing). Clinical outcome was evaluated using established instruments (Lequesne, Lysholm, HSS and IKDC scores) preoperatively, 6, 12 and 18 months post-operatively. Deformity analysis was performed preoperatively and during follow-up. All clinical scores showed a significant pre- to post-operative improvement. After 6 months, there was a higher improvement in the group of early full weight-bearing. The difference between preoperative and 6-month follow-up for the group with early full weight-bearing and for the group with 20-kg PWB for 6 weeks was 28 ± 26 and 18 ± 22, respectively, for the Lysholm score and -5.0 ± 5.1 and -3.0 ± 3.6, respectively, for the Lequesne score. Early full weight-bearing (11-day 20-kg partial weight-bearing) after open wedge HTO without bone graft leads to earlier improvement of the clinical results and can be recommended for post-operative rehabilitation after open wedge HTO and fixation with an angular locking plate. Therapeutic study, Level I.

  1. [Initial results with the Munich knee simulator].

    PubMed

    Frey, M; Riener, R; Burgkart, R; Pröll, T

    2002-01-01

    In orthopaedics more than 50 different clinical knee joint evaluation tests exist that have to be trained in orthopaedic education. Often it is not possible to obtain sufficient practical training in a clinical environment. The training can be improved by Virtual Reality technology. In the frame of the Munich Knee Joint Simulation project an artificial leg with anatomical properties is attached by a force-torque sensor to an industrial robot. The recorded forces and torques are the input for a simple biomechanical model of the human knee joint. The robot is controlled in such way that the user gets the feeling he moves a real leg. The leg is embedded in a realistic environment with a couch and a patient on it.

  2. NREL: News - Solar Decathlon Design Presentation and Simulation Results

    Science.gov Websites

    Announced Design Presentation and Simulation Results Announced Monday, September 30, 2002 took first place in the Design Presentation and Simulation Contest at the Solar Village on the National Tech in third. Design Presentation and Simulation is one of ten contests in the Solar Decathlon, which

  3. Summarizing Simulation Results using Causally-relevant States

    PubMed Central

    Parikh, Nidhi; Marathe, Madhav; Swarup, Samarth

    2016-01-01

    As increasingly large-scale multiagent simulations are being implemented, new methods are becoming necessary to make sense of the results of these simulations. Even concisely summarizing the results of a given simulation run is a challenge. Here we pose this as the problem of simulation summarization: how to extract the causally-relevant descriptions of the trajectories of the agents in the simulation. We present a simple algorithm to compress agent trajectories through state space by identifying the state transitions which are relevant to determining the distribution of outcomes at the end of the simulation. We present a toy-example to illustrate the working of the algorithm, and then apply it to a complex simulation of a major disaster in an urban area. PMID:28042620

  4. The VIIRS Ocean Data Simulator Enhancements and Results

    NASA Technical Reports Server (NTRS)

    Robinson, Wayne D.; Patt, Fredrick S.; Franz, Bryan A.; Turpie, Kevin R.; McClain, Charles R.

    2011-01-01

    The VIIRS Ocean Science Team (VOST) has been developing an Ocean Data Simulator to create realistic VIIRS SDR datasets based on MODIS water-leaving radiances. The simulator is helping to assess instrument performance and scientific processing algorithms. Several changes were made in the last two years to complete the simulator and broaden its usefulness. The simulator is now fully functional and includes all sensor characteristics measured during prelaunch testing, including electronic and optical crosstalk influences, polarization sensitivity, and relative spectral response. Also included is the simulation of cloud and land radiances to make more realistic data sets and to understand their important influence on nearby ocean color data. The atmospheric tables used in the processing, including aerosol and Rayleigh reflectance coefficients, have been modeled using VIIRS relative spectral responses. The capabilities of the simulator were expanded to work in an unaggregated sample mode and to produce scans with additional samples beyond the standard scan. These features improve the capability to realistically add artifacts which act upon individual instrument samples prior to aggregation and which may originate from beyond the actual scan boundaries. The simulator was expanded to simulate all 16 M-bands and the EDR processing was improved to use these bands to make an SST product. The simulator is being used to generate global VIIRS data from and in parallel with the MODIS Aqua data stream. Studies have been conducted using the simulator to investigate the impact of instrument artifacts. This paper discusses the simulator improvements and results from the artifact impact studies.

  5. The VIIRS ocean data simulator enhancements and results

    NASA Astrophysics Data System (ADS)

    Robinson, Wayne D.; Patt, Frederick S.; Franz, Bryan A.; Turpie, Kevin R.; McClain, Charles R.

    2011-10-01

    The VIIRS Ocean Science Team (VOST) has been developing an Ocean Data Simulator to create realistic VIIRS SDR datasets based on MODIS water-leaving radiances. The simulator is helping to assess instrument performance and scientific processing algorithms. Several changes were made in the last two years to complete the simulator and broaden its usefulness. The simulator is now fully functional and includes all sensor characteristics measured during prelaunch testing, including electronic and optical crosstalk influences, polarization sensitivity, and relative spectral response. Also included is the simulation of cloud and land radiances to make more realistic data sets and to understand their important influence on nearby ocean color data. The atmospheric tables used in the processing, including aerosol and Rayleigh reflectance coefficients, have been modeled using VIIRS relative spectral responses. The capabilities of the simulator were expanded to work in an unaggregated sample mode and to produce scans with additional samples beyond the standard scan. These features improve the capability to realistically add artifacts which act upon individual instrument samples prior to aggregation and which may originate from beyond the actual scan boundaries. The simulator was expanded to simulate all 16 M-bands and the EDR processing was improved to use these bands to make an SST product. The simulator is being used to generate global VIIRS data from and in parallel with the MODIS Aqua data stream. Studies have been conducted using the simulator to investigate the impact of instrument artifacts. This paper discusses the simulator improvements and results from the artifact impact studies.

  6. International benchmarking of longitudinal train dynamics simulators: results

    NASA Astrophysics Data System (ADS)

    Wu, Qing; Spiryagin, Maksym; Cole, Colin; Chang, Chongyi; Guo, Gang; Sakalo, Alexey; Wei, Wei; Zhao, Xubao; Burgelman, Nico; Wiersma, Pier; Chollet, Hugues; Sebes, Michel; Shamdani, Amir; Melzi, Stefano; Cheli, Federico; di Gialleonardo, Egidio; Bosso, Nicola; Zampieri, Nicolò; Luo, Shihui; Wu, Honghua; Kaza, Guy-Léon

    2018-03-01

    This paper presents the results of the International Benchmarking of Longitudinal Train Dynamics Simulators which involved participation of nine simulators (TABLDSS, UM, CRE-LTS, TDEAS, PoliTo, TsDyn, CARS, BODYSIM and VOCO) from six countries. Longitudinal train dynamics results and computing time of four simulation cases are presented and compared. The results show that all simulators had basic agreement in simulations of locomotive forces, resistance forces and track gradients. The major differences among different simulators lie in the draft gear models. TABLDSS, UM, CRE-LTS, TDEAS, TsDyn and CARS had general agreement in terms of the in-train forces; minor differences exist as reflections of draft gear model variations. In-train force oscillations were observed in VOCO due to the introduction of wheel-rail contact. In-train force instabilities were sometimes observed in PoliTo and BODYSIM due to the velocity controlled transitional characteristics which could have generated unreasonable transitional stiffness. Regarding computing time per train operational second, the following list is in order of increasing computing speed: VOCO, TsDyn, PoliTO, CARS, BODYSIM, UM, TDEAS, CRE-LTS and TABLDSS (fastest); all simulators except VOCO, TsDyn and PoliTo achieved faster speeds than real-time simulations. Similarly, regarding computing time per integration step, the computing speeds in order are: CRE-LTS, VOCO, CARS, TsDyn, UM, TABLDSS and TDEAS (fastest).

  7. Reconstructing the ideal results of a perturbed analog quantum simulator

    NASA Astrophysics Data System (ADS)

    Schwenk, Iris; Reiner, Jan-Michael; Zanker, Sebastian; Tian, Lin; Leppäkangas, Juha; Marthaler, Michael

    2018-04-01

    Well-controlled quantum systems can potentially be used as quantum simulators. However, a quantum simulator is inevitably perturbed by coupling to additional degrees of freedom. This constitutes a major roadblock to useful quantum simulations. So far there are only limited means to understand the effect of perturbation on the results of quantum simulation. Here we present a method which, in certain circumstances, allows for the reconstruction of the ideal result from measurements on a perturbed quantum simulator. We consider extracting the value of the correlator 〈Ôi(t ) Ôj(0 ) 〉 from the simulated system, where Ôi are the operators which couple the system to its environment. The ideal correlator can be straightforwardly reconstructed by using statistical knowledge of the environment, if any n -time correlator of operators Ôi of the ideal system can be written as products of two-time correlators. We give an approach to verify the validity of this assumption experimentally by additional measurements on the perturbed quantum simulator. The proposed method can allow for reliable quantum simulations with systems subjected to environmental noise without adding an overhead to the quantum system.

  8. Computer simulation results of attitude estimation of earth orbiting satellites

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1976-01-01

    Computer simulation results of attitude estimation of Earth-orbiting satellites (including Space Telescope) subjected to environmental disturbances and noises are presented. Decomposed linear recursive filter and Kalman filter were used as estimation tools. Six programs were developed for this simulation, and all were written in the basic language and were run on HP 9830A and HP 9866A computers. Simulation results show that a decomposed linear recursive filter is accurate in estimation and fast in response time. Furthermore, for higher order systems, this filter has computational advantages (i.e., less integration errors and roundoff errors) over a Kalman filter.

  9. Toward Explaining Earlier Retirement after 1970.

    ERIC Educational Resources Information Center

    Ippolito, Richard A.

    1990-01-01

    Rule changes in the social security system and pension plans suggest that labor force participation rates for men aged 55 to 64 fell by 20 percent from 1970 through 1986 because of the increase in social security benefits and a change in private pension rules encouraging earlier retirement. (Author/JOW)

  10. New Experimental Results of Simulating Micrometeoroid Ablation in the Laboratory

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltan; Thomas, Evan; DeLuca, Michael; Janches, Diego; Munsat, Tobin; Plane, John

    2017-04-01

    A facility is developed to simulate the ablation of micrometeoroids in laboratory conditions, which also allows measuring the ionization probability of the ablated material. An electrostatic dust accelerator is used to generate iron, aluminum and meteoric analog particles with velocities 10-50 km/s. The particles are then introduced into a cell filled with nitrogen, air or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where the partial or complete ablation of the particle occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path, allowing thus the study of the temporal resolution of the process. A new optical observation setup using a 64 channel PMT system was added to the setup to allow the observation of the ablating particle and deceleration of the particle from the neutral drag. A simple ablation model is used to match the observations. For completely ablated particles the total collected charge directly yields the ionization efficiency. The measurements using iron particles in N2 and air are in relatively good agreement with earlier data. The new experimental data using aluminum particles suggest that the neutral drag acting of the particle is smaller than expected.

  11. Reducing Older Driver Motor Vehicle Collisions via Earlier Cataract Surgery

    PubMed Central

    Mennemeyer, Stephen T.; Owsley, Cynthia; McGwin, Gerald

    2013-01-01

    Older adults who undergo cataract extraction have roughly half the rate of motor vehicle collision (MVC) involvement per mile driven compared to cataract patients who do not elect cataract surgery. Currently in the U.S., most insurers do not allow payment for cataract surgery based upon the findings of a vision exam unless accompanied by an individual’s complaint of visual difficulties that seriously interfere with driving or other daily activities and individuals themselves may be slow or reluctant to complain and seek relief. As a consequence, surgery tends to occur after significant vision problems have emerged. We hypothesize that a proactive policy encouraging cataract surgery earlier for a lesser level of complaint would significantly reduce MVCs among older drivers. We used a Monte Carlo model to simulate the MVC experience of the U.S. population from age 60 to 89 under alternative protocols for the timing of cataract surgery which we call “Current Practice” (CP) and “Earlier Surgery” (ES). Our base model finds, from a societal perspective with undiscounted 2010 dollars, that switching to ES from CP reduces by about 21% the average number of MVCs, fatalities, and MVC cost per person. The net effect on total cost – all MVC costs plus cataract surgery expenditures -- is a reduction of about 16%. Quality Adjusted Life Years would increase by about 5%. From the perspective of payers for healthcare, the switch would increase cataract surgery expenditure for ages 65+ by about 8% and for ages 60 to 64 by about 47% but these expenditures are substantially offset after age 65 by reductions in the medical and emergency services component of MVC cost. Similar results occur with discounting at 3% and with various sensitivity analyses. We conclude that a policy of ES would significantly reduce MVCs and their associated consequences. PMID:23369786

  12. Hyper-X Stage Separation: Simulation Development and Results

    NASA Technical Reports Server (NTRS)

    Reubush, David E.; Martin, John G.; Robinson, Jeffrey S.; Bose, David M.; Strovers, Brian K.

    2001-01-01

    This paper provides an overview of stage separation simulation development and results for NASA's Hyper-X program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an account of the development of the current 14 degree of freedom stage separation simulation tool (SepSim) and results from use of the tool in a Monte Carlo analysis to evaluate the risk of failure for the separation event. Results from use of the tool show that there is only a very small risk of failure in the separation event.

  13. Presenting simulation results in a nested loop plot.

    PubMed

    Rücker, Gerta; Schwarzer, Guido

    2014-12-12

    Statisticians investigate new methods in simulations to evaluate their properties for future real data applications. Results are often presented in a number of figures, e.g., Trellis plots. We had conducted a simulation study on six statistical methods for estimating the treatment effect in binary outcome meta-analyses, where selection bias (e.g., publication bias) was suspected because of apparent funnel plot asymmetry. We varied five simulation parameters: true treatment effect, extent of selection, event proportion in control group, heterogeneity parameter, and number of studies in meta-analysis. In combination, this yielded a total number of 768 scenarios. To present all results using Trellis plots, 12 figures were needed. Choosing bias as criterion of interest, we present a 'nested loop plot', a diagram type that aims to have all simulation results in one plot. The idea was to bring all scenarios into a lexicographical order and arrange them consecutively on the horizontal axis of a plot, whereas the treatment effect estimate is presented on the vertical axis. The plot illustrates how parameters simultaneously influenced the estimate. It can be combined with a Trellis plot in a so-called hybrid plot. Nested loop plots may also be applied to other criteria such as the variance of estimation. The nested loop plot, similar to a time series graph, summarizes all information about the results of a simulation study with respect to a chosen criterion in one picture and provides a suitable alternative or an addition to Trellis plots.

  14. Earlier Age at Menopause, Work and Tobacco Smoke Exposure

    PubMed Central

    Fleming, Lora E; Levis, Silvina; LeBlanc, William G; Dietz, Noella A; Arheart, Kristopher L; Wilkinson, James D; Clark, John; Serdar, Berrin; Davila, Evelyn P; Lee, David J

    2009-01-01

    Objective Earlier age at menopause onset has been associated with increased all cause, cardiovascular, and cancer mortality risks. Risk of earlier age at menopause associated with primary and secondary tobacco smoke exposure was assessed. Design Cross-sectional study using a nationally representative sample of US women. Methods 7596 women participants (representing an estimated 79 million US women) from the National Health and Nutrition Examination Survey III were asked: time since last menstrual period, occupation, and tobacco use (including home and workplace secondhand smoke (SHS) exposure). Blood cotinine and follicle-stimulating hormone (FSH) levels were assessed. Logistic regressions for the odds of earlier age at menopause, stratified on race/ethnicity in women 25-50 years and adjusted for survey design, were controlled for age, BMI, education, tobacco smoke exposure, and occupation. Results Among 5029 US women ≥ 25 years with complete data, earlier age at menopause was found among all smokers, and among service and manufacturing industry sector workers. Among women age 25-50 years, there was an increased risk of earlier age at menopause with both primary smoking and with SHS exposure, particularly among Black women. Conclusions Primary tobacco use and SHS exposure were associated with an increased odds of earlier age at menopause in a representative sample of US women. Earlier age at menopause was found for some women worker groups with greater potential occupational SHS exposure. Thus, control of SHS exposures in the workplace may decrease the risk of mortality and morbidity associated with earlier age at menopause in US women workers. PMID:18626414

  15. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-01

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  16. Results from Binary Black Hole Simulations in Astrophysics Applications

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2007-01-01

    Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.

  17. Simulation of diurnal thermal energy storage systems: Preliminary results

    NASA Astrophysics Data System (ADS)

    Katipamula, S.; Somasundaram, S.; Williams, H. R.

    1994-12-01

    This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system; and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

  18. Boundary pint corrections for variable radius plots - simulation results

    Treesearch

    Margaret Penner; Sam Otukol

    2000-01-01

    The boundary plot problem is encountered when a forest inventory plot includes two or more forest conditions. Depending on the correction method used, the resulting estimates can be biased. The various correction alternatives are reviewed. No correction, area correction, half sweep, and toss-back methods are evaluated using simulation on an actual data set. Based on...

  19. Initial Data Analysis Results for ATD-2 ISAS HITL Simulation

    NASA Technical Reports Server (NTRS)

    Lee, Hanbong

    2017-01-01

    To evaluate the operational procedures and information requirements for the core functional capabilities of the ATD-2 project, such as tactical surface metering tool, APREQ-CFR procedure, and data element exchanges between ramp and tower, human-in-the-loop (HITL) simulations were performed in March, 2017. This presentation shows the initial data analysis results from the HITL simulations. With respect to the different runway configurations and metering values in tactical surface scheduler, various airport performance metrics were analyzed and compared. These metrics include gate holding time, taxi-out in time, runway throughput, queue size and wait time in queue, and TMI flight compliance. In addition to the metering value, other factors affecting the airport performance in the HITL simulation, including run duration, runway changes, and TMI constraints, are also discussed.

  20. LENS: μLENS Simulations, Analysis, and Results

    NASA Astrophysics Data System (ADS)

    Rasco, Charles

    2013-04-01

    Simulations of the Low-Energy Neutrino Spectrometer prototype, μLENS, have been performed in order to benchmark the first measurements of the μLENS detector at the Kimballton Underground Research Facility (KURF). μLENS is a 6x6x6 celled scintillation lattice filled with Linear Alkylbenzene based scintillator. We have performed simulations of μLENS using the GEANT4 toolkit. We have measured various radioactive sources, LEDs, and environmental background radiation measurements at KURF using up to 96 PMTs with a simplified data acquisition system of QDCs and TDCs. In this talk we will demonstrate our understanding of the light propagation and we will compare simulation results with measurements of the μLENS detector of various radioactive sources, LEDs, and the environmental background radiation.

  1. Experimental and simulational result multipactors in 112 MHz QWR injector

    SciTech Connect

    Xin, T.; Ben-Zvi, I.; Belomestnykh, S.

    2015-05-03

    The first RF commissioning of 112 MHz QWR superconducting electron gun was done in late 2014. The coaxial Fundamental Power Coupler (FPC) and Cathode Stalk (stalk) were installed and tested for the first time. During this experiment, we observed several multipacting barriers at different gun voltage levels. The simulation work was done within the same range. The comparison between the experimental observation and the simulation results are presented in this paper. The observations during the test are consisted with the simulation predictions. We were able to overcome most of the multipacting barriers and reach 1.8 MV gun voltage under pulsedmore » mode after several round of conditioning processes.« less

  2. First results of coupled IPS/NIMROD/GENRAY simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.; Schnack, D. D.

    2010-11-01

    The Integrated Plasma Simulator (IPS) framework, developed by the SWIM Project Team, facilitates self-consistent simulations of complicated plasma behavior via the coupling of various codes modeling different spatial/temporal scales in the plasma. Here, we apply this capability to investigate the stabilization of tearing modes by ECCD. Under IPS control, the NIMROD code (MHD) evolves fluid equations to model bulk plasma behavior, while the GENRAY code (RF) calculates the self-consistent propagation and deposition of RF power in the resulting plasma profiles. GENRAY data is then used to construct moments of the quasilinear diffusion tensor (induced by the RF) which influence the dynamics of momentum/energy evolution in NIMROD's equations. We present initial results from these coupled simulations and demonstrate that they correctly capture the physics of magnetic island stabilization [Jenkins et al, PoP 17, 012502 (2010)] in the low-beta limit. We also discuss the process of code verification in these simulations, demonstrating good agreement between NIMROD and GENRAY predictions for the flux-surface-averaged, RF-induced currents. An overview of ongoing model development (synthetic diagnostics/plasma control systems; neoclassical effects; etc.) is also presented. Funded by US DoE.

  3. Comparison the Results of Numerical Simulation And Experimental Results for Amirkabir Plasma Focus Facility

    NASA Astrophysics Data System (ADS)

    Goudarzi, Shervin; Amrollahi, R.; Niknam Sharak, M.

    2014-06-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  4. Results of a joint NOAA/NASA sounder simulation study

    NASA Technical Reports Server (NTRS)

    Phillips, N.; Susskind, Joel; Mcmillin, L.

    1988-01-01

    This paper presents the results of a joint NOAA and NASA sounder simulation study in which the accuracies of atmospheric temperature profiles and surface skin temperature measuremnents retrieved from two sounders were compared: (1) the currently used IR temperature sounder HIRS2 (High-resolution Infrared Radiation Sounder 2); and (2) the recently proposed high-spectral-resolution IR sounder AMTS (Advanced Moisture and Temperature Sounder). Simulations were conducted for both clear and partial cloud conditions. Data were analyzed at NASA using a physical inversion technique and at NOAA using a statistical technique. Results show significant improvement of AMTS compared to HIRS2 for both clear and cloudy conditions. The improvements are indicated by both methods of data analysis, but the physical retrievals outperform the statistical retrievals.

  5. Thermal airborne multispectral aster simulator and its preliminary results

    NASA Astrophysics Data System (ADS)

    Mills, F.; Kannari, Y.; Watanabe, H.; Sano, M.; Chang, S. H.

    1994-03-01

    An Airborne ASTER Simulator (AAS) is being developed for the Japan Resources Observation System Organization (JAROS) by the Geophysical Environmental Research (GER) Corporation. The first test flights of the AAS were over Cuprite, Nevada; Long Valley, California; and Death Valley, California, in December 1991. Preliminary laboratory tests at NASA's Stennis Space Center (SSC) were completed in April 1992. The results of the these tests indicate the AAS can discriminate between silicate and non-silicate rocks. The improvements planned for the next two years may give a spectral Full-Width at Half-Maximum (FWHM) of 0.3 μm and NEΔT of 0.2 - 0.5°K. The AAS has the potential to become a good tool for airborne TIR research and can be used for simulations of future satellite-borne TIR sensors. Flight tests over Cuprite, Nevada, and Castaic Lake, California, are planned for October-December 1992.

  6. Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.; Long, Kurtis R.

    2005-01-01

    Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.

  7. Numerical simulation of granular flows : comparison with experimental results

    NASA Astrophysics Data System (ADS)

    Pirulli, M.; Mangeney-Castelnau, A.; Lajeunesse, E.; Vilotte, J.-P.; Bouchut, F.; Bristeau, M. O.; Perthame, B.

    2003-04-01

    Granular avalanches such as rock or debris flows regularly cause large amounts of human and material damages. Numerical simulation of granular avalanches should provide a useful tool for investigating, within realistic geological contexts, the dynamics of these flows and of their arrest phase and for improving the risk assessment of such natural hazards. Validation of debris avalanche numerical model on granular experiments over inclined plane is performed here. The comparison is performed by simulating granular flow of glass beads from a reservoir through a gate down an inclined plane. This unsteady situation evolves toward the steady state observed in the laboratory. Furthermore simulation exactly reproduces the arrest phase obtained by suddenly closing the gate of the reservoir once a thick flow has developped. The spreading of a granular mass released from rest at the top of a rough inclined plane is also investigated. The evolution of the avalanche shape, the velocity and the characteristics of the arrest phase are compared with experimental results and analysis of the involved forces are studied for various flow laws.

  8. Earth resources mission performance studies. Volume 2: Simulation results

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Simulations were made at three month intervals to investigate the EOS mission performance over the four seasons of the year. The basic objectives of the study were: (1) to evaluate the ability of an EOS type system to meet a representative set of specific collection requirements, and (2) to understand the capabilities and limitations of the EOS that influence the system's ability to satisfy certain collection objectives. Although the results were obtained from a consideration of a two sensor EOS system, the analysis can be applied to any remote sensing system having similar optical and operational characteristics. While the category related results are applicable only to the specified requirement configuration, the results relating to general capability and limitations of the sensors can be applied in extrapolating to other U.S. based EOS collection requirements. The TRW general purpose mission simulator and analytic techniques discussed in this report can be applied to a wide range of collection and planning problems of earth orbiting imaging systems.

  9. Electron-cloud updated simulation results for the PSR, and recent results for the SNS

    NASA Astrophysics Data System (ADS)

    Pivi, M.; Furman, M. A.

    2002-05-01

    Recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos are presented in this paper. A refined model for the secondary emission process including the so called true secondary, rediffused and backscattered electrons has recently been included in the electron-cloud code.

  10. Planck 2015 results: XII. Full focal plane simulations

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-09-20

    In this paper, we present the 8th full focal plane simulation set (FFP8), deployed in support of the Planck 2015 results. FFP8 consists of 10 fiducial mission realizations reduced to 18 144 maps, together with the most massive suite of Monte Carlo realizations of instrument noise and CMB ever generated, comprising 10 4 mission realizations reduced to about 10 6 maps. The resulting maps incorporate the dominant instrumental, scanning, and data analysis effects, and the remaining subdominant effects will be included in future updates. Finally, generated at a cost of some 25 million CPU-hours spread across multiple high-performance-computing (HPC) platforms,more » FFP8 is used to validate and verify analysis algorithms and their implementations, and to remove biases from and quantify uncertainties in the results of analyses of the real data.« less

  11. Planck 2015 results. XII. Full focal plane simulations

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Karakci, A.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the 8th full focal plane simulation set (FFP8), deployed in support of the Planck 2015 results. FFP8 consists of 10 fiducial mission realizations reduced to 18 144 maps, together with the most massive suite of Monte Carlo realizations of instrument noise and CMB ever generated, comprising 104 mission realizations reduced to about 106 maps. The resulting maps incorporate the dominant instrumental, scanning, and data analysis effects, and the remaining subdominant effects will be included in future updates. Generated at a cost of some 25 million CPU-hours spread across multiple high-performance-computing (HPC) platforms, FFP8 is used to validate and verify analysis algorithms and their implementations, and to remove biases from and quantify uncertainties in the results of analyses of the real data.

  12. Long-range speckle imaging theory, simulation, and brassboard results

    NASA Astrophysics Data System (ADS)

    Riker, Jim F.; Tyler, Glenn A.; Vaughn, Jeff L.

    2017-09-01

    In the SPIE 2016 Unconventional Imaging session, the authors laid out a breakthrough new theory for active array imaging that exploits the speckle return to generate a high-resolution picture of the target. Since then, we have pursued that theory even in long-range (<1000-km) engagement scenarios and shown how we can obtain that high-resolution image of the target using only a few illuminators, or by using many illuminators. There is a trade of illuminators versus receivers, but many combinations provide the same synthetic aperture resolution. We will discuss that trade, along with the corresponding radiometric and speckle-imaging Signal-to-Noise Ratios (SNR) for geometries that can fit on relatively small aircraft, such as an Unmanned Aerial Vehicle (UAV). Furthermore, we have simulated the performance of the technique, and we have created a laboratory version of the approach that is able to obtain high-resolution speckle imagery. The principal results presented in this paper are the Signal to Noise Ratios (SNR) for both the radiometric and the speckle imaging portions of the problem, and the simulated results obtained for representative arrays.

  13. Simulation results of corkscrew motion in DARHT-II

    SciTech Connect

    Chan, K. D.; Ekdahl, C. A.; Chen, Y. J.

    2003-01-01

    DARHT-II, the second axis of the Dual-Axis Radiographic Hydrodynamics Test Facility, is being commissioned. DARHT-II is a linear induction accelerator producing 2-microsecond electron beam pulses at 20 MeV and 2 kA. These 2-microsecond pulses will be chopped into four short pulses to produce time resolved x-ray images. Radiographic application requires the DARHT-II beam to have excellent beam quality, and it is important to study various beam effects that may cause quality degradation of a DARHT-II beam. One of the beam dynamic effects under study is 'corkscrew' motion. For corkscrew motion, the beam centroid is deflected off axis due to misalignmentsmore » of the solenoid magnets. The deflection depends on the beam energy variation, which is expected to vary by {+-}0.5% during the 'flat-top' part of a beam pulse. Such chromatic aberration will result in broadening of beam spot size. In this paper, we will report simulation results of our study of corkscrew motion in DARHT-II. Sensitivities of beam spot size to various accelerator parameters and the strategy for minimizing corkscrew motion will be described. Measured magnet misalignment is used in the simulation.« less

  14. Magnetic Compression Experiment at General Fusion with Simulation Results

    NASA Astrophysics Data System (ADS)

    Dunlea, Carl; Khalzov, Ivan; Hirose, Akira; Xiao, Chijin; Fusion Team, General

    2017-10-01

    The magnetic compression experiment at GF was a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. External coil currents keep the CT off the outer wall (levitation) and then rapidly compress it inwards. The optimal external coil configuration greatly improved both the levitated CT lifetime and the rate of shots with good compressional flux conservation. As confirmed by spectrometer data, the improved levitation field profile reduced plasma impurity levels by suppressing the interaction between plasma and the insulating outer wall during the formation process. We developed an energy and toroidal flux conserving finite element axisymmetric MHD code to study CT formation and compression. The Braginskii MHD equations with anisotropic heat conduction were implemented. To simulate plasma / insulating wall interaction, we couple the vacuum field solution in the insulating region to the full MHD solution in the remainder of the domain. We see good agreement between simulation and experiment results. Partly funded by NSERC and MITACS Accelerate.

  15. Plasma Drifts in the Intermediate Magnetosphere: Simulation Results

    NASA Astrophysics Data System (ADS)

    Lyon, J.; Zhang, B.

    2016-12-01

    One of the outstanding questions about the inner magnetosphere dynamics is how the ring current is populated. It is not clear how much is due to a general injection over longer time and spatial scales and how much due to more bursty events. One of the major uncertainties is the behavior of the plasma in the intermediate magnetosphere: the region where the magnetosphere changes from being tail-like to one where the dipole field dominates. This is also the region where physically the plasma behavior changes from MHD-like in the tail to one dominated by particle drifts in the inner magnetosphere. No of the current simulation models self-consistently handle the region where drifts are important but not dominant. We have recently developed a version of the multi-fluid LFM code that can self-consistently handle this situation. The drifts are modeled in a fashion similar to the Rice Convection Model in that a number of energy "channels" are explicitly simulated. However, the method is not limited to the "slow flow" region and both diamagnetic and inertial drifts are included. We present results from a number of idealized cases of the global magnetosphere interacting with a southward turning of the IMF. We discuss the relative importance of general convection and bursty flows to the transport of particles and energy across this region.

  16. Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.

    2008-01-01

    This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.

  17. Some results on ethnic conflicts based on evolutionary game simulation

    NASA Astrophysics Data System (ADS)

    Qin, Jun; Yi, Yunfei; Wu, Hongrun; Liu, Yuhang; Tong, Xiaonian; Zheng, Bojin

    2014-07-01

    The force of the ethnic separatism, essentially originating from the negative effect of ethnic identity, is damaging the stability and harmony of multiethnic countries. In order to eliminate the foundation of the ethnic separatism and set up a harmonious ethnic relationship, some scholars have proposed a viewpoint: ethnic harmony could be promoted by popularizing civic identity. However, this viewpoint is discussed only from a philosophical prospective and still lacks support of scientific evidences. Because ethnic group and ethnic identity are products of evolution and ethnic identity is the parochialism strategy under the perspective of game theory, this paper proposes an evolutionary game simulation model to study the relationship between civic identity and ethnic conflict based on evolutionary game theory. The simulation results indicate that: (1) the ratio of individuals with civic identity has a negative association with the frequency of ethnic conflicts; (2) ethnic conflict will not die out by killing all ethnic members once for all, and it also cannot be reduced by a forcible pressure, i.e., increasing the ratio of individuals with civic identity; (3) the average frequencies of conflicts can stay in a low level by promoting civic identity periodically and persistently.

  18. Galaxy Properties and UV Escape Fractions during the Epoch of Reionization: Results from the Renaissance Simulations

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Wise, John H.; Norman, Michael L.; Ahn, Kyungjin; O'Shea, Brian W.

    2016-12-01

    Cosmic reionization is thought to be primarily fueled by the first generations of galaxies. We examine their stellar and gaseous properties, focusing on the star formation rates and the escape of ionizing photons, as a function of halo mass, redshift, and environment using the full suite of the Renaissance Simulations with an eye to provide better inputs to global reionization simulations. This suite probes overdense, average, and underdense regions of the universe of several hundred comoving Mpc3, each yielding a sample of over 3000 halos in the mass range of 107-109.5 {M}⊙ at their final redshifts of 15, 12.5, and 8, respectively. In the process, we simulate the effects of radiative and supernova feedback from 5000 to 10,000 Population III stars in each simulation. We find that halos as small as 107 {M}⊙ are able to host bursty star formation due to metal-line cooling from earlier enrichment by massive Population III stars. Using our large sample, we find that the galaxy-halo occupation fraction drops from unity at virial masses above 108.5 {M}⊙ to ˜50% at 108 {M}⊙ and ˜10% at 107 {M}⊙ , quite independent of redshift and region. Their average ionizing escape fraction is ˜5% in the mass range of 108-109 {M}⊙ and increases with decreasing halo mass below this range, reaching 40%-60% at 107 {M}⊙ . Interestingly, we find that the escape fraction varies between 10%-20% in halos with virial masses of ˜3 × 109 {M}⊙ . Taken together, our results confirm the importance of the smallest galaxies as sources of ionizing radiation contributing to the reionization of the universe.

  19. Aeolian abrasion on Venus: Preliminary results from the Venus simulator

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, Ronald; Tucker, D. W.; Pollack, J. B.

    1987-01-01

    The role of atmospheric pressure on aeolian abrasion was examined in the Venus Simulator with a constant temperature of 737 K. Both the rock target and the impactor were fine-grained basalt. The impactor was a 3 mm diameter angular particle chosen to represent a size of material that is entrainable by the dense Venusian atmosphere and potentially abrasive by virtue of its mass. It was projected at the target 10 to the 5 power times at a velocity of 0.7 m/s. The impactor showed a weight loss of approximately 1.2 x 10 to the -9 power gm per impact with the attrition occurring only at the edges. Results from scanning electron microscope analysis, profilometry, and weight measurement are summarized. It is concluded that particles can incur abrasion at Venusian temperatures even with low impact velocities expected for Venus.

  20. Simulation results of automatic restructurable flight control system concepts

    NASA Technical Reports Server (NTRS)

    Weiss, J. L.; Looze, D. P.; Eterno, J. S.; Ostroff, A.

    1986-01-01

    The restructurable flight control system (RFCS) described by Weiss et al. (1986) is reviewed, and several results of an extensive six degrees of freedom nonlinear simulation of several aspects of this system are reported. It is concluded that the nontraditional use of standard control surfaces in a nominal feedback control system to spread control authority among many redundant control elements provides a significant amount of fault tolerance without any use of restructuring techniques. The use of new feedback gains alone following a failure can provide significantly improved recovery as long as the control elements remain within their travel limits and as long as uncertainty about the failure identity is properly handled. The use of the feed-forward trim solution in conjunction with redesigned feedback gains allows recovery to take place even when significant control saturation occurs.

  1. New simulation and measurement results on gateable DEPFET devices

    NASA Astrophysics Data System (ADS)

    Bähr, Alexander; Aschauer, Stefan; Hermenau, Katrin; Herrmann, Sven; Lechner, Peter H.; Lutz, Gerhard; Majewski, Petra; Miessner, Danilo; Porro, Matteo; Richter, Rainer H.; Schaller, Gerhard; Sandow, Christian; Schnecke, Martina; Schopper, Florian; Stefanescu, Alexander; Strüder, Lothar; Treis, Johannes

    2012-07-01

    To improve the signal to noise level, devices for optical and x-ray astronomy use techniques to suppress background events. Well known examples are e.g. shutters or frame-store Charge Coupled Devices (CCDs). Based on the DEpleted P-channel Field Effect Transistor (DEPFET) principle a so-called Gatebale DEPFET detector can be built. Those devices combine the DEPFET principle with a fast built-in electronic shutter usable for optical and x-ray applications. The DEPFET itself is the basic cell of an active pixel sensor build on a fully depleted bulk. It combines internal amplification, readout on demand, analog storage of the signal charge and a low readout noise with full sensitivity over the whole bulk thickness. A Gatebale DEPFET has all these benefits and obviates the need for an external shutter. Two concepts of Gatebale DEPFET layouts providing a built-in shutter will be introduced. Furthermore proof of principle measurements for both concepts are presented. Using recently produced prototypes a shielding of the collection anode up to 1 • 10-4 was achieved. Predicted by simulations, an optimized geometry should result in values of 1 • 10-5 and better. With the switching electronic currently in use a timing evaluation of the shutter opening and closing resulted in rise and fall times of 100ns.

  2. Petascale Kinetic Simulations in Space Sciences: New Simulations and Data Discovery Techniques and Physics Results

    NASA Astrophysics Data System (ADS)

    Karimabadi, Homa

    2012-03-01

    Recent advances in simulation technology and hardware are enabling breakthrough science where many longstanding problems can now be addressed for the first time. In this talk, we focus on kinetic simulations of the Earth's magnetosphere and magnetic reconnection process which is the key mechanism that breaks the protective shield of the Earth's dipole field, allowing the solar wind to enter the Earth's magnetosphere. This leads to the so-called space weather where storms on the Sun can affect space-borne and ground-based technological systems on Earth. The talk will consist of three parts: (a) overview of a new multi-scale simulation technique where each computational grid is updated based on its own unique timestep, (b) Presentation of a new approach to data analysis that we refer to as Physics Mining which entails combining data mining and computer vision algorithms with scientific visualization to extract physics from the resulting massive data sets. (c) Presentation of several recent discoveries in studies of space plasmas including the role of vortex formation and resulting turbulence in magnetized plasmas.

  3. Accreting Binary Populations in the Earlier Universe

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2010-01-01

    It is now understood that X-ray binaries dominate the hard X-ray emission from normal star-forming galaxies. Thanks to the deepest (2-4 Ms) Chandra surveys, such galaxies are now being studied in X-rays out to z approximates 4. Interesting X-ray stacking results (based on 30+ galaxies per redshift bin) suggest that the mean rest-frame 2-10 keV luminosity from z=3-4 Lyman break galaxies (LBGs), is comparable to the most powerful starburst galaxies in the local Universe. This result possibly indicates a similar production mechanism for accreting binaries over large cosmological timescales. To understand and constrain better the production of X-ray binaries in high-redshift LBGs, we have utilized XMM-Newton observations of a small sample of z approximates 0.1 GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs); local analogs to high-redshift LBGs. Our observations enable us to study the X-ray emission from LBG-like galaxies on an individual basis, thus allowing us to constrain object-to-object variances in this population. We supplement these results with X-ray stacking constraints using the new 3.2 Ms Chandra Deep Field-South (completed spring 2010) and LBG candidates selected from HST, Swift UVOT, and ground-based data. These measurements provide new X-ray constraints that sample well the entire z=0-4 baseline

  4. Laboratory test results for an airborne ASTER simulator

    NASA Astrophysics Data System (ADS)

    Ezaka, Teruya; Kannari, Yoshiaki; Mills, Franklin P.; Watanabe, Hiroshi; Sano, Masaharu; Chang, Sheng-Huei

    1993-08-01

    An airborne ASTER simulator (AAS) is being developed by the Geophysical Environmental Research Corporation (GER) to study land surface temperature and emittance in the thermal infrared. Laboratory tests in October 1992 at NASA's Stennis Space Center (SSC) measured the AAS's spectral, approximate NEdT, and approximate spatial response characteristics. The spectral FWHM for most channels is smaller than 0.3 micrometers ; the NEdT for most TIR channels is better than 0.4 K; and the nominal IFOV is 5 mrad. Flight data was collected over Cuprite and Goldfield, Nevada and near Valencia, California in November 1992. The silicified and opalized zones at Cuprite could be discriminated using decorrelation-stretch images. AAS decorrelation-stretch images agree, qualitatively, with data from NASA's thermal infrared mapping spectrometer (TIMS). These results indicate the AAS may be a good tool for remote sensing studies of geological materials. Lower noise detector arrays and linear variable (optical) filters for the TIR channels will be tested in flights over Cuprite, Nevada later this year. These and other improvements may reduce the NEdT and improve the signal-to-noise ratio.

  5. LANGMUIR WAVE DECAY IN INHOMOGENEOUS SOLAR WIND PLASMAS: SIMULATION RESULTS

    SciTech Connect

    Krafft, C.; Volokitin, A. S.; Krasnoselskikh, V. V., E-mail: catherine.krafft@u-psud.fr

    2015-08-20

    Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuationsmore » lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.« less

  6. Simulation results for a finite element-based cumulative reconstructor

    NASA Astrophysics Data System (ADS)

    Wagner, Roland; Neubauer, Andreas; Ramlau, Ronny

    2017-10-01

    Modern ground-based telescopes rely on adaptive optics (AO) systems for the compensation of image degradation caused by atmospheric turbulences. Within an AO system, measurements of incoming light from guide stars are used to adjust deformable mirror(s) in real time that correct for atmospheric distortions. The incoming wavefront has to be derived from sensor measurements, and this intermediate result is then translated into the shape(s) of the deformable mirror(s). Rapid changes of the atmosphere lead to the need for fast wavefront reconstruction algorithms. We review a fast matrix-free algorithm that was developed by Neubauer to reconstruct the incoming wavefront from Shack-Hartmann measurements based on a finite element discretization of the telescope aperture. The method is enhanced by a domain decomposition ansatz. We show that this algorithm reaches the quality of standard approaches in end-to-end simulation while at the same time maintaining the speed of recently introduced solvers with linear order speed.

  7. [Earlier steps of the soil ecosystem evolution].

    PubMed

    Ponomarenko, A G

    2013-01-01

    Fossil soils are known since early Praecambrian, long before the occurrence of higher terrestrial plants on the Earth. Primeval biocoenoses on the land and in continental water bodies were floating and bottom prokaryotic mats and films which produced the majority of biomass and with regard to specific productivity were not inferior to any other photosynthetics. Before the occurrence of higher plants, erosion was very strong, resulting in flat relief, absence of permanent streams, domination of wandering rivers and surface runoff; all water bodies were muddy. When floods occurred, which was quite so often, clay particles of muddy water streams isolated bottom-mats from the light and then their considerable part perished. The result was not soil as a uniform bioinert body but rather a "puff pie" consisted of layers of unoxidized charred organic matter and clay prolayers. The burial of unoxidized organic matter contributed to enrichment of the atmosphere with oxygen. Worms and arthropods, which came out to the land and continental water bodies during Cambrian period, mixed up the organic matter with mineral components strengthening the process of soil forming considerably. Soils of the modern type appeared after higher plants expanded in Devonian and displaced bottom-mats in shallow waters. The soil fauna that existed at this time was not so different from the modern one with regard to its evolutionary level.

  8. RFI in hybrid loops - Simulation and experimental results.

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.

    1972-01-01

    A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.

  9. Results from teleoperated free-flying spacecraft simulations in the Martin Marietta space operations simulator lab

    NASA Technical Reports Server (NTRS)

    Hartley, Craig S.

    1990-01-01

    To augment the capabilities of the Space Transportation System, NASA has funded studies and developed programs aimed at developing reusable, remotely piloted spacecraft and satellite servicing systems capable of delivering, retrieving, and servicing payloads at altitudes and inclinations beyond the reach of the present Shuttle Orbiters. Since the mid 1970's, researchers at the Martin Marietta Astronautics Group Space Operations Simulation (SOS) Laboratory have been engaged in investigations of remotely piloted and supervised autonomous spacecraft operations. These investigations were based on high fidelity, real-time simulations and have covered a wide range of human factors issues related to controllability. Among these are: (1) mission conditions, including thruster plume impingements and signal time delays; (2) vehicle performance variables, including control authority, control harmony, minimum impulse, and cross coupling of accelerations; (3) maneuvering task requirements such as target distance and dynamics; (4) control parameters including various control modes and rate/displacement deadbands; and (5) display parameters involving camera placement and function, visual aids, and presentation of operational feedback from the spacecraft. This presentation includes a brief description of the capabilities of the SOS Lab to simulate real-time free-flyer operations using live video, advanced technology ground and on-orbit workstations, and sophisticated computer models of on-orbit spacecraft behavior. Sample results from human factors studies in the five categories cited above are provided.

  10. Results of a Flight Simulation Software Methods Survey

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce

    1995-01-01

    A ten-page questionnaire was mailed to members of the AIAA Flight Simulation Technical Committee in the spring of 1994. The survey inquired about various aspects of developing and maintaining flight simulation software, as well as a few questions dealing with characterization of each facility. As of this report, 19 completed surveys (out of 74 sent out) have been received. This paper summarizes those responses.

  11. Fast Plasma Instrument for MMS: Data Compression Simulation Results

    NASA Technical Reports Server (NTRS)

    Barrie, A.; Adrian, Mark L.; Yeh, P.-S.; Winkert, G. E.; Lobell, J. V.; Vinas, A.F.; Simpson, D. J.; Moore, T. E.

    2008-01-01

    Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eights (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6 deg x 180 deg fields-of-view (FOV) are set 90 deg apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45 deg x 180 deg fan about its nominal viewing (0 deg deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the results in the DES complement of a given spacecraft generating 6.5-Mbs(exp -1) of electron data while the DIS generates 1.1-Mbs(exp -1) of ion data yielding an FPI total data rate of 6.6-MBs(exp -1). The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. Currently, the FPI data rate allocation to the CIDP is 1.5-Mbs(exp -1). Consequently, the FPI-IDPU must employ data/image compression to meet this CIDP telemetry allocation. Here, we present simulations of the CCSDS 122.0-B-1 algorithm-based compression of the FPI-DES electron data. Compression analysis is based upon a seed of re-processed Cluster/PEACE electron measurements. Topics to be discussed include: review of compression algorithm; data quality

  12. Fast Plasma Instrument for MMS: Data Compression Simulation Results

    NASA Astrophysics Data System (ADS)

    Barrie, A.; Adrian, M. L.; Yeh, P.; Winkert, G.; Lobell, J.; Vinas, A. F.; Simpson, D. G.

    2009-12-01

    Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eight (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6° x 180° fields-of-view (FOV) are set 90° apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45° x 180° fan about the its nominal viewing (0° deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the diffusion regions of reconnection, the highest temporal/spatial resolution mode of FPI results in the DES complement of a given spacecraft generating 6.5-Mb s-1 of electron data while the DIS generates 1.1-Mb s-1 of ion data yielding an FPI total data rate of 6.6-Mb s-1. The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. Currently, the FPI data rate allocation to the CIDP is 1.5-Mb s-1. Consequently, the FPI-IDPU must employ data/image compression to meet this CIDP telemetry allocation. Here, we present updated simulations of the CCSDS 122.0-B-1 algorithm-based compression of the FPI-DES electron data as well as the FPI-DIS ion data. Compression analysis is based upon a seed of re-processed Cluster

  13. Fast Plasma Instrument for MMS: Data Compression Simulation Results

    NASA Astrophysics Data System (ADS)

    Barrie, A. C.; Adrian, M. L.; Yeh, P.; Winkert, G. E.; Lobell, J. V.; Viňas, A. F.; Simpson, D. G.; Moore, T. E.

    2008-12-01

    Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eight (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6° × 180° fields-of-view (FOV) are set 90° apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45° × 180° fan about the its nominal viewing (0° deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the diffusion regions of reconnection, the highest temporal/spatial resolution mode of FPI results in the DES complement of a given spacecraft generating 6.5-Mb s-1 of electron data while the DIS generates 1.1-Mb s-1 of ion data yielding an FPI total data rate of 7.6-Mb s-1. The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. Currently, the FPI data rate allocation to the CIDP is 1.5-Mb s-1. Consequently, the FPI-IDPU must employ data/image compression to meet this CIDP telemetry allocation. Here, we present simulations of the CCSDS 122.0-B-1 algorithm- based compression of the FPI-DES electron data. Compression analysis is based upon a seed of re- processed Cluster/PEACE electron measurements. Topics to be

  14. Simulations Build Efficacy: Empirical Results from a Four-Week Congressional Simulation

    ERIC Educational Resources Information Center

    Mariani, Mack; Glenn, Brian J.

    2014-01-01

    This article describes a four-week congressional committee simulation implemented in upper level courses on Congress and the Legislative process at two liberal arts colleges. We find that the students participating in the simulation possessed high levels of political knowledge and confidence in their political skills prior to the simulation. An…

  15. Direct drive: Simulations and results from the National Ignition Facility

    SciTech Connect

    Radha, P. B., E-mail: rbah@lle.rochester.edu; Hohenberger, M.; Edgell, D. H.

    Direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivity analyses indicatemore » that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.« less

  16. Direct drive: Simulations and results from the National Ignition Facility

    SciTech Connect

    Radha, P. B.; Hohenberger, M.; Edgell, D. H.

    Here, the direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivitymore » analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.« less

  17. Direct drive: Simulations and results from the National Ignition Facility

    DOE PAGES

    Radha, P. B.; Hohenberger, M.; Edgell, D. H.; ...

    2016-04-19

    Here, the direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivitymore » analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.« less

  18. Discharging patients earlier in the day: a concept worth evaluating.

    PubMed

    Kravet, Steven J; Levine, Rachel B; Rubin, Haya R; Wright, Scott M

    2007-01-01

    Patient discharges from the hospital often occur late in the day and are frequently clustered after 4 PM. When inpatients leave earlier in the day, quality is improved because new admissions awaiting beds are able to leave the emergency department sooner and emergency department waiting room backlog is reduced. Nursing staff, whose work patterns traditionally result in high activity of discharge and admission between 5 PM and 8 PM, benefit by spreading out their work across a longer part of the day. Discharging patients earlier in the day also has the potential to increase patient satisfaction. Despite multiple stakeholders in the discharge planning process, physicians play the most important role. Getting physician buy-in requires an ability to teach physicians about the concept of early-in-the-day discharges and their impact on the process. We defined a new physician-centered discharge planning process and introduced it to an internal medicine team with an identical control team as a comparison. Discharge time of day was analyzed for 1 month. Mean time of day of discharge was 13:39 for the intervention group versus 15:45 for the control group (P<.001). If reproduced successfully, this process could improve quality at an important transition point in patient care.

  19. Changes toward earlier streamflow timing across western North America

    USGS Publications Warehouse

    Stewart, I.T.; Cayan, D.R.; Dettinger, M.D.

    2005-01-01

    The highly variable timing of streamflow in snowmelt-dominated basins across western North America is an important consequence, and indicator, of climate fluctuations. Changes in the timing of snowmelt-derived streamflow from 1948 to 2002 were investigated in a network of 302 western North America gauges by examining the center of mass for flow, spring pulse onset dates, and seasonal fractional flows through trend and principal component analyses. Statistical analysis of the streamflow timing measures with Pacific climate indicators identified local and key large-scale processes that govern the regionally coherent parts of the changes and their relative importance. Widespread and regionally coherent trends toward earlier onsets of springtime snowmelt and streamflow have taken place across most of western North America, affecting an area that is much larger than previously recognized. These timing changes have resulted in increasing fractions of annual flow occurring earlier in the water year by 1-4 weeks. The immediate (or proximal) forcings for the spatially coherent parts of the year-to-year fluctuations and longer-term trends of streamflow timing have been higher winter and spring temperatures. Although these temperature changes are partly controlled by the decadal-scale Pacific climate mode [Pacific decadal oscillation (PDO)], a separate and significant part of the variance is associated with a springtime warming trend that spans the PDO phases. ?? 2005 American Meteorological Society.

  20. Low-cost autonomous orbit control about Mars: Initial simulation results

    NASA Astrophysics Data System (ADS)

    Dawson, S. D.; Early, L. W.; Potterveld, C. W.; Königsmann, H. J.

    1999-11-01

    Interest in studying the possibility of extraterrestrial life has led to the re-emergence of the Red Planet as a major target of planetary exploration. Currently proposed missions in the post-2000 period are routinely calling for rendezvous with ascent craft, long-term orbiting of, and sample-return from Mars. Such missions would benefit greatly from autonomous orbit control as a means to reduce operations costs and enable contact with Mars ground stations out of view of the Earth. This paper present results from initial simulations of autonomously controlled orbits around Mars, and points out possible uses of the technology and areas of routine Mars operations where such cost-conscious and robust autonomy could prove most effective. These simulations have validated the approach and control philosophies used in the development of this autonomous orbit controller. Future work will refine the controller, accounting for systematic and random errors in the navigation of the spacecraft from the sensor suite, and will produce prototype flight code for inclusion on future missions. A modified version of Microcosm's commercially available High Precision Orbit Propagator (HPOP) was used in the preparation of these results due to its high accuracy and speed of operation. Control laws were developed to allow an autonomously controlled spacecraft to continuously control to a pre-defined orbit about Mars with near-optimal propellant usage. The control laws were implemented as an adjunct to HPOP. The GSFC-produced 50 × 50 field model of the Martian gravitational potential was used in all simulations. The Martian atmospheric drag was modeled using an exponentially decaying atmosphere based on data from the Mars-GRAM NASA Ames model. It is hoped that the simple atmosphere model that was implemented can be significantly improved in the future so as to approach the fidelity of the Mars-GRAM model in its predictions of atmospheric density at orbital altitudes. Such additional work

  1. Implementation and Simulation Results using Autonomous Aerobraking Development Software

    NASA Technical Reports Server (NTRS)

    Maddock, Robert W.; DwyerCianciolo, Alicia M.; Bowes, Angela; Prince, Jill L. H.; Powell, Richard W.

    2011-01-01

    An Autonomous Aerobraking software system is currently under development with support from the NASA Engineering and Safety Center (NESC) that would move typically ground-based operations functions to onboard an aerobraking spacecraft, reducing mission risk and mission cost. The suite of software that will enable autonomous aerobraking is the Autonomous Aerobraking Development Software (AADS) and consists of an ephemeris model, onboard atmosphere estimator, temperature and loads prediction, and a maneuver calculation. The software calculates the maneuver time, magnitude and direction commands to maintain the spacecraft periapsis parameters within design structural load and/or thermal constraints. The AADS is currently tested in simulations at Mars, with plans to also evaluate feasibility and performance at Venus and Titan.

  2. Surveys with Athena: results from detailed SIXTE simulations

    NASA Astrophysics Data System (ADS)

    Lanzuisi, G.; Comastri, A.; Aird, J.; Brusa, M.; Cappelluti, N.; Gilli, R.; Matute, I.

    2017-10-01

    "Formation and early growth of BH' and "Accretion by supermassive BH through cosmic time' are two of the scientific objectives of the Athena mission. To these and other topics (i.e. first galaxy groups, cold and warm obscuration and feedback signatures in AGN at high z), a large fraction (20-25%) of the Athena Mock Observing Plan is devoted, in the form of a multi-tiered (deep-medium-wide) survey with the WFI. We used the flexible SIXTE simulator to study the impact of different instrumental configurations, in terms of WFI FOV, mirror psf, background levels, on the performance in the three layers of the WFI survey. We mainly focus on the scientific objective that drives the survey configuration: the detection of at least 10 AGN at z=6-8 with Log(LX)=43-43.5 erg/s and 10 at z=8.10 with Log(LX)=44-44.5 erg/s. Implications for other scientific objectives involved in the survey are also discussed.

  3. Trend of earlier spring in central Europe continued

    NASA Astrophysics Data System (ADS)

    Ungersböck, Markus; Jurkovic, Anita; Koch, Elisabeth; Lipa, Wolfgang; Scheifinger, Helfried; Zach-Hermann, Susanne

    2013-04-01

    Modern phenology is the study of the timing of recurring biological events in the animal and plant world, the causes of their timing with regard to biotic and abiotic forces, and the interrelation among phases of the same or different species. The relationship between phenology and climate explains the importance of plant phenology for Climate Change studies. Plants require light, water, oxygen mineral nutrients and suitable temperature to grow. In temperate zones the seasonal life cycle of plants is primarily controlled by temperature and day length. Higher spring air temperatures are resulting in an earlier onset of the phenological spring in temperate and cool climate. On the other hand changes in phenology due to climate change do have impact on the climate system itself. Vegetation is a dynamic factor in the earth - climate system and has positive and negative feedback mechanisms to the biogeochemical and biogeophysical fluxes to the atmosphere Since the mid of the 1980s spring springs earlier in Europe and autumn is shifting back to the end of the year resulting in a longer vegetation period. The advancement of spring can be clearly attributed to temperature increase in the months prior to leaf unfolding and flowering, the timing of autumn is more complex and cannot easily be attributed to one or some few parameters. To demonstrate that the observed advancement of spring since the mid of 1980s is pro-longed in 2001 to 2010 and the delay of fall and the lengthening of the growing season is confirmed in the last decade we picked out several indicator plants from the PEP725 database www.pep725.eu. The PEP725 database collects data from different European network operators and thus offers a unique compilation of phenological observations; the database is regularly updated. The data follow the same classification scheme, the so called BBCH coding system so they can be compared. Lilac Syringa vulgaris, birch Betula pendula, beech Fagus and horse chestnut Aesculus

  4. Scientific Knowledge Suppresses but Does Not Supplant Earlier Intuitions

    ERIC Educational Resources Information Center

    Shtulman, Andrew; Valcarcel, Joshua

    2012-01-01

    When students learn scientific theories that conflict with their earlier, naive theories, what happens to the earlier theories? Are they overwritten or merely suppressed? We investigated this question by devising and implementing a novel speeded-reasoning task. Adults with many years of science education verified two types of statements as quickly…

  5. Vibronic coupling simulations for linear and nonlinear optical processes: Simulation results

    NASA Astrophysics Data System (ADS)

    Silverstein, Daniel W.; Jensen, Lasse

    2012-02-01

    A vibronic coupling model based on time-dependent wavepacket approach is applied to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering, on a series of small molecules. Simulations employing both the long-range corrected approach in density functional theory and coupled cluster are compared and also examined based on available experimental data. Although many of the small molecules are prone to anharmonicity in their potential energy surfaces, the harmonic approach performs adequately. A detailed discussion of the non-Condon effects is illustrated by the molecules presented in this work. Linear and nonlinear Raman scattering simulations allow for the quantification of interference between the Franck-Condon and Herzberg-Teller terms for different molecules.

  6. Improving the result of forcasting using reservoir and surface network simulation

    NASA Astrophysics Data System (ADS)

    Hendri, R. S.; Winarta, J.

    2018-01-01

    This study was aimed to get more representative results in production forcasting using integrated simulation in pipeline gathering system of X field. There are 5 main scenarios which consist of the production forecast of the existing condition, work over, and infill drilling. Then, it’s determined the best development scenario. The methods of this study is Integrated Reservoir Simulator and Pipeline Simulator so-calle as Integrated Reservoir and Surface Network Simulation. After well data result from reservoir simulator was then integrated with pipeline networking simulator’s to construct a new schedule, which was input for all simulation procedure. The well design result was done by well modeling simulator then exported into pipeline simulator. Reservoir prediction depends on the minimum value of Tubing Head Pressure (THP) for each well, where the pressure drop on the Gathering Network is not necessary calculated. The same scenario was done also for the single-reservoir simulation. Integration Simulation produces results approaching the actual condition of the reservoir and was confirmed by the THP profile, which difference between those two methods. The difference between integrated simulation compared to single-modeling simulation is 6-9%. The aimed of solving back-pressure problem in pipeline gathering system of X field is achieved.

  7. Interactive visualization of numerical simulation results: A tool for mission planning and data analysis

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Raeder, J.; Walker, R. J.; Ashour-Abdalla, M.

    1995-01-01

    We report on the development of an interactive system for visualizing and analyzing numerical simulation results. This system is based on visualization modules which use the Application Visualization System (AVS) and the NCAR graphics packages. Examples from recent simulations are presented to illustrate how these modules can be used for displaying and manipulating simulation results to facilitate their comparison with phenomenological model results and observations.

  8. Analysis of the impact of simulation model simplifications on the quality of low-energy buildings simulation results

    NASA Astrophysics Data System (ADS)

    Klimczak, Marcin; Bojarski, Jacek; Ziembicki, Piotr; Kęskiewicz, Piotr

    2017-11-01

    The requirements concerning energy performance of buildings and their internal installations, particularly HVAC systems, have been growing continuously in Poland and all over the world. The existing, traditional calculation methods following from the static heat exchange model are frequently not sufficient for a reasonable heating design of a building. Both in Poland and elsewhere in the world, methods and software are employed which allow a detailed simulation of the heating and moisture conditions in a building, and also an analysis of the performance of HVAC systems within a building. However, these systems are usually difficult in use and complex. In addition, the development of a simulation model that is sufficiently adequate to the real building requires considerable time involvement of a designer, is time-consuming and laborious. A simplification of the simulation model of a building renders it possible to reduce the costs of computer simulations. The paper analyses in detail the effect of introducing a number of different variants of the simulation model developed in Design Builder on the quality of final results obtained. The objective of this analysis is to find simplifications which allow obtaining simulation results which have an acceptable level of deviations from the detailed model, thus facilitating a quick energy performance analysis of a given building.

  9. Analysis procedures and subjective flight results of a simulator validation and cue fidelity experiment

    NASA Technical Reports Server (NTRS)

    Carr, Peter C.; Mckissick, Burnell T.

    1988-01-01

    A joint experiment to investigate simulator validation and cue fidelity was conducted by the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and NASA Langley Research Center. The primary objective was to validate the use of a closed-loop pilot-vehicle mathematical model as an analytical tool for optimizing the tradeoff between simulator fidelity requirements and simulator cost. The validation process includes comparing model predictions with simulation and flight test results to evaluate various hypotheses for differences in motion and visual cues and information transfer. A group of five pilots flew air-to-air tracking maneuvers in the Langley differential maneuvering simulator and visual motion simulator and in an F-14 aircraft at Ames-Dryden. The simulators used motion and visual cueing devices including a g-seat, a helmet loader, wide field-of-view horizon, and a motion base platform.

  10. Hemodynamic parameters change earlier than tissue oxygen tension in hemorrhage.

    PubMed

    Pestel, Gunther J; Fukui, Kimiko; Kimberger, Oliver; Hager, Helmut; Kurz, Andrea; Hiltebrand, Luzius B

    2010-05-15

    Untreated hypovolemia results in impaired outcome. This study tests our hypothesis whether general hemodynamic parameters detect acute blood loss earlier than monitoring parameters of regional tissue beds. Eight pigs (23-25 kg) were anesthetized and mechanically ventilated. A pulmonary artery catheter and an arterial catheter were inserted. Tissue oxygen tension was measured with Clark-type electrodes in the jejunal and colonic wall, in the liver, and subcutaneously. Jejunal microcirculation was assessed by laser Doppler flowmetry (LDF). Intravascular volume was optimized using difference in pulse pressure (dPP) to keep dPP below 13%. Sixty minutes after preparation, baseline measurements were taken. At first, 5% of total blood volume was withdrawn, followed by another 5% increment, and then in 10% increments until death. After withdrawal of 5% of estimated blood volume, dPP increased from 6.1% +/- 3.0% to 20.8% +/- 2.7% (P < 0.01). Mean arterial pressure (MAP), mean pulmonary artery pressure (PAP) and pulmonary artery occlusion pressure (PAOP) decreased with a blood loss of 10% (P < 0.01). Cardiac output (CO) changed after a blood loss of 20% (P < 0.05). Tissue oxygen tension in central organs, and blood flow in the jejunal muscularis decreased (P < 0.05) after a blood loss of 20%. Tissue oxygen tension in the skin, and jejunal mucosa blood flow decreased (P < 0.05) after a blood loss of 40% and 50%, respectively. In this hemorrhagic pig model systemic hemodynamic parameters were more sensitive to detect acute hypovolemia than tissue oxygen tension measurements or jejunal LDF measurements. Acute blood loss was detected first by dPP. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. View northeast, wharf A, portion AA, details showing earlier piers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northeast, wharf A, portion AA, details showing earlier piers and braces sloping toward water, reused charred plates for existing decking - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  12. Prescription stimulant use is associated with earlier onset of psychosis.

    PubMed

    Moran, Lauren V; Masters, Grace A; Pingali, Samira; Cohen, Bruce M; Liebson, Elizabeth; Rajarethinam, R P; Ongur, Dost

    2015-12-01

    A childhood history of attention deficit hyperactivity disorder (ADHD) is common in psychotic disorders, yet prescription stimulants may interact adversely with the physiology of these disorders. Specifically, exposure to stimulants leads to long-term increases in dopamine release. We therefore hypothesized that individuals with psychotic disorders previously exposed to prescription stimulants will have an earlier onset of psychosis. Age of onset of psychosis (AOP) was compared in individuals with and without prior exposure to prescription stimulants while controlling for potential confounding factors. In a sample of 205 patients recruited from an inpatient psychiatric unit, 40% (n = 82) reported use of stimulants prior to the onset of psychosis. Most participants were prescribed stimulants during childhood or adolescence for a diagnosis of ADHD. AOP was significantly earlier in those exposed to stimulants (20.5 vs. 24.6 years stimulants vs. no stimulants, p < 0.001). After controlling for gender, IQ, educational attainment, lifetime history of a cannabis use disorder or other drugs of abuse, and family history of a first-degree relative with psychosis, the association between stimulant exposure and earlier AOP remained significant. There was a significant gender × stimulant interaction with a greater reduction in AOP for females, whereas the smaller effect of stimulant use on AOP in males did not reach statistical significance. In conclusion, individuals with psychotic disorders exposed to prescription stimulants had an earlier onset of psychosis, and this relationship did not appear to be mediated by IQ or cannabis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Research promises earlier warning for grapevine canker diseases

    USDA-ARS?s Scientific Manuscript database

    When it comes to detecting and treating vineyards for grapevine canker diseases (also called trunk diseases), like Botryosphaeria dieback (Bot canker), Esca, Eutypa dieback and Phomopsis dieback, the earlier the better, says plant pathologist Kendra Baumgartner, with the USDA’s Agricultural Research...

  14. Does Speech Emerge from Earlier Appearing Oral Motor Behaviors?.

    ERIC Educational Resources Information Center

    Moore, Christopher A.; Ruark, Jacki L.

    1996-01-01

    This study of the oral motor behaviors of seven toddlers (age 15 months) may be interpreted to indicate that: (1) mandibular coordination follows a developmental continuum from earlier emerging behaviors, such as chewing and sucking, through babbling, to speech, or (2) unique task demands give rise to distinct mandibular coordinative constraints…

  15. Comprehensive methods for earlier detection and monitoring of forest decline

    Treesearch

    Jennifer Pontius; Richard Hallett

    2014-01-01

    Forested ecosystems are threatened by invasive pests, pathogens, and unusual climatic events brought about by climate change. Earlier detection of incipient forest health problems and a quantitatively rigorous assessment method is increasingly important. Here, we describe a method that is adaptable across tree species and stress agents and practical for use in the...

  16. Toward robust estimation of the components of forest population change: simulation results

    Treesearch

    Francis A. Roesch

    2014-01-01

    This report presents the full simulation results of the work described in Roesch (2014), in which multiple levels of simulation were used to test the robustness of estimators for the components of forest change. In that study, a variety of spatial-temporal populations were created based on, but more variable than, an actual forest monitoring dataset, and then those...

  17. Results of GEANT simulations and comparison with first experiments at DANCE.

    SciTech Connect

    Reifarth, R.; Bredeweg, T. A.; Browne, J. C.

    2003-07-29

    This report describes intensive Monte Carlo simulations carried out to be compared with the results of the first run cycle with DANCE (Detector for Advanced Neutron Capture Experiments). The experimental results were gained during the commissioning phase 2002/2003 with only a part of the array. Based on the results of these simulations the most important items to be improved before the next experiments will be addressed.

  18. A method for data handling numerical results in parallel OpenFOAM simulations

    SciTech Connect

    Anton, Alin; Muntean, Sebastian

    Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit{sup ®}[1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms.

  19. DoSSiER: Database of scientific simulation and experimental results

    SciTech Connect

    Wenzel, Hans; Yarba, Julia; Genser, Krzystof

    The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientific Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER can be easily accessed via a web application. In addition, a web service allows for programmatic access to the repository to extract records in json or xml exchange formats. In this paper, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made.

  20. DoSSiER: Database of scientific simulation and experimental results

    DOE PAGES

    Wenzel, Hans; Yarba, Julia; Genser, Krzystof; ...

    2016-08-01

    The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientific Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER can be easily accessed via a web application. In addition, a web service allows for programmatic access to the repository to extract records in json or xml exchange formats. In this paper, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made.

  1. Design a Fuzzy Rule-based Expert System to Aid Earlier Diagnosis of Gastric Cancer.

    PubMed

    Safdari, Reza; Arpanahi, Hadi Kazemi; Langarizadeh, Mostafa; Ghazisaiedi, Marjan; Dargahi, Hossein; Zendehdel, Kazem

    2018-01-01

    Screening and health check-up programs are most important sanitary priorities, that should be undertaken to control dangerous diseases such as gastric cancer that affected by different factors. More than 50% of gastric cancer diagnoses are made during the advanced stage. Currently, there is no systematic approach for early diagnosis of gastric cancer. to develop a fuzzy expert system that can identify gastric cancer risk levels in individuals. This system was implemented in MATLAB software, Mamdani inference technique applied to simulate reasoning of experts in the field, a total of 67 fuzzy rules extracted as a rule-base based on medical expert's opinion. 50 case scenarios were used to evaluate the system, the information of case reports is given to the system to find risk level of each case report then obtained results were compared with expert's diagnosis. Results revealed that sensitivity was 92.1% and the specificity was 83.1%. The results show that is possible to develop a system that can identify High risk individuals for gastric cancer. The system can lead to earlier diagnosis, this may facilitate early treatment and reduce gastric cancer mortality rate.

  2. Comparison between simulations and lab results on the ASSIST test-bench

    NASA Astrophysics Data System (ADS)

    Le Louarn, Miska; Madec, Pierre-Yves; Kolb, Johann; Paufique, Jerome; Oberti, Sylvain; La Penna, Paolo; Arsenault, Robin

    2016-07-01

    We present the latest comparison results between laboratory tests carried out on the ASSIST test bench and Octopus end-to end simulations. We simulated, as closely to the lab conditions as possible, the different AOF modes (Maintenance and commissioning mode (SCAO), GRAAL (GLAO in the near IR), Galacsi Wide Field mode (GLAO in the visible) and Galacsi narrow field mode (LTAO in the visible)). We then compared the simulation results to the ones obtained on the lab bench. Several aspects were investigated, like number of corrected modes, turbulence wind speeds, LGS photon flux etc. The agreement between simulations and lab is remarkably good for all investigated parameters, giving great confidence in both simulation tool and performance of the AO system in the lab.

  3. Simulation loop between cad systems, GEANT-4 and GeoModel: Implementation and results

    NASA Astrophysics Data System (ADS)

    Sharmazanashvili, A.; Tsutskiridze, Niko

    2016-09-01

    Compare analysis of simulation and as-built geometry descriptions of detector is important field of study for data_vs_Monte-Carlo discrepancies. Shapes consistency and detalization is not important while adequateness of volumes and weights of detector components are essential for tracking. There are 2 main reasons of faults of geometry descriptions in simulation: (1) Difference between simulated and as-built geometry descriptions; (2) Internal inaccuracies of geometry transformations added by simulation software infrastructure itself. Georgian Engineering team developed hub on the base of CATIA platform and several tools enabling to read in CATIA different descriptions used by simulation packages, like XML->CATIA; VP1->CATIA; Geo-Model->CATIA; Geant4->CATIA. As a result it becomes possible to compare different descriptions with each other using the full power of CATIA and investigate both classes of reasons of faults of geometry descriptions. Paper represents results of case studies of ATLAS Coils and End-Cap toroid structures.

  4. Travelling for earlier surgical treatment: the patient's view.

    PubMed Central

    Stewart, M; Donaldson, L J

    1991-01-01

    As part of the northern region's programme within the national waiting list initiative, schemes have been funded to test the feasibility and acceptability of offering patients the opportunity to travel further afield in order to receive earlier treatment. A total of 484 patients experiencing a long wait for routine surgical operations in the northern region were offered the opportunity to receive earlier treatment outside their local health district; 74% of the patients accepted the offer. The initiative was well received by the participating patients and the majority stated that if the need arose on a future occasion they would prefer to travel for treatment rather than have to wait for lengthy periods for treatment at their local hospital. These findings, interpreted in the light of the National Health Service reforms introduced in April 1991, suggest that for some types of care, patients would welcome greater flexibility in the placing of contracts, not merely reinforcement of historical patterns of referral. PMID:1823553

  5. A Novel Simulation Technician Laboratory Design: Results of a Survey-Based Study

    PubMed Central

    Hughes, Patrick G; Friedl, Ed; Ortiz Figueroa, Fabiana; Cepeda Brito, Jose R; Frey, Jennifer; Birmingham, Lauren E; Atkinson, Steven Scott

    2016-01-01

    Objective  The purpose of this study was to elicit feedback from simulation technicians prior to developing the first simulation technician-specific simulation laboratory in Akron, OH. Background Simulation technicians serve a vital role in simulation centers within hospitals/health centers around the world. The first simulation technician degree program in the US has been approved in Akron, OH. To satisfy the requirements of this program and to meet the needs of this special audience of learners, a customized simulation lab is essential.  Method A web-based survey was circulated to simulation technicians prior to completion of the lab for the new program. The survey consisted of questions aimed at identifying structural and functional design elements of a novel simulation center for the training of simulation technicians. Quantitative methods were utilized to analyze data. Results Over 90% of technicians (n=65) think that a lab designed explicitly for the training of technicians is novel and beneficial. Approximately 75% of respondents think that the space provided appropriate audiovisual (AV) infrastructure and space to evaluate the ability of technicians to be independent. The respondents think that the lab needed more storage space, visualization space for a large number of students, and more space in the technical/repair area. Conclusions  A space designed for the training of simulation technicians was considered to be beneficial. This laboratory requires distinct space for technical repair, adequate bench space for the maintenance and repair of simulators, an appropriate AV infrastructure, and space to evaluate the ability of technicians to be independent. PMID:27096134

  6. Results of computer calculations for a simulated distribution of kidney cells

    NASA Technical Reports Server (NTRS)

    Micale, F. J.

    1985-01-01

    The results of computer calculations for a simulated distribution of kidney cells are given. The calculations were made for different values of electroosmotic flow, U sub o, and the ratio of sample diameter to channel diameter, R.

  7. Integrated corridor management analysis, modeling, and simulation results for the test corridor.

    DOT National Transportation Integrated Search

    2008-06-01

    This report documents the Integrated Corridor Management (ICM) Analysis Modeling and Simulation (AMS) tools and strategies used on a Test Corridor, presents results and lessons-learned, and documents the relative capability of AMS to support benefit-...

  8. SUBWATERSHEDS OF THE UPPER SAN PEDRO BASIN WITH PERCENT DIFFERENCE BETWEEN RESULTS FROM TWO SWAT SIMULATIONS

    EPA Science Inventory

    Subwatersheds of the Upper San Pedro basin with percent difference between results from two SWAT simulations run through AGWA: one using the 1973 NALC landcover for model parameterization, and the other using the 1997 NALC landcover.

  9. Vehicle Animation Software (VAS) to Animate Results Obtained from Vehicle Handling and Rollover Simulations and Tests

    DOT National Transportation Integrated Search

    1991-04-01

    Results from vehicle computer simulations usually take the form of numeric data or graphs. While these graphs provide the investigator with the insight into vehicle behavior, it may be difficult to use these graphs to assess complex vehicle motion. C...

  10. How sleep problems contribute to simulator sickness: Preliminary results from a realistic driving scenario.

    PubMed

    Altena, Ellemarije; Daviaux, Yannick; Sanz-Arigita, Ernesto; Bonhomme, Emilien; de Sevin, Étienne; Micoulaud-Franchi, Jean-Arthur; Bioulac, Stéphanie; Philip, Pierre

    2018-04-17

    Virtual reality and simulation tools enable us to assess daytime functioning in environments that simulate real life as close as possible. Simulator sickness, however, poses a problem in the application of these tools, and has been related to pre-existing health problems. How sleep problems contribute to simulator sickness has not yet been investigated. In the current study, 20 female chronic insomnia patients and 32 female age-matched controls drove in a driving simulator covering realistic city, country and highway scenes. Fifty percent of the insomnia patients as opposed to 12.5% of controls reported excessive simulator sickness leading to experiment withdrawal. In the remaining participants, patients with insomnia showed overall increased levels of oculomotor symptoms even before driving, while nausea symptoms further increased after driving. These results, as well as the realistic simulation paradigm developed, give more insight on how vestibular and oculomotor functions as well as interoceptive functions are affected in insomnia. Importantly, our results have direct implications for both the actual driving experience and the wider context of deploying simulation techniques to mimic real life functioning, in particular in those professions often exposed to sleep problems. © 2018 European Sleep Research Society.

  11. Three-Dimensional Imaging in Rhinoplasty: A Comparison of the Simulated versus Actual Result.

    PubMed

    Persing, Sarah; Timberlake, Andrew; Madari, Sarika; Steinbacher, Derek

    2018-05-22

    Computer imaging has become increasingly popular for rhinoplasty. Three-dimensional (3D) analysis permits a more comprehensive view from multiple vantage points. However, the predictability and concordance between the simulated and actual result have not been morphometrically studied. The purpose of this study was to aesthetically and quantitatively compare the simulated to actual rhinoplasty result. A retrospective review of 3D images (VECTRA, Canfield) for rhinoplasty patients was performed. Images (preop, simulated, and actual) were randomized. A blinded panel of physicians rated the images (1 = poor, 5 = excellent). The image series considered "best" was also recorded. A quantitative assessment of nasolabial angle and tip projection was compared. Paired and two-sample t tests were performed for statistical analysis (P < 0.05 as significant). Forty patients were included. 67.5% of preoperative images were rated as poor (mean = 1.7). The simulation received a mean score of 2.9 (good in 60% of cases). 82.5% of actual cases were rated good to excellent (mean 3.4) (P < 0.001). Overall, the panel significantly preferred the actual postoperative result in 77.5% of cases compared to the simulation in 22.5% of cases (P < 0.001). The actual nasal tip was more projected compared to the simulations for both males and females. There was no significant difference in nasal tip rotation between simulated and postoperative groups. 3D simulation is a powerful communication and planning tool in rhinoplasty. In this study, the actual result was deemed more aesthetic than the simulated image. Surgeon experience is important to translate the plan and achieve favorable postoperative results. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  12. A comparison among observations and earthquake simulator results for the allcal2 California fault model

    USGS Publications Warehouse

    Tullis, Terry. E.; Richards-Dinger, Keith B.; Barall, Michael; Dieterich, James H.; Field, Edward H.; Heien, Eric M.; Kellogg, Louise; Pollitz, Fred F.; Rundle, John B.; Sachs, Michael K.; Turcotte, Donald L.; Ward, Steven N.; Yikilmaz, M. Burak

    2012-01-01

    In order to understand earthquake hazards we would ideally have a statistical description of earthquakes for tens of thousands of years. Unfortunately the ∼100‐year instrumental, several 100‐year historical, and few 1000‐year paleoseismological records are woefully inadequate to provide a statistically significant record. Physics‐based earthquake simulators can generate arbitrarily long histories of earthquakes; thus they can provide a statistically meaningful history of simulated earthquakes. The question is, how realistic are these simulated histories? This purpose of this paper is to begin to answer that question. We compare the results between different simulators and with information that is known from the limited instrumental, historic, and paleoseismological data.As expected, the results from all the simulators show that the observational record is too short to properly represent the system behavior; therefore, although tests of the simulators against the limited observations are necessary, they are not a sufficient test of the simulators’ realism. The simulators appear to pass this necessary test. In addition, the physics‐based simulators show similar behavior even though there are large differences in the methodology. This suggests that they represent realistic behavior. Different assumptions concerning the constitutive properties of the faults do result in enhanced capabilities of some simulators. However, it appears that the similar behavior of the different simulators may result from the fault‐system geometry, slip rates, and assumed strength drops, along with the shared physics of stress transfer.This paper describes the results of running four earthquake simulators that are described elsewhere in this issue of Seismological Research Letters. The simulators ALLCAL (Ward, 2012), VIRTCAL (Sachs et al., 2012), RSQSim (Richards‐Dinger and Dieterich, 2012), and ViscoSim (Pollitz, 2012) were run on our most recent all‐California fault

  13. Thermal-Hydraulic Results for the Boiling Water Reactor Dry Cask Simulator.

    SciTech Connect

    Durbin, Samuel; Lindgren, Eric R.

    The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internalmore » convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both aboveground and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of this investigation was to produce validation-quality data that can be used to test the validity of the modeling presently used to determine cladding temperatures in modern vertical dry casks. These cladding temperatures are critical to evaluate cladding integrity throughout the storage cycle. To produce these data sets under well-controlled boundary conditions, the dry cask simulator (DCS) was built to study the thermal-hydraulic response of fuel under a variety of heat loads, internal vessel pressures, and external configurations. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The

  14. Simulation studies for the evaluation of health information technologies: experiences and results.

    PubMed

    Ammenwerth, Elske; Hackl, Werner O; Binzer, Kristine; Christoffersen, Tue E H; Jensen, Sanne; Lawton, Kitta; Skjoet, Peter; Nohr, Christian

    It is essential for new health information technologies (IT) to undergo rigorous evaluations to ensure they are effective and safe for use in real-world situations. However, evaluation of new health IT is challenging, as field studies are often not feasible when the technology being evaluated is not sufficiently mature. Laboratory-based evaluations have also been shown to have insufficient external validity. Simulation studies seem to be a way to bridge this gap. The aim of this study was to evaluate, using a simulation methodology, the impact of a new prototype of an electronic medication management system on the appropriateness of prescriptions and drug-related activities, including laboratory test ordering or medication changes. This article presents the results of a controlled simulation study with 50 simulation runs, including ten doctors and five simulation patients, and discusses experiences and lessons learnt while conducting the study. Although the new electronic medication management system showed tendencies to improve medication safety when compared with the standard system, this tendency was not significant. Altogether, five distinct situations were identified where the new medication management system did help to improve medication safety. This simulation study provided a good compromise between internal validity and external validity. However, several challenges need to be addressed when undertaking simulation evaluations including: preparation of adequate test cases; training of participants before using unfamiliar applications; consideration of time, effort and costs of conducting the simulation; technical maturity of the evaluated system; and allowing adequate preparation of simulation scenarios and simulation setting. Simulation studies are an interesting but time-consuming approach, which can be used to evaluate newly developed health IT systems, particularly those systems that are not yet sufficiently mature to undergo field evaluation studies.

  15. Earlier Violent Television Exposure and Later Drug Dependence

    PubMed Central

    Brook, David W.; Katten, Naomi S.; Ning, Yuming; Brook, Judith S.

    2013-01-01

    This research examined the longitudinal pathways from earlier violent television exposure to later drug dependence. African American and Puerto Rican adolescents were interviewed during three points in time (N = 463). Violent television exposure in late adolescence predicted violent television exposure in young adulthood, which in turn was related to tobacco/marijuana use, nicotine dependence, and later drug dependence. Some policy and clinical implications suggest: a) regulating the times when violent television is broadcast; b) creating developmentally targeted prevention/treatment programs; and c) recognizing that watching violent television may serve as a cue regarding increased susceptibility to nicotine and drug dependence. PMID:18612881

  16. Results from a limited area mesoscale numerical simulation for 10 April 1979

    NASA Technical Reports Server (NTRS)

    Kalb, M. W.

    1985-01-01

    Results are presented from a nine-hour limited area fine mesh (35-km) mesoscale model simulation initialized with SESAME-AVE I radiosonde data for Apr. 10, 1979 at 2100 GMT. Emphasis is on the diagnosis of mesoscale structure in the mass and precipitation fields. Along the Texas/Oklahoma border, independent of the short wave, convective precipitation formed several hours into the simulation and was organized into a narrow band suggestive of the observed April 10 squall line.

  17. Cost-Effectiveness of Earlier Initiation of Antiretroviral Therapy for Uninsured HIV-Infected Adults

    PubMed Central

    Schackman, Bruce R.; Goldie, Sue J.; Weinstein, Milton C.; Losina, Elena; Zhang, Hong; Freedberg, Kenneth A.

    2001-01-01

    Objectives. This study was designed to examine the societal cost-effectiveness and the impact on government payers of earlier initiation of antiretroviral therapy for uninsured HIV-infected adults. Methods. A state-transition simulation model of HIV disease was used. Data were derived from the Multicenter AIDS Cohort Study, published randomized trials, and medical care cost estimates for all government payers and for Massachusetts, New York, and Florida. Results. Quality-adjusted life expectancy increased from 7.64 years with therapy initiated at 200 CD4 cells/μL to 8.21 years with therapy initiated at 500 CD4 cells/μL. Initiating therapy at 500 CD4/μL was a more efficient use of resources than initiating therapy at 200 CD4/μL and had an incremental cost-effectiveness ratio of $17 300 per quality-adjusted life-year gained, compared with no therapy. Costs to state payers in the first 5 years ranged from $5500 to $24 900 because of differences among the states in the availability of federal funds for AIDS drug assistance programs. Conclusions. Antiretroviral therapy initiated at 500 CD4 cells/μL is cost-effective from a societal perspective compared with therapy initiated later. States should consider Medicaid waivers to expand access to early therapy. PMID:11527782

  18. Earlier vegetation green-up has reduced spring dust storms

    PubMed Central

    Fan, Bihang; Guo, Li; Li, Ning; Chen, Jin; Lin, Henry; Zhang, Xiaoyang; Shen, Miaogen; Rao, Yuhan; Wang, Cong; Ma, Lei

    2014-01-01

    The observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating aboveground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008. We find a significant dampening effect of advanced vegetation growth on spring dust storms (r = 0.49, p = 0.01), with a one-day earlier green-up date corresponding to a decrease in annual spring dust storm outbreaks by 3%. Moreover, the higher correlation (r = 0.55, p < 0.01) between green-up date and dust storm outbreak ratio (the ratio of dust storm outbreaks to times of strong wind events) indicates that such effect is independent of changes in surface wind. Spatially, a negative correlation is detected between areas with advanced green-up dates and regional annual spring dust storms (r = −0.49, p = 0.01). This new insight is valuable for understanding dust storms dynamics under the changing climate. Our findings suggest that dust storms in Inner Mongolia will be further mitigated by the projected earlier vegetation green-up in the warming world. PMID:25343265

  19. Earlier vegetation green-up has reduced spring dust storms.

    PubMed

    Fan, Bihang; Guo, Li; Li, Ning; Chen, Jin; Lin, Henry; Zhang, Xiaoyang; Shen, Miaogen; Rao, Yuhan; Wang, Cong; Ma, Lei

    2014-10-24

    The observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating aboveground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008. We find a significant dampening effect of advanced vegetation growth on spring dust storms (r = 0.49, p = 0.01), with a one-day earlier green-up date corresponding to a decrease in annual spring dust storm outbreaks by 3%. Moreover, the higher correlation (r = 0.55, p < 0.01) between green-up date and dust storm outbreak ratio (the ratio of dust storm outbreaks to times of strong wind events) indicates that such effect is independent of changes in surface wind. Spatially, a negative correlation is detected between areas with advanced green-up dates and regional annual spring dust storms (r = -0.49, p = 0.01). This new insight is valuable for understanding dust storms dynamics under the changing climate. Our findings suggest that dust storms in Inner Mongolia will be further mitigated by the projected earlier vegetation green-up in the warming world.

  20. Gyrokinetic micro-turbulence simulations on the NERSC 16-way SMP IBM SP computer: experiences and performance results

    NASA Astrophysics Data System (ADS)

    Ethier, Stephane; Lin, Zhihong

    2001-10-01

    Earlier this year, the National Energy Research Scientific Computing center (NERSC) took delivery of the second most powerful computer in the world. With its 2,528 processors running at a peak performance of 1.5 GFlops, this IBM SP machine has a theoretical performance of almost 3.8 TFlops. To efficiently harness such computing power in one single code is not an easy task and requires a good knowledge of the computer's architecture. Here we present the steps that we followed to improve our gyrokinetic micro-turbulence code GTC in order to take advantage of the new 16-way shared memory nodes of the NERSC IBM SP. Performance results are shown as well as details about the improved mixed-mode MPI-OpenMP model that we use. The enhancements to the code allowed us to tackle much bigger problem sizes, getting closer to our goal of simulating an ITER-size tokamak with both kinetic ions and electrons.(This work is supported by DOE Contract No. DE-AC02-76CH03073 (PPPL), and in part by the DOE Fusion SciDAC Project.)

  1. Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes.

    PubMed

    Steltzer, Heidi; Landry, Chris; Painter, Thomas H; Anderson, Justin; Ayres, Edward

    2009-07-14

    Dust deposition to mountain snow cover, which has increased since the late 19(th) century, accelerates the rate of snowmelt by increasing the solar radiation absorbed by the snowpack. Snowmelt occurs earlier, but is decoupled from seasonal warming. Climate warming advances the timing of snowmelt and early season phenological events (e.g., the onset of greening and flowering); however, earlier snowmelt without warmer temperatures may have a different effect on phenology. Here, we report the results of a set of snowmelt manipulations in which radiation-absorbing fabric and the addition and removal of dust from the surface of the snowpack advanced or delayed snowmelt in the alpine tundra. These changes in the timing of snowmelt were superimposed on a system where the timing of snowmelt varies with topography and has been affected by increased dust loading. At the community level, phenology exhibited a threshold response to the timing of snowmelt. Greening and flowering were delayed before seasonal warming, after which there was a linear relationship between the date of snowmelt and the timing of phenological events. Consequently, the effects of earlier snowmelt on phenology differed in relation to topography, which resulted in increasing synchronicity in phenology across the alpine landscape with increasingly earlier snowmelt. The consequences of earlier snowmelt from increased dust deposition differ from climate warming and include delayed phenology, leading to synchronized growth and flowering across the landscape and the opportunity for altered species interactions, landscape-scale gene flow via pollination, and nutrient cycling.

  2. Results of the Simulation of the HTR-Proteus Core 4.2 Using PEBBED-COMBINE: FY10 Report

    SciTech Connect

    Hans Gougar

    2010-07-01

    ABSTRACT The Idaho National Laboratory’s deterministic neutronics analysis codes and methods were applied to the computation of the core multiplication factor of the HTR-Proteus pebble bed reactor critical facility. This report is a follow-on to INL/EXT-09-16620 in which the same calculation was performed but using earlier versions of the codes and less developed methods. In that report, results indicated that the cross sections generated using COMBINE-7.0 did not yield satisfactory estimates of keff. It was concluded in the report that the modeling of control rods was not satisfactory. In the past year, improvements to the homogenization capability in COMBINE havemore » enabled the explicit modeling of TRIS particles, pebbles, and heterogeneous core zones including control rod regions using a new multi-scale version of COMBINE in which the 1-dimensional discrete ordinate transport code ANISN has been integrated. The new COMBINE is shown to yield benchmark quality results for pebble unit cell models, the first step in preparing few-group diffusion parameters for core simulations. In this report, the full critical core is modeled once again but with cross sections generated using the capabilities and physics of the improved COMBINE code. The new PEBBED-COMBINE model enables the exact modeling of the pebbles and control rod region along with better approximation to structures in the reflector. Initial results for the core multiplication factor indicate significant improvement in the INL’s tools for modeling the neutronic properties of a pebble bed reactor. Errors on the order of 1.6-2.5% in keff are obtained; a significant improvement over the 5-6% error observed in the earlier This is acceptable for a code system and model in the early stages of development but still too high for a production code. Analysis of a simpler core model indicates an over-prediction of the flux in the low end of the thermal spectrum. Causes of this discrepancy are under investigation

  3. HEBS and Binary 1-sinc masks simulations, HCIT experiments and results

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Bala K.; Hoppe, Dan; Wilson, Dan; Echternach, Pierre; Trauger, John; Halverson, Peter; Niessner, Al; Shi, Fang; Lowman, Andrew

    2005-01-01

    Based on preliminary experiments and results with a binary 1-sinc mask in the HCIT early in August 2004, we planned for a detailed experiment to compare the performance of HEBS and Binary masks under nearly identical conditions in the HCIT. This report details the design and fabrication of the masks, simulated predictions, and experimental results.

  4. High Fidelity Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronie response provides a bridge between electrically heated testing and fueled nuclear testing, providing a better assessment of system integration issues, characterization of integrated system response times and response characteristics, and assessment of potential design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design can developed. Test results presented in this paper correspond to a "first cut" simulator design for a potential

  5. Geometry and Simulation Results for a Gas Turbine Representative of the Energy Efficient Engine (EEE)

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.; Beach, Tim; Turner, Mark; Hendricks, Eric S.

    2015-01-01

    This paper describes the geometry and simulation results of a gas-turbine engine based on the original EEE engine developed in the 1980s. While the EEE engine was never in production, the technology developed during the program underpins many of the current generation of gas turbine engines. This geometry is being explored as a potential multi-stage turbomachinery test case that may be used to develop technology for virtual full-engine simulation. Simulation results were used to test the validity of each component geometry representation. Results are compared to a zero-dimensional engine model developed from experimental data. The geometry is captured in a series of Initial Graphical Exchange Specification (IGES) files and is available on a supplemental DVD to this report.

  6. Comparison of the analytical and simulation results of the equilibrium beam profile

    SciTech Connect

    Liu, Z. J.; Zhu Shaoping; Cao, L. H.

    2007-10-15

    The evolution of high current electron beams in dense plasmas has been investigated by using two-dimensional particle-in-cell (PIC) simulations with immobile ions. It is shown that electron beams are split into many filaments at the beginning due to the Weibel instability, and then different filamentation beams attract each other and coalesce. The profile of the filaments can be described by formulas. Hammer et al. [Phys. Fluids 13, 1831 (1970)] developed a self-consistent relativistic electron beam model that allows the propagation of relativistic electron fluxes in excess of the Alfven-Lawson critical-current limit for a fully neutralized beam. The equilibrium solution hasmore » been observed in the simulation results, but the electron distribution function assumed by Hammer et al. is different from the simulation results.« less

  7. [Numerical simulation of the effect of virtual stent release pose on the expansion results].

    PubMed

    Li, Jing; Peng, Kun; Cui, Xinyang; Fu, Wenyu; Qiao, Aike

    2018-04-01

    The current finite element analysis of vascular stent expansion does not take into account the effect of the stent release pose on the expansion results. In this study, stent and vessel model were established by Pro/E. Five kinds of finite element assembly models were constructed by ABAQUS, including 0 degree without eccentricity model, 3 degree without eccentricity model, 5 degree without eccentricity model, 0 degree axial eccentricity model and 0 degree radial eccentricity model. These models were divided into two groups of experiments for numerical simulation with respect to angle and eccentricity. The mechanical parameters such as foreshortening rate, radial recoil rate and dog boning rate were calculated. The influence of angle and eccentricity on the numerical simulation was obtained by comparative analysis. Calculation results showed that the residual stenosis rates were 38.3%, 38.4%, 38.4%, 35.7% and 38.2% respectively for the 5 models. The results indicate that the pose has less effect on the numerical simulation results so that it can be neglected when the accuracy of the result is not highly required, and the basic model as 0 degree without eccentricity model is feasible for numerical simulation.

  8. [3D Virtual Reality Laparoscopic Simulation in Surgical Education - Results of a Pilot Study].

    PubMed

    Kneist, W; Huber, T; Paschold, M; Lang, H

    2016-06-01

    The use of three-dimensional imaging in laparoscopy is a growing issue and has led to 3D systems in laparoscopic simulation. Studies on box trainers have shown differing results concerning the benefit of 3D imaging. There are currently no studies analysing 3D imaging in virtual reality laparoscopy (VRL). Five surgical fellows, 10 surgical residents and 29 undergraduate medical students performed abstract and procedural tasks on a VRL simulator using conventional 2D and 3D imaging in a randomised order. No significant differences between the two imaging systems were shown for students or medical professionals. Participants who preferred three-dimensional imaging showed significantly better results in 2D as wells as in 3D imaging. First results on three-dimensional imaging on box trainers showed different results. Some studies resulted in an advantage of 3D imaging for laparoscopic novices. This study did not confirm the superiority of 3D imaging over conventional 2D imaging in a VRL simulator. In the present study on 3D imaging on a VRL simulator there was no significant advantage for 3D imaging compared to conventional 2D imaging. Georg Thieme Verlag KG Stuttgart · New York.

  9. Understanding Violence in Contemporary and Earlier Gangs: An Exploratory Application of the Theory of Reasoned Action.

    ERIC Educational Resources Information Center

    Evans, Judy P.; Taylor, Jerome

    1995-01-01

    Reviews the theory of reasoned action to demonstrate how it can be applied to understanding gang violence, and illustrates its potential applicability to a pilot sample of 30 contemporary and 18 earlier gangs living in a large metropolitan community. Results indicate this theory has been helpful in explaining higher levels of violence in…

  10. Yarding cost for the Koller K300 cable yarder: results from field trials and simulations

    Treesearch

    Neil K. Huyler; Chris B. LeDoux

    1997-01-01

    This paper describes results from field studies and simulation that can be used to estimate the yarding cost for the Koller K300 cable yarder. Yarding costs can be estimated for clearcuts and light and heavy thinnings in eastern hardwoods. Yarding costs can be estimated with a handheld calculator, or the data can be incorporated into stump-to-mill desktop PC and...

  11. Results of a simulator test comparing two display concepts for piloted flight-path-angle control

    NASA Technical Reports Server (NTRS)

    Kelley, W. W.

    1978-01-01

    Results of a simulator experiment which was conducted in order to compare pilot gamma-control performance using two display formats are reported. Pilots flew a variable flight path angle tracking task in the landing configuration. Pilot and airplane performance parameters were recorded and pilot comments noted for each case.

  12. Later endogenous circadian temperature nadir relative to an earlier wake time in older people

    NASA Technical Reports Server (NTRS)

    Duffy, J. F.; Dijk, D. J.; Klerman, E. B.; Czeisler, C. A.

    1998-01-01

    The contribution of the circadian timing system to the age-related advance of sleep-wake timing was investigated in two experiments. In a constant routine protocol, we found that the average wake time and endogenous circadian phase of 44 older subjects were earlier than that of 101 young men. However, the earlier circadian phase of the older subjects actually occurred later relative to their habitual wake time than it did in young men. These results indicate that an age-related advance of circadian phase cannot fully account for the high prevalence of early morning awakening in healthy older people. In a second study, 13 older subjects and 10 young men were scheduled to a 28-h day, such that they were scheduled to sleep at many circadian phases. Self-reported awakening from scheduled sleep episodes and cognitive throughput during the second half of the wake episode varied markedly as a function of circadian phase in both groups. The rising phase of both rhythms was advanced in the older subjects, suggesting an age-related change in the circadian regulation of sleep-wake propensity. We hypothesize that under entrained conditions, these age-related changes in the relationship between circadian phase and wake time are likely associated with self-selected light exposure at an earlier circadian phase. This earlier exposure to light could account for the earlier clock hour to which the endogenous circadian pacemaker is entrained in older people and thereby further increase their propensity to awaken at an even earlier time.

  13. Results of intravehicular manned cargo-transfer studies in simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Spady, A. A., Jr.; Beasley, G. P.; Yenni, K. R.; Eisele, D. F.

    1972-01-01

    A parametric investigation was conducted in a water immersion simulator to determine the effect of package mass, moment of inertia, and size on the ability of man to transfer cargo in simulated weightlessness. Results from this study indicate that packages with masses of at least 744 kg and moments of inertia of at least 386 kg-m2 can be manually handled and transferred satisfactorily under intravehicular conditions using either one- or two-rail motion aids. Data leading to the conclusions and discussions of test procedures and equipment are presented.

  14. Analysis Results for Lunar Soil Simulant Using a Portable X-Ray Fluorescence Analyzer

    NASA Technical Reports Server (NTRS)

    Boothe, R. E.

    2006-01-01

    Lunar soil will potentially be used for oxygen generation, water generation, and as filler for building blocks during habitation missions on the Moon. NASA s in situ fabrication and repair program is evaluating portable technologies that can assess the chemistry of lunar soil and lunar soil simulants. This Technical Memorandum summarizes the results of the JSC 1 lunar soil simulant analysis using the TRACeR III IV handheld x-ray fluorescence analyzer, manufactured by KeyMaster Technologies, Inc. The focus of the evaluation was to determine how well the current instrument configuration would detect and quantify the components of JSC-1.

  15. The Aurora radiation-hydrodynamical simulations of reionization: calibration and first results

    NASA Astrophysics Data System (ADS)

    Pawlik, Andreas H.; Rahmati, Alireza; Schaye, Joop; Jeon, Myoungwon; Dalla Vecchia, Claudio

    2017-04-01

    We introduce a new suite of radiation-hydrodynamical simulations of galaxy formation and reionization called Aurora. The Aurora simulations make use of a spatially adaptive radiative transfer technique that lets us accurately capture the small-scale structure in the gas at the resolution of the hydrodynamics, in cosmological volumes. In addition to ionizing radiation, Aurora includes galactic winds driven by star formation and the enrichment of the universe with metals synthesized in the stars. Our reference simulation uses 2 × 5123 dark matter and gas particles in a box of size 25 h-1 comoving Mpc with a force softening scale of at most 0.28 h-1 kpc. It is accompanied by simulations in larger and smaller boxes and at higher and lower resolution, employing up to 2 × 10243 particles, to investigate numerical convergence. All simulations are calibrated to yield simulated star formation rate functions in close agreement with observational constraints at redshift z = 7 and to achieve reionization at z ≈ 8.3, which is consistent with the observed optical depth to reionization. We focus on the design and calibration of the simulations and present some first results. The median stellar metallicities of low-mass galaxies at z = 6 are consistent with the metallicities of dwarf galaxies in the Local Group, which are believed to have formed most of their stars at high redshifts. After reionization, the mean photoionization rate decreases systematically with increasing resolution. This coincides with a systematic increase in the abundance of neutral hydrogen absorbers in the intergalactic medium.

  16. Influence of photon energy cuts on PET Monte Carlo simulation results.

    PubMed

    Mitev, Krasimir; Gerganov, Georgi; Kirov, Assen S; Schmidtlein, C Ross; Madzhunkov, Yordan; Kawrakow, Iwan

    2012-07-01

    The purpose of this work is to study the influence of photon energy cuts on the results of positron emission tomography (PET) Monte Carlo (MC) simulations. MC simulations of PET scans of a box phantom and the NEMA image quality phantom are performed for 32 photon energy cut values in the interval 0.3-350 keV using a well-validated numerical model of a PET scanner. The simulations are performed with two MC codes, egs_pet and GEANT4 Application for Tomographic Emission (GATE). The effect of photon energy cuts on the recorded number of singles, primary, scattered, random, and total coincidences as well as on the simulation time and noise-equivalent count rate is evaluated by comparing the results for higher cuts to those for 1 keV cut. To evaluate the effect of cuts on the quality of reconstructed images, MC generated sinograms of PET scans of the NEMA image quality phantom are reconstructed with iterative statistical reconstruction. The effects of photon cuts on the contrast recovery coefficients and on the comparison of images by means of commonly used similarity measures are studied. For the scanner investigated in this study, which uses bismuth germanate crystals, the transport of Bi X(K) rays must be simulated in order to obtain unbiased estimates for the number of singles, true, scattered, and random coincidences as well as for an unbiased estimate of the noise-equivalent count rate. Photon energy cuts higher than 170 keV lead to absorption of Compton scattered photons and strongly increase the number of recorded coincidences of all types and the noise-equivalent count rate. The effect of photon cuts on the reconstructed images and the similarity measures used for their comparison is statistically significant for very high cuts (e.g., 350 keV). The simulation time decreases slowly with the increase of the photon cut. The simulation of the transport of characteristic x rays plays an important role, if an accurate modeling of a PET scanner system is to be achieved

  17. The case for earlier cochlear implantation in postlingually deaf adults.

    PubMed

    Dowell, Richard C

    2016-01-01

    This paper aimed to estimate the difference in speech perception outcomes that may occur due to timing of cochlear implantation in relation to the progression of hearing loss. Data from a large population-based sample of adults with acquired hearing loss using cochlear implants (CIs) was used to estimate the effects of duration of hearing loss, age, and pre-implant auditory skills on outcomes for a hypothetical standard patient. A total of 310 adults with acquired severe/profound bilateral hearing loss who received a CI in Melbourne, Australia between 1994 and 2006 provided the speech perception data and demographic information to derive regression equations for estimating CI outcomes. For a hypothetical CI candidate with progressive sensorineural hearing loss, the estimates of speech perception scores following cochlear implantation are significantly better if implantation occurs relatively soon after onset of severe hearing loss and before the loss of all functional auditory skills. Improved CI outcomes and quality of life benefit may be achieved for adults with progressive severe hearing loss if they are implanted earlier in the progression of the pathology.

  18. Near-field diffraction from amplitude diffraction gratings: theory, simulation and results

    NASA Astrophysics Data System (ADS)

    Abedin, Kazi Monowar; Rahman, S. M. Mujibur

    2017-08-01

    We describe a computer simulation method by which the complete near-field diffract pattern of an amplitude diffraction grating can be generated. The technique uses the method of iterative Fresnel integrals to calculate and generate the diffraction images. Theoretical background as well as the techniques to perform the simulation is described. The program is written in MATLAB, and can be implemented in any ordinary PC. Examples of simulated diffraction images are presented and discussed. The generated images in the far-field where they reduce to Fraunhofer diffraction pattern are also presented for a realistic grating, and compared with the results predicted by the grating equation, which is applicable in the far-field. The method can be used as a tool to teach the complex phenomenon of diffraction in classrooms.

  19. Ca-Pri a Cellular Automata Phenomenological Research Investigation: Simulation Results

    NASA Astrophysics Data System (ADS)

    Iannone, G.; Troisi, A.

    2013-05-01

    Following the introduction of a phenomenological cellular automata (CA) model capable to reproduce city growth and urban sprawl, we develop a toy model simulation considering a realistic framework. The main characteristic of our approach is an evolution algorithm based on inhabitants preferences. The control of grown cells is obtained by means of suitable functions which depend on the initial condition of the simulation. New born urban settlements are achieved by means of a logistic evolution of the urban pattern while urban sprawl is controlled by means of the population evolution function. In order to compare model results with a realistic urban framework we have considered, as the area of study, the island of Capri (Italy) in the Mediterranean Sea. Two different phases of the urban evolution on the island have been taken into account: a new born initial growth as induced by geographic suitability and the simulation of urban spread after 1943 induced by the population evolution after this date.

  20. Migrating Shoals on Ebb-tidal Deltas: Results from Numerical Simulations

    NASA Astrophysics Data System (ADS)

    van der Vegt, M.; Ridderinkhof, W.; De Swart, H. E.; Hoekstra, P.

    2016-02-01

    Many ebb-tidal deltas show repetitive patterns of channel- shoal generation, migration and attachment of shoals to the downdrift barrier coast. For the Wadden Sea coast along the Dutch, German en Danish coastline the typical time scale of shoal attachment ranges from several to hundred years. There is a weak correlation between the tidal prism and the typical time scale of shoal attachment. The main aim of this research is to clarify the physical processes that result in the formation of shoals on ebb-tidal deltas and to study what determines their propagation speed. To this end numerical simulations were performed in Delft3D. Starting from an idealized geometry with a sloping bed on the shelf sea and a flat bed in the back barrier basin, the model was spun up until an approximate morphodynamic steady state was realized. The model was forced with tides and constant wave forcing based on the yearly average conditions along the Dutch Wadden coast. The resulting ebb-tidal delta is called the equilibrium delta. Next, two types of scenarios were run. First, the equilibrium delta was breached by creating a channel and adding the removed sand volume to the downdrift shoal. Second, the wave climate was made more realistic by adding storms and subsequently its effect on the equilibrium delta was simulated. Based on the model results we conclude the following. First, the model is able to realistically simulate the migration of shoals and the attachment to the downdrift barrier island. Second, larger waves result in faster propagation of the shoals. Third, simulations suggest that shoals only migrate when they are shallower than a critical maximum depth with respect to the wave height. These shallow shoals can be `man-made' or be generated during storms. When no storms were added to the wave climate and the bed was not artificially disturbed, no migrating shoals were simulated. During the presentation the underlying physical processes will be discussed in detail.

  1. Improving the trust in results of numerical simulations and scientific data analytics

    SciTech Connect

    Cappello, Franck; Constantinescu, Emil; Hovland, Paul

    This white paper investigates several key aspects of the trust that a user can give to the results of numerical simulations and scientific data analytics. In this document, the notion of trust is related to the integrity of numerical simulations and data analytics applications. This white paper complements the DOE ASCR report on Cybersecurity for Scientific Computing Integrity by (1) exploring the sources of trust loss; (2) reviewing the definitions of trust in several areas; (3) providing numerous cases of result alteration, some of them leading to catastrophic failures; (4) examining the current notion of trust in numerical simulation andmore » scientific data analytics; (5) providing a gap analysis; and (6) suggesting two important research directions and their respective research topics. To simplify the presentation without loss of generality, we consider that trust in results can be lost (or the results’ integrity impaired) because of any form of corruption happening during the execution of the numerical simulation or the data analytics application. In general, the sources of such corruption are threefold: errors, bugs, and attacks. Current applications are already using techniques to deal with different types of corruption. However, not all potential corruptions are covered by these techniques. We firmly believe that the current level of trust that a user has in the results is at least partially founded on ignorance of this issue or the hope that no undetected corruptions will occur during the execution. This white paper explores the notion of trust and suggests recommendations for developing a more scientifically grounded notion of trust in numerical simulation and scientific data analytics. We first formulate the problem and show that it goes beyond previous questions regarding the quality of results such as V&V, uncertainly quantification, and data assimilation. We then explore the complexity of this difficult problem, and we sketch complementary

  2. Numerical simulations of hydrothermal circulation resulting from basalt intrusions in a buried spreading center

    USGS Publications Warehouse

    Fisher, A.T.; Narasimhan, T.N.

    1991-01-01

    A two-dimensional, one by two-kilometer section through the seafloor was simulated with a numerical model to investigate coupled fluid and heat flow resulting from basalt intrusions in a buried spreading center. Boundary and initial conditions and physical properties of both sediments and basalt were constrained by field surveys and drilling in the Guaymas Basin, central Gulf of California. Parametric variations in these studies included sediment and basalt permeability, anisotropy in sediment permeability, and the size of heat sources. Faults were introduced through new intrusions both before and after cooling.Background heat input caused fluid convection at velocities ≤ 3 cm a−1 through shallow sediments. Eighty to ninety percent of the heat introduced at the base of the simulations exited through the upper, horizontal surface, even when the vertical boundaries were made permeable to fluid flow. The simulated injection of a 25–50 m thick basalt intrusion at a depth of 250 m resulted in about 10 yr of pore-fluid expulsion through the sea-floor in all cases, leaving the sediments above the intrusions strongly underpressured. A longer period of fluid recharge followed, sometimes accompanied by reductions in total seafloor heat output of 10% in comparison to pre-intrusion values. Additional discharge-recharge events were dispersed chaotically through the duration of the cooling period. These cycles in heat and fluid flow resulted from the response of the simulated system to a thermodynamic shock, the sudden emplacement of a large heat source, and not from mechanical displacement of sediments and pore fluids, which was not simulated.Water/rock mass ratios calculated from numerical simulations are in good agreement with geochemical estimates from materials recovered from the Guaymas Basin, assuming a bulk basalt permeability value of at least 10−17 m2/(10−2 mD). The addition of faults through intrusions and sediments in these simulations did not facilitate

  3. High-Alpha Research Vehicle Lateral-Directional Control Law Description, Analyses, and Simulation Results

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Murphy, Patrick C.; Lallman, Frederick J.; Hoffler, Keith D.; Bacon, Barton J.

    1998-01-01

    This report contains a description of a lateral-directional control law designed for the NASA High-Alpha Research Vehicle (HARV). The HARV is a F/A-18 aircraft modified to include a research flight computer, spin chute, and thrust-vectoring in the pitch and yaw axes. Two separate design tools, CRAFT and Pseudo Controls, were integrated to synthesize the lateral-directional control law. This report contains a description of the lateral-directional control law, analyses, and nonlinear simulation (batch and piloted) results. Linear analysis results include closed-loop eigenvalues, stability margins, robustness to changes in various plant parameters, and servo-elastic frequency responses. Step time responses from nonlinear batch simulation are presented and compared to design guidelines. Piloted simulation task scenarios, task guidelines, and pilot subjective ratings for the various maneuvers are discussed. Linear analysis shows that the control law meets the stability margin guidelines and is robust to stability and control parameter changes. Nonlinear batch simulation analysis shows the control law exhibits good performance and meets most of the design guidelines over the entire range of angle-of-attack. This control law (designated NASA-1A) was flight tested during the Summer of 1994 at NASA Dryden Flight Research Center.

  4. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-01-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  5. Marvel-ous Dwarfs: Results from Four Heroically Large Simulated Volumes of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Munshi, Ferah; Brooks, Alyson; Weisz, Daniel; Bellovary, Jillian; Christensen, Charlotte

    2018-01-01

    We present results from high resolution, fully cosmological simulations of cosmic sheets that contain many dwarf galaxies. Together, they create the largest collection of simulated dwarf galaxies to date, with z=0 stellar masses comparable to the LMC or smaller. In total, we have simulated almost 100 luminous dwarf galaxies, forming a sample of simulated dwarfs which span a wide range of physical (stellar and halo mass) and evolutionary properties (merger history). We show how they can be calibrated against a wealth of observations of nearby galaxies including star formation histories, HI masses and kinematics, as well as stellar metallicities. We present preliminary results answering the following key questions: What is the slope of the stellar mass function at extremely low masses? Do halos with HI and no stars exist? What is the scatter in the stellar to halo mass relationship as a function of dwarf mass? What drives the scatter? With this large suite, we are beginning to statistically characterize dwarf galaxies and identify the types and numbers of outliers to expect.

  6. Assimilating the Future for Better Forecasts and Earlier Warnings

    NASA Astrophysics Data System (ADS)

    Du, H.; Wheatcroft, E.; Smith, L. A.

    2016-12-01

    Multi-model ensembles have become popular tools to account for some of the uncertainty due to model inadequacy in weather and climate simulation-based predictions. The current multi-model forecasts focus on combining single model ensemble forecasts by means of statistical post-processing. Assuming each model is developed independently or with different primary target variables, each is likely to contain different dynamical strengths and weaknesses. Using statistical post-processing, such information is only carried by the simulations under a single model ensemble: no advantage is taken to influence simulations under the other models. A novel methodology, named Multi-model Cross Pollination in Time, is proposed for multi-model ensemble scheme with the aim of integrating the dynamical information regarding the future from each individual model operationally. The proposed approach generates model states in time via applying data assimilation scheme(s) to yield truly "multi-model trajectories". It is demonstrated to outperform traditional statistical post-processing in the 40-dimensional Lorenz96 flow. Data assimilation approaches are originally designed to improve state estimation from the past to the current time. The aim of this talk is to introduce a framework that uses data assimilation to improve model forecasts at future time (not to argue for any one particular data assimilation scheme). Illustration of applying data assimilation "in the future" to provide early warning of future high-impact events is also presented.

  7. Simulated Driving Assessment (SDA) for Teen Drivers: Results from a Validation Study

    PubMed Central

    McDonald, Catherine C.; Kandadai, Venk; Loeb, Helen; Seacrist, Thomas S.; Lee, Yi-Ching; Winston, Zachary; Winston, Flaura K.

    2015-01-01

    Background Driver error and inadequate skill are common critical reasons for novice teen driver crashes, yet few validated, standardized assessments of teen driving skills exist. The purpose of this study was to evaluate the construct and criterion validity of a newly developed Simulated Driving Assessment (SDA) for novice teen drivers. Methods The SDA's 35-minute simulated drive incorporates 22 variations of the most common teen driver crash configurations. Driving performance was compared for 21 inexperienced teens (age 16–17 years, provisional license ≤90 days) and 17 experienced adults (age 25–50 years, license ≥5 years, drove ≥100 miles per week, no collisions or moving violations ≤3 years). SDA driving performance (Error Score) was based on driving safety measures derived from simulator and eye-tracking data. Negative driving outcomes included simulated collisions or run-off-the-road incidents. A professional driving evaluator/instructor reviewed videos of SDA performance (DEI Score). Results The SDA demonstrated construct validity: 1.) Teens had a higher Error Score than adults (30 vs. 13, p=0.02); 2.) For each additional error committed, the relative risk of a participant's propensity for a simulated negative driving outcome increased by 8% (95% CI: 1.05–1.10, p<0.01). The SDA demonstrated criterion validity: Error Score was correlated with DEI Score (r=−0.66, p<0.001). Conclusions This study supports the concept of validated simulated driving tests like the SDA to assess novice driver skill in complex and hazardous driving scenarios. The SDA, as a standard protocol to evaluate teen driver performance, has the potential to facilitate screening and assessment of teen driving readiness and could be used to guide targeted skill training. PMID:25740939

  8. From single Debye-Hückel chains to polyelectrolyte solutions: Simulation results

    NASA Astrophysics Data System (ADS)

    Kremer, Kurt

    1996-03-01

    This lecture will present results from simulations of single weakly charged flexible chains, where the electrostatic part of the interaction is modeled by a Debye-Hückel potential,( with U. Micka, IFF, Forschungszentrum Jülich, 52425 Jülich, Germany) as well as simulations of polyelectrolyte solutions, where the counterions are explicitly taken into account( with M. J. Stevens, Sandia Nat. Lab., Albuquerque, NM 87185-1111) ( M. J. Stevens, K. Kremer, JCP 103), 1669 (1995). The first set of the simulations is meant to clear a recent contoversy on the dependency of the persistence length LP on the screening length Γ. While the analytic theories give Lp ~ Γ^x with either x=1 or x=2, the simulations find for all experimentally accessible chain lengths a varying exponent, which is significantly smaller than 1. This causes serious doubts on the applicability of this model for weakly charged polyelectrolytes in general. The second part deals with strongly charged flexible polyelectrolytes in salt free solution. These simulations are performed for multichain systems. The full Coulomb interactions of the monomers and counterions are treated explicitly. Experimental measurements of the osmotic pressure and the structure factor are reproduced and extended. The simulations reveal a new picture of the chain structure based on calculations of the structure factor, persistence length, end-to-end distance, etc. Even at very low density, the chains show significant bending. Furthermore, the chains contract significantly before they start to overlap. We also show that counterion condensation dramatically alters the chain structure, even for a good solvent backbone.

  9. Earlier warning: a multi-indicator approach to monitoring trends in the illicit use of medicines.

    PubMed

    Mounteney, Jane; Haugland, Siren

    2009-03-01

    The availability of medicines on the illicit drug market is currently high on the international policy agenda, linked to adverse health consequences including addiction, drug related overdoses and injection related problems. Continuous surveillance of illicit use of medicines allows for earlier identification and reporting of emerging trends and increased possibilities for earlier intervention to prevent spread of use and drug related harm. This paper aims to identify data sources capable of monitoring the illicit use of medicines; present trend findings for Rohypnol and Subutex using a multi-indicator monitoring approach; and consider the relevance of such models for policy makers. Data collection and analysis were undertaken in Bergen, Norway, using the Bergen Earlier Warning System (BEWS), a multi-indicator drug monitoring system. Data were gathered at six monthly intervals from April 2002 to September 2006. Drug indicator data from seizures, treatment, pharmacy sales, helplines, key informants and media monitoring were triangulated and an aggregated differential was used to plot trends. Results for the 4-year period showed a decline in the illicit use of Rohypnol and an increase in the illicit use of Subutex. Multi-indicator surveillance models can play a strategic role in the earlier identification and reporting of emerging trends in illicit use of medicines.

  10. Smoking is associated with earlier time to revision of total knee arthroplasty.

    PubMed

    Lim, Chin Tat; Goodman, Stuart B; Huddleston, James I; Harris, Alex H S; Bhowmick, Subhrojyoti; Maloney, William J; Amanatullah, Derek F

    2017-10-01

    Smoking is associated with early postoperative complications, increased length of hospital stay, and an increased risk of revision after total knee arthroplasty (TKA). However, the effect of smoking on time to revision TKA is unknown. A total of 619 primary TKAs referred to an academic tertiary center for revision TKA were retrospectively stratified according to the patient smoking status. Smoking status was then analyzed for associations with time to revision TKA using a Chi square test. The association was also analyzed according to the indication for revision TKA. Smokers (37/41, 90%) have an increased risk of earlier revision for any reason compared to non-smokers (274/357, 77%, p=0.031). Smokers (37/41, 90%) have an increased risk of earlier revision for any reason compared to ex-smokers (168/221, 76%, p=0.028). Subgroup analysis did not reveal a difference in indication for revision TKA (p>0.05). Smokers are at increased risk of earlier revision TKA when compared to non-smokers and ex-smokers. The risk for ex-smokers was similar to that of non-smokers. Smoking appears to have an all-or-none effect on earlier revision TKA as patients who smoked more did not have higher risk of early revision TKA. These results highlight the need for clinicians to urge patients not to begin smoking and encourage smokers to quit smoking prior to primary TKA. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Novel approach for beacon formation through simulated turbulence: initial lab-test results

    NASA Astrophysics Data System (ADS)

    Khizhnyak, A.; Markov, V.; Tomov, I.; Wu, F.

    2010-02-01

    In this paper we report the results of the analysis and experimental modeling of the target-in-the-loop (TIL) approach that is used to form a localized beacon for a laser beam propagating through turbulent atmosphere. The analogy between the TIL system and the laser cavity has been used here to simulate the process shaping the laser beacon on a remote image-resolved target with rough surface. The TIL breadboard was integrated and used for laboratory modeling of the proposed approach. This breadboard allowed to simulate the TIL arrangement with a rough-surface target and laser beam propagation through the turbulent atmospheric layer. Here we present the initial results of the performed studies.

  12. A Compact Synchronous Cellular Model of Nonlinear Calcium Dynamics: Simulation and FPGA Synthesis Results.

    PubMed

    Soleimani, Hamid; Drakakis, Emmanuel M

    2017-06-01

    Recent studies have demonstrated that calcium is a widespread intracellular ion that controls a wide range of temporal dynamics in the mammalian body. The simulation and validation of such studies using experimental data would benefit from a fast large scale simulation and modelling tool. This paper presents a compact and fully reconfigurable cellular calcium model capable of mimicking Hopf bifurcation phenomenon and various nonlinear responses of the biological calcium dynamics. The proposed cellular model is synthesized on a digital platform for a single unit and a network model. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed cellular model can mimic the biological calcium behaviors with considerably low hardware overhead. The approach has the potential to speed up large-scale simulations of slow intracellular dynamics by sharing more cellular units in real-time. To this end, various networks constructed by pipelining 10 k to 40 k cellular calcium units are compared with an equivalent simulation run on a standard PC workstation. Results show that the cellular hardware model is, on average, 83 times faster than the CPU version.

  13. Analysis of formation pressure test results in the Mount Elbert methane hydrate reservoir through numerical simulation

    USGS Publications Warehouse

    Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Masuda, Y.; Narita, H.; Collett, T.S.

    2011-01-01

    Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating "Mount Elbert C2 zone like reservoir" "PBU L-Pad like reservoir" and "PBU L-Pad down dip like reservoir" were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16??106m3/well to 8.22??108m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. ?? 2010 Elsevier Ltd.

  14. Eigenstates and dynamics of Hooke's atom: Exact results and path integral simulations

    NASA Astrophysics Data System (ADS)

    Gholizadehkalkhoran, Hossein; Ruokosenmäki, Ilkka; Rantala, Tapio T.

    2018-05-01

    The system of two interacting electrons in one-dimensional harmonic potential or Hooke's atom is considered, again. On one hand, it appears as a model for quantum dots in a strong confinement regime, and on the other hand, it provides us with a hard test bench for new methods with the "space splitting" arising from the one-dimensional Coulomb potential. Here, we complete the numerous previous studies of the ground state of Hooke's atom by including the excited states and dynamics, not considered earlier. With the perturbation theory, we reach essentially exact eigenstate energies and wave functions for the strong confinement regime as novel results. We also consider external perturbation induced quantum dynamics in a simple separable case. Finally, we test our novel numerical approach based on real-time path integrals (RTPIs) in reproducing the above. The RTPI turns out to be a straightforward approach with exact account of electronic correlations for solving the eigenstates and dynamics without the conventional restrictions of electronic structure methods.

  15. Test Facility Simulation Results for Aerospace Loss-of-Lubrication of Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Gargano, Lucas J.

    2014-01-01

    Prior to receiving airworthiness certification, extensive testing is required during the development of rotary wing aircraft drive systems. Many of these tests are conducted to demonstrate the drive system's ability to operate at extreme conditions, beyond that called for in the normal to maximum power operating range. One of the most extreme tests is referred to as the loss-of-lubrication or run dry test. During this test, the drive system is expected to last at least 30 min without failure while the primary lubrication system is disabled for predetermined, scripted flight conditions. Failure of this test can lead to a partial redesign of the drive system or the addition of an emergency lubrication system. Either of these solutions can greatly increase the aircraft drive system cost and weight and extend the schedule for obtaining airworthiness certification. Recent work at NASA Glenn Research Center focused on performing tests, in a relevant aerospace environment, to simulate the behavior of spur gears under loss-of-lubrication conditions. Tests were conducted using a test facility that was used in the past for spur gear contact fatigue testing. A loss-oflubrication test is initiated by shutting off the single into mesh lubricating jet. The test proceeds until the gears fail and can no longer deliver the applied torque. The observed failures are typically plastically deformed gear teeth, due to the high tooth temperatures, that are no longer in mesh. The effect of several different variables to gear tooth condition during loss-of-lubrication have been tested such as gear pitch, materials, shrouding, lubrication condition, and emergency supplied mist lubrication in earlier testing at NASA. Recent testing has focused on newer aerospace gear steels and imbedding thermocouples in the shrouding to measure the air-oil temperatures flung off the gear teeth. Along with the instrumented shrouding, an instrumented spur gear was also tested. The instrumented spur gear had

  16. The associations of earlier trauma exposures and history of mental disorders with PTSD after subsequent traumas

    PubMed Central

    Kessler, Ronald C.; Aguilar-Gaxiola, Sergio; Alonso, Jordi; Bromet, Evelyn J.; Gureje, Oye; Karam, Elie G.; Koenen, Karestan C.; Lee, Sing; Liu, Howard; Pennell, Beth-Ellen; Petukhova, Maria V.; Sampson, Nancy A.; Shahly, Victoria L.; Stein, Dan J.; Atwoli, Lukoye; Borges, Guilherme; Bunting, Brendan; de Girolamo, Giovanni; Gluzman, Semyon; Haro, Josep Maria; Hinkov, Hristo; Kawakami, Norito; Kovess-Masfety, Viviane; Navarro-Mateu, Fernando; Posada-Villa, Jose; Scott, Kate M.; Shalev, Arieh Y.; Have, Margreet ten; Torres, Yolanda; Viana, Maria Carmen; Zaslavsky, Alan M.

    2017-01-01

    Although earlier trauma exposure is known to predict post-traumatic stress disorder (PTSD) after subsequent traumas, it is unclear if this association is limited to cases where the earlier trauma led to PTSD. Resolution of this uncertainty has important implications for research on pre-trauma vulnerability to PTSD. We examined this issue in the WHO World Mental Health (WMH) Surveys with 34,676 respondents who reported lifetime trauma exposure. One lifetime trauma was selected randomly for each respondent. DSM-IV PTSD due to that trauma was assessed. We reported in a previous paper that four earlier traumas involving interpersonal violence significantly predicted PTSD after subsequent random traumas (OR=1.3–2.5). We also assessed 14 lifetime DSM-IV mood, anxiety, disruptive behavior, and substance disorders prior to random traumas. We show in the current report that only prior anxiety disorders significantly predicted PTSD in a multivariate model (OR=1.5–4.3) and that these disorders interacted significantly with three of the earlier traumas (witnessing atrocities, physical violence victimization, rape). History of witnessing atrocities significantly predicted PTSD after subsequent random traumas only among respondents with prior PTSD (OR=5.6). Histories of physical violence victimization (OR=1.5) and rape after age 17 (OR=17.6) significantly predicted only among respondents with no history of prior anxiety disorders. Although only preliminary due to reliance on retrospective reports, these results suggest that history of anxiety disorders and history of a limited number of earlier traumas might usefully be targeted in future prospective studies as distinct foci of research on individual differences in vulnerability to PTSD after subsequent traumas. PMID:28924183

  17. The associations of earlier trauma exposures and history of mental disorders with PTSD after subsequent traumas.

    PubMed

    Kessler, R C; Aguilar-Gaxiola, S; Alonso, J; Bromet, E J; Gureje, O; Karam, E G; Koenen, K C; Lee, S; Liu, H; Pennell, B-E; Petukhova, M V; Sampson, N A; Shahly, V; Stein, D J; Atwoli, L; Borges, G; Bunting, B; de Girolamo, G; Gluzman, S F; Haro, J M; Hinkov, H; Kawakami, N; Kovess-Masfety, V; Navarro-Mateu, F; Posada-Villa, J; Scott, K M; Shalev, A Y; Ten Have, M; Torres, Y; Viana, M C; Zaslavsky, A M

    2017-09-19

    Although earlier trauma exposure is known to predict posttraumatic stress disorder (PTSD) after subsequent traumas, it is unclear whether this association is limited to cases where the earlier trauma led to PTSD. Resolution of this uncertainty has important implications for research on pretrauma vulnerability to PTSD. We examined this issue in the World Health Organization (WHO) World Mental Health (WMH) Surveys with 34 676 respondents who reported lifetime trauma exposure. One lifetime trauma was selected randomly for each respondent. DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, 4th Edition) PTSD due to that trauma was assessed. We reported in a previous paper that four earlier traumas involving interpersonal violence significantly predicted PTSD after subsequent random traumas (odds ratio (OR)=1.3-2.5). We also assessed 14 lifetime DSM-IV mood, anxiety, disruptive behavior and substance disorders before random traumas. We show in the current report that only prior anxiety disorders significantly predicted PTSD in a multivariate model (OR=1.5-4.3) and that these disorders interacted significantly with three of the earlier traumas (witnessing atrocities, physical violence victimization and rape). History of witnessing atrocities significantly predicted PTSD after subsequent random traumas only among respondents with prior PTSD (OR=5.6). Histories of physical violence victimization (OR=1.5) and rape after age 17 years (OR=17.6) significantly predicted only among respondents with no history of prior anxiety disorders. Although only preliminary due to reliance on retrospective reports, these results suggest that history of anxiety disorders and history of a limited number of earlier traumas might usefully be targeted in future prospective studies as distinct foci of research on individual differences in vulnerability to PTSD after subsequent traumas.Molecular Psychiatry advance online publication, 19 September 2017; doi:10.1038/mp.2017.194.

  18. Panchromatic spectral energy distributions of simulated galaxies: results at redshift z = 0

    NASA Astrophysics Data System (ADS)

    Goz, David; Monaco, Pierluigi; Granato, Gian Luigi; Murante, Giuseppe; Domínguez-Tenreiro, Rosa; Obreja, Aura; Annunziatella, Marianna; Tescari, Edoardo

    2017-08-01

    We present predictions of spectral energy distributions (SEDs), from the UV to the FIR, of simulated galaxies at z = 0. These were obtained by post-processing the results of an N-body+hydro simulation of a cosmological box of side 25 Mpc, which uses the Multi-Phase Particle Integrator (MUPPI) for star formation and stellar feedback, with the grasil-3d radiative transfer code that includes reprocessing of UV light by dust. Physical properties of our sample of ˜500 galaxies resemble observed ones, though with some tension at small and large stellar masses. Comparing predicted SEDs of simulated galaxies with different samples of local galaxies, we find that these resemble observed ones, when normalized at 3.6 μm. A comparison with the Herschel Reference Survey shows that the average SEDs of galaxies, divided in bins of star formation rate (SFR), are reproduced in shape and absolute normalization to within a factor of ˜2, while average SEDs of galaxies divided in bins of stellar mass show tensions that are an effect of the difference of simulated and observed galaxies in the stellar mass-SFR plane. We use our sample to investigate the correlation of IR luminosity in Spitzer and Herschel bands with several galaxy properties. SFR is the quantity that best correlates with IR light up to 160 μm, while at longer wavelengths better correlations are found with molecular mass and, at 500 μm, with dust mass. However, using the position of the FIR peak as a proxy for cold dust temperature, we assess that heating of cold dust is mostly determined by SFR, with stellar mass giving only a minor contribution. We finally show how our sample of simulated galaxies can be used as a guide to understand the physical properties and selection biases of observed samples.

  19. Screening for Pancreatic Adenocarcinoma in BRCA2 Mutation Carriers: Results of a Disease Simulation Model.

    PubMed

    Pandharipande, Pari V; Jeon, Alvin; Heberle, Curtis R; Dowling, Emily C; Kong, Chung Yin; Chung, Daniel C; Brugge, William R; Hur, Chin

    2015-12-01

    BRCA2 mutation carriers are at increased risk for multiple cancers including pancreatic adenocarcinoma (PAC). Our goal was to compare the effectiveness of different PAC screening strategies in BRCA2 mutation carriers, from the standpoint of life expectancy. A previously published Markov model of PAC was updated and extended to incorporate key aspects of BRCA2 mutation carrier status, including competing risks of breast- and ovarian-cancer specific mortality. BRCA2 mutation carriers were modeled and analyzed as the primary cohort for the analysis. Additional higher risk BRCA2 cohorts that were stratified according to the number of first-degree relatives (FDRs) with PAC were also analyzed. For each cohort, one-time screening and annual screening were evaluated, with screening starting at age 50 in both strategies. The primary outcome was net gain in life expectancy (LE) compared to no screening. Sensitivity analysis was performed on key model parameters, including surgical mortality and MRI test performance. One-time screening at age 50 resulted in a LE gain of 3.9 days for the primary BRCA2 cohort, and a gain of 5.8 days for those with BRCA2 and one FDR. Annual screening resulted in LE loss of 12.9 days for the primary cohort and 1.3 days for BRCA2 carriers with 1 FDR, but resulted in 20.6 days gained for carriers with 2 FDRs and 260 days gained for those with 3 FDRs. For patients with ≥ 3 FDRs, annual screening starting at an earlier age (i.e. 35-40) was optimal. Among BRCA2 mutation carriers, aggressive screening regimens may be ineffective unless additional indicators of elevated risk (e.g., 2 or more FDRs) are present. More clinical studies are needed to confirm these findings. American Cancer Society - New England Division - Ellison Foundation Research Scholar Grant (RSG-15-129-01-CPHPS).

  20. How do rigid-lid assumption affect LES simulation results at high Reynolds flows?

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Farhadzadeh, Ali; SBU Collaboration

    2017-11-01

    This research is motivated by the work of Kara et al., JHE, 2015. They employed LES to model flow around a model of abutment at a Re number of 27,000. They showed that first-order turbulence characteristics obtained by rigid-lid (RL) assumption compares fairly well with those of level-set (LS) method. Concerning the second-order statistics, however, their simulation results showed a significant dependence on the method used to describe the free surface. This finding can have important implications for open channel flow modeling. The Reynolds number for typical open channel flows, however, could be much larger than that of Kara et al.'s test case. Herein, we replicate the reported study by augmenting the geometric and hydraulic scales to reach a Re number of one order of magnitude larger ( 200,000). The Virtual Flow Simulator (VFS-Geophysics) model in its LES mode is used to simulate the test case using both RL and LS methods. The computational results are validated using measured flow and free-surface data from our laboratory experiments. Our goal is to investigate the effects of RL assumption on both first-order and second order statistics at high Reynolds numbers that occur in natural waterways. Acknowledgment: Computational resources are provided by the Center of Excellence in Wireless & Information Technology (CEWIT) of Stony Brook University.

  1. Features of the accretion in the EX Hydrae system: Results of numerical simulation

    NASA Astrophysics Data System (ADS)

    Isakova, P. B.; Zhilkin, A. G.; Bisikalo, D. V.; Semena, A. N.; Revnivtsev, M. G.

    2017-07-01

    A two-dimensional numerical model in the axisymmetric approximation that describes the flow structure in the magnetosphere of the white dwarf in the EX Hya system has been developed. Results of simulations show that the accretion in EX Hya proceeds via accretion columns, which are not closed and have curtain-like shapes. The thickness of the accretion curtains depends only weakly on the thickness of the accretion disk. This thickness developed in the simulations does not agree with observations. It is concluded that the main reason for the formation of thick accretion curtains in the model is the assumption that the magnetic field penetrates fully into the plasma of the disk. An analysis based on simple estimates shows that a diamagnetic disk that fully or partially shields the magnetic field of the star may be a more attractive explanation for the observed features of the accretion in EX Hya.

  2. Motion-base simulator results of advanced supersonic transport handling qualities with active controls

    NASA Technical Reports Server (NTRS)

    Feather, J. B.; Joshi, D. S.

    1981-01-01

    Handling qualities of the unaugmented advanced supersonic transport (AST) are deficient in the low-speed, landing approach regime. Consequently, improvement in handling with active control augmentation systems has been achieved using implicit model-following techniques. Extensive fixed-based simulator evaluations were used to validate these systems prior to tests with full motion and visual capabilities on a six-axis motion-base simulator (MBS). These tests compared the handling qualities of the unaugmented AST with several augmented configurations to ascertain the effectiveness of these systems. Cooper-Harper ratings, tracking errors, and control activity data from the MBS tests have been analyzed statistically. The results show the fully augmented AST handling qualities have been improved to an acceptable level.

  3. Structured water in polyelectrolyte dendrimers: Understanding small angle neutron scattering results through atomistic simulation

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Kerkeni, Boutheïna; Egami, Takeshi; Do, Changwoo; Liu, Yun; Wang, Yongmei; Porcar, Lionel; Hong, Kunlun; Smith, Sean C.; Liu, Emily L.; Smith, Gregory S.; Chen, Wei-Ren

    2012-04-01

    Based on atomistic molecular dynamics (MD) simulations, the small angle neutron scattering (SANS) intensity behavior of a single generation-4 polyelectrolyte polyamidoamine starburst dendrimer is investigated at different levels of molecular protonation. The SANS form factor, P(Q), and Debye autocorrelation function, γ(r), are calculated from the equilibrium MD trajectory based on a mathematical approach proposed in this work. The consistency found in comparison against previously published experimental findings (W.-R. Chen, L. Porcar, Y. Liu, P. D. Butler, and L. J. Magid, Macromolecules 40, 5887 (2007)) leads to a link between the neutron scattering experiment and MD computation, and fresh perspectives. The simulations enable scattering calculations of not only the hydrocarbons but also the contribution from the scattering length density fluctuations caused by structured, confined water within the dendrimer. Based on our computational results, we explore the validity of using radius of gyration RG for microstructure characterization of a polyelectrolyte dendrimer from the scattering perspective.

  4. Comparison of simulation and experimental results for a gas puff nozzle on Ambiorix

    SciTech Connect

    Barnier, J-N.; Chevalier, J-M.; Dubroca, B.

    One of source term of Z-Pinch experiments is the gas puff density profile. In order to characterize the gas jet, an experiment based on interferometry has been performed. The first study was a point measurement (a section density profile) which led us to develop a global and instantaneous interferometry imaging method. In order to optimise the nozzle, we simulated the experiment with a flow calculation code (ARES). In this paper, the experimental results are compared with simulations. The different gas properties (He, Ne, Ar) and the flow duration lead us to take care, on the one hand, of the gasmore » viscosity, and on the other, of modifying the code for an instationary flow.« less

  5. Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Bennett, C. L.; Kogut, A.

    1995-01-01

    We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.

  6. Mechanics of Nanostructured Porous Silica Aerogel Resulting from Molecular Dynamics Simulations.

    PubMed

    Patil, Sandeep P; Rege, Ameya; Sagardas; Itskov, Mikhail; Markert, Bernd

    2017-06-08

    Silica aerogels are nanostructured, highly porous solids which have, compared to other soft materials, special mechanical properties, such as extremely low densities. In the present work, the mechanical properties of silica aerogels have been studied with molecular dynamics (MD) simulations. The aerogel model of 192 000 atoms was created with different densities by direct expansion of β-cristobalite and subjected to series of thermal treatments. Because of the high number of atoms and improved modeling procedure, the proposed model was more stable and showed significant improvement in the smoothness of the resulting stress-strain curves in comparison to previous models. Resulting Poisson's ratio values for silica aerogels lie between 0.18 and 0.21. The elasticity moduli display a power law dependence on the density, with the exponent estimated to be 3.25 ± 0.1. These results are in excellent agreement with reported experimental as well as computational values. Two different deformation scenarios have been discussed. Under tension, the low-density aerogels were more ductile while the denser ones behaved rather brittle. In the compression simulations of low-density aerogels, deformation occurred without significant increase in stress. However, for high densities, atoms offer a higher resistance to the deformation, resulting in a more stiff response and an early densification. The relationship between different mechanical parameters has been found in the cyclic loading simulations of silica aerogels with different densities. The residual strain grows linearly with the applied strain (≥0.16) and can be approximated by a phenomenological relation ϵ p = 1.09ϵ max - 0.12. The dissipation energy also varies with the compressive strain according to a power law with an exponent of 2.31 ± 0.07. Moreover, the tangent modulus under cyclic loading varies exponentially with the compressive strain. The results of the study pave the way toward multiscale modeling of silica

  7. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Lewandowski, Edward J.; Callahan, John

    2006-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical RPS launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources was designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  8. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Suarez, Vicente J.; Goodnight, Thomas W.; Callahan, John

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical radioisotope power system (RPS) launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources were designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  9. Quench simulation results for a 12-T twin-aperture dipole magnet

    NASA Astrophysics Data System (ADS)

    Cheng, Da; Salmi, Tiina; Xu, Qingjin; Peng, Quanling; Wang, Chengtao; Wang, Yingzhe; Kong, Ershuai; Zhang, Kai

    2018-06-01

    A 12-T twin-aperture subscale dipole magnet is being developed for SPPC pre-study at the Institute of High Energy Physics (IHEP). The magnet is comprised of 6 double-pancake coils which include 2 Nb3Sn coils and 4 NbTi coils. As the stored energy of the magnet is 0.452 MJ and the operation margin is only about 20% at 4.2 K, a quick and effective quench protection system is necessary during the test of this high field magnet. For the design of the quench protection system, attention was not only paid to the hotspot temperature and terminal voltage, but also the temperature gradient during the quench process due to the poor mechanical characteristics of the Nb3Sn cables. With the adiabatic analysis, numerical simulation and the finite element simulation, an optimized protection method is adopted, which contains a dump resistor and quench heaters. In this paper, the results of adiabatic analysis and quench simulation, such as current decay, hot-spot temperature and terminal voltage are presented in details.

  10. Development of ADOCS controllers and control laws. Volume 3: Simulation results and recommendations

    NASA Technical Reports Server (NTRS)

    Landis, Kenneth H.; Glusman, Steven I.

    1985-01-01

    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase is a function of SCAS characteristics; display mode switching logic. Results of the five piloted simulations conducted at the Boeing Vertol and NASA-Ames simulation facilities are presented in Volume 3. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.

  11. Changing Characteristics of convective storms: Results from a continental-scale convection-permitting climate simulations

    NASA Astrophysics Data System (ADS)

    Prein, A. F.; Ikeda, K.; Liu, C.; Bullock, R.; Rasmussen, R.

    2016-12-01

    Convective storms are causing extremes such as flooding, landslides, and wind gusts and are related to the development of tornadoes and hail. Convective storms are also the dominant source of summer precipitation in most regions of the Contiguous United States. So far little is known about how convective storms might change due to global warming. This is mainly because of the coarse grid spacing of state-of-the-art climate models that are not able to resolve deep convection explicitly. Instead, coarse resolution models rely on convective parameterization schemes that are a major source of errors and uncertainties in climate change projections. Convection-permitting climate simulations, with grid-spacings smaller than 4 km, show significant improvements in the simulation of convective storms by representing deep convection explicitly. Here we use a pair of 13-year long current and future convection-permitting climate simulations that cover large parts of North America. We use the Method for Object-Based Diagnostic Evaluation (MODE) that incorporates the time dimension (MODE-TD) to analyze the model performance in reproducing storm features in the current climate and to investigate their potential future changes. We show that the model is able to accurately reproduce the main characteristics of convective storms in the present climate. The comparison with the future climate simulation shows that convective storms significantly increase in frequency, intensity, and size. Furthermore, they are projected to move slower which could result in a substantial increase in convective storm-related hazards such as flash floods, debris flows, and landslides. Some regions, such as the North Atlantic, might experience a regime shift that leads to significantly stronger storms that are unrepresented in the current climate.

  12. Simulated building energy demand biases resulting from the use of representative weather stations

    DOE PAGES

    Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd; ...

    2017-11-06

    Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. Here, we quantify the potential reduction in temperature and load biases from using an increasing number of weather stations over the western U.S. Our novel approach is based on deriving temperature and load time series using incrementally more weather stations, ranging frommore » 8 to roughly 150, to evaluate the ability to capture weather patterns across different seasons. Using 8 stations across the western U.S., one from each IECC climate zone, results in an average absolute summertime temperature bias of ~4.0 °C with respect to a high-resolution gridded dataset. The mean absolute bias drops to ~1.5 °C using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.5%. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20–40% bias of peak building loads during both summer and winter, a significant error for capacity expansion planners who may use these types of simulations. Using weather stations close to population centers reduces both mean and peak load biases. Our approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.« less

  13. Simulated building energy demand biases resulting from the use of representative weather stations

    SciTech Connect

    Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd

    Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. Here, we quantify the potential reduction in temperature and load biases from using an increasing number of weather stations over the western U.S. Our novel approach is based on deriving temperature and load time series using incrementally more weather stations, ranging frommore » 8 to roughly 150, to evaluate the ability to capture weather patterns across different seasons. Using 8 stations across the western U.S., one from each IECC climate zone, results in an average absolute summertime temperature bias of ~4.0 °C with respect to a high-resolution gridded dataset. The mean absolute bias drops to ~1.5 °C using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.5%. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20–40% bias of peak building loads during both summer and winter, a significant error for capacity expansion planners who may use these types of simulations. Using weather stations close to population centers reduces both mean and peak load biases. Our approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.« less

  14. Simulated building energy demand biases resulting from the use of representative weather stations

    SciTech Connect

    Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd

    Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. We quantify the potential reduction in bias from using an increasing number of weather stations over the western U.S. The approach is based on deriving temperature and load time series using incrementally more weather stations, ranging from 8 to roughly 150, tomore » capture weather across different seasons. Using 8 stations, one from each climate zone, across the western U.S. results in an average absolute summertime temperature bias of 7.2°F with respect to a spatially-resolved gridded dataset. The mean absolute bias drops to 2.8°F using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.8%, a significant error for capacity expansion planners who may use these types of simulations. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20-40% overestimation of peak building loads during both summer and winter. Using weather stations close to population centers reduces both mean and peak load biases. This approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.« less

  15. First results from the IllustrisTNG simulations: the galaxy colour bimodality

    NASA Astrophysics Data System (ADS)

    Nelson, Dylan; Pillepich, Annalisa; Springel, Volker; Weinberger, Rainer; Hernquist, Lars; Pakmor, Rüdiger; Genel, Shy; Torrey, Paul; Vogelsberger, Mark; Kauffmann, Guinevere; Marinacci, Federico; Naiman, Jill

    2018-03-01

    We introduce the first two simulations of the IllustrisTNG project, a next generation of cosmological magnetohydrodynamical simulations, focusing on the optical colours of galaxies. We explore TNG100, a rerun of the original Illustris box, and TNG300, which includes 2 × 25003 resolution elements in a volume 20 times larger. Here, we present first results on the galaxy colour bimodality at low redshift. Accounting for the attenuation of stellar light by dust, we compare the simulated (g - r) colours of 109 < M⋆/M⊙ < 1012.5 galaxies to the observed distribution from the Sloan Digital Sky Survey. We find a striking improvement with respect to the original Illustris simulation, as well as excellent quantitative agreement with the observations, with a sharp transition in median colour from blue to red at a characteristic M⋆ ˜ 1010.5 M⊙. Investigating the build-up of the colour-mass plane and the formation of the red sequence, we demonstrate that the primary driver of galaxy colour transition is supermassive black hole feedback in its low accretion state. Across the entire population the median colour transition time-scale Δtgreen is ˜1.6 Gyr, a value which drops for increasingly massive galaxies. We find signatures of the physical process of quenching: at fixed stellar mass, redder galaxies have lower star formation rates, gas fractions, and gas metallicities; their stellar populations are also older and their large-scale interstellar magnetic fields weaker than in bluer galaxies. Finally, we measure the amount of stellar mass growth on the red sequence. Galaxies with M⋆ > 1011 M⊙ which redden at z < 1 accumulate on average ˜25 per cent of their final z = 0 mass post-reddening; at the same time, ˜18 per cent of such massive galaxies acquire half or more of their final stellar mass while on the red sequence.

  16. A vantage from space can detect earlier drought onset: an approach using relative humidity.

    PubMed

    Farahmand, Alireza; AghaKouchak, Amir; Teixeira, Joao

    2015-02-25

    Each year, droughts cause significant economic and agricultural losses across the world. The early warning and onset detection of drought is of particular importance for effective agriculture and water resource management. Previous studies show that the Standard Precipitation Index (SPI), a measure of precipitation deficit, detects drought onset earlier than other indicators. Here we show that satellite-based near surface air relative humidity data can further improve drought onset detection and early warning. This paper introduces the Standardized Relative Humidity Index (SRHI) based on the NASA Atmospheric Infrared Sounder (AIRS) observations. The results indicate that the SRHI typically detects the drought onset earlier than the SPI. While the AIRS mission was not originally designed for drought monitoring, we show that its relative humidity data offers a new and unique avenue for drought monitoring and early warning. We conclude that the early warning aspects of SRHI may have merit for integration into current drought monitoring systems.

  17. Compulsive buying: Earlier illicit drug use, impulse buying, depression, and adult ADHD symptoms.

    PubMed

    Brook, Judith S; Zhang, Chenshu; Brook, David W; Leukefeld, Carl G

    2015-08-30

    This longitudinal study examined the association between psychosocial antecedents, including illicit drug use, and adult compulsive buying (CB) across a 29-year time period from mean age 14 to mean age 43. Participants originally came from a community-based random sample of residents in two upstate New York counties. Multivariate linear regression analysis was used to study the relationship between the participant's earlier psychosocial antecedents and adult CB in the fifth decade of life. The results of the multivariate linear regression analyses showed that gender (female), earlier adult impulse buying (IB), depressive mood, illicit drug use, and concurrent ADHD symptoms were all significantly associated with adult CB at mean age 43. It is important that clinicians treating CB in adults should consider the role of drug use, symptoms of ADHD, IB, depression, and family factors in CB. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Compulsive Buying: Earlier Illicit Drug Use, Impulse Buying, Depression, and Adult ADHD Symptoms

    PubMed Central

    Brook, Judith S.; Zhang, Chenshu; Brook, David W.; Leukefeld, Carl G.

    2015-01-01

    This longitudinal study examined the association between psychosocial antecedents, including illicit drug use, and adult compulsive buying (CB) across a 29-year time period from mean age 14 to mean age 43. Participants originally came from a community-based random sample of residents in two upstate New York counties. Multivariate linear regression analysis was used to study the relationship between the participant’s earlier psychosocial antecedents and adult CB in the fifth decade of life. The results of the multivariate linear regression analyses showed that gender (female), earlier adult impulse buying (IB), depressive mood, illicit drug use, and concurrent ADHD symptoms were all significantly associated with adult CB at mean age 43. It is important that clinicians treating CB in adults should consider the role of drug use, symptoms of ADHD, IB, depression, and family factors in CB. PMID:26165963

  19. A Vantage from Space Can Detect Earlier Drought Onset: An Approach Using Relative Humidity

    PubMed Central

    Farahmand, Alireza; AghaKouchak, Amir; Teixeira, Joao

    2015-01-01

    Each year, droughts cause significant economic and agricultural losses across the world. The early warning and onset detection of drought is of particular importance for effective agriculture and water resource management. Previous studies show that the Standard Precipitation Index (SPI), a measure of precipitation deficit, detects drought onset earlier than other indicators. Here we show that satellite-based near surface air relative humidity data can further improve drought onset detection and early warning. This paper introduces the Standardized Relative Humidity Index (SRHI) based on the NASA Atmospheric Infrared Sounder (AIRS) observations. The results indicate that the SRHI typically detects the drought onset earlier than the SPI. While the AIRS mission was not originally designed for drought monitoring, we show that its relative humidity data offers a new and unique avenue for drought monitoring and early warning. We conclude that the early warning aspects of SRHI may have merit for integration into current drought monitoring systems. PMID:25711500

  20. Impacts of building geometry modeling methods on the simulation results of urban building energy models

    SciTech Connect

    Chen, Yixing; Hong, Tianzhen

    We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while

  1. Impacts of building geometry modeling methods on the simulation results of urban building energy models

    DOE PAGES

    Chen, Yixing; Hong, Tianzhen

    2018-02-20

    We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while

  2. Entry, Descent and Landing Systems Analysis: Exploration Class Simulation Overview and Results

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Davis, Jody L.; Shidner, Jeremy D.; Powell, Richard W.

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and exploration or human-scale missions. The year one exploration class mission activity considered technologies capable of delivering a 40-mt payload. This paper provides an overview of the exploration class mission study, including technologies considered, models developed and initial simulation results from the EDL-SA year one effort.

  3. Pit formation observed in a multilayer dielectric coating as a result of simulated space environmental exposure

    NASA Astrophysics Data System (ADS)

    Fuqua, Peter D.; Presser, Nathan; Barrie, James D.; Meshishnek, Michael J.; Coleman, Dianne J.

    2002-06-01

    Certain spaceborne telescope designs require that dielectric-coated lenses be exposed to the energetic electrons and protons associated with the space environment. Test coupons that were exposed to a simulated space environment showed extensive pitting as a result of dielectric breakdown. A typical pit was 50-100 mum at the surface and extended to the substrate material, in which a 10-mum-diameter melt region was found. Pitting was not observed on similar samples that had also been overcoated with a transparent conductive thin film. Measurement of the bidirectional reflectance distribution transfer function showed that pitting caused a fivefold to tenfold increase in the scattering of visible light.

  4. The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid

    2017-06-01

    In Titan’s atmosphere, a complex organic chemistry occurs between its main constituents, N2 and CH4, and leads to the production of larger molecules and solid aerosols.Here, we present the latest results on the gas and solid phase analyses in the Titan Haze Simulation (THS) experiment, developed on the NASA Ames COSmIC simulation chamber. The THS is a unique experimental platform that allows us to simulate Titan’s atmospheric chemistry at Titan-like temperature (200K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma. Because of the accelerated gas flow in the expansion, the residence time of the gas in the active plasma region is less than 3 µs. This results in a truncated chemistry that enables us to monitor the first and intermediate steps of the chemistry as well as specific chemical pathways when adding, in the initial gas mixture, heavier molecules that have been detected as trace elements on Titan[1].We discuss the results of recent Mid-infrared (MIR) spectroscopy[2] and X-ray Absorption Near Edge Structure spectroscopy studies of THS Titan tholins produced in different gas mixtures (with and without acetylene and benzene). Both studies have shown the presence of nitrogen chemistry, and differences in the level and nature of the nitrogen incorporation depending on the initial gas mixture. A comparison of THS MIR spectra to VIMS data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols.In addition, a new model has been developed to simulate the plasma chemistry in the THS. Electron impact and chemical kinetics equations for more than 120 species are followed. The calculated mass spectra are in good agreement with the experimental THS mass spectra[1], confirming that the short residence time in the plasma cavity limits the growth of

  5. The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid

    2017-10-01

    Here, we present the latest results on the gas- and solid phase analyses in the Titan Haze Simulation (THS) experiment, developed at the NASA Ames COSmIC simulation chamber. The THS is a unique experimental platform that allows us to simulate Titan’s complex atmospheric chemistry at Titan-like temperature (200 K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma. Because of the accelerated gas flow in the expansion, the residence time of the gas in the active plasma region is less than 3 µs. This results in a truncated chemistry that enables us to control how far in the chain of chemical reactions chemistry processes[1], by adding, in the initial gas mixture, heavier molecules that have been detected as trace elements on Titan.We discuss the results of recent Mid-infrared (MIR) spectroscopy[2] and X-ray Absorption Near Edge Structure spectroscopy studies of THS Titan tholins produced in different gas mixtures (with and without acetylene and benzene). Both studies have shown the presence of nitrogen chemistry, and differences in the level and nature of the nitrogen incorporation depending on the initial gas mixture. A comparison of THS MIR spectra to VIMS data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols.In addition, a new model has been developed to simulate the plasma chemistry in the THS. Electron impact and chemical kinetics equations for more than 120 species are followed. The calculated mass spectra[3] are in good agreement with the experimental THS mass spectra[1], confirming that the short residence time in the plasma cavity limits the growth of larger species and results in a truncated chemistry, a main feature of the THS.References:[1] Sciamma-O'Brien E. et al., Icarus, 243, 325 (2014)[2] Sciamma-O'Brien E. et al., Icarus

  6. Conversion of NIMROD simulation results for graphical analysis using VisIt

    SciTech Connect

    Romero-Talamas, C A

    Software routines developed to prepare NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] results for three-dimensional visualization from simulations of the Sustained Spheromak Physics Experiment (SSPX ) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)] are presented here. The visualization is done by first converting the NIMROD output to a format known as legacy VTK and then loading it to VisIt, a graphical analysis tool that includes three-dimensional rendering and various mathematical operations for large data sets. Sample images obtained from the processing of NIMROD data with VisIt are included.

  7. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments

    USGS Publications Warehouse

    Trescott, Peter C.; Pinder, George Francis; Larson, S.P.

    1976-01-01

    The model will simulate ground-water flow in an artesian aquifer, a water-table aquifer, or a combined artesian and water-table aquifer. The aquifer may be heterogeneous and anisotropic and have irregular boundaries. The source term in the flow equation may include well discharge, constant recharge, leakage from confining beds in which the effects of storage are considered, and evapotranspiration as a linear function of depth to water. The theoretical development includes presentation of the appropriate flow equations and derivation of the finite-difference approximations (written for a variable grid). The documentation emphasizes the numerical techniques that can be used for solving the simultaneous equations and describes the results of numerical experiments using these techniques. Of the three numerical techniques available in the model, the strongly implicit procedure, in general, requires less computer time and has fewer numerical difficulties than do the iterative alternating direction implicit procedure and line successive overrelaxation (which includes a two-dimensional correction procedure to accelerate convergence). The documentation includes a flow chart, program listing, an example simulation, and sections on designing an aquifer model and requirements for data input. It illustrates how model results can be presented on the line printer and pen plotters with a program that utilizes the graphical display software available from the Geological Survey Computer Center Division. In addition the model includes options for reading input data from a disk and writing intermediate results on a disk.

  8. JT9D performance deterioration results from a simulated aerodynamic load test

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.; Stromberg, W. J.

    1981-01-01

    The results of testing to identify the effects of simulated aerodynamic flight loads on JT9D engine performance are presented. The test results were also used to refine previous analytical studies on the impact of aerodynamic flight loads on performance losses. To accomplish these objectives, a JT9D-7AH engine was assembled with average production clearances and new seals as well as extensive instrumentation to monitor engine performance, case temperatures, and blade tip clearance changes. A special loading device was designed and constructed to permit application of known moments and shear forces to the engine by the use of cables placed around the flight inlet. The test was conducted in the Pratt & Whitney Aircraft X-Ray Test Facility to permit the use of X-ray techniques in conjunction with laser blade tip proximity probes to monitor important engine clearance changes. Upon completion of the test program, the test engine was disassembled, and the condition of gas path parts and final clearances were documented. The test results indicate that the engine lost 1.1 percent in thrust specific fuel consumption (TSFC), as measured under sea level static conditions, due to increased operating clearances caused by simulated flight loads. This compares with 0.9 percent predicted by the analytical model and previous study efforts.

  9. Traumatic Brain Injury History is Associated with Earlier Age of Onset of Alzheimer Disease

    PubMed Central

    LoBue, Christian; Wadsworth, Hannah; Wilmoth, Kristin; Clem, Matthew; Hart, John; Womack, Kyle B.; Didehbani, Nyaz; Lacritz, Laura H.; Rossetti, Heidi C.; Cullum, C. Munro

    2016-01-01

    Objective This study examined whether a history of traumatic brain injury (TBI) is associated with earlier onset of Alzheimer disease (AD), independent of apolipoprotein ε4 status (Apoe4) and gender. Method Participants with a clinical diagnosis of AD (n=7625) were obtained from the National Alzheimer’s Coordinating Center Uniform Data Set, and categorized based on self-reported lifetime TBI with loss of consciousness (LOC) (TBI+ vs TBI-) and presence of Apoe4. ANCOVAs, controlling for gender, race, and education were used to examine the association between history of TBI, presence of Apoe4, and an interaction of both risk factors on estimated age of AD onset. Results Estimated AD onset differed by TBI history and Apoe4 independently (p’s <.001). The TBI+ group had a mean age of onset 2.5 years earlier than the TBI- group. Likewise, Apoe4 carriers had a mean age of onset 2.3 years earlier than non-carriers. While the interaction was non-significant (p = .34), participants having both a history of TBI and Apoe4 had the earliest mean age of onset compared to those with a TBI history or Apoe4 alone (MDifference = 2.8 & 2.7 years, respectively). These results remained unchanged when stratified by gender. Conclusions History of self-reported TBI can be associated with an earlier onset of AD-related cognitive decline, regardless of Apoe4 status and gender. TBI may be related to an underlying neurodegenerative process in AD, but the implications of age at time of injury, severity, and repetitive injuries remain unclear. PMID:27855547

  10. Computer Simulation Results for the Two-Point Probability Function of Composite Media

    NASA Astrophysics Data System (ADS)

    Smith, P.; Torquato, S.

    1988-05-01

    Computer simulation results are reported for the two-point matrix probability function S2 of two-phase random media composed of disks distributed with an arbitrary degree of impenetrability λ. The novel technique employed to sample S2( r) (which gives the probability of finding the endpoints of a line segment of length r in the matrix) is very accurate and has a fast execution time. Results for the limiting cases λ = 0 (fully penetrable disks) and λ = 1 (hard disks), respectively, compare very favorably with theoretical predictions made by Torquato and Beasley and by Torquato and Lado. Results are also reported for several values of λ. that lie between these two extremes: cases which heretofore have not been examined.

  11. Influence of land use on rainfall simulation results in the Souss basin, Morocco

    NASA Astrophysics Data System (ADS)

    Peter, Klaus Daniel; Ries, Johannes B.; Hssaine, Ali Ait

    2013-04-01

    Situated between the High and Anti-Atlas, the Souss basin is characterized by a dynamic land use change. It is one of the fastest growing agricultural regions of Morocco. Traditional mixed agriculture is replaced by extensive plantations of citrus fruits, bananas and vegetables in monocropping, mainly for the European market. For the implementation of the land use change and further expansion of the plantations into marginal land which was former unsuitable for agriculture, land levelling by heavy machinery is used to plane the fields and close the widespread gullies. These gully systems are cutting deep between the plantations and other arable land. Their development started already over 400 years ago with the introduction of sugar production. Heavy rainfall events lead to further strong soil and gully erosion in this with 200 mm mean annual precipitation normally arid region. Gullies are cutting into the arable land or are re-excavating their old stream courses. On the test sites around the city of Taroudant, a total of 122 rainfall simulations were conducted to analyze the susceptibility of soils to surface runoff and soil erosion under different land use. A small portable nozzle rainfall simulator is used for the rainfall simulation experiments, quantifying runoff and erosion rates on micro-plots with a size of 0.28 m2. A motor pump boosts the water regulated by a flow metre into the commercial full cone nozzle at a height of 2 m. The rainfall intensity is maintained at about 40 mm h-1 for each of the 30 min lasting experiments. Ten categories of land use are classified for different stages of levelling, fallow land, cultivation and rangeland. Results show that mean runoff coefficients and mean sediment loads are significantly higher (1.4 and 3.5 times respectively) on levelled study sites compared to undisturbed sites. However, the runoff coefficients of all land use types are relatively equal and reach high median coefficients from 39 to 56 %. Only the

  12. Comparison of simulation and experimental results for a model aqueous tert-butanol solution

    NASA Astrophysics Data System (ADS)

    Overduin, S. D.; Patey, G. N.

    2017-07-01

    Molecular dynamics simulations are used to investigate the behavior of aqueous tert-butanol (TBA) solutions for a range of temperatures, using the CHARMM generalized force field (CGenFF) to model TBA and the TIP4P/2005 or TIP4P-Ew water model. Simulation results for the density, isothermal compressibility, constant pressure heat capacity, and self-diffusion coefficients are in good accord with experimental measurements. Agreement with the experiment is particularly good at low TBA concentration, where experiments have revealed anomalies in a number of thermodynamic properties. Importantly, the CGenFF model does not exhibit liquid-liquid demixing at temperatures between 290 and 320 K (for systems of 32 000 molecules), in contrast with the situation for several other common TBA models [R. Gupta and G. N. Patey, J. Chem. Phys. 137, 034509 (2012)]. However, whereas real water and TBA are miscible at all temperatures where the liquid is stable, we observe some evidence of demixing at 340 K and above. To evaluate the structural properties at low concentrations, we compare with both neutron scattering and recent spectroscopic measurements. This reveals that while the CGenFF model is a definite improvement over other models that have been considered, the TBA molecules still exhibit a tendency to associate at low concentrations that is somewhat stronger than that indicated by experiments. Finally, we discuss the range and decay times of the long-range correlations, providing an indication of the system size and simulation times that are necessary in order to obtain reliable results for certain properties.

  13. Caution: Precision Error in Blade Alignment Results in Faulty Unsteady CFD Simulation

    NASA Astrophysics Data System (ADS)

    Lewis, Bryan; Cimbala, John; Wouden, Alex

    2012-11-01

    Turbomachinery components experience unsteady loads at several frequencies. The rotor frequency corresponds to the time for one rotor blade to rotate between two stator vanes, and is normally dominant for rotor torque oscillations. The guide vane frequency corresponds to the time for two rotor blades to pass by one guide vane. The machine frequency corresponds to the machine RPM. Oscillations at the machine frequency are always present due to minor blade misalignments and imperfections resulting from manufacturing defects. However, machine frequency oscillations should not be present in CFD simulations if the mesh is free of both blade misalignment and surface imperfections. The flow through a Francis hydroturbine was modeled with unsteady Reynolds-Averaged Navier-Stokes (URANS) CFD simulations and a dynamic rotating grid. Spectral analysis of the unsteady torque on the rotor blades revealed a large component at the machine frequency. Close examination showed that one blade was displaced by 0 .0001° due to round-off errors during mesh generation. A second mesh without blade misalignment was then created. Subsequently, large machine frequency oscillations were not observed for this mesh. These results highlight the effect of minor geometry imperfections on CFD solutions. This research was supported by a grant from the DoE and a National Defense Science and Engineering Graduate Fellowship.

  14. Preliminary results of strong ground motion simulation for the Lushan earthquake of 20 April 2013, China

    NASA Astrophysics Data System (ADS)

    Zhu, Gengshang; Zhang, Zhenguo; Wen, Jian; Zhang, Wei; Chen, Xiaofei

    2013-08-01

    The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic hazard, we simulated the strong ground motions from a representative kinematic source model by Zhang et al. (Chin J Geophys 56(4):1408-1411, 2013) for this earthquake. To include the topographic effects, we used the curved grids finite difference method by Zhang and Chen (Geophys J Int 167(1):337-353, 2006), Zhang et al. (Geophys J Int 190(1):358-378, 2012) to implement the simulations. Our results indicated that the majority of seismic energy concentrated in the epicentral area and the vicinal Sichuan Basin, causing the XI and VII degree intensity. Due to the strong topographic effects of the mountain, the seismic intensity in the border area across the northeastern of Boxing County to the Lushan County also reached IX degree. Moreover, the strong influence of topography caused the amplifications of ground shaking at the mountain ridge, which is easy to cause landslides. These results are quite similar to those observed in the Wenchuan earthquake of 2008 occurred also in a strong topographic mountain area.

  15. Mercury's plasma belt: hybrid simulations results compared to in-situ measurements

    NASA Astrophysics Data System (ADS)

    Hercik, D.; Travnicek, P. M.; Schriver, D.; Hellinger, P.

    2012-12-01

    The presence of plasma belt and trapped particles region in the Mercury's inner magnetosphere has been questionable due to small dimensions of the magnetosphere of Mercury compared to Earth, where these regions are formed. Numerical simulations of the solar wind interaction with Mercury's magnetic field suggested that such a structure could be found also in the vicinity of Mercury. These results has been recently confirmed also by MESSENGER observations. Here we present more detailed analysis of the plasma belt structure and quasi-trapped particle population characteristics and behaviour under different orientations of the interplanetary magnetic field.The plasma belt region is constantly supplied with solar wind protons via magnetospheric flanks and tail current sheet region. Protons inside the plasma belt region are quasi-trapped in the magnetic field of Mercury and perform westward drift along the planet. This region is well separated by a magnetic shell and has higher average temperatures and lower bulk proton current densities than surrounding area. On the day side the population exhibits loss cone distribution function matching the theoretical loss cone angle. Simulations results are also compared to in-situ measurements acquired by MESSENGER MAG and FIPS instruments.

  16. Modelled air pollution levels versus EC air quality legislation - results from high resolution simulation.

    PubMed

    Chervenkov, Hristo

    2013-12-01

    An appropriate method for evaluating the air quality of a certain area is to contrast the actual air pollution levels to the critical ones, prescribed in the legislative standards. The application of numerical simulation models for assessing the real air quality status is allowed by the legislation of the European Community (EC). This approach is preferable, especially when the area of interest is relatively big and/or the network of measurement stations is sparse, and the available observational data are scarce, respectively. Such method is very efficient for similar assessment studies due to continuous spatio-temporal coverage of the obtained results. In the study the values of the concentration of the harmful substances sulphur dioxide, (SO2), nitrogen dioxide (NO2), particulate matter - coarse (PM10) and fine (PM2.5) fraction, ozone (O3), carbon monoxide (CO) and ammonia (NH3) in the surface layer obtained from modelling simulations with resolution 10 km on hourly bases are taken to calculate the necessary statistical quantities which are used for comparison with the corresponding critical levels, prescribed in the EC directives. For part of them (PM2.5, CO and NH3) this is done for first time with such resolution. The computational grid covers Bulgaria entirely and some surrounding territories and the calculations are made for every year in the period 1991-2000. The averaged over the whole time slice results can be treated as representative for the air quality situation of the last decade of the former century.

  17. Ion cyclotron instability at Io: Hybrid simulation results compared to in situ observations

    NASA Astrophysics Data System (ADS)

    Šebek, Ondřej; Trávníček, Pavel M.; Walker, Raymond J.; Hellinger, Petr

    2016-08-01

    We present analysis of global three-dimensional hybrid simulations of Io's interaction with Jovian magnetospheric plasma. We apply a single-species model with simplified neutral-plasma chemistry and downscale Io in order to resolve the ion kinetic scales. We consider charge exchange, electron impact ionization, and photoionization by using variable rates of these processes to investigate their impact. Our results are in a good qualitative agreement with the in situ magnetic field measurements for five Galileo flybys around Io. The hybrid model describes ion kinetics self-consistently. This allows us to assess the distribution of temperature anisotropies around Io and thereby determine the possible triggering mechanism for waves observed near Io. We compare simulated dynamic spectra of magnetic fluctuations with in situ observations made by Galileo. Our results are consistent with both the spatial distribution and local amplitude of magnetic fluctuations found in the observations. Cyclotron waves, triggered probably by the growth of ion cyclotron instability, are observed mainly downstream of Io and on the flanks in regions farther from Io where the ion pickup rate is relatively low. Growth of the ion cyclotron instability is governed mainly by the charge exchange rate.

  18. Perceptual sensitivity to spectral properties of earlier sounds during speech categorization.

    PubMed

    Stilp, Christian E; Assgari, Ashley A

    2018-02-28

    Speech perception is heavily influenced by surrounding sounds. When spectral properties differ between earlier (context) and later (target) sounds, this can produce spectral contrast effects (SCEs) that bias perception of later sounds. For example, when context sounds have more energy in low-F 1 frequency regions, listeners report more high-F 1 responses to a target vowel, and vice versa. SCEs have been reported using various approaches for a wide range of stimuli, but most often, large spectral peaks were added to the context to bias speech categorization. This obscures the lower limit of perceptual sensitivity to spectral properties of earlier sounds, i.e., when SCEs begin to bias speech categorization. Listeners categorized vowels (/ɪ/-/ɛ/, Experiment 1) or consonants (/d/-/g/, Experiment 2) following a context sentence with little spectral amplification (+1 to +4 dB) in frequency regions known to produce SCEs. In both experiments, +3 and +4 dB amplification in key frequency regions of the context produced SCEs, but lesser amplification was insufficient to bias performance. This establishes a lower limit of perceptual sensitivity where spectral differences across sounds can bias subsequent speech categorization. These results are consistent with proposed adaptation-based mechanisms that potentially underlie SCEs in auditory perception. Recent sounds can change what speech sounds we hear later. This can occur when the average frequency composition of earlier sounds differs from that of later sounds, biasing how they are perceived. These "spectral contrast effects" are widely observed when sounds' frequency compositions differ substantially. We reveal the lower limit of these effects, as +3 dB amplification of key frequency regions in earlier sounds was enough to bias categorization of the following vowel or consonant sound. Speech categorization being biased by very small spectral differences across sounds suggests that spectral contrast effects occur

  19. The influence of synthetic hyetograph parameters on simulation results of runoff from urban catchment

    NASA Astrophysics Data System (ADS)

    Mazurkiewicz, Karolina; Skotnicki, Marcin

    2018-02-01

    The paper presents the results of analysis of the influence of the maximum intensity (peak) location in the synthetic hyetograph and rainfall duration on the maximum outflow from urban catchment. For the calculation Chicago hyetographs with a duration from 15 minutes to 180 minutes and peak location between 20% and 50% of the total rainfall duration were design. Runoff simulation was performed using the SWMM5 program for three models of urban catchment with area from 0.9 km2 to 6.7 km2. It was found that the increase in the rainfall peak location causes the increase in the maximum outflow up to 17%. For a given catchment the greatest maximum outflow is generated by the rainfall, which time to peak corresponds to the flow time through the catchment. Presented results may be useful for choosing the rainfall parameters for storm sewer systems modeling.

  20. Multipacting simulation and test results of BNL 704 MHz SRF gun

    SciTech Connect

    Xu W.; Belomestnykh, S.; Ben-Zvi, I.

    The BNL 704MHz SRF gun has a grooved choke joint to support the photo-cathode. Due to the distortion of grooves at the choke joint during the BCP for the choke joint, several multipacting barriers showed up when it was tested with Nb cathode stalk at JLab. We built a setup to use the spare large grain SRF cavity to test and condition the multipacting at BNL with various power sources up to 50kW. The test is carried out in three stages: testing the cavity performance without cathode, testing the cavity with the Nb cathode stalk that was used at Jlab,more » and testing the cavity with a copper cathode stalk that is based on the design for the SRF gun. This paper summarizes the results of multipacting simulation, and presents the large grain cavity test setup and the test results.« less

  1. Thin films structural properties: results of the full-atomistic supercomputer simulation

    NASA Astrophysics Data System (ADS)

    Grigoriev, F. V.; Sulimov, V. B.; Tikhonravov, A. V.

    2017-12-01

    The previously developed full-atomistic approach to the thin film growth simulation is applied for the investigation of the dependence of silicon dioxide films properties on deposition conditions. It is shown that the surface roughness and porosity are essentially reduced with the growth of energy of deposited silicon atoms. The growth of energy from 0.1 eV to 10 eV results in the increase of the film density for 0.2 - 0.4 g/cm3 and of the refractive index for 0.04-0.08. The compressive stress in films structures is observed for all deposition conditions. Absolute values of the stress tensor components increase with the growth of e energy of deposited atoms. The increase of the substrate temperature results in smoothing of the density profiles of the deposited films.

  2. ULF foreshock under radial IMF: THEMIS observations and global kinetic simulation Vlasiator results compared

    NASA Astrophysics Data System (ADS)

    Palmroth, Minna; Rami, Vainio; Archer, Martin; Hietala, Heli; Afanasiev, Alexandr; Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2015-04-01

    For decades, a certain type of ultra low frequency waves with a period of about 30 seconds have been observed in the Earth's quasi-parallel foreshock. These waves, with a wavelength of about an Earth radius, are compressive and propagate with an average angle of 20 degrees with respect of the interplanetary magnetic field (IMF). The latter property has caused trouble to scientists as the growth rate for the instability causing the waves is maximized along the magnetic field. So far, these waves have been characterized by single or multi-spacecraft methods and 2-dimensional hybrid-PIC simulations, which have not fully reproduced the wave properties. Vlasiator is a newly developed, global hybrid-Vlasov simulation, which solves the six-dimensional phase space utilising the Vlasov equation for protons, while electrons are a charge-neutralising fluid. The outcome of the simulation is a global reproduction of ion-scale physics in a holistic manner where the generation of physical features can be followed in time and their consequences can be quantitatively characterised. Vlasiator produces the ion distribution functions and the related kinetic physics in unprecedented detail, in the global scale magnetospheric scale with a resolution of a couple of hundred kilometres in the ordinary space and 20 km/s in the velocity space. We run Vlasiator under a radial IMF in five dimensions consisting of the three-dimensional velocity space embedded in the ecliptic plane. We observe the generation of the 30-second ULF waves, and characterize their evolution and physical properties in time. We compare the results both to THEMIS observations and to the quasi-linear theory. We find that Vlasiator reproduces the foreshock ULF waves in all reported observational aspects, i.e., they are of the observed size in wavelength and period, they are compressive and propagate obliquely to the IMF. In particular, we discuss the issues related to the long-standing question of oblique propagation.

  3. Results of Simulated Galactic Cosmic Radiation (GCR) and Solar Particle Events (SPE) on Spectra Restraint Fabric

    NASA Technical Reports Server (NTRS)

    Peters, Benjamin; Hussain, Sarosh; Waller, Jess

    2017-01-01

    Spectra or similar Ultra-high-molecular-weight polyethylene (UHMWPE) fabric is the likely choice for future structural space suit restraint materials due to its high strength-to-weight ratio, abrasion resistance, and dimensional stability. During long duration space missions, space suits will be subjected to significant amounts of high-energy radiation from several different sources. To insure that pressure garment designs properly account for effects of radiation, it is important to characterize the mechanical changes to structural materials after they have been irradiated. White Sands Test Facility (WSFTF) collaborated with the Crew and Thermal Systems Division at the Johnson Space Center (JSC) to irradiate and test various space suit materials by examining their tensile properties through blunt probe puncture testing and single fiber tensile testing after the materials had been dosed at various levels of simulated GCR and SPE Iron and Proton beams at Brookhaven National Laboratories. The dosages were chosen based on a simulation developed by the Structural Engineering Division at JSC for the expected radiation dosages seen by space suit softgoods seen on a Mars reference mission. Spectra fabric tested in the effort saw equivalent dosages at 2x, 10x, and 20x the predicted dose as well as a simulated 50 year exposure to examine the range of effects on the material and examine whether any degradation due to GCR would be present if the suit softgoods were stored in deep space for a long period of time. This paper presents the results of this work and outlines the impact on space suit pressure garment design for long duration deep space missions.

  4. Tank 241-AZ-101 criticality assessment resulting from pump jet mixing: Sludge mixing simulation

    SciTech Connect

    Onishi, Y.; Recknagle, K.

    Tank 241-AZ-101 (AZ-101) is one of 28 double-shell tanks located in the AZ farm in the Hanford Site`s 200 East Area. The tank contains a significant quantity of fissile materials, including an estimated 9.782 kg of plutonium. Before beginning jet pump mixing for mitigative purposes, the operations must be evaluated to demonstrate that they will be subcritical under both normal and credible abnormal conditions. The main objective of this study was to address a concern about whether two 300-hp pumps with four rotating 18.3-m/s (60-ft/s) jets can concentrate plutonium in their pump housings during mixer pump operation and cause amore » criticality. The three-dimensional simulation was performed with the time-varying TEMPEST code to determine how much the pump jet mixing of Tank AZ-101 will concentrate plutonium in the pump housing. The AZ-101 model predicted that the total amount of plutonium within the pump housing peaks at 75 g at 10 simulation seconds and decreases to less than 10 g at four minutes. The plutonium concentration in the entire pump housing peaks at 0.60 g/L at 10 simulation seconds and is reduced to below 0.1 g/L after four minutes. Since the minimum critical concentration of plutonium is 2.6 g/L, and the minimum critical plutonium mass under idealized plutonium-water conditions is 520 g, these predicted maximums in the pump housing are much lower than the minimum plutonium conditions needed to reach a criticality level. The initial plutonium maximum of 1.88 g/L still results in safety factor of 4.3 in the pump housing during the pump jet mixing operation.« less

  5. Earlier surgery improves outcomes from painful chronic pancreatitis.

    PubMed

    Ke, Nengwen; Jia, Dan; Huang, Wei; Nunes, Quentin M; Windsor, John A; Liu, Xubao; Sutton, Robert

    2018-05-01

    The timing of surgery for painful chronic pancreatitis (CP) may affect outcomes.Clinical course, Izbicki pain scores, and pancreatic function were retrospectively compared and analyzed between patients undergoing either early or late surgery (< 3 or ≥ 3 years from diagnosis) for painful CP in a single center from 2007 to 2012.The early surgery group (n = 98) more frequently than the late group (n = 199) had abdominal pain with jaundice (22.4% vs 9.5%, P = .002) and pancreatic mass +/- ductal dilatation (47% vs 27%, P < .001), but less frequently abdominal pain alone (73.5% vs 85.9%, P = .009), ductal dilatation alone (31% vs 71%, P < .001), parenchymal calcification (91.8% vs 100%, P < .001) or exocrine insufficiency (60% vs 72%, P = .034); there were no other significant differences. The early group had longer hospital stay (14.4 vs 12.2 days, P = .009), but no difference in complications. Significantly greater pain relief followed early surgery (complete 69% vs 47%, partial 22% vs 37%, none 8% vs 16%, P = .01) with lower rates of exocrine (60% vs 80%, P = .005) and endocrine insufficiency (36% vs 53%, P = .033).Our data indicate that early surgery results in higher rates of pain relief and pancreatic sufficiency than late surgery for chronic pancreatitis patients. Frey and Berne procedures showed better results than other surgical procedures.

  6. New evidence: data documenting parental support for earlier sexuality education.

    PubMed

    Barr, Elissa M; Moore, Michele J; Johnson, Tammie; Forrest, Jamie; Jordan, Melissa

    2014-01-01

    Numerous studies document support for sexuality education to be taught in high school, and often, in middle school. However, little research has been conducted addressing support for sexuality education in elementary schools. As part of the state Behavioral Risk Factor Surveillance System (BRFSS) Survey administration, the Florida Department of Health conducted the Florida Child Health Survey (FCHS) by calling back parents who had children in their home and who agreed to participate (N = 1715). Most parents supported the following sexuality education topics being taught specifically in elementary school: communication skills (89%), human anatomy/reproductive information (65%), abstinence (61%), human immunodeficiency virus (HIV)/sexually transmitted infections (STIs) (53%), and gender/sexual orientation issues (52%). Support was even greater in middle school (62-91%) and high school (72-91%) for these topics and for birth control and condom education. Most parents supported comprehensive sexuality education (40.4%), followed by abstinence-plus (36.4%) and abstinence-only (23.2%). Chi-square results showed significant differences in the type of sexuality education supported by almost all parent demographic variables analyzed including sex, race, marital status, and education. Results add substantial support for age-appropriate school-based sexuality education starting at the elementary school level, the new National Sexuality Education Standards, and funding to support evidence-based abstinence-plus or comprehensive sexuality education. © 2013, American School Health Association.

  7. Prediction of Thorough QT study results using action potential simulations based on ion channel screens.

    PubMed

    Mirams, Gary R; Davies, Mark R; Brough, Stephen J; Bridgland-Taylor, Matthew H; Cui, Yi; Gavaghan, David J; Abi-Gerges, Najah

    2014-01-01

    Detection of drug-induced pro-arrhythmic risk is a primary concern for pharmaceutical companies and regulators. Increased risk is linked to prolongation of the QT interval on the body surface ECG. Recent studies have shown that multiple ion channel interactions can be required to predict changes in ventricular repolarisation and therefore QT intervals. In this study we attempt to predict the result of the human clinical Thorough QT (TQT) study, using multiple ion channel screening which is available early in drug development. Ion current reduction was measured, in the presence of marketed drugs which have had a TQT study, for channels encoded by hERG, CaV1.2, NaV1.5, KCNQ1/MinK, and Kv4.3/KChIP2.2. The screen was performed on two platforms - IonWorks Quattro (all 5 channels, 34 compounds), and IonWorks Barracuda (hERG & CaV1.2, 26 compounds). Concentration-effect curves were fitted to the resulting data, and used to calculate a percentage reduction in each current at a given concentration. Action potential simulations were then performed using the ten Tusscher and Panfilov (2006), Grandi et al. (2010) and O'Hara et al. (2011) human ventricular action potential models, pacing at 1Hz and running to steady state, for a range of concentrations. We compared simulated action potential duration predictions with the QT prolongation observed in the TQT studies. At the estimated concentrations, simulations tended to underestimate any observed QT prolongation. When considering a wider range of concentrations, and conventional patch clamp rather than screening data for hERG, prolongation of ≥5ms was predicted with up to 79% sensitivity and 100% specificity. This study provides a proof-of-principle for the prediction of human TQT study results using data available early in drug development. We highlight a number of areas that need refinement to improve the method's predictive power, but the results suggest that such approaches will provide a useful tool in cardiac safety

  8. Earlier surgery improves outcomes from painful chronic pancreatitis

    PubMed Central

    Ke, Nengwen; Jia, Dan; Huang, Wei; Nunes, Quentin M.; Windsor, John A.; Liu, Xubao; Sutton, Robert

    2018-01-01

    Abstract The timing of surgery for painful chronic pancreatitis (CP) may affect outcomes. Clinical course, Izbicki pain scores, and pancreatic function were retrospectively compared and analyzed between patients undergoing either early or late surgery (< 3 or ≥ 3 years from diagnosis) for painful CP in a single center from 2007 to 2012. The early surgery group (n = 98) more frequently than the late group (n = 199) had abdominal pain with jaundice (22.4% vs 9.5%, P = .002) and pancreatic mass +/− ductal dilatation (47% vs 27%, P < .001), but less frequently abdominal pain alone (73.5% vs 85.9%, P = .009), ductal dilatation alone (31% vs 71%, P < .001), parenchymal calcification (91.8% vs 100%, P < .001) or exocrine insufficiency (60% vs 72%, P = .034); there were no other significant differences. The early group had longer hospital stay (14.4 vs 12.2 days, P = .009), but no difference in complications. Significantly greater pain relief followed early surgery (complete 69% vs 47%, partial 22% vs 37%, none 8% vs 16%, P = .01) with lower rates of exocrine (60% vs 80%, P = .005) and endocrine insufficiency (36% vs 53%, P = .033). Our data indicate that early surgery results in higher rates of pain relief and pancreatic sufficiency than late surgery for chronic pancreatitis patients. Frey and Berne procedures showed better results than other surgical procedures. PMID:29742705

  9. Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator

    SciTech Connect

    Durbin, Samuel G.; Lindgren, Eric Richard

    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and also by increasing themore » internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an aboveground configuration. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. The arrangement of ducting was used to mimic conditions for an aboveground storage configuration in a vertical, dry

  10. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results

    DOE PAGES

    Kravitz, Benjamin S.; Robock, Alan; Tilmes, S.; ...

    2015-10-27

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more long wave radiation to escape to space. We discuss experiment designs, as well as the rationale formore » those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. In conclusion, this is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.« less

  11. Influence of the solar wind and IMF on Jupiter's magnetosphere: Results from global MHD simulations

    NASA Astrophysics Data System (ADS)

    Sarkango, Y.; Jia, X.; Toth, G.; Hansen, K. C.

    2017-12-01

    Due to its large size, rapid rotation and presence of substantial internal plasma sources, Jupiter's magnetosphere is fundamentally different from that of the Earth. How and to what extent do the external factors, such as the solar wind and interplanetary magnetic field (IMF), influence the internally-driven magnetosphere is an open question. In this work, we solve the 3D semi-relativistic magnetohydrodynamic (MHD) equations using a well-established code, BATSRUS, to model the Jovian magnetosphere and study its interaction with the solar wind. Our global model adopts a non-uniform mesh covering the region from 200 RJ upstream to 1800 RJ downstream with the inner boundary placed at a radial distance of 2.5 RJ. The Io plasma torus centered around 6 RJ is generated in our model through appropriate mass-loading terms added to the set of MHD equations. We perform systematic numerical experiments in which we vary the upstream solar wind properties to investigate the impact of solar wind events, such as interplanetary shock and IMF rotation, on the global magnetosphere. From our simulations, we extract the location of the magnetopause boundary, the bow shock and the open-closed field line boundary (OCB), and determine their dependence on the solar wind properties and the IMF orientation. For validation, we compare our simulation results, such as density, temperature and magnetic field, to published empirical models based on in-situ measurements.

  12. LATE POP III STAR FORMATION DURING THE EPOCH OF REIONIZATION: RESULTS FROM THE RENAISSANCE SIMULATIONS

    SciTech Connect

    Xu, Hao; Norman, Michael L.; O’Shea, Brian W.

    2016-06-01

    We present results on the formation of Population III (Pop III) stars at redshift 7.6 from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich radiation transport hydrodynamics cosmological adaptive-mesh refinement simulations of high-redshift galaxy formation performed on the Blue Waters supercomputer. In a survey volume of about 220 comoving Mpc{sup 3}, we found 14 Pop III galaxies with recent star formation. The surprisingly late formation of Pop III stars is possible due to two factors: (i) the metal enrichment process is local and slow, leaving plenty of pristine gas to exist in the vast volume; and (ii) strongmore » Lyman–Werner radiation from vigorous metal-enriched star formation in early galaxies suppresses Pop III formation in (“not so”) small primordial halos with mass less than ∼3 × 10{sup 7} M {sub ⊙}. We quantify the properties of these Pop III galaxies and their Pop III star formation environments. We look for analogs to the recently discovered luminous Ly α emitter CR7, which has been interpreted as a Pop III star cluster within or near a metal-enriched star-forming galaxy. We find and discuss a system similar to this in some respects, however, the Pop III star cluster is far less massive and luminous than CR7 is inferred to be.« less

  13. Simulation and Laboratory results of the Hard X-ray Polarimeter: X-Calibur

    NASA Astrophysics Data System (ADS)

    Guo, Qingzhen; Beilicke, M.; Kislat, F.; Krawczynski, H.

    2014-01-01

    X-ray polarimetry promises to give qualitatively new information about high-energy sources, such as binary black hole (BH) systems, Microquasars, active galactic nuclei (AGN), GRBs, etc. We designed, built and tested a hard X-ray polarimeter 'X-Calibur' to be flown in the focal plane of the InFOCuS grazing incidence hard X-ray telescope in 2014. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 20- 80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the E field orientation. X-Calibur achieves a high detection efficiency of order unity. We optimized of the design of the instrument based on Monte Carlo simulations of polarized and unpolarized X-ray beams and of the most important background components. We have calibrated and tested X-Calibur extensively in the laboratory at Washington University and at the Cornell High-Energy Synchrotron Source (CHESS). Measurements using the highly polarized synchrotron beam at CHESS confirm the polarization sensitivity of the instrument. In this talk we report on the optimization of the design of the instrument based on Monte Carlo simulations, as well as results of laboratory calibration measurements characterizing the performance of the instrument.

  14. Controlled cooling technology for bar and rod mills -- Computer simulation and operational results

    SciTech Connect

    Mauk, P.J.; Kruse, M.; Plociennik, U.

    The Controlled Cooling Technology (CCT) developed by SMS to simulate the rolling process and automatic control of the water cooling sections is presented. The Controlled Rolling and Cooling Technology (CRCT) model is a key part of the CCT system. It is used to simulate temperature management for the rolling stock on the computer before the actual rolling process takes place. This makes it possible to dispense with extensive rolling tests in the early stages of project planning and to greatly reduce the extent of such tests prior to the start of commercial production in a rolling mill. The CRCT modelmore » has been in use at Von Moos Stahl Ag for three years. It demonstrates that, by targeted improvement of the set-up values in both the technology and the plant, it is possible to improve microstructure quality and achieve better geometrical parameters in the rolled products. Also, the results gained with the CCT system in practical operation at the Kia Steel Bar Mill, Kunsan, Korea, are presented.« less

  15. Aircraft microwave observations and simulations of deep convection from 18 to 183 GHz. II - Model results

    NASA Technical Reports Server (NTRS)

    Yeh, Hwa-Young M.; Prasad, N.; Mack, Robert A.; Adler, Robert F.

    1990-01-01

    In this June 29, 1986 case study, a radiative transfer model is used to simulate the aircraft multichannel microwave brightness temperatures presented in the Adler et al. (1990) paper and to study the convective storm structure. Ground-based radar data are used to derive hydrometeor profiles of the storm, based on which the microwave upwelling brightness temperatures are calculated. Various vertical hydrometeor phase profiles and the Marshall and Palmer (M-P, 1948) and Sekhon and Srivastava (S-S, 1970) ice particle size distributions are experimented in the model. The results are compared with the aircraft radiometric data. The comparison reveals that the M-P distribution well represents the ice particle size distribution, especially in the upper tropospheric portion of the cloud; the S-S distribution appears to better simulate the ice particle size at the lower portion of the cloud, which has a greater effect on the low-frequency microwave upwelling brightness temperatures; and that, in deep convective regions, significant supercooled liquid water (about 0.5 g/cu m) may be present up to the -30 C layer, while in less convective areas, frozen hydrometeors are predominant above -10 C level.

  16. Control of Warm Compression Stations Using Model Predictive Control: Simulation and Experimental Results

    NASA Astrophysics Data System (ADS)

    Bonne, F.; Alamir, M.; Bonnay, P.

    2017-02-01

    This paper deals with multivariable constrained model predictive control for Warm Compression Stations (WCS). WCSs are subject to numerous constraints (limits on pressures, actuators) that need to be satisfied using appropriate algorithms. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to achieve precise control of pressures in normal operation or to avoid reaching stopping criteria (such as excessive pressures) under high disturbances (such as a pulsed heat load expected to take place in future fusion reactors, expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details the simulator used to validate this new control scheme and the associated simulation results on the SBTs WCS. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.

  17. Simulation and experimental results of optical and thermal modeling of gold nanoshells.

    PubMed

    Ghazanfari, Lida; Khosroshahi, Mohammad E

    2014-09-01

    This paper proposes a generalized method for optical and thermal modeling of synthesized magneto-optical nanoshells (MNSs) for biomedical applications. Superparamagnetic magnetite nanoparticles with diameter of 9.5 ± 1.4 nm are fabricated using co-precipitation method and subsequently covered by a thin layer of gold to obtain 15.8 ± 3.5 nm MNSs. In this paper, simulations and detailed analysis are carried out for different nanoshell geometry to achieve a maximum heat power. Structural, magnetic and optical properties of MNSs are assessed using vibrating sample magnetometer (VSM), X-ray diffraction (XRD), UV-VIS spectrophotometer, dynamic light scattering (DLS), and transmission electron microscope (TEM). Magnetic saturation of synthesized magnetite nanoparticles are reduced from 46.94 to 11.98 emu/g after coating with gold. The performance of the proposed optical-thermal modeling technique is verified by simulation and experimental results. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Elders recall an earlier tsunami on Indian Ocean shores

    USGS Publications Warehouse

    Kakar, Din Mohammad; Naeem, Ghazala; Usman, Abdullah; Hasan, Haider; Lohdi, Hira; Srinivasalu, Seshachalam; Andrade, Vanessa; Rajendran, C.P.; Naderi Beni, Abdolmajid; Hamzeh, Mohammad Ali; Hoffmann, Goesta; Al Balushi, Noora; Gale, Nora; Kodijat, Ardito; Fritz, Hermann M.; Atwater, Brian F.

    2014-01-01

    Ten years on, the Indian Ocean tsunami of 26 December 2004 still looms large in efforts to reduce coastal risk. The disaster has spurred worldwide advances in tsunami detection and warning, tsunami-risk assessment, and tsunami awareness [Satake, 2014]. Nearly a lifetime has passed since the northwestern Indian Ocean last produced a devastating tsunami. Documentation of this tsunami, in November 1945, was hindered by international instability in the wake of the Second World War and, in British India, by the approach of independence and partition. The parent earthquake, of magnitude 8.1, was widely recorded, and the tsunami registered on tide gauges, but intelligence reports and newspaper articles say little about inundation limits while permitting a broad range of catalogued death tolls. What has been established about the 1945 tsunami falls short of what's needed today for ground-truthing inundation models, estimating risk to enlarged populations, and anchoring awareness campaigns in local facts. Recent efforts to reduce coastal risk around the Arabian Sea include a project in which eyewitnesses to the 1945 tsunami were found and interviewed (Fig. 1), and related archives were gathered. Results are being made available through UNESCO's Indian Ocean Tsunami Information Center in hopes of increasing scientific understanding and public awareness of the region's tsunami hazards.

  19. Social Security reform: evaluating current proposals. Latest results of the EBRI-SSASIM2 policy simulation model.

    PubMed

    Copeland, C; VanDerhei, J; Salisbury, D L

    1999-06-01

    The present Social Security program has been shown to be financially unsustainable in the future without modification to the current program. The purpose of this Issue Brief, EBRI's fourth in a series on Social Security reform, is threefold: to illustrate new features of the EBRI-SSASIM2 policy simulation model not available in earlier EBRI publications, to expand quantitative analysis to specific proposals, and to evaluate the uncertainty involved in proposals that rely on equity investment. This analysis compares the Gregg/Breaux-Kolbe/Stenholm (GB-KS) and Moynihan/Kerrey proposals with three generic or "traditional" reforms: increasing taxes, reducing benefits, and/or increasing the retirement age. Both proposals would create individual accounts by "carving out" funds from current Social Security payroll taxes. This analysis also examines other proposed changes that would "add on" to existing Social Security funds through the use of general revenue transfers and/or investment in the equities market. President Clinton has proposed a general revenue transfer and the collective investment of some of the OASDI trust fund assets in equities. Reps. Archer and Shaw have proposed a general revenue tax credit to establish individual accounts that would be invested partially in the equities markets. When comparing Social Security reform proposals that would specifically alter benefit levels, the Moynihan/Kerrey bill compares quite favorably with the other proposals in both benefit levels and payback ratios, when individuals elect to use the individual account option. In contrast, the GB-KS bills do not compare quite as favorably for their benefit levels, but do compare favorably in terms of payback ratios. An important comparison in these bills is the administrative costs of managing the individual accounts, since benefits can be lowered by up to 23 percent when going from the assumed low to high administrative costs. Moreover, allowing individuals to decide whether to

  20. Nanofiltration Results: Membrane Removal of Calcium, Magnesium, Sodium, Silica, Lithium, Chlorine, and Sulfate from Simulated Geothermal Brines

    DOE Data Explorer

    Jay Renew

    2016-02-06

    Results from a nanofiltration study utilizing simulated geothermal brines. The data includes a PDF documenting the process used to remove Calcium, Magnesium, Sodium, Silica, Lithium, Chlorine, and Sulfate from simulated geothermal brines. Three different membranes were evaluated. The results were analyzed using inductively coupled plasma mass spectrometry (ICP-MS).

  1. UAS in the NAS - Analysis Results and Recommendations for Integration of CNPC and ATC Communications Simulation Report

    NASA Technical Reports Server (NTRS)

    Kubat, Gregory

    2016-01-01

    This report addresses a deliverable to the UAS-in-the-NAS project for recommendations for integration of CNPC and ATC communications based on analysis results from modeled radio system and NAS-wide UA communication architecture simulations. For each recommendation, a brief explanation of the rationale for its consideration is provided with any supporting results obtained or observed in our simulation activity.

  2. The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid

    2018-06-01

    Here, we present the latest results on the gas and solid phase analyses in the Titan Haze Simulation (THS) experiment. The THS experiment, developed at NASA Ames’ COSmIC facility is a unique experimental platform that allows us to simulate Titan’s complex atmospheric chemistry at Titan-like temperature (200 K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma.Gas phase: The residence time of the jet-accelerated gas in the active plasma region is less than 4 µs, which results in a truncated chemistry enabling us to control how far in the chain of reactions the chemistry is processing. By adding heavier molecules in the initial gas mixture, it is then possible to study the first and intermediate steps of Titan’s atmospheric chemistry as well as specific chemical pathways, as demonstrated by mass spectrometry and comparison to Cassini CAPS data [1]. A new model was recently developed to simulate the plasma chemistry in the THS. Calculated mass spectra produced by this model are in good agreement with the experimental THS mass spectra, confirming that the short residence time in the plasma cavity limits the growth of larger species [2].Solid phase: Scanning electron microscopy and infrared spectroscopy have been used to investigate the effect of the initial gas mixture on the morphology of the THS Titan aerosol analogs as well as on the level and nature of the nitrogen incorporation into these aerosols. A comparison to Cassini VIMS observational data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols [3]. In addition, a new optical constant facility has been developed at NASA Ames that allows us to determine the complex refractive indices of THS Titan aerosol analogs from NIR to FIR (0.76-222 cm-1). The facility and preliminary results

  3. Predictability and possible earlier awareness of extreme precipitation across Europe

    NASA Astrophysics Data System (ADS)

    Lavers, David; Pappenberger, Florian; Richardson, David; Zsoter, Ervin

    2017-04-01

    Extreme hydrological events can cause large socioeconomic damages in Europe. In winter, a large proportion of these flood episodes are associated with atmospheric rivers, a region of intense water vapour transport within the warm sector of extratropical cyclones. When preparing for such extreme events, forecasts of precipitation from numerical weather prediction models or river discharge forecasts from hydrological models are generally used. Given the strong link between water vapour transport (integrated vapour transport IVT) and heavy precipitation, it is possible that IVT could be used to warn of extreme events. Furthermore, as IVT is located in extratropical cyclones, it is hypothesized to be a more predictable variable due to its link with synoptic-scale atmospheric dynamics. In this research, we firstly provide an overview of the predictability of IVT and precipitation forecasts, and secondly introduce and evaluate the ECMWF Extreme Forecast Index (EFI) for IVT. The EFI is a tool that has been developed to evaluate how ensemble forecasts differ from the model climate, thus revealing the extremeness of the forecast. The ability of the IVT EFI to capture extreme precipitation across Europe during winter 2013/14, 2014/15, and 2015/16 is presented. The results show that the IVT EFI is more capable than the precipitation EFI of identifying extreme precipitation in forecast week 2 during forecasts initialized in a positive North Atlantic Oscillation (NAO) phase. However, the precipitation EFI is superior during the negative NAO phase and at shorter lead times. An IVT EFI example is shown for storm Desmond in December 2015 highlighting its potential to identify upcoming hydrometeorological extremes.

  4. Research on an expert system for database operation of simulation-emulation math models. Volume 1, Phase 1: Results

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Beale, G. O.; Schaffer, J. D.; Hsieh, B. J.; Padalkar, S.; Rodriguez-Moscoso, J. J.

    1985-01-01

    The results of the first phase of Research on an Expert System for Database Operation of Simulation/Emulation Math Models, is described. Techniques from artificial intelligence (AI) were to bear on task domains of interest to NASA Marshall Space Flight Center. One such domain is simulation of spacecraft attitude control systems. Two related software systems were developed to and delivered to NASA. One was a generic simulation model for spacecraft attitude control, written in FORTRAN. The second was an expert system which understands the usage of a class of spacecraft attitude control simulation software and can assist the user in running the software. This NASA Expert Simulation System (NESS), written in LISP, contains general knowledge about digital simulation, specific knowledge about the simulation software, and self knowledge.

  5. Experimental and simulation study results for video landmark acquisition and tracking technology

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Tietz, J. C.; Thomas, H. M.; Lowrie, J. W.

    1979-01-01

    A synopsis of related Earth observation technology is provided and includes surface-feature tracking, generic feature classification and landmark identification, and navigation by multicolor correlation. With the advent of the Space Shuttle era, the NASA role takes on new significance in that one can now conceive of dedicated Earth resources missions. Space Shuttle also provides a unique test bed for evaluating advanced sensor technology like that described in this report. As a result of this type of rationale, the FILE OSTA-1 Shuttle experiment, which grew out of the Video Landmark Acquisition and Tracking (VILAT) activity, was developed and is described in this report along with the relevant tradeoffs. In addition, a synopsis of FILE computer simulation activity is included. This synopsis relates to future required capabilities such as landmark registration, reacquisition, and tracking.

  6. Using Classification and Regression Trees (CART) and Random Forests to Analyze Attrition: Results From Two Simulations

    PubMed Central

    Hayes, Timothy; Usami, Satoshi; Jacobucci, Ross; McArdle, John J.

    2016-01-01

    In this article, we describe a recent development in the analysis of attrition: using classification and regression trees (CART) and random forest methods to generate inverse sampling weights. These flexible machine learning techniques have the potential to capture complex nonlinear, interactive selection models, yet to our knowledge, their performance in the missing data analysis context has never been evaluated. To assess the potential benefits of these methods, we compare their performance with commonly employed multiple imputation and complete case techniques in 2 simulations. These initial results suggest that weights computed from pruned CART analyses performed well in terms of both bias and efficiency when compared with other methods. We discuss the implications of these findings for applied researchers. PMID:26389526

  7. Dune formation on the Cooper Creek floodplain, Strzelecki Desert, Australia - first results of morphodynamic simulations

    NASA Astrophysics Data System (ADS)

    Kryger, Mateusz; Bubenzer, Olaf; Parteli, Eric

    2017-04-01

    Linear Dunes, which align longitudinally to the resultant wind vector, are the prevailing type of the south-north trending and partially vegetated dunes in the Strzelecki Desert, Australia. However, particularly on the Cooper Creek floodplain near Innamincka, striking complex dune features consisting of transversely oriented east-west trending dunes occur. These transverse dunes extend over several kilometers and are superimposed by linear dunes that elongate northwards and are separated by sandy swales. The aeolian features in the Strzelecki Desert are the result of interrelated late quaternary aeolian and fluvial activity and serve, thus, as archives providing information about variations in palaeoclimate and potential changes in fluvial sediment supply and wind strength and directionality. However, since the dunes are currently mostly stabilized by vegetation, it is uncertain whether their formation can be explained by the contemporary wind systems. To understand the dynamic processes underlying the genesis of the dune field in the Strzelecki Desert, the role of vegetation and the wind regimes leading to the observed dune patterns must be elucidated. Here we investigate the formative processes of the dune features occurring on the Cooper Creek floodplain by means of morphodynamic modeling of aeolian sand transport and dune formation in presence of vegetation growth. Our simulations show that a source-bordering dune can be formed out of the sediments of seasonally exposed sandbars of the palaeo-Cooper system by a unidirectional wind, which explains the emergence of the transverse dunes in the field. Moreover, a shift in the wind regime to obtuse bidirectional wind flows combined with a rapid decrease in the vegetation cover leads to the formation of linear dunes on the surface and in the lee of the transverse dunes. These linear dunes elongate over several kilometers downwind as a result of the seasonal wind changes. The dune shapes obtained in our simulations

  8. Comparison of road load simulator test results with track tests on electric vehicle propulsion system

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1983-01-01

    A special-purpose dynamometer, the road load simulator (RLS), is being used at NASA's Lewis Research Center to test and evaluate electric vehicle propulsion systems developed under DOE's Electric and Hybrid Vehicle Program. To improve correlation between system tests on the RLS and track tests, similar tests were conducted on the same propulsion system on the RLS and on a test track. These tests are compared in this report. Battery current to maintain a constant vehicle speed with a fixed throttle was used for the comparison. Scatter in the data was greater in the track test results. This is attributable to variations in tire rolling resistance and wind effects in the track data. It also appeared that the RLS road load, determined by coastdown tests on the track, was lower than that of the vehicle on the track. These differences may be due to differences in tire temperature.

  9. Multiple Frequency Contrast Source Inversion Method for Vertical Electromagnetic Profiling: 2D Simulation Results and Analyses

    NASA Astrophysics Data System (ADS)

    Li, Jinghe; Song, Linping; Liu, Qing Huo

    2016-02-01

    A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.

  10. Preliminary Results From a Laboratory Study of Positive Streamer Discharges on Simulated Ice Hydrometeors

    NASA Astrophysics Data System (ADS)

    Petersen, D.; Bailey, M.; Hallett, J.; Beasley, W.

    2007-12-01

    The initiation of lightning remains an open question, due in large part to a deficit of in-situ observational evidence. Recent theoretical descriptions of lightning initiation have focused on runaway breakdown and related secondary processes, but have not convincingly explained the details of onset of the embryonic lightning leader channel. Among possible mechanisms contributing to the initial leader formation are positive streamer discharges from ice hydrometeors, themselves once favored as the primary explanation of lightning initiation. We present preliminary results from a new laboratory study of positive streamer discharges on simulated ice hydrometeors. Emphasis is given to precisely defining the minimum electric field strength required for onset of positive streamer generation, with variables of interest being ice crystal size, habit and environmental temperature.

  11. Using Classification and Regression Trees (CART) and random forests to analyze attrition: Results from two simulations.

    PubMed

    Hayes, Timothy; Usami, Satoshi; Jacobucci, Ross; McArdle, John J

    2015-12-01

    In this article, we describe a recent development in the analysis of attrition: using classification and regression trees (CART) and random forest methods to generate inverse sampling weights. These flexible machine learning techniques have the potential to capture complex nonlinear, interactive selection models, yet to our knowledge, their performance in the missing data analysis context has never been evaluated. To assess the potential benefits of these methods, we compare their performance with commonly employed multiple imputation and complete case techniques in 2 simulations. These initial results suggest that weights computed from pruned CART analyses performed well in terms of both bias and efficiency when compared with other methods. We discuss the implications of these findings for applied researchers. (c) 2015 APA, all rights reserved).

  12. Biofilm formation and control in a simulated spacecraft water system - Two-year results

    NASA Technical Reports Server (NTRS)

    Schultz, John R.; Taylor, Robert D.; Flanagan, David T.; Carr, Sandra E.; Bruce, Rebekah J.; Svoboda, Judy V.; Huls, M. H.; Sauer, Richard L.; Pierson, Duane L.

    1991-01-01

    The ability of iodine to maintain microbial water quality in a simulated spacecraft water system is being studied. An iodine level of about 2.0 mg/L is maintained by passing ultrapure influent water through an iodinated ion exchange resin. Six liters are withdrawn daily and the chemical and microbial quality of the water is monitored regularly. Stainless steel coupons used to monitor biofilm formation are being analyzed by culture methods, epifluorescence microscopy, and scanning electron microscopy. Results from the first two years of operation show a single episode of high bacterial colony counts in the iodinated system. This growth was apparently controlled by replacing the iodinated ion exchange resin. Scanning electron microscopy indicates that the iodine has limited but not completely eliminated the formation of biofilm during the first two years of operation. Significant microbial contamination has been present continuously in a parallel noniodinated system since the third week of operation.

  13. Recondensation of chondritic material in the early solar system: Results of thermodynamic simulation

    NASA Technical Reports Server (NTRS)

    Dorofeyeva, V. A.; Makalkin, A. B.; Mironenko, M. V.; Vityazev, A. V.

    1993-01-01

    We have performed a thermodynamic simulation of the recondensation of evaporated meteoritic material. We suggest that evaporation and recondensation occurred in impact events during the intercollision of planetesimals during the early evolution of the solar system. The source materials adopted for our model are the chondrites CI Orgueil and H5 Richardton. These chondrites are representative examples of the two extremes regarding volatile content and oxidation state. We calculated equilibrium mineral compositions of the closed systems of the Orgueil's and Richardton's elemental composition at the P-T conditions characteristic of the explosion cloud formed at a planetesimal collision. The P-T conditions are as follows: 10(exp -4) bar, and 1500 and 2000 K. The results are presented.

  14. Recent Simulation Results on Ring Current Dynamics Using the Comprehensive Ring Current Model

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Zaharia, Sorin G.; Lui, Anthony T. Y.; Fok, Mei-Ching

    2010-01-01

    Plasma sheet conditions and electromagnetic field configurations are both crucial in determining ring current evolution and connection to the ionosphere. In this presentation, we investigate how different conditions of plasma sheet distribution affect ring current properties. Results include comparative studies in 1) varying the radial distance of the plasma sheet boundary; 2) varying local time distribution of the source population; 3) varying the source spectra. Our results show that a source located farther away leads to a stronger ring current than a source that is closer to the Earth. Local time distribution of the source plays an important role in determining both the radial and azimuthal (local time) location of the ring current peak pressure. We found that post-midnight source locations generally lead to a stronger ring current. This finding is in agreement with Lavraud et al.. However, our results do not exhibit any simple dependence of the local time distribution of the peak ring current (within the lower energy range) on the local time distribution of the source, as suggested by Lavraud et al. [2008]. In addition, we will show how different specifications of the magnetic field in the simulation domain affect ring current dynamics in reference to the 20 November 2007 storm, which include initial results on coupling the CRCM with a three-dimensional (3-D) plasma force balance code to achieve self-consistency in the magnetic field.

  15. Suppression tuning of distortion-product otoacoustic emissions: Results from cochlear mechanics simulation

    PubMed Central

    Liu, Yi-Wen; Neely, Stephen T.

    2013-01-01

    This paper presents the results of simulating the acoustic suppression of distortion-product otoacoustic emissions (DPOAEs) from a computer model of cochlear mechanics. A tone suppressor was introduced, causing the DPOAE level to decrease, and the decrement was plotted against an increasing suppressor level. Suppression threshold was estimated from the resulting suppression growth functions (SGFs), and suppression tuning curves (STCs) were obtained by plotting the suppression threshold as a function of suppressor frequency. Results show that the slope of SGFs is generally higher for low-frequency suppressors than high-frequency suppressors, resembling those obtained from normal hearing human ears. By comparing responses of normal (100%) vs reduced (50%) outer-hair-cell sensitivities, the model predicts that the tip-to-tail difference of the STCs correlates well with that of intra-cochlear iso-displacement tuning curves. The correlation is poorer, however, between the sharpness of the STCs and that of the intra-cochlear tuning curves. These results agree qualitatively with what was recently reported from normal-hearing and hearing-impaired human subjects, and examination of intra-cochlear model responses can provide the needed insight regarding the interpretation of DPOAE STCs obtained in individual ears. PMID:23363112

  16. A hierarchy of models for simulating experimental results from a 3D heterogeneous porous medium

    NASA Astrophysics Data System (ADS)

    Vogler, Daniel; Ostvar, Sassan; Paustian, Rebecca; Wood, Brian D.

    2018-04-01

    In this work we examine the dispersion of conservative tracers (bromide and fluorescein) in an experimentally-constructed three-dimensional dual-porosity porous medium. The medium is highly heterogeneous (σY2 = 5.7), and consists of spherical, low-hydraulic-conductivity inclusions embedded in a high-hydraulic-conductivity matrix. The bimodal medium was saturated with tracers, and then flushed with tracer-free fluid while the effluent breakthrough curves were measured. The focus for this work is to examine a hierarchy of four models (in the absence of adjustable parameters) with decreasing complexity to assess their ability to accurately represent the measured breakthrough curves. The most information-rich model was (1) a direct numerical simulation of the system in which the geometry, boundary and initial conditions, and medium properties were fully independently characterized experimentally with high fidelity. The reduced-information models included; (2) a simplified numerical model identical to the fully-resolved direct numerical simulation (DNS) model, but using a domain that was one-tenth the size; (3) an upscaled mobile-immobile model that allowed for a time-dependent mass-transfer coefficient; and, (4) an upscaled mobile-immobile model that assumed a space-time constant mass-transfer coefficient. The results illustrated that all four models provided accurate representations of the experimental breakthrough curves as measured by global RMS error. The primary component of error induced in the upscaled models appeared to arise from the neglect of convection within the inclusions. We discuss the necessity to assign value (via a utility function or other similar method) to outcomes if one is to further select from among model options. Interestingly, these results suggested that the conventional convection-dispersion equation, when applied in a way that resolves the heterogeneities, yields models with high fidelity without requiring the imposition of a more

  17. DEM Simulated Results And Seismic Interpretation of the Red River Fault Displacements in Vietnam

    NASA Astrophysics Data System (ADS)

    Bui, H. T.; Yamada, Y.; Matsuoka, T.

    2005-12-01

    The Song Hong basin is the largest Tertiary sedimentary basin in Viet Nam. Its onset is approximately 32 Ma ago since the left-lateral displacement of the Red River Fault commenced. Many researches on structures, formation and tectonic evolution of the Song Hong basin have been carried out for a long time but there are still remained some problems that needed to put into continuous discussion such as: magnitude of the displacements, magnitude of movement along the faults, the time of tectonic inversion and right lateral displacement. Especially the mechanism of the Song Hong basin formation is still in controversy with many different hypotheses due to the activation of the Red River fault. In this paper PFC2D based on the Distinct Element Method (DEM) was used to simulate the development of the Red River fault system that controlled the development of the Song Hong basin from the onshore to the elongated portion offshore area. The numerical results show the different parts of the stress field such as compress field, non-stress field, pull-apart field of the dynamic mechanism along the Red River fault in the onshore area. This propagation to the offshore area is partitioned into two main branch faults that are corresponding to the Song Chay and Song Lo fault systems and said to restrain the east and west flanks of the Song Hong basin. The simulation of the Red River motion also showed well the left lateral displacement since its onset. Though it is the first time the DEM method was applied to study the deformation and geodynamic evolution of the Song Hong basin, the results showed reliably applied into the structural configuration evaluation of the Song Hong basin.

  18. A comparison of results from two simulators used for studies of astronaut maneuvering units. [with application to Skylab program

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Cannaday, R. L.

    1973-01-01

    A comparison of the results from a fixed-base, six-degree-of -freedom simulator and a moving-base, three-degree-of-freedom simulator was made for a close-in, EVA-type maneuvering task in which visual cues of a target spacecraft were used for guidance. The maneuvering unit (the foot-controlled maneuvering unit of Skylab Experiment T020) employed an on-off acceleration command control system operated entirely by the feet. Maneuvers by two test subjects were made for the fixed-base simulator in six and three degrees of freedom and for the moving-base simulator in uncontrolled and controlled, EVA-type visual cue conditions. Comparisons of pilot ratings and 13 different quantitative parameters from the two simulators are made. Different results were obtained from the two simulators, and the effects of limited degrees of freedom and uncontrolled visual cues are discussed.

  19. Free-Flight Test Results of Scale Models Simulating Viking Parachute/Lander Staging

    NASA Technical Reports Server (NTRS)

    Polutchko, Robert J.

    1973-01-01

    This report presents the results of Viking Aerothermodynamics Test D4-34.0. Motion picture coverage of a number of Scale model drop tests provides the data from which time-position characteristics as well as canopy shape and model system attitudes are measured. These data are processed to obtain the instantaneous drag during staging of a model simulating the Viking decelerator system during parachute staging at Mars. Through scaling laws derived prior to test (Appendix A and B) these results are used to predict such performance of the Viking decelerator parachute during staging at Mars. The tests were performed at the NASA/Kennedy Space Center (KSC) Vertical Assembly Building (VAB). Model assemblies were dropped 300 feet to a platform in High Bay No. 3. The data consist of an edited master film (negative) which is on permanent file in the NASA/LRC Library. Principal results of this investigation indicate that for Viking parachute staging at Mars: 1. Parachute staging separation distance is always positive and continuously increasing generally along the descent path. 2. At staging, the parachute drag coefficient is at least 55% of its prestage equilibrium value. One quarter minute later, it has recovered to its pre-stage value.

  20. Linear regression metamodeling as a tool to summarize and present simulation model results.

    PubMed

    Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M

    2013-10-01

    Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.

  1. Near-Infrared Spectroscopic Measurements of Calf Muscle during Walking at Simulated Reduced Gravity - Preliminary Results

    NASA Technical Reports Server (NTRS)

    Ellerby, Gwenn E. C.; Lee, Stuart M. C.; Stroud, Leah; Norcross, Jason; Gernhardt, Michael; Soller, Babs R.

    2008-01-01

    Consideration for lunar and planetary exploration space suit design can be enhanced by investigating the physiologic responses of individual muscles during locomotion in reduced gravity. Near-infrared spectroscopy (NIRS) provides a non-invasive method to study the physiology of individual muscles in ambulatory subjects during reduced gravity simulations. PURPOSE: To investigate calf muscle oxygen saturation (SmO2) and pH during reduced gravity walking at varying treadmill inclines and added mass conditions using NIRS. METHODS: Four male subjects aged 42.3 +/- 1.7 years (mean +/- SE) and weighing 77.9 +/- 2.4 kg walked at a moderate speed (3.2 +/- 0.2 km/h) on a treadmill at inclines of 0, 10, 20, and 30%. Unsuited subjects were attached to a partial gravity simulator which unloaded the subject to simulate body weight plus the additional weight of a space suit (121 kg) in lunar gravity (0.17G). Masses of 0, 11, 23, and 34 kg were added to the subject and then unloaded to maintain constant weight. Spectra were collected from the lateral gastrocnemius (LG), and SmO2 and pH were calculated using previously published methods (Yang et al. 2007 Optics Express ; Soller et al. 2008 J Appl Physiol). The effects of incline and added mass on SmO2 and pH were analyzed through repeated measures ANOVA. RESULTS: SmO2 and pH were both unchanged by added mass (p>0.05), so data from trials at the same incline were averaged. LG SmO2 decreased significantly with increasing incline (p=0.003) from 61.1 +/- 2.0% at 0% incline to 48.7 +/- 2.6% at 30% incline, while pH was unchanged by incline (p=0.12). CONCLUSION: Increasing the incline (and thus work performed) during walking causes the LG to extract more oxygen from the blood supply, presumably to support the increased metabolic cost of uphill walking. The lack of an effect of incline on pH may indicate that, while the intensity of exercise has increased, the LG has not reached a level of work above the anaerobic threshold. In these

  2. A Novel Simulation Technician Laboratory Design: Results of a Survey-Based Study.

    PubMed

    Ahmed, Rami; Hughes, Patrick G; Friedl, Ed; Ortiz Figueroa, Fabiana; Cepeda Brito, Jose R; Frey, Jennifer; Birmingham, Lauren E; Atkinson, Steven Scott

    2016-03-16

    OBJECTIVE : The purpose of this study was to elicit feedback from simulation technicians prior to developing the first simulation technician-specific simulation laboratory in Akron, OH. Simulation technicians serve a vital role in simulation centers within hospitals/health centers around the world. The first simulation technician degree program in the US has been approved in Akron, OH. To satisfy the requirements of this program and to meet the needs of this special audience of learners, a customized simulation lab is essential. A web-based survey was circulated to simulation technicians prior to completion of the lab for the new program. The survey consisted of questions aimed at identifying structural and functional design elements of a novel simulation center for the training of simulation technicians. Quantitative methods were utilized to analyze data. Over 90% of technicians (n=65) think that a lab designed explicitly for the training of technicians is novel and beneficial. Approximately 75% of respondents think that the space provided appropriate audiovisual (AV) infrastructure and space to evaluate the ability of technicians to be independent. The respondents think that the lab needed more storage space, visualization space for a large number of students, and more space in the technical/repair area. CONCLUSIONS : A space designed for the training of simulation technicians was considered to be beneficial. This laboratory requires distinct space for technical repair, adequate bench space for the maintenance and repair of simulators, an appropriate AV infrastructure, and space to evaluate the ability of technicians to be independent.

  3. Democratic population decisions result in robust policy-gradient learning: a parametric study with GPU simulations.

    PubMed

    Richmond, Paul; Buesing, Lars; Giugliano, Michele; Vasilaki, Eleni

    2011-05-04

    High performance computing on the Graphics Processing Unit (GPU) is an emerging field driven by the promise of high computational power at a low cost. However, GPU programming is a non-trivial task and moreover architectural limitations raise the question of whether investing effort in this direction may be worthwhile. In this work, we use GPU programming to simulate a two-layer network of Integrate-and-Fire neurons with varying degrees of recurrent connectivity and investigate its ability to learn a simplified navigation task using a policy-gradient learning rule stemming from Reinforcement Learning. The purpose of this paper is twofold. First, we want to support the use of GPUs in the field of Computational Neuroscience. Second, using GPU computing power, we investigate the conditions under which the said architecture and learning rule demonstrate best performance. Our work indicates that networks featuring strong Mexican-Hat-shaped recurrent connections in the top layer, where decision making is governed by the formation of a stable activity bump in the neural population (a "non-democratic" mechanism), achieve mediocre learning results at best. In absence of recurrent connections, where all neurons "vote" independently ("democratic") for a decision via population vector readout, the task is generally learned better and more robustly. Our study would have been extremely difficult on a desktop computer without the use of GPU programming. We present the routines developed for this purpose and show that a speed improvement of 5x up to 42x is provided versus optimised Python code. The higher speed is achieved when we exploit the parallelism of the GPU in the search of learning parameters. This suggests that efficient GPU programming can significantly reduce the time needed for simulating networks of spiking neurons, particularly when multiple parameter configurations are investigated.

  4. Prediction Markets and Beliefs about Climate: Results from Agent-Based Simulations

    NASA Astrophysics Data System (ADS)

    Gilligan, J. M.; John, N. J.; van der Linden, M.

    2015-12-01

    Climate scientists have long been frustrated by persistent doubts a large portion of the public expresses toward the scientific consensus about anthropogenic global warming. The political and ideological polarization of this doubt led Vandenbergh, Raimi, and Gilligan [1] to propose that prediction markets for climate change might influence the opinions of those who mistrust the scientific community but do trust the power of markets.We have developed an agent-based simulation of a climate prediction market in which traders buy and sell future contracts that will pay off at some future year with a value that depends on the global average temperature at that time. The traders form a heterogeneous population with different ideological positions, different beliefs about anthropogenic global warming, and different degrees of risk aversion. We also vary characteristics of the market, including the topology of social networks among the traders, the number of traders, and the completeness of the market. Traders adjust their beliefs about climate according to the gains and losses they and other traders in their social network experience. This model predicts that if global temperature is predominantly driven by greenhouse gas concentrations, prediction markets will cause traders' beliefs to converge toward correctly accepting anthropogenic warming as real. This convergence is largely independent of the structure of the market and the characteristics of the population of traders. However, it may take considerable time for beliefs to converge. Conversely, if temperature does not depend on greenhouse gases, the model predicts that traders' beliefs will not converge. We will discuss the policy-relevance of these results and more generally, the use of agent-based market simulations for policy analysis regarding climate change, seasonal agricultural weather forecasts, and other applications.[1] MP Vandenbergh, KT Raimi, & JM Gilligan. UCLA Law Rev. 61, 1962 (2014).

  5. Space Geodetic Technique Co-location in Space: Simulation Results for the GRASP Mission

    NASA Astrophysics Data System (ADS)

    Kuzmicz-Cieslak, M.; Pavlis, E. C.

    2011-12-01

    The Global Geodetic Observing System-GGOS, places very stringent requirements in the accuracy and stability of future realizations of the International Terrestrial Reference Frame (ITRF): an origin definition at 1 mm or better at epoch and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale (0.1 ppb) and orientation components. These goals were derived from the requirements of Earth science problems that are currently the international community's highest priority. None of the geodetic positioning techniques can achieve this goal alone. This is due in part to the non-observability of certain attributes from a single technique. Another limitation is imposed from the extent and uniformity of the tracking network and the schedule of observational availability and number of suitable targets. The final limitation derives from the difficulty to "tie" the reference points of each technique at the same site, to an accuracy that will support the GGOS goals. The future GGOS network will address decisively the ground segment and to certain extent the space segment requirements. The JPL-proposed multi-technique mission GRASP (Geodetic Reference Antenna in Space) attempts to resolve the accurate tie between techniques, using their co-location in space, onboard a well-designed spacecraft equipped with GNSS receivers, a SLR retroreflector array, a VLBI beacon and a DORIS system. Using the anticipated system performance for all four techniques at the time the GGOS network is completed (ca 2020), we generated a number of simulated data sets for the development of a TRF. Our simulation studies examine the degree to which GRASP can improve the inter-technique "tie" issue compared to the classical approach, and the likely modus operandi for such a mission. The success of the examined scenarios is judged by the quality of the origin and scale definition of the resulting TRF.

  6. Democratic Population Decisions Result in Robust Policy-Gradient Learning: A Parametric Study with GPU Simulations

    PubMed Central

    Richmond, Paul; Buesing, Lars; Giugliano, Michele; Vasilaki, Eleni

    2011-01-01

    High performance computing on the Graphics Processing Unit (GPU) is an emerging field driven by the promise of high computational power at a low cost. However, GPU programming is a non-trivial task and moreover architectural limitations raise the question of whether investing effort in this direction may be worthwhile. In this work, we use GPU programming to simulate a two-layer network of Integrate-and-Fire neurons with varying degrees of recurrent connectivity and investigate its ability to learn a simplified navigation task using a policy-gradient learning rule stemming from Reinforcement Learning. The purpose of this paper is twofold. First, we want to support the use of GPUs in the field of Computational Neuroscience. Second, using GPU computing power, we investigate the conditions under which the said architecture and learning rule demonstrate best performance. Our work indicates that networks featuring strong Mexican-Hat-shaped recurrent connections in the top layer, where decision making is governed by the formation of a stable activity bump in the neural population (a “non-democratic” mechanism), achieve mediocre learning results at best. In absence of recurrent connections, where all neurons “vote” independently (“democratic”) for a decision via population vector readout, the task is generally learned better and more robustly. Our study would have been extremely difficult on a desktop computer without the use of GPU programming. We present the routines developed for this purpose and show that a speed improvement of 5x up to 42x is provided versus optimised Python code. The higher speed is achieved when we exploit the parallelism of the GPU in the search of learning parameters. This suggests that efficient GPU programming can significantly reduce the time needed for simulating networks of spiking neurons, particularly when multiple parameter configurations are investigated. PMID:21572529

  7. From Simulation to Real Robots with Predictable Results: Methods and Examples

    NASA Astrophysics Data System (ADS)

    Balakirsky, S.; Carpin, S.; Dimitoglou, G.; Balaguer, B.

    From a theoretical perspective, one may easily argue (as we will in this chapter) that simulation accelerates the algorithm development cycle. However, in practice many in the robotics development community share the sentiment that “Simulation is doomed to succeed” (Brooks, R., Matarić, M., Robot Learning, Kluwer Academic Press, Hingham, MA, 1993, p. 209). This comes in large part from the fact that many simulation systems are brittle; they do a fair-to-good job of simulating the expected, and fail to simulate the unexpected. It is the authors' belief that a simulation system is only as good as its models, and that deficiencies in these models lead to the majority of these failures. This chapter will attempt to address these deficiencies by presenting a systematic methodology with examples for the development of both simulated mobility models and sensor models for use with one of today's leading simulation engines. Techniques for using simulation for algorithm development leading to real-robot implementation will be presented, as well as opportunities for involvement in international robotics competitions based on these techniques.

  8. Clinical results of computerized tomography-based simulation with laser patient marking.

    PubMed

    Ragan, D P; Forman, J D; He, T; Mesina, C F

    1996-02-01

    Accuracy of a patient treatment portal marking device and computerized tomography (CT) simulation have been clinically tested. A CT-based simulator has been assembled based on a commercial CT scanner. This includes visualization software and a computer-controlled laser drawing device. This laser drawing device is used to transfer the setup, central axis, and/or radiation portals from the CT simulator to the patient for appropriate patient skin marking. A protocol for clinical testing is reported. Twenty-five prospectively, sequentially accessioned patients have been analyzed. The simulation process can be completed in an average time of 62 min. Under many cases, the treatment portals can be designed and the patient marked in one session. Mechanical accuracy of the system was found to be within +/- 1mm. The portal projection accuracy in clinical cases is observed to be better than +/- 1.2 mm. Operating costs are equivalent to the conventional simulation process it replaces. Computed tomography simulation is a clinical accurate substitute for conventional simulation when used with an appropriate patient marking system and digitally reconstructed radiographs. Personnel time spent in CT simulation is equivalent to time in conventional simulation.

  9. Childhood hair product use and earlier age at menarche in a racially diverse study population: a pilot study.

    PubMed

    James-Todd, Tamarra; Terry, Mary Beth; Rich-Edwards, Janet; Deierlein, Andrea; Senie, Ruby

    2011-06-01

    Previous studies suggest that hair products containing endocrine disrupting chemicals could alter puberty. We evaluated the association between childhood hair product use and age at menarche in a racially diverse study population. We recruited 300 African-American, African-Caribbean, Hispanic, and white women from the New York City metropolitan area who were between 18-77 years of age. Data were collected retrospectively on hair oil, lotion, leave-in conditioner, perm, and other types of hair products used before age 13. Recalled age at menarche ranged from 8 to 19 years. We used multivariable binomial regression to evaluate the association between hair product use and age at menarche (<12 vs. ≥12), adjusting for potential confounders. African-Americans were more likely to use hair products and reached menarche earlier than other racial/ethnic groups. Women reporting childhood hair oil use had a risk ratio of 1.4 (95% confidence interval [CI]: 1.1-1.9) for earlier menarche, adjusting for race/ethnicity and year of birth. Hair perm users had an increased risk for earlier menarche (adjusted risk ratio = 1.4, 95% CI: 1.1-1.8). Other types of hair products assessed in this study were not associated with earlier menarche. Childhood hair oil and perm use were associated with earlier menarche. If replicated, these results suggest that hair product use may be important to measure in evaluating earlier age at menarche. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Earlier Parental Set Bedtimes as a Protective Factor Against Depression and Suicidal Ideation

    PubMed Central

    Gangwisch, James E.; Babiss, Lindsay A.; Malaspina, Dolores; Turner, J. Blake; Zammit, Gary K.; Posner, Kelly

    2010-01-01

    Study Objectives: To examine the relationships between parental set bedtimes, sleep duration, and depression as a quasi-experiment to explore the potentially bidirectional relationship between short sleep duration and depression. Short sleep duration has been shown to precede depression, but this could be explained as a prodromal symptom of depression. Depression in an adolescent can affect his/her chosen bedtime, but it is less likely to affect a parent's chosen set bedtime which can establish a relatively stable upper limit that can directly affect sleep duration. Design: Multivariate cross-sectional analyses of the ADD Health using logistic regression. Setting: United States nationally representative, school-based, probability-based sample in 1994-96. Participants: Adolescents (n = 15,659) in grades 7 to 12. Measurements and Results: Adolescents with parental set bedtimes of midnight or later were 24% more likely to suffer from depression (OR = 1.24, 95% CI 1.04-1.49) and 20% more likely to have suicidal ideation (1.20, 1.01-1.41) than adolescents with parental set bedtimes of 10:00 PM or earlier, after controlling for covariates. Consistent with sleep duration and perception of getting enough sleep acting as mediators, the inclusion of these variables in the multivariate models appreciably attenuated the associations for depression (1.07, 0.88-1.30) and suicidal ideation (1.09, 0.92-1.29). Conclusions: The results from this study provide new evidence to strengthen the argument that short sleep duration could play a role in the etiology of depression. Earlier parental set bedtimes could therefore be protective against adolescent depression and suicidal ideation by lengthening sleep duration. Citation: Gangwisch JE; Babiss LA; Malaspina D; Turner JB; Zammit GK; Posner K. Earlier parental set bedtimes as a protective factor against depression and suicidal ideation. SLEEP 2010;33(1):97-106. PMID:20120626

  11. Simulation results of Pulse Shape Discrimination (PSD) for background reduction in INTEGRAL Spectrometer (SPI) germanium detectors

    NASA Technical Reports Server (NTRS)

    Slassi-Sennou, S. A.; Boggs, S. E.; Feffer, P. T.; Lin, R. P.

    1997-01-01

    Pulse Shape Discrimination (PSD) for background reduction will be used in the INTErnational Gamma Ray Astrophysics Laboratory (INTEGRAL) imaging spectrometer (SPI) to improve the sensitivity from 200 keV to 2 MeV. The observation of significant astrophysical gamma ray lines in this energy range is expected, where the dominant component of the background is the beta(sup -) decay in the Ge detectors due to the activation of Ge nuclei by cosmic rays. The sensitivity of the SPI will be improved by rejecting beta(sup -) decay events while retaining photon events. The PSD technique will distinguish between single and multiple site events. Simulation results of PSD for INTEGRAL-type Ge detectors using a numerical model for pulse shape generation are presented. The model was shown to agree with the experimental results for a narrow inner bore closed end cylindrical detector. Using PSD, a sensitivity improvement factor of the order of 2.4 at 0.8 MeV is expected.

  12. Three-Dimensional Radiative Hydrodynamics for Disk Stability Simulations: A Proposed Testing Standard and New Results

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.; Durisen, Richard H.; Nordlund, Åke; Lord, Jesse

    2007-08-01

    Recent three-dimensional radiative hydrodynamics simulations of protoplanetary disks report disparate disk behaviors, and these differences involve the importance of convection to disk cooling, the dependence of disk cooling on metallicity, and the stability of disks against fragmentation and clump formation. To guarantee trustworthy results, a radiative physics algorithm must demonstrate the capability to handle both the high and low optical depth regimes. We develop a test suite that can be used to demonstrate an algorithm's ability to relax to known analytic flux and temperature distributions, to follow a contracting slab, and to inhibit or permit convection appropriately. We then show that the radiative algorithm employed by Mejía and Boley et al. and the algorithm employed by Cai et al. pass these tests with reasonable accuracy. In addition, we discuss a new algorithm that couples flux-limited diffusion with vertical rays, we apply the test suite, and we discuss the results of evolving the Boley et al. disk with this new routine. Although the outcome is significantly different in detail with the new algorithm, we obtain the same qualitative answers. Our disk does not cool fast due to convection, and it is stable to fragmentation. We find an effective α~10-2. In addition, transport is dominated by low-order modes.

  13. [Implementation results of emission standards of air pollutants for thermal power plants: a numerical simulation].

    PubMed

    Wang, Zhan-Shan; Pan, Li-Bo

    2014-03-01

    The emission inventory of air pollutants from the thermal power plants in the year of 2010 was set up. Based on the inventory, the air quality of the prediction scenarios by implementation of both 2003-version emission standard and the new emission standard were simulated using Models-3/CMAQ. The concentrations of NO2, SO2, and PM2.5, and the deposition of nitrogen and sulfur in the year of 2015 and 2020 were predicted to investigate the regional air quality improvement by the new emission standard. The results showed that the new emission standard could effectively improve the air quality in China. Compared with the implementation results of the 2003-version emission standard, by 2015 and 2020, the area with NO2 concentration higher than the emission standard would be reduced by 53.9% and 55.2%, the area with SO2 concentration higher than the emission standard would be reduced by 40.0%, the area with nitrogen deposition higher than 1.0 t x km(-2) would be reduced by 75.4% and 77.9%, and the area with sulfur deposition higher than 1.6 t x km(-2) would be reduced by 37.1% and 34.3%, respectively.

  14. Results and Lessons Learned from Performance Testing of Humans in Spacesuits in Simulated Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.

    2009-01-01

    NASA's Constellation Program has plans to return to the Moon within the next 10 years. Although reaching the Moon during the Apollo Program was a remarkable human engineering achievement, fewer than 20 extravehicular activities (EVAs) were performed. Current projections indicate that the next lunar exploration program will require thousands of EVAs, which will require spacesuits that are better optimized for human performance. Limited mobility and dexterity, and the position of the center of gravity (CG) are a few of many features of the Apollo suit that required significant crew compensation to accomplish the objectives. Development of a new EVA suit system will ideally result in performance close to or better than that in shirtsleeves at 1 G, i.e., in "a suit that is a pleasure to work in, one that you would want to go out and explore in on your day off." Unlike the Shuttle program, in which only a fraction of the crew perform EVA, the Constellation program will require that all crewmembers be able to perform EVA. As a result, suits must be built to accommodate and optimize performance for a larger range of crew anthropometry, strength, and endurance. To address these concerns, NASA has begun a series of tests to better understand the factors affecting human performance and how to utilize various lunar gravity simulation environments available for testing.

  15. Exploring the optimal economic timing for crop tree release treatments in hardwoods: results from simulation

    Treesearch

    Chris B. LeDoux; Gary W. Miller

    2008-01-01

    In this study we used data from 16 Appalachian hardwood stands, a growth and yield computer simulation model, and stump-to-mill logging cost-estimating software to evaluate the optimal economic timing of crop tree release (CTR) treatments. The simulated CTR treatments consisted of one-time logging operations at stand age 11, 23, 31, or 36 years, with the residual...

  16. Applying fire spread simulators in New Zealand and Australia: Results from an international seminar

    Treesearch

    Tonja Opperman; Jim Gould; Mark Finney; Cordy Tymstra

    2006-01-01

    There is currently no spatial wildfire spread and growth simulation model used commonly across New Zealand or Australia. Fire management decision-making would be enhanced through the use of spatial fire simulators. Various groups from around the world met in January 2006 to evaluate the applicability of different spatial fire spread applications for common use in both...

  17. Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis, Phase 2 Results

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL-Systems Analysis (SA) team that is conducting studies of the technologies and architectures that are required to enable human and higher mass robotic missions to Mars. The findings, observations, and recommendations from the NESC are provided in this report.

  18. Do Social Studies Teachers Use Simulations?

    ERIC Educational Resources Information Center

    Young, Gail A; Schug, Mark C.

    1990-01-01

    Reports the results of a survey of Wisconsin secondary social studies teachers designed to answer the question: To what extent do teachers use simulations? Describes the study designed to replicate an earlier survey of Ohio teachers in 1979 by J.J. Blaga. Compares the results of the two surveys. Concludes simulation use has increased. (RW)

  19. Insight Into Illness and Cognition in Schizophrenia in Earlier and Later Life.

    PubMed

    Gerretsen, Philip; Voineskos, Aristotle N; Graff-Guerrero, Ariel; Menon, Mahesh; Pollock, Bruce G; Mamo, David C; Mulsant, Benoit H; Rajji, Tarek K

    2017-04-01

    Impaired insight into illness in schizophrenia is associated with illness severity and deficits in premorbid intellectual function, executive function, and memory. A previous study of patients aged 60 years and older found that illness severity and premorbid intellectual function accounted for variance in insight impairment. As such, we aimed to test whether similar relationships would be observed in earlier life. A retrospective analysis was performed on 1 large sample of participants (n = 171) with a DSM-IV-TR diagnosis of schizophrenia aged 19 to 79 years acquired from 2 studies: (1) a psychosocial intervention trial for older persons with schizophrenia (June 2008 to May 2014) and (2) a diffusion tensor imaging and genetics study of psychosis across the life span (February 2007 to December 2013). We assessed insight into illness using the Positive and Negative Syndrome Scale (PANSS) item G12 and explored its relationship to illness severity (PANSS total modified), premorbid intellectual function (Wechsler Test of Adult Reading [WTAR]), and cognition. Insight impairment was more severe in later life (≥ 60 years) than in earlier years (t = -3.75, P < .001). Across the whole sample, the variance of impaired insight was explained by PANSS total modified (Exp[B] = 1.070, P < .001) and WTAR scores (Exp[B] = 0.970, P = .028). Although age and cognition were correlated with impaired insight, they did not independently contribute to its variance. However, the relationships between impaired insight and illness severity and between impaired insight and cognition, particularly working memory, were stronger in later life than in earlier life. These results suggest an opportunity for intervention may exist with cognitive-enhancing neurostimulation or medications to improve insight into illness in schizophrenia across the life span. Original study registered on ClinicalTrials.gov (identifier: NCT00832845). © Copyright 2017 Physicians Postgraduate Press, Inc.

  20. Factors associated with late diagnosis of HIV infection and missed opportunities for earlier testing.

    PubMed

    Gullón, Alejandra; Verdejo, José; de Miguel, Rosa; Gómez, Ana; Sanz, Jesús

    2016-10-01

    Late diagnosis (LD) of human immunodeficiency virus (HIV) infection continues to be a significant problem that increases disease burden both for patients and for the public health system. Guidelines have been updated in order to facilitate earlier HIV diagnosis, introducing "indicator condition-guided HIV testing". In this study, we analysed the frequency of LD and associated risk factors. We retrospectively identified those cases that could be considered missed opportunities for an earlier diagnosis. All patients newly diagnosed with HIV infection who attended Hospital La Princesa, Madrid (Spain) between 2007 and 2014 were analysed. We collected epidemiological, clinical and immunological data. We also reviewed electronic medical records from the year before the HIV diagnosis to search for medical consultations due to clinical indicators. HIV infection was diagnosed in 354 patients. The median CD4 count at presentation was 352 cells/mm(3). Overall, 158 patients (50%) met the definition of LD, and 97 (30.7%) the diagnosis of advanced disease. LD was associated with older age and was more frequent amongst immigrants. Heterosexual relations and injection drug use were more likely to be the reasons for LD than relations between men who have sex with men. During the year preceding the diagnosis, 46.6% of the patients had sought medical advice owing to the presence of clinical indicators that should have led to HIV testing. Of those, 24 cases (14.5%) were classified as missed opportunities for earlier HIV diagnosis because testing was not performed. According to these results, all health workers should pursue early HIV diagnosis through the proper implementation of HIV testing guidelines. Such an approach would prove directly beneficial to the patient and indirectly beneficial to the general population through the reduction in the risk of transmission.

  1. Earlier time to aerobic exercise is associated with faster recovery following acute sport concussion

    PubMed Central

    Richards, Doug; Comper, Paul; Hutchison, Michael G.

    2018-01-01

    Objective To determine whether earlier time to initiation of aerobic exercise following acute concussion is associated with time to full return to (1) sport and (2) school or work. Methods A retrospective stratified propensity score survival analysis of acute (≤14 days) concussion was used to determine whether time (days) to initiation of aerobic exercise post-concussion was associated with, both, time (days) to full return to (1) sport and (2) school or work. Results A total of 253 acute concussions [median (IQR) age, 17.0 (15.0–20.0) years; 148 (58.5%) males] were included in this study. Multivariate Cox regression models identified that earlier time to aerobic exercise was associated with faster return to sport and school/work adjusting for other covariates, including quintile propensity strata. For each successive day in delay to initiation of aerobic exercise, individuals had a less favourable recovery trajectory. Initiating aerobic exercise at 3 and 7 days following injury was associated with a respective 36.5% (HR, 0.63; 95% CI, 0.53–0.76) and 73.2% (HR, 0.27; 95% CI, 0.16–0.45) reduced probability of faster full return to sport compared to within 1 day; and a respective 45.9% (HR, 0.54; 95% CI, 0.44–0.66) and 83.1% (HR, 0.17; 95% CI, 0.10–0.30) reduced probability of faster full return to school/work. Additionally, concussion history, symptom severity, LOC deleteriously influenced concussion recovery. Conclusion Earlier initiation of aerobic exercise was associated with faster full return to sport and school or work. This study provides greater insight into the benefits and safety of aerobic exercise within the first week of the injury. PMID:29668716

  2. Measuring cognitive load: mixed results from a handover simulation for medical students.

    PubMed

    Young, John Q; Irby, David M; Barilla-LaBarca, Maria-Louise; Ten Cate, Olle; O'Sullivan, Patricia S

    2016-02-01

    The application of cognitive load theory to workplace-based activities such as patient handovers is hindered by the absence of a measure of the different load types. This exploratory study tests a method for measuring cognitive load during handovers. The authors developed the Cognitive Load Inventory for Handoffs (CLI4H) with items for intrinsic, extraneous, and germane load. Medical students completed the measure after participating in a simulated handover. Exploratory factor and correlation analyses were performed to collect evidence for validity. Results yielded a two-factor solution for intrinsic and germane load that explained 50 % of the variance. The extraneous load items performed poorly and were removed from the model. The score for intrinsic load correlated with the Paas Cognitive Load scale (r = 0.31, p = 0.004) and was lower for students with more prior handover training (p = 0.036). Intrinsic load did not, however, correlate with performance. Germane load did not correlate with the Paas Cognitive Load scale but did correlate as expected with performance (r = 0.30, p = 0.005) and was lower for those students with more prior handover training (p = 0.03). The CLI4H yielded mixed results with some evidence for validity of the score from the intrinsic load items. The extraneous load items performed poorly and the use of only a single item for germane load limits conclusions. The instrument requires further development and testing. Study results and limitations provide guidance to future efforts to measure cognitive load during workplace-based activities, such as handovers.

  3. Ion velocity distribution functions in argon and helium discharges: detailed comparison of numerical simulation results and experimental data

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Sukhomlinov, Vladimir S.; Kaganovich, Igor D.; Mustafaev, Alexander S.

    2017-02-01

    Using the Monte Carlo collision method, we have performed simulations of ion velocity distribution functions (IVDF) taking into account both elastic collisions and charge exchange collisions of ions with atoms in uniform electric fields for argon and helium background gases. The simulation results are verified by comparison with the experiment data of the ion mobilities and the ion transverse diffusion coefficients in argon and helium. The recently published experimental data for the first seven coefficients of the Legendre polynomial expansion of the ion energy and angular distribution functions are used to validate simulation results for IVDF. Good agreement between measured and simulated IVDFs shows that the developed simulation model can be used for accurate calculations of IVDFs.

  4. Defining the Simulation Technician Role: Results of a Survey-Based Study.

    PubMed

    Bailey, Rachel; Taylor, Regina G; FitzGerald, Michael R; Kerrey, Benjamin T; LeMaster, Thomas; Geis, Gary L

    2015-10-01

    In health care simulation, simulation technicians perform multiple tasks to support various educational offerings. Technician responsibilities and the tasks that accompany them seem to vary between centers. The objectives were to identify the range and frequency of tasks that technicians perform and to determine if there is a correspondence between what technicians do and what they feel their responsibilities should be. We hypothesized that there is a core set of responsibilities and tasks for the technician position regardless of background, experience, and type of simulation center. We conducted a prospective, survey-based study of individuals currently functioning in a simulation technician role in a simulation center. This survey was designed internally and piloted within 3 academic simulation centers. Potential respondents were identified through a national mailing list, and the survey was distributed electronically during a 3-week period. A survey request was sent to 280 potential participants, 136 (49%) responded, and 73 met inclusion criteria. Five core tasks were identified as follows: equipment setup and breakdown, programming scenarios into software, operation of software during simulation, audiovisual support for courses, and on-site simulator maintenance. Independent of background before they were hired, technicians felt unprepared for their role once taking the position. Formal training was identified as a need; however, the majority of technicians felt experience over time was the main contributor toward developing knowledge and skills within their role. This study represents a first step in defining the technician role within simulation-based education and supports the need for the development of a formal job description to allow recruitment, development, and certification.

  5. The Plasma Wake Downstream of Lunar Topographic Obstacles: Preliminary Results from 2D Particle Simulations

    NASA Technical Reports Server (NTRS)

    Zimmerman, Michael I.; Farrell, W. M.; Snubbs, T. J.; Halekas, J. S.

    2011-01-01

    Anticipating the plasma and electrical environments in permanently shadowed regions (PSRs) of the moon is critical in understanding local processes of space weathering, surface charging, surface chemistry, volatile production and trapping, exo-ion sputtering, and charged dust transport. In the present study, we have employed the open-source XOOPIC code [I] to investigate the effects of solar wind conditions and plasma-surface interactions on the electrical environment in PSRs through fully two-dimensional pattic1e-in-cell simulations. By direct analogy with current understanding of the global lunar wake (e.g., references) deep, near-terminator, shadowed craters are expected to produce plasma "mini-wakes" just leeward of the crater wall. The present results (e.g., Figure I) are in agreement with previous claims that hot electrons rush into the crater void ahead of the heavier ions, fanning a negative cloud of charge. Charge separation along the initial plasma-vacuum interface gives rise to an ambipolar electric field that subsequently accelerates ions into the void. However, the situation is complicated by the presence of the dynamic lunar surface, which develops an electric potential in response to local plasma currents (e.g., Figure Ia). In some regimes, wake structure is clearly affected by the presence of the charged crater floor as it seeks to achieve current balance (i.e. zero net current to the surface).

  6. PETS-D (Parents Education Through Simulation – Diabetes): Parents’ Qualitative Results

    PubMed Central

    Ramchandani, Neesha; Maguire, Laura L.; Stern, Kailyn; Quintos, Jose B.; Lee, Mary; Sullivan-Bolyai, Susan

    2016-01-01

    Objective Parents who have a child newly diagnosed with type 1 diabetes (T1D) must quickly learn daily diabetes self-management. An RCT was conducted using human patient simulation (HPS) to enhance parents learning diabetes self-management with children with new-onset T1D. The purpose of this study was to describe parents’ perspectives of using HPS to augment diabetes education. Methods A qualitative descriptive design was used with open-ended in-depth interviews of parents (n=49) post-intervention. Qualitative directed content analysis was used. Results The majority of parents were positive about learning with HPS. Although a few parents said the HPS was “hokey” or “creepy,” most reported the visual and hands-on learning was realistic and very beneficial. Seeing a seizure increased their fear although they would have panicked if they had not had that learning experience, and it helped build their diabetes self-management confidence. Recommendations included teaching others with the HPS (grandparents, siblings, babysitters, and school nurses). Conclusion HPS-enhanced education is an acceptable and viable option that was generally well-received by parents of children with new-onset T1D. Practice Implications The technique should be studied with parents of children with other chronic illnesses to see if the benefits found in this study are applicable to other settings. PMID:27021779

  7. Simulation training for emergency obstetric and neonatal care in Senegal preliminary results.

    PubMed

    Gueye, M; Moreira, P M; Faye-Dieme, M E; Ndiaye-Gueye, M D; Gassama, O; Kane-Gueye, S M; Diouf, A A; Niang, M M; Diadhiou, M; Diallo, M; Dieng, Y D; Ndiaye, O; Diouf, A; Moreau, J C

    2017-06-01

    To describe a new training approach for emergency obstetric and neonatal care (EmONC) introduced in Senegal to strengthen the skills of healthcare providers. The approach was based on skills training according to the so-called "humanist" method and on "lifesaving skills". Simulated practice took place in the classroom through 13 clinical stations summarizing the clinical skills needed for EmONC. Evaluation took place in all phases, and the results were recorded in a database to document the progress of each learner. This approach was used to train 432 providers in 10 months and to document the increase in each participants' technical achievements. The combination of training with the "learning by doing" model ensured that providers learned and mastered all EmONC skills and reduced the missed learning opportunities observed in former EmONC training sessions. Assessing the impact of training on EmONC indicators and introducing this learning modality in basic training are the two major challenges we currently face.

  8. Analysis of Optical CDMA Signal Transmission: Capacity Limits and Simulation Results

    NASA Astrophysics Data System (ADS)

    Garba, Aminata A.; Yim, Raymond M. H.; Bajcsy, Jan; Chen, Lawrence R.

    2005-12-01

    We present performance limits of the optical code-division multiple-access (OCDMA) networks. In particular, we evaluate the information-theoretical capacity of the OCDMA transmission when single-user detection (SUD) is used by the receiver. First, we model the OCDMA transmission as a discrete memoryless channel, evaluate its capacity when binary modulation is used in the interference-limited (noiseless) case, and extend this analysis to the case when additive white Gaussian noise (AWGN) is corrupting the received signals. Next, we analyze the benefits of using nonbinary signaling for increasing the throughput of optical CDMA transmission. It turns out that up to a fourfold increase in the network throughput can be achieved with practical numbers of modulation levels in comparison to the traditionally considered binary case. Finally, we present BER simulation results for channel coded binary and[InlineEquation not available: see fulltext.]-ary OCDMA transmission systems. In particular, we apply turbo codes concatenated with Reed-Solomon codes so that up to several hundred concurrent optical CDMA users can be supported at low target bit error rates. We observe that unlike conventional OCDMA systems, turbo-empowered OCDMA can allow overloading (more active users than is the length of the spreading sequences) with good bit error rate system performance.

  9. Do tanning salons adhere to new legal regulations? Results of a simulated client trial in Germany.

    PubMed

    Möllers, Tobias; Pischke, Claudia R; Zeeb, Hajo

    2016-03-01

    In August 2009 and January 2012, two regulations were passed in Germany to limit UV exposure in the general population. These regulations state that no minors are allowed to use tanning devices. Personnel of tanning salons is mandated to offer counseling regarding individual skin type, to create a dosage plan with the customer and to provide a list describing harmful effects of UV radiation. Furthermore, a poster of warning criteria has to be visible and readable at all times inside the tanning salon. It is unclear whether these regulations are followed by employees of tanning salons in Germany, and we are not aware of any studies examining the implementation of the regulations at individual salons. We performed a simulated client study visiting 20 tanning salons in the city-state of Bremen in the year 2014, using a short checklist of criteria derived from the legal requirements, to evaluate whether legal requirements were followed or not. We found that only 20 % of the tanning salons communicated adverse health effects of UV radiation in visible posters and other materials and that only 60 % of the salons offered the required determination of the skin type to customers. In addition, only 60 % of the salons offered to complete the required dosage plan with their customers. To conclude, our results suggest that the new regulations are insufficiently implemented in Bremen. Additional control mechanisms appear necessary to ensure that consumers are protected from possible carcinogenic effects of excessive UV radiation.

  10. Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Boehly, T. R.; Celliers, P. M.; Eggert, J. H.; Hicks, D.; Smith, R. F.; Collins, R.; Bowers, M. W.; Krauter, K. G.; Datte, P. S.; Munro, D. H.; Milovich, J. L.; Jones, O. S.; Michel, P. A.; Thomas, C. A.; Olson, R. E.; Pollaine, S.; Town, R. P. J.; Haan, S.; Callahan, D.; Clark, D.; Edwards, J.; Kline, J. L.; Dixit, S.; Schneider, M. B.; Dewald, E. L.; Widmann, K.; Moody, J. D.; Döppner, T.; Radousky, H. B.; Throop, A.; Kalantar, D.; DiNicola, P.; Nikroo, A.; Kroll, J. J.; Hamza, A. V.; Horner, J. B.; Bhandarkar, S. D.; Dzenitis, E.; Alger, E.; Giraldez, E.; Castro, C.; Moreno, K.; Haynam, C.; LaFortune, K. N.; Widmayer, C.; Shaw, M.; Jancaitis, K.; Parham, T.; Holunga, D. M.; Walters, C. F.; Haid, B.; Mapoles, E. R.; Sater, J.; Gibson, C. R.; Malsbury, T.; Fair, J.; Trummer, D.; Coffee, K. R.; Burr, B.; Berzins, L. V.; Choate, C.; Brereton, S. J.; Azevedo, S.; Chandrasekaran, H.; Eder, D. C.; Masters, N. D.; Fisher, A. C.; Sterne, P. A.; Young, B. K.; Landen, O. L.; Van Wonterghem, B. M.; MacGowan, B. J.; Atherton, J.; Lindl, J. D.; Meyerhofer, D. D.; Moses, E.

    2012-04-01

    Capsule implosions on the National Ignition Facility (NIF) [Lindl et al., Phys. Plasmas 11, 339 (2004)] are underway with the goal of compressing deuterium-tritium (DT) fuel to a sufficiently high areal density (ρR) to sustain a self-propagating burn wave required for fusion power gain greater than unity. These implosions are driven with a carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the DT fuel on a low adiabat. Initial experiments to measure the strength and relative timing of these shocks have been conducted on NIF in a specially designed surrogate target platform known as the keyhole target. This target geometry and the associated diagnostics are described in detail. The initial data are presented and compared with numerical simulations. As the primary goal of these experiments is to assess and minimize the adiabat in related DT implosions, a methodology is described for quantifying the adiabat from the shock velocity measurements. Results are contrasted between early experiments that exhibited very poor shock timing and subsequent experiments where a modified target geometry demonstrated significant improvement.

  11. Piloted Simulator Evaluation Results of Flight Physics Based Stall Recovery Guidance

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas; Schuet, Stefan; Stepanyan, Vahram; Kaneshige, John; Hardy, Gordon; Shish, Kimberlee; Robinson, Peter

    2018-01-01

    In recent studies, it has been observed that loss of control in flight is the most frequent primary cause of accidents. A significant share of accidents in this category can be remedied by upset prevention if possible, and by upset recovery if necessary, in this order of priorities. One of the most important upsets to be recovered from is stall. Recent accidents have shown that a correct stall recovery maneuver remains a big challenge in civil aviation, partly due to a lack of pilot training. A possible strategy to support the flight crew in this demanding context is calculating a recovery guidance signal, and showing this signal in an intuitive way on one of the cockpit displays, for example by means of the flight director. Different methods for calculating the recovery signal, one based on fast model predictive control and another using an energy based approach, have been evaluated in four relevant operational scenarios by experienced commercial as well as test pilots in the Vertical Motion Simulator at NASA Ames Research Center. Evaluation results show that this approach could be able to assist the pilots in executing a correct stall recovery maneuver.

  12. Biofilm formation and control in a simulated spacecraft water system - Three year results

    NASA Technical Reports Server (NTRS)

    Schultz, John R.; Flanagan, David T.; Bruce, Rebekah J.; Mudgett, Paul D.; Carr, Sandra E.; Rutz, Jeffrey A.; Huls, M. H.; Sauer, Richard L.; Pierson, Duane L.

    1992-01-01

    Two simulated spacecraft water systems are being used to evaluate the effectiveness of iodine for controlling microbial contamination within such systems. An iodine concentration of about 2.0 mg/L is maintained in one system by passing ultrapure water through an iodinated ion exchange resin. Stainless steel coupons with electropolished and mechanically-polished sides are being used to monitor biofilm formation. Results after three years of operation show a single episode of significant bacterial growth in the iodinated system when the iodine level dropped to 1.9 mg/L. This growth was apparently controlled by replacing the iodinated ion exchange resin, thereby increasing the iodine level. The second batch of resin has remained effective in controlling microbial growth down to an iodine level of 1.0 mg/L. SEM indicates that the iodine has impeded but may have not completely eliminated the formation of biofilm. Metals analyses reveal some corrosion in the iodinated system after 3 years of continuous exposure. Significant microbial contamination has been present continuously in a parallel noniodinated system since the third week of operation.

  13. Direct Numerical Simulation of Liquid Nozzle Spray with Comparison to Shadowgraphy and X-Ray Computed Tomography Experimental Results

    NASA Astrophysics Data System (ADS)

    van Poppel, Bret; Owkes, Mark; Nelson, Thomas; Lee, Zachary; Sowell, Tyler; Benson, Michael; Vasquez Guzman, Pablo; Fahrig, Rebecca; Eaton, John; Kurman, Matthew; Kweon, Chol-Bum; Bravo, Luis

    2014-11-01

    In this work, we present high-fidelity Computational Fluid Dynamics (CFD) results of liquid fuel injection from a pressure-swirl atomizer and compare the simulations to experimental results obtained using both shadowgraphy and phase-averaged X-ray computed tomography (CT) scans. The CFD and experimental results focus on the dense near-nozzle region to identify the dominant mechanisms of breakup during primary atomization. Simulations are performed using the NGA code of Desjardins et al (JCP 227 (2008)) and employ the volume of fluid (VOF) method proposed by Owkes and Desjardins (JCP 270 (2013)), a second order accurate, un-split, conservative, three-dimensional VOF scheme providing second order density fluxes and capable of robust and accurate high density ratio simulations. Qualitative features and quantitative statistics are assessed and compared for the simulation and experimental results, including the onset of atomization, spray cone angle, and drop size and distribution.

  14. STREAM CHANNELS OF THE UPPER SAN PEDRO BASIN WITH PERCENT DIFFERENCE BETWEEN RESULTS FROM TWO SWAT SIMULATIONS

    EPA Science Inventory

    Stream channels of the Upper San Pedro with percent difference between results from two SWAT simulations run through AGWA: one using the 1973 NALC landcover for model parameterization, and the other using the 1997 NALC landcover.

  15. High-resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 2. Transport results

    USGS Publications Warehouse

    Naff, R.L.; Haley, D.F.; Sudicky, E.A.

    1998-01-01

    In this, the second of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, results from the transport aspect of these simulations are reported on. Transport simulations contained herein assume a finite pulse input of conservative tracer, and the numerical technique endeavors to realistically simulate tracer spreading as the cloud moves through a heterogeneous medium. Medium heterogeneity is limited to the hydraulic conductivity field, and generation of this field assumes that the hydraulic-conductivity process is second-order stationary. Methods of estimating cloud moments, and the interpretation of these moments, are discussed. Techniques for estimation of large-time macrodispersivities from cloud second-moment data, and for the approximation of the standard errors associated with these macrodispersivities, are also presented. These moment and macrodispersivity estimation techniques were applied to tracer clouds resulting from transport scenarios generated by specific Monte Carlo simulations. Where feasible, moments and macrodispersivities resulting from the Monte Carlo simulations are compared with first- and second-order perturbation analyses. Some limited results concerning the possible ergodic nature of these simulations, and the presence of non-Gaussian behavior of the mean cloud, are reported on as well.

  16. Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion

    USGS Publications Warehouse

    Pecher, I.A.; Minshull, T.A.; Singh, S.C.; von Huene, Roland E.

    1996-01-01

    Much of our knowledge of the worldwide distribution of submarine gas hydrates comes from seismic observations of Bottom Simulating Reflectors (BSRs). Full waveform inversion has proven to be a reliable technique for studying the fine structure of BSRs using the compressional wave velocity. We applied a non-linear full waveform inversion technique to a BSR at a location offshore Peru. We first determined the large-scale features of seismic velocity variations using a statistical inversion technique to maximise coherent energy along travel-time curves. These velocities were used for a starting velocity model for the full waveform inversion, which yielded a detailed velocity/depth model in the vicinity of the BSR. We found that the data are best fit by a model in which the BSR consists of a thin, low-velocity layer. The compressional wave velocity drops from 2.15 km/s down to an average of 1.70 km/s in an 18m thick interval, with a minimum velocity of 1.62 km/s in a 6 m interval. The resulting compressional wave velocity was used to estimate gas content in the sediments. Our results suggest that the low velocity layer is a 6-18 m thick zone containing a few percent of free gas in the pore space. The presence of the BSR coincides with a region of vertical uplift. Therefore, we suggest that gas at this BSR is formed by a dissociation of hydrates at the base of the hydrate stability zone due to uplift and subsequently a decrease in pressure.

  17. Soil nitrogen balance under wastewater management: Field measurements and simulation results

    USGS Publications Warehouse

    Sophocleous, M.; Townsend, M.A.; Vocasek, F.; Ma, Liwang; KC, A.

    2009-01-01

    The use of treated wastewater for irrigation of crops could result in high nitrate-nitrogen (NO3-N) concentrations in the vadose zone and ground water. The goal of this 2-yr field-monitoring study in the deep silty clay loam soils south of Dodge City, Kansas, was to assess how and under what circumstances N from the secondary-treated, wastewater-irrigated corn reached the deep (20-45 m) water table of the underlying High Plains aquifer and what could be done to minimize this problem. We collected 15.2-m-deep soil cores for characterization of physical and chemical properties; installed neutron probe access tubes to measure soil-water content and suction lysimeters to sample soil water periodically; sampled monitoring, irrigation, and domestic wells in the area; and obtained climatic, crop, irrigation, and N application rate records for two wastewater-irrigated study sites. These data and additional information were used to run the Root Zone Water Quality Model to identify key parameters and processes that influence N losses in the study area. We demonstrated that NO3-N transport processes result in significant accumulations of N in the vadose zone and that NO3-N in the underlying ground water is increasing with time. Root Zone Water Quality Model simulations for two wastewater-irrigated study sites indicated that reducing levels of corn N fertilization by more than half to 170 kg ha-1 substantially increases N-use efficiency and achieves near-maximum crop yield. Combining such measures with a crop rotation that includes alfalfa should further reduce the accumulation and downward movement of NO3-N in the soil profile. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  18. Computer simulation results for bounds on the effective conductivity of composite media

    NASA Astrophysics Data System (ADS)

    Smith, P. A.; Torquato, S.

    1989-02-01

    This paper studies the determination of third- and fourth-order bounds on the effective conductivity σe of a composite material composed of aligned, infinitely long, identical, partially penetrable, circular cylinders of conductivity σ2 randomly distributed throughout a matrix of conductivity σ1. Both bounds involve the microstructural parameter ζ2 which is a multifold integral that depends upon S3, the three-point probability function of the composite. This key integral ζ2 is computed (for the possible range of cylinder volume fraction φ2) using a Monte Carlo simulation technique for the penetrable-concentric-shell model in which cylinders are distributed with an arbitrary degree of impenetrability λ, 0≤λ≤1. Results for the limiting cases λ=0 (``fully penetrable'' or randomly centered cylinders) and λ=1 (``totally impenetrable'' cylinders) compare very favorably with theoretical predictions made by Torquato and Beasley [Int. J. Eng. Sci. 24, 415 (1986)] and by Torquato and Lado [Proc. R. Soc. London Ser. A 417, 59 (1988)], respectively. Results are also reported for intermediate values of λ: cases which heretofore have not been examined. For a wide range of α=σ2/σ1 (conductivity ratio) and φ2, the third-order bounds on σe significantly improve upon second-order bounds which just depend upon φ2. The fourth-order bounds are, in turn, narrower than the third-order bounds. Moreover, when the cylinders are highly conducting (α≫1), the fourth-order lower bound provides an excellent estimate of the effective conductivity for a wide range of volume fractions.

  19. The Planetary Accretion Shock. I. Framework for Radiation-hydrodynamical Simulations and First Results

    NASA Astrophysics Data System (ADS)

    Marleau, Gabriel-Dominique; Klahr, Hubert; Kuiper, Rolf; Mordasini, Christoph

    2017-02-01

    The key aspect determining the postformation luminosity of gas giants has long been considered to be the energetics of the accretion shock at the surface of the planet. We use one-dimensional radiation-hydrodynamical simulations to study the radiative loss efficiency and to obtain postshock temperatures and pressures and thus entropies. The efficiency is defined as the fraction of the total incoming energy flux that escapes the system (roughly the Hill sphere), taking into account the energy recycling that occurs ahead of the shock in a radiative precursor. We focus in this paper on a constant equation of state (EOS) to isolate the shock physics but use constant and tabulated opacities. While robust quantitative results will have to await a self-consistent treatment including hydrogen dissociation and ionization, the results presented here show the correct qualitative behavior and can be understood from semianalytical calculations. The shock is found to be isothermal and supercritical for a range of conditions relevant to the core accretion formation scenario (CA), with Mach numbers { M }≳ 3. Across the shock, the entropy decreases significantly by a few times {k}{{B}}/{{baryon}}. While nearly 100% of the incoming kinetic energy is converted to radiation locally, the efficiencies are found to be as low as roughly 40%, implying that a significant fraction of the total accretion energy is brought into the planet. However, for realistic parameter combinations in the CA scenario, we find that a nonzero fraction of the luminosity always escapes the Hill sphere. This luminosity could explain, at least in part, recent observations in the young LkCa 15 and HD 100546 systems.

  20. Electron Stimulated Desorption Yields at the Mercury's Surface Based On Hybrid Simulation Results

    NASA Astrophysics Data System (ADS)

    Travnicek, P. M.; Schriver, D.; Orlando, T. M.; Hellinger, P.

    2016-12-01

    In terms of previous research concerning the solar wind sputtering process, most of the focus has been on ion sputtering by precipitating solar wind protons, however, precipitating electrons can also result in the desorption of neutrals and ions from Mercury's surface and represents a potentially significant source of exospheric and heavy ion components. Electron stimulated desorption (ESD) is not bound by optical selection rules and electron impact energies can vary over a much wider range, including core-level excitations that easily lead to multi-electron shake up events that can cascade into localized multiple charged states that Coulomb explode with extreme kinetic energy release (up to 8 eV = 186,000 K). While considered for the lunar exosphere, ESD has not been adequately studied or quantified as a producer of neutrals and ions. ESD is a well known process which involves the excitation (often ionization) of a surface target followed by charge ejection, bond breaking and ion expulsion due to the resultant Coulomb repulsion. Though the role of ESD processes has not been discussed much with respect to Mercury, the impinging energetic electrons that are transported through the magnetosphere and precipitate can induce significant material removal. Given the energetics and the wide band-gap nature of the minerals, the departing material may also be primarily ionic. The possible role of 5 eV - 1 keV electron stimulated desorption and dissociation in "weathering" the regolith can be significant. ESD yields will be calculated based on the ion and electron precipitation profiles for the already carried out hybrid and electron simulations. Neutral and ion cloud profiles around Mercury will be calculated and combined with those profiles expected from PSD and MIV.

  1. Achieving Actionable Results from Available Inputs: Metamodels Take Building Energy Simulations One Step Further

    SciTech Connect

    Horsey, Henry; Fleming, Katherine; Ball, Brian

    Modeling commercial building energy usage can be a difficult and time-consuming task. The increasing prevalence of optimization algorithms provides one path for reducing the time and difficulty. Many use cases remain, however, where information regarding whole-building energy usage is valuable, but the time and expertise required to run and post-process a large number of building energy simulations is intractable. A relatively underutilized option to accurately estimate building energy consumption in real time is to pre-compute large datasets of potential building energy models, and use the set of results to quickly and efficiently provide highly accurate data. This process is calledmore » metamodeling. In this paper, two case studies are presented demonstrating the successful applications of metamodeling using the open-source OpenStudio Analysis Framework. The first case study involves the U.S. Department of Energy's Asset Score Tool, specifically the Preview Asset Score Tool, which is designed to give nontechnical users a near-instantaneous estimated range of expected results based on building system-level inputs. The second case study involves estimating the potential demand response capabilities of retail buildings in Colorado. The metamodel developed in this second application not only allows for estimation of a single building's expected performance, but also can be combined with public data to estimate the aggregate DR potential across various geographic (county and state) scales. In both case studies, the unique advantages of pre-computation allow building energy models to take the place of topdown actuarial evaluations. This paper ends by exploring the benefits of using metamodels and then examines the cost-effectiveness of this approach.« less

  2. 1030/1090 MHz Interference Simulator Technical Description and Initial Results

    DOT National Transportation Integrated Search

    2001-04-27

    The 1030/1090 MHz Interference Simulator has been under development since March 1999, and currently replicates the interference production and operation of the existing surveillance systems and several proposed new Mode S applications. Efforts are on...

  3. Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    NASA Technical Reports Server (NTRS)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.

    2010-01-01

    Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.

  4. North Atlantic (NAT) aided inertial navigation system simulation volume I. : technical results

    DOT National Transportation Integrated Search

    1973-07-01

    Current air traffic operations over the North ATlantic (NAT) and the application of hybrid navigation systems to obtain more accurate performance on these NAT routes are reviewed. A digital computer simulation program (NATNAV - North ATlantic NAVigat...

  5. ATMOSPHERIC MERCURY SIMULATION USING THE CMAQ MODEL: FORMULATION DESCRIPTION AND ANALYSIS OF WET DEPOSITION RESULTS

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system has recently been adapted to simulate the emission, transport, transformation and deposition of atmospheric mercury in three distinct forms; elemental mercury gas, reactive gaseous mercury, and particulate mercury. Emis...

  6. Result of Monte-Carlo simulation of electron-photon cascades in lead and layers of lead-scintillator

    NASA Technical Reports Server (NTRS)

    Wasilewski, A.; Krys, E.

    1985-01-01

    Results of Monte-Carlo simulation of electromagnetic cascade development in lead and lead-scintillator sandwiches are analyzed. It is demonstrated that the structure function for core approximation is not applicable in the case in which the primary energy is higher than 100 GeV. The simulation data has shown that introducing an inhomogeneous chamber structure results in subsequent reduction of secondary particles.

  7. Hamiltonian and potentials in derivative pricing models: exact results and lattice simulations

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Corianò, Claudio; Srikant, Marakani

    2004-03-01

    The pricing of options, warrants and other derivative securities is one of the great success of financial economics. These financial products can be modeled and simulated using quantum mechanical instruments based on a Hamiltonian formulation. We show here some applications of these methods for various potentials, which we have simulated via lattice Langevin and Monte Carlo algorithms, to the pricing of options. We focus on barrier or path dependent options, showing in some detail the computational strategies involved.

  8. NPE 2010 results - Independent performance assessment by simulated CTBT violation scenarios

    NASA Astrophysics Data System (ADS)

    Ross, O.; Bönnemann, C.; Ceranna, L.; Gestermann, N.; Hartmann, G.; Plenefisch, T.

    2012-04-01

    earthquakes by seismological analysis. The remaining event at Black Thunder Mine, Wyoming, on 23 Oct at 21:15 UTC showed clear explosion characteristics. It caused also Infrasound detections at one station in Canada. An infrasonic one station localization algorithm led to event localization results comparable in precision to the teleseismic localization. However, the analysis of regional seismological stations gave the most accurate result giving an error ellipse of about 60 square kilometer. Finally a forward ATM simulation was performed with the candidate event as source in order to reproduce the original detection scenario. The ATM results showed a simulated station fingerprint in the IMS very similar to the fictitious detections given in the NPE 2010 scenario which is an additional confirmation that the event was correctly identified. The shown event analysis of the NPE 2010 serves as successful example for Data Fusion between the technology of radionuclide detection supported by ATM and seismological methodology as well as infrasound signal processing.

  9. Economic Costs Avoided by Diagnosing Melanoma Six Months Earlier Justify >100 Benign Biopsies.

    PubMed

    Aires, Daniel J; Wick, Jo; Shaath, Tarek S; Rajpara, Anand N; Patel, Vikas; Badawi, Ahmed H; Li, Cicy; Fraga, Garth R; Doolittle, Gary; Liu, Deede Y

    2016-05-01

    New melanoma drugs bring enormous benefits but do so at significant costs. Because melanoma grows deeper and deadlier over time, deeper lesions are costlier due to increased sentinel lymph node biopsy, chemotherapy, and disease-associated income loss. Prior studies have justified pigmented lesion biopsies on a "value per life" basis; by contrast we sought to assess how many biopsies are justified per melanoma found on a purely economic basis. We modeled how melanomas in the United States would behave if diagnosis were delayed by 6 months, eg, not biopsied, only observed until the next surveillance visit. Economic loss from delayed biopsy is the obverse of economic benefit of performing biopsy earlier. Growth rates were based on Liu et al. The results of this study can be applied to all patients presenting to dermatologists with pigmented skin lesions suspicious for melanoma. In-situ melanomas were excluded because no studies to date have modeled growth rates analogous to those for invasive melanoma. We assume conservatively that all melanomas not biopsied initially will be biopsied and treated 6 months later. Major modeled costs are (1) increased sentinel lymph node biopsy, (2) increased chemotherapy for metastatic lesions using increased 5-yr death as metastasis marker, and (3) income loss per melanoma death at $413,370 as previously published. Costs avoided by diagnosing melanoma earlier justify 170 biopsies per melanoma found. Efforts to penalize "unnecessary" biopsies may be economically counterproductive.

    J Drugs Dermatol. 2016;15(5):527-532.

  10. Empirical corroboration of an earlier theoretical resolution to the UV paradox of insect polarized skylight orientation.

    PubMed

    Wang, Xin; Gao, Jun; Fan, Zhiguo

    2014-02-01

    It is surprising that many insect species use only the ultraviolet (UV) component of the polarized skylight for orientation and navigation purposes, while both the intensity and the degree of polarization of light from the clear sky are lower in the UV than at longer (blue, green, red) wavelengths. Why have these insects chosen the UV part of the polarized skylight? This strange phenomenon is called the "UV-sky-pol paradox". Although earlier several speculations tried to resolve this paradox, they did this without any quantitative data. A theoretical and computational model has convincingly explained why it is advantageous for certain animals to detect celestial polarization in the UV. We performed a sky-polarimetric approach and built a polarized skylight sensor that models the processing of polarization signals by insect photoreceptors. Using this model sensor, we carried out measurements under clear and cloudy sky conditions. Our results showed that light from the cloudy sky has maximal degree of polarization in the UV. Furthermore, under both clear and cloudy skies the angle of polarization of skylight can be detected with a higher accuracy. By this, we corroborated empirically the soundness of the earlier computational resolution of the UV-sky-pol paradox.

  11. Empirical corroboration of an earlier theoretical resolution to the UV paradox of insect polarized skylight orientation

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Gao, Jun; Fan, Zhiguo

    2014-02-01

    It is surprising that many insect species use only the ultraviolet (UV) component of the polarized skylight for orientation and navigation purposes, while both the intensity and the degree of polarization of light from the clear sky are lower in the UV than at longer (blue, green, red) wavelengths. Why have these insects chosen the UV part of the polarized skylight? This strange phenomenon is called the "UV-sky-pol paradox". Although earlier several speculations tried to resolve this paradox, they did this without any quantitative data. A theoretical and computational model has convincingly explained why it is advantageous for certain animals to detect celestial polarization in the UV. We performed a sky-polarimetric approach and built a polarized skylight sensor that models the processing of polarization signals by insect photoreceptors. Using this model sensor, we carried out measurements under clear and cloudy sky conditions. Our results showed that light from the cloudy sky has maximal degree of polarization in the UV. Furthermore, under both clear and cloudy skies the angle of polarization of skylight can be detected with a higher accuracy. By this, we corroborated empirically the soundness of the earlier computational resolution of the UV-sky-pol paradox.

  12. Results Of Copper Catalyzed Peroxide Oxidation (CCPO) Of Tank 48H Simulants

    SciTech Connect

    Peters, T. B.; Pareizs, J. M.; Newell, J. D.

    2012-12-13

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity ofmore » organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. A processing temperature of 50°C as part of an overall set of conditions appears to provide a viable TPB destruction time on the order of 4 days. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. The data in this report suggests 100-250 mg/L as a minimum. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. An addition rate of 0.4 mL/hour, scaled to the full vessel, is suggested for the process. SRNL recommends that for pH adjustment, an acid addition rate 42 mL/hour, scaled to the full vessel, is used. This is the same addition rate used in the testing. Even though the TPB and phenylborates can be destroyed in a relative short time period, the residual organics will take longer to degrade to <10 mg/L. Low level leaching on titanium occurred, however, the typical concentrations of released titanium are very low (~40 mg/L or less). A small amount of leaching under these conditions

  13. DES Y1 Results: Validating Cosmological Parameter Estimation Using Simulated Dark Energy Surveys

    SciTech Connect

    MacCrann, N.; et al.

    We use mock galaxy survey simulations designed to resemble the Dark Energy Survey Year 1 (DES Y1) data to validate and inform cosmological parameter estimation. When similar analysis tools are applied to both simulations and real survey data, they provide powerful validation tests of the DES Y1 cosmological analyses presented in companion papers. We use two suites of galaxy simulations produced using different methods, which therefore provide independent tests of our cosmological parameter inference. The cosmological analysis we aim to validate is presented in DES Collaboration et al. (2017) and uses angular two-point correlation functions of galaxy number counts and weak lensing shear, as well as their cross-correlation, in multiple redshift bins. While our constraints depend on the specific set of simulated realisations available, for both suites of simulations we find that the input cosmology is consistent with the combined constraints from multiple simulated DES Y1 realizations in themore » $$\\Omega_m-\\sigma_8$$ plane. For one of the suites, we are able to show with high confidence that any biases in the inferred $$S_8=\\sigma_8(\\Omega_m/0.3)^{0.5}$$ and $$\\Omega_m$$ are smaller than the DES Y1 $$1-\\sigma$$ uncertainties. For the other suite, for which we have fewer realizations, we are unable to be this conclusive; we infer a roughly 70% probability that systematic biases in the recovered $$\\Omega_m$$ and $$S_8$$ are sub-dominant to the DES Y1 uncertainty. As cosmological analyses of this kind become increasingly more precise, validation of parameter inference using survey simulations will be essential to demonstrate robustness.« less

  14. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    SciTech Connect

    Nigrey, P.J.; Dickens, T.G.

    1995-12-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specificmore » gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.« less

  15. Design, Results, Evolution and Status of the ATLAS Simulation at Point1 Project

    NASA Astrophysics Data System (ADS)

    Ballestrero, S.; Batraneanu, S. M.; Brasolin, F.; Contescu, C.; Fazio, D.; Di Girolamo, A.; Lee, C. J.; Pozo Astigarraga, M. E.; Scannicchio, D. A.; Sedov, A.; Twomey, M. S.; Wang, F.; Zaytsev, A.

    2015-12-01

    During the LHC Long Shutdown 1 (LSI) period, that started in 2013, the Simulation at Point1 (Sim@P1) project takes advantage, in an opportunistic way, of the TDAQ (Trigger and Data Acquisition) HLT (High-Level Trigger) farm of the ATLAS experiment. This farm provides more than 1300 compute nodes, which are particularly suited for running event generation and Monte Carlo production jobs that are mostly CPU and not I/O bound. It is capable of running up to 2700 Virtual Machines (VMs) each with 8 CPU cores, for a total of up to 22000 parallel jobs. This contribution gives a review of the design, the results, and the evolution of the Sim@P1 project, operating a large scale OpenStack based virtualized platform deployed on top of the ATLAS TDAQ HLT farm computing resources. During LS1, Sim@P1 was one of the most productive ATLAS sites: it delivered more than 33 million CPU-hours and it generated more than 1.1 billion Monte Carlo events. The design aspects are presented: the virtualization platform exploited by Sim@P1 avoids interferences with TDAQ operations and it guarantees the security and the usability of the ATLAS private network. The cloud mechanism allows the separation of the needed support on both infrastructural (hardware, virtualization layer) and logical (Grid site support) levels. This paper focuses on the operational aspects of such a large system during the upcoming LHC Run 2 period: simple, reliable, and efficient tools are needed to quickly switch from Sim@P1 to TDAQ mode and back, to exploit the resources when they are not used for the data acquisition, even for short periods. The evolution of the central OpenStack infrastructure is described, as it was upgraded from Folsom to the Icehouse release, including the scalability issues addressed.

  16. CORRECTING FOR INTERSTELLAR SCATTERING DELAY IN HIGH-PRECISION PULSAR TIMING: SIMULATION RESULTS

    SciTech Connect

    Palliyaguru, Nipuni; McLaughlin, Maura; Stinebring, Daniel

    2015-12-20

    Light travel time changes due to gravitational waves (GWs) may be detected within the next decade through precision timing of millisecond pulsars. Removal of frequency-dependent interstellar medium (ISM) delays due to dispersion and scattering is a key issue in the detection process. Current timing algorithms routinely correct pulse times of arrival (TOAs) for time-variable delays due to cold plasma dispersion. However, none of the major pulsar timing groups correct for delays due to scattering from multi-path propagation in the ISM. Scattering introduces a frequency-dependent phase change in the signal that results in pulse broadening and arrival time delays. Any methodmore » to correct the TOA for interstellar propagation effects must be based on multi-frequency measurements that can effectively separate dispersion and scattering delay terms from frequency-independent perturbations such as those due to a GW. Cyclic spectroscopy, first described in an astronomical context by Demorest (2011), is a potentially powerful tool to assist in this multi-frequency decomposition. As a step toward a more comprehensive ISM propagation delay correction, we demonstrate through a simulation that we can accurately recover impulse response functions (IRFs), such as those that would be introduced by multi-path scattering, with a realistic signal-to-noise ratio (S/N). We demonstrate that timing precision is improved when scatter-corrected TOAs are used, under the assumptions of a high S/N and highly scattered signal. We also show that the effect of pulse-to-pulse “jitter” is not a serious problem for IRF reconstruction, at least for jitter levels comparable to those observed in several bright pulsars.« less

  17. Testing and Results of Human Metabolic Simulation Utilizing Ultrasonic Nebulizer Technology for Water Vapor Generation

    NASA Technical Reports Server (NTRS)

    Stubbe, Matthew; Curley, Su

    2010-01-01

    Life support technology must be evaluated thoroughly before ever being implemented into a functioning design. A major concern during that evaluation is safety. The ability to mimic human metabolic loads allows test engineers to evaluate the effectiveness of new technologies without risking injury to any actual humans. The main function of most life support technologies is the removal of carbon dioxide (CO2) and water (H2O) vapor. As such any good human metabolic simulator (HMS) will mimic the human body s ability to produce these items. Introducing CO2 into a test chamber is a very straightforward process with few unknowns so the focus of this particular new HMS design was on the much more complicated process of introducing known quantities of H2O vapor on command. Past iterations of the HMS have utilized steam which is very hard to keep in vapor phase while transporting and injecting into a test chamber. Also steam adds large quantities of heat to any test chamber, well beyond what an actual human does. For the new HMS an alternative approach to water vapor generation was designed utilizing ultrasonic nebulizers as a method for creating water vapor. Ultrasonic technology allows water to be vibrated into extremely tiny pieces (2-5 microns) and evaporate without requiring additional heating. Doing this process inside the test chamber itself allows H2O vapor generation without the unwanted heat and the challenging process of transporting water vapor. This paper presents the design details as well as results of all initial and final acceptance system testing. Testing of the system was performed at a range of known human metabolic rates in both sea-level and reduced pressure environments. This multitude of test points fully defines the systems capabilities as they relate to actual environmental systems testing.

  18. Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: experimental results and economic simulation

    SciTech Connect

    Innocenzi, V., E-mail: valentina.innocenzi1@univaq.it; De Michelis, I.; Ferella, F.

    2013-11-15

    Highlights: • Fluorescent powder of lamps. • Fluorescent powder of cathode ray rubes. • Recovery of yttrium from fluorescent powders. • Economic simulation for the processes to recover yttrium from WEEE. - Abstract: In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary tomore » purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes.« less

  19. Planck 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miniussi, A.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    We describe the detection, interpretation, and removal of the signal resulting from interactions of high energy particles with the Planck High Frequency Instrument (HFI). There are two types of interactions: heating of the 0.1 K bolometer plate; and glitches in each detector time stream. The transientresponses to detector glitch shapes are not simple single-pole exponential decays and fall into three families. The glitch shape for each family has been characterized empirically in flight data and these shapes have been used to remove glitches from the detector time streams. The spectrum of the count rate per unit energy is computed for each family and a correspondence is made to the location on the detector of the particle hit. Most of the detected glitches are from Galactic protons incident on the die frame supporting the micro-machined bolometric detectors. In the Planck orbit at L2, the particle flux is around 5 cm-2 s-1 and is dominated by protons incident on the spacecraft with energy >39 MeV, at a rate of typically one event per second per detector. Different categories of glitches have different signatures in the time stream. Two of the glitch types have a low amplitude component that decays over nearly 1 s. This component produces excess noise if not properly removed from the time-ordered data. We have used a glitch detection and subtraction method based on the joint fit of population templates. The application of this novel glitch subtraction method removes excess noise from the time streams. Using realistic simulations, we find that this method does not introduce signal bias into the Planck data.

  20. The first Research Consensus Summit of the Society for Simulation in Healthcare: conduction and a synthesis of the results.

    PubMed

    Dieckmann, Peter; Phero, James C; Issenberg, S Barry; Kardong-Edgren, Suzie; Ostergaard, Doris; Ringsted, Charlotte

    2011-08-01

    In this article, we describe the preparation and execution of the first Research Consensus Summit (Summit) of the Society for Simulation in Healthcare (SSH) held in January 2011 in New Orleans, Louisiana. The goals of the Summit were to provide guidance for better simulation-related research, to broaden the scope of topics investigated, and to highlight the importance of simulation-related research. An international Core Group (the authors of this article) worked with the SSH Research Committee to identify 10 topic areas relevant for future research that would be examined by the 10 Topic Groups composed of Topic Chairs and Topic Group Members. Each Topic Group prepared a monograph and slide presentation on their topic which was presented at the 2-day Summit. The audience provided feedback on each presentation. Based on this feedback, the Topic Groups revised their presentations and monographs for publication in this supplement to Simulation in Healthcare. The Core Group has synthesized an overview of the key Summit themes in this article. In some groups, the agreement was that there is currently no consensus about the state of the science in certain topic aspects. Some key themes emerged from the Topic Groups. The conceptual and theoretical bases of simulation-related research, as well as the methods used and their methodological foundations, need to be more explicitly described in future publications. Although no single method is inherently better, the mix of research methods chosen should match the goal of each study. The impact of simulation, whether direct or indirect, needs to be assessed across different levels of training, and larger, more complex contexts need to be taken into account. When interpreting simulation-related research, the ecological validity of the results needs to be taken into consideration. The scope of simulation-related research can be widened from having simulation as the focus of research (research about simulation), to using simulation

  1. Simulation test results for lift/cruise fan research and technology aircraft

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Konsewicz, R. K.

    1976-01-01

    A flight simulation program was conducted on the flight simulator for advanced aircraft (FSAA). The flight simulation was a part of a contracted effort to provide a lift/cruise fan V/STOL aircraft mathematical model for flight simulation. The simulated aircraft is a configuration of the Lift/Cruise Fan V/STOL research technology aircraft (RTA). The aircraft was powered by three gas generators driving three fans. One lift fan was installed in the nose of the aircraft, and two lift/cruise fans at the wing root. The thrust of these fans was modulated to provide pitch and roll control, and vectored to provide yaw, side force control, and longitudinal translation. Two versions of the RTA were defined. One was powered by the GE J97/LF460 propulsion system which was gas-coupled for power transfer between fans for control. The other version was powered by DDA XT701 gas generators driving 62 inch variable pitch fans. The flight control system in both versions of the RTA was the same.

  2. Analysis Of Direct Numerical Simulation Results Of Adverse Pressure Gradient Boundary Layer Through Anisotropy Invariant Mapping And Comparison With The Rans Simulations

    NASA Astrophysics Data System (ADS)

    Gungor, Ayse Gul; Nural, Ozan Ekin; Ertunc, Ozgur

    2017-11-01

    Purpose of this study is to analyze the direct numerical simulation data of a turbulent boundary layer subjected to strong adverse pressure gradient through anisotropy invariant mapping. RANS simulation using the ``Elliptic Blending Model'' of Manceau and Hanjolic (2002) is also conducted for the same flow case with commercial software Star-CCM+ and comparison of the results with DNS data is done. RANS simulation captures the general trends in the velocity field but, significant deviations are found when skin friction coefficients are compared. Anisotropy invariant map of Lumley and Newman (1977) and barycentric map of Banerjee et al. (2007) are used for the analysis. Invariant mapping of the DNS data has yielded that at locations away from the wall, flow is close to one component turbulence state. In the vicinity of the wall, turbulence is at two component limit which is one border of the barycentric map and as the flow evolves along the streamwise direction, it approaches to two component turbulence state. Additionally, at the locations away from the wall, turbulence approaches to two component limit. Furthermore, analysis of the invariants of the RANS simulations shows dissimilar results. In RANS simulations invariants do not approach to any of the limit states unlike the DNS.

  3. Molecular Simulation Results on Charged Carbon Nanotube Forest-Based Supercapacitors.

    PubMed

    Muralidharan, Ajay; Pratt, Lawrence R; Hoffman, Gary G; Chaudhari, Mangesh I; Rempe, Susan B

    2018-06-22

    Electrochemical double-layer capacitances of charged carbon nanotube (CNT) forests with tetraethyl ammonium tetrafluoro borate electrolyte in propylene carbonate are studied on the basis of molecular dynamics simulation. Direct molecular simulation of the filling of pore spaces of the forest is feasible even with realistic, small CNT spacings. The numerical solution of the Poisson equation based on the extracted average charge densities then yields a regular experimental dependence on the width of the pore spaces, in contrast to the anomalous pattern observed in experiments on other carbon materials and also in simulations on planar slot-like pores. The capacitances obtained have realistic magnitudes but are insensitive to electric potential differences between the electrodes in this model. This agrees with previous calculations on CNT forest supercapacitors, but not with experiments which have suggested electrochemical doping for these systems. Those phenomena remain for further theory/modeling work. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Some Results of Weak Anticipative Concept Applied in Simulation Based Decision Support in Enterprise

    NASA Astrophysics Data System (ADS)

    Kljajić, Miroljub; Kofjač, Davorin; Kljajić Borštnar, Mirjana; Škraba, Andrej

    2010-11-01

    The simulation models are used as for decision support and learning in enterprises and in schools. Tree cases of successful applications demonstrate usefulness of weak anticipative information. Job shop scheduling production with makespan criterion presents a real case customized flexible furniture production optimization. The genetic algorithm for job shop scheduling optimization is presented. Simulation based inventory control for products with stochastic lead time and demand describes inventory optimization for products with stochastic lead time and demand. Dynamic programming and fuzzy control algorithms reduce the total cost without producing stock-outs in most cases. Values of decision making information based on simulation were discussed too. All two cases will be discussed from optimization, modeling and learning point of view.

  5. Comparison of preliminary results from Airborne Aster Simulator (AAS) with TIMS data

    NASA Technical Reports Server (NTRS)

    Kannari, Yoshiaki; Mills, Franklin; Watanabe, Hiroshi; Ezaka, Teruya; Narita, Tatsuhiko; Chang, Sheng-Huei

    1992-01-01

    The Japanese Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), being developed for a NASA EOS-A satellite, will have 3 VNIR, 6 SWIR, and 5 TIR (8-12 micron) bands. An Airborne ASTER Simulator (AAS) was developed for Japan Resources Observation System Organization (JAROS) by the Geophysical Environmental Research Group (GER) Corp. to research surface temperature and emission features in the MWIR/TIR, to simulate ASTER's TIR bands, and to study further possibility of MWIR/TIR bands. ASTER Simulator has 1 VNIR, 3 MWIR (3-5 microns), and 20 (currently 24) TIR bands. Data was collected over 3 sites - Cuprite, Nevada; Long Valley/Mono Lake, California; and Death Valley, California - with simultaneous ground truth measurements. Preliminary data collected by AAS for Cuprite, Nevada is presented and AAS data is compared with Thermal Infrared Multispectral Scanner (TIMS) data.

  6. Simulated Driving Assessment (SDA) for teen drivers: results from a validation study.

    PubMed

    McDonald, Catherine C; Kandadai, Venk; Loeb, Helen; Seacrist, Thomas S; Lee, Yi-Ching; Winston, Zachary; Winston, Flaura K

    2015-06-01

    Driver error and inadequate skill are common critical reasons for novice teen driver crashes, yet few validated, standardised assessments of teen driving skills exist. The purpose of this study is to evaluate the construct and criterion validity of a newly developed Simulated Driving Assessment (SDA) for novice teen drivers. The SDA's 35 min simulated drive incorporates 22 variations of the most common teen driver crash configurations. Driving performance was compared for 21 inexperienced teens (age 16-17 years, provisional license ≤90 days) and 17 experienced adults (age 25-50 years, license ≥5 years, drove ≥100 miles per week, no collisions or moving violations ≤3 years). SDA driving performance (Error Score) was based on driving safety measures derived from simulator and eye-tracking data. Negative driving outcomes included simulated collisions or run-off-the-road incidents. A professional driving evaluator/instructor (DEI Score) reviewed videos of SDA performance. The SDA demonstrated construct validity: (1) teens had a higher Error Score than adults (30 vs. 13, p=0.02); (2) For each additional error committed, the RR of a participant's propensity for a simulated negative driving outcome increased by 8% (95% CI 1.05 to 1.10, p<0.01). The SDA-demonstrated criterion validity: Error Score was correlated with DEI Score (r=-0.66, p<0.001). This study supports the concept of validated simulated driving tests like the SDA to assess novice driver skill in complex and hazardous driving scenarios. The SDA, as a standard protocol to evaluate teen driver performance, has the potential to facilitate screening and assessment of teen driving readiness and could be used to guide targeted skill training. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Test Results From a Simulated High-Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was modified to simulate high-voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high-frequency ac power to a lunar facility located at a distance.

  8. Test Results from a Simulated High Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was modified to simulate high voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high frequency AC power to a lunar facility located at a distance.

  9. Summary of results of January climate simulations with the GISS coarse-mesh model

    NASA Technical Reports Server (NTRS)

    Spar, J.; Cohen, C.; Wu, P.

    1981-01-01

    The large scale climates generated by extended runs of the model are relatively independent of the initial atmospheric conditions, if the first few months of each simulation are discarded. The perpetual January simulations with a specified SST field produced excessive snow accumulation over the continents of the Northern Hemisphere. Mass exchanges between the cold (warm) continents and the warm (cold) adjacent oceans produced significant surface pressure changes over the oceans as well as over the land. The effect of terrain and terrain elevation on the amount of precipitation was examined. The evaporation of continental moisture was calculated to cause large increases in precipitation over the continents.

  10. Femtosecond laser melting of silver nanoparticles: comparison of model simulations and experimental results

    NASA Astrophysics Data System (ADS)

    Cheng, Chung-Wei; Chang, Chin-Lun; Chen, Jinn-Kuen; Wang, Ben

    2018-05-01

    Ultrafast laser-induced melting of silver nanoparticles (NPs) using a femtosecond laser pulse is investigated both theoretically and experimentally. The sintered Ag structure fabricated from printed Ag NP ink using femtosecond laser (1064 nm, 300 fs) irradiation is experimentally studied. A two-temperature model with dynamic optical properties and particle size effects on the melting temperature of Ag NPs is considered. The rapid phase change model is incorporated to simulate the Ag NPs' ultrafast laser-induced melting process, and a multi-shot melting threshold fluence predicted from the simulated single-shot melting threshold is developed.

  11. Earlier Vegetation Activity Onset Enhances Springtime Water-use Efficiency in Temperate and Boreal Ecosystems

    NASA Astrophysics Data System (ADS)

    Jin, J.; Wang, Y.

    2017-12-01

    Ecosystem-scale water-use efficiency (EWUE), defined as the ratio of gross primary productivity (GPP) to evapotranspiration (ET), is an important indicator for understanding how water couples with the carbon cycle under global change. Relationships between EWUE and abiotic environmental factors (e.g. climatic factors, atmospheric CO2concentration and nitrogen deposition) have been widely investigated, but the variations in EWUE in response to biotic controls remain little understood. Here, we argue that phenology plays an important role in the regulation of EWUE by analyzing springtime EWUE responses to variability of the GPP-based vegetation activity onset (VAO) in temperate and boreal ecosystems using both satellite and flux-tower observations. Based on MODIS productions during 2000-2014, we found that spring EWUE widely significantly increased with the earlier VAO mainly in the mid- and high latitudes (over 50°N), southwestern China and mid-western North America. When AVO advanced a 10-day, the spring EWUE would increase on average by 0.17±0.09 g C kg-1 H2O in temperate and continental climates after removing the effect of environmental factors. The main response patterns of EWUE to phenology suggest that an increase in spring EWUE with an earlier VAO are mainly because the increase in GPP is relatively larger in magnitude compared to that of ET, or due to an increase in GPP accompanied by a decrease in ET, resulting from an advanced VAO. The credibility of the results is also supported by the local-scale observations. By analyzing 66 site-years of flux and meteorological data obtained from 8 temperate deciduous broadleaf forest sites across North America and Europe, spring EWUE increased 0.42±0.08 g C kg-1 H2O with a 10-day advance of VAO across all sites after controlling for environmental factors, mainly because an earlier VAO could lead to a steeper increase in GPP than in ET. Our results and conclusions highlight that phenological factors cannot be

  12. Influence of Boundary Conditions on Regional Air Quality Simulations-Analysis of AQMEII Phase 3 Results

    EPA Science Inventory

    This presentation focuses on the dynamic evaluation of the CMAQ model over the continental United States using multi-decadal simulations for the period from 1990 to 2010 to examine how well the changes in observed ozone air quality induced by variations in meteorology and/or emis...

  13. The Impact of Grading on a Curve: Assessing the Results of Kulick and Wright's Simulation Analysis

    ERIC Educational Resources Information Center

    Bailey, Gary L.; Steed, Ronald C.

    2012-01-01

    Kulick and Wright concluded, based on theoretical mathematical simulations of hypothetical student exam scores, that assigning exam grades to students based on the relative position of their exam performance scores within a normal curve may be unfair, given the role that randomness plays in any given student's performance on any given exam.…

  14. Predicting internal lumber grade from log surface knots: actual and simulated results.

    Treesearch

    Christine Todoroki; Robert A. Monserud; Dean L. Parry

    2005-01-01

    The purpose of this study was threefold: 1) compare actual with simulated lumber yields; 2) examine the effect of measurement errors associated with knot angles and morphology. on lumber grade; and 3) investigate methods for predicting lumber quality within unsawn logs from surface knots. Twenty-eight Douglas-fir (Pseudotsuga menziesii(Mii irb.)...

  15. Onboard utilization of ground control points for image correction. Volume 2: Analysis and simulation results

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An approach to remote sensing that meets future mission requirements was investigated. The deterministic acquisition of data and the rapid correction of data for radiometric effects and image distortions are the most critical limitations of remote sensing. The following topics are discussed: onboard image correction systems, GCP navigation system simulation, GCP analysis, and image correction analysis measurement.

  16. Challenges of forest landscape modeling - simulating large landscapes and validating results

    Treesearch

    Hong S. He; Jian Yang; Stephen R. Shifley; Frank R. Thompson

    2011-01-01

    Over the last 20 years, we have seen a rapid development in the field of forest landscape modeling, fueled by both technological and theoretical advances. Two fundamental challenges have persisted since the inception of FLMs: (1) balancing realistic simulation of ecological processes at broad spatial and temporal scales with computing capacity, and (2) validating...

  17. Evaluation of stratospheric temperature simulation results by the global GRAPES model

    NASA Astrophysics Data System (ADS)

    Liu, Ningwei; Wang, Yangfeng; Ma, Xiaogang; Zhang, Yunhai

    2017-12-01

    Global final analysis (FNL) products and the general circulation spectral model (ECHAM) were used to evaluate the simulation of stratospheric temperature by the global assimilation and prediction system (GRAPES). Through a series of comparisons, it was shown that the temperature variations at 50 hPa simulated by GRAPES were significantly elevated in the southern hemisphere, whereas simulations by ECHAM and FNL varied little over time. The regional warming predicted by GRAPES seemed to be too distinct and uncontrolled to be reasonable. The temperature difference between GRAPES and FNL (GRAPES minus FNL) was small at the start time on the global scale. Over time, the positive values became larger in more locations, especially in parts of the southern hemisphere, where the warming predicted by GRAPES was dominant, with a maximal value larger than 24 K. To determine the reasons for the stratospheric warming, we considered the model initial conditions and ozone data to be possible factors; however, a comparison and sensitivity test indicated that the errors produced by GRAPES were not significantly related to either factor. Further research focusing on the impact of factors such as vapor, heating rate, and the temperature tendency on GRAPES simulations will be conducted.

  18. Vulnerability Model. A Simulation System for Assessing Damage Resulting from Marine Spills

    DTIC Science & Technology

    1975-06-01

    used and the scenario simulated. The test runs were made on an IBM 360/65 computer. Running times were generally between 15 and 35 CPU seconds...fect filrthcr north. A petroleum tank-truck operation was located within 600 feet Of L𔃻:- stock pond on which the crude oil had dammred itp . At 5 A-M

  19. A comparison of the startle effects resulting from exposure to two levels of simulated sonic booms.

    DOT National Transportation Integrated Search

    1973-12-01

    Subjects were exposed indoors to simulated sonic booms having outside overpressures of 50 and 150 N/sq m. Rise times were held constant at 5.5 msecs. In addition to the outside measurements, inside measures of dBlin and dBA were also obtained. Subjec...

  20. Simulation and Gaming to Promote Health Education: Results of a Usability Test

    ERIC Educational Resources Information Center

    Albu, Mihai; Atack, Lynda; Srivastava, Ishaan

    2015-01-01

    Objective: Motivating clients to change the health behaviour, and maintaining an interest in exercise programmes, is an ongoing challenge for health educators. With new developments in technology, simulation and gaming are increasingly being considered as ways to motivate users, support learning and promote positive health behaviours. The purpose…

  1. Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator

    SciTech Connect

    Durbin, Samuel G.; Lindgren, Eric R.

    The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full-sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask, in part by increasing the efficiency of internal conduction pathways, and also by increasing the internalmore » convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above- and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an above-ground configuration.« less

  2. Low Dimensional Non-Crystallographic Metallic Nanostructures:. HRTEM Simulation, Models and Experimental Results

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, J. L.; Montejano-Carrizales, J. M.; José-Yacamán, M.

    Modern nanoparticle research in the field of small metallic systems has confirmed that many nanoparticles take on some Platonic and Archimedean solids related shapes. A Platonic solid looks the same from any vertex, and intuitively they appear as good candidates for atomic equilibrium shapes. A very clear example is the icosahedral (Ih) particle that only shows {111} faces that contribute to produce a more rounded structure. Indeed, many studies report the Ih as the most stable particle at the size range r≤20 Å for noble gases and for some metals. In this review, we report on the structure and shape of mono- and bimetallic nanoparticles in the wide size range from 1-300 nm. First, we present AuPd nanoparticles in the 1-2 nm size range that show dodecahedral atomic growth packing, one of the Platonic solid shapes that have not been identified before in this small size range for metallic particles. Next, with particles in the size range of 2-5 nm, we present an energetic surface reconstruction phenomenon observed also on bimetallic nanoparticle systems of AuPd and AuCu, similar to a re-solidification effect observed during cooling process in lead clusters. These binary alloy nanoparticles show the fivefold edges truncated, resulting in {100} faces on decahedral structures, an effect largely envisioned and reported theoretically, with no experimental evidence in the literature before. Next nanostructure we review is a monometallic system in the size range of ≈5 nm that we termed the decmon. We present here some detailed geometrical analysis and experimental evidence that supports our models. Finally, in the size range of 100-300 nm, we present icosahedrally derived star gold nanocrystals which resembles the great stellated dodechaedron, which is a Kepler-Poisont solid. We conclude then that the shape or morphology of some mono- and bimetallic particles evolves with size following the sequence from atoms to the Platonic solids, and with a slightly greater particle

  3. Obtaining identical results with double precision global accuracy on different numbers of processors in parallel particle Monte Carlo simulations

    SciTech Connect

    Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Brunner, Thomas A.; Gentile, Nicholas A.

    2013-10-15

    We describe and compare different approaches for achieving numerical reproducibility in photon Monte Carlo simulations. Reproducibility is desirable for code verification, testing, and debugging. Parallelism creates a unique problem for achieving reproducibility in Monte Carlo simulations because it changes the order in which values are summed. This is a numerical problem because double precision arithmetic is not associative. Parallel Monte Carlo, both domain replicated and decomposed simulations, will run their particles in a different order during different runs of the same simulation because the non-reproducibility of communication between processors. In addition, runs of the same simulation using different domain decompositionsmore » will also result in particles being simulated in a different order. In [1], a way of eliminating non-associative accumulations using integer tallies was described. This approach successfully achieves reproducibility at the cost of lost accuracy by rounding double precision numbers to fewer significant digits. This integer approach, and other extended and reduced precision reproducibility techniques, are described and compared in this work. Increased precision alone is not enough to ensure reproducibility of photon Monte Carlo simulations. Non-arbitrary precision approaches require a varying degree of rounding to achieve reproducibility. For the problems investigated in this work double precision global accuracy was achievable by using 100 bits of precision or greater on all unordered sums which where subsequently rounded to double precision at the end of every time-step.« less

  4. Coupled-Flow Simulation of HP-LP Turbines Has Resulted in Significant Fuel Savings

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2001-01-01

    Our objective was to create a high-fidelity Navier-Stokes computer simulation of the flow through the turbines of a modern high-bypass-ratio turbofan engine. The simulation would have to capture the aerodynamic interactions between closely coupled high- and low-pressure turbines. A computer simulation of the flow in the GE90 turbofan engine's high-pressure (HP) and low-pressure (LP) turbines was created at GE Aircraft Engines under contract with the NASA Glenn Research Center. The three-dimensional steady-state computer simulation was performed using Glenn's average-passage approach named APNASA. The areas upstream and downstream of each blade row mutually interact with each other during engine operation. The embedded blade row operating conditions are modeled since the average passage equations in APNASA actively include the effects of the adjacent blade rows. The turbine airfoils, platforms, and casing are actively cooled by compressor bleed air. Hot gas leaks around the tips of rotors through labyrinth seals. The flow exiting the high work HP turbines is partially transonic and, therefore, has a strong shock system in the transition region. The simulation was done using 121 processors of a Silicon Graphics Origin 2000 (NAS 02K) cluster at the NASA Ames Research Center, with a parallel efficiency of 87 percent in 15 hr. The typical average-passage analysis mesh size per blade row was 280 by 45 by 55, or approx.700,000 grid points. The total number of blade rows was 18 for a combined HP and LP turbine system including the struts in the transition duct and exit guide vane, which contain 12.6 million grid points. Design cycle turnaround time requirements ran typically from 24 to 48 hr of wall clock time. The number of iterations for convergence was 10,000 at 8.03x10(exp -5) sec/iteration/grid point (NAS O2K). Parallel processing by up to 40 processors is required to meet the design cycle time constraints. This is the first-ever flow simulation of an HP and LP

  5. The effects of bed rest on crew performance during simulated shuttle reentry. Volume 1: Study overview and physiological results

    NASA Technical Reports Server (NTRS)

    Chambers, A.; Vykukal, H. C.

    1974-01-01

    A centrifuge study was carried out to measure physiological stress and control task performance during simulated space shuttle orbiter reentry. Jet pilots were tested with, and without, anti-g-suit protection. The pilots were exposed to simulated space shuttle reentry acceleration profiles before, and after, ten days of complete bed rest, which produced physiological deconditioning similar to that resulting from prolonged exposure to orbital zero g. Pilot performance in selected control tasks was determined during simulated reentry, and before and after each simulation. Physiological stress during reentry was determined by monitoring heart rate, blood pressure, and respiration rate. Study results indicate: (1) heart rate increased during the simulated reentry when no g protection was given, and remained at or below pre-bed rest values when g-suits were used; (2) pilots preferred the use of g-suits to muscular contraction for control of vision tunneling and grayout during reentry; (3) prolonged bed rest did not alter blood pressure or respiration rate during reentry, but the peak reentry acceleration level did; and (4) pilot performance was not affected by prolonged bed rest or simulated reentry.

  6. Three-Dimensional Numerical Simulations of Equatorial Spread F: Results and Observations in the Pacific Sector

    NASA Technical Reports Server (NTRS)

    Aveiro, H. C.; Hysell, D. L.; Caton, R. G.; Groves, K. M.; Klenzing, J.; Pfaff, R. F.; Stoneback, R.; Heelis, R. A.

    2012-01-01

    A three-dimensional numerical simulation of plasma density irregularities in the postsunset equatorial F region ionosphere leading to equatorial spread F (ESF) is described. The simulation evolves under realistic background conditions including bottomside plasma shear flow and vertical current. It also incorporates C/NOFS satellite data which partially specify the forcing. A combination of generalized Rayleigh-Taylor instability (GRT) and collisional shear instability (CSI) produces growing waveforms with key features that agree with C/NOFS satellite and ALTAIR radar observations in the Pacific sector, including features such as gross morphology and rates of development. The transient response of CSI is consistent with the observation of bottomside waves with wavelengths close to 30 km, whereas the steady state behavior of the combined instability can account for the 100+ km wavelength waves that predominate in the F region.

  7. Assessment of statistical education in Indonesia: Preliminary results and initiation to simulation-based inference

    NASA Astrophysics Data System (ADS)

    Saputra, K. V. I.; Cahyadi, L.; Sembiring, U. A.

    2018-01-01

    Start in this paper, we assess our traditional elementary statistics education and also we introduce elementary statistics with simulation-based inference. To assess our statistical class, we adapt the well-known CAOS (Comprehensive Assessment of Outcomes in Statistics) test that serves as an external measure to assess the student’s basic statistical literacy. This test generally represents as an accepted measure of statistical literacy. We also introduce a new teaching method on elementary statistics class. Different from the traditional elementary statistics course, we will introduce a simulation-based inference method to conduct hypothesis testing. From the literature, it has shown that this new teaching method works very well in increasing student’s understanding of statistics.

  8. DoD Simulations: Improved Assessment Procedures Would Increase the Credibility of Results.

    DTIC Science & Technology

    1987-12-01

    Carmonette Designed about 30 years ago, the Carmonette is a combined-arms combat model that simulates small-unit, ground combat involving the actions ...duels, its proper use is for larger engagements of combined-arms actions in which weapon-to- weapon data are used as input. The focus of the Carmonette...their contribution to the force, and their costs in personnel and funds. Its purpose is to assist in the selection of a preferred course of action to meet

  9. First results from the IllustrisTNG simulations: matter and galaxy clustering

    NASA Astrophysics Data System (ADS)

    Springel, Volker; Pakmor, Rüdiger; Pillepich, Annalisa; Weinberger, Rainer; Nelson, Dylan; Hernquist, Lars; Vogelsberger, Mark; Genel, Shy; Torrey, Paul; Marinacci, Federico; Naiman, Jill

    2018-03-01

    Hydrodynamical simulations of galaxy formation have now reached sufficient volume to make precision predictions for clustering on cosmologically relevant scales. Here, we use our new IllustrisTNG simulations to study the non-linear correlation functions and power spectra of baryons, dark matter, galaxies, and haloes over an exceptionally large range of scales. We find that baryonic effects increase the clustering of dark matter on small scales and damp the total matter power spectrum on scales up to k ˜ 10 h Mpc-1 by 20 per cent. The non-linear two-point correlation function of the stellar mass is close to a power-law over a wide range of scales and approximately invariant in time from very high redshift to the present. The two-point correlation function of the simulated galaxies agrees well with Sloan Digital Sky Survey at its mean redshift z ≃ 0.1, both as a function of stellar mass and when split according to galaxy colour, apart from a mild excess in the clustering of red galaxies in the stellar mass range of109-1010 h-2 M⊙. Given this agreement, the TNG simulations can make valuable theoretical predictions for the clustering bias of different galaxy samples. We find that the clustering length of the galaxy autocorrelation function depends strongly on stellar mass and redshift. Its power-law slope γ is nearly invariant with stellar mass, but declines from γ ˜ 1.8 at redshift z = 0 to γ ˜ 1.6 at redshift z ˜ 1, beyond which the slope steepens again. We detect significant scale dependences in the bias of different observational tracers of large-scale structure, extending well into the range of the baryonic acoustic oscillations and causing nominal (yet fortunately correctable) shifts of the acoustic peaks of around ˜ 5 per cent.

  10. The Eccentric Satellites Problem: Comparing Milky Way Satellite Orbital Properties to Simulation Results

    NASA Astrophysics Data System (ADS)

    Haji, Umran; Pryor, Carlton; Applebaum, Elaad; Brooks, Alyson

    2018-01-01

    We compare the orbital properties of the satellite galaxies of the Milky Way to those of satellites found in simulated Milky Way-like systems as a means of testing cosmological simulations of galaxy formation. The particular problem that we are investigating is a discrepancy in the distribution of orbital eccentricities. Previous studies of Milky Way-mass systems analyzed in a semi-analytic ΛCDM cosmological model have found that the satellites tend to have significantly larger fractions of their kinetic energy invested in radial motion with respect to their central galaxy than do the real-world Milky Way satellites. We analyze several high-resolution ("zoom-in") hydrodynamical simulations of Milky Way-mass galaxies and their associated satellite systems to investigate why previous works found Milky Way-like systems to be rare. We find a possible relationship between a quiescent galactic assembly history and a distribution of satellite kinematics resembling that of the Milky Way. This project has been supported by funding from National Science Foundation grant PHY-1560077.

  11. Development of a hydro kinetic river turbine with simulation and operational measurement results in comparison

    NASA Astrophysics Data System (ADS)

    Ruopp, A.; Ruprecht, A.; Riedelbauch, S.; Arnaud, G.; Hamad, I.

    2014-03-01

    The development of a hydro-kinetic prototype was shown including the compound structure, guide vanes, runner blades and a draft tube section with a steeply sloping, short spoiler. The design process of the hydrodynamic layout was split into three major steps. First the compound and the draft tube section was designed and the best operating point was identified using porous media as replacement for the guide vane and runner section (step one). The best operating point and the volume flux as well as the pressure drop was identified and used for the design of the guide vane section and the runner section. Both were designed and simulated independently (step two). In step three, all parts were merged in stationary simulation runs detecting peak power and operational bandwidth. In addition, the full scale demonstrator was installed in August 2010 and measured in the St. Lawrence River in Quebec supporting the average inflow velocity using ADCP (Acoustic Doppler Current Profiler) and the generator power output over the variable rotational speed. Simulation data and measurements are in good agreement. Thus, the presented approach is a suitable way in designing a hydro kinetic turbine.

  12. Simulating Coupling Complexity in Space Plasmas: First Results from a new code

    NASA Astrophysics Data System (ADS)

    Kryukov, I.; Zank, G. P.; Pogorelov, N. V.; Raeder, J.; Ciardo, G.; Florinski, V. A.; Heerikhuisen, J.; Li, G.; Petrini, F.; Shematovich, V. I.; Winske, D.; Shaikh, D.; Webb, G. M.; Yee, H. M.

    2005-12-01

    The development of codes that embrace 'coupling complexity' via the self-consistent incorporation of multiple physical scales and multiple physical processes in models has been identified by the NRC Decadal Survey in Solar and Space Physics as a crucial necessary development in simulation/modeling technology for the coming decade. The National Science Foundation, through its Information Technology Research (ITR) Program, is supporting our efforts to develop a new class of computational code for plasmas and neutral gases that integrates multiple scales and multiple physical processes and descriptions. We are developing a highly modular, parallelized, scalable code that incorporates multiple scales by synthesizing 3 simulation technologies: 1) Computational fluid dynamics (hydrodynamics or magneto-hydrodynamics-MHD) for the large-scale plasma; 2) direct Monte Carlo simulation of atoms/neutral gas, and 3) transport code solvers to model highly energetic particle distributions. We are constructing the code so that a fourth simulation technology, hybrid simulations for microscale structures and particle distributions, can be incorporated in future work, but for the present, this aspect will be addressed at a test-particle level. This synthesis we will provide a computational tool that will advance our understanding of the physics of neutral and charged gases enormously. Besides making major advances in basic plasma physics and neutral gas problems, this project will address 3 Grand Challenge space physics problems that reflect our research interests: 1) To develop a temporal global heliospheric model which includes the interaction of solar and interstellar plasma with neutral populations (hydrogen, helium, etc., and dust), test-particle kinetic pickup ion acceleration at the termination shock, anomalous cosmic ray production, interaction with galactic cosmic rays, while incorporating the time variability of the solar wind and the solar cycle. 2) To develop a coronal

  13. Return of hunger following a relatively high carbohydrate breakfast is associated with earlier recorded glucose peak and nadir

    PubMed Central

    Chandler-Laney, Paula C.; Morrison, Shannon A.; Goree, Laura Lee T.; Ellis, Amy C.; Casazza, Krista; Desmond, Renee; Gower, Barbara A

    2014-01-01

    Objective To test the hypothesis that a breakfast meal with high carbohydrate/ low fat results in an earlier increase in postprandial glucose and insulin, a greater decrease below baseline in postprandial glucose, and an earlier return of appetite, compared to a low carbohydrate/high fat meal. Design Overweight but otherwise healthy adults (n=64) were maintained on one of two eucaloric diets: high carbohydrate/low fat (HC/LF; 55:27:18% kcals from carbohydrate: fat: protein) versus low carbohydrate/high fat (LC/HF; 43:39:18% kcals from carbohydrate: fat: protein). After 4 weeks of acclimation to the diets, participants underwent a meal test during which circulating glucose and insulin and self-reported hunger and fullness, were measured before and after consumption of breakfast from their assigned diets. Results The LC/HF meal resulted in a later time at the highest and lowest recorded glucose, higher glucose concentrations at 3 and 4 hours post-meal, and lower insulin incremental area under the curve. Participants consuming the LC/HF meal reported lower appetite 3 and 4 hours following the meal, a response that was associated with the timing of the highest and lowest recorded glucose. Conclusions Modest increases in meal carbohydrate content at the expense of fat content may facilitate weight gain over the long-term by contributing to an earlier rise and fall of postprandial glucose concentrations and an earlier return of appetite. PMID:24819342

  14. Results.

    ERIC Educational Resources Information Center

    Zemsky, Robert; Shaman, Susan; Shapiro, Daniel B.

    2001-01-01

    Describes the Collegiate Results Instrument (CRI), which measures a range of collegiate outcomes for alumni 6 years after graduation. The CRI was designed to target alumni from institutions across market segments and assess their values, abilities, work skills, occupations, and pursuit of lifelong learning. (EV)

  15. Identified research directions for using manufacturing knowledge earlier in the product lifecycle

    PubMed Central

    Hedberg, Thomas D.; Hartman, Nathan W.; Rosche, Phil; Fischer, Kevin

    2016-01-01

    Design for Manufacturing (DFM), especially the use of manufacturing knowledge to support design decisions, has received attention in the academic domain. However, industry practice has not been studied enough to provide solutions that are mature for industry. The current state of the art for DFM is often rule-based functionality within Computer-Aided Design (CAD) systems that enforce specific design requirements. That rule-based functionality may or may not dynamically affect geometry definition. And, if rule-based functionality exists in the CAD system, it is typically a customization on a case-by-case basis. Manufacturing knowledge is a phrase with vast meanings, which may include knowledge on the effects of material properties decisions, machine and process capabilities, or understanding the unintended consequences of design decisions on manufacturing. One of the DFM questions to answer is how can manufacturing knowledge, depending on its definition, be used earlier in the product lifecycle to enable a more collaborative development environment? This paper will discuss the results of a workshop on manufacturing knowledge that highlights several research questions needing more study. This paper proposes recommendations for investigating the relationship of manufacturing knowledge with shape, behavior, and context characteristics of product to produce a better understanding of what knowledge is most important. In addition, the proposal includes recommendations for investigating the system-level barriers to reusing manufacturing knowledge and how model-based manufacturing may ease the burden of knowledge sharing. Lastly, the proposal addresses the direction of future research for holistic solutions of using manufacturing knowledge earlier in the product lifecycle. PMID:27990027

  16. Earlier parental set bedtimes as a protective factor against depression and suicidal ideation.

    PubMed

    Gangwisch, James E; Babiss, Lindsay A; Malaspina, Dolores; Turner, J Blake; Zammit, Gary K; Posner, Kelly

    2010-01-01

    To examine the relationships between parental set bedtimes, sleep duration, and depression as a quasi-experiment to explore the potentially bidirectional relationship between short sleep duration and depression. Short sleep duration has been shown to precede depression, but this could be explained as a prodromal symptom of depression. Depression in an adolescent can affect his/her chosen bedtime, but it is less likely to affect a parent's chosen set bedtime which can establish a relatively stable upper limit that can directly affect sleep duration. Multivariate cross-sectional analyses of the ADD Health using logistic regression. United States nationally representative, school-based, probability-based sample in 1994-96. Adolescents (n = 15,659) in grades 7 to 12. Adolescents with parental set bedtimes of midnight or later were 24% more likely to suffer from depression (OR = 1.24, 95% CI 1.04-1.49) and 20% more likely to have suicidal ideation (1.20, 1.01-1.41) than adolescents with parental set bedtimes of 10:00 PM or earlier, after controlling for covariates. Consistent with sleep duration and perception of getting enough sleep acting as mediators, the inclusion of these variables in the multivariate models appreciably attenuated the associations for depression (1.07, 0.88-1.30) and suicidal ideation (1.09, 0.92-1.29). The results from this study provide new evidence to strengthen the argument that short sleep duration could play a role in the etiology of depression. Earlier parental set bedtimes could therefore be protective against adolescent depression and suicidal ideation by lengthening sleep duration.

  17. Identified research directions for using manufacturing knowledge earlier in the product lifecycle.

    PubMed

    Hedberg, Thomas D; Hartman, Nathan W; Rosche, Phil; Fischer, Kevin

    2017-01-01

    Design for Manufacturing (DFM), especially the use of manufacturing knowledge to support design decisions, has received attention in the academic domain. However, industry practice has not been studied enough to provide solutions that are mature for industry. The current state of the art for DFM is often rule-based functionality within Computer-Aided Design (CAD) systems that enforce specific design requirements. That rule-based functionality may or may not dynamically affect geometry definition. And, if rule-based functionality exists in the CAD system, it is typically a customization on a case-by-case basis. Manufacturing knowledge is a phrase with vast meanings, which may include knowledge on the effects of material properties decisions, machine and process capabilities, or understanding the unintended consequences of design decisions on manufacturing. One of the DFM questions to answer is how can manufacturing knowledge, depending on its definition, be used earlier in the product lifecycle to enable a more collaborative development environment? This paper will discuss the results of a workshop on manufacturing knowledge that highlights several research questions needing more study. This paper proposes recommendations for investigating the relationship of manufacturing knowledge with shape, behavior, and context characteristics of product to produce a better understanding of what knowledge is most important. In addition, the proposal includes recommendations for investigating the system-level barriers to reusing manufacturing knowledge and how model-based manufacturing may ease the burden of knowledge sharing. Lastly, the proposal addresses the direction of future research for holistic solutions of using manufacturing knowledge earlier in the product lifecycle.

  18. Solar Potential Analysis and Integration of the Time-Dependent Simulation Results for Semantic 3d City Models Using Dynamizers

    NASA Astrophysics Data System (ADS)

    Chaturvedi, K.; Willenborg, B.; Sindram, M.; Kolbe, T. H.

    2017-10-01

    Semantic 3D city models play an important role in solving complex real-world problems and are being adopted by many cities around the world. A wide range of application and simulation scenarios directly benefit from the adoption of international standards such as CityGML. However, most of the simulations involve properties, whose values vary with respect to time, and the current generation semantic 3D city models do not support time-dependent properties explicitly. In this paper, the details of solar potential simulations are provided operating on the CityGML standard, assessing and estimating solar energy production for the roofs and facades of the 3D building objects in different ways. Furthermore, the paper demonstrates how the time-dependent simulation results are better-represented inline within 3D city models utilizing the so-called Dynamizer concept. This concept not only allows representing the simulation results in standardized ways, but also delivers a method to enhance static city models by such dynamic property values making the city models truly dynamic. The dynamizer concept has been implemented as an Application Domain Extension of the CityGML standard within the OGC Future City Pilot Phase 1. The results are given in this paper.

  19. Comparison of Observed Spatio-temporal Aftershock Patterns with Earthquake Simulator Results

    NASA Astrophysics Data System (ADS)

    Kroll, K.; Richards-Dinger, K. B.; Dieterich, J. H.

    2013-12-01

    Due to the complex nature of faulting in southern California, knowledge of rupture behavior near fault step-overs is of critical importance to properly quantify and mitigate seismic hazards. Estimates of earthquake probability are complicated by the uncertainty that a rupture will stop at or jump a fault step-over, which affects both the magnitude and frequency of occurrence of earthquakes. In recent years, earthquake simulators and dynamic rupture models have begun to address the effects of complex fault geometries on earthquake ground motions and rupture propagation. Early models incorporated vertical faults with highly simplified geometries. Many current studies examine the effects of varied fault geometry, fault step-overs, and fault bends on rupture patterns; however, these works are limited by the small numbers of integrated fault segments and simplified orientations. The previous work of Kroll et al., 2013 on the northern extent of the 2010 El Mayor-Cucapah rupture in the Yuha Desert region uses precise aftershock relocations to show an area of complex conjugate faulting within the step-over region between the Elsinore and Laguna Salada faults. Here, we employ an innovative approach of incorporating this fine-scale fault structure defined through seismological, geologic and geodetic means in the physics-based earthquake simulator, RSQSim, to explore the effects of fine-scale structures on stress transfer and rupture propagation and examine the mechanisms that control aftershock activity and local triggering of other large events. We run simulations with primary fault structures in state of California and northern Baja California and incorporate complex secondary faults in the Yuha Desert region. These models produce aftershock activity that enables comparison between the observed and predicted distribution and allow for examination of the mechanisms that control them. We investigate how the spatial and temporal distribution of aftershocks are affected by

  20. Dark Energy Survey Year 1 Results: Multi-Probe Methodology and Simulated Likelihood Analyses

    SciTech Connect

    Krause, E.; et al.

    We present the methodology for and detail the implementation of the Dark Energy Survey (DES) 3x2pt DES Year 1 (Y1) analysis, which combines configuration-space two-point statistics from three different cosmological probes: cosmic shear, galaxy-galaxy lensing, and galaxy clustering, using data from the first year of DES observations. We have developed two independent modeling pipelines and describe the code validation process. We derive expressions for analytical real-space multi-probe covariances, and describe their validation with numerical simulations. We stress-test the inference pipelines in simulated likelihood analyses that vary 6-7 cosmology parameters plus 20 nuisance parameters and precisely resemble the analysis to be presented in the DES 3x2pt analysis paper, using a variety of simulated input data vectors with varying assumptions. We find that any disagreement between pipelines leads to changes in assigned likelihoodmore » $$\\Delta \\chi^2 \\le 0.045$$ with respect to the statistical error of the DES Y1 data vector. We also find that angular binning and survey mask do not impact our analytic covariance at a significant level. We determine lower bounds on scales used for analysis of galaxy clustering (8 Mpc$$~h^{-1}$$) and galaxy-galaxy lensing (12 Mpc$$~h^{-1}$$) such that the impact of modeling uncertainties in the non-linear regime is well below statistical errors, and show that our analysis choices are robust against a variety of systematics. These tests demonstrate that we have a robust analysis pipeline that yields unbiased cosmological parameter inferences for the flagship 3x2pt DES Y1 analysis. We emphasize that the level of independent code development and subsequent code comparison as demonstrated in this paper is necessary to produce credible constraints from increasingly complex multi-probe analyses of current data.« less

  1. Inevitable end-of-21st-century trends toward earlier surface runoff timing in California's Sierra Nevada Mountains

    NASA Astrophysics Data System (ADS)

    Schwartz, M. A.; Hall, A. D.; Sun, F.; Walton, D.; Berg, N.

    2015-12-01

    Hybrid dynamical-statistical downscaling is used to produce surface runoff timing projections for California's Sierra Nevada, a high-elevation mountain range with significant seasonal snow cover. First, future climate change projections (RCP8.5 forcing scenario, 2081-2100 period) from five CMIP5 global climate models (GCMs) are dynamically downscaled. These projections reveal that future warming leads to a shift toward earlier snowmelt and surface runoff timing throughout the Sierra Nevada region. Relationships between warming and surface runoff timing from the dynamical simulations are used to build a simple statistical model that mimics the dynamical model's projected surface runoff timing changes given GCM input or other statistically-downscaled input. This statistical model can be used to produce surface runoff timing projections for other GCMs, periods, and forcing scenarios to quantify ensemble-mean changes, uncertainty due to intermodel variability and consequences stemming from choice of forcing scenario. For all CMIP5 GCMs and forcing scenarios, significant trends toward earlier surface runoff timing occur at elevations below 2500m. Thus, we conclude that trends toward earlier surface runoff timing by the end-of-the-21st century are inevitable. The changes to surface runoff timing diagnosed in this study have implications for many dimensions of climate change, including impacts on surface hydrology, water resources, and ecosystems.

  2. Geologic results of the TMS survey over Mt. Emmons, Colorado. [Thematic Mapper Simulator

    NASA Technical Reports Server (NTRS)

    Rickman, D. L.; Sadowski, R. M.

    1985-01-01

    In 1981, NASA conducted with an American company a cooperative study, involving the use of Thematic Mapper Simulator (TMS) data. The study was concerned with an area near Crested Butte, Colorado, which contains a known, but unmined, major molybdenum deposit. Detailed ground observations in the Mt. Emmons area demonstrated that the imagery was extremely effective for detection of geologically significant features. The imagery specifically delineated areas of ferric iron staining, seritization, and hornfelized rock. Attention is given to data acquisition and data processing, field work in 1982 and in 1983, the integration of gravity data, and costs.

  3. Does teaching of documentation of shoulder dystocia delivery through simulation result in improved documentation in real life?

    PubMed

    Comeau, Robyn; Craig, Catherine

    2014-03-01

    Documentation of deliveries complicated by shoulder dystocia is a valuable communication skill necessary for residents to attain during residency training. Our objective was to determine whether the teaching of documentation of shoulder dystocia in a simulation environment would translate to improved documentation of the event in an actual clinical situation. We conducted a cohort study involving obstetrics and gynaecology residents in years 2 to 5 between November 2010 and December 2012. Each resident participated in a shoulder dystocia simulation teaching session and was asked to write a delivery note immediately afterwards. They were given feedback regarding their performance of the delivery and their documentation of the events. Following this, dictated records of shoulder dystocia deliveries immediately before and after the simulation session were identified through the Meditech system. An itemized checklist was used to assess the quality of residents' dictated documentation before and after the simulation session. All eligible residents (18) enrolled in the study, and 17 met the inclusion criteria. For 10 residents (59%) documentation of a delivery with shoulder dystocia was present before and after the simulation session, for five residents (29%) it was only present before the session, and for two residents (18%) it was only present after the session. When residents were assessed as a group, there were no differences in the proportion of residents recording items on the checklist before and after the simulation session (P > 0.05 for all). Similarly, analysis of the performance of the10 residents who had dictated documentation both before and after the session showed no differences in the number of elements recorded on dictations done before and after the simulation session (P > 0.05 for all). The teaching of shoulder dystocia documentation through simulation did not result in a measurable improvement in the quality of documentation of shoulder dystocia in

  4. Multi-Fidelity Simulation of a Turbofan Engine With Results Zoomed Into Mini-Maps for a Zero-D Cycle Simulation

    NASA Technical Reports Server (NTRS)

    Turner, Mark G.; Reed, John A.; Ryder, Robert; Veres, Joseph P.

    2004-01-01

    A Zero-D cycle simulation of the GE90-94B high bypass turbofan engine has been achieved utilizing mini-maps generated from a high-fidelity simulation. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled 3D computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the 3D component models are integrated into the cycle model via partial performance maps generated from the CFD flow solutions using one-dimensional mean line turbomachinery programs. This paper highlights the generation of the high-pressure compressor, booster, and fan partial performance maps, as well as turbine maps for the high pressure and low pressure turbine. These are actually "mini-maps" in the sense that they are developed only for a narrow operating range of the component. Results are compared between actual cycle data at a take-off condition and the comparable condition utilizing these mini-maps. The mini-maps are also presented with comparison to actual component data where possible.

  5. Prediction of SFL Interruption Performance from the Results of Arc Simulation during High-Current Phase

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Chul; Lee, Won-Ho; Kim, Woun-Jea

    2015-09-01

    The design and development procedures of SF6 gas circuit breakers are still largely based on trial and error through testing although the development costs go higher every year. The computation cannot cover the testing satisfactorily because all the real processes arc not taken into account. But the knowledge of the arc behavior and the prediction of the thermal-flow inside the interrupters by numerical simulations are more useful than those by experiments due to the difficulties to obtain physical quantities experimentally and the reduction of computational costs in recent years. In this paper, in order to get further information into the interruption process of a SF6 self-blast interrupter, which is based on a combination of thermal expansion and the arc rotation principle, gas flow simulations with a CFD-arc modeling are performed during the whole switching process such as high-current period, pre-current zero period, and current-zero period. Through the complete work, the pressure-rise and the ramp of the pressure inside the chamber before current zero as well as the post-arc current after current zero should be a good criterion to predict the short-line fault interruption performance of interrupters.

  6. Study of silicon crystal surface formation based on molecular dynamics simulation results

    NASA Astrophysics Data System (ADS)

    Barinovs, G.; Sabanskis, A.; Muiznieks, A.

    2014-04-01

    The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.

  7. Progress in Modeling Global Atmospheric CO2 Fluxes and Transport: Results from Simulations with Diurnal Fluxes

    NASA Technical Reports Server (NTRS)

    Collatz, G. James; Kawa, R.

    2007-01-01

    Progress in better determining CO2 sources and sinks will almost certainly rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. Use of advanced data requires improved modeling and analysis capability. Under NASA Carbon Cycle Science support we seek to develop and integrate improved formulations for 1) atmospheric transport, 2) terrestrial uptake and release, 3) biomass and 4) fossil fuel burning, and 5) observational data analysis including inverse calculations. The transport modeling is based on meteorological data assimilation analysis from the Goddard Modeling and Assimilation Office. Use of assimilated met data enables model comparison to CO2 and other observations across a wide range of scales of variability. In this presentation we focus on the short end of the temporal variability spectrum: hourly to synoptic to seasonal. Using CO2 fluxes at varying temporal resolution from the SIB 2 and CASA biosphere models, we examine the model's ability to simulate CO2 variability in comparison to observations at different times, locations, and altitudes. We find that the model can resolve much of the variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The influence of key process representations is inferred. The high degree of fidelity in these simulations leads us to anticipate incorporation of realtime, highly resolved observations into a multiscale carbon cycle analysis system that will begin to bridge the gap between top-down and bottom-up flux estimation, which is a primary focus of NACP.

  8. James Webb Space Telescope optical simulation testbed III: first experimental results with linear-control alignment

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Lajoie, Charles-Philippe; Leboulleux, Lucie; N'Diaye, Mamadou; Pueyo, Laurent; Choquet, Élodie; Perrin, Marshall D.; Ygouf, Marie; Michau, Vincent; Bonnefois, Aurélie; Fusco, Thierry; Escolle, Clément; Ferrari, Marc; Hugot, Emmanuel; Soummer, Rémi

    2016-07-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to study wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science and Operations Center. The design of JOST reproduces the physics of JWST's three-mirror anastigmat (TMA) using three custom aspheric lenses. It provides similar quality image as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at 633 nm. An Iris AO segmented mirror stands for the segmented primary mirror of JWST. Actuators allow us to control (1) the 18 segments of the segmented mirror in piston, tip, tilt and (2) the second lens, which stands for the secondary mirror, in tip, tilt and x, y, z positions. We present the full linear control alignment infrastructure developed for JOST, with an emphasis on multi-field wavefront sensing and control. Our implementation of the Wavefront Sensing (WFS) algorithms using phase diversity is experimentally tested. The wavefront control (WFC) algorithms, which rely on a linear model for optical aberrations induced by small misalignments of the three lenses, are tested and validated on simulations.

  9. A Rotating Scatter Mask for Inexpensive Gamma-Ray Imaging in Orphan Source Search: Simulation Results

    NASA Astrophysics Data System (ADS)

    FitzGerald, Jack G. M.

    2015-02-01

    The Rotating Scatter Mask (RSM) system is an inexpensive retrofit that provides imaging capabilities to scintillating detectors. Unlike traditional collimator systems that primarily absorb photons in order to form an image, this system primarily scatters the photons. Over a single rotation, there is a unique, smooth response curve for each defined source position. Testing was conducted using MCNPX simulations. Image reconstruction was performed using a chi-squared reconstruction technique. A simulated 100 uCi, Cs-137 source at 10 meters was detected after a single, 50-second rotation when a uniform terrestrial background was present. A Cs-137 extended source was also tested. The RSM field-of-view is 360 degrees azimuthally as well as 54 degrees above and 54 degrees below the horizontal plane. Since the RSM is built from polyethylene, the overall cost and weight of the system is low. The system was designed to search for lost or stolen radioactive material, also known as the orphan source problem.

  10. Kinetic features revealed by top-hat electrostatic analysers: numerical simulations and instrument response results

    NASA Astrophysics Data System (ADS)

    De Marco, Rossana; Marcucci, Maria Federica; Brienza, Daniele; Bruno, Roberto; Consolini, Giuseppe; Perrone, Denise; Valentini, Franceso; Servidio, Sergio; Stabile, Sara; Pezzi, Oreste; Sorriso-Valvo, Luca; Lavraud, Benoit; De Keyser, Johan; Retinò, Alessandro; Fazakerley, Andrew; Wicks, Robert; Vaivads, Andris; Salatti, Mario; Veltri, Pierliugi

    2017-04-01

    Turbulence Heating ObserveR (THOR) is the first mission devoted to study energization, acceleration and heating of turbulent space plasmas, and designed to perform field and particle measurements at kinetic scales in different near-Earth regions and in the solar wind. Solar Orbiter (SolO), together with Solar Probe Plus, will provide the first comprehensive remote and in situ measurements which are critical to establish the fundamental physical links between the Sun's dynamic atmosphere and the turbulent solar wind. The fundamental process of turbulent dissipation is mediated by physical mechanism that occur at a variety of temporal and spatial scales, and most efficiently at the kinetics scales. Hybrid Vlasov-Maxwell simulations of solar-wind turbulence show that kinetic effects manifest as particle beams, production of temperature anisotropies and ring-like modulations, preferential heating of heavy ions. We use a numerical code able to reproduce the response of a typical electrostatic analyzer of top-hat type starting from velocity distribution functions (VDFs) generated by Hybrid Vlasov-Maxwell (HVM) numerical simulations. Here, we show how optimized particle measurements by top-hat analysers can capture the kinetic features injected by turbulence in the VDFs.

  11. Sensitivity Analysis of Different Shapes of a Plastic Optical Fiber-Based Immunosensor for Escherichia coli: Simulation and Experimental Results.

    PubMed

    Rodrigues, Domingos M C; Lopes, Rafaela N; Franco, Marcos A R; Werneck, Marcelo M; Allil, Regina C S B

    2017-12-19

    Conventional pathogen detection methods require trained personnel, specialized laboratories and can take days to provide a result. Thus, portable biosensors with rapid detection response are vital for the current needs for in-loco quality assays. In this work the authors analyze the characteristics of an immunosensor based on the evanescent field in plastic optical fibers with macro curvature by comparing experimental with simulated results. The work studies different shapes of evanescent-wave based fiber optic sensors, adopting a computational modeling to evaluate the probes with the best sensitivity. The simulation showed that for a U-Shaped sensor, the best results can be achieved with a sensor of 980 µm diameter by 5.0 mm in curvature for refractive index sensing, whereas the meander-shaped sensor with 250 μm in diameter with radius of curvature of 1.5 mm, showed better sensitivity for either bacteria and refractive index (RI) sensing. Then, an immunosensor was developed, firstly to measure refractive index and after that, functionalized to detect Escherichia coli . Based on the results with the simulation, we conducted studies with a real sensor for RI measurements and for Escherichia coli detection aiming to establish the best diameter and curvature radius in order to obtain an optimized sensor. On comparing the experimental results with predictions made from the modelling, good agreements were obtained. The simulations performed allowed the evaluation of new geometric configurations of biosensors that can be easily constructed and that promise improved sensitivity.

  12. Impact of Assimilation on Heavy Rainfall Simulations Using WRF Model: Sensitivity of Assimilation Results to Background Error Statistics

    NASA Astrophysics Data System (ADS)

    Rakesh, V.; Kantharao, B.

    2017-03-01

    Data assimilation is considered as one of the effective tools for improving forecast skill of mesoscale models. However, for optimum utilization and effective assimilation of observations, many factors need to be taken into account while designing data assimilation methodology. One of the critical components that determines the amount and propagation observation information into the analysis, is model background error statistics (BES). The objective of this study is to quantify how BES in data assimilation impacts on simulation of heavy rainfall events over a southern state in India, Karnataka. Simulations of 40 heavy rainfall events were carried out using Weather Research and Forecasting Model with and without data assimilation. The assimilation experiments were conducted using global and regional BES while the experiment with no assimilation was used as the baseline for assessing the impact of data assimilation. The simulated rainfall is verified against high-resolution rain-gage observations over Karnataka. Statistical evaluation using several accuracy and skill measures shows that data assimilation has improved the heavy rainfall simulation. Our results showed that the experiment using regional BES outperformed the one which used global BES. Critical thermo-dynamic variables conducive for heavy rainfall like convective available potential energy simulated using regional BES is more realistic compared to global BES. It is pointed out that these results have important practical implications in design of forecast platforms while decision-making during extreme weather events

  13. 222Rn transport in a fractured crystalline rock aquifer: Results from numerical simulations

    USGS Publications Warehouse

    Folger, P.F.; Poeter, E.; Wanty, R.B.; Day, W.; Frishman, D.

    1997-01-01

    Dissolved 222Rn concentrations in ground water from a small wellfield underlain by fractured Middle Proterozoic Pikes Peak Granite southwest of Denver, Colorado range from 124 to 840 kBq m-3 (3360-22700 pCi L-1). Numerical simulations of flow and transport between two wells show that differences in equivalent hydraulic aperture of transmissive fractures, assuming a simplified two-fracture system and the parallel-plate model, can account for the different 222Rn concentrations in each well under steady-state conditions. Transient flow and transport simulations show that 222Rn concentrations along the fracture profile are influenced by 222Rn concentrations in the adjoining fracture and depend on boundary conditions, proximity of the pumping well to the fracture intersection, transmissivity of the conductive fractures, and pumping rate. Non-homogeneous distribution (point sources) of 222Rn parent radionuclides, uranium and 226Ra, can strongly perturb the dissolved 222Rn concentrations in a fracture system. Without detailed information on the geometry and hydraulic properties of the connected fracture system, it may be impossible to distinguish the influence of factors controlling 222Rn distribution or to determine location of 222Rn point sources in the field in areas where ground water exhibits moderate 222Rn concentrations. Flow and transport simulations of a hypothetical multifracture system consisting of ten connected fractures, each 10 m in length with fracture apertures ranging from 0.1 to 1.0 mm, show that 222Rn concentrations at the pumping well can vary significantly over time. Assuming parallel-plate flow, transmissivities of the hypothetical system vary over four orders of magnitude because transmissivity varies with the cube of fracture aperture. The extreme hydraulic heterogeneity of the simple hypothetical system leads to widely ranging 222Rn values, even assuming homogeneous distribution of uranium and 226Ra along fracture walls. Consequently, it is

  14. The Moneron Tsunami of September 5, 1971, and Its Manifestation on the Sakhalin Island Coast: Numerical Simulation Results

    NASA Astrophysics Data System (ADS)

    Kostenko, I. S.; Zaytsev, A. I.; Minaev, D. D.; Kurkin, A. A.; Pelinovsky, E. N.; Oshmarina, O. E.

    2018-01-01

    Observation data on the September 5, 1971, earthquake that occurred near the Moneron Island (Sakhalin) have been analyzed and a numerical simulation of the tsunami induced by this earthquake is conducted. The tsunami source identified in this study indicates that the observational data are in good agreement with the results of calculations performed on the basis of shallow-water equations.

  15. The Graphical Display of Simulation Results, with Applications to the Comparison of Robust IRT Estimators of Ability.

    ERIC Educational Resources Information Center

    Thissen, David; Wainer, Howard

    Simulation studies of the performance of (potentially) robust statistical estimation produce large quantities of numbers in the form of performance indices of the various estimators under various conditions. This report presents a multivariate graphical display used to aid in the digestion of the plentiful results in a current study of Item…

  16. Simulating Results of Experiments on Gene Regulation of the Lactose Operon in Escherichia coli; a Problem-Solving Exercise.

    ERIC Educational Resources Information Center

    Hitchen, Trevor; Metcalfe, Judith

    1987-01-01

    Describes a simulation of the results of real experiments which use different strains of Escherichia coli. Provides an inexpensive practical problem-solving exercise to aid the teaching and understanding of the Jacob and Monod model of gene regulation. (Author/CW)

  17. Spatial firm competition in two dimensions with linear transportation costs: simulations and analytical results

    NASA Astrophysics Data System (ADS)

    Roncoroni, Alan; Medo, Matus

    2016-12-01

    Models of spatial firm competition assume that customers are distributed in space and transportation costs are associated with their purchases of products from a small number of firms that are also placed at definite locations. It has been long known that the competition equilibrium is not guaranteed to exist if the most straightforward linear transportation costs are assumed. We show by simulations and also analytically that if periodic boundary conditions in a plane are assumed, the equilibrium exists for a pair of firms at any distance. When a larger number of firms is considered, we find that their total equilibrium profit is inversely proportional to the square root of the number of firms. We end with a numerical investigation of the system's behavior for a general transportation cost exponent.

  18. Experimental and simulation study results of an Adaptive Video Guidance System /AVGS/

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Knickerbocker, R. L.

    1975-01-01

    Studies relating to stellar-body exploration programs have pointed out the need for an adaptive guidance scheme capable of providing automatic real-time guidance and site selection capability. For the case of a planetary lander, without such guidance, targeting is limited to what are believed to be generally benign areas in order to ensure a reasonable landing-success probability. Typically, the Mars Viking Lander will be jeopardized by obstacles exceeding 22 centimers in diameter. The benefits of on-board navigation and real-time selection of a landing site and obstacle avoidance have been demonstrated by the Apollo lunar landings, in which man performed the surface sensing and steering functions. Therefore, an Adaptive Video Guidance System (AVGS) has been developed, bread-boarded, and flown on a six-degree-of-freedom simulator.

  19. Particle acceleration due to shocks in the interplanetary field: High time resolution data and simulation results

    NASA Technical Reports Server (NTRS)

    Kessel, R. L.; Armstrong, T. P.; Nuber, R.; Bandle, J.

    1985-01-01

    Data were examined from two experiments aboard the Explorer 50 (IMP 8) spacecraft. The Johns Hopkins University/Applied Lab Charged Particle Measurement Experiment (CPME) provides 10.12 second resolution ion and electron count rates as well as 5.5 minute or longer averages of the same, with data sampled in the ecliptic plane. The high time resolution of the data allows for an explicit, point by point, merging of the magnetic field and particle data and thus a close examination of the pre- and post-shock conditions and particle fluxes associated with large angle oblique shocks in the interplanetary field. A computer simulation has been developed wherein sample particle trajectories, taken from observed fluxes, are allowed to interact with a planar shock either forward or backward in time. One event, the 1974 Day 312 shock, is examined in detail.

  20. Simulation results of a veto counter for the ClearPEM

    NASA Astrophysics Data System (ADS)

    Trummer, J.; Auffray, E.; Lecoq, P.

    2009-04-01

    The Crystal Clear Collaboration (CCC) has built a prototype of a novel positron emission tomograph dedicated to functional breast imaging, the ClearPEM. The ClearPEM uses the common radio pharmaceutical FDG for imaging cancer. As FDG is a rather non-specific radio tracer, it accumulates not only in cancer cells but in all cells with a high energy consumption, such as the heart and liver. This fact poses a problem especially in breast imaging, where the vicinity of the heart and other organs to the breast leads to a high background noise level in the scanner. In this work, a veto counter to reduce the background is described. Different configurations and their effectiveness were studied using the GATE simulation package.

  1. The spectroscopic search for the trace aerosols in the planetary atmospheres - the results of numerical simulations

    NASA Astrophysics Data System (ADS)

    Blecka, Maria I.

    2010-05-01

    The passive remote spectrometric methods are important in examinations the atmospheres of planets. The radiance spectra inform us about values of thermodynamical parameters and composition of the atmospheres and surfaces. The spectral technology can be useful in detection of the trace aerosols like biological substances (if present) in the environments of the planets. We discuss here some of the aspects related to the spectroscopic search for the aerosols and dust in planetary atmospheres. Possibility of detection and identifications of biological aerosols with a passive InfraRed spectrometer in an open-air environment is discussed. We present numerically simulated, based on radiative transfer theory, spectroscopic observations of the Earth atmosphere. Laboratory measurements of transmittance of various kinds of aerosols, pollens and bacterias were used in modeling.

  2. Results from flight and simulator studies of a Mach 3 cruise longitudinal autopilot

    NASA Technical Reports Server (NTRS)

    Gilyard, G. B.; Smith, J. W.

    1978-01-01

    At Mach numbers of approximately 3.0 and altitudes greater than 21,300 meters, the original altitude and Mach hold modes of the YF-12 autopilot produced aircraft excursions that were erratic or divergent, or both. Flight data analysis and simulator studies showed that the sensitivity of the static pressure port to angle of attack had a detrimental effect on the performance of the altitude and Mach hold modes. Good altitude hold performance was obtained when a high passed pitch rate feedback was added to compensate for angle of attack sensitivity and the altitude error and integral altitude gains were reduced. Good Mach hold performance was obtained when the angle of attack sensitivity was removed; however, the ride qualities remained poor.

  3. Phase 2 testing results of immobilization of WTP effluent management facility vaporator bottoms simulant

    SciTech Connect

    Reigel, M.; Cozzi, A.; McCabe, D.

    2017-09-08

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate) from the primary off-gas system. This work examined three waste form formulations based on previous testing with related simulants: 8 wt% ordinary portland cement (OPC), 47 wt% blast furnace slag (BFS), 45 wt% fly ash (FA) known as Cast Stone formulation; 20 wt% Aquaset® II-GH and 80 wt% BFS; 20 wt% OPC and 80 wt% BFS. These tests successfully produced one waste form that set within five days (Cast Stone formulation); however the other twomore » formulations, Aquaset® II-GH/BFS and OPC/BFS, took approximately eight and fourteen days to set, respectively.« less

  4. Saturn's periodicities: New results from an MHD simulation of magnetospheric response to rotating ionospheric vortices

    NASA Astrophysics Data System (ADS)

    Kivelson, M.; Jia, X.

    2013-12-01

    In previous work we demonstrated that a magnetohydrodynamic (MHD) simulation of Saturn's magnetosphere in which periodicity is imposed by rotating vortical flows in the ionosphere reproduces many reported periodically varying properties of the system. Here we shall show that previously unreported features of the MHD simulation of Saturn's magnetosphere illuminate additional measured properties of the system. By averaging over a rotation period, we identify a global electric field whose magnitude is a few tenths of a mV/m (see Figure 1). The electric field intensity decreases with radial distance in the middle magnetosphere, consistent with drift speeds v=E/B of a few km/s towards the morning side and relatively independent of radial distance. The electric field within 10 RS in the equatorial plane is oriented from post-noon to post-midnight, in excellent agreement with observations [e.g., Thomsen et al., 2012; Andriopoulou et al., 2012, 2013; Wilson et al., 2013]. By following the electric field over a full rotation phase we identify oscillatory behavior whose magnitude is consistent with the reported fluctuations of measured electric fields. Of particular interest is the nature of the fast mode perturbations that produce periodic displacement of the magnetopause and flapping of the current sheet. Figure (2) shows the total perturbation pressure (the sum of magnetic and thermal pressure) in the equatorial plane at a rotation phase for which the ionospheric flow near noon is equatorward. By following the perturbations over a full rotation period, we demonstrate properties of the fast mode wave launched by the rotating flow structures and thereby characterize the 'cam' signal originally proposed by Espinosa et al. [2003].

  5. Second order harmonic guided wave mutual interactions in plate: Vector analysis, numerical simulation, and experimental results

    NASA Astrophysics Data System (ADS)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2017-08-01

    The extraordinary sensitivity of nonlinear ultrasonic waves to the early stages of material degradation makes them excellent candidates for nondestructive material characterization. However, distinguishing weak material nonlinearity from instrumentation nonlinearity remains problematic for second harmonic generation approaches. A solution to this problem is to mix waves having different frequencies and to let their mutual interaction generate sum and difference harmonics at frequencies far from those of the instrumentation. Mixing of bulk waves and surface waves has been researched for some time, but mixing of guided waves has not yet been investigated in depth. A unique aspect of guided waves is their dispersive nature, which means we need to assure that a wave can propagate at the sum or difference frequency. A wave vector analysis is conducted that enables selection of primary waves traveling in any direction that generate phase matched secondary waves. We have tabulated many sets of primary waves and phase matched sum and difference harmonics. An example wave mode triplet of two counter-propagating collinear shear horizontal waves that interact to generate a symmetric Lamb wave at the sum frequency is simulated using finite element analysis and then laboratory experiments are conducted. The finite element simulation eliminates issues associated with instrumentation nonlinearities and signal-to-noise ratio. A straightforward subtraction method is used in the experiments to identify the material nonlinearity induced mutual interaction and show that the generated Lamb wave propagates on its own and is large enough to measure. Since the Lamb wave has different polarity than the shear horizontal waves the material nonlinearity is clearly identifiable. Thus, the mutual interactions of shear horizontal waves in plates could enable volumetric characterization of material in remote regions from transducers mounted on just one side of the plate.

  6. Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing engine and control simulation results

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A hybrid-computer simulation of the over the wing turbofan engine was constructed to develop the dynamic design of the control. This engine and control system includes a full authority digital electronic control using compressor stator reset to achieve fast thrust response and a modified Kalman filter to correct for sensor failures. Fast thrust response for powered-lift operations and accurate, fast responding, steady state control of the engine is provided. Simulation results for throttle bursts from 62 to 100 percent takeoff thrust predict that the engine will accelerate from 62 to 95 percent takeoff thrust in one second.

  7. High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Kapernick, Richard

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer. and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics and assess potential design improvements at relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design is developed

  8. Detached Eddy Simulation Results for a Space Launch System Configuration at Liftoff Conditions and Comparison with Experiment

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Ghaffari, Farhad

    2015-01-01

    Computational simulations for a Space Launch System configuration at liftoff conditions for incidence angles from 0 to 90 degrees were conducted in order to generate integrated force and moment data and longitudinal lineloads. While the integrated force and moment coefficients can be obtained from wind tunnel testing, computational analyses are indispensable in obtaining the extensive amount of surface information required to generate proper lineloads. However, beyond an incidence angle of about 15 degrees, the effects of massive flow separation on the leeward pressure field is not well captured with state of the art Reynolds Averaged Navier-Stokes methods, necessitating the employment of a Detached Eddy Simulation method. Results from these simulations are compared to the liftoff force and moment database and surface pressure data derived from a test in the NASA Langley 14- by 22-Foot Subsonic Wind Tunnel.

  9. Extraction of the defect density of states in microcrystalline silicon from experimental results and simulation studies

    NASA Astrophysics Data System (ADS)

    Tibermacine, T.; Merazga, A.; Ledra, M.; Ouhabab, N.

    2015-09-01

    The constant photocurrent method in the ac-mode (ac-CPM) is used to determine the defect density of states (DOS) in hydrogenated microcrystalline silicon (μc-Si:H) prepared by very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD). The absorption coefficient spectrum (ac-α(hv)), is measured under ac-CPM conditions at 60 Hz. The measured ac-α(hv) is converted by the CPM spectroscopy into a DOS distribution covering a portion in the lower energy range of occupied states. We have found that the density of valence band-tail states falls exponentially towards the gap with a typical band-tail width of 63 meV. Independently, computer simulations of the ac-CPM are developed using a DOS model that is consistent with the measured ac-α(hv) in the present work and a previously measured transient photocurrent (TPC) for the same material. The DOS distribution model suggested by the measurements in the lower and in the upper part of the energy-gap, as well as by the numerical modelling in the middle part of the energy-gap, coincide reasonably well with the real DOS distribution in hydrogenated microcrystalline silicon because the computed ac-α(hv) is found to agree satisfactorily with the measured ac-α(hv).

  10. Space shuttle plume simulation application. Results and math model. [Ames unitary plan wind tunnel test

    NASA Technical Reports Server (NTRS)

    Boyle, W.; Conine, B.

    1978-01-01

    Pressure and gauge wind tunnel data from a transonic test of a 0.02 scale model of the space shuttle launch vehicle was analyzed to define the aerodynamic influence of the main propulsion system and solid rocket booster plumes during the transonic portion of ascent flight. Air was used as a simulant gas to develop the model exhaust plumes. A math model of the plume induced aerodynamic characteristics was developed for a range of Mach numbers to match the forebody aerodynamic math model. The base aerodynamic characteristics are presented in terms of forces and moments versus attitude. Total vehicle base and forebody aerodynamic characteristics are presented in terms of aerodynamic coefficients for Mach number from 0.6 to 1.4 Element and component base and forebody aerodynamic characteristics are presented for Mach numbers of 0.6, 1.05, 1.1, 1.25 and 1.4. The forebody data is available at Mach 1.55. Tolerances for all plume induced aerodynamic characteristics are developed in terms of a math model.

  11. PETS-D (parents education through simulation-diabetes): Parents' qualitative results.

    PubMed

    Ramchandani, Neesha; Maguire, Laura L; Stern, Kailyn; Quintos, Jose B; Lee, Mary; Sullivan-Bolyai, Susan

    2016-08-01

    Parents who have a child newly diagnosed with type 1 diabetes (T1D) must quickly learn daily diabetes self-management. An RCT was conducted using human patient simulation (HPS) to enhance parents learning diabetes self-management with children with new-onset T1D. The purpose of this study was to describe parents' perspectives of using HPS to augment diabetes education. A qualitative descriptive design was used with open-ended in-depth interviews of parents (n=49) post-intervention. Qualitative directed content analysis was used. The majority of parents were positive about learning with HPS. Although a few parents said the HPS was "hokey" or "creepy," most reported the visual and hands-on learning was realistic and very beneficial. Seeing a seizure increased their fear although they would have panicked if they had not had that learning experience, and it helped build their diabetes self-management confidence. Recommendations included teaching others with the HPS (grandparents, siblings, babysitters, and school nurses). HPS-enhanced education is an acceptable and viable option that was generally well-received by parents of children with new-onset T1D. The technique should be studied with parents of children with other chronic illnesses to see if the benefits found in this study are applicable to other settings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. The effectiveness of wrist guards for reducing wrist and elbow accelerations resulting from simulated forward falls.

    PubMed

    Burkhart, Timothy A; Andrews, David M

    2010-08-01

    The effectiveness of wrist guards and modifying elbow posture for reducing impact-induced accelerations at the wrist and elbow, for the purpose of decreasing upper extremity injury risk during forward fall arrest, has not yet been documented in living people. A seated human pendulum was used to simulate the impact conditions consistent with landing on outstretched arms during a forward fall. Accelerometers measured the wrist and elbow response characteristics of 28 subjects following impacts with and without a wrist guard, and with elbows straight or slightly bent. Overall, the wrist guard was very effective, with significant reductions in peak accelerations at the elbow in the axial and off-axis directions, and in the off-axis direction at the wrist by almost 50%. The effect of elbow posture as an intervention strategy was mixed; a change in magnitude and direction of the acceleration response was documented at the elbow, while there was little effect at the wrist. Unique evidence was presented in support of wrist guard use in activities like in-line skating where impacts to the hands are common. The elbow response clearly shows that more proximal anatomical structures also need to be monitored when assessing the effectiveness of injury prevention strategies.

  13. Assessing the aerosol direct and first indirect effects using ACM/GCM simulation results

    NASA Astrophysics Data System (ADS)

    Huang, H.; Gu, Y.; Xue, Y.; Lu, C. H.

    2016-12-01

    Atmospheric aerosols have been found to play an important role in global climate change but there are still large uncertainty in evaluating its role in the climate system. The aerosols generally affect global and regional climate through the scattering and the absorption of solar radiation (direct effect) and through their influences on cloud particle, number and sizes (first indirect effect). The indirect effect will further affects cloud water content, cloud top albedo and surface precipitations. In this study, we investigate the global climatic effect of aerosols using a coupled NCEP Global Forecast System (GFS) and a land surface model (SSiB2) The OPAC (Optical Properties of Aerosols and Clouds) database is used for aerosol effect. The OPAC data provides the optical properties (i.e., the extinction, scattering and absorption coefficient, single-scattering albedo, asymmetry factor and phase function) of ten types of aerosols under various relative humidity conditions for investigating the global direct and first indirect effects of dust aerosols. For indirect forcings due to liquid water, we follow the approach presented by Jiang et al (2011), in which a parameterization of cloud effective radius was calculated to describe its variance with convective strength and aerosol concentration. Since the oceans also play an important role on aerosol climatic effect, we also design a set of simulations using a coupled atmosphere/ocean model (CFS) to evaluate the sensitivity of aerosol effect with two-way atmosphere-ocean interactions.

  14. Thermodynamically Constrained Averaging Theory (TCAT) Two-Phase Flow Model: Derivation, Closure, and Simulation Results

    NASA Astrophysics Data System (ADS)

    Weigand, T. M.; Miller, C. T.; Dye, A. L.; Gray, W. G.; McClure, J. E.; Rybak, I.

    2015-12-01

    The thermodynamically constrained averaging theory (TCAT) has been usedto formulate general classes of porous medium models, including newmodels for two-fluid-phase flow. The TCAT approach provides advantagesthat include a firm connection between the microscale, or pore scale,and the macroscale; a thermodynamically consistent basis; explicitinclusion of factors such as interfacial areas, contact angles,interfacial tension, and curvatures; and dynamics of interface movementand relaxation to an equilibrium state. In order to render the TCATmodel solvable, certain closure relations are needed to relate fluidpressure, interfacial areas, curvatures, and relaxation rates. In thiswork, we formulate and solve a TCAT-based two-fluid-phase flow model. We detail the formulation of the model, which is a specific instancefrom a hierarchy of two-fluid-phase flow models that emerge from thetheory. We show the closure problem that must be solved. Using recentresults from high-resolution microscale simulations, we advance a set ofclosure relations that produce a closed model. Lastly, we solve the model using a locally conservative numerical scheme and compare the TCAT model to the traditional model.

  15. Preliminary Experimental Results for Charge Drag in a Simulated Low Earth Orbit Environment

    NASA Astrophysics Data System (ADS)

    Azema-Rovira, Monica

    Interest in the Low Earth Orbit (LEO) environment is growing in the science community as well as in the private sector. The number of spacecraft launched in these altitudes (150 - 700 km) keeps growing, and this region is accumulating space debris. In this scenario, the precise location of all LEO objects is a key factor to avoid catastrophic collisions and to safely perform station-keeping maneuvers. The detailed study of the atmospheric models in LEO can enhance the disturbances forces calculation of an orbiting object. Recent numerical studies indicate that one of the biggest non-conservative forces on a spacecraft is underestimated, the charge drag phenomenon. Validating these numerical models experimentally, will help to improve the numerical models for future spacecraft mission design. For this reason, the motivation of this thesis is to characterize a plasma source to later be used for charged drag measurements. The characterization has been done at the University of Colorado Colorado Springs in the Chamber for Atmospheric and Orbital Space Simulation. In the characterization process, a nano-Newton Thrust Stand has been characterized as a plasma diagnosis tool and compared with Langmuir Probe data.

  16. James Webb Space Telescope Optical Simulation Testbed I: overview and first results

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall D.; Soummer, Rémi; Choquet, Élodie; N'Diaye, Mamadou; Levecq, Olivier; Lajoie, Charles-Philippe; Ygouf, Marie; Leboulleux, Lucie; Egron, Sylvain; Anderson, Rachel; Long, Chris; Elliott, Erin; Hartig, George; Pueyo, Laurent; van der Marel, Roeland; Mountain, Matt

    2014-08-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop workbench to study aspects of wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing optomechanical testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope, TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science & Operations Center. We have developed an optical design that reproduces the physics of JWST's three-mirror anastigmat using three aspheric lenses; it provides similar image quality as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at HeNe wavelength. A segmented deformable mirror stands in for the segmented primary mirror and allows control of the 18 segments in piston, tip, and tilt, while the secondary can be controlled in tip, tilt and x, y, z position. This will be sufficient to model many commissioning activities, to investigate field dependence and multiple field point sensing & control, to evaluate alternate sensing algorithms, and develop contingency plans. Testbed data will also be usable for cross-checking of the WFS&C Software Subsystem, and for staff training and development during JWST's five- to ten-year mission.

  17. Measurement results from a balloon experiment simulating land mobile satellite transmissions

    NASA Technical Reports Server (NTRS)

    Vogel, W. J.; Torrence, G. W.

    1984-01-01

    A transmitter operating at 869.525 MHz was twice carried by a stratospheric balloon to an altitude of about 40 km. A motor vehicle was driven within the line-of-sight from the transmitter. Measurements of the received signal strength were made every 1/8 wavelength for an overall travelling distance of about seven hundred kilometers. This scenario was to simulate a satellite system providing mobile communications to rural areas. The statistics of the sampled field, consisting of a combination of direct wave, specular reflection and diffuse components, are presented as a function of elevation angle. Parameters such as type of road driven (mostly 2 lane) or type of landscape (rolling to flat) and vegetation (pine and mixed forest) encountered are described where possible. The power distribution function for all the data, at elevation angles from 10 to 35 degrees, is 1 dB below the free space mean at the 50% level, 7 dB below at the 90% level, and 18 dB below at the 99% level. In the elevation angle range of 30 to 35 degrees the corresponding values were found to be .5, 1.2, and 4.5 dB. The conditional fade duration and level crossing rate distribution functions are also presented. The former shows some dependence on the threshold level, the latter almost none.

  18. Time-domain simulation of damped impacted plates. II. Numerical model and results.

    PubMed

    Lambourg, C; Chaigne, A; Matignon, D

    2001-04-01

    A time-domain model for the flexural vibrations of damped plates was presented in a companion paper [Part I, J. Acoust. Soc. Am. 109, 1422-1432 (2001)]. In this paper (Part II), the damped-plate model is extended to impact excitation, using Hertz's law of contact, and is solved numerically in order to synthesize sounds. The numerical method is based on the use of a finite-difference scheme of second order in time and fourth order in space. As a consequence of the damping terms, the stability and dispersion properties of this scheme are modified, compared to the undamped case. The numerical model is used for the time-domain simulation of vibrations and sounds produced by impact on isotropic and orthotropic plates made of various materials (aluminum, glass, carbon fiber and wood). The efficiency of the method is validated by comparisons with analytical and experimental data. The sounds produced show a high degree of similarity with real sounds and allow a clear recognition of each constitutive material of the plate without ambiguity.

  19. Overview of HIT-SI3 experiment: Simulations, Diagnostics, and Summary of Current Results

    NASA Astrophysics Data System (ADS)

    Penna, James; Jarboe, Thomas; Nelson, Brian; Hossack, Aaron; Sutherland, Derek; Morgan, Kyle; Hansen, Chris; Benedett, Thomas; Everson, Chris; Victor, Brian

    2016-10-01

    The Helicity Injected Torus - Steady Inductive 3(HIT-SI3)experiment forms and maintains spheromaks via Steady Inductive Helicity Injection (SIHI). Three injector units allow for continuous injection of helicity into a copper flux conserver in order to sustain a spheromak. Firing of the injectors with a phase difference allows finite rotation of the plasma to provide a stabilizing effect. Simulations in the MHD code NIMROD and the fluid-model code PSI-TET provide validation and a basis for interpretation of the observed experimental data. Thompson Scattering (TS) and Far Infrared (FIR) Interferometer systems allow temperature and line-averaged density measurements to be taken. An Ion Doppler Spectroscopy (IDS) system allows measurement of the plasma rotation and velocity. HIT-SI3 data has been used for validation of IDCD predictions, in particular the projected impedance of helicity injectors according to the theory. The experimental impedances have been calculated here for the first time for different HIT-SI3 regimes. Such experimental evidence will contribute to the design of future experiments employing IDCD as a current-drive mechanism. Work supported by the D.O.E., Office of Science, Office of Fusion Science.

  20. Perspectives: Using Results from HRSA's Health Workforce Simulation Model to Examine the Geography of Primary Care.

    PubMed

    Streeter, Robin A; Zangaro, George A; Chattopadhyay, Arpita

    2017-02-01

    Inform health planning and policy discussions by describing Health Resources and Services Administration's (HRSA's) Health Workforce Simulation Model (HWSM) and examining the HWSM's 2025 supply and demand projections for primary care physicians, nurse practitioners (NPs), and physician assistants (PAs). HRSA's recently published projections for primary care providers derive from an integrated microsimulation model that estimates health workforce supply and demand at national, regional, and state levels. Thirty-seven states are projected to have shortages of primary care physicians in 2025, and nine states are projected to have shortages of both primary care physicians and PAs. While no state is projected to have a 2025 shortage of primary care NPs, many states are expected to have only a small surplus. Primary care physician shortages are projected for all parts of the United States, while primary care PA shortages are generally confined to Midwestern and Southern states. No state is projected to have shortages of all three provider types. Projected shortages must be considered in the context of baseline assumptions regarding current supply, demand, provider-service ratios, and other factors. Still, these findings suggest geographies with possible primary care workforce shortages in 2025 and offer opportunities for targeting efforts to enhance workforce flexibility. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  1. Earlier Snowmelt Changes the Ratio Between Early and Late Season Forest Productivity

    NASA Astrophysics Data System (ADS)

    Knowles, J. F.; Molotch, N. P.; Trujillo, E.; Litvak, M. E.

    2017-12-01

    Future projections of declining snowpack and increasing potential evaporation associated with climate warming are predicted to advance the timing of snowmelt in mountain ecosystems globally. This scenario has direct implications for snowmelt-driven forest productivity, but the net effect of temporally shifting moisture dynamics is unknown with respect to the annual carbon balance. Accordingly, this study uses both satellite- and tower-based observations to document the forest productivity response to snowpack and potential evaporation variability between 1989 and 2012 throughout the southern Rocky Mountain ecoregion, USA. These results show that a combination of low snow accumulation and record high potential evaporation in 2012 resulted in the 34-year minimum ecosystem productivity that could be indicative of future conditions. Moreover, early and late season productivity were significantly and inversely related, suggesting that future shifts toward earlier or reduced snowmelt could increase late-season moisture stress to vegetation and thus restrict productivity despite a longer growing season. This relationship was further subject to modification by summer precipitation, and the controls on the early/late season productivity ratio are explored within the context of ecosystem carbon storage in the future. Any perturbation to the carbon cycle at this scale represents a potential feedback to climate change since snow-covered forests represent an important global carbon sink.

  2. Earlier Detection of Tumor Treatment Response Using Magnetic Resonance Diffusion Imaging with Oscillating Gradients

    PubMed Central

    Colvin, Daniel C.; Loveless, Mary E.; Does, Mark D.; Yue, Zou; Yankeelov, Thomas E.; Gore, John C.

    2011-01-01

    An improved method for detecting early changes in tumors in response to treatment, based on a modification of diffusion-weighted magnetic resonance imaging, has been demonstrated in an animal model. Early detection of therapeutic response in tumors is important both clinically and in pre-clinical assessments of novel treatments. Non-invasive imaging methods that can detect and assess tumor response early in the course of treatment, and before frank changes in tumor morphology are evident, are of considerable interest as potential biomarkers of treatment efficacy. Diffusion-weighted magnetic resonance imaging is sensitive to changes in water diffusion rates in tissues that result from structural variations in the local cellular environment, but conventional methods mainly reflect changes in tissue cellularity and do not convey information specific to micro-structural variations at sub-cellular scales. We implemented a modified imaging technique using oscillating gradients of the magnetic field for evaluating water diffusion rates over very short spatial scales that are more specific for detecting changes in intracellular structure that may precede changes in cellularity. Results from a study of orthotopic 9L gliomas in rat brains indicate that this method can detect changes as early as 24 hours following treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), when conventional approaches do not find significant effects. These studies suggest that diffusion imaging using oscillating gradients may be used to obtain an earlier indication of treatment efficacy than previous magnetic resonance imaging methods. PMID:21190804

  3. Spatial and Temporal Variation in Primary Productivity (NDVI) of Coastal Alaskan Tundra: Decreased Vegetation Growth Following Earlier Snowmelt

    NASA Technical Reports Server (NTRS)

    Gamon, John A.; Huemmrich, K. Fred; Stone, Robert S.; Tweedie, Craig E.

    2015-01-01

    In the Arctic, earlier snowmelt and longer growing seasons due to warming have been hypothesized to increase vegetation productivity. Using the Normalized Difference Vegetation Index (NDVI) from both field and satellite measurements as an indicator of vegetation phenology and productivity, we monitored spatial and temporal patterns of vegetation growth for a coastal wet sedge tundra site near Barrow, Alaska over three growing seasons (2000-2002). Contrary to expectation, earlier snowmelt did not lead to increased productivity. Instead, productivity was associated primarily with precipitation and soil moisture, and secondarily with growing degree days, which, during this period, led to reduced growth in years with earlier snowmelt. Additional moisture effects on productivity and species distribution, operating over a longer time scale, were evident in spatial NDVI patterns associated with microtopography. Lower, wetter regions dominated by graminoids were more productive than higher, drier locations having a higher percentage of lichens and mosses, despite the earlier snowmelt at the more elevated sites. These results call into question the oft-stated hypothesis that earlier arctic growing seasons will lead to greater vegetation productivity. Rather, they agree with an emerging body of evidence from recent field studies indicating that early-season, local environmental conditions, notably moisture and temperature, are primary factors determining arctic vegetation productivity. For this coastal arctic site, early growing season conditions are strongly influenced by microtopography, hydrology, and regional sea ice dynamics, and may not be easily predicted from snowmelt date or seasonal average air temperatures alone. Our comparison of field to satellite NDVI also highlights the value of in-situ monitoring of actual vegetation responses using field optical sampling to obtain detailed information on surface conditions not possible from satellite observations alone.

  4. Additional road markings as an indication of speed limits: results of a field experiment and a driving simulator study.

    PubMed

    Daniels, Stijn; Vanrie, Jan; Dreesen, An; Brijs, Tom

    2010-05-01

    Although speed limits are indicated by road signs, road users are not always aware, while driving, of the actual speed limit on a given road segment. The Roads and Traffic Agency developed additional road markings in order to support driver decisions on speed on 70 km/h roads in Flanders-Belgium. In this paper the results are presented of two evaluation studies, both a field study and a simulator study, on the effects of the additional road markings on speed behaviour. The results of the field study showed no substantial effect of the markings on speed behaviour. Neither did the simulator study, with slightly different stimuli. Nevertheless an effect on lateral position was noticed in the simulator study, showing at least some effect of the markings. The role of conspicuity of design elements and expectations towards traffic environments is discussed. Both studies illustrate well some strengths and weaknesses of observational field studies compared to experimental simulator studies. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  5. Air-gas exchange reevaluated: clinically important results of a computer simulation.

    PubMed

    Shunmugam, Manoharan; Shunmugam, Sudhakaran; Williamson, Tom H; Laidlaw, D Alistair

    2011-10-21

    The primary aim of this study was to evaluate the efficiency of air-gas exchange techniques and the factors that influence the final concentration of an intraocular gas tamponade. Parameters were varied to find the optimum method of performing an air-gas exchange in ideal circumstances. A computer model of the eye was designed using 3D software with fluid flow analysis capabilities. Factors such as angular distance between ports, gas infusion gauge, exhaust vent gauge and depth were varied in the model. Flow rate and axial length were also modulated to simulate faster injections and more myopic eyes, respectively. The flush volume of gas required to achieve a 97% intraocular gas fraction concentration were compared. Modulating individual factors did not reveal any clinically significant difference in the angular distance between ports, exhaust vent size, and depth or rate of gas injection. In combination, however, there was a 28% increase in air-gas exchange efficiency comparing the most efficient with the least efficient studied parameters in this model. The gas flush volume required to achieve a 97% gas fill also increased proportionately at a ratio of 5.5 to 6.2 times the volume of the eye. A 35-mL flush is adequate for eyes up to 25 mm in axial length; however, eyes longer than this would require a much greater flush volume, and surgeons should consider using two separate 50-mL gas syringes to ensure optimal gas concentration for eyes greater than 25 mm in axial length.

  6. Adsorption of normal pentane on the surface of rutile. Experimental results and simulations.

    PubMed

    Rakhmatkariev, G U; Carvalho, A J Palace; Ramalho, J P Prates

    2007-07-03

    Adsorption isotherms and differential heats of normal pentane adsorption on microcrystalline rutile were measured at 303 K. The heat of adsorption of n-pentane on rutile at zero occupancy is 64 kJ/mol. The differential heats have three descending segments, corresponding to the adsorption of n-pentane on three types of surfaces. At low coverage (first segment), the adsorption is restricted to the rows A of the (110) faces along the 5-fold coordinatively unsaturated (cus) Ti(4+) ions with differential heat showing a linear decrease with increasing occupancy. The second segment is attributed to bonding with atoms of the rows along the remaining faces exposed, (101) and (100). The third segment is related to a multilayer adsorption. The mean molar adsorption entropy of n-pentane is ca. -25 J/mol K less than the entropy of the bulk liquid, thus revealing a hindered state of motion of the n-pentane molecules on the surface of rutile. Simulations of the adsorption of n-pentane on the three most abundant crystallographic faces of rutile were also performed. The adsorption isotherm obtained from the combination of each face's isotherm weighted by the respective abundance was found to be in a good agreement with the experimental data. A structural characterization of n-pentane near the surface was also conducted, and it was found that the substrate, especially for the (110) face, strongly perturbs the distribution of n-pentane conformations, compared to those found for the gas phase. Adsorbed molecules are predominantly oriented with their long axes and their backbone zigzag planes parallel to the surface and are also characterized by fewer gauche conformations than observed in the bulk phase.

  7. Ocean Carbon States: Data Mining in Observations and Numerical Simulations Results

    NASA Astrophysics Data System (ADS)

    Latto, R.; Romanou, A.

    2017-12-01

    Advanced data mining techniques are rapidly becoming widely used in Climate and Earth Sciences with the purpose of extracting new meaningful information from increasingly larger and more complex datasets. This is particularly important in studies of the global carbon cycle, where any lack of understanding of its combined physical and biogeochemical drivers is detrimental to our ability to accurately describe, understand, and predict CO2 concentrations and their changes in the major carbon reservoirs. The analysis presented here evaluates the use of cluster analysis as a means of identifying and comparing spatial and temporal patterns extracted from observational and model datasets. As the observational data is organized into various regimes, which we will call "ocean carbon states", we gain insight into the physical and/or biogeochemical processes controlling the ocean carbon cycle as well as how well these processes are simulated by a state-of-the-art climate model. We find that cluster analysis effectively produces realistic, dynamic regimes that can be associated with specific processes at different temporal scales for both observations and the model. In addition, we show how these regimes can be used to illustrate and characterize the model biases in the model air-sea flux of CO2. These biases are attributed to biases in salinity, sea surface temperature, wind speed, and nitrate, which are then used to identify the physical processes that are inaccurately reproduced by the model. In this presentation, we provide a proof-of-concept application using simple datasets, and we expand to more complex ones, using several physical and biogeochemical variable pairs, thus providing considerable insight into the mechanisms and phases of the ocean carbon cycle over different temporal and spatial scales.

  8. Age-shifting in malaria incidence as a result of induced immunological deficit: a simulation study.

    PubMed

    Pemberton-Ross, Peter; Smith, Thomas A; Hodel, Eva Maria; Kay, Katherine; Penny, Melissa A

    2015-07-25

    Effective population-level interventions against Plasmodium falciparum malaria lead to age-shifts, delayed morbidity or rebounds in morbidity and mortality whenever they are deployed in ways that do not permanently interrupt transmission. When long-term intervention programmes target specific age-groups of human hosts, the age-specific morbidity rates ultimately adjust to new steady-states, but it is very difficult to study these rates and the temporal dynamics leading up to them empirically because the changes occur over very long time periods. This study investigates the age and magnitude of age- and time- shifting of incidence induced by either pre-erythrocytic vaccination (PEV) programmes or seasonal malaria chemo-prevention (SMC), using an ensemble of individual-based stochastic simulation models of P. falciparum dynamics. The models made various assumptions about immunity decay, transmission heterogeneity and were parameterized with data on both age-specific infection and disease incidence at different levels of exposure, on the durations of different stages of the parasite life-cycle and on human demography. Effects of transmission intensity, and of levels of access to malaria treatment were considered. While both PEV and SMC programmes are predicted to have overall strongly positive health effects, a shift of morbidity into older children is predicted to be induced by either programme if transmission levels remain static and not reduced by other interventions. Predicted shifting of burden continue into the second decade of the programme. Even if long-term surveillance is maintained it will be difficult to avoid mis-attribution of such long-term changes in age-specific morbidity patterns to other factors. Conversely, short-lived transient changes in incidence measured soon after introduction of a new intervention may give over-positive views of future impacts. Complementary intervention strategies could be designed to specifically protect those age-groups at

  9. Comparing Results of SPH/N-body Impact Simulations Using Both Solid and Rubble-pile Target Asteroids

    NASA Astrophysics Data System (ADS)

    Durda, Daniel D.; Bottke, W. F.; Enke, B. L.; Nesvorný, D.; Asphaug, E.; Richardson, D. C.

    2006-09-01

    We have been investigating the properties of satellites and the morphology of size-frequency distributions (SFDs) resulting from a suite of 160 SPH/N-body simulations of impacts into 100-km diameter parent asteroids (Durda et al. 2004, Icarus 170, 243-257; Durda et al. 2006, Icarus, in press). These simulations have produced many valuable insights into the outcomes of cratering and disruptive impacts but were limited to monolithic basalt targets. As a natural consequence of collisional evolution, however, many asteroids have undergone a series of battering impacts that likely have left their interiors substantially fractured, if not completely rubblized. In light of this, we have re-mapped the matrix of simulations using rubble-pile target objects. We constructed the rubble-pile targets by filling the interior of the 100-km diameter spherical shell (the target envelope) with randomly sized solid spheres in mutual contact. We then assigned full damage (which reduces tensile and shear stresses to zero) to SPH particles in the contacts between the components; the remaining volume is void space. The internal spherical components have a power-law distribution of sizes simulating fragments of a pre-shattered parent object. First-look analysis of the rubble-pile results indicate some general similarities to the simulations with the monolithic targets (e.g., similar trends in the number of small, gravitationally bound satellite systems as a function of impact conditions) and some significant differences (e.g., size of largest remnants and smaller debris affecting size frequency distributions of resulting families). We will report details of a more thorough analysis and the implications for collisional models of the main asteroid belt. This work is supported by the National Science Foundation, grant number AST0407045.

  10. Simulating Pacific Northwest Forest Response to Climate Change: How We Made Model Results Useful for Vulnerability Assessments

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Kerns, B. K.; Halofsky, J.

    2014-12-01

    GCM-based climate projections and downscaled climate data proliferate, and there are many climate-aware vegetation models in use by researchers. Yet application of fine-scale DGVM based simulation output in national forest vulnerability assessments is not common, because there are technical, administrative and social barriers for their use by managers and policy makers. As part of a science-management climate change adaptation partnership, we performed simulations of vegetation response to climate change for four national forests in the Blue Mountains of Oregon using the MC2 dynamic global vegetation model (DGVM) for use in vulnerability assessments. Our simulation results under business-as-usual scenarios suggest a starkly different future forest conditions for three out of the four national forests in the study area, making their adoption by forest managers a potential challenge. However, using DGVM output to structure discussion of potential vegetation changes provides a suitable framework to discuss the dynamic nature of vegetation change compared to using more commonly available model output (e.g. species distribution models). From the onset, we planned and coordinated our work with national forest managers to maximize the utility and the consideration of the simulation results in planning. Key lessons from this collaboration were: (1) structured and strategic selection of a small number climate change scenarios that capture the range of variability in future conditions simplified results; (2) collecting and integrating data from managers for use in simulations increased support and interest in applying output; (3) a structured, regionally focused, and hierarchical calibration of the DGVM produced well-validated results; (4) simple approaches to quantifying uncertainty in simulation results facilitated communication; and (5) interpretation of model results in a holistic context in relation to multiple lines of evidence produced balanced guidance. This latest

  11. Number of Diverticulitis Episodes Before Resection and Factors Associated With Earlier Interventions

    PubMed Central

    Simianu, Vlad V.; Fichera, Alessandro; Bastawrous, Amir L.; Davidson, Giana H.; Florence, Michael G.; Thirlby, Richard C.; Flum, David R.

    2016-01-01

    IMPORTANCE Despite professional recommendations to delay elective colon resection for patients with uncomplicated diverticulitis, early surgery (after <3 preceding episodes) appears to be common. Several factors have been suggested to contribute to early surgery, including increasing numbers of younger patients, a lower threshold to operate laparoscopically, and growing recognition of “smoldering” (or nonrecovering) diverticulitis episodes. However, the relevance of these factors in early surgery has not been well tested, and most prior studies have focused on hospitalizations, missing outpatient events and making it difficult to assess guideline adherence in earlier interventions. OBJECTIVE To describe patterns of episodes of diverticulitis before surgery and factors associated with earlier interventions using inpatient, outpatient, and antibiotic prescription claims. DESIGN, SETTING, AND PARTICIPANTS This investigation was a nationwide retrospective cohort study from January 1, 2009, to December 31, 2012. The dates of the analysis were July 2014 to May 2015. Participants were immunocompetent adult patients (age range, 18-64 years) with incident, uncomplicated diverticulitis. EXPOSURE Elective colectomy for diverticulitis. MAIN OUTCOMES AND MEASURES Inpatient, outpatient, and antibiotic prescription claims for diverticulitis captured in the MarketScan (Truven Health Analytics) databases. RESULTS Of 87 461 immunocompetent patients having at least 1 claim for diverticulitis, 6.4% (n = 5604) underwent a resection. The final study cohort comprised 3054 nonimmunocompromised patients who underwent elective resection for uncomplicated diverticulitis, of whom 55.6% (n = 1699) were male. Before elective surgery, they had a mean (SD) of 1.0 (0.9) inpatient claims, 1.5 (1.5) outpatient claims, and 0.5 (1.2) antibiotic prescription claims related to diverticulitis. Resection occurred after fewer than 3 episodes in 94.9% (2897 of 3054) of patients if counting inpatient

  12. Quantifying the Economic Value and Quality of Life Impact of Earlier Influenza Vaccination

    PubMed Central

    Lee, Bruce Y.; Bartsch, Sarah M.; Brown, Shawn T.; Cooley, Philip; Wheaton, William D.; Zimmerman, Richard K.

    2015-01-01

    Background Influenza vaccination is administered throughout the influenza disease season, even as late as March. Given such timing, what is the value of vaccinating the population earlier than currently being practiced? Methods We used real data on when individuals were vaccinated in Allegheny County, Pennsylvania, and the following 2 models to determine the value of vaccinating individuals earlier (by the end of September, October, and November): Framework for Reconstructing Epidemiological Dynamics (FRED), an agent-based model (ABM), and FluEcon, our influenza economic model that translates cases from the ABM to outcomes and costs [health care and lost productivity costs and quality-adjusted life-years (QALYs)]. We varied the reproductive number (R0) from 1.2 to 1.6. Results Applying the current timing of vaccinations averted 223,761 influenza cases, $16.3 million in direct health care costs, $50.0 million in productivity losses, and 804 in QALYs, compared with no vaccination (February peak, R0 1.2). When the population does not have preexisting immunity and the influenza season peaks in February (R0 1.2–1.6), moving individuals who currently received the vaccine after September to the end of September could avert an additional 9634–17,794 influenza cases, $0.6–$1.4 million in direct costs, $2.1–$4.0 million in productivity losses, and 35–64 QALYs. Moving the vaccination of just children to September (R0 1.2–1.6) averted 11,366–1660 influenza cases, $0.6–$0.03 million in direct costs, $2.3–$0.2 million in productivity losses, and 42–8 QALYs. Moving the season peak to December increased these benefits, whereas increasing preexisting immunity reduced these benefits. Conclusion Even though many people are vaccinated well after September/October, they likely are still vaccinated early enough to provide substantial cost-savings. PMID:25590676

  13. On the role of numerical simulations in studies of reduced gravity-induced physiological effects in humans. Results from NELME.

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni

    Computer simulations are becoming a promising research line of work, as physiological models become more and more sophisticated and reliable. Technological advances in state-of-the-art hardware technology and software allow nowadays for better and more accurate simulations of complex phenomena, such as the response of the human cardiovascular system to long-term exposure to microgravity. Experimental data for long-term missions are difficult to achieve and reproduce, therefore the predictions of computer simulations are of a major importance in this field. Our approach is based on a previous model developed and implemented in our laboratory (NELME: Numercial Evaluation of Long-term Microgravity Effects). The software simulates the behaviour of the cardiovascular system and different human organs, has a modular archi-tecture, and allows to introduce perturbations such as physical exercise or countermeasures. The implementation is based on a complex electrical-like model of this control system, using inexpensive development frameworks, and has been tested and validated with the available experimental data. The objective of this work is to analyse and simulate long-term effects and gender differences when individuals are exposed to long-term microgravity. Risk probability of a health impairement which may put in jeopardy a long-term mission is also evaluated. . Gender differences have been implemented for this specific work, as an adjustment of a number of parameters that are included in the model. Women versus men physiological differences have been therefore taken into account, based upon estimations from the physiology bibliography. A number of simulations have been carried out for long-term exposure to microgravity. Gravity varying continuosly from Earth-based to zero, and time exposure are the two main variables involved in the construction of results, including responses to patterns of physical aerobic ex-ercise and thermal stress simulating an extra

  14. Passenger rail vehicle safety assessment methodology. Volume II, Detailed analyses and simulation results.

    DOT National Transportation Integrated Search

    2000-04-01

    This report presents detailed analytic tools and results on dynamic response which are used to develop the safe dynamic performance limits of commuter passenger vehicles. The methodology consists of determining the critical parameters and characteris...

  15. To achieve an earlier IFN-γ response is not sufficient to control Mycobacterium tuberculosis infection in mice.

    PubMed

    Vilaplana, Cristina; Prats, Clara; Marzo, Elena; Barril, Carles; Vegué, Marina; Diaz, Jorge; Valls, Joaquim; López, Daniel; Cardona, Pere-Joan

    2014-01-01

    The temporo-spatial relationship between the three organs (lung, spleen and lymph node) involved during the initial stages of Mycobacterium tuberculosis infection has been poorly studied. As such, we performed an experimental study to evaluate the bacillary load in each organ after aerosol or intravenous infection and developed a mathematical approach using the data obtained in order to extract conclusions. The results showed that higher bacillary doses result in an earlier IFN-γ response, that a certain bacillary load (BL) needs to be reached to trigger the IFN-γ response, and that control of the BL is not immediate after onset of the IFN-γ response, which might be a consequence of the spatial dimension. This study may have an important impact when it comes to designing new vaccine candidates as it suggests that triggering an earlier IFN-γ response might not guarantee good infection control, and therefore that additional properties should be considered for these candidates.

  16. A laboratory experiment simulating the dynamics of topographic relief: methodology and results

    NASA Astrophysics Data System (ADS)

    Crave, A.; Lague, D.; Davy, P.; Bonnet, S.; Laguionie, P.

    2002-12-01

    Theoretical analysis and numerical models of landscape evolution have advanced several scenarios for the long-term evolution of terrestrial topography. These scenarios require quantitative evaluation. Analyses of topography, sediment fluxes, and the physical mechanisms of erosion and sediment transport can provide some constraints on the range of plausible models. But in natural systems the boundary conditions (tectonic uplift, climate, base level) are often not well constrained and the spatial heterogeneity of substrate, climate, vegetation, and prevalent processes commonly confounds attempts at extrapolation of observations to longer timescales. In the laboratory, boundary conditions are known and heterogeneity and complexity can be controlled. An experimental approach can thus provide valuable constraints on the dynamics of geomorphic systems, provided that (1) the elementary processes are well calibrated and (2) the topography and sediment fluxes are sufficiently well documented. We have built an experimental setup of decimeter scale that is designed to develop a complete drainage network by the growth and propagation of erosion instabilities in response to tectonic and climatic perturbations. Uplift and precipitation rates can be changed over an order of magnitude. Telemetric lasers and 3D stereo-photography allow the precise quantification of the topographic evolution of the experimental surface. In order to calibrate the principal processes of erosion and transport we have used three approaches: (1) theoretical derivation of erosion laws deduced from the geometrical properties of experimental surfaces at steady-state under different rates of tectonic uplift; (2) comparison of the experimental transient dynamics with a numerical simulation model to test the validity of the predicted erosion laws; and (3) detailed analysis of particle detachment and transport in a millimeter sheet flow on a two-meter long flume under precisely controlled water discharge, slope

  17. The Complex Outgassing of Comets and the Resulting Coma, a Direct Simulation Monte-Carlo Approach

    NASA Astrophysics Data System (ADS)

    Fougere, Nicolas

    During its journey, when a comet gets within a few astronomical units of the Sun, solar heating liberates gases and dust from its icy nucleus forming a rarefied cometary atmosphere, the so-called coma. This tenuous atmosphere can expand to distances up to millions of kilometers representing orders of magnitude larger than the nucleus size. Most of the practical cases of coma studies involve the consideration of rarefied gas flows under non-LTE conditions where the hydrodynamics approach is not valid. Then, the use of kinetic methods is required to properly study the physics of the cometary coma. The Direct Simulation Monte-Carlo (DSMC) method is the method of choice to solve the Boltzmann equation, giving the opportunity to study the cometary atmosphere from the inner coma where collisions dominate and is in thermodynamic equilibrium to the outer coma where densities are lower and free flow conditions are verified. While previous studies of the coma used direct sublimation from the nucleus for spherically symmetric 1D models, or 2D models with a day/night asymmetry, recent observations of comets showed the existence of local small source areas such as jets, and extended sources via sublimating icy grains, that must be included into cometary models for a realistic representation of the physics of the coma. In this work, we present, for the first time, 1D, 2D, and 3D models that can take into account the full effects of conditions with more complex sources of gas with jets and/or icy grains. Moreover, an innovative work in a full 3D description of the cometary coma using a kinetic method with a realistic nucleus and outgassing is demonstrated. While most of the physical models used in this study had already been developed, they are included in one self-consistent coma model for the first time. The inclusion of complex cometary outgassing processes represents the state-of-the-art of cometary coma modeling. This provides invaluable information about the coma by

  18. The Chinese Visible Human (CVH) datasets incorporate technical and imaging advances on earlier digital humans

    PubMed Central

    Zhang, Shao-Xiang; Heng, Pheng-Ann; Liu, Zheng-Jin; Tan, Li-Wen; Qiu, Ming-Guo; Li, Qi-Yu; Liao, Rong-Xia; Li, Kai; Cui, Gao-Yu; Guo, Yan-Li; Yang, Xiao-Ping; Liu, Guang-Jiu; Shan, Jing-Lu; Liu, Ji-Jun; Zhang, Wei-Guo; Chen, Xian-Hong; Chen, Jin-Hua; Wang, Jian; Chen, Wei; Lu, Ming; You, Jian; Pang, Xue-Li; Xiao, Hong; Xie, Yong-Ming; Cheng, Jack Chun-Yiu

    2004-01-01

    We report the availability of a digitized Chinese male and a digitzed Chinese female typical of the population and with no obvious abnormalities. The embalming and milling procedures incorporate three technical improvements over earlier digitized cadavers. Vascular perfusion with coloured gelatin was performed to facilitate blood vessel identification. Embalmed cadavers were embedded in gelatin and cryosectioned whole so as to avoid section loss resulting from cutting the body into smaller pieces. Milling performed at −25 °C prevented small structures (e.g. teeth, concha nasalis and articular cartilage) from falling off from the milling surface. The male image set (.tiff images each of 36 Mb) has a section resolution of 3072 × 2048 pixels (∼170 μm, the accompanying magnetic resonance imaging and computer tomography data have a resolution of 512 × 512, i.e. ∼440 μm). The Chinese Visible Human male and female datasets are available at http://www.chinesevisiblehuman.com. (The male is 90.65 Gb and female 131.04 Gb). MPEG videos of direct records of real-time volume rendering are at: http://www.cse.cuhk.edu.hk/~crc PMID:15032906

  19. Colorectal cancer occurs earlier in those exposed to tobacco smoke: implications for screening

    PubMed Central

    Mahoney, Martin C.; Cummings, K. Michael; Michalek, Arthur M.; Reid, Mary E.; Moysich, Kirsten B.; Hyland, Andrew

    2011-01-01

    Background Colorectal cancer (CRC) is the third most common cancer in the USA. While various lifestyle factors have been shown to alter the risk for colorectal cancer, recommendations for the early detection of CRC are based only on age and family history. Methods This case-only study examined the age at diagnosis of colorectal cancer in subjects exposed to tobacco smoke. Subjects included all patients who attended RPCI between 1957 and 1997, diagnosed with colorectal cancer, and completed an epidemiologic questionnaire. Adjusted linear regression models were calculated for the various smoking exposures. Results Of the 3,540 cases of colorectal cancer, current smokers demonstrated the youngest age of CRC onset (never: 64.2 vs. current: 57.4, P < 0.001) compared to never smokers, followed by recent former smokers. Among never smokers, individuals with past second-hand smoke exposure were diagnosed at a significantly younger age compared to the unexposed. Conclusion This study found that individuals with heavy, long-term tobacco smoke exposure were significantly younger at the time of CRC diagnosis compared to lifelong never smokers. The implication of this finding is that screening for colorectal cancer, which is recommended to begin at age 50 years for persons at average risk should be initiated 5–10 years earlier for persons with a significant lifetime history of exposure to tobacco smoke. PMID:18264728

  20. The response of aboveground plant productivity to earlier snowmelt and summer warming in an Arctic ecosystem

    NASA Astrophysics Data System (ADS)

    Livensperger, C.; Steltzer, H.; Darrouzet-Nardi, A.; Sullivan, P.; Wallenstein, M. D.; Weintraub, M. N.

    2012-12-01

    Plant communities in the Arctic are undergoing changes in structure and function due to shifts in seasonality from changing winters and summer warming. These changes will impact biogeochemical cycling, surface energy balance, and functioning of vertebrate and invertebrate communities. To examine seasonal controls on aboveground net primary production (ANPP) in a moist acidic tundra ecosystem in northern Alaska, we shifted the growing season by accelerating snowmelt (using radiation absorbing shadecloth) and warming air and soil temperature (using 1 m2 open-top chambers), individually and in combination. After three years, we measured ANPP by harvesting up to 16 individual ramets, tillers and rhizomes for each of 7 plant species, including two deciduous shrubs, two graminoids, two evergreen shrubs and one forb during peak season. Our results show that ANPP per stem summed across the 7 species increased when snow melt occurred earlier. However, standing biomass, excluding current year growth, was also greater. The ratio of ANPP/standing biomass decreased in all treatments compared to the control. ANPP per unit standing biomass summed for the four shrub species decreases due to summer warming alone or in combination with early snowmelt; however early snowmelt alone did not lead to lower ANPP for the shrubs. ANPP per tiller or rhizome summed for the three herbaceous species increased in response to summer warming. Understanding the differential response of plants to changing seasonality will inform predictions of future Arctic plant community structure and function.

  1. Infliximab for uveitis of Behçet's syndrome: a trend for earlier initiation.

    PubMed

    Guzelant, Gul; Ucar, Didar; Esatoglu, Sinem Nihal; Hatemi, Gulen; Ozyazgan, Yilmaz; Yurdakul, Sebahattin; Seyahi, Emire; Yazici, Hasan; Hamuryudan, Vedat

    2017-01-01

    The prognosis of uveitis in Behçet's syndrome (BS) has improved over decades. Whether this is related to the use of more aggressive management strategies is not known. This is a retrospective study of BS patients who received infliximab (IFX) for refractory eye disease between 2003-2015. The patients were divided into two groups according to the date of onset of in IFX treatment as before and after 2013. We compared the two groups in terms of disease characteristics at the onset of IFX treatment and response to treatment. There were 43 patients in the old and 14 patients in the new group. The duration of uveitis and previous immunosuppressive treatment before the initiation of IFX were significantly shorter in the new group compared to the old group (p=0.043 and p=0.028, respectively). The baseline visual acuity (VA) at the initiation of IFX was better in the new group, but this was only significant for the left eye. Treatment with IFX was effective in both groups in preserving VA and this was more pronounced in the new group. Attack frequency under IFX was significantly lower in the new group (p<0.001). IFX seems to be initiated earlier and also in less severe cases during the course of BS uveitis than before. Despite the few numbers of patients and relatively short duration of follow-up, our results give a hint that this change has improved the outcome.

  2. UAS Integration in the NAS Project: Part Task 6 V & V Simulation: Primary Results

    NASA Technical Reports Server (NTRS)

    Rorie, Conrad; Fern, Lisa; Shively, Jay; Santiago, Confesor

    2016-01-01

    This is a presentation of the preliminary results on final V and V (Verification and Validation) activity of [RTCA (Radio Technical Commission for Aeronautics)] SC (Special Committee)-228 DAA (Detect and Avoid) HMI (Human-Machine Interface) requirements for display alerting and guidance.

  3. How Often Do Subscores Have Added Value? Results from Operational and Simulated Data

    ERIC Educational Resources Information Center

    Sinharay, Sandip

    2010-01-01

    Recently, there has been an increasing level of interest in subscores for their potential diagnostic value. Haberman suggested a method based on classical test theory to determine whether subscores have added value over total scores. In this article I first provide a rich collection of results regarding when subscores were found to have added…

  4. Parameters of thermochemical plumes responsible for the formation of batholiths: Results of experimental simulation

    NASA Astrophysics Data System (ADS)

    Kirdyashkin, A. A.; Kirdyashkin, A. G.; Gurov, V. V.

    2017-07-01

    Based on laboratory and theoretical modeling results, we present the thermal and hydrodynamical structure of the plume conduit during plume ascent and eruption on the Earth's surface. The modeling results show that a mushroom-shaped plume head forms after melt eruption on the surface for 1.9 < Ka < 10. Such plumes can be responsible for the formation of large intrusive bodies, including batholiths. The results of laboratory modeling of plumes with mushroom-shaped heads are presented for Ka = 8.7 for a constant viscosity and uniform melt composition. Images of flow patterns are obtained, as well as flow velocity profiles in the melt of the conduit and the head of the model plume. Based on the laboratory modeling data, we present a scheme of a thermochemical plume with a mushroom-shaped head responsible for the formation of a large intrusive body (batholith). After plume eruption to the surface, melting occurs along the base of the massif above the plume head, resulting in a mushroom-shaped plume head. A possible mechanism for the formation of localized surface manifestations of batholiths is presented. The parameters of some plumes with mushroom-shaped heads (plumes of the Altay-Sayan and Barguzin-Vitim large-igneous provinces, and Khangai and Khentei plumes) are estimated using geological data, including age intervals and volumes of magma melts.

  5. Managing Herbicide Drift and Early Results of Simulated Glyphosate Drift to Potato Study

    USDA-ARS?s Scientific Manuscript database

    The off target movement of herbicides can injure sensitive crops. Off target movement of spray droplets results from displacement by wind, poor application techniques, or improper settings or operation of application equipment. Applicators should be aware of wind speed and direction, use nozzles and...

  6. Initial results from the LAPD wave-particle experiment and simulation

    NASA Astrophysics Data System (ADS)

    Bortnik, J.; Tao, X.; Albert, J. M.; Thorne, R. M.; Gekelman, W. N.; Pribyl, P.; Van Compernolle, B.

    2011-12-01

    We present the initial results obtained from a unique experiment-theory project. This project is designed to study the detailed nature of the wave-particle interactions between energetic electrons and whistler-mode waves. Using the Large-Plasma device at UCLA, whistler mode waves are injected into one end of the machine and a beam of energetic electrons is injected at the opposite ends. When the first-order resonance condition is met, the electron beam is scattered, which is measured with a novel energy-pitch-angle analyzer. To support the experiment, a flexible test-particle code is constructed which is able to quantify the scattering of charged particles in response to any distribution of waves, in an arbitrary field geometry. The results of the experiment are discussed and placed into the context of space physics and specifically the upcoming Radiation Belt Storm Probes mission.

  7. Occulting focal plane masks for Terrestrial Planet Finder Coronagraph: design, fabrication, simulations and test results

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham; Hoppe, Daniel J.; Halverson, Peter G.; Wilson, Daniel W.; Echternach, Pierre M.; Shi, Fang; Lowman, Andrew E.; Niessner, Albert F.; Trauger, John T.; Shaklan, Stuart B.

    2005-01-01

    Occulting focal plane masks for the Terrestrial Planet Finder Coronagraph (TPF-C) could be designed with continuous gray scale profile of the occulting pattern such as 1-sinc2 on a suitable material or with micron-scale binary transparent and opaque structures of metallic pattern on glass. We have designed, fabricated and tested both kinds of masks. The fundamental characteristics of such masks and initial test results from the High Contrast Imaging Test bed (HCIT) at JPL are presented.

  8. Phase transitions in cooperative coinfections: Simulation results for networks and lattices

    NASA Astrophysics Data System (ADS)

    Grassberger, Peter; Chen, Li; Ghanbarnejad, Fakhteh; Cai, Weiran

    2016-04-01

    We study the spreading of two mutually cooperative diseases on different network topologies, and with two microscopic realizations, both of which are stochastic versions of a susceptible-infected-removed type model studied by us recently in mean field approximation. There it had been found that cooperativity can lead to first order transitions from spreading to extinction. However, due to the rapid mixing implied by the mean field assumption, first order transitions required nonzero initial densities of sick individuals. For the stochastic model studied here the results depend strongly on the underlying network. First order transitions are found when there are few short but many long loops: (i) No first order transitions exist on trees and on 2-d lattices with local contacts. (ii) They do exist on Erdős-Rényi (ER) networks, on d -dimensional lattices with d ≥4 , and on 2-d lattices with sufficiently long-ranged contacts. (iii) On 3-d lattices with local contacts the results depend on the microscopic details of the implementation. (iv) While single infected seeds can always lead to infinite epidemics on regular lattices, on ER networks one sometimes needs finite initial densities of infected nodes. (v) In all cases the first order transitions are actually "hybrid"; i.e., they display also power law scaling usually associated with second order transitions. On regular lattices, our model can also be interpreted as the growth of an interface due to cooperative attachment of two species of particles. Critically pinned interfaces in this model seem to be in different universality classes than standard critically pinned interfaces in models with forbidden overhangs. Finally, the detailed results mentioned above hold only when both diseases propagate along the same network of links. If they use different links, results can be rather different in detail, but are similar overall.

  9. UAS Integration into the NAS: HSI Full Mission Simulation Preliminary Results

    NASA Technical Reports Server (NTRS)

    Shively, Jay; Fern, Lisa; Rorie, Conrad

    2014-01-01

    The goal of the Full Mission Sim was to examine the effects of different command and control interfaces on UAS pilots' ability to respond to ATC commands and traffic advisories. Results suggest that higher levels of automation (i.e., waypoint-to-waypoint control interfaces) lead to longer initial response times and longer edit times. The findings demonstrate the importance of providing pilots with interfaces that facilitate their ability to get back "in the loop."

  10. Measurement and computer simulation of antennas on ships and aircraft for results of operational reliability

    NASA Astrophysics Data System (ADS)

    Kubina, Stanley J.

    1989-09-01

    The review of the status of computational electromagnetics by Miller and the exposition by Burke of the developments in one of the more important computer codes in the application of the electric field integral equation method, the Numerical Electromagnetic Code (NEC), coupled with Molinet's summary of progress in techniques based on the Geometrical Theory of Diffraction (GTD), provide a clear perspective on the maturity of the modern discipline of computational electromagnetics and its potential. Audone's exposition of the application to the computation of Radar Scattering Cross-section (RCS) is an indication of the breadth of practical applications and his exploitation of modern near-field measurement techniques reminds one of progress in the measurement discipline which is essential to the validation or calibration of computational modeling methodology when applied to complex structures such as aircraft and ships. The latter monograph also presents some comparison results with computational models. Some of the results presented for scale model and flight measurements show some serious disagreements in the lobe structure which would require some detailed examination. This also applies to the radiation patterns obtained by flight measurement compared with those obtained using wire-grid models and integral equation modeling methods. In the examples which follow, an attempt is made to match measurements results completely over the entire 2 to 30 MHz HF range for antennas on a large patrol aircraft. The problem of validating computer models of HF antennas on a helicopter and using computer models to generate radiation pattern information which cannot be obtained by measurements are discussed. The use of NEC computer models to analyze top-side ship configurations where measurement results are not available and only self-validation measures are available or at best comparisons with an alternate GTD computer modeling technique is also discussed.

  11. Flight test results from the CV990 simulated space shuttle during unpowered automatic approaches and landings

    NASA Technical Reports Server (NTRS)

    Edwards, F. G.; Foster, J. D.

    1973-01-01

    Unpowered automatic approaches and landings with a CV990 aircraft were conducted to study navigation, guidance, and control problems associated with terminal area approach and landing for the space shuttle. The flight tests were designed to study from 11,300 m to touchdown the performance of a navigation and guidance concept which utilized blended radio/inertial navigation using VOR, DME, and ILS as the ground navigation aids. In excess of fifty automatic approaches and landings were conducted. Preliminary results indicate that this concept may provide sufficient accuracy to accomplish automatic landing of the shuttle orbiter without air-breathing engines on a conventional size runway.

  12. Simulation of orographic effects with a Quasi-3-D Multiscale Modeling Framework: Basic algorithm and preliminary results

    DOE PAGES

    Jung, Joon -Hee

    2016-10-11

    Here, the global atmospheric models based on the Multi-scale Modeling Framework (MMF) are able to explicitly resolve subgrid-scale processes by using embedded 2-D Cloud-Resolving Models (CRMs). Up to now, however, those models do not include the orographic effects on the CRM grid scale. This study shows that the effects of CRM grid-scale orography can be simulated reasonably well by the Quasi-3-D MMF (Q3D MMF), which has been developed as a second-generation MMF. In the Q3D framework, the surface topography can be included in the CRM component by using a block representation of the mountains, so that no smoothing of themore » topographic height is necessary. To demonstrate the performance of such a model, the orographic effects over a steep mountain are simulated in an idealized experimental setup with each of the Q3D MMF and the full 3-D CRM. The latter is used as a benchmark. Comparison of the results shows that the Q3D MMF is able to reproduce the horizontal distribution of orographic precipitation and the flow changes around mountains as simulated by the 3-D CRM, even though the embedded CRMs of the Q3D MMF recognize only some aspects of the complex 3-D topography. It is also shown that the use of 3-D CRMs in the Q3D framework, rather than 2-D CRMs, has positive impacts on the simulation of wind fields but does not substantially change the simulated precipitation.« less

  13. Simulation of orographic effects with a Quasi-3-D Multiscale Modeling Framework: Basic algorithm and preliminary results

    SciTech Connect

    Jung, Joon -Hee

    Here, the global atmospheric models based on the Multi-scale Modeling Framework (MMF) are able to explicitly resolve subgrid-scale processes by using embedded 2-D Cloud-Resolving Models (CRMs). Up to now, however, those models do not include the orographic effects on the CRM grid scale. This study shows that the effects of CRM grid-scale orography can be simulated reasonably well by the Quasi-3-D MMF (Q3D MMF), which has been developed as a second-generation MMF. In the Q3D framework, the surface topography can be included in the CRM component by using a block representation of the mountains, so that no smoothing of themore » topographic height is necessary. To demonstrate the performance of such a model, the orographic effects over a steep mountain are simulated in an idealized experimental setup with each of the Q3D MMF and the full 3-D CRM. The latter is used as a benchmark. Comparison of the results shows that the Q3D MMF is able to reproduce the horizontal distribution of orographic precipitation and the flow changes around mountains as simulated by the 3-D CRM, even though the embedded CRMs of the Q3D MMF recognize only some aspects of the complex 3-D topography. It is also shown that the use of 3-D CRMs in the Q3D framework, rather than 2-D CRMs, has positive impacts on the simulation of wind fields but does not substantially change the simulated precipitation.« less

  14. Does an uneven sample size distribution across settings matter in cross-classified multilevel modeling? Results of a simulation study.

    PubMed

    Milliren, Carly E; Evans, Clare R; Richmond, Tracy K; Dunn, Erin C

    2018-06-06

    Recent advances in multilevel modeling allow for modeling non-hierarchical levels (e.g., youth in non-nested schools and neighborhoods) using cross-classified multilevel models (CCMM). Current practice is to cluster samples from one context (e.g., schools) and utilize the observations however they are distributed from the second context (e.g., neighborhoods). However, it is unknown whether an uneven distribution of sample size across these contexts leads to incorrect estimates of random effects in CCMMs. Using the school and neighborhood data structure in Add Health, we examined the effect of neighborhood sample size imbalance on the estimation of variance parameters in models predicting BMI. We differentially assigned students from a given school to neighborhoods within that school's catchment area using three scenarios of (im)balance. 1000 random datasets were simulated for each of five combinations of school- and neighborhood-level variance and imbalance scenarios, for a total of 15,000 simulated data sets. For each simulation, we calculated 95% CIs for the variance parameters to determine whether the true simulated variance fell within the interval. Across all simulations, the "true" school and neighborhood variance parameters were estimated 93-96% of the time. Only 5% of models failed to capture neighborhood variance; 6% failed to capture school variance. These results suggest that there is no systematic bias in the ability of CCMM to capture the true variance parameters regardless of the distribution of students across neighborhoods. Ongoing efforts to use CCMM are warranted and can proceed without concern for the sample imbalance across contexts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Simulation of orographic effects with a Quasi-3-D Multiscale Modeling Framework: Basic algorithm and preliminary results

    NASA Astrophysics Data System (ADS)

    Jung, Joon-Hee

    2016-12-01

    The global atmospheric models based on the Multi-scale Modeling Framework (MMF) are able to explicitly resolve subgrid-scale processes by using embedded 2-D Cloud-Resolving Models (CRMs). Up to now, however, those models do not include the orographic effects on the CRM grid scale. This study shows that the effects of CRM grid-scale orography can be simulated reasonably well by the Quasi-3-D MMF (Q3D MMF), which has been developed as a second-generation MMF. In the Q3D framework, the surface topography can be included in the CRM component by using a block representation of the mountains, so that no smoothing of the topographic height is necessary. To demonstrate the performance of such a model, the orographic effects over a steep mountain are simulated in an idealized experimental setup with each of the Q3D MMF and the full 3-D CRM. The latter is used as a benchmark. Comparison of the results shows that the Q3D MMF is able to reproduce the horizontal distribution of orographic precipitation and the flow changes around mountains as simulated by the 3-D CRM, even though the embedded CRMs of the Q3D MMF recognize only some aspects of the complex 3-D topography. It is also shown that the use of 3-D CRMs in the Q3D framework, rather than 2-D CRMs, has positive impacts on the simulation of wind fields but does not substantially change the simulated precipitation.

  16. Strategy for long-term 3D cloud-resolving simulations over the ARM SGP site and preliminary results

    NASA Astrophysics Data System (ADS)

    Lin, W.; Liu, Y.; Song, H.; Endo, S.

    2011-12-01

    Parametric representations of cloud/precipitation processes continue having to be adopted in climate simulations with increasingly higher spatial resolution or with emerging adaptive mesh framework; and it is only becoming more critical that such parameterizations have to be scale aware. Continuous cloud measurements at DOE's ARM sites have provided a strong observational basis for novel cloud parameterization research at various scales. Despite significant progress in our observational ability, there are important cloud-scale physical and dynamical quantities that are either not currently observable or insufficiently sampled. To complement the long-term ARM measurements, we have explored an optimal strategy to carry out long-term 3-D cloud-resolving simulations over the ARM SGP site using Weather Research and Forecasting (WRF) model with multi-domain nesting. The factors that are considered to have important influences on the simulated cloud fields include domain size, spatial resolution, model top, forcing data set, model physics and the growth of model errors. The hydrometeor advection that may play a significant role in hydrological process within the observational domain but is often lacking, and the limitations due to the constraint of domain-wide uniform forcing in conventional cloud system-resolving model simulations, are at least partly accounted for in our approach. Conventional and probabilistic verification approaches are employed first for selected cases to optimize the model's capability of faithfully reproducing the observed mean and statistical distributions of cloud-scale quantities. This then forms the basis of our setup for long-term cloud-resolving simulations over the ARM SGP site. The model results will facilitate parameterization research, as well as understanding and dissecting parameterization deficiencies in climate models.

  17. Effect of Hydrodynamics on Particle Transport in Saturated Fractures: Experimental and Simulation Results

    NASA Astrophysics Data System (ADS)

    Cianflone, S.; Lakhian, V.; Dickson, S. E.

    2014-12-01

    Approximately one third of Canadians and Americans use groundwater as their source of drinking water. Porous media aquifers typically provide significant filtration of particulate contaminants (e.g., viruses, bacteria, protozoa). Fractured media, however, does not provide the same degree of filtration, and in fact often acts as a pathway for particulates to migrate, typically at much greater velocities than in porous media. Fractured aquifers, therefore, are significantly more vulnerable to particulate contamination than unconsolidated porous media. Thus, understanding in the mechanisms of particle migration and retention in fractures is important for the protection and management of these drinking water sources. The purpose of this work was to investigate the role of hydrodynamics on particle transport in saturated, variable aperture fractures. A 2D fracture was randomly generated with an average aperture of approximately 2mm. The fracture was inscribed into pieces of poly(methyl methacrylate), thus creating a pseudo-2D fracture (the xy fracture domain is invariant in z). Transport experiments using fluorescent microspheres (0.05 um, 0.5 um, and 0.75 um) were performed at 2.6 m/day, 26 m/day and 113 m/day and the resulting breakthrough curves were measured. These breakthrough curves included various shoulders and artifacts that were repeatable and could be used to evaluate the quality of a model. COMSOL Multiphysics, was used to generate an average flow field through the 2D fracture by numerically solving the steady-state Navier-Stokes equation. In order to have a 3D realization of the flow field, a parabolic flow regime was assumed in the z-axis and used to scale the average flow field. Random walk particle tracking was utilized to generate breakthrough curves; however, the Brownian motion and local fluid shear mechanisms needed to be considered in addition to the standard movement of particles via the local flow field in order to appropriately model the

  18. Study and simulation results for video landmark acquisition and tracking technology (Vilat-2)

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Tietz, J. C.; Thomas, H. M.; Gremban, K. D.; Hughes, C.; Chang, C. Y.

    1983-01-01

    The results of several investigations and hardware developments which supported new technology for Earth feature recognition and classification are described. Data analysis techniques and procedures were developed for processing the Feature Identification and Location Experiment (FILE) data. This experiment was flown in November 1981, on the second Shuttle flight and a second instrument, designed for aircraft flights, was flown over the United States in 1981. Ground tests were performed to provide the basis for designing a more advanced version (four spectral bands) of the FILE which would be capable of classifying clouds and snow (and possibly ice) as distinct features, in addition to the features classified in the Shuttle experiment (two spectral bands). The Shuttle instrument classifies water, bare land, vegetation, and clouds/snow/ice (grouped).

  19. Circular Samples as Objects for Magnetic Resonance Imaging - Mathematical Simulation, Experimental Results

    NASA Astrophysics Data System (ADS)

    Frollo, Ivan; Krafčík, Andrej; Andris, Peter; Přibil, Jiří; Dermek, Tomáš

    2015-12-01

    Circular samples are the frequent objects of "in-vitro" investigation using imaging method based on magnetic resonance principles. The goal of our investigation is imaging of thin planar layers without using the slide selection procedure, thus only 2D imaging or imaging of selected layers of samples in circular vessels, eppendorf tubes,.. compulsorily using procedure "slide selection". In spite of that the standard imaging methods was used, some specificity arise when mathematical modeling of these procedure is introduced. In the paper several mathematical models were presented that were compared with real experimental results. Circular magnetic samples were placed into the homogenous magnetic field of a low field imager based on nuclear magnetic resonance. For experimental verification an MRI 0.178 Tesla ESAOTE Opera imager was used.

  20. Biofilm formation and control in a simulated spacecraft water system - Interim results

    NASA Technical Reports Server (NTRS)

    Schultz, John R.; Taylor, Robert D.; Flanagan, David T.; Gibbons, Randall E.; Brown, Harlan D.; Sauer, Richard L.

    1989-01-01

    The ability of iodine to control microbial contamination and biofilm formation in spacecraft water distribution systems is studied using two stainless steel water subsystems. One subsystem has an iodine level of 2.5 mg/L maintained by an iodinated ion-exchange resin. The other subsystem has no iodine added. Stainless steel coupons are removed from each system to monitor biofilm formation. Results from the first six months of operation indicate that 2.5 mg/L of iodine has limited the number of viable bacteria that can be recovered from the iodinated subsystem. Epifluorescence microscopy of the coupons taken from this subsystem, however, indicates some evidence of microbial colonization after 15 weeks of operation. Numerous bacteria have been continually removed from both the water samples and the coupons taken from the noniodinated subsystem after only 3 weeks of operation.

  1. Results from Core-collapse Simulations with Multi-dimensional, Multi-angle Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Brandt, Timothy D.; Burrows, Adam; Ott, Christian D.; Livne, Eli

    2011-02-01

    We present new results from the only two-dimensional multi-group, multi-angle calculations of core-collapse supernova evolution. The first set of results from these calculations was published in 2008 by Ott et al. We have followed a nonrotating and a rapidly rotating 20 M sun model for ~400 ms after bounce. We show that the radiation fields vary much less with angle than the matter quantities in the region of net neutrino heating. This happens because most neutrinos are emitted from inner radiative regions and because the specific intensity is an integral over sources from many angles at depth. The latter effect can only be captured by multi-angle transport. We then compute the phase relationship between dipolar oscillations in the shock radius and in matter and radiation quantities throughout the post-shock region. We demonstrate a connection between variations in neutrino flux and the hydrodynamical shock oscillations, and use a variant of the Rayleigh test to estimate the detectability of these neutrino fluctuations in IceCube and Super-Kamiokande. Neglecting flavor oscillations, fluctuations in our nonrotating model would be detectable to ~10 kpc in IceCube, and a detailed power spectrum could be measured out to ~5 kpc. These distances are considerably lower in our rapidly rotating model or with significant flavor oscillations. Finally, we measure the impact of rapid rotation on detectable neutrino signals. Our rapidly rotating model has strong, species-dependent asymmetries in both its peak neutrino flux and its light curves. The peak flux and decline rate show pole-equator ratios of up to ~3 and ~2, respectively.

  2. Can social media data lead to earlier detection of drug‐related adverse events?

    PubMed Central

    Cremieux, Pierre; Audenrode, Marc Van; Vekeman, Francis; Karner, Paul; Zhang, Haimin; Greenberg, Paul

    2016-01-01

    Abstract Purpose To compare the patient characteristics and the inter‐temporal reporting patterns of adverse events (AEs) for atorvastatin (Lipitor®) and sibutramine (Meridia®) in social media (AskaPatient.com) versus the FDA Adverse Event Reporting System (FAERS). Methods We identified clinically important AEs associated with atorvastatin (muscle pain) and sibutramine (cardiovascular AEs), compared their patterns in social media postings versus FAERS and used Granger causality tests to assess whether social media postings were useful in forecasting FAERS reports. Results We analyzed 998 and 270 social media postings between 2001 and 2014, 69 003 and 7383 FAERS reports between 1997 and 2014 for atorvastatin and sibutramine, respectively. Social media reporters were younger (atorvastatin: 53.9 vs. 64.0 years, p < 0.001; sibutramine: 36.8 vs. 43.8 years, p < 0.001). Social media reviews contained fewer serious AEs (atorvastatin, pain: 2.5% vs. 38.2%; sibutramine, cardiovascular issues: 7.9% vs. 63.0%; p < 0.001 for both) and concentrated on fewer types of AEs (proportion comprising the top 20 AEs: atorvastatin, 88.7% vs. 55.4%; sibutramine, 86.3% vs. 65.4%) compared with FAERS. While social media sibutramine reviews mentioning cardiac issues helped predict those in FAERS 11 months later (p < 0.001), social media atorvastatin reviews did not help predict FAERS reports. Conclusions Social media AE reporters were younger and focused on less‐serious and fewer types of AEs than FAERS reporters. The potential for social media to provide earlier indications of AEs compared with FAERS is uncertain. Our findings highlight some of the promises and limitations of online social media versus conventional pharmacovigilance sources and the need for careful interpretation of the results. © 2016 The Authors. Pharmacoepidemiology and Drug Safety published by John Wiley & Sons Ltd. PMID:27601271

  3. Preliminary results of sequential monitoring of simulated clandestine graves in Colombia, South America, using ground penetrating radar and botany.

    PubMed

    Molina, Carlos Martin; Pringle, Jamie K; Saumett, Miguel; Hernández, Orlando

    2015-03-01

    In most Latin American countries there are significant numbers of missing people and forced disappearances, 68,000 alone currently in Colombia. Successful detection of shallow buried human remains by forensic search teams is difficult in varying terrain and climates. This research has created three simulated clandestine burial styles at two different depths commonly encountered in Latin America to gain knowledge of optimum forensic geophysics detection techniques. Repeated monitoring of the graves post-burial was undertaken by ground penetrating radar. Radar survey 2D profile results show reasonable detection of ½ clothed pig cadavers up to 19 weeks of burial, with decreasing confidence after this time. Simulated burials using skeletonized human remains were not able to be imaged after 19 weeks of burial, with beheaded and burnt human remains not being able to be detected throughout the survey period. Horizontal radar time slices showed good early results up to 19 weeks of burial as more area was covered and bi-directional surveys were collected, but these decreased in amplitude over time. Deeper burials were all harder to image than shallower ones. Analysis of excavated soil found soil moisture content almost double compared to those reported from temperate climate studies. Vegetation variations over the simulated graves were also noted which would provide promising indicators for grave detection. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Earlier Right Ventricular Pacing in Cardiac Resynchronization Therapy for a Patient with Right Axis Deviation.

    PubMed

    Hattori, Yusuke; Ishibashi, Kohei; Noda, Takashi; Okamura, Hideo; Kanzaki, Hideaki; Anzai, Toshihisa; Yasuda, Satoshi; Kusano, Kengo

    2017-09-01

    We describe the case of a 37-year-old woman who presented with complete right bundle branch block and right axis deviation. She was admitted to our hospital due to severe heart failure and was dependent on inotropic agents. Cardiac resynchronization therapy was initiated but did not improve her condition. After the optimization of the pacing timing, we performed earlier right ventricular pacing, which led to an improvement of her heart failure. Earlier right ventricular pacing should be considered in patients with complete right bundle branch block and right axis deviation when cardiac resynchronization therapy is not effective.

  5. Simulating the Solar Wind Interaction with Comet 67P/Churyumov-Gerasimenko: Latest Results

    NASA Astrophysics Data System (ADS)

    Deca, J.; Divin, A. V.; Henri, P.; Eriksson, A. I.; Markidis, S.; Olshevsky, V.; Goldstein, R.; Myllys, M. E.; Horanyi, M.

    2017-12-01

    First observed in 1969, comet 67P/Churyumov-Gerasimenko was escorted for almost two years along its 6.45-yr elliptical orbit by ESA's Rosetta orbiter spacecraft. When a comet is sufficiently close to the Sun, the sublimation of ice leads to an outgassing atmosphere and the formation of a coma, and a dust and plasma tail. Comets are critical to decipher the physics of gas release processes in space. The latter result in mass-loaded plasmas, which more than three decades after the Active Magnetospheric Particle Tracer Explorers (AMPTE) space release experiments are still not fully understood. Using a 3D fully kinetic approach, we study the solar wind interaction with comet 67P/Churyumov-Gerasimenko, focusing in particular on the ion-electron dynamics for various outgassing rates. A detailed kinetic treatment of the electron dynamics is critical to fully capture the complex physics of mass-loading plasmas and to describe the strongly inhomogeneous plasma dynamics observed by Rosetta, down to electron kinetic scales.

  6. Homogenizing Advanced Alloys: Thermodynamic and Kinetic Simulations Followed by Experimental Results

    NASA Astrophysics Data System (ADS)

    Jablonski, Paul D.; Hawk, Jeffrey A.

    2017-01-01

    Segregation of solute elements occurs in nearly all metal alloys during solidification. The resultant elemental partitioning can severely degrade as-cast material properties and lead to difficulties during post-processing (e.g., hot shorts and incipient melting). Many cast articles are subjected to a homogenization heat treatment in order to minimize segregation and improve their performance. Traditionally, homogenization heat treatments are based upon past practice or time-consuming trial and error experiments. Through the use of thermodynamic and kinetic modeling software, NETL has designed a systematic method to optimize homogenization heat treatments. Use of the method allows engineers and researchers to homogenize casting chemistries to levels appropriate for a given application. The method also allows for the adjustment of heat treatment schedules to fit limitations on in-house equipment (capability, reliability, etc.) while maintaining clear numeric targets for segregation reduction. In this approach, the Scheil module within Thermo-Calc is used to predict the as-cast segregation present within an alloy, and then diffusion controlled transformations is used to model homogenization kinetics as a function of time and temperature. Examples of computationally designed heat treatments and verification of their effects on segregation and properties of real castings are presented.

  7. Learning Performance with Interactive Simulations in Medical Education: Lessons Learned from Results of Learning Complex Physiological Models with the HAEMOdynamics SIMulator

    ERIC Educational Resources Information Center

    Holzinger, Andreas; Kickmeier-Rust, Michael D.; Wassertheurer, Sigi; Hessinger, Michael

    2009-01-01

    Objective: Since simulations are often accepted uncritically, with excessive emphasis being placed on technological sophistication at the expense of underlying psychological and educational theories, we evaluated the learning performance of simulation software, in order to gain insight into the proper use of simulations for application in medical…

  8. Evolution and propagation of the July 23, 2012, CME-driven shock: A 3-D MHD simulation result

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Dryer, Ph D., M.; Liou, K.; Wu, C. C.

    2016-12-01

    The interplanetary shock associated with the July 23, 2012 CME event is studied with the H3DMHD 3-D magnetohydrodynamic (MHD) simulation model. This backside CME event has been actively studied, probably due to its extremely fast propagating speed ( 2000 km/s) and large magnetic field magnitude ( 100 nT) at 1 AU. Some workers even compared this even with the Carrington event. In this study we focus on the acceleration and deceleration of the shock at the cobpoints. The H3DMHD is a data (photospheric magnetic field) driven model, which combines the HAF kinematic model for regions sunward of 18 Rs and the 3DMHD ideal MHD model for antisunward of 18 Rs up to 1.5 AU. To simulate the CME a gaussian velocity pulse is manually applied to the inner simulation boundary at 2.5 Rs above the flare site, with the initial peak velocity ( 3000 km/s) taken from the coronagraph measurements. In situ measurements of the solar wind parameters at STEREO-A are used to validate the simulation result, in particular the arrival time of the shock at STEREO-A. It is found, for this particular event, the CME-driven shock strength varies significantly across the shock surface. In general, the shock strength slowly weakened while propagating outward but stayed hypersonic (> Mach 5) for a cone shape region of a few 10's of degrees surrounding the shock nose. We will discuss our result in the context of the acceleration/deceleration of shock in a much slower background solar wind and the relationship of the shock strength with the flux of solar energetic particles observed by STEREO-A.

  9. A Neighborhood-Scale Green Infrastructure Retrofit: Experimental Results, Model Simulations, and Resident Perspectives

    NASA Astrophysics Data System (ADS)

    Jefferson, A.; Avellaneda, P. M.; Jarden, K. M.; Turner, V. K.; Grieser, J.

    2016-12-01

    Distributed green infrastructure approaches to stormwater management that can be retrofit into existing development are of growing interest, but questions remain about their effectiveness at the watershed-scale. In suburban northeastern Ohio, homeowners on a residential street with 55% impervious surface were given the opportunity for free rain barrels, rain gardens, and bioretention cells. Of 163 parcels, only 22 owners (13.5%) chose to participate, despite intense outreach efforts. After pre-treatment monitoring, 37 rain barrels, 7 rain gardens, and 16 street-side bioretention cells were installed in 2013-2014. Using a paired watershed approach, a reduction in up to 33% of peak flow and 40% of total runoff volume per storm was measured in the storm sewer. Using the monitoring data, a calibrated and validated SWMM model was built to explore the long-term effectiveness of the green infrastructure against a wider range of hydrological conditions. Model results confirm the effectiveness of green infrastructure in reducing surface runoff and increasing infiltration and evaporation. Based on 20 years of historical precipitation data, the model shows that the green infrastructure is capable of reducing flows by >40% at the 1, 2, and 5 year return period, suggesting some resilience to projected increases in precipitation intensity in a changing climate. Further, in this project, more benefit is derived from the street-side bioretention cells than from the rain barrels and gardens that treat rooftop runoff. Substantial hydrological gains were achieved despite low homeowner participation. Surveys indicate that many residents viewed stormwater as the city's problem and had negative perceptions of green infrastructure, despite slightly pro-environment values generally. Overall, this study demonstrates green infrastructure's hydrological effectiveness but raises challenging questions about overcoming social barriers retrofits at the neighborhood scale.

  10. The North-South Asymmetry of the Heliospheric Current Sheet: Results of an MHD Simulation

    NASA Technical Reports Server (NTRS)

    Usmanov, Arcadi V.; Goldstein, Melvyn L.

    2013-01-01

    A displacement of the heliospheric current sheet (HCS) south of the helioequator by approx.10deg was proposed by Simpson et al. (1996) as a possible explanation of the north-south asymmetry in the galactic cosmic rays observed by Ulysses during its first fast transit in 1994-1995. The idea was not supported by magnetic field measurements on Ulysses and, on this ground, was dismissed by Simpson et al. (1996). In addition, Erdos & Balogh (1998) argued that any north-south symmetry was unlikely as there should be flux balance between the magnetic sectors of opposite polarity. Nonetheless, many in the scientific community have accepted the original suggestion of Simpson et al. (1996) that a displacement of the HCS was responsible for the cosmic ray asymmetry. In this paper, using a magnetohydrodynamic model of the solar corona and solar wind that includes both dipole and quadrupole magnetic source terms, we show that a north-south asymmetry of the magnetic field on the Sun does not give rise to a displacement of the HCS. The lack of displacement of the HCS results from a latitudinal redistribution of magnetic flux near the Sun where the plasma beta much < 1. The latitudinal redistribution is a direct consequence of the magnetic field gradient between pole and equator. Near the Sun, the latitudinal gradient in magnetic field generates meridional flows directed equatorward that tend to relax the gradient in the magnetic field (to make it more latitude-independent) as heliocentric distance increases. If there is an asymmetry between north and south magnetic field strength then the meridional flows are also asymmetric (i.e., stronger in the hemisphere of stronger magnetic field). Because the magnetic fluxes (positive and negative) in the hemispheres must be equal, the redistribution shifts the HCS into balance by approx. 16 R(solar mass). At larger distances, where the magnetic field is relatively weak (beta much > 1), the HCS can be displaced if there is a difference in

  11. Effects of weightlessness on the muscle system. new results of simulation's studies

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, I. B.; Shenkman, B. S.; Grigoriev, A. I.

    Results of studies of phenomenology and nature of the hypogravitational motor syndrome, provided at the Institute of Biomedical Problems of RAS, have shown that a decline of gravitational load is followed consistently by deep disturbances in all parts and structures of the motor system. An important role in their development plays the withdrawal of the support and, accordingly the decrease of the intensity of the support afferentation activities that provokes a decline of tonic motor units' activities and correspondingly a decline of the muscle tone in the first phase and the development of atrophic processes in slow fibers of antigravitational muscles in the second one (Kozlovskaya et.al., 1987). This hypothesis was tested in experiments with 7-hours and 7-days "dry immersion" (DI), in which effects of pure supportless environment and pure supportless environment coupled with mechanical stimulation of the support zones of the soles were compared. Stimulation with the pressure of 0,2 kg/sm^2 value to forefoot and heel support zones for 20 minutes every hour during 6 hours was applied daily in the regimen of slow and fast locomotion (pacing with the rate of 60 and 120 steps/min). The subjects exposed to the pure DI environment revealed after exposition a significant decline of the transverse stiffness and of the maximal isokinetic force of the leg postural muscles, a decrease of the postural muscles participation in the locomotions along with the increase of the phasic muscles' part, a significant decrease of the absolute force of m.soleus single skinned fibers evoked by Ca++, and an obvious decline of their transverse cross sectional areas as well as prominent disturbances of the activities of spinal and supraspinal motor control systems. Mechanical stimulation of the soles support zones eliminated all the above effects, minimizing the changes of the muscle stiffness and the maximal isokinetic force, taking away the signs of the isolated muscle fibers force decline

  12. Multiple Hypothesis Tracking (MHT) for Space Surveillance: Results and Simulation Studies

    NASA Astrophysics Data System (ADS)

    Singh, N.; Poore, A.; Sheaff, C.; Aristoff, J.; Jah, M.

    2013-09-01

    tracking performance compared to existing methods at a lower computational cost, especially for closely-spaced objects, in realistic multi-sensor multi-object tracking scenarios over multiple regimes of space. Specifically, we demonstrate that the prototype MHT system can accurately and efficiently process tens of thousands of UCTs and angles-only UCOs emanating from thousands of objects in LEO, GEO, MEO and HELO, many of which are closely-spaced, in real-time on a single laptop computer, thereby making it well-suited for large-scale breakup and tracking scenarios. This is possible in part because complexity reduction techniques are used to control the runtime of MHT without sacrificing accuracy. We assess the performance of MHT in relation to other tracking methods in multi-target, multi-sensor scenarios ranging from easy to difficult (i.e., widely-spaced objects to closely-spaced objects), using realistic physics and probabilities of detection less than one. In LEO, it is shown that the MHT system is able to address the challenges of processing breakups by analyzing multiple frames of data simultaneously in order to improve association decisions, reduce cross-tagging, and reduce unassociated UCTs. As a result, the multi-frame MHT system can establish orbits up to ten times faster than single-frame methods. Finally, it is shown that in GEO, MEO and HELO, the MHT system is able to address the challenges of processing angles-only optical observations by providing a unified multi-frame framework.

  13. Clinical Evidence for the Earlier Initiation of Insulin Therapy in Type 2 Diabetes

    PubMed Central

    2013-01-01

    Abstract The natural history of type 2 diabetes mellitus (T2DM) is a relentless progression of β-cell failure and dysregulation of β-cell function with increasing metabolic derangement. Insulin remains the only glucose-lowering therapy that is efficacious throughout this continuum. However, the timing of introduction and the choice of insulin therapy remain contentious because of the heterogeneity of T2DM and the well-recognized behavioral and therapeutic challenges associated with this mode of therapy. Nevertheless, the early initiation of basal insulin has been shown to improve glycemic control and affect long-term outcomes in people with T2DM and is a treatment strategy supported by international guidelines as part of an individualized approach to chronic disease management. The rationale for early initiation of insulin is based on evidence demonstrating multifaceted benefits, including overcoming the glucotoxic effects of hyperglycemia, thereby facilitating “β-cell rest,” and preserving β-cell mass and function, while also improving insulin sensitivity. Independent of its effects on glycemic control, insulin possesses anti-inflammatory and antioxidant properties that may help protect against endothelial dysfunction and damage resulting in vascular disease. Insulin therapy and the achievement of good glycemic control earlier in T2DM provide long-term protection to end organs via “metabolic memory” regardless of subsequent treatments and degree of glycemic control. This is evidenced from long-term observations continuing from trials such as the United Kingdom Prospective Diabetes Study. As such, early initiation of insulin therapy may not only help to avoid the effects of prolonged glycemic burden, but may also positively alter the course of disease progression. PMID:23786228

  14. Selection for Earlier Flowering Crop Associated with Climatic Variations in the Sahel

    PubMed Central

    Vigouroux, Yves; Mariac, Cédric; De Mita, Stéphane; Pham, Jean-Louis; Gérard, Bruno; Kapran, Issoufou; Sagnard, Fabrice; Deu, Monique; Chantereau, Jacques; Ali, Abdou; Ndjeunga, Jupiter; Luong, Viviane; Thuillet, Anne-Céline; Saïdou, Abdoul-Aziz; Bezançon, Gilles

    2011-01-01

    Climate changes will have an impact on food production and will require costly adaptive responses. Adapting to a changing environment will be particularly challenging in sub-Saharan Africa where climate change is expected to have a major impact. However, one important phenomenon that is often overlooked and is poorly documented is the ability of agro-systems to rapidly adapt to environmental variations. Such an adaptation could proceed by the adoption of new varieties or by the adaptation of varieties to a changing environment. In this study, we analyzed these two processes in one of the driest agro-ecosystems in Africa, the Sahel. We performed a detailed study in Niger where pearl millet is the main crop and covers 65% of the cultivated area. To assess how the agro-system is responding to recent recurrent drought, we analyzed samples of pearl millet landraces collected in the same villages in 1976 and 2003 throughout the entire cultivated area of Niger. We studied phenological and morphological differences in the 1976 and 2003 collections by comparing them over three cropping seasons in a common garden experiment. We found no major changes in the main cultivated varieties or in their genetic diversity. However, we observed a significant shift in adaptive traits. Compared to the 1976 samples, samples collected in 2003 displayed a shorter lifecycle, and a reduction in plant and spike size. We also found that an early flowering allele at the PHYC locus increased in frequency between 1976 and 2003. The increase exceeded the effect of drift and sampling, suggesting a direct effect of selection for earliness on this gene. We conclude that recurrent drought can lead to selection for earlier flowering in a major Sahelian crop. Surprisingly, these results suggest that diffusion of crop varieties is not the main driver of short term adaptation to climatic variation. PMID:21573243

  15. Phylogenomic analysis of Copepoda (Arthropoda, Crustacea) reveals unexpected similarities with earlier proposed morphological phylogenies.

    PubMed

    Eyun, Seong-Il

    2017-01-19

    Copepods play a critical role in marine ecosystems but have been poorly investigated in phylogenetic studies. Morphological evidence supports the monophyly of copepods, whereas interordinal relationships continue to be debated. In particular, the phylogenetic position of the order Harpacticoida is still ambiguous and inconsistent among studies. Until now, a small number of molecular studies have been done using only a limited number or even partial genes and thus there is so far no consensus at the order-level. This study attempted to resolve phylogenetic relationships among and within four major copepod orders including Harpacticoida and the phylogenetic position of Copepoda among five other crustacean groups (Anostraca, Cladocera, Sessilia, Amphipoda, and Decapoda) using 24 nuclear protein-coding genes. Phylogenomics has confirmed the monophyly of Copepoda and Podoplea. However, this study reveals surprising differences with the majority of the copepod phylogenies and unexpected similarities with postembryonic characters and earlier proposed morphological phylogenies; More precisely, Cyclopoida is more closely related to Siphonostomatoida than to Harpacticoida which is likely the most basally-branching group of Podoplea. Divergence time estimation suggests that the origin of Harpacticoida can be traced back to the Devonian, corresponding well with recently discovered fossil evidence. Copepoda has a close affinity to the clade of Malacostraca and Thecostraca but not to Branchiopoda. This result supports the hypothesis of the newly proposed clades, Communostraca, Multicrustacea, and Allotriocarida but further challenges the validity of Hexanauplia and Vericrustacea. The first phylogenomic study of Copepoda provides new insights into taxonomic relationships and represents a valuable resource that improves our understanding of copepod evolution and their wide range of ecological adaptations.

  16. Delusions and underlying needs in older adults with Alzheimer's disease: influence of earlier life experiences and the current environment.

    PubMed

    Wang, Jing-Jy; Cheng, Wen-Yun; Lai, Pei-Ru; Pai, Ming-Chyi

    2014-12-01

    Delusions are one of the most severe psychiatric symptoms of individuals with Alzheimer's disease (AD), which often increase the stress experienced by caregivers. The purpose of this study was to understand the influences of earlier life experiences and the current environment on delusions, as well as the underlying needs of older adults with AD who experience delusions. Using an exploratory research design with a qualitative approach and purposive sampling, 20 family caregivers were interviewed. Two psychosocial types of attributes of delusion were categorized: Type A, the influence of earlier life experiences; and Type B, current environmental influences. The underlying needs of those with delusions include physical comfort, a desire to be secure, and a sense of belonging. The contents of delusions are easily influenced by patients' earlier negative experiences and responsibilities, whereas the current environment exerts a crucial influence on the occurrence, frequency, and severity of specific delusions. These results can facilitate planning for patient-centered care by enhancing health care providers' understanding of the psychosocial and environmental attributes and needs behind delusions. Copyright 2014, SLACK Incorporated.

  17. Daily Use, Especially of High-Potency Cannabis, Drives the Earlier Onset of Psychosis in Cannabis Users

    PubMed Central

    Di Forti, Marta; Sallis, Hannah; Allegri, Fabio; Trotta, Antonella; Ferraro, Laura; Stilo, Simona A.; Marconi, Arianna; La Cascia, Caterina; Reis Marques, Tiago; Pariante, Carmine; Dazzan, Paola; Mondelli, Valeria; Paparelli, Alessandra; Kolliakou, Anna; Prata, Diana; Gaughran, Fiona; David, Anthony S.; Morgan, Craig; Stahl, Daniel; Khondoker, Mizanur; MacCabe, James H.; Murray, Robin M.

    2014-01-01

    Cannabis use is associated with an earlier age of onset of psychosis (AOP). However, the reasons for this remain debated. Methods: We applied a Cox proportional hazards model to 410 first-episode psychosis patients to investigate the association between gender, patterns of cannabis use, and AOP. Results: Patients with a history of cannabis use presented with their first episode of psychosis at a younger age (mean years = 28.2, SD = 8.0; median years = 27.1) than those who never used cannabis (mean years = 31.4, SD = 9.9; median years = 30.0; hazard ratio [HR] = 1.42; 95% CI: 1.16–1.74; P < .001). This association remained significant after controlling for gender (HR = 1.39; 95% CI: 1.11–1.68; P < .001). Those who had started cannabis at age 15 or younger had an earlier onset of psychosis (mean years = 27.0, SD = 6.2; median years = 26.9) than those who had started after 15 years (mean years = 29.1, SD = 8.5; median years = 27.8; HR = 1.40; 95% CI: 1.06–1.84; P = .050). Importantly, subjects who had been using high-potency cannabis (skunk-type) every day had the earliest onset (mean years = 25.2, SD = 6.3; median years = 24.6) compared to never users among all the groups tested (HR = 1.99; 95% CI: 1.50- 2.65; P < .0001); these daily users of high-potency cannabis had an onset an average of 6 years earlier than that of non-cannabis users. Conclusions: Daily use, especially of high-potency cannabis, drives the earlier onset of psychosis in cannabis users. PMID:24345517

  18. 40 CFR 87.21 - Exhaust emission standards for Tier 4 and earlier engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emissions (New Aircraft Gas Turbine Engines) § 87.21 Exhaust emission standards for Tier 4 and earlier... standards. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured... from each new aircraft gas turbine engine of class TF and of rated output of 129 kilonewtons thrust or...

  19. 40 CFR 87.21 - Exhaust emission standards for Tier 4 and earlier engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emissions (New Aircraft Gas Turbine Engines) § 87.21 Exhaust emission standards for Tier 4 and earlier... standards. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured... from each new aircraft gas turbine engine of class TF and of rated output of 129 kilonewtons thrust or...

  20. Reading-Related Skills in Earlier- and Later-Schooled Children

    ERIC Educational Resources Information Center

    Cunningham, Anna J.; Carroll, Julia M.

    2011-01-01

    We investigate the effects of age-related factors and formal instruction on the development of reading-related skills in children aged 4 and 7 years. Age effects were determined by comparing two groups of children at the onset of formal schooling; one aged 7 (later-schooled) and one aged 4 (earlier-schooled). Schooling effects were measured by…

  1. Identifying pneumonia outbreaks of public health importance: can emergency department data assist in earlier identification?

    PubMed

    Hope, Kirsty; Durrheim, David N; Muscatello, David; Merritt, Tony; Zheng, Wei; Massey, Peter; Cashman, Patrick; Eastwood, Keith

    2008-08-01

    To retrospectively review the performance of a near real-time Emergency Department (ED) Syndromic Surveillance System operating in New South Wales for identifying pneumonia outbreaks of public health importance. Retrospective data was obtained from the NSW Emergency Department data collection for a rural hospital that has experienced a cluster of pneumonia diagnoses among teenage males in August 2006. ED standard reports were examined for signals in the overall count for each respiratory syndrome, and for elevated counts in individual subgroups including; age, sex and admission to hospital status. Using the current thresholds, the ED syndromic surveillance system would have trigged a signal for pneumonia syndrome in children aged 5-16 years four days earlier than the notification by a paediatrician and this signal was maintained for 14 days. If the ED syndromic surveillance system had been operating it could have identified the outbreak earlier than the paediatrician's notification. This may have permitted an earlier public health response. By understanding the behaviour of syndromes during outbreaks of public health importance, response protocols could be developed to facilitate earlier implementation of control measures.

  2. Tidal Wave II Revisited: A Review of Earlier Enrollment Projections for California Higher Education.

    ERIC Educational Resources Information Center

    Hayward, Gerald C.; Breneman, David W.; Estrada, Leobardo F.

    This report examined enrollment projections for higher education institutions in California in relation to earlier projections conducted in the mid-1990s that forecasted steep declines in enrollment. It notes that California's remarkable economic recovery over the last several years has allowed it to fund higher education enrollment growth at a…

  3. Grid effects on the derived ion temperature and ram velocity from the simulated results of the retarding potential analyzer data

    NASA Astrophysics Data System (ADS)

    Chao, C. K.; Su, S.-Y.; Yeh, H. C.

    2003-12-01

    The ROCSAT-1 satellite circulating at 600 km altitude in the low- and mid-latitude topside ionosphere carries a retarding potential analyzer to measure the ion composition, temperature, and the plasma flow velocity in the ram direction. Based on an existing three-dimensional model, the particle's motion inside the instrument is simulated with the exact wire and mesh sizes but with a smaller aperture of the real sensor configuration. The simulation results indicate that the retarding grids could not provide a uniform retarding potential barrier to completely repel low energy particles. Some of low energy particles could pass through those grids and arrive at the collector. The leakage will cause the ram velocity to be over-estimated for by about 180 m/sec. Furthermore, the simulated O + temperature derived from the I-V curve is lower than the input temperature due to ion losses from colliding with the grids from the non-uniform potential field generated by the high retarding voltage.

  4. Coupling of charged particles via Coulombic interactions: Numerical simulations and resultant kappa-like velocity space distribution functions

    NASA Astrophysics Data System (ADS)

    Randol, Brent M.; Christian, Eric R.

    2016-03-01

    A parametric study is performed using the electrostatic simulations of Randol and Christian in which the number density, n, and initial thermal speed, θ, are varied. The range of parameters covers an extremely broad plasma regime, all the way from the very weak coupling of space plasmas to the very strong coupling of solid plasmas. The first result is that simulations at the same ΓD, where ΓD (∝ n1/3θ-2) is the plasma coupling parameter, but at different combinations of n and θ, behave exactly the same. As a function of ΓD, the form of p(v), the velocity distribution function of v, the magnitude of v, the velocity vector, is studied. For intermediate to high ΓD, heating is observed in p(v) that obeys conservation of energy, and a suprathermal tail is formed, with a spectral index that depends on ΓD. For strong coupling (ΓD≫1), the form of the tail is v-5, consistent with the findings of Randol and Christian). For weak coupling (ΓD≪1), no acceleration or heating occurs, as there is no free energy. The dependence on N, the number of particles in the simulation, is also explored. There is a subtle dependence in the index of the tail, such that v-5 appears to be the N→∞ limit.

  5. Coupling of Charged Particles Via Coulombic Interactions: Numerical Simulations and Resultant Kappa-Like Velocity Space Distribution Functions

    NASA Technical Reports Server (NTRS)

    Randol, Brent M.; Christian, Eric R.

    2016-01-01

    A parametric study is performed using the electrostatic simulations of Randol and Christian (2014) in which the number density, n, and initial thermal speed, theta, are varied. The range of parameters covers an extremely broad plasma regime, all the way from the very weak coupling of space plasmas to the very strong coupling of solid plasmas. The first result is that simulations at the same Lambda(sub D), where Lambda(sub D) is the plasma coupling parameter, but at different combinations of n and theta, behave exactly the same. As a function of Lambda(sub D), the form of p(v), the velocity distribution function of v, the magnitude of v, the velocity vector, is studied. For intermediate to high D, heating is observed in p(v) that obeys conservation of energy, and a suprathermal tail is formed, with a spectral index that depends on Lambda(sub D). For strong coupling (Lambda(sub D) much > 1), the form of the tail is v5, consistent with the findings of Randol and Christian (2014). For weak coupling (Lambda(sub D much <1), no acceleration or heating occurs, as there is no free energy. The dependence on N, the number of particles in the simulation, is also explored. There is a subtle dependence in the index of the tail, such that v5 appears to be the N approaches infinity limit.

  6. [Providing of a virtual simulator perineal anatomy (Pelvic Mentor®) in learning pelvic perineology: results of a preliminary study].

    PubMed

    Legendre, G; Sahmoune Rachedi, L; Descamps, P; Fernandez, H

    2015-01-01

    Medical and surgical simulation is in high demand. It is widely used in North America as a method of education and training of medical students and surgical residents. Learning anatomy and vaginal surgery are based on palpation recognition of different structures. The absence of visual control of actions learners is a limiting factor for the reproducibility of surgical techniques prolapse and urinary incontinenence. However, this reproducibility is the only guarantee of success and safety of these minimally invasive surgeries. We evaluated the contribution of an educational module perineal anatomy using a system combining anatomic mannequin and a computerized 3D virtual simulator (Pelvic Mentor®, Simbionix) in the knowledge of pelvic-perineal anatomical structures for eight residents of obstetrics and gynecology hospitals in Paris. The self-study training module has led to substantial improvements in internal rating with a proportion of structures recognized from 31.25 to 87.5 % (P<0.001) for the front compartment and 20 to 85 % (P<0.001) for the posterior compartment. The preliminary results suggest that the 3D virtual simulator enhances and facilitates learning the anatomy of the pelvic floor. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Can nutritional information modify purchase of ultra-processed products? Results from a simulated online shopping experiment.

    PubMed

    Machín, Leandro; Arrúa, Alejandra; Giménez, Ana; Curutchet, María Rosa; Martínez, Joseline; Ares, Gastón

    2018-01-01

    The aim of the present work was to evaluate the influence of two front-of-pack nutrition information schemes (traffic-light system and Chilean warning system) on consumer purchase of ultra-processed foods in a simulated online grocery store. Following a between-subjects design, participants completed a simulated weekly food purchase in an online grocery store under one of three experimental conditions: (i) a control condition with no nutrition information, (ii) a traffic-light system and (iii) the Chilean warning system. Information about energy (calories), sugar, saturated fats and salt content was included in the nutrition information schemes. Participants were recruited from a consumer database and a Facebook advertisement. People from Montevideo (Uruguay), aged 18-77 years (n 437; 75 % female), participated in the study. All participants were in charge of food purchase in the household, at least occasionally. No significant differences between experimental conditions were found in the mean share of ultra-processed foods purchased by participants, both in terms of number of products and expenditure, or in the mean energy, sugar, saturated fat and salt content of the purchased items. However, the Chilean warning system decreased intended purchase of sweets and desserts. Results from this online simulation provided little evidence to suggest that the traffic-light system or the Chilean warning system in isolation could be effective in reducing purchase of ultra-processed foods or improving the nutritional composition of the purchased products.

  8. Structure of star-burst dendrimers: a comparison between small angle x-ray scattering and computer simulation results.

    PubMed

    Rathgeber, Silke; Pakula, Tadeusz; Urban, Volker

    2004-08-22

    We investigated the generation dependent shape and internal structure of star-burst dendrimers under good solvent conditions using small angle x-ray scattering and molecular modeling. Measurements have been performed on poly(amidoamine) dendrimers with generations ranging from g=0 up to g=8 at low concentrations in methanol. We described the static form factor P(q) by a model taking into account the compact, globular shape as well as the loose, polymeric character of dendrimers. Monomer distributions within dendrimers are of special interest for potential applications and have been characterized by the pair correlation function gamma(r), as well as by the monomer and end-group density profile, rho(r) and rho(e)(r), respectively. Monomer density profiles and gamma(r) can be derived from P(q) by modeling and via a model independent approach using the inverse Fourier transformation algorithm first introduced by Glatter. Experimental results are compared with computer simulations performed for single dendrimers of various generations using the cooperative motion algorithm. The simulation gives direct access to gamma(r) and rho(r), allows an independent determination of P(q), and yields in addition to the scattering experiment information about the distribution of the end groups. Excellent qualitative agreement between experiment and simulation has been found. (c) 2004 American Institute of Physics

  9. Profile control simulations and experiments on TCV: a controller test environment and results using a model-based predictive controller

    NASA Astrophysics Data System (ADS)

    Maljaars, E.; Felici, F.; Blanken, T. C.; Galperti, C.; Sauter, O.; de Baar, M. R.; Carpanese, F.; Goodman, T. P.; Kim, D.; Kim, S. H.; Kong, M.; Mavkov, B.; Merle, A.; Moret, J. M.; Nouailletas, R.; Scheffer, M.; Teplukhina, A. A.; Vu, N. M. T.; The EUROfusion MST1-team; The TCV-team

    2017-12-01

    The successful performance of a model predictive profile controller is demonstrated in simulations and experiments on the TCV tokamak, employing a profile controller test environment. Stable high-performance tokamak operation in hybrid and advanced plasma scenarios requires control over the safety factor profile (q-profile) and kinetic plasma parameters such as the plasma beta. This demands to establish reliable profile control routines in presently operational tokamaks. We present a model predictive profile controller that controls the q-profile and plasma beta using power requests to two clusters of gyrotrons and the plasma current request. The performance of the controller is analyzed in both simulation and TCV L-mode discharges where successful tracking of the estimated inverse q-profile as well as plasma beta is demonstrated under uncertain plasma conditions and the presence of disturbances. The controller exploits the knowledge of the time-varying actuator limits in the actuator input calculation itself such that fast transitions between targets are achieved without overshoot. A software environment is employed to prepare and test this and three other profile controllers in parallel in simulations and experiments on TCV. This set of tools includes the rapid plasma transport simulator RAPTOR and various algorithms to reconstruct the plasma equilibrium and plasma profiles by merging the available measurements with model-based predictions. In this work the estimated q-profile is merely based on RAPTOR model predictions due to the absence of internal current density measurements in TCV. These results encourage to further exploit model predictive profile control in experiments on TCV and other (future) tokamaks.

  10. Veterans’ Preferences for Exchanging Information Using Veterans Affairs Health Information Technologies: Focus Group Results and Modeling Simulations

    PubMed Central

    Chavez, Margeaux; Nazi, Kim; Antinori, Nicole; Melillo, Christine; Cotner, Bridget A; Hathaway, Wendy; Cook, Ashley; Wilck, Nancy; Noonan, Abigail

    2017-01-01

    Background The Department of Veterans Affairs (VA) has multiple health information technology (HIT) resources for veterans to support their health care management. These include a patient portal, VetLink Kiosks, mobile apps, and telehealth services. The veteran patient population has a variety of needs and preferences that can inform current VA HIT redesign efforts to meet consumer needs. Objective This study aimed to describe veterans’ experiences using the current VA HIT and identify their vision for the future of an integrated VA HIT system. Methods Two rounds of focus group interviews were conducted with a single cohort of 47 veterans and one female caregiver recruited from Bedford, Massachusetts, and Tampa, Florida. Focus group interviews included simulation modeling activities and a self-administered survey. This study also used an expert panel group to provide data and input throughout the study process. High-fidelity, interactive simulations were created and used to facilitate collection of qualitative data. The simulations were developed based on system requirements, data collected through operational efforts, and participants' reported preferences for using VA HIT. Pairwise comparison activities of HIT resources were conducted with both focus groups and the expert panel. Rapid iterative content analysis was used to analyze qualitative data. Descriptive statistics summarized quantitative data. Results Data themes included (1) current use of VA HIT, (2) non-VA HIT use, and (3) preferences for future use of VA HIT. Data indicated that, although the Secure Messaging feature was often preferred, a full range of HIT options are needed. These data were then used to develop veteran-driven simulations that illustrate user needs and expectations when using a HIT system and services to access VA health care services. Conclusions Patient participant redesign processes present critical opportunities for creating a human-centered design. Veterans value virtual health

  11. Scientific results and lessons learned from an integrated crewed Mars exploration simulation at the Rio Tinto Mars analogue site

    NASA Astrophysics Data System (ADS)

    Orgel, Csilla; Kereszturi, Ákos; Váczi, Tamás; Groemer, Gernot; Sattler, Birgit

    2014-02-01

    Between 15 and 25 April 2011 in the framework of the PolAres programme of the Austrian Space Forum, a five-day field test of the Aouda.X spacesuit simulator was conducted at the Rio Tinto Mars-analogue site in southern Spain. The field crew was supported by a full-scale Mission Control Center (MCC) in Innsbruck, Austria. The field telemetry data were relayed to the MCC, enabling a Remote Science Support (RSS) team to study field data in near-real-time and adjust the flight planning in a flexible manner. We report on the experiences in the field of robotics, geophysics (Ground Penetrating Radar) and geology as well as life sciences in a simulated spaceflight operational environment. Extravehicular Activity (EVA) maps had been prepared using Google Earth and aerial images. The Rio Tinto mining area offers an excellent location for Mars analogue simulations. It is recognised as a terrestrial Mars analogue site because of the presence of jarosite and related sulphates, which have been identified by the NASA Mars Exploration Rover "Opportunity" in the El Capitan region of Meridiani Planum on Mars. The acidic, high ferric-sulphate content water of Rio Tinto is also considered as a possible analogue in astrobiology regarding the analysis of ferric sulphate related biochemical pathways and produced biomarkers. During our Mars simulation, 18 different types of soil and rock samples were collected by the spacesuit tester. The Raman results confirm the presence of minerals expected, such as jarosite, different Fe oxides and oxi-hydroxides, pyrite and complex Mg and Ca sulphates. Eight science experiments were conducted in the field. In this contribution first we list the important findings during the management and realisation of tests, and also a first summary of the scientific results. Based on these experiences suggestions for future analogue work are also summarised. We finish with recommendations for future field missions, including the preparation of the experiments

  12. Free Energy Landscape of Protein-Protein Encounter Resulting from Brownian Dynamics Simulations of Barnase:Barstar.

    PubMed

    Spaar, Alexander; Helms, Volkhard

    2005-07-01

    Over the past years Brownian dynamics (BD) simulations have been proven to be a suitable tool for the analysis of protein-protein association. The computed rates and relative trends for protein mutants and different ionic strength are generally in good agreement with experimental results, e.g. see ref 1. By design, BD simulations correspond to an intensive sampling over energetically favorable states, rather than to a systematic sampling over all possible states which is feasible only at rather low resolution. On the example of barnase and barstar, a well characterized model system of electrostatically steered diffusional encounter, we report here the computation of the 6-dimensional free energy landscape for the encounter process of two proteins by a novel, careful analysis of the trajectories from BD simulations. The aim of these studies was the clarification of the encounter state. Along the trajectories, the individual positions and orientations of one protein (relative to the other) are recorded and stored in so-called occupancy maps. Since the number of simulated trajectories is sufficiently high, these occupancy maps can be interpreted as a probability distribution which allows the calculation of the entropy landscape by the use of a locally defined entropy function. Additionally, the configuration dependent electrostatic and desolvation energies are recorded in separate maps. The free energy landscape of protein-protein encounter is finally obtained by summing the energy and entropy contributions. In the free energy profile along the reaction path, which is defined as the path along the minima in the free energy landscape, a minimum shows up suggesting this to be used as the definition of the encounter state. This minimum describes a state of reduced diffusion velocity where the electrostatic attraction is compensated by the repulsion due to the unfavorable desolvation of the charged residues and the entropy loss due to the increasing restriction of the

  13. Cardiac Complications, Earlier Treatment, and Initial Disease Severity in Kawasaki Disease.

    PubMed

    Abrams, Joseph Y; Belay, Ermias D; Uehara, Ritei; Maddox, Ryan A; Schonberger, Lawrence B; Nakamura, Yosikazu

    2017-09-01

    To assess if observed higher observed risks of cardiac complications for patients with Kawasaki disease (KD) treated earlier may reflect bias due to confounding from initial disease severity, as opposed to any negative effect of earlier treatment. We used data from Japanese nationwide KD surveys from 1997 to 2004. Receipt of additional intravenous immunoglobulin (IVIG) (data available all years) or any additional treatment (available for 2003-2004) were assessed as proxies for initial disease severity. We determined associations between earlier or later IVIG treatment (defined as receipt of IVIG on days 1-4 vs days 5-10 of illness) and cardiac complications by stratifying by receipt of additional treatment or by using logistic modeling to control for the effect of receiving additional treatment. A total of 48 310 patients with KD were included in the analysis. In unadjusted analysis, earlier IVIG treatment was associated with a higher risk for 4 categories of cardiac complications, including all major cardiac complications (risk ratio, 1.10; 95% CI, 1.06-1.15). Stratifying by receipt of additional treatment removed this association, and earlier IVIG treatment became protective against all major cardiac complications when controlling for any additional treatment in logistic regressions (OR, 0.90; 95% CI, 0.80-1.00). Observed higher risks of cardiac complications among patients with KD receiving IVIG treatment on days 1-4 of the illness are most likely due to underlying higher initial disease severity, and patients with KD should continue to be treated with IVIG as early as possible. Published by Elsevier Inc.

  14. Optimization of the parameters for obtaining zirconia-alumina coatings, made by flame spraying from results of numerical simulation

    NASA Astrophysics Data System (ADS)

    Ferrer, M.; Vargas, F.; Peña, G.

    2017-12-01

    The K-Sommerfeld values (K) and the melting percentage (% F) obtained by numerical simulation using the Jets et Poudres software were used to find the projection parameters of zirconia-alumina coatings by thermal spraying flame, in order to obtain coatings with good morphological and structural properties to be used as thermal insulation. The experimental results show the relationship between the Sommerfeld parameter and the porosity of the zirconia-alumina coatings. It is found that the lowest porosity is obtained when the K-Sommerfeld value is close to 45 with an oxidant flame, on the contrary, when superoxidant flames are used K values are close 52, which improve wear resistance.

  15. Laboratory simulations of astrophysical jets: results from experiments at the PF-3, PF-1000U, and KPF-4 facilities

    NASA Astrophysics Data System (ADS)

    Krauz, V. I.; Myalton, V. V.; Vinogradov, V. P.; Velikhov, E. P.; Ananyev, S. S.; Dan'ko, S. A.; Kalinin, Yu G.; Kharrasov, A. M.; Vinogradova, Yu V.; Mitrofanov, K. N.; Paduch, M.; Miklaszewski, R.; Zielinska, E.; Skladnik-Sadowska, E.; Sadowski, M. J.; Kwiatkowski, R.; Tomaszewski, K.; Vojtenko, D. A.

    2017-10-01

    Results are presented from laboratory simulations of plasma jets emitted by young stellar objects carried out at the plasma focus facilities. The experiments were performed at three facilities: the PF-3, PF-1000U and KPF-4. The operation modes were realized enabling the formation of narrow plasma jets which can propagate over long distances. The main parameters of plasma jets and background plasma were determined. In order to control the ratio of a jet density to that of background plasma, some special operation modes with pulsed injection of the working gas were used.

  16. NUCLEAR HEATING IN LIF DOSEMETERS IN A FUSION NEUTRON FIELD, TRIAL OF DIRECT COMPARISON OF EXPERIMENTAL AND SIMULATED RESULTS.

    PubMed

    Pohorecki, Wladyslaw; Obryk, Barbara

    2017-09-29

    The results of nuclear heating measured by means of thermoluminescent dosemeters (TLD-LiF) in a Cu block irradiated by 14 MeV neutrons are presented. The integral Cu experiment relevant for verification of copper nuclear data at neutron energies characteristic for fusion facilities was performed in the ENEA FNG Laboratory at Frascati. Five types of TLDs were used: highly photon sensitive LiF:Mg,Cu,P (MCP-N), 7LiF:Mg,Cu,P (MCP-7) and standard, lower sensitivity LiF:Mg,Ti (MTS-N), 7LiF:Mg,Ti (MTS-7) and 6LiF:Mg,Ti (MTS-6). Calibration of the detectors was performed with gamma rays in terms of air-kerma (10 mGy of 137Cs air-kerma). Nuclear heating in the Cu block was also calculated with the use of MCNP transport code Nuclear heating in Cu and air in TLD's positions was calculated as well. The nuclear heating contribution from all simulated by MCNP6 code particles including protons, deuterons, alphas tritons and heavier ions produced by the neutron interactions were calculated. A trial of the direct comparison between experimental results and results of simulation was performed. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Brief Report: Simulations Suggest Heterogeneous Category Learning and Generalization in Children with Autism is a Result of Idiosyncratic Perceptual Transformations.

    PubMed

    Mercado, Eduardo; Church, Barbara A

    2016-08-01

    Children with autism spectrum disorder (ASD) sometimes have difficulties learning categories. Past computational work suggests that such deficits may result from atypical representations in cortical maps. Here we use neural networks to show that idiosyncratic transformations of inputs can result in the formation of feature maps that impair category learning for some inputs, but not for other closely related inputs. These simulations suggest that large inter- and intra-individual variations in learning capacities shown by children with ASD across similar categorization tasks may similarly result from idiosyncratic perceptual encoding that is resistant to experience-dependent changes. If so, then both feedback- and exposure-based category learning should lead to heterogeneous, stimulus-dependent deficits in children with ASD.

  18. Earlier Endpoints Are Required for Hemorrhagic Shock Trials among Severely Injured Patients

    PubMed Central

    Fox, Erin E.; Holcomb, John B.; Wade, Charles E.; Bulger, Eileen M.; Tilley, Barbara C.

    2016-01-01

    Background Choosing the appropriate endpoint for a trauma hemorrhage control trial can determine the likelihood of its success. Recent Phase 3 trials and observational studies have used 24-hour and/or 30-day all-cause mortality as the primary endpoint and some have not used exception from informed consent (EFIC), resulting in multiple failed trials. Five recent high-quality prospective studies among 4,064 hemorrhaging trauma patients provide new evidence to support earlier primary endpoints. Methods The goal of this project was to determine the optimal endpoint for hemorrhage control trials using existing literature and new analyses of previously published data. Results Recent studies among bleeding trauma patients show that hemorrhagic deaths occur rapidly, at a high rate, and in a consistent pattern. Early preventable deaths among trauma patients are largely due to hemorrhage and the median time to hemorrhagic death from admission is 2.0-2.6 hours. Approximately 85% of hemorrhagic deaths occur within 6 hours. The hourly mortality rate due to traumatic injury decreases rapidly after enrollment from 4.6% per hour at 1 hour post-enrollment to 1% per hour at 6 hours to <0.1% per hour by 9 hours and thereafter. Early primary endpoints (within 6 hours) have critically important benefits for hemorrhage control trials, including being congruent with the median time to hemorrhagic death, biologic plausibility, and enabling the use of all-cause mortality, which is definitive and objective. Conclusions Primary endpoints should be congruent with the timing of the disease process. Therefore, if a resuscitation/hemorrhage control intervention is under study, a primary endpoint of all-cause mortality evaluated within the first 6 hours is appropriate. Before choosing the timing of the primary endpoint for a large multicenter trial, we recommend performing a Phase 2 trial under EFIC to better understand the effects of the hemorrhage control intervention and distribution of time

  19. Physico-chemical properties of aqueous drug solutions: From the basic thermodynamics to the advanced experimental and simulation results.

    PubMed

    Bellich, Barbara; Gamini, Amelia; Brady, John W; Cesàro, Attilio

    2018-04-05

    The physical chemical properties of aqueous solutions of model compounds are illustrated in relation to hydration and solubility issues by using three perspectives: thermodynamic, spectroscopic and molecular dynamics simulations. The thermodynamic survey of the fundamental backgrounds of concentration dependence and experimental solubility results show some peculiar behavior of aqueous solutions with several types of similar solutes. Secondly, the use of a variety of experimental spectroscopic devices, operating under different experimental conditions of dimension and frequency, has produced a large amount of structural and dynamic data on aqueous solutions showing the richness of the information produced, depending on where and how the experiment is carried out. Finally, the use of molecular dynamics computational work is presented to highlight how the different types of solute functional groups and surface topologies organize adjacent water molecules differently. The highly valuable contribution of computer simulation studies in providing molecular explanations for experimental deductions, either of a thermodynamic or spectroscopic nature, is shown to have changed the current knowledge of many aqueous solution processes. While this paper is intended to provide a collective view on the latest literature results, still the presentation aims at a tutorial explanation of the potentials of the three methodologies in the field of aqueous solutions of pharmaceutical molecules. Copyright © 2018. Published by Elsevier B.V.

  20. How uncertain is the future of electric vehicle market: Results from Monte Carlo simulations using a nested logit model

    SciTech Connect

    Liu, Changzheng; Oak Ridge National Lab.; Lin, Zhenhong

    Plug-in electric vehicles (PEVs) are widely regarded as an important component of the technology portfolio designed to accomplish policy goals in sustainability and energy security. However, the market acceptance of PEVs in the future remains largely uncertain from today's perspective. By integrating a consumer choice model based on nested multinomial logit and Monte Carlo simulation, this study analyzes the uncertainty of PEV market penetration using Monte Carlo simulation. Results suggest that the future market for PEVs is highly uncertain and there is a substantial risk of low penetration in the early and midterm market. Top factors contributing to market sharemore » variability are price sensitivities, energy cost, range limitation, and charging availability. The results also illustrate the potential effect of public policies in promoting PEVs through investment in battery technology and infrastructure deployment. Here, continued improvement of battery technologies and deployment of charging infrastructure alone do not necessarily reduce the spread of market share distributions, but may shift distributions toward right, i.e., increase the probability of having great market success.« less

  1. How uncertain is the future of electric vehicle market: Results from Monte Carlo simulations using a nested logit model

    DOE PAGES

    Liu, Changzheng; Oak Ridge National Lab.; Lin, Zhenhong; ...

    2016-12-08

    Plug-in electric vehicles (PEVs) are widely regarded as an important component of the technology portfolio designed to accomplish policy goals in sustainability and energy security. However, the market acceptance of PEVs in the future remains largely uncertain from today's perspective. By integrating a consumer choice model based on nested multinomial logit and Monte Carlo simulation, this study analyzes the uncertainty of PEV market penetration using Monte Carlo simulation. Results suggest that the future market for PEVs is highly uncertain and there is a substantial risk of low penetration in the early and midterm market. Top factors contributing to market sharemore » variability are price sensitivities, energy cost, range limitation, and charging availability. The results also illustrate the potential effect of public policies in promoting PEVs through investment in battery technology and infrastructure deployment. Here, continued improvement of battery technologies and deployment of charging infrastructure alone do not necessarily reduce the spread of market share distributions, but may shift distributions toward right, i.e., increase the probability of having great market success.« less

  2. Probability of acoustic transmitter detections by receiver lines in Lake Huron: results of multi-year field tests and simulations

    USGS Publications Warehouse

    Hayden, Todd A.; Holbrook, Christopher M.; Binder, Thomas; Dettmers, John M.; Cooke, Steven J.; Vandergoot, Christopher S.; Krueger, Charles C.

    2016-01-01

    BackgroundAdvances in acoustic telemetry technology have led to an improved understanding of the spatial ecology of many freshwater and marine fish species. Understanding the performance of acoustic receivers is necessary to distinguish between tagged fish that may have been present but not detected and from those fish that were absent from the area. In this study, two stationary acoustic transmitters were deployed 250 m apart within each of four acoustic receiver lines each containing at least 10 receivers (i.e., eight acoustic transmitters) located in Saginaw Bay and central Lake Huron for nearly 2 years to determine whether the probability of detecting an acoustic transmission varied as a function of time (i.e., season), location, and distance between acoustic transmitter and receiver. Distances between acoustic transmitters and receivers ranged from 200 m to >10 km in each line. The daily observed probability of detecting an acoustic transmission was used in simulation models to estimate the probability of detecting a moving acoustic transmitter on a line of receivers.ResultsThe probability of detecting an acoustic transmitter on a receiver 1000 m away differed by month for different receiver lines in Lake Huron and Saginaw Bay but was similar for paired acoustic transmitters deployed 250 m apart within the same line. Mean probability of detecting an acoustic transmitter at 1000 m calculated over the study period varied among acoustic transmitters 250 m apart within a line and differed among receiver lines in Lake Huron and Saginaw Bay. The simulated probability of detecting a moving acoustic transmitter on a receiver line was characterized by short periods of time with decreased detection. Although increased receiver spacing and higher fish movement rates decreased simulated detection probability, the location of the simulated receiver line in Lake Huron had the strongest effect on simulated detection probability.ConclusionsPerformance of receiver

  3. New High-Altitude GPS Navigation Results from the Magnetospheric Multiscale Spacecraft and Simulations at Lunar Distances

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.

    2017-01-01

    As reported in a companion work, in its first phase, NASA's 2015 highly elliptic Magnetospheric Multiscale (MMS) mission set a record for the highest altitude operational use of on-board GPS-based navigation, returning state estimates at 12 Earth radii. In early 2017 MMS transitioned to its second phase which doubled the apogee distance to 25 Earth radii, approaching halfway to the Moon. This paper will present results for GPS observability and navigation performance achieved in MMS Phase 2. Additionally, it will provide simulation results predicting the performance of the MMS navigation system applied to a pair of concept missions at Lunar distances. These studies will demonstrate how high-sensitivity GPS (or GNSS) receivers paired with onboard navigation software, as in MMS-Navigation system, can extend the envelope of autonomous onboard GPS navigation far from the Earth.

  4. A Hepatocellular Carcinoma Case in a Patient Who had Immunity to Hepatitis B Virus Earlier.

    PubMed

    Ates, Ihsan; Kaplan, Mustafa; Demirci, Selim; Altiparmak, Emin

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver. Hepatitis B virus infection is one of the most important etilogical factors of HCC. In this case report, a patient with HCC previously infected and having ongoing immunity against hepatitis B virus will be discussed. Ates I, Kaplan M, Demirci S, Altiparmak E. A Hepatocellular Carcinoma Case in a Patient Who had Immunity to Hepatitis B Virus Earlier. Euroasian J Hepato-Gastroenterol 2016;6(1):82-83.

  5. Facilitating earlier transfer of care from acute stroke services into the community.

    PubMed

    Robinson, Jennifer

    This article outlines an initiative to reduce length of stay for stroke patients within an acute hospital and to facilitate earlier transfer of care. Existing care provision was remodelled and expanded to deliver stroke care to patients within a community bed-based intermediate care facility or intermediate care at home. This new model of care has improved the delivery of rehabilitation through alternative and innovative ways of addressing service delivery that meet the needs of the patients.

  6. A Review of Quality of Life after Predictive Testing for and Earlier Identification of Neurodegenerative Diseases

    PubMed Central

    Paulsen, Jane S.; Nance, Martha; Kim, Ji-In; Carlozzi, Noelle E.; Panegyres, Peter K.; Erwin, Cheryl; Goh, Anita; McCusker, Elizabeth; Williams, Janet K.

    2013-01-01

    The past decade has witnessed an explosion of evidence suggesting that many neurodegenerative diseases can be detected years, if not decades, earlier than previously thought. To date, these scientific advances have not provoked any parallel translational or clinical improvements. There is an urgency to capitalize on this momentum so earlier detection of disease can be more readily translated into improved health-related quality of life for families at risk for, or suffering with, neurodegenerative diseases. In this review, we discuss health-related quality of life (HRQOL) measurement in neurodegenerative diseases and the importance of these “patient reported outcomes” for all clinical research. Next, we address HRQOL following early identification or predictive genetic testing in some neurodegenerative diseases: Huntington disease, Alzheimer's disease, Parkinson's disease, Dementia with Lewy bodies, frontotemporal dementia, amyotrophic lateral sclerosis, prion diseases, hereditary ataxias, Dentatorubral-pallidoluysian atrophy and Wilson's disease. After a brief report of available direct-to-consumer genetic tests, we address the juxtaposition of earlier disease identification with assumed reluctance towards predictive genetic testing. Forty-one studies examining health related outcomes following predictive genetic testing for neurodegenerative disease suggested that (a) extreme or catastrophic outcomes are rare; (b) consequences commonly include transiently increased anxiety and/or depression; (c) most participants report no regret; (d) many persons report extensive benefits to receiving genetic information; and (e) stigmatization and discrimination for genetic diseases are poorly understood and policy and laws are needed. Caution is appropriate for earlier identification of neurodegenerative diseases but findings suggest further progress is safe, feasible and likely to advance clinical care. PMID:24036231

  7. Diagnosis of varicoceles in men undergoing vasectomy may lead to earlier detection of hypogonadism.

    PubMed

    Liu, Joceline S; Jones, Madeline; Casey, Jessica T; Fuchs, Amanda B; Cashy, John; Lin, William W

    2014-06-01

    To determine the temporal relationship between vasectomy, varicocele, and hypogonadism diagnosis. Many young men undergo their first thorough genitourinary examination in their adult lives at the time of vasectomy consultation, providing a unique opportunity for diagnosis of asymptomatic varicoceles. Varicoceles have recently been implicated as a possible reversible contributor to hypogonadism. Hypogonadism may be associated with significant adverse effect, including decreased libido, impaired cognitive function, and increased cardiovascular events. Early diagnosis and treatment of hypogonadism may prevent these adverse sequelae. Data were collected from the Truven Health Analytics MarketScan database, a large outpatient claims database. We reviewed records between 2003 and 2010 for male patients between the ages of 25 and 50 years with International Classification of Diseases, Ninth Revision codes for hypogonadism, vasectomy, and varicocele, and queried dates of first claim. A total of 15,679 men undergoing vasectomies were matched with 156,790 men with nonvasectomy claims in the same year. Vasectomy patients were diagnosed with varicocele at an earlier age (40.9 vs 42.5 years; P=.009). We identified 224,817 men between the ages of 25 and 50 years with a claim of hypogonadism, of which 5883 (2.6%) also had a claim of varicocele. Men with hypogonadism alone were older at presentation compared with men with an accompanying varicocele (41.3 [standard deviation±6.5] vs 34.9 [standard deviation±6.1]; P<.001). Men undergoing vasectomies are diagnosed with varicoceles at a younger age than age-matched controls. Men with varicoceles present with hypogonadism earlier than men without varicoceles. Earlier diagnosis of varicocele at the time of vasectomy allows for earlier detection of hypogonadism. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Results of the Sea Ice Model Intercomparison Project: Evaluation of sea ice rheology schemes for use in climate simulations

    NASA Astrophysics Data System (ADS)

    Kreyscher, Martin; Harder, Markus; Lemke, Peter; Flato, Gregory M.

    2000-05-01

    A hierarchy of sea ice rheologies is evaluated on the basis of a comprehensive set of observational data. The investigations are part of the Sea Ice Model Intercomparison Project (SIMIP). Four different sea ice rheology schemes are compared: a viscous-plastic rheology, a cavitating-fluid model, a compressible Newtonian fluid, and a simple free drift approach with velocity correction. The same grid, land boundaries, and forcing fields are applied to all models. As verification data, there are (1) ice thickness data from upward looking sonars (ULS), (2) ice concentration data from the passive microwave radiometers SMMR and SSM/I, (3) daily buoy drift data obtained by the International Arctic Buoy Program (IABP), and (4) satellite-derived ice drift fields based on the 85 GHz channel of SSM/I. All models are optimized individually with respect to mean drift speed and daily drift speed statistics. The impact of ice strength on the ice cover is best revealed by the spatial pattern of ice thickness, ice drift on different timescales, daily drift speed statistics, and the drift velocities in Fram Strait. Overall, the viscous-plastic rheology yields the most realistic simulation. In contrast, the results of the very simple free-drift model with velocity correction clearly show large errors in simulated ice drift as well as in ice thicknesses and ice export through Fram Strait compared to observation. The compressible Newtonian fluid cannot prevent excessive ice thickness buildup in the central Arctic and overestimates the internal forces in Fram Strait. Because of the lack of shear strength, the cavitating-fluid model shows marked differences to the statistics of observed ice drift and the observed spatial pattern of ice thickness. Comparison of required computer resources demonstrates that the additional cost for the viscous-plastic sea ice rheology is minor compared with the atmospheric and oceanic model components in global climate simulations.

  9. Performance of a proportion-based approach to meta-analytic moderator estimation: results from Monte Carlo simulations.

    PubMed

    Aguirre-Urreta, Miguel I; Ellis, Michael E; Sun, Wenying

    2012-03-01

    This research investigates the performance of a proportion-based approach to meta-analytic moderator estimation through a series of Monte Carlo simulations. This approach is most useful when the moderating potential of a categorical variable has not been recognized in primary research and thus heterogeneous groups have been pooled together as a single sample. Alternative scenarios representing different distributions of group proportions are examined along with varying numbers of studies, subjects per study, and correlation combinations. Our results suggest that the approach is largely unbiased in its estimation of the magnitude of between-group differences and performs well with regard to statistical power and type I error. In particular, the average percentage bias of the estimated correlation for the reference group is positive and largely negligible, in the 0.5-1.8% range; the average percentage bias of the difference between correlations is also minimal, in the -0.1-1.2% range. Further analysis also suggests both biases decrease as the magnitude of the underlying difference increases, as the number of subjects in each simulated primary study increases, and as the number of simulated studies in each meta-analysis increases. The bias was most evident when the number of subjects and the number of studies were the smallest (80 and 36, respectively). A sensitivity analysis that examines its performance in scenarios down to 12 studies and 40 primary subjects is also included. This research is the first that thoroughly examines the adequacy of the proportion-based approach. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Earlier reperfusion in patients with ST-elevation Myocardial infarction by use of helicopter

    PubMed Central

    2012-01-01

    Background In patients with ST-elevation myocardial infarction (STEMI) reperfusion therapy should be initiated as soon as possible. This study evaluated whether use of a helicopter for transportation of patients is associated with earlier initiation of reperfusion therapy. Material and methods A prospective study was conducted, including patients with STEMI and symptom duration less than 12 hours, who had primary percutaneous coronary intervention (PPCI) performed at Aarhus University Hospital in Skejby. Patients with a health care system delay (time from emergency call to first coronary intervention) of more than 360 minutes were excluded. The study period ran from 1.1.2011 until 31.12.2011. A Western Denmark Helicopter Emergency Medical Service (HEMS) project was initiated 1.6.2011 for transportation of patients with time-critical illnesses, including STEMI. Results The study population comprised 398 patients, of whom 376 were transported by ambulance Emergency Medical Service (EMS) and 22 by HEMS. Field-triage directly to the PCI-center was used in 338 of patients. The median system delay was 94 minutes among those field-triaged, and 168 minutes among those initially admitted to a local hospital. Patients transported by EMS and field-triaged were stratified into four groups according to transport distance from the scene of event to the PCI-center: ≤25 km., 26–50 km., 51–75 km. and > 75 km. For these groups, the median system delay was 78, 89, 99, and 141 minutes. Among patients transported by HEMS and field-triaged the estimated median transport distance by ground transportation was 115 km, and the observed system delay was 107 minutes. Based on second order polynomial regression, it was estimated that patients with a transport distance of >60 km to the PCI-center may benefit from helicopter transportation, and that transportation by helicopter is associated with a system delay of less than 120 minutes even at a transport distance up to 150 km

  11. Can social media data lead to earlier detection of drug-related adverse events?

    PubMed

    Duh, Mei Sheng; Cremieux, Pierre; Audenrode, Marc Van; Vekeman, Francis; Karner, Paul; Zhang, Haimin; Greenberg, Paul

    2016-12-01

    To compare the patient characteristics and the inter-temporal reporting patterns of adverse events (AEs) for atorvastatin (Lipitor ® ) and sibutramine (Meridia ® ) in social media (AskaPatient.com) versus the FDA Adverse Event Reporting System (FAERS). We identified clinically important AEs associated with atorvastatin (muscle pain) and sibutramine (cardiovascular AEs), compared their patterns in social media postings versus FAERS and used Granger causality tests to assess whether social media postings were useful in forecasting FAERS reports. We analyzed 998 and 270 social media postings between 2001 and 2014, 69 003 and 7383 FAERS reports between 1997 and 2014 for atorvastatin and sibutramine, respectively. Social media reporters were younger (atorvastatin: 53.9 vs. 64.0 years, p < 0.001; sibutramine: 36.8 vs. 43.8 years, p < 0.001). Social media reviews contained fewer serious AEs (atorvastatin, pain: 2.5% vs. 38.2%; sibutramine, cardiovascular issues: 7.9% vs. 63.0%; p < 0.001 for both) and concentrated on fewer types of AEs (proportion comprising the top 20 AEs: atorvastatin, 88.7% vs. 55.4%; sibutramine, 86.3% vs. 65.4%) compared with FAERS. While social media sibutramine reviews mentioning cardiac issues helped predict those in FAERS 11 months later (p < 0.001), social media atorvastatin reviews did not help predict FAERS reports. Social media AE reporters were younger and focused on less-serious and fewer types of AEs than FAERS reporters. The potential for social media to provide earlier indications of AEs compared with FAERS is uncertain. Our findings highlight some of the promises and limitations of online social media versus conventional pharmacovigilance sources and the need for careful interpretation of the results. © 2016 The Authors. Pharmacoepidemiology and Drug Safety published by John Wiley & Sons Ltd. © 2016 The Authors. Pharmacoepidemiology and Drug Safety published by John Wiley & Sons Ltd.

  12. Floodplains within reservoirs promote earlier spawning of white crappies Pomoxis annularis

    USGS Publications Warehouse

    Miranda, Leandro E.; Dagel, Jonah D.; Kaczka, Levi J.; Mower, Ethan; Wigen, S. L.

    2015-01-01

    Reservoirs impounded over floodplain rivers are unique because they may include within their upper reaches extensive shallow water stored over preexistent floodplains. Because of their relatively flat topography and riverine origin, floodplains in the upper reaches of reservoirs provide broad expanses of vegetation within a narrow range of reservoir water levels. Elsewhere in the reservoir, topography creates a band of shallow water along the contour of the reservoir where vegetation often does not grow. Thus, as water levels rise, floodplains may be the first vegetated habitats inundated within the reservoir. We hypothesized that shallow water in reservoir floodplains would attract spawning white crappies Pomoxis annularis earlier than reservoir embayments. Crappie relative abundance over five years in floodplains and embayments of four reservoirs increased as spawning season approached, peaked, and decreased as fish exited shallow water. Relative abundance peaked earlier in floodplains than embayments, and the difference was magnified with higher water levels. Early access to suitable spawning habitat promotes earlier spawning and may increase population fitness. Recognition of the importance of reservoir floodplains, an understanding of how reservoir water levels can be managed to provide timely connectivity to floodplains, and conservation of reservoir floodplains may be focal points of environmental management in reservoirs.

  13. Earlier detection of breast cancer by surveillance of women at familial risk.

    PubMed

    Tilanus-Linthorst, M M; Bartels, C C; Obdeijn, A I; Oudkerk, M

    2000-03-01

    A positive family history increases the risk for breast cancer which oft en occurs at a much younger age than in the general population. We stud ied whether surveillance of these women resulted in the detection of bre ast cancer in an earlier stage than in symptomatic patients with a famil y history. Between January 1994 and April 1998, 294 women with 15-25% r isk (moderate), mean age:43.3 (22-75) years, were screened with a yearly physical examination and mammography from 5 years before the youngest ag e of onset in the family and 384 women with >25% risk (high) for breast cancer, mean age: 42.9 (20-74) years were screened with a physical examination every 6 months and yearly mammography. From September 1995 breast magnetic resonance imaging (MRI) was also carried out for 109 high risk women where mammography showed over 50% density. 26 breast cancers detected under surveillance were significantly more often found in an early T1N0 stage than the 24 breast cancers in patients with a family history referred in that period because of symptoms: 81 versus 46% (P=0.018). Patients under surveillance were also less frequently node-positive than the symptomatic group: 19 versus 42% (P=0.12). 20 patients with a family history referred by our national screening programme in that period had 21 breast cancers detected, 81% in stage T1N0 and 5% node-positive, which was comparable to the results in our national screening programme T1N0 66%, N+ 24% resulting in a 30% reduction in mortality. The incidence in women under surveillance was 10.1 per 1000 in the 'high' risk group and 13.3 per 1000 in the 'moderate' risk group. Expected incidence in an average risk population aged 40-50 years is 1.5, expected if the group consisted of only gene carriers 15 per 1000. 23% of the breast cancers in the surveillance group were detected at physical examination, but occult at mammography. 38% were detected at mammography and clinically occult. Breast MRI (in the subgroup) detected 3 occult

  14. Simulator validation results and proposed reporting format from flight testing a software model of a complex, high-performance airplane.

    DOT National Transportation Integrated Search

    2008-01-01

    Computer simulations are often used in aviation studies. These simulation tools may require complex, high-fidelity aircraft models. Since many of the flight models used are third-party developed products, independent validation is desired prior to im...

  15. Simulation of Cross-border Impacts Resulting from Classical Swine Fever Epidemics within the Netherlands and Germany.

    PubMed

    Hop, G E; Mourits, M C M; Oude Lansink, A G J M; Saatkamp, H W

    2016-02-01

    The cross-border region of the Netherlands (NL) and the two German states of North Rhine Westphalia (NRW) and Lower Saxony (LS) is a large and highly integrated livestock production area. This region increasingly develops towards a single epidemiological area in which disease introduction is a shared veterinary and, consequently, economic risk. The objectives of this study were to examine classical swine fever (CSF) control strategies' veterinary and direct economic impacts for NL, NRW and LS given the current production structure and to analyse CSF's cross-border causes and impacts within the NL-NRW-LS region. The course of the epidemic was simulated by the use of InterSpread Plus, whereas economic analysis was restricted to calculating disease control costs and costs directly resulting from the control measures applied. Three veterinary control strategies were considered: a strategy based on the minimum EU requirements, a vaccination and a depopulation strategy based on NL and GER's contingency plans. Regardless of the veterinary control strategy, simulated outbreak sizes and durations for 2010 were much smaller than those simulated previously, using data from over 10 years ago. For example, worst-case outbreaks (50th percentile) in NL resulted in 30-40 infected farms and lasted for two to four and a half months; associated direct costs and direct consequential costs ranged from €24.7 to 28.6 million and €11.7 to 26.7 million, respectively. Both vaccination and depopulation strategies were efficient in controlling outbreaks, especially large outbreaks, whereas the EU minimum strategy was especially deficient in controlling worst-case outbreaks. Both vaccination and depopulation strategies resulted in low direct costs and direct consequential costs. The probability of cross-border disease spread was relatively low, and cross-border spread resulted in small, short outbreaks in neighbouring countries. Few opportunities for further cross-border harmonization and

  16. Comparison of different synthetic 5-min rainfall time series on the results of rainfall runoff simulations in urban drainage modelling

    NASA Astrophysics Data System (ADS)

    Krämer, Stefan; Rohde, Sophia; Schröder, Kai; Belli, Aslan; Maßmann, Stefanie; Schönfeld, Martin; Henkel, Erik; Fuchs, Lothar

    2015-04-01

    The design of urban drainage systems with numerical simulation models requires long, continuous rainfall time series with high temporal resolution. However, suitable observed time series are rare. As a result, usual design concepts often use uncertain or unsuitable rainfall data, which renders them uneconomic or unsustainable. An expedient alternative to observed data is the use of long, synthetic rainfall time series as input for the simulation models. Within the project SYNOPSE, several different methods to generate synthetic rainfall data as input for urban drainage modelling are advanced, tested, and compared. Synthetic rainfall time series of three different precipitation model approaches, - one parametric stochastic model (alternating renewal approach), one non-parametric stochastic model (resampling approach), one downscaling approach from a regional climate model-, are provided for three catchments with different sewer system characteristics in different climate regions in Germany: - Hamburg (northern Germany): maritime climate, mean annual rainfall: 770 mm; combined sewer system length: 1.729 km (City center of Hamburg), storm water sewer system length (Hamburg Harburg): 168 km - Brunswick (Lower Saxony, northern Germany): transitional climate from maritime to continental, mean annual rainfall: 618 mm; sewer system length: 278 km, connected impervious area: 379 ha, height difference: 27 m - Friburg in Brisgau (southern Germany): Central European transitional climate, mean annual rainfall: 908 mm; sewer system length: 794 km, connected impervious area: 1 546 ha, height difference 284 m Hydrodynamic models are set up for each catchment to simulate rainfall runoff processes in the sewer systems. Long term event time series are extracted from the - three different synthetic rainfall time series (comprising up to 600 years continuous rainfall) provided for each catchment and - observed gauge rainfall (reference rainfall) according national hydraulic design

  17. Research on an expert system for database operation of simulation-emulation math models. Volume 2, Phase 1: Results

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Beale, G. O.; Schaffer, J. D.; Hsieh, B. J.; Padalkar, S.; Rodriguez-Moscoso, J. J.

    1985-01-01

    A reference manual is provided for NESS, a simulation expert system. This manual gives user information regarding starting and operating NASA expert simulation system (NESS). This expert system provides an intelligent interface to a generic simulation program for spacecraft attitude control problems. A menu of the functions the system can perform is provided. Control repeated returns to this menu after executing each user request.

  18. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. [Lewis 8 by 6-foot supersonic wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1980-01-01

    Wind tunnel tests were conducted to evaluate the aerodynamic performance of a coannular exhaust nozzle for a proposed variable stream control supersonic propulsion system. Tests were conducted with two simulated configurations differing primarily in the fan duct flowpaths: a short flap mechanism for fan stream control with an isentropic contoured flow splitter, and an iris fan nozzle with a conical flow splitter. Both designs feature a translating primary plug and an auxiliary inlet ejector. Tests were conducted at takeoff and simulated cruise conditions. Data were acquired at Mach numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operating conditions. At simulated supersonic cruise, both configurations demonstrated good performance, comparable to levels assumed in earlier advanced supersonic propulsion studies. However, at subsonic cruise, both configurations exhibited performance that was 6 to 7.5 percent less than the study assumptions. At take off conditions, the iris configuration performance approached the assumed levels, while the short flap design was 4 to 6 percent less.

  19. Toward a Next Generation Solar Coronagraph: Diffracted Light Simulation and Test Results for a Cone Occulter with Tapered Surface

    NASA Astrophysics Data System (ADS)

    Yang, Heesu; Bong, Su-Chan; Cho, Kyung-Suk; Choi, Seonghwan; Park, Jongyeob; Kim, Jihun; Baek, Ji-Hye; Nah, Jakyoung; Sun, Mingzhe; Gong, Qian

    2018-04-01

    In a solar coronagraph, the most important component is an occulter to block the direct light from the disk of the sun Because the intensity of the solar outer corona is 10-6 to 10-10 times of that of the solar disk (\\ir), it is necessary to minimize scattering at the optical elements and diffraction at the occulter. Using a Fourier optic simulation and a stray light test, we investigated the performance of a compact coronagraph that uses an external truncated-cone occulter without an internal occulter and Lyot stop. In the simulation, the diffracted light was minimized to the order of 7.6×10-10 \\ir when the cone angle θc was about 0.39°. The performance of the cone occulter was then tested by experiment. The level of the diffracted light reached the order of 6×10-9 \\ir at θc=0.40°. This is sufficient to observe the outer corona without additional optical elements such as a Lyot stop or inner occulter. We also found the manufacturing tolerance of the cone angle to be 0.05°, the lateral alignment tolerance was 45 \\um, and the angular alignment tolerance was 0.043°. Our results suggest that the physical size of coronagraphs can be shortened significantly by using a cone occulter.

  20. Large-Scale Dynamics of the Magnetospheric Boundary: Comparisons between Global MHD Simulation Results and ISTP Observations

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Raeder, J.; Ashour-Abdalla, M.; Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Yamamoto, T.; Lepping, R. P.

    1998-01-01

    Understanding the large-scale dynamics of the magnetospheric boundary is an important step towards achieving the ISTP mission's broad objective of assessing the global transport of plasma and energy through the geospace environment. Our approach is based on three-dimensional global magnetohydrodynamic (MHD) simulations of the solar wind-magnetosphere- ionosphere system, and consists of using interplanetary magnetic field (IMF) and plasma parameters measured by solar wind monitors upstream of the bow shock as input to the simulations for predicting the large-scale dynamics of the magnetospheric boundary. The validity of these predictions is tested by comparing local data streams with time series measured by downstream spacecraft crossing the magnetospheric boundary. In this paper, we review results from several case studies which confirm that our MHD model reproduces very well the large-scale motion of the magnetospheric boundary. The first case illustrates the complexity of the magnetic field topology that can occur at the dayside magnetospheric boundary for periods of northward IMF with strong Bx and By components. The second comparison reviewed combines dynamic and topological aspects in an