Sample records for early a-type stars

  1. Hα Monitoring of Early-Type Emission Line Stars

    NASA Astrophysics Data System (ADS)

    Souza, Steven P.; Boettcher, E.; Wilson, S.; Hosek, M.

    2011-05-01

    We have begun a narrowband imaging program to monitor Hα emission in early-type stars in young open clusters and associations. A minority of early-type stars, particularly Be stars, show Hα in emission due to extended atmospheres and non-equilibrium conditions. Emission features commonly vary irregularly over a range of timescales (Porter, J.M. & Rivinus, T., P.A.S.P. 115:1153-1170, 2003). Some of the brightest such stars, e.g. γ Cas, have been spectroscopically monitored for Hα variability to help constrain models of the unstable disk, but there is relatively little ongoing monitoring in samples including fainter stars (Peters, G., Be Star Newsletter 39:3, 2009). Our program uses matched 5nm-wide on-band (656nm) and off-band (645nm) filters, in conjunction with the Hopkins Observatory 0.6-m telescope and CCD camera. Aperture photometry is done on all early-type stars in each frame, and results expressed as on-band to off-band ratios. Though wavelength-dependent information is lost compared with spectroscopy, imaging allows us to observe much fainter (and therefore many more) objects. Observing young clusters, rather than individual target stars, allows us to record multiple known and candidate emission line stars per frame, and provides multiple "normal" reference stars of similar spectral type. Observations began in the summer of 2010. This project has the potential to produce significant amounts of raw data, so a semi-automated data reduction process has been developed, including astrometric and photometric tasks. Early results, including some preliminary light curves and recovery of known Be stars at least as faint as R=13.9, are presented. We gratefully acknowledge support for student research through an REU grant to the Keck Northeast Astronomy Consortium from the National Science Foundation, and from the Division III Research Funding Committee of Williams College.

  2. New insight into the physics of atmospheres of early type stars

    NASA Technical Reports Server (NTRS)

    Lamers, H. J. G. L. M.

    1981-01-01

    The phenomenon of mass loss and stellar winds from hot stars are discussed. The mass loss rate of early type stars increases by about a factor of 100 to 1000 during their evolution. This seems incompatible with the radiation driven wind models and may require another explanation for the mass loss from early type stars. The winds of early type stars are strongly variable and the stars may go through active phases. Eclipses in binary systems by the stellar winds can be used to probe the winds. A few future IUE studies are suggested.

  3. Structural analysis of star-forming blue early-type galaxies. Merger-driven star formation in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    George, Koshy

    2017-02-01

    Context. Star-forming blue early-type galaxies at low redshift can give insight to the stellar mass growth of L⋆ elliptical galaxies in the local Universe. Aims: We wish to understand the reason for star formation in these otherwise passively evolving red and dead stellar systems. The fuel for star formation can be acquired through recent accretion events such as mergers or flyby. The signatures of such events should be evident from a structural analysis of the galaxy image. Methods: We carried out structural analysis on SDSS r-band imaging data of 55 star-forming blue elliptical galaxies, derived the structural parameters, analysed the residuals from best-fit to surface brightness distribution, and constructed the galaxy scaling relations. Results: We found that star-forming blue early-type galaxies are bulge-dominated systems with axial ratio >0.5 and surface brightness profiles fitted by Sérsic profiles with index (n) mostly >2. Twenty-three galaxies are found to have n< 2; these could be hosting a disc component. The residual images of the 32 galaxy surface brightness profile fits show structural features indicative of recent interactions. The star-forming blue elliptical galaxies follow the Kormendy relation and show the characteristics of normal elliptical galaxies as far as structural analysis is concerned. There is a general trend for high-luminosity galaxies to display interaction signatures and high star formation rates. Conclusions: The star-forming population of blue early-type galaxies at low redshifts could be normal ellipticals that might have undergone a recent gas-rich minor merger event. The star formation in these galaxies will shut down once the recently acquired fuel is consumed, following which the galaxy will evolve to a normal early-type galaxy.

  4. The chemical abundance analysis of normal early A- and late B-type stars

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Ryabchikova, T.; Bagnulo, S.; Alecian, E.; Grunhut, J.; Kochukhov, O.; Wade, G.

    2009-09-01

    Context: Modern spectroscopy of early-type stars often aims at studying complex physical phenomena such as stellar pulsation, the peculiarity of the composition of the photosphere, chemical stratification, the presence of a magnetic field, and its interplay with the stellar atmosphere and the circumstellar environment. Comparatively less attention is paid to identifying and studying the “normal” A- and B-type stars and testing how the basic atomic parameters and standard spectral analysis allow one to fit the observations. By contrast, this kind of study is paramount for eventually allowing one to correctly quantify the impact of the various physical processes that occur inside the atmospheres of A- and B-type stars. Aims: We wish to establish whether the chemical composition of the solar photosphere can be regarded as a reference for early A- and late B-type stars. Methods: We have obtained optical high-resolution, high signal-to-noise ratio spectra of three slowly rotating early-type stars (HD 145788, 21 Peg and π Cet) that show no obvious sign of chemical peculiarity, and performed a very accurate LTE abundance analysis of up to 38 ions of 26 elements (for 21 Peg), using a vast amount of spectral lines visible in the spectral region covered by our spectra. Results: We provide an exhaustive description of the abundance characteristics of the three analysed stars with a critical review of the line parameters used to derive the abundances. We compiled a table of atomic data for more than 1100 measured lines that may be used in the future as a reference. The abundances we obtained for He, C, Al, S, V, Cr, Mn, Fe, Ni, Sr, Y, and Zr are compatible with the solar ones derived with recent 3D radiative-hydrodynamical simulations of the solar photosphere. The abundances of the remaining studied elements show some degree of discrepancy compared to the solar photosphere. Those of N, Na, Mg, Si, Ca, Ti, and Nd may well be ascribed to non-LTE effects; for P, Cl, Sc and

  5. B- and A-Type Stars in the Taurus-Auriga Star-Forming Region

    NASA Technical Reports Server (NTRS)

    Mooley, Kunal; Hillenbrand, Lynne; Rebull, Luisa; Padgett, Deborah; Knapp, Gillian

    2013-01-01

    We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B, and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral-type B. The second group consists of early-type stars compiled from (1) literature listings in SIMBAD, (2) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud, (3) magnitude- and color-selected point sources from the Two Micron All Sky Survey, and (4) spectroscopically identified early-type stars from the Sloan Digital Sky Survey coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emission indicative of stellar youth. For selected objects, we also model the scattered and emitted radiation from reflection nebulosity and compare the results with the observed spectral energy distributions to further test the plausibility of physical association of the B stars with the Taurus cloud. This investigation newly identifies as probable Taurus members three B-type stars: HR 1445 (HD 28929), t Tau (HD 29763), 72 Tau (HD 28149), and two A-type stars: HD 31305 and HD 26212, thus doubling the number of stars A5 or earlier associated with the Taurus clouds. Several additional early-type sources including HD 29659 and HD 283815 meet some, but not all, of the membership criteria and therefore are plausible, though not secure, members.

  6. The star formation history of early-type galaxies as a function of mass and environment

    NASA Astrophysics Data System (ADS)

    Clemens, M. S.; Bressan, A.; Nikolic, B.; Alexander, P.; Annibali, F.; Rampazzo, R.

    2006-08-01

    Using the third data release of the Sloan Digital Sky Survey (SDSS), we have rigorously defined a volume-limited sample of early-type galaxies in the redshift range 0.005 < z <= 0.1. We have defined the density of the local environment for each galaxy using a method which takes account of the redshift bias introduced by survey boundaries if traditional methods are used. At luminosities greater than our absolute r-band magnitude cut-off of -20.45, the mean density of environment shows no trend with redshift. We calculate the Lick indices for the entire sample and correct for aperture effects and velocity dispersion in a model-independent way. Although we find no dependence of redshift or luminosity on environment, we do find that the mean velocity dispersion, σ, of early-type galaxies in dense environments tends to be higher than in low-density environments. Taking account of this effect, we find that several indices show small but very significant trends with environment that are not the result of the correlation between indices and velocity dispersion. The statistical significance of the data is sufficiently high to reveal that models accounting only for α-enhancement struggle to produce a consistent picture of age and metallicity of the sample galaxies, whereas a model that also includes carbon enhancement fares much better. We find that early-type galaxies in the field are younger than those in environments typical of clusters but that neither metallicity, α-enhancement nor carbon enhancement are influenced by the environment. The youngest early-type galaxies in both field and cluster environments are those with the lowest σ. However, there is some evidence that the objects with the largest σ are slightly younger, especially in denser environments. Independent of environment both the metallicity and α-enhancement grow monotonically with σ. This suggests that the typical length of the star formation episodes which formed the stars of early-type galaxies

  7. EVIDENCE FOR GRANULATION IN EARLY A-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallinger, Thomas; Matthews, Jaymie M.

    2010-03-01

    Stars with spectral types earlier than about F0 on (or close) to the main sequence have long been believed to lack observable surface convection, although evolutionary models of A-type stars do predict very thin surface convective zones. We present evidence for granulation in two {delta} Scuti stars of spectral type A2: HD 174936 and HD 50844. Recent analyses of space-based CoRoT data revealed up to some 1000 frequencies in the photometry of these stars. The frequencies were interpreted as individual pulsation modes. If true, there must be large numbers of nonradial modes of very high degree l which should suffermore » cancellation effects in disk-integrated photometry (even of high space-based precision). The p-mode interpretation of all the frequencies in HD 174936 and HD 50844 depends on the assumption of white (frequency-independent) noise. Our independent analyses of the data provide an alternative explanation: most of the peaks in the Fourier spectra are the signature of non-white granulation background noise, and less than about 100 of the frequencies are actual stellar p-modes in each star. We find granulation timescales which are consistent with scaling relations that describe cooler stars with known surface convection. If the granulation interpretation is correct, the hundreds of low-amplitude Fourier peaks reported in recent studies are falsely interpreted as independent pulsation modes and a significantly lower number of frequencies are associated with pulsation, consistent with only modes of low degree.« less

  8. UIT Observations of Early-Type Galaxies and Analysis of the FUSE Spectrum of a Subdwarf B Star

    NASA Technical Reports Server (NTRS)

    Ohl, Raymond G.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    This work covers Ultraviolet Imaging Telescope (UIT) observations of early-type galaxies (155 nm) and Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of a Galactic subdwarf B star (sdB). Early UV space astronomy missions revealed that early-type galaxies harbor a population of stars with effective temperatures greater than that of the main sequence turn-off (about 6,000 K) and UV emission that is very sensitive to characteristics of the stellar population. We present UV (155 nm) surface photometry and UV-B color profiles for 8 E and SO galaxies observed by UIT. Some objects have de Vaucouleurs surface brightness profiles, while others have disk-like profiles, but we find no other evidence for the presence of a disk or young, massive stars. There is a wide range of UV-B color gradients, but there is no correlation with metallicity gradients. SdB stars are the leading candidate UV emitters in old, high metallicity stellar populations (e.g., early-type galaxies). We observed the Galactic sdB star PG0749+658 with FUSE and derived abundances with the aim of constraining models of the heavy element distribution in sdB atmospheres. All of the elements measured are depleted with respect to solar, except for Cr and Mn, which are about solar, and Ni, which is enhanced. This work was supported in part by NASA grants NAG5-700 and NAG5-6403 to the University of Virginia and NAS5-32985 to Johns Hopkins University.

  9. Copernicus observations of the N v resonance doublet in 53 early-type stars

    NASA Technical Reports Server (NTRS)

    Abbott, D. C.; Bohlin, R. C.; Savage, B. D.

    1982-01-01

    UV spectra in the wavelength interval 1170-1270 A are presented for 53 early-type stars ranging in spectral type from O6.5 V to B2.5 IV. The sample includes four Wolf-Rayet stars, seven known Oe-Be stars, and six galactic halo OB stars. A qualitative analysis of the stellar N v doublet reveals that: (1) N v is present in all stars hotter and more luminous than type B0 for the main sequence, B1 for giants, and B2 for supergiants; (2) shell components of N v and an unidentified absorption feature at 1230 A are present in about half of the stars; (3) the column density of N v is well correlated with bolometric luminosity over the spectral range O6 to B2; and (4) the ratio of emission to absorption equivalent width is a factor of 2 smaller in the main sequence stars than in supergiants, which suggests that the wind structure changes as a star evolves. For several stars, this ratio is too small to be explained by traditional wind models.

  10. Measurements of eight early-type stars angular diameters using VEGA/CHARA interferometer

    NASA Astrophysics Data System (ADS)

    Challouf, M.; Nardetto, N.; Mourard, D.; Aroui, H.; Delaa, O.

    2014-12-01

    The surface brightness color (SBC) relation is an important tool to derive the distance of extragalatic eclipsing binaries. We determined the uniform disc angular diameter of the eight following early-type stars using VEGA/CHARA interferometric observations: θ_{UD}[δ Cyg] = 0.766 ± 0.047 mas, θ_{UD}[γ Lyr] = 0.742& ± 0.010 mas, θ_{UD}[γ Ori] = 0.701 ± 0.005 mas, θ_{UD}[ζ Peg] = 0.539 ± 0.009 mas, θ_{UD}[λ Aql] = 0.529 ± 0.003 mas, θ_{UD}[ζ Per] = 0.531 ± 0.007 mas, θ_{UD}[ι Her] = 0.304 ± 0.010 mas and θ_{UD}[8 Cyg] = 0.229 ± 0.011 mas (by extending V-K range from -0.76 to 0.02) with typical precision of about 1.5%. By combining these data with previous angular diameter determinations available in the literature, Challouf et al. (2014) provide for the very first time a SBC relation for early-type stars (-1≤V-K≤0) with a precision of about 0.16 magnitude or 7% in term of angular diameter (when using this SBC relation to derive the angular diameter of early-type stars).

  11. Early type galaxies: Mapping out the two-dimensional space of galaxy star formation histories

    NASA Astrophysics Data System (ADS)

    Graves, Genevieve J.

    Early type galaxies form a multi-parameter family, as evidenced by the two- dimensional (2-D) Fundamental Plane relationship. However, their star formation histories are often treated as a one-dimensional mass sequence. This dissertation presents a systematic study of the relationship between the multi- parameter structural properties of early type galaxies and their star formation histoires. We demonstrate that the stellar populations of early type galaxies span a 2-D space, which means that their star formation histories form a two- parameter family. This 2-D family is then mapped onto several familiar early type galaxy scaling relations, including the color-magnitude relation, the Fundamental Plane, and a cross-section through the Fundamental Plane. We find that the stellar population properties, and therefore the star formation histories of early type galaxies depend most strongly on galaxy velocity dispersion (s), rather than on luminosity ( L ), stellar mass ( M [low *] ), or dynamical mass ( M dyn ). Interestingly, stellar populations are independent of the radius ( R e ) of the galaxies. At fixed s, they show correlated residuals through the thickness of the Fundamental Plane (FP) in the surface-brightness ( I e ) dimension, such that low-surface-brightness galaxies are older, less metal-enriched, and more enhanced in Mg relative to Fe than their counterparts at the same s and R e on the FP midplane. Similarly, high- surface-brightness galaxies are younger, more metal-rich, and less Mg-enhanced than their counterparts on the FP midplane. These differences suggest that the duration of star formation varies through the thickness of the FP. If the dynamical mass-to-light ratios of early type galaxies ( M dyn /L ) were constant for all such galaxies, the FP would be equivalent to the plane predicted by the virial relation. However, the observed FP does not exactly match the virial plane. The FP is tilted from the virial plane, indicating that M dyn /L varies

  12. HD 66051: the first eclipsing binary hosting an early-type magnetic star

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.

    2018-05-01

    Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.

  13. Chromospherically active stars. IV - HD 178450 = V478 Lyr: An early-type BY Draconis type binary

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.

    1988-01-01

    It is shown that the variable star HD 178450 = V478 Lyr is a chromospherically active G8 V single-lined spectroscopic binary with a period of 2.130514 days. This star is characterized by strong UV emission features and a filled-in H-alpha absorption line which is variable in strength. Classified as an early-type BY Draconis system, it is similar to the BY Dra star HD 175742 = V775 Her. The unseen secondary of HD 178450 has a mass of about 0.3 solar masses and is believed to be an M2-M3 dwarf.

  14. The magnetic early B-type stars I: magnetometry and rotation

    NASA Astrophysics Data System (ADS)

    Shultz, M. E.; Wade, G. A.; Rivinius, Th; Neiner, C.; Alecian, E.; Bohlender, D.; Monin, D.; Sikora, J.; MiMeS Collaboration; BinaMIcS Collaboration

    2018-04-01

    The rotational and magnetic properties of many magnetic hot stars are poorly characterized, therefore the Magnetism in Massive Stars and Binarity and Magnetic Interactions in various classes of Stars collaborations have collected extensive high-dispersion spectropolarimetric data sets of these targets. We present longitudinal magnetic field measurements for 52 early B-type stars (B5-B0), with which we attempt to determine their rotational periods Prot. Supplemented with high-resolution spectroscopy, low-resolution Dominion Astrophysical Observatory circular spectropolarimetry, and archival Hipparcos photometry, we determined Prot for 10 stars, leaving only five stars for which Prot could not be determined. Rotational ephemerides for 14 stars were refined via comparison of new to historical magnetic measurements. The distribution of Prot is very similar to that observed for the cooler Ap/Bp stars. We also measured v sin i and vmac for all stars. Comparison to non-magnetic stars shows that v sin i is much lower for magnetic stars, an expected consequence of magnetic braking. We also find evidence that vmac is lower for magnetic stars. Least-squares deconvolution profiles extracted using single-element masks revealed widespread, systematic discrepancies in between different elements: this effect is apparent only for chemically peculiar stars, suggesting it is a consequence of chemical spots. Sinusoidal fits to H line measurements (which should be minimally affected by chemical spots), yielded evidence of surface magnetic fields more complex than simple dipoles in six stars for which this has not previously been reported; however, in all six cases, the second- and third-order amplitudes are small relative to the first-order (dipolar) amplitudes.

  15. Fundamental properties of nearby single early B-type stars

    NASA Astrophysics Data System (ADS)

    Nieva, María-Fernanda; Przybilla, Norbert

    2014-06-01

    Aims: Fundamental parameters of a sample of 26 apparently slowly-rotating single early B-type stars in OB associations and in the field within a distance of ≲400 pc from the Sun are presented and compared to high-precision data from detached eclipsing binaries (DEBs). Together with surface abundances for light elements the data are used to discuss the evolutionary status of the stars in context of the most recent Geneva grid of models for core hydrogen-burning stars in the mass-range ~6 to 18 M⊙ at metallicity Z = 0.014. Methods: The fundamental parameters are derived on the basis of accurate and precise atmospheric parameters determined earlier by us from non-LTE analyses of high-quality spectra of the sample stars, utilising the new Geneva stellar evolution models. Results: Evolutionary masses plus radii and luminosities are determined to better than typically 5%, 10%, and 20% uncertainty, respectively, facilitating the mass-radius and mass-luminosity relationships to be recovered for single core hydrogen-burning objects with a similar precision as derived from DEBs. Good agreement between evolutionary and spectroscopic masses is found. Absolute visual and bolometric magnitudes are derived to typically ~0.15-0.20 mag uncertainty. Metallicities are constrained to better than 15-20% uncertainty and tight constraints on evolutionary ages of the stars are provided. Overall, the spectroscopic distances and ages of individual sample stars agree with independently derived values for the host OB associations. Signatures of mixing with CN-cycled material are found in 1/3 of the sample stars. Typically, these are consistent with the amount predicted by the new Geneva models with rotation. The presence of magnetic fields appears to augment the mixing efficiency. In addition, a few objects are possibly the product of binary evolution. In particular, the unusual characteristics of τ Sco point to a blue straggler nature, due to a binary merger. Conclusions: The accuracy

  16. Spectral analysis of early-type stars using a genetic algorithm based fitting method

    NASA Astrophysics Data System (ADS)

    Mokiem, M. R.; de Koter, A.; Puls, J.; Herrero, A.; Najarro, F.; Villamariz, M. R.

    2005-10-01

    We present the first automated fitting method for the quantitative spectroscopy of O- and early B-type stars with stellar winds. The method combines the non-LTE stellar atmosphere code fastwind from Puls et al. (2005, A&A, 435, 669) with the genetic algorithm based optimization routine pikaia from Charbonneau (1995, ApJS, 101, 309), allowing for a homogeneous analysis of upcoming large samples of early-type stars (e.g. Evans et al. 2005, A&A, 437, 467). In this first implementation we use continuum normalized optical hydrogen and helium lines to determine photospheric and wind parameters. We have assigned weights to these lines accounting for line blends with species not taken into account, lacking physics, and/or possible or potential problems in the model atmosphere code. We find the method to be robust, fast, and accurate. Using our method we analysed seven O-type stars in the young cluster Cyg OB2 and five other Galactic stars with high rotational velocities and/or low mass loss rates (including 10 Lac, ζ Oph, and τ Sco) that have been studied in detail with a previous version of fastwind. The fits are found to have a quality that is comparable or even better than produced by the classical “by eye” method. We define errorbars on the model parameters based on the maximum variations of these parameters in the models that cluster around the global optimum. Using this concept, for the investigated dataset we are able to recover mass-loss rates down to ~6 × 10-8~M⊙ yr-1 to within an error of a factor of two, ignoring possible systematic errors due to uncertainties in the continuum normalization. Comparison of our derived spectroscopic masses with those derived from stellar evolutionary models are in very good agreement, i.e. based on the limited sample that we have studied we do not find indications for a mass discrepancy. For three stars we find significantly higher surface gravities than previously reported. We identify this to be due to differences in

  17. The Lyman-Continuum Fluxes and Stellar Parameters of O and Early B-Type Stars

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Garmany, Catherine D.; Shull, J. Michael

    1996-01-01

    Using the results of the most recent stellar atmosphere models applied to a sample of hot stars, we construct calibrations of effective temperature (T(sub eff)), and gravity (log(sub g)) with a spectral type and luminosity class for Galactic 0-type and early B-type stars. From the model results we also derive an empirical relation between the bolometric correction and T(sub eff) and log g. Using a sample of stars with known distances located in OB associations in the Galaxy and the Large Magellanic Cloud, we derive a new calibration of M(sub v) with spectral class. With these new calibrations and the stellar atmosphere models of Kurucz, we calculate the physical parameters and ionizing photon luminosities in the H(0) and He(0) continua for O and early B-type stars. We find substantial differences between our values of the Lyman- continuum luminosity and those reported in the literature. We also discuss the systematic discrepancy between O-type stellar masses derived from spectroscopic models and those derived from evolutionary tracks. Most likely, the cause of this 'mass discrepancy' lies primarily in the atmospheric models, which are plane parallel and hydrostatic and therefore do not account for an extended atmosphere and the velocity fields in a stellar wind. Finally, we present a new computation of the Lyman-continuum luminosity from 429 known O stars located within 2.5 kpc of the Sun. We find the total ionizing luminosity from this population ((Q(sub 0)(sup T(sub ot))) = 7.0 x 10(exp 51) photons/s) to be 47% larger than that determined using the Lyman continuum values tabulated by Panagia.

  18. Two-dimensional models of fast rotating early-type stars

    NASA Astrophysics Data System (ADS)

    Rieutord, Michel

    2015-08-01

    Rotation has now become an unavoidable parameter of stellar models, but for most massive or intermediate-mass stars rotation is fast, at least of a significant fraction of the critical angular velocity. Current spherically symmetric models try to cope with this feature of the stars using various approximations, like for instance the so-called shellular rotation usually accompanied with a diffusion that is meant to represent the mixing induced by rotationally generated flows. Such approximations may be justified in the limit of slow rotation where anisotropies and associated flows are weak. However, when rotation is fast, say larger than 50% of the critical velocities the use of a spherically symmetric 1D-model is doubtful. This is not only because of the centrifugal flattening of the star, but also because of the flows that are induced by the baroclinic torque that naturally appears in the radiative envelope of an early-type (rotating) star. These flows face the cylindrical symmetry of the Coriolis force and the spheroidal symmetry of the effective gravity.In this talk I shall present the latest results of the ESTER project that has taken up the challenge of making two-dimensional (axisymmetric) models of stars rotating at any rotation rate. In particular, I will focus on main sequence massive and intermediate-mass stars. I'll show what should be expected in such stars as far as the differential rotation and the associated meridional circulation are concerned, notably the emergence of a Stewartson layer along the tangential cylinder of the core. I'll also indicate what may be inferred about the evolution of an intermediate-mass star at constant angular momentum and how Be stars may form. I shall finally give some comparisons between models and observations of the gravity darkening on some nearby fast rotators as it has been derived from interferometric observations. In passing, I'll also discuss how 2D models can help to recover the fundamental parameters of a star.

  19. New radio detections of early-type pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.; Brown, Alexander; Linsky, Jeffrey L.

    1990-01-01

    Results of VLA radio continuum observations of 13 early-type pre-main-sequence stars selected from the 1984 catalog of Finkenzeller and Mundt are presented. The stars HD 259431 and MWC 1080 were detected at 3.6 cm, while HD 200775 and TY CrA were detected at both 3.6 and 6 cm. The flux density of HD 200775 has a frequency dependence consistent with the behavior expected for free-free emission originating in a fully ionized wind. However, an observation in A configuration suggests that the source geometry may not be spherically symmetric. In contrast, the spectral index of TY CrA is negative with a flux behavior implying nonthermal emission. The physical mechanism responsible for the nonthermal emission has not yet been identified, although gyrosynchrotron and synchrotron processes cannot be ruled out.

  20. UBV and H. beta. photometry of faint early-type stars in Crux and Centaurus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzio, J.C.; Feinstein, A.; Orsatti, A.M.

    1976-08-01

    UBV and H..beta.. photoelectric observations of faint early-type stars in a small region in Crux near the open cluster Hogg 15 and another in Centaurus are presented. The data suggest large absorption in Crux and small absorption in Centaurus. The spread in the distance moduli of the observed stars seems to be in agreement with the view that a spiral arm is seen tangentially near l = 305/sup 0/.

  1. An XMM Investigation of Non-Thermal Phenomena in the Winds of Early-Type Stars

    NASA Technical Reports Server (NTRS)

    Waldron, Wayne L.; Mushotzky, Richard (Technical Monitor)

    2002-01-01

    The X-ray emission from early-type stars is believed to arise from a stellar wind distribution of shocks. Hence, X-ray analyses of these stars must include the effects of stellar wind X-ray absorption, which, in general dominates the ISM absorption. Although the absorption cross sections for the wind and ISM are essentially identical above 1 keV, there is substantial differences below 1 keV. Typically, if one only uses ISM cross sections to obtain fits to X-ray spectra, the fits usually indicate a model deficiency at energies below 1 keV which is attributed to the large increase in ISM cross sections at these energies. This deficiency can be eliminated by using stellar wind absorption models with a fixed ISM component. Since all early-type stars have substantial X-ray emission below 1 keV, than inclusion of wind absorption has proven to be a critical component in fitting X-ray spectra at low energies, verifying that these X-rays are indeed arising from within the stellar wind.

  2. The peculiar, luminous early-type emission line stars of the Magellanic clouds: A preliminary taxonomy

    NASA Technical Reports Server (NTRS)

    Shore, S. N.; Sanduleak, N.

    1982-01-01

    A sample of some 20 early type emission supergiants in the Magellanic clouds was observed with both the SWP and LWR low resolution mode of IUE. All stars have strong H-emission, some showing P-Cygni structure as well with HeI, HeII, FeII and other ions also showing strong emission. It is found that the stars fall into three distinct groups on the basis of the HeII/HeI and HeI/HI strengths: (1) HeII strong, HeI, HI; (2) HeII absent, HeI, HI strong; (3) HeI absent, HI, FeII, FeII, strong in addition to low excitation ions. The two most extreme emission line stars found in the Clouds S 134/LMC and S 18/SMC are discussed. Results for the 2200A feature in these supergiants, and evidence for shells around the most luminous stars in the clouds are also described.

  3. R associations. VI - The reddening law in dust clouds and the nature of early-type emission stars in nebulosity from a study of five associations

    NASA Technical Reports Server (NTRS)

    Herbst, W.; Warner, J. W.; Miller, D. P.; Herzog, A.

    1982-01-01

    Positions, identification charts, UBVRIKLMN photometry and spectral types are given for stars, illuminating reflection nebulae that are visible on the POSS prints, which have been identified in five associations. With a ratio of total to selective extinction of 4.2, the reddening law applicable to the dust clouds in which the stars are embedded is steeper than normal. The five associations exhibit 18 early-type stars with circumstellar shells, of which those with spectral types earlier than B5 characteristically have weak IR excesses, in contrast to the strong excesses indicative of circumstellar dust, of later-type stars. Color-magnitude charts show a distribution lying above the ZAMS by up to about 2 mag for both the circumstellar shell stars and those classified as rapid rotators. It is suggested that (1) rapid rotation accounts for the scatter in the color-magnitude diagram, and (2) many of the nebulous early-type emission-line stars are rapid rotators rather than pre-main sequence objects.

  4. Evidence for Different Disk Mass Distributions between Early- and Late-type Be Stars in the BeSOS Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcos, C.; Kanaan, S.; Curé, M.

    The circumstellar disk density distributions for a sample of 63 Be southern stars from the BeSOS survey were found by modeling their H α emission line profiles. These disk densities were used to compute disk masses and disk angular momenta for the sample. Average values for the disk mass are 3.4 × 10{sup −9} and 9.5 × 10{sup −10} M {sub ⋆} for early (B0–B3) and late (B4–B9) spectral types, respectively. We also find that the range of disk angular momentum relative to the star is (150–200) J {sub ⋆}/ M {sub ⋆} and (100–150) J {sub ⋆}/ M {submore » ⋆}, again for early- and late-type Be stars, respectively. The distributions of the disk mass and disk angular momentum are different between early- and late-type Be stars at a 1% level of significance. Finally, we construct the disk mass distribution for the BeSOS sample as a function of spectral type and compare it to the predictions of stellar evolutionary models with rapid rotation. The observed disk masses are typically larger than the theoretical predictions, although the observed spread in disk masses is typically large.« less

  5. A Rare Early-type Star Revealed in the Wing of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Evans, C. J.; Hainich, R.; Oskinova, L. M.; Gallagher, J. S., III; Chu, Y.-H.; Gruendl, R. A.; Hamann, W.-R.; Hénault-Brunet, V.; Todt, H.

    2012-07-01

    Sk 183 is the visually brightest star in the N90 nebula, a young star-forming region in the Wing of the Small Magellanic Cloud (SMC). We present new optical spectroscopy from the Very Large Telescope which reveals Sk 183 to be one of the most massive O-type stars in the SMC. Classified as an O3-type dwarf on the basis of its nitrogen spectrum, the star also displays broadened He I absorption, which suggests a later type. We propose that Sk 183 has a composite spectrum and that it is similar to another star in the SMC, MPG 324. This brings the number of rare O2- and O3-type stars known in the whole of the SMC to a mere four. We estimate physical parameters for Sk 183 from analysis of its spectrum. For a single-star model, we estimate an effective temperature of 46 ± 2 kK, a low mass-loss rate of ~10-7 M ⊙ yr-1, and a spectroscopic mass of 46+9 -8 M ⊙ (for an adopted distance modulus of 18.7 mag to the young population in the SMC Wing). An illustrative binary model requires a slightly hotter temperature (~47.5 kK) for the primary component. In either scenario, Sk 183 is the earliest-type star known in N90 and will therefore be the dominant source of hydrogen-ionizing photons. This suggests Sk 183 is the primary influence on the star formation along the inner edge of the nebula.

  6. A survey of interstellar neutral potassium. I - Abundances and physical conditions in clouds toward 188 early-type stars

    NASA Technical Reports Server (NTRS)

    Chaffee, F. H., Jr.; White, R. E.

    1982-01-01

    Observations of interstellar absorption in the resonance doublet 7664, 7698 A of neutral potassium toward 188 early-type stars at a spectral resolution of 8 km/s are reported. The 7664 A line is successfully separated from nearly coincident telluric O2 absorption for all but a few of the 165 stars for which K I absorption is detected, making possible an abundance analysis by the doublet ratio method. The relationships between the potassium abundances and other atomic abundances, the abundance of molecular hydrogen, and interstellar reddening are investigated.

  7. VizieR Online Data Catalog: Magnetic early B-type stars. I. (Shultz+, 2018)

    NASA Astrophysics Data System (ADS)

    Shultz, M.; Wade, G. A.; Rivinius, Th.; Neiner, C.; Alecian, E.; Bohlender, D.; Monin, D.; Sikora, J.; Mimes Collaboration; Binamics Collaboration

    2018-03-01

    Longitudinal magnetic field measurements of early B-type stars derived from 1) least-squares deconvolution profiles extracted from high-resolution spectropolarimetric data (ESPaDOnS, Narval, HARPSpol), using masks consisting of metallic lines, metallic + He lines, individual chemical elements, as well as single-line H measurements; and 2) from single-line low-resolution spectropolarimetric observations with dimaPol. (3 data files).

  8. Evolution of solitary density waves in stellar winds of early-type stars: A simple explanation of discrete absorption component behavior

    NASA Technical Reports Server (NTRS)

    Waldron, Wayne L.; Klein, Larry; Altner, Bruce

    1994-01-01

    We model the evolution of a density shell propagating through the stellar wind of an early-type star, in order to investigate the effects of such shells on UV P Cygni line profiles. Unlike previous treatments, we solve the mass, momentum, and energy conservation equations, using an explicit time-differencing scheme, and present a parametric study of the density, velocity, and temperature response. Under the assumed conditions, relatively large spatial scale, large-amplitude density shells propagate as stable waves through the supersonic portion of the wind. Their dynamical behavior appears to mimic propagating 'solitary waves,' and they are found to accelerate at the same rate as the underlying steady state stellar wind (i.e., the shell rides the wind). These hydrodynamically stable structures quantitatively reproduce the anomalous 'discrete absorption component' (DAC) behavior observed in the winds of luminous early-type stars, as illustrated by comparisons of model predictions to an extensive International Ultraviolet Explorer (IUE) time series of spectra of zeta Puppis (O4f). From these comparisons, we find no conclusive evidence indicative of DACs accelerating at a significantly slower rate than the underlying stellar wind, contrary to earlier reports. In addition, these density shells are found to be consistent within the constraints set by the IR observations. We conclude that the concept of propagating density shells should be seriously reconsidered as a possible explanation of the DAC phenomenon in early-type stars.

  9. The onset of chromospheric activity among the A- and F- type stars

    NASA Technical Reports Server (NTRS)

    Simon, Theodore; Landsman, Wayne

    1987-01-01

    IUE observations of C II lambda1335 and C IV lambda1549 and ground-based observations of He I lambda5876 have previously discovered intense levels of chromospheric activity among early F type stars. Virtually all F dwarfs show stronger chromospheric and transition region emission than do the cooler and more deeply convective dwarf stars like the Sun. The IUE spectra and those of He lambda5876 place the onset of stellar activity along the main sequence near a color B - V = 0.28, which corresponds approximately to spectral type FO and an effective temperature of 7300 K. However, existing X-ray observations of A and F stars suggest that coronal activity may reach a peak blueward of this high temperature boundary at B - V = 0.28 before vanishing among the early and mid A-type stars. Discussed are preliminary results of a new effort to refine the location of the high temperature boundary to chromospheric activity among A- and F- type stars, making use of low dispersion short-wavelength spectra from the IUE archives from which the strengths of C IV, C II, and Lyman alpha emission have been measured.

  10. Solar-Type Stars with the Suppression of Convection at an Early Stage of Evolution

    NASA Astrophysics Data System (ADS)

    Oreshina, A. V.; Baturin, V. A.; Ayukov, S. V.; Gorshkov, A. B.

    2017-12-01

    The evolution of a solar-mass star before and on the main sequence is analyzed in light of the diminished efficiency of convection in the first 500 Myr. A numerical simulation has been performed with the CESAM2k code. It is shown that the suppression of convection in the early stages of evolution leads to a somewhat higher lithium content than that predicted by the classical solar model. In addition, the star's effective temperature decreases. Ignoring this phenomenon may lead to errors in age and mass determinations for young stars (before the main sequence) from standard evolutionary tracks in the temperature-luminosity diagram. At a later stage of evolution, after 500 Myr, the efficiency of convection tends to the solar value. At this stage, the star's inner structure becomes classical; it does not depend on the previous history. On the contrary, the photospheric lithium abundance contains information about the star's past. In other words, there may exist main-sequence solar-mass stars of the same age (above 500 Myr), radius, and luminosity, yet with different photospheric lithium contents. The main results of this work add considerably to the popular method for determining the age of solar-type stars from lithium abundances.

  11. A Grid of NLTE Line-blanketed Model Atmospheres of Early B-Type Stars

    NASA Astrophysics Data System (ADS)

    Lanz, Thierry; Hubeny, Ivan

    2007-03-01

    We have constructed a comprehensive grid of 1540 metal line-blanketed, NLTE, plane-parallel, hydrostatic model atmospheres for the basic parameters appropriate to early B-type stars. The BSTAR2006 grid considers 16 values of effective temperatures, 15,000 K<=Teff<=30,000 K with 1000 K steps, 13 surface gravities, 1.75<=logg<=4.75 with 0.25 dex steps, six chemical compositions, and a microturbulent velocity of 2 km s-1. The lower limit of logg for a given effective temperature is set by an approximate location of the Eddington limit. The selected chemical compositions range from twice to one-tenth of the solar metallicity and metal-free. Additional model atmospheres for B supergiants (logg<=3.0) have been calculated with a higher microturbulent velocity (10 km s-1) and a surface composition that is enriched in helium and nitrogen and depleted in carbon. This new grid complements our earlier OSTAR2002 grid of O-type stars (our Paper I). The paper contains a description of the BSTAR2006 grid and some illustrative examples and comparisons. NLTE ionization fractions, bolometric corrections, radiative accelerations, and effective gravities are obtained over the parameter range covered by the grid. By extrapolating radiative accelerations, we have determined an improved estimate of the Eddington limit in absence of rotation between 55,000 and 15,000 K. The complete BSTAR2006 grid is available at the TLUSTY Web site.

  12. J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick

    We report Mo isotopic data of 27 new presolar SiC grains, including 12 N-14-rich AB (N-14/N-15 > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takes place, as theirmore » stellar source. On the other hand, low-mass CO novae and early R-and J-type carbon stars show C-13 and N-14 excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%-15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less

  13. Evolution of X-ray activity of 1-3 Msun late-type stars in early post-main-sequence phases

    NASA Astrophysics Data System (ADS)

    Pizzolato, N.; Maggio, A.; Sciortino, S.

    2000-09-01

    We have investigated the variation of coronal X-ray emission during early post-main-sequence phases for a sample of 120 late-type stars within 100 pc, and with estimated masses in the range 1-3 Msun, based on Hipparcos parallaxes and recent evolutionary models. These stars were observed with the ROSAT/PSPC, and the data processed with the Palermo-CfA pipeline, including detection and evaluation of X-ray fluxes (or upper limits) by means of a wavelet transform algorithm. We have studied the evolutionary history of X-ray luminosity and surface flux for stars in selected mass ranges, including stars with inactive A-type progenitors on the main sequence and lower mass solar-type stars. Our stellar sample suggests a trend of increasing X-ray emission level with age for stars with masses M > 1.5 Msun, and a decline for lower-mass stars. A similar behavior holds for the average coronal temperature, which follows a power-law correlation with the X-ray luminosity, independently of their mass and evolutionary state. We have also studied the relationship between X-ray luminosity and surface rotation rate for stars in the same mass ranges, and how this relationships departs from the Lx ~ vrot2 law followed by main-sequence stars. Our results are interpreted in terms of a magnetic dynamo whose efficiency depends on the stellar evolutionary state through the mass-dependent changes of the stellar internal structure, including the properties of envelope convection and the internal rotation profile.

  14. Long-orbital-period Prepolars Containing Early K-type Donor Stars. Bottleneck Accretion Mechanism in Action

    NASA Astrophysics Data System (ADS)

    Tovmassian, G.; González–Buitrago, D.; Zharikov, S.; Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P.; Miroshnichenko, A. S.

    2016-03-01

    We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems.

  15. J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB

    DOE PAGES

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick; ...

    2017-07-21

    Here, we report Mo isotopic data of 27 new presolar SiC grains, including 12 14N-rich AB ( 14N/ 15N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takesmore » place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show 13C and 14N excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. And because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less

  16. J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick

    Here, we report Mo isotopic data of 27 new presolar SiC grains, including 12 14N-rich AB ( 14N/ 15N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takesmore » place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show 13C and 14N excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. And because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less

  17. Is the Ratio of Observed X-ray Luminosity to Bolometric Luminosity in Early-type Stars Really a Constant?

    NASA Technical Reports Server (NTRS)

    Waldron, W. L.

    1985-01-01

    The observed X-ray emission from early-type stars can be explained by the recombination stellar wind model (or base coronal model). The model predicts that the true X-ray luminosity from the base coronal zone can be 10 to 1000 times greater than the observed X-ray luminosity. From the models, scaling laws were found for the true and observed X-ray luminosities. These scaling laws predict that the ratio of the observed X-ray luminosity to the bolometric luminosity is functionally dependent on several stellar parameters. When applied to several other O and B stars, it is found that the values of the predicted ratio agree very well with the observed values.

  18. The ATLAS3D Project - XXX. Star formation histories and stellar population scaling relations of early-type galaxies

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2015-04-01

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, R^maj_e), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 per cent of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5 M⊙), which themselves formed 90 per cent of their stars by z ˜ 2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions.

  19. Star formation in early-type galaxies: the role of stellar winds and kinematics.

    NASA Astrophysics Data System (ADS)

    Pellegrini, Silvia; Negri, Andrea; Ciotti, Luca

    2015-08-01

    Early-Type galaxies (ETGs) host a hot ISM produced mainly by stellar winds, and heated by Type Ia supernovae (SNIa) and the thermalization of stellar motions. Recent high resolution 2D hydrodynamical simulations (Negri et al. 2014) showed that ordered rotation in the stellar component alters significantly the evolution of the hot ISM, and results in the formation of a centrifugally supported cold equatorial disc. This agrees well with the recent evidence that approximately 50% of massive ETGs host significant quantities of cold gas (Morganti et al. 2006; Young et al. 2014), often in settled configurations, sharing the same kinematics of the stars. In particular, in a systematic investigation of the ATLAS3D sample, the most massive fast-rotating ETGs always have kinematically aligned gas, which suggests an internal origin for it, and molecular gas is detected only in fast rotators (Davis et al. 2011). The observed cold gas seems also to provide material for low level star formation (SF) activity (Combes et al. 2007, Davis et al. 2014). Interestingly, in the ATLAS3D sample, SF and young stellar populations are detected only in fast rotators (Sarzi et al. 2013). In a recent work we investigated whether and how SF takes place in the cold gas disc typically produced in rotating ETGs by our previous 2D simulations, by adding to them the possibility for the gas to form stars (Negri et al. 2015). We also inserted the injection of mass, momentum and energy appropriate for the newly (and continuously) forming stellar population. We found that subsequent generations of stars are formed, and that most of the extended and massive cold disc is consumed by this process, leaving at the present epoch cold gas masses that compare well with those observed. The mass in secondary generations of stars resides mostly in a disc, and could be related to a younger, more metal rich disky stellar component indeed observed in fast rotator ETGs (Cappellari et al. 2013). Most of the mass in

  20. J-type Carbon Stars: A Dominant Source of {sup 14}N-rich Presolar SiC Grains of Type AB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.

    We report Mo isotopic data of 27 new presolar SiC grains, including 12 {sup 14}N-rich AB ({sup 14}N/{sup 15}N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s -process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s -process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture processmore » ( i -process) takes place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show {sup 13}C and {sup 14}N excesses but no s -process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less

  1. On a connection between supernova occurrence and tidal interaction in early type galaxies

    NASA Technical Reports Server (NTRS)

    Kochhar, R. K.

    1990-01-01

    There are three types of supernovae: two subtypes SNIa and Ib; and SNII. Late type galaxies produce all types of SN, whereas early types (E, SO, and non-Magellanic irregulars IO) have hosted only SNIa. The recently identified SNIb, like SNII, have massive stars as their progenitors. Reviving Oemler and Tinsley's (1979) suggestion that SNIa also come from short-lived stars, the author asserts that they need not occur in all early-type galaxies. SNIa occur only in those galaxies that have access to gas and can form stars in their main body. (SN in nuclear regions are a different matter altogether). In this model, SNIa are not associated with typical stellar population of E/SOs but with regions of localized star formation. Note that data on SNIa from spirals is already consistent with this model.

  2. GHRS observations and theoretical modeling of early type stars in R136a

    NASA Astrophysics Data System (ADS)

    de Koter, A.; Heap, S.; Hubeny, I.; Lanz, T.; Hutchings, J.; Lamers, H. J. G. L. M.; Maran, S.; Schmutz, W.

    1994-05-01

    We present the first spectroscopic observations of individual stars in R136a, the most dense part of the starburst cluster 30 Doradus in the LMC. Spectra of two stars are scheduled to be obtained with the GHRS on board the HST: R136a5, the brightest of the complex and R136a2, a Wolf-Rayet star of type WN. The 30 Doradus cluster is the only starburst region in which individual stars can be studied. Therefore, quantitative knowledge of the basic stellar parameters will yield valuable insight into the formation of massive stars in starbursts and into their subsequent evolution. Detailed modeling of the structure of the atmosphere and wind of these stars will also lead to a better understanding of the mechanism(s) that govern their dynamics. We present the first results of our detailed quantitative spectral analysis using state-of-the-art non-LTE model atmospheres for stars with extended and expanding atmospheres. The models are computed using the Improved-Sobolev Approximation wind code (ISA-WIND) of de Koter, Schmutz & Lamers (1993, A&A 277, 561), which has been extended to include C, N and Si. Our model computations are not based on the core-halo approximation, but use a unified treatment of the photosphere and wind. This approach is essential for Wolf-Rayet stars. Our synthetic spectra, dominated by the P Cygni profiles of the UV resonance lines, also account for the numerous weak metal lines of photospheric origin.

  3. The VLT-FLAMES survey of massive stars: mass loss and rotation of early-type stars in the SMC

    NASA Astrophysics Data System (ADS)

    Mokiem, M. R.; de Koter, A.; Evans, C. J.; Puls, J.; Smartt, S. J.; Crowther, P. A.; Herrero, A.; Langer, N.; Lennon, D. J.; Najarro, F.; Villamariz, M. R.; Yoon, S.-C.

    2006-09-01

    We have studied the optical spectra of a sample of 31 O-and early B-type stars in the Small Magellanic Cloud, 21 of which are associated with the young massive cluster NGC 346. Stellar parameters are determined using an automated fitting method (Mokiem et al. 2005, A&A, 441, 711), which combines the stellar atmosphere code FASTWIND (Puls et al. 2005, A&A, 435, 669) with the genetic algorithm based optimisation routine PIKAIA (Charbonneau 1995, ApJS, 101, 309). Comparison with predictions of stellar evolution that account for stellar rotation does not result in a unique age, though most stars are best represented by an age of 1-3 Myr. The automated method allows for a detailed determination of the projected rotational velocities. The present day v_r sin i distribution of the 21 dwarf stars in our sample is consistent with an underlying rotational velocity (v_r) distribution that can be characterised by a mean velocity of about 160 - 190 km s-1 and an effective half width of 100 - 150 km s-1. The vr distribution must include a small percentage of slowly rotating stars. If predictions of the time evolution of the equatorial velocity for massive stars within the environment of the SMC are correct (Maeder & Meynet 2001, A&A, 373, 555), the young age of the cluster implies that this underlying distribution is representative for the initial rotational velocity distribution. The location in the Hertzsprung-Russell diagram of the stars showing helium enrichment is in qualitative agreement with evolutionary tracks accounting for rotation, but not for those ignoring v_r. The mass loss rates of the SMC objects having luminosities of log L*/L⊙ ≳ 5.4 are in excellent agreement with predictions by Vink et al. (2001, A&A, 369, 574). However, for lower luminosity stars the winds are too weak to determine dot{M} accurately from the optical spectrum. Three targets were classifiedas Vz stars, two of which are located close to the theoretical zero-age main sequence. Three lower

  4. Nearby Early-type Galactic Nuclei at High Resolution: Dynamical Black Hole and Nuclear Star Cluster Mass Measurements

    NASA Astrophysics Data System (ADS)

    Nguyen, Dieu D.; Seth, Anil C.; Neumayer, Nadine; Kamann, Sebastian; Voggel, Karina T.; Cappellari, Michele; Picotti, Arianna; Nguyen, Phuong M.; Böker, Torsten; Debattista, Victor; Caldwell, Nelson; McDermid, Richard; Bastian, Nathan; Ahn, Christopher C.; Pechetti, Renuka

    2018-05-01

    We present a detailed study of the nuclear star clusters (NSCs) and massive black holes (BHs) of four of the nearest low-mass early-type galaxies: M32, NGC 205, NGC 5102, and NGC 5206. We measure the dynamical masses of both the BHs and NSCs in these galaxies using Gemini/NIFS or VLT/SINFONI stellar kinematics, Hubble Space Telescope (HST) imaging, and Jeans anisotropic models. We detect massive BHs in M32, NGC 5102, and NGC 5206, while in NGC 205, we find only an upper limit. These BH mass estimates are consistent with previous measurements in M32 and NGC 205, while those in NGC 5102 and NGC 5206 are estimated for the first time and both found to be <106 M ⊙. This adds to just a handful of galaxies with dynamically measured sub-million M ⊙ central BHs. Combining these BH detections with our recent work on NGC 404's BH, we find that 80% (4/5) of nearby, low-mass ({10}9{--}{10}10 M ⊙ {σ }\\star ∼ 20{--}70 km s‑1) early-type galaxies host BHs. Such a high occupation fraction suggests that the BH seeds formed in the early epoch of cosmic assembly likely resulted in abundant seeds, favoring a low-mass seed mechanism of the remnants, most likely from the first generation of massive stars. We find dynamical masses of the NSCs ranging from 2 to 73 × 106 M ⊙ and compare these masses to scaling relations for NSCs based primarily on photometric mass estimates. Color gradients suggest that younger stellar populations lie at the centers of the NSCs in three of the four galaxies (NGC 205, NGC 5102, and NGC 5206), while the morphology of two are complex and best fit with multiple morphological components (NGC 5102 and NGC 5206). The NSC kinematics show they are rotating, especially in M32 and NGC 5102 (V/{σ }\\star ∼ 0.7).

  5. Spiral-like star-forming patterns in CALIFA early-type galaxies

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.; Vílchez, J. M.; Kehrig, C.; Iglesias-Páramo, J.; Breda, I.; Lehnert, M. D.; Sánchez, S. F.; Ziegler, B.; Dos Reis, S. N.; Bland-Hawthorn, J.; Galbany, L.; Bomans, D. J.; Rosales-Ortega, F. F.; Walcher, C. J.; García-Benito, R.; Márquez, I.; Del Olmo, A.; Mollá, M.; Marino, R. A.; Catalán-Torrecilla, C.; González Delgado, R. M.; López-Sánchez, Á. R.; Califa Collaboration

    2016-01-01

    Based on a combined analysis of SDSS imaging and CALIFA integral field spectroscopy data, we report on the detection of faint (24 <μr mag/□″< 26) star-forming spiral-arm-like features in the periphery of three nearby early-type galaxies (ETGs). These features are of considerable interest because they document the still ongoing inside-out growth of some local ETGs and may add valuable observational insight into the origin and evolution of spiral structure in triaxial stellar systems. A characteristic property of the nebular component in the studied ETGs, classified I+, is a two-radial-zone structure, with the inner zone that displays faint (EW(Hα) ≃ 1 Å) low-ionization nuclear emission-line region (LINER) properties, and the outer one (3 Å type I+ ETGs with single-fiber spectroscopic data. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie (MPIA) and the Instituto de Astrofísica de Andalucía (CSIC).

  6. Early Results from NICER Observations of Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Deepto; Ozel, Feryal; Arzoumanian, Zaven; Gendreau, Keith C.; Bult, Peter; Cackett, Ed; Chenevez, Jerome; Fabian, Andy; Guillot, Sebastien; Guver, Tolga; Homan, Jeroen; Keek, Laurens; Lamb, Frederick; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig B.; Miller, Jon M.; Psaltis, Dimitrios; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael T.

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) offers significant new capabilities for the study of accreting neuton stars relative to previous X-ray missions including large effective area, low background, and greatly improved low-energy response. The NICER Burst and Accretion Working Group has designed a 2 Ms observation program to study a number of phenomena in accreting neutron stars including type-I X-ray bursts, superbursts, accretion-powered pulsations, quasi-periodic oscillations, and accretion disk reflection spectra. We present some early results from the first six months of the NICER mission.

  7. Centaurus X-3. [early x-ray binary star spectroscopy

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Cowley, A. P.; Crampton, D.; Van Paradus, J.; White, N. E.

    1979-01-01

    Spectroscopic observations of Krzeminski's star at dispersions 25-60 A/mm are described. The primary is an evolved star of type O6-O8(f) with peculiarities, some of which are attributable to X-ray heating. Broad emission lines at 4640A (N III), 4686 A(He II) and H-alpha show self-absorption and do not originate entirely from the region near the X-ray star. The primary is not highly luminous (bolometric magnitude about -9) and does not show signs of an abnormally strong stellar wind. The X-ray source was 'on' at the time of optical observations. Orbital parameters are presented for the primary, which yield masses of 17 + or - 2 and 1.0 + or - 3 solar masses for the stars. The optical star is undermassive for its luminosity, as are other OB-star X-ray primaries. The rotation is probably synchronized with the orbital motion. The distance to Cen X-3 is estimated to be 10 + or - 1 kpc. Basic data for 12 early-type X-ray primaries are discussed briefly

  8. The helium 10830 A line in early-type stars - An atlas of Fabry-Perot scans

    NASA Technical Reports Server (NTRS)

    Meisel, D. D.; Frank, Z. A.; Packard, M. L.; Saunders, B. A.

    1982-01-01

    Representative profiles of He I 10830 A in 65 early-type (O6-A1) stars over a wide range of luminosity are presented. The atlas scans were obtained using the Vaughan Fabry-Perot interferometer on the C. E. K. Mees 0.6 m and KPNO 0.9 m telescopes and usually cover a range of plus or minus 15 A at 1 A resolution with sampling distances between 0.5 A and 2 A depending on the photometer integration time required to reach reasonable Poisson counting statistics. The majority of the scans show very shallow, broad features which do not agree with plane-parallel NLTE model atmosphere calculations of the 10830 line by Auer and Mihalas (1972). Difficulties connected with previous theoretical studies of this line are briefly discussed, and suggestions for possible future modifications to the theory are made.

  9. Magnetic cycles and rotation periods of late-type stars from photometric time series

    NASA Astrophysics Data System (ADS)

    Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.

    2016-10-01

    Aims: We investigate the photometric modulation induced by magnetic activity cycles and study the relationship between rotation period and activity cycle(s) in late-type (FGKM) stars. Methods: We analysed light curves, spanning up to nine years, of 125 nearby stars provided by the All Sky Automated Survey (ASAS). The sample is mainly composed of low-activity, main-sequence late-A to mid-M-type stars. We performed a search for short (days) and long-term (years) periodic variations in the photometry. We modelled the light curves with combinations of sinusoids to measure the properties of these periodic signals. To provide a better statistical interpretation of our results, we complement our new results with results from previous similar works. Results: We have been able to measure long-term photometric cycles of 47 stars, out of which 39 have been derived with false alarm probabilities (FAP) of less than 0.1 per cent. Rotational modulation was also detected and rotational periods were measured in 36 stars. For 28 stars we have simultaneous measurements of activity cycles and rotational periods, 17 of which are M-type stars. We measured both photometric amplitudes and periods from sinusoidal fits. The measured cycle periods range from 2 to 14 yr with photometric amplitudes in the range of 5-20 mmag. We found that the distribution of cycle lengths for the different spectral types is similar, as the mean cycle is 9.5 yr for F-type stars, 6.7 yr for G-type stars, 8.5 yr for K-type stars, 6.0 yr for early M-type stars, and 7.1 yr for mid-M-type stars. On the other hand, the distribution of rotation periods is completely different, trending to longer periods for later type stars, from a mean rotation of 8.6 days for F-type stars to 85.4 days in mid-M-type stars. The amplitudes induced by magnetic cycles and rotation show a clear correlation. A trend of photometric amplitudes with rotation period is also outlined in the data. The amplitudes of the photometric variability

  10. Probing Minor-merger-driven Star Formation In Early-type Galaxies Using Spatially-resolved Spectro-photometric Studies

    NASA Astrophysics Data System (ADS)

    Kaviraj, Sugata; Crockett, M.; Silk, J.; O'Connell, R. W.; Whitmore, B.; Windhorst, R.; Cappellari, M.; Bureau, M.; Davies, R.

    2012-01-01

    Recent studies that leverage the rest-frame ultraviolet (UV) spectrum have revealed widespread recent star formation in early-type galaxies (ETGs), traditionally considered to be old, passively-evolving systems. This recent star formation builds 20% of the ETG stellar mass after z 1, driven by repeated minor mergers between ETGs and small, gas-rich satellites. We demonstrate how spatially-resolved studies, using a combination of high-resolution UV-optical imaging and integral-field spectroscopy (IFS), is a powerful tool to quantify the assembly history of individual ETGs and elucidate the poorly-understood minor-merger process. Using a combination of WFC3 UV-optical (2500-8200 angstroms) imaging and IFS from the SAURON project of the ETG NGC 4150, we show that this galaxy experienced a merger with mass ratio 1:15 around 0.9 Gyr ago, which formed 3% of its stellar mass and a young kinematically-decoupled core. A UV-optical analysis of its globular cluster system shows that the bulk of the stars locked up in these clusters likely formed 6-7 Gyrs in the past. We introduce a new HST-WFC3 programme, approved in Cycle 19, which will leverage similar UV-optical imaging of a representative sample of nearby ETGs from SAURON to study the recent star formation and its drivers in unprecedented detail and put definitive constraints on minor-merger-driven star formation in massive galaxies at late epochs.

  11. Rotational velocities of A-type stars. IV. Evolution of rotational velocities

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Royer, F.

    2012-01-01

    Context. In previous works of this series, we have shown that late B- and early A-type stars have genuine bimodal distributions of rotational velocities and that late A-type stars lack slow rotators. The distributions of the surface angular velocity ratio Ω/Ωcrit (Ωcrit is the critical angular velocity) have peculiar shapes according to spectral type groups, which can be caused by evolutionary properties. Aims: We aim to review the properties of these rotational velocity distributions in some detail as a function of stellar mass and age. Methods: We have gathered vsini for a sample of 2014 B6- to F2-type stars. We have determined the masses and ages for these objects with stellar evolution models. The (Teff,log L/L⊙)-parameters were determined from the uvby-β photometry and the HIPPARCOS parallaxes. Results: The velocity distributions show two regimes that depend on the stellar mass. Stars less massive than 2.5 M⊙ have a unimodal equatorial velocity distribution and show a monotonical acceleration with age on the main sequence (MS). Stars more massive have a bimodal equatorial velocity distribution. Contrarily to theoretical predictions, the equatorial velocities of stars from about 1.7 M⊙ to 3.2 M⊙ undergo a strong acceleration in the first third of the MS evolutionary phase, while in the last third of the MS they evolve roughly as if there were no angular momentum redistribution in the external stellar layers. The studied stars might start in the ZAMS not necessarily as rigid rotators, but with a total angular momentum lower than the critical one of rigid rotators. The stars seem to evolve as differential rotators all the way of their MS life span and the variation of the observed rotational velocities proceeds with characteristic time scales δt ≈ 0.2 tMS, where tMS is the time spent by a star in the MS. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A

  12. Identifying Massive Runaway Stars by Detecting Infrared Bowshock Nebula: Four OB Stars and a New Massive Early-B Binary System

    NASA Astrophysics Data System (ADS)

    Sorber, Rebecca L.; Rebecca L. Sorber, Henry A. Kobulnicky, Daniel A. Dale, Matthew S. Povich, William T. Chick, Heather N. Wernke, Julian E. Andrews, Stephan Munari, Grace M. Olivier, Danielle Schurhammer

    2016-01-01

    Though the main sequence evolution of OB type stars is relatively well known, the mass loss rates for these stars are still highly uncertain. Some OB stars are gravitationally ejected from their birth sites, traveling at speeds of 30 km/s or more which results in a prominent bowshock nebulae. We identified OB bowshock candidates at low Galactic latitudes by visual inspection of the Wide-field Infrared Survey Explorer (WISE) 22-micron images. Each candidate was observed using the Longslit Spectrograph at the Wyoming Infrared Observatory (WIRO) 2.3 meter telescope. We present here the results from observing four such candidates, and all four are confirmed as early type stars: GO92.3191+0.0591 (B1V) (aka ALS11826), GO86.551014-1.0873935 (B2V; a probable short-period binary), G076.6921-2.4071 (B5V), and G075.5711-0.2558 (B0V) (aka HD 194303). These results enlarge the sample of candidate runaway massive stars hosting bowshocks and provide a promising sample of such objects for studying stellar mass loss. This work is supported by the National Science Foundation Grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  13. Early-Type Galaxy Star Formation Histories in Different Environments

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Patrick; Graves, G.

    2014-01-01

    We use very high-S/N stacked spectra of ˜29,000 nearby quiescent early-type galaxies (ETGs) from the Sloan Digital Sky Survey (SDSS) to investigate variations in their star formation histories (SFHs) with environment at fixed position along and perpendicular to the Fundamental Plane (FP). We separate galaxies in the three-dimensional FP space defined by galaxy effective radius Re, central stellar velocity dispersion σ, and surface brightness residual from the FP, ΔIe. We use the SDSS group catalogue of Yang et al. to further separate galaxies into three categories by their “identities” within their respective dark matter halos: central “Brightest Group Galaxies” (BGGs); Satellites; and Isolateds (those which are “most massive” in a dark matter halo with no Satellites). Within each category, we construct high-S/N mean stacked spectra to determine mean singleburst ages, [Fe/H], and [Mg/Fe] based on the stellar population synthesis models of R. Schiavon. This allows us to study variations in the stellar population properties (SPPs) with local group environment at fixed structure (i.e., fixed position in FP-space). We find that the SFHs of quiescent ETGs are almost entirely determined by their structural parameters σ and ΔIe. Any variation with local group environment at fixed structure is only slight: Satellites have the oldest stellar populations, 0.02 dex older than BGGs and 0.04 dex older than Isolateds; BGGs have the highest Fe-enrichments, 0.01 dex higher than Isolateds and 0.02 dex higher than Satellites; there are no differences in Mg-enhancement between BGGs, Isolateds, and Satellites. Our observation that, to zeroth-order, the SFHs of quiescent ETGs are fully captured by their structures places important qualitative constraints on the degree to which late-time evolutionary processes (those which occur after a galaxy’s initial formation and main star-forming lifetime) can alter their SFHs/structures.

  14. Observations of Nonthermal Radio Emission from Early-type Stars

    NASA Technical Reports Server (NTRS)

    Abbott, D. C.; Bieging, J. H.; Churchwell, E.

    1985-01-01

    As a part of a wider survey of radio emission from O, B, and Wolf-Rayet (WR) stars, five new stars whose radio emission is dominated by a nonthermal mechanism of unknown origin were discovered. From statistics of distance-limited samples of stars, it is estimated that the minimum fraction of stars which are nonthermal emitters is 25% for the OB stars and 10% for the WR stars. The characteristics of this new class of nonthermal radio emitter are investigated.

  15. An Einstein Observatory SAO-based catalog of B-type stars

    NASA Technical Reports Server (NTRS)

    Grillo, F.; Sciortino, S.; Micela, G.; Vaiana, G. S.; Harnden, F. R., Jr.

    1992-01-01

    About 4000 X-ray images obtained with the Einstein Observatory are used to measure the 0.16-4.0 keV emission from 1545 B-type SAO stars falling in the about 10 percent of the sky surveyed with the IPC. Seventy-four detected X-ray sources with B-type stars are identified, and it is estimated that no more than 15 can be misidentified. Upper limits to the X-ray emission of the remaining stars are presented. In addition to summarizing the X-ray measurements and giving other relevant optical data, the present extensive catalog discusses the reduction process and analyzes selection effects associated with both SAO catalog completeness and IPC target selection procedures. It is concluded that X-ray emission, at the level of Lx not less than 10 exp 30 ergs/s, is quite common in B stars of early spectral types (B0-B3), regardless of luminosity class, but that emission, at the same level, becomes less common, or nonexistent, in later B-type stars.

  16. Present-day cosmic abundances. A comprehensive study of nearby early B-type stars and implications for stellar and Galactic evolution and interstellar dust models

    NASA Astrophysics Data System (ADS)

    Nieva, M.-F.; Przybilla, N.

    2012-03-01

    Context. Early B-type stars are ideal indicators for present-day cosmic abundances since they preserve their pristine abundances and typically do not migrate far beyond their birth environments over their short lifetimes, in contrast to older stars like the Sun. They are also unaffected by depletion onto dust grains, unlike the cold/warm interstellar medium (ISM) or H ii regions. Aims: A carefully selected sample of early B-type stars in OB associations and the field within the solar neighbourhood is studied comprehensively. Quantitative spectroscopy is used to characterise their atmospheric properties in a self-consistent way. Present-day abundances for the astrophysically most interesting chemical elements are derived in order to investigate whether a present-day cosmic abundance standard can be established. Methods: High-resolution and high-S/N FOCES, FEROS and ELODIE spectra of well-studied sharp-lined early B-type stars are analysed in non-LTE. Line-profile fits based on extensive model grids and an iterative analysis methodology are used to constrain stellar parameters and elemental abundances at high accuracy and precision. Atmospheric parameters are derived from the simultaneous establishment of independent indicators, from multiple ionization equilibria and the Stark-broadened hydrogen Balmer lines, and they are confirmed by reproduction of the stars' global spectral energy distributions. Results: Effective temperatures are constrained to 1-2% and surface gravities to less than 15% uncertainty, along with accurate rotational, micro- and macroturbulence velocities. Good agreement of the resulting spectroscopic parallaxes with those from the new reduction of the Hipparcos catalogue is obtained. Absolute values for abundances of He, C, N, O, Ne, Mg, Si and Fe are determined to better than 25% uncertainty. The synthetic spectra match the observations reliably over almost the entire visual spectral range. Three sample stars, γ Ori, o Per and θ1 Ori D, are

  17. EVIDENCE FOR A CONSTANT IMF IN EARLY-TYPE GALAXIES BASED ON THEIR X-RAY BINARY POPULATIONS

    NASA Astrophysics Data System (ADS)

    Zepf, Stephen E.; Maccarone, T. J.; Kundu, A.; Gonzalez, A. H.; Lehmer, B.; Maraston, C.

    2014-01-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having steeper IMFs. These steeper IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars and black holes. In this paper, we specifically predict the variation in the number of black holes and neutron stars in early type galaxies based on the IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary populations (LMXBs) of nearby early-type galaxies. These binaries are field neutron stars or black holes accreting from a low-mass donor star. We specifically compare the number of field LMXBs per K-band light in a well-studied sample of elliptical galaxies, and use this result to distinguish between an invariant IMF and one that is Kroupa/Chabrier-like at low masses and steeper at high masses. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF.

  18. Metallicities and Nucleosynthesis Patterns in Early Generation Halo Stars

    NASA Astrophysics Data System (ADS)

    Beers, T.

    2004-05-01

    I review our present knowledge of the Metallicity Distribution Function of stars in the low-metallicity tail of the halo population of the Galaxy, and the variety of observed elemental signatures that might be associated with particular astrophysical origins in the early Universe. Such signatures include stars that exhibit (a) highly and mildly enhanced r-process element ratios, as compared to the solar ratios, (b) highly s-process enriched stars, (c) stars showing large enrichments of both the r- and and s-process elements, and (d) stars that are greatly enhanced in the light element species, such as CNO, and (in some cases) the alpha elements. Because the stars in which these characteristics are observed all have metallicity [Fe/H] ≤ -2.5, they are inferred to have formed no more than 0.5-1 Gyrs after the Big Bang, prior to the final assemblage of the Milky Way. As such, they provide our best available probes of the nature of early element producers, such as Type II SN and hypernovae, as well as binaries that included (now deceased) stars of intermediate (1.5 - 3 Mo) masses. I outline ongoing and future plans for dramatically accelerating the pace of discovery of these rare, but clearly important, objects. Partial support for this work has been received from NSF grants AST 00-98508 and AST 00-98549, and from JINA, the Joint Institute for Nuclear Astrophysics, an NSF Physics Frontier Center.

  19. The young stellar population of IC 1613. III. New O-type stars unveiled by GTC-OSIRIS

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Herrero, A.

    2013-03-01

    Context. Very low-metallicity massive stars are key to understanding the reionization epoch. Radiation-driven winds, chief agents in the evolution of massive stars, are consequently an important ingredient in our models of the early-Universe. Recent findings hint that the winds of massive stars with poorer metallicity than the SMC may be stronger than predicted by theory. Besides calling the paradigm of radiation-driven winds into question, this result would affect the calculated ionizing radiation and mechanical feedback of massive stars, as well as the role these objects play at different stages of the Universe. Aims: The field needs a systematic study of the winds of a large sample of very metal-poor massive stars. The sampling of spectral types is particularly poor in the very early types. This paper's goal is to increase the list of known O-type stars in the dwarf irregular galaxy IC 1613, whose metallicity is lower than the SMC's roughly by a factor 2. Methods: Using the reddening-free Q pseudo-colour, evolutionary masses, and GALEX photometry, we built a list of very likely O-type stars. We obtained low-resolution (R ~ 1000) GTC-OSIRIS spectra for a fraction of them and performed spectral classification, the only way to unequivocally confirm candidate OB-stars. Results: We have discovered 8 new O-type stars in IC 1613, increasing the list of 7 known O-type stars in this galaxy by a factor of 2. The best quality spectra were analysed with the model atmosphere code FASTWIND to derive stellar parameters. We present the first spectral type - effective temperature scale for O-stars beyond the SMC. Conclusions: The target selection method is successful. From the pre-selected list of 13 OB star candidates, we have found 8 new O-stars and 4 early-B stars and provided a similar type for a formerly known early-O star. Further tests are needed, but the presented procedure can eventually make preliminary low-resolution spectroscopy to confirm candidates unnecessary. The

  20. DD 13 - A very young and heavily reddened early O star in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Fitzpatrick, Edward L.

    1991-01-01

    This paper investigates the Large Magellanic Cloud star DD 13, which is likely the major ionizing source of the nebula N159A. New optical spectroscopy and new estimates of the broadband photometric properties of DD 13 are obtained. A spectral type of O3-O6 V, E(B-V) = 0.64, and M(V) = -6.93 is found. The spectral type cannot be more precisely defined due to contamination of the spectral data by nebular emission, obliterating the important He I classification lines. These results, plus a published estimate of the Lyman continuum photon injection rate into N159A, suggest that DD 13 actually consists of about 2-4 young, early O stars still enshrouded by their natal dust cloud. The star DD 13 may be a younger example of the type of tight cluster represented by the LMC 'star' Sk-66 deg 41, recently revealed to be composed of six or more components.

  1. Exploring new classification criteria for the earliest type stars: the 3400 Aregion

    NASA Astrophysics Data System (ADS)

    Morrell, Nidia I.; Walborn, Nolan R.; Arias, Julia I.

    2002-02-01

    We propose spectroscopic observations of a sample of standard O2-O4 stars in the wavelength region containing the N IV 3479-83-85 Aand O IV 3381-85-3412 Alines, in order to analyze the behavior of these spectral features as a function of the spectral type. We aim to define new classification criteria for the hottest stars, evaluating these N IV and O IV lines near 3400 Aas possible temperature and luminosity discriminators. The former spectral class O3 has just been split into three different classes: O2, O3 and O3.5 (Walborn et al. 2001). The paucity of classification criteria at these types in the traditional wavelength domain (4000 - 4700 Å), makes clear the need to explore other spectral ranges in order to define additional constraints on the determination of spectral types and luminosity classes. The wavelength range around 3400 Ahas been observed in many faint, crowded early O-type stars by HST/FOS, the corresponding data being available from the HST archive. This enhances our interest in observing this spectral range in the classification standards for the early O-type stars in order to make these existing HST observations even more useful, allowing the determination of accurate spectral types for unknown objects from them, once the behavior of the new criteria in the standards has been charted.

  2. Rapidly rotating single late-type giants: New FK Comae stars?

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.

    1986-01-01

    A group of rapidly rotating single late-type giants was found from surveys of chromospherically active stars. These stars have V sin I's ranging from 6 to 46 km/sec, modest ultraviolet emission line fluxes, and strong H alpha absorption lines. Although certainly chromospherically active, their characteristics are much less extreme than those of FK Com and one or two other similar systems. One possible explanation for the newly identified systems is that they have evolved from stars similar to FK Com. The chromospheric activity and rotation of single giant stars like FK Com would be expected to decrease with time as they do in single dwarfs. Alternatively, this newly identified group may have evolved from single rapidly rotating A, or early F stars.

  3. RR Lyrae type stars

    NASA Astrophysics Data System (ADS)

    Samus, N. N.

    Basic observational data on RR Lyrae type stars are reviewed. It is noted that these stars are used widely to investigate the structure and kinematics of the spherical and intermediate components of the Galaxy, with correct data on the absolute magnitude of these variables being decisive. Attention is given to the relationship between the orbit eccentricity and inclination of osculating RR Lyrae type stars in the Galaxy and their metallicity index.

  4. VizieR Online Data Catalog: Spectral types of stars in Coalsack region (Vanas 1939)

    NASA Astrophysics Data System (ADS)

    Vanas, E.

    2010-11-01

    This table shows coordinates and identifications for 1930 stars in northern Cygnus ('Northern Coalsack' region) classified by Erik Vanas in an early spectral survey. In the source paper, the stars were identified by BD number (part I of the catalogue) and by approximate coordinates for fainter non-BD stars (part II of the catalogue). The spectral types were determined from scans of objective-prism plates (~260Å/mm). Accurate coordinates of the BD stars were derived mainly from the Tycho-2 catalogue. The non-BD stars had to be identified one-by-one from DSS images via SkyView, usually unambiguous, and coordinates found in VizieR. For the non-BD stars, the acronym [V39] was used. For pairs or crowded stars, 2MASS positions are sometimes used. Where the type applies to a near-equal double star, the coordinates are for the mid-point between the two stars (rounded to 1" precision), and the magnitude is for the combined light. The original Vanas photo-blue magnitudes are somewhat uncertain, probably including a color term. Instead standard V magnitudes from Tycho-2 or from the TASS MkIV survey (Cat. II/271) are supplied. The Vanas spectral types are formally on the 'Uppsala' system, which includes the strength of the CN band to distinguish dwarfs and giants among types later than G5. These are shown in modern MK notation. The scheme also includes a pseudo-luminosity class for hot stars based largely on the width of the Balmer lines. Since the He lines were not involved in the classification, the system loses resolution (or 'granularity') for types earlier than A0. There is also the danger at this dispersion of mistaking a late-B supergiant for an early-B dwarf. From consideration of his descriptions of the spectra, and also comparison with types from modern sources for the same stars, these 'Greek-lettered' types were transformed in modern notation as: * types 'A0μ' given as A0V * types 'A0σ' and 'A0σ+' given as B8 * types 'B{tau}-' given as B, and are mainly B3 to B

  5. A survey for pulsations in A-type stars using SuperWASP

    NASA Astrophysics Data System (ADS)

    Holdsworth, Daniel L.

    2015-12-01

    "It is sound judgement to hope that in the not too distant future we shall be competent to understand so simple a thing as a star." - Sir Arthur Stanley Eddington, The Internal Constitution of Stars, 1926 A survey of A-type stars is conducted with the SuperWASP archive in the search for pulsationally variable stars. Over 1.5 million stars are selected based on their (J-H) colour. Periodograms are calculated for light curves which have been extracted from the archive and cleaned of spurious points. Peaks which have amplitudes greater than 0.5 millimagnitude are identified in the periodograms. In total, 202 656 stars are identified to show variability in the range 5-300 c/d. Spectroscopic follow-up was obtained for 38 stars which showed high-frequency pulsations between 60 and 235 c/d, and a further object with variability at 636 c/d. In this sample, 13 were identified to be normal A-type δ Sct stars, 14 to be pulsating metallic-lined Am stars, 11 to be rapidly oscillating Ap (roAp) stars, and one to be a subdwarf B variable star. The spectra were used not only to classify the stars, but to determine an effective temperature through Balmer line fitting. Hybrid stars have been identified in this study, which show pulsations in both the high- and low-overtone domains; an observation not predicted by theory. These stars are prime targets to perform follow-up observations, as a confirmed detection of this phenomenon will have significant impact on the theory of pulsations in A-type stars. The detected number of roAp stars has expanded the known number of this pulsator class by 22 per cent. Within these results both the hottest and coolest roAp star have been identified. Further to this, one object, KIC 7582608, was observed by the Kepler telescope for 4 yr, enabling a detailed frequency analysis. This analysis has identified significant frequency variations in this star, leading to the hypothesis that this is the first close binary star of its type. The observational

  6. SS 383: A NEW S-TYPE YELLOW SYMBIOTIC STAR?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baella, N. O.; Pereira, C. B.; Miranda, L. F.

    Symbiotic stars are key objects in understanding the formation and evolution of interacting binary systems, and are probably the progenitors of Type Ia supernovae. However, the number of known symbiotic stars is much lower than predicted. We aim to search for new symbiotic stars, with particular emphasis on the S-type yellow symbiotic stars, in order to determine their total population, evolutionary timescales, and physical properties. The Two Micron All Sky Survey (2MASS) (J – H) versus (H – K {sub s}) color-color diagram has been previously used to identify new symbiotic star candidates and show that yellow symbiotics are locatedmore » in a particular region of that diagram. Candidate symbiotic stars are selected on the basis of their locus in the 2MASS (J – H) versus (H – K {sub s}) diagram and the presence of Hα line emission in the Stephenson and Sanduleak Hα survey. This diagram separates S-type yellow symbiotic stars from the rest of the S-type symbiotic stars, allowing us to select candidate yellow symbiotics. To establish the true nature of the candidates, intermediate-resolution spectroscopy is obtained. We have identified the Hα emission line source SS 383 as an S-type yellow symbiotic candidate by its position in the 2MASS color-color diagram. The optical spectrum of SS 383 shows Balmer, He I, He II, and [O III] emission lines, in combination with TiO absorption bands that confirm its symbiotic nature. The derived electron density (≅10{sup 8-9} cm{sup –3}), He I emission line intensity ratios, and position in the [O III] λ5007/Hβ versus [O III] λ4363/Hγ diagram indicate that SS 383 is an S-type symbiotic star, with a probable spectral type of K7-M0 deduced for its cool component based on TiO indices. The spectral type and the position of SS 383 (corrected for reddening) in the 2MASS color-color diagram strongly suggest that SS 383 is an S-type yellow symbiotic. Our result points out that the 2MASS color-color diagram is a powerful

  7. Boron Abundances in A and B-type Stars

    NASA Technical Reports Server (NTRS)

    Lambert, David L.

    1997-01-01

    Boron abundances in A- and B-type stars may be a successful way to track evolutionary effects in these hot stars. The light elements - Li, Be, and B - are tracers of exposure to temperatures more moderate than those in which the H-burning CN-cycle operates. Thus, any exposure of surface stellar layers to deeper layers will affect these light element abundances. Li and Be are used in this role in investigations of evolutionary processes in cool stars, but are not observable in hotter stars. An investigation of boron, however, is possible through the B II 1362 A resonance line. We have gathered high resolution spectra from the IUE database of A- and B-type stars near 10 solar mass for which nitrogen abundances have been determined. The B II 1362 A line is blended throughout; the temperature range of this program, requiring spectrum syntheses to recover the boron abundances. For no star could we synthesize the 1362 A region using the meteoritic/solar boron abundance of log e (B) = 2.88; a lower boron abundance was necessary which may reflect evolutionary effects (e.g., mass loss or mixing near the main-sequence), the natal composition of the star forming regions, or a systematic error in the analyses (e.g., non-LTE effects). Regardless of the initial boron abundance, and despite the possibility of non-LTE effects, it seems clear that boron is severely depleted in some stars. It may be that the nitrogen and boron abundances are anticorrelated, as would be expected from mixing between the H-burning and outer stellar layers. If, as we suspect, a residue of boron is present in the A-type supergiants, we may exclude a scenario in which mixing occurs continuously between the surface and the deep layers operating the CN-cycle. Further exploitation of the B II 1362 A line as an indicator of the evolutionary status of A- and B-type stars will require a larger stellar sample to be observed with higher signal-to-noise as attainable with the Hubble Space Telescope.

  8. Young stellar populations in early-type galaxies in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Nolan, Louisa A.; Raychaudhury, Somak; Kabán, Ata

    2007-02-01

    We use a purely data-driven rectified factor analysis to identify early-type galaxies with recent star formation in Data Release 4 of the Sloan Digital Sky Survey Spectroscopic Catalogue. We compare the spectra and environment of these galaxies with those of `normal' early-type galaxies, and a sample of independently selected E+A galaxies. We calculate the projected local galaxy surface density from the nearest five and 10 neighbours (Σ5 and Σ10) for each galaxy in our sample, and find that the dependence on projected local density, of the properties of E+A galaxies, is not significantly different from that of early-type galaxies with young stellar populations, dropping off rapidly towards denser environments, and flattening off at densities <~0.1-0.3 Mpc-2. The dearth of E+A galaxies in dense environments confirms that E+A galaxies are most likely the products of galaxy-galaxy merging or interactions, rather than star-forming galaxies whose star formation has been quenched by processes unique to dense environments, such as ram-pressure stripping or galaxy harassment. We see a tentative peak in the number of E+A galaxies at Σ10 ~ 0.1-0.3 Mpc-2, which may represent the local galaxy density at which the rate of galaxy-galaxy merging or interaction rate peaks. Analysis of the spectra of our early-type galaxies with young stellar populations suggests that they have a stellar component dominated by F stars, ~1-4 Gyr old, together with a mature, metal-rich population characteristic of `typical' early-type galaxies. The young stars represent >~10 per cent of the stellar mass in these galaxies. This, together with the similarity of the environments in which this `E+F' population and the E+A galaxy sample are found, suggests that E+F galaxies used to be E+A galaxies, but have evolved by a further ~ one to a few Gyr. Our rectified factor analysis is sensitive enough to identify this hidden population, which allows us to study the global and intrinsic properties of early-type

  9. Early-type objects in NGC 6611 and the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Martayan, C.; Floquet, M.; Hubert, A. M.; Neiner, C.; Frémat, Y.; Baade, D.; Fabregat, J.

    2008-10-01

    Aims: An important question about Be stars is whether they are born as such or whether they have become Be stars during their evolution. It is necessary to observe young clusters to answer this question. Methods: To this end, observations of stars in NGC 6611 and the star-formation region of Eagle Nebula were carried out with the ESO-WFI in slitless spectroscopic mode and at the VLT-GIRAFFE (R ≃ 6400-17 000). The targets for the GIRAFFE observations were pre-selected from the literature and our catalogue of emission-line stars based on the WFI study. GIRAFFE observations allowed us to study the population of the early-type stars accurately both with and without emission lines. For this study, we determined the fundamental parameters of OBA stars thanks to the GIRFIT code. We also studied the status of the objects (main sequence or pre-main sequence stars) by using IR data, membership probabilities, and location in HR diagrams. Results: The nature of the early-type stars with emission-line stars in NGC 6611 and its surrounding environment is derived. The slitless observations with the WFI clearly indicate a small number of emission-line stars in M16. We observed with GIRAFFE 101 OBA stars, among them 9 are emission-line stars with circumstellar emission in Hα. We found that W080 could be a new He-strong star, like W601. W301 is a possible classical Be star, W503 is a mass-transfer eclipsing binary with an accretion disk, and the other ones are possible Herbig Ae/Be stars. We also found that the rotational velocities of main sequence B stars are 18% lower than those of pre-main sequence B stars, in good agreement with theory about the evolution of rotational velocities. Combining adaptive optics, IR data, spectroscopy, and radial velocity indications, we found that 27% of the B-type stars are binaries. We also redetermined the age of NGC 6611 found equal to 1.2-1.8 Myears, in good agreement with the most recent determinations.

  10. A survey of mass-loss effects in early-type stars

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.

    1976-01-01

    Intermediate-resolution data obtained with the Copernicus satellite are surveyed in order to define the region in the H-R diagram where mass loss occurs. The survey includes 40 stars, providing good coverage of supergiants from O4 to A2 and main-sequence stars from O4 to B7 as well as spotty coverage of late O giants and intermediate to late B stars. The spectral transitions examined are primarily resonance lines of ions of abundant elements plus some lines arising from excited states (e.g., C III at 1175.7 A and Si IV at 1122.5 A). Observed P Cygni profiles are discussed along with interesting features of some individual profiles. The data are shown to indicate that mass-loss effects occur over a wide portion of the H-R diagram, that mass ejection generally occurs when the holometric magnitude is greater than -6.0, and that the mass-ejection rate is usually high enough to produce P Cygni profile whenever the N V feature at 1240 A is present in a spectrum.

  11. Spectroscopic survey of Kepler stars - II. FIES/NOT observations of A- and F-type stars

    NASA Astrophysics Data System (ADS)

    Niemczura, E.; Polińska, M.; Murphy, S. J.; Smalley, B.; Kołaczkowski, Z.; Jessen-Hansen, J.; Uytterhoeven, K.; Lykke, J. M.; Triviño Hage, A.; Michalska, G.

    2017-09-01

    We have analysed high-resolution spectra of 28 A and 22 F stars in the Kepler field, observed using the Fibre-Fed Échelle Spectrograph at the Nordic Optical Telescope. We provide spectral types, atmospheric parameters and chemical abundances for 50 stars. Balmer, Fe I and Fe II lines were used to derive effective temperatures, surface gravities and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The stars analysed include chemically peculiar stars of the Am and λ Boo types, as well as stars with approximately solar chemical abundances. The wide distribution of projected rotational velocity, vsin I, is typical for A and F stars. The microturbulence velocities obtained are typical for stars in the observed temperature and surface gravity ranges. Moreover, we affirm the results of Niemczura et al. that Am stars do not have systematically higher microturbulent velocities than normal stars of the same temperature.

  12. Hazardous Early Days In (and Beyond) the Habitable Zones Around Ultra-Low-Mass Stars

    NASA Astrophysics Data System (ADS)

    Kastner, Joel

    Although a majority of stars in the solar neighborhood are of mid- to late-M type, the magnetically-induced coronal (X-ray) and chromospheric (UV, H-alpha) activity of such stars remain essentially unexplored for the important age range 10-100 Myr. Such information on high-energy processes associated with young M stars would provide much-needed constraints on models of the effects of stellar irradiation on the physics and chemistry of planet-forming disks and newborn planets. In addition, X-ray and UV observations of ultra-low-mass young stars can serve to probe the (presently ill-defined) spectral type boundary that determines which very low-mass objects will eventually become M stars -- as opposed to brown dwarfs (BDs) -- following their pre-main sequence evolutionary stages. Via ADAP support, we have developed the GALEX Nearby Young Star Search (GALNYSS), a search method that combines GALEX, 2MASS, WISE and proper motion catalog information to identify nearby, young, lowmass stars. We have applied this method to identify ~2000 candidate young (10-100 Myr), low-mass (M-type) stars within 150 pc. These GALNYSS-identified young star candidates are distributed over the entire GALEX-covered sky, and their spectral types peak in the M3-4 range; followup optical spectroscopic work is ongoing (Rodriguez et al. 2013, ApJ, 774, 101). We now propose an ADA program to determine the X-ray properties of representative stars among these GALNYSS candidates, so as to confirm their youth and investigate the early evolution of coronal activity near the low-mass star/BD boundary and the effects of such activity on planet formation. Specifically, we will exploit the presence in the HEASARC archives of XMM-Newton and (to a lesser extent) Chandra X-ray Observatory data for a few dozen GALNYSS candidates that have been observed serendipitously by one or both of these space observatories. The proposed ADA program will yield the full reduction and analysis of these as-yet unexplored data

  13. A Search for Circumstellar Gas-Disk Variability in F-type Stars

    NASA Astrophysics Data System (ADS)

    Adkins, Ally; Montgomery, Sharon Lynn; Welsh, Barry

    2018-01-01

    Over the past six years, short-term (night-to-night) variability in the CaII K-line (3933Å) absorption has been detected towards 22 rapidly-rotating A-type stars, all but four of them discovered by us. Most of these stars are young (age < 100 million years) and possess dusty debris disks as evidenced by their infrared excesses. The variability is thought to be due to kilometer-sized planetesimals (i.e., exocomets) that release gas during their catastrophic in-falls towards their central star. To expand the relatively small number of systems showing this type of variability, we conducted a search amongst nearby, rapidly-rotating, F-type stars. Here, we present high signal-to-noise, medium-resolution spectral observations of the CaII K-line absorption (R≈60,000) recorded towards seven F-type stars. Six of these stars were observed multiple times over the course of our seven-night run on the 2.1-meter Otto Struve Telescope (McDonald Observatory) during June 2017. The appearance or absence of similar short-lived, Doppler-shifted absorption in F-type stars serves as a test of our understanding of the underlying phenomena.

  14. An ALMA view of star formation efficiency suppression in early-type galaxies after gas-rich minor mergers

    NASA Astrophysics Data System (ADS)

    van de Voort, Freeke; Davis, Timothy A.; Matsushita, Satoki; Rowlands, Kate; Shabala, Stanislav S.; Allison, James R.; Ting, Yuan-Sen; Sansom, Anne E.; van der Werf, Paul P.

    2018-05-01

    Gas-rich minor mergers contribute significantly to the gas reservoir of early-type galaxies (ETGs) at low redshift, yet the star formation efficiency (SFE; the star formation rate divided by the molecular gas mass) appears to be strongly suppressed following some of these events, in contrast to the more well-known merger-driven starbursts. We present observations with the Atacama Large Millimeter/submillimeter Array (ALMA) of six ETGs, which have each recently undergone a gas-rich minor merger, as evidenced by their disturbed stellar morphologies. These galaxies were selected because they exhibit extremely low SFEs. We use the resolving power of ALMA to study the morphology and kinematics of the molecular gas. The majority of our galaxies exhibit spatial and kinematical irregularities, such as detached gas clouds, warps, and other asymmetries. These asymmetries support the interpretation that the suppression of the SFE is caused by dynamical effects stabilizing the gas against gravitational collapse. Through kinematic modelling we derive high velocity dispersions and Toomre Q stability parameters for the gas, but caution that such measurements in edge-on galaxies suffer from degeneracies. We estimate merger ages to be about 100 Myr based on the observed disturbances in the gas distribution. Furthermore, we determine that these galaxies lie, on average, two orders of magnitude below the Kennicutt-Schmidt relation for star-forming galaxies as well as below the relation for relaxed ETGs. We discuss potential dynamical processes responsible for this strong suppression of star formation surface density at fixed molecular gas surface density.

  15. Multiplicity among Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Fuhrmann, K.; Chini, R.; Kaderhandt, L.; Chen, Z.

    2017-02-01

    We present a multiplicity census for a volume-complete all-sky survey of 422 stars with distances less than 25 pc and primary main-sequence effective temperatures T eff ≥ 5300 K. Very similar to previous results that have been presented for various subsets of this survey, we confirm the positive correlation of the stellar multiplicities with primary mass. We find for the F- and G-type Population I stars that 58% are non-single and 21% are in triple or higher level systems. For the old intermediate-disk and Population II stars—virtually all of G type and less massive—even two out of three sources prove to be non-single. These numbers being lower limits because of the continuous flow of new discoveries, the unbiased survey clearly demonstrates that the standard case for solar-type field stars is a hydrogen-burning source with at least one ordinary or degenerate stellar companion, and a surprisingly large number of stars are organized in multiple systems. A principal consequence is that orbital evolution, including the formation of blue straggler stars, is a potentially important issue on all spatial scales and timescales for a significant percentage of the stellar systems, in particular among Population II stars. We discuss a number of recent observations of known or suspected companions in the local survey, including a new detection of a double-lined Ba-Bb subsystem to the visual binary HR 8635.

  16. Large-scale Organized Magnetic Fields in O, B and A Stars

    NASA Astrophysics Data System (ADS)

    Mathys, G.

    2009-06-01

    The status of our current knowledge of magnetic fields in stars of spectral types ranging from early F to O is reviewed. Fields with large-scale organised structure have now been detected and measured throughout this range. These fields are consistent with the oblique rotator model. In early F to late B stars, their occurrence is restricted to the subgroup of the Ap stars, which have the best studied fields among the early-type stars. Presence of fields with more complex topologies in other A and late B stars has been suggested, but is not firmly established. Magnetic fields have not been studied in a sufficient number of OB stars yet so as to establish whether they occur in all or only in some subset of these stars.

  17. What Is Happening at Spectral Type F5 in Hyades F Stars?

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika; Robinson, Richard; Carpenter, Kenneth; Mena-Werth, Jose

    2002-01-01

    Aiming at a better understanding of the mechanisms heating the chromospheres, transition regions, and coronae of cool stars, we study ultraviolet, low-resolution Hubble Space Telescope/Space Telescope Imaging Spectrograph spectra of Hyades main-sequence F stars. We study the B-V dependence(s) of the chromospheric and transition layer emission line fluxes and their dependences on rotational velocities. We find that the transition layer emission line fluxes and also those of strong chromospheric lines decrease steeply between B-V = 0.42 and 0.45, i.e., at spectral type F5, for which the rotational velocities also decrease steeply. The magnitude of the line-flux decrease increases for lines of ions with increasing degree of ionization. This shows that the line-flux decrease is not due to a change in the surface filling factor but rather due to a change of the relative importance of different heating mechanisms. For early F stars with B-V < 0.42 we find for the transition layer emission lines increasing fluxes for increasing v sin i, indicating magnetohydrodynamic heating. The v sin i dependence is strongest for the high-ionization lines. On the other hand, the low chromospheric lines show no dependence on v sin i, indicating acoustic shock heating for these layers. This also contributes to the heating of the transition layers. The Mg II and Ca II lines show decreasing fluxes for increasing v sin i, as long as v sin i is less than approx. 40 km/s. The coronal X-ray emission also decreases for increasing v sin i, except for v sin i larger than approx. 100 km/s. We have at present no explanation for this behavior. For late F stars the chromospheric lines show v sin i dependences similar to those observed for early F stars, again indicating acoustic heating for these layers. We were unable to determine the v sin i dependence of the transition layer lines because of too few single star targets. The decrease of emission line fluxes at the spectral type F5, with steeply

  18. Demography of SDSS Early-type Galaxies from the Perspective of Radial Color Gradients

    NASA Astrophysics Data System (ADS)

    Suh, Hyewon; Jeong, H.; Oh, K.; Yi, S. K.; Ferreras, I.; Schawinski, K.

    2010-01-01

    We have investigated the radial g-r color gradients of early-type galaxies in the Sloan Digital Sky Survey (SDSS) DR6 in the redshift range 0.00 < z < 0.06. The majority of massive early-type galaxies show a negative color gradient (centers being redder). On the other hand, roughly 30 percent of the galaxies in this sample show positive color gradients (centers being bluer). These positive-gradient galaxies often show strong Hβ absorption line strengths and/or emission line ratios that are consistent with containing young stellar populations. Combining the optical data with Galaxy Evolution Explorer (GALEX) UV photometry, we find that all positive-gradient galaxies show blue UV-optical colors. This implies that the residual star formation in early-type galaxies is centrally concentrated. These positive-gradient galaxies tend to live in lower density regions. They are also a bit more likely to have a late-type companion galaxy, hinting at a possible role of interactions with a gas-rich companion. A simplistic population analysis shows that these positive color gradients are visible only for half a billion years after a star burst. Moreover, the positive-gradient galaxies occupy different regions in the fundamental planes from the outnumbering negative-gradient galaxies. However, the positions of the positive-gradient galaxies on the fundamental planes cannot be attributed to any reasonable amount of recent star formation alone but require substantially lower velocity dispersions to begin with. Our results based on the optical data are consistent with the residual star formation interpretation which was based on the GALEX UV data. A low-level residual star formation seems continuing in most of the less-massive early-type galaxies in their centers.

  19. A Be-type star with a black-hole companion.

    PubMed

    Casares, J; Negueruela, I; Ribó, M; Ribas, I; Paredes, J M; Herrero, A; Simón-Díaz, S

    2014-01-16

    Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the approximately 80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (ref. 5; also known as HD 215227), although that conclusion was based on a single radial velocity curve of the Be star, a mistaken spectral classification and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of MWC 656. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe II profiles from the equatorial disk, and a refined Be classification (to that of a B1.5-B2 III star), indicates that a black hole of 3.8 to 6.9 solar masses orbits MWC 656, the candidate counterpart of the γ-ray source AGL J2241+4454 (refs 5, 6). The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 × 10(-7) times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect in conventional X-ray surveys.

  20. Detection of atmospheric velocity fields in A-type stars

    NASA Astrophysics Data System (ADS)

    Landstreet, J. D.

    1998-10-01

    km s(-1) . No consistent fit to all lines can be found with a single model of the type used here. It is concluded (a) that classical LTE line synthesis is able to reproduce with considerable accuracy the line profiles of late B and early A stars with T_e above about 9500 K, but that the LTE model with depth-independent microturbulence provides a very poor approximation for cooler A stars, (b) that curve-of-growth microturbulent velocities in A stars are related to directly detectable atmospheric velocity fields, and (c) that the discrepancies between calculated and observed line profiles in stars with temperatures in the vicinity of 8000 K are so large that abundances derived mainly from saturated lines may well contain significant errors. As a by-product, laboratory gf values for Fe II between 3800 and 5300 Angstroms have been combined to form a set of data optimized for internal consistency of the gf values. Based on observations obtained with the Canada-France-Hawaii telescope, operated by the National Research Council of Canada, the Centre National de Recherche Scientifique of France, and the University of Hawaii, and with the 1.52-m telescope of the Observatoire de Haute Provence, operated by the Centre National de Recherche Scientifique of France.

  1. Young, metal-enriched cores in early-type dwarf galaxies in the Virgo cluster based on colour gradients

    NASA Astrophysics Data System (ADS)

    Urich, Linda; Lisker, Thorsten; Janz, Joachim; van de Ven, Glenn; Leaman, Ryan; Boselli, Alessandro; Paudel, Sanjaya; Sybilska, Agnieszka; Peletier, Reynier F.; den Brok, Mark; Hensler, Gerhard; Toloba, Elisa; Falcón-Barroso, Jesús; Niemi, Sami-Matias

    2017-10-01

    Early-type dwarf galaxies are not simply featureless, old objects, but were found to be much more diverse, hosting substructures and a variety of stellar population properties. To explore the stellar content of faint early-type galaxies, and to investigate in particular those with recent central star formation, we study colours and colour gradients within one effective radius in optical (g - r) and near-infrared (I - H) bands for 120 Virgo cluster early-type galaxies with - 19 mag early-type galaxies. The metallicity gradients of these blue-cored early-type dwarf galaxies are, however, in the range of most normal faint early-type galaxies, which we find to have non-zero gradients with higher central metallicity. The blue central regions are consistent with star formation activity within the last few 100 Myr. We discuss whether these galaxies could be explained by environmental quenching of star formation in the outer galaxy regions while the inner star formation activity continued.

  2. The Copernicus observations - Interstellar or circumstellar material. [UV spectra of early stars

    NASA Technical Reports Server (NTRS)

    Steigman, G.; Strittmatter, P. A.; Williams, R. E.

    1975-01-01

    It is suggested that the sharp absorption lines observed in the ultraviolet spectra of early-type stars by the Copernicus satellite may be entirely accounted for by the circumstellar material in the H II regions and associated transition zones around the observed stars. If this interpretation is correct, the Copernicus results yield little information on the state of any interstellar (as opposed to circumstellar) gas and, in particular, shed little light on the degree of element depletion in interstellar space.

  3. Activity in X-ray-selected late-type stars

    NASA Technical Reports Server (NTRS)

    Takalo, Leo O.; Nousek, J. A.

    1988-01-01

    A spectroscopic study has been conducted of nine X-ray bright late-type stars selected from two Einstein X-ray surveys: the Columbia Astrophysical Laboratory Survey (five stars) and the CFA Medium Sensitivity Survey (MSS; four stars). Spectral classes were determined and radial and V sin(i) velocities were measured for the stars. Four of the Columbia Survey stars were found to be new RS CVn-type binaries. The fifth Columbia survey star was found to be an active G dwarf star without evidence for binarity. None of the four MSS stars were found to be either binaries or optically active stars. Activity in these stars was assessed by measuring the excess emission in H-alpha and the Ca II IRT (8498, 8542) lines in comparison with inactive stars of similar spectral types. A correlation was found between X-ray luminosity and V sin(i) and H-alpha line excess. The measured excess line emission in H-alpha was also correlated with V sin(i) but not with the IRT line excess.

  4. Review: Magnetic Fields of O-Type Stars

    NASA Astrophysics Data System (ADS)

    Wade, G. A.; MiMeS Collaboration

    2015-04-01

    Since 2002, strong, organized magnetic fields have been firmly detected at the surfaces of about 10 Galactic O-type stars. In this paper I will review the characteristics of the inferred fields of individual stars as well as the overall population. I will discuss the extension of the “magnetic desert,” first inferred among the A-type stars, to O stars up to 60 M⊙. I will discuss the interaction of the winds of the magnetic stars with the fields above their surfaces, generating complex “dynamical magnetosphere” structures detected in optical and UV lines, and in X-ray lines and continuum. Finally, I will discuss the detection of a small number of variable O stars in the LMC and SMC that exhibit spectral characteristics analogous to the known Galactic magnetic stars, and that almost certainly represent the first known examples of extragalactic magnetic stars.

  5. uvbyβ photometry of early type open cluster and field stars

    NASA Astrophysics Data System (ADS)

    Handler, G.

    2011-04-01

    Context. The β Cephei stars and slowly pulsating B (SPB) stars are massive main sequence variables. The strength of their pulsational driving strongly depends on the opacity of iron-group elements. As many of those stars naturally occur in young open clusters, whose metallicities can be determined in several fundamental ways, it is logical to study the incidence of pulsation in several young open clusters. Aims: To provide the foundation for such an investigation, Strömgren-Crawford uvbyβ photometry of open cluster target stars was carried out to determine effective temperatures, luminosities, and therefore cluster memberships. Methods: In the course of three observing runs, uvbyβ photometry for 168 target stars was acquired and transformed into the standard system by measurements of 117 standard stars. The list of target stars also included some known cluster and field β Cephei stars, as well as β Cephei and SPB candidates that are targets of the asteroseismic part of the Kepler satellite mission. Results: The uvbyβ photometric results are presented. The data are shown to be on the standard system, and the properties of the target stars are discussed: 140 of these are indeed OB stars, a total of 101 targets lie within the β Cephei and/or SPB star instability strips, and each investigated cluster contains such potential pulsators. Conclusions: These measurements will be taken advantage of in a number of subsequent publications. Based on measurements obtained at McDonald Observatory of the University of Texas at Austin.Tables 3-6 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/528/A148

  6. Abell 48 - a rare WN-type central star of a planetary nebula

    NASA Astrophysics Data System (ADS)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2013-04-01

    A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. Almost all of these H-deficient central stars (CSs) display spectra with strong carbon and helium lines. Most of them exhibit emission-line spectra resembling those of massive WC stars. Therefore these stars are classed as CSPNe of spectral type [WC]. Recently, quantitative spectral analysis of two emission-line CSs, PB 8 and IC 4663, revealed that these stars do not belong to the [WC] class. Instead PB 8 has been classified as [WN/WC] type and IC 4663 as [WN] type. In this work we report the spectroscopic identification of another rare [WN] star, the CS of Abell 48. We performed a spectral analysis of Abell 48 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. We find that the expanding atmosphere of Abell 48 is mainly composed of helium (85 per cent by mass), hydrogen (10 per cent) and nitrogen (5 per cent). The residual hydrogen and the enhanced nitrogen abundance make this object different from the other [WN] star IC 4663. We discuss the possible origin of this atmospheric composition.

  7. FLARES ON A-TYPE STARS: EVIDENCE FOR HEATING OF SOLAR CORONA BY NANOFLARES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Švanda, Michal; Karlický, Marian, E-mail: michal@astronomie.cz

    We analyzed the occurrence rates of flares on stars of spectral types K, G, F, and A, observed by Kepler . We found that the histogram of occurrence frequencies of stellar flares is systematically shifted toward a high-energy tail for A-type stars compared to stars of cooler spectral types. We extrapolated the fitted power laws toward flares with smaller energies (nanoflares) and made estimates for total energy flux to stellar atmospheres by flares. We found that, for A-type stars, the total energy flux density was at least four-times smaller than for G stars. We speculate that this deficit in energymore » supply may explain the lack of hot coronae on A-type stars. Our results indicate the importance of nanoflares for heating and formation of the solar corona.« less

  8. Nearby star cluster yields insights into early universe

    NASA Astrophysics Data System (ADS)

    1998-07-01

    The nebula offers a unique opportunity for a close-up glimpse of the "firestorm" accompanying the birth of extremely massive stars, each blazing with the brilliance of 300,000 of our suns. Such galactic fireworks were much more common billions of years ago in the early universe, when most star formation took place. "This is giving us new insights into the physical mechanisms governing star formation in far away galaxies that existed long ago," says Mohammad Heydari-Malayeri (Paris Observatory, France), who headed the international team of astronomers who made the discovery using Hubble's Wide Field and Planetary Camera 2. Because these stars are deficient in heavier elements, they also evolve much like the universe's earliest stars, which were made almost exclusively of the primordial elements hydrogen and helium that were created in the big bang. The Small Magellanic Cloud is a unique laboratory for studying star formation in the early universe since it is the closest and best seen galaxy containing so-called "metal-poor" first- and second -generation type stars. These observations show that massive stars may form in groups. "As a result, it is more likely some of these stars are members of double and multiple star systems," says Heydari-Malayeri. "The multiple systems will affect stellar evolution considerably by ejecting a great deal of matter into space." This furious rate of mass loss from these stars is evident in the Hubble picture, which reveals dramatic shapes sculpted in the nebula's wall of glowing gases by violent stellar winds and shock waves. "This implies a very turbulent environment typical of young star formation regions," Heydari-Malayeri adds. He believes one of the members of the cluster may be an extremely rare and short-lived class of super-hot star (50,000 degrees Kelvin) called a Wolf-Rayet. This star represents a violent, transitional phase in the final years of a massive star's existence - before it ultimately explodes as a supernova. "If

  9. [A wavelet-transform-based method for the automatic detection of late-type stars].

    PubMed

    Liu, Zhong-tian; Zhao, Rrui-zhen; Zhao, Yong-heng; Wu, Fu-chao

    2005-07-01

    The LAMOST project, the world largest sky survey project, urgently needs an automatic late-type stars detection system. However, to our knowledge, no effective methods for automatic late-type stars detection have been reported in the literature up to now. The present study work is intended to explore possible ways to deal with this issue. Here, by "late-type stars" we mean those stars with strong molecule absorption bands, including oxygen-rich M, L and T type stars and carbon-rich C stars. Based on experimental results, the authors find that after a wavelet transform with 5 scales on the late-type stars spectra, their frequency spectrum of the transformed coefficient on the 5th scale consistently manifests a unimodal distribution, and the energy of frequency spectrum is largely concentrated on a small neighborhood centered around the unique peak. However, for the spectra of other celestial bodies, the corresponding frequency spectrum is of multimodal and the energy of frequency spectrum is dispersible. Based on such a finding, the authors presented a wavelet-transform-based automatic late-type stars detection method. The proposed method is shown by extensive experiments to be practical and of good robustness.

  10. Imaging the Hot Stellar Content of Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Bertola, Francesco

    1991-07-01

    WE PROPOSE TO IMAGE WITH THE FOC IN THE F/96 CONFIGURATION FIVE EARLY TYPE GALAXIES IN FOUR PASSBANDS CENTERED AT 1500 A, 2200 A, 2800 A AND 3400 A. WHEN COUPLED WITH PHOTOMETRY OBTAINED FROM THE GROUND OUR OBSERVATIONS WILL ALLOW US TO DERIVE COMPLETE SED OF THESE GALAXIES AS A FUNCTION OF THE DISTANCE FROM THE CENTER. THIS IS A KEY STEP TOWARDS THE UNDERSTANDING OF STELLAR POPULATIONS - IN PARTICULAR THE ONE RESPONSIBLE FOR THE UV EMISSION - IN EARLY TYPE GALAXIES AND WILL PROVIDE IMPORTANT INSIGHT IN THEIR FORMATION AND EVOLUTION. WE PLAN TO OBSERVE NGC 1399, NGC 2681, NGC 4552, NGC 5018 AND NGC 4627 WHICH SAMPLE A WIDE RANGE OF INTRINSIC PROPERTIES AS INDICATED BY PREVIOUS IUE OBSERVATIONS. FOR NGC 4627 THERE IS EVIDENCE OF ONGOING STAR FORMATION AND THE HST WILL BE ABLE TO SHOW THE CHARACTERISTIC CLUMPINESS. NGC 2681 HAD A STARBUST OF AGE GREATER THAN 1 GYR. NGC 4552 IS ONE OF THE MOST METAL RICH GALAXY KNOWN. NGC 1399 HAS THE SAME METALLICITY AND LUMINOSITY OF THE PREVIOUS GALAXY BUT IS A MUCH STRONGER X-RAY EMITTER. NGC 5018 IS A VERY GOOD CANDIDATE FOR ONGOING STAR FORMATION. WE BELIEVE IN THIS WAY WE CAN OBTAIN SED FOR THE TWO-DIMENSIONAL IMAGES OF EARLY TYPE GALAXIES FROM BROAD BAND IMAGING ALONE. THE CALIBRATION OF OUR FILTER SYSTEM WILL ALLOW US TO APPLY IT TO THE BIDIMENSIONAL ANALYSIS OF THE GENERAL SAMPLE OF EARLY TYPE GALAXIES.

  11. Evolution of Late-type Galaxies in a Cluster Environment: Effects of High-speed Multiple Encounters with Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Hwang, Jeong-Sun; Park, Changbom; Banerjee, Arunima; Hwang, Ho Seong

    2018-04-01

    Late-type galaxies falling into a cluster would evolve being influenced by the interactions with both the cluster and the nearby cluster member galaxies. Most numerical studies, however, tend to focus on the effects of the former with little work done on those of the latter. We thus perform a numerical study on the evolution of a late-type galaxy interacting with neighboring early-type galaxies at high speed using hydrodynamic simulations. Based on the information obtained from the Coma cluster, we set up the simulations for the case where a Milky Way–like late-type galaxy experiences six consecutive collisions with twice as massive early-type galaxies having hot gas in their halos at the closest approach distances of 15–65 h ‑1 kpc at the relative velocities of 1500–1600 km s‑1. Our simulations show that the evolution of the late-type galaxy can be significantly affected by the accumulated effects of the high-speed multiple collisions with the early-type galaxies, such as on cold gas content and star formation activity of the late-type galaxy, particularly through the hydrodynamic interactions between cold disk and hot gas halos. We find that the late-type galaxy can lose most of its cold gas after the six collisions and have more star formation activity during the collisions. By comparing our simulation results with those of galaxy–cluster interactions, we claim that the role of the galaxy–galaxy interactions on the evolution of late-type galaxies in clusters could be comparable with that of the galaxy–cluster interactions, depending on the dynamical history.

  12. The TGAS HR diagram of S-type stars

    NASA Astrophysics Data System (ADS)

    Shetye, Shreeya; van Eck, Sophie; Jorissen, Alain; van Winckel, Hans; Siess, Lionel

    2018-04-01

    S-type stars are late-type giants enhanced with s-process elements originating either from nucleosynthesis during the Asymptotic Giant Branch (AGB) or from a pollution by a binary companion. The former are called intrinsic S stars, and the latter extrinsic S stars. The atmospheric parameters of S stars are more numerous than those of M-type giants (C/O ratio and s-process abundances affect the thermal structure and spectral synthesis), and hence they are more difficult to derive. Nevertheless, high-resolution spectroscopic data of S stars combined with the TGAS (Tycho-Gaia Astrometric solution) parallaxes were used to derive effective temperatures, surface gravities, and luminosities. These parameters allow to locate the intrinsic and extrinsic S stars in the Hertzsprung-Russell diagram.

  13. A VLA 3.6 centimeter survey of N-type carbon stars

    NASA Technical Reports Server (NTRS)

    Luttermoser, Donald G.; Brown, Alexander

    1992-01-01

    The results are presented of a VLA-continuum survey of 7 N-type carbon stars at 3.6 cm. Evidence exists for hot plasma around such stars; the IUE satellite detected emission lines of singly ionized metals in the optically brightest carbon stars, which in solar-type stars indicate the existence of a chromosphere. In the past, these emission lines were used to constrain the lower portion of the archetypical chromospheric model of N-type carbon stars, that of TX Psc. Five of the survey stars are semiregular (1 SRa and 4 SRb) variables and two are irregular (Lb) variables. Upper limits of about 0.07 mJy are set of the SRb and Lb variables and the lone SRa (V Hya) was detected with a flux of 0.22 mJy. The upper limits for the six stars that are not detected indicate that the temperature in their winds is less than 10,000 K. Various scenarios for the emission from V Hya are proposed, and it is suggested that the radio continuum is shock-related (either due to pulsation or the suspected bipolar jet) and not due to a supposed accretion disk around an unseen companion.

  14. Mass loss from solar-type stars

    NASA Technical Reports Server (NTRS)

    Hartmann, L.

    1985-01-01

    The present picture of mass loss from solar-type (low-mass) stars is described, with special emphasis on winds from pre-main-sequence stars. Attention is given to winds from T Tauri stars and to angular momentum loss. Prospects are good for further advances in our understanding of the powerful mass loss observed from young stars; ultraviolet spectra obtainable with the Space Telescope should provide better estimates of mass loss rates and a clearer picture of physical conditions in the envelopes of these stars. To understand the mass ejection from old, slowly rotating main-sequence stars, we will have to study the sun.

  15. Non-LTE, line-blanketed model atmospheres for late O- and early B-type stars

    NASA Technical Reports Server (NTRS)

    Grigsby, James A.; Morrison, Nancy D.; Anderson, Lawrence S.

    1992-01-01

    The use of non-LTE line-blanketed model atmospheres to analyze the spectra of hot stars is reported. The stars analyzed are members of clusters and associations, have spectral types in the range O9-B2 and luminosity classes in the range III-IV, have slow to moderate rotation, and are photometrically constant. Sampled line opacities of iron-group elements were incorporated in the radiative transfer solution; solar abundances were assumed. Good to excellent agreement is obtained between the computed profiles and essentially all the line profiles used to fix the model, and reliable stellar parameters are derived. The synthetic M II 5581 equivalent widths agree well with the observed ones at the low end of the temperature range studied, but, above 25,000 K, the synthetic line is generally stronger than the observed line. The behavior of the observed equivalent widths of N II, N III, C II and C III lines as a function of Teff is studied. Most of the lines show much scatter, with no consistent trend that could indicate abundance differences from star to star.

  16. A Detailed Far-ultraviolet Spectral Atlas of O-type Stars

    NASA Astrophysics Data System (ADS)

    Smith, Myron A.

    2012-10-01

    In this paper, we present a spectral atlas covering the wavelength interval 930-1188 Å for O2-O9.5 stars using Far-Ultraviolet Spectroscopic Explorer archival data. The stars selected for the atlas were drawn from three populations: Galactic main-sequence (classes III-V) stars, supergiants, and main-sequence stars in the Magellanic Clouds, which have low metallicities. For several of these stars, we have prepared FITS files comprised of pairs of merged spectra for user access via the Multimission Archive at Space Telescope (MAST). We chose spectra from the first population with spectral types O4, O5, O6, O7, O8, and O9.5 and used them to compile tables and figures with identifications of all possible atmospheric and interstellar medium lines in the region 949-1188 Å. Our identified line totals for these six representative spectra are 821 (500), 992 (663), 1077 (749), 1178 (847), 1359 (1001), and 1798 (1392) lines, respectively, where the numbers in parentheses are the totals of lines formed in the atmospheres, according to spectral synthesis models. The total number of unique atmospheric identifications for the six main-sequence O-star template spectra is 1792, whereas the number of atmospheric lines in common to these spectra is 300. The number of identified lines decreases toward earlier types (increasing effective temperature), while the percentages of "missed" features (unknown lines not predicted from our spectral syntheses) drop from a high of 8% at type B0.2, from our recently published B-star far-UV atlas, to 1%-3% for type O spectra. The percentages of overpredicted lines are similar, despite their being much higher for B-star spectra. We discuss the statistics of line populations among the various elemental ionization states. Also, as an aid to users we list those isolated lines that can be used to determine stellar temperatures and the presence of possible chemical anomalies. Finally, we have prepared FITS files that give pairs of merged spectra for

  17. The Development of STAR Early Literacy. Report.

    ERIC Educational Resources Information Center

    School Renaissance Inst., Inc., Madison, WI.

    This report describes the development and testing of a computerized early literacy diagnostic assessment for students in prekindergarten to grade 3 that can measure skills across a variety of preliteracy and reading domains. The STAR Early Literacy assessment was developed by a team of more than 50 people, including literacy experts,…

  18. Empirical effective temperatures and bolometric corrections for early-type stars

    NASA Technical Reports Server (NTRS)

    Code, A. D.; Bless, R. C.; Davis, J.; Brown, R. H.

    1976-01-01

    An empirical effective temperature for a star can be found by measuring its apparent angular diameter and absolute flux distribution. The angular diameters of 32 bright stars in the spectral range O5f to F8 have recently been measured with the stellar interferometer at Narrabri Observatory, and their absolute flux distributions have been found by combining observations of ultraviolet flux from the Orbiting Astronomical Observatory (OAO-2) with ground-based photometry. In this paper, these data have been combined to derive empirical effective temperatures and bolometric corrections for these 32 stars.

  19. Solar-type dynamo behaviour in fully convective stars without a tachocline.

    PubMed

    Wright, Nicholas J; Drake, Jeremy J

    2016-07-28

    In solar-type stars (with radiative cores and convective envelopes like our Sun), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in solar-type stars. As the X-ray activity-rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dynamo. The lack of a tachocline in fully convective stars therefore suggests that this is not a critical ingredient in the solar dynamo and supports models in which the dynamo originates throughout the convection zone.

  20. The early-type strong emission-line supergiants of the Magellanic Clouds - A spectroscopic zoology

    NASA Technical Reports Server (NTRS)

    Shore, S. N.; Sanduleak, N.

    1984-01-01

    The results of a spectroscopic survey of 21 early-type extreme emission line supergiants of the Large and Small Magellanic Clouds using IUE and optical spectra are presented. The combined observations are discussed and the literature on each star in the sample is summarized. The classification procedures and the methods by which effective temperatures, bolometric magnitudes, and reddenings were assigned are discussed. The derived reddening values are given along with some results concerning anomalous reddening among the sample stars. The derived mass, luminosity, and radius for each star are presented, and the ultraviolet emission lines are described. Mass-loss rates are derived and discussed, and the implications of these observations for the evolution of the most massive stars in the Local Group are addressed.

  1. The onset of chromospheric activity among the A and F stars

    NASA Technical Reports Server (NTRS)

    Simon, Theodore; Landsman, Wayne

    1991-01-01

    Results are reported from a search for an upper boundary for the onset of main-sequence star activity based on a quest for high-temperature UV line emission in a large collection of IUE spectra. It is shown that strong chromospheric emission is common among early F dwarf and subgiant stars. At its brightest, the emission is equal to that of the most active solar-type stars and is exceeded only by that of the spotted RS CVn and BY Dra variables. It is suggested that the emission from the main-sequence stars reaches a peak near B-V = 0.28, in the vicinity of spectral type F0 V, before it declines to lower flux levels among the late A stars. Emission is seen in some dwarf stars as early as B-V = 0.25. It is demonstrated that the C II emission of stars earlier than the spectral type F5 is uncorrelated with rotation. Previous findings that the coronal X-ray:chromospheric UV flux ratio is lower for stars earlier than spectral type F5 than for those later than F5 are confirmed.

  2. The TESIS Project: Revealing Massive Early-Type Galaxies at z > 1

    NASA Astrophysics Data System (ADS)

    Saracco, P.; Longhetti, M.; Severgnini, P.; Della Ceca, R.; Braito, V.; Bender, R.; Drory, N.; Feulner, G.; Hopp, U.; Mannucci, F.; Maraston, C.

    How and when present-day massive early-type galaxies built up and what type of evolution has characterized their growth (star formation and/or merging) still remain open issues. The different competing scenarios of galaxy formation predict much different properties of early-type galaxies at z > 1. The "monolithic" collapse predicts that massive spheroids formed at high redshift (z > 2.5-3) and that their comoving density is constant at z < 2.5-3 since they evolve only in luminosity. On the contrary, in the hierarchical scenario massive spheroids are built up through subsequent mergers reaching their final masses at z < 1.5 [3,5]. As a consequence, massive systems are very rare at z > 1, their comoving density decreases from z = 0 to z ~ 1.5 and they should experience their last burst of star formation at z < 1.5, concurrent with the merging event(s) of their formation. These opposed predicted properties of early-types at z > 1 can be probed observationally once a well defined sample of massive early-types at z > 1 is available. We are constructing such a sample through a dedicated near-IR very low resolution (λ/Δλ≃50) spectroscopic survey (TNG EROs Spectroscopic Identification Survey, TESIS, [6]) of a complete sample of 30 bright (K < 18.5) Extremely Red Objects (EROs).

  3. Copious amounts of hot and cold dust orbiting the main sequence a-type stars HD 131488 and HD 121191

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melis, Carl; Zuckerman, B.; Rhee, Joseph H.

    2013-11-20

    We report two new dramatically dusty main sequence stars: HD 131488 (A1 V) and HD 121191 (A8 V). HD 131488 is found to have substantial amounts of dust in its terrestrial planet zone (L {sub IR}/L {sub bol} ≈ 4 × 10{sup –3}), cooler dust farther out in its planetary system, and an unusual mid-infrared spectral feature. HD 121191 shows terrestrial planet zone dust (L {sub IR}/L {sub bol} ≈ 2.3 × 10{sup –3}), hints of cooler dust, and shares the unusual mid-infrared spectral shape identified in HD 131488. These two stars belong to sub-groups of the Scorpius-Centaurus OB associationmore » and have ages of ∼10 Myr. HD 131488 and HD 121191 are the dustiest main sequence A-type stars currently known. Early-type stars that host substantial inner planetary system dust are thus far found only within the age range of 5-20 Myr.« less

  4. A survey of stellar families: Multiplicity of solar-type stars

    NASA Astrophysics Data System (ADS)

    Raghavan, Deepak

    I present the results of a comprehensive assessment of companions to 454 solar- type stars within 25 pc. New observational aspects of this work include surveys for (1) very close companions with long-baseline interferometry at the Center for High Angular Resolution Astronomy (CHARA) Array, (2) close companions with speckle interferometry, and (3) wide proper motion companions identified by blinking multi-epoch archival images. I have also obtained and included unpublished results from extensive radial velocity monitoring programs. The many sources utilized enable a thorough evaluation of stellar and brown dwarf companions. The results presented here include eight new companion discoveries, four of which are wide common proper motion pairs discovered by blinking archival images, and four more are from the spectroscopic data. The overall observed fractions of single, double, triple, and higher order systems are 57%±3%, 33%±2%, 8%±1%, and 3%±1%, respectively, counting all stellar and brown dwarf companions. The incompleteness analysis indicates that only a few undiscovered companions remain in this well-studied sample, showing that a majority of the solar-type stars are single. Bluer, more massive stars are more likely to have companions than redder, less massive ones. I confirm earlier expectations that more active stars are more likely to have companions. A preliminary, but important indication is that brown dwarfs, like planets, prefer stars with higher metallicity, tentatively suggesting that brown dwarfs may form like planets when they are companions to stars. The period distribution is unimodal and roughly Gaussian with peak and median values of about 300 years. The period-eccentricity relation shows a roughly flat distribution beyond the circularization limit of about 12 days. The mass- ratio distribution shows a clear discontinuity near a value of one, indicating a preference for twins, which are not confined to short orbital periods, suggesting that stars

  5. The very high rotators in the late-B and early-A stars: Shell stars with Si IV and C IV features the case of HD 119921

    NASA Technical Reports Server (NTRS)

    Freireferrero, R.; Bruhweiler, Frederick C.; Grady, C. A.

    1990-01-01

    Study of several stars in the late B and early A spectral types shows that very high rotators are associated with shell characteristics (sometimes not detected at all in the visible spectra) and also with C IV and some Si IV spectral absorption features which can be explained by circumstellar phenomena superimposed over stellar metallic blends. These particularities are evidenced by comparison with other spectra of low and high rotators in the same spectral range. HD 119921, a star with similar characteristics to the other ones of the sample, is given special attention. A possible scenario is suggested to explain the observed superionization features.

  6. The ultraviolet variability of early-type supergiants

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.

    1984-01-01

    Four early-type supergiants - HD 79186 (B5 Ia), HD 96919 (B9 Ia), HD 105056 (ON9.7 Iae), and HD 148379 (B2 Iae) - have been observed with the low-resolution spectrographs of IUE in the large aperture on 14 days. The behavior of the ultraviolet fluxes with time is studied. The light from all four stars seems to vary. Typically the dispersion about the mean magnitude at any wavelength corresponds to + or - 0.085, + or - 0.080, + or - 0.101, and + or - 0.106 mag, respectively. These amplitudes exceed the typical uncertainty in an IUE measurement of flux by about a factor of 3; they are somewhat larger than the variations known in the visible wavelength range. There are insufficient data to investigate periodicity in the observed light changes. The effective temperatures and angular diameters of the stars have been estimated using the present ultraviolet photometry, published UBV and uvby photometry, and the model-atmosphere fluxes reported by Kurucz in 1979. The program stars have dimensions typical for their spectral types. A brief discussion is given of possible causes of the variability of hot supergiants.

  7. Stellar C III Emissions as a New Classification Parameter for (WC) Central Stars

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.

    1999-01-01

    We report detection of stellar C III lambda 1909 emission in International Ultraviolet Explorer (IUE) echelle spectra of early-type [WC] planetary nebula central stars (CSPNs). Additionally, stellar C III emission at lambda 2297 is observed in early- and late-type [WC) CSPNS. Inclusion of these C III features for abundance determinations may resolve a conflict of underabundance of C/O for early type [WC2] - [WC4] CSPNS. A linear dependence on stellar C III lambda 2297 equivalent widths can be used to indicate a new classification of type [WCUV] central stars.

  8. Discovery of starspots on Vega. First spectroscopic detection of surface structures on a normal A-type star

    NASA Astrophysics Data System (ADS)

    Böhm, T.; Holschneider, M.; Lignières, F.; Petit, P.; Rainer, M.; Paletou, F.; Wade, G.; Alecian, E.; Carfantan, H.; Blazère, A.; Mirouh, G. M.

    2015-05-01

    Context. The theoretically studied impact of rapid rotation on stellar evolution needs to be compared with these results of high-resolution spectroscopy-velocimetry observations. Early-type stars present a perfect laboratory for these studies. The prototype A0 star Vega has been extensively monitored in recent years in spectropolarimetry. A weak surface magnetic field was detected, implying that there might be a (still undetected) structured surface. First indications of the presence of small amplitude stellar radial velocity variations have been reported recently, but the confirmation and in-depth study with the highly stabilized spectrograph SOPHIE/OHP was required. Aims: The goal of this article is to present a thorough analysis of the line profile variations and associated estimators in the early-type standard star Vega (A0) in order to reveal potential activity tracers, exoplanet companions, and stellar oscillations. Methods: Vega was monitored in quasi-continuous high-resolution echelle spectroscopy with the highly stabilized velocimeter SOPHIE/OHP. A total of 2588 high signal-to-noise spectra was obtained during 34.7 h on five nights (2 to 6 of August 2012) in high-resolution mode at R = 75 000 and covering the visible domain from 3895-6270 Å. For each reduced spectrum, least square deconvolved equivalent photospheric profiles were calculated with a Teff = 9500 and log g = 4.0 spectral line mask. Several methods were applied to study the dynamic behaviour of the profile variations (evolution of radial velocity, bisectors, vspan, 2D profiles, amongst others). Results: We present the discovery of a spotted stellar surface on an A-type standard star (Vega) with very faint spot amplitudes ΔF/Fc ~ 5 × 10-4. A rotational modulation of spectral lines with a period of rotation P = 0.68 d has clearly been exhibited, unambiguously confirming the results of previous spectropolarimetric studies. Most of these brightness inhomogeneities seem to be located in lower

  9. A radial velocity survey of the Carina Nebula's O-type stars

    NASA Astrophysics Data System (ADS)

    Kiminki, Megan M.; Smith, Nathan

    2018-06-01

    We have obtained multi-epoch observations of 31 O-type stars in the Carina Nebula using the CHIRON spectrograph on the CTIO/SMARTS 1.5-m telescope. We measure their radial velocities to 1-2 km s-1 precision and present new or updated orbital solutions for the binary systems HD 92607, HD 93576, HDE 303312, and HDE 305536. We also compile radial velocities from the literature for 32 additional O-type and evolved massive stars in the region. The combined data set shows a mean heliocentric radial velocity of 0.6 km s-1. We calculate a velocity dispersion of ≤9.1 km s-1, consistent with an unbound, substructured OB association. The Tr 14 cluster shows a marginally significant 5 km s-1 radial velocity offset from its neighbour Tr 16, but there are otherwise no correlations between stellar position and velocity. The O-type stars in Cr 228 and the South Pillars region have a lower velocity dispersion than the region as a whole, supporting a model of distributed massive star formation rather than migration from the central clusters. We compare our stellar velocities to the Carina Nebula's molecular gas and find that Tr 14 shows a close kinematic association with the Northern Cloud. In contrast, Tr 16 has accelerated the Southern Cloud by 10-15 km s-1, possibly triggering further massive star formation. The expansion of the surrounding H II region is not symmetric about the O-type stars in radial velocity space, indicating that the ionized gas is constrained by denser material on the far side.

  10. The evolution of angular momentum among zero-age main-sequence solar-type stars

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Stauffer, John R.; Macgregor, Keith B.; Jones, Burton F.

    1993-01-01

    We consider a survey of rotation among F, G, and K dwarfs of the Pleiades in the context of other young clusters (Alpha Persei and the Hyades) and pre-main-sequence (PMS) stars (in Taurus-Auriga and Orion) in order to examine how the angular momentum of a star like the sun evolves during its early life on the main sequence. The rotation of PMS stars can be evolved into distributions like those seen in the young clusters if there is only modest, rotation-independent angular momentum loss prior to the ZAMS. Even then, the ultrafast rotators (UFRs, or ZAMS G and K dwarfs with v sin i equal to or greater than 30 km/s) must owe their extra angular momentum to their conditions of formation and to different angular momentum loss rates above a threshold velocity, for it is unlikely that these stars had angular momentum added as they neared the ZAMS, nor can a spread in ages within a cluster account for the range of rotation seen. Only a fraction of solar-type stars are thus capable of becoming UFRs, and it is not a phase that all stars experience. Simple scaling relations (like the Skumanich relation) applied to the observed surface rotation rates of young solar-type stars cannot reproduce the way in which the Pleiades evolve into the Hyades. We argue that invoking internal differential rotation in these ZAMS stars can explain several aspects of the observations and thus can provide a consistent picture of ZAMS angular momentum evolution.

  11. Exploring X-ray Emission from Winds in Two Early B-type Binary Systems

    NASA Astrophysics Data System (ADS)

    Rotter, John P.; Hole, Tabetha; Ignace, Richard; Oskinova, Lida

    2017-01-01

    The winds of the most massive (O-type) stars have been well studied, but less is known about the winds of early-type B stars, especially in binaries. Extending O-star wind theory to these smaller stars, we would expect them to emit X-rays, and when in a B-star binary system, the wind collision should emit additional X-rays. This combined X-ray flux from nearby B-star binary systems should be detectable with current telescopes. Yet X-ray observations of two such systems with the Chandra Observatory not only show far less emission than predicted, but also vary significantly from each other despite having very similar observed characteristics. We will present these observations, and our work applying the classic Castor, Abbott, and Klein (CAK) wind theory, combined with more recent analytical wind-shock models, attempting to reproduce this unexpected range of observations.

  12. Interpretation of the BRITE oscillation spectra of the early B-type stars: ν Eri and α Lupi

    NASA Astrophysics Data System (ADS)

    Walczak, P.; Daszyńska-Daszkiewicz, J.; Pamyatnykh, A.; Handler, G.; Pigulski, A.

    2017-09-01

    ν Eridani is a well known multiperiodic β Cephei pulsator which exhibits also the SPB (Slowly Pulsating B-type stars) type modes. Recent frequency analysis of the BRITE photometry of α Lupi showed that the star is also a hybrid β Cep/SPB pulsator, in which both high and low frequencies were detected. We construct complex seismic models in order to account for the observed frequency range, the values of the frequencies themselves and the non-adiabatic parameter f for the dominant mode. Our studies suggest that significant modifications of the opacity profile at the temperature range log{T}\\in (5.0-5.5) are necessary to fulfill all these requirements.

  13. Two-dimensional models of early-type fast rotating stars: the ESTER project

    NASA Astrophysics Data System (ADS)

    Rieutord, Michel

    In this talk I present the latest results of the ESTER project that has taken up the challenge of building two dimensional (axisymmetric) models of stars rotating at any rotation rate. In particular, I focus on main sequence massive and intermediate mass stars. I show what should be expected in such stars as far as the differential rotation and the associated meridional circulation are concerned, notably the emergence of a Stewartson layer along the tangent cylinder of the core. I also indicate what may be inferred about the evolution of an intermediate-mass star at constant angular momentum and how Be stars may form. I finally give some comparisons between models and observations of the gravity darkening on some nearby fast rotators as it has been derived from interferometric observations. In passing, I also discuss how 2D models can help to recover the fundamental parameters of a star.

  14. SDSS-IV MaNGA: Spatially resolved star formation histories in galaxies as a function of galaxy mass and type

    NASA Astrophysics Data System (ADS)

    Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Lian, J.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.; Schneider, D. P.

    2017-04-01

    We study the internal gradients of stellar population properties within 1.5 Re for a representative sample of 721 galaxies, with stellar masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV MaNGA Integral-Field-Unit survey. Through the use of our full spectral fitting code firefly, we derive light- and mass-weighted stellar population properties and their radial gradients, as well as full star formation and metal enrichment histories. We also quantify the impact that different stellar population models and full spectral fitting routines have on the derived stellar population properties and the radial gradient measurements. In our analysis, we find that age gradients tend to be shallow for both early-type and late-type galaxies. Mass-weighted age gradients of early-types arepositive (˜0.09 dex/Re) pointing to 'outside-in' progression of star formation, while late-type galaxies have negative light-weighted age gradients (˜-0.11 dex/Re), suggesting an 'inside-out' formation of discs. We detect negative metallicity gradients in both early- and late-type galaxies, but these are significantly steeper in late-types, suggesting that the radial dependence of chemical enrichment processes and the effect of gas inflow and metal transport are far more pronounced in discs. Metallicity gradients of both morphological classes correlate with galaxy mass, with negative metallicity gradients becoming steeper with increasing galaxy mass. The correlation with mass is stronger for late-type galaxies, with a slope of d(∇[Z/H])/d(log M) ˜ -0.2 ± 0.05 , compared to d(∇[Z/H])/d(log M) ˜ -0.05 ± 0.05 for early-types. This result suggests that the merger history plays a relatively small role in shaping metallicity gradients of galaxies.

  15. High S/N Echelle spectroscopy in young stellar groups. II. Rotational velocities of early-type stars in SCO OB2.

    NASA Astrophysics Data System (ADS)

    Brown, A. G. A.; Verschueren, W.

    1997-03-01

    We investigate the rotational velocities of early-type stars in the Sco OB2 association. We measure v.sin(i) for 156 established and probable members of the association. The measurements are performed with three different techniques, which are in increasing order of expected v.sin(i): 1) converting the widths of spectral lines directly to v.sin(i), 2) comparing artificially broadened spectra of low v.sin(i) stars to the target spectrum, 3) comparing the HeI λ4026 line profile to theoretical models. The sample is extended with literature data for 47 established members of Sco OB2. Analysis of the v.sin(i) distributions shows that there are no significant differences between the subgroups of Sco OB2. We find that members of the binary population of Sco OB2 on the whole rotate more slowly than the single stars. In addition, we find that the B7-B9 single star members rotate significantly faster than their B0-B6 counterparts. We test various hypotheses for the distribution of v.sin(i) in the association. The results show that we cannot clearly exclude any form of random distribution of the direction and/or magnitude of the intrinsic rotational velocity vector. We also investigate the effects of rotation on colours in the Walraven photometric system. We show that positions of B7-B9 single dwarfs above the main sequence are a consequence of rotation. This establishes the influence of rotation on the Walraven colours, due primarily to surface gravity effects.

  16. Trace for Differential Pencils on a Star-Type Graph

    NASA Astrophysics Data System (ADS)

    Yang, Chuan-Fu

    2013-07-01

    In this work, we consider the spectral problem for differential pencils on a star-type graph with a Kirchhoff-type condition in the internal vertex. The regularized trace formula of this operator is established with the contour integration method in complex analysis.

  17. IRAS 17380 - 3031 - A new dusty late WC-type Wolf-Rayet star

    NASA Astrophysics Data System (ADS)

    Cohen, Martin; van der Hucht, K. A.; Williams, P. M.; The, P. S.

    1991-09-01

    Infrared photometry is presented of IRAS 17380 - 3031 and of IRAS 18405 - 0448, two of the proposed candidates for late WC-type stars suggested by Vok and Cohen (1989). Systematic 12-micron flux-limited surveys of the complete IRAS low-resolution spectrometer (LSR) data base show that late-type WC (WCL) stars with circumstellar dust emission have unique midinfrared spectra, suggesting a novel method for detecting such stars. It is confirmed through optical spectroscopy that IRAS 17380 - 3031, a prime LRS-selected WCL candidate, is a very red WCL star. It is classified as WC8 - 9, with a probable distance of 3 + or - 1 kpc, and a total extinction of about 12.5 mag. The confirmation demonstrates the power of the LRS technique for discovery of dusty WCL stars with IRAS.

  18. Testing the Wind-shock Paradigm for B-Type Star X-Ray Production with θ Car

    NASA Astrophysics Data System (ADS)

    Doyle, T. F.; Petit, V.; Cohen, D.; Leutenegger, M.

    2017-11-01

    We present Chandra X-ray grating spectroscopy of the B0.2V star, θ Carina. θ Car is in a critical transition region between the latest O-type and earliest B-type stars, where some stars are observed to have UV-determined wind densities much lower than theoretically expected (e.g., Marcolino et al. 2009). In general, X-ray emission in this low-density wind regime should be less prominent than for O-stars (e.g., Martins et al. 2005), but observations suggest a higher than expected X-ray emission filling factor (Lucy 2012; Huenemoerder et al. 2012); if a larger fraction of the wind is shock-heated, it could explain the weak UV wind signature seen in weak wind stars, but this might severely challenge predictions of radiatively-driven wind theory. We measured the line widths of several He-, H-like and Fe ions and the f/i ratio of He-like ions in the X-ray spectrum, which improves upon the results from Nazé et al. (2008) (XMM-Newton RGS) with additional measurements (Chandra HETG) of Mgxi and Sixiii by further constraining the X-ray emission location. The f/i ratio is modified by the proximity to the UV-emitting stellar photosphere, and is therefore a diagnostic of the radial location of the X-ray emitting plasma. The measured widths of X-ray lines are narrow, <300 km s-1 and the f/i ratios place the X-rays relatively close to the surface, both implying θ Car is a weak wind star. The measured widths are also consistent with other later-type stars in the weak wind regime, β Cru (Cohen et al. 2008), for example, and are smaller on average than earlier weak wind stars such as μ Col (Huenemoerder et al. 2012). This could point to a spectral type divide, where one hypothesis, low density, works for early-B type stars and the other hypothesis, a larger fraction of shock-heated gas, explains weak winds in late-O type stars. Archival IUE data still needs to be analyzed to determine the mass loss rate and hydrodynamical simulations will be compared with observations to

  19. X-rays from Magnetic B-type Stars

    NASA Astrophysics Data System (ADS)

    Fletcher, Corinne; Petit, Véronique; Caballero-Nieves, Saida Maria; Nazé, Yaël; Owocki, Stan; Wade, Gregg; Cohen, David; Townsend, Richard; David-Uraz, Alexandre; Shultz, Matt

    2018-01-01

    Recent surveys have found that ~10% of OB-type stars host strong (~1kG), mostly dipolar magnetic fields. The prominent idea describing the interaction between the stellar winds and the magnetic field is the magnetically confined wind shock model. In this model, the ionized wind material is forced to move along the closed magnetic field loops and collides at the magnetic equator creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the wind material confined by the magnetic fields of these stars. Some of these magnetic B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force is predicted to cause faster wind outflows along the field lines, which could lead to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this question from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere model, developed for slow rotators and implement the physics of rapid rotation. Using X-ray spectroscopy from ESA’s XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role an added centrifugal acceleration plays in the magnetospheres of these stars.

  20. Spectroscopic observations of X-ray selected late type stars

    NASA Technical Reports Server (NTRS)

    Takalo, L. O.

    1988-01-01

    A spectroscopic survey of nine X-ray selected late type stars was conducted. These stars are serendipitously discovered EINSTEIN X-ray sources, selected from two large x-ray surveys: the Columbia Astrophysical Laboratory survey (five stars) and the CFA Medium Sensitivity survey (four stars). Four of the Columbia survey stars were found to be short period binaries. The fifth was found to be an active single G dwarf. None of the Medium Sensitivity survey stars were found to be either binaries or active stars. Activity was measured by comparing the H-alpha and the CaII infrared triplet (8498, 8542) lines in these stars to the lines in inactive stars of similar spectral type. A correlation was found between the excess H-alpha lime emission and V sin(i) and between the excess H-alpha line emission and X-ray luminosity. No correlation was found between the infrared line emission and any other measured quantity.

  1. AN M DWARF COMPANION TO AN F-TYPE STAR IN A YOUNG MAIN-SEQUENCE BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eigmüller, Ph.; Csizmadia, Sz.; Erikson, A.

    2016-03-15

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung–Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M{sub ⊙}more » and a radius of (1.474 ± 0.040) R{sub ⊙}. The companion is an M dwarf with a mass of (0.188 ± 0.014) M{sub ⊙} and a radius of (0.234 ± 0.009) R{sub ⊙}. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin–orbit synchronization. This indicates a young main-sequence binary with an age below ∼250 Myr. The mass–radius relation of both components are in agreement with this finding.« less

  2. Interferometric view of the circumstellar envelopes of northern FU Orionis-type stars

    NASA Astrophysics Data System (ADS)

    Fehér, O.; Kóspál, Á.; Ábrahám, P.; Hogerheijde, M. R.; Brinch, C.

    2017-11-01

    the observed envelopes enables us to set up an evolutionary sequence between the objects. We find their evolutionary state to range from early, embedded Class I stage to late, Class II-type objects with very-low-mass circumstellar material. We also find evidence of larger-scale circumstellar material influencing the detected spectral features in the environment of our targets. These results reinforce the idea of FU Orionis-type stars as representatives of a transitory stage between embedded Class I young stellar objects and classical T Tauri stars.

  3. SPECTROSCOPIC ANALYSIS OF METAL-POOR STARS FROM LAMOST: EARLY RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hai-Ning; Zhao, Gang; Wang, Liang

    2015-01-10

    We report on early results from a pilot program searching for metal-poor stars with LAMOST and follow-up high-resolution observation acquired with the MIKE spectrograph attached to the Magellan II telescope. We performed detailed abundance analysis for eight objects with iron abundances [Fe/H] < -2.0, including five extremely metal-poor (EMP; [Fe/H] < -3.0) stars with two having [Fe/H] < -3.5. Among these objects, three are newly discovered EMP stars, one of which is confirmed for the first time with high-resolution spectral observations. Three program stars are regarded as carbon-enhanced metal-poor (CEMP) stars, including two stars with no enhancement in their neutron-capturemore » elements, which thus possibly belong to the class of CEMP-no stars; one of these objects also exhibits significant enhancement in nitrogen, and is thus a potential carbon and nitrogen-enhanced metal-poor star. The [X/Fe] ratios of the sample stars generally agree with those reported in the literature for other metal-poor stars in the same [Fe/H] range. We also compared the abundance patterns of individual program stars with the average abundance pattern of metal-poor stars and find only one chemically peculiar object with abundances of at least two elements (other than C and N) showing deviations larger than 0.5 dex. The distribution of [Sr/Ba] versus [Ba/H] agrees that an additional nucleosynthesis mechanism is needed aside from a single r-process. Two program stars with extremely low abundances of Sr and Ba support the prospect that both main and weak r-processes may have operated during the early phase of Galactic chemical evolution. The distribution of [C/N] shows that there are two groups of carbon-normal giants with different degrees of mixing. However, it is difficult to explain the observed behavior of the [C/N] of the nitrogen-enhanced unevolved stars based on current data.« less

  4. New CCD photometric investigation of the early-type overcontact binary BH Cen in the young star-forming Galactic cluster IC 2944

    NASA Astrophysics Data System (ADS)

    Zhao, Er-Gang; Qian, Sheng-Bang; Zejda, Miloslav; Zhang, Bin; Zhang, Jia

    2018-05-01

    BH Cen is a short-period early-type binary with a period of 0.792d in the extremely young star-forming cluster IC 2944. New multi-color CCD photometric light curves in U, B, V, R and I bands are presented and are analyzed by using the Wilson-Devinney code. It is detected that BH Cen is a high-mass-ratio overcontact binary with a fill-out factor of 46.4% and a mass ratio of 0.89. The derived orbital inclination i is 88.9 degrees, indicating that it is a totally eclipsing binary and the photometric parameters can be determined reliably. By adding new eclipse times, the orbital period changes in the binary are analyzed. It is confirmed that the period of BH Cen shows a long-term increase while it undergoes a cyclic oscillation with an amplitude of A 3 = 0.024 d and a period of P 3 = 50.3 yr. The high mass ratio, overcontact configuration and long-term continuous increase in the orbital period all suggest that BH Cen is in the evolutionary state after the shortest-period stage of Case A mass transfer. The continuous increase in period can be explained by mass transfer from the secondary component to the primary one at a rate of Ṁ 2 = 2.8 × 10‑6 M ⊙ per year. The cyclic change can be plausibly explained by the presence of a third body because both components in the BH Cen system are early-type stars. Its mass is determined to be no less than 2.2 M ⊙ at an orbital separation of about 32.5 AU. Since no third light was found during the photometric solution, it is possible that the third body may be a candidate for a compact object.

  5. The IUE Mega Campaign: Wind Variability and Rotation in Early-Type Stars

    NASA Technical Reports Server (NTRS)

    Massa, D.; Fullerton, A. W.; Nichols, J. S.; Owocki, S. P.; Prinja, R. K.; St-Louis, N.; Willis, A. J.; Altner, B.; Bolton, C. T.; Cassinelli, J. P.; hide

    1995-01-01

    Wind variability in OB stars may be ubiquitous and a connection between projected stellar rotation velocity and wind activity is well established. However, the origin of this connection is unknown. To probe the nature of the rotation connection, several of the attendees at the workshop on Instability and Variability of Hot-Star Winds drafted an IUE observing proposal. The goal of this program was to follow three stars for several rotations to determine whether the rotation connection is correlative or causal. The stars selected for monitoring all have rotation periods less than or equal to 5 days. They were HD 50896 (WN5), HD 64760 (BO.5 Ib), and HD 66811 (zeta Pup; 04 If(n)). During 16 days of nearly continuous observations in 1995 January (dubbed the 'MEGA' campaign), 444 high-dispersion IUE spectra of these stars were obtained. This Letter presents an overview of the results of the MEGA campaign and provides an introduction to the three following Letters, which discuss the results for each star.

  6. What the Most Metal-poor Stars Tell Us About the Early Universe

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2008-05-01

    The chemical evolution of the Galaxy and the early Universe is a key topic in modern astrophysics. The most metal-poor Galactic halo stars are now frequently used in an attempt to reconstruct the onset of the chemical and dynamical formation processes of the Galaxy. These stars are an easily-accessible local equivalent of the high-redshift Universe, and can thus be used to carry out field-field cosmology. The discovery of two astrophysically very important metal-poor objects has recently lead to a significant advance in the field. One object is the most iron-poor star yet found (with [Fe/H]=-5.4). The other stars displays the strongest known overabundances of heavy neutron-capture elements, such as uranium, and nucleo-chronometry yields a stellar age of 13 Gyr. Both stars already serve as benchmark objects for various theoretical studies with regard to nucleosynthesis processes in the early Galaxy. I will discuss how the abundance patterns of these and other metal-poor stars solidify and advance our understanding of the early Universe, and provide constraints on the nature of the first stars, as well as their explosion mechanisms and corresponding supernova nucleosynthesis yields. Large samples of these old objects are also employed to test theoretical predictions about the formation of the very first low-mass stars. In the near future, the combined power of near-field cosmology results with those of the next-generation facilities (e.g., MWA, JWST, GMT) may yield exceptional details about the formation processes of the first generations of stars and galaxies.

  7. How bright planets became dim stars: planetary speculations in John Herschel's double star astronomy

    NASA Astrophysics Data System (ADS)

    Case, S.

    2014-03-01

    Previous research on the origins of double star astronomy in the early nineteenth century emphasized the role mathematical methods and instrumentation played in motivating early observations of these objects. The work of the British astronomer John Herschel, however, shows that questions regarding the physical nature of double stars were also important. In particular, an analysis of John Herschel's early work on double stars illustrates the way in which speculations regarding these objects were shaped by assumptions of the properties of stars themselves. For Herschel, a major consideration in double star astronomy was distinguishing between types of double stars. Optical doubles were useful in determining parallax while binary doubles were not. In practice, classification of a specific double star pair into one of these categories was based on the assumption that stars were of approximately the same luminosity and thus differences in relative brightness between stars were caused by difference in distances. Such assumptions, though ultimately abandoned, would lead Herschel in the 1830s to advance the possibility that the dim companion stars in certain double star pairs were not stars at all but in fact planets.

  8. How bright planets became dim stars: planetary speculations in John Herschel's double star astronomy.

    PubMed

    Case, Stephen

    2014-03-01

    Previous research on the origins of double star astronomy in the early nineteenth century emphasized the role mathematical methods and instrumentation played in motivating early observations of these objects. The work of the British astronomer John Herschel, however, shows that questions regarding the physical nature of double stars were also important. In particular, an analysis of John Herschel's early work on double stars illustrates the way in which speculations regarding these objects were shaped by assumptions of the properties of stars themselves. For Herschel, a major consideration in double star astronomy was distinguishing between types of double stars. Optical doubles were useful in determining parallax while binary doubles were not. In practice, classification of a specific double star pair into one of these categories was based on the assumption that stars were of approximately the same luminosity and thus differences in relative brightness between stars were caused by difference in distances. Such assumptions, though ultimately abandoned, would lead Herschel in the 1830s to advance the possibility that the dim companion stars in certain double star pairs were not stars at all but in fact planets. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250-650 Myr)

    NASA Astrophysics Data System (ADS)

    Folsom, C. P.; Bouvier, J.; Petit, P.; Lèbre, A.; Amard, L.; Palacios, A.; Morin, J.; Donati, J.-F.; Vidotto, A. A.

    2018-03-01

    There is a large change in surface rotation rates of sun-like stars on the pre-main sequence and early main sequence. Since these stars have dynamo-driven magnetic fields, this implies a strong evolution of their magnetic properties over this time period. The spin-down of these stars is controlled by interactions between stellar and magnetic fields, thus magnetic evolution in turn plays an important role in rotational evolution. We present here the second part of a study investigating the evolution of large-scale surface magnetic fields in this critical time period. We observed stars in open clusters and stellar associations with known ages between 120 and 650 Myr, and used spectropolarimetry and Zeeman Doppler Imaging to characterize their large-scale magnetic field strength and geometry. We report 15 stars with magnetic detections here. These stars have masses from 0.8 to 0.95 M⊙, rotation periods from 0.326 to 10.6 d, and we find large-scale magnetic field strengths from 8.5 to 195 G with a wide range of geometries. We find a clear trend towards decreasing magnetic field strength with age, and a power law decrease in magnetic field strength with Rossby number. There is some tentative evidence for saturation of the large-scale magnetic field strength at Rossby numbers below 0.1, although the saturation point is not yet well defined. Comparing to younger classical T Tauri stars, we support the hypothesis that differences in internal structure produce large differences in observed magnetic fields, however for weak-lined T Tauri stars this is less clear.

  10. Reionization of Hydrogen and Helium by Early Stars and Quasars

    NASA Astrophysics Data System (ADS)

    Wyithe, J. Stuart B.; Loeb, Abraham

    2003-04-01

    We compute the reionization histories of hydrogen and helium caused by the ionizing radiation fields produced by stars and quasars. For the quasars we use a model based on halo-merger rates that reproduces all known properties of the quasar luminosity function at high redshifts. The less constrained properties of the ionizing radiation produced by stars are modeled with two free parameters: (i) a transition redshift, ztran, above which the stellar population is dominated by massive, zero-metallicity stars and below which it is dominated by a Scalo mass function; and (ii) the product of the escape fraction of stellar ionizing photons from their host galaxies and the star formation efficiency, fescf*. We constrain the allowed range of these free parameters at high redshifts on the basis of the lack of the H I Gunn-Peterson trough at z<~6 and the upper limit on the total intergalactic optical depth for electron scattering, τes<0.18, from recent cosmic microwave background (CMB) experiments. We find that quasars ionize helium by a redshift z~4, but cannot reionize hydrogen by themselves before z~6. A major fraction of the allowed combinations of fescf* and ztran leads to an early peak in the ionized fraction because of the presence of metal-free stars at high redshifts. This sometimes results in two reionization epochs, namely, an early H II or He III overlap phase followed by recombination and a second overlap phase. Even if early overlap is not achieved, the peak in the visibility function for scattering of the CMB often coincides with the early ionization phase rather than with the actual reionization epoch. Consequently, τes does not correspond directly to the reionization redshift. We generically find values of τes>~7%, which should be detectable by the MAP satellite.

  11. A Close Hidden Stellar Companion to the SX Phe-Type Variable Star DW Psc

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Li, L.-J.; Wang, S.-M.; He, J.-J.; Zhou, X.; Jiang, L.-Q.

    2015-01-01

    DW Psc is a high-amplitude SX Phe-type variable with a period of pulsation of 0.05875 days. Using a few newly determined times of maximum light together with those collected from the literature, the changes in the observed-calculated (O-C) diagram are analyzed. It is discovered that the O-C curve of DW Psc shows a cyclic variation with a period of 6.08 years and a semi-amplitude of 0.0066 days. The periodic variation is analyzed for the light travel time effect, which is due to the presence of a stellar companion ({{M}2}sin i˜ 0.45(+/- 0.03) {{M}⊙ }). The two-component stars in the binary system are orbiting each other in an eccentric orbit (e ˜ 0.4) at an orbital separation of about 2.7(±0.3) AU. The detection of a close stellar companion to an SX Phe-type star supports the idea that SX Phe-type pulsating stars are blue stragglers that were formed from the merging of close binaries. The stellar companion has played an important role in the merging of the original binary by removing angular momentum from the central binary during early dynamical interaction or/and late dynamical evolution. After the more massive component in DW Psc evolves into a red giant, the cool close companion should help to remove the giant envelope via possible critical Roche-lobe overflow, and the system may be a progenitor of a cataclysmic variable. The detection of a close stellar companion to DW Psc makes it a very interesting system to study in the future.

  12. BUILDING LATE-TYPE SPIRAL GALAXIES BY IN-SITU AND EX-SITU STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillepich, Annalisa; Madau, Piero; Mayer, Lucio

    We analyze the formation and evolution of the stellar components in ''Eris'', a 120 pc resolution cosmological hydrodynamic simulation of a late-type spiral galaxy. The simulation includes the effects of a uniform UV background, a delayed-radiative-cooling scheme for supernova feedback, and a star formation recipe based on a high gas density threshold. It allows a detailed study of the relative contributions of ''in-situ'' (within the main host) and ''ex-situ'' (within satellite galaxies) star formation to each major Galactic component in a close Milky Way analog. We investigate these two star-formation channels as a function of galactocentric distance, along different lines ofmore » sight above and along the disk plane, and as a function of cosmic time. We find that: (1) approximately 70% of today's stars formed in-situ; (2) more than two thirds of the ex-situ stars formed within satellites after infall; (3) the majority of ex-situ stars are found today in the disk and in the bulge; (4) the stellar halo is dominated by ex-situ stars, whereas in-situ stars dominate the mass profile at distances ≲ 5 kpc from the center at high latitudes; and (5) approximately 25% of the inner, r ≲ 20 kpc, halo is composed of in-situ stars that have been displaced from their original birth sites during Eris' early assembly history.« less

  13. IRAS 22150+6109 - a young B-type star with a large disc

    NASA Astrophysics Data System (ADS)

    Zakhozhay, Olga V.; Miroshnichenko, Anatoly S.; Kuratov, Kenesken S.; Zakhozhay, Vladimir A.; Khokhlov, Serik A.; Zharikov, Sergey V.; Manset, Nadine

    2018-06-01

    We present the results of a spectroscopic analysis and spectral energy distribution (SED) modelling of the optical counterpart of the infrared source IRAS 22150+6109. The source was suggested to be a Herbig Be star located in the star-forming region L 1188. Absorption lines in the optical spectrum indicate a spectral type B3, while weak Balmer emission lines reflect the presence of a circumstellar gaseous disc. The star shows no excess radiation in the near-infrared spectral region and a strong excess in the far-infrared that we interpret as radiation from a large disc, the inner edge of which is located very far from the star (550 au) and does not attenuate its radiation. We conclude that IRAS 22150+6109 is an intermediate-mass star that is currently undergoing a short pre-main-sequence evolutionary stage.

  14. Einstein Observatory coronal temperatures of late-type stars

    NASA Technical Reports Server (NTRS)

    Schmitt, J. H. M. M.; Collura, A.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.

    1990-01-01

    The results are presented of a survey of the coronal temperatures of late-type stars using the Einstein Observatory IPC. The spectral analysis shows that the frequently found one- and two-temperature descriptions are mainly influenced by the SNR of the data and that models using continuous emission measure distributions can provide equally adequate and physically more meaningful and more plausible descriptions. Intrinsic differences in differential emission measure distributions are found for four groups of stars. M dwarfs generally show evidence for high-temperature gas in conjunction with lower-temperature material, while main-sequence stars of types F and G have the high-temperature component either absent or very weak. Very hot coronae without the lower-temperature component appearing in dwarf stars are evident in most of the giant stars studied. RS CVn systems show evidence for extremely hot coronae, sometimes with no accompanying lower-temperature material.

  15. The abundances of the elements in sharp-lined early type stars

    NASA Technical Reports Server (NTRS)

    Adelman, Saul J.

    1992-01-01

    An International Ultraviolet Explorer (IUE) observing strategy that has yielded co-added spectra with enhanced S/N ratios for several A and B stars was established. New observations by Roby and Adelman using the same technique were added two new Hg-Mn stars into this sample. A long-term study of elemental abundances in this uniform, high-quality set of IUE spectra for 13 stars was begun. The first stages of this project are reported: abundances for N, Cr, Mn, Fe, Co, and Ni. The study of the Fe-peak elements show that our data set can provide accurate abundances and that abundances obtained from UV and optical spectra often are in good agreement. The groundwork for selfconsistent abundance analyses of more exotic elements in our long term project was provided.

  16. On the relation between carbon star spectral types and colors

    NASA Technical Reports Server (NTRS)

    Honeycutt, R. K.; Fay, T. D., Jr.; Warren, W. H., Jr.

    1974-01-01

    Observations of 32 carbon stars are listed in a table, taking into account the spectral classes given by Yamashita (1966) and Richer (1971). The relations between spectral type and color for carbon stars appear consistent with the differences between Yamashita's and Richer's types if carbon star groups I-III lie on a decreasing boundary temperature sequence.

  17. The Ages of Southern Solar-Type Stars

    NASA Astrophysics Data System (ADS)

    Henry, Todd J.; Soderblom, David R.

    1993-12-01

    We report on a survey of chromospheric emission (CE) in a large sample of southern solar-type stars. To date, we have observed more than 700 stars within ~ 50 pc at the Ca II H and K lines, which can be used to measure stellar activity, and presumably age. This survey is intended to complement the long-term work continuing at Mount Wilson by Baliunas et al., with a combined goal to observe a volume-limited sample of 5000 F, G and K dwarfs. An important product of the Mount Wilson effort is the classic paper of Vaughan and Preston (1980) who reported on CE for a sample of 500 northern late-type dwarfs within 25 pc. They observed a bimodal distribution for 185 F and G dwarfs in which 75% of the stars had weak CE (as the Sun does), some active ones had high levels of CE, and very few had intermediate levels. This ``gap'' suggested that either the star formation rate has been non-uniform (so that stars with ages corresponding to moderate CE are missing from the solar neighborhood), or that the CE-age relation has several phases (so that stars spend little time in the phase corresponding to intermediate CE). At the present time, it is not possible to distinguish between these two explanations. A survey of CE among an independent sample with different instrumentation provides a means of ensuring that the Mount Wilson result was not a fluke of a modest sample or an artifact of instrumentation or data analysis. We find from our larger southern sample that the two populations of stars are again evident. Roughly 75% fall in the relatively inactive group, corresponding to ages greater than a few Gyr. We have also identified a few ( ~ 5%) very active, young, nearby stars that can be targeted for future in-depth study.

  18. Lyman alpha initiated winds in late-type stars

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.; Linsky, J. L.; Vanderhucht, K. A.

    1979-01-01

    The IUE survey of late-type stars revealed a sharp division in the HR diagram between stars with solar type spectra (chromosphere and transition region lines) and those with non-solar type spectra (only chromosphere lines). Models of both hot coronae and cool wind flows were calculated using stellar model chromospheres as starting points for stellar wind calculations in order to investigate the possibility of having a supersonic transition locus in the HR diagram dividing hot coronae from cool winds. From these models, it is concluded that the Lyman alpha flux may play an important role in determining the location of a stellar wind critical point. The interaction of Lyman alpha radiation pressure with Alfven waves in producing strong, low temperature stellar winds in the star Arcturus is examined.

  19. Star Formation-Driven Winds in the Early Universe

    NASA Astrophysics Data System (ADS)

    Peek, Matthew; Lundgren, Britt; Brammer, Gabriel

    2018-01-01

    Measuring the extent of star formation-driven winds from galaxies in the early universe is crucial for understanding of how galaxies evolve over cosmic time. Using WFC3/IR grism data from the Hubble Space Telescope (HST), we have measured the star formation rates and star formation rate surface densities of several hundred galaxies at redshift (z) = 1, when the universe was roughly half its present age. The galaxies we examine are also probed by background quasars, whose spectra provide information about the extent of metal-enriched gas in their halos. We use a computational pipeline to measure the density of the star formation in each galaxy and correlate these measurements with detections of Mg II absorption in nearby quasar spectra from the Sloan Digital Sky Survey. Our preliminary results support a model in which galaxies with high SFR surface densities drive metal-enriched gas out of the disk and into these galaxies’ extended halos, where that gas is detected in the spectra of more distant quasars.

  20. Einstein Observations of X-ray emission from A stars

    NASA Astrophysics Data System (ADS)

    Golub, L.; Harnden, F. R., Jr.; Maxson, C. W.; Rosner, R.; Vaiana, G. S.; Cash, W., Jr.; Snow, T. P., Jr.

    1983-08-01

    Results are reported from the combined CfA Stellar Survey of selected bright A stars and an Einstein Guest Observer program for Ap and Am stars. In an initial report of results from the CfA Stellar Surveys by Vaiana et al. (1981) it was noted that the spread in observed X-ray luminosities among the few A stars observed was quite large. The reasons for this large spread was studied by Pallavicini et al. (1981). It was found that the X-ray emission from normal stars is related very strongly to bolometric luminosity for early-type stars and to rotation rate for late-type stars. However, an exception to this rule has been the apparently anomalous behavior of A star X-ray emission, for which the large spread in luminosity showed no apparent correlation with either bolometric luminosity or stellar rotation rate. In the present study, it is shown that the level of emission from normal A stars agrees with the correlation observed for O and B stars.

  1. Random forest classification of stars in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Plewa, P. M.

    2018-05-01

    Near-infrared high-angular resolution imaging observations of the Milky Way's nuclear star cluster have revealed all luminous members of the existing stellar population within the central parsec. Generally, these stars are either evolved late-type giants or massive young, early-type stars. We revisit the problem of stellar classification based on intermediate-band photometry in the K band, with the primary aim of identifying faint early-type candidate stars in the extended vicinity of the central massive black hole. A random forest classifier, trained on a subsample of spectroscopically identified stars, performs similarly well as competitive methods (F1 = 0.85), without involving any model of stellar spectral energy distributions. Advantages of using such a machine-trained classifier are a minimum of required calibration effort, a predictive accuracy expected to improve as more training data become available, and the ease of application to future, larger data sets. By applying this classifier to archive data, we are also able to reproduce the results of previous studies of the spatial distribution and the K-band luminosity function of both the early- and late-type stars.

  2. IUE observations of solar-type stars in the Pleiades and the Hyades

    NASA Technical Reports Server (NTRS)

    Caillault, Jean-Pierre; Vilhu, Osmi; Linsky, Jeffrey L.

    1991-01-01

    An extensive set of IUE observations of solar-type stars (spectral types F5-G5) in the Pleiades is presented. Spectra were obtained in January and August 1988 for both the transition region and chromospheric emission wavelength regions, respectively. Mg II fluxes were detected for two out of three Pleiades stars and C IV upper limits for two of these stars. Long-wavelength high-resolution spectra were also obtained for previously unobserved solar-type stars in the Hyades. With the inclusion of spectra of additional Hyades stars obtained from the IUE archives, surface fluxes and fractional luminosities for both clusters' solar-type stars are calculated; these values provide a better estimate for the Mg II saturation line for single stars.

  3. Revealing the origin of the cold ISM in massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Davis, T. A.; Alatalo, K.; Bureau, M.; Young, L.; Blitz, L.; Crocker, A.; Bayet, E.; Bois, M.; Bournaud, F.; Cappellari, M.; Davies, R. L.; Duc, P.-A.; de Zeeuw, P. T.; Emsellem, E.; Falcon-Barroso, J.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Lablanche, P.-Y.; McDermid, R. M.; Morganti, R.; Naab, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.

    2013-07-01

    Recently, massive early-type galaxies have shed their red-and-dead moniker, thanks to the discovery that many host residual star formation. As part of the ATLAS-3D project, we have conducted a complete, volume-limited survey of the molecular gas in 260 local early-type galaxies with the IRAM-30m telescope and the CARMA interferometer, in an attempt to understand the fuel powering this star formation. We find that around 22% of early-type galaxies in the local volume host molecular gas reservoirs. This detection rate is independent of galaxy luminosity and environment. Here we focus on how kinematic misalignment measurements and gas-to-dust ratios can be used to put constraints on the origin of the cold ISM in these systems. The origin of the cold ISM seems to depend strongly on environment, with misaligned, dust poor gas (indicative of externally acquired material) being common in the field but completely absent in rich groups and in the Virgo cluster. Very massive galaxies also appear to be devoid of accreted gas. This suggests that in the field mergers and/or cold gas accretion dominate the gas supply, while in clusters internal secular processes become more important. This implies that environment has a strong impact on the cold gas properties of ETGs.

  4. Central stars of planetary nebulae. II. New OB-type and emission-line stars

    NASA Astrophysics Data System (ADS)

    Weidmann, W. A.; Gamen, R.

    2011-07-01

    Context. There are more than 3000 confirmed and probably known Galactic planetary nebulae (PNe), but central star spectroscopic information is available for only 13% of them. Aims: We have undertaken a spectroscopic survey of the central stars in PNe to identify their spectral types. Methods: We performed spectroscopic observations at low resolution with the 2-m telescope at CASLEO, Argentina. Results: We present the spectra of 46 central stars of PNe, most of them are OB-type and emission-line stars. Based on data collected at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina.The reduced spectra (FITS files) are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A172

  5. Spectroscopy of late type giant stars

    NASA Astrophysics Data System (ADS)

    Spaenhauer, A.; Thevenin, F.

    1984-06-01

    An attempt to calibrate broadband RGU colors of late type giant stars in terms of the physical parameters of the objects is reported. The parameters comprise the effective temperature, surface gravity and global metal abundance with respect to the sun. A selection of 21 giant star candidates in the Basel fields Plaut 1, Centaurus III and near HD 95540 were examined to obtain a two color plot. Attention is focused on the G-R color range 1.5-2.15 mag, i.e., spectral types K0-K5. A relationship between R and the metallicity is quantified and shown to have a correlation coefficient of 0.93. No correlation is found between metallicity and gravity or R and the effective temperature.

  6. The stellar populations of nearby early-type galaxies

    NASA Astrophysics Data System (ADS)

    Concannon, Kristi Dendy

    The recent completion of comprehensive photometric and spectroscopic galaxy surveys has revealed that early-type galaxies form a more heterogeneous family than previously thought. To better understand the star formation histories of early-type galaxies, we have obtained a set of high resolution, high signal-to-noise ratio spectra for a sample of 180 nearby early-type galaxies with the FAST spectrograph and the 1.5m telescope at F. L. Whipple Observatory. The spectra cover the wavelength range 3500 5500 Å which allows the comparison of various Balmer lines, most importantly the higher order lines in the blue, and have a S/N ratio higher than that of previous samples, which makes it easier to investigate the intrinsic spread in the observed parameters. The data set contains galaxies in both the local field and Virgo cluster environment and spans the velocity dispersion range 50 < log σ < 250km s -1. In conjunction with recent improvements in population synthesis modeling, our data set enables us to investigate the star formation history of E/S0 galaxies as a function of mass (σ), environment, and to some extent morphology. We are able to probe the effects of age and metallicity on fundamental observable relations such as the Mg-σ relation, and show that there is a significant spread in age in such diagrams, at all log σ, such that their “uniformity” can not be interpreted as a homogeneous history for early-type galaxies. Analyzing the age and [Fe/H] distribution as a function of the galaxy mass, we find that an age-σ relation exists among galaxies in both the local field and the Virgo cluster, such that the lower log σ galaxies have younger luminosity-weighted mean ages. The age spread of the low σ galaxies suggests that essentially all of the low-mass galaxies contain young to intermediate age populations, whereas the spread in age of the high log σ galaxies (log σ >˜ 2.0) is much larger, with galaxies spanning the age range of 4 19 Gyr. Thus, rather

  7. Ultraviolet Observations of M-Type Symbiotic Stars

    NASA Astrophysics Data System (ADS)

    Michalitsianos, Andrew G.

    The significant differences revealed in high dispersion short wavelength spectra of two M-type symbiotic stars RW Hya (gM2 + pec) and RX Pup (M5 + pec) observed previously with IUE emphasizes the need for high resolution observations of a wide range of similar objects. The anomalies observed in high excitation lines in RX Pup of He II, N III], N IV], O III], C III], C IV and Si III] that show split line profiles, multiple component Doppler displaced components, and broadened blue wing emission structure in N III] and N IV] suggest motion in circumstellar material. In contrast, high dispersion UV spectra of RW Hya reveal narrow high excitation emission lines that give no suggestion of macroscopic motions in the circumstellar gas. We wish to extend observations of a selected number of symbiotic stars observed previously but in low resolution, to high dispersion in order to determine if particular M-type symbiotic stars exhibit anomalies in their line profile. As such, symbiotic stars exhibiting velocity structure in emission lines may form a subset of objects that are characterized by mass motions in their circumstellar envelops that create high excitation emission. UV line and continuum emission from other M-type symbiotics may arise from mainly photo-excitation processes that results from the intense radiation field associated with the hot secondary companion.

  8. A catalog of M-type star candidates in the LAMOST data release 1

    NASA Astrophysics Data System (ADS)

    Zhong, Jing; Lépine, Sébastien; Li, Jing; Chen, Li; Hou, Jinliang

    2016-08-01

    In this work, we present a set of M-type star candidates selected from the LAMOST DR1. A discrimination method with the spectral index diagram is used to separate M giants and M dwarfs. Then, we have successfully assembled a set of M giants templates from M0 to M6, using the spectra identified from the LAMOST spectral database. After combining the M dwarf templates in Zhong et al. (2015a) and the new created M giant templates, we use the M-type spectral library to perform the template-fit method to classify and identify M-type stars in the LAMOST DR1. A catalog of M-type star candidates including 8639 M giants and 101690 M dwarfs/subdwarfs is provided. As an additional results, we also present other fundamental parameters like proper motion, photometry, radial velocity and spectroscopic distance.

  9. A BCool survey of the magnetic fields of planet-hosting solar-type stars

    NASA Astrophysics Data System (ADS)

    Mengel, M. W.; Marsden, S. C.; Carter, B. D.; Horner, J.; King, R.; Fares, R.; Jeffers, S. V.; Petit, P.; Vidotto, A. A.; Morin, J.; BCool Collaboration

    2017-03-01

    We present a spectropolarimetric snapshot survey of solar-type planet-hosting stars. In addition to 14 planet-hosting stars observed as part of the BCool magnetic snapshot survey, we obtained magnetic observations of a further 19 planet-hosting solar-type stars in order to see if the presence of close-in planets had an effect on the measured surface magnetic field (|Bℓ|). Our results indicate that the magnetic activity of this sample is congruent with that of the overall BCool sample. The effects of the planetary systems on the magnetic activity of the parent star, if any, are too subtle to detect compared to the intrinsic dispersion and correlations with rotation, age and stellar activity proxies in our sample. Four of the 19 newly observed stars, two of which are subgiants, have unambiguously detected magnetic fields and are future targets for Zeeman-Doppler mapping.

  10. The Origin of Dwarf Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa

    2012-10-01

    Abridge. We have conducted a spectrophotometric study of dwarf early-type galaxies (dEs) in the Virgo cluster and in regions of lower density. We have found that these galaxies show many properties in common with late-type galaxies but not with more massive early-types (E/S0). The properties of the dEs in Virgo show gradients within the cluster. dEs in the outer parts of the Virgo cluster are kinematically supported by rotation, while those in the center are supported by the random motions of their stars (i.e. pressure supported). The rotationally supported dEs have disky isophotes and faint underlying spiral/irregular substructures, they also show younger ages than those pressure supported, which have boxy isophotes and are smooth and regular, without any substructure. We compare the position of these dEs with massive early-type galaxies in the Faber-Jackson and Fundamental Plane relations, and we find that, although there is no difference between the position of rotationally and pressure supported dEs, both deviate from the relations of massive early-type galaxies in the direction of dwarf spheroidal systems (dSphs). We have used their offset with respect to the Fundamental Plane of E/S0 galaxies to estimate their dark matter fraction. All the properties studied in this work agree with a ram pressure stripping scenario, where late-type galaxies infall into the cluster, their interaction with the intergalactic medium blows away their gas and, as a result, they are quenched in a small amount of time. However, those dEs in the center of the cluster seem to have been fully transformed leaving no trace of their possible spiral origin, thus, if that is the case, they must have experienced a more violent mechanism in combination with ram pressure stripping.

  11. Analysis of Spectral-type A/B Stars in Five Open Clusters

    NASA Astrophysics Data System (ADS)

    Wilhelm, Ronald J.; Rafuil Islam, M.

    2014-01-01

    We have obtained low resolution (R = 1000) spectroscopy of N=68, spectral-type A/B stars in five nearby open star clusters using the McDonald Observatory, 2.1m telescope. The sample of blue stars in various clusters were selected to test our new technique for determining interstellar reddening and distances in areas where interstellar reddening is high. We use a Bayesian approach to find the posterior distribution for Teff, Logg and [Fe/H] from a combination of reddened, photometric colors and spectroscopic line strengths. We will present calibration results for this technique using open cluster star data with known reddening and distances. Preliminary results suggest our technique can produce both reddening and distance determinations to within 10% of cluster values. Our technique opens the possibility of determining distances for blue stars at low Galactic latitudes where extinction can be large and differential. We will also compare our stellar parameter determinations to previously reported MK spectral classifications and discuss the probability that some of our stars are not members of their reported clusters.

  12. Photometric Variations of Solar-type Stars: Results of the Cloudcroft Survey

    NASA Technical Reports Server (NTRS)

    Giampapa, M. S.

    1984-01-01

    The results of a synoptic program to search for the occurrence of photometric variability in solar type stars as seen in continuum band photometry are summarized. The survey disclosed the existence of photometric variability in solar type stars that is related to the presence of spots on the stellar surface. The observed variability detected in solar type stars is at enhanced levels compared to that observed for the Sun.

  13. A Survey of Ca II H and K Chromospheric Emission in Southern Solar-Type Stars

    NASA Astrophysics Data System (ADS)

    Henry, Todd J.; Soderblom, David R.; Donahue, Robert A.; Baliunas, Sallie L.

    1996-01-01

    More than 800 southern stars within 50 pc have been observed for chromospheric emission in the cores of the Ca II H and K lines. Most of the sample targets were chosen to be G dwarfs on the basis of colors and spectral types. The bimodal distribution in stellar activity first noted in a sample of northern stars by Vaughan and Preston in 1980 is confirmed, and the percentage of active stars, about 30%, is remarkably consistent between the northern and southern surveys. This is especially compelling given that we have used an entirely different instrumental setup and stellar sample than used in the previous study. Comparisons to the Sun, a relatively inactive star, show that most nearby solar-type stars have a similar activity level, and presumably a similar age. We identify two additional subsamples of stars -- a very active group, and a very inactive group. The very active group may be made up of young stars near the Sun, accounting for only a few percent of the sample, and appears to be less than ~0.1 Gyr old. Included in this high-activity tail of the distribution, however, is a subset of very close binaries of the RS CVn or W UMa types. The remaining members of this population may be undetected close binaries or very young single stars. The very inactive group of stars, contributting ~5%--10% to the total sample, may be those caught in a Maunder Minimum type phase. If the observations of the survey stars are considered to be a sequence of snapshots of the Sun during its life, we might expect that the Sun will spend about 10% of the remainder of its main sequence life in a Maunder Minimum phase.

  14. Understand B-type stars

    NASA Technical Reports Server (NTRS)

    1982-01-01

    When observations of B stars made from space are added to observations made from the ground and the total body of observational information is confronted with theoretical expectations about B stars, it is clear that nonthermal phenomena occur in the atmospheres of B stars. The nature of these phenomena and what they imply about the physical state of a B star and how a B star evolves are examined using knowledge of the spectrum of a B star as a key to obtaining an understanding of what a B star is like. Three approaches to modeling stellar structure (atmospheres) are considered, the characteristic properties of a mantle, and B stars and evolution are discussed.

  15. The Origin of B-type Runaway Stars: Non-LTE Abundances as a Diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEvoy, Catherine M.; Dufton, Philip L.; Smoker, Jonathan V.

    There are two accepted mechanisms to explain the origin of runaway OB-type stars: the binary supernova (SN) scenario and the cluster ejection scenario. In the former, an SN explosion within a close binary ejects the secondary star, while in the latter close multibody interactions in a dense cluster cause one or more of the stars to be ejected from the region at high velocity. Both mechanisms have the potential to affect the surface composition of the runaway star. tlusty non-LTE model atmosphere calculations have been used to determine the atmospheric parameters and the C, N, Mg, and Si abundances formore » a sample of B-type runaways. These same analytical tools were used by Hunter et al. for their analysis of 50 B-type open-cluster Galactic stars (i.e., nonrunaways). Effective temperatures were deduced using the Si-ionization balance technique, surface gravities from Balmer line profiles, and microturbulent velocities derived using the Si spectrum. The runaways show no obvious abundance anomalies when compared with stars in the open clusters. The runaways do show a spread in composition that almost certainly reflects the Galactic abundance gradient and a range in the birthplaces of the runaways in the Galactic disk. Since the observed Galactic abundance gradients of C, N, Mg, and Si are of a similar magnitude, the abundance ratios (e.g., N/Mg) are as obtained essentially uniform across the sample.« less

  16. A SPECTROSCOPIC SURVEY OF MASSIVE STARS IN M31 AND M33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massey, Philip; Neugent, Kathryn F.; Smart, Brianna M., E-mail: phil.massey@lowell.edu, E-mail: kneugent@lowell.edu, E-mail: bsmart@astro.wisc.edu

    We describe our spectroscopic follow-up to the Local Group Galaxy Survey (LGGS) photometry of M31 and M33. We have obtained new spectroscopy of 1895 stars, allowing us to classify 1496 of them for the first time. Our study has identified many foreground stars, and established membership for hundreds of early- and mid-type supergiants. We have also found nine new candidate luminous blue variables and a previously unrecognized Wolf–Rayet star. We republish the LGGS M31 and M33 catalogs with improved coordinates, and including spectroscopy from the literature and our new results. The spectroscopy in this paper is responsible for the vastmore » majority of the stellar classifications in these two nearby spiral neighbors. The most luminous (and hence massive) of the stars in our sample are early-type B supergiants, as expected; the more massive O stars are more rare and fainter visually, and thus mostly remain unobserved so far. The majority of the unevolved stars in our sample are in the 20–40 M {sub ⊙} range.« less

  17. Investigating the Magnetospheres of Rapidly Rotating B-type Stars

    NASA Astrophysics Data System (ADS)

    Fletcher, C. L.; Petit, V.; Nazé, Y.; Wade, G. A.; Townsend, R. H.; Owocki, S. P.; Cohen, D. H.; David-Uraz, A.; Shultz, M.

    2017-11-01

    Recent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA's XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.

  18. The ATLAS3D project - XXVII. Cold gas and the colours and ages of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Young, Lisa M.; Scott, Nicholas; Serra, Paolo; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Weijmans, Anne-Marie

    2014-11-01

    We present a study of the cold gas contents of the ATLAS3D early-type galaxies, in the context of their optical colours, near-ultraviolet colours and Hβ absorption line strengths. Early-type (elliptical and lenticular) galaxies are not as gas poor as previously thought, and at least 40 per cent of local early-type galaxies are now known to contain molecular and/or atomic gas. This cold gas offers the opportunity to study recent galaxy evolution through the processes of cold gas acquisition, consumption (star formation) and removal. Molecular and atomic gas detection rates range from 10 to 34 per cent in red sequence early-type galaxies, depending on how the red sequence is defined, and from 50 to 70 per cent in blue early-type galaxies. Notably, massive red sequence early-type galaxies (stellar masses >5 × 1010 M⊙, derived from dynamical models) are found to have H I masses up to M(H I)/M* ˜ 0.06 and H2 masses up to M(H2)/M* ˜ 0.01. Some 20 per cent of all massive early-type galaxies may have retained atomic and/or molecular gas through their transition to the red sequence. However, kinematic and metallicity signatures of external gas accretion (either from satellite galaxies or the intergalactic medium) are also common, particularly at stellar masses ≤5 × 1010 M⊙, where such signatures are found in ˜50 per cent of H2-rich early-type galaxies. Our data are thus consistent with a scenario in which fast rotator early-type galaxies are quenched former spiral galaxies which have undergone some bulge growth processes, and in addition, some of them also experience cold gas accretion which can initiate a period of modest star formation activity. We discuss implications for the interpretation of colour-magnitude diagrams.

  19. Spots and activity of solar-type stars from Kepler observations

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.; Dmitrienko, E. S.

    2017-05-01

    The spot coverages S for 2846 solar-type stars with effective temperatures from 5700 K to 5800 K and gravities from 4.4 to 4.5 have been measured. An analysis based on the MAST catalog, which presents photometric measurements obtained with the Kepler Space Telescope during Q9 is presented. The existence of two groups of solar-type stars, with S values between 0.001 and 0.007 and with S > 0.007, is inferred. The second group (active stars) contains 279 stars (about 10% of the total number of stars analyzed). The mean S parameter for the entire sample is 0.004, comparable to the mean spot coverage of the Sun. In general, the dependence of S on the rotation period for solar-type stars has characteristics similar to those found earlier for stars with exoplanets. For the vast majority of the stars in the sample, the activity is constant, and independent of age. The activity of the small number of active stars with S > 0.007 decreases with age. The age variations of the chromospheric activity index R'HK are compared to variations of the spot coverage S. The relations analyzed have common characteristic features. It is likely that both the spot activity level and the chromospheric activity level abruptly decrease for stars older than 4 billion yrs.

  20. Scattering linear polarization of late-type active stars

    NASA Astrophysics Data System (ADS)

    Yakobchuk, T. M.; Berdyugina, S. V.

    2018-05-01

    Context. Many active stars are covered in spots, much more so than the Sun, as indicated by spectroscopic and photometric observations. It has been predicted that star spots induce non-zero intrinsic linear polarization by breaking the visible stellar disk symmetry. Although small, this effect might be useful for star spot studies, and it is particularly significant for a future polarimetric atmosphere characterization of exoplanets orbiting active host stars. Aims: Using models for a center-to-limb variation of the intensity and polarization in presence of continuum scattering and adopting a simplified two-temperature photosphere model, we aim to estimate the intrinsic linear polarization for late-type stars of different gravity, effective temperature, and spottedness. Methods: We developed a code that simulates various spot configurations or uses arbitrary surface maps, performs numerical disk integration, and builds Stokes parameter phase curves for a star over a rotation period for a selected wavelength. It allows estimating minimum and maximum polarization values for a given set of stellar parameters and spot coverages. Results: Based on assumptions about photosphere-to-spot temperature contrasts and spot size distributions, we calculate the linear polarization for late-type stars with Teff = 3500 K-6000 K, log g = 1.0-5.0, using the plane-parallel and spherical atmosphere models. Employing random spot surface distribution, we analyze the relation between spot coverage and polarization and determine the influence of different input parameters on results. Furthermore, we consider spot configurations with polar spots and active latitudes and longitudes.

  1. The IACOB project . III. New observational clues to understand macroturbulent broadening in massive O- and B-type stars

    NASA Astrophysics Data System (ADS)

    Simón-Díaz, S.; Godart, M.; Castro, N.; Herrero, A.; Aerts, C.; Puls, J.; Telting, J.; Grassitelli, L.

    2017-01-01

    Context. The term macroturbulent broadening is commonly used to refer to a certain type of non-rotational broadening affecting the spectral line profiles of O- and B-type stars. It has been proposed to be a spectroscopic signature of the presence of stellar oscillations; however, we still lack a definitive confirmation of this hypothesis. Aims: We aim to provide new empirical clues about macroturbulent spectral line broadening in O- and B-type stars to evaluate its physical origin. Methods: We used high-resolution spectra of 430 stars with spectral types in the range O4 - B9 (all luminosity classes) compiled in the framework of the IACOB project. We characterized the line broadening of adequate diagnostic metal lines using a combined Fourier transform and goodness-of-fit technique. We performed a quantitative spectroscopic analysis of the whole sample using automatic tools coupled with a huge grid of fastwind models to determine their effective temperatures and gravities. We also incorporated quantitative information about line asymmetries into our observational description of the characteristics of the line profiles, and performed a comparison of the shape and type of line-profile variability found in a small sample of O stars and B supergiants with still undefined pulsational properties and B main-sequence stars with variable line profiles owing to a well-identified type of stellar oscillations or to the presence of spots in the stellar surface. Results: We present a homogeneous and statistically significant overview of the (single snapshot) line-broadening properties of stars in the whole O and B star domain. We find empirical evidence of the existence of various types of non-rotational broadening agents acting in the realm of massive stars. Even though all these additional sources of line-broadening could be quoted and quantified as a macroturbulent broadening from a practical point of view, their physical origin can be different. Contrarily to the early- to

  2. A window on first-stars models from studies of dwarf galaxies and galactic halo stars

    NASA Astrophysics Data System (ADS)

    Venkatesan, Aparna

    2018-06-01

    Dwarf galaxies dominate the local universe by number and are predicted to be even more dominant at early times, with many having large star formation rates per unit mass. The cosmological role of dwarf galaxies in the metal enrichment and the reionization of the universe is an important but unresolved problem at present. Nearby low-mass galaxies are much more accessible observationally for detailed study and may be local analogs of the types of galaxies that hosted the first-light sources relevant for reionization. I will share recent results on UV studies of the escaping radiation from nearby low-mass starforming galaxies, as well as the tantalizing similarities in element abundance patterns between local dwarf galaxies and the latest data compilations on extremely metal-poor stars in galactic halos. I will highlight trends of interest in a variety of individual elements at values of [Fe/H] between -7 and -3, including alpha-elements, elements originating mostly in intermediate-mass stars, lithium, titanium, and r-process elements. These trends constrain not only models of the first stars and their supernovae, but provide a window into the physical conditions in early galaxies and when metal-free star formation may have ceased in the early universe.This work was supported by the University of San Francisco Faculty Development Fund, and NSF grant AST-1637339. We thank the Aspen Center for Physics, where some of this work was conducted, and which is supported by National Science Foundation grant PHY-1607611.

  3. A grid of MARCS model atmospheres for late-type stars. II. S stars and their properties

    NASA Astrophysics Data System (ADS)

    Van Eck, Sophie; Neyskens, Pieter; Jorissen, Alain; Plez, Bertrand; Edvardsson, Bengt; Eriksson, Kjell; Gustafsson, Bengt; Jørgensen, Uffe Gråe; Nordlund, Åke

    2017-05-01

    S-type stars are late-type giants whose atmospheres are enriched in carbon and s-process elements because of either extrinsic pollution by a binary companion or intrinsic nucleosynthesis and dredge-up on the thermally-pulsing asymptotic giant branch. A grid of MARCS model atmospheres has been computed for S stars, covering the range 2700 ≤ Teff(K) ≤ 4000, 0.50 ≤ C/O ≤ 0.99, 0 ≤ log g ≤ 5, [Fe/H] = 0., -0.5 dex, and [s/Fe] = 0, 1, and 2 dex (where the latter quantity refers to the global overabundance of s-process elements). The MARCS models make use of a new ZrO line list. Synthetic spectra computed from these models are used to derive photometric indices in the Johnson and Geneva systems, as well as TiO and ZrO band strengths. A method is proposed to select the model best matching any given S star, a non-trivial operation since the grid contains more than 3500 models covering a five-dimensional parameter space. The method is based on the comparison between observed and synthetic photometric indices and spectral band strengths, and has been applied on a vast subsample of the Henize sample of S stars. Our results confirm the old claim by Piccirillo (1980, MNRAS, 190, 441) that ZrO bands in warm S stars (Teff>3200 K) are not caused by the C/O ratio being close to unity, as traditionally believed, but rather by some Zr overabundance. The TiO and ZrO band strengths, combined with V-K and J-K photometric indices, are used to select Teff, C/O, [Fe/H] and [s/Fe]. The Geneva U-B1 and B2-V1 indices (or any equivalent) are good at selecting the gravity. The defining spectral features of dwarf S stars are outlined, but none is found among the Henize S stars. More generally, it is found that, at Teff = 3200 K, a change of C/O from 0.5 to 0.99 has a strong impact on V-K (2 mag). Conversely, a range of 2 mag in V-K corresponds to a 200 K shift along the (Teff, V-K) relationship (for a fixed C/O value). Hence, the use of a (Teff, V-K) calibration established for M

  4. A collisional model for the formation of ripples in early-type disk galaxies

    NASA Technical Reports Server (NTRS)

    Wallin, John F.; Struck-Marcell, Curtis

    1988-01-01

    Restricted three-body calculations of high-inclination low-impact-parameter encounters between a disk galaxy and its companion are used to demonstrate that the shell-like ripples noted in a number of disk galaxies are also collisional artifacts. It is suggested that some of the ripples may be the results of internal oscillations following such encounters. It is assumed that the target is an early-type disk with a sufficiently low gas fraction that recent star formation does not dominate the appearance of the disturbed disk.

  5. An unbiased study of debris discs around A-type stars with Herschel

    NASA Astrophysics Data System (ADS)

    Thureau, N. D.; Greaves, J. S.; Matthews, B. C.; Kennedy, G.; Phillips, N.; Booth, M.; Duchêne, G.; Horner, J.; Rodriguez, D. R.; Sibthorpe, B.; Wyatt, M. C.

    2014-12-01

    The Herschel DEBRIS (Disc Emission via a Bias-free Reconnaissance in the Infrared/Submillimetre) survey brings us a unique perspective on the study of debris discs around main-sequence A-type stars. Bias-free by design, the survey offers a remarkable data set with which to investigate the cold disc properties. The statistical analysis of the 100 and 160 μm data for 86 main-sequence A stars yields a lower than previously found debris disc rate. Considering better than 3σ excess sources, we find a detection rate ≥24 ± 5 per cent at 100 μm which is similar to the debris disc rate around main-sequence F/G/K-spectral type stars. While the 100 and 160 μm excesses slowly decline with time, debris discs with large excesses are found around some of the oldest A stars in our sample, evidence that the debris phenomenon can survive throughout the length of the main sequence (˜1 Gyr). Debris discs are predominantly detected around the youngest and hottest stars in our sample. Stellar properties such as metallicity are found to have no effect on the debris disc incidence. Debris discs are found around A stars in single systems and multiple systems at similar rates. While tight and wide binaries (<1 and >100 au, respectively) host debris discs with a similar frequency and global properties, no intermediate separation debris systems were detected in our sample.

  6. A New Binary Star System of EW Type in Draco: GSC 03905-01870

    NASA Astrophysics Data System (ADS)

    Barquin, S.

    2018-05-01

    Discovery of a new binary star system (GSC 03905-01870 = USNO-B1.0 1431-0327922 = UCAC4 716-059522) in the Draco constellation is presented. It was discovered during a search for previously unreported eclipsing binary stars through the ASAS-SN database. The shape of the light curve and its characteristics (period of 0.428988+-0.000001 d, amplitude of 0.34+-0.02 V Mag, primary minimum epoch HJD 2457994.2756+-0.0002) indicates that the new variable star is an eclipsing binary of W Ursae Majoris type. I registered this variable star in The International Variable Star Index (VSX), its AAVSO UID is 000-BMP-891.

  7. Star cell type core configuration for structural sandwich materials

    DOEpatents

    Christensen, Richard M.

    1995-01-01

    A new pattern for cellular core material used in sandwich type structural materials. The new pattern involves star shaped cells intermixed with hexagonal shaped cells. The new patterned cellular core material includes star shaped cells interconnected at points thereof and having hexagonal shape cells positioned adjacent the star points. The new pattern allows more flexibility and can conform more easily to curved shapes.

  8. Detection of a Red Supergiant Progenitor Star of a Type II-Plateau Supernova

    NASA Astrophysics Data System (ADS)

    Smartt, Stephen J.; Maund, Justyn R.; Hendry, Margaret A.; Tout, Christopher A.; Gilmore, Gerard F.; Mattila, Seppo; Benn, Chris R.

    2004-01-01

    We present the discovery of a red supergiant star that exploded as supernova 2003gd in the nearby spiral galaxy M74. The Hubble Space Telescope (HST) and the Gemini Telescope imaged this galaxy 6 to 9 months before the supernova explosion, and subsequent HST images confirm the positional coincidence of the supernova with a single resolved star that is a red supergiant of 8+4-2 solar masses. This confirms both stellar evolution models and supernova theories predicting that cool red supergiants are the immediate progenitor stars of type II-plateau supernovae.

  9. Rosat detections of X-ray emission from young B-type stars

    NASA Technical Reports Server (NTRS)

    Schmitt, J. H. M. M.; Zinnecker, H.; Cruddace, R.; Harnden, F. R., Jr.

    1993-01-01

    We present first results of a series of pointings of the Rosat HRI at visual binaries consisting of a B-star with a later-type companion. The binaries selected for this study are very likely physical pairs. Dating of the B-type stars with respect to the zero-age main sequence, as well as spectroscopic observations of the late-type stars, provides evidence for the extreme youth of these systems with ages typically near or below 10 exp 8 yr. Surprisingly, the late-B component was in many cases detected as an X-ray source, in contrast to previous findings that X-ray emission among late-B field stars is rather uncommon.

  10. Fundamental Properties of O-Type Stars

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lanz, Thierry; Hubeny, Ivan

    2006-01-01

    We present a comprehensive analysis of high-resolution, far-ultraviolet HST STIS, FUSE, and optical spectra of 18 O stars in the Small Magellanic Cloud. Our analysis is based on the OSTAR2002 grid of NLTE metal-line-blanketed model atmospheres calculated with our code TLUSTY. We systematically explore and present the sensitivity of various UV and optical lines to different stellar parameters. We have obtained consistent fits of the UV and the optical spectrum to derive the effective temperature, surface gravity, surface composition, and microturbulent velocity of each star. Stellar radii, masses, and luminosities follow directly. For stars of the same spectral subtype, we find a general good agreement between effective temperature determinations obtained with TLUSTY, CMFGEN, and FASTWIND models, which are all lower than the standard T(sub eff) calibration of O stars. We propose a new calibration between the spectral type and effective temperature based on our results from UV metal lines, as well as optical hydrogen and helium lines. The lower effective temperatures translate into ionizing luminosities that are smaller by a factor of 3 compared to luminosities inferred from previous standard calibrations. The chemical composition analysis reveals that the surface of about 80% of the program stars is moderately to strongly enriched in nitrogen, while showing the original helium, carbon, and oxygen abundances. Our results support the new stellar evolution models that predict that the surface of fast rotating stars becomes nitrogen-rich during the main-sequence phase because of rotationally induced mixing. Enrichment factors are, however, larger than predicted by stellar evolution models. Most stars exhibit the "mass discrepancy" problem, which we interpret as a result of fast rotation that lowers the measured effective gravity. Nitrogen enrichment and low spectroscopic masses are therefore two manifestations of fast rotation. Our study thus emphasizes the importance

  11. A Novel Method for Age Estimation in Solar-Type Stars Through GALEX FUV Magnitudes

    NASA Astrophysics Data System (ADS)

    Ho, Kelly; Subramonian, Arjun; Smith, Graeme; Shouru Shieh

    2018-01-01

    Utilizing an inverse association known to exist between Galaxy Evolution Explorer (GALEX) far ultraviolet (FUV) magnitudes and the chromospheric activity of F, G, and K dwarfs, we explored a method of age estimation in solar-type stars through GALEX FUV magnitudes. Sample solar-type star data were collected from refereed publications and filtered by B-V and absolute visual magnitude to ensure similarities in temperature and luminosity to the Sun. We determined FUV-B and calculated a residual index Q for all the stars, using the temperature-induced upper bound on FUV-B as the fiducial. Plotting current age estimates for the stars against Q, we discovered a strong and significant association between the variables. By applying a log-linear transformation to the data to produce a strong correlation between Q and loge Age, we confirmed the association between Q and age to be exponential. Thus, least-squares regression was used to generate an exponential model relating Q to age in solar-type stars, which can be used by astronomers. The Q-method of stellar age estimation is simple and more efficient than existing spectroscopic methods and has applications to galactic archaeology and stellar chemical composition analysis.

  12. A Copernicus survey of Mg II emission in late-type stars

    NASA Technical Reports Server (NTRS)

    Weiler, E. J.; Oegerle, W. R.

    1979-01-01

    The behavior of Mg II emission in late-type stars is examined using scan data obtained with the Copernicus satellite. The luminosity in the Mg II k emission line was found to be closely related to stellar absolute magnitude, leading to the suggestion that such correlation may be very useful for future UV observations. The stellar surface flux in the k line was observed to be roughly constant or to decrease slowly with later spectral type, a finding which is then used to show that the pressure at the top of the chromosphere decreases with later spectral type, in agreement with the conclusions by McClintock et al. (1975). An asymmetry in the Mg II k line was noticed to be present in the available data for the stars later than K2-K5.

  13. Star cell type core configuration for structural sandwich materials

    DOEpatents

    Christensen, R.M.

    1995-08-01

    A new pattern for cellular core material used in sandwich type structural materials is disclosed. The new pattern involves star shaped cells intermixed with hexagonal shaped cells. The new patterned cellular core material includes star shaped cells interconnected at points thereof and having hexagonal shape cells positioned adjacent the star points. The new pattern allows more flexibility and can conform more easily to curved shapes. 3 figs.

  14. A hybrid type Ia supernova with an early flash triggered by helium-shell detonation

    NASA Astrophysics Data System (ADS)

    Jiang, Ji-An; Doi, Mamoru; Maeda, Keiichi; Shigeyama, Toshikazu; Nomoto, Ken'Ichi; Yasuda, Naoki; Jha, Saurabh W.; Tanaka, Masaomi; Morokuma, Tomoki; Tominaga, Nozomu; Ivezić, Željko; Ruiz-Lapuente, Pilar; Stritzinger, Maximilian D.; Mazzali, Paolo A.; Ashall, Christopher; Mould, Jeremy; Baade, Dietrich; Suzuki, Nao; Connolly, Andrew J.; Patat, Ferdinando; Wang, Lifan; Yoachim, Peter; Jones, David; Furusawa, Hisanori; Miyazaki, Satoshi

    2017-10-01

    Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion-ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models—the helium-ignition branch—does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.

  15. A hybrid type Ia supernova with an early flash triggered by helium-shell detonation.

    PubMed

    Jiang, Ji-An; Doi, Mamoru; Maeda, Keiichi; Shigeyama, Toshikazu; Nomoto, Ken'ichi; Yasuda, Naoki; Jha, Saurabh W; Tanaka, Masaomi; Morokuma, Tomoki; Tominaga, Nozomu; Ivezić, Željko; Ruiz-Lapuente, Pilar; Stritzinger, Maximilian D; Mazzali, Paolo A; Ashall, Christopher; Mould, Jeremy; Baade, Dietrich; Suzuki, Nao; Connolly, Andrew J; Patat, Ferdinando; Wang, Lifan; Yoachim, Peter; Jones, David; Furusawa, Hisanori; Miyazaki, Satoshi

    2017-10-04

    Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion-ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models-the helium-ignition branch-does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.

  16. The components of mid- and far-infrared emission from S0 and early-type shell galaxies

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A., Jr.; Bally, John; Hacking, Perry

    1989-01-01

    The IRAS database has been used to study detections of about 150 early-type elliptical and S0 galaxies exhibiting a shell structure. No strong evidence for the expected enhancement of either star formation rates or heating of the interstellar medium is found. It is suggested that for some of the sample galaxies either a contribution from warm dust surrounding evolved stars or emission from an active nucleus may be significant.

  17. VLA observations of A and B stars with kilogauss magnetic fields

    NASA Technical Reports Server (NTRS)

    Drake, S. A.; Abbott, D. C.; Linsky, J. L.; Bieging, J. H.; Churchwell, E.

    1985-01-01

    The serendipitous discovery that the star Sigma Ori E is a 3.5 mJy radio continuum source at 6 cm has stimulated a radio survey of other early-type stars with strong magnetic fields. No Ap stars have been detected of the eight observed, with typical 3-sigma upper limits of 0.5 mJy at 2 cm. Of the six Bp stars examined, only HR 1890, a helium-strong star, was detected. Possible emission mechanisms for the observed radio emission are discussed, and it is concluded that nonthermal emission seems the most plausible, on the basis of the present data.

  18. The MiMeS survey of Magnetism in Massive Stars: magnetic analysis of the O-type stars

    NASA Astrophysics Data System (ADS)

    Grunhut, J. H.; Wade, G. A.; Neiner, C.; Oksala, M. E.; Petit, V.; Alecian, E.; Bohlender, D. A.; Bouret, J.-C.; Henrichs, H. F.; Hussain, G. A. J.; Kochukhov, O.; MiMeS Collaboration

    2017-02-01

    We present the analysis performed on spectropolarimetric data of 97 O-type targets included in the framework of the Magnetism in Massive Stars (MiMeS) Survey. Mean least-squares deconvolved Stokes I and V line profiles were extracted for each observation, from which we measured the radial velocity, rotational and non-rotational broadening velocities, and longitudinal magnetic field Bℓ. The investigation of the Stokes I profiles led to the discovery of two new multiline spectroscopic systems (HD 46106, HD 204827) and confirmed the presence of a suspected companion in HD 37041. We present a modified strategy of the least-squares deconvolution technique aimed at optimizing the detection of magnetic signatures while minimizing the detection of spurious signatures in Stokes V. Using this analysis, we confirm the detection of a magnetic field in six targets previously reported as magnetic by the MiMeS collaboration (HD 108, HD 47129A2, HD 57682, HD 148937, CPD-28 2561, and NGC 1624-2), as well as report the presence of signal in Stokes V in three new magnetic candidates (HD 36486, HD 162978, and HD 199579). Overall, we find a magnetic incidence rate of 7 ± 3 per cent, for 108 individual O stars (including all O-type components part of multiline systems), with a median uncertainty of the Bℓ measurements of about 50 G. An inspection of the data reveals no obvious biases affecting the incidence rate or the preference for detecting magnetic signatures in the magnetic stars. Similar to A- and B-type stars, we find no link between the stars' physical properties (e.g. Teff, mass, and age) and the presence of a magnetic field. However, the Of?p stars represent a distinct class of magnetic O-type stars.

  19. NEARBY MASSIVE STAR CLUSTER YIELDS INSIGHTS INTO EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Hubble Space Telescope 'family portrait' of young, ultra-bright stars nested in their embryonic cloud of glowing gases. The celestial maternity ward, called N81, is located 200,000 light-years away in the Small Magellanic Cloud (SMC), a small irregular satellite galaxy of our Milky Way. Hubble's exquisite resolution allows astronomers to pinpoint 50 separate stars tightly packed in the nebula's core within a 10 light-year diameter - slightly more than twice the distance between earth and the nearest star to our sun. The closest pair of stars is only 1/3 of a light-year apart (0.3 arcseconds in the sky). This furious rate of mass loss from these super-hot stars is evident in the Hubble picture that reveals dramatic shapes sculpted in the nebula's wall of glowing gases by violent stellar winds and shock waves. A pair of bright stars in the center of the nebula is pouring out most of the ultraviolet radiation to make the nebula glow. Just above them, a small dark knot is all that's left of the cold cloud of molecular hydrogen and dust the stars were born from. Dark absorption lanes of residual dust trisect the nebula. The nebula offers a unique opportunity for a close-up glimpse at the 'firestorm' accompanying the birth of extremely massive stars, each blazing with the brilliance of 300,000 of our suns. Such galactic fireworks were much more common billions of years ago in the early universe, when most star formation took place. The 'natural-color' view was assembled from separate images taken with the Wide Field and Planetary Camera 2, in ultraviolet light and two narrow emission lines of ionized Hydrogen (H-alpha, H-beta). The picture was taken on September 4, 1997. Credit: Mohammad Heydari-Malayeri (Paris Observatory, France), NASA/ESA

  20. A survey of TiOλ567 nm absorption in solar-type stars

    NASA Astrophysics Data System (ADS)

    Azizi, Fatemeh; Mirtorabi, Mohammad Taghi

    2018-04-01

    Molecular absorption bands are estimators of stellar activity and spot cycles on magnetically active stars. We have previously introduced a new colour index that compares absorption strength of the titanium oxide (TiO) at 567 nm with nearby continuum. In this paper, we implement this index to measure long-term activity variations and the statistical properties of the index in a sample of 302 solar-type stars from the High Accuracy Radial Velocity Planet search Spectrograph planet search programme. The results indicate a pattern of change in star's activity, covers a range of periods from 2 yr up to 17 yr.

  1. Systematic variation of the stellar initial mass function in early-type galaxies.

    PubMed

    Cappellari, Michele; McDermid, Richard M; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2012-04-25

    Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination, no consensus has emerged on whether it is universal among different types of galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS(3D) sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy's IMF depends intimately on the galaxy's formation history.

  2. A Spectroscopic Orbit for the Late-type Be Star β CMi

    NASA Astrophysics Data System (ADS)

    Dulaney, Nicholas A.; Richardson, Noel D.; Gerhartz, Cody J.; Bjorkman, J. E.; Bjorkman, K. S.; Carciofi, Alex C.; Klement, Robert; Wang, Luqian; Morrison, Nancy D.; Bratcher, Allison D.; Greco, Jennifer J.; Hardegree-Ullman, Kevin K.; Lembryk, Ludwik; Oswald, Wayne L.; Trucks, Jesica L.

    2017-02-01

    The late-type Be star β CMi is remarkably stable compared to other Be stars that have been studied. This has led to a realistic model of the outflowing Be disk by Klement et al. These results showed that the disk is likely truncated at a finite radius from the star, which Klement et al. suggest is evidence for an unseen binary companion in orbit. Here we report on an analysis of the Ritter Observatory spectroscopic archive of β CMi to search for evidence of the elusive companion. We detect periodic Doppler shifts in the wings of the Hα line with a period of 170 days and an amplitude of 2.25 km s-1, consistent with a low-mass binary companion (M ≈ 0.42 M ⊙). We then compared small changes in the violet-to-red peak height changes (V/R) with the orbital motion. We find weak evidence that it does follow the orbital motion, as suggested by recent Be binary models by Panoglou et al. Our results, which are similar to those for several other Be stars, suggest that β CMi may be a product of binary evolution where Roche lobe overflow has spun up the current Be star, likely leaving a hot subdwarf or white dwarf in orbit around the star. Unfortunately, no direct sign of this companion star is found in the very limited archive of International Ultraviolet Explorer spectra.

  3. A Spectroscopic Orbit for the Late-type Be Star β CMi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dulaney, Nicholas A.; Richardson, Noel D.; Gerhartz, Cody J.

    The late-type Be star β CMi is remarkably stable compared to other Be stars that have been studied. This has led to a realistic model of the outflowing Be disk by Klement et al. These results showed that the disk is likely truncated at a finite radius from the star, which Klement et al. suggest is evidence for an unseen binary companion in orbit. Here we report on an analysis of the Ritter Observatory spectroscopic archive of β CMi to search for evidence of the elusive companion. We detect periodic Doppler shifts in the wings of the H α linemore » with a period of 170 days and an amplitude of 2.25 km s{sup −1}, consistent with a low-mass binary companion ( M ≈ 0.42 M {sub ⊙}). We then compared small changes in the violet-to-red peak height changes ( V / R ) with the orbital motion. We find weak evidence that it does follow the orbital motion, as suggested by recent Be binary models by Panoglou et al. Our results, which are similar to those for several other Be stars, suggest that β CMi may be a product of binary evolution where Roche lobe overflow has spun up the current Be star, likely leaving a hot subdwarf or white dwarf in orbit around the star. Unfortunately, no direct sign of this companion star is found in the very limited archive of International Ultraviolet Explorer spectra.« less

  4. The origin of dwarf early-type galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, E.

    2013-05-01

    We have conducted a spectrophotometric study of dwarf early-type galaxies (dEs) in the Virgo cluster and in regions of lower density. We have found that these galaxies show many properties in common with late-type galaxies but not with more massive early-types (E/S0). The properties of the dEs in Virgo show gradients within the cluster. dEs in the outer parts of the Virgo cluster are kinematically supported by rotation, while those in the center are supported by the random motions of their stars (i.e. pressure supported). The rotationally supported dEs have disky isophotes and faint underlying spiral/irregular substructures, they also show younger ages than those pressure supported, which have boxy isophotes and are smooth and regular, without any substructure. We compare the position of these dEs with massive early-type galaxies in the Faber-Jackson and Fundamental Plane relations, and we find that, although there is no difference between the position of rotationally and pressure supported dEs, both deviate from the relations of massive early-type galaxies in the direction of dwarf spheroidal systems (dSphs). We have used their offset with respect to the Fundamental Plane of E/S0 galaxies to estimate their dark matter fraction. All the properties studied in this work agree with a ram pressure stripping scenario, where late-type galaxies infall into the cluster, their interaction with the intergalactic medium blows away their gas and, as a result, they are quenched in a small amount of time. However, those dEs in the center of the cluster seem to have been fully transformed leaving no trace of their possible spiral origin, thus, if that is the case, they must have experienced a more violent mechanism in combination with ram pressure stripping, the open problem is that even galaxy harassment does not fully explain the observed properties for the pressure supported dEs in the center of the Virgo cluster.

  5. Supermassive blackhole growth and the supernovae history in high-z early-type galaxies

    NASA Astrophysics Data System (ADS)

    Rocca-Volmerange, Brigitte

    2015-08-01

    A large variety of feedback models, supported by many galaxy surveys, tentatively relate AGN to star formation by stimulation or quenching. However any accretion process from variable AGNs has never been observed to be turned on or off by star formation. We propose to follow the supernovae explosions through the star formation laws of early-type galaxies with the help of the galaxy evolution model Pégase.3. Applied to the continuous Spectral Energy Distribution, including Herschel data of two z=3.8 radio galaxies (4C41.17 and TN J2007-1316), the comparison with Supermassive BlackHole masses from SDSS opens a new interpretation of the AGN-starburst relation without any need of feedback (Rocca-Volmerange et al, 2015, 2013)

  6. A study of star formation by Hα emission of galaxies in the galaxy group NGC 4213

    NASA Astrophysics Data System (ADS)

    Maungkorn, Sakdawoot; Kriwattanawong, Wichean

    2017-09-01

    This research aims to study hydrogen alpha emission, corresponding to star formation of galaxies in the NGC 4213 group that has an average recession velocity of 6,821 km/s. The imaging observations with broad-band filters (B, V and RC) and narrow-band filters ([S II] and Red-continuum) were carried out from the 2.4-m reflecting telescope at Thai National Observatory (TNO). There are 11 sample galaxies in this study, consisting of 2 elliptical, 2 lenticular and 7 spiral galaxies. It was found that the late-type galaxies tend to be bluer than early-type galaxies, due to these galaxies consist of relatively high proportion of blue stars. Furthermore, the equivalent width of hydrogen alpha (EW(Hα)) tends to increase as a function of morphological type. This indicates that star formation in late-type galaxies taking place more than the early-type galaxies. Furthermore, a ratio of the star formation rate to galaxy mass also increases slightly with the galaxy type. This could be due to the interaction between galaxy-galaxy or tidal interaction occurring within the galaxy group.

  7. Extended nebular emission in CALIFA early-type galaxies

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.; Kehrig, C.; Vílchez, J. M.; Lehnert, M. D.

    2015-02-01

    The morphological, spectroscopic and kinematical properties of the warm interstellar medium ( wim ) in early-type galaxies (ETGs) hold key observational constraints to nuclear activity and the buildup history of these massive quiescent systems. High-quality integral field spectroscopy (IFS) data with a wide spectral and spatial coverage, such as those from the CALIFA survey, offer a precious opportunity for advancing our understanding in this respect. We use deep IFS data from CALIFA (califa.caha.es) to study the wim over the entire extent and optical spectral range of 32 nearby ETGs. We find that all ETGs in our sample show faint (Hα equivalent width EW(Hα)~0.5 ... 2 Å) extranuclear nebular emission extending out to >=2 Petrosian50 radii. Confirming and strengthening our conclusions in Papaderos et al. (2013, hereafter P13) we argue that ETGs span a broad continuous sequence with regard to the properties of their wim , and they can be roughly subdivided into two characteristic classes. The first one (type i) comprises ETGs with a nearly constant EW(Hα)~1-3 Å in their extranuclear component, in quantitative agreement with (even though, no proof for) the hypothesis of photoionization by the post-AGB stellar component being the main driver of extended wim emission. The second class (type ii) consists of virtually wim -evacuated ETGs with a large Lyman continuum (Ly c) photon escape fraction and a very low (<=0.5 Å) EW(Hα) in their nuclear zone. These two ETG classes appear indistinguishable from one another by their LINER-specific emission-line ratios. Additionally, here we extend the classification by P13 by the class i+ which stands for a subset of type i ETGs with low-level star-forming activity in contiguous spiral-arm like features in their outermost periphery. These faint features, together with traces of localized star formation in several type i&i+ systems point to a non-negligible contribution from young massive stars to the global ionizing photon

  8. HR 6094: A Young, Solar-Type, Solar-Metallicity Barium Dwarf Star

    NASA Astrophysics Data System (ADS)

    Porto de Mello, G. F.; da Silva, L.

    1997-02-01

    The young solar-type star HR 6094 is found to be a barium dwarf, overabundant in the s-process elements as well as deficient in C. It is a member of the solar-metallicity, 0.3 Gyr old Ursa Major kinematical group. Measurements of radial velocity and ultraviolet flux do not support the attribution of such abundance anomalies to an unseen degenerate companion. A common proper motion, V = 10, DA white dwarf (WD), located 5360 AU away, however, strongly supports the explanation of the origin of this barium star by the process of mass transfer in a binary system, in which the secondary component accreted matter from the primary one (now the WD) when it was an asymptotic giant branch (AGB) star self-enriched in the s-process elements. The membership in the UMa group of another s-process-rich and C-deficient star, HR 2047, suggests that these stars could have formed a multiple system in the past, which was disrupted by the mass-loss episode of the former AGB star. Their [C/Fe] deficiency could be explained by the action of the hot-bottomed envelope burning process in the late AGB, thereby reconverting it from a C-rich to an O-rich star, depleting C while enriching its envelope with Li and neutron capture elements. This is the first identification of the barium phenomenon in a near-zero-age star, besides being the first barium system in which the remnant of the late AGB star responsible for the heavy-element enrichment may have been directly spotted. Observations collected at the Cerro Tololo Inter-American Observatory (CTIO), Chile, and at the Observatório do Pico dos Dias, operated by the CNPq/Laboratório Nacional de Astrofísica, Brazil.

  9. Activity trends in young solar-type stars

    NASA Astrophysics Data System (ADS)

    Lehtinen, J.; Jetsu, L.; Hackman, T.; Kajatkari, P.; Henry, G. W.

    2016-04-01

    Aims: We study a sample of 21 young and active solar-type stars with spectral types ranging from late F to mid K and characterize the behaviour of their activity. Methods: We apply the continuous period search (CPS) time series analysis method on Johnson B- and V-band photometry of the sample stars, collected over a period of 16 to 27 years. Using the CPS method, we estimate the surface differential rotation and determine the existence and behaviour of active longitudes and activity cycles on the stars. We supplement the time series results by calculating new log R'HK = log F'HK/σTeff4 emission indices for the stars from high resolution spectroscopy. Results: The measurements of the photometric rotation period variations reveal a positive correlation between the relative differential rotation coefficient and the rotation period as k ∝ Prot1.36, but do not reveal any dependence of the differential rotation on the effective temperature of the stars. Secondary period searches reveal activity cycles in 18 of the stars and temporary or persistent active longitudes in 11 of them. The activity cycles fall into specific activity branches when examined in the log Prot/Pcyc vs. log Ro-1, where Ro-1 = 2Ωτc, or log Prot/Pcyc vs. log R'HK diagram. We find a new split into sub-branches within this diagram, indicating multiple simultaneously present cycle modes. Active longitudes appear to be present only on the more active stars. There is a sharp break at approximately log R'HK = -4.46 separating the less active stars with long-term axisymmetric spot distributions from the more active ones with non-axisymmetric configurations. In seven out of eleven of our stars with clearly detected long-term non-axisymmetric spot activity the estimated active longitude periods are significantly shorter than the mean photometric rotation periods. This systematic trend can be interpreted either as a sign of the active longitudes being sustained from a deeper level in the stellar interior

  10. Chandra Early Type Galaxy Atals

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo; Anderson, Craig; Burke, Douglas J.; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer; McCollough, Michael; Morgan, Douglas; Mossman, Amy; O'Sullivan, Ewan; Paggi, Alessandro; Vrtilek, Saeqa Dil; Trinchieri, Ginevra

    2017-08-01

    The hot gas in early type galaxies (ETGs) plays a crucial role in understanding their formation and evolution. As the hot gas is often extended to the outskirts beyond the optical size, the large scale structural features identified by Chandra (including jets, cavities, cold fronts, filaments and tails) point to key evolutionary mechanisms, e.g., AGN feedback, merging history, accretion, stripping and star formation and its quenching. We have systematically analyzed the archival Chandra data of ~100 ETGs to study the hot ISM. We produce the uniformly derived data products with spatially resolved spectral information and will make them accessible via a public web site. With 2D spectral infomation, we further discuss gas morphology, scaling relations, X-ray based mass profiles and their implications related to various physical mechanisms (e.g., stellar and AGN feedback).

  11. Inferring the star-formation histories of the most massive and passive early-type galaxies at z < 0.3

    NASA Astrophysics Data System (ADS)

    Citro, Annalisa; Pozzetti, Lucia; Moresco, Michele; Cimatti, Andrea

    2016-07-01

    Context. In the Λ cold dark matter (ΛCDM) cosmological framework, massive galaxies are the end-points of the hierarchical evolution and are therefore key probes for understanding how the baryonic matter evolves within the dark matter halos. Aims: The aim of this work is to use the archaeological approach in order to infer the stellar population properties and star formation histories of the most massive (M > 1010.75 M⊙) and passive early-type galaxies (ETGs) at 0 < z < 0.3 (corresponding to a cosmic time interval of ~3.3 Gyr) based on stacked, high signal-to-noise (S/N), spectra extracted from the Sloan Digital Sky Survey (SDSS). Our study is focused on the most passive ETGs in order to avoid the contamination of galaxies with residual star formation activity and extract the evolutionary information on the oldest envelope of the global galaxy population. Methods: Unlike most previous studies in this field, we did not rely on individual absorption features such as the Lick indices, but we used the information present in the full spectrum with the STARLIGHT public code, adopting different stellar population synthesis models. Successful tests have been performed to assess the reliability of STARLIGHT to retrieve the evolutionary properties of the ETG stellar populations such as the age, metallicity and star formation history. The results indicate that these properties can be derived with accuracy better than 10% at S/N ≳ 10-20, and also that the procedure of stacking galaxy spectra does not introduce significant biases into their retrieval. Results: Based on our spectral analysis, we found that the ETGs of our sample are very old systems - the most massive ones are almost as old as the Universe. The stellar metallicities are slightly supersolar, with a mean of Z ~ 0.027 ± 0.002 and Z ~ 0.029 ± 0.0015 (depending on the spectral synthesis models used for the fit) and do not depend on redshift. Dust extinction is very low, with a mean of AV ~ 0.08 ± 0.030 mag

  12. The rate and efficiency of high-mass star formation along the Hubble sequence

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas A.; Young, Judith S.

    1991-01-01

    Data obtained with IRAS are used to compare and contrast the global star formation rates for a galactic sample which represents essentially all known noninteracting spiral and lenticular galaxies within 40 Mpc. The distribution of 60 micron luminosity is similar for spirals of types Sa-Scd inclusively, although the luminosities of the very early and very late types are, on average, one order of magnitude lower. High-mass star formation rates are similar for early, intermediate, and late type spirals, and the average high-mass star formation rate per unit molecular gas mass is independent of type for spiral galaxies. A remarkable homogeneity exists in the high-mass star-forming capabilities of spiral galaxies, particularly among the Sa-Scd types. The Hubble sequence is therefore not a sequence in the present-day rate or production efficiency of high-mass stars.

  13. Why do we find ourselves around a yellow star instead of a red star?

    NASA Astrophysics Data System (ADS)

    Haqq-Misra, Jacob; Kopparapu, Ravi Kumar; Wolf, Eric T.

    2018-01-01

    M-dwarf stars are more abundant than G-dwarf stars, so our position as observers on a planet orbiting a G-dwarf raises questions about the suitability of other stellar types for supporting life. If we consider ourselves as typical, in the anthropic sense that our environment is probably a typical one for conscious observers, then we are led to the conclusion that planets orbiting in the habitable zone of G-dwarf stars should be the best place for conscious life to develop. But such a conclusion neglects the possibility that K-dwarfs or M-dwarfs could provide more numerous sites for life to develop, both now and in the future. In this paper we analyse this problem through Bayesian inference to demonstrate that our occurrence around a G-dwarf might be a slight statistical anomaly, but only the sort of chance event that we expect to occur regularly. Even if M-dwarfs provide more numerous habitable planets today and in the future, we still expect mid G- to early K-dwarfs stars to be the most likely place for observers like ourselves. This suggests that observers with similar cognitive capabilities as us are most likely to be found at the present time and place, rather than in the future or around much smaller stars.

  14. Cooling flows and X-ray emission in early-type galaxies

    NASA Technical Reports Server (NTRS)

    Sarazin, Craig L.

    1990-01-01

    The X-ray properties of normal early-type galaxies and the limited theoretical understanding of the physics of the hot interstellar medium in these galaxies are reviewed. A number of simple arguments about the physical state of the gas are given. Steady-state cooling flow models for these galaxies are presented, and their time-dependent evolution is discussed. The X-ray emission found in early-type galaxies indicates that they contain significant amounts of hot interstellar gas, and that they are not the gas-poor systems they were previously thought to be. In the brighter X-ray galaxies, the amounts of hot gas observed are consistent with those expected given the present rates of stellar mass loss. The required rates of heating of the gas are consistent with those expected from the motions of gas-losing stars and supernovae. The X-ray observations are generally more consistent with a lower rate of Type I supernovae than was previously thought.

  15. Herschel-ATLAS: Dusty early-type galaxies

    NASA Astrophysics Data System (ADS)

    Rowlands, K.; Dunne, L.; Maddox, S.

    2015-03-01

    Early-type galaxies (ETGs) are thought to be devoid of dust and star-formation, having formed most of their stars at early epochs. We present the detection of the dustiest ETGs in a large-area blind submillimetre survey with Herschel (H-ATLAS, Eales et al. 2010), where the lack of pre-selection in other bands makes it the first unbiased survey for cold dust in ETGs. The parent sample of 1087 H-ATLAS galaxies in this study have a >= 5σ detection at 250μm, a reliable optical counterpart to the submillimetre source (Smith et al. 2011) and a spectroscopic redshift from the GAMA survey (Driver et al. 2011). Additionally, we construct a control sample of 1052 optically selected galaxies undetected at 250μm and matched in stellar mass to the H-ATLAS parent sample to eliminate selection effects. ETGs were selected from both samples via visual classifications using SDSS images. Further details can be found in Rowlands et al. (2012). Physical parameters are derived for each galaxy using the multiwavelength spectral energy distribution (SED) fitting code of da Cunha, Charlot and Elbaz (2008), Smith et al. 2012, using an energy balance argument. We investigate the differences between the dusty ETGs and the general ETG population, and find that the H-ATLAS ETGs are more than an order of magnitude dustier than the control ETGs. The mean dust mass of the 42 H-ATLAS ETGs is 5.5 × 107M⊙ (comparable to the dust mass of spirals in our sample), whereas the dust mass of the 233 control ETGs inferred from stacking at optical positions on the 250μm map is (0.8 - 4.0) × 106M⊙ for 25-15 K dust. The average star-formation rate of the H-ATLAS ETGs is 1.0 dex higher than that of control ETGs, and the mean r-band light-weighted age of the H-ATLAS ETGs is 1.8 Gyr younger than the control ETGs. The rest-frame NUV - r colours of the H-ATLAS ETGs are 1.0 magnitudes bluer than the control ETGs, and some ETGs may be transitioning from the blue cloud to the red sequence. Some H-ATLAS ETGs

  16. On the Star Formation Rate, Initial Mass Function, and Hubble Type of Disk Galaxies and the Age of the Universe

    NASA Astrophysics Data System (ADS)

    Sommer-Larsen, Jesper

    1996-01-01

    Evolutionary models for the disks of large disk galaxies, including effects of star formation, non-instantaneous gas recycling from stars, and infall of low-metallicity gas from the halo, have been calculated and compared with data for nearby, generally large disk galaxies on present disk star-formation rates (based on integrated Hα luminosities) as a function of disk gas fractions. The data were extracted from the work by Kennicutt, Tamblyn, & Congdon. The result of the comparison suggests that for disk galaxies the Hubble sequence is a disk age sequence, with early-type disks being the oldest and late types the youngest. Under the assumption of a minimum age of the Galactic disk of 10 Gyr, the mean age of Sa/Sab galaxies, and hence the age of the universe, is found to be at least 17±2 Gyr. It is furthermore found that the disk star-formation timescale is approximately independent of disk-galaxy type. Finally, it is found that the global initial mass function (IMF) in galactic disks is 2-3 times more weighted toward high-mass stars than the Scalo "best-fitting" model for the solar-neighborhood IMF. The more top-heavy model of Kennicutt provides a good fit to observation.

  17. X-ray diagnostics of massive star winds

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Ignace, R.; Huenemoerder, D. P.

    2017-11-01

    Observations with powerful X-ray telescopes, such as XMM-Newton and Chandra, significantly advance our understanding of massive stars. Nearly all early-type stars are X-ray sources. Studies of their X-ray emission provide important diagnostics of stellar winds. High-resolution X-ray spectra of O-type stars are well explained when stellar wind clumping is taking into account, providing further support to a modern picture of stellar winds as non-stationary, inhomogeneous outflows. X-ray variability is detected from such winds, on time scales likely associated with stellar rotation. High-resolution X-ray spectroscopy indicates that the winds of late O-type stars are predominantly in a hot phase. Consequently, X-rays provide the best observational window to study these winds. X-ray spectroscopy of evolved, Wolf-Rayet type, stars allows to probe their powerful metal enhanced winds, while the mechanisms responsible for the X-ray emission of these stars are not yet understood.

  18. Statistical studies of superflares on G-, K-, M- type stars from Kepler data

    NASA Astrophysics Data System (ADS)

    Notsu, Yuta; Maehara, Hiroyuki; Honda, Satoshi; Notsu, Shota; Namekata, Kosuke; Ikuta, Kai; Nogami, Daisaku; Shibata, Kazunari

    2017-05-01

    Flares are thought to be sudden releases of magnetic energy stored around starspots. Recent space high-precision photometry shows “superflares”, 10-104 times more energetic than the largest solar flares, occur on many G, K, M-type stars (e.g., Maehara+2012 Nature). Harmful UV/X-ray radiation and high-energy particles such as protons are caused by such superflares. This may suggest that exoplanet host stars have severe effects on the physical and chemical evolution of exoplanetary atmospheres (cf. Segura+2010 Astrobiology, Takahashi+2016 ApJL).We here present statistical properties of superflares on G, K, M-type stars on the basis of our analyses of Kepler photometric data (Maehara+2012 Nature, Shibayama+2013 ApJS, Notsu+2013 ApJ, Canderaresi+2014 ApJ, Maehara+2015 EPS, Maehara+2017 PASJ). We found more than 5000 superflares on 800 G, K, M-type main-sequence stars, and the occurrence frequency (dN/dE) of superflares as a function of flare energy (E) shows the power-law distribution with the index of -1.8 -1.9. This power-law distribution is consistent with that of solar flares.Flare frequency increases as stellar temperature decreases. As for M-type stars, energy of the largest flares is smaller compared with G,K-type stars, but more frequent “hazardous” flares for the habitable planets since the habitable zone around M-type stars is much smaller compared with G, K-type stars.Rotation period and starspot coverage can be estimated from the quasi-periodic brightness variation of the superflare stars. The intensity of Ca II 8542 line of superflare stars, which is measured from spectroscopic observations with Subaru Telescope, has a well correlation with the brightness variation amplitude (Notsu+2015a&b PASJ).Flare frequency has a correlation with rotation period, and this suggests young rapidly-rotating stars (like “young Sun”) have more severe impacts of flares on the planetary atmosphere (cf. Airapetian+2016 ApJL). Flare energy and frequency also depends

  19. Colliding winds from early-type stars in binary systems

    NASA Technical Reports Server (NTRS)

    Stevens, Ian R.; Blondin, John M.; Pollock, A. M. T.

    1992-01-01

    The dynamics of the wind and shock structure formed by the wind collision in early-type binary systems is examined by means of a 2D hydrodynamics code, which self-consistently accounts for radiative cooling, and represents a significant improvement over previous attempts to model these systems. The X-ray luminosity and spectra of the shock-heated region, accounting for wind attenuation and the influence of different abundances on the resultant level and spectra of X-ray emission are calculated. A variety of dynamical instabilities that are found to dominate the intershock region is examined. These instabilities are found to be particularly important when postshock material is able to cool. These instabilities disrupt the postshock flow and add a time variability of order 10 percent to the X-ray luminosity. The X-ray spectrum of these systems is found to vary with the nuclear abundances of winds. These theoretical models are used to study several massive binary systems, in particular V444 Cyg and HD 193793.

  20. A study of rotational velocity distribution of Be stars

    NASA Astrophysics Data System (ADS)

    Sitko, C.; Janot-Pacheco, E.; Emilio, M.

    2014-10-01

    Classical Be stars are rapid rotators of spectral type late O to early A and luminosity class V-III, which exhibit Balmer emission lines and often a near infrared excess originating in an equatorially concentrated circumstellar envelope, both produced by sporadic mass ejection episodes. The causes of the abnormal mass loss (the so-called Be phenomenon) are as yet unknown. In spite of their high vsin i, rapid rotation alone cannot explain the ejection episodes as most Be stars do not rotate at their critical rotation rates. In this work we present the distribution of vsin i of 261 Be's stars from BeSS (Be Star Spectra) database. We used two techniques, the Fourier method and the FWHM (Full Width at Half Maximum) method. For the analysis we made use of three absorption lines of Helium (4026r A, 4388 Å and 4471 Å). Stars with projected rotational velocities up to 300 km s^{-1} agree with the ones already published in the literature. 84 of our stars do not have the values of rotational velocity published. The majority of our sample are B1/B2 spectral type, whose have the greatest velocities.

  1. Detection of magnetic field in the B2 star ρ Ophiuchi A with ESO FORS2

    NASA Astrophysics Data System (ADS)

    Pillitteri, I.; Fossati, L.; Castro Rodriguez, N.; Oskinova, L.; Wolk, S. J.

    2018-02-01

    Circumstantial evidence suggests that magnetism and enhanced X-ray emission are likely correlated in early B-type stars: similar fractions of them ( 10%) are strong and hard X-ray sources and possess strong magnetic fields. It is also known that some B-type stars have spots on their surface. Yet up to now no X-ray activity associated with spots on early-type stars was detected. In this Letter we report the detection of a magnetic field on the B2V star ρ Oph A. Previously, we assessed that the X-ray activity of this star is associated with a surface spot, herewith we establish its magnetic origin. We analyze spectra of ρ Oph A obtained with the FORS2 spectrograph at ESO Very Large Telescope (VLT) at two epochs, and detect a longitudinal component of the magnetic field of the order of 500 G in one of the datasets. The detection of the magnetic field only at one epoch can be explained by stellar rotation which is also invoked to explain observed periodic X-ray activity. From archival HARPS ESO VLT high resolution spectra we derived the fundamental stellar parameters of ρ Oph A and further constrained its age. We conclude that ρ Oph A provides strong evidence for the presence of active X-ray emitting regions on young magnetized early type stars. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 099.D-0067(A) and 078.C-0403(A).

  2. Dating the Stars Next Door: Ages and Coronal X-Ray Activities of Local K-Type Stars

    NASA Astrophysics Data System (ADS)

    Katynski, Marcus; Guinan, Edward F.; Engle, Scott G.

    2016-01-01

    Age is one of the most difficult (but important) basic stellar physical property to determine. One possible means to estimate stellar age is from rotational period; it is known that as cool stars age, they lose angular momentum from magnetic braking and slow-down. Thus, good Rotation-Age relationships exist, which are calibrated with stars possessing reliable ages from: evolutionary tracks and/or memberships in clusters/moving groups or binary star systems. Further, ages of older stars can be estimated from (low) metal abundances and kinematics (high space motions). More recently, age determinations from asteroseismology are also becoming more reliable. Except for the many G, K, M stars in the Kepler/K2 fields, rotational periods are difficult to measure photometrically for older, less active stars since star spots and active regions are smaller & less prominent. Thus measuring the coronal X-ray activity of a star is an appealing alternative. Coronal X-ray emission is generated by the stellar dynamo, and so is directly related to the stars' rotation (and age). Measurement of X-ray fluxes (or upper limits) have been made for most of the nearby stars (within ~20 pc) with data available in the HEASARC archives. During the 1990's the ROSAT X-Ray Satellite carried out an all-sky survey of thousands of X-ray sources, including hundreds of nearby stars, producing a large archival database. Using these and other available X-ray data from XMM-Newton & Chandra, we explore the relation between coronal X-ray activity and stellar age of all stars within 10 pc (32.6 LY), with special emphasis on dK and early dM stars that make up ~85% of the sample. Here we report the progress made in determination the ages these nearby stars. We focused on nearby dK-stars, due to their long lifetimes (>20 Gyr) and habitable zones that lie ~0.5 -1.5 AU from their host stars. They appear to be ideal candidates for hosting potentially habitable planets, making them interesting targets. We present

  3. Searching for δ Scuti-type pulsation and characterising northern pre-main-sequence field stars

    NASA Astrophysics Data System (ADS)

    Díaz-Fraile, D.; Rodríguez, E.; Amado, P. J.

    2014-08-01

    Context. Pre-main-sequence (PMS) stars are objects evolving from the birthline to the zero-age main sequence (ZAMS). Given a mass range near the ZAMS, the temperatures and luminosities of PMS and main-sequence stars are very similar. Moreover, their evolutionary tracks intersect one another causing some ambiguity in the determination of their evolutionary status. In this context, the detection and study of pulsations in PMS stars is crucial for differentiating between both types of stars by obtaining information of their interiors via asteroseismic techniques. Aims: A photometric variability study of a sample of northern field stars, which previously classified as either PMS or Herbig Ae/Be objects, has been undertaken with the purpose of detecting δ Scuti-type pulsations. Determination of physical parameters for these stars has also been carried out to locate them on the Hertzsprung-Russell diagram and check the instability strip for this type of pulsators. Methods: Multichannel photomultiplier and CCD time series photometry in the uvby Strömgren and BVI Johnson bands were obtained during four consecutive years from 2007 to 2010. The light curves have been analysed, and a variability criterion has been established. Among the objects classified as variable stars, we have selected those which present periodicities above 4 d-1, which was established as the lowest limit for δ Scuti-type pulsations in this investigation. Finally, these variable stars have been placed in a colour-magnitude diagram using the physical parameters derived with the collected uvbyβ Strömgren-Crawford photometry. Results: Five PMS δ Scuti- and three probable β Cephei-type stars have been detected. Two additional PMS δ Scuti stars are also confirmed in this work. Moreover, three new δ Scuti- and two γ Doradus-type stars have been detected among the main-sequence objects used as comparison or check stars.

  4. The VLT-FLAMES Tarantula Survey. XII. Rotational velocities of the single O-type stars

    NASA Astrophysics Data System (ADS)

    Ramírez-Agudelo, O. H.; Simón-Díaz, S.; Sana, H.; de Koter, A.; Sabín-Sanjulían, C.; de Mink, S. E.; Dufton, P. L.; Gräfener, G.; Evans, C. J.; Herrero, A.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Puls, J.; Taylor, W. D.; Vink, J. S.

    2013-12-01

    Context. The 30 Doradus (30 Dor) region of the Large Magellanic Cloud, also known as the Tarantula nebula, is the nearest starburst region. It contains the richest population of massive stars in the Local Group, and it is thus the best possible laboratory to investigate open questions on the formation and evolution of massive stars. Aims: Using ground-based multi-object optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to establish the (projected) rotational velocity distribution for a sample of 216 presumably single O-type stars in 30 Dor. The sample is large enough to obtain statistically significant information and to search for variations among subpopulations - in terms of spectral type, luminosity class, and spatial location - in the field of view. Methods: We measured projected rotational velocities, νesini, by means of a Fourier transform method and a profile fitting method applied to a set of isolated spectral lines. We also used an iterative deconvolution procedure to infer the probability density, P(νe), of the equatorial rotational velocity, νe. Results: The distribution of νesini shows a two-component structure: a peak around 80 kms-1 and a high-velocity tail extending up to ~600 kms-1. This structure is also present in the inferred distribution P(νe) with around 80% of the sample having 0 < νe ≤ 300 kms-1 and the other 20% distributed in the high-velocity region. The presence of the low-velocity peak is consistent with what has been found in other studies for late O- and early B-type stars. Conclusions: Most of the stars in our sample rotate with a rate less than 20% of their break-up velocity. For the bulk of the sample, mass loss in a stellar wind and/or envelope expansion is not efficient enough to significantly spin down these stars within the first few Myr of evolution. If massive-star formation results in stars rotating at birth with a large portion of their break-up velocities, an

  5. HAZMAT. III. The UV Evolution of Mid- to Late-M Stars with GALEX

    NASA Astrophysics Data System (ADS)

    Schneider, Adam C.; Shkolnik, Evgenya L.

    2018-03-01

    Low-mass stars are currently the most promising targets for detecting and characterizing habitable planets in the solar neighborhood. However, the ultraviolet (UV) radiation emitted by such stars can erode and modify planetary atmospheres over time, drastically affecting their habitability. Thus, knowledge of the UV evolution of low-mass stars is critical for interpreting the evolutionary history of any orbiting planets. Shkolnik & Barman used photometry from the Galaxy Evolution Explorer (GALEX) to show how UV emission evolves for early-type M stars (>0.35 M ⊙). In this paper, we extend their work to include both a larger sample of low-mass stars with known ages as well as M stars with lower masses. We find clear evidence that mid- and late-type M stars (0.08–0.35 M ⊙) do not follow the same UV evolutionary trend as early-Ms. Lower-mass M stars retain high levels of UV activity up to field ages, with only a factor of 4 decrease on average in GALEX NUV and FUV flux density between young (<50 Myr) and old (∼5 Gyr) stars, compared to a factor of 11 and 31 for early-Ms in NUV and FUV, respectively. We also find that the FUV/NUV flux density ratio, which can affect the photochemistry of important planetary biosignatures, is mass- and age-dependent for early-Ms, but remains relatively constant for the mid- and late-type Ms in our sample.

  6. The nature of the late B-type stars HD 67044 and HD 42035

    NASA Astrophysics Data System (ADS)

    Monier, R.; Gebran, M.; Royer, F.

    2016-04-01

    While monitoring a sample of apparently slowly rotating superficially normal bright late B and early A stars in the northern hemisphere, we have discovered that HD 67044 and HD 42035, hitherto classified as normal late B-type stars, are actually respectively a new chemically peculiar star and a new spectroscopic binary containing a very slow rotator HD 42035 S with ultra-sharp lines (v_{{e}}sin i= 3.7 km s^{-1}) and a fast rotator HD 42035 B with broad lines. The lines of Ti ii, Cr ii, Mn ii, Sr ii, Y ii, Zr ii and Ba ii are conspicuous features in the high resolution SOPHIE spectrum (R=75000) of HD 67044. The Hg ii line at 3983.93 Å is also present as a weak feature. The composite spectrum of HD 42035 is characterised by very sharp lines formed in HD 42035 S superimposed onto the shallow and broad lines of HD 42035 B. These very sharp lines are mostly due to light elements from C to Ni, the only heavy species definitely present are strontium and barium. Selected lines of 21 chemical elements from He up to Hg have been synthesized using model atmospheres computed with ATLAS9 and the spectrum synthesis code SYNSPEC48 including hyperfine structure of various isotopes when relevant. These synthetic spectra have been adjusted to high resolution high signal-to-noise spectra of HD 67044 and HD 42035 S in order to derive abundances of these key elements. HD 67044 is found to have distinct enhancements of Ti, Cr, Mn, Sr, Y, Zr, Ba and Hg and underabundances in He, C, O, Ca and Sc which shows that this star is not a superficially normal late B-type star, but actually is a new CP star most likely of the HgMn type. HD 42035 S has provisional underabundances of the light elements from C to Ti and overabundances of heavier elements (except for Fe and Sr which are also underabundant) up to barium. These values are lower limits to the actual abundances as we cannot currently place properly the continuum of HD 42035 S. More accurate fundamental parameters and abundances for HD

  7. An asymptotic-giant-branch star in the progenitor system of a type Ia supernova.

    PubMed

    Hamuy, Mario; Phillips, M M; Suntzeff, Nicholas B; Maza, José; González, L E; Roth, Miguel; Krisciunas, Kevin; Morrell, Nidia; Green, E M; Persson, S E; McCarthy, P J

    2003-08-07

    Stars that explode as supernovae come in two main classes. A type Ia supernova is recognized by the absence of hydrogen and the presence of elements such as silicon and sulphur in its spectrum; this class of supernova is thought to produce the majority of iron-peak elements in the Universe. They are also used as precise 'standard candles' to measure the distances to galaxies. While there is general agreement that a type Ia supernova is produced by an exploding white dwarf star, no progenitor system has ever been directly observed. Significant effort has gone into searching for circumstellar material to help discriminate between the possible kinds of progenitor systems, but no such material has hitherto been found associated with a type Ia supernova. Here we report the presence of strong hydrogen emission associated with the type Ia supernova SN2002ic, indicating the presence of large amounts of circumstellar material. We infer from this that the progenitor system contained a massive asymptotic-giant-branch star that lost several solar masses of hydrogen-rich gas before the supernova explosion.

  8. A search for X-ray binary stars in their quiescent phase

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1980-01-01

    Fourteen early-type stars representative of systems which may be harboring a neutron star companion and are thus potential progenitors of massive X-ray binaries have been examined for X-ray emission with the HEAO A-1 experiment. Limits on the 0.5-20 keV luminosity for these objects lie in the range 10 to the 31-33 erg/sec. In several cases, the hypothesis of a collapsed companion, in combination with the X-ray limit, places a serious constraint on the mass-loss rate of the primary star. In one instance, an X-ray source was discovered coincident with a candidate star, although the luminosity of 5 x 10 to the 31 is consistent with that expected from a single star of the same spectral type. The prospects for directly observing the quiescent phase of a binary X-ray source with the Einstein Observatory are discussed in the context of these results.

  9. Five-Star Schools: Defining Quality in Early Childhood Programs

    ERIC Educational Resources Information Center

    Hertzog, Nancy B.

    2012-01-01

    Hakeem, Emily, Jose, and Latisha are all entering preschool in the fall. Their mothers are looking for the highest quality early childhood program they can find. Is there a guide for them to find a five-star program? Are all certified or accredited programs of equal quality? How do these parents and guardians know what defines quality in early…

  10. About Exobiology: The Case for Dwarf K Stars

    NASA Astrophysics Data System (ADS)

    Cuntz, M.; Guinan, E. F.

    2016-08-01

    One of the most fundamental topics of exobiology concerns the identification of stars with environments consistent with life. Although it is believed that most types of main-sequence stars might be able to support life, particularly extremophiles, special requirements appear to be necessary for the development and sustainability of advanced life forms. From our study, orange main-sequence stars, ranging from spectral type late-G to mid-K (with a maximum at early K), are most promising. Our analysis considers a variety of aspects, including (1) the frequency of the various types of stars, (2) the speed of stellar evolution in their lifetimes, (3) the size of the stellar climatological habitable zones (CLI-HZs), (4) the strengths and persistence of their magnetic-dynamo-generated X-ray-UV emissions, and (5) the frequency and severity of flares, including superflares; both (4) and (5) greatly reduce the suitability of red dwarfs to host life-bearing planets. The various phenomena show pronounced dependencies on the stellar key parameters such as effective temperature and mass, permitting the assessment of the astrobiological significance of various types of stars. Thus, we developed a “Habitable-Planetary-Real-Estate Parameter” (HabPREP) that provides a measure for stars that are most suitable for planets with life. Early K stars are found to have the highest HabPREP values, indicating that they may be “Goldilocks” stars for life-hosting planets. Red dwarfs are numerous, with long lifetimes, but their narrow CLI-HZs and hazards from magnetic activity make them less suitable for hosting exolife. Moreover, we provide X-ray-far-UV irradiances for G0 V-M5 V stars over a wide range of ages.

  11. A multiwavelength study of young stars in the Elephant Trunk

    NASA Astrophysics Data System (ADS)

    López Martí, B.; Bayo, A.; Morales Calderón, M.; Barrado, D.

    2013-05-01

    We present the results of a multiwavelength study of young stars in IC 1396A, ``the Elephant Trunk Nebula''. Our targets are selected combining optical, near-infrared and mid-infrared photometry. Near-infrared and optical spectroscopy are used to confirm their youth and to derive spectral types for these objects, showing that they are early to mid-M stars, and that our sample includes some of the lowest-mass objects reported so far in the region. The photometric and spectroscopic information is used to construct the spectral energy distributions and to study the properties of the stars (mass, age, accretion, disks, spatial location). The implications for the triggered star formation picture are discussed.

  12. On the origin of high-velocity runaway stars

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2009-06-01

    We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100Msolar star or a more massive one, formed through runaway mergers of ordinary stars in the core of a young massive star cluster). In this process, one of the binary components becomes gravitationally bound to the very massive star, while the second one is ejected, sometimes with a high speed. We performed three-body scattering experiments and found that early B-type stars (the progenitors of the majority of neutron stars) can be ejected with velocities of >~200-400kms-1 (typical of pulsars), while 3-4Msolar stars can attain velocities of >~300-400kms-1 (typical of the bound population of halo late B-type stars). We also found that the ejected stars can occasionally attain velocities exceeding the Milky Ways's escape velocity.

  13. Stellar parameters of Be stars observed with X-shooter

    NASA Astrophysics Data System (ADS)

    Shokry, A.; Rivinius, Th.; Mehner, A.; Martayan, C.; Hummel, W.; Townsend, R. H. D.; Mérand, A.; Mota, B.; Faes, D. M.; Hamdy, M. A.; Beheary, M. M.; Gadallah, K. A. K.; Abo-Elazm, M. S.

    2018-01-01

    Aims: The X-shooter archive of several thousand telluric standard star spectra was skimmed for Be and Be shell stars to derive the stellar fundamental parameters and statistical properties, in particular for the less investigated late-type Be stars and the extension of the Be phenomenon into early A stars. Methods: An adapted version of the BCD method is used, using the Balmer discontinuity parameters to determine effective temperature and surface gravity. This method is optimally suited for late B stars. The projected rotational velocity was obtained by profile fitting to the Mg ii lines of the targets, and the spectra were inspected visually for the presence of peculiar features such as the infrared Ca ii triplet or the presence of a double Balmer discontinuity. The Balmer line equivalent widths were measured, but they are only useful for determining the pure emission contribution in a subsample of Be stars owing to uncertainties in determining the photospheric contribution. Results: A total of 78, mostly late-type, Be stars, were identified in the X-shooter telluric standard star archive, out of which 48 had not been reported before. We confirm the general trend that late-type Be stars have more tenuous disks and are less variable than early-type Be stars. The relatively large number (48) of relatively bright (V> 8.5) additional Be stars casts some doubt on the statistics of late-type Be stars; they are more common than currently thought. The Be/B star fraction may not strongly depend on spectral subtype. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 60.A-9022, 60.A-9024, 077.D-0085, 085.A-0962, 185.D-0056, 091.B-0900, and 093.D-0415.Table 6 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A108

  14. The Type IIn Supernova SN 2010bt: The Explosion of a Star in Outburst

    NASA Astrophysics Data System (ADS)

    Elias-Rosa, Nancy; Van Dyk, Schuyler D.; Benetti, Stefano; Cappellaro, Enrico; Smith, Nathan; Kotak, Rubina; Turatto, Massimo; Filippenko, Alexei V.; Pignata, Giuliano; Fox, Ori D.; Galbany, Lluis; González-Gaitán, Santiago; Miluzio, Matteo; Monard, L. A. G.; Ergon, Mattias

    2018-06-01

    It is well known that massive stars (M > 8 M ⊙) evolve up to the collapse of the stellar core, resulting in most cases in a supernova (SN) explosion. Their heterogeneity is related mainly to different configurations of the progenitor star at the moment of the explosion and to their immediate environments. We present photometry and spectroscopy of SN 2010bt, which was classified as a Type IIn SN from a spectrum obtained soon after discovery and was observed extensively for about 2 months. After the seasonal interruption owing to its proximity to the Sun, the SN was below the detection threshold, indicative of a rapid luminosity decline. We can identify the likely progenitor with a very luminous star (log L/L ⊙ ≈ 7) through comparison of Hubble Space Telescope images of the host galaxy prior to explosion with those of the SN obtained after maximum light. Such a luminosity is not expected for a quiescent star, but rather for a massive star in an active phase. This progenitor candidate was later confirmed via images taken in 2015 (∼5 yr post-discovery), in which no bright point source was detected at the SN position. Given these results and the SN behavior, we conclude that SN 2010bt was likely a Type IIn SN and that its progenitor was a massive star that experienced an outburst shortly before the final explosion, leading to a dense H-rich circumstellar environment around the SN progenitor.

  15. Early Results from Star Date: M83 - A Citizen Science Project to Age Date Star Clusters in the Southern Pinwheel Galaxy

    NASA Astrophysics Data System (ADS)

    Heartley, Jeremy; Whitmore, B. C.; Blair, W. P.; Christian, C. A.; Donaldson, T.; Hammer, D.; Smith, S.; Viana, A.

    2014-01-01

    The M83 Citizen Science Project is a collaborative effort currently in development between the Space Telescope Science Institute (STScI) and Zooniverse under the guidance of Dr. Brad Whitmore as part of Cy 19 proposal 12513 (PI - Dr. William Blair). This unique citizen science project will allow users to analyze individual star clusters within The Southern Pinwheel Galaxy, M83. The project will show users color-composite images taken with Wide Field Camera 3 (WFC3) aboard the Hubble Space Telescope (HST) and ask them to estimate the age of the star cluster. Through a multistage process, the project will educate and familiarize the user with the appearance of each age category based on the presence and shape of H-alpha emission, degree of resolution of the individual stars, and color of the cluster. (Whitmore et al. 2011). Additionally, the project will involve the actual measurement of the star cluster and H-alpha cloud radii to be used for further assessment and reinforcement of age. The data from this project and the statistics it yields will quantify these ages which can then be used to inform the debate between universal and environmental models of star cluster formation and destruction in galaxies. The tentative launch date is December 2013, therefore early results should be available at the time of the conference.

  16. Evaluation of Delaware Stars for Early Success: Year 1 Report. Research Report

    ERIC Educational Resources Information Center

    Schwartz, Heather L.; Karoly, Lynn A.; Le, Vi-Nhuan; Tamargo, Jennifer; Setodji, Claude Messan

    2014-01-01

    Delaware was in the first group of states to receive a federal grant in 2012 to improve early care and education services and increase the number of infants, toddlers, and preschool-age children in high-quality programs. One component of the state's grant is a rigorous validation process for Delaware Stars for Early Success, a voluntary quality…

  17. Sizing up the stars

    NASA Astrophysics Data System (ADS)

    Boyajian, Tabetha S.

    For the main part of this dissertation, I have executed a survey of nearby, main sequence A, F, and G-type stars with the CHARA Array, successfully measuring the angular diameters of forty-four stars to better than 4% accuracy. The results of these observations also yield empirical determinations of stellar linear radii and effective temperatures for the stars observed. In addition, these CHARA-determined temperatures, radii, and luminosities are fit to Yonsei-Yale isochrones to constrain the masses and ages of the stars. These quantities are compared to the results found in Allende Prieto & Lambert (1999), Holmberg et al. (2007), and Takeda (2007), who indirectly determine these same properties by fitting models to observed photometry. I find that for most cases, the models underestimate the radius of the star by ~ 12%, while in turn they overestimate the effective temperature by ~ 1.5-4%, when compared to my directly measured values, with no apparent correlation to the star's metallicity or color index. These overestimated temperatures and underestimated radii in these works appear to cause an additional offset in the star's surface gravity measurements, which consequently yield higher masses and younger ages, in particular for stars with masses greater than ~ 1.3 [Special characters omitted.] . Alternatively, these quantities I measure are also compared to direct measurements from a large sample of eclipsing binary stars in Andersen (1991), and excellent agreement is seen within both data sets. Finally, a multi-parameter solution is found to fit color-temperature-metallicity values of the stars in this sample to provide a new calibration of the effective temperature scale for these types of stars. Published work in the field of stellar interferometry and optical spectroscopy of early-type stars are presented in Appendix D and E, respectively. INDEX WORDS: Interferometry, Infrared, Stellar Astronomy, Fundamental Properties, Effective Temperatures, Stellar Radii

  18. A spectrophotometric method for detecting substellar companions to late-type M stars

    NASA Astrophysics Data System (ADS)

    Oetiker, Brian Glen

    The most common stars in the Galaxy are the main-sequence M stars, yet current techniques are not optimized for detecting companions around the lowest mass stars; those with spectral designations ranging from M6 to M10. Described in this study is a search for companions around such stars using two methods: a unique implementation of the transit method, and a newly designed differential spectrophotometric method. The TEP project focusses on the detection of transits of terrestrial sized and larger companions in the eclipsing binary system CM Draconis. The newly designed spectrophotometric technique combines the strengths of the spectroscopic and photometric methods, while minimizing their inherent weaknesses. This unique method relies on the placement of three narrow band optical filters on and around the Titanium Oxide (TiO) bandhead near 8420 Å, a feature commonly seen in the atmospheres of late M stars. One filter is placed on the slope of the bandhead feature, while the remaining two are located on the adjacent continuum portions of the star's spectrum. The companion-induced motion of the star results in a doppler shifting of the bandhead feature, which in turn causes a change in flux passing through the filter located on the slope of the TiO bandhead. The spectrophotometric method is optimized for detecting compact systems containing brown dwarfs and giant planets. Because of its low dispersion-high photon efficiency design, this method is well suited for surveying large numbers of faint M stars. A small scale survey has been implemented, producing a candidate brown dwarf class companion of the star WX UMa. Applying the spectrophotometric method to a larger scale survey for brown dwarf and giant planet companions, coupled with a photometric transit study addresses two key astronomical issues. By detecting or placing limits on compact late type M star systems, a discrimination among competing theories of planetary formation may be gained. Furthermore, searching

  19. Exploring simulated early star formation in the context of the ultrafaint dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Corlies, Lauren; Johnston, Kathryn V.; Wise, John H.

    2018-04-01

    Ultrafaint dwarf galaxies (UFDs) are typically assumed to have simple, stellar populations with star formation ending at reionization. Yet as the observations of these galaxies continue to improve, their star formation histories (SFHs) are revealed to be more complicated than previously thought. In this paper, we study how star formation, chemical enrichment, and mixing proceed in small, dark matter haloes at early times using a high-resolution, cosmological, hydrodynamical simulation. The goals are to inform the future use of analytic models and to explore observable properties of the simulated haloes in the context of UFD data. Specifically, we look at analytic approaches that might inform metal enrichment within and beyond small galaxies in the early Universe. We find that simple assumptions for modelling the extent of supernova-driven winds agree with the simulation on average, whereas inhomogeneous mixing and gas flows have a large effect on the spread in simulated stellar metallicities. In the context of the UFDs, this work demonstrates that simulations can form haloes with a complex SFH and a large spread in the metallicity distribution function within a few hundred Myr in the early Universe. In particular, bursty and continuous star formation are seen in the simulation and both scenarios have been argued from the data. Spreads in the simulated metallicities, however, remain too narrow and too metal-rich when compared to the UFDs. Future work is needed to help reduce these discrepancies and advance our interpretation of the data.

  20. Theory of winds in late-type evolved and pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Macgregor, K. B.

    1983-01-01

    Recent observational results confirm that many of the physical processes which are known to occur in the Sun also occur among late-type stars in general. One such process is the continuous loss of mass from a star in the form of a wind. There now exists an abundance of either direct or circumstantial evidence which suggests that most (if not all) stars in the cool portion of the HR diagram possess winds. An attempt is made to assess the current state of theoretical understanding of mass loss from two distinctly different classes of late-type stars: the post-main-sequence giant/supergiant stars and the pre-main-sequence T Tauri stars. Toward this end, the observationally inferred properties of the wind associated with each of the two stellar classes under consideration are summarized and compared against the predictions of existing theoretical models. Although considerable progress has been made in attempting to identify the mechanisms responsible for mass loss from cool stars, many fundamental problems remain to be solved.

  1. The abundance of HCN in circumstellar envelopes of AGB stars of different chemical type

    NASA Astrophysics Data System (ADS)

    Schöier, F. L.; Ramstedt, S.; Olofsson, H.; Lindqvist, M.; Bieging, J. H.; Marvel, K. B.

    2013-02-01

    Aims: A multi-transition survey of HCN (sub-) millimeter line emission from a large sample of asymptotic giant branch (AGB) stars of different chemical type is presented. The data are analysed and circumstellar HCN abundances are estimated. The sample stars span a large range of properties such as mass-loss rate and photospheric C/O-ratio. The analysis of the new data allows for more accurate estimates of the circumstellar HCN abundances and puts new constraints on chemical models. Methods: In order to constrain the circumstellar HCN abundance distribution a detailed non-local thermodynamic equilibrium (LTE) excitation analysis, based on the Monte Carlo method, is performed. Effects of line overlaps and radiative excitation from dust grains are included. Results: The median values for the derived abundances of HCN (with respect to H2) are 3 × 10-5, 7 × 10-7 and 10-7 for carbon stars (25 stars), S-type AGB stars (19 stars) and M-type AGB stars (25 stars), respectively. The estimated sizes of the HCN envelopes are similar to those obtained in the case of SiO for the same sample of sources and agree well with previous results from interferometric observations, when these are available. Conclusions: We find that there is a clear dependence of the derived circumstellar HCN abundance on the C/O-ratio of the star, in that carbon stars have about two orders of magnitude higher abundances than M-type AGB stars, on average. The derived HCN abundances of the S-type AGB stars have a larger spread and typically fall in between those of the two other types, however, slightly closer to the values for the M-type AGB stars. For the M-type stars, the estimated abundances are much higher than what would be expected if HCN is formed in thermal equilibrium. However, the results are also in contrast to predictions from recent non-LTE chemical models, where very little difference is expected in the HCN abundances between the various types of AGB stars. This publication is based on data

  2. New visual companions of solar-type stars within 25 pc

    NASA Astrophysics Data System (ADS)

    Chini, R.; Fuhrmann, K.; Barr, A.; Pozo, F.; Westhues, C.; Hodapp, K.

    2014-01-01

    We report the discovery of faint common-proper-motion companions to the nearby southern solar-type stars HD 43162, HD 67199, HD 114837, HD 114853, HD 129502, HD 165185, HD 197214 and HD 212330 from near-infrared imaging and astrometry. We also confirm the previously identified tertiary components around HD 165401 and HD 188088. Since the majority of these stars were already known as binaries, they ascend now to higher level systems. A particularly interesting case is the G6.5 V BY Dra-type variable HD 43162, which harbours two common-proper-motion companions at distances of 410 and 2740 au. Our limited study shows that the inventory of common-proper-motion companions around nearby bright stars is still not completely known.

  3. The High Angular Resolution Multiplicity of Massive Stars

    DTIC Science & Technology

    2009-02-01

    binaries: visual – stars: early-typestars: individual ( iota Ori, delta Ori, delta Sco) – techniques: interferometric Online-only material...STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY

  4. ABOUT EXOBIOLOGY: THE CASE FOR DWARF K STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuntz, M.; Guinan, E. F., E-mail: cuntz@uta.edu, E-mail: edward.guinan@villanova.edu

    2016-08-10

    One of the most fundamental topics of exobiology concerns the identification of stars with environments consistent with life. Although it is believed that most types of main-sequence stars might be able to support life, particularly extremophiles, special requirements appear to be necessary for the development and sustainability of advanced life forms. From our study, orange main-sequence stars, ranging from spectral type late-G to mid-K (with a maximum at early K), are most promising. Our analysis considers a variety of aspects, including (1) the frequency of the various types of stars, (2) the speed of stellar evolution in their lifetimes, (3)more » the size of the stellar climatological habitable zones (CLI-HZs), (4) the strengths and persistence of their magnetic-dynamo-generated X-ray–UV emissions, and (5) the frequency and severity of flares, including superflares; both (4) and (5) greatly reduce the suitability of red dwarfs to host life-bearing planets. The various phenomena show pronounced dependencies on the stellar key parameters such as effective temperature and mass, permitting the assessment of the astrobiological significance of various types of stars. Thus, we developed a “Habitable-Planetary-Real-Estate Parameter” (HabPREP) that provides a measure for stars that are most suitable for planets with life. Early K stars are found to have the highest HabPREP values, indicating that they may be “Goldilocks” stars for life-hosting planets. Red dwarfs are numerous, with long lifetimes, but their narrow CLI-HZs and hazards from magnetic activity make them less suitable for hosting exolife. Moreover, we provide X-ray–far-UV irradiances for G0 V–M5 V stars over a wide range of ages.« less

  5. iPTF15dtg: a double-peaked Type Ic supernova from a massive progenitor

    DOE PAGES

    Taddia, Francesco; Fremling, C.; Sollerman, J.; ...

    2016-08-04

    Type Ic supernovae (SNe Ic) arise from the core-collapse of H- (and He-) poor stars, which could either be single Wolf-Rayet (WR) stars or lower-mass stars stripped of their envelope by a companion. Their light curves are radioactively powered and usually show a fast rise to peak (~10-15 d), without any early (in the first few days) emission bumps (with the exception of broad-lined SNe Ic) as sometimes seen for other types of stripped-envelope SNe (e.g., Type IIb SN 1993J and Type Ib SN 2008D). Here, we have studied iPTF15dtg, a spectroscopically normal SN Ic with an early excess inmore » the optical light curves followed by a long (~30 d) rise to the main peak. It is the first spectroscopically-normal double-peaked SN Ic to be observed. Our aim is to determine the properties of this explosion and of its progenitor star. Methods. Optical photometry and spectroscopy of iPTF15dtg was obtained with multiple telescopes. The resulting light curves and spectral sequence are analyzed and modeled with hydrodynamical and analytical models, with particular focus on the early emission. iPTF15dtg is a slow rising SN Ic, similar to SN 2011bm. Hydrodynamical modeling of the bolometric properties reveals a large ejecta mass (~10 M ⊙) and strong 56Ni mixing. The luminous early emission can be reproduced if we account for the presence of an extended (≳500 R ⊙), low-mass (≳0.045 M ⊙) envelope around the progenitor star. Alternative scenarios for the early peak, such as the interaction with a companion, a shock-breakout (SBO) cooling tail from the progenitor surface, or a magnetar-driven SBO are not favored. In conclusion, the large ejecta mass and the presence of H- and He-free extended material around the star suggest that the progenitor of iPTF15dtg was a massive (≳35 M ⊙) WR star that experienced strong mass loss.« less

  6. Circumstellar Disks Around Rapidly Rotating Be-type Stars

    NASA Astrophysics Data System (ADS)

    Touhami, Yamina

    2012-01-01

    Be stars are rapidly rotating B-type stars that eject large amounts of gaseous material into a circumstellar equatorial disk. The existence of this disk has been confirmed through the presence of several observational signatures such as the strong hydrogen emission lines, the IR flux excess, and the linear polarization detected from these systems. Here we report simultaneous near-IR interferometric and spectroscopic observations of circumstellar disks around Be stars obtained with the CHARA Array long baseline interferometer and the Mimir spectrograph at Lowell observatory. The goal of this project was to measure precise angular sizes and to characterize the fundamental geometrical and physical properties of the circumstellar disks. We were able to determine spatial extensions, inclinations, and position angles, as well as the gas density profile of the circumstellar disks using an elliptical Gaussian model and a physical thick disk model, and we show that the K-band interferometric angular sizes of the circumstellar disks are correlated with the H-alpha angular sizes. By combining the projected rotational velocity of the Be star with the disk inclination derived from interferometry, we provide estimates of the equatorial rotational velocities of these rapidly rotating Be stars.

  7. Light Chemical Elements in Stars: Mysteries and Unsolved Problems

    NASA Astrophysics Data System (ADS)

    Lyubimkov, L. S.

    2018-06-01

    The first eight elements of the periodic table are discussed: H, He, Li, Be, B, C, N, and O. They are referred to as key elements, given their important role in stellar evolution. It is noteworthy that all of them were initially synthesized in the Big Bang. The primordial abundances of these elements calculated using the Standard Model of the Big Bang (SMBB) are presented in this review. The good agreement between the SMBB and observations of the primordial abundances of the isotopes of hydrogen and helium, D, 3He, and 4He, is noted, but there is a difference of 0.5 dex for lithium (the isotope 7Li) between the SMBB and observations of old stars in the galactic halo that has not yet been explained. The abundances of light elements in stellar atmospheres depends on the initial rotation velocity, so the typical rotation velocities of young Main Sequence (MS) stars are examined. Since the data on the abundances of light elements in stars are very extensive, the main emphasis in this review is on several unsolved problems. The helium abundance He/H in early B-type of the MS stars shows an increment with age; in particular, for the most massive B stars with masses M = 12-19M ⊙, He/H increases by more than a factor of two toward the end of the MS. Theoretical models of stars with rotation cannot explain such a large increase in He/H. For early B- and late O-type MS stars that are components of close binary systems, He/H undergoes a sharp jump in the middle of the MS stage that is a mystery for the theory. The anomalous abundance of helium (and lithium) in the atmospheres of chemically peculiar stars (types He-s, He-w, HgMn, Ap, and Am) is explained in terms of the diffusion of atoms in surface layers of the stars, but this hypothesis cannot yet explain all the features of the chemical composition of these stars. The abundances of lithium, beryllium, and boron in FGK-dwarfs manifest a trend with decreasing effective temperature T eff as well as a dip at T eff 6600 K in

  8. A spectroscopy study of nearby late-type stars, possible members of stellar kinematic groups

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Martínez-Arnáiz, R. M.; Eiroa, C.; Montes, D.; Montesinos, B.

    2010-10-01

    Context. Nearby late-type stars are excellent targets for seeking young objects in stellar associations and moving groups. The origin of these structures is still misunderstood, and lists of moving group members often change with time and also from author to author. Most members of these groups have been identified by means of kinematic criteria, leading to an important contamination of previous lists by old field stars. Aims: We attempt to identify unambiguous moving group members among a sample of nearby-late type stars by studying their kinematics, lithium abundance, chromospheric activity, and other age-related properties. Methods: High-resolution echelle spectra (R ~ 57 000) of a sample of nearby late-type stars are used to derive accurate radial velocities that are combined with the precise Hipparcos parallaxes and proper motions to compute galactic-spatial velocity components. Stars are classified as possible members of the classical moving groups according to their kinematics. The spectra are also used to study several age-related properties for young late-type stars, i.e., the equivalent width of the lithium Li i 6707.8 Å line or the R'HK index. Additional information like X-ray fluxes from the ROSAT All-Sky Survey or the presence of debris discs is also taken into account. The different age estimators are compared and the moving group membership of the kinematically selected candidates are discussed. Results: From a total list of 405 nearby stars, 102 have been classified as moving group candidates according to their kinematics. i.e., only ~25.2% of the sample. The number reduces when age estimates are considered, and only 26 moving group candidates (25.5% of the 102 candidates) have ages in agreement with the star having the same age as an MG member. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía

  9. An investigation of the photometric variability of confirmed and candidate Galactic Be stars using ASAS-3 data

    NASA Astrophysics Data System (ADS)

    Bernhard, Klaus; Otero, Sebastián; Hümmerich, Stefan; Kaltcheva, Nadejda; Paunzen, Ernst; Bohlsen, Terry

    2018-05-01

    We present an investigation of a large sample of confirmed (N=233) and candidate (N=54) Galactic classical Be stars (mean V magnitude range of 6.4 to 12.6 mag), with the main aim of characterizing their photometric variability. Our sample stars were preselected among early-type variables using light curve morphology criteria. Spectroscopic information was gleaned from the literature, and archival and newly-acquired spectra. Photometric variability was analyzed using archival ASAS-3 time series data. To enable a comparison of results, we have largely adopted the methodology of Labadie-Bartz et al. (2017), who carried out a similar investigation based on KELT data. Complex photometric variations were established in most stars: outbursts on different time-scales (in 73±5 % of stars), long-term variations (36±6 %), periodic variations on intermediate time-scales (1±1 %) and short-term periodic variations (6±3 %). 24±6 % of the outbursting stars exhibit (semi)periodic outbursts. We close the apparent void of rare outbursters reported by Labadie-Bartz et al. (2017), and show that Be stars with infrequent outbursts are not rare. While we do not find a significant difference in the percentage of stars showing outbursts among early-type, mid-type and late-type Be stars, we show that early-type Be stars exhibit much more frequent outbursts. We have measured rising and falling times for well-covered and well-defined outbursts. Nearly all outburst events are characterized by falling times that exceed the rising times. No differences were found between early-, mid- and late-type stars; a single non-linear function adequately describes the ratio of falling time to rising time across all spectral subtypes, with the ratio being larger for short events.

  10. A CCD Search for Variable Stars of Spectral Type B in the Northern Hemisphere Open Clusters. IX. NGC 457

    NASA Astrophysics Data System (ADS)

    Moździerski, D.; Pigulski, A.; Kopacki, G.; Kołaczkowski, Z.; Stęślicki, M.

    2014-06-01

    We present results of a BVIC variability survey in the young open cluster NGC 457 based on observations obtained during three separate runs spanning almost 20 years. In total, we found 79 variable stars, of which 66 are new. The BVIC photometry was transformed to the standard system and used to derive cluster parameters by means of isochrone fitting. The cluster is about 20 Myr old, the mean reddening amounts to about 0.48 mag in terms of the color excess E(B-V). Depending on the metallicity, the isochrone fitting yields a distance between 2.3 kpc and 2.9 kpc, which locates the cluster in the Perseus arm of the Galaxy. Using the complementary Hα photometry carried out in two seasons separated by over 10 years, we find that the cluster is very rich in Be stars. In total, 15 stars in the observed field of which 14 are cluster members showed Hα in emission either during our observations or in the past. Most of the Be stars vary in brightness on different time scales including short-period variability related most likely to g-mode pulsations. A single-epoch spectrum of NGC 457-6 shows that this Be star is presently in the shell phase. The inventory of variable stars in the observed field consists of a single β Cep-type star, NGC 457-8, 13 Be stars, 21 slowly pulsating B stars, seven δ Sct stars, one γ Dor star, 16 unclassified periodic stars, 8 eclipsing systems and a dozen of stars with irregular variability, of which six are also B-type stars. As many as 45 variable stars are of spectral type B which is the largest number in all open clusters presented in this series of papers. The most interesting is the discovery of a large group of slowly pulsating B stars which occupy the cluster main sequence in the range between V=11 mag and 14.5 mag, corresponding to spectral types B3 to B8. They all have very low amplitudes and about half show pulsations with frequencies higher than 3 d-1. We argue that these are most likely fast-rotating slowly pulsating B stars

  11. CARBON-TO-OXYGEN RATIOS IN M DWARFS AND SOLAR-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Tadashi; Sorahana, Satoko, E-mail: tadashi.nakajima@nao.ac.jp, E-mail: sorahana@astron.s.u-tokyo.ac.jp

    It has been suggested that high C/O ratios (>0.8) in circumstellar disks lead to the formation of carbon-dominated planets. Based on the expectation that elemental abundances in the stellar photospheres give the initial abundances in the circumstellar disks, the frequency distributions of C/O ratios of solar-type stars have been obtained by several groups. The results of these investigations are mixed. Some find C/O > 0.8 in more than 20% of stars, and C/O > 1.0 in more than 6%. Others find C/O > 0.8 in none of the sample stars. These works on solar-type stars are all differential abundance analysesmore » with respect to the Sun and depend on the adopted C/O ratio in the Sun. Recently, a method of molecular line spectroscopy of M dwarfs, in which carbon and oxygen abundances are derived respectively from CO and H{sub 2}O lines in the K band, has been developed. The resolution of the K- band spectrum is 20,000. Carbon and oxygen abundances of 46 M dwarfs have been obtained by this nondifferential abundance analysis. Carbon-to-oxygen ratios in M dwarfs derived by this method are more robust than those in solar-type stars derived from neutral carbon and oxygen lines in the visible spectra because of the difficulty in the treatment of oxygen lines. We have compared the frequency distribution of C/O distributions in M dwarfs with those of solar-type stars and have found that the low frequency of high-C/O ratios is preferred.« less

  12. Does Radiative Feedback by the First Stars Promote or Prevent Second Generation Star Formation?

    NASA Astrophysics Data System (ADS)

    Ahn, Kyungjin; Shapiro, Paul R.

    2008-03-01

    We present a self-consistent study of formation of Pop III stars in the early stage of cosmic reionization. We study the effect of starlight from the first stars on the ability of other minihalos in their neighborhood to form additional stars. We show that the ionization front (I-front) is trapped by the neighboring minihalos, after it is transformed from R-type to D-type and preceded by a shock front. The fate of the core of nearby minihalos is mostly determined by the response of the core to this shock front, which leads to molecular cooling and collapse that, when compared to the same halo without external radiation, is (a) expedited, (b) delayed, (c) unaltered, or (d) reversed and prevented, depending upon the flux and halo mass and evolutionary stage. Roughly speaking, most halos that were destined to cool, collapse and form stars in the absence of external radiation are found to do so even when exposed to the first Pop III star in their neighborhood, while those that would not have done so are still not able to.

  13. Mining the HST "Advanced Spectral Library (ASTRAL) - Hot Stars": The High Definition UV Spectrum of the Ap Star HR 465

    NASA Astrophysics Data System (ADS)

    Carpenter, Kenneth G.; Ayres, T. R.; Nielsen, K. E.; Kober, G. V.; Wahlgren, G. M.; Adelman, S. J.; Cowley, C. R.

    2014-01-01

    The "Advanced Spectral Library (ASTRAL) Project: Hot Stars" is a Hubble Space Telescope (HST) Cycle 21 Treasury Program (GO-13346: Ayres PI). It is designed to collect a definitive set of representative, high-resolution ( 30,000-100,000), high signal/noise (S/N>100), and full UV coverage 1200 - 3000 A) spectra of 21 early-type stars, utilizing the high-performance Space Telescope Imaging Spectrograph (STIS). The targets span the range of spectral types between early-O and early-A, including both main sequence and evolved stars, fast and slow rotators, as well as chemically peculiar (CP) and magnetic objects. These extremely high-quality STIS UV echelle spectra will be available from the HST archive and, in post-processed and merged form, at http://casa.colorado.edu ayres/ASTRAL/. The UV "atlases" produced by this program will enable investigations of a broad range of problems -- stellar, interstellar, and beyond -- for many years to come. We offer a first look at one of the earliest datasets to come out of this observing program, a "high definition" UV spectrum of the Ap star HR 465, which was chosen as a prototypical example of an A-type magnetic CP star. HR 465 has a global magnetic field of ~2200 Gauss. Earlier analyses of IUE spectra show strong iron-peak element lines, along with heavy elements such as Ga and Pt, while being deficient in the abundance of some ions of low atomic number, such as carbon. We demonstrate the high quality of the ASTRAL data and present the identification of spectral lines for a number of elements. By comparison of the observed spectra with calculated spectra, we also provide estimates of element abundances, emphasizing heavy elements, and place these measurements in the context of earlier results for this and other Ap stars.

  14. The Physical Properties and Effective Temperature Scale of O-Type Stars as a Function of Metallicity. I. A Sample of 20 Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Bresolin, Fabio; Kudritzki, Rolf P.; Puls, Joachim; Pauldrach, A. W. A.

    2004-06-01

    We have obtained Hubble Space Telescope (HST) and ground-based observations of a sample of 20 O-type stars in the LMC and SMC, including six of the hottest massive stars known (subtypes O2-O3) in the R136 cluster. In general, these data include (1) the HST UV spectra in order to measure the terminal velocities of the stellar winds, (2) high signal-to-noise, blue-optical data where the primary temperature- and gravity-sensitive photospheric lines are found, and (3) nebular-free Hα profiles, which provide the mass-loss rates. We find that the older (Faint Object Spectrograph) HST data of the R136 stars (which were obtained without the benefits of sky measurements) suffered from significant nebular emission, which would increase the derived mass-loss rates by factors of ~3, all other factors being equal. We also find several stars in the SMC for which the N III λλ4634, 4642 and He II λ4686 emission ``f'' characteristics do not appear to follow the same pattern as in Galactic stars. Since He II emission is due to the stellar wind (which will be weaker in SMC for stars of the same luminosity), while N III emission is a complex non-LTE (NLTE) effect affected mostly by temperature, it would not be surprising to find that these features do not correlate with each other or with luminosity in SMC stars in the same was as they do in Galactic stars, but theory does not provide a clean answer, and analysis of more stars (both SMC and Galactic) is needed to resolve this issue. The line-blanketed NLTE atmosphere code FASTWIND was then used to determine the physical parameters of this sample of stars. We find good agreement between the synthetic line profiles for the hydrogen, He I, and He II lines in the majority of the stars we analyzed; the three exceptions show evidence of being incipiently resolved spectroscopic binaries or otherwise spectral composites. One such system is apparently an O3 V+O3 V eclipsing binary, and a follow-up radial velocity study is planned to obtain

  15. A deep x-ray survey of the Pleiades cluster and the B6-A3 main sequence stars in Orion

    NASA Technical Reports Server (NTRS)

    Caillault, Jean-Pierre

    1993-01-01

    We have obtained deep ROSAT images of three regions within the Pleiades open cluster. We have detected 317 X-ray sources in these ROSAT PSPC images, 171 of which we associate with certain probable members of the Pleiades cluster. We detect nearly all Pleiades members with spectral types later than G0 and within 25 arcminutes of our three field centers where our sensitivity is highest. This has allowed us to derive for the first time the luminosity function for the G, K, and M dwarfs of an open cluster without the need to use statistical techniques to account for the presence of upper limits in the data sample. Because of our high X-ray detection frequency down to the faint limit of the optical catalog, we suspect that some of our unidentified X-ray sources are previously unknown, very low-mass members of the Pleiades. A large fraction of the Pleiades members detected with ROSAT have published rotational velocities. Plots of L(sub x)/L(sub bol) versus spectroscopic rotational velocity show tightly correlated 'saturation' type relations for stars with (B - V)(sub O) greater than 0.60. For each of several color ranges, X-ray luminosities rise rapidly with increasing rotation rate until v sin i approximately equals 15 km/s, and then remain essentially flat for rotation rates up to at least v sin i approximately equal to 100 km/s. The dispersion in rotation among low-mass stars in the Pleiades is by far the dominant contributor to the dispersion in L(subx) at a given mass. Only about 35 percent of the B.A. and early F stars in the Pleiades are detected as X-ray sources in our survey. There is no correlation between X-ray flux and rotation for these stars. The X-ray luminosity function for the early-type Pleiades stars appears to be bimodal, with only a few exceptions. We either detect these stars at fluxes in the range found for low-mass stars or we derive X-ray limits below the level found for most Pleiades dwarfs. The X-ray spectra for the early-type Pleiades stars

  16. The Wolf-Rayet star population in the dwarf galaxy NGC 625

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Walsh, J. R.; Iglesias-Páramo, J.; Sandin, C.; Relaño, M.; Pérez-Montero, E.; Vílchez, J.

    2017-07-01

    Context. Quantifying the number, type, and distribution of Wolf-Rayet (W-R) stars is a key component in the context of galaxy evolution, since they put constraints on the age of the star formation bursts. Nearby galaxies (distances ≲5 Mpc) are particularly relevant in this context since they fill the gap between studies in the Local Group, where individual stars can be resolved, and galaxies in the Local Volume and beyond. Aims: We intend to characterise the W-R star population in one of these systems, NGC 625, which is a low-metallicity dwarf galaxy suffering a currently declining burst of star formation. Methods: Optical integral field spectroscopy (IFS) data have been obtained with the VIMOS-IFU and the HR_Orange and HR_Blue gratings at the Very Large Telescope covering the starburst region of NGC 625. Ancillary Hubble Space Telescope (HST) images in the F555W and F814W bands are also used for comparison. We estimate the number of W-R stars using a linear combination of three W-R templates: one early-type nitrogen (WN) star, one late-type WN star, and one carbon-type (WC) star (or oxygen-type (WO) star). Fits using several ensembles of templates were tested. Results were confronted with I) high spatial resolution HST photometry; II) numbers of W-R stars in nearby galaxies; and III) model predictions. Results: The W-R star population is spread over the main body of the galaxy and is not necessarily coincident with the overall stellar distribution. Our best estimation for the number of W-R stars yields a total of 28 W-R stars in the galaxy, out of which 17 are early-type WN, six are late-type WN, and five are WC stars. The width of the stellar features nicely correlates with the dominant W-R type found in each aperture. The distribution of the different types of WR in the galaxy is roughly compatible with the way star formation has propagated in the galaxy, according to previous findings using high spatial resolution with the HST. Fits using templates at the

  17. The discovery of nonthermal radio emission from magnetic Bp-Ap stars

    NASA Technical Reports Server (NTRS)

    Drake, Stephen A.; Abbott, David C.; Bastian, T. S.; Bieging, J. H.; Churchwell, E.

    1987-01-01

    In a VLA survey of chemically peculiar B- and A-type stars with strong magnetic fields, five of the 34 stars observed have been identified as 6 cm continuum sources. Three of the detections are helium-strong early Bp stars (Sigma Ori E, HR 1890, and Delta Ori C), and two are helium weak, silicon-strong stars with spectral types near A0p (IQ Aur = HD 34452, Babcock's star = HD 215441). The 6 cm luminosities L6 (ergs/s Hz) range from log L6 = 16.2 to 17.9, somewhat less than the OB supergiants and W-R stars. Three-frequency observations indicate that the helium-strong Bp stars are variable nonthermal sources.

  18. The boron-to-beryllium ratio in halo stars - A signature of cosmic-ray nucleosynthesis in the early Galaxy

    NASA Technical Reports Server (NTRS)

    Walker, T. P.; Steigman, G.; Schramm, D. N.; Olive, K. A.; Fields, B.

    1993-01-01

    We discuss Galactic cosmic-ray (GCR) spallation production of Li, Be, and B in the early Galaxy with particular attention to the uncertainties in the predictions of this model. The observed correlation between the Be abundance and the metallicity in metal-poor Population II stars requires that Be was synthesized in the early Galaxy. We show that the observations and such Population II GCR synthesis of Be are quantitatively consistent with the big bang nucleosynthesis production of Li-7. We find that there is a nearly model independent lower bound to B/Be of about 7 for GCR synthesis. Recent measurements of B/Be about 10 in HD 140283 are in excellent agreement with the predictions of Population II GCR nucleosynthesis. Measurements of the boron abundance in additional metal-poor halo stars is a key diagnostic of the GCR spallation mechanism. We also show that Population II GCR synthesis can produce amounts of Li-6 which may be observed in the hottest halo stars.

  19. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    PubMed

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  20. Evolution of the early-type galaxy fraction in clusters since z = 0.8

    NASA Astrophysics Data System (ADS)

    Simard, L.; Clowe, D.; Desai, V.; Dalcanton, J. J.; von der Linden, A.; Poggianti, B. M.; White, S. D. M.; Aragón-Salamanca, A.; De Lucia, G.; Halliday, C.; Jablonka, P.; Milvang-Jensen, B.; Saglia, R. P.; Pelló, R.; Rudnick, G. H.; Zaritsky, D.

    2009-12-01

    We study the morphological content of a large sample of high-redshift clusters to determine its dependence on cluster mass and redshift. Quantitative morphologies are based on PSF-convolved, 2D bulge+disk decompositions of cluster and field galaxies on deep Very Large Telescope FORS2 images of eighteen, optically-selected galaxy clusters at 0.45 < z < 0.80 observed as part of the ESO Distant Cluster Survey (“EDisCS”). Morphological content is characterized by the early-type galaxy fraction f_et, and early-type galaxies are objectively selected based on their bulge fraction and image smoothness. This quantitative selection is equivalent to selecting galaxies visually classified as E or S0. Changes in early-type fractions as a function of cluster velocity dispersion, redshift and star-formation activity are studied. A set of 158 clusters extracted from the Sloan Digital Sky Survey is analyzed exactly as the distant EDisCS sample to provide a robust local comparison. We also compare our results to a set of clusters from the Millennium Simulation. Our main results are: (1) the early-type fractions of the SDSS and EDisCS clusters exhibit no clear trend as a function of cluster velocity dispersion. (2) Mid-z EDisCS clusters around σ = 500 km s-1 have f_et ≃ 0.5 whereas high-z EDisCS clusters have f_et ≃ 0.4. This represents a ~25% increase over a time interval of 2 Gyr. (3) There is a marked difference in the morphological content of EDisCS and SDSS clusters. None of the EDisCS clusters have early-type galaxy fractions greater than 0.6 whereas half of the SDSS clusters lie above this value. This difference is seen in clusters of all velocity dispersions. (4) There is a strong and clear correlation between morphology and star formation activity in SDSS and EDisCS clusters in the sense that decreasing fractions of [OII] emitters are tracked by increasing early-type fractions. This correlation holds independent of cluster velocity dispersion and redshift even

  1. OPTICAL SPECTROSCOPY OF X-RAY-SELECTED YOUNG STARS IN THE CARINA NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaidya, Kaushar; Chen, Wen-Ping; Lee, Hsu-Tai

    We present low-resolution optical spectra for 29 X-ray sources identified as either massive star candidates or low-mass pre-main-sequence (PMS) star candidates in the clusters Trumpler 16 and Trumpler 14 of the Carina Nebula. Spectra of two more objects (one with an X-ray counterpart, and one with no X-ray counterpart), not originally our targets, but found close (∼3″) to two of our targets, are presented as well. Twenty early-type stars, including an O8 star, seven B1–B2 stars, two B3 stars, a B5 star, and nine emission-line stars, are identified. Eleven T Tauri stars, including eight classical T Tauri stars (CTTSs) and threemore » weak-lined T Tauri stars, are identified. The early-type stars in our sample are more reddened compared to the previously known OB stars of the region. The Chandra hardness ratios of our T Tauri stars are found to be consistent with the Chandra hardness ratios of T Tauri stars of the Orion Nebula Cluster. Most early-type stars are found to be nonvariable in X-ray emission, except the B2 star J104518.81–594217.9, the B3 star J104507.84–594134.0, and the Ae star J104424.76–594555.0, which are possible X-ray variables. J104452.20–594155.1, a CTTS, is among the brightest and the hardest X-ray sources in our sample, appears to be a variable, and shows a strong X-ray flare. The mean optical and near-infrared photometric variability in the V and K{sub s} bands, of all sources, is found to be ∼0.04 and 0.05 mag, respectively. The T Tauri stars show significantly larger mean variation, ∼0.1 mag, in the K{sub s} band. The addition of one O star and seven B1–B2 stars reported here contributes to an 11% increase of the known OB population in the observed field. The 11 T Tauri stars are the first ever confirmed low-mass PMS stars in the Carina Nebula region.« less

  2. Ultraviolet spectrophotometry from Gemini 11 of stars in Orion

    NASA Technical Reports Server (NTRS)

    Morgan, T. H.; Spear, G. G.; Kondo, Y.; Henize, K. G.

    1975-01-01

    Ultraviolet spectrophotometry in the wavelength region 2600-3600 A is reported for the bright early-type stars beta, eta, gamma, delta, iota, epsilon, sigma, zeta, and kappa Ori. The results are in good agreement with other observations, and, with the possible exception of the supergiants, are in good agreement with recent line-blanketed model atmospheres. There is evidence that the supergiants possess a small ultraviolet deficiency shortward of 3000 A relative to main-sequence stars of similar spectral type. The most extreme example of this phenomenon is the star kappa Ori.

  3. Dark stars: a review.

    PubMed

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  4. Dark stars: a review

    NASA Astrophysics Data System (ADS)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures  ˜10 000 K) objects. We follow the evolution of dark stars from their inception at  ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >{{10}6}{{M}⊙} and luminosities  >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  5. Green Peas emit X-rays: Extreme Star Formation in Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip

    2017-01-01

    Luminous compact galaxies (LCGs), Lyman Alpha Emitters (LAEs), and Lyman Break Analog galaxies (LBAs) are all used as proxies for star-forming galaxies in the early Universe (z ≥ 6). The X-ray emission from such galaxies has been found to be elevated compared to other star-forming galaxies in our local Universe. It has been suggested that this may be due to the lower metallicity seen in these proxies to high-redshift galaxies and the elevated X-ray emission may affect the heating and Reionization evolution of the early Universe. Our previous studies have suggested the existence of an LX-SFR-metallicity plane for all star-forming galaxies. We present these results in the context of our newest Joint Chandra/HST study containing the first X-ray detection of the Green Pea galaxies, a population of compact starburst galaxies discovered by volunteers in the Galaxy Zoo Project (Cardamone+2009). The galaxies were given the name Green Peas due to their compact size and green appearance in the gri composite images from SDSS. The green color is caused by a strong [OIII]λ5007Å emission line, an indicator of recent star formation. We observed a few of the most promising candidates with joint Chandra/HST observation and discuss our findings here.

  6. Reversal of Fortune: Increased Star Formation Efficiencies in the Early Histories of Dwarf Galaxies?

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Weisz, Daniel R.; Conroy, Charlie

    2014-08-01

    On dwarf galaxy scales, the different shapes of the galaxy stellar mass function and the dark halo mass function require a star-formation efficiency (SFE) in these systems that is currently more than 1 dex lower than that of Milky Way-size halos. Here, we argue that this trend may actually be reversed at high redshift. Specifically, by combining the resolved star-formation histories of nearby isolated dwarfs with the simulated mass-growth rates of dark matter halos, we show that the assembly of these systems occurs in two phases: (1) an early, fast halo accretion phase with a rapidly deepening potential well, characterized by a high SFE; and (2) a late, slow halo accretion phase where, perhaps as a consequence of reionization, the SFE is low. Nearby dwarfs have more old stars than predicted by assuming a constant or decreasing SFE with redshift, a behavior that appears to deviate qualitatively from the trends seen among more massive systems. Taken at face value, the data suggest that at sufficiently early epochs, dwarf galaxy halos above the atomic cooling mass limit can be among the most efficient sites of star formation in the universe.

  7. The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Pantoni, L.; Zanisi, L.; Shi, J.; Mancuso, C.; Massardi, M.; Shankar, F.; Bressan, A.; Danese, L.

    2018-04-01

    We aim to provide a holistic view on the typical size and kinematic evolution of massive early-type galaxies (ETGs) that encompasses their high-z star-forming progenitors, their high-z quiescent counterparts, and their configurations in the local Universe. Our investigation covers the main processes playing a relevant role in the cosmic evolution of ETGs. Specifically, their early fast evolution comprises biased collapse of the low angular momentum gaseous baryons located in the inner regions of the host dark matter halo; cooling, fragmentation, and infall of the gas down to the radius set by the centrifugal barrier; further rapid compaction via clump/gas migration toward the galaxy center, where strong heavily dust-enshrouded star formation takes place and most of the stellar mass is accumulated; and ejection of substantial gas amount from the inner regions by feedback processes, which causes a dramatic puffing-up of the stellar component. In the late slow evolution, passive aging of stellar populations and mass additions by dry merger events occur. We describe these processes relying on prescriptions inspired by basic physical arguments and by numerical simulations to derive new analytical estimates of the relevant sizes, timescales, and kinematic properties for individual galaxies along their evolution. Then we obtain quantitative results as a function of galaxy mass and redshift, and compare them to recent observational constraints on half-light size R e , on the ratio v/σ between rotation velocity and velocity dispersion (for gas and stars) and on the specific angular momentum j ⋆ of the stellar component; we find good consistency with the available multiband data in average values and dispersion, both for local ETGs and for their z ∼ 1–2 star-forming and quiescent progenitors. The outcomes of our analysis can provide hints to gauge sub-grid recipes implemented in simulations, to tune numerical experiments focused on specific processes, and to plan

  8. Evidence for a Constant Initial Mass Function in Early-type Galaxies Based on Their X-Ray Binary Populations

    NASA Astrophysics Data System (ADS)

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.; Kundu, Arunav; Gonzalez, Anthony H.; Lehmer, Bret D.; Maraston, Claudia

    2014-04-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having bottom-heavy IMFs. These bottom-heavy IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars (NSs) and black holes (BHs). In this paper, we specifically predict the variation in the number of BHs and NSs based on the power-law IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary (LMXB) populations of nearby early-type galaxies. In these binaries, an NS or BH accretes matter from a low-mass donor star. Their number is therefore expected to scale with the number of BHs and NSs present in a galaxy. We find that the number of LMXBs per K-band light is similar among the galaxies in our sample. These data therefore demonstrate the uniformity of the slope of the IMF from massive stars down to those now dominating the K-band light and are consistent with an invariant IMF. Our results are inconsistent with an IMF which varies from a Kroupa/Chabrier like IMF for low-mass galaxies to a steep power-law IMF (with slope x = 2.8) for high mass galaxies. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF. Based in part on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA). The scientific results reported in this article are based in part on data obtained from the Chandra Data Archive and observations made by the

  9. Oxygen-Sodium Anticorrelation in Field RR Lyr-Type Stars

    NASA Astrophysics Data System (ADS)

    Andrievsky, S.; Korotin, S.; Lyashko, D.; Tsymbal, V.

    2017-06-01

    We have performed analysis of a large amount of the fields RR Lyr type stars spectra with the aim to derive NLTE oxygen and sodium abundances in our program stars. Fundamental parameters (Teff, log g, Vt) and metallicity were found using the method of the fitting between synthetic and observed spectra using the SME program which was developed by N. Piskunov and J. A. Valenti. As a result of this analysis anticorrelation between oxygen (O/H) and sodium (Na/H) abundances was found.

  10. Estimates of the atmospheric parameters of M-type stars: a machine-learning perspective

    NASA Astrophysics Data System (ADS)

    Sarro, L. M.; Ordieres-Meré, J.; Bello-García, A.; González-Marcos, A.; Solano, E.

    2018-05-01

    Estimating the atmospheric parameters of M-type stars has been a difficult task due to the lack of simple diagnostics in the stellar spectra. We aim at uncovering good sets of predictive features of stellar atmospheric parameters (Teff, log (g), [M/H]) in spectra of M-type stars. We define two types of potential features (equivalent widths and integrated flux ratios) able to explain the atmospheric physical parameters. We search the space of feature sets using a genetic algorithm that evaluates solutions by their prediction performance in the framework of the BT-Settl library of stellar spectra. Thereafter, we construct eight regression models using different machine-learning techniques and compare their performances with those obtained using the classical χ2 approach and independent component analysis (ICA) coefficients. Finally, we validate the various alternatives using two sets of real spectra from the NASA Infrared Telescope Facility (IRTF) and Dwarf Archives collections. We find that the cross-validation errors are poor measures of the performance of regression models in the context of physical parameter prediction in M-type stars. For R ˜ 2000 spectra with signal-to-noise ratios typical of the IRTF and Dwarf Archives, feature selection with genetic algorithms or alternative techniques produces only marginal advantages with respect to representation spaces that are unconstrained in wavelength (full spectrum or ICA). We make available the atmospheric parameters for the two collections of observed spectra as online material.

  11. VizieR Online Data Catalog: BCool survey of solar-type stars (Marsden+ 2014)

    NASA Astrophysics Data System (ADS)

    Marsden, S. C.; Petit, P.; Jeffers, S. V.; Morin, J.; Fares, R.; Reiners, A.; Do Nascimento, J.-D., Jr.; Auriere, M.; Bouvier, J.; Carter, B. D.; Catala, C.; Dintrans, B.; Donati, J.-F.; Gastine, T.; Jardine, M.; Konstantinova-Antova, R.; Lanoux, J.; Lignieres, F.; Morgenthaler, A.; Ramirez-Velez, J. C.; Theado, S.; Van Grootel, V.; BCool Collaboration

    2015-04-01

    The goal of the BCool spectropolarimetric survey is to observe as many of the bright (V<~9.0) solar-type stars as possible to further our understanding of the magnetic activity of cool stars. In this first paper, we present the spectropolarimetric snapshots of 170 solar-type stars that we have observed starting in 2006 until 2013 as part of the BCool survey. (5 data files).

  12. Magnetic fields in non-convective regions of stars.

    PubMed

    Braithwaite, Jonathan; Spruit, Henk C

    2017-02-01

    We review the current state of knowledge of magnetic fields inside stars, concentrating on recent developments concerning magnetic fields in stably stratified (zones of) stars, leaving out convective dynamo theories and observations of convective envelopes. We include the observational properties of A, B and O-type main-sequence stars, which have radiative envelopes, and the fossil field model which is normally invoked to explain the strong fields sometimes seen in these stars. Observations seem to show that Ap-type stable fields are excluded in stars with convective envelopes. Most stars contain both radiative and convective zones, and there are potentially important effects arising from the interaction of magnetic fields at the boundaries between them; the solar cycle being one of the better known examples. Related to this, we discuss whether the Sun could harbour a magnetic field in its core. Recent developments regarding the various convective and radiative layers near the surfaces of early-type stars and their observational effects are examined. We look at possible dynamo mechanisms that run on differential rotation rather than convection. Finally, we turn to neutron stars with a discussion of the possible origins for their magnetic fields.

  13. Magnetic fields in non-convective regions of stars

    PubMed Central

    Braithwaite, Jonathan

    2017-01-01

    We review the current state of knowledge of magnetic fields inside stars, concentrating on recent developments concerning magnetic fields in stably stratified (zones of) stars, leaving out convective dynamo theories and observations of convective envelopes. We include the observational properties of A, B and O-type main-sequence stars, which have radiative envelopes, and the fossil field model which is normally invoked to explain the strong fields sometimes seen in these stars. Observations seem to show that Ap-type stable fields are excluded in stars with convective envelopes. Most stars contain both radiative and convective zones, and there are potentially important effects arising from the interaction of magnetic fields at the boundaries between them; the solar cycle being one of the better known examples. Related to this, we discuss whether the Sun could harbour a magnetic field in its core. Recent developments regarding the various convective and radiative layers near the surfaces of early-type stars and their observational effects are examined. We look at possible dynamo mechanisms that run on differential rotation rather than convection. Finally, we turn to neutron stars with a discussion of the possible origins for their magnetic fields. PMID:28386410

  14. Geminga: A cooling superfluid neutron star

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1994-01-01

    We compare the recent temperature estimate for Geminga with neutron star cooling models. Because of its age (approximately 3.4 x 10(exp 5) yr), Geminga is in the photon cooling era. We show that its surface temperature (approximately 5.2 x 10(exp 5) K) can be understood by both types of neutrino cooling scenarios, i.e., slow neutrino cooling by the modified Urca process or fast neutrino cooling by the direct Urca process or by some exotic matter, and thus does not allow us to discriminate between these two competing schemes. However, for both types of scenarios, agreement with the observed temperature can only be obtained if baryon pairing is present in most, if not all, of the core of the star. Within the slow neutrino cooling scenario, early neutrino cooling is not sufficient to explain the observed low temperature, and extensive pairing in the core is necessary to reduce the specific heat and increase the cooling rate in the present photon cooling era. Within all the fast neutrino cooling scenarios, pairing is necessary throughout the whole core to control the enormous early neutrino emission which, without pairing suppression, would result in a surface temperature at the present time much lower than observed. We also comment on the recent temperature estimates for PSR 0656+14 and PSR 1055-52, which pertain to the same photon cooling era. If one assumes that all neutron stars undergo fast neutrino cooling, then these two objects also provide evidence for extensive baryon pairing in their core; but observational uncertainties also permit a more conservative interpretation, with slow neutrino emission and no pairing at all. We argue though that observational evidence for the slow neutrino cooling model (the 'standard' model) is in fact very dim and that the interpretation of the surface temperature of all neutron stars could be done with a reasonable theoretical a priori within the fast neutrino cooling scenarios only. In this case, Geminga, PSR 0656+14, and PSR

  15. NuSTAR Captures the Beat of a Dead Star Animation

    NASA Image and Video Library

    2014-10-08

    The brightest pulsar detected to date is shown in this frame from an animation that flips back and forth between images captured by NASA NuSTAR. A pulsar is a type of neutron star, the leftover core of a star that exploded in a supernova.

  16. CONVECTION IN OBLATE SOLAR-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Junfeng; Liang, Chunlei; Miesch, Mark S.

    2016-10-10

    We present the first global 3D simulations of thermal convection in the oblate envelopes of rapidly rotating solar-type stars. This has been achieved by exploiting the capabilities of the new compressible high-order unstructured spectral difference (CHORUS) code. We consider rotation rates up to 85% of the critical (breakup) rotation rate, which yields an equatorial radius that is up to 17% larger than the polar radius. This substantial oblateness enhances the disparity between polar and equatorial modes of convection. We find that the convection redistributes the heat flux emitted from the outer surface, leading to an enhancement of the heat fluxmore » in the polar and equatorial regions. This finding implies that lower-mass stars with convective envelopes may not have darker equators as predicted by classical gravity darkening arguments. The vigorous high-latitude convection also establishes elongated axisymmetric circulation cells and zonal jets in the polar regions. Though the overall amplitude of the surface differential rotation, ΔΩ, is insensitive to the oblateness, the oblateness does limit the fractional kinetic energy contained in the differential rotation to no more than 61%. Furthermore, we argue that this level of differential rotation is not enough to have a significant impact on the oblateness of the star.« less

  17. Searching for the signatures of terrestrial planets in F-, G-type main-sequence stars

    NASA Astrophysics Data System (ADS)

    González Hernández, J. I.; Delgado-Mena, E.; Sousa, S. G.; Israelian, G.; Santos, N. C.; Adibekyan, V. Zh.; Udry, S.

    2013-04-01

    Context. Detailed chemical abundances of volatile and refractory elements have been discussed in the context of terrestrial-planet formation during in past years. Aims: The HARPS-GTO high-precision planet-search program has provided an extensive database of stellar spectra, which we have inspected in order to select the best-quality spectra available for late type stars. We study the volatile-to-refractory abundance ratios to investigate their possible relation with the low-mass planetary formation. Methods: We present a fully differential chemical abundance analysis using high-quality HARPS and UVES spectra of 61 late F- and early G-type main-sequence stars, where 29 are planet hosts and 32 are stars without detected planets. Results: As for the previous sample of solar analogs, these stars slightly hotter than the Sun also provide very accurate Galactic chemical abundance trends in the metallicity range -0.3 < [Fe/H] < 0.4. Stars with and without planets show similar mean abundance ratios. Moreover, when removing the Galactic chemical evolution effects, these mean abundance ratios, Δ [X/Fe] SUN - STARS, against condensation temperature, tend to exhibit less steep trends with nearly zero or slightly negative slopes. We have also analyzed a subsample of 26 metal-rich stars, 13 with and 13 without known planets, with spectra at S/N ~ 850, on average, in the narrow metallicity range 0.04 < [Fe/H] < 0.19. We find the similar, although not equal, abundance pattern with negative slopes for both samples of stars with and without planets. Using stars at S/N ≥ 550 provides equally steep abundance trends with negative slopes for stars both with and without planets. We revisit the sample of solar analogs to study the abundance patterns of these stars, in particular, 8 stars hosting super-Earth-like planets. Among these stars having very low-mass planets, only four of them reveal clear increasing abundance trends versus condensation temperature. Conclusions: Finally, we

  18. Change in the activity character of the coronae of low-mass stars of various spectral types

    NASA Astrophysics Data System (ADS)

    Nizamov, B. A.; Katsova, M. M.; Livshits, M. A.

    2017-03-01

    We study the dependence of the coronal activity index on the stellar rotation velocity. This question has been considered previously for 824 late-type stars on the basis of a consolidated catalogue of soft X-ray fluxes. We carry out a more refined analysis separately for G, K, and M dwarfs. Two modes of activity are clearly identified in them. The first is the saturation mode, is characteristic of young stars, and is virtually independent of their rotation. The second refers to the solar-type activity whose level strongly depends on the rotation period. We show that the transition from one mode to the other occurs at rotation periods of 1.1, 3.3, and 7.2 days for stars of spectral types G2, K4, and M3, respectively. In light of the discovery of superflares on G and K stars from the Kepler spacecraft, the question arises as to what distinguishes these objects from the remaining active late-type stars. We analyze the positions of superflare stars relative to the remaining stars observed by Kepler on the "amplitude of rotational brightness modulation (ARM)—rotation period" diagram. The ARM reflects the relative spots area on a star and characterizes the activity level in the entire atmosphere. G and K superflare stars are shown to be basically rapidly rotating young objects, but some of them belong to the stars with the solar type of activity.

  19. Toward the first stars: hints from the CEMP-no stars

    NASA Astrophysics Data System (ADS)

    Choplin, A.

    2017-12-01

    CEMP-no stars are iron-deficient, carbon-rich stars, with no or little s- and r-elements. Because of their very low iron content, they are often considered to be closely linked to the first stars. Their origin is still a matter of debate. Understanding their formation could provide very valuable information on the first stars, early nucleosynthesis, early galactic chemical evolution and first supernovae. The most explored formation scenario for CEMP-no stars suggests that CEMP-no stars formed from the ejecta (wind and/or supernova) of a massive source star, that lived before the CEMP-no star. Here we discuss models of fast rotating massive source stars with and without triggering a late mixing event just before the end of the life of the source star. We find that without this late mixing event, the bulk of observed CEMP-no stars cannot be reproduced by our models. On the opposite, the bulk is reproductible if adding the late mixing event in the source star models.

  20. Determination of the axial rotation rate using apsidal motion for early-type eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Khaliullin, Kh. F.; Khaliullina, A. I.

    2007-11-01

    Because the modern theory of stellar structure and evolution has a sound observational basis, we can consider that the apsidal parameters k2 computed in terms of this theory correctly reflect the radial density distribution in stars of different masses and spectral types. This allows us to address the problem of apsidal motion in close binary systems in a new way. Unlike the traditional approach, in this paper we use the observed apsidal periods Uobs to estimate the angular axial velocities of components, ωr, at fixed model values of k2. We use this approach to analyse the observational data for 28 eclipsing systems with known Uobs and early-type primaries (M >= 1.6 Msolar or Te >= 6000 K). We measure the age of the system in units of the synchronization time, t/tsyn. Our analysis yielded the following results. (i) There is a clear correlation between ωr/ωsyn and t/tsyn: the younger a star, the higher the angular velocity of its axial rotation in units of ωsyn, the angular velocity at pseudo-synchronization. This correlation is more significant and obvious if the synchronization time, tsyn, is computed in terms of the Zahn theory. (ii) This observational fact implies that the synchronization of early-type components in close binary systems continues on the main sequence. The synchronization times for the inner layers of the components (i.e. those that are responsible for apsidal motion) are about 1.6 and 3.1 dex longer than those predicted by the theories of Zahn and Tassoul, respectively. The average initial angular velocities (for the zero-age main sequence) are equal to ω0/ωsyn ~ 2.0. The dependence of the parameter E2 on stellar mass probably needs to be refined in the Zahn theory. (iii) Some components of the eclipsing systems of the sample studied show radially differential axial rotation. This is consistent with the Zahn theory, which predicts that the synchronization starts at the surface, where radiative damping of dynamical tides occurs, and

  1. The kinematic properties of dwarf early-type galaxies in the Virgo cluster

    NASA Astrophysics Data System (ADS)

    Toloba, E.; Boselli, A.; Peletier, R. F.; Gorgas, J.

    2011-11-01

    We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster. These data are used to study the origin of dEs inhabiting clusters. Within them we detect two populations: half of the sample (52%) are rotationally supported and the other half are pressure supported. We also find that the rotationally supported dEs are located in the outer parts of the cluster, present disky morphological shapes and are younger than those pressure supported that are concentrated in the core of the cluster without any underlying structures. Our analysis reveals that the rotationally supported objects have rotation curves similarly shaped to those of star forming galaxies of similar luminosities and follow the Tully-Fisher relation. This is expected if dEs are the descendant of low luminosity star forming systems which recently entered the cluster and lost their gas due to a ram pressure stripping event, quenching their star formation activity and transforming them into quiescent systems, but conserving their angular momentum.

  2. The Age Related Properties of Solar Type Stars

    NASA Technical Reports Server (NTRS)

    Soderblom, David

    1999-01-01

    The studies of lithium in solar-type stars in clusters of a wide range of ages has provided critical information on a tracer of convective processes, especially among very young stars. Our most recent work has been on a pre-main sequence cluster (NGC 2264) that took place after this grant expired, but was founded on it. The spread seen in Li in Zero-Age Main Sequence clusters like the Pleiades is huge and possibly related to rotation. No clear spread in seen in NGC 2264, so it does not have its origins in the conditions of formation but is instead a result of processes occurring during PMS evolution. Our observations of M67 were particularly interesting because this cluster is the same age as the Sun, i.e.,very old. Clear evidence was seen for a spread in Li there too, indicating that the spread seen in very young stars perpetuates itself into old age.

  3. DEBRIS DISKS AROUND SOLAR-TYPE STARS: OBSERVATIONS OF THE PLEIADES WITH THE SPITZER SPACE TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierchio, J. M.; Rieke, G. H.; Su, K. Y. L.

    2010-04-01

    We present Spitzer MIPS observations at 24 {mu}m of 37 solar-type stars in the Pleiades and combine them with previous observations to obtain a sample of 71 stars. We report that 23 stars, or 32% +- 6.8%, have excesses at 24 {mu}m at least 10% above their photospheric emission. We compare our results with studies of debris disks in other open clusters and with a study of A stars to show that debris disks around solar-type stars at 115 Myr occur at nearly the same rate as around A-type stars. We analyze the effects of binarity and X-ray activity onmore » the excess flux. Stars with warm excesses tend not to be in equal-mass binary systems, possibly due to clearing of planetesimals by binary companions in similar orbits. We find that the apparent anti-correlations in the incidence of excess and both the rate of stellar rotation and also the level of activity as judged by X-ray emission are statistically weak.« less

  4. Ultraviolet radiation from F and K stars and implications for planetary habitability.

    PubMed

    Kasting, J F; Whittet, D C; Sheldon, W R

    1997-08-01

    Now that extrasolar planets have been found, it is timely to ask whether some of them might be suitable for life. Climatic constraints on planetary habitability indicate that a reasonably wide habitable zone exists around main sequence stars with spectral types in the early-F to mid-K range. However, it has not been demonstrated that planets orbiting such stars would be habitable when biologically-damaging energetic radiation is also considered. The large amounts of UV radiation emitted by early-type stars have been suggested to pose a problem for evolving life in their vicinity. But one might also argue that the real problem lies with late-type stars, which emit proportionally less radiation at the short wavelengths (lambda < 200 nm) required to split O2 and initiate ozone formation. We show here that neither of these concerns is necessarily fatal to the evolution of advanced life: Earth-like planets orbiting F and K stars may well receive less harmful UV radiation at their surfaces than does the Earth itself.

  5. Ultraviolet radiation from F and K stars and implications for planetary habitability

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Whittet, D. C.; Sheldon, W. R.

    1997-01-01

    Now that extrasolar planets have been found, it is timely to ask whether some of them might be suitable for life. Climatic constraints on planetary habitability indicate that a reasonably wide habitable zone exists around main sequence stars with spectral types in the early-F to mid-K range. However, it has not been demonstrated that planets orbiting such stars would be habitable when biologically-damaging energetic radiation is also considered. The large amounts of UV radiation emitted by early-type stars have been suggested to pose a problem for evolving life in their vicinity. But one might also argue that the real problem lies with late-type stars, which emit proportionally less radiation at the short wavelengths (lambda < 200 nm) required to split O2 and initiate ozone formation. We show here that neither of these concerns is necessarily fatal to the evolution of advanced life: Earth-like planets orbiting F and K stars may well receive less harmful UV radiation at their surfaces than does the Earth itself.

  6. The Infrared Spectral Region of Stars

    NASA Astrophysics Data System (ADS)

    Jaschek, Carlos; Andrillat, Y.

    1991-09-01

    1. Stars in the infrared: results from IRAS H. J. G. L. M. Lamers and L. B. F. M. Watera; 2. What is expected from ISO J. P. Baluteau; 3. New infrared instrumentation S. Bensammar; 4. High resolution atomic spectroscopy in the infrared and its application to astrophysics S. Johansson; 5. Spectroscopy of early -type stars C. Jaschek; 6. Spectroscopy of late type stars U. F. Jøgensen; 7. Dust formation and evolution in circumstellar media J. P. J. Lafon; 8. The infrared solar spectrum N. Grevesse; 9. Symbiotic and related objects M. Hack; 10. Stellar photometry and spectrophotometry in the infrared R. F. Wing; 11. Stellar variability in the infrared A. Evans; 12. Circumstellar material in main sequence H. H. Aamann.

  7. On Helium-Dominated Stellar Evolution: The Mysterious Role of the O(He)-Type Stars

    NASA Technical Reports Server (NTRS)

    Reindl, N.; Rauch, T.; Werner, K.; Kruk, J. W.; Todt, H.

    2014-01-01

    Context. About a quarter of all post-asymptotic giant branch (AGB) stars are hydrogen-deficient. Stellar evolutionary models explain the carbon-dominated H-deficient stars by a (very) late thermal pulse scenario where the hydrogen-rich envelope is mixed with the helium-rich intershell layer. Depending on the particular time at which the final flash occurs, the entire hydrogen envelope may be burned. In contrast, helium-dominated post-AGB stars and their evolution are not yet understood. Aims. A small group of very hot, helium-dominated stars is formed by O(He)-type stars. A precise analysis of their photospheric abundances will establish constraints to their evolution. Methods. We performed a detailed spectral analysis of ultraviolet and optical spectra of four O(He) stars by means of state-of-the-art non-LTE model-atmosphere techniques. Results. We determined effective temperatures, surface gravities, and the abundances of H, He, C, N, O, F, Ne, Si, P, S, Ar, and Fe. By deriving upper limits for the mass-loss rates of the O(He) stars, we found that they do not exhibit enhanced mass-loss. The comparison with evolutionary models shows that the status of the O(He) stars remains uncertain. Their abundances match predictions of a double helium white dwarf (WD) merger scenario, suggesting that they might be the progeny of the compact and of the luminous helium-rich sdO-type stars. The existence of planetary nebulae that do not show helium enrichment around every other O(He) star precludes a merger origin for these stars. These stars must have formed in a different way, for instance via enhanced mass-loss during their post-AGB evolution or a merger within a common-envelope (CE) of a CO-WD and a red giant or AGB star. Conclusions. A helium-dominated stellar evolutionary sequence exists that may be fed by different types of mergers or CE scenarios. It appears likely that all these pass through the O(He) phase just before they become WDs.

  8. The challenge of measuring magnetic fields in strongly pulsating stars: the case of HD 96446

    NASA Astrophysics Data System (ADS)

    Järvinen, S. P.; Hubrig, S.; Ilyin, I.; Schöller, M.; Briquet, M.

    2017-01-01

    Among the early B-type stars, He-rich Bp stars exhibit the strongest large-scale organized magnetic fields with a predominant dipole contribution. The presence of β Cep-like pulsations in the typical magnetic early Bp-type star HD 96446 was announced a few years ago, but the analysis of the magnetic field geometry was hampered by the absence of a reliable rotation period and a sophisticated procedure for accounting for the impact of pulsations on the magnetic field measurements. Using new spectropolarimetric observations and a recently determined rotation period based on an extensive spectroscopic time series, we investigate the magnetic field model parameters of this star under more detailed considerations of the pulsation behaviour of line profiles.

  9. A Study of Chemical Composition of δ Scuti-Type Stars Based on the Observations with the BTA and RTT-150

    NASA Astrophysics Data System (ADS)

    Galeev, A. I.; Berdnikova, V. M.; Ivanova, D. V.; Kudryavtsev, D. O.; Shimanskaya, N. N.; Shimansky, V. V.; Balashova, M. O.

    2017-06-01

    The results of a study of a sample of δ Scuti-type stars obtained from the observations with the BTA and RTT-150 are presented. Based on photometric data, we measured and analyzed the fundamental parameters of all the studied stars. For eight stars (for two of them for the first time), the fundamental parameters of the atmospheres (Teff, log g, [Fe/H]) and the chemical composition for 29 elements in the LTE-approximation are received using spectroscopic observations. The chemical composition analysis demonstrates both the solar abundances of chemical elements and the anomalies of chemical composition typical of Am stars in the studied sample of δ Scuti-type stars.

  10. Mass loss from hot, luminous stars

    NASA Astrophysics Data System (ADS)

    Burnley, Adam Warwick

    A general enquiry into the physics of mass loss from hot, luminous stars is presented. Ha spectroscopy of 64 Galactic early-type stars has been obtained using the telescopes of the Isaac Newton Group (ING) and the Anglo-Australian Observatory (AAO). The sample was selected to include objects with published radio and/or mm fluxes. The Halpha observations are quantitatively modelled using a modified version of the FORSOL code developed by Puls et al. (1996). FORSOL has been coupled with the PIKAIA subroutine (Charbonneau and Knapp, 1996) to create PHALTEE (Program for Halpha Line Transfer with Eugenic Estimation), in order to search a specified parameter space for the 'best' (quasi- least-squares) model fit to the data, using a genetic algorithm. This renders Ha modelling both more objective and automated. Where possible, both mass-loss rates and velocity field beta-exponents are determined for the sample. New mm-wave observations of nineteen Galactic early-type stars, including a subset of the Halpha sample, have been obtained using the Sub-millimetre Common User Bolometer Array (SCUBA). Where possible, mean fluxes are calculated, and these data used with the results of a literature survey of mm and cm fluxes to determine mass-loss rates for a larger sample, of 53 Galactic early-type stars. The incidence of nonthermal emission is examined, with 23% of the sample exhibiting strong evidence for nonthermal flux. The occurrence of binarity and excess X-ray emission amongst the nonthermal emitters is also investigated. For the subset of 36 stars common to both the Halpha and mm/radio samples, the results permit a comparison of mass-loss rates derived using diagnostics that probe the wind conditions at different radial depths. A mean value of log (Mradio/MHalpha) = 0.02 +/- 0.05 is obtained for the thermal radio emitters. The wind-momentum-luminosity relationship (WLR) for the sample is also investigated.

  11. Physical properties and evolutionary time scales of disks around solar-type and intermediate mass stars

    NASA Technical Reports Server (NTRS)

    Strom, Stephen E.; Edwards, Suzan

    1993-01-01

    Recent observations of circumstellar disks and their evolutionary timescales are reviewed. It is concluded that disks appear to be a natural outcome of the star-formation process. The disks surrounding young stars initially are massive, with optically thick structures comprised of gas and micron-sized grains. Disk masses are found to range from 0.01 to 0.2 solar masses for solar-type PMS stars, and from 0.01 to 6 solar masses for young, intermediate mass stars. Massive, optically thick accretion disks have accretion rates between 10 exp -8 and 10 exp -6 solar masses/yr for solar type PMS stars and between 10 exp -6 and 10 exp -4 solar masses/yr for intermediate stars. The results suggest that a significant fraction of the mass comprising the star may have passed through a circumstellar accretion disk.

  12. Towards a better understanding of the evolution of Wolf-Rayet stars and Type Ib/Ic supernova progenitors

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Chul

    2017-10-01

    Hydrogen-deficient Wolf-Rayet (WR) stars are potential candidates of Type Ib/Ic supernova (SN Ib/Ic) progenitors and their evolution is governed by mass-loss. Stellar evolution models with the most popular prescription for WR mass-loss rates given by Nugis & Lamers have difficulties in explaining the luminosity distribution of WR stars of WC and WO types and the SN Ic progenitor properties. Here, we suggest some improvements in the WR mass-loss rate prescription and discuss its implications for the evolution of WR stars and SN Ib/Ic progenitors. Recent studies on Galactic WR stars clearly indicate that the mass-loss rates of WC stars are systematically higher than those of WNE stars for a given luminosity. The luminosity and initial metallicity dependences of WNE mass-loss rates are also significantly different from those of WC stars. These factors have not been adequately considered together in previous stellar evolution models. We also find that an overall increase of WR mass-loss rates by about 60 per cent compared to the empirical values obtained with a clumping factor of 10 is needed to explain the most faint WC/WO stars. This moderate increase with our new WR mass-loss rate prescription results in SN Ib/Ic progenitor models more consistent with observations than those given by the Nugis & Lamers prescription. In particular, our new models predict that the properties of SN Ib and SN Ic progenitors are distinctively different, rather than they form a continuous sequence.

  13. A Lithium Abundance Study of Solar-type Stars in Blanco 1 using the 2.1m McDonald Telescope: Developing Undergraduate Research Experiences.

    NASA Astrophysics Data System (ADS)

    Cargile, Phillip; James, D. J.; Villalon, K.; Girgenti, S.; Mermilliod, J.

    2007-12-01

    We present a new catalog of lithium equivalent widths for 20 solar-type stars in the young (60-100 Myr), nearby (250 pc) open cluster Blanco 1, measured from high-resolution spectra (R 30,000), taken during an observing run on the 2.1m telescope at McDonald Observatory. These new lithium data, coupled with the 20 or so extant measurements in the literature, are used in combination with the results of a recently completed standardized BVIc CCD survey, and corresponding 2MASS near-infrared colors, to derive precise lithium abundances for solar-type stars in Blanco 1. Comparing these new results with the existing lithium dataset for other open clusters, we investigate the mass- and age-dependent lithium depletion distribution among early-epoch (< 1Gyr) solar-type stars, and specifically, the lithium abundance scatter as a function of mass in Blanco 1. Our scientific project is highly synergystic with a pedagogical philosophy. We have instituted a program whereby undergraduate students - typically majoring in Liberal Arts and performing an independent study in Astronomy - receive hands-on research experience observing with the 2.1m telescope at the McDonald Observatory. After their observing run, these undergraduates take part in the reduction and analysis of the acquired spectra, and their research experience typically culminates in writing an undergraduate thesis and/or giving a professional seminar to the Astronomy group at Vanderbilt University.

  14. The Evolution and Physical Parameters of WN3/O3s: A New Type of Wolf–Rayet Star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neugent, Kathryn F.; Massey, Philip; Hillier, D. John

    As part of a search for Wolf–Rayet (WR) stars in the Magellanic Clouds, we have discovered a new type of WR star in the Large Magellanic Cloud (LMC). These stars have both strong emission lines, as well as He ii and Balmer absorption lines and spectroscopically resemble a WN3 and O3V binary pair. However, they are visually too faint to be WN3+O3V binary systems. We have found nine of these WN3/O3s, making up ∼6% of the population of LMC WRs. Using cmfgen, we have successfully modeled their spectra as single stars and have compared the physical parameters with those ofmore » more typical LMC WNs. Their temperatures are around 100,000 K, a bit hotter than the majority of WN stars (by around 10,000 K), though a few hotter WNs are known. The abundances are what you would expect for CNO equilibrium. However, most anomalous are their mass-loss rates, which are more like that of an O-type star than a WN star. While their evolutionary status is uncertain, their low mass-loss rates and wind velocities suggest that they are not products of homogeneous evolution. It is possible instead that these stars represent an intermediate stage between O stars and WNs. Since WN3/O3 stars are unknown in the Milky Way, we suspect that their formation depends upon metallicity, and we are investigating this further by a deep survey in M33, which possesses a metallicity gradient.« less

  15. Documentation for the machine-readable version of the catalog of galactic O type stars

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1982-01-01

    The Catalog of Galactic O-Type Stars (Garmany, Conti and Chiosi 1982), a compilation from the literature of all O-type stars for which spectral types, luminosity classes and UBV photometry exist, contains 765 stars, for each of which designation (HD, DM, etc.), spectral type, V, B-V, cluster membership, Galactic coordinates, and source references are given. Derived values of absolute visual and bolometric magnitudes, and distances are included. The source reference should be consulted for additional details concerning the derived quantities. This description of the machine-readable version of the catalog seeks to enable users to read and process the data with a minimum of guesswork. A copy of this document should be distributed with any machine readable version of the catalog.

  16. Dust-obscured star-forming galaxies in the early universe

    NASA Astrophysics Data System (ADS)

    Wilkins, Stephen M.; Feng, Yu; Di Matteo, Tiziana; Croft, Rupert; Lovell, Christopher C.; Thomas, Peter

    2018-02-01

    Motivated by recent observational constraints on dust reprocessed emission in star-forming galaxies at z ∼ 6 and above, we use the very large cosmological hydrodynamical simulation BLUETIDES to explore predictions for the amount of dust-obscured star formation in the early Universe (z > 8). BLUETIDES matches current observational constraints on both the UV luminosity function and galaxy stellar mass function and predicts that approximately 90 per cent of the star formation in high-mass (M* > 1010 M⊙) galaxies at z = 8 is already obscured by dust. The relationship between dust attenuation and stellar mass predicted by BLUETIDES is consistent with that observed at lower redshift. However, observations of several individual objects at z > 6 are discrepant with the predictions, though it is possible that their uncertainties may have been underestimated. We find that the predicted surface density of z ≥ 8 submm sources is below that accessible to current Herschel, SCUBA-2 and Atacama Large Millimetre Array (ALMA) submm surveys. However, as ALMA continues to accrue an additional surface area the population of z > 8 dust-obscured galaxies may become accessible in the near future.

  17. The DARWIN target list: observational properties of the G-type stars

    NASA Astrophysics Data System (ADS)

    Eiroa, C.; Fridlund, M.; Kaltenegger, L.

    2003-10-01

    DARWIN is aimed to search for terrestrial extrasolar planets and to detect biosignatures in the planet atmospheres, which will largely be influenced by the parent stars. This contribution presents a first approach to the knowledge of the observational properties of the DARWIN star candidates of G spectral type: variability, X-ray emission, stellar or planetary companions, photometric properties in the Johnson and Strömgren systems, metallicity, IR emission and rotational velocities. The information has been retrieved from different databases and catalogues. We find that some of the nearby Sun-like targets present activity in the form of variability or X-ray emission. Few of them show far-IR excesses suggesting dusty debris disks around the stars. Further, the metallicity and rotational velocity distributions agree well with the expectations for 'normal' Sun-like stars, with the exception of few stars. This kind of work - which will be refined and extended to other spectral types in the near future - and similar ones, in addition to the expected observational and theoretical progress in the exoplanetary field, will help to ellaborate more sophisticated criteria in order to optimize the final DARWIN target list. In addition, this activity provides useful information for the GENIE scientific goal of detecting and studying exo-zodiacal light.

  18. Star formation in globular clusters and dwarf galaxies and implications for the early evolution of galaxies

    NASA Technical Reports Server (NTRS)

    Lin, Douglas N. C.; Murray, Stephen D.

    1991-01-01

    Based upon the observed properties of globular clusters and dwarf galaxies in the Local Group, we present important theoretical constraints on star formation in these systems. These constraints indicate that protoglobular cluster clouds had long dormant periods and a brief epoch of violent star formation. Collisions between protocluster clouds triggered fragmentation into individual stars. Most protocluster clouds dispersed into the Galactic halo during the star formation epoch. In contrast, the large spread in stellar metallicity in dwarf galaxies suggests that star formation in their pregenitors was self-regulated: we propose the protocluster clouds formed from thermal instability in the protogalactic clouds and show that a population of massive stars is needed to provide sufficient UV flux to prevent the collapsing protogalactic clouds from fragmenting into individual stars. Based upon these constraints, we propose a unified scenario to describe the early epochs of star formation in the Galactic halo as well as the thick and thin components of the Galactic disk.

  19. Revisiting hypervelocity stars after Gaia DR2

    NASA Astrophysics Data System (ADS)

    Boubert, D.; Guillochon, J.; Hawkins, K.; Ginsburg, I.; Evans, N. W.; Strader, J.

    2018-06-01

    Hypervelocity stars are intriguing rare objects traveling at speeds large enough to be unbound from the Milky Way. Several mechanisms have been proposed for producing them, including the interaction of the Galaxy's super-massive black hole (SMBH) with a binary; rapid mass-loss from a companion to a star in a short-period binary; the tidal disruption of an infalling galaxy and finally ejection from the Large Magellanic Cloud. While previously discovered high-velocity early-type stars are thought to be the result of an interaction with the SMBH, the origin of high-velocity late type stars is ambiguous. The second data release of Gaia (DR2) enables a unique opportunity to resolve this ambiguity and determine whether any late-type candidates are truly unbound from the Milky Way. In this paper, we utilize the new proper motion and velocity information available from DR2 to re-evaluate a collection of historical data compiled on the newly-created Open Fast Stars Catalog. We find that almost all previously-known high-velocity late-type stars are most likely bound to the Milky Way. Only one late-type object (LAMOST J115209.12+120258.0) is unbound from the Galaxy. Performing integrations of orbital histories, we find that this object cannot have been ejected from the Galactic centre and thus may be either debris from the disruption of a satellite galaxy or a disc runaway.

  20. A photometric study of Be stars located in the seismology fields of COROT

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Soto, J.; Fabregat, J.; Suso, J.; Lanzara, M.; Garrido, R.; Hubert, A.-M.; Floquet, M.

    2007-12-01

    Context: In preparation for the COROT mission, an exhaustive photometric study of Be stars located in the seismology fields of the mission has been performed. The very precise and long-time-spanned photometric observations gathered by the COROT satellite will give important clues on the origin of the Be phenomenon. Aims: The aim of this work is to find short-period variable Be stars located in the seismology fields of COROT, and to study and characterise their pulsational properties. Methods: Light curves obtained at the Observatorio de Sierra Nevada, together with data from Hipparcos and ASAS-3 for a total of 84 Be stars, were analysed in order to search for short-term variations. We applied standard Fourier techniques and non-linear least-square fitting to the time series. Results: We found 7 multiperiodic, 21 mono-periodic and 26 non-variable Be stars. Short-term variability was detected in 74% of early-type Be stars and in 31% of mid- to late-type Be stars. We show that non-radial pulsations are more frequent among Be stars than in slow-rotating B stars of the same spectral range. Appendix A is only available in electronic form at http://www.aanda.org

  1. HD 54272, a classical λ Bootis star and γ Doradus pulsator

    NASA Astrophysics Data System (ADS)

    Paunzen, E.; Skarka, M.; Holdsworth, D. L.; Smalley, B.; West, R. G.

    2014-05-01

    We detect the second known λ Bootis star (HD 54272) which exhibits γ Doradus-type pulsations. The star was formerly misidentified as a RR Lyrae variable. The λ Bootis stars are a small group (only 2 per cent) of late B to early F-type, Population I stars which show moderate to extreme (up to a factor 100) surface underabundances of most Fe-peak elements and solar abundances of lighter elements (C, N, O, and S). The photometric data from the Wide Angle Search for Planets (WASP) and All Sky Automated Survey (ASAS) projects were analysed. They have an overlapping time base of 1566 d and 2545 d, respectively. Six statistically significant peaks were identified (f1 = 1.410 116 d-1, f2 = 1.283 986 d-1, f3 = 1.293 210 d-1, f4 = 1.536 662 d-1, f5 = 1.157 22 d-1 and f6 = 0.226 57 d-1). The spacing between f1 and f2, f1 and f4, f5 and f2 is almost identical. Since the daily aliasing is very strong, the interpretation of frequency spectra is somewhat ambiguous. From spectroscopic data, we deduce a high rotational velocity (250 ± 25 km s-1) and a metal deficiency of about -0.8 to -1.1 dex compared to the Sun. A comparison with the similar star, HR 8799, results in analogous pulsational characteristics but widely different astrophysical parameters. Since both are λ Bootis-type stars, the main mechanism of this phenomenon, selective accretion, may severely influence γ Doradus-type pulsations.

  2. A search for peculiar stars in the open cluster Hogg 16

    NASA Astrophysics Data System (ADS)

    Cariddi, Stefano; Azatyan, Naira M.; Kurfürst, Petr; Štofanová, Lýdia; Netopil, Martin; Paunzen, Ernst; Pintado, Olga I.; Aidelman, Yael J.

    2018-01-01

    The study of chemically peculiar (CP) stars in open clusters provides valuable information about their evolutionary status. Their detection can be performed using the Δa photometric system, which maps a characteristic flux depression at λ ∼ 5200 Å. This paper aims at studying the occurrence of CP stars in the earliest stages of evolution of a stellar population by applying this technique to Hogg 16, a very young Galactic open cluster ( ∼ 25 Myr). We identified several peculiar candidates: two B-type stars with a negative Δa index (CD - 60 4701, CPD - 60 4706) are likely emission-line (Be) stars, even though spectral measurements are necessary for a proper classification of the second one; a third object (CD - 60 4703), identified as a Be candidate in literature, appears to be a background B-type supergiant with no significant Δa index, which does not rule out the possibility that it is indeed peculiar as the normality line of Δa for supergiants has not been studied in detail yet. A fourth object (CD - 60 4699) appears to be a magnetic CP star of 8 M⊙, but obtained spectral data seem to rule out this hypothesis. Three more magnetic CP star candidates are found in the domain of early F-type stars. One is a probable nonmember and close to the border of significance, but the other two are probably pre-main sequence cluster objects. This is very promising, as it can lead to very strong constraints to the diffusion theory. Finally, we derived the fundamental parameters of Hogg 16 and provide for the first time an estimate of its metal content.

  3. The Evolution of Carbon Stars

    NASA Astrophysics Data System (ADS)

    Chan, S. Josephine

    1993-04-01

    stars (^13C-rich carbon stars) have been suggested to be transition objects between M-type stars and C-type stars. An optical spectroscopic study of these silicate carbon stars was performed at the Dominion Astrophysical Observatory (DAO) in Victoria in 1991. CCGCS 1653, CCGCS 4222, CCGCS 4923 and CCGCS 5848 have been confirmed to be J stars. CCGCS 1158 and CCGCS 4729 are provisionally identified as J stars. A preliminary spectral analysis has also been carried out. Model calculations are presented on the evolution from the visual carbon stars to infrared carbon stars, and on the evolution of infrared carbon stars. A new empirical opacity function for the SiC grain is derived based on the LRS spectra of a selected sample of infrared carbon stars. A two-shell model has been developed with an oxygen-rich detached shell and a newly-forming SiC dust shell. The energy distributions of ~110 transition objects which are late-stage visual carbon stars or early-stage infrared carbon stars are fitted with this Interrupted Mass Loss Model. Furthermore, the model tracks successfully explain the "C" shaped distribution of the transition objects in the IRAS 12 microns/25 microns/60 microns colour-colour diagram. The energy distributions of ~150 infrared carbon stars are also matched with a radiative transfer dust shell model using only SiC dust. The colour evolution of infrared carbon stars can be explained with a continuous increase in mass loss rate on the AGB. An evolutionary scenario of AGB stars is suggested. There is a branching of M-type and C-type stars on the AGB with each branch evolving independently to the planetary nebula stage. The initial mass of the star in the main sequence may be the factor that determines which branch the star will follow. (SECTION: Dissertation Abstracts)

  4. The Abundances of the Iron Group Elements in Early B Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Peters, C.

    FUSE observations of four sharp-lined early B main-sequence band stars in the Magellanic Clouds will be carried through to determine the abundances of the heavy elements, especially those of the Fe group. The FUSE spectral region contains numerous Fe III lines, including the resonance multiplet (UV1) near 1130 A that is excellent for abundance determinations and two strong multiplets of V III, an ion that does not produce measurable lines longward of 1200 A in metal-deficient stars. In addition there are several measurable lines from Cr III and Mn III. Although abundances of the Fe-peak elements are of interest because they are important for assessing opacities for stellar evolution calculations and the validity of theoretical calculations of explosive nucleosynthesis, ground-based studies do not yield this information because measurable lines from these species, except for a few Fe III lines, are found only in the UV spectral region. The abundances of heavy elements provide information on the production of such elements in previous generations of stars. From FUSE data obtained in Cycle 3 we are determining the abundances of the Fe group elements in two sharp-lined early B stars in the SMC (AV 304, a field star, and NGC346-637, a star in a mini-starburst cluster). This project will allow one to compare the abundances in AV 304 and NGC346-637 with those in the LMC and other regions in the SMC and look for asymmetry in heavy element production in the Magellanic Clouds.

  5. Open clusters. III. Fundamental parameters of B stars in NGC 6087, NGC 6250, NGC 6383, and NGC 6530 B-type stars with circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Aidelman, Y.; Cidale, L. S.; Zorec, J.; Panei, J. A.

    2018-02-01

    Context. Stellar physical properties of star clusters are poorly known and the cluster parameters are often very uncertain. Methods: Our goals are to perform a spectrophotometric study of the B star population in open clusters to derive accurate stellar parameters, search for the presence of circumstellar envelopes, and discuss the characteristics of these stars. The BCD spectrophotometric system is a powerful method to obtain stellar fundamental parameters from direct measurements of the Balmer discontinuity. To this end, we wrote the interactive code MIDE3700. The BCD parameters can also be used to infer the main properties of open clusters: distance modulus, color excess, and age. Furthermore, we inspected the Balmer discontinuity to provide evidence for the presence of circumstellar disks and identify Be star candidates. We used an additional set of high-resolution spectra in the Hα region to confirm the Be nature of these stars. Results: We provide Teff, log g, Mv, Mbol, and spectral types for a sample of 68 stars in the field of the open clusters NGC 6087, NGC 6250, NGC 6383, and NGC 6530, as well as the cluster distances, ages, and reddening. Then, based on a sample of 230 B stars in the direction of the 11 open clusters studied along this series of three papers, we report 6 new Be stars, 4 blue straggler candidates, and 15 B-type stars (called Bdd) with a double Balmer discontinuity, which indicates the presence of circumstellar envelopes. We discuss the distribution of the fraction of B, Be, and Bdd star cluster members per spectral subtype. The majority of the Be stars are dwarfs and present a maximum at the spectral type B2-B4 in young and intermediate-age open clusters (<40 Myr). Another maximum of Be stars is observed at the spectral type B6-B8 in open clusters older than 40 Myr, where the population of Bdd stars also becomes relevant. The Bdd stars seem to be in a passive emission phase. Conclusions: Our results support previous statements that the

  6. MASCARA-2 b. A hot Jupiter transiting the mV = 7.6 A-star HD 185603

    NASA Astrophysics Data System (ADS)

    Talens, G. J. J.; Justesen, A. B.; Albrecht, S.; McCormac, J.; Van Eylen, V.; Otten, G. P. P. L.; Murgas, F.; Palle, E.; Pollacco, D.; Stuik, R.; Spronck, J. F. P.; Lesage, A.-L.; Grundahl, F.; Fredslund Andersen, M.; Antoci, V.; Snellen, I. A. G.

    2018-04-01

    In this paper we present MASCARA-2 b, a hot Jupiter transiting the mV = 7.6 A2 star HD 185603. Since early 2015, MASCARA has taken more than 1.6 million flux measurements of the star, corresponding to a total of almost 3000 h of observations, revealing a periodic dimming in the flux with a depth of 1.3%. Photometric follow-up observations were performed with the NITES and IAC80 telescopes and spectroscopic measurements were obtained with the Hertzsprung SONG telescope. We find MASCARA-2 b orbits HD 185603 with a period of 3.4741119-0.000006+0.000005 at a distance of 0.057 ± 0.006 au, has a radius of 1.83 ± 0.07 RJ and place a 99% upper limit on the mass of <17 MJ. HD 185603 is a rapidly rotating early-type star with an effective temperature of 8980-130+90 K and a mass and radius of 1.89-0.05+0.06 M⊙, 1.60 ± 0.06 R⊙, respectively. Contrary to most other hot Jupiters transiting early-type stars, the projected planet orbital axis and stellar spin axis are found to be aligned with λ = 0.6 ± 4°. The brightness of the host star and the high equilibrium temperature, 2260 ± 50 K, of MASCARA-2 b make it a suitable target for atmospheric studies from the ground and space. Of particular interest is the detection of TiO, which has recently been detected in the similarly hot planets WASP-33 b and WASP-19 b. Tables of photometry are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A57

  7. A STATISTICAL RECONSTRUCTION OF THE PLANET POPULATION AROUND KEPLER SOLAR-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silburt, Ari; Wu, Yanqin; Gaidos, Eric

    2015-02-01

    Using the cumulative catalog of planets detected by the NASA Kepler mission, we reconstruct the intrinsic occurrence of Earth- to Neptune-size (1-4 R {sub ⊕}) planets and their distributions with radius and orbital period. We analyze 76,711 solar-type (0.8 < R {sub *}/R {sub ☉} < 1.2) stars with 430 planets on 20-200 day orbits, excluding close-in planets that may have been affected by the proximity to the host star. Our analysis considers errors in planet radii and includes an ''iterative simulation'' technique that does not bin the data. We find a radius distribution that peaks at 2-2.8 Earth radii, with lowermore » numbers of smaller and larger planets. These planets are uniformly distributed with logarithmic period, and the mean number of such planets per star is 0.46 ± 0.03. The occurrence is ∼0.66 if planets interior to 20 days are included. We estimate the occurrence of Earth-size planets in the ''habitable zone'' (defined as 1-2 R {sub ⊕}, 0.99-1.7 AU for solar-twin stars) as 6.4{sub −1.1}{sup +3.4}%. Our results largely agree with those of Petigura et al., although we find a higher occurrence of 2.8-4 Earth-radii planets. The reasons for this excess are the inclusion of errors in planet radius, updated Huber et al. stellar parameters, and also the exclusion of planets that may have been affected by proximity to the host star.« less

  8. A combined multiwavelength VLA/ALMA/Chandra study unveils the complex magnetosphere of the B-type star HR5907

    NASA Astrophysics Data System (ADS)

    Leto, P.; Trigilio, C.; Oskinova, L. M.; Ignace, R.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Leone, F.; Phillips, N. M.; Agliozzo, C.; Todt, H.; Cerrigone, L.

    2018-05-01

    We present new radio/millimeter measurements of the hot magnetic star HR 5907 obtained with the VLA and ALMA interferometers. We find that HR 5907 is the most radio luminous early type star in the cm-mm band among those presently known. Its multi-wavelength radio light curves are strongly variable with an amplitude that increases with radio frequency. The radio emission can be explained by the populations of the non-thermal electrons accelerated in the current sheets on the outer border of the magnetosphere of this fast-rotating magnetic star. We classify HR 5907 as another member of the growing class of strongly magnetic fast-rotating hot stars where the gyro-synchrotron emission mechanism efficiently operates in their magnetospheres. The new radio observations of HR 5907 are combined with archival X-ray data to study the physical condition of its magnetosphere. The X-ray spectra of HR 5907 show tentative evidence for the presence of non-thermal spectral component. We suggest that non-thermal X-rays originate a stellar X-ray aurora due to streams of non-thermal electrons impacting on the stellar surface. Taking advantage of the relation between the spectral indices of the X-ray power-law spectrum and the non-thermal electron energy distributions, we perform 3-D modelling of the radio emission for HR 5907. The wavelength-dependent radio light curves probe magnetospheric layers at different heights above the stellar surface. A detailed comparison between simulated and observed radio light curves leads us to conclude that the stellar magnetic field of HR 5907 is likely non-dipolar, providing further indirect evidence of the complex magnetic field topology of HR 5907.

  9. Evolution of Cold Circumstellar Dust around Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Carpenter, John M.; Wolf, Sebastian; Schreyer, Katharina; Launhardt, Ralf; Henning, Thomas

    2005-02-01

    We present submillimeter (Caltech Submillimeter Observatory 350 μm) and millimeter (Swedish-ESO Submillimetre Telescope [SEST] 1.2 mm, Owens Valley Radio Observatory [OVRO] 3 mm) photometry for 127 solar-type stars from the Formation and Evolution of Planetary Systems Spitzer Legacy program that have masses between ~0.5 and 2.0 Msolar and ages from ~3 Myr to 3 Gyr. Continuum emission was detected toward four stars with a signal-to-noise ratio>=3: the classical T Tauri stars RX J1842.9-3532, RX J1852.3-3700, and PDS 66 with SEST, and the debris-disk system HD 107146 with OVRO. RX J1842.9-3532 and RX J1852.3-3700 are located in projection near the R CrA molecular cloud, with estimated ages of ~10 Myr (Neuhäuser et al.), whereas PDS 66 is a probable member of the ~20 Myr old Lower Centaurus-Crux subgroup of the Scorpius-Centaurus OB association (Mamajek et al.). The continuum emission toward these three sources is unresolved at the 24" SEST resolution and likely originates from circumstellar accretion disks, each with estimated dust masses of ~5×10-5 Msolar. Analysis of the visibility data toward HD 107146 (age~80-200 Myr) indicates that the 3 mm continuum emission is centered on the star within the astrometric uncertainties and resolved with a Gaussian-fit FWHM size of (6.5"+/-1.4")×(4.2"+/-1.3"), or 185AU×120 AU. The results from our continuum survey are combined with published observations to quantify the evolution of dust mass with time by comparing the mass distributions for samples with different stellar ages. The frequency distribution of circumstellar dust masses around solar-type stars in the Taurus molecular cloud (age~2 Myr) is distinguished from that around 3-10 Myr and 10-30 Myr old stars at a significance level of ~1.5 and ~3 σ, respectively. These results suggest a decrease in the mass of dust contained in small dust grains and/or changes in the grain properties by stellar ages of 10-30 Myr, consistent with previous conclusions. Further

  10. STAR CLUSTERS IN A NUCLEAR STAR FORMING RING: THE DISAPPEARING STRING OF PEARLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Väisänen, Petri; Barway, Sudhanshu; Randriamanakoto, Zara, E-mail: petri@saao.ac.za

    2014-12-20

    An analysis of the star cluster population in a low-luminosity early-type galaxy, NGC 2328, is presented. The clusters are found in a tight star forming nuclear spiral/ring pattern and we also identify a bar from structural two-dimensional decomposition. These massive clusters are forming very efficiently in the circumnuclear environment and they are young, possibly all less than 30 Myr of age. The clusters indicate an azimuthal age gradient, consistent with a ''pearls-on-a-string'' formation scenario, suggesting bar-driven gas inflow. The cluster mass function has a robust down turn at low masses at all age bins. Assuming clusters are born with a power-lawmore » distribution, this indicates extremely rapid disruption at timescales of just several million years. If found to be typical, it means that clusters born in dense circumnuclear rings do not survive to become old globular clusters in non-interacting systems.« less

  11. The Formation and Early Evolution of Embedded Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Barnes, Peter

    We propose to combine Spitzer, WISE, Herschel, and other archival spacecraft data with an existing ground- and space-based mm-wave to near-IR survey of molecular clouds over a large portion of the Milky Way, in order to systematically study the formation and early evolution of massive stars and star clusters, and provide new observational calibrations for a theoretical paradigm of this key astrophysical problem. Central Objectives: The Galactic Census of High- and Medium-mass Protostars (CHaMP) is a large, unbiased, uniform, and panchromatic survey of massive star and cluster formation and early evolution, covering 20°x6° of the Galactic Plane. Its uniqueness lies in the comprehensive molecular spectroscopy of 303 massive dense clumps, which have also been included in several archival spacecraft surveys. Our objective is a systematic demographic analysis of massive star and cluster formation, one which has not been possible without knowledge of our CHaMP cloud sample, including all clouds with embedded clusters as well as those that have not yet formed massive stars. For proto-clusters deeply embedded within dense molecular clouds, analysis of these space-based data will: 1. Yield a complete census of Young Stellar Objects in each cluster. 2. Allow systematic measurements of embedded cluster properties: spectral energy distributions, luminosity functions, protostellar and disk fractions, and how these vary with cluster mass, age, and density. Combined with other, similarly complete and unbiased infrared and mm data, CHaMP's goals include: 3. A detailed comparison of the embedded stellar populations with their natal dense gas to derive extinction maps, star formation efficiencies and feedback effects, and the kinematics, physics, and chemistry of the gas in and around the clusters. 4. Tying the demographics, age spreads, and timescales of the clusters, based on pre-Main Sequence evolution, to that of the dense gas clumps and Giant Molecular Clouds. 5. A

  12. A Search for Laser Emission with Megawatt Thresholds from 5600 FGKM Stars

    NASA Astrophysics Data System (ADS)

    Tellis, Nathaniel K.; Marcy, Geoffrey W.

    2017-06-01

    We searched high-resolution spectra of 5600 nearby stars for emission lines that are both inconsistent with a natural origin and unresolved spatially, as would be expected from extraterrestrial optical lasers. The spectra were obtained with the Keck 10 m telescope, including light coming from within 0.5 arcsec of the star, corresponding typically to within a few to tens of astronomical units of the star, and covering nearly the entire visible wavelength range from 3640 to 7890 Å. We establish detection thresholds by injecting synthetic laser emission lines into our spectra and blindly analyzing them for detections. We compute flux density detection thresholds for all wavelengths and spectral types sampled. Our detection thresholds for the power of the lasers themselves range from 3 kW to 13 MW, independent of distance to the star but dependent on the competing “glare” of the spectral energy distribution of the star and on the wavelength of the laser light, launched from a benchmark, diffraction-limited 10 m class telescope. We found no such laser emission coming from the planetary region around any of the 5600 stars. Because they contain roughly 2000 lukewarm, Earth-size planets, we rule out models of the Milky Way in which over 0.1% of warm, Earth-size planets harbor technological civilizations that, intentionally or not, are beaming optical lasers toward us. A next-generation spectroscopic laser search will be done by the Breakthrough Listen initiative, targeting more stars, especially stellar types overlooked here including spectral types O, B, A, early F, late M, and brown dwarfs, and astrophysical exotica.

  13. OB stars at the lowest Local Group metallicity. GTC-OSIRIS observations of Sextans A

    NASA Astrophysics Data System (ADS)

    Camacho, I.; Garcia, M.; Herrero, A.; Simón-Díaz, S.

    2016-01-01

    Context. Massive stars play an important role in the chemical and dynamical evolution of the Universe. The first metal-poor stars may have started the reionization of the Universe. To understand these early epochs it is necessary to know the behavior and the physical properties of massive stars in very metal-poor environments. We focus on the massive stellar content of the metal-poor irregular galaxy Sextans A. Aims: Our aim is to find and classify OB stars in Sextans A, so as to later determine accurate stellar parameters of these blue massive stars in this low-metallicity region (Z ~ 0.1 Z⊙). Methods: Using UBV photometry, the reddening-free index Q and GALEX imaging, we built a list of blue massive star candidates in Sextans A. We obtained low-resolution (R ~ 1000) GTC-OSIRIS spectra for a fraction of them and carried out spectral classification. For the confirmed O-stars, we derived preliminary stellar parameters. Results: The target selection criteria and observations were successful and have produced the first spectroscopic atlas of OB-type stars in Sextans A. From the whole sample of 18 observed stars, 12 were classified as early OB-types, including 5 O-stars. The radial velocities of all target stars are in agreement with their Sextans A membership, although three of them show significant deviations. We determined the stellar parameters of the O-type stars using the stellar atmosphere code FASTWIND and revisited the sub-SMC temperature scale. Two of the O-stars are consistent with relatively strong winds and enhanced helium abundances, although results are not conclusive. We discuss the position of the OB stars in the HRD. Initial stellar masses run from slightly below 20 up to 40 solar masses. Conclusions: The target selection method worked well for Sextans A. The stellar temperatures are consistent with findings in other galaxies. Some of the targets deserve follow-up spectroscopy because of indications of a runaway nature, an enhanced helium abundance

  14. Water on the Early M Supergiant Stars α Orionis and μ Cephei

    NASA Astrophysics Data System (ADS)

    Tsuji, T.

    2000-08-01

    We reanalyze the spectra of α Ori (M2 Iab) and μ Cep (M2 Ia) observed with the balloon-borne telescope Stratoscope II more than 35 years ago, and we confirm the presence of water in these early M supergiant stars. This identification was first proposed by the Stratoscope observers themselves (Woolf, Schwarzschild, and Rose in 1964; and Danielson, Woolf, and Gaustad in 1965), but this important discovery was overlooked for a long time without any follow-up observation. Consequently, this finding has so far had little influence on the theory of the atmosphere of red supergiant stars. A reason for this may be due to an early criticism by Wing and Spinrad, who suggested CN instead of H2O for the spectral features observed by Stratoscope II. This alternative proposition has more easily been accepted since CN has widely been observed from the Sun to red supergiants, while H2O has been observed only in very cool stars such as Mira variables. In fact, we confirm that the self-consistent photospheric model of the early M supergiants shows CN bands but no H2O band in the near-infrared. Nevertheless, we find that the contribution of CN is only minor and that H2O should be the dominant absorber for the 1.4 and 1.9 μm features on the Stratoscope spectra of α Ori and μ Cep, a conclusion opposite to that of Wing and Spinrad. The observed spectra can best be interpreted by the water gas with the column density of the order of 1020 cm-2 and temperature about 1500+/-500 K, but they cannot be originating in the photosphere. We suggest a possible presence of a gaseous component not as hot as the chromosphere but warmer than the cool expanding envelope. On the other hand, we notice that the mid-infrared pure-rotation lines of H2O recently discovered on Betelgeuse (α Ori) and Antares (α Sco) by Jennings and Sada may partly be originating in the photosphere, even though the larger part should again be nonphotospheric in origin. Thus, the presence of water possibly originating in

  15. A search for spectroscopic binaries among the runaway O type stars

    NASA Technical Reports Server (NTRS)

    Stone, R. C.

    1982-01-01

    Numerous radial velocity measurements of medium dispersion were made for the 10 brighter stars given in Stone's list of very probable O type runaways. All plates were measured with the KPNO PDS microdensitometer, and a new iterative reductional analysis was used to derive plate velocities, which are estimated to be 1.6 times more accurate internally than those found by using the traditional method. Of thse stars, psi Per, alpha Cam, HD 188209, and 26 Cep are identified as probable velocity variables, while 9 Sge, lambda Cep, and HD 218915 are classed as possible variables. If the source of this variability is Keplerian rather than atmospheric, which cannot be established unequivocally from the observations of this paper, psi Per could be a spectroscopic binary with a black hole companion, and at least 1.2 solar mass. The detection of runaway binary systems from radial velocity measurements is discussed.

  16. The sensitivity of harassment to orbit: mass loss from early-type dwarfs in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Smith, R.; Sánchez-Janssen, R.; Beasley, M. A.; Candlish, G. N.; Gibson, B. K.; Puzia, T. H.; Janz, J.; Knebe, A.; Aguerri, J. A. L.; Lisker, T.; Hensler, G.; Fellhauer, M.; Ferrarese, L.; Yi, S. K.

    2015-12-01

    We conduct a comprehensive numerical study of the orbital dependence of harassment on early-type dwarfs consisting of 168 different orbits within a realistic, Virgo-like cluster, varying in eccentricity and pericentre distance. We find harassment is only effective at stripping stars or truncating their stellar discs for orbits that enter deep into the cluster core. Comparing to the orbital distribution in cosmological simulations, we find that the majority of the orbits (more than three quarters) result in no stellar mass loss. We also study the effects on the radial profiles of the globular cluster systems of early-type dwarfs. We find these are significantly altered only if harassment is very strong. This suggests that perhaps most early-type dwarfs in clusters such as Virgo have not suffered any tidal stripping of stars or globular clusters due to harassment, as these components are safely embedded deep within their dark matter halo. We demonstrate that this result is actually consistent with an earlier study of harassment of dwarf galaxies, despite the apparent contradiction. Those few dwarf models that do suffer stellar stripping are found out to the virial radius of the cluster at redshift = 0, which mixes them in with less strongly harassed galaxies. However when placed on phase-space diagrams, strongly harassed galaxies are found offset to lower velocities compared to weakly harassed galaxies. This remains true in a cosmological simulation, even when haloes have a wide range of masses and concentrations. Thus phase-space diagrams may be a useful tool for determining the relative likelihood that galaxies have been strongly or weakly harassed.

  17. A CCD Search for Variable Stars of Spectral Type B in the Northern Hemisphere Open Clusters. VII. NGC 1502

    NASA Astrophysics Data System (ADS)

    Michalska, G.; Pigulski, A.; Stęlicki, M.; Narwid, A.

    2009-12-01

    We present results of variability search in the field of the young open cluster NGC 1502. Eight variable stars were discovered. Of six other stars in the observed field that were suspected for variability, we confirm variability of two, including one β Cep star, NGC 1502-26. The remaining four suspects were found to be constant in our photometry. In addition, UBVIC photometry of the well-known massive eclipsing binary SZ Cam was obtained. The new variable stars include: two eclipsing binaries of which one is a relatively bright detached system with an EA-type light curve, an α2 CVn-type variable, an SPB candidate, a field RR Lyr star and three other variables showing variability of unknown origin. The variability of two of them is probably related to their emission in Hα, which has been measured by means of the α index obtained for 57 stars brighter than V≍16 mag in the central part of the observed field. Four other non-variable stars with emission in Hα were also found. Additionally, we provide VIC photometry for stars down to V=17 mag and UB photometry for about 50 brightest stars in the observed field. We also show that the 10 Myr isochrone fits very well the observed color-magnitude diagram if a distance of 1 kpc and mean reddening, E(V-IC)=0.9 mag are adopted.

  18. A Deep NuSTAR Survey of M31: Compact object types in our Nearest Neighbor Galaxy

    NASA Astrophysics Data System (ADS)

    Hornschemeier, Ann E.; Wik, Daniel R.; Yukita, Mihoko; Ptak, Andrew; Venters, Tonia M.; Lehmer, Bret; Maccarone, Thomas J.; Zezas, Andreas; Harrison, Fiona; Stern, Daniel; Williams, Benjamin F.; Vulic, Neven

    2017-08-01

    X-ray binaries (XRBs) trace young and old stellar populations in galaxies, and thus star formation rate and star formation history/stellar mass. X-ray emission from XRBs may be responsible for significant amounts of heating of the early Intergalactic Medium at Cosmic Dawn and may also play a significant role in reionization. Until recently, the E>10 keV (hard X-ray) emission from these populations could only be studied for XRBs in our own galaxy, where it is often difficult to measure accurate distances and thus luminosities. We have observed M31 in 4 NuSTAR fields for a total exposure of 1.4 Ms, covering the young stellar population in a swath of the disk (within the footprint of the Panchromatic Hubble Andromeda Treasury (PHAT) Survey) and older populations in the bulge. We detected more than 100 sources in the 4-25 keV band, where hard band (12-25 keV) emission has allowed us to discriminate between black holes and neutron stars in different accretion states. The luminosity function of the hard band detected sources are compared to Swift/BAT and INTEGRAL-derived luminosity functions of the Milky Way population, which reveals an excess of luminous sources in M31 when correcting for star formation rate and stellar mass.

  19. Age Dating Merger Events in Early Type Galaxies via the Detection of AGB Light

    NASA Technical Reports Server (NTRS)

    Bothun, G.

    2005-01-01

    A thorough statistical analysis of the J-H vs. H-K color plane of all detected early type galaxies in the 2MASS catalog with velocities less than 5000 km/s has been performed. This all sky survey is not sensitive to one particular galactic environment and therefore a representative range of early type galaxy environments have been sampled. Virtually all N-body simulation so major mergers produces a central starburst due to rapid collection of gas. This central starburst is of sufficient amplitude to change the stellar population in the central regions of the galaxy. Intermediate age populations are given away by the presence of AGB stars which will drive the central colors redder in H-K relative to the J- H baseline. This color anomaly has a lifetime of 2-5 billion years depending on the amplitude of the initial starburst Employing this technique on the entire 2MASS sample (several hundred galaxies) reveals that the AGB signature occurs less than 1% of the time. This is a straightforward indication that virtually all nearby early type galaxies have not had a major merger occur within the last few billion years.

  20. Biological damage of UV radiation in environments of F-type stars

    NASA Astrophysics Data System (ADS)

    Sato, Satoko

    I investigate the general astrobiological significance of F-type main-sequence stars with special consideration to stellar evolutionary aspects due to nuclear evolution. DNA is taken as a proxy for carbon-based macromolecules following the assumption that exobiology is most likely based on hydrocarbons. The DNA action spectrum is utilized to represent the relative damage of the stellar UV radiation. Planetary atmospheric attenuation is taken into account in the form of parameterized attenuation functions. My work is motivated by previous studies indicating that the UV environment of solar-like stars is one of the most critical elements in determining the habitability of exoplanets and exomoons. It contributes further to the exploration of the exobiological suitability of stars that are hotter and emit much higher photospheric UV fluxes than the Sun. I found that the damage inflicted on DNA for planets at Earth-equivalent positions is between 2.5 and 7.1 times higher than for solar-like stars, and there are intricate relations for the time-dependence of damage during stellar main-sequence evolution. If atmospheric attenuation is included, however, less damage is obtained in alignment to the attenuation parameters. Also, the outer part of late F-type stars have similar UV conditions to Earth. Therefore, F-type circumstellar environments should not be excluded from candidates for habitable places on the grounds of higher stellar UV emission than the Sun. Besides the extensive theoretical component of this study, emphasis is furthermore placed on applications to observed planetary systems including CoRoT-3, WASP-14, HD 197286, HD 179949, upsilon And, and HD 86264.

  1. On the origin of the hypervelocity runaway star HD 271791

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2010-01-01

    We discuss the origin of the early-B-type runaway star HD 271791 and show that its extremely high velocity (≃530 - 920km s-1) cannot be explained within the framework of the binary-supernova ejection scenario. Instead, we suggest that HD 271791 attained its peculiar velocity in the course of a strong dynamical encounter between two hard, massive binaries or through an exchange encounter between a hard, massive binary and a very massive star, formed through runaway mergers of ordinary massive stars in the dense core of a young massive star cluster.

  2. High-velocity runaway stars from three-body encounters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2010-01-01

    We performed numerical simulations of dynamical encounters between hard, massive binaries and a very massive star (VMS; formed through runaway mergers of ordinary stars in the dense core of a young massive star cluster) to explore the hypothesis that this dynamical process could be responsible for the origin of high-velocity (≥ 200 - 400 km s-1) early or late B-type stars. We estimated the typical velocities produced in encounters between very tight massive binaries and VMSs (of mass of ≥ 200 M⊙) and found that about 3 - 4% of all encounters produce velocities ≥ 400 km s-1, while in about 2% of encounters the escapers attain velocities exceeding the Milky Ways's escape velocity. We therefore argue that the origin of high-velocity (≥ 200 - 400 km s-1) runaway stars and at least some so-called hypervelocity stars could be associated with dynamical encounters between the tightest massive binaries and VMSs formed in the cores of star clusters. We also simulated dynamical encounters between tight massive binaries and single ordinary 50 - 100 M⊙ stars. We found that from 1 to ≃ 4% of these encounters can produce runaway stars with velocities of ≥ 300 - 400 km s-1 (typical of the bound population of high-velocity halo B-type stars) and occasionally (in less than 1% of encounters) produce hypervelocity (≥ 700 km s-1) late B-type escapers.

  3. The new Be-type star HD 147196 in the Rho Ophiuchi dark cloud region

    NASA Technical Reports Server (NTRS)

    The, P. S.; Perez, M. R.; De Winter, D.; Van Den Ancker, M. E.

    1993-01-01

    The newly discovered hot-emission line star, HD 147196 in the Rho Oph dark cloud region was observed spectroscopically and photometrically and high and low resolution IUE spectra were obtained. The finding of Irvine (1990) that this relatively bright star show its H-alpha-line in emission is confirmed. Previous H-alpha-surveys of the Rho Oph star-forming region did not detect HD 147196 as an H-alpha-emission star, meaning that it must recently be very active and has perhaps transformed itself from a B-type star at shell phase to a Be-phase. The Mg II h + k resonance lines are in absorption and they appear to be interstellar in nature, which means that either the abundance of Mg in the extended atmosphere of the star is low or that the shell is not extended enough to produce emission lines of Mg II. Photometric observations of this B8 V type star do not show any variations during at least the years covered by our monitoring or any excess of NIR radiation in its spectral energy distribution up to the M-passband at 4.8 microns.

  4. Two spotted and magnetic early B-type stars in the young open cluster NGC 2264 discovered by MOST and ESPaDOnS

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Zwintz, K.; Castro, N.; Langer, N.; Lorenz, D.; Schneider, F. R. N.; Kuschnig, R.; Matthews, J. M.; Alecian, E.; Wade, G. A.; Barnes, T. G.; Thoul, A. A.

    2014-02-01

    Star clusters are known as superb tools for understanding stellar evolution. In a quest for understanding the physical origin of magnetism and chemical peculiarity in about 7% of the massive main-sequence stars, we analysed two of the ten brightest members of the ~10 Myr old Galactic open cluster NGC 2264, the early B-dwarfs HD 47887 and HD 47777. We find accurate rotation periods of 1.95 and 2.64 days, respectively, from MOST photometry. We obtained ESPaDOnS spectropolarimetric observations, through which we determined stellar parameters, detailed chemical surface abundances, projected rotational velocities, and the inclination angles of the rotation axis. Because we found only small (<5 km s-1) radial velocity variations, most likely caused by spots, we can rule out that HD 47887 and HD 47777 are close binaries. Finally, using the least-squares deconvolution technique, we found that both stars possess a large-scale magnetic field with an average longitudinal field strength of about 400 G. From a simultaneous fit of the stellar parameters we determine the evolutionary masses of HD 47887 and HD 47777 to be 9.4+0.6-0.7 M⊙ and 7.6+0.5-0.5 M⊙. Interestingly, HD 47777 shows a remarkable helium underabundance, typical of helium-weak chemically peculiar stars, while the abundances of HD 47887 are normal, which might imply that diffusion is operating in the lower mass star but not in the slightly more massive one. Furthermore, we argue that the rather slow rotation, as well as the lack of nitrogen enrichment in both stars, can be consistent with both the fossil and the binary hypothesis for the origin of the magnetic field. However, the presence of two magnetic and apparently single stars near the top of the cluster mass-function may speak in favour of the latter. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Microsatellite Systems Canada Inc. (MSCI), formerly part of Dynacon, Inc., the University of Toronto Institute for

  5. THE EFFECT OF SECOND-GENERATION POPULATIONS ON THE INTEGRATED COLORS OF METAL-RICH GLOBULAR CLUSTERS IN EARLY-TYPE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul; Lee, Sang-Yoon; Yoon, Suk-Jin

    2013-05-20

    The mean color of globular clusters (GCs) in early-type galaxies is in general bluer than the integrated color of halo field stars in host galaxies. Metal-rich GCs often appear more associated with field stars than metal-poor GCs, yet show bluer colors than their host galaxy light. Motivated by the discovery of multiple stellar populations in Milky Way GCs, we present a new scenario in which the presence of second-generation (SG) stars in GCs is responsible for the color discrepancy between metal-rich GCs and field stars. The model assumes that the SG populations have an enhanced helium abundance as evidenced bymore » observations, and it gives a good explanation of the bluer optical colors of metal-rich GCs than field stars as well as strong Balmer lines and blue UV colors of metal-rich GCs. Ours may be complementary to the recent scenario suggesting the difference in stellar mass functions (MFs) as an origin for the GC-to-star color offset. A quantitative comparison is given between the SG and MF models.« less

  6. Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin; Sand, David J.; Valenti, Stefano; Brown, Peter; Howell, D. Andrew; McCully, Curtis; Kasen, Daniel; Arcavi, Iair; Azalee Bostroem, K.; Tartaglia, Leonardo; Hsiao, Eric Y.; Davis, Scott; Shahbandeh, Melissa; Stritzinger, Maximilian D.

    2017-08-01

    We present very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light curve is unique in that it has a blue bump during the first five days of observations in the U, B, and g bands, which is clearly resolved given our photometric cadence of 5.7 hr during that time span. We model the light curve as the combination of early shocking of the supernova ejecta against a nondegenerate companion star plus a standard SN Ia component. Our best-fit model suggests the presence of a subgiant star 56 R ⊙ from the exploding white dwarf, although this number is highly model-dependent. While this model matches the optical light curve well, it overpredicts the observed flux in the ultraviolet bands. This may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual nickel distribution. Early optical spectra of SN 2017cbv show strong carbon (C II λ6580) absorption up through day -13 with respect to maximum light, suggesting that the progenitor system contains a significant amount of unburned material. These early results on SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovae to resolve standing questions about the progenitor systems and explosion mechanisms of SNe Ia.

  7. Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosseinzadeh, Griffin; Howell, D. Andrew; McCully, Curtis

    We present very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light curve is unique in that it has a blue bump during the first five days of observations in the U , B , and g bands, which is clearly resolved given our photometric cadence of 5.7 hr during that time span. We model the light curve as the combination of early shocking of the supernova ejecta against a nondegenerate companion star plus a standard SN Ia component. Our best-fit model suggests the presence of a subgiant star 56 R {sub ☉} from the explodingmore » white dwarf, although this number is highly model-dependent. While this model matches the optical light curve well, it overpredicts the observed flux in the ultraviolet bands. This may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual nickel distribution. Early optical spectra of SN 2017cbv show strong carbon (C ii λ 6580) absorption up through day −13 with respect to maximum light, suggesting that the progenitor system contains a significant amount of unburned material. These early results on SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovae to resolve standing questions about the progenitor systems and explosion mechanisms of SNe Ia.« less

  8. The OGLE Collection of Variable Stars. Classical, Type II, and Anomalous Cepheids toward the Galactic Center

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Skowron, D. M.; Skowron, J.; Mróz, P.; Pawlak, M.; Rybicki, K.; Jacyszyn-Dobrzeniecka, A.

    2017-12-01

    We present a collection of classical, typeII, and anomalous Cepheids detected in the OGLE fields toward the Galactic center. The sample contains 87 classical Cepheids pulsating in one, two or three radial modes, 924 type II Cepheids divided into BL Her, W Vir, peculiar W Vir, and RV Tau stars, and 20 anomalous Cepheids - first such objects found in the Galactic bulge. Additionally, we upgrade the OGLE Collection of RR Lyr stars in the Galactic bulge by adding 828 newly identified variables. For all Cepheids and RRLyr stars, we publish time-series VI photometry obtained during the OGLE-IV project, from 2010 through 2017. We discuss basic properties of our classical pulsators: their spatial distribution, light curve morphology, period-luminosity relations, and position in the Petersen diagram. We present the most interesting individual objects in our collection: a typeII Cepheid with additional eclipsing modulation, WVir stars with the period doubling effect and the RVb phenomenon, a mode-switching RR Lyr star, and a triple-mode anomalous RRd star.

  9. The hELENa project - II. Abundance distribution trends of early-type galaxies: from dwarfs to giants

    NASA Astrophysics Data System (ADS)

    Sybilska, A.; Kuntschner, H.; van de Ven, G.; Vazdekis, A.; Falcón-Barroso, J.; Peletier, R. F.; Lisker, T.

    2018-06-01

    In this second paper of The role of Environment in shaping Low-mass Early-type Nearby galaxies (hELENa) series we study [Mg/Fe] abundance distribution trends of early-type galaxies (ETGs) observed with the Spectrographic Areal Unit for Research on Optical Nebulae integral field unit, spanning a wide range in mass and local environment densities: 20 low-mass early types (dEs) of Sybilska et al. and 258 massive early types (ETGs) of the ATLAS3D project, all homogeneously reduced and analysed. We show that the [Mg/Fe] ratios scale with velocity dispersion (σ) at fixed [Fe/H] and that they evolve with [Fe/H] along similar paths for all early types, grouped in bins of increasing local and global σ, as well as the second velocity moment Vrms, indicating a common inside-out formation pattern. We then place our dEs on the [Mg/Fe] versus [Fe/H] diagram of Local Group galaxies and show that dEs occupy the same region and show a similar trend line slope in the diagram as the high-metallicity stars of the Milky Way and the Large Magellanic Cloud. This finding extends the similar trend found for dwarf spheroidal versus dwarf irregular galaxies and supports the notion that dEs have evolved from late-type galaxies that have lost their gas at a point of their evolution, which likely coincided with them entering denser environments.

  10. Multiplicity At Early Stages Of Star Formation, Small Clusters. Observations Overview

    NASA Astrophysics Data System (ADS)

    Saito, Masao

    2017-07-01

    The SOLA (Soul of Lupus with ALMA) project is conducting comprehensive studies of the Lupus Molecular Clouds and their star formation processes covering 10-10^4 AU scale. Our goal is to exploit ALMA and other facilities over a wide wavelength range to establish a prototypical low-mass star forming scenario based on the Lupus region. In the presentation, we will focus on angular momentum in dense cores in a filament, molecular outflows from young stars, and Class 0/I binary survey in Lupus as well as overview of our projects. Our binary survey was conducted in ALMA cycle 2 and achieved at 0.2-0.3 arcsec resolution discovering new binary systems in Lupus. At the same time, we obtained EX Lup, EXor type burst source, data in ALMA Cycle 3.

  11. Multiplicity at Early Stages of Star Formation, Small Clusters. Observations Overview

    NASA Astrophysics Data System (ADS)

    Saito, Masao

    2017-06-01

    The SOLA (Soul of Lupus with ALMA) project is conducting comprehensive studies of the Lupus Molecular Clouds and their star formation processes covering 10-10^4 AU scale. Our goal is to exploit ALMA and other facilities over a wide wavelength range to establish a prototypical low-mass star forming scenario based on the Lupus region. In the presentation, we will focus on angular momentum in dense cores in a filament, molecular outflows from young stars, and Class 0/I binary survey in Lupus as well as overview of our projects. Our binary survey was conducted in ALMA cycle 2 and achieved at 0.2-0.3 arcsec resolution discovering new binary systems in Lupus. At the same time, we obtained EX Lup, EXor type burst source, data in ALMA Cycle 3.

  12. Detailed modelling of the circumstellar molecular line emission of the S-type AGB star W Aquilae

    NASA Astrophysics Data System (ADS)

    Danilovich, T.; Bergman, P.; Justtanont, K.; Lombaert, R.; Maercker, M.; Olofsson, H.; Ramstedt, S.; Royer, P.

    2014-09-01

    Context. S-type AGB stars have a C/O ratio which suggests that they are transition objects between oxygen-rich M-type stars and carbon-rich C-type stars. As such, their circumstellar compositions of gas and dust are thought to be sensitive to their precise C/O ratio, and it is therefore of particular interest to examine their circumstellar properties. Aims: We present new Herschel HIFI and PACS sub-millimetre and far-infrared line observations of several molecular species towards the S-type AGB star W Aql. We use these observations, which probe a wide range of gas temperatures, to constrain the circumstellar properties of W Aql, including mass-loss rate and molecular abundances. Methods: We used radiative transfer codes to model the circumstellar dust and molecular line emission to determine circumstellar properties and molecular abundances. We assumed a spherically symmetric envelope formed by a constant mass-loss rate driven by an accelerating wind. Our model includes fully integrated H2O line cooling as part of the solution of the energy balance. Results: We detect circumstellar molecular lines from CO, H2O, SiO, HCN, and, for the first time in an S-type AGB star, NH3. The radiative transfer calculations result in an estimated mass-loss rate for W Aql of 4.0 × 10-6 M⊙ yr-1 based on the 12CO lines. The estimated 12CO/13CO ratio is 29, which is in line with ratios previously derived for S-type AGB stars. We find an H2O abundance of 1.5 × 10-5, which is intermediate to the abundances expected for M and C stars, and an ortho/para ratio for H2O that is consistent with formation at warm temperatures. We find an HCN abundance of 3 × 10-6, and, although no CN lines are detected using HIFI, we are able to put some constraints on the abundance, 6 × 10-6, and distribution of CN in W Aql's circumstellar envelopeusing ground-based data. We find an SiO abundance of 3 × 10-6, and an NH3 abundance of 1.7 × 10-5, confined to a small envelope. If we include uncertainties

  13. Kepler Beyond Planets: Finding Exploding Stars (Type Ia Supernova from a White Dwarf Stealing Matter)

    NASA Image and Video Library

    2018-03-26

    This frame from an animation shows a gigantic star exploding in a "core collapse" supernova. As atoms fuse inside the star, eventually the star can't support its own weight anymore. Gravity makes the star collapse on itself. Core collapse supernovae are called type Ib, Ic, or II depending on the chemical elements present. Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That's really difficult -- there's no telling when or where a supernova might happen next. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22352

  14. Ultraviolet observations of four symbiotic stars

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Feibelman, W. A.; Hobbs, R. W.; Kafatos, M.

    1982-01-01

    Observations were obtained with the International Ultraviolet Explorer (IUE) of four symbiotic stars. The UV spectra of YY Her, SY Mus, CL Sco, and BX Mon are characterized by varying degrees of thermal excitation. These low resolution spectra have been analyzed in terms of line-blanketed model atmospheres of early A, B, and F type stars in order to identify the nature of the hot companion in these systems. The expected emission from early main sequence stars does not fully explain the observed distribution of UV continuum energy over the entire IUE spectral range (1200-3200 A). More likely the observed continuum may be originating from an accretion disk and/or hot subdwarf that photoionizes circumstellar material, and gives rise to the high excitation lines that have been detected. The Bowen fluorescent excited lines of O III in SY Mus exhibit slightly broadened profiles that suggest possible turbulent motions in an extended circumstellar cloud with characteristic velocities of approximately 300 km/s.

  15. Identifying the progenitors of present-day early-type galaxies in observational surveys: correcting `progenitor bias' using the Horizon-AGN simulation

    NASA Astrophysics Data System (ADS)

    Martin, G.; Kaviraj, S.; Devriendt, J. E. G.; Dubois, Y.; Pichon, C.; Laigle, C.

    2018-03-01

    As endpoints of the hierarchical mass-assembly process, the stellar populations of local early-type galaxies encode the assembly history of galaxies over cosmic time. We use Horizon-AGN, a cosmological hydrodynamical simulation, to study the merger histories of local early-type galaxies and track how the morphological mix of their progenitors evolves over time. We provide a framework for alleviating `progenitor bias' - the bias that occurs if one uses only early-type galaxies to study the progenitor population. Early types attain their final morphology at relatively early epochs - by z ˜ 1, around 60 per cent of today's early types have had their last significant merger. At all redshifts, the majority of mergers have one late-type progenitor, with late-late mergers dominating at z > 1.5 and early-early mergers becoming significant only at z < 0.5. Progenitor bias is severe at all but the lowest redshifts - e.g. at z ˜ 0.6, less than 50 per cent of the stellar mass in today's early types is actually in progenitors with early-type morphology, while, at z ˜ 2, studying only early types misses almost all (80 per cent) of the stellar mass that eventually ends up in local early-type systems. At high redshift, almost all massive late-type galaxies, regardless of their local environment or star formation rate, are progenitors of local early-type galaxies, as are lower mass (M⋆ < 1010.5 M_{⊙}) late-types as long as they reside in high-density environments. In this new era of large observational surveys (e.g. LSST, JWST), this study provides a framework for studying how today's early-type galaxies have been built up over cosmic time.

  16. A Search for Transiting Neptune-Mass Extrasolar Planets in High-Precision Photometry of Solar-Type Stars

    NASA Technical Reports Server (NTRS)

    Henry, Stephen M.; Gillman, Amelie r.; Henry, Gregory W.

    2005-01-01

    Tennessee State University operates several automatic photometric telescopes (APTs) at Fairborn Observatory in southern Arizona. Four 0.8 m APTs have been dedicated to measuring subtle luminosity variations that accompany magnetic cycles in solar-type stars. Over 1000 program and comparison stars have been observed every clear night in this program for up to 12 years with a precision of approximately 0.0015 mag for a single observation. We have developed a transit-search algorithm, based on fitting a computed transit template for each trial period, and have used it to search our photometric database for transits of unknown companions. Extensive simulations with the APT data have shown that we can reliably recover transits with periods under 10 days as long as the transits have a depth of at least 0.0024 mag, or about 1.6 times the scatter in the photometric observations. Thus, due to our high photometric precision, we are sensitive to transits of possible short-period Neptune-mass planets that likely would have escaped detection by current radial velocity techniques. Our search of the APT data sets for 1087 program and comparison stars revealed no new transiting planets. However, the detection of several unknown grazing eclipsing binaries from among our comparison stars, with eclipse depths of only a few millimags, illustrates the success of our technique. We have used this negative result to place limits on the frequency of Neptune-mass planets in close orbits around solar-type stars in the Sun's vicinity.

  17. Supernovae from massive stars with extended tenuous envelopes

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; Yoon, Sung-Chul; Livne, Eli; Waldman, Roni

    2018-04-01

    Massive stars with a core-halo structure are interesting objects for stellar physics and hydrodynamics. Using simulations for stellar evolution, radiation hydrodynamics, and radiative transfer, we study the explosion of stars with an extended and tenuous envelope (i.e. stars in which 95% of the mass is contained within 10% or less of the surface radius). We consider both H-rich supergiant and He-giant progenitors resulting from close-binary evolution and dying with a final mass of 2.8-5 M⊙. An extended envelope causes the supernova (SN) shock to brake and a reverse shock to form, sweeping core material into a dense shell. The shock-deposited energy, which suffers little degradation from expansion, is trapped in ejecta layers of moderate optical depth, thereby enhancing the SN luminosity at early times. With the delayed 56Ni heating, we find that the resulting optical and near-IR light curves all exhibit a double-peak morphology. We show how an extended progenitor can explain the blue and featureless optical spectra of some Type IIb and Ib SNe. The dense shell formed by the reverse shock leads to line profiles with a smaller and near-constant width. This ejecta property can explain the statistically narrower profiles of Type IIb compared to Type Ib SNe, as well as the peculiar Hα profile seen in SN 1993J. At early times, our He-giant star explosion model shows a high luminosity, a blue colour, and featureless spectra reminiscent of the Type Ib SN 2008D, suggesting a low-mass progenitor.

  18. Nucleosynthesis Predictions for Intermediate-Mass AGB Stars: Comparison to Observations of Type I Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Karakas, Amanda I.; vanRaai, Mark A.; Lugaro, Maria; Sterling, Nicholas C.; Dinerstein, Harriet L.

    2008-01-01

    Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of approx. 3-8 Stellar Mass. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a C-13 pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] less than or approx. 0.6, consistent with Galactic Type I PNe where the observed enhancements are typically less than or approx. 0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the greater than or approx. 0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M grester than or approx.5 Stellar Mass) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 Stellar Mass), if these stars are to evolve into Type I PNe.

  19. ACTIVITY ANALYSES FOR SOLAR-TYPE STARS OBSERVED WITH KEPLER. I. PROXIES OF MAGNETIC ACTIVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Han; Wang, Huaning; Yun, Duo, E-mail: hehan@nao.cas.cn

    2015-11-15

    Light curves of solar-type stars often show gradual fluctuations due to rotational modulation by magnetic features (starspots and faculae) on stellar surfaces. Two quantitative measures of modulated light curves are employed as the proxies of magnetic activity for solar-type stars observed with Kepler telescope. The first is named autocorrelation index i{sub AC}, which describes the degree of periodicity of the light curve; the second is the effective fluctuation range of the light curve R{sub eff}, which reflects the depth of rotational modulation. The two measures are complementary and depict different aspects of magnetic activities on solar-type stars. By using themore » two proxies i{sub AC} and R{sub eff}, we analyzed activity properties of two carefully selected solar-type stars observed with Kepler (Kepler ID: 9766237 and 10864581), which have distinct rotational periods (14.7 versus 6.0 days). We also applied the two measures to the Sun for a comparative study. The result shows that both the measures can reveal cyclic activity variations (referred to as i{sub AC}-cycle and R{sub eff}-cycle) on the two Kepler stars and the Sun. For the Kepler star with the faster rotation rate, i{sub AC}-cycle and R{sub eff}-cycle are in the same phase, while for the Sun (slower rotator), they are in the opposite phase. By comparing the solar light curve with simultaneous photospheric magnetograms, it is identified that the magnetic feature that causes the periodic light curve during solar minima is the faculae of the enhanced network region, which can also be a candidate of magnetic features that dominate the periodic light curves on the two Kepler stars.« less

  20. The Abundances of the Fe Group Elements in Early B Stars in the Magellanic Clouds and Bridge

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Adelman, Saul J.

    2016-01-01

    The abundances of three Fe Group elements (V, Cr, and Fe) in 9 early main-sequence band B stars in the LMC, 7 in the SMC , and two in the Magellanic Bridge have been determined from archival FUSE observations and the Hubeny/Lanz NLTE programs TLUSTY/SYNSPEC. Lines from the Fe group elements, except for a few weak multiplets of Fe III, are not observable in the optical spectral region. The best set of lines in the FUSE spectral region are Fe III (UV1), V III 1150 Å, and Cr III 1137 Å. The abundances of these elements in early B stars are a marker for recent SNe Ia activity, as a single exploding white dwarf can deliver 0.5 solar masses of Ni-56 that decays into Fe to the ISM. The Fe group abundances in an older population of stars primarily reflect SNe II activity, in which a single explosion delivers only 0.07 solar masses of Ni-56 to the ISM (the rest remains trapped in the neutron star). The abundances of the Fe group elements in early B stars not only track SNe Ia activity but are also important for computing evolutionary tracks for massive stars. In general, the Fe abundance relative to the sun's value is comparable to the mean abundances for the lighter elements in the Clouds/Bridge but the values of [V,Cr/Fe]sun are smaller. This presentation will discuss the spatial distribution of the Fe Group elements in the Magellanic Clouds, and compare it with our galaxy in which the abundance of Fe declines with radial distance from the center. Support from NASA grants NAG5-13212, NNX10AD66G, STScI HST-GO-13346.22, and USC's Women in Science and Engineering (WiSE) program is greatly appreciated.

  1. A Search for Laser Emission with Megawatt Thresholds from 5600 FGKM Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tellis, Nathaniel K.; Marcy, Geoffrey W., E-mail: Nate.tellis@gmail.com

    We searched high-resolution spectra of 5600 nearby stars for emission lines that are both inconsistent with a natural origin and unresolved spatially, as would be expected from extraterrestrial optical lasers. The spectra were obtained with the Keck 10 m telescope, including light coming from within 0.5 arcsec of the star, corresponding typically to within a few to tens of astronomical units of the star, and covering nearly the entire visible wavelength range from 3640 to 7890 Å. We establish detection thresholds by injecting synthetic laser emission lines into our spectra and blindly analyzing them for detections. We compute flux density detectionmore » thresholds for all wavelengths and spectral types sampled. Our detection thresholds for the power of the lasers themselves range from 3 kW to 13 MW, independent of distance to the star but dependent on the competing “glare” of the spectral energy distribution of the star and on the wavelength of the laser light, launched from a benchmark, diffraction-limited 10 m class telescope. We found no such laser emission coming from the planetary region around any of the 5600 stars. Because they contain roughly 2000 lukewarm, Earth-size planets, we rule out models of the Milky Way in which over 0.1% of warm, Earth-size planets harbor technological civilizations that, intentionally or not, are beaming optical lasers toward us. A next-generation spectroscopic laser search will be done by the Breakthrough Listen initiative, targeting more stars, especially stellar types overlooked here including spectral types O, B, A, early F, late M, and brown dwarfs, and astrophysical exotica.« less

  2. Photospheres of hot stars. III - Luminosity effects at spectral type 09.5

    NASA Technical Reports Server (NTRS)

    Voels, Stephen A.; Bohannan, Bruce; Abbott, David C.; Hummer, D. G.

    1989-01-01

    Hydrogen and helium line profiles with high signal-to-noise ratios were obtained for four stars of spectral type 09.5 (Alpha Cam, Xi Ori A, Delta Ori A,AE Aur) that form a sequence in luminosity: Ia, Ib, II, V. The basic stellar parameters of these stars are determined by fitting the observed line profiles of weak photospheric absorption lines with profiles from models which include the effect of radiation scattered back onto the photosphere from their stellar winds, an effect referred to as wind blanketing. For these stars, the inclusion of wind blanketing is significant only for the most luminous star, Alpha Cam, for which the effective temperature was shifted about -2000 K relative to an unblanketed model.

  3. A Comparison of the Near-Infrared Spectral Features of Early-Type Galaxies in the Virgo and Coma Clusters

    NASA Astrophysics Data System (ADS)

    Houdashelt, M. L.

    1992-05-01

    Initial results are presented from an examination of near-infrared spectra (6800 - 9200 Angstroms) of 34 early-type galaxies - 17 in the Virgo cluster, 10 in the Coma cluster and seven field members. It has previously been speculated that E/S0 galaxies of similar luminosity in the Virgo and Coma clusters have different red stellar populations. To explore this possibility, pseudo-equivalent widths of a number of near-IR spectral features have been measured. The important features studied include the TiO bands near 7100, 7890, 8197, 8500 and 8950 Angstroms, which are mainly produced by the late-type stars whose flux contributes only about 10-20\\ the near-IR. The strengths of the Ca triplet (8498, 8542, 8662 Angstroms) and Na I doublet (8183, 8195 Angstroms) are also measured, since these features are affected by the relative contribution of dwarf stars to the red light. Although the main focus of this work is the search for spectral differences among the Coma, Virgo and field E/S0 populations, each subgroup of galaxies (and the sample as a whole) are also examined for correlations among the feature strengths, galaxy color and luminosity.

  4. r-process enhanched metal-poor stars

    NASA Astrophysics Data System (ADS)

    Cowan, John; Sneden, Christopher; Lawler, James E.; Den Hartog, Elizabeth A.

    Abundance observations indicate the presence of rapid-neutron capture (i.e., r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy - the progenitors of the halo stars - responsible for neutron-capture synthesis of the heavy elements. The large star-to-star scatter observed in the abundances of neutron-capture element/iron ratios at low metallicities - which diminishes with in- creasing metallicity or [Fe/H] - suggests the formation of these heavy elements (presumably from certain types of supernovae) was rare in the early Galaxy. The stellar abundances also indicate a change from the r-process to the slow neutron capture (i.e., s-) process at higher metallicities in the Galaxy and provide insight into Galactic chemical evolution. Finally, the detection of thorium and uranium in halo and globular cluster stars offers an independent age-dating technique that can put lower limits on the age of the Galaxy, and hence the Universe.

  5. Debris Disks Among the Shell Stars: Insights from Spitzer

    NASA Technical Reports Server (NTRS)

    Roberge, Aki; Weinberger, Alycia; Teske, Johanna

    2008-01-01

    Shell stars are a class of early-type stars that show narrow absorption lines in their spectra that appear to arise from circumstellar class. This observationally defined class contains a variety of objects, including evolved stars and classical Be stars. However, some of the main sequence shell stars harbor debris disks and younger protoplanetary disks, though this aspect of the class has been largely overlooked. We surveyed a set of main sequence stars for cool dust using Spitzer MIPS and found four additional systems with IR excesses at both 24 and 70 microns. This indicates that the stars have both circumstellar gas and dust, and are likely to be edge-on debris disks. Our estimate of the disk fraction among nearby main sequence shell stars is 48% +/- 14%. We discuss here the nature of the shell stars and present preliminary results from ground-based optical spectra of the survey target stars. We will also outline our planned studies aimed at further characterization of the shell star class.

  6. VizieR Online Data Catalog: Far-UV spectral atlas of O-type stars (Smith, 2012)

    NASA Astrophysics Data System (ADS)

    Smith, M. A.

    2012-10-01

    In this paper, we present a spectral atlas covering the wavelength interval 930-1188Å for O2-O9.5 stars using Far-Ultraviolet Spectroscopic Explorer archival data. The stars selected for the atlas were drawn from three populations: Galactic main-sequence (classes III-V) stars, supergiants, and main-sequence stars in the Magellanic Clouds, which have low metallicities. For several of these stars, we have prepared FITS files comprised of pairs of merged spectra for user access via the Multimission Archive at Space Telescope (MAST). We chose spectra from the first population with spectral types O4, O5, O6, O7, O8, and O9.5 and used them to compile tables and figures with identifications of all possible atmospheric and interstellar medium lines in the region 949-1188Å. Our identified line totals for these six representative spectra are 821 (500), 992 (663), 1077 (749), 1178 (847), 1359 (1001), and 1798 (1392) lines, respectively, where the numbers in parentheses are the totals of lines formed in the atmospheres, according to spectral synthesis models. The total number of unique atmospheric identifications for the six main-sequence O-star template spectra is 1792, whereas the number of atmospheric lines in common to these spectra is 300. The number of identified lines decreases toward earlier types (increasing effective temperature), while the percentages of "missed" features (unknown lines not predicted from our spectral syntheses) drop from a high of 8% at type B0.2, from our recently published B-star far-UV atlas (Cat. J/ApJS/186/175), to 1%-3% for type O spectra. The percentages of overpredicted lines are similar, despite their being much higher for B-star spectra. (4 data files).

  7. Photospheres of hot stars. IV - Spectral type O4

    NASA Technical Reports Server (NTRS)

    Bohannan, Bruce; Abbott, David C.; Voels, Stephen A.; Hummer, David G.

    1990-01-01

    The basic stellar parameters of a supergiant (Zeta Pup) and two main-sequence stars, 9 Sgr and HD 46223, at spectral class O4 are determined using line profile analysis. The stellar parameters are determined by comparing high signal-to-noise hydrogen and helium line profiles with those from stellar atmosphere models which include the effect of radiation scattered back onto the photosphere from an overlying stellar wind, an effect referred to as wind blanketing. At spectral class O4, the inclusion of wind-blanketing in the model atmosphere reduces the effective temperature by an average of 10 percent. This shift in effective temperature is also reflected by shifts in several other stellar parameters relative to previous O4 spectral-type calibrations. It is also shown through the analysis of the two O4 V stars that scatter in spectral type calibrations is introduced by assuming that the observed line profile reflects the photospheric stellar parameters.

  8. Towards accurate radial velocities from early type spectra in the framework of an ESO key programme

    NASA Astrophysics Data System (ADS)

    Verschueren, Werner; David, M.; Hensberge, Herman

    In order to elucidate the internal kinematics in very young stellar groups, a dedicated machinery was set up, which made it possible to proceed from actual observations to reductions and correlation analysis to the ultimate derivation of early-type stellar radial velocities (RVs) with the requisite precision. The following ingredients are found to be essential to obtain RVs of early-type stars at the 1-km/s level of precision: high-resolution, high-S/N spectra covering a large wavelength range; maximal reduction of observational errors and the use of optimal reduction procedures; the intelligent use of a versatile cross-correlation package; and comparison of velocities derived from different regions of the spectrum in order to detect systematic mismatches between object and template spectrum in some of the lines.

  9. Extended main sequence turnoffs in intermediate-age star clusters: a correlation between turnoff width and early escape velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudfrooij, Paul; Kozhurina-Platais, Vera; Kalirai, Jason S.

    2014-12-10

    We present a color-magnitude diagram analysis of deep Hubble Space Telescope imaging of a mass-limited sample of 18 intermediate-age (1-2 Gyr old) star clusters in the Magellanic Clouds, including eight clusters for which new data were obtained. We find that all star clusters in our sample feature extended main-sequence turnoff (eMSTO) regions that are wider than can be accounted for by a simple stellar population (including unresolved binary stars). FWHM widths of the MSTOs indicate age spreads of 200-550 Myr. We evaluate the dynamical evolution of clusters with and without initial mass segregation. Our main results are (1) the fractionmore » of red clump (RC) stars in secondary RCs in eMSTO clusters scales with the fraction of MSTO stars having pseudo-ages of ≲1.35 Gyr; (2) the width of the pseudo-age distributions of eMSTO clusters is correlated with their central escape velocity v {sub esc}, both currently and at an age of 10 Myr. We find that these two results are unlikely to be reproduced by the effects of interactive binary stars or a range of stellar rotation velocities. We therefore argue that the eMSTO phenomenon is mainly caused by extended star formation within the clusters; and (3) we find that v {sub esc} ≥ 15 km s{sup –1} out to ages of at least 100 Myr for all clusters featuring eMSTOs, and v {sub esc} ≤ 12 km s{sup –1} at all ages for two lower-mass clusters in the same age range that do not show eMSTOs. We argue that eMSTOs only occur for clusters whose early escape velocities are higher than the wind velocities of stars that provide material from which second-generation stars can form. The threshold of 12-15 km s{sup –1} is consistent with wind velocities of intermediate-mass asymptotic giant branch stars and massive binary stars in the literature.« less

  10. R-process Enrichment in Cosmological Zoom Simulation of a Milkyway Type Halo by Neutron Star Mergers; The Origin of the MP-R and CEMP-R Stars

    NASA Astrophysics Data System (ADS)

    Safarzadeh, Mohammadtaher; Scannapieco, Evan

    2018-06-01

    The history of r-process enrichment in our galaxy is modeled through a novel set of zoom cosmo- logical simulations on a MilkyWay type galaxy. r-process sources are assumed to be neutron star mergers with a distribution of natal kicks and merge time distribution. We model turbulent mixing to estimate the pristine gas fraction in each simulation cell which we use to determine the Pop III star formation with assigned Carbon rich ejecta when going off as SNe. We follow the formation of Carbon-Enhanced Metal-Poor (CEMP) stars and the statistics of different r-process enhanced class of stars. The simulation underpredict the frequency of CEMP/MP stars by a factor of 2-4. Likewise the MP-rI/MP and MP-rII/MP and CEMP-r/CEMP cumulative ratios are all under predicted by 1-2 orders of magnitude. Our results show that NS binaries by themselves fall too short to explain the observed frequency of r-process enhanced stars and other sources of r-process enrichment at high redshifts are needed to fill the gap.

  11. Massive soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.

  12. Rotation and activity among solar-type stars of the Ursa Major Group

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Mayor, Michel

    1993-01-01

    We examine rotation and chromospheric activity among G and K dwarfs recently shown to be members of the Ursa Major Group (UMaG). Rotation periods for UMaG stars are smaller than for stars of the same colors in the Hyades, and by an amount corresponding to the Skumanich relation. Most UMaG stars have about the same level of Ca II and K emission, implying that they also have nearly uniform intrinsic rotation rates. That means that the diversity of rotation rates and levels of activity seen among solar-type stars in the Alpha Persei and Pleiades clusters has largely converged by the age of UMaG (0.3 Gyr).

  13. Determination of Li abundance in Solar type stars of intermediate brightness

    NASA Astrophysics Data System (ADS)

    Amazo-Gómez, E. M.; Hernandez-Águila, B.; Dagostino, M. C.; Bertone, E.; de la Luz, V.

    2014-10-01

    The determination of the lithium abundance in stellar atmospheres is of fundamental importance in multiple contexts of contemporary astrophysics. On the one hand, the lithium present in stars with global sub-solar metal abundances provides a strong restriction on the abundance of this element as a result of primordial nucleo-synthesis. On the other hand, Li can be an age indicator for stars with convective envelopes. Additionally, Li abundance appears to be correlated with the presence of sub-stellar companions. We present preliminary results of a project aimed at determining the Li abundance in an extended sample of solar-like stars (spectral type G and luminosity class V) of intermediate brightness. High resolution spectroscopic data (R=65000) were obtained with the CanHiS echelle spectrograph on the 2.11m telescope of the Guillermo Haro Observatory in Cananea, Sonora, Mexico. We report the equivalent widths of a first sub-sample of 33 stars.

  14. Nitrogen line spectroscopy of O-stars. II. Surface nitrogen abundances for O-stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Rivero González, J. G.; Puls, J.; Najarro, F.; Brott, I.

    2012-01-01

    Context. Nitrogen is a key element for testing the impact of rotational mixing on evolutionary models of massive stars. Recent studies of the nitrogen surface abundance in B-type stars within the VLT-FLAMES survey of massive stars have challenged part of the corresponding predictions. To obtain a more complete picture of massive star evolution, and to allow for additional constraints, these studies need to be extended to O-stars. Aims: This is the second paper in a series aiming at the analysis of nitrogen abundances in O-type stars, to establish tighter constraints on the early evolution of massive stars. In this paper, we investigate the N ivλ4058 emission line formation, provide nitrogen abundances for a substantial O-star sample in the Large Magellanic Cloud, and compare our (preliminary) findings with recent predictions from stellar evolutionary models. Methods: Stellar and wind parameters of our sample stars were determined by line profile fitting of hydrogen, helium and nitrogen lines, exploiting the corresponding ionization equilibria. Synthetic spectra were calculated by means of the NLTE atmosphere/spectrum synthesis code fastwind, using a new nitrogen model atom. We derived nitrogen abundances for 20 O- and 5 B-stars by analyzing all nitrogen lines (from different ionization stages) present in the available optical spectra. Results: The dominating process responsible for emission at N ivλ4058 in O-stars is the strong depopulation of the lower level of the transition, which increases as a function of Ṁ. Unlike the N iii triplet emission, resonance lines do not play a role for typical mass-loss rates and below. We find (almost) no problem in fitting the nitrogen lines, in particular the "f" features. Only for some objects, where lines from N iii/N iv/N v are visible in parallel, we need to opt for a compromise solution. For five objects in the early B-/late O-star domain that have been previously analyzed by different methods and model atmospheres, we

  15. The Evolution and Physical Parameters of WN3/O3s: A New Type of Wolf-Rayet Star

    NASA Astrophysics Data System (ADS)

    Neugent, Kathryn F.; Massey, Philip; Hillier, D. John; Morrell, Nidia

    2017-05-01

    As part of a search for Wolf-Rayet (WR) stars in the Magellanic Clouds, we have discovered a new type of WR star in the Large Magellanic Cloud (LMC). These stars have both strong emission lines, as well as He II and Balmer absorption lines and spectroscopically resemble a WN3 and O3V binary pair. However, they are visually too faint to be WN3+O3V binary systems. We have found nine of these WN3/O3s, making up ˜6% of the population of LMC WRs. Using cmfgen, we have successfully modeled their spectra as single stars and have compared the physical parameters with those of more typical LMC WNs. Their temperatures are around 100,000 K, a bit hotter than the majority of WN stars (by around 10,000 K), though a few hotter WNs are known. The abundances are what you would expect for CNO equilibrium. However, most anomalous are their mass-loss rates, which are more like that of an O-type star than a WN star. While their evolutionary status is uncertain, their low mass-loss rates and wind velocities suggest that they are not products of homogeneous evolution. It is possible instead that these stars represent an intermediate stage between O stars and WNs. Since WN3/O3 stars are unknown in the Milky Way, we suspect that their formation depends upon metallicity, and we are investigating this further by a deep survey in M33, which possesses a metallicity gradient. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. It is additionally based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations were associated with program GO-13780.

  16. Infra-Red Characteristics of Faint Galactic Carbon Stars from the First Byurakan Spectral Sky Survey

    NASA Astrophysics Data System (ADS)

    Kostandyan, G. R.; Gigoyan, K. S.

    2017-07-01

    Infra-Red (IR) astronomical databases, namely, IRAS, 2MASS, WISE, and Spitzer, are used to analyze photometric data of 126 carbon (C) stars whose spectra are visible in the First Byurakan Survey (FBS) (Markarian et al. 1989) low-resolution (lr) spectral plates. In this work several IR color-color diagrams are studied. Early and late-type C stars are separated in the JHK Near-Infra-Red (NIR) color-color plots, as well as in the WISE W3-W4 versus W1-W2 diagram. Late N-type Asymptotic Giant Branch (AGB) stars are redder in W1-W2, while early-types (CH and R giants) are redder in W3-W4 as expected. Objects with W2-W3 > 1.0m show double-peaked spectral energy distribution (SED), indicating the existence of the circumstellar envelopes around them. 26 N-type stars have IRAS Point Source Catalog (PSC) associations. The reddest object among the targets is N-type C star FBS 2213+421, which belong to the group of the cold post-AGB R Coronae Borealis (R CrB) variables (Rossi et al. 2016).

  17. Formaldehyde in Absorption: Tracing Molecular Gas in Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Dollhopf, Niklaus M.; Donovan Meyer, Jennifer

    2016-01-01

    Early-Type Galaxies (ETGs) have been long-classified as the red, ellipsoidal branch of the classic Hubble tuning fork diagram of galactic structure. In part with this classification, ETGs are thought to be molecular and atomic gas-poor with little to no recent star formation. However, recent efforts have questioned this ingrained classification. Most notably, the ATLAS3D survey of 260 ETGs within ~40 Mpc found 22% contain CO, a common tracer for molecular gas. The presence of cold molecular gas also implies the possibility for current star formation within these galaxies. Simulations do not accurately predict the recent observations and further studies are necessary to understand the mechanisms of ETGs.CO traces molecular gas starting at densities of ~102 cm-3, which makes it a good tracer of bulk molecular gas, but does little to constrain the possible locations of star formation within the cores of dense molecular gas clouds. Formaldehyde (H2CO) traces molecular gas on the order of ~104 cm-3, providing a further constraint on the location of star-forming gas, while being simple enough to possibly be abundant in gas-poor ETGs. In cold molecular clouds at or above ~104 cm-3 densities, the structure of formaldehyde enables a phenomenon in which rotational transitions have excitation temperatures driven below the temperature of the cosmic microwave background (CMB), ~2.7 K. Because the CMB radiates isotropically, formaldehyde can be observed in absorption, independent of distance, as a tracer of moderately-dense molecular clouds and star formation.This novel observation technique of formaldehyde was incorporated for observations of twelve CO-detected ETGs from the ATLAS3D sample, including NGC 4710 and PGC 8815, to investigate the presence of cold molecular gas, and possible star formation, in ETGs. We present images from the Very Large Array, used in its C-array configuration, of the J = 11,0 - 11,1 transition of formaldehyde towards these sources. We report our

  18. Nuclear Phosphatidylinositol-Phosphate Type I Kinase α-Coupled Star-PAP Polyadenylation Regulates Cell Invasion

    PubMed Central

    A.P., Sudheesh

    2017-01-01

    ABSTRACT Star-PAP, a nuclear phosphatidylinositol (PI) signal-regulated poly(A) polymerase (PAP), couples with type I PI phosphate kinase α (PIPKIα) and controls gene expression. We show that Star-PAP and PIPKIα together regulate 3′-end processing and expression of pre-mRNAs encoding key anti-invasive factors (KISS1R, CDH1, NME1, CDH13, FEZ1, and WIF1) in breast cancer. Consistently, the endogenous Star-PAP level is negatively correlated with the cellular invasiveness of breast cancer cells. While silencing Star-PAP or PIPKIα increases cellular invasiveness in low-invasiveness MCF7 cells, Star-PAP overexpression decreases invasiveness in highly invasive MDA-MB-231 cells in a cellular Star-PAP level-dependent manner. However, expression of the PIPKIα-noninteracting Star-PAP mutant or the phosphodeficient Star-PAP (S6A mutant) has no effect on cellular invasiveness. These results strongly indicate that PIPKIα interaction and Star-PAP S6 phosphorylation are required for Star-PAP-mediated regulation of cancer cell invasion and give specificity to target anti-invasive gene expression. Our study establishes Star-PAP–PIPKIα-mediated 3′-end processing as a key anti-invasive mechanism in breast cancer. PMID:29203642

  19. A search for T Tauri stars and related objects: Archival photometry of candidate variables in V733 Cep field

    NASA Astrophysics Data System (ADS)

    Jurdana-Šepić, R.; Poljančić Beljan, I.

    Searching for T Tauri stars or related early type variables we carried out a BVRI photometric measurements of five candidates with positions within the field of the pre-main sequence object V733 Cephei (Persson's star) located in the dark cloud L1216 near to Cepheus OB3 Association: VES 946, VES 950, NSV 14333, NSV 25966 and V385 Cep. Their magnitudes are determined on the plates from Asiago Observatory historical photographic archive exposed 1971 - 1978. We provide finding charts for program stars and comparison sequence stars, magnitude estimations, magnitude mean values and BVR_cI_c light curves of program stars.

  20. Spectral Analysis of the O(He)-Type Central Stars of the Planetary Nebulae K 1-27 and LoTr 4

    NASA Technical Reports Server (NTRS)

    Reindl, N.; Ringat, E.; Rauch, T.; Werner, K.; Kruk, J. W.

    2011-01-01

    The four known O(He) stars are the only amongst the hottest post-AGB stars whose atmospheres are composed of almost pure helium. Thus, their evolution deviates from the hydrogen-defiCient post-AGB evolutionary sequence of carbon-dominated stars like e.g. PG 1159 stars. The origin of the O(He) stars is still not explained. They might be either post-early AGB stars or the progeny of R Coronae Borealis stars. We present preliminary results of a non-LTE spectral analysis based on FUSE and HST/COS observations.

  1. A KEPLERIAN-LIKE DISK AROUND THE FORMING O-TYPE STAR AFGL 4176

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Katharine G.; Hoare, Melvin G.; Robitaille, Thomas P.

    We present Atacama Large Millimeter/submillimeter Array line and continuum observations at 1.2 mm with ∼0.″3 resolution that uncover a Keplerian-like disk around the forming O-type star AFGL 4176. The continuum emission from the disk at 1.21 mm (source mm1) has a deconvolved size of 870 ± 110 AU × 330 ± 300 AU and arises from a structure ∼8 M{sub ⊙} in mass, calculated assuming a dust temperature of 190 K. The first-moment maps, pixel-to-pixel line modeling, assuming local thermodynamic equilibrium (LTE), and position–velocity diagrams of the CH{sub 3}CN J = 13–12 K-line emission all show a velocity gradient alongmore » the major axis of the source, coupled with an increase in velocity at small radii, consistent with Keplerian-like rotation. The LTE line modeling shows that where CH{sub 3}CN J = 13–12 is excited, the temperatures in the disk range from ∼70 to at least 300 K and that the H{sub 2} column density peaks at 2.8 × 10{sup 24} cm{sup −2}. In addition, we present Atacama Pathfinder Experiment {sup 12}CO observations that show a large-scale outflow from AFGL 4176 perpendicular to the major axis of mm1, supporting the disk interpretation. Finally, we present a radiative transfer model of a Keplerian disk surrounding an O7 star, with a disk mass and radius of 12 M{sub ⊙} and 2000 AU that reproduces the line and continuum data, further supporting our conclusion that our observations have uncovered a Keplerian-like disk around an O-type star.« less

  2. An Evaluation of the Early Alert (STAR) Program at Central Piedmont Community College

    ERIC Educational Resources Information Center

    Gammon, J. B.

    2017-01-01

    Central Piedmont Community College is exploring ways to help at-risk students achieve academic success by utilizing an early-alert system called Success Through Academic Reporting (STAR). All First-Time, Full-time Degree-seeking students (FFD) receive an opportunity for follow-up services that support a centralized strategy, which has the…

  3. Stars of type MS with evidence of white dwarf companions. [IUE, Main Sequence (MS)

    NASA Technical Reports Server (NTRS)

    Peery, Benjamin F., Jr.

    1986-01-01

    A search for white dwarf companions of MS-type stars was conducted, using IUE. The overendowments of these stars in typical S-process nuclides suggest that they, like the Ba II stars, may owe their peculiar compositions to earlier mass transfer. Short-wavelength IUE spectra show striking emission line variability in HD35155, HD61913, and 4 Ori; HD35155 and 4 Ori show evidence of white dwarf companions.

  4. NuSTAR Reveals Extreme Absorption in z < 0.5 Type 2 Quasars

    NASA Astrophysics Data System (ADS)

    Lansbury, G. B.; Gandhi, P.; Alexander, D. M.; Assef, R. J.; Aird, J.; Annuar, A.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Civano, F.; Comastri, A.; Craig, W. W.; Del Moro, A.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Koss, M.; LaMassa, S. M.; Luo, B.; Puccetti, S.; Stern, D.; Treister, E.; Vignali, C.; Zappacosta, L.; Zhang, W. W.

    2015-08-01

    The intrinsic column density (NH) distribution of quasars is poorly known. At the high obscuration end of the quasar population and for redshifts z < 1, the X-ray spectra can only be reliably characterized using broad-band measurements that extend to energies above 10 keV. Using the hard X-ray observatory NuSTAR, along with archival Chandra and XMM-Newton data, we study the broad-band X-ray spectra of nine optically selected (from the SDSS), candidate Compton-thick (NH > 1.5 × 1024 cm-2) type 2 quasars (CTQSO2s); five new NuSTAR observations are reported herein, and four have been previously published. The candidate CTQSO2s lie at z < 0.5, have observed [O iii] luminosities in the range 8.4\\lt {log}({L}[{{O} {{III}}]}/{L}⊙ )\\lt 9.6, and show evidence for extreme, Compton-thick absorption when indirect absorption diagnostics are considered. Among the nine candidate CTQSO2s, five are detected by NuSTAR in the high-energy (8-24 keV) band: two are weakly detected at the ≈3σ confidence level and three are strongly detected with sufficient counts for spectral modeling (≳90 net source counts at 8-24 keV). For these NuSTAR-detected sources direct (i.e., X-ray spectral) constraints on the intrinsic active galactic nucleus properties are feasible, and we measure column densities ≈2.5-1600 times higher and intrinsic (unabsorbed) X-ray luminosities ≈10-70 times higher than pre-NuSTAR constraints from Chandra and XMM-Newton. Assuming the NuSTAR-detected type 2 quasars are representative of other Compton-thick candidates, we make a correction to the NH distribution for optically selected type 2 quasars as measured by Chandra and XMM-Newton for 39 objects. With this approach, we predict a Compton-thick fraction of {f}{CT}={36}-12+14 %, although higher fractions (up to 76%) are possible if indirect absorption diagnostics are assumed to be reliable.

  5. Young stars of low mass in the Gum nebula

    NASA Technical Reports Server (NTRS)

    Graham, J. A.; Heyer, Mark H.

    1989-01-01

    Observations are presented for four recently formed stars in the vicinity of the Gum nebula which are heavily obscured by surrounding dust and are associated with small reflection nebulae. HH46 is the only currently active star of the sample, and it is found to have a spectral type in the range of late G-early K, with superimposed emission lines of H-alpha, Ca II, Fe I, Fe II, and weak He I at near zero velocities. It is suggested that the observed scenario of low-mass stars in an older massive star environment may be analogous to the circumstances surrounding the birth of the sun.

  6. UV SEDs of early-type cluster galaxies: a new look at the UV upturn

    NASA Astrophysics Data System (ADS)

    Ali, S. S.; Bremer, M. N.; Phillipps, S.; De Propris, R.

    2018-05-01

    Using GALEX, Ultraviolet Optical Telescope (UVOT), and optical photometry, we explore the prevalence and strength of the Ultraviolet (UV) upturn in the spectra of quiescent early-type galaxies in several nearby clusters. Even for galaxies with completely passive optical colours, there is a large spread in vacuum UV colour consistent with almost all having some UV upturn component. Combining GALEX and UVOT data below 3000 Å, we generate for the first time comparatively detailed UV spectral energy distributions for Coma cluster galaxies. Fitting the UV upturn component with a blackbody, 26 of these show a range of characteristic temperatures (10 000-21 000K) for the UV upturn population. Assuming a single temperature to explain GALEX-optical colours could underestimate the fraction of galaxies with UV upturns and mis-classify some as systems with residual star formation. The UV upturn phenomenon is not an exclusive feature found only in giant galaxies; we identify galaxies with similar (or even bluer) FUV - V colours to the giants with upturns over a range of fainter luminosities. The temperature and strength of the UV upturn are correlated with galaxy mass. Under the plausible hypothesis that the sources of the UV upturn are blue horizontal branch stars, the most likely mechanism for this is the presence of a substantial (between 4 per cent and 20 per cent) Helium-rich (Y > 0.3) population of stars in these galaxies, potentially formed at z ˜ 4 and certainly at z > 2; this plausibly sets a lower limit of {˜ } {0.3- 0.8} × 10^{10} M⊙ to the in situ stellar mass of ˜L* galaxies at this redshift.

  7. An IRAS-Based Search for New Dusty Late-Type WC Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1995-01-01

    I have examined all Infrared Astronomical Satellite (IRAS) data relevant to the 173 Galactic Wolf-Rayet (W-R) stars in an updated catalog, including the 13 stars newly discovered by Shara and coworkers. Using the W-R coordinates in these lists, I have examined the IRAS Point Source Catalog (PSC), the Faint Source Catalog, and the Faint Source Reject Catalog, and have generated one-dimensional spatial profiles, 'ADDSCANs', and two-dimensional full-resolution images, 'FRESCOS'. The goal was to assemble the best set of observed IRAS color indices for different W-R types, in particular for known dusty late-type WC Wolf-Rayet (WCL) objects. I have also unsuccessfully sought differences in IRAS colors and absolute magnitudes between single and binary W-R stars. The color indices for the entire ensemble of W-R stars define zones in the IRAS color-color ([12] - [25], [25] - [60])-plane. By searching the PSC for otherwise unassociated sources that satisfy these colors, I have identified potential new W-R candidates, perhaps too faint to have been recognized in previous optical searches. I have extracted these candidates' IRAS low-resolution spectrometer (LRS) data and compared the spectra with the highly characteristic LRS shape for known dusty WCL stars. The 13 surviving candidates must now be ex amined by optical spectroscopy. This work represents a much more rigorous and exhaustive version of the LRS study that identified IRAS 17380 - 3031 (WR98a) as the first new W-R (WC9) star discovered by IPAS. This search should have detected dusty WCL stars to a distance of 7.0 kpc from the Sun, for l is greater than 30 degrees, and to 2.9 kpc even in the innermost galaxy. For free-free-dominated W-R stars the corresponding distances are 2.5 and 1.0 kpc, respectively.

  8. An IRAS-based search for new Dusty Late-Type WC Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1995-01-01

    I have examined all Infrared Astronomical Satellite (IRAS) data relevant to the 173 Galactic Wolf-Rayet (W-R) stars in an updated catalog, including the 13 stars newly discovered by Shara and coworkers. Using the W-R coordinates in these lists, I have examined the IRAS Point Source Catalog (PSC), the Faint Source Catalog, and the Faint Source Reject Catalog, and have generated one-dimensional spatial profiles ('ADDSCANs') and two-dimensional full-resolution images ('FRESCOs'). The goal was to assemble the best set of observed IRAS color indices for different W-R types, in particular for known dusty late-type WC Wolf-Rayet (WCL) objects. I have also unsuccessfully sought differences in IRAS colors and absolute magnitudes between single and binary W-R stars. The color indices for the entire ensemble of W-R stars define zones in the IRAS color-color plane. By searching the PSC for otherwise unassociated sources that satisfy these colors, I have identified potential new W-R candidates, perhaps too faint to have been recognized in previous optical searches. I have extracted these candidates' IRAS low-resolution spectrometer (LRS) data and compared the spectra with the highly characteristic LRS shape for known dusty WCL stars. The 13 surviving candidates must now be examined by optical spectroscopy. This work represents a much more rigorous and exhaustive version of the LRS study that identified IRAS 17380 - 3031 (WR98a) as the first new W-R (WC9) star discovered by IRAS. This search should have detected dusty WCL stars to a distance of 7.0 kpc from the Sun, for the absolute value of l greater than 30 deg, and to 2.9 kpc even in the innermost Galaxy. For free-free-dominated W-R stars the corresponding distances are 2.5 and 1.0 kpc, respectively.

  9. Pulsation of late B-type stars

    NASA Technical Reports Server (NTRS)

    Beardsley, W. R.; Worek, T. F.; King, M. W.

    1980-01-01

    Radial velocity observations of three of the brightest stars in the Pleiades, Alcyone, Maia and Taygeta, made during the course of one night, 25 October 1976, are discussed. All three stars were discovered to be pulsating with periods of a few hours. Analysis of all published radial velocities for each star, covering more than 70 years and approximately 100,000 cycles, has established the value of the periods to eight decimal places, and demonstrated constancy of the periods. However, amplitudes of the radial velocity variations change over long time intervals, and changes in spectral line intensities are observed in phase with the pulsation. All three stars may also be members of binary systems.

  10. NGC 346: Looking in the Cradle of a Massive Star Cluster

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.; Hony, Sacha

    2017-03-01

    How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these

  11. Mass-loss Rates from Coronal Mass Ejections: A Predictive Theoretical Model for Solar-type Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cranmer, Steven R.

    Coronal mass ejections (CMEs) are eruptive events that cause a solar-type star to shed mass and magnetic flux. CMEs tend to occur together with flares, radio storms, and bursts of energetic particles. On the Sun, CME-related mass loss is roughly an order of magnitude less intense than that of the background solar wind. However, on other types of stars, CMEs have been proposed to carry away much more mass and energy than the time-steady wind. Earlier papers have used observed correlations between solar CMEs and flare energies, in combination with stellar flare observations, to estimate stellar CME rates. This papermore » sidesteps flares and attempts to calibrate a more fundamental correlation between surface-averaged magnetic fluxes and CME properties. For the Sun, there exists a power-law relationship between the magnetic filling factor and the CME kinetic energy flux, and it is generalized for use on other stars. An example prediction of the time evolution of wind/CME mass-loss rates for a solar-mass star is given. A key result is that for ages younger than about 1 Gyr (i.e., activity levels only slightly higher than the present-day Sun), the CME mass loss exceeds that of the time-steady wind. At younger ages, CMEs carry 10–100 times more mass than the wind, and such high rates may be powerful enough to dispel circumstellar disks and affect the habitability of nearby planets. The cumulative CME mass lost by the young Sun may have been as much as 1% of a solar mass.« less

  12. Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger.

    PubMed

    Shappee, B J; Simon, J D; Drout, M R; Piro, A L; Morrell, N; Prieto, J L; Kasen, D; Holoien, T W-S; Kollmeier, J A; Kelson, D D; Coulter, D A; Foley, R J; Kilpatrick, C D; Siebert, M R; Madore, B F; Murguia-Berthier, A; Pan, Y-C; Prochaska, J X; Ramirez-Ruiz, E; Rest, A; Adams, C; Alatalo, K; Bañados, E; Baughman, J; Bernstein, R A; Bitsakis, T; Boutsia, K; Bravo, J R; Di Mille, F; Higgs, C R; Ji, A P; Maravelias, G; Marshall, J L; Placco, V M; Prieto, G; Wan, Z

    2017-12-22

    On 17 August 2017, Swope Supernova Survey 2017a (SSS17a) was discovered as the optical counterpart of the binary neutron star gravitational wave event GW170817. We report time-series spectroscopy of SSS17a from 11.75 hours until 8.5 days after the merger. Over the first hour of observations, the ejecta rapidly expanded and cooled. Applying blackbody fits to the spectra, we measured the photosphere cooling from [Formula: see text] to [Formula: see text] kelvin, and determined a photospheric velocity of roughly 30% of the speed of light. The spectra of SSS17a began displaying broad features after 1.46 days and evolved qualitatively over each subsequent day, with distinct blue (early-time) and red (late-time) components. The late-time component is consistent with theoretical models of r-process-enriched neutron star ejecta, whereas the blue component requires high-velocity, lanthanide-free material. Copyright © 2017, American Association for the Advancement of Science.

  13. Interstellar C IV and Si IV column densities toward early-type stars

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Kondo, Y.; Mccluskey, G. E.

    1980-01-01

    Equivalent widths and deduced column densities of Si IV and C IV are examined for 18 early-type close binaries, and physical processes responsible for the origin of these ions in the interstellar medium are investigated. The available C IV/Si IV column density ratios typically lie within a narrow range from 0.8 to 4.5, and there is evidence that the column density of C IV is higher than that of N V along most lines of sight, suggesting that C IV is not formed in the same hot region as O VI. In addition, the existence of regions with a narrowly defined new temperature range around 50,000 deg K is indicated. The detection of the semitorrid gas of Bruhweiler, Kondo, and McCluskey (1978, 1979) is substantiated, and the relation of this gas to the observations of coronal gas in the galactic halo is discussed.

  14. Carbon and nitrogen abundances in F- and G-type stars

    NASA Technical Reports Server (NTRS)

    Clegg, R. E. S.

    1977-01-01

    Carbon and nitrogen abundances have been obtained for a sample of 11-F- and G-type dwarfs covering a range in Fe/H abundance ratio from -0.8 to +0.3. Model atmospheres, which included the effects of convection and line blanketing, were used to calculate synthetic spectra of the CH, CN, and NH molecular bands. Effective oscillator strengths for the bands studied were found by matching synthetic spectra calculated from a model solar atmosphere with the observed solar bands. Many of the metal-poor stars, and particularly the high-velocity stars, were found to have substantial nitrogen over-deficiencies, suggesting that N is manufactured mostly in a secondary manner. The carbon-to-iron ratios were similar to the solar ratio, although there may be slight C over-deficiencies in metal-poor stars. However, the variation in C/Fe is not as marked as that found recently by Hearnshaw (1974). A comprehensive discussion of the theoretical errors is given, and some applications to Galactic evolution are noted.

  15. Nuclear Phosphatidylinositol-Phosphate Type I Kinase α-Coupled Star-PAP Polyadenylation Regulates Cell Invasion.

    PubMed

    A P, Sudheesh; Laishram, Rakesh S

    2018-03-01

    Star-PAP, a nuclear phosphatidylinositol (PI) signal-regulated poly(A) polymerase (PAP), couples with type I PI phosphate kinase α (PIPKIα) and controls gene expression. We show that Star-PAP and PIPKIα together regulate 3'-end processing and expression of pre-mRNAs encoding key anti-invasive factors ( KISS1R , CDH1 , NME1 , CDH13 , FEZ1 , and WIF1 ) in breast cancer. Consistently, the endogenous Star-PAP level is negatively correlated with the cellular invasiveness of breast cancer cells. While silencing Star-PAP or PIPKIα increases cellular invasiveness in low-invasiveness MCF7 cells, Star-PAP overexpression decreases invasiveness in highly invasive MDA-MB-231 cells in a cellular Star-PAP level-dependent manner. However, expression of the PIPKIα-noninteracting Star-PAP mutant or the phosphodeficient Star-PAP (S6A mutant) has no effect on cellular invasiveness. These results strongly indicate that PIPKIα interaction and Star-PAP S6 phosphorylation are required for Star-PAP-mediated regulation of cancer cell invasion and give specificity to target anti-invasive gene expression. Our study establishes Star-PAP-PIPKIα-mediated 3'-end processing as a key anti-invasive mechanism in breast cancer. Copyright © 2018 A.P. and Laishram.

  16. IUE and Einstein survey of late-type giant and supergiant stars and the dividing line

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.; Bookbinder, Jay A.; Maggio, A.; Vaiana, G. S.; Bennett, Jeffrey O.

    1990-01-01

    Results are presented on an IUE UV survey of 255 late-type G, K, and M stars, complementing the Maggio et al. (1990) Einstein X-ray survey of 380 late-type stars. The large data sample of X-ray and UV detections make it possible to examine the activity relationship between the X-ray and the UV emissions. The results confirm previous finding of a trend involving a steeply-dropping upper envelope of the transition region line fluxes, f(line)/f(V), as the dividing line is approached. This suggests that a sharp decrease in maximum activity accompanies the advancing spectral type, with the dividing line corresponding to this steep gradient region. The results confirm the rotation-activity connection for stars in this region of the H-R diagram.

  17. Dynamical Model for Spindown of Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Sood, Aditi; Kim, Eun-jin; Hollerbach, Rainer

    2016-12-01

    After their formation, stars slow down their rotation rates by the removal of angular momentum from their surfaces, e.g., via stellar winds. Explaining how this rotation of solar-type stars evolves in time is currently an interesting but difficult problem in astrophysics. Despite the complexity of the processes involved, a traditional model, where the removal of angular momentum by magnetic fields is prescribed, has provided a useful framework to understand observational relations between stellar rotation, age, and magnetic field strength. Here, for the first time, a spindown model is proposed where loss of angular momentum by magnetic fields evolves dynamically, instead of being prescibed kinematically. To this end, we evolve the stellar rotation and magnetic field simultaneously over stellar evolution time by extending our previous work on a dynamo model which incorporates nonlinear feedback mechanisms on rotation and magnetic fields. We show that our extended model reproduces key observations and is capable of explaining the presence of the two branches of (fast and slow rotating) stars which have different relations between rotation rate Ω versus time (age), magnetic field strength | B| versus rotation rate, and frequency of magnetic field {ω }{cyc} versus rotation rate. For fast rotating stars we find that: (I) there is an exponential spindown {{Ω }}\\propto {e}-1.35t, with t measured in Gyr; (II) magnetic activity saturates for higher rotation rate; (III) {ω }{cyc}\\propto {{{Ω }}}0.83. For slow rotating stars we find: (I) a power-law spindown {{Ω }}\\propto {t}-0.52; (II) that magnetic activity scales roughly linearly with rotation rate; (III) {ω }{cyc}\\propto {{{Ω }}}1.16. The results obtained from our investigations are in good agreement with observations. The Vaughan-Preston gap is consistently explained in our model by the shortest spindown timescale in this transition from fast to slow rotators. Our results highlight the importance of self

  18. Hubble Sweeps a Messy Star Factory

    NASA Image and Video Library

    2017-12-08

    This sprinkle of cosmic glitter is a blue compact dwarf galaxy known as Markarian 209. Galaxies of this type are blue-hued, compact in size, gas-rich, and low in heavy elements. They are often used by astronomers to study star formation, as their conditions are similar to those thought to exist in the early Universe. Markarian 209 in particular has been studied extensively. It is filled with diffuse gas and peppered with star-forming regions towards its core. This image captures it undergoing a particularly dramatic burst of star formation, visible as the lighter blue cloudy region towards the top right of the galaxy. This clump is filled with very young and hot newborn stars. This galaxy was initially thought to be a young galaxy undergoing its very first episode of star formation, but later research showed that Markarian 209 is actually very old, with an almost continuous history of forming new stars. It is thought to have never had a dormant period — a period during which no stars were formed — lasting longer than 100 million years. The dominant population of stars in Markarian 209 is still quite young, in stellar terms, with ages of under 3 million years. For comparison, the sun is some 4.6 billion years old, and is roughly halfway through its expected lifespan. The observations used to make this image were taken using Hubble’s Wide Field Camera 3 and Advanced Camera for Surveys, and span the ultraviolet, visible, and infrared parts of the spectrum. A scattering of other bright galaxies can be seen across the frame, including the bright golden oval that could, due to a trick of perspective, be mistaken as part of Markarian 209 but is in fact a background galaxy. Credit: ESA/Hubble & NASA Acknowledgement: Nick Rose NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments

  19. Mass loss in O-type stars - Parameters which affect it

    NASA Technical Reports Server (NTRS)

    Garmany, C. D.; Conti, P. S.

    1984-01-01

    Newly determined mass loss rates are presented for sixteen O-type stars in three open clusters. Combining the data with that already in the literature, no evidence is found that the rates are different in clusters with differing galactocentric distances and compositions, at least near the sun. There is still appreciable dispersion in the relationship between the mass loss rate and the stellar luminosity. It may be that the mass loss depends additionally on the stellar mass and/or radius, but these data cannot unequivocally indicate which physical dependence is correct. Evidence is found that a stellar wind increases as a massive star evolves from the zero-age main sequence.

  20. Microwave emission from the coronae of late-type dwarf stars

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.; Gary, D. E.

    1983-01-01

    VLA microwave observations of 14 late-type dwarf and subgiant stars and binary systems are examined. In this extensive set of observations, four sources at 6 cm (Chi-1 Ori, UV Cet, YY Gem, and Wolf 630AB) were detected and low upper limits for the remaining stars were found. The microwave luminosities of the nondetected F-K dwarfs are as small as 0.01 those of the dMe stars. The detected emission is slowly variable in all cases and is consistent with gyroresonant emission from thermal electrons spiraling in magnetic fields of about 300 gauss if the source sizes are as large as R/R(asterisk) = 3-4. This would correspond to magnetic fields that are probably in the range 0.001-0.0001 gauss at the photospheric level. An alternative mechanism is gyrosynchrotron emission from a relatively small number of electrons with effective temperature.

  1. On the interdependence of galaxy morphology, star formation and environment in massive galaxies in the nearby Universe

    NASA Astrophysics Data System (ADS)

    Bait, Omkar; Barway, Sudhanshu; Wadadekar, Yogesh

    2017-11-01

    Using multiwavelength data, from ultraviolet to optical to near-infrared to mid-infrared, for ˜6000 galaxies in the local Universe, we study the dependence of star formation on the morphological T-types for massive galaxies (log M*/M⊙ ≥ 10). We find that, early-type spirals (Sa-Sbc) and S0s predominate in the green valley, which is a transition zone between the star forming and quenched regions. Within the early-type spirals, as we move from Sa to Sbc spirals the fraction of green valley and quenched galaxies decreases, indicating the important role of the bulge in the quenching of galaxies. The fraction of early-type spirals decreases as we enter the green valley from the blue cloud, which coincides with the increase in the fraction of S0s. These points towards the morphological transformation of early-type spiral galaxies into S0s, which can happen due to environmental effects such as ram-pressure stripping, galaxy harassment or tidal interactions. We also find a second population of S0s that are actively star forming and are present in all environments. Since morphological T-type, specific star formation rate (sSFR), and environmental density are all correlated with each other, we compute the partial correlation coefficient for each pair of parameters while keeping the third parameter as a control variable. We find that morphology most strongly correlates with sSFR, independent of the environment, while the other two correlations (morphology-density and sSFR-environment) are weaker. Thus, we conclude that, for massive galaxies in the local Universe, the physical processes that shape their morphology are also the ones that determine their star-forming state.

  2. Nitrogen line spectroscopy in O-stars. III. The earliest O-stars

    NASA Astrophysics Data System (ADS)

    Rivero González, J. G.; Puls, J.; Massey, P.; Najarro, F.

    2012-07-01

    Context. The classification scheme proposed by Walborn et al. (2002, AJ, 123, 2754), based primarily on the relative strengths of the N ivλ4058 and N iiiλ4640 emission lines, has been used in a variety of studies to spectroscopically classify early O-type stars. Owing to the lack of a solid theoretical basis, this scheme has not yet been universally accepted though. Aims: We provide first theoretical predictions for the N ivλ4058/N iiiλ4640 emission line ratio in dependence of various parameters, and confront these predictions with results from the analysis of a sample of early-type LMC/SMC O-stars. Methods: Stellar and wind parameters of our sample stars are determined by line profile fitting of hydrogen, helium and nitrogen lines, exploiting the helium and nitrogen ionization balance. Corresponding synthetic spectra are calculated by means of the NLTE atmosphere/spectrum synthesis code fastwind. Results: Though there is a monotonic relationship between the N iv/N iii emission line ratio and the effective temperature, all other parameters being equal, theoretical predictions indicate additional dependencies on surface gravity, mass-loss, metallicity, and, particularly, nitrogen abundance. For a given line ratio (i.e., spectral type), more enriched objects should be typically hotter. These basic predictions are confirmed by results from the alternative model atmosphere code cmfgen. The effective temperatures for the earliest O-stars, inferred from the nitrogen ionization balance, are partly considerably hotter than indicated by previous studies. Consistent with earlier results, effective temperatures increase from supergiants to dwarfs for all spectral types in the LMC. The relation between observed N ivλ4058/N iiiλ4640 emission line ratio and effective temperature, for a given luminosity class, turned out to be quite monotonic for our sample stars, and to be fairly consistent with our model predictions. The scatter within a spectral sub-type is mainly

  3. On the Evolution of O(He)-Type Stars

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.; Reindl, N.; Rauch, T.; Werner, K.

    2012-01-01

    O(He) stars represent a small group of four very hot post-AGB stars whose atmospheres are composed of almost pure helium. Their evolution deviates from the hydrogen-deficient post-AGO evolutionary sequence of carbon-dominated stars like e.g. PG 1159 or Wolf- Rayet stars. While (very) late thermal pulse evolutionary models can explain the observed He/C/O abundances in these objects, they do not reproduce He-dominated surface abundances. Currently it seems most likely that the O(He) stars originate from a double helium white dwarf merger and so they could be the successors of the luminous helium-rich sdO-stars. An other possibility is that O(He)-stars could be successors of RCB or EHe stars.

  4. A home for old stars

    NASA Image and Video Library

    2015-12-14

    This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the globular cluster Terzan 1. Lying around 20 000 light-years from us in the constellation of Scorpius (The Scorpion), it is one of about 150 globular clusters belonging to our galaxy, the Milky Way. Typical globular clusters are collections of around a hundred thousand stars, held together by their mutual gravitational attraction in a spherical shape a few hundred light-years across. It is thought that every galaxy has a population of globular clusters. Some, like the Milky Way, have a few hundred, while giant elliptical galaxies can have several thousand. They contain some of the oldest stars in a galaxy, hence the reddish colours of the stars in this image — the bright blue ones are foreground stars, not part of the cluster. The ages of the stars in the globular cluster tell us that they were formed during the early stages of galaxy formation! Studying them can also help us to understand how galaxies formed. Terzan 1, like many globular clusters, is a source of X-rays. It is likely that these X-rays come from binary star systems that contain a dense neutron star and a normal star. The neutron star drags material from the companion star, causing a burst of X-ray emission. The system then enters a quiescent phase in which the neutron star cools, giving off X-ray emission with different characteristics, before enough material from the companion builds up to trigger another outburst.

  5. A Star Close Encounter

    NASA Image and Video Library

    2006-10-03

    The potential planet-forming disk (or "protoplanetary disk") of a sun-like star is being violently ripped away by the powerful winds of a nearby hot O-type star in this image from NASA's Spitzer Space Telescope. At up to 100 times the mass of sun-like stars, O stars are the most massive and energetic stars in the universe. The O star can be seen to the right of the image, as the large orange spot with the white center. To the left, the comet-like structure is actually a neighboring solar system that is being destroyed by the O star's powerful winds and intense ultraviolet light. In a process called "photoevaporation," immense output from the O star heats up the nearby protoplanetary disk so much that gas and dust boil off, and the disk can no longer hold together. Photon (or light) blasts from the O star then strip the potential planet-forming disk off its neighbor star by blowing away evaporated material. This effect is illustrated in the smaller system's comet-like structure. The system is located about 2,450 light-years away in the star-forming cloud IC 1396. The image was taken with Spitzer's multiband imaging photometer instrument at 24 microns. The picture is a pseudo-color stretch representing intensity. Yellow and white represent hot areas, whereas purple and blue represent relatively cooler, fainter regions.

  6. An absence of ex-companion stars in the type Ia supernova remnant SNR 0509-67.5.

    PubMed

    Schaefer, Bradley E; Pagnotta, Ashley

    2012-01-11

    A type Ia supernova is thought to begin with the explosion of a white dwarf star. The explosion could be triggered by the merger of two white dwarfs (a 'double-degenerate' origin), or by mass transfer from a companion star (the 'single-degenerate' path). The identity of the progenitor is still controversial; for example, a recent argument against the single-degenerate origin has been widely rejected. One way to distinguish between the double- and single-degenerate progenitors is to look at the centre of a known type Ia supernova remnant to see whether any former companion star is present. A likely ex-companion star for the progenitor of the supernova observed by Tycho Brahe has been identified, but that claim is still controversial. Here we report that the central region of the supernova remnant SNR 0509-67.5 (the site of a type Ia supernova 400 ± 50 years ago, based on its light echo) in the Large Magellanic Cloud contains no ex-companion star to a visual magnitude limit of 26.9 (an absolute magnitude of M(V) = +8.4) within a region of radius 1.43 arcseconds. (This corresponds to the 3σ maximum distance to which a companion could have been 'kicked' by the explosion.) This lack of any ex-companion star to deep limits rules out all published single-degenerate models for this supernova. The only remaining possibility is that the progenitor of this particular type Ia supernova was a double-degenerate system.

  7. The evolution of massive stars and their spectra. I. A non-rotating 60 M⊙ star from the zero-age main sequence to the pre-supernova stage

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.; Meynet, Georges; Ekström, Sylvia; Georgy, Cyril

    2014-04-01

    For the first time, the interior and spectroscopic evolution of a massive star is analyzed from the zero-age main sequence (ZAMS) to the pre-supernova (SN) stage. For this purpose, we combined stellar evolution models using the Geneva code and stellar atmospheric/wind models using CMFGEN. With our approach, we were able to produce observables, such as a synthetic high-resolution spectrum and photometry, thereby aiding the comparison between evolution models and observed data. Here we analyze the evolution of a non-rotating 60 M⊙ star and its spectrum throughout its lifetime. Interestingly, the star has a supergiant appearance (luminosity class I) even at the ZAMS. We find the following evolutionary sequence of spectral types: O3 I (at the ZAMS), O4 I (middle of the H-core burning phase), B supergiant (BSG), B hypergiant (BHG), hot luminous blue variable (LBV; end of H-core burning), cool LBV (H-shell burning through the beginning of the He-core burning phase), rapid evolution through late WN and early WN, early WC (middle of He-core burning), and WO (end of He-core burning until core collapse). We find the following spectroscopic phase lifetimes: 3.22 × 106 yr for the O-type, 0.34 × 105 yr (BSG), 0.79 × 105 yr (BHG), 2.35 × 105 yr (LBV), 1.05 × 105 yr (WN), 2.57 × 105 yr (WC), and 3.80 × 104 yr (WO). Compared to previous studies, we find a much longer (shorter) duration for the early WN (late WN) phase, as well as a long-lived LBV phase. We show that LBVs arise naturally in single-star evolution models at the end of the MS when the mass-loss rate increases as a consequence of crossing the bistability limit. We discuss the evolution of the spectra, magnitudes, colors, and ionizing flux across the star's lifetime, and the way they are related to the evolution of the interior. We find that the absolute magnitude of the star typically changes by ~6 mag in optical filters across the evolution, with the star becoming significantly fainter in optical filters at

  8. Modeling Type II-P/II-L Supernovae Interacting with Recent Episodic Mass Ejections from Their Presupernova Stars with MESA and SNEC

    NASA Astrophysics Data System (ADS)

    Das, Sanskriti; Ray, Alak

    2017-12-01

    We show how dense, compact, discrete shells of circumstellar gas immediately outside of red supergiants affect the optical light curves of Type II-P/II-L supernovae (SNe), using the example of SN 2013ej. Earlier efforts in the literature had used an artificial circumstellar medium (CSM) stitched to the surface of an evolved star that had not gone through a phase of late-stage heavy mass loss, which, in essence, is the original source of the CSM. In contrast, we allow enhanced mass-loss rate from the modeled star during the 16O and 28Si burning stages and construct the CSM from the resulting mass-loss history in a self-consistent way. Once such evolved pre-SN stars are exploded, we find that the models with early interaction between the shock and the dense CSM reproduce light curves far better than those without that mass loss and, hence, having no nearby dense CSM. The required explosion energy for the progenitors with a dense CSM is reduced by almost a factor of two compared to those without the CSM. Our model, with a more realistic CSM profile and presupernova and explosion parameters, fits observed data much better throughout the rise, plateau, and radioactive tail phases as compared to previous studies. This points to an intermediate class of supernovae between Type II-P/II-L and Type II-n SNe with the characteristics of simultaneous UV and optical peak, slow decline after peak, and a longer plateau.

  9. MASCARA-1 b. A hot Jupiter transiting a bright mV = 8.3 A-star in a misaligned orbit

    NASA Astrophysics Data System (ADS)

    Talens, G. J. J.; Albrecht, S.; Spronck, J. F. P.; Lesage, A.-L.; Otten, G. P. P. L.; Stuik, R.; Van Eylen, V.; Van Winckel, H.; Pollacco, D.; McCormac, J.; Grundahl, F.; Fredslund Andersen, M.; Antoci, V.; Snellen, I. A. G.

    2017-10-01

    We report the discovery of MASCARA-1 b, which is the first exoplanet discovered with the Multi-site All-Sky CAmeRA (MASCARA). This exoplanet is a hot Jupiter orbiting a bright mV = 8.3, rapidly rotating (vsini⋆ > 100 km s-1) A8 star with a period of 2.148780 ± 8 × 10-6 days. The planet has a mass and radius of 3.7 ± 0.9 MJup and 1.5 ± 0.3 RJup, respectively. As with most hot Jupiters transiting early-type stars, we find a misalignment between the planet orbital axis and the stellar spin axis, which may be a signature of the formation and migration histories of this family of planets. MASCARA-1 b has a mean density of 1.5 ± 0.9 g cm-3 and an equilibrium temperature of 2570+50-30K, that is one of the highest temperatures known for a hot Jupiter to date. The system is reminiscent of WASP-33, but the host star lacks apparent delta-scuti variations, making the planet an ideal target for atmospheric characterization. We expect this to be the first of a series of hot Jupiters transiting bright early-type stars that will be discovered by MASCARA. Tables of the photometry and the reduced spectra as FITS files are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A73

  10. The role of dust in mass loss from late-type stars

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1986-01-01

    It is noted that, in almost all late-type stars with measured mass loss rates, there is sufficient momentum in the radiation to dominate the dynamics. The opacity of the material is sufficiently great to render radiation pressure important; the dust forms close enough to the central star for radiation pressure to account for the observed outflow velocities. Pulsations appear to be important in raising the material far enough above the photosphere for grains to condense.

  11. Photometry and Classification of Stars around the Reflection Nebula NGC 7023 IN Cepheus. I. A Catalog of Magnitudes, Color Indices and Spectral Types of 1240 Stars

    NASA Astrophysics Data System (ADS)

    Zdanavičius, K.; Zdanavičius, J.; Straižys, V.; Kotovas, A.

    The catalog contains magnitudes and color indices of 1240 stars down to ˜ 16.7 mag in V measured in the seven-color Vilnius photometric system in the area of 1.5 square degrees around the reflection nebula NGC 7023 in Cepheus. For most of the stars spectral types determined from the photometric data are given. A large number of visual binaries with separations between 3'' and 10'' are identified using the DSS2 images.

  12. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; hide

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  13. Further RIOTS4 Characterization of Field OB Stars in the SMC

    NASA Astrophysics Data System (ADS)

    Oey, M. S.; Barnes, Jesse R.; Paggeot, Kevin J.; Dorigo Jones, John; Castro, Norberto; Simon-Diaz, Sergio; Kratter, Kaitlin M.; Moe, Maxwell; Szymanski, Michal

    2018-06-01

    We present recent results from the Runaways and O-Type Star Spectroscopic Survey of the SMC (RIOTS4), a survey quantifying properties of the field OB stars in the Small Magellanic Cloud (SMC). Based on PSF-fitting photometry and astrometry of OGLE-III I-band images, we quantify the degree of isolation for the target OB stars, classifying them as "tip-of-the-iceberg" stars accompanied by small, sparse, clusters; or as true, isolated field stars. Many of these field stars must be runaways, which we evaluate using GAIA DR2 proper motions. We measure v sin i using the IACOB code Fourier analysis, finding that the bimodal distribution of projected rotation velocities is less pronounced for O stars than early B stars. We examine rotation in relation to relative isolation and runaway status.

  14. Massive binary stars as a probe of massive star formation

    NASA Astrophysics Data System (ADS)

    Kiminki, Daniel C.

    2010-10-01

    Massive stars are among the largest and most influential objects we know of on a sub-galactic scale. Binary systems, composed of at least one of these stars, may be responsible for several types of phenomena, including type Ib/c supernovae, short and long gamma ray bursts, high-velocity runaway O and B-type stars, and the density of the parent star clusters. Our understanding of these stars has met with limited success, especially in the area of their formation. Current formation theories rely on the accumulated statistics of massive binary systems that are limited because of their sample size or the inhomogeneous environments from which the statistics are collected. The purpose of this work is to provide a higher-level analysis of close massive binary characteristics using the radial velocity information of 113 massive stars (B3 and earlier) and binary orbital properties for the 19 known close massive binaries in the Cygnus OB2 Association. This work provides an analysis using the largest amount of massive star and binary information ever compiled for an O-star rich cluster like Cygnus OB2, and compliments other O-star binary studies such as NGC 6231, NGC 2244, and NGC 6611. I first report the discovery of 73 new O or B-type stars and 13 new massive binaries by this survey. This work involved the use of 75 successful nights of spectroscopic observation at the Wyoming Infrared Observatory in addition to observations obtained using the Hydra multi-object spectrograph at WIYN, the HIRES echelle spectrograph at KECK, and the Hamilton spectrograph at LICK. I use these data to estimate the spectrophotometric distance to the cluster and to measure the mean systemic velocity and the one-sided velocity dispersion of the cluster. Finally, I compare these data to a series of Monte Carlo models, the results of which indicate that the binary fraction of the cluster is 57 +/- 5% and that the indices for the power law distributions, describing the log of the periods, mass

  15. Behavior of Abundances in Chemically Peculiar Dwarf and Subgiant A-Type Stars: HD 23193 and HD 170920

    NASA Astrophysics Data System (ADS)

    Kılıçoğlu, Tolgahan; Çalışkan, Şeyma; Ünal, Kübraözge

    2018-01-01

    To understand the origin of the abundance peculiarities of non-magnetic A-type stars, we present the first detailed chemical abundance analysis of a metallic line star HD 23193 (A2m) and an A-type subgiant HD 170920 (A5), which could have been a HgMn star on the main sequence. Our analysis is based on medium (R ∼ 14,000) and high (R ∼ 40,000) resolution spectroscopic data of the stars. The abundances of 18 elements are derived: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Zn, Sr, Y, and Ba. The masses of HD 23193 and HD 170920 are estimated from evolutionary tracks as 2.3 ± 0.1 M ⊙ and 2.9 ± 0.1 M ⊙. The ages are found to be 635 ± 33 Myr for HD 23193 and 480 ± 50 Myr for HD 170920 using isochrones. The abundance pattern of HD 23193 shows deviations from solar values in the iron-peak elements and indicates remarkable overabundances of Sr (1.16), Y (1.03), and Ba (1.24) with respect to the solar abundances. We compare the derived abundances of this moderately rotating (v\\sin i =37.5 km s‑1) Am star to the theoretical chemical evolution models including rotational mixing. The theoretically predicted abundances resemble our derived abundance pattern, except for a few elements (Si and Cr). For HD 170920, we find nearly solar abundances, except for C (‑0.43), S (0.16), Ti (0.15), Ni (0.16), Zn (0.41), Y (0.57), and Ba (0.97). Its low rotational velocity (v\\sin i=14.5 km s‑1), reduced carbon abundance, and enhanced heavy element abundances suggest that the star is most likely an evolved HgMn star. Based on observations made at the TÜBITAK National Observatory (Program ID 14BRTT150–671), and the Ankara University Observatory, Turkey.

  16. Contributions of late-type dwarf stars to the soft X-ray diffuse background

    NASA Technical Reports Server (NTRS)

    Schmitt, J. H. M. M.; Snowden, S. L.

    1990-01-01

    Comprehensive calculations of the contribution of late-type dwarf stars to the soft X-ray diffuse background are presented. The mean X-ray luminosity as derived from optically and X-ray selected samples is examined, using the Bahcall-Soneira Galaxy model to describe the spatial distribution of stars and recent results on the X-ray spectra. The model calculations are compared with the Wisconsin sky maps in the C, M1, M2, I and J bands to assess the uncertainties of the calculations. Contributions of up to 10 percent to the M2 and I band background at high Galactic latitudes are found, while at low Galactic latitudes late-type stars contribute up to 40 percent of the background. However, a Galactic ridge as well as a relatively isotropic component still remains unexplained, even with the added contribution of the extrapolated high-energy power law.

  17. Spectral Types and Wind Velocities for Massive Stars in R136

    NASA Astrophysics Data System (ADS)

    Bostroem, K. A.; Maíz Apellániz, J.; Caballero-Nieves, S. M.; Walborn, N. R.; Crowther, P. A.

    2014-01-01

    We analyze spatially resolved, long-slit ultraviolet (UV) and optical stellar spectra of the compact starburst cluster R136 at the core of 30 Doradus. R136 is young and massive, making it an ideal place to study the upper end of the initial mass function. These spectra, taken with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope, cover over 100 stars in the inner 4 arcseconds (1 parsec) of R136, a region which cannot be resolved with ground-based spectroscopy. In this poster we present both the UV and optical of over 20 of the brightest stars in R136, extracted with MULTISPEC, a tool written specifically for multiple objects in crowded fields. For each star we present an optical spectral type and a terminal wind velocity derived from the UV data

  18. The Puppis region and the last crusade for faint OB stars

    NASA Astrophysics Data System (ADS)

    Orsatti, Ana M.

    1992-08-01

    UBV photoelectric and photographic measurements of OB stars from a list of 397 OB stars and 5 early-type supergiants and from the Luminous Stars Survey are presented. The galactic distribution of the OB stars in the region shows concentrations around the open clusters Ruprecht 44 and Ruprecht 55, and the presence of an important grouping of young stars located far below the plane. The distribution in latitude shows that young stars in the region are not restricted to a thin sheet around the plane but are spread over negative latitudes reaching at least b = -5 deg. In longitude, the OB distribution exhibits a concentration of Ob stars in the interval 244-251 deg; this is argued to be due to the presence of the local arm extension.

  19. Early-type galaxy archeology: Ages, abundance ratios, and effective temperatures from full-spectrum fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Charlie; Graves, Genevieve J.; Van Dokkum, Pieter G.

    2014-01-01

    The stellar populations of galaxies hold vital clues to their formation histories. In this paper we present results based on modeling stacked spectra of early-type galaxies drawn from the Sloan Digital Sky Survey as a function of velocity dispersion, σ, from 90 km s{sup –1} to 300 km s{sup –1}. The spectra are of extremely high quality, with typical signal-to-noise ratio of 1000 Å{sup –1}, and a wavelength coverage of 4000 Å –8800 Å. Our population synthesis model includes variation in 16 elements from C to Ba, a two-component star formation history, the shift in effective temperature, Δ T {submore » eff}, of the stars with respect to a solar metallicity isochrone, and the stellar initial mass function, among other parameters. In our approach we fit the full optical spectra rather than a select number of spectral indices and are able to, for the first time, measure the abundances of the elements V, Cr, Mn, Co, and Ni from the integrated light of distant galaxies. Our main results are as follows: (1) light-weighted stellar ages range from 6-12 Gyr from low to high σ; (2) [Fe/H] varies by less than 0.1 dex across the entire sample; (3) Mg closely tracks O, and both increase from ≈0.0 at low σ to ∼0.25 at high σ; Si and Ti show a shallower rise with σ, and Ca tracks Fe rather than O; (4) the iron peak elements V, Cr, Mn, and Ni track Fe, while Co tracks O, suggesting that Co forms primarily in massive stars; (5) C and N track O over the full sample and [C/Fe] and [N/Fe] exceed 0.2 at high σ; and (6) the variation in Δ T {sub eff} with total metallicity closely follows theoretical predictions based on stellar evolution theory. This last result is significant because it implies that we are robustly solving not only for the detailed abundance patterns but also the detailed temperature distributions (i.e., isochrones) of the stars in these galaxies. A variety of tests reveal that the systematic uncertainties in our measurements are probably 0

  20. X-ray studies of coeval star samples. II - The Pleiades cluster as observed with the Einstein Observatory

    NASA Technical Reports Server (NTRS)

    Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Rosner, R.

    1990-01-01

    Coronal X-ray emission of the Pleiades stars is investigated, and maximum likelihood, integral X-ray luminosity functions are computed for Pleiades members in selected color-index ranges. A detailed search is conducted for long-term variability in the X-ray emission of those stars observed more than once. An overall comparison of the survey results with those of previous surveys confirms the ubiquity of X-ray emission in the Pleiades cluster stars and its higher rate of emission with respect to older stars. It is found that the X-ray emission from dA and early dF stars cannot be proven to be dissimilar to that of Hyades and field stars of the same spectral type. The Pleiades cluster members show a real rise of the X-ray luminosity from dA stars to early dF stars. X-ray emission for the young, solarlike Pleiades stars is about two orders of magnitude more intense than for the nearby solarlike stars.

  1. Young stars of low mass in the Gum nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, J.A.; Heyer, M.H.

    1989-06-01

    Observations are presented for four recently formed stars in the vicinity of the Gum nebula which are heavily obscured by surrounding dust and are associated with small reflection nebulae. HH46 is the only currently active star of the sample, and it is found to have a spectral type in the range of late G-early K, with superimposed emission lines of H-alpha, Ca II, Fe I, Fe II, and weak He I at near zero velocities. It is suggested that the observed scenario of low-mass stars in an older massive star environment may be analogous to the circumstances surrounding the birthmore » of the sun. 53 refs.« less

  2. A comparison of the near-infrared spectral features of early-type galaxies in the Coma Cluster, the Virgo cluster and the field

    NASA Technical Reports Server (NTRS)

    Houdashelt, Mark L.; Frogel, Jay A.

    1993-01-01

    Earlier researchers derived the relative distance between the Coma and Virgo clusters from color-magnitude relations of the early-type galaxies in each cluster. They found that the derived distance was color-dependent and concluded that the galaxies of similar luminosity in the two clusters differ in their red stellar populations. More recently, the color-dependence of the Coma-Virgo distance modulus has been called into question. However, because these two clusters differ so dramatically in their morphologies and kinematics, it is plausible that the star formation histories of the member galaxies also differed. If the conclusions of earlier researchers are indeed correct, then some signature of the resulting stellar population differences should appear in the near-infrared and/or infrared light of the respective galaxies. We have collected near-infrared spectra of 17 Virgo and 10 Coma early-type galaxies; this sample spans about four magnitudes in luminosity in each cluster. Seven field E/S0 galaxies have been observed for comparison. Pseudo-equivalent widths have been measured for all of the field galaxies, all but one of the Virgo members, and five of the Coma galaxies. The features examined are sensitive to the temperature, metallicity, and surface gravity of the reddest stars. A preliminary analysis of these spectral features has been performed, and, with a few notable exceptions, the measured pseudo-equivalent widths agree well with previously published values.

  3. Solution of the comoving-frame equation of transfer in spherically symmetric flows. V - Multilevel atoms. [in early star atmospheres

    NASA Technical Reports Server (NTRS)

    Mihalas, D.; Kunasz, P. B.

    1978-01-01

    The coupled radiative transfer and statistical equilibrium equations for multilevel ionic structures in the atmospheres of early-type stars are solved. Both lines and continua are treated consistently; the treatment is applicable throughout a transonic wind, and allows for the presence of background continuum sources and sinks in the transfer. An equivalent-two-level-atoms approach provides the solution for the equations. Calculations for simplified He (+)-like model atoms in parameterized isothermal wind models indicate that subordinate line profiles are sensitive to the assumed mass-loss rate, and to the assumed structure of the velocity law in the atmospheres.

  4. Searching for axion stars and Q -balls with a terrestrial magnetometer network

    NASA Astrophysics Data System (ADS)

    Jackson Kimball, D. F.; Budker, D.; Eby, J.; Pospelov, M.; Pustelny, S.; Scholtes, T.; Stadnik, Y. V.; Weis, A.; Wickenbrock, A.

    2018-02-01

    Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q -balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q -balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown that a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q -ball could be detected over a broad range of unexplored parameter space.

  5. Stellar Diameters and Temperatures. III. Main-sequence A, F, G, and K Stars: Additional High-precision Measurements and Empirical Relations

    NASA Astrophysics Data System (ADS)

    Boyajian, Tabetha S.; von Braun, Kaspar; van Belle, Gerard; Farrington, Chris; Schaefer, Gail; Jones, Jeremy; White, Russel; McAlister, Harold A.; ten Brummelaar, Theo A.; Ridgway, Stephen; Gies, Douglas; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Goldfinger, P. J.; Vargas, Norm

    2013-07-01

    Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR J I J JHK), Cousins (R C I C), Kron (R K I K), Sloan (griz), and WISE (W 3 W 4) photometric systems. These relations have an average standard deviation of ~3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T eff > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only ~2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis.

  6. Stellar population of the superbubble N 206 in the LMC. I. Analysis of the Of-type stars

    NASA Astrophysics Data System (ADS)

    Ramachandran, Varsha; Hainich, R.; Hamann, W.-R.; Oskinova, L. M.; Shenar, T.; Sander, A. A. C.; Todt, H.; Gallagher, J. S.

    2018-01-01

    Context. Massive stars severely influence their environment by their strong ionizing radiation and by the momentum and kinetic energy input provided by their stellar winds and supernovae. Quantitative analyses of massive stars are required to understand how their feedback creates and shapes large scale structures of the interstellar medium. The giant H II region N 206 in the Large Magellanic Cloud contains an OB association that powers a superbubble filled with hot X-ray emitting gas, serving as an ideal laboratory in this context. Aims: We aim to estimate stellar and wind parameters of all OB stars in N 206 by means of quantitative spectroscopic analyses. In this first paper, we focus on the nine Of-type stars located in this region. We determine their ionizing flux and wind mechanical energy. The analysis of nitrogen abundances in our sample probes rotational mixing. Methods: We obtained optical spectra with the multi-object spectrograph FLAMES at the ESO-VLT. When possible, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. Detailed spectral classifications are presented for our sample Of-type stars. For the quantitative spectroscopic analysis we used the Potsdam Wolf-Rayet model atmosphere code. We determined the physical parameters and nitrogen abundances of our sample stars by fitting synthetic spectra to the observations. Results: The stellar and wind parameters of nine Of-type stars, which are largely derived from spectral analysis are used to construct wind momentum - luminosity relationship. We find that our sample follows a relation close to the theoretical prediction, assuming clumped winds. The most massive star in the N 206 association is an Of supergiant that has a very high mass-loss rate. Two objects in our sample reveal composite spectra, showing that the Of primaries have companions of late O subtype. All stars in our sample have an evolutionary age of less than 4 million yr, with the O2-type star being

  7. Observational knowledge about the physical properties of O stars

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.

    1983-01-01

    Information about the effective temperatures, radii, and masses of O-type stars is presented. It is argued that rapid variations in the amount of light from O stars and the spectral distribution are a result chiefly of changes which occur in the envelope of the star. The stability of the photospheric layers of O stars against convection is reviewed and it is noted that late O stars and early B stars have a convection zone in the deeper parts of the photosphere. This convection zone is due to the second ionization of helium. Evidence is reviewed that most of the line-profile changes seen for O stars are generated by changes in the physical state of the mantle of the star, that is of the outer atmosphere where the deposition of non-radiative energy and momentum controls the physical state of the atmosphere. The physical state of the mantle may change in response to changes in the upper envelope of a star with a different time constant than the photosphere does.

  8. The nature of Becklin's star.

    NASA Technical Reports Server (NTRS)

    Penston, M. V.; Allen, D. A.; Hyland, A. R.

    1971-01-01

    The IR point source in the Orion Nebula commonly known as Becklin's star appears to be exceptional because of its extreme colors and the lack of any associated optical object. Characteristics of the spectrum of Becklin's object are examined. It is found that the spectrum is consistent with that of a highly reddened early-type supergiant, in which weak absorption has been masked by low resolution.

  9. The nature of X-ray selected star candidates

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Paronyan, G. M.; Abrahamyan, H. V.; Gigoyan, K. S.; Gyulzadyan, M. V.; Kostandyan, G. R.

    2016-12-01

    The joint HRC/BHRC catalogue of optical identifications of ROSAT BSC and FSC X-ray sources is based on merging the Hamburg-ROSAT Catalogue (HRC) and Byurakan-Hamburg-ROSAT Catalogue (BHRC). Both have been made by optical identifications of X-ray sources based on low-dispersion spectra of the Hamburg QuasarSurvey (HQS) using the ROSAT Catalogues. HRC/BHRC contains a sample of 8132 (5341+2791) optically identified X-ray sources with count rate (CR) of photons ≥ 0.04 ct/s in the area of the low-dispersion Hamburg Quasar Survey (HQS), |b| ≥ 20° and δ ≥ 0°. Based on low-dispersion spectral classification, there are 4253 AGN, 492 galaxies, 1800 stars and 1587 unknown objects in the sample. 1800 star candidates include 1429 objects listed in SDSS DR12 photometric catalogue and 433 given in SDSS spectroscopic catalogue. Using these spectra, we have carried out classification of these star candidates to reveal new interesting objects, as well as to define the true content of our sample. 34 cataclysmic variables (including 7 new ones), 19 white dwarfs, 19 late-type stars (K-M and C types), 16 early type stars (O-B), 40 hot coronal stars (A-F types), 2 composite spectrum objects, and 17 bright stars have been revealed, as well as 286 objects which turned out to be extragalactic ones; 75 emission-line galaxies (HII/SB and AGN, including QSOs, Seyferts, and LINERs) and 211 absorption line galaxies were revealed (wrong classifications in HRC/BHRC due to their faint images and low-quality spectra). We have retrieved multiwavelength data from recent catalogues and carried out statistical investigations of the multiwavelength properties for the whole sample of stars. All stars have been found in GSC 2.3.2, as well as most of them are in GALEX, USNO-B1.0, 2MASS and WISE catalogues. Relations between the radiation fluxes in different bands from X-ray to radio for different types of sources are studied and analysis of their characteristics is made. X-ray selected stars are an

  10. Spectroscopic monitoring of bright A-F type candidate hybrid stars discovered by the Kepler mission

    NASA Astrophysics Data System (ADS)

    Lampens, Patricia; Frémat, Y.; Vermeylen, Lore; De Cat, Peter; Dumortier, Louis; Sódor, Ádám; Sharka, Marek; Bognár, Zsófia

    2018-04-01

    We report on a study of 250 optical spectra for 50 bright A/F-type candidate hybrid pulsating stars from the Kepler field. Most of the spectra have been collected with the high-resolution spectrograph HERMES attached to the Mercator telescope, La Palma. We determined the radial velocities (RVs), projected rotational velocities, fundamental atmospheric parameters and provide a classification based on the appearance of the cross-correlation profiles and the behaviour of the RVs with time in order to find true hybrid pulsators. Additionally, we also detected new spectroscopic binary and multiple systems in our sample and determined the fraction of spectroscopic systems. In order to be able to extend this investigation to the fainter A-F type candidate hybrid stars, various high-quality spectra collected with 3-4 m sized telescopes suitably equipped with a high-resolution spectrograph and furthermore located in the Northern hemisphere would be ideal. This programme could be done using the new instruments installed at the Devasthal Observatory.

  11. Observations of magnetic fields on solar-type stars

    NASA Technical Reports Server (NTRS)

    Marcy, G. W.

    1982-01-01

    Magnetic-field observations were carried out for 29 G and K main-sequence stars. The area covering-factors of magnetic regions tends to be greater in the K dwarfs than in the G dwarfs. However, no spectral-type dependence is found for the field strengths, contrary to predictions that pressure equilibrium with the ambient photospheric gas pressure would determine the surface field strengths. Coronal soft X-ray fluxes from the G and K dwarfs correlate well with the fraction of the stellar surface covered by magnetic regions. The dependence of coronal soft X-ray fluxes on photospheric field strengths is consistent with Stein's predicted generation-rates for Alfven waves. These dependences are inconsistent with the one dynamo model for which a specific prediction is offered. Finally, time variability of magnetic fields is seen on the two active stars that have been extensively monitored. Significant changes in magnetic fields are seen to occur on timescales as short as one day.

  12. Nucleosynthesis Predictions for Intermediate-Mass Asymptotic Giant Branch Stars: Comparison to Observations of Type I Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Karakas, Amanda I.; van Raai, Mark A.; Lugaro, Maria; Sterling, N. C.; Dinerstein, Harriet L.

    2009-01-01

    Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of ~3-8 M sun. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a 13C pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] lsim0.6, consistent with Galactic Type I PNe where the observed enhancements are typically lsim0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the gsim0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M gsim 5 M sun) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 M sun), if these stars are to evolve into Type I PNe. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  13. Radiative Amplification of Acoustic Waves in Hot Stars

    NASA Technical Reports Server (NTRS)

    Wolf, B. E.

    1985-01-01

    The discovery of broad P Cygni profiles in early type stars and the detection of X-rays emitted from the envelopes of these stars made it clear, that a considerable amount of mechanical energy has to be present in massive stars. An attack on the problem, which has proven successful when applied to late type stars is proposed. It is possible that acoustic waves form out of random fluctuations, amplify by absorbing momentum from stellar radiation field, steepen into shock waves and dissipate. A stellar atmosphere was constructed, and sinusoidal small amplitude perturbations of specified Mach number and period at the inner boundary was introduced. The partial differential equations of hydrodynamics and the equations of radiation transfer for grey matter were solved numerically. The equation of motion was augmented by a term which describes the absorption of momentum from the radiation field in the continuum and in lines, including the Doppler effect and allows for the treatment of a large number of lines in the radiative acceleration term.

  14. Evolution of Planetary Nebulae with WR-type Central Stars

    NASA Astrophysics Data System (ADS)

    Danehkar, Ashkbiz

    2014-04-01

    This thesis presents a study of the kinematics, physical conditions and chemical abundances for a sample of Galactic planetary nebulae (PNe) with Wolf-Rayet (WR) and weak emission-line stars (wels), based on optical integral field unit (IFU) spectroscopy obtained with the Wide Field Spectrograph (WiFeS) on the Australian National University 2.3 telescope at Siding Spring Observatory, and complemented by spectra from the literature. PNe surrounding WR-type stars constitute a particular study class for this study. A considerable fraction of currently well-identified central stars of PNe exhibit 'hydrogen-deficient' fast expanding atmospheres characterized by a large mass-loss rate. Most of them were classified as the carbon-sequence and a few of them as the nitrogen-sequence of the WR-type stars. What are less clear are the physical mechanisms and evolutionary paths that remove the hydrogen-rich outer layer from these degenerate cores, and transform it into a fast stellar wind. The aim of this thesis is to determine kinematic structure, density distribution, thermal structure and elemental abundances for a sample of PNe with different hydrogen-deficient central stars, which might provide clues about the origin and formation of their hydrogen-deficient stellar atmospheres. Hα and [N II] emission features have been used to determine kinematic structures. Based on spatially resolved observations of these emission lines, combined with archival Hubble Space Telescope imaging for compact PNe, morphological structures of these PNe have been determined. Comparing the velocity maps from the IFU spectrograph with those provided by morpho-kinematic models allowed disentangling of the different morphological components of most PNe, apart from the compact objects. The results indicate that these PNe have axisymmetric morphologies, either bipolar or elliptical. In many cases, the associated kinematic maps for PNe around hot WR-type stars also show the presence of so-called fast

  15. Supernovae in Early-Type Galaxies: Directly Connecting Age and Metallicity with Type Ia Luminosity

    NASA Astrophysics Data System (ADS)

    Gallagher, Joseph S.; Garnavich, Peter M.; Caldwell, Nelson; Kirshner, Robert P.; Jha, Saurabh W.; Li, Weidong; Ganeshalingam, Mohan; Filippenko, Alexei V.

    2008-10-01

    We have obtained optical spectra of 29 early-type (E/S0) galaxies that hosted Type Ia supernovae (SNe Ia). We have measured absorption-line strengths and compared them to a grid of models to extract the relations between the supernova properties and the luminosity-weighted age/composition of the host galaxies. Such a direct measurement is a marked improvement over existing analyses that tend to rely on general correlations between the properties of stellar populations and morphology. We find a strong correlation suggesting that SNe Ia in galaxies whose populations have a characteristic age greater than 5 Gyr are ~1 mag fainter at Vmax than those found in galaxies with younger populations. We find that SN Ia distance residuals in the Hubble diagram are correlated with host-galaxy metal abundance with higher iron abundance galaxies hosting less-luminous supernovae. We thus conclude that the time since progenitor formation primarily determines the radioactive Ni production while progenitor metal abundance has a weaker influence on peak luminosity, but one not fully corrected by light-curve shape and color fitters. This result, particularly the secondary dependence on metallicity, has significant implications for the determination of the equation-of-state parameter, w = P/(ρ c2) , and could impact planning for future dark-energy missions such as JDEM. Assuming no selection effects in discovering SNe Ia in local early-type galaxies, we find a higher specific SN Ia rate in E/S0 galaxies with ages below 3 Gyr than in older hosts. The higher rate and brighter luminosities seen in the youngest E/S0 hosts may be a result of recent star formation and represents a tail of the "prompt" SN Ia progenitors.

  16. Abundance profiling of extremely metal-poor stars and supernova properties in the early universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tominaga, Nozomu; Iwamoto, Nobuyuki; Nomoto, Ken'ichi, E-mail: tominaga@konan-u.ac.jp, E-mail: iwamoto.nobuyuki@jaea.go.jp, E-mail: nomoto@astron.s.u-tokyo.ac.jp

    2014-04-20

    After the big bang nucleosynthesis, the first heavy element enrichment in the universe was made by a supernova (SN) explosion of a population (Pop) III star (Pop III SN). The abundance ratios of elements produced from Pop III SNe are recorded in abundance patterns of extremely metal-poor (EMP) stars. The observations of the increasing number of EMP stars have made it possible to statistically constrain the explosion properties of Pop III SNe. We present Pop III SN models whose nucleosynthesis yields well reproduce, individually, the abundance patterns of 48 such metal-poor stars as [Fe/H] ≲ – 3.5. We then derivemore » relations between the abundance ratios of EMP stars and certain explosion properties of Pop III SNe: the higher [(C + N)/Fe] and [(C + N)/Mg] ratios correspond to the smaller ejected Fe mass and the larger compact remnant mass, respectively. Using these relations, the distributions of the abundance ratios of EMP stars are converted to those of the explosion properties of Pop III SNe. Such distributions are compared with those of the explosion properties of present day SNe: the distribution of the ejected Fe mass of Pop III SNe has the same peak as that of the present day SNe but shows an extended tail down to ∼10{sup –2}-10{sup –5} M {sub ☉}, and the distribution of the mass of the compact remnant of Pop III SNe is as wide as that of the present-day, stellar-mass black holes. Our results demonstrate the importance of large samples of EMP stars obtained by ongoing and future EMP star surveys and subsequent high-dispersion spectroscopic observations in clarifying the nature of Pop III SNe in the early universe.« less

  17. On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael

    2006-01-01

    The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the field and in rich galaxy clusters are contrasted by juxtaposing the buildup of heavy metals in the universe inferred from observed star formation and supernovae rate histories with data on the evolution of Fe abundances in the intracluster medium (ICM). Models for the chemical evolution of Fe in these environments are constructed, subject to observational constraints, for this purpose. While models with a mean delay for SNIa of 3 Gyr and standard initial mass function (IMF) are fully consistent with observations in the field, cluster Fe enrichment immediately tracked a rapid, top-heavy phase of star formation - although transport of Fe into the ICM may have been more prolonged and star formation likely continued beyond redshift 1. The means of this prompt enrichment consisted of SNII yielding greater than or equal to 0.1 solar mass per explosion (if the SNIa rate normalization is scaled down from its value in the field according to the relative number of candidate progenitor stars in the 3 - 8 solar mass range) and/or SNIa with short delay times originating during the rapid star formation epoch. Star formation is greater than 3 times more efficient in rich clusters than in the field, mitigating the overcooling problem in numerical cluster simulations. Both the fraction of baryons cycled through stars, and the fraction of the total present-day stellar mass in the form of stellar remnants, are substantially greater in clusters than in the field.

  18. A New Test of Copper and Zinc Abundances in Late-Type Stars Using Cu II and Zn II lines in the Near-Ultraviolet

    NASA Astrophysics Data System (ADS)

    Roederer, Ian

    2017-08-01

    The copper (Cu, Z = 29) and zinc (Zn, Z = 30) abundances found in late-type stars provide critical constraints on models that predict the yields of massive star supernovae, hypernovae, Type Ia supernovae, and AGB stars, which are essential ingredients in Galactic chemical evolution models. Furthermore, Zn is commonly used to compare the abundance of iron-group elements in the gas phase in high-redshift DLA systems with metallicities in Local Group stars. It is thus important that the observational Cu and Zn abundances in stars are correct. My proposed archive study will address this issue by using archive STIS spectra of 14 stars to provide the first systematic observational tests of non-LTE calculations of Cu and Zn line formation in late-type stars. The non-LTE calculations predict that all LTE [Cu/Fe] abundance ratios presently found in the literature are systematically lower than the true ratios found in stars. The non-LTE calculations for Zn predict that the LTE values in the literature may be systematically overestimated in low-metallicity stars. The LTE abundances of Cu and Zn are derived from Cu I and Zn I lines. The key advance enabled by the use of NUV spectra is the detection of several lines of Cu II and Zn II, which cannot be detected in the optical or infrared. Cu II and Zn II are largely immune to non-LTE effects in the atmospheres of late-type stars. The metallicities of the 14 stars with NUV spectra span -2.6 < [Fe/H] < -0.1, which covers the range of most Cu and Zn abundances reported in the literature. The proposed study will allow me to test the non-LTE calculations and calibrate the stellar abundances.

  19. Young Star Clusters: Keys to Understanding Massive Stars

    NASA Astrophysics Data System (ADS)

    Davies, B.

    2012-12-01

    Young, coeval clusters of stars provide the perfect laboratory in which to test our understanding of how massive stars evolve. Early optical observations limited us to a handful of low-mass clusters within 1kpc. However, thanks to the recent progress in infrared astronomy, the Milky Way's population of young massive star clusters is now beginning to be revealed. Here, I will review the recent progress made in this field, what it has told us about the evolution of massive stars to supernova and beyond, the prospects for this field, and some issues that should be taken into account when interpreting the results.

  20. A CONSTANT LIMITING MASS SCALE FOR FLAT EARLY-TYPE GALAXIES FROM z {approx} 1 TO z = 0: DENSITY EVOLVES BUT SHAPES DO NOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, Bradford P.; Van der Wel, Arjen; Rix, Hans-Walter

    2012-04-20

    We measure the evolution in the intrinsic shape distribution of early-type galaxies from z {approx} 1 to z {approx} 0 by analyzing their projected axis-ratio distributions. We extract a low-redshift sample (0.04 < z < 0.08) of early-type galaxies with very low star formation rates from the Sloan Digital Sky Survey, based on a color-color selection scheme and verified through the absence of emission lines in the spectra. The inferred intrinsic shape distribution of these early-type galaxies is strongly mass dependent: the typical short-to-long intrinsic axis ratio of high-mass early-type galaxies (>10{sup 11} M{sub Sun }) is 2:3, whereas atmore » masses below 10{sup 11} M{sub Sun} this ratio narrows to 1:3, or more flattened galaxies. In an entirely analogous manner, we select a high-redshift sample (0.6 < z < 0.8) from two deep-field surveys with multi-wavelength and Hubble Space Telescope/Advanced Camera for Surveys imaging: GEMS and COSMOS. We find a seemingly universal mass of {approx}10{sup 11} M{sub Sun} for highly flattened early-type systems at all redshifts. This implies that the process that grows an early-type galaxy above this ceiling mass, irrespective of cosmic epoch, involves forming round systems. Using both parametric and non-parametric tests, we find no evolution in the projected axis-ratio distribution for galaxies with masses >3 Multiplication-Sign 10{sup 10} M{sub Sun} with redshift. At the same time, our samples imply an increase of 2-3 Multiplication-Sign in comoving number density for early-type galaxies at masses >3 Multiplication-Sign 10{sup 10} M{sub Sun }, in agreement with previous studies. Given the direct connection between the axis-ratio distribution and the underlying bulge-to-disk ratio distribution, our findings imply that the number density evolution of early-type galaxies is not exclusively driven by the emergence of either bulge- or disk-dominated galaxies, but rather by a balanced mix that depends only on the stellar mass of

  1. Ensemble asteroseismology of solar-type stars with the NASA Kepler mission.

    PubMed

    Chaplin, W J; Kjeldsen, H; Christensen-Dalsgaard, J; Basu, S; Miglio, A; Appourchaux, T; Bedding, T R; Elsworth, Y; García, R A; Gilliland, R L; Girardi, L; Houdek, G; Karoff, C; Kawaler, S D; Metcalfe, T S; Molenda-Żakowicz, J; Monteiro, M J P F G; Thompson, M J; Verner, G A; Ballot, J; Bonanno, A; Brandão, I M; Broomhall, A-M; Bruntt, H; Campante, T L; Corsaro, E; Creevey, O L; Doğan, G; Esch, L; Gai, N; Gaulme, P; Hale, S J; Handberg, R; Hekker, S; Huber, D; Jiménez, A; Mathur, S; Mazumdar, A; Mosser, B; New, R; Pinsonneault, M H; Pricopi, D; Quirion, P-O; Régulo, C; Salabert, D; Serenelli, A M; Silva Aguirre, V; Sousa, S G; Stello, D; Stevens, I R; Suran, M D; Uytterhoeven, K; White, T R; Borucki, W J; Brown, T M; Jenkins, J M; Kinemuchi, K; Van Cleve, J; Klaus, T C

    2011-04-08

    In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar properties (such as mass, radius, and age) and to test theories of stellar evolution. We find that the distribution of observed masses of these stars shows intriguing differences to predictions from models of synthetic stellar populations in the Galaxy.

  2. First-Ever Census of Variable Mira-Type Stars in Galaxy Outside the Local Group

    NASA Astrophysics Data System (ADS)

    2003-05-01

    First-Ever Census of Variable Mira-Type Stars in Galaxy Outsidethe Local Group Summary An international team led by ESO astronomer Marina Rejkuba [1] has discovered more than 1000 luminous red variable stars in the nearby elliptical galaxy Centaurus A (NGC 5128) . Brightness changes and periods of these stars were measured accurately and reveal that they are mostly cool long-period variable stars of the so-called "Mira-type" . The observed variability is caused by stellar pulsation. This is the first time a detailed census of variable stars has been accomplished for a galaxy outside the Local Group of Galaxies (of which the Milky Way galaxy in which we live is a member). It also opens an entirely new window towards the detailed study of stellar content and evolution of giant elliptical galaxies . These massive objects are presumed to play a major role in the gravitational assembly of galaxy clusters in the Universe (especially during the early phases). This unprecedented research project is based on near-infrared observations obtained over more than three years with the ISAAC multi-mode instrument at the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory . PR Photo 14a/03 : Colour image of the peculiar galaxy Centaurus A . PR Photo 14b/03 : Location of the fields in Centaurus A, now studied. PR Photo 14c/03 : "Field 1" in Centaurus A (visual light; FORS1). PR Photo 14d/03 : "Field 2" in Centaurus A (visual light; FORS1). PR Photo 14e/03 : "Field 1" in Centaurus A (near-infrared; ISAAC). PR Photo 14f/03 : "Field 2" in Centaurus A (near-infrared; ISAAC). PR Photo 14g/03 : Light variation of six variable stars in Centaurus A PR Photo 14h/03 : Light variation of stars in Centaurus A (Animated GIF) PR Photo 14i/03 : Light curves of four variable stars in Centaurus A. Mira-type variable stars Among the stars that are visible in the sky to the unaided eye, roughly one out of three hundred (0.3%) displays brightness variations and is referred to by astronomers as a

  3. Metallicity of solar-type stars with debris discs and planets⋆

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Eiroa, C.; Villaver, E.; Montesinos, B.; Mora, A.

    2012-05-01

    Context. Around 16% of the solar-like stars in our neighbourhood show IR-excesses due to dusty debris discs and a fraction of them are known to host planets. Determining whether these stars follow any special trend in their properties is important to understand debris disc and planet formation. Aims: We aim to determine in a homogeneous way the metallicity of a sample of stars with known debris discs and planets. We attempt to identify trends related to debris discs and planets around solar-type stars. Methods: Our analysis includes the calculation of the fundamental stellar parameters Teff, log g, microturbulent velocity, and metallicity by applying the iron ionisation equilibrium conditions to several isolated Fe i and Fe ii lines. High-resolution échelle spectra (R ~ 57 000) from 2, 3 m class telescopes are used. Our derived metallicities are compared with other results in the literature, which finally allows us to extend the stellar samples in a consistent way. Results: The metallicity distributions of the different stellar samples suggest that there is a transition toward higher metallicities from stars with neither debris discs nor planets to stars hosting giant planets. Stars with debris discs and stars with neither debris nor planets follow a similar metallicity distribution, although the distribution of the first ones might be shifted towards higher metallicities. Stars with debris discs and planets have the same metallicity behaviour as stars hosting planets, irrespective of whether the planets are low-mass or gas giants. In the case of debris discs and giant planets, the planets are usually cool, - semimajor axis larger than 0.1 AU (20 out of 22 planets), even ≈65% have semimajor axis larger than 0.5 AU. The data also suggest that stars with debris discs and cool giant planets tend to have a low dust luminosity, and are among the less luminous debris discs known. We also find evidence of an anticorrelation between the luminosity of the dust and the

  4. A NEAR-INFRARED STUDY OF THE STAR-FORMING REGION RCW 34

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Walt, D. J.; De Villiers, H. M.; Czanik, R. J.

    2012-07-15

    We report the results of a near-infrared imaging study of a 7.8 Multiplication-Sign 7.8 arcmin{sup 2} region centered on the 6.7 GHz methanol maser associated with the RCW 34 star-forming region using the 1.4 m IRSF telescope at Sutherland. A total of 1283 objects were detected simultaneously in J, H, and K for an exposure time of 10,800 s. The J - H, H - K two-color diagram revealed a strong concentration of more than 700 objects with colors similar to what is expected of reddened classical T Tauri stars. The distribution of the objects on the K versus Jmore » - K color-magnitude diagram is also suggestive that a significant fraction of the 1283 objects is made up of lower mass pre-main-sequence stars. We also present the luminosity function for the subset of about 700 pre-main-sequence stars and show that it suggests ongoing star formation activity for about 10{sup 7} years. An examination of the spatial distribution of the pre-main-sequence stars shows that the fainter (older) part of the population is more dispersed over the observed region and the brighter (younger) subset is more concentrated around the position of the O8.5V star. This suggests that the physical effects of the O8.5V star and the two early B-type stars on the remainder of the cloud out of which they formed could have played a role in the onset of the more recent episode of star formation in RCW 34.« less

  5. IUE observations of two late-type stars Bx Mon (M + pec) and TV Gem (M1 Iab)

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Hobbs, R. W.; Kafatos, M.

    1981-01-01

    The IUE observations of two late type stars BX Mon and TV Gem that reveal the emission properties in the ultraviolet of subluminous companions are discussed. Analysis of the continuum emission observed from BX Mon suggests the companion, is a middle A III star. High excitation emission lines observed between 1200 A and 2000 A that generally do not typify emission observed in either late M type variables or A type stars are also detected. It is suggested that these strong high excitation lines arise in a large volume of gas heated by nonradiation processes that could be the result of tidal interaction and mass exchange in the binary system. In contrast to stars such as BX Mon, the luminous M1 supergiant TV Gem shows unexpected intense UV continuum throughout the sensitivity range of IUE. The UV spectrum of TV Gem is characterized by intense continuum with broad absorption features detected in the short wavelength range. The analysis shows that the companion could be a B9 or A1 III-IV star. Alternate suggestions are presented for explaining the UV continuum in terms of an accretion disk in association with TV Gem.

  6. The evolution of the lithium abundances of solar-type stars. III - The Pleiades

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Jones, Burton F.; Balachandran, Suchitra; Stauffer, John R.; Duncan, Douglas K.; Fedele, Stephen B.; Hudon, J. D.

    1993-01-01

    New measurements of lithium in more than 100 Pleiades F, G, and K dwarfs are reported. Abundances are determined from spectrum synthesis fits to the data as well as from use of new covers of growth from the Li 6708-A feature. It is argued that most Late-F and early-G dwarfs in the Pleiades are consistent with the tight N(Li) vs mass relation seen in the Hyades in the same mass range. Most Li-rich stars have abundances at or near the primordial level for Population I, and none exceed that level by a significant amount. At any given color the stars that rotate fast have the most Li and have the strongest chromospheric activity. Ways in which an apparent spread in N(Li) could arise from an intrinsically tight n(Li)-mass relation are considered, and it is concluded that the spread is probably real and is not an artifact of line formation conditions or inhomogeneous atmospheres on the stars.

  7. Low resolution spectroscopic investigation of Am stars using Automated method

    NASA Astrophysics Data System (ADS)

    Sharma, Kaushal; Joshi, Santosh; Singh, Harinder P.

    2018-04-01

    The automated method of full spectrum fitting gives reliable estimates of stellar atmospheric parameters (Teff, log g and [Fe/H]) for late A, F, G, and early K type stars. Recently, the technique was further improved in the cooler regime and the validity range was extended up to a spectral type of M6 - M7 (Teff˜ 2900 K). The present study aims to explore the application of this method on the low-resolution spectra of Am stars, a class of chemically peculiar stars, to examine its robustness for these objects. We use ULySS with the Medium-resolution INT Library of Empirical Spectra (MILES) V2 spectral interpolator for parameter determination. The determined Teff and log g values are found to be in good agreement with those obtained from high-resolution spectroscopy.

  8. Investigating early-type galaxy evolution with a multiwavelength approach. II. The UV structure of 11 galaxies with Swift-UVOT

    NASA Astrophysics Data System (ADS)

    Rampazzo, R.; Mazzei, P.; Marino, A.; Uslenghi, M.; Trinchieri, G.; Wolter, A.

    2017-06-01

    Context. GALEX detected a significant fraction of early-type galaxies, in particular S0s, showing far-UV bright structures, sometimes involving an entire galaxy out to its outskirts. These features suggest the presence of either recent ongoing and/or prolonged star formation episodes, shedding new light on the evolution of these systems. Aims: We aim at understanding the evolutionary path[s] of these early-type galaxies and the mechanisms at the origin of their UV-bright structures. We investigate with a multiwavelength approach the link between the inner and outer galaxy regions of a set of 11 early-type galaxies that were selected because of their nearly passive stage of evolution in the nuclear region. Methods: This paper, second of a series, focuses on the information coming from the comparison between UV features detected by Swift-UVOT, which trace recent star formation, and the galaxy optical structure, which maps older stellar populations. We performed a surface photometric study of these early-type galaxies, observed with the Swift-UVOT UV filters W2 2030 Å λ0, M2 2231 Å λ0, W1 2634 Å λ0 and the UBV bands. BVRI photometry from other sources in the literature was also used. Our integrated magnitude measurements were analyzed and compared with corresponding values in the literature. We characterize the overall galaxy structure that best fits the UV and optical luminosity profiles using a single Sérsic law. Results: The galaxies NGC 1366, NGC 1426, NGC 3818, NGC 3962, and NGC 7192 show featureless luminosity profiles. Excluding NGC 1366, which has a clear edge-on disk (n ≈ 1-2), and NGC 3818, the remaining three galaxies have Sérsic's indices n ≈ 3-4 in the optical and a lower index in the UV. Bright ring- or arm-like structures are revealed by UV images and luminosity profiles of NGC 1415, NGC 1533, NGC 1543, NGC 2685, NGC 2974, and IC 2006. The ring- or arm-like structures differ from galaxy to galaxy. Sérsic indices of UV profiles for these

  9. Star-type oscillatory networks with generic Kuramoto-type coupling: A model for "Japanese drums synchrony"

    NASA Astrophysics Data System (ADS)

    Vlasov, Vladimir; Pikovsky, Arkady; Macau, Elbert E. N.

    2015-12-01

    We analyze star-type networks of phase oscillators by virtue of two methods. For identical oscillators we adopt the Watanabe-Strogatz approach, which gives full analytical description of states, rotating with constant frequency. For nonidentical oscillators, such states can be obtained by virtue of the self-consistent approach in a parametric form. In this case stability analysis cannot be performed, however with the help of direct numerical simulations we show which solutions are stable and which not. We consider this system as a model for a drum orchestra, where we assume that the drummers follow the signal of the leader without listening to each other and the coupling parameters are determined by a geometrical organization of the orchestra.

  10. Searching for axion stars and Q-balls with a terrestrial magnetometer network

    DOE PAGES

    Jackson Kimball, D. F.; Budker, D.; Eby, J.; ...

    2018-02-08

    Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown thatmore » a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q-ball could be detected over a broad range of unexplored parameter space.« less

  11. Searching for axion stars and Q-balls with a terrestrial magnetometer network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson Kimball, D. F.; Budker, D.; Eby, J.

    Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown thatmore » a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q-ball could be detected over a broad range of unexplored parameter space.« less

  12. Massive runaway stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Pflamm-Altenburg, J.; Kroupa, P.

    2011-01-01

    Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ≃ 40 km s-1 from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be “alien” stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.

  13. Coronal thermal structure and abundances of supermetal-rich solar-type stars

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy S. (Principal Investigator); Mushotzky, Richard F. (Technical Monitor)

    2005-01-01

    This observation is for grating spectroscopy of Tau Boo, a late-type star with very high metallicity (about twice solar). Despite the extreme condition of high metallicity in the photosphere, the abundance ratios of the corona appear consistent with the general picture of a coronal abundance/activity relation. The target was obtained by XMM-Newton on 24 June 2003 for 71900 sec. The European PI Antonio Maggio is responsible for data reduction. Members of our team presented at the Cool Stars Workshop 13 held in Hamburg, Germany in July 2004 and conferred at that time on the publication of results. This project is complete except for the final publication.

  14. SPECTROSCOPIC ORBITS FOR 15 LATE-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willmarth, Daryl W.; Abt, Helmut A.; Fekel, Francis C.

    2016-08-01

    Spectroscopic orbital elements are determined for 15 stars with periods from 8 to 6528 days with six orbits computed for the first time. Improved astrometric orbits are computed for two stars and one new orbit is derived. Visual orbits were previously determined for four stars, four stars are members of multiple systems, and five stars have Hipparcos “G” designations or have been resolved by speckle interferometry. For the nine binaries with previous spectroscopic orbits, we determine improved or comparable elements. For HD 28271 and HD 200790, our spectroscopic results support the conclusions of previous authors that the large values of their massmore » functions and lack of detectable secondary spectrum argue for the secondary in each case being a pair of low-mass dwarfs. The orbits given here may be useful in combination with future interferometric and Gaia satellite observations.« less

  15. On the physical association of the peculiar emission: Line stars HD 122669 and HD 122691

    NASA Technical Reports Server (NTRS)

    Garrison, R. F.; Hiltner, W. A.; Sanduleak, N.

    1975-01-01

    Spectroscopic and photometric observations indicate a physical association between the peculiar early-type emission-line stars HD 122669 and HD 122691. The latter has undergone a drastic change in the strength of its emission lines during the past twenty years. There is some indication that both stars vary with shorter time scales.

  16. Instability, finite amplitude pulsation and mass-loss in models of massive OB-type stars

    NASA Astrophysics Data System (ADS)

    Yadav, Abhay Pratap; Glatzel, Wolfgang

    2017-11-01

    Variability and mass-loss are common phenomena in massive OB-type stars. It is argued that they are caused by violent strange mode instabilities identified in corresponding stellar models. We present a systematic linear stability analysis with respect to radial perturbations of massive OB-type stars with solar chemical composition and masses between 23 and 100 M⊙. For selected unstable stellar models, we perform non-linear simulations of the evolution of the instabilities into the non-linear regime. Finite amplitude pulsations with periods in the range between hours and 100 d are found to be the final result of the instabilities. The pulsations are associated with a mean acoustic luminosity which can be the origin of a pulsationally driven wind. Corresponding mass-loss rates lie in the range between 10-9 and 10-4 M⊙ yr-1 and may thus affect the evolution of massive stars.

  17. Demonstration of a Novel Method for Measuring Mass-loss Rates for Massive Stars

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Henry A.; Chick, William T.; Povich, Matthew S.

    2018-03-01

    The rate at which massive stars eject mass in stellar winds significantly influences their evolutionary path. Cosmic rates of nucleosynthesis, explosive stellar phenomena, and compact object genesis depend on this poorly known facet of stellar evolution. We employ an unexploited observational technique for measuring the mass-loss rates of O and early-B stars. Our approach, which has no adjustable parameters, uses the principle of pressure equilibrium between the stellar wind and the ambient interstellar medium for a high-velocity star generating an infrared bow shock nebula. Results for 20 bow-shock-generating stars show good agreement with two sets of theoretical predictions for O5–O9.5 main-sequence stars, yielding \\dot{M} = 1.3 × 10‑6 to 2 × 10‑9 {M}ȯ {yr}}-1. Although \\dot{M} values derived for this sample are smaller than theoretical expectations by a factor of about two, this discrepancy is greatly reduced compared to canonical mass-loss methods. Bow-shock-derived mass-loss rates are factors of 10 smaller than Hα-based measurements (uncorrected for clumping) for similar stellar types and are nearly an order of magnitude larger than P4+ and some other diagnostics based on UV absorption lines. Ambient interstellar densities of at least several cm‑3 appear to be required for formation of a prominent infrared bow shock nebula. Measurements of \\dot{M} for early-B stars are not yet compelling owing to the small number in our sample and the lack of clear theoretical predictions in the regime of lower stellar luminosities. These results may constitute a partial resolution of the extant “weak-wind problem” for late-O stars. The technique shows promise for determining mass-loss rates in the weak-wind regime.

  18. X-ray studies of coeval star samples. II. The Pleiades cluster as observed with the Einstein Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micela, G.; Sciortino, S.; Vaiana, G.S.

    1990-01-01

    Coronal X-ray emission of the Pleiades stars is investigated, and maximum likelihood, integral X-ray luminosity functions are computed for Pleiades members in selected color-index ranges. A detailed search is conducted for long-term variability in the X-ray emission of those stars observed more than once. An overall comparison of the survey results with those of previous surveys confirms the ubiquity of X-ray emission in the Pleiades cluster stars and its higher rate of emission with respect to older stars. It is found that the X-ray emission from dA and early dF stars cannot be proven to be dissimilar to that ofmore » Hyades and field stars of the same spectral type. The Pleiades cluster members show a real rise of the X-ray luminosity from dA stars to early dF stars. X-ray emission for the young, solarlike Pleiades stars is about two orders of magnitude more intense than for the nearby solarlike stars. 77 refs.« less

  19. Einstein Observatory magnitude-limited X-ray survey of late-type giant and supergiant stars

    NASA Technical Reports Server (NTRS)

    Maggio, A.; Vaiana, G. S.; Haisch, B. M.; Stern, R. A.; Bookbinder, J.

    1990-01-01

    Results are presented of an extensive X-ray survey of 380 giant and supergiant stars of spectral types from F to M, carried out with the Einstein Observatory. It was found that the observed F giants or subgiants (slightly evolved stars with a mass M less than about 2 solar masses) are X-ray emitters at the same level of main-sequence stars of similar spectral type. The G giants show a range of emissions more than 3 orders of magnitude wide; some single G giants exist with X-ray luminosities comparable to RS CVn systems, while some nearby large G giants have upper limits on the X-ray emission below typical solar values. The K giants have an observed X-ray emission level significantly lower than F and F giants. None of the 29 M giants were detected, except for one spectroscopic binary.

  20. The Insignificance of Major Mergers in Driving Star Formation at z approximately equal to 2

    NASA Technical Reports Server (NTRS)

    Kaviraj, S.; Cohen, S.; Windhorst, R. A.; Silk, J.; O'Connell, R. W.; Dopita, M. A.; Dekel, A.; Hathi, N. P.; Straughn, A.; Rutkowski, M.

    2012-01-01

    We study the significance of major mergers in driving star formation in the early Universe, by quantifying the contribution of this process to the total star formation budget in 80 massive (M(*) > 10(exp 10) Solar M) galaxies at z approx = 2. Employing visually-classified morphologies from rest-frame V-band HST imaging, we find that 55(exp +/-14)% of the star formation budget is hosted by non-interacting late-types, with 27(exp +/-18% in major mergers and 18(exp +/- 6)% in spheroids. Given that a system undergoing a major merger continues to experience star formation driven by other processes at this epoch (e.g. cold accretion, minor mergers), approx 27% is a likely upper limit for the major-merger contribution to star formation activity at this epoch. The ratio of the average specific star formation rate in major mergers to that in the non-interacting late-types is approx 2.2:1, suggesting that the typical enhancement of star formation due to major merging is modest and that just under half the star formation in systems experiencing major mergers is unrelated to the merger itself. Taking this into account, we estimate that the actual major-merger contribution to the star formation budget may be as low as approx 15%. While our study does not preclude a major-merger-dominated. era in the very early Universe, if the major-merger contribution to star formation does not evolve significantly into larger look-back times, then this process has a relatively insignificant role in driving stellar mass assembly over cosmic time.

  1. The circumstellar environments of dusty main sequence stars

    NASA Astrophysics Data System (ADS)

    Gebrim, Antonio S. Hales

    Our current understanding of the formation of planetary systems is strongly linked to astronomical observations of gas and dust around young stars. This thesis is dedicated to studying the physical conditions acting in the circumstellar environments of pre-main sequence and early main sequence dusty stars. These early stellar ages correspond to the timescales over which planets are thought to be formed. The first part of this work is dedicated to a search for dusty early A-type stars in the northern galactic plane. Data from the IPHAS Ha survey is first used to select a sample of galactic A-type stars. This sample is then correlated with data from the Spitzer Space Telescope in order to search for 8 microns and 24 microns excesses associated with warm dust orbiting the stars. The improved photometric sensitivities of these new galactic surveys allow the list of known galactic 'Vega-like' sources to be extended to unexplored optical magnitude ranges (13.5 < r < 18.5 mags). Only 1.1% of a sample of 3062 A-type stars with available optical to mid-infrared spectral energy distributions showed detectable excesses at 8 microns. Searching over 1860 stars observed at 24 microns yielded similar statistical results (1.2%). Only 10 stars have both 8 and 24 micron excesses. These results support the idea that warm dust located relatively close to the stars is rare in main sequence systems. Follow-up observations of this new sample of dust-excess stars will provide better insights into the properties of the systems. Resolved images are crucial for understanding the dynamics and evolution of proto-planetary disks. Observing the detailed disk structure requires high-contrast, high-spatial resolution imaging very close to the bright central star. As a consequence, only a handful of these systems have yet been resolved. The second part of this work shows how near-infrared Polarimetric Imaging on the 3.8 meter United Kingdom Infrared Telescope can be used to obtain reflected

  2. Measuring the stellar luminosity function and spatial density profile of the inner 0.5 pc of the Milky Way nuclear star cluster

    NASA Astrophysics Data System (ADS)

    Do, Tuan; Ghez, Andrea; Lu, Jessica R.; Morris, Mark R.; Yelda, Sylvana; Martinez, Gregory D.; Peter, Annika H. G.; Wright, Shelley; Bullock, James; Kaplinghat, Manoj; Matthews, K.

    2012-07-01

    We report on measurements of the luminosity function of early (young) and late-type (old) stars in the central 0.5 pc of the Milky Way nuclear star cluster as well as the density profiles of both components. The young (~ 6 Myr) and old stars (> 1 Gyr) in this region provide different physical probes of the environment around a supermassive black hole; the luminosity function of the young stars offers us a way to measure the initial mass function from star formation in an extreme environment, while the density profile of the old stars offers us a probe of the dynamical interaction of a star cluster with a massive black hole. The two stellar populations are separated through a near-infrared spectroscopic survey using the integral-field spectrograph OSIRIS on Keck II behind the laser guide star adaptive optics system. This spectroscopic survey is able to separate early-type (young) and late-type (old) stars with a completeness of 50% at K' = 15.5. We describe our method of completeness correction using a combination of star planting simulations and Bayesian inference. The completeness corrected luminosity function of the early-type stars contains significantly more young stars at faint magnitudes compared to previous surveys with similar depth. In addition, by using proper motion and radial velocity measurements along with anisotropic spherical Jeans modeling of the cluster, it is possible to measure the spatial density profile of the old stars, which has been difficult to constrain with number counts alone. The most probable model shows that the spatial density profile, n(r) propto r-γ, to be shallow with γ = 0.4 ± 0.2, which is much flatter than the dynamically relaxed case of γ = 3/2 to 7/4, but does rule out a 'hole' in the distribution of old stars. We show, for the first time, that the spatial density profile, the black hole mass, and velocity anisotropy can be fit simultaneously to obtain a black hole mass that is consistent with that derived from

  3. Driven neutron star collapse: Type I critical phenomena and the initial black hole mass distribution

    NASA Astrophysics Data System (ADS)

    Noble, Scott C.; Choptuik, Matthew W.

    2016-01-01

    We study the general relativistic collapse of neutron star (NS) models in spherical symmetry. Our initially stable models are driven to collapse by the addition of one of two things: an initially ingoing velocity profile, or a shell of minimally coupled, massless scalar field that falls onto the star. Tolman-Oppenheimer-Volkoff (TOV) solutions with an initially isentropic, gamma-law equation of state serve as our NS models. The initial values of the velocity profile's amplitude and the star's central density span a parameter space which we have surveyed extensively and which we find provides a rich picture of the possible end states of NS collapse. This parameter space survey elucidates the boundary between Type I and Type II critical behavior in perfect fluids which coincides, on the subcritical side, with the boundary between dispersed and bound end states. For our particular model, initial velocity amplitudes greater than 0.3 c are needed to probe the regime where arbitrarily small black holes can form. In addition, we investigate Type I behavior in our system by varying the initial amplitude of the initially imploding scalar field. In this case we find that the Type I critical solutions resemble TOV solutions on the 1-mode unstable branch of equilibrium solutions, and that the critical solutions' frequencies agree well with the fundamental mode frequencies of the unstable equilibria. Additionally, the critical solution's scaling exponent is shown to be well approximated by a linear function of the initial star's central density.

  4. Chromospheric Heating in Late-Type Stars: Evidence for Magnetic and Nonmagnetic Surface Structure

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred

    1996-01-01

    The aim of this paper is to evaluate recent observational and theoretical results concerning the physics of chromospheric heating as inferred from IUE, HST-GHRS and ROSAT data. These results are discussed in conjunction with theoretical model calculations based on acoustic and magnetic heating to infer some conclusions about the magnetic and non-magnetic surface structure of cool luminous stars. I find that most types of stars may exhibit both magnetic and nonmagnetic structures. Candidates for pure nonmagnetic surface structure include M-type giants and super-giants. M-type supergiants are also ideal candidates for identifying direct links between the appearance of hot spots on the stellar surface (perhaps caused by large convective bubbles) and temporarily increased chromospheric heating and emission.

  5. Episodic Mass Loss from the Hydrogen-deficient Central Star of the Planetary Nebula Longmore 4

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.

    2014-09-01

    A spectacular transient mass-loss episode from the extremely hot, hydrogen-deficient central star of the planetary nebula (PN) Longmore 4 (Lo 4) was discovered in 1992 by Werner et al. During that event, the star temporarily changed from its normal PG 1159 spectrum to that of an emission-line low-luminosity early-type Wolf-Rayet [WCE] star. After a few days, Lo 4 reverted to its normal, predominantly absorption-line PG 1159 type. To determine whether such events recur, and if so how often, I monitored the optical spectrum of Lo 4 from early 2003 to early 2012. Out of 81 spectra taken at random dates, 4 of them revealed mass-loss outbursts similar to that seen in 1992. This indicates that the episodes recur approximately every 100 days (if the recurrence rate has been approximately constant and the duration of a typical episode is ~5 days), and that the star is in a high-mass-loss state about 5% of the time. Since the enhanced stellar wind is hydrogen-deficient, it arises from the photosphere and is unlikely to be related to phenomena such as a binary or planetary companion or infalling dust. I speculate on plausible mechanisms for these unique outbursts, including the possibility that they are related to the non-radial GW Vir-type pulsations exhibited by Lo 4. The central star of the PN NGC 246 has stellar parameters similar to those of Lo 4, and it is also a GW Vir-type pulsator with similar pulsation periods. I obtained 167 spectra of NGC 246 between 2003 and 2011, but no mass ejections were found. Based on observations with the 1.5 m telescope operated by the SMARTS Consortium at Cerro Tololo Interamerican Observatory.

  6. Massive Stars in the W33 Giant Molecular Complex

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Clark, J. Simon; Figer, Donald F.; Kudritzki, Rolf-Peter; Najarro, Francisco; Rich, R. Michael; Menten, Karl M.; Ivanov, Valentin D.; Valenti, Elena; Trombley, Christine; Chen, C.-H. Rosie; Davies, Ben

    2015-06-01

    Rich in H ii regions, giant molecular clouds are natural laboratories to study massive stars and sequential star formation. The Galactic star-forming complex W33 is located at l=˜ 12\\buildrel{\\circ}\\over{.} 8 and at a distance of 2.4 kpc and has a size of ≈ 10 pc and a total mass of ≈ (0.8-8.0) × {{10}5} M ⊙ . The integrated radio and IR luminosity of W33—when combined with the direct detection of methanol masers, the protostellar object W33A, and the protocluster embedded within the radio source W33 main—mark the region as a site of vigorous ongoing star formation. In order to assess the long-term star formation history, we performed an infrared spectroscopic search for massive stars, detecting for the first time 14 early-type stars, including one WN6 star and four O4-7 stars. The distribution of spectral types suggests that this population formed during the past ˜2-4 Myr, while the absence of red supergiants precludes extensive star formation at ages 6-30 Myr. This activity appears distributed throughout the region and does not appear to have yielded the dense stellar clusters that characterize other star-forming complexes such as Carina and G305. Instead, we anticipate that W33 will eventually evolve into a loose stellar aggregate, with Cyg OB2 serving as a useful, albeit richer and more massive, comparator. Given recent distance estimates, and despite a remarkably similar stellar population, the rich cluster Cl 1813-178 located on the northwest edge of W33 does not appear to be physically associated with W33.

  7. Empirical ionization fractions in the winds and the determination of mass-loss rates for early-type stars

    NASA Technical Reports Server (NTRS)

    Lamers, H. J. G. L. M.; Gathier, R.; Snow, T. P.

    1980-01-01

    From a study of the UV lines in the spectra of 25 stars from 04 to B1, the empirical relations between the mean density in the wind and the ionization fractions of O VI, N V, Si IV, and the excited C III (2p 3P0) level were derived. Using these empirical relations, a simple relation was derived between the mass-loss rate and the column density of any of these four ions. This relation can be used for a simple determination of the mass-loss rate from O4 to B1 stars.

  8. Lithium abundances among solar-type pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Strom, Karen M.; Wilkin, Francis P.; Strom, Stephen E.; Seaman, Robert L.

    1989-01-01

    Measurements of Li I 6707 A line strengths were carried out for two samples of pre-main-sequence (PMS) stars (L 1641 and Taurus-Auriga), and the Li abundances estimated for PMS stars are compared with those deduced from observations of Li line strengths for main-sequence stars in the Alpha Persei cluster. It was found that the maximum Li abundances among the PMS stars with solar mass values greater than 1.0 exceed the maximum abundances for Alpha Per stars by at least 0.3 dex. Some PMS stars, including few apparently young stars, showed large (greater than 1.0 dex) Li depletion, and some apparently old PMS stars showed little or no depletion.

  9. Delaware Stars for Early Success. QRS Profile. The Child Care Quality Rating System (QRS) Assessment

    ERIC Educational Resources Information Center

    Child Trends, 2010

    2010-01-01

    This paper presents a profile of Delaware's Stars for Early Success prepared as part of the Child Care Quality Rating System (QRS) Assessment Study. The profile consists of several sections and their corresponding descriptions including: (1) Program Information; (2) Rating Details; (3) Quality Indicators for Center-Based Programs; (4) Indicators…

  10. The Origin of Dwarf Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa; Boselli, A.; Gorgas, J.

    2013-01-01

    The physical mechanisms involved in the formation and evolution of dwarf early-type galaxies (dEs) are not well understood yet. Whether these objects, that outnumber any other class of object in clusters, are the low luminosity extension of massive early-type galaxies, i.e. formed through similar processes, or are a different group of objects possibly formed through the transformation of low luminosity spiral galaxies, is still an open debate. Studying the kinematic properties of dEs is a powerful way to distinguish between these two scenarios. In my PhD, awarded with a Fulbright postdoctoral Fellowship and with the 2011 prize to the best Spanish PhD dissertation in Astronomy, we used this technique to make a spectrophotometric analysis of 18 dEs in the Virgo cluster. I found some differences for these dEs within the cluster. The dEs in the outer parts of Virgo have rotation curves with shapes and amplitudes similar to late-type galaxies of the same luminosity. They are rotationally supported, have disky isophotes, and younger ages than those dEs in the center of Virgo, which are pressure supported, often have boxy isophotes and are older. Ram pressure stripping, which removes the gas of galaxies leaving the stars untouched, explains the properties of the dEs located in the outskirts of Virgo. However, the dEs in the central cluster regions, which have lost their angular momentum, must have suffered a more violent transformation. A combination of ram pressure stripping and harassment is not enough to remove the rotation and the disky structures of these galaxies. I am conducting new analysis with 20 new dEs to throw some light in this direction. I also analysed the Faber-Jackson and the Fundamental Plane relations, and I found that dEs deviate from the trends of massive elliptical galaxies towards the position of dark matter dominated systems such as the dwarf spheroidal satellites of the Milky Way and M31. This indicates that dEs have a non-negligible dark matter

  11. The Evolutionary Status of WN3/O3 Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Neugent, Kathryn F.; Massey, Phil; Hillier, D. John; Morrell, Nidia I.

    2017-11-01

    As part of a multi-year survey for Wolf-Rayet stars in the Magellanic Clouds, we have discovered a new type of Wolf-Rayet star with both strong emission and absorption. While one might initially classify these stars as WN3+O3V binaries based on their spectra, such a pairing is unlikely given their faint visual magnitudes. Spectral modeling suggests effective temperatures and bolometric luminosities similar to those of other early-type LMC WNs but with mass-loss rates that are three to five times lower than expected. They additionally retain a significant amount of hydrogen, with nitrogen at its CNO-equilibrium value (10× enhanced). Their evolutionary status remains an open question. Here we discuss why these stars did not evolve through quasi-homogeneous evolution. Instead we suggest that based on a link with long-duration gamma ray bursts, they may form in lower metallicity environments. A new survey in M33, which has a large metallicity gradient, is underway.

  12. New insights into nonradiative heating in late A star chromospheres

    NASA Technical Reports Server (NTRS)

    Walter, Frederick M.; Matthews, Lynn D.; Linsky, Jeffrey L.

    1995-01-01

    Using new and archival spectra from the Goddard High Resolution Spectrograph, we have searched for evidence of chromospheric and transition region emission in six stars of mid to late A spectral type. Two of the stars, alpha Aq1 (A7 IV-V) and alpha Cep (A7 IV-V), show emission in the C II 1335 A doublet, confirming the presence of hot plasma with temperatures comparable to that of the solar transition region. Using radiative equilibrium photospheric models, we estimate the net surface fluxes in the CII emission line to be 9.4 x 10(exp 4) ergs/sq cm/s for alpha Aq1 and 6.5 x 10(exp 4)ergs/sq cm/s for alpha Cep. These are comparable to fluxes observed in stars as hot as approximately 8000 K (B-V = 0.22). We find no evidence for the blueshifted emission reported by Simon et al. (1994). We estimate the basal flux level to be about 30% of that seen in early F stars, and that the bulk of the emission is not basal in origin. We conclude that the basal flux level drops rapidly for B-V approximately less than 0.3, but that magnetic activity may persist to B-v as small as 0.22.

  13. An evolutionary missing link? A modest-mass early-type galaxy hosting an oversized nuclear black hole

    NASA Astrophysics Data System (ADS)

    van Loon, Jacco Th.; Sansom, Anne E.

    2015-11-01

    SAGE1C J053634.78-722658.5 is a galaxy at redshift z = 0.14, discovered behind the Large Magellanic Cloud in the Spitzer Space Telescope`Surveying the Agents of Galaxy Evolution' Spectroscopy survey. It has very strong silicate emission at 10 μm but negligible far-IR and UV emission. This makes it a candidate for a bare active galactic nuclei (AGN) source in the IR, perhaps seen pole-on, without significant IR emission from the host galaxy. In this paper we present optical spectra taken with the Southern African Large Telescope to investigate the nature of the underlying host galaxy and its AGN. We find broad H α emission characteristic of an AGN, plus absorption lines associated with a mature stellar population (>9 Gyr), and refine its redshift determination to z = 0.1428 ± 0.0001. There is no evidence for any emission lines associated with star formation. This remarkable object exemplifies the need for separating the emission from any AGN from that of the host galaxy when employing IR diagnostic diagrams. We estimate the black hole mass, MBH = 3.5 ± 0.8 × 108 M⊙, host galaxy mass, M_stars=2.5^{2.5}_{1.2}× 10^{10} M⊙, and accretion luminosity, Lbol(AGN) = 5.3 ± 0.4 × 1045 erg s-1 (≈12 per cent of the Eddington luminosity), and find the AGN to be more prominent than expected for a host galaxy of this modest size. The old age is in tension with the downsizing paradigm in which this galaxy would recently have transformed from a star-forming disc galaxy into an early-type, passively evolving galaxy.

  14. Discovery of a New Nearby Star

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Pravdo, S. H.; Covey, K.; Frazier, O.; Hawley, S. L.; Hicks, M.; Lawrence, K.; McGlynn, T.; Reid, I. N.; Shaklan, S. B.

    2003-01-01

    We report the discovery of a nearby star with a very large proper motion of 5.06 +/- 0.03 arcsec/yr. The star is called SO025300.5+165258 and referred to herein as HPMS (high proper motion star). The discovery came as a result of a search of the SkyMorph database, a sensitive and persistent survey that is well suited for finding stars with high proper motions. There are currently only 7 known stars with proper motions greater than 5 arcsec/yr. We have determined a preliminary value for the parallax of pi = 0.43 +/- 0.13 arcsec. If this value holds our new star ranks behind only the Alpha Centauri system (including Proxima Centauri) and Barnard's star in the list of our nearest stellar neighbours. The spectrum and measured tangential velocity indicate that HPMS is a main-sequence star with spectral type M6.5. However, if our distance measurement is correct, the HPMS is underluminous by 1.2 +/- 0.7 mag.

  15. Spectrophotometry of VIIZW421 and IIZW67 - s0 Galaxies Dominated by Young Stars

    NASA Astrophysics Data System (ADS)

    Sparke, L. S.; Kormendy, J.; Spinrad, H.

    1980-02-01

    We investigate the stellar content of two SO galaxies whose spectra show deep Balmer absorption lines but little emission. Continuum colors and the Faber-Burstein (Mg)0 index show that the blue light is dominated by young stars. In VII Zw 421 there is a radial population gradient; the nucleus has relatively more young stars than the lens. An approximate spectral synthesis confirms the need for young (rather than metal-poor) stars to produce sufficiently strong Balmer lines. In VII Zw 421 the best synthesis implies that 45Th of the nuclear light at 5000 Å comes from stars close to A1 V in type. In the lens, the young-star contribution is smaller by a factor of 2-3. Also, in the nucleus only, the observed Na D lines are much stronger than in our model. This suggests a connection with the young component and supports Faber and Burstein's conclusion that abnormally strong Na D absorption is sometimes interstellar. Thus VII Zw 421 and II Zw 67 are similar to NGC 5102, the nearest SO galaxy dominated by young stars. The present SO's provide important constraints on any interpretation of the young component. At - 19.9 and -21.5 absolute B mag (H0 = 50 km s-1 1 Mpc-1), they are unusually luminous for their early-type spectra. They are also unusually compact, which may provide them with gravitational potential wells deep enough to retain gas despite processes which remove gas from other early-type galaxies.

  16. Numerical Generation of Double Star Images for Different Types of Telescopes

    NASA Astrophysics Data System (ADS)

    Xavier, Ademir

    2015-11-01

    This paper reviews the modeling of stellar images using diffraction theory applied to different types of telescope masks. The masks are projected by secondary mirror holder vanes (such as the spider type) or holes on the primary mirror which result in different configurations of single stellar images. Using Fast Fourier Transform, the image of binary stars with different magnitudes is calculated. Given the numerical results obtained, a discussion is presented on the best secondary vane configurations and on the effect of obstruction types for the separation of binary pairs with different magnitudes.

  17. Exploring the dusty star-formation in the early Universe using intensity mapping

    NASA Astrophysics Data System (ADS)

    Lagache, Guilaine

    2018-05-01

    In the last decade, it has become clear that the dust-enshrouded star formation contributes significantly to early galaxy evolution. Detection of dust is therefore essential in determining the properties of galaxies in the high-redshift universe. This requires observations at the (sub-)millimeter wavelengths. Unfortunately, sensitivity and background confusion of single dish observations on the one hand, and mapping efficiency of interferometers on the other hand, pose unique challenges to observers. One promising route to overcome these difficulties is intensity mapping of fluctuations which exploits the confusion-limited regime and measures the collective light emission from all sources, including unresolved faint galaxies. We discuss in this contribution how 2D and 3D intensity mapping can measure the dusty star formation at high redshift, through the Cosmic Infrared Background (2D) and [CII] fine structure transition (3D) anisotropies.

  18. Dust disks around Vega-type stars

    NASA Astrophysics Data System (ADS)

    Chini, R.; Kruegel, E.; Kreysa, E.; Shustov, B.; Tutukov, A.

    1991-12-01

    This study presents 1300-micron observations of the circumstellar dust around Vega-type stars. A comparison of the new data (24-arcsec HPBW) for Alpha PsA, Tau-1 Eri and Epsilon Eri with previous measurements made at an angular resolution of 11-arcsec shows that the dust emission is extended. From measurements at different positions it is concluded that the circumstellar dust around Beta Pic does not exceed the size of the optical disk of 500 AU. A model for Beta Pic that fits optical as well as IR data is discussed. Finally, a scenario for the evolution of circumstellar grains is suggested where, on one side, the Poynting-Robertson effect removes the small particles and, on the other side, collisions lead to the formation of larger bodies. Time-dependent IR spectra in reasonable agreement with observations are presented.

  19. X-shooter Finds an Extremely Primitive Star

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Bonifacio, P.; François, P.; Sbordone, L.; Monaco, L.; Spite, M.; Spite, F.; Ludwig, H.-G.; Cayrel, R.; Zaggia, S.; Hammer, F.; Randich, S.; Molaro, P.; Hill, V.

    2011-12-01

    Low-mass extremely metal-poor (EMP) stars hold the fossil record of the chemical composition of the early phases of the Universe in their atmospheres. Chemical analysis of such objects provides important constraints on these early phases. EMP stars are rather rare objects: to dig them out, large amounts of data have to be considered. We have analysed stars from the Sloan Digital Sky Survey using an automatic procedure and selected a sample of good candidate EMP stars, which we observed with the spectrographs X-shooter and UVES. We could confirm the low metallicity of our sample of stars, and we succeeded in finding a record metal-poor star.

  20. Evidence for a Sizable Age Spread among Galaxies from the Ultraviolet-Upturn Phenomenon in Early-type Systems

    NASA Astrophysics Data System (ADS)

    Park, Jang-Hyun; Lee, Young-Wook

    1997-02-01

    The suggestion of Lee that the age spread among galaxies is responsible for the systematic variation of the ultraviolet upturn among early-type systems is examined here with detailed population synthesis models. Our models differ from previous ones by including (1) the effect of metallicity spreads and (2) detailed modeling of the variations in H-R diagram morphology (including the helium-burning phase) with age and metallicity. Our models suggest that the far-UV radiation of these systems is dominated by a minority population of metal-poor, hot horizontal-branch (HB) stars and their post-HB progeny, with some contribution from metal-rich post-asymptotic giant branch stars, while the optical radiation is dominated by a metal-rich population. The systematic variation of the UV upturn depends on the contribution from metal-poor, hot HB stars and their post-HB progeny, which in turn depends on the ages of old stellar populations in galaxies. Our result implies a prolonged epoch of galaxy formation, in the sense that more massive galaxies (in denser environments) formed first. With the assumption that the UV-upturn phenomenon is solely due to the age variations among galaxies, we estimate the difference in age between the giant elliptical galaxies and the spiral bulges of the Local Group to be ~3 Gyr. This suggests that the best estimate for the lower limit of the age of the universe is ~19 Gyr, which of course would be in conflict with the current estimate of H0, together with the standard cosmological models with zero cosmological constant.

  1. First detection of nonflare microwave emissions from the coronae of single late-type dwarf stars

    NASA Technical Reports Server (NTRS)

    Gary, D. E.; Linsky, J. L.

    1981-01-01

    Results are presented of a search for nonflare microwave radiation from the coronae of nearby late-type dwarf stars comparable to the sun: single stars without evidence for either a large wind or circumstellar envelope. The observing program consisted of flux measurements of six stars over a 24-h period with the VLA in the C configuration at a wavelength of 6 cm with 50 MHz bandwidth. Positive detections at 6 cm were made for Chi 1 Ori (0.6 mJy) and the flare star UV Cet (1.55 mJy), and upper limits were obtained for the stars Pi 1 UMa, Xi Boo A, 70 Oph A and Epsilon Eri. It is suggested that Chi 1 Ori, and possibly UV Cet, represent the first detected members of a new class of radio sources which are driven by gyroresonance emission, i.e. cyclotron emission from nonrelativistic Maxwellian electrons.

  2. A FIVE-YEAR SPECTROSCOPIC AND PHOTOMETRIC CAMPAIGN ON THE PROTOTYPICAL {alpha} CYGNI VARIABLE AND A-TYPE SUPERGIANT STAR DENEB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, N. D.; Morrison, N. D.; Kryukova, E. E.

    2011-01-15

    Deneb is often considered the prototypical A-type supergiant and is one of the visually most luminous stars in the Galaxy. A-type supergiants are potential extragalactic distance indicators, but the variability of these stars needs to be better characterized before this technique can be considered reliable. We analyzed 339 high-resolution echelle spectra of Deneb obtained over the five-year span of 1997 through 2001 as well as 370 Stroemgren photometric measurements obtained during the same time frame. Our spectroscopic analysis included dynamical spectra of the H{alpha} profile, H{alpha} equivalent widths, and radial velocities measured from Si II {lambda}{lambda} 6347, 6371. Time-series analysismore » reveals no obvious cyclic behavior that proceeds through multiple observing seasons, although we found a suspected 40 day period in two, non-consecutive observing seasons. Some correlations are found between photometric and radial velocity data sets and suggest radial pulsations at two epochs. No correlation is found between the variability of the H{alpha} profiles and that of the radial velocities or the photometry. Lucy found evidence that Deneb was a long-period single-lined spectroscopic binary star, but our data set shows no evidence for radial velocity variations caused by a binary companion.« less

  3. The Abundances of the Fe Group Elements in Early B Stars in the Magellanic Clouds and Our Galaxy

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine Joan; Adelman, Saul Joseph

    2015-08-01

    The abundances of the Fe-peak elements (Ti, V, Cr, Mn, Fe, Co, and Ni) are of interest as they are important for assessing opacities for stellar evolution calculations, confirming theoretical calculations of explosive nucleosynthesis, and inferring the past history of supernova activity in a galaxy. FUSE FUV spectra of early B stars in the LMC and SMC and HST/STIS FUV/NUV spectra of nearby B stars in our galaxy are analyzed with the Hubeny/Lanz programs TLUSTY/SYNSPEC to determine abundance for the Fe group elements and produce a map of these abundances in the Magellanic Clouds (MC) and Magellanic Bridge (MB). Except for four weak multiplets of Fe III there are no measurable lines from the Fe group in the optical region. The Fe group species found in the FUV spectra of early B stars are primarily in the second stage of ionization. The best set of lines in the FUSE spectral region are Fe III (UV1), V III 1150 Å, and Cr III 1137 Å. Analysis of the galactic B stars provides a good assessment of the reliability of the atomic parameters that are used for the MC calculations. Twenty-two early B stars in the MC and MB and five in our galaxy were analyzed. In general the Fe group abundances range from solar to slightly below solar in our region of the galaxy. But in the MCs the abundances of V, Cr, and Fe tend to be significantly lower than the mean metal abundances for the galaxy. Maps of the Fe group abundances and their variations in the LMC and SMC, tracers of recent enrichment of the ISM from supernova activity, are shown. Support from NASA grants NAG5-13212, NNX10AD66G, STScI HST-GO-13346.22, and USC’s Women in Science and Engineering (WiSE) program is greatly appreciated.

  4. A survey of the properties of early-type galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Joel N.; Roberts, M. S.; Hogg, D. E.

    1990-01-01

    A compilation of the properties of elliptical and early disk galaxies was completed. In addition to material from the literature, such as Infrared Astronomy Satellite (IRAS) fluxes, the compilation includes recent measurements of HI and CO, as well as a review of the x ray properties by Forman and Jones. The data are used to evaluate the gas content of early systems and to search for correlations with x ray emission. The interstellar medium in early-type galaxies is generally dominated by hot interstellar gas (T approx. 10 to the 7th power K; c.f. the review by Fabbiano 1989 and references therein). In addition, a significant fraction of these galaxies show infrared emission (Knapp, et al., 1989), optical emission lines, and visible dust. Sensitive studies in HI and CO of a number of these galaxies have been completed recently, resulting in several detections, particularly of the later types. Researchers wish to understand the connection among these different forms of the interstellar medium, and to examine the theoretical picture of the fate of the hot gas. To do so, they compiled observations of several forms of interstellar matter for a well-defined sample of early-type galaxies. Here they present a statistical analysis of this data base and discuss the implications of the results.

  5. Catalogue of UBVRI photometry of T Tauri stars and analysis of the causes of their variability

    NASA Astrophysics Data System (ADS)

    Herbst, W.; Herbst, D. K.; Grossman, E. J.; Weinstein, D.

    1994-11-01

    A computer-based catalogue of UBVRI photoelectric photometry of T Tauri stars and their earlier type analogs has been compiled. It presently includes over 10 000 entries on 80 stars and will be updated on a regular basis; it is available on Internet. The catalogue is used to analyze the sometimes bizarre light variations of pre-main-sequence stars on time scales of days to months in an attempt to illuminate the nature and causes of the phenomenon. It is useful in discussing their light variations to divide the stars into three groups according to their spectra. These are: weak T Tauri stars (WTTS; spectral class later than K0 and WH-alpha less than 10 A, classical T Tauri stars (CTTS; spectral class later than K0 and WH-alpha greater than 10 A), and early type T Tauri stars (ETTS; spectral class of K0 or earlier). Three distinct types of variability are displayed by stars in the catalogue. Type I variations are periodic in VRI and undoubtedly caused by rotational modulation of a star with an asymmetric distribution of cool spots on its surface. Irregular flare activity is sometimes seen on such stars in U and B. Type I variations are easiest to see on WTTS but are clearly present on CTTS and ETTS as well. Type II variations are caused by hot 'spots' or zones and, it is argued, result from changes in the excess or 'veiling' continuum commonly attributed to an accretion boundary layer or impact zone of a magnetically channeled accretion flow. This type of variation is seen predominantly or solely in CTTS. A sub-category, designated Type IIp, consists of stars which display periodic variations caused by hot spots. Whereas cool spots may last for hundreds or thousands of rotations, hot spots appear to come and go on a much shorter time scale. This suggests that both unsteady accretion and rotation of the star contribute to Type II variations. It is shown that a third type of variation exists among ETTS, including stars as early as A type. UX Ori is a typical example

  6. The low-metallicity starburst NGC346: massive-star population and feedback

    NASA Astrophysics Data System (ADS)

    Oskinova, Lida

    2017-08-01

    The Small Magellanic Cloud (SMC) is ideal to study young, massive stars at low metallicity. The compact cluster NGC346 contains about half of all O-type stars in the entire SMC. The massive-star population of this cluster powers N66, the brightest and largest HII region in the SMC. We propose to use HST-STIS to slice NGC346 with 20 long-slit exposures, in order to obtain the UV spectra of most of the massive early-type stars of this cluster. Archival data of 13 exposures that cover already a minor part of this cluster will be included in our analyses. Our aim is to quantitatively analyze virtually the whole massive-star population of NGC346. We have already secured the optical spectra of all massive stars in the field with the integral-field spectrograph MUSE at the ESO-VLT. However, for the determination of the stellar-wind parameters, i.e. the mass-loss rates and the wind velocities, ultraviolet spectra are indispensable. Our advanced Potsdam Wolf-Rayet (PoWR) code will be used for modeling the stellar and wind spectra in the course of the analysis. Finally, we will obtain:(a) the fundamental stellar and wind parameters of all stars brighter than spectral type B2V in the field, which, e,g,, will constrain the initial mass function in this young low-metallicity starburst;(b) mass-loss rates of many more OB-type stars at SMC metallicity than hitherto known, allowing to better constrain their metallicity dependence;(c) the integrated feedback by ionizing radiation and stellar winds of the whole massive-star population of NGC346, which will be used as input to model the ecology of the giant HII region N66.These HST UV data will be of high legacy value.

  7. OGLE-2008-BLG-355Lb: A massive planet around a late-type star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshimoto, N.; Sumi, T.; Fukagawa, M.

    2014-06-20

    We report the discovery of a massive planet, OGLE-2008-BLG-355Lb. The light curve analysis indicates a planet:host mass ratio of q = 0.0118 ± 0.0006 at a separation of 0.877 ± 0.010 Einstein radii. We do not measure a significant microlensing parallax signal and do not have high angular resolution images that could detect the planetary host star. Therefore, we do not have a direct measurement of the host star mass. A Bayesian analysis, assuming that all host stars have equal probability to host a planet with the measured mass ratio, implies a host star mass of M{sub h}=0.37{sub −0.17}{sup +0.30}more » M{sub ⊙} and a companion of mass M{sub P}=4.6{sub −2.2}{sup +3.7}M{sub J}, at a projected separation of r{sub ⊥}=1.70{sub −0.30}{sup +0.29} AU. The implied distance to the planetary system is D {sub L} = 6.8 ± 1.1 kpc. A planetary system with the properties preferred by the Bayesian analysis may be a challenge to the core accretion model of planet formation, as the core accretion model predicts that massive planets are far more likely to form around more massive host stars. This core accretion model prediction is not consistent with our Bayesian prior of an equal probability of host stars of all masses to host a planet with the measured mass ratio. Thus, if the core accretion model prediction is right, we should expect that follow-up high angular resolution observations will detect a host star with a mass in the upper part of the range allowed by the Bayesian analysis. That is, the host would probably be a K or G dwarf.« less

  8. New measurements of photospheric magnetic fields in late-type stars and emerging trends

    NASA Technical Reports Server (NTRS)

    Saar, S. H.; Linsky, J. L.

    1986-01-01

    The magnetic fields of late-type stars are measured using the method of Saar et al. (1986). The method includes radiative transfer effects and compensation for line blending; the photospheric magnetic field parameters are derived by comparing observed and theoretical line profiles using an LTE code that includes line saturation and full Zeeman pattern. The preliminary mean active region magnetic field strengths (B) and surface area coverages for 20 stars are discussed. It is observed that there is a trend of increasing B towards the cooler dwarfs stars, and the linear correlation between B and the equipartition value of the magnetic field strength suggests that the photospheric gas pressure determines the photospheric magnetic field strengths. A tendency toward larger filling factors at larger stellar angular velocities is also detected.

  9. Asteroseismic modelling of the solar-type subgiant star β Hydri

    NASA Astrophysics Data System (ADS)

    Brandão, I. M.; Doğan, G.; Christensen-Dalsgaard, J.; Cunha, M. S.; Bedding, T. R.; Metcalfe, T. S.; Kjeldsen, H.; Bruntt, H.; Arentoft, T.

    2011-03-01

    Context. Comparing models and data of pulsating stars is a powerful way to understand the stellar structure better. Moreover, such comparisons are necessary to make improvements to the physics of the stellar models, since they do not yet perfectly represent either the interior or especially the surface layers of stars. Because β Hydri is an evolved solar-type pulsator with mixed modes in its frequency spectrum, it is very interesting for asteroseismic studies. Aims: The goal of the present work is to search for a representative model of the solar-type star β Hydri, based on up-to-date non-seismic and seismic data. Methods: We present a revised list of frequencies for 33 modes, which we produced by analysing the power spectrum of the published observations again using a new weighting scheme that minimises the daily sidelobes. We ran several grids of evolutionary models with different input parameters and different physics, using the stellar evolutionary code ASTEC. For the models that are inside the observed error box of β Hydri, we computed their frequencies with the pulsation code ADIPLS. We used two approaches to find the model that oscillates with the frequencies that are closest to the observed frequencies of β Hydri: (i) we assume that the best model is the one that reproduces the star's interior based on the radial oscillation frequencies alone, to which we have applied the correction for the near-surface effects; (ii) we assume that the best model is the one that produces the lowest value of the chi-square (χ2), i.e. that minimises the difference between the observed frequencies of all available modes and the model predictions, after all model frequencies are corrected for near-surface effects. Results: We show that after applying a correction for near-surface effects to the frequencies of the best models, we can reproduce the observed modes well, including those that have mixed mode character. The model that gives the lowest value of the χ2 is a post

  10. The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He II λ1640 in young star clusters

    NASA Astrophysics Data System (ADS)

    Crowther, Paul A.; Caballero-Nieves, S. M.; Bostroem, K. A.; Maíz Apellániz, J.; Schneider, F. R. N.; Walborn, N. R.; Angus, C. R.; Brott, I.; Bonanos, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gräfener, G.; Herrero, A.; Howarth, I. D.; Langer, N.; Lennon, D. J.; Puls, J.; Sana, H.; Vink, J. S.

    2016-05-01

    We introduce a Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) stellar census of R136a, the central ionizing star cluster of 30 Doradus. We present low resolution far-ultraviolet STIS spectroscopy of R136 using 17 contiguous 52 arcsec × 0.2 arcsec slits which together provide complete coverage of the central 0.85 parsec (3.4 arcsec). We provide spectral types of 90 per cent of the 57 sources brighter than mF555W = 16.0 mag within a radius of 0.5 parsec of R136a1, plus 8 additional nearby sources including R136b (O4 If/WN8). We measure wind velocities for 52 early-type stars from C IVλλ1548-51, including 16 O2-3 stars. For the first time, we spectroscopically classify all Weigelt and Baier members of R136a, which comprise three WN5 stars (a1-a3), two O supergiants (a5-a6) and three early O dwarfs (a4, a7, a8). A complete Hertzsprung-Russell diagram for the most massive O stars in R136 is provided, from which we obtain a cluster age of 1.5^{+0.3}_{-0.7} Myr. In addition, we discuss the integrated ultraviolet spectrum of R136, and highlight the central role played by the most luminous stars in producing the prominent He II λ1640 emission line. This emission is totally dominated by very massive stars with initial masses above ˜100 M⊙. The presence of strong He II λ1640 emission in the integrated light of very young star clusters (e.g. A1 in NGC 3125) favours an initial mass function extending well beyond a conventional upper limit of 100 M⊙. We include montages of ultraviolet spectroscopy for Large Magellanic Cloud O stars in the appendix. Future studies in this series will focus on optical STIS medium resolution observations.

  11. The evolution of the lithium abundances of solar-type stars. II - The Ursa Major Group

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Pilachowski, Catherine A.; Fedele, Stephen B.; Jones, Burton F.

    1993-01-01

    We draw upon a recent study of the membership of the Ursa Major Group (UMaG) to examine lithium among 0.3 Gyr old solar-type stars. For most G and K dwarfs, Li confirms the conclusions about membership in UMaG reached on the basis of kinematics and chromospheric activity. G and K dwarfs in UMaG have less Li than comparable stars in the Pleiades. This indicates that G and K dwarfs undergo Li depletion while they are on the main sequence, in addition to any pre-main-sequence depletion they may have experienced. Moreover, the Li abundances of the Pleiades K dwarfs cannot be attributed to main-sequence depletion alone, demonstrating that pre-main-sequence depletion of Li also takes place. The sun's Li abundance implies that the main-sequence mechanism becomes less effective with age. The hottest stars in UMaG have Li abundances like those of hot stars in the Pleiades and Hyades and in T Tauris, and the two genuine UMaG members with temperatures near Boesgaard's Li chasm have Li abundances consistent with that chasm developing fully by 0.3 Gyr for stars with UMaG's metallicity. We see differences in the abundance of Li between UMaG members of the same spectral types, indicating that a real spread in the lithium abundance exists within this group.

  12. IDENTIFYING NEARBY, YOUNG, LATE-TYPE STARS BY MEANS OF THEIR CIRCUMSTELLAR DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Adam; Song, Inseok; Melis, Carl

    2012-10-01

    It has recently been shown that a significant fraction of late-type members of nearby, very young associations (age {approx}<10 Myr) display excess emission at mid-IR wavelengths indicative of dusty circumstellar disks. We demonstrate that the detection of mid-IR excess emission can be utilized to identify new nearby, young, late-type stars including two definite new members ('TWA 33' and 'TWA 34') of the TW Hydrae Association (TWA). Both new TWA members display mid-IR excess emission in the Wide-field Infrared Survey Explorer catalog and they show proper motion and youthful spectroscopic characteristics-namely, H{alpha} emission, strong lithium absorption, and low surface gravity featuresmore » consistent with known TWA members. We also detect mid-IR excess-the first unambiguous evidence of a dusty circumstellar disk-around a previously identified UV-bright, young, accreting star (2M1337) that is a likely member of the Lower-Centaurus Crux region of the Scorpius-Centaurus Complex.« less

  13. The wind of the M-type AGB star RT Virginis probed by VLTI/MIDI

    NASA Astrophysics Data System (ADS)

    Sacuto, S.; Ramstedt, S.; Höfner, S.; Olofsson, H.; Bladh, S.; Eriksson, K.; Aringer, B.; Klotz, D.; Maercker, M.

    2013-03-01

    Aims: We study the circumstellar environment of the M-type AGB star RT Vir using mid-infrared high spatial resolution observations from the ESO-VLTI focal instrument MIDI. The aim of this study is to provide observational constraints on theoretical prediction that the winds of M-type AGB objects can be driven by photon scattering on iron-free silicate grains located in the close environment (about 2 to 3 stellar radii) of the star. Methods: We interpreted spectro-interferometric data, first using wavelength-dependent geometric models. We then used a self-consistent dynamic model atmosphere containing a time-dependent description of grain growth for pure forsterite dust particles to reproduce the photometric, spectrometric, and interferometric measurements of RT Vir. Since the hydrodynamic computation needs stellar parameters as input, a considerable effort was first made to determine these parameters. Results: MIDI differential phases reveal the presence of an asymmetry in the stellar vicinity. Results from the geometrical modeling give us clues to the presence of aluminum and silicate dust in the close circumstellar environment (<5 stellar radii). Comparison between spectro-interferometric data and a self-consistent dust-driven wind model reveals that silicate dust has to be present in the region between 2 to 3 stellar radii to reproduce the 59 and 63 m baseline visibility measurements around 9.8 μm. This gives additional observational evidence in favor of winds driven by photon scattering on iron-free silicate grains located in the close vicinity of an M-type star. However, other sources of opacity are clearly missing to reproduce the 10-13 μm visibility measurements for all baselines. Conclusions: This study is a first attempt to understand the wind mechanism of M-type AGB stars by comparing photometric, spectrometric, and interferometric measurements with state-of-the-art, self-consistent dust-driven wind models. The agreement of the dynamic model atmosphere

  14. X-ray variability of Pleiades late-type stars as observed with the ROSAT-PSPC

    NASA Astrophysics Data System (ADS)

    Marino, A.; Micela, G.; Peres, G.; Sciortino, S.

    2003-08-01

    We present a comprehensive analysis of X-ray variability of the late-type (dF7-dM) Pleiades stars, detected in all ROSAT-PSPC observations; X-ray variations on short (hours) and medium (months) time scales have been explored. We have grouped the stars in two samples: 89 observations of 42 distinct dF7-dK2 stars and 108 observations of 61 dK3-dM stars. The Kolmogorov-Smirnov test applied on all X-ray photon time series show that the percentage of cases of significant variability is quite similar on both samples, suggesting that the presence of variability does not depend on mass for the time scales and mass range explored. The comparison between the Time X-ray Amplitude Distribution functions (XAD) of the set of dF7-dK2 and of the dK3-dM show that, on short time scales, dK3-dM stars show larger variations than dF7-dK2. A subsample of eleven dF7-dK2 and eleven dK3-dM Pleiades stars allows the study of variability on longer time scales: we found that variability on medium - long time scales is relatively more common among dF7-dK2 stars than among dK3-dM ones. For both dF7-dK2 Pleiades stars and dF7-dK2 field stars, the variability on short time scales depends on Lx while this dependence has not been observed among dK3-dM stars. It may be that the variability among dK3-dM stars is dominated by flares that have a similar luminosity distribution for stars of different Lx, while flaring distribution in dF7-dK2 stars may depend on X-ray luminosity. The lowest mass stars show significant rapid variability (flares?) and no evidence of rotation modulation or cycles. On the contrary, dF7-dK2 Pleiades stars show both rapid variability and variations on longer time scales, likely associated with rotational modulation or cycles.

  15. Observing metal-poor stars with X-Shooter

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Bonifacio, P.; Sbordone, L.; Monaco, L.; François; , P.

    The extremely metal-poor stars (EMP) hold in their atmospheres the fossil record of the chemical composition of the early phases of the Galactic evolution. The chemical analysis of such objects provides important constraints on these early phases. EMP stars are very rare objects; to dig them out large amounts of data have to be considered. With an automatic procedure, we analysed objects with colours of Turn-Off stars from the Sloan Digital Sky Survey to select a sample of good candidate EMP stars. During the French-Italian GTO of the spectrograph X-Shooter, we observed a sample of these candidates. We could confirm the low metallicity of our sample of stars, and we succeeded in finding a record metal-poor star.

  16. A CATALOG OF NEW SPECTROSCOPICALLY CONFIRMED MASSIVE OB STARS IN CARINA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Michael J.; Hanes, Richard J.; McSwain, M. Virginia

    2016-12-01

    The Carina star-forming region is one of the largest in the Galaxy, and its massive star population is still being unveiled. The large number of stars combined with high, and highly variable, interstellar extinction makes it inherently difficult to find OB stars in this type of young region. We present the results of a spectroscopic campaign to study the massive star population of the Carina Nebula, with the primary goal to confirm or reject previously identified Carina OB star candidates. A total of 141 known O- and B-type stars and 94 candidates were observed, of which 73 candidates had highmore » enough signal-to-noise ratio to classify. We find 23 new OB stars within the Carina Nebula, a 32% confirmation rate. One of the new OB stars has blended spectra and is suspected to be a double-lined spectroscopic binary (SB2). We also reclassify the spectral types of the known OB stars and discover nine new SB2s among this population. Finally, we discuss the spatial distribution of these new OB stars relative to known structures in the Carina Nebula.« less

  17. Probing the chemical environments of early star formation: A multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Hardegree-Ullman, Emily Elizabeth

    Chemical compositions of prestellar and protostellar environments in the dense interstellar medium are best quantified using a multidisciplinary approach. For my dissertation, I completed two projects to measure molecular abundances during the earliest phases of star formation. The first project investigates gas phase CO depletion in molecular cloud cores, the progenitors of star systems, using infrared photometry and molecular line spectroscopy at radio wavelengths. Hydrogenation of CO depleted onto dust is an important first step toward building complex organic molecules. The second project constrains polycyclic aromatic hydrocarbon (PAH) abundances toward young stellar objects (YSO). Band strengths measured from laboratory spectroscopy of pyrene/water ice mixtures were applied to estimate abundances from features attributed to PAHs in observational YSO spectra. PAHs represent a distinct but important component of interstellar organic material that is widely observed but not well quantified in star-forming regions.

  18. The discovery of low-mass pre-main-sequence stars in Cepheus OB3b

    NASA Astrophysics Data System (ADS)

    Pozzo, M.; Naylor, T.; Jeffries, R. D.; Drew, J. E.

    2003-05-01

    We report the discovery of a low-mass pre-main-sequence (PMS) stellar population in the younger subgroup of the Cepheus OB3 association, Cep OB3b, using UBVI CCD photometry and follow-up spectroscopy. The optical survey covers approximately 1300 arcmin2 on the sky and gives a global photometric and astrometric catalogue for more than 7000 objects. The location of a PMS population is well defined in a V versus (V-I) colour-magnitude diagram. Multifibre spectroscopic results for optically selected PMS candidates confirm the T Tauri nature for 10 objects, with equal numbers of classical TTS (CTTS) and weak-line TTS (WTTS). There are six other objects that we classify as possible PMS stars. The newly discovered TTS stars have masses in the range ~0.9-3.0 Msolar and ages from <1 to nearly 10 Myr, based on the Siess, Dufour & Forestini isochrones. Their location close to the O and B stars of the association (especially the O7n star) demonstrates that low-mass star formation is indeed possible in such an apparently hostile environment dominated by early-type stars and that the latter must have been less effective in eroding the circumstellar discs of their lower-mass siblings compared with other OB associations (e.g. λ-Ori). We attribute this to the nature of the local environment, speculating that the bulk of molecular material, which shielded low-mass stars from the ionizing radiation of their early-type siblings, has only recently been removed.

  19. Estimation of the state of solar activity type stars by virtual observations of CrAVO

    NASA Astrophysics Data System (ADS)

    Dolgov, A. A.; Shlyapnikov, A. A.

    2012-05-01

    The results of precosseing of negatives with direct images of the sky from CrAO glass library are presented in this work, which became a part of on-line archive of the Crimean Astronomical Virtual Observatory (CrAVO). Based on the obtained data, the parameters of dwarf stars have been estimated, included in the catalog "Stars with solar-type activity" (GTSh10). The following matters are considered: searching methodology of negatives with positions of studied stars and with calculated limited magnitude; image viewing and reduction with the facilities of the International Virtual Observatory; the preliminary results of the photometry of studied objects.

  20. Timing the formation and assembly of early-type galaxies via spatially resolved stellar populations analysis

    NASA Astrophysics Data System (ADS)

    Martín-Navarro, Ignacio; Vazdekis, Alexandre; Falcón-Barroso, Jesús; La Barbera, Francesco; Yıldırım, Akın; van de Ven, Glenn

    2018-04-01

    To investigate star formation and assembly processes of massive galaxies, we present here a spatially resolved stellar population analysis of a sample of 45 elliptical galaxies (Es) selected from the Calar Alto Legacy Integral Field Area survey. We find rather flat age and [Mg/Fe] radial gradients, weakly dependent on the effective velocity dispersion of the galaxy within half-light radius. However, our analysis shows that metallicity gradients become steeper with increasing galaxy velocity dispersion. In addition, we have homogeneously compared the stellar population gradients of our sample of Es to a sample of nearby relic galaxies, i.e. local remnants of the high-z population of red nuggets. This comparison indicates that, first, the cores of present-day massive galaxies were likely formed in gas-rich, rapid star formation events at high redshift (z ≳ 2). This led to radial metallicity variations steeper than observed in the local Universe, and positive [Mg/Fe] gradients. Secondly, our analysis also suggests that a later sequence of minor dry mergers, populating the outskirts of early-type galaxies (ETGs), flattened the pristine [Mg/Fe] and metallicity gradients. Finally, we find a tight age-[Mg/Fe] relation, supporting that the duration of the star formation is the main driver of the [Mg/Fe] enhancement in massive ETGs. However, the star formation time-scale alone is not able to fully explain our [Mg/Fe] measurements. Interestingly, our results match the expected effect that a variable stellar initial mass function would have on the [Mg/Fe] ratio.

  1. A new class of galactic discrete gamma ray sources: Chaotic winds of massive stars

    NASA Technical Reports Server (NTRS)

    Chen, Wan; White, Richard L.

    1992-01-01

    We propose a new class of galactic discrete gamma-ray sources, the chaotic, high mass-loss-rate winds from luminous early-type stars. Early-type stellar winds are highly unstable due to intrinsic line-driven instabilities, and so are permeated by numerous strong shocks. These shocks can accelerate a small fraction of thermal electrons and ions to relativistic energies via the first-order Fermi mechanism. A power-law-like photon spectrum extending from keV to above 10 MeV energies is produced by inverse Compton scattering of the extremely abundant stellar UV photons by the relativistic electrons. In addition, a typical pi(sup 0)-decay gamma-ray spectrum is generated by proton-ion interactions in the densest part of the winds.

  2. On the generation of magnetohydrodynamic waves in a stratified and magnetized fluid. II - Magnetohydrodynamic energy fluxes for late-type stars

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Rosner, R.

    1988-01-01

    Magnetohydrodynamic (MHD) wave energy fluxes for late-type stars are calculated, using previously obtained formulae for the source functions for the generation of MHD waves in a stratified, but otherwise uniform, turbulent atmosphere; the magnetic fields in the wave generation region are assumed to be homogeneous. In contradiction to previous results, it is shown that in this uniform magnetic field case there is no significant increase in the efficiency of MHD wave generation, at least within the theory's limits of applicability. The major results are that the MHD energy fluxes calculated for late-type stars are less than those obtained for compressible modes in the magnetic field-free case, and that these MHD energy fluxes do not vary enough for a given spectral type to explain the observed range of UV and X-ray fluxes from such stars. It is therefore concluded that MHD waves in stellar atmospheres with homogeneous magnetic fields in the wave generation region cannot explain the observed stellar coronal emissions; if such MHD waves are responsible for a significant component of stellar coronal heating, then nonuniform fields within the generation region must be appealed to.

  3. The VLT-FLAMES Tarantula Survey. VIII. Multiplicity properties of the O-type star population

    NASA Astrophysics Data System (ADS)

    Sana, H.; de Koter, A.; de Mink, S. E.; Dunstall, P. R.; Evans, C. J.; Hénault-Brunet, V.; Maíz Apellániz, J.; Ramírez-Agudelo, O. H.; Taylor, W. D.; Walborn, N. R.; Clark, J. S.; Crowther, P. A.; Herrero, A.; Gieles, M.; Langer, N.; Lennon, D. J.; Vink, J. S.

    2013-02-01

    Context. The Tarantula Nebula in the Large Magellanic Cloud is our closest view of a starburst region and is the ideal environment to investigate important questions regarding the formation, evolution and final fate of the most massive stars. Aims: We analyze the multiplicity properties of the massive O-type star population observed through multi-epoch spectroscopy in the framework of the VLT-FLAMES Tarantula Survey. With 360 O-type stars, this is the largest homogeneous sample of massive stars analyzed to date. Methods: We use multi-epoch spectroscopy and variability analysis to identify spectroscopic binaries. We also use a Monte-Carlo method to correct for observational biases. By modeling simultaneously the observed binary fraction, the distributions of the amplitudes of the radial velocity variations and the distribution of the time scales of these variations, we constrain the intrinsic current binary fraction and period and mass-ratio distributions. Results: We observe a spectroscopic binary fraction of 0.35 ± 0.03, which corresponds to the fraction of objects displaying statistically significant radial velocity variations with an amplitude of at least 20 km s-1. We compute the intrinsic binary fraction to be 0.51 ± 0.04. We adopt power-laws to describe the intrinsic period and mass-ratio distributions: f(log 10P/d) ~ (log 10P/d)π (with log 10P/d in the range 0.15-3.5) and f(q) ~ qκ with 0.1 ≤ q = M2/M1 ≤ 1.0. The power-law indexes that best reproduce the observed quantities are π = -0.45 ± 0.30 and κ = -1.0 ± 0.4. The period distribution that we obtain thus favours shorter period systems compared to an Öpik law (π = 0). The mass ratio distribution is slightly skewed towards low mass ratio systems but remains incompatible with a random sampling of a classical mass function (κ = -2.35). The binary fraction seems mostly uniform across the field of view and independent of the spectral types and luminosity classes. The binary fraction in the outer

  4. Cooking up the First Stars

    NASA Image and Video Library

    2011-11-10

    Scientists are simulating how the very first stars in our universe were born. The stars we see today formed out of collapsing clouds of gas and dust. In the very early universe, however, the stars had fewer ingredients available.

  5. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star.

    PubMed

    Howell, D Andrew; Sullivan, Mark; Nugent, Peter E; Ellis, Richard S; Conley, Alexander J; Le Borgne, Damien; Carlberg, Raymond G; Guy, Julien; Balam, David; Basa, Stephane; Fouchez, Dominique; Hook, Isobel M; Hsiao, Eric Y; Neill, James D; Pain, Reynald; Perrett, Kathryn M; Pritchet, Christopher J

    2006-09-21

    The accelerating expansion of the Universe, and the need for dark energy, were inferred from observations of type Ia supernovae. There is a consensus that type Ia supernovae are thermonuclear explosions that destroy carbon-oxygen white dwarf stars that have accreted matter from a companion star, although the nature of this companion remains uncertain. These supernovae are thought to be reliable distance indicators because they have a standard amount of fuel and a uniform trigger: they are predicted to explode when the mass of the white dwarf nears the Chandrasekhar mass of 1.4 solar masses (M(o)). Here we show that the high-redshift supernova SNLS-03D3bb has an exceptionally high luminosity and low kinetic energy that both imply a super-Chandrasekhar-mass progenitor. Super-Chandrasekhar-mass supernovae should occur preferentially in a young stellar population, so this may provide an explanation for the observed trend that overluminous type Ia supernovae occur only in 'young' environments. As this supernova does not obey the relations that allow type Ia supernovae to be calibrated as standard candles, and as no counterparts have been found at low redshift, future cosmology studies will have to consider possible contamination from such events.

  6. Metallicity calibrations for dwarf stars and giants in the Geneva photometric system

    NASA Astrophysics Data System (ADS)

    Netopil, Martin

    2017-08-01

    We use the most homogeneous Geneva seven-colour photometric system to derive new metallicity calibrations for early A- to K-type stars that cover both, dwarf stars and giants. The calibrations are based on several spectroscopic data sets that were merged to a common scale, and we applied them to open cluster data to obtain an additional proof of the metallicity scale and accuracy. In total, metallicities of 54 open clusters are presented. The accuracy of the calibrations for single stars is in general below 0.1 dex, but for the open cluster sample with mean values based on several stars we find a much better precision, a scatter as low as about 0.03 dex. Furthermore, we combine the new results with another comprehensive photometric data set to present a catalogue of mean metallicities for more than 3000 F- and G-type dwarf stars with σ ˜ 0.06 dex. The list was extended by more than 1200 hotter stars up to about 8500 K (or spectral type A3) by taking advantage of their almost reddening free characteristic in the new Geneva metallicity calibrations. These two large samples are well suited as primary or secondary calibrators of other data, and we already identified about 20 spectroscopic data sets that show offsets up to about 0.4 dex.

  7. The Star Formation Scenario in the Galactic Range from Ophiuchus to Chamaeleon

    NASA Astrophysics Data System (ADS)

    Sartori, Marília J.

    2000-07-01

    The molecular cloud complexes of Chamaeleon, Lupus and Ophiuchus, and the OB sub-groups of stars that form the Scorpius OB2 association are located at galactic longitudes in the interval 290° to 360°, all of them in a distance range from 100 to 200 pc. The distribution of known young stars in this region, both of low and of high mass, suggests that they belong to a single large structure. Moreover, a significant number of pre-main sequence (PMS) stars far from the star-forming clouds have been recently discovered. This scenario suggests that a global analysis of the star formation must be performed, especially of such nearby regions for which a large amount of data can be obtained. In order to test the models that intend to describe the history of star formation in these nearby star-forming regions, we collected information on the distribution of gas and dust and on the related young stellar populations. We mapped the molecular clouds of the complexes located in Chamaeleon, Lupus and Ophiuchus by means of an automatic method for star counting on plates of the Digitized Sky Survey. Another improvement with respect to the traditional star counts method is that we have adopted a relation between the extinction and the number of stars based on the predictions of the Galaxy's model by Ortiz & Lépine (1993, A&A 279, 90). Our maps confirm that there is an extended distribution of dust in the regions between the main clouds. We built a complete list of PMS and early-type stars from the literature, including all the available distance, radial velocity and proper motion data. We completed these data with our own determinations of proper motions of PMS stars, using positions obtained with the Valinhos Meridian Circle (IAG/USP, Brazil), photographic plates and public catalogs (Teixeira et al. 2000, A&A in press). Using these kinematical data and comparing the positions and spatial velocities of PMS stars to those of early-type stars, we verified that the kinematics of the

  8. A statistical spectropolarimetric study of Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Ababakr, K. M.; Oudmaijer, R. D.; Vink, J. S.

    2017-11-01

    We present H α linear spectropolarimetry of a large sample of Herbig Ae/Be stars. Together with newly obtained data for 17 objects, the sample contains 56 objects, the largest such sample to date. A change in linear polarization across the H α line is detected in 42 (75 per cent) objects, which confirms the previous finding that the circumstellar environment around these stars on small spatial scales has an asymmetric structure, which is typically identified with a disc. A second outcome of this research is that we confirm that Herbig Ae stars are similar to T Tauri stars in displaying a line polarization effect, while depolarization is more common among Herbig Be stars. This finding had been suggested previously to indicate that Herbig Ae stars form in the same manner than T Tauri stars through magnetospheric accretion. It appears that the transition between these two differing polarization line effects occurs around the B7-B8 spectral type. This would in turn not only suggest that Herbig Ae stars accrete in a similar fashion as lower mass stars, but also that this accretion mechanism switches to a different type of accretion for Herbig Be stars. We report that the magnitude of the line effect caused by electron scattering close to the stars does not exceed 2 per cent. Only a very weak correlation is found between the magnitude of the line effect and the spectral type or the strength of the H α line. This indicates that the detection of a line effect only relies on the geometry of the line-forming region and the geometry of the scattering electrons.

  9. Cold CO Gas in the Envelopes of FU Orionis-type Young Eruptive Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kóspál, Á.; Ábrahám, P.; Moór, A.

    FU Orionis-type objects (FUors) are young stellar objects experiencing large optical outbursts due to highly enhanced accretion from the circumstellar disk onto the star. FUors are often surrounded by massive envelopes, which play a significant role in the outburst mechanism. Conversely, the subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. Here we present an APEX {sup 12}CO and {sup 13}CO survey of eight southern and equatorial FUors. We measure the mass of the gaseous material surrounding our targets, locate the source of the COmore » emission, and derive physical parameters for the envelopes and outflows, where detected. Our results support the evolutionary scenario where FUors represent a transition phase from envelope-surrounded protostars to classical T Tauri stars.« less

  10. Spheroidal Populated Star Systems

    NASA Astrophysics Data System (ADS)

    Angeletti, Lucio; Giannone, Pietro

    2008-10-01

    Globular clusters and low-ellipticity early-type galaxies can be treated as systems populated by a large number of stars and whose structures can be schematized as spherically symmetric. Their studies profit from the synthesis of stellar populations. The computation of synthetic models makes use of various contributions from star evolution and stellar dynamics. In the first sections of the paper we present a short review of our results on the occurrence of galactic winds in star systems ranging from globular clusters to elliptical galaxies, and the dynamical evolution of a typical massive globular cluster. In the subsequent sections we describe our approach to the problem of the stellar populations in elliptical galaxies. The projected radial behaviours of spectro-photometric indices for a sample of eleven galaxies are compared with preliminary model results. The best agreement between observation and theory shows that our galaxies share a certain degree of heterogeneity. The gas energy dissipation varies from moderate to large, the metal yield ranges from solar to significantly oversolar, the dispersion of velocities is isotropic in most of the cases and anisotropic in the remaining instances.

  11. Discovery of Peculiar Periodic Spectral Modulations in a Small Fraction of Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Borra, Ermanno F.; Trottier, Eric

    2016-11-01

    A Fourier transform analysis of 2.5 million spectra in the Sloan Digital Sky Survey was carried out to detect periodic spectral modulations. Signals having the same period were found in only 234 stars overwhelmingly in the F2 to K1 spectral range. The signals cannot be caused by instrumental or data analysis effects because they are present in only a very small fraction of stars within a narrow spectral range and because signal-to-noise ratio considerations predict that the signal should mostly be detected in the brightest objects, while this is not the case. We consider several possibilities, such as rotational transitions in molecules, rapid pulsations, Fourier transform of spectral lines, and signals generated by extraterrestrial intelligence (ETI). They cannot be generated by molecules or rapid pulsations. It is highly unlikely that they come from the Fourier transform of spectral lines because too many strong lines located at nearly periodic frequencies are needed. Finally, we consider the possibility, predicted in a previous published paper, that the signals are caused by light pulses generated by ETI to makes us aware of their existence. We find that the detected signals have exactly the shape of an ETI signal predicted in the previous publication and are therefore in agreement with this hypothesis. The fact that they are only found in a very small fraction of stars within a narrow spectral range centered near the spectral type of the Sun is also in agreement with the ETI hypothesis. However, at this stage, this hypothesis needs to be confirmed with further work. Although unlikely, there is also a possibility that the signals are due to highly peculiar chemical compositions in a small fraction of galactic halo stars.

  12. Monitoring solar-type stars for luminosity variations

    NASA Technical Reports Server (NTRS)

    Lockwood, G. W.; Skiff, B. A.

    1988-01-01

    Since 1984, researchers have made more than 1500 differential photometric b (471 nm) and y (551 nm) measurements of three dozen solar-like lower main sequence stars whose chromospheric activity was previosly studied by O. C. Wilson. Here, researchers describe their methodology and the statistical tests used to distinguish intrinsic stellar variability from observational and instrument errors. The incidence of detected variability among the program and comparison stars is summarized. Among the 100 plus pairs of stars measured differentially, only a dozen were found that were unusually constant, with peak-to-peak amplitudes of seasonal mean brightness smaller than 0.3 percent (0.003 mag) over a two-to-three-year interval.

  13. Is There a Metallicity Ceiling to Form Carbon Stars? - A Novel Technique Reveals a Scarcity of C-Stars in the Inner M31 Disk

    NASA Technical Reports Server (NTRS)

    Boyer, Martha L.; Girardi, L.; Marigo, P.; Williams, B. F.; Aringer, B.; Nowotny, W.; Rosenfield, P.; Dorman, C. E.; Guhathakurta, P.; Dalcanton, J. J.; hide

    2013-01-01

    We use medium-band near-infrared (NIR) Hubble Space Telescope WFC3 photometry with model NIR spectra of Asymptotic Giant Branch (AGB) stars to develop a new tool for efficiently distinguish- ing carbon-rich (C-type) AGB stars from oxygen-rich (M-type) AGB stars in galaxies at the edge of and outside the Local Group. We present the results of a test of this method on a region of the inner disk of M31, where we nd a surprising lack of C stars, contrary to the ndings of previous C star searches in other regions of M31. We nd only 1 candidate C star (plus up to 6 additional, less certain C stars candidates), resulting in an extremely low ratio of C to M stars (C=M = (3.3(sup +20)(sub - 0.1) x 10(sup -4)) that is 1-2 orders of magnitude lower than other C/M estimates in M31. The low C/M ratio is likely due to the high metallicity in this region which impedes stars from achieving C/O > 1 in their atmospheres. These observations provide stringent constraints to evolutionary models of metal-rich AGB stars and suggest that there is a metallicity threshold above which M stars are unable to make the transition to C stars, dramatically affecting AGB mass loss and dust production and, consequently, the observed global properties of metal-rich galaxies.

  14. Photospheric carbon and oxygen abundances of F-G type stars in the Pleiades cluster*

    NASA Astrophysics Data System (ADS)

    Takeda, Yoichi; Hashimoto, Osamu; Honda, Satoshi

    2017-02-01

    In order to investigate the carbon-to-oxygen ratio of the young open cluster M 45 (Pleiades), the C and O abundances of 32 selected F-G type dwarfs (in the effective temperature range of Teff ˜ 5800-7600 K and projected rotational velocity range of vesin i ˜ 10-110 km s-1) belonging to this cluster were determined by applying the synthetic spectrum-fitting technique to C i 5380 and O i 6156-8 lines. The non-local thermodynamical equilibrium corrections for these C i and O i lines were found to be practically negligible (less than a few hundredths dex).The resulting C and O abundances (along with the Fe abundance) turned out nearly uniform without any systematic dependence upon Teff or vesin i. We found, however, in spite of almost solar Fe abundance ([Fe/H] ˜ 0), carbon turned out to be slightly subsolar ([C/H] ˜ -0.1) while that of oxygen was slightly supersolar ([O/H] ˜ +0.1). This leads to a conclusion that the [C/O] ratio was moderately subsolar (˜ -0.2) in the primordial gas from which these Pleiades stars were formed ˜ 120-130 Myr ago. Interestingly, similarly young B-type stars are reported to show just the same result ([C/O] ˜ -0.2), while rather aged (˜ 1-10 Gyr) field F-G stars of near-solar metallicity yield almost the solar value ([C/O] ˜ 0) on average. Such a difference in the C/O ratio between two star groups of distinctly different ages may be explained as a consequence of the orbit migration mechanism which Galactic stars may undergo over a long time.

  15. Companions and Environments of Low-Mass Stars: From Star-Forming Regions to the Field

    NASA Astrophysics Data System (ADS)

    Ward-Duong, Kimberly; Patience, Jenny; De Rosa, Robert J.; Bulger, Joanna; Rajan, Abhijith; Goodwin, Simon; Parker, Richard J.; McCarthy, Donald W.; Kulesa, Craig; van der Plas, Gerrit; Menard, Francois; Pinte, Christophe; Jackson, Alan Patrick; Bryden, Geoffrey; Turner, Neal J.; Harvey, Paul M.; Hales, Antonio

    2017-01-01

    We present results from two studies probing the multiplicity and environmental properties of low-mass stars: (1) The MinMs (M-dwarfs in Multiples) Survey, a large, volume-limited survey of 245 field M-dwarfs within 15 pc, and (2) the TBOSS (Taurus Boundary of Stellar/Substellar) Survey, an ongoing study of disk properties for the lowest-mass members within the Taurus star-forming region. The MinMs Survey provides new measurements of the companion star fraction, separation distribution, and mass ratio distribution for the nearest K7-M6 dwarfs, utilizing a combination of high-resolution adaptive optics imaging and digitized widefield archival plates to cover an unprecedented separation range of ~1-10,000 AU. Within these data, we also identify companions below the stellar/brown dwarf boundary, enabling characterization of the substellar companion population to low-mass field stars. For the much younger population in Taurus, we present results from ALMA Band 7 continuum observations of low-mass stellar and substellar Class II objects, spanning spectral types from M4-M7.75. The sub-millimeter detections of these disks provide key estimates of the dust mass in small grains, which is then assessed within the context of region age, environment, and viability for planet formation. This young population also includes a number of interesting young binary systems. Covering both young (1-2 Myr) and old (>5 Gyr) populations of low-mass stars, the results from these studies provide benchmark measurements on the population statistics of low-mass field stars, and on the early protoplanetary environments of their younger M-star counterparts.

  16. The dichotomy between strong and ultra-weak magnetic fields among intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Lignières, François; Petit, Pascal; Aurière, Michel; Wade, Gregg A.; Böhm, Torsten

    2014-08-01

    Until recently, the detection of magnetic fields at the surface of intermediate-mass main-sequence stars has been limited to Ap/Bp stars, a class of chemically peculiar stars. This class represents no more than 5-10% of the stars in this mass range. This small fraction is not explained by the fossil field paradigm that describes the Ap/Bp type magnetism as a remnant of an early phase of the star-life. Also, the limitation of the field measurements to a small and special group of stars is obviously a problem to study the effect of the magnetic fields on the stellar evolution of a typical intermediate-mass star. Thanks to the improved sensitivity of a new generation of spectropolarimeters, a lower bound to the magnetic fields of Ap/Bp stars, a two orders of magnitude desert in the longitudinal magnetic field and a new type of sub-gauss magnetism first discovered on Vega have been identified. These advances provide new clues to understand the origin of intermediate-mass magnetism as well as its influence on stellar evolution. In particular, a scenario has been proposed whereby the magnetic dichotomy between Ap/Bp and Vega-like magnetism originate from the bifurcation between stable and unstable large scale magnetic configurations in differentially rotating stars. In this paper, we review these recent observational findings and discuss this scenario.

  17. Chemical abundances and kinematics of 257 G-, K-type field giants. Setting a base for further analysis of giant-planet properties orbiting evolved stars

    NASA Astrophysics Data System (ADS)

    Adibekyan, V. Zh.; Benamati, L.; Santos, N. C.; Alves, S.; Lovis, C.; Udry, S.; Israelian, G.; Sousa, S. G.; Tsantaki, M.; Mortier, A.; Sozzetti, A.; De Medeiros, J. R.

    2015-06-01

    We performed a uniform and detailed abundance analysis of 12 refractory elements (Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Co, Sc, Mn, and V) for a sample of 257 G- and K-type evolved stars from the CORALIE planet search programme. To date, only one of these stars is known to harbour a planetary companion. We aimed to characterize this large sample of evolved stars in terms of chemical abundances and kinematics, thus setting a solid base for further analysis of planetary properties around giant stars. This sample, being homogeneously analysed, can be used as a comparison sample for other planet-related studies, as well as for different type of studies related to stellar and Galaxy astrophysics. The abundances of the chemical elements were determined using an local thermodynamic equilibrium (LTE) abundance analysis relative to the Sun, with the spectral synthesis code MOOG and a grid of Kurucz ATLAS9 atmospheres. To separate the Galactic stellar populations, both a purely kinematical approach and a chemical method were applied. We confirm the overabundance of Na in giant stars compared to the field FGK dwarfs. This enhancement might have a stellar evolutionary character, but departures from LTE may also produce a similar enhancement. Our chemical separation of stellar populations also suggests a `gap' in metallicity between the thick-disc and high-α metal-rich stars, as previously observed in dwarfs sample from HARPS. The present sample, as most of the giant star samples, also suffers from the B - V colour cut-off, which excludes low-log g stars with high metallicities, and high-log g star with low [Fe/H]. For future studies of planet occurrence dependence on stellar metallicity around these evolved stars, we suggest to use a subsample of stars in a `cut-rectangle' in the log g-[Fe/H] diagram to overcome the aforementioned issue.

  18. The masses of retired A stars with asteroseismology: Kepler and K2 observations of exoplanet hosts

    NASA Astrophysics Data System (ADS)

    North, Thomas S. H.; Campante, Tiago L.; Miglio, Andxsrea; Davies, Guy R.; Grunblatt, Samuel K.; Huber, Daniel; Kuszlewicz, James S.; Lund, Mikkel N.; Cooke, Benjamin F.; Chaplin, William J.

    2017-12-01

    We investigate the masses of 'retired A stars' using asteroseismic detections on seven low-luminosity red-giant and sub-giant stars observed by the NASA Kepler and K2 missions. Our aim is to explore whether masses derived from spectroscopy and isochrone fitting may have been systematically overestimated. Our targets have all previously been subject to long-term radial velocity observations to detect orbiting bodies, and satisfy the criteria used by Johnson et al. to select survey stars which may have had A-type (or early F-type) main-sequence progenitors. The sample actually spans a somewhat wider range in mass, from ≈ 1 M⊙ up to ≈ 1.7 M⊙. Whilst for five of the seven stars the reported discovery mass from spectroscopy exceeds the mass estimated using asteroseismology, there is no strong evidence for a significant, systematic bias across the sample. Moreover, comparisons with other masses from the literature show that the absolute scale of any differences is highly sensitive to the chosen reference literature mass, with the scatter between different literature masses significantly larger than reported error bars. We find that any mass difference can be explained through use of different constraints during the recovery process. We also conclude that underestimated uncertainties on the input parameters can significantly bias the recovered stellar masses, which may have contributed to the controversy on the mass scale for retired A stars.

  19. DISCOVERY OF TWIN WOLF-RAYET STARS POWERING DOUBLE RING NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauerhan, Jon C.; Wachter, Stefanie; Van Dyk, Schuyler D.

    We have spectroscopically discovered a pair of twin, nitrogen-type, hydrogen-rich, Wolf-Rayet stars (WN8-9h) that are both surrounded by circular, mid-infrared-bright nebulae detected with the Spitzer Space Telescope and MIPS instrument. The emission is probably dominated by a thermal continuum from cool dust, but also may contain contributions from atomic line emission. There is no counterpart at shorter Spitzer/IRAC wavelengths, indicating a lack of emission from warm dust. The two nebulae are probably wind-swept stellar ejecta released by the central stars during a prior evolutionary phase. The nebulae partially overlap on the sky and we speculate on the possibility that theymore » are in the early stage of a collision. Two other evolved massive stars have also been identified within the area subtended by the nebulae, including a carbon-type Wolf-Rayet star (WC8) and an O7-8 III-I star, the latter of which appears to be embedded in one of the larger WN8-9h nebulae. The derived distances to these stars imply that they are coeval members of an association lying 4.9 {+-} 1.2 kpc from Earth, near the intersection of the Galaxy's Long Bar and the Scutum-Centaurus spiral arm. This new association represents an unprecedented display of complex interactions between multiple stellar winds, outflows, and the radiation fields of evolved massive stars.« less

  20. On the theory of group generation of stars

    NASA Technical Reports Server (NTRS)

    Zhilyayev, B. Y.; Porfiryev, V. V.; Shulman, L. M.

    1973-01-01

    The hypothesis proposed is that topology of a rotating gaseous cloud can be variable in the contraction process. Due to rotation an originally spherical cloud is transformed into a toroidal body. The contraction of a thin torus is considered with different suppositions on cooling the gas. In the determined time the torus will become gravitationally unstable. The excitation of Jeans' waves is shown to result in the disintegration of the torus into fragments. The number of the fragments and their mass distributions are calculated. The proposed hypothesis on toroidal stages in stellar evolution can remove some difficulties in the theory of structure and evolution of stars, such as absence of limitary stars, distribution of rotation velocities of early-type stars, origin of poloidal magnetic fields and decline rotators with the magnetic axis orthogonal to the axis of rotation.

  1. Studies of early-type variable stars. XIV. Spectroscopic orbit and absolute parameters of HU Tauri.

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.; Hill, G.; Hilditch, R. W.

    1995-09-01

    We present a new spectroscopic orbit for the Algol-type eclipsing binary system HU Tau (HD 29365, P=2.0563 days α(2000.0) = 04 38 15.80, δ= +20 41 05.3, V=5.87-6.8, B8V + G2). We find : m_1_ sin^3^i=4.17+/-0.09Msun_, m_2_ sin^3^i=1.07+/-0.025Msun_, (a_p_+a_s_)sin i=11.8 +/-0.1Rsun_, m_1_/m_2_=3.90+/-0.07. The spectroscopic orbit includes corrections for non-Keplerian effects derived from the solutions of the BV light curves of Ito (1988). We have been able to derive much improved absolute parameters for this system as follows: M_1_=4.43+/-0.09Msun_, M_2_=1.14+/-0.03Msun_, R _1_=2.57+/-0.03Rsun_, R _2_=4.21+/-0.03Rsun_, log(L_1_/Lsun_)= 2.09+/-0.15, log(L_2_/Lsun_)= 0.92+/-0.05. Comparison of HU Tau with non-conservative case B evolution models of De Greve (1993) suggests that the system evolved from an initial mass ratio <~0.5. However, the orbital period of HU Tau is more than 3 days shorter than any of the model systems, and the observed secondary luminosity of order 10 times less than a model star of the same mass during the slow mass transfer phase.

  2. Flattening and surface-brightness of the fast-rotating star δ Persei with the visible VEGA/CHARA interferometer

    NASA Astrophysics Data System (ADS)

    Challouf, M.; Nardetto, N.; Domiciano de Souza, A.; Mourard, D.; Tallon-Bosc, I.; Aroui, H.; Farrington, C.; Ligi, R.; Meilland, A.; Mouelhi, M.

    2017-08-01

    Context. Rapid rotation is a common feature for massive stars, with important consequences on their physical structure, flux distribution and evolution. Fast-rotating stars are flattened and show gravity darkening (non-uniform surface intensity distribution). Another important and less studied impact of fast-rotation in early-type stars is its influence on the surface brightness colour relation (hereafter SBCR), which could be used to derive the distance of eclipsing binaries. Aims: The purpose of this paper is to determine the flattening of the fast-rotating B-type star δ Per using visible long-baseline interferometry. A second goal is to evaluate the impact of rotation and gravity darkening on the V - K colour and surface brightness of the star. Methods: The B-type star δ Per was observed with the VEGA/CHARA interferometer, which can measure spatial resolutions down to 0.3 mas and spectral resolving power of 5000 in the visible. We first used a toy model to derive the position angle of the rotation axis of the star in the plane of the sky. Then we used a code of stellar rotation, CHARRON, in order to derive the physical parameters of the star. Finally, by considering two cases, a static reference star and our best model of δ Per, we can quantify the impact of fast rotation on the surface brightness colour relation (SBCR). Results: We find a position angle of 23 ± 6 degrees. The polar axis angular diameter of δ Per is θp = 0.544 ± 0.007 mas, and the derived flatness is r = 1.121 ± 0.013. We derive an inclination angle for the star of I = 85+ 5-20 degrees and a projected rotation velocity Vsini = 175+ 8-11 km s-1 (or 57% of the critical velocity). We find also that the rotation and inclination angle of δ Per keeps the V - K colour unchanged while it decreasing its surface-brightness by about 0.05 mag. Conclusions: Correcting the impact of rotation on the SBCR of early-type stars appears feasible using visible interferometry and dedicated models.

  3. Magnetic braking in young late-type stars. The effect of polar spots

    NASA Astrophysics Data System (ADS)

    Aibéo, A.; Ferreira, J. M.; Lima, J. J. G.

    2007-10-01

    Context: The existence of rapidly rotating cool stars in young clusters implies a reduction of angular momentum loss rate for a certain period of the star's early life. Recently, the concentration of magnetic flux near the poles of these stars has been proposed as an alternative mechanism to dynamo saturation in order to explain the saturation of angular momentum loss. Aims: In this work we study the effect of magnetic surface flux distribution on the coronal field topology and angular momentum loss rate. We investigate if magnetic flux concentration towards the pole is a reasonable alternative to dynamo saturation. Methods: We construct a 1D wind model and also apply a 2-D self-similar analytical model, to evaluate how the surface field distribution affects the angular momentum loss of the rotating star. Results: From the 1D model we find that, in a magnetically dominated low corona, the concentrated polar surface field rapidly expands to regions of low magnetic pressure resulting in a coronal field with small latitudinal variation. We also find that the angular momentum loss rate due to a uniform field or a concentrated field with equal total magnetic flux is very similar. From the 2D wind model we show that there are several relevant factors to take into account when studying the angular momentum loss from a star. In particular, we show that the inclusion of force balance across the field in a wind model is fundamental if realistic conclusions are to be drawn from the effect of non-uniform surface field distribution on magnetic braking. This model predicts that a magnetic field concentrated at high latitudes leads to larger Alfvén radii and larger braking rates than a smoother field distribution. Conclusions: From the results obtained, we argue that the magnetic surface field distribution towards the pole does not directly limit the braking efficiency of the wind.

  4. Measurements of the Stellar Wind Strengths of Planet-Hosting G- and K-Type Stars

    NASA Astrophysics Data System (ADS)

    Edelman, Eric; Redfield, S.; Wood, B.; Linsky, J.; Mueller, H. R.

    2014-01-01

    Voyager 1 has recently crossed the heliosphere, where the solar wind meets the material of the interstellar medium. With line of sight spectral information provided by the STIS on Hubble, the analogous boundary around other stars, which is known as an astrosphere, can be detected. We are conducting a thorough analysis of MgII, FeII, DI, and HI Lyman-alpha absorption along the lines of sight to a sample of nearby K and G stars in order to obtain and use astrospheric detections to estimate stellar wind strengths, and to study their effects upon exoplanetary atmospheres. Each astrospheric measurement is obtained by careful examination and reconstruction of the Lyman-alpha emission feature, which ultimately provides an estimate of the neutral hydrogen column density associated with a star’s astrosphere. The amount of neutral hydrogen in that region is highly dependent on the stellar wind strength of the host star, and is one of the scant few methods available today for measuring that quantity. If stellar winds are strong enough, they can be responsible for stripping a nearby planet of its atmosphere, as was potentially the case with Mars and our Sun approximately 4 billion years ago. Increasing the sample size of measurements of stellar wind strengths for K and G type stars will allow for us to more accurately determine the influence of solar-type host stars on their respective exoplanetary systems. Included in our sample are the stars HD9826 and HD192310, which both have confirmed exoplanets in orbit. This project includes the reconstructions of the Lyman-alpha emission feature along the lines of sight to a sample of nearby stars, with a determination of whether or not astrospheric or heliospheric absorption is detected in each instance, with hydrogen column densities for positive detections. We would like to acknowledge NASA HST Grant GO-12475 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in

  5. Identification of dusty massive stars in star-forming dwarf irregular galaxies in the Local Group with mid-IR photometry

    NASA Astrophysics Data System (ADS)

    Britavskiy, N. E.; Bonanos, A. Z.; Mehner, A.; Boyer, M. L.; McQuinn, K. B. W.

    2015-12-01

    Context. Increasing the statistics of spectroscopically confirmed evolved massive stars in the Local Group enables the investigation of the mass loss phenomena that occur in these stars in the late stages of their evolution. Aims: We aim to complete the census of luminous mid-IR sources in star-forming dwarf irregular (dIrr) galaxies of the Local Group. To achieve this we employed mid-IR photometric selection criteria to identify evolved massive stars, such as red supergiants (RSGs) and luminous blue variables (LBVs), by using the fact that these types of stars have infrared excess due to dust. Methods: The method is based on 3.6 μm and 4.5 μm photometry from archival Spitzer Space Telescope images of nearby galaxies. We applied our criteria to four dIrr galaxies: Pegasus, Phoenix, Sextans A, and WLM, selecting 79 point sources that we observed with the VLT/FORS2 spectrograph in multi-object spectroscopy mode. Results: We identified 13 RSGs, of which 6 are new discoveries, as well as two new emission line stars, and one candidate yellow supergiant. Among the other observed objects we identified carbon stars, foreground giants, and background objects, such as a quasar and an early-type galaxy that contaminate our survey. We use the results of our spectroscopic survey to revise the mid-IR and optical selection criteria for identifying RSGs from photometric measurements. The optical selection criteria are more efficient in separating extragalactic RSGs from foreground giants than mid-IR selection criteria, but the mid-IR selection criteria are useful for identifying dusty stars in the Local Group. This work serves as a basis for further investigation of the newly discovered dusty massive stars and their host galaxies. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 090.D-0009 and 091.D-0010.Appendix A is available in electronic form at http://www.aanda.org

  6. STAR - Research Experiences at National Laboratory Facilities for Pre-Service and Early Career Teachers

    NASA Astrophysics Data System (ADS)

    Keller, J. M.; Rebar, B.; Buxner, S.

    2012-12-01

    The STEM Teacher and Researcher (STAR) Program provides pre-service and beginning teachers the opportunity to develop identity as both teachers and researchers early in their careers. Founded and implemented by the Center for Excellence in Science and Mathematics Education (CESaME) at California Polytechnic State University on behalf of the California State University (CSU) system, STAR provides cutting edge research experiences and career development for students affiliated with the CSU system. Over the past three summers, STAR has also partnered with the NSF Robert Noyce Teacher Scholarship Program to include Noyce Scholars from across the country. Key experiences are one to three summers of paid research experience at federal research facilities associated with the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Association (NOAA), and the National Optical Astronomy Observatory (NOAO). Anchoring beginning teachers in the research community enhances participant understanding of what it means to be both researchers and effective teachers. Since its inception in 2007, the STAR Program has partnered with 15 national lab facilities to provide 290 research experiences to 230 participants. Several of the 68 STAR Fellows participating in the program during Summer 2012 have submitted abstracts to the Fall AGU Meeting. Through continued partnership with the Noyce Scholar Program and contributions from outside funding sources, the CSU is committed to sustaining the STAR Program in its efforts to significantly impact teacher preparation. Evaluation results from the program continue to indicate program effectiveness in recruiting high quality science and math majors into the teaching profession and impacting their attitudes and beliefs towards the nature of science and teaching through inquiry. Additionally, surveys and interviews are being conducted of participants who are now teaching in the classroom as

  7. Absolute Nuv magnitudes of Gaia DR1 astrometric stars and a search for hot companions in nearby systems

    NASA Astrophysics Data System (ADS)

    Makarov, V. V.

    2017-10-01

    Accurate parallaxes from Gaia DR1 (TGAS) are combined with GALEX visual Nuv magnitudes to produce absolute Mnuv magnitudes and an ultraviolet HR diagram for a large sample of astrometric stars. A functional fit is derived of the lower envelope main sequence of the nearest 1403 stars (distance <40 pc), which should be reddening-free. Using this empirical fit, 50 nearby stars are selected with significant Nuv excess. These are predominantly late K and early M dwarfs, often associated with X-ray sources, and showing other manifestations of magnetic activity. The sample may include systems with hidden white dwarfs, stars younger than the Pleiades, or, most likely, tight interacting binaries of the BY Dra-type. A separate collection of 40 stars with precise trigonometric parallaxes and Nuv-G colors bluer than 2 mag is presented. It includes several known novae, white dwarfs, and binaries with hot subdwarf (sdOB) components, but most remain unexplored.

  8. Chemical characterization of the early evolutionary phases of high-mass star-forming regions

    NASA Astrophysics Data System (ADS)

    Gerner, Thomas

    2014-10-01

    The formation of high-mass stars is a very complex process and up to date no comprehensive theory about it exists. This thesis studies the early stages of high-mass star-forming regions and employs astrochemistry as a tool to probe their different physical conditions. We split the evolutionary sequence into four observationally motivated stages that are based on a classification proposed in the literature. The sequence is characterized by an increase of the temperatures and densities that strongly influences the chemistry in the different stages. We observed a sample of 59 high-mass star-forming regions that cover the whole sequence and statistically characterized the chemical compositions of the different stages. We determined average column densities of 18 different molecular species and found generally increasing abundances with stage. We fitted them for each stage with a 1D model, such that the result of the best fit to the previous stage was used as new input for the following. This is a unique approach and allowed us to infer physical properties like the temperature and density structure and yielded a typical chemical lifetime for the high-mass star-formation process of 1e5 years. The 18 analyzed molecular species also included four deuterated molecules whose chemistry is particularly sensitive to thermal history and thus is a promising tool to infer chemical ages. We found decreasing trends of the D/H ratios with evolutionary stage for 3 of the 4 molecular species and that the D/H ratio depends more on the fraction of warm and cold gas than on the total amount of gas. That indicates different chemical pathways for the different molecules and confirms the potential use of deuterated species as chemical age indicators. In addition, we mapped a low-mass star forming region in order to study the cosmic ray ionization rate, which is an important parameter in chemical models. While in chemical models it is commonly fixed, we found that it ! strongly varies with

  9. Hot-Jupiter Breakfasts Realign Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    the star (where they have periods of ~2 days) and get stranded as the gas disk evaporates around them. Tidal interactions can cause these planets to become ingested by the host star within 1 Gyr. Using Monte Carlo simulations, the authors model these star-planet tidal interactions and evolve a total of 10^6 systems: half with hot (Teff = 6400 K), main-sequence hosts, and half with cool (Teff = 5500 K), solar-type hosts. The initial obliquities — the angle between the stellar spin and the planets' orbital angular momentum vectors — are randomly distributed between 0° and 180°. The authors find that early stellar ingestion of planets might be very common: to match observations, roughly half of all stellar hosts must ingest an HJ early in their lifetimes! This scenario results in a good match with observational data: about 50% of cool hosts' spins become roughly aligned with the orbital plane of their planets after they absorb the orbital angular momentum of the HJ they ingest. Hot stars, on the other hand, generally retain their random distributions of obliquity, because their angular momentum is typically higher than the orbital angular momentum of the ingested planet. Citation: Titos Matsakos and Arieh Königl 2015, ApJ, 809, L20. doi: 10.1088/2041-8205/809/2/L20

  10. Type II Cepheids: evidence for Na-O anticorrelation for BL Her type stars?

    NASA Astrophysics Data System (ADS)

    Kovtyukh, V.; Yegorova, I.; Andrievsky, S.; Korotin, S.; Saviane, I.; Lemasle, B.; Chekhonadskikh, F.; Belik, S.

    2018-06-01

    The chemical composition of 28 Population II Cepheids and one RR Lyrae variable has been studied using high-resolution spectra. The chemical composition of W Vir variable stars (with periods longer than 8 d) is typical for the halo and thick disc stars. However, the chemical composition of BL Her variables (with periods of 0.8-4 d) is drastically different, although it does not differ essentially from that of the stars belonging to globular clusters. In particular, the sodium overabundance ([Na/Fe] ≈ 0.4) is reported for most of these stars, and the Na-O anticorrelation is also possible. The evolutionary tracks for BL Her variables (with a progenitor mass value of 0.8 solar masses) indicate that mostly helium-overabundant stars (Y = 0.30-0.35) can fall into the instability strip region. We suppose that it is the helium overabundance that accounts not only for the existence of BL Her variable stars but also for the observed abnormalities in the chemical composition of this small group of pulsating variables.

  11. Pulsational mode-typing in line profile variables. I - Four Beta Cephei stars

    NASA Technical Reports Server (NTRS)

    Campos, A. J.; Smith, M. A.

    1980-01-01

    The detailed variations of line profiles in the Beta Cephei-type variable stars Gamma Pegasi, Beta Cephei, Delta Ceti and Sigma Scorpii are modeled throughout their pulsation cycles in order to classify the dominant pulsation mode as radial or nonradial. High-dispersion Reticon observations of the variables were obtained for the Si III line at 4567 A, and line profiles broadened by radial or nonradial pulsations, rotation and radial-tangential macroturbulence were calculated based on a model atmosphere. It is found that only a radial pulsation mode can reproduce the radial velocity amplitude, changes in line asymmetry and uniform line width observed in all four stars. Results are in agreement with the color-to-light arguments of Stamford and Watson (1978), and suggest that radial pulsation plays the dominant role in the observed variations in most Beta Cephei stars. Evidence for shocks or moving shells is also found in visual line data for Sigma Scorpii and an ultraviolet line of Beta Cephei, together with evidence of smooth, secular period changes in Beta Cephei and Delta Ceti.

  12. FEROS Finds a Strange Star

    NASA Astrophysics Data System (ADS)

    1999-02-01

    ) in the same cluster. The comparatively strong absorption line at the centre, at wavelength 6708 Å (671 nm), is caused by Lithium atoms (Li I) in the upper layers of the star's atmosphere. Lines from Iron (Fe I) and Calcium (Ca I) atoms are also present in this spectral region. While they are of about equal strength in the two stars, the Lithium line is not seen in the comparison spectrum of S156 . Stellar evolution theories do not predict the presence of Lithium in a giant star like S50 . Technical information: FEROS obtained two spectra (each of 90 min exposure) of S50 , both showing this strong Lithium line and thus proving that it cannot have been caused by an instrumental effect. These spectra also illustrate the great amount of information that may be obtained in each exposure with FEROS - the shown spectral interval is just 1/280 of the total range recorded. The (visual) magnitude of S50 is 15.6, i.e., about 7,000 times fainter than what can be seen with the unaided eye. During the first tests of FEROS at the 1.52-m telescope, spectra were obtained of many different stars. Some of these observational data could be used for scientific purposes and, in one case, led to the discovery of unusual properties of a giant star in a stellar cluster. Its spectrum shows an unexplained large amount of the cosmologically important, light element Lithium, cf. PR Photo 03b/99 . The star is thus an obvious object for further, even more detailed studies with ESO's Very Large Telescope (VLT). This giant star, designated as S50 , is a member of the open-type stellar cluster Be21 (less dense than globular clusters). This cluster is of special interest, since its stars contain few elements heavier than hydrogen and helium. It is located in the direction opposite to the Galactic Center and the distance has been measured as approximately 16,000 light-years. All of its stars were formed at the same time, about 2,000 - 2,500 million years ago; this corresponds to half of the age of the

  13. THE EVOLUTION OF EARLY- AND LATE-TYPE GALAXIES IN THE COSMIC EVOLUTION SURVEY UP TO z {approx} 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannella, Maurilio; Gabasch, Armin; Drory, Niv

    2009-08-10

    The Cosmic Evolution Survey (COSMOS) allows for the first time a highly significant census of environments and structures up to redshift 1, as well as a full morphological description of the galaxy population. In this paper we present a study aimed to constrain the evolution, in the redshift range 0.2 < z < 1.2, of the mass content of different morphological types and its dependence on the environmental density. We use a deep multicolor catalog, covering an area of {approx}0.7 deg{sup 2} inside the COSMOS field, with accurate photometric redshifts (i {approx}< 26.5 and {delta}z/(z {sub spec} + 1) {approx}more » 0.035). We estimate galaxy stellar masses by fitting the multicolor photometry to a grid of composite stellar population models. We quantitatively describe the galaxy morphology by fitting point-spread function convolved Sersic profiles to the galaxy surface brightness distributions down to F814 = 24 mag for a sample of 41,300 objects. We confirm an evolution of the morphological mix with redshift: the higher the redshift the more disk-dominated galaxies become important. We find that the morphological mix is a function of the local comoving density: the morphology density relation extends up to the highest redshift explored. The stellar mass function of disk-dominated galaxies is consistent with being constant with redshift. Conversely, the stellar mass function of bulge-dominated systems shows a decline in normalization with redshift. Such different behaviors of late-types and early-types stellar mass functions naturally set the redshift evolution of the transition mass. We find a population of relatively massive, early-type galaxies, having high specific star formation rate (SSFR) and blue colors which live preferentially in low-density environments. The bulk of massive (>7 x 10{sup 10} M {sub sun}) early-type galaxies have similar characteristic ages, colors, and SSFRs independently of the environment they belong to, with those hosting the oldest stars

  14. A Revised Age for Upper Scorpius and the Star Formation History among the F-type Members of the Scorpius-Centaurus OB Association

    NASA Astrophysics Data System (ADS)

    Pecaut, Mark J.; Mamajek, Eric E.; Bubar, Eric J.

    2012-02-01

    We present an analysis of the ages and star formation history of the F-type stars in the Upper Scorpius (US), Upper Centaurus-Lupus (UCL), and Lower Centaurus-Crux (LCC) subgroups of Scorpius-Centaurus (Sco-Cen), the nearest OB association. Our parent sample is the kinematically selected Hipparcos sample of de Zeeuw et al., restricted to the 138 F-type members. We have obtained classification-resolution optical spectra and have also determined the spectroscopic accretion disk fraction. With Hipparcos and 2MASS photometry, we estimate the reddening and extinction for each star and place the candidate members on a theoretical H-R diagram. For each subgroup we construct empirical isochrones and compare to published evolutionary tracks. We find that (1) our empirical isochrones are consistent with the previously published age-rank of the Sco-Cen subgroups; (2) subgroups LCC and UCL appear to reach the main-sequence turn-on at spectral types ~F4 and ~F2, respectively. An analysis of the A-type stars shows US reaching the main sequence at about spectral type ~A3. (3) The median ages for the pre-main-sequence members of UCL and LCC are 16 Myr and 17 Myr, respectively, in agreement with previous studies, however we find that (4) Upper Sco is much older than previously thought. The luminosities of the F-type stars in US are typically a factor of ~2.5 less luminous than predicted for a 5 Myr old population for four sets of evolutionary tracks. We re-examine the evolutionary state and isochronal ages for the B-, A-, and G-type Upper Sco members, as well as the evolved M supergiant Antares, and estimate a revised mean age for Upper Sco of 11 ± 1 ± 2 Myr (statistical, systematic). Using radial velocities and Hipparcos parallaxes we calculate a lower limit on the kinematic expansion age for Upper Sco of >10.5 Myr (99% confidence). However, the data are statistically consistent with no expansion. We reevaluate the inferred masses for the known substellar companions in Upper Sco

  15. Chemically-Deduced Star Formation Histories Of Dwarf Galaxies Using Barium

    NASA Astrophysics Data System (ADS)

    Duggan, Gina; Kirby, Evan

    2017-06-01

    Dwarf galaxies offer a unique opportunity to study the competing forces of galaxy evolution. Their simpler history (i.e., small size, fewer major mergers, and lack of active galactic nuclei) enables us to isolate different physical mechanisms more easily. The effects of these mechanisms are imprinted on the galaxy's star formation history. Traditionally, star formation histories are determined from color-magnitude diagrams. However, chemical abundances can increase the precision of this measurement. Here we present a simplistic galactic chemical evolution model to infer the star formation history. Chemical abundances are measured from spectra obtained with Keck/DEIMOS medium-resolution spectroscopy for over a hundred red giant stars from several satellite dwarf spheroidal galaxies and globular clusters. We focus our work on iron and barium abundances because they predominantly trace Type Ia supernovae and asymptotic giant branch stars, respectively. The different timescales of these two nucleosynthetic sources can be used to measure a finely resolved star formation history, especially when combined with existing [α/Fe] measurements. These models will inform the details of early star formation in dwarf galaxies and how it is affected by various physical processes, such as reionization and tidal stripping.

  16. Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hunt, Leslie K.; Madden, Suzanne C.; Schneider, Raffaella

    2008-12-01

    'Shea and Michael L. Norman; 16. Damped Lyα systems as probes of chemical evolution over cosmological timescales Miroslava Dessauges-Zavadsky; 17. Connecting high-redshift galaxy populations through observations of local damped Lyman alpha dwarf galaxies Regina E. Schulte-Ladbeck; 18. Chemical enrichment and feedback in low metallicity environments: constraints on galaxy formation Francesca Matteucci; 19. Effects of reionization on dwarf galaxy formation Massimo Ricotti; 20. The importance of following the evolution of the dust in galaxies on their SEDs A. Schurer, F. Calura, L. Silva, A. Pipino, G. L. Granato, F. Matteucci and R. Maiolino; 21. About the chemical evolution of dSphs (and the peculiar globular cluster ωCen) Andrea Marcolini and Annibale D'Ercole; 22. Young star clusters in the small Magellanic cloud: impact of local and global conditions on star formation Elena Sabbi, Linda J. Smith, Lynn R. Carlson, Antonella Nota, Monca Tosi, Michele Cignoni, Jay S. Gallagher III, Marco Sirianni and Margaret Meixner; 23. Modeling the ISM properties of metal-poor galaxies and gamma-ray burst hosts Emily M. Levesque, Lisa J. Kewley, Kirsten Larson and Leonie Snijders; 24. Dwarf galaxies and the magnetisation of the IGM Uli Klein; Session III. Explosive Events in Low-Metallicity Environments: 25. Supernovae and their evolution in a low metallicity ISM Roger A. Chevalier; 26. First stars - type Ib supernovae connection Ken'ichi Nomoto, Masaomi Tanaka, Yasuomi Kamiya, Nozomu Tominaga and Keiichi Maeda; 27. Supernova nucleosynthesis in the early universe Nozomu Tominaga, Hideyuki Umeda, Keiichi Maeda, Ken'ichi Nomoto and Nobuyuki Iwamoto; 28. Powerful explosions at Z = 0? Sylvia Ekström, Georges Meynet, Raphael Hirschi and André Maeder; 29. Wind anisotropy and stellar evolution Cyril Georgy, Georges Meynet and André Maeder; 30. Low-mass and metal-poor gamma-ray burst

  17. The SAMI Galaxy Survey: spatially resolving the main sequence of star formation

    NASA Astrophysics Data System (ADS)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus

    2018-04-01

    We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  18. Luminosity effect of O I 7771-5 triplet and atmospheric microturbulence in evolved A-, F-, and G-type stars

    NASA Astrophysics Data System (ADS)

    Takeda, Yoichi; Jeong, Gwanghui; Han, Inwoo

    2018-01-01

    It is known that the strength of neutral oxygen triplet lines at 7771-5 Å shows a luminosity effect in evolved A through G stars. However, its general behavior across the HR diagram is not yet well understood, since the applicability limit of the relations proposed by various previous work (tending to be biased toward supergiants) still remains unclear. Besides, our understanding on the nature of atmospheric micro-scale turbulence, which is considered to play a significant role (along with the non-LTE line intensification) for the cause of this effect, is still insufficient. Towards clarifying these problems, we carried out an extensive non-LTE spectrum-fitting analysis of O I 7771-5 lines for unbiased sample of 75 evolved A-, F,- and G-type stars over wide luminosity classes (from subgiants through supergiants) including rapid rotators, from which the total equivalent width (W77) was derived and the microturbulence (ξ) was determined by two different (profile- and abundance-based) methods for each star. While we confirmed that W77 tends to increase in the global sense as a star's absolute magnitude (MV) becomes more luminous, distinctly different trends were found between lower-gravity (log g ≲ 2.5) and higher-gravity (log g ≳ 2.5) stars, in the sense that the MV vs. W77 formulas proposed by past studies are applicable only to the former supergiant group. In case of using W77 for empirical MV evaluation by such simple formulas, it is recommended to confine only to supergiants of -5 ≳ MV ≳ -10. Regarding the microturbulence significantly controlling W77, it roughly shows an increasing tendency with a decrease in surface gravity. However, the trend is not monotonic but rather intricate (e.g., hump, stagnation, or discontinuously large increase) depending on the stellar type and evolutionary stage.

  19. Initial Results from the Palomar Adaptive Optics Survey of Young Solar-Type Stars: A Brown Dwarf and Three Stellar Companions

    NASA Astrophysics Data System (ADS)

    Metchev, Stanimir A.; Hillenbrand, Lynne A.

    2004-12-01

    We present first results from the Palomar Adaptive Optics Survey of Young Stars conducted at the Hale 5 m telescope. Through direct imaging we have discovered a brown dwarf and two low-mass stellar companions to the young solar-type stars HD 49197, HD 129333 (EK Dra), and V522 Per and confirmed a previously suspected companion to RX J0329.1+0118 (Sterzik et al.), at respective separations of 0.95" (43 AU), 0.74" (25 AU), 2.09" (400 AU), and 3.78" (380 AU). Physical association of each binary system is established through common proper motion and/or low-resolution infrared spectroscopy. Based on the companion spectral types, we estimate their masses at 0.06, 0.20, 0.13, and 0.20 Msolar, respectively. From analysis of our imaging data combined with archival radial velocity data, we find that the spatially resolved companion to HD 129333 is potentially identical to the previously identified spectroscopic companion to this star (Duquennoy & Mayor). However, a discrepancy with the absolute magnitude suggests that the two companions could also be distinct, with the resolved one being the outermost component of a triple system. The brown dwarf HD 49197B is a new member of a growing list of directly imaged substellar companions at 10-1000 AU separations from main-sequence stars, indicating that such brown dwarfs may be more common than initially speculated.

  20. Documentation for the machine-readable version of A Finding List of Stars of Spectral Type F2 and Earlier in a North Galactic Pole Region

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1982-01-01

    The machine-readable data set is the result of an objective-prism survey made with an 80 cm/120 cm Schmidt telescope. The F2 and earlier stars were isolated from later type objects by using the MK classification criteria. The catalog contains 601 stars and includes cross identifications to the BD and HD catalogs, coordinates, photographic magnitudes and spectral types. A separate file contains the remarks from the original data tables merged with those following the data. The machine-readable files are described.