Sample records for early adipocyte differentiation

  1. Activation of TRPV2 negatively regulates the differentiation of mouse brown adipocytes.

    PubMed

    Sun, Wuping; Uchida, Kunitoshi; Takahashi, Nobuyuki; Iwata, Yuko; Wakabayashi, Shigeo; Goto, Tsuyoshi; Kawada, Teruo; Tominaga, Makoto

    2016-09-01

    Transient receptor potential vanilloid 2 (TRPV2) acts as a Ca(2+)-permeable non-selective cation channel that has been reported to be sensitive to temperature, mechanical force, and some chemicals. We recently showed that TRPV2 is critical for maintenance of the thermogenic function of brown adipose tissue in mice. However, the involvement of TRPV2 in the differentiation of brown adipocytes remains unexplored. We found that the expression of TRPV2 was dramatically increased during the differentiation of brown adipocytes. Non-selective TRPV2 agonists (2-aminoethoxydiphenyl borate and lysophosphatidylcholine) inhibited the differentiation of brown adipocytes in a dose-dependent manner during the early stage of differentiation of brown adipocytes. The inhibition was rescued by a TRPV2-selective antagonist, SKF96365 (SKF). Mechanical force, which activates TRPV2, also inhibited the differentiation of brown adipocytes in a strength-dependent manner, and the effect was reversed by SKF. In addition, the inhibition of adipocyte differentiation by either TRPV2 ligand or mechanical stimulation was significantly smaller in the cells from TRPV2KO mice. Moreover, calcineurin inhibitors, cyclosporine A and FK506, partially reversed TRPV2 activation-induced inhibition of brown adipocyte differentiation. Thus, we conclude that TRPV2 might be involved in the modulation of brown adipocyte differentiation partially via a calcineurin pathway.

  2. High content analysis of differentiation and cell death in human adipocytes.

    PubMed

    Doan-Xuan, Quang Minh; Sarvari, Anitta K; Fischer-Posovszky, Pamela; Wabitsch, Martin; Balajthy, Zoltan; Fesus, Laszlo; Bacso, Zsolt

    2013-10-01

    Understanding adipocyte biology and its homeostasis is in the focus of current obesity research. We aimed to introduce a high-content analysis procedure for directly visualizing and quantifying adipogenesis and adipoapoptosis by laser scanning cytometry (LSC) in a large population of cell. Slide-based image cytometry and image processing algorithms were used and optimized for high-throughput analysis of differentiating cells and apoptotic processes in cell culture at high confluence. Both preadipocytes and adipocytes were simultaneously scrutinized for lipid accumulation, texture properties, nuclear condensation, and DNA fragmentation. Adipocyte commitment was found after incubation in adipogenic medium for 3 days identified by lipid droplet formation and increased light absorption, while terminal differentiation of adipocytes occurred throughout day 9-14 with characteristic nuclear shrinkage, eccentric nuclei localization, chromatin condensation, and massive lipid deposition. Preadipocytes were shown to be more prone to tumor necrosis factor alpha (TNFα)-induced apoptosis compared to mature adipocytes. Importantly, spontaneous DNA fragmentation was observed at early stage when adipocyte commitment occurs. This DNA damage was independent from either spontaneous or induced apoptosis and probably was part of the differentiation program. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.

  3. Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes.

    PubMed

    Lechner, Stefan; Mitterberger, Maria C; Mattesich, Monika; Zwerschke, Werner

    2013-01-01

    We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of

  4. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasrich, Dorothee; Bartelt, Alexander; Grewal, Thomas, E-mail: thomas.grewal@sydney.edu.au

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tertmore » adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not

  5. Adipocyte induction of preadipocyte differentiation in a gradient chamber.

    PubMed

    Lai, Ning; Sims, James K; Jeon, Noo Li; Lee, Kyongbum

    2012-12-01

    Adipose tissue expansion involves enlargement of mature adipocytes and the formation of new adipocytes through the differentiation of locally resident preadipocytes. Factors released by the enlarged adipocytes are potential cues that induce the differentiation of the preadipocytes. Currently, there are limited options to investigate these cues in isolation from confounding systemic influences. A gradient generating microfluidic channel-based cell culture system was designed to enable solution patterning, while supporting long-term culture and differentiation of preadipocytes. Solution patterning was confirmed by selectively staining a fraction of uniformly seeded preadipocytes. An adipogenic cocktail gradient was used to induce the differentiation of a fraction of uniformly seeded preadipocytes and establish a spatially defined coculture of adipocytes and preadipocytes. Varying the adipogenic cocktail gradient generated cocultures of preadipocytes and adipocytes with different compositions. Transient application of the cocktail gradient, followed by basal medium treatment showed a biphasic induction of differentiation. The two phases of differentiation correlated with a spatial gradient in adipocyte size. Our results provide in vitro data supporting the size-dependent release of preadipocyte differentiation factors by enlarged adipocytes. Prospectively, the coculture system developed in this study could facilitate controlled, yet physiologically meaningful studies on paracrine interactions between adipocytes and preadipocytes during adipose tissue development.

  6. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells

    PubMed Central

    2013-01-01

    Background The naphthoquinone pigment, shikonin, is a major component of Lithospermum erythrorhizon and has been shown to have various biological functions, including antimicrobial, anti-inflammatory, and antitumor effects. In this study, we investigated the effect of shikonin on adipocyte differentiation and its mechanism of action in 3T3-L1 cells. Methods To investigate the effects of shikonin on adipocyte differentiation, 3T3-L1 cells were induced to differentiate using 3-isobutyl-1-methylzanthine, dexamethasone, and insulin (MDI) for 8 days in the presence of 0–2 μM shikonin. Oil Red O staining was performed to determine the lipid accumulation in 3T3-L1 cells. To elucidate the anti-adipogenic mechanism of shikonin, adipogenic transcription factors, the phosphorylation levels of ERK, and adipogenic gene expression were analyzed by Western blotting and quantitative real-time PCR. To further confirm that shikonin inhibits adipogenic differentiation through downregulation of ERK 1/2 activity, 3T3-L1 cells were treated with shikonin in the presence of FGF-2, an activator, or PD98059, an inhibitor, of the ERK1/2 signaling pathway. Results Shikonin effectively suppressed adipogenesis and downregulated the protein levels of 2 major transcription factors, PPARγ and C/EBPα, as well as the adipocyte specific gene aP2 in a dose-dependent manner. qRT-PCR analysis revealed that shikonin inhibited mRNA expression of adipogenesis-related genes, such as PPARγ, C/EBPα, and aP2. Adipocyte differentiation was mediated by ERK 1/2 phosphorylation, which was confirmed by pretreatment with PD98059 (an ERK 1/2 inhibitor) or FGF-2 (an ERK 1/2 activator). The phosphorylation of ERK1/2 during the early stages of adipogenesis in 3T3-L1 cells was inhibited by shikonin. We also confirmed that FGF-2-stimulated ERK 1/2 activity was attenuated by shikonin. Conclusions These results demonstrate that shikonin inhibits adipogenic differentiation via suppression of the ERK signaling pathway

  7. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Gwon, So Young; Ahn, Ji Yun; Jung, Chang Hwa; Moon, Bo Kyung; Ha, Tae Youl

    2013-08-06

    The naphthoquinone pigment, shikonin, is a major component of Lithospermum erythrorhizon and has been shown to have various biological functions, including antimicrobial, anti-inflammatory, and antitumor effects. In this study, we investigated the effect of shikonin on adipocyte differentiation and its mechanism of action in 3T3-L1 cells. To investigate the effects of shikonin on adipocyte differentiation, 3T3-L1 cells were induced to differentiate using 3-isobutyl-1-methylzanthine, dexamethasone, and insulin (MDI) for 8 days in the presence of 0-2 μM shikonin. Oil Red O staining was performed to determine the lipid accumulation in 3T3-L1 cells. To elucidate the anti-adipogenic mechanism of shikonin, adipogenic transcription factors, the phosphorylation levels of ERK, and adipogenic gene expression were analyzed by Western blotting and quantitative real-time PCR. To further confirm that shikonin inhibits adipogenic differentiation through downregulation of ERK 1/2 activity, 3T3-L1 cells were treated with shikonin in the presence of FGF-2, an activator, or PD98059, an inhibitor, of the ERK1/2 signaling pathway. Shikonin effectively suppressed adipogenesis and downregulated the protein levels of 2 major transcription factors, PPARγ and C/EBPα, as well as the adipocyte specific gene aP2 in a dose-dependent manner. qRT-PCR analysis revealed that shikonin inhibited mRNA expression of adipogenesis-related genes, such as PPARγ, C/EBPα, and aP2. Adipocyte differentiation was mediated by ERK 1/2 phosphorylation, which was confirmed by pretreatment with PD98059 (an ERK 1/2 inhibitor) or FGF-2 (an ERK 1/2 activator). The phosphorylation of ERK1/2 during the early stages of adipogenesis in 3T3-L1 cells was inhibited by shikonin. We also confirmed that FGF-2-stimulated ERK 1/2 activity was attenuated by shikonin. These results demonstrate that shikonin inhibits adipogenic differentiation via suppression of the ERK signaling pathway during the early stages of adipogenesis.

  8. Organization of nuclear architecture during adipocyte differentiation

    PubMed Central

    Charó, Nancy L.; Rodríguez Ceschan, María I.; Galigniana, Natalia M.; Toneatto, Judith; Piwien-Pilipuk, Graciela

    2016-01-01

    ABSTRACT Obesity is a serious health problem worldwide since it is a major risk factor for chronic diseases such as type II diabetes. Obesity is the result of hyperplasia (associated with increased adipogenesis) and hypertrophy (associated with decreased adipogenesis) of the adipose tissue. Therefore, understanding the molecular mechanisms underlying the process of adipocyte differentiation is relevant to delineate new therapeutic strategies for treatment of obesity. As in all differentiation processes, temporal patterns of transcription are exquisitely controlled, allowing the acquisition and maintenance of the adipocyte phenotype. The genome is spatially organized; therefore decoding local features of the chromatin language alone does not suffice to understand how cell type-specific gene expression patterns are generated. Elucidating how nuclear architecture is built during the process of adipogenesis is thus an indispensable step to gain insight in how gene expression is regulated to achieve the adipocyte phenotype. Here we will summarize the recent advances in our understanding of the organization of nuclear architecture as progenitor cells differentiate in adipocytes, and the questions that still remained to be answered. PMID:27416359

  9. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Seong-Il; Ko, Hee-Chul; Shin, Hye-Sun

    2011-06-17

    Highlights: {yields} Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. {yields} Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. {yields} Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. {yields} Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from themore » edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), CCAAT/enhancer-binding protein {alpha} (C/EBP{alpha}), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPAR{gamma}, C/EBP{alpha}, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.« less

  10. Tributyltin Differentially Promotes Development of a Phenotypically Distinct Adipocyte

    PubMed Central

    Regnier, Shane M.; El-Hashani, Essam; Kamau, Wakanene; Zhang, Xiaojie; Massad, Nicole L.; Sargis, Robert M.

    2015-01-01

    Objective Environmental endocrine disrupting chemicals (EDCs) are increasingly implicated in the pathogenesis of obesity. Evidence implicates various EDCs as being pro-adipogenic, including tributyltin (TBT), which activates the peroxisome proliferator activated receptor-γ (PPARγ). However, the conditions required for TBT-induced adipogenesis and its functional consequences are incompletely known. Methods The co-stimulatory conditions necessary for preadipocyte-to-adipocyte differentiation were compared between TBT and the pharmacological PPARγ agonist troglitazone (Trog) in the 3T3-L1 cell line; basal and insulin-stimulated glucose uptake were assessed using radiolabeled 2-deoxyglucose. Results TBT enhanced expression of the adipocyte marker C/EBPα with co-exposure to either isobutylmethylxanthine or insulin in the absence of other adipogenic stimuli. Examination of several adipocyte-specific proteins revealed that TBT and Trog differentially affected protein expression despite comparable PPARγ stimulation. In particular, TBT reduced adiponectin expression upon maximal adipogenic stimulation. Under submaximal stimulation, TBT and Trog differentially promoted adipocyte-specific gene expression despite similar lipid accumulation. Moreover, TBT attenuated Trog-induced adipocyte gene expression under conditions of co-treatment. Finally, TBT-induced adipocytes exhibited altered glucose metabolism, with increased basal glucose uptake. Conclusions TBT-induced adipocytes are functionally distinct from those generated by a pharmacological PPARγ agonist, suggesting that obesogen-induced adipogenesis may generate dysfunctional adipocytes with the capacity to deleteriously affect global energy homeostasis. PMID:26243053

  11. Tributyltin differentially promotes development of a phenotypically distinct adipocyte.

    PubMed

    Regnier, Shane M; El-Hashani, Essam; Kamau, Wakanene; Zhang, Xiaojie; Massad, Nicole L; Sargis, Robert M

    2015-09-01

    Environmental endocrine disrupting chemicals (EDCs) are increasingly implicated in the pathogenesis of obesity. Evidence implicates various EDCs as being proadipogenic, including tributyltin (TBT), which activates the peroxisome proliferator activated receptor-γ (PPARγ). However, the conditions required for TBT-induced adipogenesis and its functional consequences are incompletely known. The costimulatory conditions necessary for preadipocyte-to-adipocyte differentiation were compared between TBT and the pharmacological PPARγ agonist troglitazone (Trog) in the 3T3-L1 cell line; basal and insulin-stimulated glucose uptake were assessed using radiolabeled 2-deoxyglucose. TBT enhanced expression of the adipocyte marker C/EBPα with coexposure to either isobutylmethylxanthine or insulin in the absence of other adipogenic stimuli. Examination of several adipocyte-specific proteins revealed that TBT and Trog differentially affected protein expression despite comparable PPARγ stimulation. In particular, TBT reduced adiponectin expression upon maximal adipogenic stimulation. Under submaximal stimulation, TBT and Trog differentially promoted adipocyte-specific gene expression despite similar lipid accumulation. Moreover, TBT attenuated Trog-induced adipocyte gene expression under conditions of cotreatment. Finally, TBT-induced adipocytes exhibited altered glucose metabolism, with increased basal glucose uptake. TBT-induced adipocytes are functionally distinct from those generated by a pharmacological PPARγ agonist, suggesting that obesogen-induced adipogenesis may generate dysfunctional adipocytes with the capacity to deleteriously affect global energy homeostasis. © 2015 The Obesity Society.

  12. Metabolic phenotyping of a model of adipocyte differentiation

    PubMed Central

    Roberts, Lee D.; Virtue, Sam; Vidal-Puig, Antonio; Nicholls, Andrew W.

    2009-01-01

    The 3T3-L1 murine cell line is a robust and widely used model for the study of adipogenesis and processes occurring in mature adipocytes. The fibroblastic like cells can be induced by hormones to differentiate into mature adipocytes. In this study, the metabolic phenotype associated with differentiation of the 3T3-L1 cell line has been studied using gas chromatography-mass spectrometry, 1H nuclear magnetic resonance spectroscopy, liquid chromatography-mass spectrometry, direct infusion-mass spectrometry, and 13C substrate labeling in conjunction with multivariate statistics. The changes in metabolite concentrations at distinct periods during differentiation have been defined including alterations in the TCA cycle, glycolysis, the production of odd chain fatty acids by α-oxidation, fatty acid synthesis, fatty acid desaturation, polyamine biosynthesis, and trans-esterification to produce complex lipids. The metabolic changes induced during differentiation of the 3T3-L1 cell line were then compared with the metabolic differences between pre- and postdifferentiation primary adipocytes. These metabolic alterations reflect the changing role of the 3T3-L1 cells during differentiation, as well as possibly providing metabolic triggers to stimulate the processes which occur during differentiation. PMID:19602617

  13. Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Shin, Eunjin; Choi, Kyeong-Mi; Yoo, Hwan-Soo; Lee, Chong-Kil; Hwang, Bang Yeon; Lee, Mi Kyeong

    2010-01-01

    In the course of screening anti-adipogenic activity of natural products employing the preadipocyte cell line, 3T3-L1 as an in vitro assay system, the EtOAc fraction of the stem barks of Fraxinus rhynchophylla DENCE (Oleaceae) showed significant inhibitory activity on adipocyte differentiation as assessed by measuring fat accumulation using Oil Red O staining. Activity-guided fractionation led to the isolation of six coumarins such as esculetin (1), scopoletin (2), fraxetin (3), fraxidin (4) esculin (5) and fraxin (6). Among the six coumarins isolated, esculetin (1) showed the most potent inhibitory activity on adipocyte differentiation, followed by fraxetin (3). Further studies with interval treatment demonstrated that esculetin (1) exerted inhibitory activity on adipocyte differentiation when treated within 2 d (days 0-2) after differentiation induction. We further investigated the effect of esculetin (1) on peroxisome proliferator activated receptor gamma (PPARgamma), one of the early adipogenic transcription factors. Esculetin (1) significantly blocked the induction of PPARgamma protein expression and inhibited adipocyte differentiation induced by troglitazone, a PPARgamma agonist. Taken together, these results suggest that esculetin (1), an active compound from F. rhynchophylla, inhibited early stage of adipogenic differentiation, in part, via inhibition of PPARgamma-dependent pathway.

  14. Methylation of miR-145a-5p promoter mediates adipocytes differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Jingjing; Cheng, Xiao; Shen, Linyuan

    MicroRNAs (miRNAs, miR) play important roles in adipocyte development. Recent studies showed that the expression of several miRNAs is closely related with promoter methylation. However, it is not known whether miRNA mediates adipocytes differentiation by means of DNA methylation. Here, we showed that miR-145a-5p was poorly expressed in adipose tissue from mice fed a high fat diet (HFD). Overexpression or inhibition of miR-145a-5p was unfavorable or beneficial, respectively, for adipogenesis, and these effects were achieved by regulating adipocyte-specific genes involved in lipogenic transcription, fatty acid synthesis, and fatty acid transportation. Particularly, we first suggested that miR-145a-5p mimics or inhibitors promotedmore » or repressed adipocytes proliferation by regulating p53 and p21, which act as cell cycle regulating factors. Surprisingly, the miR-145a-5p-repressed adipocyte differentiation was enhanced or rescued when cells treated with 5-Aza-dC were transfected with miR-145a-5p mimics or inhibitors, respectively. These data indicated that, as a new mean to positively regulate adipocyte proliferation, the process of miR-145a-5p-inhibited adipogenesis may be regulated by DNA methylation. -- Highlights: •MiR-145a-5p promotes adipocytes proliferation. •MiR-145a-5p is negatively correlated with obesity. •MiR-145a-5p mediates adipocytes differentiation via regulating pathway related adipocytes differentiation. MiR-145a-5p mediating adipocytes differentiation was regulated by DNA methylation.« less

  15. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koc, Michal; Mayerová, Veronika; Kračmerová, Jana

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathwaymore » (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  16. Silibinin Regulates Lipid Metabolism and Differentiation in Functional Human Adipocytes

    PubMed Central

    Barbagallo, Ignazio; Vanella, Luca; Cambria, Maria T.; Tibullo, Daniele; Godos, Justyna; Guarnaccia, Laura; Zappalà, Agata; Galvano, Fabio; Li Volti, Giovanni

    2016-01-01

    Silibinin, a natural plant flavonolignan is the main active constituent found in milk thistle (Silybum marianum). It is known to have hepatoprotective, anti-neoplastic effect, and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem cells. Silibinin (10 μM) treatment, either at the beginning or at the end of adipogenic differentiation, resulted in an increase of SIRT-1, PPARα, Pgc-1α, and UCPs gene expression. Moreover, silibinin administration resulted in a decrease of PPARγ, FABP4, FAS, and MEST/PEG1 gene expression during the differentiation, confirming that this compound is able to reduce fatty acid accumulation and adipocyte size. Our data showed that silibinin regulated adipocyte lipid metabolism, inducing thermogenesis and promoting a brown remodeling in adipocyte. Taken together, our findings suggest that silibinin increases UCPs expression by stimulation of SIRT1, PPARα, and Pgc-1α, improved metabolic parameters, decreased lipid mass leading to the formation of functional adipocytes. PMID:26834634

  17. Persistent organic pollutants alter DNA methylation during human adipocyte differentiation.

    PubMed

    van den Dungen, Myrthe W; Murk, Albertinka J; Kok, Dieuwertje E; Steegenga, Wilma T

    2017-04-01

    Ubiquitous persistent organic pollutants (POPs) can accumulate in humans where they might influence differentiation of adipocytes. The aim of this study was to investigate whether DNA methylation is one of the underlying mechanisms by which POPs affect adipocyte differentiation, and to what extent DNA methylation can be related to gene transcription. Adipocyte differentiation was induced in two human cell models with continuous exposure to different POPs throughout differentiation. From the seven tested POPs, perfluorooctanesulfonic acid (PFOS) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) decreased lipid accumulation, while tributyltin (TBT) increased lipid accumulation. In human mesenchymal stem cells (hMSCs), TCDD and TBT induced opposite gene expression profiles, whereas after PFOS exposure gene expression remained relatively stable. Genome-wide DNA methylation analysis showed that all three POPs affected DNA methylation patterns in adipogenic and other genes, possibly related to the phenotypic outcome, but without concomitant gene expression changes. Differential methylation was predominantly detected in intergenic regions, where the biological relevance of alterations in DNA methylation is unclear. This study demonstrates that POPs, at environmentally relevant levels, are able to induce differential DNA methylation in human differentiating adipocytes. Copyright © 2017 Wageningen University. Published by Elsevier Ltd.. All rights reserved.

  18. ATM Regulates Adipocyte Differentiation and Contributes to Glucose Homeostasis.

    PubMed

    Takagi, Masatoshi; Uno, Hatsume; Nishi, Rina; Sugimoto, Masataka; Hasegawa, Setsuko; Piao, Jinhua; Ihara, Norimasa; Kanai, Sayaka; Kakei, Saori; Tamura, Yoshifumi; Suganami, Takayoshi; Kamei, Yasutomi; Shimizu, Toshiaki; Yasuda, Akio; Ogawa, Yoshihiro; Mizutani, Shuki

    2015-02-11

    Ataxia-telangiectasia (A-T) patients occasionally develop diabetes mellitus. However, only limited attempts have been made to gain insight into the molecular mechanism of diabetes mellitus development in A-T patients. We found that Atm -/- mice were insulin resistant and possessed less subcutaneous adipose tissue as well as a lower level of serum adiponectin than Atm +/+ mice. Furthermore, in vitro studies revealed impaired adipocyte differentiation in Atm -/- cells caused by the lack of induction of C/EBPα and PPARγ, crucial transcription factors involved in adipocyte differentiation. Interestingly, ATM was activated by stimuli that induced differentiation, and the binding of ATM to C/EBPβ and p300 was involved in the transcriptional regulation of C/EBPα and adipocyte differentiation. Thus, our study sheds light on the poorly understood role of ATM in the pathogenesis of glucose intolerance in A-T patients and provides insight into the role of ATM in glucose metabolism. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Regulation of proliferation and differentiation of adipocyte precursor cells in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Bouraoui, L; Gutiérrez, J; Navarro, I

    2008-09-01

    Here, we describe optimal conditions for the culture of rainbow trout (Oncorhynchus mykiss) pre-adipocytes obtained from adipose tissue and their differentiation into mature adipocytes, in order to study the endocrine control of adipogenesis. Pre-adipocytes were isolated by collagenase digestion and cultured on laminin or 1% gelatin substrate. The expression of proliferating cell nuclear antigen was used as a marker of cell proliferation on various days of culture. Insulin growth factor-I stimulated cell proliferation especially on days 5 and 7 of culture. Tumor necrosis factor alpha (TNFalpha) slightly enhanced cell proliferation only at a low dose. We verified the differentiation of cells grown in specific medium into mature adipocytes by oil red O (ORO) staining. Quantification of ORO showed an increase in triglycerides throughout culture. Immunofluorescence staining of cells at day 11 revealed the expression of CCAAT/enhancer-binding protein and peroxisome proliferator-activator receptor gamma, suggesting that these transcriptional factors are involved in adipocyte differentiation in trout. We also examined the effect of TNFalpha on the differentiation of these adipocytes in primary culture. TNFalpha inhibited the differentiation of these cells, as indicated by a decrease in glycerol-3-phosphate dehydrogenase activity, an established marker of adipocyte differentiation. In conclusion, the culture system described here for trout pre-adipocytes is a powerful tool to study the endocrine regulation of adipogenesis in this species.

  20. Effects of parabens on adipocyte differentiation.

    PubMed

    Hu, Pan; Chen, Xin; Whitener, Rick J; Boder, Eric T; Jones, Jeremy O; Porollo, Aleksey; Chen, Jiangang; Zhao, Ling

    2013-01-01

    Parabens are a group of alkyl esters of p-hydroxybenzoic acid that include methylparaben, ethylparaben, propylparaben, butylparaben, and benzylparaben. Paraben esters and their salts are widely used as preservatives in cosmetics, toiletries, food, and pharmaceuticals. Humans are exposed to parabens through the use of such products from dermal contact, ingestion, and inhalation. However, research on the effects of parabens on health is limited, and the effects of parabens on adipogenesis have not been systematically studied. Here, we report that (1) parabens promote adipogenesis (or adipocyte differentiation) in murine 3T3-L1 cells, as revealed by adipocyte morphology, lipid accumulation, and mRNA expression of adipocyte-specific markers; (2) the adipogenic potency of parabens is increased with increasing length of the linear alkyl chain in the following potency ranking order: methyl- < ethyl- < propyl- < butylparaben. The extension of the linear alkyl chain with an aromatic ring in benzylparaben further augments the adipogenic ability, whereas 4-hydroxybenzoic acid, the common metabolite of all parabens, and the structurally related benzoic acid (without the OH group) are inactive in promoting 3T3-L1 adipocyte differentiation; (3) parabens activate glucocorticoid receptor and/or peroxisome proliferator-activated receptor γ in 3T3-L1 preadipocytes; however, no direct binding to, or modulation of, the ligand binding domain of the glucocorticoid receptor by parabens was detected by glucocorticoid receptor competitor assays; and lastly, (4) parabens, butyl- and benzylparaben in particular, also promote adipose conversion of human adipose-derived multipotent stromal cells. Our results suggest that parabens may contribute to obesity epidemic, and the role of parabens in adipogenesis in vivo needs to be examined further.

  1. Cineromycin B isolated from Streptomyces cinerochromogenes inhibits adipocyte differentiation of 3T3-L1 cells via Krüppel-like factors 2 and 3.

    PubMed

    Matsuo, Hirotaka; Kondo, Yoshiyuki; Kawasaki, Takashi; Imamura, Nobutaka

    2015-08-15

    3T3-L1 cells are preadipocytes and often used as a model for cellular differentiation to adipocytes; however, the mechanism of this differentiation is not completely understood even in these model cells. In this study, we sought to identify a unique anti-adipogenesis agent from microorganisms and to examine its mechanism of action to gain knowledge and create a tool and/or seed compound for anti-obesity drug discovery research. Screening for anti-adipogenesis agents from microorganisms was performed using a 3T3-L1 cell differentiation system, and an active compound was isolated. The inhibitory mechanism of the compound was investigated by measuring the expression of key regulators using quantitative real-time PCR and Western blot analysis. The compound with anti-adipogenic activity in 3T3-L1 cells was identified as cineromycin B. Cineromycin B at 50 μg/mL suppressed intracellular lipid accumulation and the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha (C/EBPα), which are master regulators of adipocyte differentiation. Further investigations showed that cineromycin B increased significantly the mRNA expression of two negative regulators of adipocyte differentiation, Krüppel-like factor (KLF) 2 and KLF3, at an early stage of the differentiation. The results of siRNA transfection experiments indicated that cineromycin B is a unique adipocyte differentiation inhibitor, acting mainly via upregulation of KLF2 and KLF3, and these KLFs may play a role in the early stage of differentiation. Cineromycin B inhibited adipocyte differentiation in 3T3-L1 cells mainly via upregulation of KLF2 and KLF3 mRNA expression at an early stage of the differentiation. Copyright © 2015. Published by Elsevier Inc.

  2. Diabetic human adipose tissue-derived mesenchymal stem cells fail to differentiate in functional adipocytes.

    PubMed

    Barbagallo, Ignazio; Li Volti, Giovanni; Galvano, Fabio; Tettamanti, Guido; Pluchinotta, Francesca R; Bergante, Sonia; Vanella, Luca

    2017-05-01

    Adipose tissue dysfunction represents a hallmark of diabetic patients and is a consequence of the altered homeostasis of this tissue. Mesenchymal stem cells (MSCs) and their differentiation into adipocytes contribute significantly in maintaining the mass and function of adult adipose tissue. The aim of this study was to evaluate the differentiation of MSCs from patients suffering type 2 diabetes (dASC) and how such process results in hyperplasia or rather a stop of adipocyte turnover resulting in hypertrophy of mature adipocytes. Our results showed that gene profile of all adipogenic markers is not expressed in diabetic cells after differentiation indicating that diabetic cells fail to differentiate into adipocytes. Interestingly, delta like 1, peroxisome proliferator-activated receptor alpha, and interleukin 1β were upregulated whereas Sirtuin 1 and insulin receptor substrate 1 gene expression were found downregulated in dASC compared to cells obtained from healthy subjects. Taken together our data indicate that dASC lose their ability to differentiate into mature and functional adipocytes. In conclusion, our in vitro study is the first to suggest that diabetic patients might develop obesity through a hypertrophy of existing mature adipocytes due to failure turnover of adipose tissue. Impact statement In the present manuscript, we evaluated the differentiative potential of mesenchymal stem cells (MSCs) in adipocytes obtained from healthy and diabetic patients. This finding could be of great potential interest for the field of obesity in order to exploit such results to further understand the pathophysiological processes underlying metabolic syndrome. In particular, inflammation in diabetic patients causes a dysfunction in MSCs differentiation and a decrease in adipocytes turnover leading to insulin resistance.

  3. Soluble soy protein peptic hydrolysate stimulates adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Goto, Tsuyoshi; Mori, Ayaka; Nagaoka, Satoshi

    2013-08-01

    The molecular mechanisms underlying the potential health benefit effects of soybean proteins on obesity-associated metabolic disorders have not been fully clarified. In this study, we investigated the effects of soluble soybean protein peptic hydrolysate (SPH) on adipocyte differentiation by using 3T3-L1 murine preadipocytes. The addition of SPH increased lipid accumulation during adipocyte differentiation. SPH increased the mRNA expression levels of an adipogenic marker gene and decreased that of a preadipocyte marker gene, suggesting that SPH promotes adipocyte differentiation. SPH induced antidiabetic and antiatherogenic adiponectin mRNA expression and secretion. Moreover, SPH increased the mRNA expression levels of insulin-responsive glucose transporter 4 and insulin-stimulated glucose uptake. The expression levels of peroxisome proliferator-activated receptor γ (PPARγ), a key regulator of adipocyte differentiation, during adipocyte differentiation were up-regulated in 3T3-L1 cells treated with SPH, and lipid accumulation during adipocyte differentiation induced by SPH was inhibited in the presence of a PPARγ antagonist. However, SPH did not exhibit PPARγ ligand activity. These findings indicate that SPH stimulates adipocyte differentiation, at least in part, via the up-regulation of PPARγ expression levels. These effects of SPH might be important for the health benefit effects of soybean proteins on obesity-associated metabolic disorders. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Clozapine modifies the differentiation program of human adipocytes inducing browning.

    PubMed

    Kristóf, E; Doan-Xuan, Q-M; Sárvári, A K; Klusóczki, Á; Fischer-Posovszky, P; Wabitsch, M; Bacso, Z; Bai, P; Balajthy, Z; Fésüs, L

    2016-11-29

    Administration of second-generation antipsychotic drugs (SGAs) often leads to weight gain and consequent cardio-metabolic side effects. We observed that clozapine but not six other antipsychotic drugs reprogrammed the gene expression pattern of differentiating human adipocytes ex vivo, leading to an elevated expression of the browning marker gene UCP1, more and smaller lipid droplets and more mitochondrial DNA than in the untreated white adipocytes. Laser scanning cytometry showed that up to 40% of the differentiating single primary and Simpson-Golabi-Behmel syndrome (SGBS) adipocytes had the characteristic morphological features of browning cells. Furthermore, clozapine significantly upregulated ELOVL3, CIDEA, CYC1, PGC1A and TBX1 genes but not ZIC1 suggesting induction of the beige-like and not the classical brown phenotype. When we tested whether browning induced by clozapine can be explained by its known pharmacological effect of antagonizing serotonin (5HT) receptors, it was found that browning cells expressed 5HT receptors 2A, 1D, 7 and the upregulation of browning markers was diminished in the presence of exogenous 5HT. Undifferentiated progenitors or completely differentiated beige or white adipocytes did not respond to clozapine administration. The clozapine-induced beige cells displayed increased basal and oligomycin-inhibited (proton leak) oxygen consumption, but these cells showed a lower response to cAMP stimulus as compared with control beige adipocytes indicating that they are less capable to respond to natural thermogenic anti-obesity cues. Our data altogether suggest that novel pharmacological stimulation of these masked beige adipocytes can be a future therapeutic target for the treatment of SGA-induced weight gain.

  5. Clozapine modifies the differentiation program of human adipocytes inducing browning

    PubMed Central

    Kristóf, E; Doan-Xuan, Q-M; Sárvári, A K; Klusóczki, Á; Fischer-Posovszky, P; Wabitsch, M; Bacso, Z; Bai, P; Balajthy, Z; Fésüs, L

    2016-01-01

    Administration of second-generation antipsychotic drugs (SGAs) often leads to weight gain and consequent cardio-metabolic side effects. We observed that clozapine but not six other antipsychotic drugs reprogrammed the gene expression pattern of differentiating human adipocytes ex vivo, leading to an elevated expression of the browning marker gene UCP1, more and smaller lipid droplets and more mitochondrial DNA than in the untreated white adipocytes. Laser scanning cytometry showed that up to 40% of the differentiating single primary and Simpson–Golabi–Behmel syndrome (SGBS) adipocytes had the characteristic morphological features of browning cells. Furthermore, clozapine significantly upregulated ELOVL3, CIDEA, CYC1, PGC1A and TBX1 genes but not ZIC1 suggesting induction of the beige-like and not the classical brown phenotype. When we tested whether browning induced by clozapine can be explained by its known pharmacological effect of antagonizing serotonin (5HT) receptors, it was found that browning cells expressed 5HT receptors 2A, 1D, 7 and the upregulation of browning markers was diminished in the presence of exogenous 5HT. Undifferentiated progenitors or completely differentiated beige or white adipocytes did not respond to clozapine administration. The clozapine-induced beige cells displayed increased basal and oligomycin-inhibited (proton leak) oxygen consumption, but these cells showed a lower response to cAMP stimulus as compared with control beige adipocytes indicating that they are less capable to respond to natural thermogenic anti-obesity cues. Our data altogether suggest that novel pharmacological stimulation of these masked beige adipocytes can be a future therapeutic target for the treatment of SGA-induced weight gain. PMID:27898069

  6. Ursodeoxycholic Acid but Not Tauroursodeoxycholic Acid Inhibits Proliferation and Differentiation of Human Subcutaneous Adipocytes

    PubMed Central

    Mališová, Lucia; Kováčová, Zuzana; Koc, Michal; Kračmerová, Jana; Štich, Vladimír; Rossmeislová, Lenka

    2013-01-01

    Stress of endoplasmic reticulum (ERS) is one of the molecular triggers of adipocyte dysfunction and chronic low inflammation accompanying obesity. ERS can be alleviated by chemical chaperones from the family of bile acids (BAs). Thus, two BAs currently used to treat cholestasis, ursodeoxycholic and tauroursodeoxycholic acid (UDCA and TUDCA), could potentially lessen adverse metabolic effects of obesity. Nevertheless, BAs effects on human adipose cells are mostly unknown. They could regulate gene expression through pathways different from their chaperone function, namely through activation of farnesoid X receptor (FXR) and TGR5, G-coupled receptor. Therefore, this study aimed to analyze effects of UDCA and TUDCA on human preadipocytes and differentiated adipocytes derived from paired samples of two distinct subcutaneous adipose tissue depots, abdominal and gluteal. While TUDCA did not alter proliferation of cells from either depot, UDCA exerted strong anti-proliferative effect. In differentiated adipocytes, acute exposition to neither TUDCA nor UDCA was able to reduce effect of ERS stressor tunicamycin. However, exposure of cells to UDCA during whole differentiation process decreased expression of ERS markers. At the same time however, UDCA profoundly inhibited adipogenic conversion of cells. UDCA abolished expression of PPARγ and lipogenic enzymes already in the early phases of adipogenesis. This anti-adipogenic effect of UDCA was not dependent on FXR or TGR5 activation, but could be related to ability of UDCA to sustain the activation of ERK1/2 previously linked with PPARγ inactivation. Finally, neither BAs did lower expression of chemokines inducible by TLR4 pathway, when UDCA enhanced their expression in gluteal adipocytes. Therefore while TUDCA has neutral effect on human preadipocytes and adipocytes, the therapeutic use of UDCA different from treating cholestatic diseases should be considered with caution because UDCA alters functions of human adipose cells

  7. Proliferation and differentiation of brown adipocytes from interstitial cells during cold acclimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukowiecki, L.J.; Geloeen, A.; Collet, A.J.

    1986-06-01

    The mechanisms of brown adipocyte proliferation and differentiation during cold acclimation (and/or adaptation to hyperphagia) have been studied by quantitative photonic radioautography. (/sup 3/H)thymidine was injected to warm-acclimated (25/sup 0/C) rats and to animals exposed to 5/sup 0/C for 2 days. Samples of interscapular brown adipose tissue were collected for quantitative analysis of mitotic frequencies at various periods of time (4 h-15 days) after the injection of (/sup 3/H)thymidine, the rats being maintained at the temperatures to which they were initially exposed. It was found that cold exposure for 2 days markedly enhanced mitotic activity in endothelial cells, interstitial cells,more » and brown preadipocytes rather than in fully differentiated brown adipocytes. The total tissue labeling index (percent of labeled nuclei) increased approx.70 times over control values. The authors now report that cellular labeling progressively increased in mature brown adipocytes during cold acclimation, whereas it correspondingly decreased in interstitial cells and brown preadipocytes. This indicates that the sequence of events for cellular differentiation is interstitial cells ..-->.. brown preadipocytes ..-->.. mature brown adipocytes. Remarkable, labeling frequency did not change in endothelial cells during cold acclimation demonstrating that these cells cannot be considered as progenitors of brown adipocytes. It is suggested that brown adipocyte proliferation and differentiation from interstitial cells represent the fundamental phenomena explaining the enhanced capacity of cold-acclimated and/or hyperphagic rats to respond calorigenically to catecholamines.« less

  8. Tyrphostin AG17 inhibits adipocyte differentiation in vivo and in vitro.

    PubMed

    Camacho, Alberto; Segoviano-Ramírez, Juan Carlos; Sánchez-Garcia, Adriana; de Jesus Herrera-de la Rosa, Jose; García-Juarez, Jaime; Hernandez-Puente, Carlos Alberto; Calvo-Anguiano, Geovana; Maltos-Uro, Sergio Rodolfo; Olguin, Alejandra; Gojon-Romanillos, Gabriel; Gojon-Zorrilla, Gabriel; Ortiz-Lopez, Rocio

    2018-05-29

    Excessive subcutaneous adiposity in obesity is associated to positive white adipocyte tissue (WAT) differentiation (adipogenesis) and WAT expandability. Here, we hypothesized that supplementation with the insulin inhibitor and mitochondrial uncoupler, Tyrphostin (T-AG17), in vitro and in vivo inhibits adipogenesis and adipocyte hypertrophy. We used a 3T3-L1 proadipocyte cell line to identify the potential effect of T-AG17 on adipocyte differentiation and fat accumulation in vitro. We evaluated the safety of T-AG17 and its effects on physiological and molecular metabolic parameters including hormonal profile, glucose levels, adipogenesis and adipocyte hypertrophy in a diet-induced obesity model using C57BL/6 mice. We found that T-AG17 is effective in preventing adipogenesis and lipid synthesis in the 3T3-L1 cell line, as evidenced by a significant decrease in oil red staining (p < 0.05). In obese C57BL/6 mice, oral administration of T-AG17 (0.175 mg/kg for 2 weeks) lead to decreased fat accumulation and WAT hypertrophy. Further, T-AG17 induced adipocyte apoptosis by activating caspase-3. In the hepatocytes of obese mice, T-AG17 promoted an increase in the size of lipid inclusions, which was accompanied by glycogen accumulation. T-AG17 did not alter serum biochemistry, including glucose, insulin, leptin, free fatty acids, creatinine, and aspartate aminotransferase. T-AG17 promotes adipocyte apoptosis in vivo and is an effective modulator of adipocyte differentiation and WAT hypertrophy in vitro and in vivo. Therefore, T-AG17 may be useful as a pharmacological obesity treatment.

  9. Small Molecule-Induced Complement Factor D (Adipsin) Promotes Lipid Accumulation and Adipocyte Differentiation

    PubMed Central

    Jang, Byung-Hyun; Chang, Seo-Hyuk; Yun, Ui Jeong; Park, Ki-Moon; Waki, Hironori; Li, Dean Y.; Tontonoz, Peter; Park, Kye Won

    2016-01-01

    Adipocytes are differentiated by various transcriptional cascades integrated on the master regulator, Pparγ. To discover new genes involved in adipocyte differentiation, preadipocytes were treated with three newly identified pro-adipogenic small molecules and GW7845 (a Pparγ agonist) for 24 hours and transcriptional profiling was analyzed. Four genes, Peroxisome proliferator-activated receptor γ (Pparγ), human complement factor D homolog (Cfd), Chemokine (C-C motif) ligand 9 (Ccl9), and GIPC PDZ Domain Containing Family Member 2 (Gipc2) were induced by at least two different small molecules but not by GW7845. Cfd and Ccl9 expressions were specific to adipocytes and they were altered in obese mice. Small hairpin RNA (shRNA) mediated knockdown of Cfd in preadipocytes inhibited lipid accumulation and expression of adipocyte markers during adipocyte differentiation. Overexpression of Cfd promoted adipocyte differentiation, increased C3a production, and led to induction of C3a receptor (C3aR) target gene expression. Similarly, treatments with C3a or C3aR agonist (C4494) also promoted adipogenesis. C3aR knockdown suppressed adipogenesis and impaired the pro-adipogenic effects of Cfd, further suggesting the necessity for C3aR signaling in Cfd-mediated pro-adipogenic axis. Together, these data show the action of Cfd in adipogenesis and underscore the application of small molecules to identify genes in adipocytes. PMID:27611793

  10. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3more » in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3

  11. PPARγ ligand production is tightly linked to clonal expansion during initiation of adipocyte differentiation[S

    PubMed Central

    Hallenborg, Philip; Petersen, Rasmus Koefoed; Feddersen, Søren; Sundekilde, Ulrik; Hansen, Jacob B.; Blagoev, Blagoy; Madsen, Lise; Kristiansen, Karsten

    2014-01-01

    Adipocyte differentiation is orchestrated by the ligand-activated nuclear receptor PPARγ. Endogenous ligands comprise oxidized derivatives of arachidonic acid and structurally similar PUFAs. Although expression of PPARγ peaks in mature adipocytes, ligands are produced primarily at the onset of differentiation. Concomitant with agonist production, murine fibroblasts undergo two rounds of mitosis referred to as mitotic clonal expansion. Here we show that mouse embryonic fibroblasts deficient in either of two cell cycle inhibitors, the transcription factor p53 or its target gene encoding the cyclin-dependent kinase inhibitor p21, exhibit increased adipogenic potential. The antiadipogenic effect of p53 relied on its transcriptional activity and p21 expression but was circumvented by administration of an exogenous PPARγ agonist suggesting a linkage between cell cycling and PPARγ ligand production. Indeed, cell cycle inhibitory compounds decreased PPARγ ligand production in differentiating 3T3-L1 preadipocytes. Furthermore, these inhibitors abolished the release of arachidonic acid induced by the hormonal cocktail initiating adipogenesis. Collectively, our results suggest that murine fibroblasts require clonal expansion for PPARγ ligand production at the onset of adipocyte differentiation. PMID:25312885

  12. Citrus aurantium L. dry extracts promote C/ebpβ expression and improve adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Raciti, Gregory Alexander; Fiory, Francesca; Campitelli, Michele; Desiderio, Antonella; Spinelli, Rosa; Longo, Michele; Nigro, Cecilia; Pepe, Giacomo; Sommella, Eduardo; Campiglia, Pietro; Formisano, Pietro; Beguinot, Francesco; Miele, Claudia

    2018-01-01

    Metabolic and/or endocrine dysfunction of the white adipose tissue (WAT) contribute to the development of metabolic disorders, such as Type 2 Diabetes (T2D). Therefore, the identification of products able to improve adipose tissue function represents a valuable strategy for the prevention and/or treatment of T2D. In the current study, we investigated the potential effects of dry extracts obtained from Citrus aurantium L. fruit juice (CAde) on the regulation of 3T3-L1 cells adipocyte differentiation and function in vitro. We found that CAde enhances terminal adipocyte differentiation of 3T3-L1 cells raising the expression of CCAAT/enhancer binding protein beta (C/Ebpβ), peroxisome proliferator activated receptor gamma (Pparγ), glucose transporter type 4 (Glut4) and fatty acid binding protein 4 (Fabp4). CAde improves insulin-induced glucose uptake of 3T3-L1 adipocytes, as well. A focused analysis of the phases occurring in the pre-adipocytes differentiation to mature adipocytes furthermore revealed that CAde promotes the early differentiation stage by up-regulating C/ebpβ expression at 2, 4 and 8 h post the adipogenic induction and anticipating the 3T3-L1 cell cycle entry and progression during mitotic clonal expansion (MCE). These findings provide evidence that the exposure to CAde enhances in vitro fat cell differentiation of pre-adipocytes and functional capacity of mature adipocytes, and pave the way to the development of products derived from Citrus aurantium L. fruit juice, which may improve WAT functional capacity and may be effective for the prevention and/or treatment of T2D.

  13. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha

    2008-02-15

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPAR{gamma} agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA andmore » protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPAR{gamma}-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake.« less

  14. Hydroxyframoside B, a secoiridoid of Fraxinus rhynchophylla, inhibits adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Choi, Kyeong-Mi; Shin, Eunjin; Liu, Qing; Yoo, Hwan-Soo; Kim, Young Choong; Sung, Sang Hyun; Hwang, Bang Yeon; Lee, Mi Kyeong

    2011-07-01

    Fraxinus rhynchophylla showed significant inhibitory activity on adipocyte differentiation in the 3T3-L1 preadipocyte cell line as assessed by measuring fat accumulation using Oil Red O staining. Further fractionation led to the isolation of two secoiridoids, oleuropein and hydroxyframoside B. Hydroxyframoside B significantly reduced fat accumulation and triglyceride content in differentiated 3T3-L1 cells without affecting cell viability, whereas oleuropein showed little effect. Further studies with interval treatment demonstrated that hydroxyframoside B exerted inhibitory activity on adipocyte differentiation when treated within 2 days (days 0-2) after differentiation induction. In addition, hydroxyframoside B significantly blocked the induction of adipogenic transcription factors such as C/EBP α, C/EBP β, and PPAR γ. Taken together, these results suggest that hydroxyframoside B inhibited early/middle stage of adipogenic differentiation, in part, via inhibition of C/EBP α, C/EBP β, and PPAR γ-dependent pathways. © Georg Thieme Verlag KG Stuttgart · New York.

  15. miR-199a-3p regulates brown adipocyte differentiation through mTOR signaling pathway.

    PubMed

    Gao, Yao; Cao, Yan; Cui, Xianwei; Wang, Xingyun; Zhou, Yahui; Huang, Fangyan; Wang, Xing; Wen, Juan; Xie, Kaipeng; Xu, Pengfei; Guo, Xirong; You, Lianghui; Ji, Chenbo

    2018-05-10

    Recent discoveries of functional brown adipocytes in mammals illuminates their therapeutic potential for combating obesity and its associated diseases. However, on account of the limited amount and activity in adult humans of brown adipocyte depots, identification of miRNAs and characterization their regulatory roles in human brown adipogenesis are urgently needed. This study focused on the role of microRNA (miR)-199a-3p in human brown adipocyte differentiation and thermogenic capacity. A decreased expression pattern of miR-199a-3p was consistently observed during the differentiation course of brown adipocytes in mice and humans. Conversely, its level was induced during the differentiation course of human white pre-adipocytes derived from visceral fat. miR-199a-3p expression was relatively abundant in interscapular BAT (iBAT) and differentially regulated in the activated and aging BAT in mice. Additionally, miR-199a-3p expression level in human brown adipocytes was observed decreased upon thermogenic activation and increased by aging-related stimuli. Using primary pre-adipocytes, miR-199a-3p over-expression was capable of attenuating lipid accumulation and adipogenic gene expression as well as impairing brown adipocytes' metabolic characteristics as revealed by decreased mitochondrial DNA content and respiration. Suppression of miR-199a-3p by a locked nucleic acid (LNA) modified-anti-miR led to increased differentiation and thermogenesis in human brown adipocytes. By combining target prediction and examination, we identified mechanistic target of rapamycin kinase (mTOR) as a direct target of miR-199a-3p that affected brown adipogenesis and thermogenesis. Our results point to a novel role for miR-199a-3p and its downstream effector mTOR in human brown adipocyte differentiation and maintenance of thermogenic characteristics, which can be manipulated as therapeutic targets against obesity and its related metabolic disorders. Copyright © 2018. Published by Elsevier B.V.

  16. Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Takeshi; Abe, Daigo; Sekiya, Keizo

    2007-06-01

    Nobiletin is a polymethoxylated flavone found in certain citrus fruits. Here we demonstrate that nobiletin enhance differentiation of 3T3-L1 preadipocytes. Nobiletin dose-dependently increased accumulation of lipid droplets in adipocytes. Quantitative RT-PCR analyses indicated that nobiletin increased the expression of genes critical for acquisition of the adipocyte phenotype. Some of them were known peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) targets and PPAR{gamma} itself, however, nobiletin did not exhibit PPAR{gamma} ligand activity. We observed the expression of CCAAT/enhancer binding protein {beta} (C/EBP{beta}), a transcription factor for PPAR{gamma}, was increased by nobiletin. The activation of cAMP-responsive element binding protein (CREB) and extracellular signal-regulatedmore » kinase (ERK), which play important roles in C/EBP{beta} expression were also potentiated by nobiletin. Furthermore, nobiletin stimulated lipolysis in differentiated adipocytes, which is known to be stimulated by cAMP pathway. These results suggested that nobiletin enhanced both differentiation and lipolysis of adipocyte through activation of signaling cascades mediated by cAMP/CREB.« less

  17. The brown adipocyte differentiation pathway in birds: An evolutionary road not taken

    PubMed Central

    Mezentseva, Nadejda V; Kumaratilake, Jaliya S; Newman, Stuart A

    2008-01-01

    Background Thermogenic brown adipose tissue has never been described in birds or other non-mammalian vertebrates. Brown adipocytes in mammals are distinguished from the more common white fat adipocytes by having numerous small lipid droplets rather than a single large one, elevated numbers of mitochondria, and mitochondrial expression of the nuclear gene UCP1, the uncoupler of oxidative phosphorylation responsible for non-shivering thermogenesis. Results We have identified in vitro inductive conditions in which mesenchymal cells isolated from the embryonic chicken limb bud differentiate into avian brown adipocyte-like cells (ABALCs) with the morphological and many of the biochemical properties of terminally differentiated brown adipocytes. Avian, and as we show here, lizard species lack the gene for UCP1, although it is present in amphibian and fish species. While ABALCs are therefore not functional brown adipocytes, they are generated by a developmental pathway virtually identical to brown fat differentiation in mammals: both the common adipogenic transcription factor peroxisome proliferator-activated receptor-γ (PPARγ), and a coactivator of that factor specific to brown fat differentiation in mammals, PGC1α, are elevated in expression, as are mitochondrial volume and DNA. Furthermore, ABALCs induction resulted in strong transcription from a transfected mouse UCP1 promoter. Conclusion These findings strongly suggest that the brown fat differentiation pathway evolved in a common ancestor of birds and mammals and its thermogenicity was lost in the avian lineage, with the degradation of UCP1, after it separated from the mammalian lineage. Since this event occurred no later than the saurian ancestor of birds and lizards, an implication of this is that dinosaurs had neither UCP1 nor canonically thermogenic brown fat. PMID:18426587

  18. MicroRNA-200a regulates adipocyte differentiation in the domestic yak Bos grunniens.

    PubMed

    Zhang, Yongfeng; Wu, Xiaoyun; Liang, Chunnian; Bao, Pengjia; Ding, Xuezhi; Chu, Min; Jia, Congjun; Guo, Xian; Yan, Ping

    2018-04-15

    The domestic yak (Bos grunniens) is a culturally important animal that lives at high altitude and is farmed by Tibetan herders for its meat, milk, and other animal by-products. Within the animal, adipose tissue is an important store and source of energy and is used to maintain adequate body temperature during the extended cold seasons. Exploring the biomolecular role of microRNAs (miRNAs) in the regulation of growth, development, and metabolism of yak adipocytes may provide valuable insights into the physiology of adipogenesis in the yak. This study investigated whether and how miR-200a (a miRNA recently reported to promote adipogenesis in ST2 bone marrow stromal cells) regulates adipocyte differentiation in the yak. Expression levels of miR-200a gradually increased during day 0 to day 8 of adipocyte differentiation, and transfection of adipocytes with miR-200a enhanced lipid accumulation and triglyceride content compared to control (un-transfected) adipocytes. We additionally verified (using qRT-PCR analysis) that miR-200a increased the expression of adipocyte-specific genes involved in lipogenic transcription (PPARγ, ELVOL, and C/EBPα), fatty acid synthesis (ACC, ACS, SCD, and FAS), and fatty acid transport (DGAT, LPL, and FABP4). We also found that transfection of adipocytes with miR-200a resulted in suppression of the levels of noncanonical Wnt signaling transcription factors (Wnt5a, TAK1, and NLK). These results indicate that miRNA-200a plays an important role in promoting yak adipocyte differentiation that may operate via the suppression of noncanonical Wnt signaling. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Impaired preadipocyte differentiation into adipocytes in subcutaneous abdominal adipose of PCOS-like female rhesus monkeys.

    PubMed

    Keller, Erica; Chazenbalk, Gregorio D; Aguilera, Paul; Madrigal, Vanessa; Grogan, Tristan; Elashoff, David; Dumesic, Daniel A; Abbott, David H

    2014-07-01

    Metabolic characteristics of polycystic ovary syndrome women and polycystic ovary syndrome-like, prenatally androgenized (PA) female monkeys worsen with age, with altered adipogenesis of sc abdominal adipose potentially contributing to age-related adverse effects on metabolism. This study examines whether adipocyte morphology and gene expression in sc abdominal adipose differ between late reproductive-aged PA female rhesus monkeys compared with age-matched controls (C). Subcutaneous abdominal adipose of both groups was obtained for histological imaging and mRNA determination of zinc finger protein 423 (Zfp423) as a marker of adipose stem cell commitment to preadipocytes, and CCAAT/enhancer binding protein (C/EBP)α/peroxisome proliferator-activated receptor (PPAR)δ as well as C/EBPα/PPARγ as respective markers of early- and late-stage differentiation of preadipocytes to adipocytes. In all females combined, serum testosterone (T) levels positively correlated with fasting serum levels of total free fatty acid (r(2) = 0.73, P < .002). PA females had a greater population of small adipocytes vs C (P < .001) in the presence of increased Zfp423 (P < .025 vs C females) and decreased C/EBPα (P < .003, vs C females) mRNA expression. Moreover, Zfp423 mRNA expression positively correlated with circulating total free fatty acid levels during iv glucose tolerance testing (P < .004, r(2) = 0.66), whereas C/EBPα mRNA expression negatively correlated with serum T levels (P < .02, r(2) = 0.43). Gene expression of PPARδ and PPARγ were comparable between groups (P = .723 and P = .18, respectively). Early-to-mid gestational T excess in female rhesus monkeys impairs adult preadipocyte differentiation to adipocytes in sc abdominal adipose and may constrain the ability of this adipose depot to safely store fat with age.

  20. Mechanism of Regulation of Adipocyte Numbers in Adult Organisms Through Differentiation and Apoptosis Homeostasis

    PubMed Central

    Bozec, Aline; Hannemann, Nicole

    2016-01-01

    Considering that adipose tissue (AT) is an endocrine organ, it can influence whole body metabolism. Excessive energy storage leads to the dysregulation of adipocytes, which in turn induces abnormal secretion of adipokines, triggering metabolic syndromes such as obesity, dyslipidemia, hyperglycemia, hyperinsulinemia, insulin resistance and type 2 diabetes. Therefore, investigating the molecular mechanisms behind adipocyte dysregulation could help to develop novel therapeutic strategies. Our protocol describes methods for evaluating the molecular mechanism affected by hypoxic conditions of the AT, which correlates with adipocyte apoptosis in adult mice. This protocol describes how to analyze AT in vivo through gene expression profiling as well as histological analysis of adipocyte differentiation, proliferation and apoptosis during hypoxia exposure, ascertained through staining of hypoxic cells or HIF-1α protein. Furthermore, in vitro analysis of adipocyte differentiation and its responses to various stimuli completes the characterization of the molecular pathways behind possible adipocyte dysfunction leading to metabolic syndromes. PMID:27284940

  1. Mechanism of Regulation of Adipocyte Numbers in Adult Organisms Through Differentiation and Apoptosis Homeostasis.

    PubMed

    Bozec, Aline; Hannemann, Nicole

    2016-06-03

    Considering that adipose tissue (AT) is an endocrine organ, it can influence whole body metabolism. Excessive energy storage leads to the dysregulation of adipocytes, which in turn induces abnormal secretion of adipokines, triggering metabolic syndromes such as obesity, dyslipidemia, hyperglycemia, hyperinsulinemia, insulin resistance and type 2 diabetes. Therefore, investigating the molecular mechanisms behind adipocyte dysregulation could help to develop novel therapeutic strategies. Our protocol describes methods for evaluating the molecular mechanism affected by hypoxic conditions of the AT, which correlates with adipocyte apoptosis in adult mice. This protocol describes how to analyze AT in vivo through gene expression profiling as well as histological analysis of adipocyte differentiation, proliferation and apoptosis during hypoxia exposure, ascertained through staining of hypoxic cells or HIF-1α protein. Furthermore, in vitro analysis of adipocyte differentiation and its responses to various stimuli completes the characterization of the molecular pathways behind possible adipocyte dysfunction leading to metabolic syndromes.

  2. Retinoic acid receptor signalling directly regulates osteoblast and adipocyte differentiation from mesenchymal progenitor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, A.C.; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065; Kocovski, P.

    Low and high serum retinol levels are associated with increased fracture risk and poor bone health. We recently showed retinoic acid receptors (RARs) are negative regulators of osteoclastogenesis. Here we show RARs are also negative regulators of osteoblast and adipocyte differentiation. The pan-RAR agonist, all-trans retinoic acid (ATRA), directly inhibited differentiation and mineralisation of early osteoprogenitors and impaired the differentiation of more mature osteoblast populations. In contrast, the pan-RAR antagonist, IRX4310, accelerated differentiation of early osteoprogenitors. These effects predominantly occurred via RARγ and were further enhanced by an RARα agonist or antagonist, respectively. RAR agonists similarly impaired adipogenesis in osteogenicmore » cultures. RAR agonist treatment resulted in significant upregulation of the Wnt antagonist, Sfrp4. This accompanied reduced nuclear and cytosolic β-catenin protein and reduced expression of the Wnt target gene Axin2, suggesting impaired Wnt/β-catenin signalling. To determine the effect of RAR inhibition in post-natal mice, IRX4310 was administered to male mice for 10 days and bones were assessed by µCT. No change to trabecular bone volume was observed, however, radial bone growth was impaired. These studies show RARs directly influence osteoblast and adipocyte formation from mesenchymal cells, and inhibition of RAR signalling in vivo impairs radial bone growth in post-natal mice. - Graphical abstract: Schematic shows RAR ligand regulation of osteoblast differentiation in vitro. RARγ antagonists±RARα antagonists promote osteoblast differentiation. RARγ and RARα agonists alone or in combination block osteoblast differentiation, which correlates with upregulation of Sfrp4, and downregulation of nuclear and cytosolic β-catenin and reduced expression of the Wnt target gene Axin2. Red arrows indicate effects of RAR agonists on mediators of Wnt signalling.« less

  3. Coprinus comatus Cap Inhibits Adipocyte Differentiation via Regulation of PPARγ and Akt Signaling Pathway

    PubMed Central

    Jang, Sun-Hee; Kang, Suk Nam; Jeon, Beong-Sam; Ko, Yeoung-Gyu; Kim, Hong-Duck; Won, Chung-Kil; Kim, Gon-Sup; Cho, Jae-Hyeon

    2014-01-01

    This study assessed the effects of Coprinus comatus cap (CCC) on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ). Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD) and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the Akt pathway in 3T3

  4. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake

    PubMed Central

    Jung, Chang Hwa; Lee, Da-Hye; Ahn, Jiyun; Lee, Hyunjung; Choi, Won Hee; Jang, Young Jin; Ha, Tae-Youl

    2015-01-01

    Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz), a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ) and CCAAT/enhanced binding protein alpha (C/EBPα). Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4) from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1), a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1). The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1. PMID:26083118

  5. γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake.

    PubMed

    Jung, Chang Hwa; Lee, Da-Hye; Ahn, Jiyun; Lee, Hyunjung; Choi, Won Hee; Jang, Young Jin; Ha, Tae-Youl

    2015-06-15

    Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz), a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ) and CCAAT/enhanced binding protein alpha (C/EBPα). Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4) from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1), a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1). The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1.

  6. 5-Hydroxyferulic acid methyl ester isolated from wasabi leaves inhibits 3T3-L1 adipocyte differentiation.

    PubMed

    Misawa, Naoki; Hosoya, Takahiro; Yoshida, Shuhei; Sugimoto, Osamu; Yamada-Kato, Tomoe; Kumazawa, Shigenori

    2018-02-26

    To investigate the compounds present in wasabi leaves (Wasabia japonica Matsumura) that inhibit the adipocyte differentiation, activity-guided fractionation was performed on these leaves. 5-Hydroxyferulic acid methyl ester (1: 5-HFA ester), one of the phenylpropanoids, was isolated from wasabi leaves as a compound that inhibits the adipocyte differentiation. Compound 1 suppressed the intracellular lipid accumulation of 3T3-L1 cells without significant cytotoxicity. Gene expression analysis revealed that 1 suppressed the mRNA expression of 2 master regulators of adipocyte differentiation, PPARγ and C/EBPα. Furthermore, 1 downregulated the expression of adipogenesis-related genes, GLUT4, LPL, SREBP-1c, ACC, and FAS. Protein expression analysis revealed that 1 suppressed PPARγ protein expression. Moreover, to investigate the relationship between the structure and activity of inhibiting the adipocyte differentiation, we synthesized 12 kinds of phenylpropanoid analog. Comparison of the activity among 1 and its analogs suggested that the compound containing the substructure that possess a common functional group at the ortho position such as a catechol group exhibits the activity of inhibiting the adipocyte differentiation. Taken together, our findings suggest that 1 from wasabi leaves inhibits adipocyte differentiation via the downregulation of PPARγ. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Inhibitory effect of leptin on rosiglitazone-induced differentiation of primary adipocytes prepared from TallyHO/Jng mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ki Young; Kim, Joo Young; Sung, Yoon-Young

    2011-03-25

    Research highlights: {yields} In this study, we investigated the effects of leptin on adipocyte differentiation prepared from subcutaneous fat of TallyHo mice. {yields} Leptin inhibited the adipocytes differentiation at physiological concentration via inhibition of PPAR{gamma} expression. {yields} Inhibitors of ERK and STAT1 restored the leptin's inhibitory activity both in vitro and in vivo. -- Abstract: The effects of leptin on rosiglitazone-induced adipocyte differentiation were investigated in the primary adipocytes prepared from subcutaneous fat of TallyHO/Jng (TallyHO) mouse, a recently developed model animal for type 2 diabetes mellitus (T2DM). The treatment of leptin inhibited the rosiglitazone-induced adipocyte differentiation with a decreasedmore » expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) a key adipogenic transcription factor, both in mRNA and protein levels. Leptin (10 nM) was sufficient to inhibit the adipocyte differentiation, which seemed to come from increased expression of leptin receptor genes in the fat of TallyHO mice. The inhibition of adipogenesis by leptin was restored by the treatment of inhibitors for extracellular-signal-regulated kinase (ERK) (PD98059) and signal transducer and activator of transcription-1 (STAT1) (fludarabine). Furthermore, in vivo intraperitoneal administration of PD98059 and fludarabine increased the PPAR{gamma} expression in the subcutaneous fat of TallyHO mice. These data suggest that leptin could inhibit the PPAR{gamma} expression and adipocyte differentiation in its physiological concentration in TallyHO mice.« less

  8. The effects of perfluorinated chemicals on adipocyte differentiation in vitro.

    PubMed

    Watkins, Andrew M; Wood, Carmen R; Lin, Mimi T; Abbott, Barbara D

    2015-01-15

    The 3T3-L1 preadipocyte culture system has been used to examine numerous compounds that influence adipocyte differentiation or function. The perfluoroalkyl acids (PFAAs), used as surfactants in a variety of industrial applications, are of concern as environmental contaminants that are detected worldwide in human serum and animal tissues. This study was designed to evaluate the potential for PFAAs to affect adipocyte differentiation and lipid accumulation using mouse 3T3-L1 cells. Cells were treated with perfluorooctanoic acid (PFOA) (5-100 µM), perfluorononanoic acid (PFNA) (5-100 µM), perfluorooctane sulfonate (PFOS) (50-300 µM), perfluorohexane sulfonate (PFHxS) (40-250 µM), the peroxisome proliferator activated receptor (PPAR) PPARα agonist Wyeth-14,643 (WY-14,643), and the PPARγ agonist rosiglitazone. The PPARγ agonist was included as a positive control as this pathway is critical to adipocyte differentiation. The PPARα agonist was included as the PFAA compounds are known activators of this pathway. Cells were assessed morphometrically and biochemically for number, size, and lipid content. RNA was extracted for qPCR analysis of 13 genes selected for their importance in adipocyte differentiation and lipid metabolism. There was a significant concentration-related increase in cell number and decreased cell size after exposure to PFOA, PFHxS, PFOS, and PFNA. All four PFAA treatments produced a concentration-related decrease in the calculated average area occupied by lipid per cell. However, total triglyceride levels per well increased with a concentration-related trend for all compounds, likely due to the increased cell number. Expression of mRNA for the selected genes was affected by all exposures and the specific impacts depended on the particular compound and concentration. Acox1 and Gapdh were upregulated by all six compounds. The strongest overall effect was a nearly 10-fold induction of Scd1 by PFHxS. The sulfonated PFAAs produced numerous

  9. Experimental Model to Study the Role of Retinoblastoma Gene Product (pRb) for Determination of Adipocyte Differentiation.

    PubMed

    Popov, B V; Shilo, P S; Zhidkova, O V; Zaichik, A M; Petrov, N S

    2015-06-01

    Using stable constitutive expression of retinoblastoma gene product (pRb) in polypotent mesenchymal 10T1/2 cells we obtained stable cell lines hyperexpressing functionally active or inactive mutant pRb. The cells producing active exogenous pRb demonstrated high sensitivity to adipocyte differentiation inductors, whereas production of inactive form of the exogenous protein suppressed adipocyte differentiation. The obtained lines can serve as the experimental model for studying the role of pRb in determination of adipocyte differentiation.

  10. A novel brown adipocyte-enriched long non-coding RNA that is required for brown adipocyte differentiation and sufficient to drive thermogenic gene program in white adipocytes.

    PubMed

    Xiong, Yan; Yue, Feng; Jia, Zhihao; Gao, Yun; Jin, Wen; Hu, Keping; Zhang, Yong; Zhu, Dahai; Yang, Gongshe; Kuang, Shihuan

    2018-04-01

    The thermogenic activities of brown and beige adipocytes can be exploited to reduce energy surplus and counteract obesity. Recent RNA sequencing studies have uncovered a number of long noncoding RNAs (lncRNAs) uniquely expressed in white and brown adipose tissues (WAT and BAT), but whether and how these lncRNAs function in adipogenesis remain largely unknown. Here, we report the identification of a novel brown adipocyte-enriched LncRNA (AK079912), and its nuclear localization, function and regulation. The expression of AK079912 increases during brown preadipocyte differentiation and in response to cold-stimulated browning of white adipocytes. Knockdown of AK079912 inhibits brown preadipocyte differentiation, manifested by reductions in lipid accumulation and down-regulation of adipogenic and BAT-specific genes. Conversely, ectopic expression of AK079912 in white preadipocytes up-regulates the expression of genes involved in thermogenesis. Mechanistically, inhibition of AK079912 reduces mitochondrial copy number and protein levels of mitochondria electron transport chain (ETC) complexes, whereas AK079912 overexpression increases the levels of ETC proteins. Lastly, reporter and pharmacological assays identify Pparγ as an upstream regulator of AK079912. These results provide new insights into the function of non-coding RNAs in brown adipogenesis and regulating browning of white adipocytes. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Early endocrine disruptors exposure acts on 3T3-L1 differentiation and endocrine activity

    PubMed Central

    Boudalia, Sofiane; Belloir, Christine; Miller, Marie-Louise; Canivenc-Lavier, Marie-Chantal

    2017-01-01

    Introduction: Data from last years suggested that early exposure to endocrine disruptors (EDs) can predispose newborns to endocrine dysfunction of adipocytes, obesity, and associated disorders. The implication of EDs at low doses on adipocyte development has been poorly investigated. For instance, vinclozolin (V) is a dicarboximide fungicide widely used in agriculture since the 90's, alone or in mixture with genistein (G), an isoflavonoid from Leguminosae. This study aims to identify the effect of vinclozolin alone or with genistein, on adipose tissue properties using cell culture. Methods: In steroid-free conditions, 3T3-L1 pre-adipocytes were induced to differentiate in the presence of EDs, singularly or in mixtures, for 2 days. DNA and triglyceride (TG) levels were measured on days 0, 2 and 8 of differentiation. Leptin secretion was measured only on the eighth day. Results: We show that low doses of G (25 µM) and V (0.1 µM) inhibit pre-adipocytes differentiation. This inhibition has been represented by a decreasing in DNA content (µg/well) and decreasing in TG accumulation (mg/mL) in 3T3-L1 cells. Nevertheless, V increased the anti-adipogenic properties of G. Conclusion: This study confirms that EDs singularly or in mixtures, introduced during early stages of life, could affect the differentiation and the endocrine activity of adipocytes, and can act as potential factors for obesity. PMID:28752072

  12. CUDC-907 Promotes Bone Marrow Adipocytic Differentiation Through Inhibition of Histone Deacetylase and Regulation of Cell Cycle.

    PubMed

    Ali, Dalia; Alshammari, Hassan; Vishnubalaji, Radhakrishnan; Chalisserry, Elna Paul; Hamam, Rimi; Alfayez, Musaad; Kassem, Moustapha; Aldahmash, Abdullah; Alajez, Nehad M

    2017-03-01

    The role of bone marrow adipocytes (BMAs) in overall energy metabolism and their effects on bone mass are currently areas of intensive investigation. BMAs differentiate from bone marrow stromal cells (BMSCs); however, the molecular mechanisms regulating BMA differentiation are not fully understood. In this study, we investigated the effect of CUDC-907, identified by screening an epigenetic small-molecule library, on adipocytic differentiation of human BMSCs (hBMSCs) and determined its molecular mechanism of action. Human bone marrow stromal cells exposed to CUDC-907 (500 nM) exhibited enhanced adipocytic differentiation (∼2.9-fold increase, P < 0.005) compared with that of control cells. Global gene expression and signaling pathway analyses of differentially expressed genes revealed a strong enrichment of genes involved in adipogenesis, cell cycle, and DNA replication. Chromatin immune precipitation combined with quantitative polymerase chain reaction showed significant increase in H3K9ac epigenetic marker in the promoter regions of AdipoQ, FABP4, PPARγ, KLF15, and CEBPA in CUDC-907-treated hBMSCs. Follow-up experiments corroborated that the inhibition of histone deacetylase (HDAC) activity enhanced adipocytic differentiation, while the inhibition of PI3K decreased adipocytic differentiation. In addition, CUDC-907 arrested hBMSCs in the G0-G1 phase of the cell cycle and reduced the number of S-phase cells. Our data reveal that HDAC, PI3K, and cell cycle genes are important regulators of BMA formation and demonstrate that adipocyte differentiation of hBMSCs is associated with complex changes in a number of epigenetic and genetic pathways, which can be targeted to regulate BMA formation.

  13. Anti-Inflammatory Effect of Spirulina platensis in Macrophages Is Beneficial for Adipocyte Differentiation and Maturation by Inhibiting Nuclear Factor-κB Pathway in 3T3-L1 Adipocytes.

    PubMed

    Pham, Tho X; Lee, Ji-Young

    2016-06-01

    We previously showed that the organic extract of a blue-green alga, Spirulina platensis (SPE), had potent anti-inflammatory effects in macrophages. As the interplay between macrophages and adipocytes is critical for adipocyte functions, we investigated the contribution of the anti-inflammatory effects of SPE in macrophages to adipogenesis/lipogenesis in 3T3-L1 adipocytes. 3T3-L1 preadipocytes were treated with 10% conditioned medium from lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages (CMC) or LPS-stimulated, but SPE-pretreated, macrophages (CMS) at different stages of adipocyte differentiation. The expression of adipocyte differentiation markers, such as CCAAT/enhancer-binding protein α, peroxisome proliferator-activated receptor γ, and perilipin, was significantly repressed by CMC when added on day 3, while the repression was attenuated by CMS. Oil Red O staining confirmed that adipocyte maturation in CMS-treated cells, but not in CMC-treated cells, was equivalent to that of control cells. Nuclear translocation of nuclear factor κB (NF-κB) p65 was decreased by CMS compared to CMC. In lipid-laden adipocytes, CMC promoted the loss of lipid droplets, while CMS had minimal effects. Histone deacetylase 9 mRNA and protein levels were increased during adipocyte maturation, which were decreased by CMC. In conclusion, by cross-talking with adipocytes, the anti-inflammatory effects of SPE in macrophages promoted adipocyte differentiation/maturation, at least in part, by repressing the activation of NF-κB inflammatory pathways, which otherwise can be compromised in inflammatory conditions.

  14. Osteopontin-deficient progenitor cells display enhanced differentiation to adipocytes.

    PubMed

    Moreno-Viedma, Veronica; Tardelli, Matteo; Zeyda, Maximilian; Sibilia, Maria; Burks, J Deborah; Stulnig, Thomas M

    2018-03-06

    Osteopontin (OPN, Spp1) is a protein upregulated in white adipose tissue (WAT) of obese subjects. Deletion of OPN protects mice from high-fat diet-induced WAT inflammation and insulin resistance. However, the alterations mediated by loss of OPN in WAT before the obesogenic challenge have not yet been investigated. Therefore, we hypothesised that the lack of OPN might enhance the pro-adipogenic micro environment before obesity driven inflammation. OPN deficiency was tested in visceral (V) and subcutaneous (SC) WAT from WT and Spp1 -/- female mice. Gene expression for hypoxia, inflammation and adipogenesis was checked in WT vs. Spp1 -/- mice (n=15). Adipocytes progenitor cells (APC) were isolated by fluorescence cell sorting and role of OPN deficiency in adipogenesis was investigated by cell images and RT-PCR. We show that Spp1 -/- maintained normal body and fat-pad weights, although hypoxia and inflammation markers were significantly reduced. In contrast, expression of genes involved in adipogenesis was increased in WAT from Spp1 -/- mice. Strikingly, APC from Spp1 -/- were diminished but differentiated more efficiently to adipocytes than those from control mice. APC from SC-WAT of lean OPN-deficient mice display an enhanced capacity for differentiating to adipocytes. These alterations may explain the healthy expansion of WAT in the OPN-deficient model which is associated with reduced inflammation and insulin resistance. Copyright © 2018. Published by Elsevier Ltd.

  15. Romidepsin Promotes Osteogenic and Adipocytic Differentiation of Human Mesenchymal Stem Cells through Inhibition of Histondeacetylase Activity

    PubMed Central

    Ali, Dalia; Manikandan, Muthurangan; Hamam, Rimi; Alfayez, Musaad; Aldahmash, Abdullah

    2018-01-01

    Bone marrow mesenchymal stem cells (BMSCs) are adult multipotent stem cells that can differentiate into mesodermal lineage cells, including adipocytes and osteoblasts. However, the epigenetic mechanisms governing the lineage-specific commitment of BMSCs into adipocytes or osteoblasts are under investigation. Herein, we investigated the epigenetic effect of romidepsin, a small molecule dual inhibitor targeting HDAC1 and HDAC2 identified through an epigenetic library functional screen. BMSCs exposed to romidepsin (5 nM) exhibited enhanced adipocytic and osteoblastic differentiation. Global gene expression and signaling pathway analyses of differentially expressed genes revealed a strong enrichment of genes involved in adipogenesis and osteogenesis in romidepsin-treated BMSCs during induction into adipocytes or osteoblasts, respectively. Pharmacological inhibition of FAK signaling during adipogenesis or inhibition of FAK or TGFβ signaling during osteogenesis diminished the biological effects of romidepsin on BMSCs. The results of chromatin immunoprecipitation combined with quantitative polymerase chain reaction indicated a significant increase in H3K9Ac epigenetic markers in the promoter regions of peroxisome proliferator-activated receptor gamma (PPARγ) and KLF15 (related to adipogenesis) or SP7 (Osterix) and alkaline phosphatase (ALP) (related to osteogenesis) in romidepsin-treated BMSCs. Our data indicated that romidepsin is a novel in vitro modulator of adipocytic and osteoblastic differentiation of BMSCs. PMID:29731773

  16. Romidepsin Promotes Osteogenic and Adipocytic Differentiation of Human Mesenchymal Stem Cells through Inhibition of Histondeacetylase Activity.

    PubMed

    Ali, Dalia; Chalisserry, Elna P; Manikandan, Muthurangan; Hamam, Rimi; Alfayez, Musaad; Kassem, Moustapha; Aldahmash, Abdullah; Alajez, Nehad M

    2018-01-01

    Bone marrow mesenchymal stem cells (BMSCs) are adult multipotent stem cells that can differentiate into mesodermal lineage cells, including adipocytes and osteoblasts. However, the epigenetic mechanisms governing the lineage-specific commitment of BMSCs into adipocytes or osteoblasts are under investigation. Herein, we investigated the epigenetic effect of romidepsin, a small molecule dual inhibitor targeting HDAC1 and HDAC2 identified through an epigenetic library functional screen. BMSCs exposed to romidepsin (5 nM) exhibited enhanced adipocytic and osteoblastic differentiation. Global gene expression and signaling pathway analyses of differentially expressed genes revealed a strong enrichment of genes involved in adipogenesis and osteogenesis in romidepsin-treated BMSCs during induction into adipocytes or osteoblasts, respectively. Pharmacological inhibition of FAK signaling during adipogenesis or inhibition of FAK or TGF β signaling during osteogenesis diminished the biological effects of romidepsin on BMSCs. The results of chromatin immunoprecipitation combined with quantitative polymerase chain reaction indicated a significant increase in H3K9Ac epigenetic markers in the promoter regions of peroxisome proliferator-activated receptor gamma (PPAR γ ) and KLF15 (related to adipogenesis) or SP7 (Osterix) and alkaline phosphatase (ALP) (related to osteogenesis) in romidepsin-treated BMSCs. Our data indicated that romidepsin is a novel in vitro modulator of adipocytic and osteoblastic differentiation of BMSCs.

  17. Peroxisome Proliferator-Activated Receptor (PPAR) in Regenerative Medicine: Molecular Mechanism for PPAR in Stem Cells' Adipocyte Differentiation.

    PubMed

    Xie, Qiang; Tian, Taoran; Chen, Zhaozhao; Deng, Shuwen; Sun, Ke; Xie, Jing; Cai, Xiaoxiao

    2016-01-01

    Regenerative medicine plays an indispensable role in modern medicine and many trials and researches have therefore been developed to fit our medical needs. Tissue engineering has proven that adipose tissue can widely be used and brings advantages to regenerative medicine. Moreover, a trait of adipose stem cells being isolated and grown in vitro is a cornerstone to various applications. Since the adipose tissue has been widely used in regenerative medicine, numerous studies have been conducted to seek methods for gaining more adipocytes. To investigate molecular mechanism for adipocyte differentiation, peroxisome proliferator-activated receptor (PPAR) has been widely studied to find out its functional mechanism, as a key factor for adipocyte differentiation. However, the precise molecular mechanism is still unknown. This review thus summarizes recent progress on the study of molecular mechanism and role of PPAR in adipocyte differentiation.

  18. Comparative analysis of human UCB and adipose tissue derived mesenchymal stem cells for their differentiation potential into brown and white adipocytes.

    PubMed

    Rashnonejad, Afrooz; Ercan, Gulinnaz; Gunduz, Cumhur; Akdemir, Ali; Tiftikcioglu, Yigit Ozer

    2018-06-01

    The differentiation potential of umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) into brown and white adipocytes in comparison to Adipose tissue derived MSCs (AD-MSCs) were investigated in order to characterize their potency for future cell therapies. MSCs were isolated from ten UCB samples and six liposuction materials. MSCs were differentiated into white and brown adipocytes after characterization by flow cytometry. Differentiated adipocytes were stained with Oil Red O and hematoxylin/eosin. The UCP1 protein levels in brown adipocytes were investigated by immunofluoresence and western blot analysis. Cells that expressed mesenchymal stem cells markers (CD34-, CD45-, CD90+ and CD105+) were successfully isolated from UCB and adipose tissue. Oil Red O staining demonstrated that white and brown adipocytes obtained from AD-MSCs showed 85 and 61% of red pixels, while it was 3 and 1.9%, respectively for white and brown adipocytes obtained from UCB-MSCs. Fluorescence microscopy analysis showed strong uncoupling protein 1 (UCP1) signaling in brown adipocytes, especially which were obtained from AD-MSCs. Quantification of UCP1 protein amount showed 4- and 10.64-fold increase in UCP1 contents of brown adipocytes derived from UCB-MSCs and AD-MSCs, respectively in comparison to undifferentiated MSCs (P < 0.004). UCB-MSCs showed only a little differentiation tendency into adipocytes means it is not an appropriate stem cell type to be differentiated into these cell types. In contrast, high differentiation efficiency of AD-MSCs into brown and white adipocytes make it appropriate stem cell type to use in future regenerative medicine of soft tissue disorders or fighting with obesity and its related disorders.

  19. Nuclear organization during in vitro differentiation of porcine mesenchymal stem cells (MSCs) into adipocytes.

    PubMed

    Stachecka, Joanna; Walczak, Agnieszka; Kociucka, Beata; Ruszczycki, Błażej; Wilczyński, Grzegorz; Szczerbal, Izabela

    2018-02-01

    Differentiation of progenitor cells into adipocytes is accompanied by remarkable changes in cell morphology, cytoskeletal organization, and gene expression profile. Mature adipocytes are filled with a large lipid droplet and the nucleus tends to move to the cell periphery. It was hypothesized that the differentiation process is also associated with changes of nuclear organization. The aim of this study was to determine the number and distribution of selected components of nuclear architecture during porcine in vitro adipogenesis. The pig is an important animal model sharing many similarities to humans at the anatomical, physiological, and genetic levels and has been recognized as a good model for human obesity. Thus, understanding how cellular structures important for fundamental nuclear processes may be altered during adipocyte differentiation is of great importance. Mesenchymal stem cells (MSCs) were derived from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) and were cultured for 7 days in the adipogenic medium. A variable differentiation potential of these cell populations towards adipogenic lineage was observed, and for further study, a comparative characteristic of the nuclear organization in BM-MSCs and AD-MSCs was performed. Nuclear substructures were visualized by indirect immunofluorescence (nucleoli, nuclear speckles, PML bodies, lamins, and HP1α) or fluorescence in situ hybridization (telomeres) on fixed cells at 0, 3, 5, and 7 days of differentiation. Comprehensive characterization of these structures, in terms of their number, size, dynamics, and arrangement in three-dimensional space of the nucleus, was performed. It was found that during differentiation of porcine MSCs into adipocytes, changes of nuclear organization occurred and concerned: (1) the nuclear size and shape; (2) reduced lamin A/C expression; and (3) reorganization of chromocenters. Other elements of nuclear architecture such as nucleoli, SC-35 nuclear speckles, and telomeres

  20. Human milk and infant formula can induce in vitro adipocyte differentiation in murine 3T3-L1 preadipocytes.

    PubMed

    Lyle, R E; Corley, J D; McGehee, R E

    1998-11-01

    The potential of infant diet to influence fat cell development has largely been examined in clinical studies with conflicting results. In this study, the direct effects of two standard infant formulas, Enfamil and Similac, as well as human milk were examined using a well characterized model of adipocyte differentiation, the 3T3-L1 murine preadipocyte cell line. After exposure to a hormonal regimen of insulin, dexamethasone, and 1-methyl-3-isobutylmethylxanthine, these cells undergo a mitotic expansion phase followed by terminal differentiation. On d 4 of hormonal exposure, greater than 95% of 3T3-L1 cells exhibit the morphologic and biochemical characteristics of mature adipocytes. In this study, cells were exposed to control medium, or control medium supplemented with either 10% Enfamil, 10% Similac, 10% human milk (skim or whole), or the standard hormonal regimen. Oil Red O-detectable lipid accumulation, immunocytochemical cell proliferation assays, and activated expression of adipocyte differentiation-specific mRNAs by Northern blot analysis were used to assess the effects of treatment on adipocyte differentiation. Results from each level of assessment revealed that both Enfamil and human milk were as effective as the standard hormonal regimen at stimulating adipocyte differentiation. In contrast, results from treatment with Similac or human skim milk were indistinguishable from control unstimulated cells. This study, demonstrating that Enfamil and human milk are capable of independently inducing in vitro adipocyte differentiation, suggests that diet during infancy could influence body fat development.

  1. CBX7 gene expression plays a negative role in adipocyte cell growth and differentiation

    PubMed Central

    Forzati, Floriana; Federico, Antonella; Pallante, Pierlorenzo; Colamaio, Marianna; Esposito, Francesco; Sepe, Romina; Gargiulo, Sara; Luciano, Antonio; Arra, Claudio; Palma, Giuseppe; Bon, Giulia; Bucher, Stefania; Falcioni, Rita; Brunetti, Arturo; Battista, Sabrina; Fedele, Monica; Fusco, Alfredo

    2014-01-01

    ABSTRACT We have recently generated knockout mice for the Cbx7 gene, coding for a polycomb group protein that is downregulated in human malignant neoplasias. These mice develop liver and lung adenomas and carcinomas, which confirms a tumour suppressor role for CBX7. The CBX7 ability to downregulate CCNE1 expression likely accounts for the phenotype of the Cbx7-null mice. Unexpectedly, Cbx7-knockout mice had a higher fat tissue mass than wild-type, suggesting a role of CBX7 in adipogenesis. Consistently, we demonstrate that Cbx7-null mouse embryonic fibroblasts go towards adipocyte differentiation more efficiently than their wild-type counterparts, and this effect is Cbx7 dose-dependent. Similar results were obtained when Cbx7-null embryonic stem cells were induced to differentiate into adipocytes. Conversely, mouse embryonic fibroblasts and human adipose-derived stem cells overexpressing CBX7 show an opposite behaviour. These findings support a negative role of CBX7 in the control of adipocyte cell growth and differentiation. PMID:25190058

  2. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ninomiya, Yuichi; Sugahara-Yamashita, Yzumi; Nakachi, Yutaka

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time formore » the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.« less

  3. Effects of insulin, triiodothyronine and fat soluble vitamins on adipocyte differentiation and LPL gene expression in the stromal-vascular cells of red sea bream, Pagrus major.

    PubMed

    Oku, Hiromi; Tokuda, Masaharu; Okumura, Takuji; Umino, Tetsuya

    2006-07-01

    Various kinds of hormones including insulin, triiodothyronine (T(3)) and fat-soluble vitamins have been proposed as mediators of adipocyte differentiation in mammals. To investigate the factors which are responsible for fish adipocyte differentiation, we developed a serum-free culture system of stromal-vascular cells of red sea bream adipose tissue and examined the effects of bovine insulin, T(3), and fat-soluble vitamins (all-trans retinoic acid, retinyl acetate and 1,25-dihydroxyvitamin D(3)) on the differentiation-linked expression of the lipoprotein lipase (LPL) gene. As assessed by the increase in LPL gene expression after 3 day cultivation, like in mammalian adipocytes, insulin enhanced the adipocyte differentiation in a concentration-dependent manner. During 2 week cultivation, bovine insulin promoted lipid accumulation in differentiating adipocytes concentration-dependently until the terminal differentiation. These results indicate that the differentiation of fish adipocytes is inducible by insulin alone. T(3) alone had no effect but enhanced the differentiation-linked LPL gene expression in the presence of insulin. Fat-soluble vitamins, unlike in mammalian adipocytes, did not show any significant effects. The method developed in this study should be of interest for the characterization of factors involved in fish adipocyte differentiation.

  4. MicroRNA-24 promotes 3T3-L1 adipocyte differentiation by directly targeting the MAPK7 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Min, E-mail: min_jin@zju.edu.cn; Wu, Yutao; Wang, Jing

    Over the past years, MicroRNAs (miRNAs) act as a vital role in harmony with gene regulation and maintaining cellular homeostasis. It is well testified that miRNAshave been involved in numerous physiological and pathological processes, including embryogenesis, cell fate decision, and cellular differentiation. Adipogenesis is an organized process of cellular differentiation by which pre-adipocytes differentiate towards mature adipocytes, and it is tightly modulated by a series of transcription factors such as peroxisome proliferator-activated receptor γ (PPAR-γ) and sterol regulatory-element binding proteins 1 (SREBP1). However, the molecular mechanisms underlying the connection between miRNAs and adipogenesis-related transcription factors remain obscure. In this study,more » we unveiled that miR- 24 was remarkably upregulated during 3T3-L1 adipogenesis. Overexpression of miR-24 significantly promoted 3T3-L1 adipogenesis, as evidenced by its ability to increase the expression of PPAR-γ and SREBP1, lipid droplet formation and triglyceride (TG) accumulation. Furthermore, we found that neither ectopic expression of miR-24nor miR-24 inhibitor affect cell proliferation and cell cycle progression. Finally, we demonstrated that miR-24 plays the modulational role by directly repressing MAPK7, a key number in the MAPK signaling pathway. These data indicate that miR-24 is a novel positive regulator of adipocyte differentiation by targeting MAPK7, which provides new insights into the molecular mechanism of miRNA-mediated cellular differentiation. -- Highlights: •We firstly found miR-24 was upregulated in 3T3-L1 pre-adipocytes differentiation. •miR-24 promoted 3T3-L1 pre-adipocytes differentiation while silencing the expression of miR-24 had an opposite function. •miR-24 regulated 3T3-L1 differentiation by directly targeting MAPK7 signaling pathway. •miR-24did not affect 3T3-L1 pre-adipocytes cellular proliferation.« less

  5. Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inadera, Hidekuni; Shimomura, Akiko; Tachibana, Shinjiro

    2009-02-20

    Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer-binding protein {delta} expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activatormore » of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator-activator receptor {gamma} expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-{alpha} did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.« less

  6. C-terminus of HSC70-Interacting Protein (CHIP) Inhibits Adipocyte Differentiation via Ubiquitin- and Proteasome-Mediated Degradation of PPARγ

    PubMed Central

    Kim, Jung-Hoon; Shin, Soyeon; Seo, Jinho; Lee, Eun-Woo; Jeong, Manhyung; Lee, Min-sik; Han, Hyun-Ji; Song, Jaewhan

    2017-01-01

    PPARγ (Peroxisome proliferator-activated receptor γ) is a nuclear receptor involved in lipid homeostasis and related metabolic diseases. Acting as a transcription factor, PPARγ is a master regulator for adipocyte differentiation. Here, we reveal that CHIP (C-terminus of HSC70-interacting protein) suppresses adipocyte differentiation by functioning as an E3 ligase of PPARγ. CHIP directly binds to and induces ubiquitylation of the PPARγ protein, leading to proteasome-dependent degradation. Stable overexpression or knockdown of CHIP inhibited or promoted adipogenesis, respectively, in 3T3-L1 cells. On the other hand, a CHIP mutant defective in E3 ligase could neither regulate PPARγ protein levels nor suppress adipogenesis, indicating the importance of CHIP-mediated ubiquitylation of PPARγ in adipocyte differentiation. Lastly, a CHIP null embryo fibroblast exhibited augmented adipocyte differentiation with increases in PPARγ and its target protein levels. In conclusion, CHIP acts as an E3 ligase of PPARγ, suppressing PPARγ-mediated adipogenesis. PMID:28059128

  7. GSK126 alleviates the obesity phenotype by promoting the differentiation of thermogenic beige adipocytes in diet-induced obese mice.

    PubMed

    Wu, Xiaohui; Wang, Yuying; Wang, Yingmei; Wang, Xinli; Li, Jianqiang; Chang, Kaixuan; Sun, Cheng; Jia, Zhen; Gao, Song; Wei, Jiachang; Xu, Jiuhang; Xu, Yuqiao; Li, Qing

    2018-06-18

    A close relationship between epigenetic regulation and obesity has been demonstrated in several recent studies. Histone methyltransferase enhancer of Zeste homolog 2 (Ezh2), which mainly catalyzes trimethylation of histone H3K27 to form H3K27me3 was found to be required for the differentiation of white and brown adipocytes in vitro. Here, we investigated the effects of the Ezh2-specific inhibitor GSK126 in a mouse model of obesity induced by a high-fat diet (HFD). We found that GSK126 treatment reduced body fat, improved glucose tolerance, increased lipolysis and improved cold tolerance in mice by promoting the differentiation of thermogenic beige adipocytes. Moreover, we discovered that GSK126 inhibited the differentiation of white adipocytes, and the decrease of Ezh2 enzymatic activity and H3K27me3 also changed the morphology of brown adipocytes but did not alter the expression of thermogenic genes in these cells. Our results indicated that GSK126 was a novel chemical inducer of beige adipocytes and may be a potential therapeutic agent for the management of obesity. Furthermore, they also prompted that Ezh2 and H3K27me3 play different roles in the differentiation of the white, brown, and beige adipocytes in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Role of fibroblast growth factor receptors (FGFR) and FGFR like-1 (FGFRL1) in mesenchymal stromal cell differentiation to osteoblasts and adipocytes.

    PubMed

    Kähkönen, T E; Ivaska, K K; Jiang, M; Büki, K G; Väänänen, H K; Härkönen, P L

    2018-02-05

    Fibroblast growth factors (FGF) and their receptors (FGFRs) regulate many developmental processes including differentiation of mesenchymal stromal cells (MSC). We developed two MSC lines capable of differentiating to osteoblasts and adipocytes and studied the role of FGFRs in this process. We identified FGFR2 and fibroblast growth factor receptor like-1 (FGFRL1) as possible actors in MSC differentiation with gene microarray and qRT-PCR. FGFR2 and FGFRL1 mRNA expression strongly increased during MSC differentiation to osteoblasts. FGF2 treatment, resulting in downregulation of FGFR2, or silencing FGFR2 expression with siRNAs inhibited osteoblast differentiation. During adipocyte differentiation expression of FGFR1 and FGFRL1 increased and was down-regulated by FGF2. FGFR1 knockdown inhibited adipocyte differentiation. Silencing FGFR2 and FGFR1 in MSCs was associated with decreased FGFRL1 expression in osteoblasts and adipocytes, respectively. Our results suggest that FGFR1 and FGFR2 regulate FGFRL1 expression. FGFRL1 may mediate or modulate FGFR regulation of MSC differentiation together with FGFR2 in osteoblastic and FGFR1 in adipocytic lineage. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Phloretin enhances adipocyte differentiation and adiponectin expression in 3T3-L1 cells.

    PubMed

    Hassan, Meryl; El Yazidi, Claire; Landrier, Jean-François; Lairon, Denis; Margotat, Alain; Amiot, Marie-Josèphe

    2007-09-14

    Adipocyte dysfunction is strongly associated with the development of cardiovascular risk factors and diabetes. It is accepted that the regulation of adipogenesis or adipokines expression, notably adiponectin, is able to prevent these disorders. In this report, we show that phloretin, a dietary flavonoid, enhances 3T3-L1 adipocyte differentiation as evidenced by increased triglyceride accumulation and GPDH activity. At a molecular level, mRNA expression levels of both PPARgamma and C/EBPalpha, the master adipogenic transcription factors, are markedly increased by phloretin. Moreover, mRNA levels of PPARgamma target genes such as LPL, aP2, CD36 and LXRalpha are up-regulated by phloretin. We also show that phloretin enhances the expression and secretion of adiponectin. Co-transfection studies suggest the induction of PPARgamma transcriptional activity as a possible mechanism underlying the phloretin-mediated effects. Taken together, these results suggest that phloretin may be beneficial for reducing insulin resistance through its potency to regulate adipocyte differentiation and function.

  10. Multiple intracellular signaling pathways orchestrate adipocytic differentiation of human bone marrow stromal stem cells.

    PubMed

    Ali, Dalia; Abuelreich, Sarah; Alkeraishan, Nora; Shwish, Najla Bin; Hamam, Rimi; Kassem, Moustapha; Alfayez, Musaad; Aldahmash, Abdullah; Alajez, Nehad M

    2018-02-28

    Bone marrow adipocyte formation plays a role in bone homeostasis and whole body energy metabolism. However, the transcriptional landscape and signaling pathways associated with adipocyte lineage commitment and maturation are not fully delineated. Thus, we performed global gene expression profiling during adipocyte differentiation of human bone marrow stromal (mesenchymal) stem cells (hMSCs) and identified 2,589 up-regulated and 2,583 down-regulated mRNA transcripts. Pathway analysis on the up-regulated gene list untraveled enrichment in multiple signaling pathways including insulin receptor signaling, focal Adhesion, metapathway biotransformation, a number of metabolic pathways e.g. selenium metabolism, Benzo(a)pyrene metabolism, fatty acid, triacylglycerol, ketone body metabolism, tryptophan metabolism, and catalytic cycle of mammalian flavin-containing monooxygenase (FMOs). On the other hand, pathway analysis on the down-regulated genes revealed significant enrichment in pathways related to cell cycle regulation. Based on these data, we assessed the effect of pharmacological inhibition of FAK signaling using PF-573228, PF-562271, and InsR/IGF-1R using NVP-AEW541 and GSK-1904529A on adipocyte differentiation. hMSCs exposed to FAK or IGF-1R/InsR inhibitors exhibited fewer adipocyte formation (27-58% inhibition, P <0005). Concordantly, the expression of adipocyte-specific genes AP2, AdipoQ, and CEBPα was significantly reduced. On the other hand, we did not detect significant effects on cell viability as a result of FAK or IGF-1R/InsR inhibition. Our data identified FAK and insulin signaling as important intracellular signaling pathways relevant to bone marrow adipogenesis. © 2018 The Author(s).

  11. Epigenetic Library Screen Identifies Abexinostat as Novel Regulator of Adipocytic and Osteoblastic Differentiation of Human Skeletal (Mesenchymal) Stem Cells

    PubMed Central

    Ali, Dalia; Hamam, Rimi; Alfayez, Musaed; Kassem, Moustapha; Aldahmash, Abdullah

    2016-01-01

    The epigenetic mechanisms promoting lineage-specific commitment of human skeletal (mesenchymal or stromal) stem cells (hMSCs) into adipocytes or osteoblasts are still not fully understood. Herein, we performed an epigenetic library functional screen and identified several novel compounds, including abexinostat, which promoted adipocytic and osteoblastic differentiation of hMSCs. Using gene expression microarrays, chromatin immunoprecipitation for H3K9Ac combined with high-throughput DNA sequencing (ChIP-seq), and bioinformatics, we identified several key genes involved in regulating stem cell proliferation and differentiation that were targeted by abexinostat. Concordantly, ChIP-quantitative polymerase chain reaction revealed marked increase in H3K9Ac epigenetic mark on the promoter region of AdipoQ, FABP4, PPARγ, KLF15, CEBPA, SP7, and ALPL in abexinostat-treated hMSCs. Pharmacological inhibition of focal adhesion kinase (PF-573228) or insulin-like growth factor-1R/insulin receptor (NVP-AEW51) signaling exhibited significant inhibition of abexinostat-mediated adipocytic differentiation, whereas inhibition of WNT (XAV939) or transforming growth factor-β (SB505124) signaling abrogated abexinostat-mediated osteogenic differentiation of hMSCs. Our findings provide insight into the understanding of the relationship between the epigenetic effect of histone deacetylase inhibitors, transcription factors, and differentiation pathways governing adipocyte and osteoblast differentiation. Manipulating such pathways allows a novel use for epigenetic compounds in hMSC-based therapies and tissue engineering. Significance This unbiased epigenetic library functional screen identified several novel compounds, including abexinostat, that promoted adipocytic and osteoblastic differentiation of human skeletal (mesenchymal or stromal) stem cells (hMSCs). These data provide new insight into the understanding of the relationship between the epigenetic effect of histone deacetylase

  12. Adipocyte differentiation influences the proliferation and migration of normal and tumoral breast epithelial cells.

    PubMed

    Creydt, Virginia Pistone; Sacca, Paula Alejandra; Tesone, Amelia Julieta; Vidal, Luciano; Calvo, Juan Carlos

    2010-01-01

    Stromal tissue regulates the development and differentiation of breast epithelial cells, with adipocytes being the main stromal cell type. The aim of the present study was to evaluate the effect of adipocyte differentiation on proliferation and migration, as well as to assess the activity of heparanase and metalloproteinase-9 (MMP-9), in normal (NMuMG) and tumoral (LM3) murine breast epithelial cells. NMuMG and LM3 cells were grown on irradiated 3T3-L1 cells (stromal support, SS) at various degrees of differentiation [preadipocytes (preA), poorly differentiated adipocytes (pDA) and mature adipocytes (MA)] and/or were incubated in the presence of conditioned medium (CM) derived from each of these three types of differentiated cells. Cells grown on a plastic support or in fresh medium served as the controls. Cell proliferation was measured with a commercial colorimetric kit, and the motility of the epithelial cells was evaluated by means of a wound-healing assay. Heparanase activity was assessed by quantifying heparin degradation, and the expression of MMP-9 was determined using Western blotting. The results indicate that cell proliferation was increased after 24 and 48 h in the NMuMG and LM3 cells grown on preA, pDA and MA SS. In the NMuMG cells cultured on SS in the presence of all three types of CM, proliferation was enhanced. LM3 cell migration was increased in the presence of all three types of CM and in cells grown on preA SS. Heparanase activity was increased in the NMuMG cells incubated with all three types of CM, and in the LM3 cells incubated with the CM from pDA and MA. Both the NMuMG and LM3 cell lines presented basal expression of MMP-9; however, a significant increase in MMP-9 expression was observed in the LM3 cells incubated with each of the three types of CM. In conclusion, adipocyte differentiation influences normal and tumoral breast epithelial cell proliferation and migration. Heparanase and MMP-9 appear to be involved in this regulation. The

  13. Developmental Programming: Impact of Prenatal Testosterone Excess on Steroidal Machinery and Cell Differentiation Markers in Visceral Adipocytes of Female Sheep.

    PubMed

    Puttabyatappa, Muraly; Lu, Chunxia; Martin, Jacob D; Chazenbalk, Gregorio; Dumesic, Daniel; Padmanabhan, Vasantha

    2017-01-01

    Prenatal testosterone (T)-treated female sheep manifest reduced adipocyte size and peripheral insulin resistance. The small adipocyte phenotype may reflect defects in adipogenesis and its steroidal machinery. To test whether prenatal T treatment from gestational days 30 to 90 alters the visceral adipose tissue (VAT) steroidal machinery and reduces adipocyte differentiation, we examined expression of the steroidogenic enzymes, steroid receptors, and adipocyte differentiation markers at fetal day 90 and postnatal ages 10 and 21 months. Because gestational T treatment increases fetal T and maternal insulin, the contributions of these were assessed by androgen receptor antagonist or insulin sensitizer cotreatment, either separately (at fetal day 90 and 21 months of age time points) or together (10 months of age). The effects on adipogenesis were assessed in the VAT-derived mesenchymal stem cells (AT-MSCs) from pre- and postpubertal time points to evaluate the effects of pubertal steroidal changes on adipogenesis. Our results show that VAT manifests potentially a predominant estrogenic intracrine milieu (increased aromatase and estrogen receptor α) and reduced differentiation markers at fetal day 90 and postnatal 21 months of age. These changes appear to involve both androgenic and metabolic pathways. Preliminary findings suggest that prenatal T treatment reduces adipogenesis, decreases expression of differentiation, and increases expression of commitment markers at both pre- and postpubertal time points. Together, these findings suggest that (1) increased commitment of AT-MSCs to adipocyte lineage and decreased differentiation to adipocytes may underlie the small adipocyte phenotype of prenatal T-treated females and (2) excess T-induced changes in steroidal machinery in the VAT likely participate in the programming/maintenance of this defect.

  14. Factor for adipocyte differentiation 158 gene disruption prevents the body weight gain and insulin resistance induced by a high-fat diet.

    PubMed

    Hayashi, Takahiro; Nozaki, Yuriko; Nishizuka, Makoto; Ikawa, Masahito; Osada, Shigehiro; Imagawa, Masayoshi

    2011-01-01

    To clarify the molecular mechanism of adipocyte differentiation, we previously isolated a novel gene, factor for adipocyte differentiation (fad) 158, whose expression was induced during the earliest stages of adipogenesis, and its product was localized to the endoplasmic reticulum. We found that the knockdown of fad158 expression prevented the differentiation of 3T3-L1 cells into adipocytes. In addition, over-expression of fad158 promoted the differentiation of NIH-3T3 cells, which do not usually differentiate into adipocytes. Although these findings strongly suggest that fad158 has a crucial role in regulating adipocyte differentiation, the physiological role of the gene is still unclear. In this study, we generated mice in which fad158 expression was deleted. The fad158-deficient mice did not show remarkable changes in body weight or the weight of white adipose tissue on a chow diet, but had significantly lower body weights and fat mass than wild-type mice when fed a high-fat diet. Furthermore, although the disruption of fad158 did not influence insulin sensitivity on the chow diet, it improved insulin resistance induced by the high-fat diet. These results indicate that fad158 is a key factor in the development of obesity and insulin resistance caused by a high-fat diet.

  15. Organotins Are Potent Activators of PPARγ and Adipocyte Differentiation in Bone Marrow Multipotent Mesenchymal Stromal Cells

    PubMed Central

    Yanik, Susan C.; Baker, Amelia H.; Mann, Koren K.; Schlezinger, Jennifer J.

    2011-01-01

    Adipocyte differentiation in bone marrow is potentially deleterious to both bone integrity and lymphopoiesis. Here, we examine the hypothesis that organotins, common environmental contaminants that are dual ligands for peroxisome proliferator–activated receptor (PPAR) γ and its heterodimerization partner retinoid X receptor (RXR), are potent activators of bone marrow adipogenesis. A C57Bl/6-derived bone marrow multipotent mesenchymal stromal cell (MSC) line, BMS2, was treated with rosiglitazone, a PPARγ agonist, bexarotene, an RXR agonist, or a series of organotins. Rosiglitazone and bexarotene potently activated adipocyte differentiation; however, bexarotene had a maximal efficacy of only 20% of that induced by rosiglitazone. Organotins (tributyltin [TBT], triphenyltin, and dibutyltin) also stimulated adipocyte differentiation (EC50 of 10–20nM) but with submaximal, structure-dependent efficacy. In coexposures, both bexarotene and TBT enhanced rosiglitazone-induced adipogenesis. To investigate the contribution of PPARγ to TBT-induced adipogenesis, we examined expression of PPARγ2, as well as its transcriptional target FABP4. TBT-induced PPARγ2 and FABP4 protein expression with an efficacy intermediate between rosiglitazone and bexarotene, similar to lipid accumulation. A PPARγ antagonist and PPARγ-specific small hairpin RNA suppressed TBT-induced differentiation, although to a lesser extent than rosiglitazone-induced differentiation, suggesting that TBT may engage alternate pathways. TBT and bexarotene, but not rosiglitazone, also induced the expression of TGM2 (an RXR target) and ABCA1 (a liver X receptor target). The results show that an environmental contaminant, acting with the same potency as a therapeutic drug, induces PPARγ-dependent adipocyte differentiation in bone marrow MSCs. Activation of multiple nuclear receptor pathways by organotins may have significant implications for bone physiology. PMID:21622945

  16. Interaction of differentiated human adipocytes with macrophages leads to trogocytosis and selective IL-6 secretion

    PubMed Central

    Sárvári, A K; Doan-Xuan, Q-M; Bacsó, Z; Csomós, I; Balajthy, Z; Fésüs, L

    2015-01-01

    Obesity leads to adipose tissue inflammation that is characterized by increased release of proinflammatory molecules and the recruitment of activated immune cells. Although macrophages are present in the highest number among the immune cells in obese adipose tissue, not much is known about their direct interaction with adipocytes. We have introduced an ex vivo experimental system to characterize the cellular interactions and the profile of secreted cytokines in cocultures of macrophages and human adipocytes differentiated from either mesenchymal stem cells or a preadipocyte cell line. As observed by time-lapse microscopy, flow, and laser-scanning cytometry, macrophages phagocytosed bites of adipocytes (trogocytosis), which led to their de novo, phagocytosis and NF-κB-dependent synthesis, then release of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1. IL-6 secretion was not accompanied by secretion of other proinflammatory cytokines, such as tumor necrosis factor (TNF)-α and IL-8, except MCP-1. LPS-induced release of TNF-α, IL-8 and MCP-1 was decreased in the presence of the differentiated adipocytes but the IL-6 level did not subside suggesting that phagocytosis-dependent IL-6 secretion may have significant regulatory function in the inflamed adipose tissue. PMID:25611388

  17. Interaction of differentiated human adipocytes with macrophages leads to trogocytosis and selective IL-6 secretion.

    PubMed

    Sárvári, A K; Doan-Xuan, Q-M; Bacsó, Z; Csomós, I; Balajthy, Z; Fésüs, L

    2015-01-22

    Obesity leads to adipose tissue inflammation that is characterized by increased release of proinflammatory molecules and the recruitment of activated immune cells. Although macrophages are present in the highest number among the immune cells in obese adipose tissue, not much is known about their direct interaction with adipocytes. We have introduced an ex vivo experimental system to characterize the cellular interactions and the profile of secreted cytokines in cocultures of macrophages and human adipocytes differentiated from either mesenchymal stem cells or a preadipocyte cell line. As observed by time-lapse microscopy, flow, and laser-scanning cytometry, macrophages phagocytosed bites of adipocytes (trogocytosis), which led to their de novo, phagocytosis and NF-κB-dependent synthesis, then release of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1. IL-6 secretion was not accompanied by secretion of other proinflammatory cytokines, such as tumor necrosis factor (TNF)-α and IL-8, except MCP-1. LPS-induced release of TNF-α, IL-8 and MCP-1 was decreased in the presence of the differentiated adipocytes but the IL-6 level did not subside suggesting that phagocytosis-dependent IL-6 secretion may have significant regulatory function in the inflamed adipose tissue.

  18. Global Mapping of Cell Type–Specific Open Chromatin by FAIRE-seq Reveals the Regulatory Role of the NFI Family in Adipocyte Differentiation

    PubMed Central

    Yu, Jing; Hirose-Yotsuya, Lisa; Take, Kazumi; Sun, Wei; Iwabu, Masato; Okada-Iwabu, Miki; Fujita, Takanori; Aoyama, Tomohisa; Tsutsumi, Shuichi; Ueki, Kohjiro; Kodama, Tatsuhiko; Sakai, Juro; Aburatani, Hiroyuki; Kadowaki, Takashi

    2011-01-01

    Identification of regulatory elements within the genome is crucial for understanding the mechanisms that govern cell type–specific gene expression. We generated genome-wide maps of open chromatin sites in 3T3-L1 adipocytes (on day 0 and day 8 of differentiation) and NIH-3T3 fibroblasts using formaldehyde-assisted isolation of regulatory elements coupled with high-throughput sequencing (FAIRE-seq). FAIRE peaks at the promoter were associated with active transcription and histone modifications of H3K4me3 and H3K27ac. Non-promoter FAIRE peaks were characterized by H3K4me1+/me3-, the signature of enhancers, and were largely located in distal regions. The non-promoter FAIRE peaks showed dynamic change during differentiation, while the promoter FAIRE peaks were relatively constant. Functionally, the adipocyte- and preadipocyte-specific non-promoter FAIRE peaks were, respectively, associated with genes up-regulated and down-regulated by differentiation. Genes highly up-regulated during differentiation were associated with multiple clustered adipocyte-specific FAIRE peaks. Among the adipocyte-specific FAIRE peaks, 45.3% and 11.7% overlapped binding sites for, respectively, PPARγ and C/EBPα, the master regulators of adipocyte differentiation. Computational motif analyses of the adipocyte-specific FAIRE peaks revealed enrichment of a binding motif for nuclear family I (NFI) transcription factors. Indeed, ChIP assay showed that NFI occupy the adipocyte-specific FAIRE peaks and/or the PPARγ binding sites near PPARγ, C/EBPα, and aP2 genes. Overexpression of NFIA in 3T3-L1 cells resulted in robust induction of these genes and lipid droplet formation without differentiation stimulus. Overexpression of dominant-negative NFIA or siRNA–mediated knockdown of NFIA or NFIB significantly suppressed both induction of genes and lipid accumulation during differentiation, suggesting a physiological function of these factors in the adipogenic program. Together, our study

  19. Saw palmetto ethanol extract inhibits adipocyte differentiation.

    PubMed

    Villaverde, Nicole; Galvis, Adriana; Marcano, Adriana; Priestap, Horacio A; Bennett, Bradley C; Barbieri, M Alejandro

    2013-07-01

    The fruits of saw palmetto have been used for the treatment of a variety of urinary and reproductive system problems. In this study we investigated whether the fruit extracts affect in vitro adipogenesis. Saw palmetto ethanol extract inhibited the lipid droplet accumulation by induction media in a dose-dependent manner, and it also attenuated the protein expressions of C-EBPα and PPARγ. Phosphorylation of Erk1/2 and Akt1 were also decreased by saw palmetto ethanol extract. This report suggests that saw palmetto extracts selectively affect the adipocyte differentiation through the modulation of several key factors that play a critical role during adipogenesis.

  20. Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Akio, E-mail: watanabea@jfrl.or.jp; Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555; Kato, Tsuyoshi

    Highlights: • Aculeatin promoted adipocyte differentiation. • Aculeatin improved glucose uptake. • Aculeatin enhanced adipocyte lipolysis. - Abstract: Toddalia asiatica (L.) Lam. (T. asiatica) has been utilized traditionally for medicinal purposes such as the treatment of diabetes. Currently, the extract is considered to be a good source of anti-diabetic agents, but the active compounds have yet to be identified. In this study, we investigated the effects of fractionated T. asiatica extracts on the differentiation of 3T3-L1 preadipocytes and identified aculeatin as a potential active agent. When 3T3-L1 preadipocytes were treated with aculeatin isolated from T. asiatica in the presence ofmore » insulin, aculeatin increased cellular triglyceride levels and glycerol-3-phosphate dehydrogenase activity. This indicated that aculeatin could enhance the differentiation of preadipocytes into adipocytes. Further analyses using a DNA microarray and real-time quantitative reverse-transcription PCR showed an increase in the expression of peroxisome proliferator-activated receptor-γ target genes (Pparg, Ap2, Cd36, Glut4 and Adipoq) by aculeatin, suggesting that aculeatin enhances the differentiation of 3T3-L1 cells by modulating the expression of genes critical for adipogenesis. Interestingly, after treatment of differentiated adipocytes with aculeatin, glucose uptake and lipolysis were enhanced. Overall, our results suggested that aculeatin is an active compound in T. asiatica for enhancing both differentiation and lipolysis of adipocytes, which are useful for the treatment of lipid abnormalities as well as diabetes.« less

  1. Phloretin promotes adipocyte differentiation in vitro and improves glucose homeostasis in vivo

    USDA-ARS?s Scientific Manuscript database

    Adipocyte dysfunction is associated with many metabolic diseases such as obesity, insulin resistance and diabetes. Previous studies found that phloretin promotes 3T3-L1 cells differentiation, but the underlying mechanisms for phloretin's effects on adipogenesis remain unclear. In this study, we demo...

  2. Glucose availability controls adipogenesis in mouse 3T3-L1 adipocytes via up-regulation of nicotinamide metabolism.

    PubMed

    Jackson, Robert M; Griesel, Beth A; Gurley, Jami M; Szweda, Luke I; Olson, Ann Louise

    2017-11-10

    Expansion of adipose tissue in response to a positive energy balance underlies obesity and occurs through both hypertrophy of existing cells and increased differentiation of adipocyte precursors (hyperplasia). To better understand the nutrient signals that promote adipocyte differentiation, we investigated the role of glucose availability in regulating adipocyte differentiation and maturation. 3T3-L1 preadipocytes were grown and differentiated in medium containing a standard differentiation hormone mixture and either 4 or 25 mm glucose. Adipocyte maturation at day 9 post-differentiation was determined by key adipocyte markers, including glucose transporter 4 (GLUT4) and adiponectin expression and Oil Red O staining of neutral lipids. We found that adipocyte differentiation and maturation required a pulse of 25 mm glucose only during the first 3 days of differentiation. Importantly, fatty acids were unable to substitute for the 25 mm glucose pulse during this period. The 25 mm glucose pulse increased adiponectin and GLUT4 expression and accumulation of neutral lipids via distinct mechanisms. Adiponectin expression and other early markers of differentiation required an increase in the intracellular pool of total NAD/P. In contrast, GLUT4 protein expression was only partially restored by increased NAD/P levels. Furthermore, GLUT4 mRNA expression was mediated by glucose-dependent activation of GLUT4 gene transcription through the cis-acting GLUT4-liver X receptor element (LXRE) promoter element. In summary, this study supports the conclusion that high glucose promotes adipocyte differentiation via distinct metabolic pathways and independently of fatty acids. This may partly explain the mechanism underlying adipocyte hyperplasia that occurs much later than adipocyte hypertrophy in the development of obesity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. CDK5 Regulatory Subunit-Associated Protein 1-like 1 Negatively Regulates Adipocyte Differentiation through Activation of Wnt Signaling Pathway.

    PubMed

    Take, Kazumi; Waki, Hironori; Sun, Wei; Wada, Takahito; Yu, Jing; Nakamura, Masahiro; Aoyama, Tomohisa; Yamauchi, Toshimasa; Kadowaki, Takashi

    2017-08-04

    CDK5 Regulatory Subunit-Associated Protein 1-like 1 (CDKAL1) was identified as a susceptibility gene for type 2 diabetes and body mass index in genome-wide association studies. Although it was reported that CDKAL1 is a methylthiotransferase essential for tRNA Lys (UUU) and faithful translation of proinsulin generated in pancreatic β cells, the role of CDKAL1 in adipocytes has not been understood well. In this study, we found that CDKAL1 is expressed in adipose tissue and its expression is increased during differentiation. Stable overexpression of CDKAL1, however, inhibited adipocyte differentiation of 3T3-L1 cells, whereas knockdown of CDKAL1 promoted differentiation. CDKAL1 increased protein levels of β-catenin and its active unphosphorylated form in the nucleus, thereby promoting Wnt target gene expression, suggesting that CDKAL1 activated the Wnt/β-catenin pathway-a well-characterized inhibitory regulator of adipocyte differentiation. Mutant experiments show that conserved cysteine residues of Fe-S clusters of CDKAL1 are essential for its anti-adipogenic action. Our results identify CDKAL1 as novel negative regulator of adipocyte differentiation and provide insights into the link between CDKAL1 and metabolic diseases such as type 2 diabetes and obesity.

  4. Interruptin B induces brown adipocyte differentiation and glucose consumption in adipose-derived stem cells

    PubMed Central

    KAEWSUWAN, SIREEWAN; PLUBRUKARN, ANUCHIT; UTSINTONG, MALEERUK; KIM, SEOK-HO; JEONG, JIN-HYUN; CHO, JIN GU; PARK, SANG GYU; SUNG, JONG-HYUK

    2016-01-01

    Interruptin B has been isolated from Cyclosorus terminans, however, its pharamcological effect has not been fully identified. In the present study, the effects of interruptin B, from C. terminans, on brown adipocyte differentiation and glucose uptake in adipose-derived stem cells (ASCs) were investigated. The results revealed that interruptin B dose-dependently enhanced the adipogenic differentiation of ASCs, with an induction in the mRNA expression levels of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ. In addition, interruptin B efficiently increased the number and the membrane potential of mitochondria and upregulated the mRNA expression levels of uncoupling protein (UCP)-1 and cyclooxygenase (COX)-2, which are all predominantly expressed in brown adipocytes. Interruptin B increased glucose consumption in differentiated ASCs, accompanied by the upregulation in the mRNA expression levels of glucose transporter (GLUT)-1 and GLUT-4. The computational analysis of molecular docking, a luciferase reporter assay and surface plasmon resonance confirmed the marked binding affinity of interruptin B to PPAR-α and PPAR-γ (KD values of 5.32 and 0.10 µM, respectively). To the best of our knowledge, the present study is the first report to show the stimulatory effects of interruptin B on brown adipocyte differentiation and glucose uptake in ASCs, through its role as a dual PPAR-α and PPAR-γ ligand. Therefore, interruptin B could be further developed as a therapeutic agent for the treatment of diabetes. PMID:26781331

  5. Testosterone regulates 3T3-L1 pre-adipocyte differentiation and epididymal fat accumulation in mice through modulating macrophage polarization.

    PubMed

    Ren, Xiaojiao; Fu, Xiaojian; Zhang, Xinhua; Chen, Shiqiang; Huang, Shuguang; Yao, Lun; Liu, Guoquan

    2017-09-15

    Low testosterone levels are strongly related to obesity in males. The balance between the classically M1 and alternatively M2 polarized macrophages also plays a critical role in obesity. It is not clear whether testosterone regulates macrophage polarization and then affects adipocyte differentiation. In this report, we demonstrate that testosterone strengthens interleukin (IL) -4-induced M2 polarization and inhibits lipopolysaccharide (LPS)-induced M1 polarization, but has no direct effect on adipocyte differentiation. Cellular signaling studies indicate that testosterone regulates macrophage polarization through the inhibitory regulative G-protein (Gαi) mainly, rather than via androgen receptors, and phosphorylation of Akt. Moreover, testosterone inhibits pre-adipocyte differentiation induced by M1 macrophage medium. Lowering of serum testosterone in mice by injecting a luteinizing hormone receptor (LHR) peptide increases epididymal white adipose tissue. Testosterone supplementation reverses this effect. Therefore, our findings indicate that testosterone inhibits pre-adipocyte differentiation by switching macrophages to M2 polarization through the Gαi and Akt signaling pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Isolation and Culture of Pig Spermatogonial Stem Cells and Their in Vitro Differentiation into Neuron-Like Cells and Adipocytes

    PubMed Central

    Wang, Xiaoyan; Chen, Tingfeng; Zhang, Yani; Li, Bichun; Xu, Qi; Song, Chengyi

    2015-01-01

    Spermatogonial stem cells (SSCs) renew themselves throughout the life of an organism and also differentiate into sperm in the adult. They are multipopent and therefore, can be induced to differentiate into many cells types in vitro. SSCs from pigs, considered an ideal animal model, are used in studies of male infertility, regenerative medicine, and preparation of transgenic animals. Here, we report on a culture system for porcine SSCs and the differentiation of these cells into neuron-like cells and adipocytes. SSCs and Sertoli cells were isolated from neonatal piglet testis by differential adhesion and SSCs were cultured on a feeder layer of Sertoli cells. Third-generation SSCs were induced to differentiate into neuron-like cells by addition of retinoic acid, β-mercaptoethanol, and 3-isobutyl-1-methylxanthine (IBMX) to the induction media and into adipocytes by the addition of hexadecadrol, insulin, and IBMX to the induction media. The differentiated cells were characterized by biochemical staining, qRT-PCR, and immunocytochemistry. The cells were positive for SSC markers, including alkaline phosphatase and SSC-specific genes, consistent with the cells being undifferentiated. The isolated SSCs survived on the Sertoli cells for 15 generations. Karyotyping confirmed that the chromosomal number of the SSCs were normal for pig (2n = 38, n = 19). Pig SSCs were successfully induced into neuron-like cells eight days after induction and into adipocytes 22 days after induction as determined by biochemical and immunocytochemical staining. qPCR results also support this conclusion. The nervous tissue markers genes, Nestin and β-tubulin, were expressed in the neuron-like cells and the adipocyte marker genes, PPARγ and C/EBPα, were expressed in the adipocytes. PMID:26556335

  7. The lipid fraction of human milk initiates adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Fujisawa, Yasuko; Yamaguchi, Rie; Nagata, Eiko; Satake, Eiichiro; Sano, Shinichiro; Matsushita, Rie; Kitsuta, Kazunobu; Nakashima, Shinichi; Nakanishi, Toshiki; Nakagawa, Yuichi; Ogata, Tsutomu

    2013-09-01

    The prevalence of childhood obesity has increased worldwide over the past decade. Despite evidence that human milk lowers the risk of childhood obesity, the mechanism is not fully understood. We investigated the direct effect of human milk on differentiation of 3T3-L1 preadipocytes. 3T3-L1 preadipocytes were treated with donated human milk only or the combination of the standard hormone mixture; insulin, dexamethasone (DEX), and 3-isobututyl-1-methylxanthine (IBMX). Furthermore, the induction of preadipocyte differentiation by extracted lipids from human milk was tested in comparison to the cells treated with lipid extracts from infant formula. Adipocyte differentiation, specific genes as well as formation of lipid droplets were examined. We clearly show that lipids present in human milk initiate 3T3-L1 preadipocyte differentiation. In contrast, this effect was not observed in response to lipids present in infant formula. The initiation of preadipocyte differentiation by human milk was enhanced by adding the adipogenic hormone, DEX or insulin. The expression of late adipocyte markers in Day 7 adipocytes that have been induced into differentiation with human milk lipid extracts was comparable to those in control cells initiated by a standard adipogenic hormone cocktail. These results demonstrate that human milk contains bioactive lipids that can initiate preadipocyte differentiation in the absence of the standard adipogenic compounds via a unique pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Bisindoylmaleimide I suppresses adipocyte differentiation through stabilization of intracellular {beta}-catenin protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Munju; Park, Seoyoung; Gwak, Jungsug

    2008-02-29

    The Wnt/{beta}-catenin signaling pathway plays important roles in cell differentiation. Activation of this pathway, likely by Wnt-10b, has been shown to inhibit adipogenesis in cultured 3T3-L1 preadipocytes and mice. Here we revealed that bisindoylmaleimide I (BIM), which is widely used as a specific inhibitor of protein kinase C (PKC), inhibits adipocyte differentiation through activation of the Wnt/{beta}-catenin signaling pathway. BIM increased {beta}-catenin responsive transcription (CRT) and up-regulated intracellular {beta}-catenin levels in HEK293 cells and 3T3-L1 preadipocytes. BIM significantly decreased intracellular lipid accumulation and reduced expression of important adipocyte marker genes including peroxisome-proliferator-activated receptor {gamma} (PPAR{gamma}) and CAATT enhancer-binding protein {alpha}more » (C/EBP{alpha}) in 3T3-L1 preadipocytes. Taken together, our findings indicate that BIM inhibits adipogenesis by increasing the stability of {beta}-catenin protein in 3T3-L1 preadipocyte cells.« less

  9. Eicosapentaenoic acid and arachidonic acid differentially regulate adipogenesis, acquisition of a brite phenotype and mitochondrial function in primary human adipocytes.

    PubMed

    Fleckenstein-Elsen, Manuela; Dinnies, Daniela; Jelenik, Tomas; Roden, Michael; Romacho, Tania; Eckel, Jürgen

    2016-09-01

    n-3 and n-6 PUFAs have several opposing biological effects and influence white adipose tissue (WAT) function. The recent discovery of thermogenic UCP1-expressing brite adipocytes within WAT raised the question whether n-3 and n-6 PUFAs exert differential effects on brite adipocyte formation and mitochondrial function. Primary human preadipocytes were treated with n-3 PUFAs (eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA) or n-6 PUFA (arachidonic acid, ARA) during differentiation, and adipogenesis, white and brite gene expression markers, mitochondrial content and function were analyzed at day 12 of differentiation. Adipogenesis was equally increased by n-3 and n-6 PUFAs. The n-6 PUFA ARA increased lipid droplet size and expression of the white-specific marker TCF21 while decreased mitochondrial protein expression and respiratory function. In contrast, EPA increased expression of the brown adipocyte-related genes UCP1 and CPT1B, and improved mitochondrial function of adipocytes. The opposing effects of EPA and ARA on gene expression and mitochondrial function were also observed in cells treated from day 8 to 12 of adipocyte differentiation. EPA promotes brite adipogenesis and improves parameters of mitochondrial function, such as increased expression of CPTB1, citrate synthase activity and higher maximal respiratory capacity, while ARA reduced mitochondrial spare respiratory capacity in vitro. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. BIX-01294 promotes the differentiation of adipose mesenchymal stem cells into adipocytes and neural cells in Arbas Cashmere goats.

    PubMed

    Wang, Qing; Wang, Xiao; Lai, Defang; Deng, Jin; Hou, Zhuang; Liang, Hao; Liu, Dongjun

    2018-05-14

    Chromatin remodeling plays an essential role in regulating gene transcription. BIX-01294 is a specific inhibitor of histone methyltransferase G9a, which is responsible for methylation of histone H3 lysine 9 (H3K9) that can also regulate DNA methylation and chromatin remodeling. The purpose of this study was to investigate the effects of BIX-01294 on the potential of goat adipose derived stem cells (gADSCs) to differentiate into adipocytes and neural cells. To accomplish this, BIX-01294 was used to treat gADSCs for 24 h, and the global level of DNA methylation as well as the expression of genes related to cell proliferation, apoptosis and pluripotency were detected. At the same time, the cells were induced to differentiate into adipocytes and neural cells, and the transcription levels of related marker factors were examined. We found that BIX-01294 treatment reduced the level of DNA methylation and increased the level of gADSCs hydroxylmethylation. The translation level of NANOG increased, whereas Oct4, Sox2 levels decreased. Our results suggest that BIX-01294 may rely on the NANOG regulatory network to promote gADSCs differentiation. We found that both the lipid droplet level in adipocytes and the transcription levels of the adipocyte specific factors Fabp4, ADIPOQ, and Leptin increased after treatment. ENO2 and RBFOX3 transcription levels were also elevated in the differentiated neural cells after treatment. These results indicated that BIX-01294 treatment promoted the differentiation of gADSCs into adipocytes and neural cells. Our findings provide new ideas for improving the differentiation potential of gADSCs and expanding possible application for gADSCs. Copyright © 2018. Published by Elsevier Ltd.

  11. Identification and expression patterns of adipokine genes during adipocyte differentiation in the Tibetan goat (Capra hircus).

    PubMed

    Li, Xueying; Wang, Yan; Guo, Jiazhong; Zhong, Tao; Li, Li; Zhang, Hongping; Wang, Linjie

    2018-02-15

    Adipokines are secreted by adipose tissue and play an important role in the regulation of lipid metabolism. However, the information regarding adipokines in goats is limited. PPARγ is a key gene in adipocyte differentiation and activates adipokine genes. Rosiglitazone is a PPARγ agonist and can promote the expression of PPARγ to increase the expression of lipogenesis-related genes. Therefore, investigation of the relationship between rosiglitazone and adipokines will help us to better understand the function of PPARγ in lipid metabolism in Tibetan goats. In this study, we cloned the resistin (RETN), apelin (APLN), fibroblast growth factor 21 (FGF21), and visfatin (NAMPT) genes from non-pregnant female Tibetan goat adipose tissue. APLN and NAMPT were predominantly expressed in the kidney, and FGF21 was expressed at the highest levels in the liver in vivo. In fat tissues, the highest expression levels of FGF21 and RETN were detected in omental fat, whereas their expression in perirenal and subcutaneous fat was extremely weak. APLN and NAMPT were abundantly expressed in omental and subcutaneous fat in vivo. In addition, the four adipokines had different expression profiles during goat adipocyte differentiation in vitro. Oil red O staining showed that rosiglitazone could promote adipocyte differentiation and lipid droplet formation. In addition, rosiglitazone significantly increased the expression of FGF21 and RETN (p<0.05) but decreased the expression of APLN and NAMPT (p<0.05). These results suggest that the four adipocytokine genes may have different roles during goat adipocyte differentiation. And PPARγ could regulate the expression of the four adipokines, but the detailed regulatory mechanism still needs to be elucidated. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Aristolochia Manshuriensis Kom Inhibits Adipocyte Differentiation by Regulation of ERK1/2 and Akt Pathway

    PubMed Central

    Kwak, Dong Hoon; Lee, Ji-Hye; Kim, Taesoo; Ahn, Hyo Sun; Cho, Won-Kyung; Ha, Hyunil; Hwang, Youn-Hwan; Ma, Jin Yeul

    2012-01-01

    Aristolochia manshuriensis Kom (AMK) is a traditional medicinal herb used for the treatment of arthritis, rheumatism, hepatitis, and anti-obesity. Because of nephrotoxicity and carcinogenicity of AMK, there are no pharmacological reports on anti-obesity potential of AMK. Here, we showed AMK has an inhibitory effect on adipocyte differentiation of 3T3-L1 cells along with significantly decrease in the lipid accumulation by downregulating several adipocyte-specific transcription factors including peroxisome proliferation-activity receptor γ (PPAR-γ), CCAAT/enhancer binding protein α (C/EBP-α) and C/EBP-β, which are critical for adipogenesis in vitro. AMK also markedly activated the extracellular signal-regulated protein kinase 1/2 (ERK1/2) pathway including Ras, Raf1, and mitogen-activated protein kinase kinase 1 (MEK1), and significantly suppressed Akt pathway by inhibition of phosphoinositide-dependent kinase 1 (PDK1). Aristolochic acid (AA) and ethyl acetate (EtOAc) fraction of AMK with AA were significantly inhibited TG accumulation, and regulated two pathway (ERK1/2 and Akt) during adipocyte differentiation, and was not due to its cytotoxicity. These two pathways were upstream of PPAR-γ and C/EBPα in the adipogenesis. In addition, gene expressions of secreting factors such as fatty acid synthase (FAS), adiponectin, lipopreotein lipase (LPL), and aP2 were significantly inhibited by treatment of AMK during adipogenesis. We used the high-fat diet (HFD)-induced obesity mouse model to determine the inhibitory effects of AMK on obesity. Oral administration of AMK (62.5 mg/kg/day) significantly decreased the fat tissue weight, total cholesterol (TC), and low density lipoprotein-cholesterol (LDL-C) concentration in the blood. The results of this study suggested that AMK inhibited lipid accumulation by the down-regulation of the major transcription factors of the adipogensis pathway including PPAR-γ and C/EBP-α through regulation of Akt pathway and ERK 1

  13. Phenyl-γ-valerolactones, flavan-3-ol colonic metabolites, protect brown adipocytes from oxidative stress without affecting their differentiation or function.

    PubMed

    Mele, Laura; Carobbio, Stefania; Brindani, Nicoletta; Curti, Claudio; Rodriguez-Cuenca, Sergio; Bidault, Guillaume; Mena, Pedro; Zanotti, Ilaria; Vacca, Michele; Vidal-Puig, Antonio; Del Rio, Daniele

    2017-09-01

    Consumption of products rich in flavan-3-ols, such as tea and cocoa, has been associated with decreased obesity, partially dependent on their capacity to enhance energy expenditure. Despite these phenolics having been reported to increase the thermogenic program in brown and white adipose tissue, flavan-3-ols are vastly metabolised in vivo to phenyl-γ-valerolactones. Therefore, we hypothesize that phenyl-γ-valerolactones may directly stimulate the differentiation and the activation of brown adipocytes. Immortalized brown pre-adipocytes were differentiated in presence of (R)-5-(3',4'-dihydroxyphenyl)-γ-valerolactone (VL1), (R)-5-(3´-hydroxyphenyl)-γ-valerolactone-4'-O-sulphate (VL2), (R)-5-phenyl-γ-valerolactone-3´,4´-di-O-sulphate (VL3), at concentrations of 2 or 10μM, whereas fully differentiated brown adipocyte were treated acutely (6-24h). None of the treatments regulated the expression levels of the uncouple protein 1, nor of the main transcription factors involved in brown adipogenesis. Similarly, mitochondrial content was unchanged after treatments. Moreover these compounds did not display peroxisome proliferator-activated receptor γ-agonist activity, as evaluated by luciferase assay, and did not enhance norepinephrine-stimulated lipolysis in mature adipocytes. However, both VL1 and VL2 prevented oxidative stress caused by H 2 O 2 . Phenyl-γ-valerolactones and their sulphated forms do not influence brown adipocyte development or function at physiological or supraphysiological doses in vitro, but they are active protecting brown adipocytes from increased reactive oxygen species production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Induction of Adipocyte Differentiation by Polybrominated Diphenyl Ethers (PBDEs) in 3T3-L1 Cells

    PubMed Central

    Tung, Emily W. Y.; Boudreau, Adèle; Wade, Michael G.; Atlas, Ella

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants that were extensively used in commercial products. PBDEs are ubiquitous environmental contaminants that are both lipophilic and bioaccumulative. Effects of PBDEs on adipogenesis were studied in the 3T3-L1 preadipocyte cell model in the presence and absence of a known adipogenic agent, dexamethasone (DEX). A PBDE mixture designed to mimic body burden of North Americans was tested, in addition to the technical mixture DE-71 and the individual congener BDE-47. The mixture, DE-71, and BDE-47 all induced adipocyte differentiation as assessed by markers for terminal differentiation [fatty acid binding protein 4 (aP2) and perilipin] and lipid accumulation. Characterization of the differentiation process in response to PBDEs indicated that adipogenesis induced by a minimally effective dose of DEX was enhanced by these PBDEs. Moreover, C/EBPα, PPARγ, and LXRα were induced late in the differentiation process. Taken together, these data indicate that adipocyte differentiation is induced by PBDEs; they act in the absence of glucocorticoid and enhance glucocorticoid-mediated adipogenesis. PMID:24722056

  15. Bergamottin Promotes Adipocyte Differentiation and Inhibits Tumor Necrosis Factor-α-induced Inflammatory Cytokines Induction in 3T3-L1 Cells.

    PubMed

    Mizuno, Hideya; Hatano, Tomoko; Taketomi, Ayako; Kawabata, Mami; Nakabayashi, Toshikatsu

    2017-01-01

    Nowadays, a lot of food ingredients are marketed as dietary supplements for health. Because the effectiveness and mechanisms of these compounds have not been fully characterized, they might have unknown functions. Therefore, we investigated the effect of several food ingredients (Bergamottin, Chrysin, L-Citrulline and β-Carotene) known as health foods on adipocyte differentiation by using 3T3-L1 preadipocytes. In this study, we found that Bergamottin, a furanocoumarin isolated from grapefruit juice, promotes adipocyte differentiation. In addition, Bergamottin increases the expression of adiponectin, an anti-inflammatory adipokine, and peroxisome proliferator activated receptor γ (PPARγ), a nuclear receptor regulating adipocyte differentiation. Furthermore, the anti-inflammatory activity of Bergamottin was demonstrated by its inhibition of the activation of nuclear factor-κB (NF-κB), an inflammatory transcription factor. Stimulation of mature 3T3-L1 adipocytes by tumor necrosis factor-α (TNF-α) decreased the expression of the endogeneous NF-κB inhibitor, IκBα. Treatment with Bergamottin further decreased the TNF-α-induced change in IκBα expression, suggesting that Bergamottin mediated the inhibition of NF-κB activation. In addition, Bergamottin decreased the TNF-α-induced increase in the mRNA levels of pro-inflammatory adipokines, monocyte chemoattractant protein-1 and interleukin-6. Taken together, our results show that Bergamottin treatment could inhibit inflammatory activity through promoting adipocyte differentiation, which in turn suggests that Bergamottin has the potential to minimize the risk factors of metabolic syndrome.

  16. Adipocytes promote cholangiocarcinoma metastasis through fatty acid binding protein 4.

    PubMed

    Nie, Jihua; Zhang, Jingying; Wang, Lili; Lu, Lunjie; Yuan, Qian; An, Fangmei; Zhang, Shuyu; Jiao, Yang

    2017-12-13

    The early occurrence regional nodal and distant metastases cholangiocarcinoma (CCA) is one of the major reasons for its poor prognosis. However, the related mechanisms are largely elusive. Recently, increasing evidences indicate that adipocytes might be involved in the proliferation, homing, migration and invasion of several malignancies. In the present study, we attempt to determine the effects and possible mechanisms of adipocytes on regulating progression of CCA. Adipocyte-CCA cell co-culture system and CCA metastasis mice model were used to determine the effects of adipocytes on CCA metastasis. We identified the biological functions and possible mechanisms of adipocyte-derived fatty acid binding protein 4 (FABP4) in regulating the adipocyte-induced CCA metastasis and epithelial-mesenchymal transition (EMT) phenotypes, both in vitro and in vivo. Adipocyte-CCA cell co-culture promotes the in vitro and in vivo tumor metastasis, leading to increased adipocyte-derived fatty acid absorbance and intracellular lipids of CCA cells, which indicates adipocytes might function as the energy source for CCA progression by providing free fatty acids. Further, highly expressed FABP4 protein was identified in adipose tissues and fully differentiated adipocytes, and upregulated FABP4 was also detected by qRT-PCR assay in CCA cells co-cultivated with adipose extracts as compared to parental CCA cells. The specific FABP4 inhibitor BMS309403 significantly impaired adipocyte-induced CCA metastasis and EMT phenotypes both in vitro and in vivo. Together, the results demonstrate that the adipocyte-CCA interaction and the energy extraction of CCA cells from adipocytes are crucial for the invasion, migration and EMT of CCA cells. FABP4 from adipocytes mediates these adipocyte-induced variations in CCA cells, which could serve as a potential target for the treatment of CCA.

  17. New Insights into Cytosolic Glucose Levels during Differentiation of 3T3-L1 Fibroblasts into Adipocytes*

    PubMed Central

    Kovacic, Petra Brina; Chowdhury, Helena H.; Velebit, Jelena; Kreft, Marko; Jensen, Jørgen; Zorec, Robert

    2011-01-01

    Cytosolic glucose concentration reflects the balance between glucose entry across the plasma membrane and cytosolic glucose utilization. In adipocytes, glucose utilization is considered very rapid, meaning that every glucose molecule entering the cytoplasm is quickly phosphorylated. Thus, the cytosolic free glucose concentration is considered to be negligible; however, it was never measured directly. In the present study, we monitored cytosolic glucose dynamics in 3T3-L1 fibroblasts and adipocytes by expressing a fluorescence resonance energy transfer (FRET)-based glucose nanosensor: fluorescent indicator protein FLIPglu-600μ. Specifically, we monitored cytosolic glucose responses by varying transmembrane glucose concentration gradient. The changes in cytosolic glucose concentration were detected in only 56% of 3T3-L1 fibroblasts and in 14% of 3T3-L1 adipocytes. In adipocytes, the resting cytosolic glucose concentration was reduced in comparison with the one recorded in fibroblasts. Membrane permeabilization increased cytosolic glucose concentration in adipocytes, and glycolytic inhibitor iodoacetate failed to increase cytosolic glucose concentration, indicating low adipocyte permeability for glucose at rest. We also examined the effects of insulin and adrenaline. Insulin significantly increased cytosolic glucose concentration in adipocytes by a factor of 3.6; however, we recorded no effect on delta ratio (ΔR) in fibroblasts. Adrenaline increased cytosolic glucose concentration in fibroblasts but not in adipocytes. However, in adipocytes in insulin-stimulated conditions, glucose clearance was significantly faster following adrenaline addition in comparison with controls (p < 0.001). Together, these results demonstrate that during differentiation, adipocytes develop more efficient mechanisms for maintaining low cytosolic glucose concentration, predominantly with reduced membrane permeability for glucose. PMID:21349852

  18. Interaction between human mature adipocytes and lymphocytes induces T-cell proliferation.

    PubMed

    Poloni, Antonella; Maurizi, Giulia; Ciarlantini, Marco; Medici, Martina; Mattiucci, Domenico; Mancini, Stefania; Maurizi, Angela; Falconi, Massimo; Olivieri, Attilio; Leoni, Pietro

    2015-09-01

    Adipose tissue is a critical organ that plays a major role in energy balance regulation and the immune response through intricate signals. We report on the inter-relation between mature adipocytes and lymphocytes in terms of adipocyte-derived T-cell chemo-attractants and adipocyte metabolic effects on lymphocytes. During the culture time, mature adipocytes changed their structural and functional properties into de-differentiated cells. Isolated mature adipocytes expressed significantly higher levels of CIITA, major histocompatibility complex II (human leukocyte antigen [HLA]-DR) and costimulatory signal molecule CD80 compared with adipocytes after the de-differentiation process. Moreover, human leukocyte antigen-G, which may prevent the immune responses of mesenchymal stromal cells, was expressed at lower level in mature adipocytes compared with de-differentiated adipocytes. In line with these molecular data, functional results showed different immunoregulatory properties between adipocytes before and after the de-differentiation process. Mature adipocytes stimulated the proliferation of total lymphocytes and immunoselected cell populations CD3+, CD4+ and CD8+ in a direct contact-dependent way that involved the major histocompatibility complex I and II pathways. Moreover, adipocytes secreted potential chemo-attractant factors, but data showed that adipocyte-derived culture medium was not sufficient to activate lymphocyte proliferation, suggesting that a direct contact between adipocytes and immune cells was needed. However, specific mature adipocyte cytokines enhanced lymphocyte proliferation in a mixed lymphocyte reaction. In conclusion, cross-talk occurs between adipocytes and lymphocytes within adipose tissue involving T-cell chemo-attraction by mature adipocytes. Our findings, together with current observations in the field, provide a rationale to identify adipocyte-lymphocyte cross-talk that instigates adipose inflammation. Copyright © 2015 International

  19. SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation

    PubMed Central

    Price, Nathan L.; Holtrup, Brandon; Kwei, Stephanie L.; Wabitsch, Martin; Rodeheffer, Matthew; Bianchini, Laurence; Suárez, Yajaira

    2016-01-01

    White adipose tissue (WAT) is essential for maintaining metabolic function, especially during obesity. The intronic microRNAs miR-33a and miR-33b, located within the genes encoding sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1, respectively, are transcribed in concert with their host genes and function alongside them to regulate cholesterol, fatty acid, and glucose metabolism. SREBP-1 is highly expressed in mature WAT and plays a critical role in promoting in vitro adipocyte differentiation. It is unknown whether miR-33b is induced during or involved in adipogenesis. This is in part due to loss of miR-33b in rodents, precluding in vivo assessment of the impact of miR-33b using standard mouse models. This work demonstrates that miR-33b is highly induced upon differentiation of human preadipocytes, along with SREBP-1. We further report that miR-33b is an important regulator of adipogenesis, as inhibition of miR-33b enhanced lipid droplet accumulation. Conversely, overexpression of miR-33b impaired preadipocyte proliferation and reduced lipid droplet formation and the induction of peroxisome proliferator-activated receptor γ (PPARγ) target genes during differentiation. These effects may be mediated by targeting of HMGA2, cyclin-dependent kinase 6 (CDK6), and other predicted miR-33b targets. Together, these findings demonstrate a novel role of miR-33b in the regulation of adipocyte differentiation, with important implications for the development of obesity and metabolic disease. PMID:26830228

  20. Effects of water extract of Cajanus cajan leaves on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells and the adipocytic trans-differentiation of mouse primary osteoblasts.

    PubMed

    Zhang, Jinchao; Liu, Cuilian; Sun, Jing; Liu, Dandan; Wang, Peng

    2010-01-01

    The effects of water extract of Cajanus cajan (Linn.) Millsp. (Leguminosae) leaves (WECML) on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells (BMSCs) and the adipocytic trans-differentiation of mouse primary osteoblasts (OBs) were studied. The results indicated that WECML promoted the proliferation of BMSCs and OBs at most concentrations. WECML promoted the osteogenic differentiation and formation of mineralized matrix nodules of BMSCs at concentrations of 0.1, 1, and 10 microg/mL, but inhibited the osteogenic differentiation and formation of mineralized matrix nodules of BMSCs at concentration of 0.01 microg/mL. WECML inhibited the adipogenic differentiation of BMSCs and adipocytic trans-differentiation of OBs at concentrations of 0.001, 0.1, 1, 10, and 100 microg/mL, but had no effects at concentration of 0.01 microg/mL. The results suggest that WECML has protective effects on bone and these protective effects may be mediated by decreasing adipocytic cell formation from BMSCs, which may promote the proliferation, differentiation, and mineralization function of OBs. The defined active ingredients in the WECML and the active mechanism need to be further studied.

  1. The adaptor protein alpha-syntrophin regulates adipocyte lipid droplet growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisinger, Kristina; Rein-Fischboeck, Lisa; Pohl, Rebekka

    The scaffold protein alpha-syntrophin (SNTA) regulates lipolysis indicating a role in lipid homeostasis. Adipocytes are the main lipid storage cells in the body, and here, the function of SNTA has been analyzed in 3T3-L1 cells. SNTA is expressed in preadipocytes and is induced early during adipogenesis. Knock-down of SNTA in preadipocytes increases their proliferation. Proteins which are induced during adipogenesis like adiponectin and caveolin-1, and the inflammatory cytokine IL-6 are at normal levels in the mature cells differentiated from preadipocytes with low SNTA. This suggests that SNTA does neither affect differentiation nor inflammation. Expression of proteins with a role inmore » cholesterol and triglyceride homeostasis is unchanged. Consequently, basal and epinephrine induced lipolysis as well as insulin stimulated phosphorylation of Akt and ERK1/2 are normal. Importantly, adipocytes with low SNTA form smaller lipid droplets and store less triglycerides. Stearoyl-CoA reductase and MnSOD are reduced upon SNTA knock-down but do not contribute to lower lipid levels. Oleate uptake is even increased in cells with SNTA knock-down. In summary, current data show that SNTA is involved in the expansion of lipid droplets independent of adipogenesis. Enhanced preadipocyte proliferation and capacity to store surplus fatty acids may protect adipocytes with low SNTA from lipotoxicity in obesity. - Highlights: • Alpha-syntrophin (SNTA) is expressed in 3T3-L1adipocytes. • SNTA knock-down in preadipocytes has no effect on adipogenesis. • Mature 3T3-L1 differentiated from cells with low SNTA form small lipid droplets. • SCD1 and MnSOD are reduced in adipocytes with low SNTA. • SCD1 knock-down does not alter triglyceride levels.« less

  2. Differential modulation of ROS signals and other mitochondrial parameters by the antioxidants MitoQ, resveratrol and curcumin in human adipocytes.

    PubMed

    Hirzel, Estelle; Lindinger, Peter W; Maseneni, Swarna; Giese, Maria; Rhein, Véronique Virginie; Eckert, Anne; Hoch, Matthias; Krähenbühl, Stephan; Eberle, Alex N

    2013-10-01

    Mitochondrial reactive oxygen species (ROS) have been demonstrated to play an important role as signaling and regulating molecules in human adipocytes. In order to evaluate the differential modulating roles of antioxidants, we treated human adipocytes differentiated from human bone marrow-derived mesenchymal stem cells with MitoQ, resveratrol and curcumin. The effects on ROS, viability, mitochondrial respiration and intracellular ATP levels were examined. MitoQ lowered both oxidizing and reducing ROS. Resveratrol decreased reducing and curcumin oxidizing radicals only. All three substances slightly decreased state III respiration immediately after addition. After 24 h of treatment, MitoQ inhibited both basal and uncoupled oxygen consumption, whereas curcumin and resveratrol had no effect. Intracellular ATP levels were not altered. This demonstrates that MitoQ, resveratrol and curcumin exert potent modulating effects on ROS signaling in human adipocyte with marginal effects on metabolic parameters.

  3. PIM-1 kinase expression in adipocytic neoplasms: diagnostic and biological implications

    PubMed Central

    Nga, Min En; Swe, Nu Nu Ma; Chen, Kang Ting; Shen, Liang; Lilly, Michael B; Chan, Siew Pang; Salto-Tellez, Manuel; Das, Kakoli

    2010-01-01

    The differential diagnosis of soft tissue tumours poses a considerable challenge for pathologists, especially adipocytic tumours, as these may show considerable overlap in clinical presentation and morphological features with many other mesenchymal neoplasms. Hence, a specific and reliable marker that identifies adipocytic differentiation is much sought. We investigated the immunohistochemical expression of PIM-1 kinase in 35 samples of soft tissue tumours using tissue microarray technology and 49 full sections of adipocytic (n = 26) and non-adipocytic tumours (n = 23). Benign and malignant adipocytic tumours showed strong expression of PIM-1 while the non-adipocytic tumours were either negative or showed only weak staining for the protein. In myxoid liposarcomas, PIM-1 showed a distinct, unique vacuolar staining pattern, clearly outlining fine cytoplasmic lipid vacuoles. By contrast, non-adipocytic myxoid tumours (myxoma, chordoma and myxoid chondrosarcoma) did not show this vacuolar pattern of PIM-1 staining, although vacuolated cells were present on H&E. This differential expression was confirmed at a gene expression level in selected cases. Our results indicate that the expression of PIM-1 in adipose tissue may be a useful marker of adipocytic differentiation, in particular if the staining is both of high intensity and present in a unique, vacuolar pattern. PMID:19878356

  4. Averrhoa carambola L. peel extract suppresses adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Rashid, Asyifah Mohamed; Lu, Kaihui; Yip, Yew Mun; Zhang, Dawei

    2016-02-01

    Obesity is associated with an increased risk of many chronic diseases. Recently, a growing body of evidence has shown that phytochemicals may inhibit adipogenesis and obesity. In this study, we report for the first time, the ability of Averrhoa carambola L. peel extract commonly known as star fruit (SFP) to effectively suppress adipocyte differentiation in 3T3-L1 preadipocytes and therefore, address it as a potential candidate to treat obesity and its related diseases. (-)-Epicatechin was identified as a bioactive compound likely responsible for this suppression. As the genetic expression studies revealed that the adipogenic activity of SFP extract was due to the simultaneous downregulation of the C/EBPα and PPARγ as well as the upregulation of PPARα receptor genes, a detailed computational docking study was also elucidated to reveal the likely binding mode of (-)-epicatechin to the receptor of interest, accounting for the likely mechanism that results in the overall suppression of adipocyte differentiation.

  5. Persimmon tannin represses 3T3-L1 preadipocyte differentiation via up-regulating expression of miR-27 and down-regulating expression of peroxisome proliferator-activated receptor-γ in the early phase of adipogenesis.

    PubMed

    Zou, Bo; Ge, Zhenzhen; Zhu, Wei; Xu, Ze; Li, Chunmei

    2015-12-01

    Currently, obesity has become a worldwide health problem. Adipocyte differentiation is closely associated with the onset of obesity. Our previous studies suggested that persimmon tannin might be a potent anti-adipogenic dietary bioactive compound. However, the mechanism of persimmon tannin on adipocyte differentiation is still unknown. The purpose of this study was to investigate the effect of persimmon tannin on adipogenic differentiation in 3T3-L1 preadipocytes and the underlying mechanisms. Adipogenic differentiation was induced by cocktail in the presence or absence of persimmon tannin. Intracellular lipid accumulation was determined by Oil red O staining and enzymatic colorimetric methods. Gene expression and protein levels were measured by real time RT-PCR and Western blot. Persimmon tannin inhibited intracellular lipid accumulation markedly, and the inhibitory effect was largely limited to the early stage of adipocyte differentiation. Persimmon tannin suppressed the expression of C/EBPα and peroxisome proliferator-activated receptor-γ (PPARγ), significantly. Furthermore, genes related to lipogenesis, such as sterol regulatory element-binding protein 1, were down-regulated by persimmon tannin. In addition, adipocyte fatty acid binding protein (aP2), which is a target gene of PPARγ, was suppressed by persimmon tannin notably. Correspondingly, the expression of miR-27a and miR-27b were up-regulated by persimmon tannin from Day 2 to Day 8 significantly. Persimmon tannin inhibited adipocyte differentiation through regulation of PPARγ, C/EBPα and miR-27 in early stage of adipogenesis.

  6. Differentiation of human pluripotent stem cells into highly functional classical brown adipocytes.

    PubMed

    Nishio, Miwako; Saeki, Kumiko

    2014-01-01

    We describe a detailed method for directed differentiation of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), into functional classical brown adipocytes (BAs) under serum-free and feeder-free conditions. It is a two-tiered culture system, based on very simple techniques, a floating culture and a subsequent adherent culture. It does not require gene transfer. The entire process can be carried out in about 10 days. The key point is the usage of our special hematopoietic cytokine cocktail. Almost all the differentiated cells express uncoupling protein 1, a BA-selective marker, as determined by immunostaining. The differentiated cells show characteristics of classical BA as assessed by morphology and gene/protein expression. Moreover, the expression of myoblast marker genes is transiently induced during the floating culture step. hESC/hiPSC-derived BAs show significantly higher oxygen consumption rates (OCRs) than white adipocytes generated from human mesenchymal stem cell. They also show responsiveness to adrenergic stimuli, with about twofold upregulation in OCR by β-adrenergic receptor (β-AR) agonist treatments. hESC/hiPSC-derived BAs exert in vivo calorigenic activities in response to β-AR agonist treatments as assessed by thermography. Finally, lipid and glucose metabolisms are significantly improved in hESC/hiPSC-derived BA-transplanted mice. Our system provides a highly feasible way to produce functional classical BA bearing metabolism-improving capacities from hESC/hiPSC under a feeder-free and serum-free condition without gene transfer. © 2014 Elsevier Inc. All rights reserved.

  7. The endocrine disruptor diethylstilbestrol induces adipocyte differentiation and promotes obesity in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Chan-Juan; Cheng, Xue-Jia; Xia, Hong-Fei, E-mail: hongfeixia@yahoo.com.cn

    Epidemiology studies indicate that exposure to endocrine disruptors during developmental “window” contributes to adipogenesis and the development of obesity. Implication of endocrine disruptor such as diethylstilbestrol (DES) on adipose tissue development has been poorly investigated. Here we evaluated the effects of DES on adipocyte differentiation in vitro and in vivo, and explored potential mechanism involved in its action. DES induced 3T3-L1 preadipocyte differentiation in a dose-dependent manner, and activated the expression of estrogen receptor (ER) and peroxisome proliferator-acivated receptor (PPAR) γ as well as its target genes required for adipogenesis in vitro. ER mediated the enhancement of DES-induced PPARγ activity.more » Moreover, DES perturbed key regulators of adipogenesis and lipogenic pathway in vivo. In utero exposure to low dose of DES significantly increased body weight, liver weight and fat mass in female offspring at postnatal day (PND) 60. In addition, serum triglyceride and glucose levels were also significantly elevated. These results suggest that perinatal exposure to DES may be expected to increase the incidence of obesity in a sex-dependent manner and can act as a potential chemical stressor for obesity and obesity-related disorders. -- Highlights: ► DES induced adipocyte differentiation in a dose-dependent manner in 3T3-L1 cells. ► DES activated adipogenic critical regulators and markers in vitro and in vivo. ► Perinatal exposure to DES led to the obese phenotype in female offspring. ► DES might be a potential chemical stressor for obesity and obesity-related disorders.« less

  8. GPR120 in adipocytes has differential roles in the production of pro-inflammatory adipocytokines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Arif Ul, E-mail: ahasan@med.kagawa-u.ac.jp; Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793; Ohmori, Koji

    GPR120 differentially regulates the pro-inflammatory adipocytokines. • Agonizing GPR120 in adipocytes attenuates NF-κB mediated IL-6 and CCL2 production. • Agonizing GPR120 concomitantly triggers a PKC mediated pro-inflammatory pathway. • However, the resulted effect in adipocytes remains anti-inflammatory. • Agonizing GPR120 in adipocytes reduces macrophage migration in a paracrine manner.« less

  9. Differentiation of Rat bone marrow Mesenchymal stem cells into Adipocytes and Cardiomyocytes after treatment with platelet lysate.

    PubMed

    Homayouni Moghadam, Farshad; Tayebi, Tahereh; Barzegar, Kazem

    2016-01-01

    Mesenchymal stem cells (MSCs) are multipotential cells and their therapeutic potency is under intense investigation. Studying the effect of different induction factors on MSCs could increase our knowledge about the differentiation potency of these cells. One of the most important sources of these factors in mammalian body is platelet. Platelet lysate (PL) contains many growth factors and therefore, it can be used as a differentiation inducer. In the present study, the effect of PL on differentiation of rat bone marrow MSCs into cardiomyocytes was studied. To study the differentiation-inducing effect of PL, MSCs were treated with 2.5, 5 and 10% PL. Early results of this study showed that PL in high concentrations (10%) induces adipogenic differentiation of MSCs. Therefore, to evaluate differentiation to cardiomyocytes, MSCs were cultured in media containing lower levels of PL (2.5% and 5%) and then cardiomyogenic differentiation was induced by treatment with 5-azacytidine. Differentiation of MSCs was evaluated using direct observation of beating cells, immunostaining and real-time PCR techniques. The results of qPCR showed that treatment with PL alone increased the expression of cardiac alpha actinin (CAA) being predictable by earlier observation of beating cells in PL-treated groups. The results of staining assays against cardiac alpha actinin also showed that there were stained cells in PL-treated groups. The results of the present study showed that PL is a powerful induction factor for differentiation of MSCs into different cell lines such as cardiomyocytes and adipocytes.

  10. Platyphylloside Isolated From Betula platyphylla Inhibit Adipocyte Differentiation and Induce Lipolysis Via Regulating Adipokines Including PPARγ in 3T3-L1 Cells

    PubMed Central

    Lee, Mina; Sung, Sang Hyun

    2016-01-01

    Background: Obesity causes or aggravates many health problems, both independently and in association with several pathological disorders, including Type II diabetes, hypertension, atherosclerosis, and cancer. Therefore, we screened small compounds isolated from natural products for the development of anti-obesity drugs. Objective: The purpose of this study was to investigate the anti-adipogenic activities of platyphylloside, diarylheptanoid isolated from Betula platyphylla, which was selected based on the screening using 3T3-L1 cells. Materials and Methods: To evaluate the inhibition of adipocyte differentiation and lipolysis, lipid contents of BPP on were measured using Oil Red O staining in 3T3-L1 cells. The mRNA and protein expression levels of various adipokines were measured by Quantitative real-time PCR and Western blotting analysis, respectively. Results: Platyphylloside showed significant inhibitory activity on adipocyte differentiation in 3T3-L1 cells and suppressed adipocyte differentiation even in the presence of troglitazone, a PPARγ agonist. Platyphylloside might suppress adipocyte differentiation through PPARγ, C/EBPα, and SREBP1-induced adipogenesis, which is synergistically associated with downstream adipocyte-specific gene promoters such as aP2, FAS, SCD-1, LPL, and Adiponectin. In addition, platyphylloside affected lipolysis by down-regulating perilipin and HSL and up-regulating TNFα. Conclusion: Taken together, the results reveal that platyphylloside has anti-adipogenic activity and highlight its potential in the prevention and treatment of obesity. SUMMARY The extract of B. platyphylla bark and its isolate, BPP, had anti-adipogenic activity in 3T3-L1 cells via suppression of adipocyte differentiation from preadipocytes.Treatment with BPP significantly down-regulated the expression of PPARγ, C/EBP, C/EBPβ, C/EBPδ, SREBP1c, SCD-1, FAS, aP2 and LPL.BPP induced a lipolytic response in mature adipocytes via up-regulation krof TNFá and down

  11. α-Naphthoflavone Increases Lipid Accumulation in Mature Adipocytes and Enhances Adipocyte-Stimulated Endothelial Tube Formation.

    PubMed

    Wang, Mei-Lin; Lin, Shyh-Hsiang; Hou, Yuan-Yu; Chen, Yue-Hwa

    2015-04-30

    The aryl hydrocarbon receptor (AhR) is a ligand-activated factor that regulates biological effects associated with obesity. The AhR agonists, such as environmental contaminants 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and β-naphthoflavone (BNF), inhibit preadipocyte differentiation and interfere with the functions of adipose tissue, whereas the antagonist may have opposite or protective effects in obesity. This study investigated the effects of α-naphthoflavone (α-NF), an AhR antagonist, on adipogenesis- and angiogenesis-associated factors in mature adipocytes and on cross-talk of mature adipocytes with endothelial cells (ECs). Besides, the roles of the AhR on lipid accumulation and on secretion of vascular endothelial growth factor were also determined by introducing siRNA of AhR. Differentiated 3T3-L1 cells were treated with α-naphthoflavone (α-NF) (1-5 μM) for 16 h. Lipid accumulation and the expressions of AhR-associated factors in the cells were determined. The interaction between adipocytes and ECs was investigated by cultivating ECs with conditioned medium (CM) from α-NF-treated mature adipocytes, followed by the determination of endothelial tube formation. The results showed that α-NF significantly increased triglyceride (TG) accumulation in mature adipocytes, which was associated with increased expression of hormone-sensitive lipase (HSL), estrogen receptor (ER), as well as decreased expression of AhR, AhR nuclear translocator (ARNT), cytochrome P4501B1 (CYP1B1), and nuclear factor erythroid-2-related factor (NRF-2) proteins. In addition, CM stimulated formation of tube-like structures in ECs, and α-NF further enhanced such stimulation in association with modulated the secretions of various angiogenic mediators by mature adipocytes. Similarly, increased TG accumulation and vascular endothelial growth factor (VEGF) secretion were observed in AhR-knockout cells. In conclusion, α-NF increased TG accumulation in mature adipocytes and enhanced

  12. Endocrine modulators of mouse subcutaneous adipose tissue beige adipocyte markers

    USDA-ARS?s Scientific Manuscript database

    The stromal vascular fraction (SVF) of subcutaneous adipose tissue contains precursors that can give rise to beige adipocytes. Beige adipocytes are characterized by the expression of specific markers, but it is not clear which markers best evaluate beige adipocyte differentiation. Both regulators of...

  13. Effect of black soybean koji extract on glucose utilization and adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Huang, Chi-Chang; Huang, Wen-Ching; Hou, Chien-Wen; Chi, Yu-Wei; Huang, Hui-Yu

    2014-05-09

    Adipocyte differentiation and the extent of subsequent fat accumulation are closely related to the occurrence and progression of diseases such as insulin resistance and obesity. Black soybean koji (BSK) is produced by the fermentation of black soybean with Aspergilllus awamori. Previous study indicated that BSK extract has antioxidative and multifunctional bioactivities, however, the role of BSK in the regulation of energy metabolism is still unclear. We aimed to investigate the effect of glucose utilization on insulin-resistant 3T3-L1 preadipocytes and adipogenesis-related protein expression in differentiated adipocytes with BSK treatment. Cytoxicity assay revealed that BSK did not adversely affect cell viability at levels up to 200 µg/mL. The potential for glucose utilization was increased by increased glucose transporter 1 (GLUT1), GLUT4 and protein kinase B (AKT) protein expression in insulin-resistant 3T3-L1 cells in response to BSK treatment. Simultaneously, BSK inhibited lipid droplet accumulation in differentiated 3T3-L1 cells. The inhibitory effect of adipogenesis was associated with downregulated peroxisome proliferator-activated receptor g (PPARγ) level and upregulated Acrp30 protein expression. Our results suggest that BSK extract could improve glucose uptake by modulating GLUT1 and GLUT4 expression in a 3T3-L1 insulin-resistance cell model. In addition, BSK suppressed differentiation and lipid accumulation in mature 3T3-L1 adipocytes, which may suggest its potential for food supplementation to prevent obesity and related metabolic abnormalities.

  14. Effects of quercetin, a natural phenolic compound, in the differentiation of human mesenchymal stem cells (MSC) into adipocytes and osteoblasts.

    PubMed

    Casado-Díaz, Antonio; Anter, Jaouad; Dorado, Gabriel; Quesada-Gómez, José Manuel

    2016-06-01

    Natural phenols may have beneficial properties against oxidative stress, which is associated with aging and major chronic aging-related diseases, such as loss of bone mineral mass (osteoporosis) and diabetes. The main aim of this study was to analyze the effect of quercetin, a major nutraceutical compound present in the "Mediterranean diet", on mesenchymal stem-cell (MSC) differentiation. Such cells were induced to differentiate into osteoblasts or adipocytes in the presence of two quercetin concentrations (0.1 and 10μM). Several physiological parameters and the expression of osteoblastogenesis and adipogenesis marker genes were monitored. Quercetin (10μM) inhibited cell proliferation, alkaline phosphatase (ALPL) activity and mineralization, down-regulating the expression of ALPL, collagen type I alpha 1 (COL1A1) and osteocalcin [bone gamma-carboxyglutamate protein (BGLAP)] osteoblastogenesis-related genes in MSC differentiating into osteoblasts. Moreover, in these cultures, CCAAT/enhancer-binding protein alpha (CEBPA) and peroxisome proliferator-activated receptor gamma 2 (PPARG2) adipogenic genes were induced, and cells differentiated into adipocytes were observed. Quercetin did not affect proliferation, but increased adipogenesis, mainly at 10-μM concentration in MSC induced to differentiate to adipocytes. β- and γ-catenin (plakoglobin) nuclear levels were reduced and increased, respectively, in quercetin-treated cultures. This suggests that the effect of high concentration of quercetin on MSC osteoblastic and adipogenic differentiation is mediated via Wnt/β-catenin inhibition. In conclusion, quercetin supplementation inhibited osteoblastic differentiation and promoted adipogenesis at the highest tested concentration. Such possible adverse effects of high quercetin concentrations should be taken into account in nutraceutical or pharmaceutical strategies using such flavonol. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Differentiation of Rat bone marrow Mesenchymal stem cells into Adipocytes and Cardiomyocytes after treatment with platelet lysate

    PubMed Central

    Homayouni Moghadam, Farshad; Tayebi, Tahereh; Barzegar, Kazem

    2016-01-01

    Background: Mesenchymal stem cells (MSCs) are multipotential cells and their therapeutic potency is under intense investigation. Studying the effect of different induction factors on MSCs could increase our knowledge about the differentiation potency of these cells. One of the most important sources of these factors in mammalian body is platelet. Platelet lysate (PL) contains many growth factors and therefore, it can be used as a differentiation inducer. In the present study, the effect of PL on differentiation of rat bone marrow MSCs into cardiomyocytes was studied. Materials and Methods: To study the differentiation-inducing effect of PL, MSCs were treated with 2.5, 5 and 10% PL. Early results of this study showed that PL in high concentrations (10%) induces adipogenic differentiation of MSCs. Therefore, to evaluate differentiation to cardiomyocytes, MSCs were cultured in media containing lower levels of PL (2.5% and 5%) and then cardiomyogenic differentiation was induced by treatment with 5-azacytidine. Differentiation of MSCs was evaluated using direct observation of beating cells, immunostaining and real-time PCR techniques. Results: The results of qPCR showed that treatment with PL alone increased the expression of cardiac alpha actinin (CAA) being predictable by earlier observation of beating cells in PL-treated groups. The results of staining assays against cardiac alpha actinin also showed that there were stained cells in PL-treated groups. Conclusion: The results of the present study showed that PL is a powerful induction factor for differentiation of MSCs into different cell lines such as cardiomyocytes and adipocytes. PMID:27047647

  16. Nitric oxide balances osteoblast and adipocyte lineage differentiation via the JNK/MAPK signaling pathway in periodontal ligament stem cells.

    PubMed

    Yang, Shan; Guo, Lijia; Su, Yingying; Wen, Jing; Du, Juan; Li, Xiaoyan; Liu, Yitong; Feng, Jie; Xie, Yongmei; Bai, Yuxing; Wang, Hao; Liu, Yi

    2018-05-02

    Critical tissues that undergo regeneration in periodontal tissue are of mesenchymal origin; thus, investigating the regulatory mechanisms underlying the fate of periodontal ligament stem cells could be beneficial for application in periodontal tissue regeneration. Nitric oxide (NO) regulates many biological processes in developing embryos and adult stem cells. The present study was designed to investigate the effects of NO on the function of human periodontal ligament stem cells (PDLSCs) as well as to elucidate the underlying molecular mechanisms. Immunofluorescent staining and flow cytometry were used for stem cell identification. Western blot, reverse transcription polymerase chain reaction (RT-PCR), immunofluorescent staining, and flow cytometry were used to examine the expression of NO-synthesizing enzymes. The proliferative capacity of PDLSCs was determined by EdU assays. The osteogenic potential of PDLSCs was tested using alkaline phosphatase (ALP) staining, Alizarin Red staining, and calcium concentration detection. Oil Red O staining was used to analyze the adipogenic ability. Western blot, RT-PCR, and staining were used to examine the signaling pathway. Human PDLSCs expressed both inducible NO synthase (iNOS) and endothelial NO synthase (eNOS) and produced NO. Blocking the generation of NO with the NOS inhibitor L-N G -monomethyl arginine (L-NMMA) had no influence on PDLSC proliferation and apoptosis but significantly attenuated the osteogenic differentiation capacity and stimulated the adipogenic differentiation capacity of PDLSCs. Increasing the physiological level of NO with NO donor sodium nitroprusside (SNP) significantly promoted the osteogenic differentiation capacity but reduced the adipogenic differentiation capacity of PDLSCs. NO balances the osteoblast and adipocyte lineage differentiation in periodontal ligament stem cells via the c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase (MAPK) signaling pathway. NO is essential for

  17. Effects of Leucine Supplementation and Serum Withdrawal on Branched-Chain Amino Acid Pathway Gene and Protein Expression in Mouse Adipocytes

    PubMed Central

    Vivar, Juan C.; Knight, Megan S.; Pointer, Mildred A.; Gwathmey, Judith K.; Ghosh, Sujoy

    2014-01-01

    The essential branched-chain amino acids (BCAA), leucine, valine and isoleucine, are traditionally associated with skeletal muscle growth and maintenance, energy production, and generation of neurotransmitter and gluconeogenic precursors. Recent evidence from human and animal model studies has established an additional link between BCAA levels and obesity. However, details of the mechanism of regulation of BCAA metabolism during adipogenesis are largely unknown. We interrogated whether the expression of genes and proteins involved in BCAA metabolism are sensitive to the adipocyte differentiation process, and responsive to nutrient stress from starvation or BCAA excess. Murine 3T3-L1 preadipocytes were differentiated to adipocytes under control conditions and under conditions of L-leucine supplementation or serum withdrawal. RNA and proteins were isolated at days 0, 4 and 10 of differentiation to represent pre-differentiation, early differentiation and late differentiation stages. Expression of 16 BCAA metabolism genes was quantified by quantitative real-time PCR. Expression of the protein levels of branched-chain amino acid transaminase 2 (Bcat2) and branched-chain alpha keto acid dehydrogenase (Bckdha) was quantified by immunoblotting. Under control conditions, all genes displayed induction of gene expression during early adipogenesis (Day 4) compared to Day 0. Leucine supplementation resulted in an induction of Bcat2 and Bckdha genes during early and late differentiation. Western blot analysis demonstrated condition-specific concordance between gene and protein expression. Serum withdrawal resulted in undetectable Bcat2 and Bckdha protein levels at all timepoints. These results demonstrate that the expression of genes related to BCAA metabolism are regulated during adipocyte differentiation and influenced by nutrient levels. These results provide additional insights on how BCAA metabolism is associated with adipose tissue function and extends our understanding of

  18. SIRT1 Limits Adipocyte Hyperplasia through c-Myc Inhibition*

    PubMed Central

    Abdesselem, Houari; Madani, Aisha; Hani, Ahmad; Al-Noubi, Muna; Goswami, Neha; Ben Hamidane, Hisham; Billing, Anja M.; Pasquier, Jennifer; Bonkowski, Michael S.; Halabi, Najeeb; Dalloul, Rajaa; Sheriff, Mohamed Z.; Mesaeli, Nasrin; ElRayess, Mohamed; Sinclair, David A.; Graumann, Johannes; Mazloum, Nayef A.

    2016-01-01

    The expansion of fat mass in the obese state is due to increased adipocyte hypertrophy and hyperplasia. The molecular mechanism that drives adipocyte hyperplasia remains unknown. The NAD+-dependent protein deacetylase sirtuin 1 (SIRT1), a key regulator of mammalian metabolism, maintains proper metabolic functions in many tissues, counteracting obesity. Here we report that differentiated adipocytes are hyperplastic when SIRT1 is knocked down stably in mouse 3T3-L1 preadipocytes. This phenotype is associated with dysregulated adipocyte metabolism and enhanced inflammation. We also demonstrate that SIRT1 is a key regulator of proliferation in preadipocytes. Quantitative proteomics reveal that the c-Myc pathway is altered to drive enhanced proliferation in SIRT1-silenced 3T3-L1 cells. Moreover, c-Myc is hyperacetylated, levels of p27 are reduced, and cyclin-dependent kinase 2 (CDK2) is activated upon SIRT1 reduction. Remarkably, differentiating SIRT1-silenced preadipocytes exhibit enhanced mitotic clonal expansion accompanied by reduced levels of p27 as well as elevated levels of CCAAT/enhancer-binding protein β (C/EBPβ) and c-Myc, which is also hyperacetylated. c-Myc activation and enhanced proliferation phenotype are also found to be SIRT1-dependent in proliferating mouse embryonic fibroblasts and differentiating human SW872 preadipocytes. Reducing both SIRT1 and c-Myc expression in 3T3-L1 cells simultaneously does not induce the adipocyte hyperplasia phenotype, confirming that SIRT1 controls adipocyte hyperplasia through c-Myc regulation. A better understanding of the molecular mechanisms of adipocyte hyperplasia will open new avenues toward understanding obesity. PMID:26655722

  19. Extending Human Hematopoietic Stem Cell Survival In Vitro with Adipocytes

    PubMed Central

    Glettig, Dean Liang

    2013-01-01

    Abstract Human hematopoietic stem cells (hHSCs) cannot be maintained in vitro for extended time periods because they rapidly differentiate or die. To extend in vitro culture time, researchers have made attempts to use human mesenchymal stem cells (hMSCs) to create feeder layers that mimic the stem cell niche. We have conducted an array of experiments including adipocytes in these feeder layers that inhibit hHSC differentiation and by that prolong stem cell survival in vitro. The amount of CD34+ cells was quantified using flow cytometry. In a first experiment, feeder layers of undifferentiated hMSCs were compared with feeder layers differentiated toward osteoblasts or adipocytes using minimal medium, showing the highest survival rate where adipocytes were included. The same conclusion was drawn in a second experiment in comparing hMSCs with adipogenic feeder cells, using a culture medium supplemented with a cocktail of hHSC growth factors. In a third experiment, it was shown that direct cell–cell contact is necessary for the supportive effect of the feeder layers. In a fourth and fifth experiment the amount of adipocytes in the feeder layers were varied, and in all experiments a higher amount of adipocytes in the feeder layers showed a less rapid decay of CD34+ cells at later time points. We therefore concluded that adipocytes assist in suppressing hHSC differentiation and aid in prolonging their survival in vitro. PMID:23741628

  20. Connective tissue growth factor regulates adipocyte differentiation of mesenchymal stromal cells and facilitates leukemia bone marrow engraftment

    PubMed Central

    Battula, V. Lokesh; Chen, Ye; Cabreira, Maria da Graca; Ruvolo, Vivian; Wang, Zhiqiang; Ma, Wencai; Konoplev, Sergej; Shpall, Elizabeth; Lyons, Karen; Strunk, Dirk; Bueso-Ramos, Carlos; Davis, Richard Eric; Konopleva, Marina

    2013-01-01

    Mesenchymal stromal cells (MSCs) are a major component of the leukemia bone marrow (BM) microenvironment. Connective tissue growth factor (CTGF) is highly expressed in MSCs, but its role in the BM stroma is unknown. Therefore, we knocked down (KD) CTGF expression in human BM-derived MSCs by CTGF short hairpin RNA. CTGF KD MSCs exhibited fivefold lower proliferation compared with control MSCs and had markedly fewer S-phase cells. CTGF KD MSCs differentiated into adipocytes at a sixfold higher rate than controls in vitro and in vivo. To study the effect of CTGF on engraftment of leukemia cells into BM, an in vivo model of humanized extramedullary BM (EXM-BM) was developed in NOD/SCID/IL-2rgnull mice. Transplanted Nalm-6 or Molm-13 human leukemia cells engrafted at a threefold higher rate in adipocyte-rich CTGF KD MSC-derived EXM-BM than in control EXM-BM. Leptin was found to be highly expressed in CTGF KD EXM-BM and in BM samples of patients with acute myeloid and acute lymphoblastic leukemia, whereas it was not expressed in normal controls. Given the established role of the leptin receptor in leukemia cells, the data suggest an important role of CTGF in MSC differentiation into adipocytes and of leptin in homing and progression of leukemia. PMID:23741006

  1. Effects of MicroRNA-23a on Differentiation and Gene Expression Profiles in 3T3-L1 Adipocytes

    PubMed Central

    Huang, Yong; Huang, Jinxiu; Qi, Renli; Wang, Qi; Wu, Yongjiang; Wang, Jing

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate growth, development, and programmed death of cells. A newly-published study has shown that miRNA-23a could regulate 3T3-L1 adipocyte differentiation. Here, we identified miRNA-23a as a negative regulator of 3T3-L1 adipocyte differentiation again. Over-expression of miRNA-23a inhibited differentiation and decreased lipogenesis as well as down-regulated mRNA and protein expression of both peroxisome proliferator-activated receptor (PPAR) γ and fatty acid binding protein (FABP) 4, whereas knock down of miRNA-23a showed the opposite effects on differentiation as well as increasing the number of apoptotic cells. Additionally, digital gene expression profiling sequencing (DGE-Seq) was used to assay changes in gene expression profiles following alterations in the level of miR-23a. In total, over-expression or knock down of miRNA-23a significantly changed the expression of 313 and 425 genes, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these genes were mainly involved in the stress response, immune system, metabolism, cell cycle, among other pathways. Additionally, the signal transducer and activator of transcription 1 (Stat1) was shown to be a target of miRNA-23a by computational and dual-luciferase reporter assays that indicated Janus Kinase (Jak)-Stat signal pathway was implicated in regulating adipogenesis mediated by miRNA-23a in adipocytes. PMID:27783036

  2. Regulation of adipocytokine secretion and adipocyte hypertrophy by polymethoxyflavonoids, nobiletin and tangeretin.

    PubMed

    Miyata, Yoshiki; Tanaka, Haruyuki; Shimada, Arata; Sato, Takashi; Ito, Akira; Yamanouchi, Toshikazu; Kosano, Hiroshi

    2011-03-28

    The polymethoxyflavonoids nobiletin and tangeretin possess several important biological properties such as neuroprotective, antimetastatic, anticancer, and anti-inflammatory properties. The present study was undertaken to examine whether nobiletin and tangeretin could modulate adipocytokine secretion and to evaluate the effects of these flavonoids on the hypertrophy of mature adipocytes. All experiments were performed on the murine preadipocyte cell line 3T3-L1. We studied the formation of intracellular lipid droplets in adipocytes and the apoptosis-inducing activity to evaluate the effects of polymethoxyflavonoids on adipocyte differentiation and hypertrophy, respectively. The secretion of adipocytokines was measured using ELISA. We demonstrated that the combined treatment of differentiation reagents with nobiletin or tangeretin differentiated 3T3-L1 preadipocytes into adipocytes possessing less intracellular triglyceride as compared to vehicle-treated differentiated 3T3-L1 adipocytes. Both flavonoids increased the secretion of an insulin-sensitizing factor, adiponectin, but concomitantly decreased the secretion of an insulin-resistance factor, MCP-1, in 3T3-L1 adipocytes. Furthermore, nobiletin was found to decrease the secretion of resistin, which serves as an insulin-resistance factor. In mature 3T3-L1 adipocytes, nobiletin induced apoptosis; tangeretin, in contrast, did not induce apoptosis, but suppressed further triglyceride accumulation. Our results suggest that nobiletin and tangeretin are promising therapeutic candidates for the prevention and treatment of insulin resistance by modulating the adipocytokine secretion balance. We also demonstrated the different effects of nobiletin and tangeretin on mature adipocytes. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a humanmore » adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The

  4. Using Brillouin microspectroscopy to characterize adipocytes' response to lipid droplet accumulation

    NASA Astrophysics Data System (ADS)

    Troyanova-Wood, Maria; Coker, Zachary; Traverso, Andrew; Yakovlev, Vladislav V.

    2017-02-01

    Obesity and overweight are accompanied by an enlargement of adipocytes, which is commonly related to the increasing number or size of lipid droplets within the cells. Some studies have shown that the accumulation of lipid droplets within adipocytes results in their increased stiffness. Recently, Brillouin microspectroscopy has been introduced as a nondestructive method of imaging the elasticity of cells. Unlike other imaging modalities, it is capable of assessing the elastic properties on both tissue- and cell levels. In this study, Brillouin spectroscopy was used to measure the elasticity changes in response to accumulation of lipid droplets within adipocyte during adipogenesis. The cell line used in the study is 3T3-L1, with chemically-induced differentiation from pre-adipocytes to mature adipocytes. The Brillouin shift measurements of the cells before and after differentiation indicate that the stiffness of adipocytes increases due to accumulation of lipid droplets. The results are in agreement with previous atomic force microscopy (AFM) nanoindentation studies. Brillouin microspectroscopy is a technique suitable for measuring the changes of elasticity of adipocytes in response to lipid droplet accumulation.

  5. Tributyltin and triphenyltin exposure promotes in vitro adipogenic differentiation but alters the adipocyte phenotype in rainbow trout.

    PubMed

    Lutfi, Esmail; Riera-Heredia, Natàlia; Córdoba, Marlon; Porte, Cinta; Gutiérrez, Joaquim; Capilla, Encarnación; Navarro, Isabel

    2017-07-01

    Numerous environmental pollutants have been identified as potential obesogenic compounds affecting endocrine signaling and lipid homeostasis. Among them, well-known organotins such as tributyltin (TBT) and triphenyltin (TPT), can be found in significant concentrations in aquatic environments. The aim of the present study was to investigate in vitro the effects of TBT and TPT on the development and lipid metabolism of rainbow trout (Onchorynchus mykiss) primary cultured adipocytes. Results showed that TBT and TPT induced lipid accumulation and slightly enhanced peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT enhancer binding protein alpha (C/EBPα) protein expression when compared to a control, both in the presence or absence of lipid mixture. However, the effects were higher when combined with lipid, and in the absence of it, the organotins did not cause complete mature adipocyte morphology. Regarding gene expression analyses, exposure to TBT and TPT caused an increase in fatty acid synthase (fasn) mRNA levels confirming the pro-adipogenic properties of these compounds. In addition, when added together with lipid, TBT and TPT significantly increased cebpa, tumor necrosis factor alpha (tnfa) and ATP-binding cassette transporter 1 (abca1) mRNA levels suggesting a synergistic effect. Overall, our data highlighted that TBT and TPT activate adipocyte differentiation in rainbow trout supporting an obesogenic role for these compounds, although by themselves they are not able to induce complete adipocyte development and maturation suggesting that these adipocytes might not be properly functional. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Differentiation of rat brown adipocytes during late foetal development: role of insulin-like growth factor I.

    PubMed Central

    Teruel, T; Valverde, A M; Alvarez, A; Benito, M; Lorenzo, M

    1995-01-01

    Rat brown adipocytes at day 22 of foetal development showed greater size, higher mitochondria content and larger amounts of lipids, as determined by flow cytometry, than 20-day foetal cells. Simultaneously, an inhibition on the percentage of brown adipocytes into S+G2/M phases of the cell cycle was observed between days 20 and 22 of foetal development. The expression of several adipogenesis-related genes, such as fatty acid synthase, malic enzyme, glucose-6-phosphate dehydrogenase and insulin-regulated glucose transporter, increased at the end of foetal life in brown adipose tissue. In addition, the lipogenic enzyme activities and the lipogenic flux increased during late foetal development, resulting in mature brown adipocytes showing a multilocular fat droplet phenotype. Concurrently, brown adipocytes induced the expression of the uncoupling protein (UP) mRNA and UP protein, as visualized by immunofluorescence. The three isoforms of CCAAT enhancer-binding proteins (C/EBPs) were expressed at the mRNA level in brown adipose tissue at day 20. C/EBP alpha decreased and C/EBP beta and delta increased their expression between days 20 and 22 of foetal development, respectively. Brown adipose tissue constitutively expressed insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR) mRNAs. Moreover, IGF-IR mRNA content increased between days 20 and 22 in parallel with the occurrence of tissue differentiation. Images Figure 2 Figure 3 Figure 4 PMID:7575409

  7. Effects of Tithonia diversifolia (Hemsl.) A. Gray Extract on Adipocyte Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Di Giacomo, Claudia; Vanella, Luca; Sorrenti, Valeria; Santangelo, Rosa; Barbagallo, Ignazio; Calabrese, Giovanna; Genovese, Carlo; Mastrojeni, Silvana; Ragusa, Salvatore; Acquaviva, Rosaria

    2015-01-01

    Tithonia diversifolia (Hemsl.) A. Gray (Asteraceae) is widely used in traditional medicine. There is increasing interest on the in vivo protective effects of natural compounds contained in plants against oxidative damage caused from reactive oxygen species. In the present study the total phenolic and flavonoid contents of aqueous, methanol and dichloromethane extracts of leaves of Tithonia diversifolia (Hemsl.) A. Gray were determined; furthermore, free radical scavenging capacity of each extract and the ability of these extracts to inhibit in vitro plasma lipid peroxidation were also evaluated. Since oxidative stress may be involved in trasformation of pre-adipocytes into adipocytes, to test the hypothesis that Tithonia extract may also affect adipocyte differentiation, human mesenchymal stem cell cultures were treated with Tithonia diversifolia aqueous extract and cell viability, free radical levels, Oil-Red O staining and western bolt analysis for heme oxygenase and 5'-adenosine monophoshate-activated protein kinase were carried out. Results obtained in the present study provide evidence that Tithonia diversifolia (Hemsl.) A. Gray exhibits interesting health promoting properties, resulting both from its free radical scavenger capacity and also by induction of protective cellular systems involved in cellular stress defenses and in adipogenesis of mesenchymal cells. PMID:25848759

  8. Identification of Regulatory Elements That Control PPARγ Expression in Adipocyte Progenitors

    PubMed Central

    Chou, Wen-Ling; Galmozzi, Andrea; Partida, David; Kwan, Kevin; Yeung, Hui; Su, Andrew I.; Saez, Enrique

    2013-01-01

    Adipose tissue renewal and obesity-driven expansion of fat cell number are dependent on proliferation and differentiation of adipose progenitors that reside in the vasculature that develops in coordination with adipose depots. The transcriptional events that regulate commitment of progenitors to the adipose lineage are poorly understood. Because expression of the nuclear receptor PPARγ defines the adipose lineage, isolation of elements that control PPARγ expression in adipose precursors may lead to discovery of transcriptional regulators of early adipocyte determination. Here, we describe the identification and validation in transgenic mice of 5 highly conserved non-coding sequences from the PPARγ locus that can drive expression of a reporter gene in a manner that recapitulates the tissue-specific pattern of PPARγ expression. Surprisingly, these 5 elements appear to control PPARγ expression in adipocyte precursors that are associated with the vasculature of adipose depots, but not in mature adipocytes. Characterization of these five PPARγ regulatory sequences may enable isolation of the transcription factors that bind these cis elements and provide insight into the molecular regulation of adipose tissue expansion in normal and pathological states. PMID:24009687

  9. Different anti-adipogenic effects of bio-compounds on primary visceral pre-adipocytes and adipocytes

    PubMed Central

    Colitti, Monica; Stefanon, Bruno

    2016-01-01

    Several natural compounds exhibit strong capacity for decreasing triglyceride accumulation, enhancing lipolysis and inducing apoptosis. The present study reports the anti-adipogenic effects of Silybum marianum (SL), Citrus aurantium (CA), Taraxacum officinale (TO), resveratrol (RE), Curcuma longa (CU), caffeine (CF), oleuropein (OL) and docosahexaenoic acid (DHA) in reducing differentiation and increasing lipolysis and apoptosis. Analyses were performed on human primary visceral pre-adipocytes after 10 (P10) and 20 (P20) days of treatment during differentiation and on mature adipocytes after 7 days of treatment (A7). The percentage of apoptosis induced by TO extract in P10 and P20 cells was significantly higher than that induced by all other compounds and in CTRL cells. Triglyceride accumulation was significantly lower in cells treated with DHA, CF, RE in comparison to cells treated with OL and in CTRL cells. Treatments with CF, DHA and OL significantly incremented lipolysis in P20 cells in comparison to other compounds and in CTRL cells. On the contrary, the treatment of A7 cells with OL, CA and TO compounds significantly increased cell lipolysis. The addition of CF in differentiating P20 pre-adipocytes significantly increased the expression of genes involved in inhibition of adipogenesis, such as GATA2, GATA3, WNT1, WNT3A, SFRP5, and DLK1. Genes involved in promoting adipogenesis such as CCND1, CEBPB and SREBF1 were significantly down-regulated by the treatment. The screening of bioactive compounds for anti-adipogenic effects showed that in differentiating cells TO extract was the most effective in inducing apoptosis and CF and DHA extracts were more efficient in inhibition of differentiation and in induction of cell lipolysis. PMID:27540349

  10. FTO Obesity Variant Circuitry and Adipocyte Browning in Humans.

    PubMed

    Claussnitzer, Melina; Dankel, Simon N; Kim, Kyoung-Han; Quon, Gerald; Meuleman, Wouter; Haugen, Christine; Glunk, Viktoria; Sousa, Isabel S; Beaudry, Jacqueline L; Puviindran, Vijitha; Abdennur, Nezar A; Liu, Jannel; Svensson, Per-Arne; Hsu, Yi-Hsiang; Drucker, Daniel J; Mellgren, Gunnar; Hui, Chi-Chung; Hauner, Hans; Kellis, Manolis

    2015-09-03

    Genomewide association studies can be used to identify disease-relevant genomic regions, but interpretation of the data is challenging. The FTO region harbors the strongest genetic association with obesity, yet the mechanistic basis of this association remains elusive. We examined epigenomic data, allelic activity, motif conservation, regulator expression, and gene coexpression patterns, with the aim of dissecting the regulatory circuitry and mechanistic basis of the association between the FTO region and obesity. We validated our predictions with the use of directed perturbations in samples from patients and from mice and with endogenous CRISPR-Cas9 genome editing in samples from patients. Our data indicate that the FTO allele associated with obesity represses mitochondrial thermogenesis in adipocyte precursor cells in a tissue-autonomous manner. The rs1421085 T-to-C single-nucleotide variant disrupts a conserved motif for the ARID5B repressor, which leads to derepression of a potent preadipocyte enhancer and a doubling of IRX3 and IRX5 expression during early adipocyte differentiation. This results in a cell-autonomous developmental shift from energy-dissipating beige (brite) adipocytes to energy-storing white adipocytes, with a reduction in mitochondrial thermogenesis by a factor of 5, as well as an increase in lipid storage. Inhibition of Irx3 in adipose tissue in mice reduced body weight and increased energy dissipation without a change in physical activity or appetite. Knockdown of IRX3 or IRX5 in primary adipocytes from participants with the risk allele restored thermogenesis, increasing it by a factor of 7, and overexpression of these genes had the opposite effect in adipocytes from nonrisk-allele carriers. Repair of the ARID5B motif by CRISPR-Cas9 editing of rs1421085 in primary adipocytes from a patient with the risk allele restored IRX3 and IRX5 repression, activated browning expression programs, and restored thermogenesis, increasing it by a factor of 7

  11. Bone marrow adipocytes: a neglected target tissue for growth hormone.

    PubMed

    Gevers, Evelien F; Loveridge, Nigel; Robinson, Iain C A F

    2002-10-01

    Bone marrow (BM) contains numerous adipocytes. These share a common precursor with osteoblasts and chondrocytes, but their function is unknown. It is unclear what regulates the differentiation of these three different cell types, though their subsequent metabolic activity is under hormonal regulation. GH and estrogen stimulate bone growth and mineralization, by direct effects on chondrocytes and osteoblasts. GH also stimulates lipolysis in subcutaneous and visceral adipocytes. However, adipocytes in BM have largely been ignored as potential targets for GH or estrogen action. We have addressed this by measuring BM adipocyte number, perimeter and area as well as bone area and osteoblast activity in GH-deficient dwarf (dw/dw), normal, or ovariectomized (Ovx) rats, with or without GH, IGF-1, PTH, or estrogen treatment or high fat feeding. Marrow adipocyte numbers were increased 5-fold (P < 0.001) in dw/dw rats, and cell size was also increased by 20%. These values returned toward normal in dw/dw rats given GH but not when given IGF-1. Cancellous bone area and osteoblast number were significantly (P < 0.005) lower in dw/dw rats, though alkaline phosphatase (ALP) activity in individual osteoblasts was unchanged. GH treatment increased % osteoblast covered bone surface without affecting individual cell ALP activity. Ovariectomy in normal or dw/dw rats had no affect on marrow adipocyte number nor size, although estrogen treatment in ovariectomized (Ovx) normal rats did increase adipocyte number. Ovx decreased tibial cancellous bone area in normal rats (64%; P < 0.05) and decreased osteoblast ALP-activity (P < 0.01) but did not affect the percentage of osteoblast-covered bone surface. Estrogen replacement reversed these changes. While treatment with PTH by continuous sc infusion decreased cancellous bone (P < 0.05) and high fat feeding increased the size of BM adipocytes (P < 0.01), they did not affect BM adipocyte number. These results suggest that GH has a specific action

  12. Initial differences in lipid processing leading to pig-and beef-derived mature adipocyte differentiation

    USDA-ARS?s Scientific Manuscript database

    Clonal cultures of pig-derived mature adipocytes are capable of dedifferentiating and forming proliferative-competent progeny cells in vitro. Initial lipid processing, is different to that observed in cultures of beef-derived adipocytes. Mature pig adipocytes extrude lipid before proliferation, wher...

  13. Adipocytes properties and crosstalk with immune system in obesity-related inflammation.

    PubMed

    Maurizi, Giulia; Della Guardia, Lucio; Maurizi, Angela; Poloni, Antonella

    2018-01-01

    Obesity is a condition likely associated with several dysmetabolic conditions or worsening of cardiovascular and other chronic disturbances. A key role in this mechanism seem to be played by the onset of low-grade systemic inflammation, highlighting the importance of the interplay between adipocytes and immune system cells. Adipocytes express a complex and highly adaptive biological profile being capable to selectively activate different metabolic pathways in order to respond to environmental stimuli. It has been demonstrated how adipocytes, under appropriate stimulation, can easily differentiate and de-differentiate thereby converting themselves into different phenotypes according to metabolic necessities. Although underlying mechanisms are not fully understood, growing in adipocyte size and the inability of storing triglycerides under overfeeding conditions seem to be crucial for the switching to a dysfunctional metabolic profile, which is characterized by inflammatory and apoptotic pathways activation, and by the shifting to pro-inflammatory adipokines secretion. In obesity, changes in adipokines secretion along with adipocyte deregulation and fatty acids release into circulation contribute to maintain immune cells activation as well as their infiltration into regulatory organs. Over the well-established role of macrophages, recent findings suggest the involvement of new classes of immune cells such as T regulatory lymphocytes and neutrophils in the development inflammation and multi systemic worsening. Deeply understanding the pathways of adipocyte regulation and the de-differentiation process could be extremely useful for developing novel strategies aimed at curbing obesity-related inflammation and related metabolic disorders. © 2017 Wiley Periodicals, Inc.

  14. Antioxidant, anti-adipocyte differentiation, antitumor activity and anthelmintic activities against Anisakis simplex and Hymenolepis nana of yakuchinone A from Alpinia oxyphylla

    PubMed Central

    2013-01-01

    Background Alpinia oxyphylla is a common remedy in traditional Chinese medicine. Yakuchinone A is a major constituent of A. oxyphylla and exhibits anti-inflammatory, antitumor, antibacterial, and gastric protective activities. Methods Antioxidant and antitumor characteristics of yakuchinone A in skin cancer cells as well as novel mechanisms for the inhibition of adipocyte differentiation, cestocidal activities against Hymenolepis nana adults, and nematocidal activities against Anisakis simplex larvae are investigated. Results Yakuchinone A presents the ability of the removal of DPPH·and ABTS+ free radicals and inhibition of lipid peroxidation. Yakuchinone A suppresses intracellular lipid accumulation during adipocyte differentiation in 3 T3-L1 cells and the expressions of leptin and peroxisome proliferator-activated receptor γ (PPARγ). Yakuchinone A induces apoptosis and inhibits cell proliferation in skin cancer cells. The inhibition of cell growth by yakuchinone A is more significant for non-melanoma skin cancer (NMSC) cells than for melanoma (A375 and B16) and noncancerous (HaCaT and BNLCL2) cells. Treatment BCC cells with yakuchinone A shows down-regulation of Bcl-2, up-regulation of Bax, and an increase in cleavage poly (ADP-ribose) polymerase (PARP). This suggests that yakuchinone A induces BCC cells apoptosis through the Bcl-2-mediated signaling pathway. The anthelmintic activities of yakuchinone A for A. simplex are better than for H. nana. Conclusions In this work, yakuchinone A exhibits antioxidative properties, anti-adipocyte differentiation, antitumor activity, and anthelmintic activities against A. simplex and H. nana. PMID:24070160

  15. Increased extracellular and intracellular Ca{sup 2+} lead to adipocyte accumulation in bone marrow stromal cells by different mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Ryota, E-mail: hryota@juntendo.ac.jp; Katoh, Youichi, E-mail: katoyo@juntendo-urayasu.jp; Department of Cardiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421

    2015-02-20

    Mesenchymal stem cells found in bone marrow stromal cells (BMSCs) are the common progenitors for both adipocyte and osteoblast. An increase in marrow adipogenesis is associated with age-related osteopenia and anemia. Both extracellular and intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub o} and [Ca{sup 2+}]{sub i}) are versatile signaling molecules that are involved in the regulation of cell functions, including proliferation and differentiation. We have recently reported that upon treatment of BMSCs with insulin and dexamethasone, both high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} enhanced adipocyte accumulation, which suggested that increases in [Ca{sup 2+}]{sub o} caused by bone resorption maymore » accelerate adipocyte accumulation in aging and diabetic patients. In this study, we used primary mouse BMSCs to investigate the mechanisms by which high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} may enhance adipocyte accumulation. In the process of adipocyte accumulation, two important keys are adipocyte differentiation and the proliferation of BMSCs, which have the potential to differentiate into adipocytes. Use of MTT assay and real-time RT-PCR revealed that high [Ca{sup 2+}]{sub i} (ionomycin)-dependent adipocyte accumulation is caused by enhanced proliferation of BMSCs but not enhanced differentiation into adipocytes. Using fura-2 fluorescence-based approaches, we showed that high [Ca{sup 2+}]{sub o} (addition of CaCl{sub 2}) leads to increases in [Ca{sup 2+}]{sub i}. Flow cytometric methods revealed that high [Ca{sup 2+}]{sub o} suppressed the phosphorylation of ERK independently of intracellular Ca{sup 2+}. The inhibition of ERK by U0126 and PD0325901 enhanced the differentiation of BMSCs into adipocytes. These data suggest that increased extracellular Ca{sup 2+} provides the differentiation of BMSCs into adipocytes by the suppression of ERK activity independently of increased intracellular Ca{sup 2+}, which results in BMSC proliferation

  16. Dehydroepiandrosterone exerts antiglucocorticoid action on human preadipocyte proliferation, differentiation, and glucose uptake

    PubMed Central

    McNelis, Joanne C.; Manolopoulos, Konstantinos N.; Gathercole, Laura L.; Bujalska, Iwona J.; Stewart, Paul M.; Tomlinson, Jeremy W.

    2013-01-01

    Glucocorticoids increase adipocyte proliferation and differentiation, a process underpinned by the local reactivation of inactive cortisone to active cortisol within adipocytes catalyzed by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). The adrenal sex steroid precursor dehydroepiandrosterone (DHEA) has been shown to inhibit 11β-HSD1 in murine adipocytes; however, rodent adrenals do not produce DHEA physiologically. Here, we aimed to determine the effects and underlying mechanisms of the potential antiglucocorticoid action of DHEA and its sulfate ester DHEAS in human preadipocytes. Utilizing a human subcutaneous preadipocyte cell line, Chub-S7, we examined the metabolism and effects of DHEA in human adipocytes, including adipocyte proliferation, differentiation, 11β-HSD1 expression, and activity and glucose uptake. DHEA, but not DHEAS, significantly inhibited preadipocyte proliferation via cell cycle arrest in the G1 phase independent of sex steroid and glucocorticoid receptor activation. 11β-HSD1 oxoreductase activity in differentiated adipocytes was inhibited by DHEA. DHEA coincubated with cortisone significantly inhibited preadipocyte differentiation, which was assessed by the expression of markers of early (LPL) and terminal (G3PDH) adipocyte differentiation. Coincubation with cortisol, negating the requirement for 11β-HSD1 oxoreductase activity, diminished the inhibitory effect of DHEA. Further consistent with glucocorticoid-opposing effects of DHEA, insulin-independent glucose uptake was significantly enhanced by DHEA treatment. DHEA increases basal glucose uptake and inhibits human preadipocyte proliferation and differentiation, thereby exerting an antiglucocorticoid action. DHEA inhibition of the amplification of glucocorticoid action mediated by 11β-HSD1 contributes to the inhibitory effect of DHEA on human preadipocyte differentiation. PMID:24022868

  17. Identification of adipocyte adhesion molecule (ACAM), a novel CTX gene family, implicated in adipocyte maturation and development of obesity

    PubMed Central

    2004-01-01

    Few cell adhesion molecules have been reported to be expressed in mature adipocytes, and the significance of cell adhesion process in adipocyte biology is also unknown. In the present study, we identified ACAM (adipocyte adhesion molecule), a novel homologue of the CTX (cortical thymocyte marker in Xenopus) gene family. ACAM cDNA was isolated during PCR-based cDNA subtraction, and its mRNA was shown to be up-regulated in WATs (white adipose tissues) of OLETF (Otsuka Long–Evans Tokushima fatty) rats, an animal model for Type II diabetes and obesity. ACAM, 372 amino acids in total, has a signal peptide, V-type (variable) and C2-type (constant) Ig domains, a single transmembrane segment and a cytoplasmic tail. The amino acid sequence in rat is highly homologous to mouse (94%) and human (87%). ACAM mRNA was predominantly expressed in WATs in OLETF rats, and increased with the development of obesity until 30 weeks of age, which is when the peak of body mass is reached. Western blot analysis revealed that ACAM protein, approx. 45 kDa, was associated with plasma membrane fractions of mature adipocytes isolated from mesenteric and subdermal adipose deposits of OLETF rats. Up-regulation of ACAM mRNAs in obesity was also shown in WATs of genetically obese db/db mice, diet-induced obese ICR mice and human obese subjects. In primary cultured mouse and human adipocytes, ACAM mRNA expression was progressively up-regulated during differentiation. Several stably transfected Chinese-hamster ovary K1 cell lines were established, and the quantification of ACAM mRNA and cell aggregation assay revealed that the degree of homophilic aggregation correlated well with ACAM mRNA expression. In summary, ACAM may be the critical adhesion molecule in adipocyte differentiation and development of obesity. PMID:15563274

  18. Form(ul)ation of adipocytes by lipids.

    PubMed

    Lapid, Kfir; Graff, Jonathan M

    2017-07-03

    Lipids have the potential to serve as bio-markers, which allow us to analyze and to identify cells under various experimental settings, and to serve as a clinical diagnostic tool. For example, diagnosis according to specific lipids that are associated with diabetes and obesity. The rapid development of mass-spectrometry techniques enables identification and profiling of multiple types of lipid species. Together, lipid profiling and data interpretation forge the new field of lipidomics. Lipidomics can be used to characterize physiologic and pathophysiological processes in adipocytes, since lipid metabolism is at the core of adipocyte physiology and energy homeostasis. A significant bulk of lipids are stored in adipocytes, which can be released and used to produce energy, used to build membranes, or used as signaling molecules that regulate metabolism. In this review, we discuss how exhaust of lipidomes can be used to study adipocyte differentiation, physiology and pathophysiology.

  19. Characterization of immortalized human brown and white pre-adipocyte cell models from a single donor

    PubMed Central

    Andersen, Elise S.; Rasmussen, Nanna E.; Petersen, Louise I.; Pedersen, Steen B.; Richelsen, Bjørn

    2017-01-01

    Brown adipose tissue with its constituent brown adipocytes is a promising therapeutic target in metabolic disorders due to its ability to dissipate energy and improve systemic insulin sensitivity and glucose homeostasis. The molecular control of brown adipocyte differentiation and function has been extensively studied in mice, but relatively little is known about such regulatory mechanisms in humans, which in part is due to lack of human brown adipose tissue derived cell models. Here, we used retrovirus-mediated overexpression to stably integrate human telomerase reverse transcriptase (TERT) into stromal-vascular cell fractions from deep and superficial human neck adipose tissue biopsies from the same donor. The brown and white pre-adipocyte cell models (TERT-hBA and TERT-hWA, respectively) displayed a stable proliferation rate and differentiation until at least passage 20. Mature TERT-hBA adipocytes expressed higher levels of thermogenic marker genes and displayed a higher maximal respiratory capacity than mature TERT-hWA adipocytes. TERT-hBA adipocytes were UCP1-positive and responded to β-adrenergic stimulation by activating the PKA-MKK3/6-p38 MAPK signaling module and increasing thermogenic gene expression and oxygen consumption. Mature TERT-hWA adipocytes underwent efficient rosiglitazone-induced ‘browning’, as demonstrated by strongly increased expression of UCP1 and other brown adipocyte-enriched genes. In summary, the TERT-hBA and TERT-hWA cell models represent useful tools to obtain a better understanding of the molecular control of human brown and white adipocyte differentiation and function as well as of browning of human white adipocytes. PMID:28957413

  20. Obestatin as a regulator of adipocyte metabolism and adipogenesis

    PubMed Central

    Gurriarán-Rodríguez, Uxía; Al-Massadi, Omar; Roca-Rivada, Arturo; Crujeiras, Ana Belén; Gallego, Rosalía; Pardo, Maria; Seoane, Luisa Maria; Pazos, Yolanda; Casanueva, Felipe F; Camiña, Jesús P

    2011-01-01

    Abstract The role of obestatin, a 23-amino-acid peptide encoded by the ghrelin gene, on the control of the metabolism of pre-adipocyte and adipocytes as well as on adipogenesis was determined. For in vitro assays, pre-adipocyte and adipocyte 3T3-L1 cells were used to assess the obestatin effect on cell metabolism and adipogenesis based on the regulation of the key enzymatic nodes, Akt and AMPK and their downstream targets. For in vivo assays, white adipose tissue (WAT) was obtained from male rats under continuous subcutaneous infusion of obestatin. Obestatin activated Akt and its downstream targets, GSK3α/β, mTOR and S6K1, in 3T3-L1 adipocyte cells. Simultaneously, obestatin inactivated AMPK in this cell model. In keeping with this, ACC phosphorylation was also decreased. This fact was confirmed in vivo in white adipose tissue (omental, subcutaneous and gonadal) obtained from male rats under continuous sc infusion of obestatin (24 and 72 hrs). The relevance of obestatin as regulator of adipocyte metabolism was supported by AS160 phosphorylation, GLUT4 translocation and augment of glucose uptake in 3T3-L1 adipocyte cells. In contrast, obestatin failed to modify translocation of fatty acid transporters, FATP1, FATP4 and FAT/CD36, to plasma membrane. Obestatin treatment in combination with IBMX and DEX showed to regulate the expression of C/EBPα, C/EBPβ, C/EBPδ and PPARγ promoting adipogenesis. Remarkable, preproghrelin expression, and thus obestatin expression, increased during adipogenesis being sustained throughout terminal differentiation. Neutralization of endogenous obestatin secreted by 3T3-L1 cells by anti-obestatin antibody decreased adipocyte differentiation. Furthermore, knockdown experiments by preproghrelin siRNA supported that obestatin contributes to adipogenesis. In summary, obestatin promotes adipogenesis in an autocrine/paracrine manner, being a regulator of adipocyte metabolism. These data point to a putative role in the pathogenesis of

  1. The human lipodystrophy gene product Berardinelli-Seip congenital lipodystrophy 2/seipin plays a key role in adipocyte differentiation.

    PubMed

    Chen, Weiqin; Yechoor, Vijay K; Chang, Benny Hung-Junn; Li, Ming V; March, Keith L; Chan, Lawrence

    2009-10-01

    Mutations in the Berardinelli-Seip congenital lipodystrophy 2 gene (BSCL2) are the underlying defect in patients with congenital generalized lipodystrophy type 2. BSCL2 encodes a protein called seipin, whose function is largely unknown. In this study, we investigated the role of Bscl2 in the regulation of adipocyte differentiation. Bscl2 mRNA is highly up-regulated during standard hormone-induced adipogenesis in 3T3-L1 cells in vitro. However, this up-regulation does not occur during mesenchymal stem cell (C3H10T1/2 cells) commitment to the preadipocyte lineage. Knockdown of Bscl2 by short hairpin RNA in C3H10T1/2 cells has no effect on bone morphogenetic protein-4-induced preadipocyte commitment. However, knockdown in 3T3-L1 cells prevents adipogenesis induced by a standard hormone cocktail, but adipogenesis can be rescued by the addition of peroxisome proliferator-activated receptor-gamma agonist pioglitazone at an early stage of differentiation. Interestingly, pioglitazone-induced differentiation in the absence of standard hormone is not associated with up-regulated Bscl2 expression. On the other hand, short hairpin RNA-knockdown of Bscl2 largely blocks pioglitazone-induced adipose differentiation. These experiments suggest that Bscl2 may be essential for normal adipogenesis; it works upstream or at the level of peroxisome proliferator-activated receptor-gamma, enabling the latter to exert its full activity during adipogenesis. Loss of Bscl2 function thus interferes with the normal transcriptional cascade of adipogenesis during fat cell differentiation, resulting in near total loss of fat or lipodystrophy.

  2. Redundant roles of the phosphatidate phosphatase family in triacylglycerol synthesis in human adipocytes.

    PubMed

    Temprano, Ana; Sembongi, Hiroshi; Han, Gil-Soo; Sebastián, David; Capellades, Jordi; Moreno, Cristóbal; Guardiola, Juan; Wabitsch, Martin; Richart, Cristóbal; Yanes, Oscar; Zorzano, Antonio; Carman, George M; Siniossoglou, Symeon; Miranda, Merce

    2016-09-01

    In mammals, the evolutionary conserved family of Mg(2+)-dependent phosphatidate phosphatases (PAP1), involved in phospholipid and triacylglycerol synthesis, consists of lipin-1, lipin-2 and lipin-3. While mutations in the murine Lpin1 gene cause lipodystrophy and its knockdown in mouse 3T3-L1 cells impairs adipogenesis, deleterious mutations of human LPIN1 do not affect adipose tissue distribution. However, reduced LPIN1 and PAP1 activity has been described in participants with type 2 diabetes. We aimed to characterise the roles of all lipin family members in human adipose tissue and adipogenesis. The expression of the lipin family was analysed in adipose tissue in a cross-sectional study. Moreover, the effects of lipin small interfering RNA (siRNA)-mediated depletion on in vitro human adipogenesis were assessed. Adipose tissue gene expression of the lipin family is altered in type 2 diabetes. Depletion of every lipin family member in a human Simpson-Golabi-Behmel syndrome (SGBS) pre-adipocyte cell line, alters expression levels of adipogenic transcription factors and lipid biosynthesis genes in early stages of differentiation. Lipin-1 knockdown alone causes a 95% depletion of PAP1 activity. Despite the reduced PAP1 activity and alterations in early adipogenesis, lipin-silenced cells differentiate and accumulate neutral lipids. Even combinatorial knockdown of lipins shows mild effects on triacylglycerol accumulation in mature adipocytes. Overall, our data support the hypothesis of alternative pathways for triacylglycerol synthesis in human adipocytes under conditions of repressed lipin expression. We propose that induction of alternative lipid phosphate phosphatases, along with the inhibition of lipid hydrolysis, contributes to the maintenance of triacylglycerol content to near normal levels.

  3. PCB-153 Shows Different Dynamics of Mobilisation from Differentiated Rat Adipocytes during Lipolysis in Comparison with PCB-28 and PCB-118

    PubMed Central

    Louis, Caroline; Tinant, Gilles; Mignolet, Eric; Thomé, Jean-Pierre; Debier, Cathy

    2014-01-01

    Background Polychlorinated biphenyls (PCBs) are persistent organic pollutants. Due to their lipophilic character, they are preferentially stored within the adipose tissue. During the mobilisation of lipids, PCBs might be released from adipocytes into the bloodstream. However, the mechanisms associated with the release of PCBs have been poorly studied. Several in vivo studies followed their dynamics of release but the complexity of the in vivo situation, which is characterised by a large range of pollutants, does not allow understanding precisely the behaviour of individual congeners. The present in vitro experiment studied the impact of (i) the number and position of chlorine atoms of PCBs on their release from adipocytes and (ii) the presence of other PCB congeners on the mobilisation rate of such molecules. Methodology/Principal Findings Differentiated rat adipocytes were used to compare the behaviour of PCB-28, -118 and -153. Cells were contaminated with the three congeners, alone or in cocktail, and a lipolysis was then induced with isoproterenol during 12 hours. Our data indicate that the three congeners were efficiently released from adipocytes and accumulated in the medium during the lipolysis. Interestingly, for a same level of cell lipids, PCB-153, a hexa-CB with two chlorine atoms in ortho-position, was mobilised slower than PCB-28, a tri-CB, and PCB-118, a penta-CB, which are both characterised by one chlorine atom in ortho-position. It suggests an impact of the chemical properties of pollutants on their mobilisation during periods of negative energy balance. Moreover, the mobilisation of PCB congeners, taken individually, did not seem to be influenced by the presence of other congeners within adipocytes. Conclusion/Significance These results not only highlight the obvious mobilisation of PCBs from adipocytes during lipolysis, in parallel to lipids, but also demonstrate that the structure of congeners defines their rate of release from adipocytes. PMID

  4. PCB-153 shows different dynamics of mobilisation from differentiated rat adipocytes during lipolysis in comparison with PCB-28 and PCB-118.

    PubMed

    Louis, Caroline; Tinant, Gilles; Mignolet, Eric; Thomé, Jean-Pierre; Debier, Cathy

    2014-01-01

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants. Due to their lipophilic character, they are preferentially stored within the adipose tissue. During the mobilisation of lipids, PCBs might be released from adipocytes into the bloodstream. However, the mechanisms associated with the release of PCBs have been poorly studied. Several in vivo studies followed their dynamics of release but the complexity of the in vivo situation, which is characterised by a large range of pollutants, does not allow understanding precisely the behaviour of individual congeners. The present in vitro experiment studied the impact of (i) the number and position of chlorine atoms of PCBs on their release from adipocytes and (ii) the presence of other PCB congeners on the mobilisation rate of such molecules. Differentiated rat adipocytes were used to compare the behaviour of PCB-28, -118 and -153. Cells were contaminated with the three congeners, alone or in cocktail, and a lipolysis was then induced with isoproterenol during 12 hours. Our data indicate that the three congeners were efficiently released from adipocytes and accumulated in the medium during the lipolysis. Interestingly, for a same level of cell lipids, PCB-153, a hexa-CB with two chlorine atoms in ortho-position, was mobilised slower than PCB-28, a tri-CB, and PCB-118, a penta-CB, which are both characterised by one chlorine atom in ortho-position. It suggests an impact of the chemical properties of pollutants on their mobilisation during periods of negative energy balance. Moreover, the mobilisation of PCB congeners, taken individually, did not seem to be influenced by the presence of other congeners within adipocytes. These results not only highlight the obvious mobilisation of PCBs from adipocytes during lipolysis, in parallel to lipids, but also demonstrate that the structure of congeners defines their rate of release from adipocytes.

  5. De novo synthesis of steroids and oxysterols in adipocytes.

    PubMed

    Li, Jiehan; Daly, Edward; Campioli, Enrico; Wabitsch, Martin; Papadopoulos, Vassilios

    2014-01-10

    Local production and action of cholesterol metabolites such as steroids or oxysterols within endocrine tissues are currently recognized as an important principle in the cell type- and tissue-specific regulation of hormone effects. In adipocytes, one of the most abundant endocrine cells in the human body, the de novo production of steroids or oxysterols from cholesterol has not been examined. Here, we demonstrate that essential components of cholesterol transport and metabolism machinery in the initial steps of steroid and/or oxysterol biosynthesis pathways are present and active in adipocytes. The ability of adipocyte CYP11A1 in producing pregnenolone is demonstrated for the first time, rendering adipocyte a steroidogenic cell. The oxysterol 27-hydroxycholesterol (27HC), synthesized by the mitochondrial enzyme CYP27A1, was identified as one of the major de novo adipocyte products from cholesterol and its precursor mevalonate. Inhibition of CYP27A1 activity or knockdown and deletion of the Cyp27a1 gene induced adipocyte differentiation, suggesting a paracrine or autocrine biological significance for the adipocyte-derived 27HC. These findings suggest that the presence of the 27HC biosynthesis pathway in adipocytes may represent a defense mechanism to prevent the formation of new fat cells upon overfeeding with dietary cholesterol.

  6. De Novo Synthesis of Steroids and Oxysterols in Adipocytes*

    PubMed Central

    Li, Jiehan; Daly, Edward; Campioli, Enrico; Wabitsch, Martin; Papadopoulos, Vassilios

    2014-01-01

    Local production and action of cholesterol metabolites such as steroids or oxysterols within endocrine tissues are currently recognized as an important principle in the cell type- and tissue-specific regulation of hormone effects. In adipocytes, one of the most abundant endocrine cells in the human body, the de novo production of steroids or oxysterols from cholesterol has not been examined. Here, we demonstrate that essential components of cholesterol transport and metabolism machinery in the initial steps of steroid and/or oxysterol biosynthesis pathways are present and active in adipocytes. The ability of adipocyte CYP11A1 in producing pregnenolone is demonstrated for the first time, rendering adipocyte a steroidogenic cell. The oxysterol 27-hydroxycholesterol (27HC), synthesized by the mitochondrial enzyme CYP27A1, was identified as one of the major de novo adipocyte products from cholesterol and its precursor mevalonate. Inhibition of CYP27A1 activity or knockdown and deletion of the Cyp27a1 gene induced adipocyte differentiation, suggesting a paracrine or autocrine biological significance for the adipocyte-derived 27HC. These findings suggest that the presence of the 27HC biosynthesis pathway in adipocytes may represent a defense mechanism to prevent the formation of new fat cells upon overfeeding with dietary cholesterol. PMID:24280213

  7. Role of physiological levels of 4-hydroxynonenal on adipocyte biology: implications for obesity and metabolic syndrome.

    PubMed

    Dasuri, Kalavathi; Ebenezer, Philip; Fernandez-Kim, Sun Ok; Zhang, Le; Gao, Zhanguo; Bruce-Keller, Annadora J; Freeman, Linnea R; Keller, Jeffrey N

    2013-01-01

    Lipid peroxidation products such as 4-hydroxynonenal (HNE) are known to be increased in response to oxidative stress, and are known to cause dysfunction and pathology in a variety of tissues during periods of oxidative stress. The aim of the current study was to determine the chronic (repeated HNE exposure) and acute effects of physiological concentrations of HNE toward multiple aspects of adipocyte biology using differentiated 3T3-L1 adipocytes. Our studies demonstrate that acute and repeated exposure of adipocytes to physiological concentrations of HNE is sufficient to promote subsequent oxidative stress, impaired adipogenesis, alter the expression of adipokines, and increase lipolytic gene expression and subsequent increase in free fatty acid (FFA) release. These results provide an insight in to the role of HNE-induced oxidative stress in regulation of adipocyte differentiation and adipose dysfunction. Taken together, these data indicate a potential role for HNE promoting diverse effects toward adipocyte homeostasis and adipocyte differentiation, which may be important to the pathogenesis observed in obesity and metabolic syndrome.

  8. The use of small interfering RNAs to inhibit adipocyte differentiation in human preadipocytes and fetal-femur-derived mesenchymal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y.; Mirmalek-Sani, S.-H.; Yang, X.

    2006-06-10

    RNA interference (RNAi) has been used in functional genomics and offers innovative approaches in the development of novel therapeutics. Human mesenchymal stem cells offer a unique cell source for tissue engineering/regeneration strategies. The current study examined the potential of small interfering RNAs (siRNA) against human peroxisome proliferator activated receptor gamma (PPAR{gamma}) to suppress adipocyte differentiation (adipogenesis) in human preadipocytes and fetal-femur-derived mesenchymal cells. Adipogenesis was investigated using cellular and biochemical analysis. Transient transfection with PPAR{gamma}-siRNA using a liposomal-based strategy resulted in a significant inhibition of adipogenesis in human preadipocytes and fetal-femur-derived mesenchymal cells, compared to controls (cell, liposomal and negativemore » siRNA). The inhibitory effect of PPAR{gamma}-siRNA was supported by testing human PPAR{gamma} mRNA and adipogenic associated genes using reverse transcription polymerase chain reaction (RT-PCR) to adiponectin receptor 1 and 2 as well as examination of fatty acid binding protein 3 (FABP{sub 3}) expression, an adipocyte-specific marker. The current studies indicate that PPAR{gamma}-siRNA is a useful tool to study adipogenesis in human cells, with potential applications both therapeutic and in the elucidation of mesenchymal cell differentiation in the modulation of cell differentiation in human mesenchymal cells.« less

  9. Multiplatform Metabolomics Investigation of Antiadipogenic Effects on 3T3-L1 Adipocytes by a Potent Diarylheptanoid.

    PubMed

    Du, Dan; Gu, Haiwei; Djukovic, Danijel; Bettcher, Lisa; Gong, Meng; Zheng, Wen; Hu, Liqiang; Zhang, Xinyu; Zhang, Renke; Wang, Dongfang; Raftery, Daniel

    2018-06-01

    Obesity is fast becoming a serious health problem worldwide. Of the many possible antiobesity strategies, one interesting approach focuses on blocking adipocyte differentiation and lipid accumulation to counteract the rise in fat storage. However, there is currently no drug available for the treatment of obesity that works by inhibiting adipocyte differentiation. Here we use a broad-based metabolomics approach to interrogate and better understand metabolic changes that occur during adipocyte differentiation. In particular, we focus on changes induced by the antiadipogenic diarylheptanoid, which was isolated from a traditional Chinese medicine Dioscorea zingiberensis and identified as (3 R,5 R)-3,5-dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptane (1). Targeted aqueous metabolic profiling indicated that a total of 14 metabolites involved in the TCA cycle, glycolysis, amino acid metabolism, and purine catabolism participate in regulating energy metabolism, lipogenesis, and lipolysis in adipocyte differentiation and can be modulated by diarylheptanoid 1. As indicated by lipidomics analysis, diarylheptanoid 1 restored the quantity and degree of unsaturation of long-chain free fatty acids and restored the levels of 171 lipids mainly from 10 lipid classes in adipocytes. In addition, carbohydrate metabolism in diarylheptanoid-1-treated adipocytes further demonstrated the delayed differentiation process by flux analysis. Our results provide valuable information for further understanding the metabolic adjustment in adipocytes subjected to diarylheptanoid 1 treatment. Moreover, this study offers new insight into developing antiadipogenic leading compounds based on metabolomics.

  10. Osteoblast-like MC3T3-E1 Cells Prefer Glycolysis for ATP Production but Adipocyte-like 3T3-L1 Cells Prefer Oxidative Phosphorylation.

    PubMed

    Guntur, Anyonya R; Gerencser, Akos A; Le, Phuong T; DeMambro, Victoria E; Bornstein, Sheila A; Mookerjee, Shona A; Maridas, David E; Clemmons, David E; Brand, Martin D; Rosen, Clifford J

    2018-06-01

    Mesenchymal stromal cells (MSCs) are early progenitors that can differentiate into osteoblasts, chondrocytes, and adipocytes. We hypothesized that osteoblasts and adipocytes utilize distinct bioenergetic pathways during MSC differentiation. To test this hypothesis, we compared the bioenergetic profiles of preosteoblast MC3T3-E1 cells and calvarial osteoblasts with preadipocyte 3T3L1 cells, before and after differentiation. Differentiated MC3T3-E1 osteoblasts met adenosine triphosphate (ATP) demand mainly by glycolysis with minimal reserve glycolytic capacity, whereas nondifferentiated cells generated ATP through oxidative phosphorylation. A marked Crabtree effect (acute suppression of respiration by addition of glucose, observed in both MC3T3-E1 and calvarial osteoblasts) and smaller mitochondrial membrane potential in the differentiated osteoblasts, particularly those incubated at high glucose concentrations, indicated a suppression of oxidative phosphorylation compared with nondifferentiated osteoblasts. In contrast, both nondifferentiated and differentiated 3T3-L1 adipocytes met ATP demand primarily by oxidative phosphorylation despite a large unused reserve glycolytic capacity. In sum, we show that nondifferentiated precursor cells prefer to use oxidative phosphorylation to generate ATP; when they differentiate to osteoblasts, they gain a strong preference for glycolytic ATP generation, but when they differentiate to adipocytes, they retain the strong preference for oxidative phosphorylation. Unique metabolic programming in mesenchymal progenitor cells may influence cell fate and ultimately determine the degree of bone formation and/or the development of marrow adiposity. © 2018 American Society for Bone and Mineral Research. © 2018 American Society for Bone and Mineral Research.

  11. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation

    PubMed Central

    Li, Chang-Jun; Cheng, Peng; Liang, Meng-Ke; Chen, Yu-Si; Lu, Qiong; Wang, Jin-Yu; Xia, Zhu-Ying; Zhou, Hou-De; Cao, Xu; Xie, Hui; Liao, Er-Yuan; Luo, Xiang-Hang

    2015-01-01

    Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-dependent reduction in osteogenesis that is accompanied by an increased propensity toward adipocyte differentiation. This switch increases adipocyte numbers and decreases the number of osteoblasts, contributing to age-related bone loss. Here, we found that the level of microRNA-188 (miR-188) is markedly higher in BMSCs from aged compared with young mice and humans. Compared with control mice, animals lacking miR-188 showed a substantial reduction of age-associated bone loss and fat accumulation in bone marrow. Conversely, mice with transgenic overexpression of miR-188 in osterix+ osteoprogenitors had greater age-associated bone loss and fat accumulation in bone marrow relative to WT mice. Moreover, using an aptamer delivery system, we found that BMSC-specific overexpression of miR-188 in mice reduced bone formation and increased bone marrow fat accumulation. We identified histone deacetylase 9 (HDAC9) and RPTOR-independent companion of MTOR complex 2 (RICTOR) as the direct targets of miR-188. Notably, BMSC-specific inhibition of miR-188 by intra–bone marrow injection of aptamer-antagomiR-188 increased bone formation and decreased bone marrow fat accumulation in aged mice. Together, our results indicate that miR-188 is a key regulator of the age-related switch between osteogenesis and adipogenesis of BMSCs and may represent a potential therapeutic target for age-related bone loss. PMID:25751060

  12. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation.

    PubMed

    Li, Chang-Jun; Cheng, Peng; Liang, Meng-Ke; Chen, Yu-Si; Lu, Qiong; Wang, Jin-Yu; Xia, Zhu-Ying; Zhou, Hou-De; Cao, Xu; Xie, Hui; Liao, Er-Yuan; Luo, Xiang-Hang

    2015-04-01

    Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-dependent reduction in osteogenesis that is accompanied by an increased propensity toward adipocyte differentiation. This switch increases adipocyte numbers and decreases the number of osteoblasts, contributing to age-related bone loss. Here, we found that the level of microRNA-188 (miR-188) is markedly higher in BMSCs from aged compared with young mice and humans. Compared with control mice, animals lacking miR-188 showed a substantial reduction of age-associated bone loss and fat accumulation in bone marrow. Conversely, mice with transgenic overexpression of miR-188 in osterix+ osteoprogenitors had greater age-associated bone loss and fat accumulation in bone marrow relative to WT mice. Moreover, using an aptamer delivery system, we found that BMSC-specific overexpression of miR-188 in mice reduced bone formation and increased bone marrow fat accumulation. We identified histone deacetylase 9 (HDAC9) and RPTOR-independent companion of MTOR complex 2 (RICTOR) as the direct targets of miR-188. Notably, BMSC-specific inhibition of miR-188 by intra-bone marrow injection of aptamer-antagomiR-188 increased bone formation and decreased bone marrow fat accumulation in aged mice. Together, our results indicate that miR-188 is a key regulator of the age-related switch between osteogenesis and adipogenesis of BMSCs and may represent a potential therapeutic target for age-related bone loss.

  13. Phloretin promotes adipocyte differentiation in vitro and improves glucose homeostasis in vivo.

    PubMed

    Shu, Gang; Lu, Nai-Sheng; Zhu, Xiao-Tong; Xu, Yong; Du, Min-Qing; Xie, Qiu-Ping; Zhu, Can-Jun; Xu, Qi; Wang, Song-Bo; Wang, Li-Na; Gao, Ping; Xi, Qian-Yun; Zhang, Yong-Liang; Jiang, Qing-Yan

    2014-12-01

    Adipocyte dysfunction is associated with many metabolic diseases such as obesity, insulin resistance and diabetes. Previous studies found that phloretin promotes 3T3-L1 cells differentiation, but the underlying mechanisms for phloretin's effects on adipogenesis remain unclear. In this study, we demonstrated that phloretin enhanced the lipid accumulation in porcine primary adipocytes in a time-dependent manner. Furthermore, phloretin increased the utilization of glucose and nonesterified fatty acid, while it decreased the lactate output. Microarray analysis revealed that genes associated with peroxisome proliferator-activated receptor-γ (PPARγ), mitogen-activated protein kinase and insulin signaling pathways were altered in response to phloretin. We further confirmed that phloretin enhanced expression of PPARγ, CAAT enhancer binding protein-α (C/EBPα) and adipose-related genes, such as fatty acids translocase and fatty acid synthase. In addition, phloretin activated the Akt (Thr308) and extracellular signal-regulated kinase, and therefore, inactivated Akt targets protein. Wortmannin effectively blocked the effect of phloretin on Akt activity and the protein levels of PPARγ, C/EBPα and fatty acid binding protein-4 (FABP4/aP2). Oral administration of 5 or 10 mg/kg phloretin to C57BL BKS-DB mice significantly decreased the serum glucose level and improved glucose tolerance. In conclusion, phloretin promotes the adipogenesis of porcine primary preadipocytes through Akt-associated signaling pathway. These findings suggested that phloretin might be able to increase insulin sensitivity and alleviate the metabolic diseases. Copyright © 2014. Published by Elsevier Inc.

  14. Epoxyeicosatrienoic Acids Regulate Adipocyte Differentiation of Mouse 3T3 Cells, Via PGC-1α Activation, Which Is Required for HO-1 Expression and Increased Mitochondrial Function

    PubMed Central

    Waldman, Maayan; Bellner, Lars; Vanella, Luca; Schragenheim, Joseph; Sodhi, Komal; Singh, Shailendra P.; Lin, Daohong; Lakhkar, Anand; Li, Jiangwei; Hochhauser, Edith; Arad, Michael; Darzynkiewicz, Zbigniew; Kappas, Atallah

    2016-01-01

    Epoxyeicosatrienoic acid (EET) contributes to browning of white adipose stem cells to ameliorate obesity/diabetes and insulin resistance. In the current study, we show that EET altered preadipocyte function, enhanced peroxisome proliferation-activated receptor γ coactivator α (PGC-1α) expression, and increased mitochondrial function in the 3T3-L1 preadipocyte subjected to adipogenesis. Cells treated with EET resulted in an increase, P < 0.05, in PGC-1α and a decrease in mitochondria-derived ROS (MitoSox), P < 0.05. The EET increase in heme oxygenase-1 (HO-1) levels is dependent on activation of PGC-1α as cells deficient in PGC-1α (PGC-1α knockout adipocyte cell) have an impaired ability to express HO-1, P < 0.02. Additionally, adipocytes treated with EET exhibited an increase in mitochondrial superoxide dismutase (SOD) in a PGC-1α-dependent manner, P < 0.05. The increase in PGC-1α was associated with an increase in β-catenin, P < 0.05, adiponectin expression, P < 0.05, and lipid accumulation, P < 0.02. EET decreased heme levels and mitochondria-derived ROS (MitoSox), P < 0.05, compared to adipocytes that were untreated. EET also decreased mesoderm-specific transcript (MEST) mRNA and protein levels (P < 0.05). Adipocyte secretion of EET act in an autocrine/paracrine manner to increase PGC-1α is required for activation of HO-1 expression. This is the first study to dissect the mechanism by which the antiadipogenic and anti-inflammatory lipid, EET, induces the PGC-1α signaling cascade and reprograms the adipocyte phenotype by regulating mitochondrial function and HO-1 expression, leading to an increase in healthy, that is, small, adipocytes and a decrease in adipocyte enlargement and terminal differentiation. This is manifested by an increase in mitochondrial function and an increase in the canonical Wnt signaling cascade during adipocyte proliferation and terminal differentiation. PMID:27224420

  15. MCT1 and MCT4 Expression and Lactate Flux Activity Increase During White and Brown Adipogenesis and Impact Adipocyte Metabolism.

    PubMed

    Petersen, Charlotte; Nielsen, Mette D; Andersen, Elise S; Basse, Astrid L; Isidor, Marie S; Markussen, Lasse K; Viuff, Birgitte M; Lambert, Ian H; Hansen, Jacob B; Pedersen, Stine F

    2017-10-12

    Adipose tissue takes up glucose and releases lactate, thereby contributing significantly to systemic glucose and lactate homeostasis. This implies the necessity of upregulation of net acid and lactate flux capacity during adipocyte differentiation and function. However, the regulation of lactate- and acid/base transporters in adipocytes is poorly understood. Here, we tested the hypothesis that adipocyte thermogenesis, browning and differentiation are associated with an upregulation of plasma membrane lactate and acid/base transport capacity that in turn is important for adipocyte metabolism. The mRNA and protein levels of the lactate-H + transporter MCT1 and the Na + ,HCO 3 - cotransporter NBCe1 were upregulated in mouse interscapular brown and inguinal white adipose tissue upon cold induction of thermogenesis and browning. MCT1, MCT4, and NBCe1 were furthermore strongly upregulated at the mRNA and protein level upon differentiation of cultured pre-adipocytes. Adipocyte differentiation was accompanied by increased plasma membrane lactate flux capacity, which was reduced by MCT inhibition and by MCT1 knockdown. Finally, in differentiated brown adipocytes, glycolysis (assessed as ECAR), and after noradrenergic stimulation also oxidative metabolism (OCR), was decreased by MCT inhibition. We suggest that upregulation of MCT1- and MCT4-mediated lactate flux capacity and NBCe1-mediated HCO 3 - /pH homeostasis are important for the physiological function of mature adipocytes.

  16. Hibernoma formation in transgenic mice and isolation of a brown adipocyte cell line expressing the uncoupling protein gene.

    PubMed Central

    Ross, S R; Choy, L; Graves, R A; Fox, N; Solevjeva, V; Klaus, S; Ricquier, D; Spiegelman, B M

    1992-01-01

    Transgenic mice were produced containing the adipocyte-specific regulatory region from the adipocyte P2 (aP2) gene linked to the simian virus 40 transforming genes. Most of the transgenic mice developed brown fat tumors (hibernomas) in their interscapular brown adipose tissue. Hibernoma formation was noticeable in some of the mice as early as 1 day after birth and most of the mice developed very large tumors by 1 month of age. All of the tumor tissue expressed the brown fat-specific uncoupling protein (UCP) gene as well as the aP2 gene. Several of the tumors have been used to establish cultured cell lines and at least one of these lines can be induced to differentiate into brown adipocytes. The cultured adipocytes express mRNA for UCP upon stimulation with N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate, norepinephrine, isoproterenol or D7114, a beta 3 adrenergic agonist. Thus, regulation of the key thermogenic gene UCP can now be studied in an established cell line. Images PMID:1323843

  17. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes.

    PubMed

    Harris, Charles A; Haas, Joel T; Streeper, Ryan S; Stone, Scot J; Kumari, Manju; Yang, Kui; Han, Xianlin; Brownell, Nicholas; Gross, Richard W; Zechner, Rudolf; Farese, Robert V

    2011-04-01

    The total contribution of the acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2, to mammalian triacylglycerol (TG) synthesis has not been determined. Similarly, whether DGAT enzymes are required for lipid droplet (LD) formation is unknown. In this study, we examined the requirement for DGAT enzymes in TG synthesis and LDs in differentiated adipocytes with genetic deletions of DGAT1 and DGAT2. Adipocytes with a single deletion of either enzyme were capable of TG synthesis and LD formation. In contrast, adipocytes with deletions of both DGATs were severely lacking in TG and did not have LDs, indicating that DGAT1 and DGAT2 account for nearly all TG synthesis in adipocytes and appear to be required for LD formation during adipogenesis. DGAT enzymes were not absolutely required for LD formation in mammalian cells, however; macrophages deficient in both DGAT enzymes were able to form LDs when incubated with cholesterol-rich lipoproteins. Although adipocytes lacking both DGATs had no TG or LDs, they were fully differentiated by multiple criteria. Our findings show that DGAT1 and DGAT2 account for the vast majority of TG synthesis in mice, and DGAT function is required for LDs in adipocytes, but not in all cell types.

  18. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Hiromasa; Database Center for Life Science; Oki, Yoshinao

    2011-04-15

    Highlights: {yields} Adipocyte dedifferentiation is evident in a significant decrease in typical genes. {yields} Cell proliferation is strongly related to adipocyte dedifferentiation. {yields} Dedifferentiated adipocytes express several lineage-specific genes. {yields} Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed asmore » well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.« less

  19. Proteomic identification of fat-browning markers in cultured white adipocytes treated with curcumin.

    PubMed

    Kim, Sang Woo; Choi, Jae Heon; Mukherjee, Rajib; Hwang, Ki-Chul; Yun, Jong Won

    2016-04-01

    We previously reported that curcumin induces browning of primary white adipocytes via enhanced expression of brown adipocyte-specific genes. In this study, we attempted to identify target proteins responsible for this fat-browning effect by analyzing proteomic changes in cultured white adipocytes in response to curcumin treatment. To elucidate the role of curcumin in fat-browning, we conducted comparative proteomic analysis of primary adipocytes between control and curcumin-treated cells using two-dimensional electrophoresis combined with MALDI-TOF-MS. We also investigated fatty acid metabolic targets, mitochondrial biogenesis, and fat-browning-associated proteins using combined proteomic and network analyses. Proteomic analysis revealed that 58 protein spots from a total of 325 matched spots showed differential expression between control and curcumin-treated adipocytes. Using network analysis, most of the identified proteins were proven to be involved in various metabolic and cellular processes based on the PANTHER classification system. One of the most striking findings is that hormone-sensitive lipase (HSL) was highly correlated with main browning markers based on the STRING database. HSL and two browning markers (UCP1, PGC-1α) were co-immunoprecipitated with these markers, suggesting that HSL possibly plays a role in fat-browning of white adipocytes. Our results suggest that curcumin increased HSL levels and other browning-specific markers, suggesting its possible role in augmentation of lipolysis and suppression of lipogenesis by trans-differentiation from white adipocytes into brown adipocytes (beige).

  20. 3'-hydroxy-ε,ε-caroten-3-one inhibits the differentiation of 3T3-L1 cells to adipocytes.

    PubMed

    Kotake-Nara, Eiichi; Hase, Megumi; Kobayashi, Miyuki; Nagao, Akihiko

    2016-01-01

    An oxidative metabolite of lutein, 3'-hydroxy-ε,ε-caroten-3-one, inhibited the differentiation of 3T3-L1 cells to adipocytes and the subsequent triacylglycerol production, but lutein did not. The α,β-unsaturated carbonyl structure of 3'-hydroxy-ε,ε-caroten-3-one was considered to participate in the inhibitory effect, suggesting that this lutein metabolite has the potential to prevent metabolic syndrome.

  1. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes[S

    PubMed Central

    Harris, Charles A.; Haas, Joel T.; Streeper, Ryan S.; Stone, Scot J.; Kumari, Manju; Yang, Kui; Han, Xianlin; Brownell, Nicholas; Gross, Richard W.; Zechner, Rudolf; Farese, Robert V.

    2011-01-01

    The total contribution of the acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2, to mammalian triacylglycerol (TG) synthesis has not been determined. Similarly, whether DGAT enzymes are required for lipid droplet (LD) formation is unknown. In this study, we examined the requirement for DGAT enzymes in TG synthesis and LDs in differentiated adipocytes with genetic deletions of DGAT1 and DGAT2. Adipocytes with a single deletion of either enzyme were capable of TG synthesis and LD formation. In contrast, adipocytes with deletions of both DGATs were severely lacking in TG and did not have LDs, indicating that DGAT1 and DGAT2 account for nearly all TG synthesis in adipocytes and appear to be required for LD formation during adipogenesis. DGAT enzymes were not absolutely required for LD formation in mammalian cells, however; macrophages deficient in both DGAT enzymes were able to form LDs when incubated with cholesterol-rich lipoproteins. Although adipocytes lacking both DGATs had no TG or LDs, they were fully differentiated by multiple criteria. Our findings show that DGAT1 and DGAT2 account for the vast majority of TG synthesis in mice, and DGAT function is required for LDs in adipocytes, but not in all cell types. PMID:21317108

  2. Actin depolymerization enhances adipogenic differentiation in human stromal stem cells.

    PubMed

    Chen, Li; Hu, Huimin; Qiu, Weimin; Shi, Kaikai; Kassem, Moustapha

    2018-05-01

    Human stromal stem cells (hMSCs) differentiate into adipocytes that play a role in skeletal tissue homeostasis and whole body energy metabolism. During adipocyte differentiation, hMSCs exhibit significant changes in cell morphology suggesting changes in cytoskeletal organization. Here, we examined the effect of direct modulation of actin microfilament dynamics on adipocyte differentiation. Stabilizing actin filaments in hMSCs by siRNA-mediated knock down of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) or treating the cells by Phalloidin reduced adipocyte differentiation as evidenced by decreased number of mature adipocytes and decreased adipocyte specific gene expression (ADIPOQ, LPL, PPARG, FABP4). In contrast, disruption of actin cytoskeleton by Cytochalasin D enhanced adipocyte differentiation. Follow up studies revealed that the effects of CFL1 on adipocyte differentiation depended on the activity of LIM domain kinase 1 (LIMK1) which is the major upstream kinase of CFL1. Inhibiting LIMK by its specific chemical inhibitor LIMKi inhibited the phosphorylation of CFL1 and actin polymerization, and enhanced the adipocyte differentiation. Moreover, treating hMSCs by Cytochalasin D inhibited ERK and Smad2 signaling and this was associated with enhanced adipocyte differentiation. On the other hand, Phalloidin enhanced ERK and Smad2 signaling, but inhibited adipocyte differentiation which was rescued by ERK specific chemical inhibitor U0126. Our data provide a link between restructuring of hMSCs cytoskeleton and hMSCs lineage commitment and differentiation. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Caffeic Acid Phenethyl Ester Regulates PPAR's Levels in Stem Cells-Derived Adipocytes

    PubMed Central

    Vanella, Luca; Tibullo, Daniele; Godos, Justyna; Pluchinotta, Francesca Romana; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria; Russo, Alessandra; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ), considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape), isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs) differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS) induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration. PMID:26904104

  4. Lotus leaf extract and L-carnitine influence different processes during the adipocyte life cycle

    PubMed Central

    2010-01-01

    Background The cellular and molecular mechanisms of adipose tissue biology have been studied extensively over the last two decades. Adipose tissue growth involves both an increase in fat cell size and the formation of mature adipocytes from precursor cells. To investigate how natural substances influence these two processes, we examined the effects of lotus leaf extract (Nelumbo nucifera-extract solution obtained from Silab, France) and L-carnitine on human preadipocytes and adipocytes. Methods For our in vitro studies, we used a lotus leaf extract solution alone or in combination with L-carnitine. Utilizing cultured human preadipocytes, we investigated lotus leaf extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. Studies on human adipocytes were performed aiming to elucidate the efficacy of lotus leaf extract solution to stimulate lipolytic activity. To further characterize lotus leaf extract solution-mediated effects, we determined the expression of the transcription factor adipocyte determination and differentiation factor 1 (ADD1/SREBP-1c) on the RNA- and protein level utilizing qRT-PCR and immunofluorescence analysis. Additionally, the effect of L-carnitine on beta-oxidation was analyzed using human preadipocytes and mature adipocytes. Finally, we investigated additive effects of a combination of lotus leaf extract solution and L-carnitine on triglyceride accumulation during preadipocyte/adipocyte differentiation. Results Our data showed that incubation of preadipocytes with lotus leaf extract solution significantly decreased triglyceride accumulation during adipogenesis without affecting cell viability. Compared to controls, adipocytes incubated with lotus leaf extract solution exhibited a significant increase in lipolysis-activity. Moreover, cell populations cultivated in the presence of lotus leaf extract solution showed a decrease in adipocyte differentiation capacity as indicated

  5. Lotus leaf extract and L-carnitine influence different processes during the adipocyte life cycle.

    PubMed

    Siegner, Ralf; Heuser, Stefan; Holtzmann, Ursula; Söhle, Jörn; Schepky, Andreas; Raschke, Thomas; Stäb, Franz; Wenck, Horst; Winnefeld, Marc

    2010-08-05

    The cellular and molecular mechanisms of adipose tissue biology have been studied extensively over the last two decades. Adipose tissue growth involves both an increase in fat cell size and the formation of mature adipocytes from precursor cells. To investigate how natural substances influence these two processes, we examined the effects of lotus leaf extract (Nelumbo nucifera-extract solution obtained from Silab, France) and L-carnitine on human preadipocytes and adipocytes. For our in vitro studies, we used a lotus leaf extract solution alone or in combination with L-carnitine. Utilizing cultured human preadipocytes, we investigated lotus leaf extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. Studies on human adipocytes were performed aiming to elucidate the efficacy of lotus leaf extract solution to stimulate lipolytic activity. To further characterize lotus leaf extract solution-mediated effects, we determined the expression of the transcription factor adipocyte determination and differentiation factor 1 (ADD1/SREBP-1c) on the RNA- and protein level utilizing qRT-PCR and immunofluorescence analysis. Additionally, the effect of L-carnitine on beta-oxidation was analyzed using human preadipocytes and mature adipocytes. Finally, we investigated additive effects of a combination of lotus leaf extract solution and L-carnitine on triglyceride accumulation during preadipocyte/adipocyte differentiation. Our data showed that incubation of preadipocytes with lotus leaf extract solution significantly decreased triglyceride accumulation during adipogenesis without affecting cell viability. Compared to controls, adipocytes incubated with lotus leaf extract solution exhibited a significant increase in lipolysis-activity. Moreover, cell populations cultivated in the presence of lotus leaf extract solution showed a decrease in adipocyte differentiation capacity as indicated by a decrease in the ADD1

  6. Trans-10,cis-12 conjugated linoleic acid (t10-c12 CLA) treatment and caloric restriction differentially affect adipocyte cell turnover in obese and lean mice.

    PubMed

    Yeganeh, Azadeh; Zahradka, Peter; Taylor, Carla G

    2017-11-01

    Caloric restriction (CR) is one of the most promising strategies for weight loss but is associated with loss of lean mass, whereas compounds such as trans-10,cis-12 conjugated linoleic acid (t10-c12 CLA) have been promoted as antiobesity agents. To compare the mechanisms of weight reduction by CR and t10-c12 CLA, body composition, glucose control, and characteristics of adipose tissue with respect to cell turnover (stem cells and preadipocytes, apoptosis and autophagy) and Tbx-1 localization were examined in obese db/db mice and lean C57BL/6J mice undergoing CR or fed CLA isomers (0.4% w/w c9-t11 or t10-c12) for 4 weeks. Our findings show that the t10-c12 CLA reduced whole-body fat mass by decreasing all fat depots (visceral, inguinal, brown/interscapular), while CR lowered both whole-body fat and lean mass in obese mice. t10-c12 CLA elevated blood glucose in both obese and lean mice, while glycemia was not altered by CR. The adipocyte stem cell population remained unchanged; however, t10-c12 CLA reduced and CR elevated the proportion of immature adipocytes in obese mice, suggesting differential effects on adipocyte maturation. t10-c12 CLA reduced apoptosis (activated caspase-3) in both obese and lean mice but did not alter autophagy (LC3II/LC3I). Nuclear Tbx-1, a marker of metabolically active beige adipocytes, was greater in the adipose of t10-c12 CLA-fed animals. Thus, weight loss achieved via t10-c12 CLA primarily involves fat loss and more cells with Tbx-1 localized to the nucleus, while CR operates through a mechanism that reduces both lean and fat mass and blocks adipocyte differentiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Dose- and type-dependent effects of long-chain fatty acids on adipogenesis and lipogenesis of bovine adipocytes.

    PubMed

    Yanting, Chen; Yang, Q Y; Ma, G L; Du, M; Harrison, J H; Block, E

    2018-02-01

    Differentiation and lipid metabolism of adipocytes have a great influence on milk performance, health, and feed efficiency of dairy cows. The effects of dietary long-chain fatty acids (FA) on adipogenesis and lipogenesis of dairy cows are often confounded by other nutritional and physiological factors in vivo. Therefore, this study used an in vitro approach to study the effect of dose and type of long-chain FA on adipogenesis and lipogenesis of bovine adipocytes. Stromal vascular cells were isolated from adipose tissue of dairy cows and induced into mature adipocytes in the presence of various long-chain FA including myristic, palmitic, stearic, oleic, or linoleic acid. When concentrations of myristic, palmitic, and oleic acids in adipogenic mediums were 150 and 200 μM, the induced mature adipocytes had greater lipid content compared with other concentrations of FA. In addition, mature adipocytes induced at 100 μM stearic acid and 300 μM linoleic acid had the greatest content of lipid than at other concentrations. High concentrations of saturated FA were more toxic for cells than the same concentration of unsaturated FA during the induction. When commitment stage was solely treated with FA, the number of differentiated mature adipocytes was greater for oleic and linoleic acids than other FA. When the maturation stage was treated with FA, the number of mature adipocytes was not affected, but the lipid content in adipocytes was affected and ranked oleic > linoleic > myristic > stearic > palmitic. In summary, this study showed that adipogenesis and lipogenesis of bovine adipocytes were differentially affected by long-chain FA, with unsaturated FA more effective than saturated FA. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Naringenin Inhibits Adipogenesis and Reduces Insulin Sensitivity and Adiponectin Expression in Adipocytes

    PubMed Central

    Richard, Allison J.; Ribnicky, David M.; Stephens, Jacqueline M.

    2013-01-01

    Adipose tissue development and function are widely studied to examine the relationship between obesity and the metabolic syndrome. It is well documented that the inability of adipose tissue to properly increase its lipid storage capacity during the obese state can lead to metabolic dysfunction. In a blind screen of 425 botanicals, we identified naringenin as an inhibitor of adipocyte differentiation. Naringenin is one of the most abundant citrus flavonoids, and recent studies have demonstrated antihyperlipidemic capabilities. These studies have largely focused on the effects of naringenin on the liver. Our biochemical studies clearly demonstrate that naringenin inhibits adipogenesis and impairs mature fat cell function. Naringenin specifically inhibited adipogenesis in a dose-dependent fashion as judged by examining lipid accumulation and induction of adipocyte marker protein expression. In mature 3T3-L1 adipocytes, naringenin reduced the ability of insulin to induce IRS-1 tyrosine phosphorylation and substantially inhibited insulin-stimulated glucose uptake in a dose-dependent manner and over a time frame of 1.5 to 24 hours. Exposure to naringenin also inhibited adiponectin protein expression in mature murine and human adipocytes. Our studies have revealed that naringenin may have a negative impact on adipocyte-related diseases by limiting differentiation of preadipocytes, by significantly inducing insulin resistance, and by decreasing adiponectin expression in mature fat cells. PMID:23983791

  9. Ceiling culture of mature human adipocytes: use in studies of adipocyte functions.

    PubMed

    Zhang, H H; Kumar, S; Barnett, A H; Eggo, M C

    2000-02-01

    Adipocytes contain large lipid droplets in their cytoplasm. When cultured, they float on top of the medium, clump together, and do not gain equal and sufficient access to the medium. Morphological changes cannot be observed and the majority of adipocytes undergo cell lysis within 72 h of isolation. We have used a ceiling culture method for human mature adipocytes which uses their buoyant property to allow them to adhere to a floating glass surface, where they remain viable for several weeks. Using confocal immunofluorescence microscopy we showed the cellular expression and subcellular localization of leptin in ceiling-cultured adipocytes. The secretion of leptin was increased from ceiling cultures following tumour necrosis factor-alpha treatment. Proliferation of mature human adipocytes in serum-containing medium was demonstrated by incorporation of bromodeoxyuridine, 2% of adipocytes showing positive incorporation after 4 h labelling. Proliferation was also evident from the budding of daughter cells. Apoptosis in the ceiling cultures was increased by 48 h serum deprivation (30-35 vs 10-15% in the control) and was assayed by propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP-fluorescein nick-end labelling. Lipolysis, analysed by liquid scintillation counting, was increased by forskolin (10 microM for 90 min) and lipogenesis, shown by autoradiography, was stimulated by insulin (10 and 100 nM for 4 h). These findings indicate that ceiling-cultured adipocytes maintain adipocyte-specific functions and that ceiling culture, which overcomes the shortcomings of adipocyte suspension culture, can be used to study adipocyte cell biology.

  10. Adaptor protein SH2-B linking receptor-tyrosine kinase and Akt promotes adipocyte differentiation by regulating peroxisome proliferator-activated receptor gamma messenger ribonucleic acid levels.

    PubMed

    Yoshiga, Daigo; Sato, Naoichi; Torisu, Takehiro; Mori, Hiroyuki; Yoshida, Ryoko; Nakamura, Seiji; Takaesu, Giichi; Kobayashi, Takashi; Yoshimura, Akihiko

    2007-05-01

    Adipocyte differentiation is regulated by insulin and IGF-I, which transmit signals by activating their receptor tyrosine kinase. SH2-B is an adaptor protein containing pleckstrin homology and Src homology 2 (SH2) domains that have been implicated in insulin and IGF-I receptor signaling. In this study, we found a strong link between SH2-B levels and adipogenesis. The fat mass and expression of adipogenic genes including peroxisome proliferator-activated receptor gamma (PPARgamma) were reduced in white adipose tissue of SH2-B-/- mice. Reduced adipocyte differentiation of SH2-B-deficient mouse embryonic fibroblasts (MEFs) was observed in response to insulin and dexamethasone, whereas retroviral SH2-B overexpression enhanced differentiation of 3T3-L1 preadipocytes to adipocytes. SH2-B overexpression enhanced mRNA level of PPARgamma in 3T3-L1 cells, whereas PPARgamma levels were reduced in SH2-B-deficient MEFs in response to insulin. SH2-B-mediated up-regulation of PPARgamma mRNA was blocked by a phosphatidylinositol 3-kinase inhibitor, but not by a MAPK kinase inhibitor. Insulin-induced Akt activation and the phosphorylation of forkhead transcription factor (FKHR/Foxo1), a negative regulator of PPARgamma transcription, were up-regulated by SH2-B overexpression, but reduced in SH2-B-deficient MEFs. These data indicate that SH2-B is a key regulator of adipogenesis both in vivo and in vitro by regulating the insulin/IGF-I receptor-Akt-Foxo1-PPARgamma pathway.

  11. Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation.

    PubMed

    Chu, Audrey Y; Deng, Xuan; Fisher, Virginia A; Drong, Alexander; Zhang, Yang; Feitosa, Mary F; Liu, Ching-Ti; Weeks, Olivia; Choh, Audrey C; Duan, Qing; Dyer, Thomas D; Eicher, John D; Guo, Xiuqing; Heard-Costa, Nancy L; Kacprowski, Tim; Kent, Jack W; Lange, Leslie A; Liu, Xinggang; Lohman, Kurt; Lu, Lingyi; Mahajan, Anubha; O'Connell, Jeffrey R; Parihar, Ankita; Peralta, Juan M; Smith, Albert V; Zhang, Yi; Homuth, Georg; Kissebah, Ahmed H; Kullberg, Joel; Laqua, René; Launer, Lenore J; Nauck, Matthias; Olivier, Michael; Peyser, Patricia A; Terry, James G; Wojczynski, Mary K; Yao, Jie; Bielak, Lawrence F; Blangero, John; Borecki, Ingrid B; Bowden, Donald W; Carr, John Jeffrey; Czerwinski, Stefan A; Ding, Jingzhong; Friedrich, Nele; Gudnason, Vilmunder; Harris, Tamara B; Ingelsson, Erik; Johnson, Andrew D; Kardia, Sharon L R; Langefeld, Carl D; Lind, Lars; Liu, Yongmei; Mitchell, Braxton D; Morris, Andrew P; Mosley, Thomas H; Rotter, Jerome I; Shuldiner, Alan R; Towne, Bradford; Völzke, Henry; Wallaschofski, Henri; Wilson, James G; Allison, Matthew; Lindgren, Cecilia M; Goessling, Wolfram; Cupples, L Adrienne; Steinhauser, Matthew L; Fox, Caroline S

    2017-01-01

    Variation in body fat distribution contributes to the metabolic sequelae of obesity. The genetic determinants of body fat distribution are poorly understood. The goal of this study was to gain new insights into the underlying genetics of body fat distribution by conducting sample-size-weighted fixed-effects genome-wide association meta-analyses in up to 9,594 women and 8,738 men of European, African, Hispanic and Chinese ancestry, with and without sex stratification, for six traits associated with ectopic fat (hereinafter referred to as ectopic-fat traits). In total, we identified seven new loci associated with ectopic-fat traits (ATXN1, UBE2E2, EBF1, RREB1, GSDMB, GRAMD3 and ENSA; P < 5 × 10 -8 ; false discovery rate < 1%). Functional analysis of these genes showed that loss of function of either Atxn1 or Ube2e2 in primary mouse adipose progenitor cells impaired adipocyte differentiation, suggesting physiological roles for ATXN1 and UBE2E2 in adipogenesis. Future studies are necessary to further explore the mechanisms by which these genes affect adipocyte biology and how their perturbations contribute to systemic metabolic disease.

  12. The Role of Paracrine and Autocrine Signaling in the Early Phase of Adipogenic Differentiation of Adipose-derived Stem Cells

    PubMed Central

    Hemmingsen, Mette; Vedel, Søren; Skafte-Pedersen, Peder; Sabourin, David; Collas, Philippe; Bruus, Henrik; Dufva, Martin

    2013-01-01

    Introduction High cell density is known to enhance adipogenic differentiation of mesenchymal stem cells, suggesting secretion of signaling factors or cell-contact-mediated signaling. By employing microfluidic biochip technology, we have been able to separate these two processes and study the secretion pathways. Methods and results Adipogenic differentiation of human adipose-derived stem cells (ASCs) cultured in a microfluidic system was investigated under perfusion conditions with an adipogenic medium or an adipogenic medium supplemented with supernatant from differentiating ASCs (conditioned medium). Conditioned medium increased adipogenic differentiation compared to adipogenic medium with respect to accumulation of lipid-filled vacuoles and gene expression of key adipogenic markers (C/EBPα, C/EBPβ, C/EBPδ, PPARγ, LPL and adiponectin). The positive effects of conditioned medium were observed early in the differentiation process. Conclusions Using different cell densities and microfluidic perfusion cell cultures to suppress the effects of cell-released factors, we have demonstrated the significant role played by auto- or paracrine signaling in adipocyte differentiation. The cell-released factor(s) were shown to act in the recruitment phase of the differentiation process. PMID:23723991

  13. Differential association of S100A9, an inflammatory marker, and p53, a cell cycle marker, expression with epicardial adipocyte size in patients with cardiovascular disease.

    PubMed

    Agra, Rosa María; Fernández-Trasancos, Ángel; Sierra, Juan; González-Juanatey, José Ramón; Eiras, Sonia

    2014-10-01

    S100A9 (calgranulin B) has inflammatory and oxidative stress properties and was found to be associated with atherosclerosis and obesity. One of the proteins that can regulate S100A9 transcription is p53, which is involved in cell cycle, apoptosis and adipogenesis. Thus, it triggers adipocyte enlargement and finally obesity. Because epicardial adipose tissue (EAT) volume and thickness is related to coronary artery disease (CAD), we studied the gene expression of this pathway in patients with cardiovascular disease and its association with obesity. Adipocytes and stromal cells from EAT and subcutaneous adipose tissue (SAT) from 48 patients who underwent coronary artery bypass graft and/or valve replacement were obtained after collagenase digestion and differential centrifugation. The expression levels of the involved genes on adipogenesis and cell cycle like fatty acid-binding protein (FABP) 4, retinol-binding protein (RBP)4, p53 and S100A9 were determined by real-time polymerase chain reaction (PCR). Adipocyte diameter was measured by optical microscopy. We found that epicardial adipocytes expressed significantly lower levels of adipogenic genes (FABP4 and RBP4) and cell cycle-related genes (S100A9 and p53) than subcutaneous adipocytes. However, in obese patients, upregulation of adipogenic and cell cycle-related genes in subcutaneous and epicardial adipocytes, respectively, was observed. The enlargement of adipocyte size was related to FABP4, S100A9 and p53 expression levels in stromal cells. But only the p53 association was maintained in epicardial stromal cells from obese patients (p=0.003). The expression of p53, but not S100A9, in epicardial stromal cells is related to adipocyte enlargement in obese patients with cardiovascular disease. These findings suggest new mechanisms for understanding the relationship between epicardial fat thickness, obesity and cardiovascular disease.

  14. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sárvári, Anitta K., E-mail: anittasarvari@med.unideb.hu; Veréb, Zoltán, E-mail: jzvereb@gmail.com; Uray, Iván P., E-mail: ipuray@mdanderson.org

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism andmore » proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones

  15. 11-Hydroxy-β-steroid dehydrogenase gene expression in canine adipose tissue and adipocytes: stimulation by lipopolysaccharide and tumor necrosis factor α.

    PubMed

    Ryan, V H; Trayhurn, P; Hunter, L; Morris, P J; German, A J

    2011-10-01

    The enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD-1) is expressed in a number of tissues in rodents and humans and is responsible for the reactivation of inert cortisone into cortisol. Its gene expression and activity are increased in white adipose tissue (WAT) from obese humans and may contribute to the adverse metabolic consequences of obesity and the metabolic syndrome. The extent to which 11β-HSD-1 contributes to adipose tissue function in dogs is unknown; the aim of the present study was to examine 11β-HSD-1 gene expression and its regulation by proinflammatory and anti-inflammatory agents in canine adipocytes. Real-time PCR was used to examine the expression of 11β-HSD-1 in canine adipose tissue and canine adipocytes differentiated in culture. The mRNA encoding 11β-HSD-1 was identified in all the major WAT depots in dogs and also in liver, kidney, and spleen. Quantification by real-time PCR showed that 11β-HSD-1 mRNA was least in perirenal and falciform depots and greatest in subcutaneous, omental, and gonadal depots. Greater expression was seen in the omental depot in female than in male dogs (P=0.05). Gene expression for 11β-HSD-1 was also seen in adipocytes, from both subcutaneous and visceral depots, differentiated in culture; expression was evident throughout differentiation but was generally greatest in preadipocytes and during early differentiation, declining as cells progressed to maturity. The inflammatory mediators lipopolysaccharide and tumor necrosis factor α had a main stimulatory effect on 11β-HSD-1 gene expression in canine subcutaneous adipocytes, but IL-6 had no significant effect. Treatment with dexamethasone resulted in a significant time- and dose-dependent increase in 11β-HSD-1 gene expression, with greatest effects seen at 24 h (2 nM: approximately 4-fold; 20 nM: approximately 14-fold; P=0.010 for both). When subcutaneous adipocytes were treated with the peroxisome proliferator activated receptor γ agonist rosiglitazone

  16. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acidmore » binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.« less

  17. Retinoid X receptor activation during adipogenesis of female mesenchymal stem cells programs a dysfunctional adipocyte.

    PubMed

    Shoucri, Bassem M; Hung, Victor T; Chamorro-García, Raquel; Shioda, Toshi; Blumberg, Bruce

    2018-05-31

    Early life exposure to endocrine disrupting chemicals (EDCs) is an emerging risk factor for the development of obesity and diabetes later in life. We previously showed that prenatal exposure to the EDC tributyltin (TBT) results in increased adiposity in the offspring. These effects linger into adulthood and are propagated through successive generations. TBT activates two nuclear receptors, the peroxisome proliferator-activated receptor γ (PPARγ) and its heterodimeric partner retinoid X receptor (RXR), that promote adipogenesis in vivo and in vitro. We recently employed a mesenchymal stem cell (MSC) model to show that TBT promotes adipose lineage commitment by activating RXR, not PPARγ. This led us to consider the functional consequences of PPARγ versus RXR activation in developing adipocytes. We used a transcriptomal approach to characterize genome-wide differences in MSCs differentiated with the PPARγ agonist rosiglitazone (ROSI) or TBT. Pathway analysis suggested functional deficits in TBT-treated cells. We then compared adipocytes differentiated with ROSI, TBT, or a pure RXR agonist IRX4204 (4204). Our data show that RXR activators ('rexinoids', 4204 and TBT) attenuate glucose uptake, blunt expression of the anti-diabetic hormone adiponectin, and fail to down-regulate pro-inflammatory and pro-fibrotic transcripts as does ROSI. Finally, 4204 and TBT treatment results in an inability to induce markers of adipocyte browning, in part due to sustained interferon signaling. Taken together, these data implicate rexinoids in the development of dysfunctional white adipose tissue that could potentially exacerbate obesity and/or diabetes risk in vivo. These data warrant further screening and characterization of EDCs that activate RXR.

  18. Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro

    PubMed Central

    Elbaz, Alexandre; Wu, Xiying; Rivas, Daniel; Gimble, Jeffrey M; Duque, Gustavo

    2010-01-01

    Abstract Although increased bone marrow fat in age-related bone loss has been associated with lower trabecular mass, the underlying mechanism responsible remains unknown. We hypothesized that marrow adipocytes exert a lipotoxic effect on osteoblast function and survival through the reversible biosynthesis of fatty acids (FA) into the bone marrow microenvironment. We have used a two-chamber system to co-culture normal human osteoblasts (NHOst) with differentiating pre-adipocytes in the absence or presence of an inhibitor of FA synthase (cerulenin) and separated by an insert that allowed unidirectional trafficking of soluble factors only and prevented direct cell–cell contact. Supernatants were assayed for the presence of FA using mass spectophotometry. After 3 weeks in co-culture, NHOst showed significantly lower levels of differentiation and function based on lower mineralization and expression of alkaline phosphatase, osterix, osteocalcin and Runx2. In addition, NHOst survival was affected by the presence of adipocytes as determined by MTS-formazan and TUNEL assays as well as higher activation of caspases 3/7. These toxic effects were inhibited by addition of cerulenin. Furthermore, culture of NHOst with either adipocyte-conditioned media alone in the absence of adipocytes themselves or with the addition of the most predominant FA (stearate or palmitate) produced similar toxic results. Finally, Runx2 nuclear binding was affected by addition of either adipocyte conditioned media or FA into the osteogenic media. We conclude that the presence of FA within the marrow milieu can contribute to the age-related changes in bone mass and can be prevented by the inhibition of FA synthase. PMID:19382912

  19. Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes

    PubMed Central

    2013-01-01

    Background Increased adipose thermogenesis is being considered as a strategy aimed at preventing or reversing obesity. Thus, regulation of the uncoupling protein 1 (UCP1) gene in human adipocytes is of significant interest. Retinoic acid (RA), the carboxylic acid form of vitamin A, displays agonist activity toward several nuclear hormone receptors, including RA receptors (RARs) and peroxisome proliferator-activated receptor δ (PPARδ). Moreover, RA is a potent positive regulator of UCP1 expression in mouse adipocytes. Results The effects of all-trans RA (ATRA) on UCP1 gene expression in models of mouse and human adipocyte differentiation were investigated. ATRA induced UCP1 expression in all mouse white and brown adipocytes, but inhibited or had no effect on UCP1 expression in human adipocyte cell lines and primary human white adipocytes. Experiments with various RAR agonists and a RAR antagonist in mouse cells demonstrated that the stimulatory effect of ATRA on UCP1 gene expression was indeed mediated by RARs. Consistently, a PPARδ agonist was without effect. Moreover, the ATRA-mediated induction of UCP1 expression in mouse adipocytes was independent of PPARγ coactivator-1α. Conclusions UCP1 expression is differently affected by ATRA in mouse and human adipocytes. ATRA induces UCP1 expression in mouse adipocytes through activation of RARs, whereas expression of UCP1 in human adipocytes is not increased by exposure to ATRA. PMID:24059847

  20. Nuclear factor I-C reciprocally regulates adipocyte and osteoblast differentiation via control of canonical Wnt signaling.

    PubMed

    Zhou, Jie; Wang, Shan; Qi, Qi; Yang, Xiaoyue; Zhu, Endong; Yuan, Hairui; Li, Xuemei; Liu, Ying; Li, Xiaoxia; Wang, Baoli

    2017-05-01

    Nuclear factor I-C (NFIC) has recently been identified as an important player in osteogenesis and bone homeostasis in vivo However, the molecular mechanisms involved have yet to be defined. In the current study, Nfic expression was altered in primary marrow stromal cells and established progenitor lines after adipogenic and osteogenic treatment. Overexpression of Nfic in stromal cells ST2, mesenchymal cells C3H10T1/2, and primary marrow stromal cells inhibited adipogenic differentiation, whereas it promoted osteogenic differentiation. Conversely, silencing of endogenous Nfic in the cell lines enhanced adipogenic differentiation, whereas it blocked osteogenic differentiation. Mechanism investigations revealed that Nfic overexpression promoted nuclear translocation of β-catenin and increased nuclear protein levels of β-catenin and transcription factor 7-like 2 (TCF7L2). Promoter studies and the chromatin immunoprecipitation (ChIP) assay revealed that NFIC directly binds to the promoter of low-density lipoprotein receptor-related protein 5 (Lrp5) and thereafter transactivates the promoter. Finally, inactivation of canonical Wnt signaling in ST2 attenuated the inhibition of adipogenic differentiation and stimulation of osteogenic differentiation by NFIC. Our study suggests that NFIC balances adipogenic and osteogenic differentiation from progenitor cells through controlling canonical Wnt signaling and highlights the potential of NFIC as a target for new therapies to control metabolic disorders like osteoporosis and obesity.-Zhou, J., Wang, S., Qi, Q., Yang, X., Zhu, E., Yuan, H., Li, X., Liu, Y., Li, X., Wang, B. Nuclear factor I-C reciprocally regulates adipocyte and osteoblast differentiation via control of canonical Wnt signaling. © FASEB.

  1. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes

    PubMed Central

    Chabowska-Kita, Agnieszka; Trabczynska, Anna; Korytko, Agnieszka; Kaczmarek, Monika M.; Kozak, Leslie P.

    2015-01-01

    The brown adipocyte phenotype (BAP) in white adipose tissue (WAT) is transiently induced in adult mammals in response to reduced ambient temperature. Since it is unknown whether a cold challenge can permanently induce brown adipocytes (BAs), we reared C57BL/6J (B6) and AxB8/PgJ (AxB8) mice at 17 or 29°C from birth to weaning, to assess the BAP in young and adult mice. Energy balance measurements showed that 17°C reduced fat mass in the preweaning mice by increasing energy expenditure and suppressed diet-induced obesity in adults. Microarray analysis of global gene expression of inguinal fat (ING) from 10-day-old (D) mice indicates that expression at 17°C vs. 29°C was not different. Between 10 and 21 days of age, the BAP was induced coincident with morphologic remodeling of ING and marked changes in expression of neural development genes (e.g., Akap 12 and Ngfr). Analyses of Ucp1 mRNA and protein showed that 17°C transiently increased the BAP in ING from 21D mice; however, BAs were unexpectedly present in mice reared at 29°C. The involution of the BAP in WAT occurred after weaning in mice reared at 23°C. Therefore, the capacity to stimulate thermogenically competent BAs in WAT is set by a temperature-independent, genetically controlled program between birth and weaning.—Chabowska-Kita, A., Trabczynska, A., Korytko, A., Kaczmarek, M. M., Kozak, L. P. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes. PMID:25896784

  2. Modulation of adipocyte biology by δ(9)-tetrahydrocannabinol.

    PubMed

    Teixeira, Diana; Pestana, Diogo; Faria, Ana; Calhau, Conceição; Azevedo, Isabel; Monteiro, Rosário

    2010-11-01

    It is recognized that the endocannabinoid system (ECS) plays a crucial role in the modulation of food intake and other aspects of energy metabolism. In this study, we aimed to investigate the effects of Δ(9)-tetrahydrocannabinol (THC) on adipocyte biology. 3T3-L1 cells were used to evaluate proliferation by sulforhodamine B (SRB) staining and methyl-(3)H-thymidine incorporation after 48 or 72 h of treatment with THC (1-500 nmol/l). Cells were differentiated in the presence or absence of the cannabinoid, and adipogenesis was determined by measuring lipid accumulation and peroxisome proliferator-activated receptor γ (PPARγ) transcription through reverse transcriptase-PCR (RT-PCR). Lipolysis was quantified under basal conditions or after isoproterenol (IP, 100 nmol/l) or insulin (INS, 100 nmol/l) treatment. Transforming growth factor β (TGFβ), diacylglycerol lipase α, and N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD) transcriptions were determined by RT-PCR in preadipocytes and adipocytes and adiponectin only in adipocytes. THC treatment increased culture protein content and reduced methyl-(3)H-thymidine incorporation. Cells treated with THC underwent adipogenesis shown by the expression of PPARγ and had increased lipid accumulation. Basal and IP-stimulated lipolyses were inhibited by THC and there was no effect on lipolysis of INS-treated adipocytes. The effects on methyl-(3)H-thymidine incorporation and lipolysis seem to be mediated through CB1- and CB2-dependent pathways. THC decreased NAPE-PLD in preadipocytes and increased adiponectin and TGFβ transcription in adipocytes. These results show that the ECS interferes with adipocyte biology and may contribute to adipose tissue (AT) remodeling. Although these observations point toward increased AT deposition, the stimulation of adiponectin production and inhibition of lipolysis may be in favor of improved INS sensitivity under cannabinoid influence.

  3. The influence of mechanical stretching on mitosis, growth, and adipose conversion in adipocyte cultures.

    PubMed

    Shoham, Naama; Gefen, Amit

    2012-09-01

    The mechanotransduction of adipocytes is not well characterized in the literature. In this study, we employ stochastic modeling fitted to experiments for characterizing the influence of mechanical stretching delivered to adipocyte monolayers on the probabilities of commitment to the adipocyte lineage, mitosis, and growth after mitosis in 3T3-L1 adipocytes. We found that the probability of a cell to become committed to the adipocyte lineage in a single division when cultured on an elastic substrate was 0.025, which was indistinguishable between cultures that were radially stretched (to 12% strain) and control cultures. The probability of undergoing mitosis however was different between the groups, being 0.4 in the stretched cultures and 0.6 in the controls. The probability of growing after mitosis was affected by the stretching as well and was 0.9 and 0.8 in the stretched and control groups, respectively. We conclude that static stretching of the substrate of adipocyte cultures influences the mitotic potential of the cells as well as the growth potential post-mitosis. The present work provides better understanding of the mechanotransduction of adipocytes and in particular quantify how stretching influences the likelihood of cell proliferation and differentiation and, consequently, adipogenesis in the adipocyte cultures.

  4. Adipocyte-derived Exosomal miRNAs: A Novel Mechanism for Obesity-Related Disease

    PubMed Central

    Ferrante, Sarah C; Nadler, Evan P; Pillai, Dinesh K; Hubal, Monica J; Wang, Zuyi; Wang, Justin M; Gordish-Dressman, Heather; Koeck, Emily; Sevilla, Samantha; Wiles, Andrew A; Freishtat, Robert J

    2014-01-01

    Background Obesity is frequently complicated by comorbid conditions, yet how excess adipose contributes is poorly understood. Although adipocytes in obese individuals induce systemic inflammation via secreted cytokines, another potential mediator has recently been identified (i.e. adipocyte-derived exosomes). We hypothesized that adipocyte-derived exosomes contain mediators capable of activating end-organ inflammatory and fibrotic signaling pathways. Methods We developed techniques to quantify and characterize exosomes shed by adipocytes from 7 obese (age: 12–17.5 years, BMI: 33–50 kg/m2) and 5 lean (age: 11–19 years, BMI: 22–25 kg/m2) subjects. Results Abundant exosomal miRNAs, but no mRNAs, were detected. Comparison of obese vs. lean visceral adipose donors detected 55 differentially-expressed miRNAs (p<0.05; fold change≥|1.2|). qRT-PCR confirmed downregulation of miR-148b (ratio = 0.2 [95% confidence interval = 0.1, 0.6]) and miR-4269 (0.3 [0.1, 0.8]), and upregulation of miR-23b (6.2 [2.2, 17.8]) and miR-4429 (3.8 [1.1 to 13.4]). Pathways analysis identified TGF-β signaling and Wnt/ β-catenin signaling among the top canonical pathways expected to be altered with visceral adiposity based on projected mRNA targets for the 55 differentially expressed miRNAs. A select mRNA target was validated in vitro. Conclusion These data show that visceral adipocytes shed exosomal-mediators predicted to regulate key end-organ inflammatory and fibrotic signaling pathways. PMID:25518011

  5. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro.

    PubMed

    Sárvári, Anitta K; Veréb, Zoltán; Uray, Iván P; Fésüs, László; Balajthy, Zoltán

    2014-08-08

    Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin and adiponectin, suggesting that both glucose and fat metabolism may be affected by these drugs. These data further suggest that antipsychotic treatments in patients alter the gene expression patterns in adipocytes in a coordinated fashion and priming them for a low-level inflammatory state. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Protein Kinase Inhibitor γ reciprocally regulates osteoblast and adipocyte differentiation by downregulating Leukemia Inhibitory Factor

    PubMed Central

    Chen, Xin; Hausman, Bryan S.; Luo, Guangbin; Zhou, Guang; Murakami, Shunichi; Rubin, Janet; Greenfield, Edward M.

    2013-01-01

    The Protein Kinase Inhibitor (Pki) gene family inactivates nuclear PKA and terminates PKA-induced gene expression. We previously showed that Pkig is the primary family member expressed in osteoblasts and that Pkig knockdown increases the effects of parathyroid hormone and isoproterenol on PKA activation, gene expression, and inhibition of apoptosis. Here, we determined whether endogenous levels of Pkig regulate osteoblast differentiation. Pkig is the primary family member in MEFs, murine marrow-derived mesenchymal stem cells, and human mesenchymal stem cells. Pkig deletion increased forskolin-dependent nuclear PKA activation and gene expression and Pkig deletion or knockdown increased osteoblast differentiation. PKA signaling is known to stimulate adipogenesis; however, adipogenesis and osteogenesis are often reciprocally regulated. We found that the reciprocal regulation predominates over the direct effects of PKA since adipogenesis was decreased by Pkig deletion or knockdown. Pkig deletion or knockdown simultaneously increased osteogenesis and decreased adipogenesis in mixed osteogenic/adipogenic medium. Pkig deletion increased PKA-induced expression of Leukemia Inhibitory Factor (Lif) mRNA and LIF protein. LIF neutralizing antibodies inhibited the effects on osteogenesis and adipogenesis of either Pkig deletion in MEFs or PKIγ knockdown in both murine and human mesenchymal stem cells. Collectively, our results show that endogenous levels of Pkig reciprocally regulate osteoblast and adipocyte differentiation and that this reciprocal regulation is mediated in part by LIF. PMID:23963683

  7. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer.

    PubMed

    Wen, Yang-An; Xing, Xiaopeng; Harris, Jennifer W; Zaytseva, Yekaterina Y; Mitov, Mihail I; Napier, Dana L; Weiss, Heidi L; Mark Evers, B; Gao, Tianyan

    2017-02-02

    Obesity has been associated with increased incidence and mortality of a wide variety of human cancers including colorectal cancer. However, the molecular mechanism by which adipocytes regulate the metabolism of colon cancer cells remains elusive. In this study, we showed that adipocytes isolated from adipose tissues of colon cancer patients have an important role in modulating cellular metabolism to support tumor growth and survival. Abundant adipocytes were found in close association with invasive tumor cells in colon cancer patients. Co-culture of adipocytes with colon cancer cells led to a transfer of free fatty acids that released from the adipocytes to the cancer cells. Uptake of fatty acids allowed the cancer cells to survive nutrient deprivation conditions by upregulating mitochondrial fatty acid β-oxidation. Mechanistically, co-culture of adipocytes or treating cells with fatty acids induced autophagy in colon cancer cells as a result of AMPK activation. Inhibition of autophagy attenuated the ability of cancer cells to utilize fatty acids and blocked the growth-promoting effect of adipocytes. In addition, we found that adipocytes stimulated the expression of genes associated with cancer stem cells and downregulated genes associated with intestinal epithelial cell differentiation in primary colon cancer cells and mouse tumor organoids. Importantly, the presence of adipocytes promoted the growth of xenograft tumors in vivo. Taken together, our results show that adipocytes in the tumor microenvironment serve as an energy provider and a metabolic regulator to promote the growth and survival of colon cancer cells.

  8. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer

    PubMed Central

    Wen, Yang-An; Xing, Xiaopeng; Harris, Jennifer W; Zaytseva, Yekaterina Y; Mitov, Mihail I; Napier, Dana L; Weiss, Heidi L; Mark Evers, B; Gao, Tianyan

    2017-01-01

    Obesity has been associated with increased incidence and mortality of a wide variety of human cancers including colorectal cancer. However, the molecular mechanism by which adipocytes regulate the metabolism of colon cancer cells remains elusive. In this study, we showed that adipocytes isolated from adipose tissues of colon cancer patients have an important role in modulating cellular metabolism to support tumor growth and survival. Abundant adipocytes were found in close association with invasive tumor cells in colon cancer patients. Co-culture of adipocytes with colon cancer cells led to a transfer of free fatty acids that released from the adipocytes to the cancer cells. Uptake of fatty acids allowed the cancer cells to survive nutrient deprivation conditions by upregulating mitochondrial fatty acid β-oxidation. Mechanistically, co-culture of adipocytes or treating cells with fatty acids induced autophagy in colon cancer cells as a result of AMPK activation. Inhibition of autophagy attenuated the ability of cancer cells to utilize fatty acids and blocked the growth-promoting effect of adipocytes. In addition, we found that adipocytes stimulated the expression of genes associated with cancer stem cells and downregulated genes associated with intestinal epithelial cell differentiation in primary colon cancer cells and mouse tumor organoids. Importantly, the presence of adipocytes promoted the growth of xenograft tumors in vivo. Taken together, our results show that adipocytes in the tumor microenvironment serve as an energy provider and a metabolic regulator to promote the growth and survival of colon cancer cells. PMID:28151470

  9. Phytol stimulates the browning of white adipocytes through the activation of AMP-activated protein kinase (AMPK) α in mice fed high-fat diet.

    PubMed

    Zhang, Fenglin; Ai, Wei; Hu, Xiaoquan; Meng, Yingying; Yuan, Cong; Su, Han; Wang, Lina; Zhu, Xiaotong; Gao, Ping; Shu, Gang; Jiang, Qingyan; Wang, Songbo

    2018-04-25

    Stimulating the browning of white adipocytes contributes to the restriction of obesity and related metabolic disorders. This study aimed to investigate the browning effects of phytol on mice inguinal subcutaneous white adipose tissue (iWAT) and explore the underlying mechanisms. Our results demonstrated that phytol administration decreased body weight gain and iWAT index, and stimulated the browning of mice iWAT, with the increased expression of brown adipocyte marker genes (UCP1, PRDM16, PGC1α, PDH, and Cyto C). In addition, phytol treatment activated the AMPKα signaling pathway in mice iWAT. In good agreement with the in vivo findings, the in vitro results showed that 100 μM phytol stimulated brown adipogenic differentiation and formation of brown-like adipocytes in the differentiated 3T3-L1 by increasing the mitochondria content and oxygen consumption, and promoting mRNA and/or protein expression of brown adipocyte markers (UCP1, PRDM16, PGC1α, PDH, Cyto C, Cidea and Elovl3) and beige adipocyte markers (CD137 and TMEM26). Meanwhile, phytol activated the AMPKα signaling pathway in the differentiated 3T3-L1. However, the inhibition of AMPKα with Compound C totally abolished phytol-stimulated brown adipogenic differentiation and formation of brown-like adipocytes. In conclusion, these results showed that phytol stimulated the browning of mice iWAT, which was coincident with the increased formation of brown-like adipocytes in the differentiated 3T3-L1, and appeared to be primarily mediated by the AMPKα signaling pathway. These data provided new insight into the role of phytol in regulating the browning of WAT and suggested the potential application of phytol as a nutritional intervention for the restriction of obesity and related metabolic disorders.

  10. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp; Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510; Yoshizaki, Takayuki

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear.more » Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.« less

  11. 6-gingerol inhibits rosiglitazone-induced adipogenesis in 3T3-L1 adipocytes.

    PubMed

    Tzeng, Thing-Fong; Chang, Chia Ju; Liu, I-Min

    2014-02-01

    We investigated the effects of 6-gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone) on the inhibition of rosiglitazone (RGZ)-induced adipogenesis in 3T3-L1 cells. The morphological changes were photographed based on staining lipid accumulation by Oil-Red O in RGZ (1 µmol/l)-treated 3T3-L1 cells without or with various concentrations of 6-gingerol on differentiation day 8. Quantitation of triglycerides content was performed in cells on day 8 after differentiation induction. Differentiated cells were lysed to detect mRNA and protein levels of adipocyte-specific transcription factors by real-time reverse transcription-polymerase chain reaction and Western blot analysis, respectively. 6-gingerol (50 µmol/l) effectively suppressed oil droplet accumulation and reduced the sizes of the droplets in RGZ-induced adipocyte differentiation in 3T3-L1 cells. The triglyceride accumulation induced by RGZ in differentiated 3T3-L1 cells was also reduced by 6-gingerol (50 µmol/l). Treatment of differentiated 3T3-L1 cells with 6-gingerol (50 µmol/l) antagonized RGZ-induced gene expression of peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding protein α. Additionally, the increased levels of mRNA and protein in adipocyte-specific fatty acid binding protein 4 and fatty acid synthase induced by RGZ in 3T3-L1 cells were decreased upon treatment with 6-gingerol. Our data suggests that 6-gingerol may be beneficial in obesity, by reducing adipogenesis partly through the down-regulating PPARγ activity. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Adipocyte Metabolic Pathways Regulated by Diet Control the Female Germline Stem Cell Lineage in Drosophila melanogaster

    PubMed Central

    Matsuoka, Shinya; Armstrong, Alissa R.; Sampson, Leesa L.; Laws, Kaitlin M.; Drummond-Barbosa, Daniela

    2017-01-01

    Nutrients affect adult stem cells through complex mechanisms involving multiple organs. Adipocytes are highly sensitive to diet and have key metabolic roles, and obesity increases the risk for many cancers. How diet-regulated adipocyte metabolic pathways influence normal stem cell lineages, however, remains unclear. Drosophila melanogaster has highly conserved adipocyte metabolism and a well-characterized female germline stem cell (GSC) lineage response to diet. Here, we conducted an isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis to identify diet-regulated adipocyte metabolic pathways that control the female GSC lineage. On a rich (relative to poor) diet, adipocyte Hexokinase-C and metabolic enzymes involved in pyruvate/acetyl-CoA production are upregulated, promoting a shift of glucose metabolism toward macromolecule biosynthesis. Adipocyte-specific knockdown shows that these enzymes support early GSC progeny survival. Further, enzymes catalyzing fatty acid oxidation and phosphatidylethanolamine synthesis in adipocytes promote GSC maintenance, whereas lipid and iron transport from adipocytes controls vitellogenesis and GSC number, respectively. These results show a functional relationship between specific metabolic pathways in adipocytes and distinct processes in the GSC lineage, suggesting the adipocyte metabolism–stem cell link as an important area of investigation in other stem cell systems. PMID:28396508

  13. Adipocyte Metabolic Pathways Regulated by Diet Control the Female Germline Stem Cell Lineage in Drosophila melanogaster.

    PubMed

    Matsuoka, Shinya; Armstrong, Alissa R; Sampson, Leesa L; Laws, Kaitlin M; Drummond-Barbosa, Daniela

    2017-06-01

    Nutrients affect adult stem cells through complex mechanisms involving multiple organs. Adipocytes are highly sensitive to diet and have key metabolic roles, and obesity increases the risk for many cancers. How diet-regulated adipocyte metabolic pathways influence normal stem cell lineages, however, remains unclear. Drosophila melanogaster has highly conserved adipocyte metabolism and a well-characterized female germline stem cell (GSC) lineage response to diet. Here, we conducted an isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis to identify diet-regulated adipocyte metabolic pathways that control the female GSC lineage. On a rich (relative to poor) diet, adipocyte Hexokinase-C and metabolic enzymes involved in pyruvate/acetyl-CoA production are upregulated, promoting a shift of glucose metabolism toward macromolecule biosynthesis. Adipocyte-specific knockdown shows that these enzymes support early GSC progeny survival. Further, enzymes catalyzing fatty acid oxidation and phosphatidylethanolamine synthesis in adipocytes promote GSC maintenance, whereas lipid and iron transport from adipocytes controls vitellogenesis and GSC number, respectively. These results show a functional relationship between specific metabolic pathways in adipocytes and distinct processes in the GSC lineage, suggesting the adipocyte metabolism-stem cell link as an important area of investigation in other stem cell systems. Copyright © 2017 by the Genetics Society of America.

  14. Monoethylhexyl Phthalate Elicits an Inflammatory Response in Adipocytes Characterized by Alterations in Lipid and Cytokine Pathways.

    PubMed

    Manteiga, Sara; Lee, Kyongbum

    2017-04-01

    A growing body of evidence links endocrine-disrupting chemicals (EDCs) with obesity-related metabolic diseases. While it has been shown that EDCs can predispose individuals toward adiposity by affecting developmental processes, little is known about the chemicals' effects on adult adipose tissue. Our aim was to study the effects of low, physiologically relevant doses of EDCs on differentiated murine adipocytes. We combined metabolomics, proteomics, and gene expression analysis to characterize the effects of mono-ethylhexyl phthalate (MEHP) in differentiated adipocytes. Repeated exposure to MEHP over several days led to changes in metabolite and enzyme levels indicating elevated lipogenesis and lipid oxidation. The chemical exposure also increased expression of major inflammatory cytokines, including chemotactic factors. Proteomic and gene expression analysis revealed significant alterations in pathways regulated by peroxisome proliferator activated receptor-γ (PPARγ). Inhibiting the nuclear receptor's activity using a chemical antagonist abrogated not only the alterations in PPARγ-regulated metabolic pathways, but also the increases in cytokine expression. Our results show that MEHP can induce a pro-inflammatory state in differentiated adipocytes. This effect is at least partially mediated PPARγ.

  15. Monoethylhexyl Phthalate Elicits an Inflammatory Response in Adipocytes Characterized by Alterations in Lipid and Cytokine Pathways

    PubMed Central

    Manteiga, Sara; Lee, Kyongbum

    2016-01-01

    Background: A growing body of evidence links endocrine-disrupting chemicals (EDCs) with obesity-related metabolic diseases. While it has been shown that EDCs can predispose individuals toward adiposity by affecting developmental processes, little is known about the chemicals’ effects on adult adipose tissue. Objectives: Our aim was to study the effects of low, physiologically relevant doses of EDCs on differentiated murine adipocytes. Methods: We combined metabolomics, proteomics, and gene expression analysis to characterize the effects of mono-ethylhexyl phthalate (MEHP) in differentiated adipocytes. Results: Repeated exposure to MEHP over several days led to changes in metabolite and enzyme levels indicating elevated lipogenesis and lipid oxidation. The chemical exposure also increased expression of major inflammatory cytokines, including chemotactic factors. Proteomic and gene expression analysis revealed significant alterations in pathways regulated by peroxisome proliferator activated receptor-γ (PPARγ). Inhibiting the nuclear receptor’s activity using a chemical antagonist abrogated not only the alterations in PPARγ-regulated metabolic pathways, but also the increases in cytokine expression. Conclusions: Our results show that MEHP can induce a pro-inflammatory state in differentiated adipocytes. This effect is at least partially mediated PPARγ. Citation: Manteiga S, Lee K. 2017. Monoethylhexyl phthalate elicits an inflammatory response in adipocytes characterized by alterations in lipid and cytokine pathways. Environ Health Perspect 125:615–622; http://dx.doi.org/10.1289/EHP464 PMID:27384973

  16. Irisin exerts dual effects on browning and adipogenesis of human white adipocytes.

    PubMed

    Zhang, Yuan; Xie, Chao; Wang, Hai; Foss, Robin M; Clare, Morgan; George, Eva Vertes; Li, Shiwu; Katz, Adam; Cheng, Henrique; Ding, Yousong; Tang, Dongqi; Reeves, Westley H; Yang, Li-Jun

    2016-08-01

    To better understand the role of irisin in humans, we examined the effects of irisin in human primary adipocytes and fresh human subcutaneous white adipose tissue (scWAT). Human primary adipocytes derived from 28 female donors' fresh scWAT were used to examine the effects of irisin on browning and mitochondrial respiration, and preadipocytes were used to examine the effects of irisin on adipogenesis and osteogenesis. Cultured fragments of scWAT and perirenal brown fat were used for investigating signal transduction pathways that mediate irisin's browning effect by Western blotting to detect phosphorylated forms of p38, ERK, and STAT3 as well as uncoupling protein 1 (UCP1). Individual responses to irisin in scWAT were correlated with basal expression levels of brown/beige genes. Irisin upregulated the expression of browning-associated genes and UCP1 protein in both cultured primary mature adipocytes and fresh adipose tissues. It also significantly increased thermogenesis at 5 nmol/l by elevating cellular energy metabolism (OCR and ECAR). Treating human scWAT with irisin increased UCP1 expression by activating the ERK and p38 MAPK signaling. Blocking either pathway with specific inhibitors abolished irisin-induced UCP1 upregulation. However, our results showed that UCP1 in human perirenal adipose tissue was insensitive to irisin. Basal levels of brown/beige and FNDC5 genes correlated positively with the browning response of scWAT to irisin. In addition, irisin significantly inhibited adipogenic differentiation but promoted osteogenic differentiation. We conclude that irisin promotes "browning" of mature white adipocytes by increasing cellular thermogenesis, whereas it inhibits adipogenesis and promotes osteogenesis during lineage-specific differentiation. Our findings provide a rationale for further exploring the therapeutic use of irisin in obesity and exercise-associated bone formation.

  17. Adipogenesis-related increase of semicarbazide-sensitive amine oxidase and monoamine oxidase in human adipocytes.

    PubMed

    Bour, Sandy; Daviaud, Danièle; Gres, Sandra; Lefort, Corinne; Prévot, Danielle; Zorzano, Antonio; Wabitsch, Martin; Saulnier-Blache, Jean-Sébastien; Valet, Philippe; Carpéné, Christian

    2007-08-01

    A strong induction of semicarbazide-sensitive amine oxidase (SSAO) has previously been reported during murine preadipocyte lineage differentiation but it remains unknown whether this emergence also occurs during adipogenesis in man. Our aim was to compare SSAO and monoamine oxidase (MAO) expression during in vitro differentiation of human preadipocytes and in adipose and stroma-vascular fractions of human fat depots. A human preadipocyte cell strain from a patient with Simpson-Golabi-Behmel syndrome was first used to follow amine oxidase expression during in vitro differentiation. Then, human preadipocytes isolated from subcutaneous adipose tissues were cultured under conditions promoting ex vivo adipose differentiation and tested for MAO and SSAO expression. Lastly, human adipose tissue was separated into mature adipocyte and stroma-vascular fractions for analyses of MAO and SSAO at mRNA, protein and activity levels. Both SSAO and MAO were increased from undifferentiated preadipocytes to lipid-laden cells in all the models: 3T3-F442A and 3T3-L1 murine lineages, human SGBS cell strain or human preadipocytes in primary culture. In human subcutaneous adipose tissue, the adipocyte-enriched fraction exhibited seven-fold higher amine oxidase activity and contained three- to seven-fold higher levels of mRNAs encoded by MAO-A, MAO-B, AOC3 and AOC2 genes than the stroma-vascular fraction. MAO-A and AOC3 genes accounted for the majority of their respective MAO and SSAO activities in human adipose tissue. Most of the SSAO and MAO found in adipose tissue originated from mature adipocytes. Although the mechanism and role of adipogenesis-related increase in amine oxidase expression remain to be established, the resulting elevated levels of amine oxidase activities found in human adipocytes may be of potential interest for therapeutic intervention in obesity.

  18. Adipocyte triglyceride turnover and lipolysis in lean and overweight subjects.

    PubMed

    Rydén, Mikael; Andersson, Daniel P; Bernard, Samuel; Spalding, Kirsty; Arner, Peter

    2013-10-01

    Human obesity is associated with decreased triglyceride turnover and impaired lipolysis in adipocytes. We determined whether such defects also occur in subjects with only moderate increase in fat mass. Human abdominal subcutaneous adipose tissue was investigated in healthy, nonobese subjects [body mass index (BMI) > 17 kg/m(2) and BMI < 30 kg/m(2)]. Triglyceride age, reflecting lipid turnover, was examined in 41 subjects by assessing the incorporation of atmospheric (14)C into adipose lipids. Adipocyte lipolysis was examined as the ability of lipolytic agents to stimulate glycerol release in 333 subjects. Adipocyte triglyceride age was markedly increased in overweight (BMI ≥ 25 kg/m(2)) compared with lean subjects (P = 0.017) with triglyceride T1/2 of 14 and 9 months, respectively (P = 0.04). Triglyceride age correlated positively with BMI (P = 0.002) but not with adipocyte volume (P = 0.2). Noradrenaline-, isoprenaline- or dibutyryl cyclic AMP-induced lipolysis was inversely correlated with triglyceride age (P < 0.01) and BMI (P < 0.0001) independently of basal lipolysis, gender, and nicotine use. Current, but not the highest or lowest BMI in adult life, correlated significantly (inversely) with lipolysis. In conclusion, adipocyte triglyceride turnover and lipolytic activity are decreased in overweight subjects and reflect the current BMI status. These changes may confer an increased risk for early development and/or maintenance of excess body fat.

  19. Activation of IRF1 in Human Adipocytes Leads to Phenotypes Associated with Metabolic Disease.

    PubMed

    Friesen, Max; Camahort, Raymond; Lee, Youn-Kyoung; Xia, Fang; Gerszten, Robert E; Rhee, Eugene P; Deo, Rahul C; Cowan, Chad A

    2017-05-09

    The striking rise of obesity-related metabolic disorders has focused attention on adipocytes as critical mediators of disease phenotypes. To better understand the role played by excess adipose in metabolic dysfunction it is crucial to decipher the transcriptional underpinnings of the low-grade adipose inflammation characteristic of diseases such as type 2 diabetes. Through employing a comparative transcriptomics approach, we identified IRF1 as differentially regulated between primary and in vitro-derived genetically matched adipocytes. This suggests a role as a mediator of adipocyte inflammatory phenotypes, similar to its function in other tissues. Utilizing adipose-derived mesenchymal progenitors we subsequently demonstrated that expression of IRF1 in adipocytes indeed contributes to upregulation of inflammatory processes, both in vitro and in vivo. This highlights IRF1's relevance to obesity-related inflammation and the resultant metabolic dysregulation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Featured Article: Dexamethasone and rosiglitazone are sufficient and necessary for producing functional adipocytes from mesenchymal stem cells

    PubMed Central

    Ezquer, Fernando; Espinosa, Maximiliano; Arango-Rodriguez, Martha; Puebla, Carlos; Sobrevia, Luis; Conget, Paulette

    2015-01-01

    The final product of adipogenesis is a functional adipocyte. This mature cell acquires the necessary machinery for lipid metabolism, loses its proliferation potential, increases its insulin sensitivity, and secretes adipokines. Multipotent mesechymal stromal cells have been recognized as a source of adipocytes both in vivo and in vitro. The in vitro adipogenic differentiation of human MSC (hMSC) has been induced up to now by using a complex stimulus which includes dexamethasone, 3-isobutyl-1-methylxanthine, indomethacin, and insulin (a classical cocktail) and evaluated according to morphological changes. The present work was aimed at demonstrating that the simultaneous activation of dexamethasone’s canonical signaling pathways, through the glucocorticoid receptor and CCAAT-enhancer-binding proteins (C/EBPs) and rosiglitazone through peroxisome proliferator-activated receptor gamma (PPAR-gamma) is sufficient yet necessary for inducing hMSC adipogenic differentiation. It was also ascertained that hMSC exposed just to dexamethasone and rosiglitazone (D&R) differentiated into cells which accumulated neutral lipid droplets, expressed C/EBP-alpha, PPAR-gamma, aP2, lipoprotein lipase, acyl-CoA synthetase, phosphoenolpyruvate carboxykinase, adiponectin, and leptin genes but did not proliferate. Glucose uptake was dose dependent on insulin stimulus and high levels of adipokines were secreted (i.e. displaying not only the morphology but also expressing mature adipocytes’ specific genes and functional characteristics). This work has demonstrated that (i) the activating C/EBPs and PPAR-gamma signaling pathways were sufficient to induce adipogenic differentiation from hMSC, (ii) D&R producing functional adipocytes from hMSC, (iii) D&R induce adipogenic differentiation from mammalian MSC (including those which are refractory to classical adipogenic differentiation stimuli). D&R would thus seem to be a useful tool for MSC characterization, studying adipogenesis pathways and

  1. Unravelling hair follicle-adipocyte communication.

    PubMed

    Schmidt, Barbara; Horsley, Valerie

    2012-11-01

    Here, we explore the established and potential roles for intradermal adipose tissue in communication with hair follicle biology. The hair follicle delves deep into the rich dermal macroenvironment as it grows to maturity where it is surrounded by large lipid-filled adipocytes. Intradermal adipocytes regenerate with faster kinetics than other adipose tissue depots and in parallel with the hair cycle, suggesting an interplay exists between hair follicle cells and adipocytes. While adipocytes have well-established roles in metabolism and energy storage, until recently, they were overlooked as niche cells that provide important growth signals to neighbouring skin cells. We discuss recent data supporting adipocytes as niche cells for the skin and skin pathologies that may be related to alterations in skin adipose tissue defects. © 2012 John Wiley & Sons A/S.

  2. Sida rhomboidea. Roxb leaf extract down-regulates expression of PPARγ2 and leptin genes in high fat diet fed C57BL/6J Mice and retards in vitro 3T3L1 pre-adipocyte differentiation.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Ramani, Umed V; Devkar, Ranjitsinh V; Ramachandran, A V

    2011-01-01

    Sida rhomboidea. Roxb leaf extract (SRLE) is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i) in vivo modulation of genes controlling high fat diet (HFD) induced obesity and (ii) in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity.

  3. Sida rhomboidea. Roxb Leaf Extract Down-Regulates Expression of PPARγ2 and Leptin Genes in High Fat Diet Fed C57BL/6J Mice and Retards in Vitro 3T3L1 Pre-Adipocyte Differentiation

    PubMed Central

    Thounaojam, Menaka C.; Jadeja, Ravirajsinh N.; Ramani, Umed V.; Devkar, Ranjitsinh V.; Ramachandran, A. V.

    2011-01-01

    Sida rhomboidea. Roxb leaf extract (SRLE) is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i) in vivo modulation of genes controlling high fat diet (HFD) induced obesity and (ii) in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity. PMID:21845103

  4. Green tea seed oil reduces weight gain in C57BL/6J mice and influences adipocyte differentiation by suppressing peroxisome proliferator-activated receptor-gamma.

    PubMed

    Kim, Na-Hyung; Choi, Sun-Kyung; Kim, Su-Jin; Moon, Phil-Dong; Lim, Hun-Sun; Choi, In-Young; Na, Ho-Jeong; An, Hyo-Jin; Myung, Noh-Yil; Jeong, Hyun-Ja; Um, Jae-Young; Hong, Seung-Heon; Kim, Hyung-Min

    2008-11-01

    Given that tea contains a number of chemical constituents possessing medicinal and pharmacological properties, green tea seed is also believed to contain many biologically active compounds such as saponin, flavonoids, vitamins, and oil materials. However, little is known about the physiologic functions of green tea seed oil. The aim of this study is to investigate the anti-obesity effects of green tea seed oil in C57BL/6J mice and in preadipocyte 3T3L-1 cell lines. In vivo, three groups of mice were fed with a standard diet, a high-fat diet containing 30% shortening, or 30% of green tea seed oil based on a standard diet for 85 days. The levels of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglyceride, glucose, and alanine aminotransferase in blood were analyzed at the end of the study. The mice given green tea seed oil gained less weight compared to mice given the shortening diet (p < 0.01). The plasma level of total cholesterol was decreased by a significant level of 32.4% in mice given the green tea seed oil compared to the mice given the shortening diet (p < 0.01). In addition, 3T3-L1 cells were treated for 2 days to evaluate effects of green tea seed oil on adipocyte differentiation. Green tea seed oil inhibited expression of peroxisome proliferator-activated receptor-gamma(2) and CCAAT/enhancer binding protein-alpha in adipocytes and adipose tissue from the experimental animals. These results indicate that the anti-obesity effects of green tea seed oil might be, in part, through suppression of transcription factors related to adipocyte differentiation.

  5. 4E-BP1 regulates the differentiation of white adipose tissue.

    PubMed

    Tsukiyama-Kohara, Kyoko; Katsume, Asao; Kimura, Kazuhiro; Saito, Masayuki; Kohara, Michinori

    2013-07-01

    4E Binding protein 1 (4E-BP1) suppresses translation initiation. The absence of 4E-BP1 drastically reduces the amount of adipose tissue in mice. To address the role of 4E-BP1 in adipocyte differentiation, we characterized 4E-BP1(-/-) mice in this study. The lack of 4E-BP1 decreased the amount of white adipose tissue and increased the amount of brown adipose tissue. In 4E-BP1(-/-) MEF cells, PPARγ coactivator 1 alpha (PGC-1α) expression increased and exogenous 4E-BP1 expression suppressed PGC-1α expression. The level of 4E-BP1 expression was higher in white adipocytes than in brown adipocytes and showed significantly greater up-regulation in white adipocytes than in brown adipocytes during preadipocyte differentiation into mature adipocytes. The amount of PGC-1α was consistently higher in HB cells (a brown preadipocyte cell line) than in HW cells (a white preadipocyte cell line) during differentiation. Moreover, the ectopic over-expression of 4E-BP1 suppressed PGC-1α expression in white adipocytes, but not in brown adipocytes. Thus, the results of our study indicate that 4E-BP1 may suppress brown adipocyte differentiation and PGC-1α expression in white adipose tissues. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  6. Lack of Adipocyte-Fndc5/Irisin Expression and Secretion Reduces Thermogenesis and Enhances Adipogenesis.

    PubMed

    Pérez-Sotelo, D; Roca-Rivada, A; Baamonde, I; Baltar, J; Castro, A I; Domínguez, E; Collado, M; Casanueva, F F; Pardo, M

    2017-11-24

    Irisin is a browning-stimulating molecule secreted from the fibronectin type III domain containing 5 precursor (FNDC5) by muscle tissue upon exercise stimulation. Despite its beneficial role, there is an unmet and clamorous need to discern many essential aspects of this protein and its mechanism of action not only as a myokine but also as an adipokine. Here we contribute to address this topic by revealing the nature and role of FNDC5/irisin in adipose tissue. First, we show that FNDC5/irisin expression and secretion are induced by adipocyte differentiation and confirm its over-secretion by human obese visceral (VAT) and subcutaneous (SAT) adipose tissues. Second, we show how secreted factors from human obese VAT and SAT decrease PGC1α, FNDC5 and UCP1 gene expression on differentiating adipocytes; this effect over UCP1 is blunted by blocking irisin in obese secretomes. Finally, by stable gene silencing FNDC5 we reveal that FNDC5-KO adipocytes show reduced UCP1 expression and enhanced adipogenesis.

  7. Effects of 17β-estradiol and progesterone on the production of adipokines in differentiating 3T3-L1 adipocytes: Role of Rho-kinase.

    PubMed

    Pektaş, Mehtap; Kurt, Akif Hakan; Ün, İsmail; Tiftik, Rukiye Nalan; Büyükafşar, Kansu

    2015-04-01

    Effect of female sex hormones on the production/release of adipocyte-derived cytokines has been debatable. Furthermore, whether the cellular signaling triggered by these hormones involve Rho-kinase has not been investigated yet. Therefore, in this study, effects of 17β-estradiol and progesterone as well as the Rho-kinase inhibitor, Y-27632 on the level of adipokines such as resistin, adiponectin, leptin, TNF-α and IL-6 were investigated in 3T3-L1-derived adipocytes. Differentiation was induced in the post-confluent preadipocytes by the standard differentiation medium (Dulbecco's modified Eagle's medium with 10% fetal bovine serum together with the mixture of isobutylmethylxanthine, dexamethasone and insulin) in the presence of 17β-estradiol (10(-8)-10(-7)M), progesterone (10(-6)-10(-5)M), the Rho-kinase inhibitor, Y-27632 (10(-5)M) and their combination for 8days. Measurements of the adipokines were performed in the culturing medium by ELISA kits using specific monoclonal antibodies. 17β-estradiol elevated resistin but decreased adiponectin and IL-6 levels; however, it did not alter the concentration of leptin and TNF-α. Y-27632 pretreatment inhibited the rise of resistin and the fall of adiponectin by 17β-estradiol without any effects by its own. Progesterone did not change resistin, leptin and TNF-α level; however, it elevated adiponectin and decreased IL-6 production. Neither 17β-estradiol nor Y-27632 was able to antagonize the increase of adiponectin and the reduction of IL-6 levels by progesterone. While Y-27632 alone lowered IL-6 level, it increased leptin and TNF-α concentration without altering resistin and adiponectin. In conclusion, 17β-estradiol could modify adipokine production in 3T3-L1 adipocytes with the actions some of which involve Rho-kinase mediation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Nuclear factor-κB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinoi, Eiichi; Iezaki, Takashi; Ozaki, Kakeru

    Highlights: • GDF5 expression is up-regulated by IL-1β, TNF-α and palmitate in brown pre-adipocytes. • NF-κB stimulates promoter activity and expression of GDF5 in brown pre-adipocytes. • Recruitment of NF-κB to the GDF5 promoter is facilitated in BAT from ob/ob mice. • An NF-κB inhibitor prevents upregulation of GDF5 expression in brown pre-adipocytes. - Abstract: We have previously demonstrated that genetic and acquired obesity similarly led to drastic upregulation in brown adipose tissue (BAT), rather than white adipose tissue, of expression of both mRNA and corresponding protein for the bone morphogenic protein/growth differentiation factor (GDF) member GDF5 capable of promotingmore » brown adipogenesis. In this study, we evaluated expression profiles of GDF5 in cultured murine brown pre-adipocytes exposed to pro-inflammatory cytokines and free fatty acids (FFAs), which are all shown to play a role in the pathogenesis of obesity. Both interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were effective in up-regulating GDF5 expression in a concentration-dependent manner, while similar upregulation was seen in cells exposed to the saturated FFA palmitate, but not to the unsaturated FFA oleate. In silico analysis revealed existence of the putative nuclear factor-κB (NF-κB) binding site in the 5′-flanking region of mouse GDF5, whereas introduction of NF-κB subunits drastically facilitated both promoter activity and expression of GDF5 in brown pre-adipocytes. Chromatin immunoprecipitation analysis confirmed significant facilitation of the recruitment of NF-κB to the GDF5 promoter in lysed extracts of BAT from leptin-deficient ob/ob obese mice. Upregulation o GDF5 expression was invariably inhibited by an NF-κB inhibitor in cultured brown pre-adipocytes exposed to IL-1β, TNF-α and palmitate. These results suggest that obesity leads to upregulation of GDF5 expression responsible for the promotion of brown adipogenesis through a

  9. Enhanced accumulation of adipocytes in bone marrow stromal cells in the presence of increased extracellular and intracellular [Ca{sup 2+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Ryota, E-mail: hryota@juntendo.ac.jp; Katoh, Youichi, E-mail: katoyo@juntendo-urayasu.jp; Nakamura, Kyoko

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} enhances adipocyte accumulation in the presence of adipogenic inducers. Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} enhances both proliferation and adipocyte differentiation in BMSCs. Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub o} in BMSCs. Black-Right-Pointing-Pointer An intracellular Ca{sup 2+} chelator suppresses the enhancement in adipocyte accumulation. Black-Right-Pointing-Pointer Controlling [Ca{sup 2+}]{sub o} may govern the balance of adipocyte and osteoblast development. -- Abstract: The bone marrow stroma contains osteoblasts and adipocytes that have a common precursor: the pluripotent mesenchymal stem cell found in bone marrow stromal cells (BMSCs). Local bone marrow Ca{sup 2+}more » levels can reach high concentrations due to bone resorption, which is one of the notable features of the bone marrow stroma. Here, we describe the effects of high [Ca{sup 2+}]{sub o} on the accumulation of adipocytes in the bone marrow stroma. Using primary mouse BMSCs, we evaluated the level of adipocyte accumulation by measuring Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity. High [Ca{sup 2+}]{sub o} enhanced the accumulation of adipocytes following treatment with both insulin and dexamethasone together but not in the absence of this treatment. This enhanced accumulation was the result of both the accelerated proliferation of BMSCs and their differentiation into adipocytes. Using the fura-2 method, we also showed that high [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub i}. An intracellular Ca{sup 2+} chelator suppressed the enhancement in adipocyte accumulation due to increased [Ca{sup 2+}]{sub o} in BMSCs. These data suggest a new role for extracellular Ca{sup 2+} in the bone marrow stroma: increased [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub i} levels, which in turn enhances the

  10. Alpha-tocopheryl-phosphate regulation of gene expression in pre-adipocytes and adipocytes

    USDA-ARS?s Scientific Manuscript database

    A correct function of adipocytes in connection with cellular fatty acid loading and release is a vital aspect of energy homeostasis; dysregulation of these reactions can result in obesity and type 2 diabetes mellitus. In addition, adipocytes have been proposed to play a major role in preventing lipo...

  11. Early Planetary Differentiation: Comparative Planetology

    NASA Technical Reports Server (NTRS)

    Jones, John H.

    2006-01-01

    We currently have extensive data for four different terrestrial bodies of the inner solar system: Earth, the Moon, Mars, and the Eucrite Parent Body [EPB]. All formed early cores; but all(?) have mantles with elevated concentrations of highly sidero-phile elements, suggestive of the addition of a late "veneer". Two appear to have undergone extensive differentiation consistent with a global magma ocean. One appears to be inconsistent with a simple model of "low-pressure" chondritic differentiation. Thus, there seems to be no single, simple paradigm for understand-ing early differentiation.

  12. Early suppression of adipocyte lipid turnover induces immunometabolic modulation in cancer cachexia syndrome.

    PubMed

    Henriques, Felipe Santos; Sertié, Rogério Antônio Laurato; Franco, Felipe Oliveira; Knobl, Pamela; Neves, Rodrigo Xavier; Andreotti, Sandra; Lima, Fabio Bessa; Guilherme, Adilson; Seelaender, Marilia; Batista, Miguel Luiz

    2017-05-01

    Cancer cachexia is a multifactorial syndrome characterized by body weight loss, atrophy of adipose tissue (AT) and systemic inflammation. However, there is limited information regarding the mechanisms of immunometabolic response in AT from cancer cachexia. Male Wistar rats were inoculated with 2 × 10 7 of Walker 256 tumor cells [tumor bearing (TB) rats]. The mesenteric AT (MeAT) was collected on d 0, 4, 7 (early stage), and 14 (cachexia stage) after tumor cell injection. Surgical biopsies for MeAT were obtained from patients who had gastrointestinal cancer with cachexia. Lipolysis showed an early decrease in glycerol release in TB d 4 (TB4) rats in relation to the control, followed by a 6-fold increase in TB14 rats, whereas de novo lipogenesis was markedly lower in the incorporation of glucose into fatty acids in TB14 rats during the development of cachexia. CD11b and CD68 were positive in TB7 and TB14 rats, respectively. In addition, we found cachexia stage results similar to those of animals in MeAT from patients: an increased presence of CD68 + , iNOS2 + , TNFα + , and HSL + cells. In summary, translational analysis of MeAT from patients and an animal model of cancer cachexia enabled us to identify early disruption in Adl turnover and subsequent inflammatory response during the development of cancer cachexia.-Henriques, F. S., Sertié, R. A. L., Franco, F. O., Knobl, P., Neves, R. X., Andreotti, S., Lima, F. B., Guilherme, A., Seelaender, M., Batista, M. L., Jr. Early suppression of adipocyte lipid turnover induces immunometabolic modulation in cancer cachexia syndrome. © FASEB.

  13. Cell-cycle arrest in mature adipocytes impairs BAT development but not WAT browning, and reduces adaptive thermogenesis in mice.

    PubMed

    Okamatsu-Ogura, Yuko; Fukano, Keigo; Tsubota, Ayumi; Nio-Kobayashi, Junko; Nakamura, Kyoko; Morimatsu, Masami; Sakaue, Hiroshi; Saito, Masayuki; Kimura, Kazuhiro

    2017-07-27

    We previously reported brown adipocytes can proliferate even after differentiation. To test the involvement of mature adipocyte proliferation in cell number control in fat tissue, we generated transgenic (Tg) mice over-expressing cell-cycle inhibitory protein p27 specifically in adipocytes, using the aP2 promoter. While there was no apparent difference in white adipose tissue (WAT) between wild-type (WT) and Tg mice, the amount of brown adipose tissue (BAT) was much smaller in Tg mice. Although BAT showed a normal cellular morphology, Tg mice had lower content of uncoupling protein 1 (UCP1) as a whole, and attenuated cold exposure- or β3-adrenergic receptor (AR) agonist-induced thermogenesis, with a decrease in the number of mature brown adipocytes expressing proliferation markers. An agonist for the β3-AR failed to increase the number of proliferating brown adipocytes, UCP1 content in BAT, and oxygen consumption in Tg mice, although the induction and the function of beige adipocytes in inguinal WAT from Tg mice were similar to WT mice. These results show that brown adipocyte proliferation significantly contributes to BAT development and adaptive thermogenesis in mice, but not to induction of beige adipocytes.

  14. Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes.

    PubMed

    Gómez-Zorita, Saioa; Lasa, Arrate; Abendaño, Naiara; Fernández-Quintela, Alfredo; Mosqueda-Solís, Andrea; Garcia-Sobreviela, Maria Pilar; Arbonés-Mainar, Jose M; Portillo, Maria P

    2017-11-21

    Adipocytes derived from human mesenchymal stem cells (MSCs) are widely used to investigate adipogenesis. Taking into account both the novelty of these MSCs and the scarcity of studies focused on the effects of phenolic compounds, the aim of the present study was to analyze the effect of apigenin, hesperidin and kaempferol on pre-adipocyte and mature adipocytes derived from this type of cells. In addition, the expression of genes involved in TG accumulation was also measured. Pre-adipocytes were cultured from day 0 to day 8 and mature adipocytes for 48 h with the polyphenols at doses of 1, 10 and 25 µM. Apigenin did not show an anti-adipogenic action. Pre-adipocytes treated with hesperidin and kaempferol showed reduced TG content at the three experimental doses. Apigenin did not modify the expression of the main adipogenic genes (c/ebpβ, c/ebpα, pparγ and srebp1c), hesperidin inhibited genes involved in the three phases of adipogenesis (c/ebpβ, srebp1c and perilipin) and kaempferol reduced c/ebpβ. In mature adipocytes, the three polyphenols reduced TG accumulation at the dose of 25 µM, but not at lower doses. All compounds increased mRNA levels of atgl. Apigenin and hesperidin decreased fasn expression. The present study shows the anti-adipogenic effect and delipidating effects of apigenin, hesperidin and kaempferol in human adipocytes derived from hMSCs. While hesperidin blocks all the stages of adipogenesis, kaempferol only inhibits the early stage. Regarding mature adipocytes, the three compounds reduce TG accumulation by activating, at least in part, lipolysis, and in the case of hesperidin and apigenin, also by reducing lipogenesis. The present study shows for the first time the anti-adipogenic effect and delipidating effect of apigenin, hesperidin and kaempferol in human adipocytes derived from MSCs for the first time.

  15. Adipocytes and abdominal aortic aneurysm: Putative potential role of adipocytes in the process of AAA development.

    PubMed

    Kugo, Hirona; Moriyama, Tatsuya; Zaima, Nobuhiro

    2018-01-15

    Background Adipose tissue plays a role in the storage of excess energy as triglycerides (TGs). Excess fat accumulation causes various metabolic and cardiovascular diseases. It has been reported that ectopic fat deposition and excess TG accumulation in non-adipose tissue might be important predictors of cardiometabolic and vascular risk. For example, ectopic fat in perivascular tissue promotes atherosclerotic plaque formation in the arterial wall. Objective Recently, it has been reported that ectopic fat (adipocyte) in the vascular wall of an abdominal aortic aneurysm (AAA) is present in both human and experimental animal models. The pathological significance of adipocytes in the AAA wall has not been fully understood. In this review, we summarized the functions of adipocytes and discussed potential new drugs that target vascular adipocytes for AAA treatment. Result Previous studies suggest that adipocytes in vascular wall play an important role in the development of AAA. Conclusion Adipocytes in the vascular wall could be novel targets for the development of AAA therapeutic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes.

    PubMed

    Lee, Sang Gil; Parks, John S; Kang, Hye Won

    2017-04-01

    Adipocyte browning is a promising strategy for obesity prevention. Using onion-peel-derived extracts and their bioactive compounds, we demonstrate that onion peel, a by-product of onion, can change the characteristics of white adipocytes to those of brown-like adipocytes in the white adipose tissue of mice and 3T3-L1 cells. The expression of the following brown adipose tissue-specific genes was increased in the retroperitoneal and subcutaneous adipose tissues of 0.5% onion-peel-extract-fed mice: PR domain-containing 16, peroxisome proliferator-activated receptor gamma coactivator 1α, uncoupling protein 1, fibroblast growth factor 21 and cell death-inducing DFFA-like effector. In 3T3-L1 adipocytes, onion peel extract induced the expression of brown adipose tissue-specific genes and increased the expression of carnitine palmitoyltransferase 1α. This effect was supported by decreased lipid levels and multiple small-sized lipid droplets. The ethyl acetate fraction of the onion peel extract that contained the highest proportion of hydrophobic molecules showed the same browning effect in 3T3-L1 adipocytes. A high-performance liquid chromatography analysis further identified quercetin as a functional compound in the browning effect of onion peel. The quercetin-associated browning effect was mediated in part by the activation of AMP-activated protein kinase. In summary, our study provides the first demonstration of the browning effects of onion peel and quercetin using both animal and cell models. This result indicates that onion peel has the potential to remodel the characteristics of white adipocytes to those of brown-like adipocytes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Lipid phosphate phosphatase 3 regulates adipocyte sphingolipid synthesis, but not developmental adipogenesis or diet-induced obesity in mice.

    PubMed

    Federico, Lorenzo; Yang, Liping; Brandon, Jason; Panchatcharam, Manikandan; Ren, Hongmei; Mueller, Paul; Sunkara, Manjula; Escalante-Alcalde, Diana; Morris, Andrew J; Smyth, Susan S

    2018-01-01

    Dephosphorylation of phosphatidic acid (PA) is the penultimate step in triglyceride synthesis. Adipocytes express soluble intracellular PA-specific phosphatases (Lipins) and broader specificity membrane-associated lipid phosphate phosphatases (LPPs) that can also dephosphorylate PA. Inactivation of lipin1 causes lipodystrophy in mice due to defective developmental adipogenesis. Triglyceride synthesis is diminished but not ablated by inactivation of lipin1 in differentiated adipocytes implicating other PA phosphatases in this process. To investigate the possible role of LPPs in adipocyte lipid metabolism and signaling we made mice with adipocyte-targeted inactivation of LPP3 encoded by the Plpp3(Ppap2b) gene. Adipocyte LPP3 deficiency resulted in blunted ceramide and sphingomyelin accumulation during diet-induced adipose tissue expansion, accumulation of the LPP3 substrate sphingosine 1- phosphate, and reduced expression of serine palmitoyl transferase. However, adiposity was unaffected by LPP3 deficiency on standard, high fat diet or Western diets, although Western diet-fed mice with adipocyte LPP3 deficiency exhibited improved glucose tolerance. Our results demonstrate functional compartmentalization of lipid phosphatase activity in adipocytes and identify an unexpected role for LPP3 in the regulation of diet-dependent sphingolipid synthesis that may impact on insulin signaling.

  18. Adipocyte-Macrophage Cross-Talk in Obesity.

    PubMed

    Engin, Ayse Basak

    2017-01-01

    Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction has a primary importance in obesity. Large amounts of macrophages are accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway also promotes more macrophage accumulation into the obese adipose tissue. However, increased local extracellular lipid concentrations is a final mechanism for adipose tissue macrophage accumulation. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-alpha) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1beta) by macrophages; both adipocyte and macrophage induction by toll like receptor-4 (TLR4) through nuclear factor-kappaB (NF-kappaB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in macrophage accumulation and in the development of adipose tissue inflammation. Old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. The obesity-induced changes in adipose tissue macrophage numbers are mainly due to increases in the triple-positive CD11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. The ratio of M1-to-M2 macrophages is increased in obesity. Furthermore, hypoxia along with higher concentrations of free fatty acids exacerbates macrophage-mediated inflammation in obesity. The metabolic status of adipocytes is a major determinant of macrophage inflammatory output. Macrophage/adipocyte fatty-acid-binding proteins act at the interface of metabolic and inflammatory pathways. Both macrophages and

  19. Transcription factor PU.1 is expressed in white adipose and inhibits adipocyte differentiation

    USDA-ARS?s Scientific Manuscript database

    PU.1 transcription factor is a critical regulator of hematopoiesis and leukemogenesis. Because PU.1 interacts with transcription factors GATA-2 and C/EBPa, both of which are involved in the regulation of adipogenesis, we investigated whether PU.1 also plays a role in the regulation of adipocyte diff...

  20. Hyperspectral and differential CARS microscopy for quantitative chemical imaging in human adipocytes

    PubMed Central

    Di Napoli, Claudia; Pope, Iestyn; Masia, Francesco; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-01-01

    In this work, we demonstrate the applicability of coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy for quantitative chemical imaging of saturated and unsaturated lipids in human stem-cell derived adipocytes. We compare dual-frequency/differential CARS (D-CARS), which enables rapid imaging and simple data analysis, with broadband hyperspectral CARS microscopy analyzed using an unsupervised phase-retrieval and factorization method recently developed by us for quantitative chemical image analysis. Measurements were taken in the vibrational fingerprint region (1200–2000/cm) and in the CH stretch region (2600–3300/cm) using a home-built CARS set-up which enables hyperspectral imaging with 10/cm resolution via spectral focussing from a single broadband 5 fs Ti:Sa laser source. Through a ratiometric analysis, both D-CARS and phase-retrieved hyperspectral CARS determine the concentration of unsaturated lipids with comparable accuracy in the fingerprint region, while in the CH stretch region D-CARS provides only a qualitative contrast owing to its non-linear behavior. When analyzing hyperspectral CARS images using the blind factorization into susceptibilities and concentrations of chemical components recently demonstrated by us, we are able to determine vol:vol concentrations of different lipid components and spatially resolve inhomogeneities in lipid composition with superior accuracy compared to state-of-the art ratiometric methods. PMID:24877002

  1. RPL13A and EEF1A1 Are Suitable Reference Genes for qPCR during Adipocyte Differentiation of Vascular Stromal Cells from Patients with Different BMI and HOMA-IR.

    PubMed

    Gentile, Adriana-Mariel; Lhamyani, Said; Coín-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Zayed, Hatem; Vega-Rioja, Antonio; Monteseirin, Javier; Romero-Zerbo, Silvana-Yanina; Tinahones, Francisco-José; Bermúdez-Silva, Francisco-Javier; El Bekay, Rajaa

    2016-01-01

    Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR.

  2. RPL13A and EEF1A1 Are Suitable Reference Genes for qPCR during Adipocyte Differentiation of Vascular Stromal Cells from Patients with Different BMI and HOMA-IR

    PubMed Central

    Gentile, Adriana-Mariel; Lhamyani, Said; Coín-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Zayed, Hatem; Vega-Rioja, Antonio; Monteseirin, Javier; Romero-Zerbo, Silvana-Yanina; Tinahones, Francisco-José; Bermúdez-Silva, Francisco-Javier; El Bekay, Rajaa

    2016-01-01

    Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR. PMID:27304673

  3. Obestatin regulates adipocyte function and protects against diet-induced insulin resistance and inflammation.

    PubMed

    Granata, Riccarda; Gallo, Davide; Luque, Raul M; Baragli, Alessandra; Scarlatti, Francesca; Grande, Cristina; Gesmundo, Iacopo; Córdoba-Chacón, Jose; Bergandi, Loredana; Settanni, Fabio; Togliatto, Gabriele; Volante, Marco; Garetto, Stefano; Annunziata, Marta; Chanclón, Belén; Gargantini, Eleonora; Rocchietto, Stefano; Matera, Lina; Datta, Giacomo; Morino, Mario; Brizzi, Maria Felice; Ong, Huy; Camussi, Giovanni; Castaño, Justo P; Papotti, Mauro; Ghigo, Ezio

    2012-08-01

    The metabolic actions of the ghrelin gene-derived peptide obestatin are still unclear. We investigated obestatin effects in vitro, on adipocyte function, and in vivo, on insulin resistance and inflammation in mice fed a high-fat diet (HFD). Obestatin effects on apoptosis, differentiation, lipolysis, and glucose uptake were determined in vitro in mouse 3T3-L1 and in human subcutaneous (hSC) and omental (hOM) adipocytes. In vivo, the influence of obestatin on glucose metabolism was assessed in mice fed an HFD for 8 wk. 3T3-L1, hSC, and hOM preadipocytes and adipocytes secreted obestatin and showed specific binding for the hormone. Obestatin prevented apoptosis in 3T3-L1 preadipocytes by increasing phosphoinositide 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK)1/2 signaling. In both mice and human adipocytes, obestatin inhibited isoproterenol-induced lipolysis, promoted AMP-activated protein kinase phosphorylation, induced adiponectin, and reduced leptin secretion. Obestatin also enhanced glucose uptake in either the absence or presence of insulin, promoted GLUT4 translocation, and increased Akt phosphorylation and sirtuin 1 (SIRT1) protein expression. Inhibition of SIRT1 by small interfering RNA reduced obestatin-induced glucose uptake. In HFD-fed mice, obestatin reduced insulin resistance, increased insulin secretion from pancreatic islets, and reduced adipocyte apoptosis and inflammation in metabolic tissues. These results provide evidence of a novel role for obestatin in adipocyte function and glucose metabolism and suggest potential therapeutic perspectives in insulin resistance and metabolic dysfunctions.

  4. An In Vitro Model to Probe the Regulation of Adipocyte Differentiation under Hyperglycemia

    PubMed Central

    Shilpa, Kusampudi; Dinesh, Thangaraj

    2013-01-01

    Background The aim of this study was an in vitro investigation of the effect of high glucose concentration on adipogenesis, as prolonged hyperglycemia alters adipocyte differentiation. Methods 3T3-L1 preadipocytes differentiated in the presence of varying concentrations of glucose (25, 45, 65, 85, and 105 mM) were assessed for adipogenesis using AdipoRed (Lonza) assay. Cell viability and proliferation were measured using MTT reduction and [3H] thymidine incorporation assay. The extent of glucose uptake and glycogen synthesis were measured using radiolabelled 2-deoxy-D-[1-3H] glucose and [14C]-UDP-glucose. The gene level expression was evaluated using reverse transcription-polymerase chain reaction and protein expression was studied using Western blot analysis. Results Glucose at 105 mM concentration was observed to inhibit adipogenesis through inhibition of CCAAT-enhancer-binding proteins, sterol regulatory element-binding protein, peroxisome proliferator-activated receptor and adiponectin. High concentration of glucose induced stress by increasing levels of toll-like receptor 4, nuclear factor κB and tumor necrosis factor α thereby generating activated preadipocytes. These cells entered the state of hyperplasia through inhibition of p27 and proliferation was found to increase through activation of protein kinase B via phosphoinositide 3 kinase dependent pathway. This condition inhibited insulin signaling through decrease in insulin receptor β. Although the glucose transporter 4 (GLUT4) protein remained unaltered with the glycogen synthesis inhibited, the cells were found to exhibit an increase in glucose uptake via GLUT1. Conclusion Adipogenesis in the presence of 105 mM glucose leads to an uncontrolled proliferation of activated preadipocytes providing an insight towards understanding obesity. PMID:23807920

  5. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation

    PubMed Central

    Nishikawa, Keizo; Nakashima, Tomoki; Takeda, Shu; Isogai, Masashi; Hamada, Michito; Kimura, Ayako; Kodama, Tatsuhiko; Yamaguchi, Akira; Owen, Michael J.; Takahashi, Satoru; Takayanagi, Hiroshi

    2010-01-01

    Aging leads to the disruption of the homeostatic balance of multiple biological systems. In bone marrow multipotent mesenchymal cells undergo differentiation into various anchorage-dependent cell types, including osteoblasts and adipocytes. With age as well as with treatment of antidiabetic drugs such as thiazolidinediones, mesenchymal cells favor differentiation into adipocytes, resulting in an increased number of adipocytes and a decreased number of osteoblasts, causing osteoporosis. The mechanism behind this differentiation switch is unknown. Here we show an age-related decrease in the expression of Maf in mouse mesenchymal cells, which regulated mesenchymal cell bifurcation into osteoblasts and adipocytes by cooperating with the osteogenic transcription factor Runx2 and inhibiting the expression of the adipogenic transcription factor Pparg. The crucial role of Maf in both osteogenesis and adipogenesis was underscored by in vivo observations of delayed bone formation in perinatal Maf–/– mice and an accelerated formation of fatty marrow associated with bone loss in aged Maf+/– mice. This study identifies a transcriptional mechanism for an age-related switch in cell fate determination and may provide a molecular basis for novel therapeutic strategies against age-related bone diseases. PMID:20877012

  6. Anti-obesity effects of Arctii Fructus (Arctium lappa) in white/brown adipocytes and high-fat diet-induced obese mice.

    PubMed

    Han, Yo-Han; Kee, Ji-Ye; Kim, Dae-Seung; Park, Jinbong; Jeong, Mi-Young; Mun, Jung-Geon; Park, Sung-Joo; Lee, Jong-Hyun; Um, Jae-Young; Hong, Seung-Heon

    2016-12-07

    Arctii Fructus is traditionally used in oriental pharmacies as an anti-inflammatory medicine. Although several studies have shown its anti-inflammatory effects, there have been no reports on its use in obesity related studies. In this study, the anti-obesity effect of Arctii Fructus was investigated in high-fat diet (HFD)-induced obese mice, and the effect was confirmed in white and primary cultured brown adipocytes. Arctii Fructus inhibited weight gain and reduced the mass of white adipose tissue in HFD-induced obese mice. Serum levels of triglyceride and LDL-cholesterol were reduced, and HDL-cholesterol was increased in the Arctii Fructus treated group. In 3T3-L1 cells, a water extract (WAF) and 70% EtOH extract (EtAF) of Arctii Fructus significantly inhibited adipogenesis and suppressed the expression of proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha. In particular, EtAF activated the phosphorylation of AMP-activated protein kinase. On the other hand, uncoupling protein 1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, known as brown adipocytes specific genes, were increased in primary cultured brown adipocytes by WAF and EtAF. This study shows that Arctii Fructus prevents the development of obesity through the inhibition of white adipocyte differentiation and activation of brown adipocyte differentiation which suggests that Arctii Fructus could be an effective therapeutic for treating or preventing obesity.

  7. A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes

    PubMed Central

    Liu, Weiyi; Shan, Tizhong; Yang, Xin; Liang, Sandra; Zhang, Pengpeng; Liu, Yaqin; Liu, Xiaoqi; Kuang, Shihuan

    2013-01-01

    Summary A worldwide epidemic of obesity and its associated metabolic disorders raise the significance of adipocytes, their origins and characteristics. Our previous study has demonstrated that interscapular brown adipose tissue (BAT), but not intramuscular adipose, is derived from the Pax3-expressing cell lineage. Here, we show that various depots of subcutaneous (SAT) and visceral adipose tissue (VAT) are highly heterogeneous in the Pax3 lineage origin. Interestingly, the relative abundance of Pax3 lineage cells in SAT depots is inversely correlated to expression of BAT signature genes including Prdm16, Pgc1a (Ppargc1a) and Ucp1. FACS analysis further demonstrates that adipocytes differentiated from non-Pax3 lineage preadipocytes express higher levels of BAT and beige adipocyte signature genes compared with the Pax3 lineage adipocytes within the same depots. Although both Pax3 and non-Pax3 lineage preadipocytes can give rise to beige adipocytes, the latter contributes more significantly. Consistently, genetic ablation of Pax3 lineage cells in SAT leads to increased expression of beige cell markers. Finally, non-Pax3 lineage beige adipocytes are more responsive to cAMP-agonist-induced Ucp1 expression. Taken together, these results demonstrate widespread heterogeneity in Pax3 lineage origin, and its inverse association with BAT gene expression within and among subcutaneous adipose depots. PMID:23781029

  8. Application of adipocyte-derived stem cells in treatment of cutaneous radiation syndrome.

    PubMed

    Riccobono, Diane; Agay, Diane; Scherthan, Harry; Forcheron, Fabien; Vivier, Mylène; Ballester, Bruno; Meineke, Viktor; Drouet, Michel

    2012-08-01

    Cutaneous radiation syndrome caused by local high dose irradiation is characterized by delayed outcome and incomplete healing. Recent therapeutic management of accidentally irradiated burn patients has suggested the benefit of local cellular therapy using mesenchymal stem cell grafting. According to the proposed strategy of early treatment, large amounts of stem cells would be necessary in the days following exposure and hospitalization, which would require allogeneic stem cells banking. In this context, the authors compared the benefit of local autologous and allogeneic adipocyte-derived stem cell injection in a large animal model. Minipigs were locally irradiated using a 60Co gamma source at a dose of 50 Gy and divided into three groups. Two groups were grafted with autologous (n = 5) or allogeneic (n = 5) adipocyte-derived stem cells four times after the radiation exposure, whereas the control group received the vehicle without cells (n = 8). A clinical score was elaborated to compare the efficiency of the three treatments. All controls exhibited local inflammatory injuries leading to a persistent painful necrosis, thus mimicking the clinical evolution in human victims. In the autologous adipocyte-derived stem cells group, skin healing without necrosis or uncontrollable pain was observed. In contrast, the clinical outcome was not significantly different in the adipocyte-derived stem cell allogeneic group when compared with controls. This study suggests that autologous adipocyte-derived stem cell grafting improves cutaneous radiation syndrome wound healing, whereas allogeneic adipocyte derived stem cells do not. Further studies will establish whether manipulation of allogeneic stem cells will improve their therapeutic potential.

  9. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp; Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510; Yoshizaki, Takayuki

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytesmore » by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.« less

  10. Brazilein from Caesalpinia sappan L. Antioxidant Inhibits Adipocyte Differentiation and Induces Apoptosis through Caspase-3 Activity and Anthelmintic Activities against Hymenolepis nana and Anisakis simplex

    PubMed Central

    Liang, Chia-Hua; Chan, Leong-Perng; Chou, Tzung-Han; Chiang, Feng-Yu; Yen, Chuan-Min; Chen, Pin-Ju; Ding, Hsiou-Yu

    2013-01-01

    Brazilein, a natural, biologically active compound from Caesalpinia sappan L., has been shown to exhibit anti-inflammatory and antioxidant properties and to inhibit the growth of several cancer cells. This study verifies the antioxidant and antitumor characteristics of brazilein in skin cancer cells and is the first time to elucidate the inhibition mechanism of adipocyte differentiation, cestocidal activities against Hymenolepis nana, and reduction of spontaneous movement in Anisakis simplex. Brazilein exhibits an antioxidant capacity as well as the ability to scavenge DPPH• and ABTS•+ free radicals and to inhibit lipid peroxidation. Brazilein inhibited intracellular lipid accumulation during adipocyte differentiation in 3T3-L1 cells and suppressed the induction of peroxisome proliferator-activated receptor γ (PPARγ), the master regulator of adipogenesis, suggesting that brazilein presents the antiobesity effects. The toxic effects of brazilein were evaluated in terms of cell viability, induction of apoptosis, and the activity of caspase-3 in BCC cells. The inhibition of the growth of skin cancer cells (A431, BCC, and SCC25) by brazilein is greater than that of human skin malignant melanoma (A375) cells, mouse leukemic monocyte macrophage (RAW 264.7 cells), and noncancerous cells (HaCaT and BNLCL2 cells). The anthelmintic activities of brazilein against Hymenolepis nana are better than those of Anisakis simplex. PMID:23554834

  11. Pulicaria jaubertii extract prevents triglyceride deposition in 3T3-L1 adipocytes

    USDA-ARS?s Scientific Manuscript database

    Currently, levels of obesity in Middle Eastern countries are increasing. Phytochemicals have anti-obesogenic properties as evidenced by prevention of adipocyte differentiation. In Yemen, Pulicaria jaubertii E.Gamal-Eldin (PJ) is a food additive and a traditional medicine. We tested the ability of ex...

  12. PPAR gamma partial agonist, KR-62776, inhibits adipocyte differentiation via activation of ERK.

    PubMed

    Kim, J; Han, D C; Kim, J M; Lee, S Y; Kim, S J; Woo, J R; Lee, J W; Jung, S-K; Yoon, K S; Cheon, H G; Kim, S S; Hong, S H; Kwon, B-M

    2009-05-01

    Indenone KR-62776 acts as an agonist of PPAR gamma without inducing obesity in animal models and cells. X-ray crystallography reveals that the indenone occupies the binding pocket in a different manner than rosiglitazone. 2-Dimensional gel-electrophoresis showed that the expression of 42 proteins was altered more than 2.0-fold between KR-62776- or rosiglitazone-treated adipocyte cells and control cells. Rosiglitazone down-regulated the expression of ERK1/2 and suppressed the phosphorylation of ERK1/2 in these cells. However, the expression of ERK1/2 was up-regulated in KR-62776-treated cells. Phosphorylated ERK1/2, activated by indenone, affects the localization of PPAR gamma, suggesting a mechanism for indenone-inhibition of adipogenesis in 3T3-L1 preadipocyte cells. The preadipocyte cells are treated with ERK1/2 inhibitor PD98059, a large amount of the cells are converted to adipocyte cells. These results support the conclusion that the localization of PPAR gamma is one of the key factors explaining the biological responses of the ligands.

  13. Cadmium modulates adipocyte functions in metallothionein-null mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WATmore » with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.« less

  14. Transplantation and differentiation of donor cells in the cloned pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, Arata; Tomii, Ryo; Kano, Koichiro

    2006-06-02

    The application of nuclear transfer technology is an interesting approach to investigate stem and progenitor cell transplantation therapy. If stem cells are used as a nuclear donor, donor cells can engraft into cloned animals without histocompatible problems. However, it is still uncertain whether donor cells can engraft to cloned animal and differentiate in vivo. To address this problem, we transplanted donor cells to dermal tissues of cloned pigs developed by using preadipocytes as donor cells. Preadipocytes are adipocytic progenitor which can differentiate to mature adipocytes in vitro. We showed that the donor preadipocytes were successfully transplanted into the cloned pigsmore » without immune rejection and they differentiated into mature adipocytes in vivo 3 weeks after transplantation. In contrast, allogenic control preadipocytes, which can differentiate in vitro, did not differentiate in vivo. These results indicate that donor progenitor cells can differentiate in cloned animal.« less

  15. St. John’s Wort inhibits insulin signaling in murine and human adipocytes

    PubMed Central

    Richard, Allison J.; Amini, Zhaleh J.; Ribnicky, David M.; Stephens, Jacqueline M.

    2012-01-01

    Adipocytes are insulin-sensitive cells that play a major role in energy homeostasis. Obesity is the primary disease of fat cells and a major risk factor for the development of Type 2 diabetes, cardiovascular disease, and metabolic syndrome. The use of botanicals in the treatment of metabolic diseases is an emerging area of research. In previous studies, we screened over 425 botanical extracts for their ability to modulate adipogenesis and insulin sensitivity. We identified St. John’s Wort (SJW) extracts as inhibitors of adipogenesis of 3T3-L1 cells and demonstrated that these extracts also inhibited insulin-sensitive glucose uptake in mature fat cells. In these follow-up studies we have further characterized the effects of SJW on insulin action in both murine and human fat cells. We have shown that SJW also attenuates insulin-sensitive glucose uptake in human adipocytes. Moreover, SJW inhibits IRS-1 tyrosine phosphorylation in both murine and human fat cells. Botanical extracts are complex mixtures. Many bioactive compounds have been identified in SJW, including hypericin (HI) and hyperforin (HF). We have examined the ability of HI and HF, purified from SJW, to modulate adipocyte development and insulin action in mature adipocytes. Our novel studies indicate that the profound effects of SJW on adipogenesis, IRS-1 activation, and insulin-stimulated glucose uptake are not mediated by HI and/or HF. Nonetheless, we propose that extracts of SJW may contribute to adipocyte related diseases by limiting differentiation of preadipocytes and significantly inducing insulin resistance in mature fat cells. PMID:22198320

  16. Adipocyte and leptin accumulation in tumor-induced thymic involution.

    PubMed

    Lamas, Alejandro; Lopez, Elena; Carrio, Roberto; Lopez, Diana M

    2016-01-01

    Cell-mediated immunity is an important defense mechanism against pathogens and developing tumor cells. The thymus is the main lymphoid organ involved in the formation of the cell-mediated immune response by the maturation and differentiation of lymphocytes that travel from the bone marrow, through the lymphatic ducts, to become T lymphocytes. Thymic involution has been associated with aging; however, other factors such as obesity, viral infection and tumor development have been shown to increase the rate of shrinkage of this organ. The heavy infiltration of adipocyte fat cells has been reported in the involuted thymuses of aged mice. In the present study, the possible accumulation of such cells in the thymus during tumorigenesis was examined by immunohistochemistry. A significant number of adipocytes around and infiltrating the thymuses of tumor-bearing mice was observed. Leptin is a pro-inflammatory adipocytokine that enhances thymopoiesis and modulates T cell immune responses. The levels of leptin and adiponectin, another adipocytokine that has anti-inflammatory properties, were examined by western blot analysis. While no changes were observed in the amounts of adiponectin present in the thymuses of the normal and tumor-bearing mice, significantly higher levels of leptin were detected in the thymocytes of the tumor-bearing mice. This correlated with an increase in the expression of certain cytokines, such as interleukin (IL)-2, interferon (IFN)-γ and granulocyte-macrophage colony-stimulating factor (GM-CSF). The co-culture of thymocytes isolated from normal mice with ex vivo isolated adipocytes from tumor-bearing mice yielded similar results. Our findings suggest that the infiltration and accumulation of adipocytes in the thymuses of tumor-bearing mice play an important role in their altered morphology and functions.

  17. The novel anti-adipogenic effect and mechanisms of action of SGI-1776, a Pim-specific inhibitor, in 3T3-L1 adipocytes.

    PubMed

    Park, Yu-Kyoung; Hong, Victor Sukbong; Lee, Tae-Yoon; Lee, Jinho; Choi, Jong-Soon; Park, Dong-Soon; Park, Gi-Young; Jang, Byeong-Churl

    2016-01-01

    The proviral integration site for moloney murine leukemia virus (Pim) kinases, consisting of Pim-1, Pim-2 and Pim-3, belongs to a family of serine/threonine kinases that are involved in controlling cell growth and differentiation. Pim kinases are emerging as important mediators of adipocyte differentiation. SGI-1776, an inhibitor of Pim kinases, is widely used to assess the physiological roles of Pim kinases, particularly cell functions. In the present study, we examined the effects of SGI-1776 on adipogenesis. The anti‑adipogenic effect of SGI‑1776 was measured by Oil Red O staining and AdipoRed assays. The effect of SGI‑1776 on the growth of 3T3‑L1 adipocytes was determined by cell count analysis. The effects of SGI‑1776 on the protein and mRNA expression of adipogenesis-related proteins and adipokines in 3T3‑L1 adipocytes were also evaluated by western blot analysis and RT‑PCR, respectively. Notably, SGI-1776 markedly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. On a mechanistic level, SGI-1776 inhibited not only the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ) and fatty acid synthase (FAS), but also the phosphorylation of signal transducer and activator of transcription-3 (STAT-3). Moreover, SGI-1776 decreased the expression of adipokines, including the expression of leptin and regulated on activation, normal T cell expressed and secreted (RANTES) during adipocyte differentiation. These findings demonstrate that SGI-1776 inhibits adipogenesis by downregulating the expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS and STAT-3.

  18. Gene expression profiling of 3T3-L1 adipocytes exposed to phloretin.

    PubMed

    Hassan, Meryl; El Yazidi, Claire; Malezet-Desmoulins, Christiane; Amiot, Marie-Josèphe; Margotat, Alain

    2010-07-01

    Adipocyte dysfunction plays a major role in the outcome of obesity, insulin resistance and related cardiovascular complications. Thus, considerable efforts are underway in the pharmaceutical industry to find molecules that target the now well-documented pleiotropic functions of adipocyte. We previously reported that the dietary flavonoid phloretin enhances 3T3-L1 adipocyte differentiation and adiponectin expression at least in part through PPAR gamma activation. The present study was designed to further characterize the molecular mechanisms underlying the phloretin-mediated effects on 3T3-L1 adipocytes using microarray technology. We show that phloretin positively regulates the expression of numerous genes involved in lipogenesis and triglyceride storage, including GLUT4, ACSL1, PEPCK1, lipin-1 and perilipin (more than twofold). The expression of several genes encoding adipokines, in addition to adiponectin and its receptor, is positively or negatively regulated in a way that suggests a possible reduction in systemic insulin resistance and obesity-associated inflammation. Improvement of insulin sensitivity is also suggested by the overexpression of genes associated with insulin signal transduction, such as CAP, PDK1 and Akt2. Many of these genes are PPAR gamma targets, confirming the involvement of PPAR gamma pathway in the phloretin effects on adipocytes. In light of these microarray data, it is reasonable to assume that phloretin may be beneficial for reducing insulin resistance, in a similar way to the thiazolidinedione class of antidiabetic drugs. (c) 2010 Elsevier Inc. All rights reserved.

  19. Aspartame downregulates 3T3-L1 differentiation.

    PubMed

    Pandurangan, Muthuraman; Park, Jeongeun; Kim, Eunjung

    2014-10-01

    Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. Since aspartame is 200 times sweeter than traditional sugar, it can give the same level of sweetness with less substance, which leads to lower-calorie food intake. There are reports that consumption of aspartame-containing products can help obese people lose weight. However, the potential role of aspartame in obesity is not clear. The present study investigated whether aspartame suppresses 3T3-L1 differentiation, by downregulating phosphorylated peroxisome proliferator-activated receptor γ (p-PPARγ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (FABP4), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1), which are critical for adipogenesis. The 3T3-L1 adipocytes were cultured and differentiated for 6 d in the absence and presence of 10 μg/ml of aspartame. Aspartame reduced lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. qRT-PCR analysis showed that the PPARγ, FABP4, and C/EBPα mRNA expression was significantly reduced in the aspartame-treated adipocytes. Western blot analysis showed that the induction of p-PPARγ, PPARγ, SREBP1, and adipsin was markedly reduced in the aspartame-treated adipocytes. Taken together, these data suggest that aspartame may be a potent substance to alter adipocyte differentiation and control obesity.

  20. SDF7, a group of Scoparia dulcis Linn. derived flavonoid compounds, stimulates glucose uptake and regulates adipocytokines in 3T3-F442a adipocytes.

    PubMed

    Beh, Joo Ee; Khoo, Li Teng; Latip, Jalifah; Abdullah, Mohd Paud; Alitheen, Noorjahan Baru Mohamed; Adam, Zainah; Ismail, Amin; Hamid, Muhajir

    2013-10-28

    Adipocytes are major tissues involved in glucose uptake second to skeletal muscle and act as the main adipocytokines mediator that regulates glucose uptake mechanism and cellular differentiation. The objective of this study were to examine the effect of the SDF7, which is a fraction consists of four flavonoid compounds (quercetin: p-coumaric acid: luteolin: apigenin=8: 26: 1: 3) from Scoparia dulcis Linn., on stimulating the downstream components of insulin signalling and the adipocytokines expression on different cellular fractions of 3T3-F442a adipocytes. Morphology and lipid accumulation of differentiated 3T3-F442a adipocytes by 100 nM insulin treated with different concentrations of SDF7 and rosiglitazone were examined followed by the evaluation of glucose uptake activity expressions of insulin signalling downstream components (IRS-1, PI3-kinase, PKB, PKC, TC10 and GLUT4) from four cellular fractions (plasma membrane, cytosol, high density microsome and low density microsome). Next, the expression level of adipocytokines (TNF-α, adiponectin and leptin) and immunoblotting of treated 3T3-F442 adipocytes was determined at 30 min and 480 min. Glucose transporter 4 (GLUT4) translocation of 3T3-F442a adipocytes membrane was also determined. Lastly, mRNA expression of adiponectin and PPAR-γ of 3T3-F442a adipocytes were induced and compared with basal concentration. It was found that SDF7 was able to induce adipocytes differentiation with great extends of morphological changes, lipid synthesis and lipid stimulation in vitro. SDF7 stimulation of glucose transport on 3T3-F442a adipocytes are found to be dose independent, time-dependent and plasma membrane GLUT4 expression-dependent. Moreover, SDF7 are observed to be able to suppress TNF-α and leptin expressions that were mediated by 3T3-F442a adipocytes, while stimulated adiponectin secretion on the cells. There was a significant expression (p<0.01) of protein kinase C and small G protein TC10 on 3T3-F442a adipocytes

  1. Mesenchymal Stem Cell Differentiation into Adipocytes Is Equally Induced by Insulin and Proinsulin In Vitro.

    PubMed

    Pfützner, Andreas; Schipper, Dorothee; Pansky, Andreas; Kleinfeld, Claudia; Roitzheim, Barbara; Tobiasch, Edda

    2017-11-30

    In advanced β -cell dysfunction, proinsulin is increasingly replacing insulin as major component of the secretion product. It has been speculated that proinsulin has at least the same adipogenic potency than insulin, leading to an increased tendency of lipid tissue formation in patients with late stage β -cell dysfunction. Mesenchymal stem cells obtained from liposuction material were grown in differentiation media containing insulin (0.01 μmol), proinsulin (0.01 μmol) or insulin+proinsulin (each 0.005 μmol). Cell culture supernatants were taken from these experiments and an untreated control at weeks 1, 2, and 3, and were stored at -80°C until analysis. Cell differentiation was microscopically supervised and adiponectin concentrations were measured as marker for differentiation into mature lipid cells. This experiment was repeated three times. No growth of lipid cells and no change in adiponectin values was observed in the negative control group (after 7/14/12 days: 3.2±0.5/3.3±0.1/4.4±0.5 ng/ml/12 h). A continuous differentiation into mature adipocytes (also confirmed by Red-Oil-staining) and a corresponding increase in adiponectin values was observed in the experiments with insulin (3.6±1.9/5.1±1.4/13.3±1.5 ng/ml/12 h; p<0.05 week 1 vs. week 3) and proinsulin (3.3±1.2/3.5±0.3/12.2±1.2 ng/ml/12 h; p<0.05). Comparable effects were seen with the insulin/proinsulin combination. Proinsulin has the same adipogenic potential than insulin in vitro. Proinsulin has only 10∼20% of the glucose-lowering effect of insulin. It can be speculated that the adipogenic potential of proinsulin may be a large contributor to the increased body weight problems in patients with type 2 diabetes and advanced β -cell dysfunction.

  2. Superantigen activates the gp130 receptor on adipocytes resulting in altered adipocyte metabolism.

    PubMed

    Banke, Elin; Rödström, Karin; Ekelund, Mikael; Dalla-Riva, Jonathan; Lagerstedt, Jens O; Nilsson, Staffan; Degerman, Eva; Lindkvist-Petersson, Karin; Nilson, Bo

    2014-06-01

    The bacteria Staphylococcus aureus is part of the normal bacterial flora and produces a repertoire of enterotoxins which can cause food poisoning and toxic shock and might contribute to the pathogenesis of inflammatory diseases. These enterotoxins directly cross-link the T cell receptor with MHC class II, activating large amounts of T cells and are therefore called superantigens. It was recently discovered that the superantigen SEA binds to the cytokine receptor gp130. As obesity and type 2 diabetes are highly associated with inflammation of the adipose tissue and gp130 has been shown to play an important role in adipocytes, we wanted to investigate the effect of SEA on adipocyte signaling and function. Binding of SEA to gp130 was examined using surface plasmon resonance in a cell free system. Effects of SEA on adipocyte signaling, insulin sensitivity and function were studied using western blotting and biological assays for lipolysis, lipogenesis and glucose uptake. We demonstrate that SEA binds to gp130 with a medium affinity. Furthermore, SEA induces phosphorylation of a key downstream target, STAT3, in adipocytes. SEA also inhibits insulin-induced activation of PKB and PKB downstream signaling which was associated with reduced basal and insulin induced glucose uptake, reduced lipogenesis as well as reduced ability of insulin to inhibit lipolysis. SEA inhibits insulin signaling as well as insulin biological responses in adipocytes supporting that bacterial infection might contribute to the development of insulin resistance and type 2 diabetes. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Artemisia scoparia Enhances Adipocyte Development and Endocrine Function In Vitro and Enhances Insulin Action In Vivo

    PubMed Central

    Richard, Allison J.; Fuller, Scott; Fedorcenco, Veaceslav; Beyl, Robbie; Burris, Thomas P.; Mynatt, Randall; Ribnicky, David M.; Stephens, Jacqueline M.

    2014-01-01

    Background Failure of adipocytes to expand during periods of energy excess can result in undesirable metabolic consequences such as ectopic fat accumulation and insulin resistance. Blinded screening studies have indicated that Artemisia scoparia (SCO) extracts can enhance adipocyte differentiation and lipid accumulation in cultured adipocytes. The present study tested the hypothesis that SCO treatment modulates fat cell development and function in vitro and insulin sensitivity in adipose tissue in vivo. Methods In vitro experiments utilized a Gal4-PPARγ ligand binding domain (LBD) fusion protein-luciferase reporter assay to examine PPARγ activation. To investigate the ability of SCO to modulate adipogenesis and mature fat cell function in 3T3-L1 cells, neutral lipid accumulation, gene expression, and protein secretion were measured by Oil Red O staining, qRT-PCR, and immunoblotting, respectively. For the in vivo experiments, diet-induced obese (DIO) C57BL/6J mice were fed a high-fat diet (HFD) or HFD containing 1% w/w SCO for four weeks. Body weight and composition, food intake, and fasting glucose and insulin levels were measured. Phospho-activation and expression of insulin-sensitizing proteins in epididymal adipose tissue (eWAT) were measured by immunoblotting. Results Ethanolic extracts of A. scoparia significantly activated the PPARγ LBD and enhanced lipid accumulation in differentiating 3T3-L1 cells. SCO increased the transcription of several PPARγ target genes in differentiating 3T3-L1 cells and rescued the negative effects of tumor necrosis factor α on production and secretion of adiponectin and monocyte chemoattractant protein-1 in fully differentiated fat cells. DIO mice treated with SCO had elevated adiponectin levels and increased phosphorylation of AMPKα in eWAT when compared to control mice. In SCO-treated mice, these changes were also associated with decreased fasting insulin and glucose levels. Conclusion SCO has metabolically beneficial

  4. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes.

    PubMed

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G; Spek, C Arnold; Rowshani, Ajda T; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P; Rezaee, Farhad

    2015-03-06

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health.

  5. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes

    NASA Astrophysics Data System (ADS)

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G.; Spek, C. Arnold; Rowshani, Ajda T.; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2015-03-01

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health.

  6. Transdifferentiation of adipocytes to osteoblasts: potential for orthopaedic treatment.

    PubMed

    Lin, Daphne P L; Dass, Crispin R

    2018-03-01

    As both adipocytes and osteoblasts originate from the same pool of mesenchymal stem cells, increasing clinical evidence has emerged of the plasticity between the two lineages. For instance, the downregulation of osteoblast differentiation and upregulation of adipogenesis are common features of conditions such as multiple myeloma, obesity and drug-induced bone loss in diabetes mellitus. However, despite in-vitro and in-vivo observations of adipocyte transdifferentiation into osteoblasts, little is known of the underlying mechanisms. This review summarises the current knowledge of this particular transdifferentiation process whereby the Wnt/β-catenin signalling pathway and Runx2 overexpression have been postulated to play a critical role. Furthermore, due to the possibility of a novel therapy in the treatment of bone conditions, a number of agents with the potential to induce adipo-to-osteoblast transdifferentiation have been investigated such as all-trans retinoic acid, bone morphogenetic protein-9 and vascular endothelial growth factor. © 2018 Royal Pharmaceutical Society.

  7. Trans-anethole ameliorates obesity via induction of browning in white adipocytes and activation of brown adipocytes.

    PubMed

    Kang, Nam Hyeon; Mukherjee, Sulagna; Min, Taesun; Kang, Sun Chul; Yun, Jong Won

    2018-05-24

    To treat obesity, suppression of white adipose tissue (WAT) expansion and activation of brown adipose tissue (BAT) are considered as potential therapeutic targets. Recent advances have been made in the induction of brown fat-like adipocytes (beige) in WAT, which represents an attractive potential strategy for the management and treatment of obesity. Use of natural compounds for browning of white adipocytes can be considered as a safe and novel strategy against obesity. Here, we report that trans-anethole (TA), a flavoring substance present in the essential oils of various plants, alleviated high fat diet (HFD)-induced obesity in mice models via elevation of the expression of beige-specific genes such as Ppargc1α, Prdm16, Ucp1, Cd137, Cited1, Tbx1, and Trem26. TA also regulated lipid metabolism in white adipocytes via reduction of adipogenesis and lipogenesis as well as elevation of lipolysis and fat oxidation. Moreover, TA exhibited thermogenic activity by increasing mitochondrial biogenesis in white adipocytes and activating brown adipocytes. In addition, molecular docking analysis enabled us to successfully predict core proteins for fat browning such as β3-adrenergic receptor (β3-AR) and sirtuin1 (SIRT1) based on their low binding energy interactions with TA for promotion of regulatory mechanisms. Indeed, agonistic and antagonistic studies demonstrated that TA induced browning of 3T3-L1 adipocytes through activation of β3-AR as well as the AMPK-mediated SIRT1 pathway regulating PPARα and PGC-1α. In conclusion, TA possesses potential therapeutic implications for treatment of obesity by playing multiple modulatory roles in the induction of white fat browning, activation of brown adipocytes, and promotion of lipid catabolism. Copyright © 2018. Published by Elsevier B.V.

  8. Enhancement of Glucose Uptake by Meso-Dihydroguaiaretic Acid through GLUT4 Up-Regulation in 3T3-L1 Adipocytes.

    PubMed

    Lee, Anna; Choi, Kyeong-Mi; Jung, Won-Beom; Jeong, Heejin; Kim, Ga-Yeong; Lee, Ju Hyun; Lee, Mi Kyeong; Hong, Jin Tae; Roh, Yoon-Seok; Sung, Sang-Hyun; Yoo, Hwan-Soo

    2017-08-28

    Type 2 diabetes is characterized by insulin resistance, which leads to increased blood glucose levels. Adipocytes are involved in the development of insulin resistance, resulting from the dysfunction of the insulin signaling pathway. In this study, we investigated whether meso -dihydroguaiaretic acid (MDGA) may modulate glucose uptake in adipocytes, and examined its mechanism of action. MDGA enhanced adipogenesis through up-regulation of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α in 3T3-L1 adipocytes partially differentiated with sub-optimal concentrations of insulin. MDGA also increased glucose uptake by stimulating expression and translocation of glucose transporter 4 (GLUT4) in adipocytes. These results suggest that MDGA may increase GLUT4 expression and its translocation by promoting insulin sensitivity, leading to enhanced glucose uptake.

  9. Rosmarinic acid suppresses adipogenesis, lipolysis in 3T3-L1 adipocytes, lipopolysaccharide-stimulated tumor necrosis factor-α secretion in macrophages, and inflammatory mediators in 3T3-L1 adipocytes

    PubMed Central

    Rui, Yehua; Tong, Lingxia; Cheng, Jinbo; Wang, Guiping; Qin, Liqiang; Wan, Zhongxiao

    2017-01-01

    ABSTRACT Background: Rosmarinic acid (RA) is a natural phenol carboxylic acid with many promising biological effects. It may be a suitable candidate for improving obesity-related adipose tissue dysfunction. Objective: We aimed to investigate the therapeutic use of RA as an anti-obesity agent by measuring its effects on adipogenesis, lipolysis, and messenger RNA (mRNA) expression of major adipokines in 3T3-L1 adipocytes; and its effects on lipopolysaccharide (LPS)-induced tumor necrosis factor-α (TNF-α) secretion in macrophages and inflammatory mediators in 3T3-L1 adipocytes incubated with macrophage-conditioned medium (MCM). Methods: 3T3-L1 preadipocytes were used to explore how RA affects adipogenesis, as well as the involvement of phosphorylated extracellular signal-regulated kinase-1/2 (p-ERK1/2) and mothers against decapentaplegic homolog 3 (p-Smad3). 3T3-L1 preadipocytes were also differentiated into mature adipocytes to explore how RA affects basal and isoproterenol- and forskolin-stimulated lipolysis; and how RA affects key adipokines’ mRNA expression. RAW 264.7 macrophages were stimulated with LPS in the absence or presence of RA to explore RA’s effects on TNF-α secretion. MCM was collected and 3T3-L1 adipocytes were incubated with MCM to explore RA’s effects on interleukin-6 (IL-6), IL-1β, monocyte chemoattractant protein-1 (MCP-1), and RANTES mRNA expression. Results: During the preadipocyte differentiation process, RA suppressed peroxisome proliferator-activated receptor-γ and CCAAT/enhancer binding protein-α, and activated p-ERK1/2 and p-Smad3; inhibition of adipogenesis by RA was partially restored following treatment with p-ERK1/2 and p-Smad3 inhibitors. In mature adipocytes, RA inhibited basal lipolysis; phosphodiesterase-3 inhibitor reversed this. RA also inhibited isoproterenol- and forskolin-stimulated glycerol and free fatty acid release, and the phosphorylation of hormone-sensitive lipase and perilipin. RA had no effects on leptin

  10. Dynamics of Adipocyte Turnover in Humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spalding, K; Arner, E; Westermark, P

    2007-07-16

    Obesity is increasing in an epidemic fashion in most countries and constitutes a public health problem by enhancing the risk for cardiovascular disease and metabolic disorders such as type 2 diabetes. Owing to the increase in obesity, life expectancy may start to decrease in developed countries for the first time in recent history. The factors determining fat mass in adult humans are not fully understood, but increased lipid storage in already developed fat cells is thought to be most important. We show that adipocyte number is a major determinant for the fat mass in adults. However, the number of fatmore » cells stays constant in adulthood in lean and obese and even under extreme conditions, indicating that the number of adipocytes is set during childhood and adolescence. To establish the dynamics within the stable population of adipocytes in adults, we have measured adipocyte turnover by analyzing the integration of {sup 14}C derived from nuclear bomb tests in genomic DNA. Approximately 10% of fat cells are renewed annually at all adult ages and levels of body mass index. Neither adipocyte death nor generation rate is altered in obesity, suggesting a tight regulation of fat cell number that is independent of metabolic profile in adulthood. The high turnover of adipocytes establishes a new therapeutic target for pharmacological intervention in obesity.« less

  11. Insulin and chromium picolinate induce translocation of CD36 to the plasma membrane through different signaling pathways in 3T3-L1 adipocytes, and with a differential functionality of the CD36.

    PubMed

    Wang, Yiqun; Van Oort, Masja M; Yao, Minghui; Van der Horst, Dick J; Rodenburg, Kees W

    2011-09-01

    Chromium picolinate (CrPic) has been indicated to activate glucose transporter 4 (GLUT4) trafficking to the plasma membrane (PM) to enhance glucose uptake in 3T3-L1 adipocytes. In skeletal and heart muscle cells, insulin directs the intracellular trafficking of the fatty acid translocase/CD36 to induce the uptake of cellular long-chain fatty acid (LCFA). The current study describes the effects of CrPic and insulin on the translocation of CD36 from intracellular storage pools to the PM in 3T3-L1 adipocytes in comparison with that of GLUT4. Immunofluorescence microscopy and immunoblotting revealed that both CD36 and GLUT4 were expressed and primarily located intracellularly in 3T3-L1 adipocytes. Upon insulin or CrPic stimulation, PM expression of CD36 increased in a similar manner as that for GLUT4; the CrPic-stimulated PM expression was less strong than that of insulin. The increase in PM localization for these two proteins by insulin paralleled LCFA ([1-(14)C]palmitate) or [(3)H]deoxyglucose uptake in 3T3-L1 adipocytes. The induction of the PM expression of GLUT4, but not CD36, or substrate uptake by insulin and CrPic appears to be additive in adipocytes. Furthermore, wortmannin completely inhibited the insulin-stimulated translocation of GLUT4 or CD36 and prevented the increased uptake of glucose or LCFA in these cells. Taken together, for the first time, these findings suggest that both insulin and CrPic induce CD36 translocation to the PM in 3T3-L1 adipocytes and that their translocation-inducing effects are not additive. The signaling pathway inducing the translocations is different, apparently resulting in a differential activity of CD36.

  12. Adipocyte-specific deficiency of NADPH oxidase 4 delays the onset of insulin resistance and attenuates adipose tissue inflammation in obesity

    PubMed Central

    Den Hartigh, Laura J.; Omer, Mohamed; Goodspeed, Leela; Wang, Shari; Wietecha, Tomasz; O’Brien, Kevin D.; Han, Chang Yeop

    2017-01-01

    Objective Obesity is associated with insulin resistance and adipose tissue inflammation. Reactive oxygen species (ROS) increase in adipose tissue during the development of obesity. We previously showed that in response to excess nutrients like glucose and palmitate, adipocytes generated ROS via NADPH oxidase (NOX) 4, the major adipocyte isoform, instead of using mitochondrial oxidation. However, the role of NOX4-derived ROS in the development of whole body insulin resistance, adipocyte inflammation, and recruitment of macrophages to adipose tissue during the development of obesity is unknown. Approach and Results In this study, control C57BL/6 mice and mice in which NOX4 has been deleted specifically in adipocytes were fed a high fat, high sucrose (HFHS) diet. During the development of obesity in control mice, adipocyte NOX4 and PPP activity were transiently increased. Primary adipocytes differentiated form mice with adipocytes deficient in NOX4 showed resistance against high glucose or palmitate-induced adipocyte inflammation. Mice with adipocytes deficient in NOX4 showed a delayed onset of insulin resistance during the development of obesity, with an initial reduction in adipose tissue inflammation that normalized with prolonged HFHS feeding. Conclusions These findings imply that NOX4-derived ROS may play a role in the onset of insulin resistance and adipose tissue inflammation. As such, therapeutics targeting NOX4-mediated ROS production could be effective in preventing obesity-associated conditions such as insulin resistance. PMID:28062496

  13. Adipocyte-Specific Deficiency of NADPH Oxidase 4 Delays the Onset of Insulin Resistance and Attenuates Adipose Tissue Inflammation in Obesity.

    PubMed

    Den Hartigh, Laura J; Omer, Mohamed; Goodspeed, Leela; Wang, Shari; Wietecha, Tomasz; O'Brien, Kevin D; Han, Chang Yeop

    2017-03-01

    Obesity is associated with insulin resistance and adipose tissue inflammation. Reactive oxygen species (ROS) increase in adipose tissue during the development of obesity. We previously showed that in response to excess nutrients like glucose and palmitate, adipocytes generated ROS via NADPH oxidase (NOX) 4, the major adipocyte isoform, instead of using mitochondrial oxidation. However, the role of NOX4-derived ROS in the development of whole body insulin resistance, adipocyte inflammation, and recruitment of macrophages to adipose tissue during the development of obesity is unknown. In this study, control C57BL/6 mice and mice in which NOX4 has been deleted specifically in adipocytes were fed a high-fat, high-sucrose diet. During the development of obesity in control mice, adipocyte NOX4 and pentose phosphate pathway activity were transiently increased. Primary adipocytes differentiated from mice with adipocytes deficient in NOX4 showed resistance against high glucose or palmitate-induced adipocyte inflammation. Mice with adipocytes deficient in NOX4 showed a delayed onset of insulin resistance during the development of obesity, with an initial reduction in adipose tissue inflammation that normalized with prolonged high-fat, high-sucrose feeding. These findings imply that NOX4-derived ROS may play a role in the onset of insulin resistance and adipose tissue inflammation. As such, therapeutics targeting NOX4-mediated ROS production could be effective in preventing obesity-associated conditions, such as insulin resistance. © 2016 American Heart Association, Inc.

  14. Identification of STAT target genes in adipocytes

    PubMed Central

    Zhao, Peng; Stephens, Jacqueline M.

    2013-01-01

    Adipocytes play important roles in lipid storage, energy homeostasis and whole body insulin sensitivity. Studies in the last two decades have identified the hormones and cytokines that activate specific STATs in adipocytes in vitro and in vivo. Five of the seven STAT family members are expressed in adipocyte (STATs 1, 3, 5A, 5B and 6). Many transcription factors, including STATs, have been shown to play an important role in adipose tissue development and function. This review will summarize the importance of adipocytes, indicate the cytokines and hormones that utilize the JAK-STAT signaling pathway in fat cells and focus on the identification of STAT target genes in mature adipocytes. To date, specific target genes have been identified for STATs, 1, 5A and 5B, but not for STATs 3 and 6. PMID:24058802

  15. Free lipid and computerized determination of adipocyte size.

    PubMed

    Svensson, Henrik; Olausson, Daniel; Holmäng, Agneta; Jennische, Eva; Edén, Staffan; Lönn, Malin

    2018-06-21

    The size distribution of adipocytes in a suspension, after collagenase digestion of adipose tissue, can be determined by computerized image analysis. Free lipid, forming droplets, in such suspensions implicates a bias since droplets present in the images may be identified as adipocytes. This problem is not always adjusted for and some reports state that distinguishing droplets and cells is a considerable problem. In addition, if the droplets originate mainly from rupture of large adipocytes, as often described, this will also bias size analysis. We here confirm that our ordinary manual means of distinguishing droplets and adipocytes in the images ensure correct and rapid identification before exclusion of the droplets. Further, in our suspensions, prepared with focus on gentle handling of tissue and cells, we find no association between the amount of free lipid and mean adipocyte size or proportion of large adipocytes.

  16. Expression, regulation and functional assessment of the 80 amino acid Small Adipocyte Factor 1 (Smaf1) protein in adipocytes.

    PubMed

    Ren, Gang; Eskandari, Parisa; Wang, Siqian; Smas, Cynthia M

    2016-01-15

    The gene for Small Adipocyte Factor 1, Smaf1 (also known as adipogenin, ADIG), encodes a ∼600 base transcript that is highly upregulated during 3T3-L1 in vitro adipogenesis and markedly enriched in adipose tissues. Based on the lack of an obvious open reading frame in the Smaf1 transcript, it is not known if the Smaf1 gene is protein coding or non-coding RNA. Using a peptide from a putative open reading frame of Smaf1 as antigen, we generated antibodies for western analysis. Our studies prove that Smaf1 encodes an adipose-enriched protein which in western blot analysis migrates at ∼10 kDa. Rapid induction of Smaf1 protein occurs during in vitro adipogenesis and its expression in 3T3-L1 adipocytes is positively regulated by insulin and glucose. Moreover, siRNA studies reveal that expression of Smaf1 in adipocytes is wholly dependent on PPARγ. On the other hand, use of siRNA for Smaf1 to nearly abolish its protein expression in adipocytes revealed that Smaf1 does not have a major role in adipocyte triglyceride accumulation, lipolysis or insulin-stimulated pAkt induction. However, immunolocalization studies using HA-tagged Smaf1 reveal enrichment at adipocyte lipid droplets. Together our findings show that Smaf1 is a novel small protein endogenous to adipocytes and that Smaf1 expression is closely tied to PPARγ-mediated signals and the adipocyte phenotype. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, Sandra C.; Chau, Mary D.L.; Yang, Qing

    2011-07-08

    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract:more » Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and

  18. Polymethoxyflavonoids tangeretin and nobiletin increase glucose uptake in murine adipocytes.

    PubMed

    Onda, Kenji; Horike, Natsumi; Suzuki, Tai-ichi; Hirano, Toshihiko

    2013-02-01

    Tangeretin and nobiletin are polymethoxyflavonoids that are contained in citrus fruits. Polymethoxyflavonoids are reported to have several biological functions including anti-inflammatory, anti-atherogenic, or anti-diabetic effects. However, whether polymethoxyflavonoids directly affect glucose uptake in tissues is not well understood. In the current study, we investigated whether tangeretin and nobiletin affect glucose uptake in insulin target cells such as adipocytes. We observed that treatment with tangeretin or nobiletin significantly increased the uptake of [(3) H]-deoxyglucose in differentiated 3T3-F442A adipocytes in a concentration-dependent manner. Data showed that phosphatidyl inositol 3 kinase, Akt1/2, and the protein kinase A pathways were involved in the increase in glucose uptake induced by polymethoxyflavonoids. These data suggest that the anti-diabetic action of polymethoxyflavonoids is partly exerted via these signaling pathways in insulin target tissues. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Obesity is associated with depot-specific alterations in adipocyte DNA methylation and gene expression.

    PubMed

    Sonne, Si Brask; Yadav, Rachita; Yin, Guangliang; Dalgaard, Marlene Danner; Myrmel, Lene Secher; Gupta, Ramneek; Wang, Jun; Madsen, Lise; Kajimura, Shingo; Kristiansen, Karsten

    2017-04-03

    The present study aimed to identify genes exhibiting concomitant obesity-dependent changes in DNA methylation and gene expression in adipose tissues in the mouse using diet-induced obese (DIO) C57BL/6J and genetically obese ob/ob mice as models. Mature adipocytes were isolated from epididymal and inguinal adipose tissues of ob/ob and DIO C57BL/6J mice. DNA methylation was analyzed by MeDIP-sequencing and gene expression by microarray analysis. The majority of differentially methylated regions (DMRs) were hypomethylated in obese mice. Global methylation of long interspersed elements indicated that hypomethylation did not reflect methyl donor deficiency. In both DIO and ob/ob mice, we observed more obesity-associated methylation changes in epididymal than in inguinal adipocytes. Assignment of DMRs to promoter, exon, intron and intergenic regions demonstrated that DIO-induced changes in DNA methylation in C57BL/6J mice occurred primarily in exons, whereas inguinal adipocytes of ob/ob mice exhibited a higher enrichment of DMRs in promoter regions than in other regions of the genome, suggesting an influence of leptin on DNA methylation in inguinal adipocytes. We observed altered methylation and expression of 9 genes in epididymal adipocytes, including the known obesity-associated genes, Ehd2 and Kctd15, and a novel candidate gene, Irf8, possibly involved in immune type 1/type2 balance. The use of 2 obesity models enabled us to dissociate changes associated with high fat feeding from those associated with obesity per se. This information will be of value in future studies on the mechanisms governing the development of obesity and changes in adipocyte function associated with obesity.

  20. The estrogen-related receptors and the adipocyte.

    PubMed

    Carnesecchi, Julie; Vanacker, Jean-Marc

    2013-08-01

    The estrogen-related receptors (ERRα, β, and γ) are orphan members of the nuclear receptor superfamily. ERRα and γ are highly expressed in tissues displaying elevated energy demands and are involved in several aspects of energetic metabolism, which they regulate mostly in association with members of the PGC-1 coactivator family. These activities have mostly been documented in the liver, heart, or skeletal muscle. ERRα and γ are also highly expressed in adipocytes. Their precise roles in this cell type are less documented, although published data indicate that they contribute to cell differentiation as well as functionality. This review describes these activities.

  1. Skin aging: are adipocytes the next target?

    PubMed

    Kruglikov, Ilja L; Scherer, Philipp E

    2016-07-01

    Dermal white adipose tissue (dWAT) is increasingly appreciated as a special fat depot. The adipocytes in this depot exert a variety of unique effects on their surrounding cells and can undergo massive phenotypic changes. Significant modulation of dWAT content can be observed both in intrinsically and extrinsically aged skin. Specifically, skin that has been chronically photo-damaged displays a reduction of the dWAT volume, caused by the replacement of adipocytes by fibrotic structures. This is likely to be caused by the recently uncovered process described as "adipocyte-myofibroblast transition" (AMT). In addition, contributions of dermal adipocytes to the skin aging processes are also indirectly supported by spatial correlations between the prevalence of hypertrophic scarring and the appearance of signs of skin aging in different ethnic groups. These observations could elevate dermal adipocytes to prime targets in strategies aimed at counteracting skin aging.

  2. Skin aging: are adipocytes the next target?

    PubMed Central

    Kruglikov, Ilja L.; Scherer, Philipp E.

    2016-01-01

    Dermal white adipose tissue (dWAT) is increasingly appreciated as a special fat depot. The adipocytes in this depot exert a variety of unique effects on their surrounding cells and can undergo massive phenotypic changes. Significant modulation of dWAT content can be observed both in intrinsically and extrinsically aged skin. Specifically, skin that has been chronically photo-damaged displays a reduction of the dWAT volume, caused by the replacement of adipocytes by fibrotic structures. This is likely to be caused by the recently uncovered process described as “adipocyte-myofibroblast transition” (AMT). In addition, contributions of dermal adipocytes to the skin aging processes are also indirectly supported by spatial correlations between the prevalence of hypertrophic scarring and the appearance of signs of skin aging in different ethnic groups. These observations could elevate dermal adipocytes to prime targets in strategies aimed at counteracting skin aging. PMID:27434510

  3. Adenovirus-mediated interference of FABP4 regulates mRNA expression of ADIPOQ, LEP and LEPR in bovine adipocytes.

    PubMed

    Wei, S; Zan, L S; Wang, H B; Cheng, G; Du, M; Jiang, Z; Hausman, G J; McFarland, D C; Dodson, M V

    2013-02-27

    Fatty acid binding protein 4 (FABP4) is an important adipocyte gene, with roles in fatty acid transport and fat deposition in animals as well as human metabolic syndrome. However, little is known about the functional regulation of FABP4 at the cellular level in bovine. We designed and selected an effective shRNA (small hairpin RNA) against bovine FABP4, constructed a corresponding adenovirus (AD-FABP4), and then detected its influence on mRNA expression of four differentiation-related genes (PPAR(y), CEBPA, CEBPB, and SREBF1) and three lipid metabolism-related genes (ADIPOQ, LEP and LEPR) of adipocytes. The FABP4 mRNA content, derived from bovine adipocytes, decreased by 41% (P < 0.01) after 24 h and 66% (P < 0.01) after 72 h of AD-FABP4 infection. However, lower mRNA content of FABP4 did not significantly alter levels of differentiation-related gene expression at 24 h following AD-FABP4 treatment of bovine-derived preadipocytes (P = 0.54, 0.78, 0.89, and 0.94, respectively). Meanwhile, knocking down (partially silencing) FABP4 significantly decreased ADIPOQ (P < 0.05) and LEP (P < 0.01) gene expression after 24 h of AD-FABP4 treatment, decreased ADIPOQ (P < 0.01) and LEP (P < 0.01) gene expression, but increased LEPR mRNA expression (P < 0.01) after a 72-h treatment of bovine preadipocytes. We conclude that FABP4 plays a role in fat deposition and metabolic syndrome by regulating lipid metabolism-related genes (such as ADIPOQ, LEP and LEPR), without affecting the ability of preadipocytes to differentiate into adipocytes.

  4. Adipocytes Impair Efficacy of Antiretroviral Therapy

    PubMed Central

    Couturier, Jacob; Winchester, Lee C.; Suliburk, James W.; Wilkerson, Gregory K.; Podany, Anthony T.; Agarwal, Neeti; Chua, Corrine Ying Xuan; Nehete, Pramod N.; Nehete, Bharti P.; Grattoni, Alessandro; Sastry, K. Jagannadha; Fletcher, Courtney V.; Lake, Jordan E.; Balasubramanyan, Ashok; Lewis, Dorothy E.

    2018-01-01

    Adequate distribution of antiretroviral drugs to infected cells in HIV patients is critical for viral suppression. In humans and primates, HIV- and SIV-infected CD4 T cells in adipose tissues have recently been identified as reservoirs for infectious virus. To better characterize adipose tissue as a pharmacological sanctuary for HIV-infected cells, in vitro experiments were conducted to assess antiretroviral drug efficacy in the presence of adipocytes, and drug penetration in adipose tissue cells (stromal-vascular-fraction cells and mature adipocytes) was examined in treated humans and monkeys. Co-culture experiments between HIV-1-infected CD4 T cells and primary human adipocytes showed that adipocytes consistently reduced the antiviral efficacy of the nucleotide reverse transcriptase inhibitor tenofovir and its prodrug forms tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF). In HIV-infected persons, LC-MS/MS analysis of intracellular lysates derived from adipose tissue stromal-vascular-fraction cells or mature adipocytes suggested that integrase inhibitors penetrate adipose tissue, whereas penetration of nucleoside/nucleotide reverse transcriptase inhibitors such as TDF, emtricitabine, abacavir, and lamivudine is restricted. The limited distribution and functions of key antiretroviral drugs within fat depots may contribute to viral persistence in adipose tissue. PMID:29630975

  5. Sulforaphane inhibits mitotic clonal expansion during adipogenesis through cell cycle arrest.

    PubMed

    Choi, Kyeong-Mi; Lee, Youn-Sun; Sin, Dong-Mi; Lee, Seunghyun; Lee, Mi Kyeong; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Yoo, Hwan-Soo

    2012-07-01

    Obesity is a risk factor for numerous metabolic disorders such as type 2 diabetes, hypertension, and coronary heart disease. Adipocyte differentiation is triggered by adipocyte hyperplasia, which leads to obesity. In this study, the inhibitory effect of sulforaphane, an isothiocyanate, on adipogenesis in 3T3-L1 cells was investigated. Sulforaphane decreased the accumulation of lipid droplets stained with Oil Red O and inhibited the elevation of triglycerides in the adipocytes (half-maximal inhibitory concentration = 7.3 µmol/l). The expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), major transcription factors for adipocyte differentiation, was significantly reduced by sulforaphane. The major effects of sulforaphane on the inhibition of adipocyte differentiation occurred during the early stage of adipogenesis. Thus, the expression of C/EBPβ, an early-stage biomarker of adipogenesis, decreased in a concentration-dependent manner when the adipocytes were exposed to sulforaphane (0, 5, 10, and 20 µmol/l). The proliferation of adipocytes treated with 20 µmol/l sulforaphane for 24 and 48 h was also suppressed. These results indicate that sulforaphane may specifically affect mitotic clonal expansion to inhibit adipocyte differentiation. Sulforaphane arrested the cell cycle at the G(0)/G(1) phase, increased p27 expression, and decreased retinoblastoma (Rb) phosphorylation. Additionally, sulforaphane modestly decreased the phosphorylation of ERK1/2 and Akt. Our results indicate that the inhibition of early-stage adipocyte differentiation by sulforaphane may be associated with cell cycle arrest at the G(0)/G(1) phase through upregulation of p27 expression.

  6. The differentiation of preadipocytes and gene expression related to adipogenesis in ducks (Anas platyrhynchos).

    PubMed

    Wang, Shasha; Zhang, Yang; Xu, Qi; Yuan, Xiaoya; Dai, Wangcheng; Shen, Xiaokun; Wang, Zhixiu; Chang, Guobin; Wang, Zhiquan; Chen, Guohong

    2018-01-01

    Meat quality is closely related to adipose tissues in ducks, and adipogenesis is controlled by a complex network of transcription factors tightly acting at different stages of differentiation especially in ducks. The aim of this study was to establish the preadipocyte in vitro culture system and understand the biological characteristics of expansion of duck adipocyte tissue at the cellular and molecular level. We isolated pre-adipocytes from the subcutaneous fat of three breeds of duck and differentiated them into mature adipocytes using a mixture of insulin, rosiglitazone, dexamethasone, 3-isobutyl-1-methylxanthine, and oleic acid over 0,2, 4, 6, and 8 days. Successful differentiation was confirmed from the development of lipid droplets and their response to Oil Red O, and increasing numbers of lipid droplets were stained red over time. The expression of key marker genes, including peroxisome proliferator activated receptor γ (PPARγ), CCAAT/enhancer binding protein-α (C/EBPα), adipocyte fatty acid binding protein 4 (FABP4), and fatty acid synthetase (FAS), gradually increased during pre-adipocyte differentiation. Furthermore, it was verified by interference experiments that the knockdown of PPARγ directly reduced lipid production. Meanwhile we analyzed the role of unsaturated fatty acids in the production of poultry fat using different concentrations of oleic acid and found that lipid droplet deposition was highest when the concentration of oleic acid was 300 μM. We also compared the level of differentiated pre-adipocytes that were isolated from Jianchang ducks (fatty-meat duck), Cherry Valley ducks (lean-meat duck) and White-crested ducks (egg-producing duck). The proliferation and differentiation rate of pre-adipocytes derived from Jianchang ducks was higher than that of White-crested ducks. These results provide the foundation for further research into waterfowl adipogenesis.

  7. Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner

    PubMed Central

    Forney, Laura A.; Lenard, Natalie R.; Stewart, Laura K.

    2018-01-01

    Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD)-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE) containing quercetin on subcutaneous (inguinal, IWAT) vs. visceral (epididymal, EWAT) white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms. PMID:29562620

  8. A possible regulatory link between Twist 1 and PPARγ gene regulation in 3T3-L1 adipocytes.

    PubMed

    Ren, Rui; Chen, Zhufeng; Zhao, Xia; Sun, Tao; Zhang, Yuchao; Chen, Jie; Lu, Sumei; Ma, Wanshan

    2016-11-08

    Peroxisome proliferator-activated receptor γ (PPARγ) is a critical gene that regulates the function of adipocytes. Therefore, studies on the molecular regulation mechanism of PPARγ are important to understand the function of adipose tissue. Twist 1 is another important functional gene in adipose tissue, and hundreds of genes are regulated by Twist 1. The aim of this study was to investigate the regulation of Twist 1 and PPARγ expression in 3T3-L1 mature adipocytes. We induced differentiation in 3T3-L1 preadipocytes and examined alterations in Twist 1 and PPARγ expression. We used the PPARγ agonist pioglitazone and the PPARγ antagonist T0070907 to investigate the effect of PPARγ on Twist 1 expression. In addition, we utilized retroviral interference and overexpression of Twist 1 to determine the effects of Twist 1 on PPARγ expression. The expression levels of Twist 1 and PPARγ were induced during differentiation in 3T3-L1 adipocytes. Application of either a PPARγ agonist (pioglitazone) or antagonist (T0070907) influenced Twist 1 expression, with up-regulation of Twist 1 under pioglitazone (1 μM, 24 h) and down-regulation of Twist 1 under T0070907 (100 μM, 24 h) exposure. Furthermore, the retroviral interference of Twist 1 decreased the protein and mRNA expression of PPARγ, while Twist 1 overexpression had the opposite effect. There was a possible regulatory link between Twist 1 and PPARγ in 3T3-L1 mature adipocytes. This regulatory link enhanced the regulation of PPARγ and may be a functional mechanism of Twist 1 regulation of adipocyte physiology and pathology.

  9. Palmitoleic acid (16:1n7) increases oxygen consumption, fatty acid oxidation and ATP content in white adipocytes.

    PubMed

    Cruz, Maysa M; Lopes, Andressa B; Crisma, Amanda R; de Sá, Roberta C C; Kuwabara, Wilson M T; Curi, Rui; de Andrade, Paula B M; Alonso-Vale, Maria I C

    2018-03-20

    We have recently demonstrated that palmitoleic acid (16:1n7) increases lipolysis, glucose uptake and glucose utilization for energy production in white adipose cells. In the present study, we tested the hypothesis that palmitoleic acid modulates bioenergetic activity in white adipocytes. For this, 3 T3-L1 pre-adipocytes were differentiated into mature adipocytes in the presence (or absence) of palmitic (16:0) or palmitoleic (16:1n7) acid at 100 or 200 μM. The following parameters were evaluated: lipolysis, lipogenesis, fatty acid (FA) oxidation, ATP content, oxygen consumption, mitochondrial mass, citrate synthase activity and protein content of mitochondrial oxidative phosphorylation (OXPHOS) complexes. Treatment with 16:1n7 during 9 days raised basal and isoproterenol-stimulated lipolysis, FA incorporation into triacylglycerol (TAG), FA oxidation, oxygen consumption, protein expression of subunits representing OXPHOS complex II, III, and V and intracellular ATP content. These effects were not observed in adipocytes treated with 16:0. Palmitoleic acid, by concerted action on lipolysis, FA esterification, mitochondrial FA oxidation, oxygen consumption and ATP content, does enhance white adipocyte energy expenditure and may act as local hormone.

  10. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering.

    PubMed

    Huber, Birgit; Czaja, Alina Maria; Kluger, Petra Juliane

    2016-05-01

    The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used. © 2016 International Federation for Cell Biology.

  11. Adipocyte differentiation-related protein promotes lipid accumulation in goat mammary epithelial cells.

    PubMed

    Shi, H B; Yu, K; Luo, J; Li, J; Tian, H B; Zhu, J J; Sun, Y T; Yao, D W; Xu, H F; Shi, H P; Loor, J J

    2015-10-01

    Milk fat originates from the secretion of cytosolic lipid droplets (CLD) synthesized within mammary epithelial cells. Adipocyte differentiation-related protein (ADRP; gene symbol PLIN2) is a CLD-binding protein that is crucial for synthesis of mature CLD. Our hypothesis was that ADRP regulates CLD production and metabolism in goat mammary epithelial cells (GMEC) and thus plays a role in determining milk fat content. To understand the role of ADRP in ruminant milk fat metabolism, ADRP (PLIN2) was overexpressed or knocked down in GMEC using an adenovirus system. Immunocytochemical staining revealed that ADRP localized to the surface of CLD. Supplementation with oleic acid (OA) enhanced its colocalization with CLD surface and enhanced lipid accumulation. Overexpression of ADRP increased lipid accumulation and the concentration of triacylglycerol in GMEC. In contrast, morphological examination revealed that knockdown of ADRP decreased lipid accumulation even when OA was supplemented. This response was confirmed by the reduction in mass of cellular TG when ADRP was knocked down. The fact that knockdown of ADRP did not completely eliminate lipid accumulation at a morphological level in GMEC without OA suggests that some other compensatory factors may also aid in the process of CLD formation. The ADRP reversed the decrease of CLD accumulation induced by adipose triglyceride lipase. This is highly suggestive of ADRP promoting triacylglycerol stability within CLD by preventing access to adipose triglyceride lipase. Collectively, these data provide direct in vitro evidence that ADRP plays a key role in CLD formation and stability in GMEC. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Roles of leptin and ghrelin in adipogenesis and lipid metabolism of rainbow trout adipocytes in vitro.

    PubMed

    Salmerón, Cristina; Johansson, Marcus; Asaad, Maryam; Angotzi, Anna R; Rønnestad, Ivar; Stefansson, Sigurd O; Jönsson, Elisabeth; Björnsson, Björn Thrandur; Gutiérrez, Joaquim; Navarro, Isabel; Capilla, Encarnación

    2015-10-01

    Leptin and ghrelin are important regulators of energy homeostasis in mammals, whereas their physiological roles in fish have not been fully elucidated. In the present study, the effects of leptin and ghrelin on adipogenesis, lipolysis and on expression of lipid metabolism-related genes were examined in rainbow trout adipocytes in vitro. Leptin expression and release increased from preadipocytes to mature adipocytes in culture, but did not affect the process of adipogenesis. While ghrelin and its receptor were identified in cultured differentiated adipocytes, ghrelin did not influence either preadipocyte proliferation or differentiation, indicating that it may have other adipose-related roles. Leptin and ghrelin increased lipolysis in mature freshly isolated adipocytes, but mRNA expression of lipolysis markers was not significantly modified. Leptin significantly suppressed the fatty acid transporter-1 expression, suggesting a decrease in fatty acid uptake and storage, but did not affect expression of any of the lipogenesis or β-oxidation genes studied. Ghrelin significantly increased the mRNA levels of lipoprotein lipase, fatty acid synthase and peroxisome proliferator-activated receptor-β, and thus appears to stimulate synthesis of triglycerides as well as their mobilization. Overall, the study indicates that ghrelin, but not leptin seems to be an enhancer of lipid turn-over in adipose tissue of rainbow trout, and this regulation may at least partly be mediated through autocrine/paracrine mechanisms. The mode of action of both hormones needs to be further explored to better understand their roles in regulating adiposity in fish. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Integrator complex plays an essential role in adipose differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otani, Yuichiro; Nakatsu, Yusuke; Sakoda, Hideyuki

    2013-05-03

    Highlights: •IntS6 and IntS11 are subunits of the Integrator complex. •Expression levels of IntS6 and IntS11 were very low in 3T3-L1 fibroblast. •IntS6 and IntS11 were upregulated during adipose differentiation. •Suppression of IntS6 or IntS11 expression inhibited adipose differentiation. -- Abstract: The dynamic process of adipose differentiation involves stepwise expressions of transcription factors and proteins specific to the mature fat cell phenotype. In this study, it was revealed that expression levels of IntS6 and IntS11, subunits of the Integrator complex, were increased in 3T3-L1 cells in the period when the cells reached confluence and differentiated into adipocytes, while being reducedmore » to basal levels after the completion of differentiation. Suppression of IntS6 or IntS11 expression using siRNAs in 3T3-L1 preadipocytes markedly inhibited differentiation into mature adipocytes, based on morphological findings as well as mRNA analysis of adipocyte-specific genes such as Glut4, perilipin and Fabp4. Although Pparγ2 protein expression was suppressed in IntS6 or IntS11-siRNA treated cells, adenoviral forced expression of Pparγ2 failed to restore the capacity for differentiation into mature adipocytes. Taken together, these findings demonstrate that increased expression of Integrator complex subunits is an indispensable event in adipose differentiation. Although further study is necessary to elucidate the underlying mechanism, the processing of U1, U2 small nuclear RNAs may be involved in cell differentiation steps.« less

  14. Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ping, E-mail: lping@sdu.edu.cn; Kong, Feng; Wang, Jue

    Perivascular adipocyte (PVAC) proliferation and differentiation were closely involved in cardiovascular disease. We aimed to investigate whether phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways enhance PVAC functions activated by insulin-like growth factor 1(IGF-1) and suppressed by mesenchyme homeobox 2 (MEOX2). In this study, PVACs from primary culture were cultured and induced to differentiate. Cell viability assays demonstrated that IGF-1 promoted PVAC proliferation and differentiation. However MEOX2 counteracted these IGF-1-mediated actions. Flow Cytometry revealed that IGF-1 increased S phase cells and decreased apoptosis; however, MEOX2 decreased S phase cells, increased G0–G1 phase cells, and promoted apoptosis. During PVACmore » proliferation and differentiation, IGF-1 activated PI3K/Akt1/2 and ERK1/2 signaling pathways, upregulated the expression of these signaling proteins and FAS, and increased PVAC lipid content. In contrast, MEOX2 constrained the phosphorylation of ERK1/2 and Akt1/2 protein, down-regulated these signaling molecules and FAS, and decreased PVAC lipid content. Instead, MEOX2 knockdown enhanced the ERK1/2 and Akt1/2 phosphorylation, augmented the expression of these signaling molecules and FAS, and increased PVAC lipid content. Our findings suggested that PI3K/Akt1/2 and ERK1/2 activation mediated by IGF-1 is essential for PVAC proliferation and differentiation, and MEOX2 is a promising therapeutic gene to intervene in the signaling pathways and inhibit PVAC functions. - Highlights: • IGF-1 activated PI3K/Akt2 and ERK1/2 pathways to mediate PVAC proliferation and differentiation. • The expression of ERK1, ERK 2, PI3K, Akt1 and Akt2 showed different change trends between PVAC proliferation and differentiation. • MEOX2 effectively expressed in PVAC, increased early and late cellular apoptosis, and inhibited its proliferation. • MEOX2 depressed PVAC differentiation and FAS

  15. Transcriptional activation of melanocortin 2 receptor accessory protein by PPARγ in adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Nam Soo; Kim, Yoon-Jin; Cho, Si Young

    2013-09-27

    Highlights: •MRAP enhanced HSL expression. •ACTH-mediated MRAP reduced glycerol release. •PPARγ induced MRAP expression. •PPARγ bound to the MRAP promoter. -- Abstract: Adrenocorticotropic hormone (ACTH) in rodents decreases lipid accumulation and body weight. Melanocortin receptor 2 (MC2R) and MC2R accessory protein (MRAP) are specific receptors for ACTH in adipocytes. Peroxisome proliferator-activated receptor γ (PPARγ) plays a role in the transcriptional regulation of metabolic pathways such as adipogenesis and β-oxidation of fatty acids. In this study we investigated the transcriptional regulation of MRAP expression during differentiation of 3T3-L1 cells. Stimulation with ACTH affected lipolysis in murine mature adipocytes via MRAP. Putativemore » peroxisome proliferator response element (PPRE) was identified in the MRAP promoter region. In chromatin immunoprecipitation and reporter assays, we observed binding of PPARγ to the MRAP promoter. The mutagenesis experiments showed that the −1209/−1198 region of the MRAP promoter could function as a PPRE site. These results suggest that PPARγ is required for transcriptional activation of the MRAP gene during adipogenesis, which contributes to understanding of the molecular mechanism of lipolysis in adipocytes.« less

  16. L-rhamnose induces browning in 3T3-L1 white adipocytes and activates HIB1B brown adipocytes.

    PubMed

    Choi, Minji; Mukherjee, Sulagna; Kang, Nam Hyeon; Barkat, Jameel Lone; Parray, Hilal Ahmad; Yun, Jong Won

    2018-06-01

    Induction of the brown adipocyte-like phenotype in white adipocytes (browning) is considered as a novel strategy to fight obesity due to the ability of brown adipocytes to increase energy expenditure. Here, we report that L-rhamnose induced browning by elevating expression levels of beige-specific marker genes, including Cd137, Cited1, Tbx1, Prdm16, Tmem26, and Ucp1, in 3T3-L1 adipocytes. Moreover, L-rhamnose markedly elevated expression levels of proteins involved in thermogenesis both in 3T3-L1 white and HIB1B brown adipocytes. L-rhamnose treatment in 3T3-L1 adipocytes also significantly elevated protein levels of p-HSL, p-AMPK, ACOX, and CPT1 as well as reduced levels of ACC, FAS, C/EBPα, and PPARγ, suggesting its possible role in enhancement of lipolysis and lipid catabolism as well as reduced adipogenesis and lipogenesis, respectively. The quick technique of efficient molecular docking provided insight into the strong binding of L-rhamnose to the fat-digesting glycine residue of β 3 -adrenergic receptor (AR), indicating strong involvement of L-rhamnose in fat metabolism. Further examination of the molecular mechanism of L-rhamnose revealed that it induced browning of 3T3-L1 adipocytes via coordination of multiple signaling pathways through β 3 -AR, SIRT1, PKA, and p-38. To the best of our knowledge, this is the first study to demonstrate that L-rhamnose plays multiple modulatory roles in the induction of white fat browning, activation of brown adipocytes, as well as promotion of lipid metabolism, thereby demonstrating its therapeutic potential for treatment of obesity. © 2018 IUBMB Life, 70(6):563-573, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  17. Adipocyte Origins: Weighing the Possibilities

    PubMed Central

    Majka, Susan M.; Barak, Yaacov; Klemm, Dwight J.

    2012-01-01

    Adipose tissue is the primary energy reservoir in the body and an important endocrine organ that plays roles in energy homeostasis, feeding, insulin sensitivity and inflammation. While it was tacitly assumed that fat in different anatomical locations had a common origin and homogenous function, it is now clear that regional differences exist in adipose tissue characteristics and function. This is exemplified by the link between increased deep abdominal or visceral fat, but not peripheral adipose tissue, and the metabolic disturbances associated with obesity. Regional differences in fat function are due in large part to distinct adipocyte populations that comprise the different fat depots. Evidence accrued primarily in the last decade indicate that the distinct adipocyte populations are generated by a number of processes during and after development. These include the production of adipocytes from different germ cell layers, the formation of distinct preadipocyte populations from mesenchymal progenitors of mesodermal origin, and the production of adipocytes from hematopoietic stem cells from the bone marrow. This review will examine each of these process and their relevance to normal adipose tissue formation and contribution to obesity-related diseases. PMID:21544899

  18. Adipocytes impair efficacy of antiretroviral therapy.

    PubMed

    Couturier, Jacob; Winchester, Lee C; Suliburk, James W; Wilkerson, Gregory K; Podany, Anthony T; Agarwal, Neeti; Xuan Chua, Corrine Ying; Nehete, Pramod N; Nehete, Bharti P; Grattoni, Alessandro; Sastry, K Jagannadha; Fletcher, Courtney V; Lake, Jordan E; Balasubramanyam, Ashok; Lewis, Dorothy E

    2018-06-01

    Adequate distribution of antiretroviral drugs to infected cells in HIV patients is critical for viral suppression. In humans and primates, HIV- and SIV-infected CD4 T cells in adipose tissues have recently been identified as reservoirs for infectious virus. To better characterize adipose tissue as a pharmacological sanctuary for HIV-infected cells, in vitro experiments were conducted to assess antiretroviral drug efficacy in the presence of adipocytes, and drug penetration in adipose tissue cells (stromal-vascular-fraction cells and mature adipocytes) was examined in treated humans and monkeys. Co-culture experiments between HIV-1-infected CD4 T cells and primary human adipocytes showed that adipocytes consistently reduced the antiviral efficacy of the nucleotide reverse transcriptase inhibitor tenofovir and its prodrug forms tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF). In HIV-infected persons, LC-MS/MS analysis of intracellular lysates derived from adipose tissue stromal-vascular-fraction cells or mature adipocytes suggested that integrase inhibitors penetrate adipose tissue, whereas penetration of nucleoside/nucleotide reverse transcriptase inhibitors such as TDF, emtricitabine, abacavir, and lamivudine is restricted. The limited distribution and functions of key antiretroviral drugs within fat depots may contribute to viral persistence in adipose tissue. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity

    PubMed Central

    Deng, Ruyuan; Wang, Ning; Zhang, Yuqing; Wang, Yao; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2015-01-01

    Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome proliferators-activated receptor γ2 (PPARγ2), and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB) phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX) and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE) stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades. PMID:25928058

  20. 11β-HSD1 reduces metabolic efficacy and adiponectin synthesis in hypertrophic adipocytes.

    PubMed

    Koh, Eun Hee; Kim, Ah-Ram; Kim, Hyunshik; Kim, Jin Hee; Park, Hye-Sun; Ko, Myoung Seok; Kim, Mi-Ok; Kim, Hyuk-Joong; Kim, Bum Joong; Yoo, Hyun Ju; Kim, Su Jung; Oh, Jin Sun; Woo, Chang-Yun; Jang, Jung Eun; Leem, Jaechan; Cho, Myung Hwan; Lee, Ki-Up

    2015-06-01

    Mitochondrial dysfunction in hypertrophic adipocytes can reduce adiponectin synthesis. We investigated whether 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) expression is increased in hypertrophic adipocytes and whether this is responsible for mitochondrial dysfunction and reduced adiponectin synthesis. Differentiated 3T3L1 adipocytes were cultured for up to 21 days. The effect of AZD6925, a selective 11β-HSD1 inhibitor, on metabolism was examined. db/db mice were administered 600 mg/kg AZD6925 daily for 4 weeks via gastric lavage. Mitochondrial DNA (mtDNA) content, mRNA expression levels of 11 β -H sd1 and mitochondrial biogenesis factors, adiponectin synthesis, fatty acid oxidation (FAO), oxygen consumption rate and glycolysis were measured. Adipocyte hypertrophy in 3T3L1 cells exposed to a long duration of culture was associated with increased 11 β -Hsd1 mRNA expression and reduced mtDNA content, mitochondrial biogenesis factor expression and adiponectin synthesis. These cells displayed reduced mitochondrial respiration and increased glycolysis. Treatment of these cells with AZD6925 increased adiponectin synthesis and mitochondrial respiration. Inhibition of FAO by etomoxir blocked the AZD6925-induced increase in adiponectin synthesis, indicating that 11β-HSD1-mediated reductions in FAO are responsible for the reduction in adiponectin synthesis. The expression level of 11 β -Hsd1 was higher in adipose tissues of db/db mice. Administration of AZD6925 to db/db mice increased the plasma adiponectin level and adipose tissue FAO. In conclusion, increased 11β-HSD1 expression contributes to reduced mitochondrial respiration and adiponectin synthesis in hypertrophic adipocytes. © 2015 Society for Endocrinology.

  1. Direct and Indirect Effects of Leptin on Adipocyte Metabolism

    PubMed Central

    Harris, Ruth B.S.

    2013-01-01

    Leptin is hypothesized to function as a negative feedback signal in the regulation of energy balance. It is produced primarily by adipose tissue and circulating concentrations correlate with the size of body fat stores. Administration of exogenous leptin to normal weight, leptin responsive animals inhibits food intake and reduces the size of body fat stores whereas mice that are deficient in either leptin or functional leptin receptors are hyperphagic and obese, consistent with a role for leptin in the control of body weight. This review discusses the effect of leptin on adipocyte metabolism. Because adipocytes express leptin receptors there is the potential for leptin to influence adipocyte metabolism directly. Adipocytes also are insulin responsive and receive sympathetic innervation, therefore leptin can also modify adipocyte metabolism indirectly. Studies published to date suggest that direct activation of adipocyte leptin receptors has little effect on cell metabolism in vivo, but that leptin modifies adipocyte sensitivity to insulin to inhibit lipid accumulation. In vivo administration of leptin leads to a suppression of lipogenesis, an increase in triglyceride hydrolysis and an increase in fatty acid and glucose oxidation. Activation of central leptin receptors also contributes to the development of a catabolic state in adipocytes, but this may vary between different fat depots. Leptin reduces the size of white fat depots by inhibiting cell proliferation both through induction of inhibitory circulating factors and by contributing to sympathetic tone which suppresses adipocyte proliferation. PMID:23685313

  2. Lithospermum erythrorhizon suppresses high-fat diet-induced obesity, and acetylshikonin, a main compound of Lithospermum erythrorhizon, inhibits adipocyte differentiation.

    PubMed

    Gwon, So Young; Ahn, Ji Yun; Chung, Chang Hwa; Moon, BoKyung; Ha, Tae Youl

    2012-09-12

    Lithospermum erythrorhizon, which has traditionally been used as a vegetable and to make the liquor Jindo Hongju, contains several naphthoquinone pigments, including shikonin. This study aimed to evaluate the antiobesity effects of Lithospermum erythrorhizon ethanol extract (LE) and elucidate the underlying mechanism. C57BL/6J mice were fed a normal or high-fat diet with or without LE supplementation for 8 weeks. LE reduced high-fat diet-induced increases in body weight, white adipose tissue mass, serum triglyceride and total cholesterol levels, and hepatic lipid levels while decreasing lipogenic and adipogenic gene expression. Furthermore, acetylshikonin suppressed adipocyte differentiation in a dose-dependent manner and significantly attenuated adipogenic transcription factor expression in 3T3-L1 cells. These findings suggest that Lithospermum erythrorhizon prevents obesity by inhibiting adipogenesis through downregulation of genes involved in the adipogenesis pathway and may be a useful dietary supplement for the prevention of obesity.

  3. Gene expression profile of isolated rat adipocytes treated with anthocyanins.

    PubMed

    Tsuda, Takanori; Ueno, Yuki; Kojo, Hitoshi; Yoshikawa, Toshikazu; Osawa, Toshihiko

    2005-04-15

    Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine secretion or the adipocyte specific gene expression is one of the most important targets for the prevention of obesity and amelioration of insulin sensitivity. Recently, we demonstrated that anthocyanins, which are pigments widespread in the plant kingdom, have the potency of anti-obesity in mice and the enhancement adipocytokine secretion and adipocyte gene expression in adipocytes. In this study, we have shown for the first time the gene expression profile in isolated rat adipocytes treated with anthocyanins (cyanidin 3-glucoside; C3G or cyanidin; Cy). The rat adipocytes were treated with 100 muM C3G, Cy or vehicle for 24 h. The total RNA from the adipocytes was isolated and carried out GeneChip microarray analysis. A total of 633 or 427 genes was up-regulated (>1.5-fold) by the treatment of adipocytes with C3G or Cy, respectively. The up-regulated genes include lipid metabolism and signal transduction-related genes, however, the altered genes were partly different between the C3G- and Cy-treated groups. Based on the gene expression profile, we demonstrated the up-regulation of hormone sensitive lipase and enhancement of the lipolytic activity by the treatment of adipocytes with C3G or Cy. These data have provided an overview of the gene expression profiles in adipocytes treated with anthocyanins and identified new responsive genes with potentially important functions in adipocytes related with obesity and diabetes that merit further investigation.

  4. Zinc-α2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia

    PubMed Central

    Bing, Chen; Bao, Yi; Jenkins, John; Sanders, Paul; Manieri, Monia; Cinti, Saverio; Tisdale, Michael J.; Trayhurn, Paul

    2004-01-01

    Zinc-α2-glycoprotein (ZAG), a 43-kDa protein, is overexpressed in certain human malignant tumors and acts as a lipid-mobilizing factor to stimulate lipolysis in adipocytes leading to cachexia in mice implanted with ZAG-producing tumors. Because white adipose tissue (WAT) is an endocrine organ secreting a wide range of protein factors, including those involved in lipid metabolism, we have investigated whether ZAG is produced locally by adipocytes. ZAG mRNA was detected by RT-PCR in the mouse WAT depots examined (epididymal, perirenal, s.c., and mammary gland) and in interscapular brown fat. In WAT, ZAG gene expression was evident in mature adipocytes and in stromal-vascular cells. Using a ZAG Ab, ZAG protein was located in WAT by Western blotting and immunohistochemistry. Mice bearing the MAC16-tumor displayed substantial losses of body weight and fat mass, which was accompanied by major increases in ZAG mRNA and protein levels in WAT and brown fat. ZAG mRNA was detected in 3T3-L1 cells, before and after the induction of differentiation, with the level increasing progressively after differentiation with a peak at days 8–10. Both dexamethasone and a β3 agonist, BRL 37344, increased ZAG mRNA levels in 3T3-L1 adipocytes. ZAG gene expression and protein were also detected in human adipose tissue (visceral and s.c.). It is suggested that ZAG is a new adipose tissue protein factor, which may be involved in the modulation of lipolysis in adipocytes. Overexpression in WAT of tumor-bearing mice suggests a local role for adipocyte-derived ZAG in the substantial reduction of adiposity of cancer cachexia. PMID:14983038

  5. Honokiol exerts dual effects on browning and apoptosis of adipocytes.

    PubMed

    Lone, Jameel; Yun, Jong Won

    2017-12-01

    Induction of brown adipocyte-like phenotype (browning) in white adipocytes and promotion of apoptosis by dietary and pharmacological compounds is considered a novel strategy against obesity. Here, we show that honokiol exerts dual modulatory effects on adipocytes via induction of browning in 3T3-L1 white adipocytes and apoptosis as well as activation of HIB1B brown adipocytes combined with inhibition of apoptosis. Honokiol-induced browning and apoptosis were investigated by determining expression levels of brown adipocyte-specific genes and proteins by RT-PCR and immunoblot analysis, respectively. Apoptotic data were validated by immunofluorescence and ROS levels were measured by FACS analysis. Honokiol treatment induced browning by elevating expression levels of brown adipocyte-specific genes such as Cidea, Cox8, Fgf21, Pgc-1α, and Ucp1. Honokiol promoted apoptosis of 3T3-L1 white adipocytes and inhibited apoptosis of HIB1B brown adipocytes via opposite regulation of the pro-apoptotic protein BAX and anti-apoptotic protein Bcl-2. Honokiol also significantly increased protein expression levels of ACOX1, CPT1, p-HSL, and p-PLIN and reduced ROS levels, suggesting its possible role in fat oxidation and lipid catabolism. Honokiol-induced browning could be mediated by activation of ERK, as inhibition of ERK by FR180204 abolished expression of PGC-1α and UCP1. Our findings suggest that honokiol exhibits a modulatory role in adipocytes via induction of browning and apoptosis in white adipocytes, promotion of catabolic lipid metabolism, as well as activation and inhibition of apoptosis in HIB1B brown adipocytes, thereby exhibiting therapeutic potential against obesity. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  6. Cardiac mesenchymal stromal cells are a source of adipocytes in arrhythmogenic cardiomyopathy.

    PubMed

    Sommariva, E; Brambilla, S; Carbucicchio, C; Gambini, E; Meraviglia, V; Dello Russo, A; Farina, F M; Casella, M; Catto, V; Pontone, G; Chiesa, M; Stadiotti, I; Cogliati, E; Paolin, A; Ouali Alami, N; Preziuso, C; d'Amati, G; Colombo, G I; Rossini, A; Capogrossi, M C; Tondo, C; Pompilio, G

    2016-06-14

    Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder mainly due to mutations in desmosomal genes, characterized by progressive fibro-adipose replacement of the myocardium, arrhythmias, and sudden death. It is still unclear which cell type is responsible for fibro-adipose substitution and which molecular mechanisms lead to this structural change. Cardiac mesenchymal stromal cells (C-MSC) are the most abundant cells in the heart, with propensity to differentiate into several cell types, including adipocytes, and their role in ACM is unknown. The aim of the present study was to investigate whether C-MSC contributed to excess adipocytes in patients with ACM. We found that, in ACM patients' explanted heart sections, cells actively differentiating into adipocytes are of mesenchymal origin. Therefore, we isolated C-MSC from endomyocardial biopsies of ACM and from not affected by arrhythmogenic cardiomyopathy (NON-ACM) (control) patients. We found that both ACM and control C-MSC express desmosomal genes, with ACM C-MSC showing lower expression of plakophilin (PKP2) protein vs. Arrhythmogenic cardiomyopathy C-MSC cultured in adipogenic medium accumulated more lipid droplets than controls. Accordingly, the expression of adipogenic genes was higher in ACM vs. NON-ACM C-MSC, while expression of cell cycle and anti-adipogenic genes was lower. Both lipid accumulation and transcription reprogramming were dependent on PKP2 deficiency. Cardiac mesenchymal stromal cells contribute to the adipogenic substitution observed in ACM patients' hearts. Moreover, C-MSC from ACM patients recapitulate the features of ACM adipogenesis, representing a novel, scalable, patient-specific in vitro tool for future mechanistic studies. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  7. Cardiac mesenchymal stromal cells are a source of adipocytes in arrhythmogenic cardiomyopathy

    PubMed Central

    Sommariva, E.; Brambilla, S.; Carbucicchio, C.; Gambini, E.; Meraviglia, V.; Dello Russo, A.; Farina, F.M.; Casella, M.; Catto, V.; Pontone, G.; Chiesa, M.; Stadiotti, I.; Cogliati, E.; Paolin, A.; Ouali Alami, N.; Preziuso, C.; d'Amati, G.; Colombo, G.I.; Rossini, A.; Capogrossi, M.C.; Tondo, C.; Pompilio, G.

    2016-01-01

    Abstract Aim Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder mainly due to mutations in desmosomal genes, characterized by progressive fibro-adipose replacement of the myocardium, arrhythmias, and sudden death. It is still unclear which cell type is responsible for fibro-adipose substitution and which molecular mechanisms lead to this structural change. Cardiac mesenchymal stromal cells (C-MSC) are the most abundant cells in the heart, with propensity to differentiate into several cell types, including adipocytes, and their role in ACM is unknown. The aim of the present study was to investigate whether C-MSC contributed to excess adipocytes in patients with ACM. Methods and results We found that, in ACM patients' explanted heart sections, cells actively differentiating into adipocytes are of mesenchymal origin. Therefore, we isolated C-MSC from endomyocardial biopsies of ACM and from not affected by arrhythmogenic cardiomyopathy (NON-ACM) (control) patients. We found that both ACM and control C-MSC express desmosomal genes, with ACM C-MSC showing lower expression of plakophilin (PKP2) protein vs. controls. Arrhythmogenic cardiomyopathy C-MSC cultured in adipogenic medium accumulated more lipid droplets than controls. Accordingly, the expression of adipogenic genes was higher in ACM vs. NON-ACM C-MSC, while expression of cell cycle and anti-adipogenic genes was lower. Both lipid accumulation and transcription reprogramming were dependent on PKP2 deficiency. Conclusions Cardiac mesenchymal stromal cells contribute to the adipogenic substitution observed in ACM patients' hearts. Moreover, C-MSC from ACM patients recapitulate the features of ACM adipogenesis, representing a novel, scalable, patient-specific in vitro tool for future mechanistic studies. PMID:26590176

  8. Direct and indirect effects of leptin on adipocyte metabolism.

    PubMed

    Harris, Ruth B S

    2014-03-01

    Leptin is hypothesized to function as a negative feedback signal in the regulation of energy balance. It is produced primarily by adipose tissue and circulating concentrations correlate with the size of body fat stores. Administration of exogenous leptin to normal weight, leptin responsive animals inhibits food intake and reduces the size of body fat stores whereas mice that are deficient in either leptin or functional leptin receptors are hyperphagic and obese, consistent with a role for leptin in the control of body weight. This review discusses the effect of leptin on adipocyte metabolism. Because adipocytes express leptin receptors there is the potential for leptin to influence adipocyte metabolism directly. Adipocytes also are insulin responsive and receive sympathetic innervation, therefore leptin can also modify adipocyte metabolism indirectly. Studies published to date suggest that direct activation of adipocyte leptin receptors has little effect on cell metabolism in vivo, but that leptin modifies adipocyte sensitivity to insulin to inhibit lipid accumulation. In vivo administration of leptin leads to a suppression of lipogenesis, an increase in triglyceride hydrolysis and an increase in fatty acid and glucose oxidation. Activation of central leptin receptors also contributes to the development of a catabolic state in adipocytes, but this may vary between different fat depots. Leptin reduces the size of white fat depots by inhibiting cell proliferation both through induction of inhibitory circulating factors and by contributing to sympathetic tone which suppresses adipocyte proliferation. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. KLF15 promotes transcription of KLF3 gene in bovine adipocytes.

    PubMed

    Guo, Hongfang; Khan, Rajwali; Raza, Sayed Haidar Abbas; Ning, Yue; Wei, Dawei; Wu, Sen; Hosseini, Seyed Mahdi; Ullah, Irfan; Garcia, Matthew D; Zan, Linsen

    2018-06-15

    The Krüppel-like factors (KLF) family plays an important role in adipogenesis, which is subject to internal hierarchical regulation. KLF3 is a member of KLF family, mainly responsible for adipocyte differentiation and fat deposition. However, the transcriptional regulation of bovine KLF3 gene and its relationship with KLF15 gene remains unclear during bovine adipogenesis. Here, we report that the expression pattern of KLF3 and KLF15 genes during bovine adipogenesis, when KLF15 gene was overexpressed through adenoviral vector (Ad-KLF15) in bovine adipocytes the expression level of KLF3 gene was increased, similarly when KLF15 was down regulated through siRNA the expression level of KLF3 was also reduced. To explore the transcriptional regulation of bovine KLF3 gene and its relationship with KLF15, serial deletion constructs of the 5'flanking region of bovine KLF3gene revealed through dual-luciferase reporter assay that the core promoter is located in -264 to -76 regions. The most proximal GGGG element in the promoter of the bovine KLF3 gene (located in -264 to -76 regions) is required for promotion by KLF15. Electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays further confirmed that KLF15 gene binds to the KLF3 gene core promoter region in bovine adipocytes. These findings conclude that KLF15 promotes the transcriptional activity of KLF3 in bovine adipocytes. This mechanism to provides a new direction for further study of adipogenesis by internal regulation of members within KLF family. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Differentiation to adipocytes in accompanied by an increase in the amounts of Gi- and Go-proteins in 3T3-L1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, D.C.; Northup, J.K.; Malbon, C.C.

    Treatment of cultures of 3T3-L1 cells with methylisobutyl-xanthine and dexamethasone has been shown to result in accumulation of lipid and conversion to the morphology of adipocytes in more than 90% of the cells. The status of the stimulatory (Gs), inhibitory (Gi) and Go-proteins during the course of 3T3-L1 differentiation was examined. The amount of alpha subunit of Gs (..cap alpha..Gs), assayed by radiolabeling in the presence of cholera toxin and (/sup 32/P)NAD/sup +/, increased upon differentiation as previously described by others. The amounts of ..cap alpha..Gi and ..cap alpha..Go assayed by radiolabeling in the presence of pertussis toxin and (/supmore » 32/P)NAD/sup +/ increased 3-fold upon differentiation. Immunoblots of cell membranes subjected to gel electrophoresis in sodium dodecyl sulfate were probed with two rabbit antisera raised against bovine brain ..cap alpha..Go and with one raised against the..beta..-subunit of the bovine rod-outer-segment G-protein, referred to as transducin. The immunoblotting data confirm the increase upon differentiation of ..cap alpha..Go and also demonstrate an increase in the amount of the ..beta..-subunit. Thus differentiation of 3T3-L1 cells is accompanied by dramatic changes in the complexion of G-proteins in the membranes.« less

  11. Body fat mass and the proportion of very large adipocytes in pregnant women are associated with gestational insulin resistance.

    PubMed

    Svensson, H; Wetterling, L; Bosaeus, M; Odén, B; Odén, A; Jennische, E; Edén, S; Holmäng, A; Lönn, M

    2016-04-01

    Pregnancy is accompanied by fat gain and insulin resistance. Changes in adipose tissue morphology and function during pregnancy and factors contributing to gestational insulin resistance are incompletely known. We sought to characterize adipose tissue in trimesters 1 and 3 (T1/T3) in normal weight (NW) and obese pregnant women, and identify adipose tissue-related factors associated with gestational insulin resistance. Twenty-two NW and 11 obese women were recruited early in pregnancy for the Pregnancy Obesity Nutrition and Child Health study. Examinations and sampling of blood and abdominal adipose tissue were performed longitudinally in T1/T3 to determine fat mass (air-displacement plethysmography); insulin resistance (homeostasis model assessment of insulin resistance, HOMA-IR); size, number and lipolytic activity of adipocytes; and adipokine release and density of immune cells and blood vessels in adipose tissue. Fat mass and HOMA-IR increased similarly between T1 and T3 in the groups; all remained normoglycemic. Adipocyte size increased in NW women. Adipocyte number was not influenced, but proportions of small and large adipocytes changed oppositely in the groups. Lipolytic activity and circulating adipocyte fatty acid-binding protein increased in both groups. Adiponectin release was reduced in NW women. Fat mass and the proportion of very large adipocytes were most strongly associated with T3 HOMA-IR by multivariable linear regression (R(2)=0.751, P<0.001). During pregnancy, adipose tissue morphology and function change comprehensively. NW women accumulated fat in existing adipocytes, accompanied by reduced adiponectin release. In comparison with the NW group, obese women had signs of adipocyte recruitment and maintained adiponectin levels. Body fat and large adipocytes may contribute significantly to gestational insulin resistance.

  12. Adipocyte-derived players in hematologic tumors: useful novel targets?

    PubMed

    Jöhrer, Karin; Ploner, Christian; Thangavadivel, Shanmugapriya; Wuggenig, Philipp; Greil, Richard

    2015-01-01

    Adipocytes and their products play essential roles in tumor establishment and progression. As the main cellular component of the bone marrow, adipocytes may contribute to the development of hematologic tumors. This review summarizes experimental data on adipocytes and their interaction with various cancer cells. Special focus is set on the interactions of bone marrow adipocytes and normal and transformed cells of the hematopoietic system such as myeloma and leukemia cells. Current in vitro and in vivo data are summarized and the potential of novel therapeutic targets is critically discussed. Targeting lipid metabolism of cancer cells and adipocytes in combination with standard therapeutics might open novel therapeutic avenues in these cancer entities. Adipocyte-derived products such as free fatty acids and specific adipokines such as adiponectin may be vital anti-cancer targets in hematologic malignancies. However, available data on lipid metabolism is currently mostly referring to peripheral fat cell/cancer cell interactions and results need to be evaluated specifically for the bone marrow niche.

  13. Differential dephosphorylation of the insulin receptor and its 160-kDa substrate (pp160) in rat adipocytes.

    PubMed

    Mooney, R A; Bordwell, K L

    1992-07-15

    A permeabilized rat adipocyte model was developed which permitted an examination of: 1) insulin receptor autophosphorylation, 2) phosphorylation of a putative insulin receptor substrate of 160 kDa, pp160, and 3) the dephosphorylation reactions associated with each of these phosphoproteins. Rat adipocytes, preincubated with [32P]orthophosphate for 2 h, were exposed to insulin (10(-7) M) at the time of digitonin permeabilization. Phosphorylation of pp160 and autophosphorylation of the insulin receptor increased as a function of Mn2+ concentration in the media with near maximum responses at 10 mM. Maximum response was at least as large as the intact cell response to 10(-7) M insulin. In contrast, magnesium did not increase phosphorylation of pp160 although an increase in receptor autophosphorylation was observed. Autophosphorylation was preserved at digitonin concentrations of 20-100 micrograms/ml, but pp160 phosphorylation was negligible beyond 40 micrograms/ml. Our previous work demonstrated that the insulin receptor was associated with a phosphotyrosine phosphatase activity in permeabilized adipocytes (Mooney, R., and Anderson, D. (1989) J. Biol. Chem. 264, 6850-6857). The current permeabilized adipocyte model made possible an examination of the effects of phosphotyrosine phosphatase inhibitors, including several divalent metal cations (Zn2+, Co2+, and Ni2+), vanadate, and molybdate on both net phosphorylation of pp160 and autophosphorylation of the insulin receptor. Zn2+ at 100 microM, Ni2+ at 1 mM, and Co2+ at 1 or 5 mM increased insulin-dependent phosphorylation of pp160 at least 5-fold and autophosphorylation 2-fold. At higher concentrations of Zn2+ (1 mM) and Ni2+ (5 mM), however, no increase in phosphorylation of pp160 was observed and autophosphorylation was inhibited. Vanadate (1 mM) and molybdate (100 microM) increased insulin-dependent phosphorylation of pp160 by 3-fold when tested separately and 7-fold in combination. Insulin receptor autophosphorylation

  14. Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation

    NASA Astrophysics Data System (ADS)

    Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young

    2014-03-01

    Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.

  15. Progeny from dedifferentiated adipocytes display protracted adipogenesis

    USDA-ARS?s Scientific Manuscript database

    Progeny of adipofibroblast cells, derived from mature bovine adipocytes, were used to determine their ability to redifferentiate into lipid-assimilating adipocytes. Traditional cell biology methods were used, including the expression of adipogenic markers such as PPAR'. When exposed to medium supple...

  16. Activated AMPK and prostaglandins are involved in the response to conjugated linoleic acid and are sufficient to cause lipid reductions in adipocytes.

    PubMed

    Jiang, Shan; Chen, Han; Wang, Zhigang; Riethoven, Jean-Jack; Xia, Yuannan; Miner, Jess; Fromm, Michael

    2011-07-01

    trans-10, cis-12 Conjugated linoleic acid (t10c12 CLA) reduces triglyceride levels in adipocytes. AMP-activated protein kinase (AMPK) and inflammation were recently demonstrated to be involved in the emerging pathways regulating this response. This study further investigated the role of AMPK and inflammation by testing the following hypotheses: (1) a moderate activation of AMPK and an inflammatory response are sufficient to reduce triglycerides, and (2) strong activation of AMPK is also sufficient. Experiments were performed by adding compounds that affect these pathways and by measuring their effects in 3T3-L1 adipocytes. A comparison of four AMPK activators (metformin, phenformin, TNF-α and t10c12 CLA) found a correlation between AMPK activity and triglyceride reduction. This correlation appeared to be modulated by the level of cyclo-oxygenase (COX)-2 mRNA produced. Inhibitors of the prostaglandin (PG) biosynthetic pathway interfered with t10c12 CLA's ability to reduce triglycerides. A combination of metformin and PGH2, or phenformin alone, efficiently reduced triglyceride levels in adipocytes. Microarray analysis indicated that the transcriptional responses to phenformin or t10c12 CLA were very similar, suggesting similar pathways were activated. 3T3-L1 fibroblasts were found to weakly induce the integrated stress response (ISR) in response to phenformin or t10c12 CLA and to respond robustly as they differentiated into adipocytes. This indicated that both chemicals required adipocytes at the same stage of differentiation to be competent for this response. These results support the above hypotheses and suggest compounds that moderately activate AMPK and increase PG levels or robustly activate AMPK in adipocytes may be beneficial for reducing adiposity. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boschi, Federico, E-mail: federico.boschi@univr.it; Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona; Rizzatti, Vanni

    Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and maturemore » (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We

  18. Body fat mass and the proportion of very large adipocytes in pregnant women are associated with gestational insulin resistance

    PubMed Central

    Svensson, H; Wetterling, L; Bosaeus, M; Odén, B; Odén, A; Jennische, E; Edén, S; Holmäng, A; Lönn, M

    2016-01-01

    Background/Objectives: Pregnancy is accompanied by fat gain and insulin resistance. Changes in adipose tissue morphology and function during pregnancy and factors contributing to gestational insulin resistance are incompletely known. We sought to characterize adipose tissue in trimesters 1 and 3 (T1/T3) in normal weight (NW) and obese pregnant women, and identify adipose tissue-related factors associated with gestational insulin resistance. Subjects/Methods: Twenty-two NW and 11 obese women were recruited early in pregnancy for the Pregnancy Obesity Nutrition and Child Health study. Examinations and sampling of blood and abdominal adipose tissue were performed longitudinally in T1/T3 to determine fat mass (air-displacement plethysmography); insulin resistance (homeostasis model assessment of insulin resistance, HOMA-IR); size, number and lipolytic activity of adipocytes; and adipokine release and density of immune cells and blood vessels in adipose tissue. Results: Fat mass and HOMA-IR increased similarly between T1 and T3 in the groups; all remained normoglycemic. Adipocyte size increased in NW women. Adipocyte number was not influenced, but proportions of small and large adipocytes changed oppositely in the groups. Lipolytic activity and circulating adipocyte fatty acid-binding protein increased in both groups. Adiponectin release was reduced in NW women. Fat mass and the proportion of very large adipocytes were most strongly associated with T3 HOMA-IR by multivariable linear regression (R2=0.751, P<0.001). Conclusions: During pregnancy, adipose tissue morphology and function change comprehensively. NW women accumulated fat in existing adipocytes, accompanied by reduced adiponectin release. In comparison with the NW group, obese women had signs of adipocyte recruitment and maintained adiponectin levels. Body fat and large adipocytes may contribute significantly to gestational insulin resistance. PMID:26563815

  19. Impaired response of mature adipocytes of diabetic mice to hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Seok Jong, E-mail: seok-hong@northwestern.edu; Jin, Da P.; Buck, Donald W.

    2011-10-01

    Adipose tissue contains various cells such as infiltrated monocytes/macrophages, endothelial cells, preadipocytes, and adipocytes. Adipocytes have an endocrine function by secreting adipokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, leptin, and adiponectin. Dysregulation of adipokines in adipose tissues leads to a chronic low-grade inflammation which could result in atherosclerosis, hypertension, and type 2 diabetes. A sustained inflammatory state, which is characterized by prolonged persistence of macrophages and neutrophils, is found in diabetic wounds. In addition, subcutaneous adipocytes are enormously increased in amount clinically in type 2 diabetes. However, the function of subcutaneous adipocytes, which play an important role inmore » injured tissue subjected to hypoxia, has not been well characterized in vitro due to the difficulty of maintaining mature adipocytes in culture using conventional methods because of their buoyancy. In this study, we established a novel in vitro culture method of mature adipocytes by enclosing them in a hyaluronan (HA) based hydrogel to study their role in response to stress such as hypoxia. BrdU labeling and Ki67 immunostaining experiments showed that hydrogel enclosed mature adipocytes proliferate in vitro. Both mRNA and protein expression analyses for hypoxia regulated genes, such as vascular endothelial growth factor (VEGF) and heme oxygenase 1 (HO1), showed that mature adipocytes of wild type mice respond to hypoxia. In contrast, mature adipocytes of diabetic db/db and TallyHo mice did not efficiently respond to hypoxia. Our studies suggest that mature adipocytes are functionally active cells, and their abnormal function to hypoxia can be one of underlining mechanisms in type 2 diabetes.« less

  20. Inhibition of Adipogenesis and Induction of Apoptosis and Lipolysis by Stem Bromelain in 3T3-L1 Adipocytes

    PubMed Central

    Dave, Sandeep; Kaur, Naval Jit; Nanduri, Ravikanth; Dkhar, H. Kitdorlang; Kumar, Ashwani; Gupta, Pawan

    2012-01-01

    The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2), fatty acid synthase (FAS), lipoprotein lipase (LPL), CD36, and acetyl-CoA carboxylase (ACC) were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPARγ expression seems to stem from its ability to inhibit Akt and augment the TNFα pathway. The Akt–TSC2–mTORC1 pathway has recently been described for PPARγ expression in adipocytes. In our experiments, TNFα upregulation compromised cell viability of mature adipocytes (via apoptosis) and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B), and GTP binding protein Giα1, as well as sustained expression of hormone sensitive lipase (HSL). These data indicate that SBM, together with all-trans retinoic-acid (atRA), may be a potent modulator of obesity by repressing the PPARγ-regulated adipogenesis pathway at all stages and by augmenting TNFα-induced lipolysis and apoptosis in mature adipocytes. PMID:22292054

  1. Chlamydia pneumoniae exploits adipocyte lipid chaperone FABP4 to facilitate fat mobilization and intracellular growth in murine adipocytes.

    PubMed

    Walenna, Nirwana Fitriani; Kurihara, Yusuke; Chou, Bin; Ishii, Kazunari; Soejima, Toshinori; Itoh, Ryota; Shimizu, Akinori; Ichinohe, Takeshi; Hiromatsu, Kenji

    2018-01-01

    Fatty acid-binding protein 4 (FABP4), a cytosolic lipid chaperone predominantly expressed in adipocytes and macrophages, modulates lipid fluxes, trafficking, signaling, and metabolism. Recent studies have demonstrated that FABP4 regulates metabolic and inflammatory pathways, and in mouse models its inhibition can improve type 2 diabetes mellitus and atherosclerosis. However, the role of FABP4 in bacterial infection, metabolic crosstalk between host and pathogen, and bacterial pathogenesis have not been studied. As an obligate intracellular pathogen, Chlamydia pneumoniae needs to obtain nutrients such as ATP and lipids from host cells. Here, we show that C. pneumoniae successfully infects and proliferates in murine adipocytes by inducing hormone sensitive lipase (HSL)-mediated lipolysis. Chemical inhibition or genetic manipulation of HSL significantly abrogated the intracellular growth of C. pneumoniae in adipocytes. Liberated free fatty acids were utilized to generate ATP via β-oxidation, which C. pneumoniae usurped for its replication. Strikingly, chemical inhibition or genetic silencing of FABP4 significantly abrogated C. pneumoniae infection-induced lipolysis and mobilization of liberated FFAs, resulting in reduced bacterial growth in adipocytes. Collectively, these results demonstrate that C. pneumoniae exploits host FABP4 to facilitate fat mobilization and intracellular replication in adipocytes. This work uncovers a novel strategy used by intracellular pathogens for acquiring energy via hijacking of the host lipid metabolism pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effects of perfluorinated chemicals on adipocyte development ...

    EPA Pesticide Factsheets

    Obesity is a growing concern in the US population. Current interest is high in the role played by environmental factors called obesogens that may contribute to obesity through developmental exposure. One class of potential obesogens is the family of perfluorinated chemicals used as surfactants in a variety of industrial applications. Given the importance of understanding the role these compounds play in lipid homeostasis we used pre-adipocyte 3T3-L1 mouse fibroblast cells (Zen-Bio, RTP NC) to study their effects on adipogenesis and lipid accumulation. These cells differentiate into adipocytes accumulating large lipid droplets. Cultures were treated with perfluorooctanoic acid (PFOA) (1-200uM), perfluorononanoic acid (PFNA) (5-lOOuM), perfluorooctane sulfonate (PFOS) (5O-300uM), and perfluorohexane sulfonate (PFHxS) (40- 250uM). Cell size number, and lipid content were assessed using morphomeiric analysis. All four compounds decreased cell size compared to control, and PFNA was most potent, in terms of lowest observed effect concentration (LOEC), whereas PFOA was least potent. Cell number increased for all perfluorinated chemicals tested, most potently for PFNA and least for PFOS. Interestingly, average lipid area per cell for all four chemicals decreased compared to control, but PFOS and PFHxS had increased total lipid area. Additionally, significant increases in total triglyceride were noted for all compounds compared to controls. PFOA and PFNA increased trigly

  3. Xenobiotics that affect oxidative phosphorylation alter differentiation of human adipose-derived stem cells at concentrations that are found in human blood

    PubMed Central

    Llobet, Laura; Toivonen, Janne M.; Montoya, Julio; Ruiz-Pesini, Eduardo; López-Gallardo, Ester

    2015-01-01

    ABSTRACT Adipogenesis is accompanied by differentiation of adipose tissue-derived stem cells to adipocytes. As part of this differentiation, biogenesis of the oxidative phosphorylation system occurs. Many chemical compounds used in medicine, agriculture or other human activities affect oxidative phosphorylation function. Therefore, these xenobiotics could alter adipogenesis. We have analyzed the effects on adipocyte differentiation of some xenobiotics that act on the oxidative phosphorylation system. The tested concentrations have been previously reported in human blood. Our results show that pharmaceutical drugs that decrease mitochondrial DNA replication, such as nucleoside reverse transcriptase inhibitors, or inhibitors of mitochondrial protein synthesis, such as ribosomal antibiotics, diminish adipocyte differentiation and leptin secretion. By contrast, the environmental chemical pollutant tributyltin chloride, which inhibits the ATP synthase of the oxidative phosphorylation system, can promote adipocyte differentiation and leptin secretion, leading to obesity and metabolic syndrome as postulated by the obesogen hypothesis. PMID:26398948

  4. Municipal wastewater affects adipose deposition in male mice and increases 3T3-L1 cell differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biasiotto, Giorgio; Zanella, Isabella; Department of Molecular and Translational Medicine, University of Brescia, Brescia

    Trace concentration of EDs (endocrine disrupting compounds) in water bodies caused by wastewater treatment plant effluents is a recognized problem for the health of aquatic organisms and their potential to affect human health. In this paper we show that continuous exposure of male mice from early development to the adult life (140 days) to unrestricted drinking of wastewater collected from a municipal sewage treatment plant, is associated with an increased adipose deposition and weight gain during adulthood because of altered body homeostasis. In parallel, bisphenol A (BPA) at the administration dose of 5 μg/kg/body weight, shows an increasing effect onmore » total body weight and fat mass. In vitro, a solid phase extract (SPE) of the wastewater (eTW), caused stimulation of 3T3-L1 adipocyte differentiation at dilutions of 0.4 and 1 % in the final culture medium which contained a concentration of BPA of 40 nM and 90 nM respectively. Pure BPA also promoted adipocytes differentiation at the concentration of 50 and 80 μM. BPA effect in 3T3-L1 cells was associated to the specific activation of the estrogen receptor alpha (ERα) in undifferentiated cells and the estrogen receptor beta (ERβ) in differentiated cells. BPA also activated the Peroxisome Proliferator Activated Receptor gamma (PPARγ) upregulating a minimal 3XPPARE luciferase reporter and the PPARγ-target promoter of the aP2 gene in adipose cells, while it was not effective in preadipocytes. The pure estrogen receptor agonist diethylstilbestrol (DES) played an opposite action to that of BPA inhibiting PPARγ activity in adipocytes, preventing cell differentiation, activating ERα in preadipocytes and inhibiting ERα and ERβ regulation in adipocytes. The results of this work show that the drinking of chemically-contaminated wastewater promotes fat deposition in male mice and that EDs present in sewage are likely responsible for this effect through a nuclear receptor-mediated mechanism. - Highlights:

  5. Accumulation of Polychlorinated Biphenyls in Adipocytes: Selective Targeting to Lipid Droplets and Role of Caveolin-1

    PubMed Central

    Bourez, Sophie; Le Lay, Soazig; Van den Daelen, Carine; Louis, Caroline; Larondelle, Yvan; Thomé, Jean-Pierre; Schneider, Yves-Jacques; Dugail, Isabelle; Debier, Cathy

    2012-01-01

    Background Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that preferentially accumulate in lipid-rich tissues of contaminated organisms. Although the adipose tissue constitutes a major intern reservoir of PCBs and recent epidemiological studies associate PCBs to the development of obesity and its related disorders, little is known about the mechanisms involved in their uptake by the adipose tissue and their intracellular localization in fat cells. Methodology/Principal Findings We have examined the intracellular distribution of PCBs in mouse cultured adipocytes and tested the potential involvement of caveolin-1, an abundant adipocyte membrane protein, in the uptake of these compounds by fat cells. We show that 2,4,4′-trichlorobiphenyl (PCB-28), 2,3′,4,4′,5-pentachlorobiphenyl (PCB-118) and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB-153) congeners rapidly and extensively accumulate in 3T3-L1 or mouse embryonic fibroblast (MEF) derived cultured adipocytes. The dynamics of accumulation differed between the 3 congeners tested. By subcellular fractionation of primary adipocytes, we demonstrate that these pollutants were almost exclusively recovered within the lipid droplet fraction and practically not associated to cell membranes. The absence of caveolin-1 expression in primary adipocytes from cav-1 deficient mice did not modify lipid droplet selective targeting of PCBs. In cav-1 KO MEF differentiated adipocytes, PCB accumulation was decreased, which correlated with reduced cell triglyceride content. Conversely, adenoviral mediated cav-1 overexpressing in 3T3-L1 cells, which had no impact on total cell lipid content, did not change PCB accumulation. Conclusion/Significance Our data indicate that caveolin-1 per se is not required for selective PCB accumulation, but rather point out a primary dependence on adipocyte triglyceride content. If the crucial role of lipid droplets in energy homeostasis is considered, the almost exclusive

  6. Utility of Adipocyte Fractions in Fat Grafting in an Athymic Rat Model.

    PubMed

    Akgul, Yucel; Constantine, Ryan; Bartels, Mason; Scherer, Philipp; Davis, Kathryn; Kenkel, Jeffrey M

    2018-05-02

    Multiple processing and handling methods of autologous fat yields to variations in graft retention and viability, which results in unpredictable clinical outcomes. This study aims to understand the skin effects of fat graft preparations that contain a varying ratio of free-lipid and stem-cell-bearing stromal vascular fractions (SVF). Lipoaspirates from consenting patients were processed into emulsified fat and then SVF and adipocyte fractions (free-lipid). SVF enriched with 0%, 5%, and 15% free-lipid were grafted along the dorsum of athymic rats. The xenografts were collected 45 days after grafting and then prepped for immunostaining. Xenografts resulted in viable tissue mass under the panniculus carnosus of rats as confirmed with human specific markers. A low percentage of human cells was also detected in the lower reticular dermis. Although grafts with SVF formed adipocytes of normal architecture, grafts formed with free-lipid alone resulted in large lipid vacuoles in varying sizes. Among graft preparations, SVF with 10% free-lipid resulted in much-developed adipocyte architecture with collagen and elastin. Compared with SVF alone grafts, SVF with free-lipid had higher CD44 expression, suggesting a localized immune response of adipocytes. Current studies suggest that SVF enriched with approximately 10% free-lipid provides the best conditions for fat graft differentiation into viable fat tissue formation as well as collagen and elastin production to provide mechanical support for overlaying skin in an athymic rat model. Additionally, application of this therapeutic modality in a simple clinical setting may offer a practical way to concentrate SVF with free-lipid in a small volume for the improvement of clinical defects.

  7. Molecular cloning, characterization and expression analysis of C/EBP α, β and δ in adipose-related tissues and adipocyte of duck (Anas platyrhynchos).

    PubMed

    Qiu, Jiamin; Wang, Wanxia; Hu, Shenqiang; Wang, Yushi; Sun, Wenqiang; Hu, Jiwei; Gan, Xiang; Wang, Jiwen

    2018-07-01

    CCAAT/enhancer binding protein α, β, δ (C/EBP α, β, δ) are essential transcriptional factors in regulating adipose development. However, information about their sequence characteristics and functions during adipocyte development still remains scarce in birds. In present study, we found that duck C/EBP α, β, δ differed in their phosphorylation sites and low complexity regions (LCRs) among their orthologs and paralogs. Phylogenetic analysis showed that C/EBP α, β, δ had different evolutionary patterns, and each of duck C/EBP α, β, δ was strikingly diverged from orthologs of other Aves. Results of quantitative real-time PCR exhibited that C/EBP α, β, δ were all highly expressed in duck adipose tissues. Indeed, investigations of changes in both their mRNA levels and lipid droplet content during duck adipocytes differentiation showed that their expression profiles were closely related to cellular lipid accumulation. Furthermore, hierarchical clustering analysis of the C/EBPs and lipid metabolism-related genes expression profiles showed that C/EBP α was clustered with genes related to lipolysis, lipogenesis and fatty acid desaturation, whereas C/EBP β, δ were clustered with genes related to de novo lipogenesis and fatty acid elongation, which were different from mammals. In summary, C/EBP α, β, δ of duck differ from other species in their structures and have different effects on lipid metabolism during adipocytes differentiation. This research serve as a foundation for further investigations about avian C/EBP α, β, δ in adipocytes differentiation and adipose development. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization

    PubMed Central

    Parimala, Mabel; Debjani, M.; Vasanthi, Hannah Rachel; Shoba, Francis Gricilda

    2015-01-01

    Nymphaea nouchali Burm. f. (Family – Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues. PMID:26605160

  9. Glucose and Insulin Stimulate Lipogenesis in Porcine Adipocytes: Dissimilar and Identical Regulation Pathway for Key Transcription Factors.

    PubMed

    Hua, Zhang Guo; Xiong, Lu Jian; Yan, Chen; Wei, Dai Hong; YingPai, ZhaXi; Qing, Zhao Yong; Lin, Qiao Zi; Fei, Feng Ruo; Ling, Wang Ya; Ren, Ma Zhong

    2016-11-30

    Lipogenesis is under the concerted action of ChREBP, SREBP-1c and other transcription factors in response to glucose and insulin. The isolated porcine preadipocytes were differentiated into mature adipocytes to investigate the roles and interrelation of these transcription factors in the context of glucose- and insulin-induced lipogenesis in pigs. In ChREBP-silenced adipocytes, glucose-induced lipogenesis decreased by ~70%, however insulin-induced lipogenesis was unaffected. Moreover, insulin had no effect on ChREBP expression of unperturbed adipocytes irrespective of glucose concentration, suggesting ChREBP mediate glucose-induced lipogenesis. Insulin stimulated SREBP-1c expression and when SREBP-1c activation was blocked, and the insulin-induced lipogenesis decreased by ~55%, suggesting SREBP-1c is a key transcription factor mediating insulin-induced lipogenesis. LXRα activation promoted lipogenesis and lipogenic genes expression. In ChREBP-silenced or SREBP-1c activation blocked adipocytes, LXRα activation facilitated lipogenesis and SREBP-1c expression, but had no effect on ChREBP expression. Therefore, LXRα might mediate lipogenesis via SREBP-1c rather than ChREBP. When ChREBP expression was silenced and SREBP-1c activation blocked simultaneously, glucose and insulin were still able to stimulated lipogenesis and lipogenic genes expression, and LXRα activation enhanced these effects, suggesting LXRα mediated directly glucose- and insulin-induced lipogenesis. In summary, glucose and insulin stimulated lipogenesis through both dissimilar and identical regulation pathway in porcine adipocytes.

  10. Cell Models and Their Application for Studying Adipogenic Differentiation in Relation to Obesity: A Review

    PubMed Central

    Ruiz-Ojeda, Francisco Javier; Rupérez, Azahara Iris; Gomez-Llorente, Carolina; Gil, Angel; Aguilera, Concepción María

    2016-01-01

    Over the last several years, the increasing prevalence of obesity has favored an intense study of adipose tissue biology and the precise mechanisms involved in adipocyte differentiation and adipogenesis. Adipocyte commitment and differentiation are complex processes, which can be investigated thanks to the development of diverse in vitro cell models and molecular biology techniques that allow for a better understanding of adipogenesis and adipocyte dysfunction associated with obesity. The aim of the present work was to update the different animal and human cell culture models available for studying the in vitro adipogenic differentiation process related to obesity and its co-morbidities. The main characteristics, new protocols, and applications of the cell models used to study the adipogenesis in the last five years have been extensively revised. Moreover, we depict co-cultures and three-dimensional cultures, given their utility to understand the connections between adipocytes and their surrounding cells in adipose tissue. PMID:27376273

  11. Cytotoxicity and inhibitory effects of low-concentration triclosan on adipogenic differentiation of human mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Li-Wu; Wu, Qiangen; Green, Bridgett

    2012-07-15

    Humans at all ages are continually exposed to triclosan (TCS), a widely used antimicrobial agent that can be found in many daily hygiene products, such as toothpastes and shampoos; however, the toxicological and biological effects of TCS in the human body after long-term and low-concentration exposure are far from being well understood. In the current study, we investigated the effects of TCS on the differentiation of human mesenchymal stem cells (hMSCs) by measuring the cytotoxicity, morphological changes, lipid accumulation, and the expression of adipocyte differentiation biomarkers during 21-day adipogenesis. Significant cytotoxicity was observed in un-induced hMSCs treated with high-concentration TCSmore » (≥ 5.0 μM TCS), but not with low-concentration treatments (≤ 2.5 μM TCS). TCS inhibited adipocyte differentiation of hMSCs in a concentration-dependent manner in the 0.156 to 2.5 μM range as indicated by morphological changes with Oil Red O staining, which is an index of lipid accumulation. The inhibitory effect was confirmed by a decrease in gene expression of specific adipocyte differentiation biomarkers including adipocyte protein 2, lipoprotein lipase, and adiponectin. Our study demonstrates that TCS inhibits adipocyte differentiation of hMSCs under concentrations that are not cytotoxic and in the range observed in human blood. -- Highlights: ► TCS is cytotoxic to un-induced hMSCs at concentrations ≥ 5.0 μM. ► TCS at concentrations ≤ 2.5 μM is not cytotoxic to induced hMSCs. ► TCS at non-cytotoxic concentrations inhibits lipid formation in induced hMSCs. ► TCS decreases the expression of specific biomarkers of adipocyte differentiation. ► TCS at concentrations observed in human blood inhibits adipogenesis of hMSCs.« less

  12. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARγ Expression and Activation in Differentiating Mesenchymal Stem Cells

    PubMed Central

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630

  13. Adipocyte iron regulates leptin and food intake

    PubMed Central

    Gao, Yan; Li, Zhonggang; Gabrielsen, J. Scott; Simcox, Judith A.; Lee, Soh-hyun; Jones, Deborah; Cooksey, Bob; Stoddard, Gregory; Cefalu, William T.; McClain, Donald A.

    2015-01-01

    Dietary iron supplementation is associated with increased appetite. Here, we investigated the effect of iron on the hormone leptin, which regulates food intake and energy homeostasis. Serum ferritin was negatively associated with serum leptin in a cohort of patients with metabolic syndrome. Moreover, the same inverse correlation was observed in mice fed a high-iron diet. Adipocyte-specific loss of the iron exporter ferroportin resulted in iron loading and decreased leptin, while decreased levels of hepcidin in a murine hereditary hemochromatosis (HH) model increased adipocyte ferroportin expression, decreased adipocyte iron, and increased leptin. Treatment of 3T3-L1 adipocytes with iron decreased leptin mRNA in a dose-dependent manner. We found that iron negatively regulates leptin transcription via cAMP-responsive element binding protein activation (CREB activation) and identified 2 potential CREB-binding sites in the mouse leptin promoter region. Mutation of both sites completely blocked the effect of iron on promoter activity. ChIP analysis revealed that binding of phosphorylated CREB is enriched at these two sites in iron-treated 3T3-L1 adipocytes compared with untreated cells. Consistent with the changes in leptin, dietary iron content was also directly related to food intake, independently of weight. These findings indicate that levels of dietary iron play an important role in regulation of appetite and metabolism through CREB-dependent modulation of leptin expression. PMID:26301810

  14. Rapamycin negatively impacts insulin signaling, glucose uptake and uncoupling protein-1 in brown adipocytes.

    PubMed

    García-Casarrubios, Ester; de Moura, Carlos; Arroba, Ana I; Pescador, Nuria; Calderon-Dominguez, María; Garcia, Laura; Herrero, Laura; Serra, Dolors; Cadenas, Susana; Reis, Flavio; Carvalho, Eugenia; Obregon, Maria Jesus; Valverde, Ángela M

    2016-12-01

    New onset diabetes after transplantation (NODAT) is a metabolic disorder that affects 40% of patients on immunosuppressive agent (IA) treatment, such as rapamycin (also known as sirolimus). IAs negatively modulate insulin action in peripheral tissues including skeletal muscle, liver and white fat. However, the effects of IAs on insulin sensitivity and thermogenesis in brown adipose tissue (BAT) have not been investigated. We have analyzed the impact of rapamycin on insulin signaling, thermogenic gene-expression and mitochondrial respiration in BAT. Treatment of brown adipocytes with rapamycin for 16h significantly decreased insulin receptor substrate 1 (IRS1) protein expression and insulin-mediated protein kinase B (Akt) phosphorylation. Consequently, both insulin-induced glucose transporter 4 (GLUT4) translocation to the plasma membrane and glucose uptake were decreased. Early activation of the N-terminal Janus activated kinase (JNK) was also observed, thereby increasing IRS1 Ser 307 phosphorylation. These effects of rapamycin on insulin signaling in brown adipocytes were partly prevented by a JNK inhibitor. In vivo treatment of rats with rapamycin for three weeks abolished insulin-mediated Akt phosphorylation in BAT. Rapamycin also inhibited norepinephrine (NE)-induced lipolysis, the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and uncoupling protein (UCP)-1 in brown adipocytes. Importantly, basal mitochondrial respiration, proton leak and maximal respiratory capacity were significantly decreased in brown adipocytes treated with rapamycin. In conclusion, we demonstrate, for the first time the important role of brown adipocytes as target cells of rapamycin, suggesting that insulin resistance in BAT might play a major role in NODAT development. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Adipogenic Differentiation of Mesenchymal Stem Cells Alters Their Immunomodulatory Properties in a Tissue-Specific Manner.

    PubMed

    Munir, Hafsa; Ward, Lewis S C; Sheriff, Lozan; Kemble, Samuel; Nayar, Saba; Barone, Francesca; Nash, Gerard B; McGettrick, Helen M

    2017-06-01

    Chronic inflammation is associated with formation of ectopic fat deposits that might represent damage-induced aberrant mesenchymal stem cell (MSC) differentiation. Such deposits are associated with increased levels of inflammatory infiltrate and poor prognosis. Here we tested the hypothesis that differentiation from MSC to adipocytes in inflamed tissue might contribute to chronicity through loss of immunomodulatory function. We assessed the effects of adipogenic differentiation of MSC isolated from bone marrow or adipose tissue on their capacity to regulate neutrophil recruitment by endothelial cells and compared the differentiated cells to primary adipocytes from adipose tissue. Bone marrow derived MSC were immunosuppressive, inhibiting neutrophil recruitment to TNFα-treated endothelial cells (EC), but MSC-derived adipocytes were no longer able to suppress neutrophil adhesion. Changes in IL-6 and TGFβ1 signalling appeared critical for the loss of the immunosuppressive phenotype. In contrast, native stromal cells, adipocytes derived from them, and mature adipocytes from adipose tissue were all immunoprotective. Thus disruption of normal tissue stroma homeostasis, as occurs in chronic inflammatory diseases, might drive "abnormal" adipogenesis which adversely influences the behavior of MSC and contributes to pathogenic recruitment of leukocytes. Interestingly, stromal cells programmed in native fat tissue retain an immunoprotective phenotype. Stem Cells 2017;35:1636-1646. © 2017 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  16. The adipocyte as an important target cell for Trypanosoma cruzi infection.

    PubMed

    Combs, Terry P; Nagajyothi; Mukherjee, Shankar; de Almeida, Cecilia J G; Jelicks, Linda A; Schubert, William; Lin, Ying; Jayabalan, David S; Zhao, Dazhi; Braunstein, Vicki L; Landskroner-Eiger, Shira; Cordero, Aisha; Factor, Stephen M; Weiss, Louis M; Lisanti, Michael P; Tanowitz, Herbert B; Scherer, Philipp E

    2005-06-24

    Adipose tissue plays an active role in normal metabolic homeostasis as well as in the development of human disease. Beyond its obvious role as a depot for triglycerides, adipose tissue controls energy expenditure through secretion of several factors. Little attention has been given to the role of adipocytes in the pathogenesis of Chagas disease and the associated metabolic alterations. Our previous studies have indicated that hyperglycemia significantly increases parasitemia and mortality in mice infected with Trypanosoma cruzi. We determined the consequences of adipocyte infection in vitro and in vivo. Cultured 3T3-L1 adipocytes can be infected with high efficiency. Electron micrographs of infected cells revealed a large number of intracellular parasites that cluster around lipid droplets. Furthermore, infected adipocytes exhibited changes in expression levels of a number of different adipocyte-specific or adipocyte-enriched proteins. The adipocyte is therefore an important target cell during acute Chagas disease. Infection of adipocytes by T. cruzi profoundly influences the pattern of adipokines. During chronic infection, adipocytes may represent an important long-term reservoir for parasites from which relapse of infection can occur. We have demonstrated that acute infection has a unique metabolic profile with a high degree of local inflammation in adipose tissue, hypoadiponectinemia, hypoglycemia, and hypoinsulinemia but with relatively normal glucose disposal during an oral glucose tolerance test.

  17. Complementary Roles of Estrogen-Related Receptors in Brown Adipocyte Thermogenic Function

    PubMed Central

    Gantner, Marin L.; Hazen, Bethany C.; Eury, Elodie; Brown, Erin L.

    2016-01-01

    Brown adipose tissue (BAT) thermogenesis relies on a high abundance of mitochondria and the unique expression of the mitochondrial Uncoupling Protein 1 (UCP1), which uncouples substrate oxidation from ATP synthesis. Adrenergic stimulation of brown adipocytes activates UCP1-mediated thermogenesis; it also induces the expression of Ucp1 and other genes important for thermogenesis, thereby endowing adipocytes with higher oxidative and uncoupling capacities. Adipocyte mitochondrial biogenesis and oxidative capacity are controlled by multiple transcription factors, including the estrogen-related receptor (ERR)α. Whole-body ERRα knockout mice show decreased BAT mitochondrial content and oxidative function but normal induction of Ucp1 in response to cold. In addition to ERRα, brown adipocytes express ERRβ and ERRγ, 2 nuclear receptors that are highly similar to ERRα and whose function in adipocytes is largely unknown. To gain insights into the roles of all 3 ERRs, we assessed mitochondrial function and adrenergic responses in primary brown adipocytes lacking combinations of ERRs. We show that adipocytes lacking just ERRα, the most abundant ERR, show only mild mitochondrial defects. Adipocytes lacking ERRβ and ERRγ also show just mild defects. In contrast, adipocytes lacking all 3 ERRs have severe reductions in mitochondrial content and oxidative capacity. Moreover, adipocytes lacking all 3 ERRs have defects in the transcriptional and metabolic response to adrenergic stimulation, suggesting a wider role of ERRs in BAT function than previously appreciated. Our study shows that ERRs have a great capacity to compensate for each other in protecting mitochondrial function and the metabolic response to adrenergic signaling, processes vital to BAT function. PMID:27763777

  18. Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yunfeng; Li, Jihua; Zhu, Songsong

    Highlights: Black-Right-Pointing-Pointer Strontium ranelate (SrR) inhibits proliferation of BMMSCs. Black-Right-Pointing-Pointer SrR increases osteoblastic but decreases adipocytic differentiation of BMMSCs. Black-Right-Pointing-Pointer SrR increases expression of Runx2, BSP and OCN by BMMSCs in osteogenic medium. Black-Right-Pointing-Pointer SrR decreases expression of PPAR{gamma}, aP2/ALBP and LPL by BMMSCs in adipogenic medium. -- Abstract: Strontium ranelate (SrR) was an effective anti-osteoporotic drug to increase bone formation and decrease bone resorption. However, reports about the effect of SR on osteoblastic and adipocytic differentiation from bone marrow mesenchymal stem cells (BMMSCs) are limited. The purpose of this study is to evaluate whether SrR affects the ability ofmore » BMMSCs to differentiate into osteoblasts or adipocytes. Rat BMMSCs were identified by flow cytometry and exposed to SR (0.1 and 1.0 mM Sr{sup 2+}) under osteogenic or adipogenic medium for 1 and 2 weeks. The proliferation and differentiation of BMMSCs were analyzed by MTT, alkaline phosphatase (ALP), Oil red O staining, quantitative real-time RT-PCR and Western blot assays. SrR significantly inhibited the proliferation, increased osteoblastic but decreased adipocytic differentiation of rat BMMSCs dose-dependently. In osteogenic medium, SrR increased the expression of ALP, the mRNA levels of Cbfa1/Runx2, bone sialoprotein, and osteocalcin by RT-PCR, and the protein levels of Cbfa1/Runx2 by Western blot. In adipogenic medium, SrR decreased the mRNA levels of PPAR{gamma}2, adipocyte lipid-binding protein 2 (aP2/ALBP), and lipoprotein lipase (LPL) by RT-PCR, and the protein expression of PPAR{gamma} in Western blot analysis. These results indicated that the effects of SrR to promote osteoblastic but inhibit adipocytic differentiation of BMMSCs might contribute to its effect on osteoporosis treatment.« less

  19. Effects of arecoline on adipogenesis, lipolysis, and glucose uptake of adipocytes-A possible role of betel-quid chewing in metabolic syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Hsin-Fen; Tsou, Tsui-Chun, E-mail: tctsou@nhri.org.t; Chao, How-Ran

    To investigate the possible involvement of betel-quid chewing in adipocyte dysfunction, we determined the effects of arecoline, a major alkaloid in areca nuts, on adipogenic differentiation (adipogenesis), lipolysis, and glucose uptake by fat cells. Using mouse 3T3-L1 preadipocytes, we showed that arecoline inhibited adipogenesis as determined by oil droplet formation and adipogenic marker gene expression. The effects of arecoline on lipolysis of differentiated 3T3-L1 adipocytes were determined by the glycerol release assay, indicating that arecoline induced lipolysis in an adenylyl cyclase-dependent manner. The diabetogenic effects of arecoline on differentiated 3T3-L1 adipocytes were evaluated by the glucose uptake assay, revealing thatmore » {>=} 300 {mu}M arecoline significantly attenuated insulin-induced glucose uptake; however, no marked effect on basal glucose uptake was detected. Moreover, using 94 subjects that were randomly selected from a health check-up, we determined the association of betel-quid chewing with hyperlipidemia and its related risk factors. Hyperlipidemia frequency and serum triglyceride levels of betel-quid chewers were significantly higher than those of non-betel-quid chewers. In this study, we demonstrated that arecoline inhibits adipogenic differentiation, induces adenylyl cyclase-dependent lipolysis, and interferes with insulin-induced glucose uptake. Arecoline-induced fat cell dysfunction may lead to hyperlipidemia and hyperglycemia/insulin-resistance. These findings provide the first in vitro evidence of betel-quid chewing modulation of adipose cell metabolism that could contribute to the explanation of the association of this habit with metabolic syndrome disorders.« less

  20. 6-Gingerol Suppresses Adipocyte-Derived Mediators of Inflammation In Vitro and in High-Fat Diet-Induced Obese Zebra Fish.

    PubMed

    Choi, Jia; Kim, Kui-Jin; Kim, Byung-Hak; Koh, Eun-Jeong; Seo, Min-Jung; Lee, Boo-Yong

    2017-02-01

    The present study was performed to investigate the molecular mechanism of 6-gingerol on adipocyte-mediated systemic inflammation in vitro and in high-fat diet-induced obese zebra fish. 6-Gingerol decreased adipogenesis due to the suppression of adipocyte differentiation markers, including peroxisome proliferator-activated receptor gamma, CCAATT enhancer binding protein α , and adipocyte protein 2, and triglyceride synthesis enzymes, including sterol regulatory element-binding protein-1, fatty acid synthase, lysophosphatidic acid acyltransferase, and acyl-coA : diacylglycerol acyltransferase 1, in 3T3-L1. A coculture insert system using 3T3-L1 with RAW 264.7 (coculture insert system using fully differentiated 3T3-L1 cells with RAW 264.7 macrophages) revealed that 6-gingerol increased anti-inflammatory cytokine interleukin-10. The expression of TNF α , monocyte chemotactic protein-1, interleukin-1 β , and interleukin-6 were decreased in the coculture insert system using fully differentiated 3T3-L1 cells with RAW 264.7 macrophages treated with 6-gingerol. Moreover, the coculture insert system using fully differentiated 3T3-L1 cells with RAW 264.7 macrophages treated with 6-gingerol inhibited the protein expression of TNF α and monocyte chemotactic protein-1 in RAW 264.7. 6-Gingerol decreased c-JUN N-terminal kinase and I kappa B kinase beta and its downstream target AP-1 expression in the coculture insert system using fully differentiated 3T3-L1 cells with RAW 264.7 macrophages. Furthermore, 6-gingerol decreased the expression of inducible nitric oxide synthase stimulated by the coculture insert system using fully differentiated 3T3-L1 cells with RAW 264.7 macrophages in RAW 264.7 and attenuated nitric oxide production in diet-induced obese zebra fish. Our results suggest that 6-gingerol suppresses inflammation through the regulation of the c-JUN N-terminal kinase-I kappa B kinase beta and its downstream targets. Georg Thieme Verlag KG Stuttgart · New York.

  1. Effect of dibutyryl cyclic adenosine monophosphate on the gene expression of plasminogen activator inhibitor-1 and tissue factor in adipocytes.

    PubMed

    Taniguchi, Makoto; Ono, Naoko; Hayashi, Akira; Yakura, Yuwna; Takeya, Hiroyuki

    2011-10-01

    Hypertrophic adipocytes in obese states express the elevated levels of plasminogen activator inhibitor-1 (PAI-1) and tissue factor (TF). An increase in the intracellular concentration of cyclic adenosine monophosphate (cAMP) promotes triglyceride hydrolysis and may improve dysregulation of adipocyte metabolism. Here, we investigate the effect of dibutyryl-cAMP (a phosphodiesterase-resistant analog of cAMP) on the gene expression of PAI-1 and TF in adipocytes. Differentiated 3T3-L1 adipocytes were treated with dibutyryl-cAMP and agents that would be expected to elevate intracellular cAMP, including cilostazol (a phosphodiesterase inhibitor with anti-platelet and vasodilatory properties), isoproterenol (a beta adrenergic agonist) and forskolin (an adenylyl cyclase activator). The levels of PAI-1 and TF mRNAs were measured using real-time quantitative reverse transcription-PCR. The treatment of adipocytes with dibutyryl-cAMP resulted in the inhibition of both lipid accumulation and TF gene expression. However, PAI-1 gene expression was slightly but significantly increased by dibutyryl-cAMP. On the other hand, cilostazol inhibited the expression of PAI-1 without affecting lipid accumulation. When the adipocytes were treated with cilostazol in combination with isoproterenol or forskolin, the inhibitory effect of cilostazol on PAI-1 gene expression was counteracted, thus suggesting that inhibition by cilostazol may not be the result of intracellular cAMP accumulation by phosphodiesterase inhibition. These results suggest the implication of cAMP in regulation of the gene expression of TF and PAI-1 in adipocytes. Our findings will serve as a useful basis for further research in therapy for obesity-associated thrombosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Secreted Clusterin protein inhibits osteoblast differentiation of bone marrow mesenchymal stem cells by suppressing ERK1/2 signaling pathway.

    PubMed

    Abdallah, Basem M; Alzahrani, Abdullah M; Kassem, Moustapha

    2018-05-01

    Secreted Clusterin (sCLU, also known as Apolipoprotein J) is an anti-apoptotic glycoprotein involved in the regulation of cell proliferation, lipid transport, extracellular tissue remodeling and apoptosis. sCLU is expressed and secreted by mouse bone marrow-derived skeletal (stromal or mesenchymal) stem cells (mBMSCs), but its functional role in MSC biology is not known. In this study, we demonstrated that Clusterin mRNA expression and protein secretion in conditioned medium increased during adipocyte differentiation and decreased during osteoblast differentiation of mBMSCs. Treatment of mBMSC cultures with recombinant sCLU protein increased cell proliferation and exerted an inhibitory effect on the osteoblast differentiation while stimulated adipocyte differentiation in a dose-dependent manner. siRNA-mediated silencing of Clu expression in mBMSCs reduced adipocyte differentiation and stimulated osteoblast differentiation of mBMSCs. Furthermore, the inhibitory effect of sCLU on the osteoblast differentiation of mBMSCs was mediated by the suppression of extracellular signal-regulated kinase (ERK1/2) phosphorylation. In conclusion, we identified sCLU as a regulator of mBMSCs lineage commitment to osteoblasts versus adipocytes through a mechanism mediated by ERK1/2 signaling. Inhibiting sCLU is a possible therapeutic approach for enhancing osteoblast differentiation and consequently bone formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Alpha-syntrophin deficient mice are protected from adipocyte hypertrophy and ectopic triglyceride deposition in obesity.

    PubMed

    Eisinger, Kristina; Rein-Fischboeck, Lisa; Neumeier, Markus; Schmidhofer, Sandra; Pohl, Rebekka; Haberl, Elisabeth M; Liebisch, Gerhard; Kopp, Andrea; Schmid, Andreas; Krautbauer, Sabrina; Buechler, Christa

    2018-06-01

    Alpha-syntrophin (SNTA) is a molecular adapter protein which is expressed in adipocytes. Knock-down of SNTA in 3T3-L1 preadipocytes increases cell proliferation, and differentiated adipocytes display small lipid droplets. These effects are both characteristics of healthy adipose tissue growth which is associated with metabolic improvements in obesity. To evaluate a role of SNTA in adipose tissue morphology and obesity associated metabolic dysfunction, SNTA deficient mice were fed a standard chow or a high fat diet. Mice deficient of SNTA had less fat mass and smaller adipocytes in obesity when compared to control animals. Accordingly, these animals did not develop liver steatosis and did not store excess triglycerides in skeletal muscle upon high fat diet feeding. SNTA-/- animals were protected from hyperinsulinemia and hepatic insulin resistance. Of note, body-weight, food uptake, and serum lipids were normal in the SNTA null mice. SNTA was induced in adipose tissues but not in the liver of diet induced obese and ob/ob mice. In human subcutaneous and visceral fat of seven patients SNTA was similarly expressed and was not associated with body mass index. Current data demonstrate beneficial effects of SNTA deficiency in obesity which is partly attributed to smaller adipocytes and reduced white adipose tissue mass. Higher SNTA protein in fat depots of obese mice may contribute to adipose tissue hypertrophy and ectopic lipid deposition which has to be confirmed in humans. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Oligopeptide complex for targeted non-viral gene delivery to adipocytes

    NASA Astrophysics Data System (ADS)

    Won, Young-Wook; Adhikary, Partho Protim; Lim, Kwang Suk; Kim, Hyung Jin; Kim, Jang Kyoung; Kim, Yong-Hee

    2014-12-01

    Commercial anti-obesity drugs acting in the gastrointestinal tract or the central nervous system have been shown to have limited efficacy and severe side effects. Anti-obesity drug development is thus focusing on targeting adipocytes that store excess fat. Here, we show that an adipocyte-targeting fusion-oligopeptide gene carrier consisting of an adipocyte-targeting sequence and 9-arginine (ATS-9R) selectively transfects mature adipocytes by binding to prohibitin. Injection of ATS-9R into obese mice confirmed specific binding of ATS-9R to fat vasculature, internalization and gene expression in adipocytes. We also constructed a short-hairpin RNA (shRNA) for silencing fatty-acid-binding protein 4 (shFABP4), a key lipid chaperone in fatty-acid uptake and lipid storage in adipocytes. Treatment of obese mice with ATS-9R/shFABP4 led to metabolic recovery and body-weight reduction (>20%). The ATS-9R/shFABP4 oligopeptide complex could prove to be a safe therapeutic approach to regress and treat obesity as well as obesity-induced metabolic syndromes.

  5. Insights into an adipocyte whitening program

    PubMed Central

    Hill, Bradford G

    2015-01-01

    White adipose tissue plays a critical role in regulating systemic metabolism and can remodel rapidly in response to changes in nutrient availability. Nevertheless, little is known regarding the metabolic changes occurring in adipocytes during obesity. Our laboratory recently addressed this issue in a commonly used, high-fat-diet mouse model of obesity. We found remarkable changes in adipocyte metabolism that occur prior to infiltration of macrophages in expanding adipose tissue. Results of metabolomic analyses, adipose tissue respirometry, electron microscopy, and expression analyses of key genes and proteins revealed dysregulation of several metabolic pathways, loss of mitochondrial biogenetic capacity, and apparent activation of mitochondrial autophagy which were followed in time by downregulation of numerous mitochondrial proteins important for maintaining oxidative capacity. These findings demonstrate the presence of an adipocyte whitening program that may be critical for regulating adipose tissue remodeling under conditions of chronic nutrient excess. PMID:26167407

  6. Adipocyte Triglyceride Turnover Is Independently Associated With Atherogenic Dyslipidemia

    PubMed Central

    Frayn, Keith; Bernard, Samuel; Spalding, Kirsty; Arner, Peter

    2012-01-01

    Background Inappropriate storage of fatty acids as triglycerides in adipocytes and their removal from adipocytes through lipolysis and subsequent oxidation may cause the atherogenic dyslipidemia phenotype of elevated apolipoprotein B levels and subsequent hypertriglyceridemia. We tested whether turnover of triglycerides in fat cells was related to dyslipidemia. Methods and Results The age of triglycerides (reflecting removal) and triglyceride storage in adipocytes was determined under free living conditions by measuring incorporation of atmospheric 14C into these lipids within the adipocytes in 47 women and 26 men with a large interindividual variability in body mass index. Because limited 14C data were available, triglyceride age was also determined in 97 men and 233 women by using an algorithm based on adipocyte lipolysis, body fat content, waist‐to‐hip ratio, and insulin sensitivity. This cohort consisted of nonobese subjects since obesity per se is related to all components in the algorithm. Triglyceride turnover (age and storage) was compared with plasma levels of apolipoproteins and lipids. Plasma levels of apolipoprotein B and triglycerides were positively related to triglyceride age in adipocytes, when measured directly using radiocarbon analyses (r=0.45 to 0.47; P<0.0001). This effect was independent of subject age, waist circumference measures, and insulin sensitivity (partial r=0.29 to 0.45; P from 0.03 to <0.0001). Triglyceride storage showed no independent correlation (partial r=0.02 to 0.11; P=0.42 to 0.91). Algorithm‐based values for adipocyte removal of triglycerides were positively associated with plasma triglycerides and apolipoprotein B (r=0.44 to 0.45; P<0.0001) and (also positively) with the inflammation status of adipose tissue (r=0.39 to 0.47; P<0.05). These correlations were statistically independent of subject age and observed in men and women as well as in lean and overweight subjects when subgroups were examined separately

  7. Premalignant lesions skew spleen cell responses to immune modulation by adipocytes.

    PubMed

    Vielma, Silvana A; Klein, Richard L; Levingston, Corinne A; Young, M Rita I

    2013-05-01

    Obesity can promote a chronic inflammatory state and is associated with an increased risk for cancer. Since adipocytes can produce mediators that can regulate conventional immune cells, this study sought to determine if the presence of premalignant oral lesions would skew how immune cells respond to adipocyte-derived mediators to create an environment that may be more favorable for their progression toward cancer. While media conditioned by adipocytes stimulated normal spleen cell production of the T helper (Th) type-1 cytokines interleukin (IL)-2, interferon-γ (IFN-γ), IL-12 and granulocyte-monocyte colony-stimulating factor (GM CSF), media from premalignant lesion cells either blocked or had no added affect on the adipocyte-stimulated Th1 cytokine production. In contrast, media conditioned by premalignant lesion cells exacerbated adipocyte-stimulated spleen cell production of the Th2 cytokines IL-10 and IL-13, although it did not further enhance the adipocyte-stimulated spleen cell production of IL-4 and TGF-β. The premalignant lesion environment also heightened the adipocyte-stimulated spleen cell production of the inflammatory mediators IL 1α, IL-1β, IL-6 and IL-9, although it did not further increase the adipocyte-stimulated production of tumor necrosis factor-α (TNF-α). IL 17 production was unaffected by the adipocyte-derived mediators, but was synergistically triggered by adding media from premalignant lesion cells. These stimulatory effects on spleen cell production of Th2 and inflammatory mediators were not induced in the absence of media conditioned by adipocytes. In contrast, media conditioned by adipocytes did not stimulate production of predominantly monocyte-derived chemokine C-X-C motif ligand (CXCL)9, chemokine C-C motif ligand (CCL)3 or CCL4, although it stimulated production of CCL2 and the predominantly T cell-derived chemokine CCL5, which was the only chemokine whose production was further increased by media from premalignant lesions

  8. 14-3-3ζ: A numbers game in adipocyte function?

    PubMed Central

    Lim, Gareth E.; Johnson, James D.

    2016-01-01

    ABSTRACT Molecular scaffolds are often viewed as passive signaling molecules that facilitate protein-protein interactions. However, new evidence gained from the use of loss-of-function or gain-of-function models is dispelling this notion. Our own recent discovery of 14-3-3ζ as an essential regulator of adipogenesis highlights the complex roles of this member of the 14-3-3 protein family. Depletion of the 14-3-3ζ isoform affected parallel pathways that drive adipocyte development, including pathways controlling the stability of key adipogenic transcription factors and cell cycle progression. Going beyond adipocyte differentiation, this study opens new avenues of research in the context of metabolism, as 14-3-3ζ binds to a variety of well-established metabolic proteins that harbor its canonical phosphorylation binding motifs. This suggests that 14-3-3ζ may contribute to key metabolic signaling pathways, such as those that facilitate glucose uptake and fatty acid metabolism. Herein, we discuss these novel areas of research, which will undoubtedly shed light onto novel roles of 14-3-3ζ, and perhaps its related family members, on glucose homeostasis. PMID:27386155

  9. Optical visualisation of thermogenesis in stimulated single-cell brown adipocytes.

    PubMed

    Kriszt, Rókus; Arai, Satoshi; Itoh, Hideki; Lee, Michelle H; Goralczyk, Anna G; Ang, Xiu Min; Cypess, Aaron M; White, Andrew P; Shamsi, Farnaz; Xue, Ruidan; Lee, Jung Yeol; Lee, Sung-Chan; Hou, Yanyan; Kitaguchi, Tetsuya; Sudhaharan, Thankiah; Ishiwata, Shin'ichi; Lane, E Birgitte; Chang, Young-Tae; Tseng, Yu-Hua; Suzuki, Madoka; Raghunath, Michael

    2017-05-03

    The identification of brown adipose deposits in adults has led to significant interest in targeting this metabolically active tissue for treatment of obesity and diabetes. Improved methods for the direct measurement of heat production as the signature function of brown adipocytes (BAs), particularly at the single cell level, would be of substantial benefit to these ongoing efforts. Here, we report the first application of a small molecule-type thermosensitive fluorescent dye, ERthermAC, to monitor thermogenesis in BAs derived from murine brown fat precursors and in human brown fat cells differentiated from human neck brown preadipocytes. ERthermAC accumulated in the endoplasmic reticulum of BAs and displayed a marked change in fluorescence intensity in response to adrenergic stimulation of cells, which corresponded to temperature change. ERthermAC fluorescence intensity profiles were congruent with mitochondrial depolarisation events visualised by the JC-1 probe. Moreover, the averaged fluorescence intensity changes across a population of cells correlated well with dynamic changes such as thermal power, oxygen consumption, and extracellular acidification rates. These findings suggest ERthermAC as a promising new tool for studying thermogenic function in brown adipocytes of both murine and human origins.

  10. Obesity in mice with adipocyte-specific deletion of clock component Arntl

    PubMed Central

    Paschos, Georgios K; Ibrahim, Salam; Song, Wen-Liang; Kunieda, Takeshige; Grant, Gregory; Reyes, Teresa M; Bradfield, Christopher A; Vaughan, Cheryl H; Eiden, Michael; Masoodi, Mojgan; Griffin, Julian L; Wang, Fenfen; Lawson, John A; FitzGerald, Garret A

    2013-01-01

    Adipocytes store excess energy in the form of triglycerides and signal the levels of stored energy to the brain. Here we show that adipocyte-specific deletion of Arntl (also known as Bmal1), a gene encoding a core molecular clock component, results in obesity in mice with a shift in the diurnal rhythm of food intake, a result that is not seen when the gene is disrupted in hepatocytes or pancreatic islets. Changes in the expression of hypothalamic neuropeptides that regulate appetite are consistent with feedback from the adipocyte to the central nervous system to time feeding behavior. Ablation of the adipocyte clock is associated with a reduced number of polyunsaturated fatty acids in adipocyte triglycerides. This difference between mutant and wild-type mice is reflected in the circulating concentrations of polyunsaturated fatty acids and nonesterified polyunsaturated fatty acids in hypothalamic neurons that regulate food intake. Thus, this study reveals a role for the adipocyte clock in the temporal organization of energy regulation, highlights timing as a modulator of the adipocyte-hypothalamic axis and shows the impact of timing of food intake on body weight. PMID:23142819

  11. Crosstalk between EET and HO-1 downregulates Bach1 and adipogenic marker expression in mesenchymal stem cell derived adipocytes

    PubMed Central

    Vanella, Luca; Kim, Dong Hyun; Sodhi, Komal; Barbagallo, Ignazio; Burgess, Angela P.; Falck, John R.; Schwartzman, Michal L.; Abraham, Nader G.

    2013-01-01

    Epoxygenase activity and synthesis of epoxyeicosatrienoic acids (EETs) have emerged as important modulators of obesity and diabetes. We examined the effect of the EET-agonist 12-(3-hexylureido)dodec-8(2) enoic acid on mesenchymal stem cell (MSC) derived adipocytes proliferation and differentiation. MSCs expressed substantial levels of EETs and inhibition of soluble epoxide hydrolase (sEH) increased the level of EETs and decreased adipogenesis. EET agonist treatment increased HO-1 expression by inhibiting a negative regulator of HO-1 expression, Bach-1. EET treatment also increased βcatenin and pACC levels while decreasing PPARγ C/EBPα and fatty acid synthase levels. These changes were manifested by a decrease in the number of large inflammatory adipocytes, TNFα, IFNγ and IL-1α, but an increase in small adipocytes and in adiponectin levels. In summary, EET agonist treatment inhibits adipogenesis and decreases the levels of inflammatory cytokines suggesting the potential action of EETs as intracellular lipid signaling modulators of adipogenesis and adiponectin. PMID:21821145

  12. MyomiR-133 regulates brown fat differentiation through Prdm16.

    PubMed

    Trajkovski, Mirko; Ahmed, Kashan; Esau, Christine C; Stoffel, Markus

    2012-12-01

    Brown adipose tissue (BAT) uses the chemical energy of lipids and glucose to produce heat, a function that can be induced by cold exposure or diet. A key regulator of BAT is the gene encoding PR domain containing 16 (Prdm16), whose expression can drive differentiation of myogenic and white fat precursors to brown adipocytes. Here we show that after cold exposure, the muscle-enriched miRNA-133 is markedly downregulated in BAT and subcutaneous white adipose tissue (SAT) as a result of decreased expression of its transcriptional regulator Mef2. miR-133 directly targets and negatively regulates PRDM16, and inhibition of miR-133 or Mef2 promotes differentiation of precursors from BAT and SAT to mature brown adipocytes, thereby leading to increased mitochondrial activity. Forced expression of miR-133 in brown adipogenic conditions prevents the differentiation to brown adipocytes in both BAT and SAT precursors. Our results point to Mef2 and miR-133 as central upstream regulators of Prdm16 and hence of brown adipogenesis in response to cold exposure in BAT and SAT.

  13. Coupled 182W-142Nd constraint for early Earth differentiation

    PubMed Central

    Moynier, Frederic; Yin, Qing-Zhu; Irisawa, Keita; Boyet, Maud; Jacobsen, Benjamin; Rosing, Minik T.

    2010-01-01

    Recent high precision 142Nd isotope measurements showed that global silicate differentiation may have occurred as early as 30–75 Myr after the Solar System formation [Bennett V, et al. (2007) Science 318:1907–1910]. This time scale is almost contemporaneous with Earth’s core formation at ∼30 Myr [Yin Q, et al. (2002) Nature 418:949–952]. The 182Hf-182W system provides a powerful complement to the 142Nd results for early silicate differentiation, because both core formation and silicate differentiation fractionate Hf from W. Here we show that eleven terrestrial samples from diverse tectonic settings, including five early Archean samples from Isua, Greenland, of which three have been previously shown with 142Nd anomalies, all have a homogeneous W isotopic composition, which is ∼2ε-unit more radiogenic than the chondritic value. By using a 3-stage model calculation that describes the isotopic evolution in chondritic reservoir and core segregation, as well as silicate differentiation, we show that the W isotopic composition of terrestrial samples provides the most stringent time constraint for early core formation (27.5–38 Myr) followed by early terrestrial silicate differentiation (38–75 Myr) that is consistent with the terrestrial 142Nd anomalies. PMID:20534492

  14. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    PubMed Central

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  15. Simple Analysis of Lipid Inhibition Activity on an Adipocyte Micro-Cell Pattern Chip.

    PubMed

    Kim, Gi Yong; Yeom, Su-Jin; Jang, Sung-Chan; Lee, Chang-Soo; Roh, Changhyun; Jeong, Heon-Ho

    2018-06-04

    Polydimethyl-siloxane (PDMS) is often applied to fabricate cell chips. In this study, we fabricated an adipocyte microcell pattern chips using PDMS to analyze the inhibition activity of lipid droplets in mouse embryo fibroblast cells (3T3-L1) with anti-obesity agents. To form the PDMS based micropattern, we applied the micro-contact printing technique using PDMS micro-stamps that had been fabricated by conventional soft lithography. This PDMS micro-pattern enabled the selective growth of 3T3-L1 cells onto the specific region by preventing cell adhesion on the PDMS region. It then allowed growth of the 3T3-L1 cells in the chip for 10 days and confirmed that lipid droplets were formed in the 3T3-L1 cells. After treatment of orlistat and quercetin were treated in an adipocyte micro-cell pattern chip with 3T3-L1 cells for six days, we found that orlistat and quercetin exhibited fat inhibition capacities of 19.3% and 24.4% from 0.2 μM of lipid droplets in 3T3-L1 cells. In addition, we conducted a direct quantitative analysis of 3T3-L1 cell differentiation using Oil Red O staining. In conclusion, PDMS-based adipocyte micro-cell pattern chips may contribute to the development of novel bioactive compounds.

  16. Simvastatin inhibits ox-LDL-induced inflammatory adipokines secretion via amelioration of ER stress in 3T3-L1 adipocyte.

    PubMed

    Wu, Zhi-hong; Chen, Ya-qin; Zhao, Shui-ping

    2013-03-08

    Adipocytes behave as a rich source of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein 1 (MCP-1). Endoplasmic reticulum (ER) stress in adipocytes can alter adipokines secretion and induce inflammation. The aim of this study is to evaluate the effect of simvastatin on the ox-LDL-induced ER stress and expression and secretion of TNF-α and MCP-1 in 3T3-L1 adipocytes. Differentiated adipocytes were treated with various concentrations of ox-LDL (0-100 μg/ml) for 24h with or without simvastatin pre-treatment. The protein expressions of ER stress markers, glucose-regulated protein 78 (GRP78) and C/EBP homology protein (CHOP), were determined by Western blot analysis. The mRNA expressions of TNF-α and MCP-1 were measured by real-time PCR. The protein release of TNF-α and MCP-1 in culture medium were evaluated by ELISA. Ox-LDL treatment led to significant up-regulation of GRP78 and CHOP in dose-dependent manner. The expressions of TNF-α and MCP-1 were dose-dependently increased at mRNA and protein levels after ox-LDL intervention. The effects of ox-LDL on adipocytes were abolished by pre-treatment with 4-phenylbutyrate (4-PBA), a chemical chaperone known to ameliorate ER stress. Simvastatin could inhibit ox-LDL-induced ER stress and reduce the expression of TNF-α and MCP-1 at mRNA and protien level in dose dependent manner. In conclusion, ox-LDL can stimulate the expression and secretion of TNF-α and MCP-1 through its activation of ER stress in adipocytes. Simvastatin might exert direct anti-inflammatory effects in adipocytes through amelioration of ER stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Pulicaria jaubertii E. Gamal-Eldin reduces triacylglyceride content and modifies cellular antioxidant pathways in 3T3-L1 adipocytes

    USDA-ARS?s Scientific Manuscript database

    Currently, levels of obesity in Middle Eastern countries are increasing. Phytochemicals have anti-obesogenic properties as evidenced by prevention of adipocyte differentiation. In Yemen, Pulicaria jaubertii E.Gamal-Eldin (PJ) is a food additive and a traditional medicine. We evaluated the ability of...

  18. MicroRNA-204-5p regulates 3T3-L1 preadipocyte proliferation, apoptosis and differentiation.

    PubMed

    Du, Jingjing; Zhang, Peiwen; Gan, Mailin; Zhao, Xue; Xu, Yan; Li, Qiang; Jiang, Yanzhi; Tang, Guoqing; Li, Mingzhou; Wang, Jinyong; Li, Xuewei; Zhang, Shunhua; Zhu, Li

    2018-08-20

    Obesity due to excessive lipid accumulation is closely associated with metabolic diseases such as type 2 diabetes, insulin resistance and inflammation. Therefore, a detailed understanding of the molecular mechanisms that underlie adipogenesis is crucial to develop treatments for diseases related to obesity. Here, we found that the microRNA-204-5p (miR-204-5p) was expressed at low levels in fat tissues from obese mice fed long-term with a high-fat diet (HFD). Overexpression or inhibition of miR-204-5p in vitro in 3T3-L1 preadipocytes significantly inhibited or promoted 3T3-L1 proliferation, respectively, an effect mediated by regulating cell proliferation factors. miR-204-5p also induced preadipocyte apoptosis by directly targeting the 3' UTR region of Bcl-2, reducing the constitutive suppression of Bcl-2 on p53-dependent apoptosis. Interestingly, overexpression of miR-204-5p during adipocyte differentiation significantly increased the number of oil red O+ cells, triglyceride accumulation and the expression of markers associated with adipocyte differentiation. In contrast, inhibition of miR-204-5p had the opposite effect on 3T3-L1 adipocyte differentiation. Luciferase activity assays and qRT-PCR showed that miR-204-5p regulates adipocyte differentiation by negatively regulating KLF3, a negative regulator of lipogenesis. Taken together, our findings showed that miR-204-5p inhibits proliferation and induces apoptosis of preadipocytes by regulating Bcl-2, but also promotes adipocyte differentiation by targeting KLF3. Copyright © 2018. Published by Elsevier B.V.

  19. Data on regulation of the gene for the adipocyte-enriched micropeptide Adig/Smaf1 by qPCR analysis and luciferase reporter assay.

    PubMed

    Ren, Gang; Cairl, Nicholas; Kim, Ji Young; Smas, Cynthia M

    2016-12-01

    This article describes qPCR analysis for the Adig/Smaf1 gene in multiple in vitro adipocyte differentiation models including white and brown adipogenesis, cell lines and primary cultures. The article also contains qPCR data for transcript levels of Adig/Smaf1 in a wide panel of murine tissues. Expression of Adig/Smaf1 transcript in white and brown adipose tissue in fasted and refed mice is reported and also data for Adig/Smaf1 transcript expression in genetically obese ob/ob mice. Data on the effects of siRNA-mediated knockdown of Srebp1c on Adig/Smaf1 transcript levels in 3T3-L1 adipocytes are shown. Luciferase reporter assays provide data for regulation of an ~ 2 kb fragment of the 5' flanking region of Adig/Smaf1 gene by PPARγ/RXRα. This data is related to a research article describing Adig/Smaf1 protein expression, "Expression, regulation and functional assessment of the 80 amino acid Small Adipocyte Factor 1 (Smaf1) protein in adipocytes" (G. Ren, P. Eskandari, S. Wang, C.M. Smas, 2016) [1].

  20. Temperature induced modulation of lipid oxidation and lipid accumulation in palmitate-mediated 3T3-L1 adipocytes and 3T3-L1 adipocytes.

    PubMed

    Lin, Xiaofen; Li, Yi; Leung, Polly Hangmei; Li, Jiashen; Hu, Junyan; Liu, Xuan; Li, Zhi

    2016-05-01

    Human skin temperature can vary widely depending on anatomical location and ambient temperature. It is also known that local changes in skin and subcutaneous temperature can affect fat metabolism. This study aimed to explore the potential effects of surrounding thermal environment on fat by investigating cell viability, lipid oxidation, and lipid accumulation in 3T3-L1 adipocytes and palmitate-treated adipocytes after 4h incubation. No significant differences of viability in 3T3-L1 adipocytes were detected under different temperature conditions. Despite no significant increase being observed under warm temperature (39°C) conditions, a similarly significant suppression of intracellular reactive oxygen species (ROS) and lipid peroxidation were found in 3T3-L1 adipocytes and palmitate-treated adipocytes under 4h exposure to cooler temperatures of 31-33°C (P<0.01). ROS, chemically reactive molecules containing oxygen, are currently understood to be a major contributor to oxidantive stress in obesity. Additionally, cooler temperatures (31-33°C) could improve the size of lipid droplets in 3T3-L1 adipocytes (P<0.01), but no significant effect was generated by temperature change on lipid droplets in palmitate-treated adipocytes. In the palmitate-induced adiposity model, although excessive ROS and lipid peroxidation has been attenuated by temperature decrease (P<0.01), it still does not positively modulate lipid droplet size (P>0.05) and remedy the palmitate damage induced cell death (P<0.01). These findings provide preliminary support for potential interventions based on temperature manipulation for cell metabolism of adipocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Transcriptional targets in adipocyte biology

    PubMed Central

    Rosen, Evan; Eguchi, Jun; Xu, Zhao

    2010-01-01

    The global burden of metabolic disease demands that we develop new therapeutic strategies. Many of these approaches may center on manipulating the behavior of adipocytes, which contribute directly and indirectly to a host of disease processes including obesity and type 2 diabetes. One way to achieve this goal will be to alter key transcriptional pathways in fat cells, such as those regulating glucose uptake, lipid handling, or adipokine secretion. In this review we look at what is known about how adipocytes govern their physiology at the gene expression level, and we discuss novel ways that we can accelerate our understanding of this area. PMID:19534570

  2. Peroxisome proliferator-activated receptor gamma modulation and lipogenic response in adipocytes of small-for-gestational age offspring

    PubMed Central

    2012-01-01

    resistance to BADGE treatment. Conclusions SGA adipocytes exhibit an enhanced adipogenic and lipogenic potential in early postnatal life. By p21, SGA demonstrated resistance to PPARγ repressor-ligand treatment, and selective response to high dose PPARγ activator-ligand treatment in adipogenic and lipogenic gene expression. p21 SGA adipocytes revealed increased fatty acid de novo synthesis through a complex relationship with glucose metabolism. PMID:22726273

  3. Mangiferin ameliorates insulin resistance by inhibiting inflammation and regulatiing adipokine expression in adipocytes under hypoxic condition.

    PubMed

    Yang, Chao-Qiang; Xu, Jing-Hua; Yan, Dan-Dan; Liu, Bao-Lin; Liu, Kang; Huang, Fang

    2017-09-01

    Adipose tissue hypoxia has been recognized as the initiation of insulin resistance syndromes. The aim of the present study was to investigate the effects of mangiferin on the insulin signaling pathway and explore whether mangiferin could ameliorate insulin resistance caused by hypoxia in adipose tissue. Differentiated 3T3-L1 adipocytes were incubated under normal and hypoxic conditions, respectively. Protein expressions were analyzed by Western blotting. Inflammatory cytokines and HIF-1-dependent genes were tested by ELISA and q-PCR, respectively. The glucose uptake was detected by fluorescence microscopy. HIF-1α was abundantly expressed during 8 h of hypoxic incubation. Inflammatory reaction was activated by up-regulated NF-κB phosphorylation and released cytokines like IL-6 and TNF-α. Glucose uptake was inhibited and insulin signaling pathway was damaged as well. Mangiferin substantially inhibited the expression of HIF-1α. Lactate acid and lipolysis, products released by glycometabolism and lipolysis, were also inhibited. The expression of inflammatory cytokines was significantly reduced and the damaged insulin signaling pathway was restored to proper functional level. The glucose uptake of hypoxic adipocytes was promoted and the dysfunction of adipocytes was relieved. These results showed that mangiferin could not only improve the damaged insulin signaling pathway in hypoxic adipocytes, but also ameliorate inflammatory reaction and insulin resistance caused by hypoxia. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  4. [PRODUCT OF THE BMI1--A KEY COMPONENT OF POLYCOMB--POSITIVELY REGULATES ADIPOCYTE DIFFERENTIATION OF MOUSE MESENCHYMAL STEM CELLS].

    PubMed

    Petrov, N S; Vereschagina, N A; Sushilova, E N; Kropotov, A V; Miheeva, N F; Popov, B V

    2016-01-01

    Bmil is a key component of Polycomb (PcG), which in mammals controls the basic functions of mammalian somatic stem cells (SSC) such as self-renewal and differentiation. Bmi1 supports SSC via transcriptional suppression of genes associated with cell cycle and differentiation. The most studied target genes of Bmi1 are the genes of Ink4 locus, CdkI p16(Ink4a) and p1(Arf), suppression of which due to activating mutations of the BMI1 results in formation of cancer stem cells (CSC) and carcinomas in various tissues. In contrast, inactivation of BMI1 results in cell cycle arrest and cell senescence. Although clinical phenomena of hypo- and hyperactivation of BMI1 are well known, its targets and mechanisms of regulation of tissue specific SSC are still obscure. The goal of this study was to evaluate the regulatory role of BMI1 in adipocyte differentiation (AD) of mouse mesenchymal stem cells (MSC). Induction of AD in mouse MSC of the C3H10T1/2 cell line was associated with an increase in the expression levels of BMI1, the genes of pRb family (RB, p130) and demethylase UTX, but not methyltransferase EZH2, whose products regulate the methylation levels of H3K27. It was observed earlier that H3K27me3 may play the role of the epigenetic switch by promoting AD of human MSC via activating expression of the PPARγ2, the master gene of AD (Hemming et al., 2014). Here we show that inactivation of BMI1 using specific siRNA slows and decreases the levels of AD, but does not abolish it. This is associated with a complete inhibition of the expression of adipogenic marker genes--PPARγ2, ADIPOQ and a decrease in the expression of RB, p130, but not UTX. The results obtained give evidence that the epigenetic mechanism regulating AD differentiation in mouse and human MSC is different.

  5. Purple corn silk: A potential anti-obesity agent with inhibition on adipogenesis and induction on lipolysis and apoptosis in adipocytes.

    PubMed

    Chaiittianan, Rungsiri; Sutthanut, Khaetthareeya; Rattanathongkom, Ariya

    2017-04-06

    Corn silk or the stigma of Zea mays L. has traditionally been used in weight loss stimulation and treatment of cystitis, urinary infections and obesity. Purple corn silk, rich of polyphenolic substances, was reported on anti-diabetic and anti-obesity effect in animal studies. However, scientific evidence on mechanisms and targets of action of purple corn silk related to adipocyte life cycle has been limited. To determine phytochemical compositions and investigate anti-obesity potential of the purple corn silk focusing on interruption of adipocyte life cycle; effect on pre-adipocyte proliferation, adipogenesis, adipocyte lipolysis, and apoptosis. The ethanolic purple corn silk extract (PCS) was prepared and investigated for phytochemical compositions by LC/MS/MS technique and anti-obesity potential using murine 3T3-L1 cell line. Using methyl thiazole tetrazolium (MTT) assay, the effects on pre-adipocytes and adipocyte viability and on pre-adipocytes proliferation at 24-, 48-, and 72-h incubation period were evaluated. In addition, anti-adipogenesis via inhibition on adipocyte differentiation and reduction of total lipid accumulation was evaluated using Oil Red O staining and spectrophotometric methods, respectively. The lipolysis effect was determined by measurement of glycerol released content using glycerol test kit after 48-h treatment of PCS to adipocytes. Apoptosis inductive effect was done by using 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride (DAPI) staining method. The polyphenols including anthocyanins, quercetin and phenolic acids and derivatives were found as the major chemical compositions of the PCS. With multiple-stages interruption on the adipocyte life cycle, anti-obesity effect of PCS was interestingly demonstrated. When compared to the control, the PCS at concentration range between 250-1000 μg/mL showed anti-adipogenesis effect as expressing of significant inhibition on pre-adipocyte proliferation at all incubation period (43.52±5

  6. Adiponectin may be a biomarker of early atherosclerosis of smokers and decreased by nicotine through KATP channel in adipocytes.

    PubMed

    Fan, Li Hong; He, Ying; Xu, Wei; Tian, Hong Yan; Zhou, Yan; Liang, Qi; Huang, Xin; Huo, Jian Hua; Li, Hong Bin; Bai, Ling; Ma, Ai Qun

    2015-01-01

    Plasm adiponectin is decreased in smokers. Adiponectin is emerging as a potential key molecular marker in atherosclerosis and other cardiovascular diseases. The aim of this study was to investigate the association between serum adiponectin levels and early atherosclerosis in smokers. Furthermore, the role of the KATP channel in the down-regulation of adiponectin by smoking was preliminarily explored. We consecutively enrolled 96 men, including 50 smokers with atherosclerosis and 46 nonsmokers. Serum adiponectin was detected with enzyme-linked immunosorbent assay - in all participants. Large (C1) and small (C2) artery elasticity indices and carotid intima-media thickness (IMT) were measured as evaluation indexes of early atherosclerosis in smokers. Finally, the effect of nicotine via ATP-dependent potassium (KATP) channels on adiponectin secretion by 3T3-L1 preadipocytes was examined in vitro. Adiponectin levels of smokers were statistically negatively correlated to IMT (r = -.440; P < 0.001) and positively correlated to C1 (r = 0.448; P < 0.001) as well as C2 (r = 0.426; P = 0.002). In 3-T3-L1 preadipocytes, nicotine treatment significantly decreased adiponectin levels (P = 0.003), whereas the adiponectin level was rescued by the inhibition of KATP channel (P < 0.001). Serum adiponectin level was an independent predictor of early atherosclerosis in smokers. Nicotine might decrease adiponectin in part through altering KATP channels in adipocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Leptin differentially regulates STAT3 activation in the ob/ob mice adipose mesenchymal stem cells

    USDA-ARS?s Scientific Manuscript database

    Leptin-deficient genetically obese ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Studies have shown that multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute...

  8. Fatty acid-induced mitochondrial uncoupling in adipocytes is not a promising target for treatment of insulin resistance unless adipocyte oxidative capacity is increased.

    PubMed

    Frayn, K N; Langin, D; Karpe, F

    2008-03-01

    The release of fatty acids from white adipose tissue is regulated at several levels. We have examined the suggestion that fatty acid release might be diminished by upregulation of mitochondrial fatty acid oxidation in the adipocyte, through increasing mitochondrial uncoupling. The intrinsic oxidative capacity of white adipose tissue is low, and older studies suggest that there is little fatty acid oxidation in white adipocytes, human or rodent. We have examined data on fatty acid metabolism and O(2) consumption in human white adipose tissue in vivo, and conclude that increasing fatty acid oxidation within the oxidative capacity of the tissue would produce only small changes (a few percent) in fatty acid release. The major locus of control of fatty acid release beyond the stimulation of lipolysis is the pathway of fatty acid esterification, already probably targeted by the thiazolidinedione insulin-sensitising agents. An alternative approach would be to upregulate the mitochondrial capacity of the adipocyte. We review proof-of-concept studies in which the phenotype of the white adipocyte has been changed to resemble that of the brown adipocyte by expression of peroxisome proliferator-activated receptor coactivator-1alpha. This increases oxidative capacity and also leads to fatty acid retention through upregulation of glycerol-3-phosphate production, and hence increased fatty acid re-esterification. We conclude that prevention or treatment of insulin resistance through alteration of adipocyte fatty acid handling will require more than a simple alteration of the activity of mitochondrial beta-oxidation within normal limits.

  9. Postlipolytic insulin-dependent remodeling of micro lipid droplets in adipocytes

    PubMed Central

    Ariotti, Nicholas; Murphy, Samantha; Hamilton, Nicholas A.; Wu, Lizhen; Green, Kathryn; Schieber, Nicole L.; Li, Peng; Martin, Sally; Parton, Robert G.

    2012-01-01

    Despite the lipolysis–lipogenesis cycle being a fundamental process in adipocyte biology, very little is known about the morphological changes that occur during this process. The remodeling of lipid droplets to form micro lipid droplets (mLDs) is a striking feature of lipolysis in adipocytes, but once lipolysis ceases, the cell must regain its basal morphology. We characterized mLD formation in cultured adipocytes, and in primary adipocytes isolated from mouse epididymal fat pads, in response to acute activation of lipolysis. Using real-time quantitative imaging and electron tomography, we show that formation of mLDs in cultured adipocytes occurs throughout the cell to increase total LD surface area by ∼30% but does not involve detectable fission from large LDs. Peripheral mLDs are monolayered structures with a neutral lipid core and are sites of active lipolysis. Electron tomography reveals preferential association of mLDs with the endoplasmic reticulum. Treatment with insulin and fatty acids results in the reformation of macroLDs and return to the basal state. Insulin-dependent reformation of large LDs involves two distinct processes: microtubule-dependent homotypic fusion of mLDs and expansion of individual mLDs. We identify a physiologically important role for LD fusion that is involved in a reversible lipolytic cycle in adipocytes. PMID:22456503

  10. Bone marrow adipocytes as negative regulators of the hematopoietic microenvironment

    PubMed Central

    Naveiras, Olaia; Nardi, Valentina; Wenzel, Pamela L.; Fahey, Frederic; Daley, George Q.

    2009-01-01

    Osteoblasts and endothelium constitute functional niches that support hematopoietic stem cells (HSC) in mammalian bone marrow (BM) 1,2,3 . Adult BM also contains adipocytes, whose numbers correlate inversely with the hematopoietic activity of the marrow. Fatty infiltration of hematopoietic red marrow follows irradiation or chemotherapy and is a diagnostic feature in biopsies from patients with marrow aplasia 4. To explore whether adipocytes influence hematopoiesis or simply fill marrow space, we compared the hematopoietic activity of distinct regions of the mouse skeleton that differ in adiposity. By flow cytometry, colony forming activity, and competitive repopulation assay, HSCs and short-term progenitors are reduced in frequency in the adipocyte-rich vertebrae of the mouse tail relative to the adipocyte-free vertebrae of the thorax. In lipoatrophic A-ZIP/F1 “fatless” mice, which are genetically incapable of forming adipocytes8, and in mice treated with the PPARγ inhibitor Bisphenol-A-DiGlycidyl-Ether (BADGE), which inhibits adipogenesis9, post-irradiation marrow engraftment is accelerated relative to wild type or untreated mice. These data implicate adipocytes as predominantly negative regulators of the bone marrow microenvironment, and suggest that antagonizingmarrow adipogenesis may enhance hematopoietic recovery in clinical bone marrow transplantation. PMID:19516257

  11. Target molecules in 3T3-L1 adipocytes differentiation are regulated by maslinic acid, a natural triterpene from Olea europaea.

    PubMed

    Pérez-Jiménez, Amalia; Rufino-Palomares, Eva E; Fernández-Gallego, Nieves; Ortuño-Costela, M Carmen; Reyes-Zurita, Fernando J; Peragón, Juan; García-Salguero, Leticia; Mokhtari, Khalida; Medina, Pedro P; Lupiáñez, José A

    2016-11-15

    Metabolic syndrome is a set of pathologies among which stand out the obesity, which is related to the lipid droplet accumulation and changes to cellular morphology regulated by several molecules and transcription factors. Maslinic acid (MA) is a natural product with demonstrated pharmacological functions including anti-inflammation, anti-tumor and anti-oxidation, among others. Here we report the effects of MA on the adipogenesis process in 3T3-L1 cells. Cell viability, glucose uptake, cytoplasmic triglyceride droplets, triglycerides quantification, gene transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ) and adipocyte fatty acid-binding protein (aP2) and intracellular Ca 2+ levels were determined in pre-adipocytes and adipocytes of 3T3-L1 cells. MA increased glucose uptake. MA also decreased lipid droplets and triglyceride levels, which is in concordance with the down-regulation of PPARγ and aP2. Finally, MA increased the intracellular Ca 2+ concentration, which could also be involved in the demonstrated antiadipogenic effect of this triterpene. MA has been demonstrated as potential antiadipogenic compound in 3T3-L1 cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Human Mature Adipocytes Express Albumin and This Expression Is Not Regulated by Inflammation

    PubMed Central

    Sirico, Maria Luisa; Guida, Bruna; Procino, Alfredo; Pota, Andrea; Sodo, Maurizio; Grandaliano, Giuseppe; Simone, Simona; Pertosa, Giovanni; Riccio, Eleonora; Memoli, Bruno

    2012-01-01

    Aims. Our group investigated albumin gene expression in human adipocytes, its regulation by inflammation and the possible contribution of adipose tissue to albumin circulating levels. Methods. Both inflamed and healthy subjects provided adipose tissue samples. RT-PCR, Real-Time PCR, and Western Blot analysis on homogenates of adipocytes and pre-adipocytes were performed. In sixty-three healthy subjects and fifty-four micro-inflamed end stage renal disease (ESRD) patients circulating levels of albumin were measured by nephelometry; all subjects were also evaluated for body composition, calculated from bioelectrical measurements and an thropometric data. Results. A clear gene expression of albumin was showed in pre-adipocytes and, for the first time, in mature adipocytes. Albumin gene expression resulted significantly higher in pre-adipocytes than in adipocytes. No significant difference in albumin gene expression was showed between healthy controls and inflamed patients. A significant negative correlation was observed between albumin levels and fat mass in both healthy subjects and inflamed ESRD patients. Conclusions. In the present study we found first time evidence that human adipocytes express albumin. Our results also showed that systemic inflammation does not modulate albumin gene expression. The negative correlation between albumin and fat mass seems to exclude a significant contributing role of adipocyte in plasma albumin. PMID:22675238

  13. Extracellular Vesicles from Hypoxic Adipocytes and Obese Subjects Reduce Insulin‐Stimulated Glucose Uptake

    PubMed Central

    Mleczko, Justyna; Ortega, Francisco J.; Falcon‐Perez, Juan Manuel; Wabitsch, Martin; Fernandez‐Real, Jose Manuel

    2018-01-01

    Scope We investigate the effects of extracellular vesicles (EVs) obtained from in vitro adipocyte cell models and from obese subjects on glucose transport and insulin responsiveness. Methods and results EVs are isolated from the culture supernatant of adipocytes cultured under normoxia, hypoxia (1% oxygen), or exposed to macrophage conditioned media (15% v/v). EVs are isolated from the plasma of lean individuals and subjects with obesity. Cultured adipocytes are incubated with EVs and activation of insulin signalling cascades and insulin‐stimulated glucose transport are measured. EVs released from hypoxic adipocytes impair insulin‐stimulated 2‐deoxyglucose uptake and reduce insulin mediated phosphorylation of AKT. Insulin‐mediated phosphorylation of extracellular regulated kinases (ERK1/2) is not affected. EVs from individuals with obesity decrease insulin stimulated 2‐deoxyglucose uptake in adipocytes (p = 0.0159). Conclusion EVs released by stressed adipocytes impair insulin action in neighboring adipocytes. PMID:29292863

  14. Relationship of Adipocyte Size with Adiposity and Metabolic Risk Factors in Asian Indians

    PubMed Central

    Meena, Ved Prakash; Seenu, V.; Sharma, M. C.; Mallick, Saumya Ranjan; Bhalla, Ashu Seith; Gupta, Nandita; Mohan, Anant; Guleria, Randeep; Pandey, Ravindra M.; Luthra, Kalpana; Vikram, Naval K.

    2014-01-01

    Background Enlargement of adipocyte is associated with their dysfunction and alterations in metabolic functions. Objectives We evaluated the association of adipocyte size of subcutaneous and omental adipose tissue with body composition and cardiovascular risk factors in Asian Indians. Methodology Eighty (40 males and 40 females) non-diabetic adult subjects undergoing elective abdominal surgery were included. Pre-surgery evaluation included anthropometric measurements, % body fat by bioimpedance, abdominal fat area at L2–3 level (computed tomography) and biochemical investigations (fasting blood glucose and insulin, lipids and hsCRP). During surgery, about 5 grams each of omental and subcutaneous adipose tissue was obtained for adipocyte size determination. Results Females had higher BMI, % body fat, skinfold thickness, total and subcutaneous abdominal fat area as compared to males. Overweight was present in 42.5% and 67.5%, and abdominal obesity in 5% and 52.5% males and females, respectively. Subcutaneous adipocyte size was significantly higher than omental adipocyte size. Omental adipocyte size correlated more strongly than subcutaneous adipocyte size with measures of adiposity (BMI, waist circumference, %BF), total and subcutaneous abdominal fat area and biochemical measures (fasting glucose, total cholesterol, triglycerides and HOMA-IR), the correlations being stronger in females. The correlation of adipocyte size with metabolic parameters was attenuated after adjusting for measures of adiposity. Conclusion Omental adipocyte size, though smaller than the subcutaneous adipocyte size, was more closely related to measures of adiposity and metabolic parameters. However, the relationship was not independent of measures of adiposity. PMID:25251402

  15. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences.

    PubMed

    de Ferranti, Sarah; Mozaffarian, Dariush

    2008-06-01

    As the prevalence of adiposity soars in both developed and developing nations, appreciation of the close links between obesity and disease increases. The strong relationships between excess adipose tissue and poor health outcomes, including cardiovascular disease, diabetes, and cancer, mandate elucidation of the complex cellular, hormonal, and molecular pathophysiology whereby adiposity initiates and maintains adverse health effects. In this report we review adipocyte metabolism and function in the context of energy imbalance and postprandial nutrient excess, including adipocyte hypertrophy and hyperplasia, adipocyte dysfunction, and other systemic consequences. We also discuss implications for laboratory evaluation and clinical care, including the role of lifestyle modifications. Chronic energy imbalance produces adipocyte hypertrophy and hyperplasia, endoplasmic reticulum stress, and mitochondrial dysfunction. These processes lead to increased intracellular and systemic release of adipokines, free fatty acids, and inflammatory mediators that cause adipocyte dysfunction and induce adverse effects in the liver, pancreatic beta-cells, and skeletal muscle as well as the heart and vascular beds. Several specialized laboratory tests can quantify these processes and predict clinical risk, but translation to the clinical setting is premature. Current and future pharmacologic interventions may target these pathways; modest changes in diet, physical activity, weight, and smoking are likely to have the greatest impact. Adipocyte endoplasmic reticulum and mitochondrial stress, and associated changes in circulating adipokines, free fatty acids, and inflammatory mediators, are central to adverse health effects of adiposity. Future investigation should focus on these pathways and on reversing the adverse lifestyle behaviors that are the fundamental causes of adiposity.

  16. Effect of Diabetes Mellitus on Adipocyte-Derived Stem Cells in Rat.

    PubMed

    Jumabay, Medet; Moon, Jeremiah H; Yeerna, Huwate; Boström, Kristina I

    2015-11-01

    Diabetes mellitus affects the adipose tissue and mesenchymal stem cells derived from the adipose stroma and other tissues. Previous reports suggest that bone morphogenetic protein 4 (BMP4) is involved in diabetic complications, at the same time playing an important role in the maintenance of stem cells. In this study, we used rats transgenic for human islet amyloid polypeptide (HIP rats), a model of type 2 diabetes, to study the effect of diabetes on adipocyte-derived stem cells, referred to as dedifferentiated fat (DFAT) cells. Our results show that BMP4 expression in inguinal adipose tissue is significantly increased in HIP rats compared to controls, whereas matrix Gla protein (MGP), an inhibitor of BMP4 is decreased as determined by quantitative PCR, and immunofluorescence. In addition, adipose vascularity and expression of multiple endothelial cell markers was increased in the diabetic tissue, visualized by immunofluorescence for endothelial markers. The endothelial markers co-localized with the enhanced BMP4 expression, suggesting that vascular cells play a role BMP4 induction. The DFAT cells are multipotent stem cells derived from white mature adipocytes that undergo endothelial and adipogenic differentiation. DFAT cells prepared from the inguinal adipose tissue in HIP rats exhibited enhanced proliferative capacity compared to wild type. In addition, their ability to undergo both endothelial cell and adipogenic lineage differentiation was enhanced, as well as their response to BMP4, as assessed by lineage marker expression. We conclude that the DFAT cells are affected by diabetic changes and may contribute to the adipose dysfunction in diabetes. © 2015 Wiley Periodicals, Inc.

  17. The effect of insulin, TNFα and DHA on the proliferation, differentiation and lipolysis of preadipocytes isolated from large yellow croaker (Pseudosciaena Crocea R.).

    PubMed

    Wang, Xinxia; Huang, Ming; Wang, Yizhen

    2012-01-01

    Fish final product can be affected by excessive lipid accumulation. Therefore, it is important to develop strategies to control obesity in cultivated fish to strengthen the sustainability of the aquaculture industry. As in mammals, the development of adiposity in fish depends on hormonal, cytokine and dietary factors. In this study, we investigated the proliferation and differentiation of preadipocytes isolated from the large yellow croaker and examined the effects of critical factors such as insulin, TNFα and DHA on the proliferation, differentiation and lipolysis of adipocytes. Preadipocytes were isolated by collagenase digestion, after which their proliferation was evaluated. The differentiation process was optimized by assaying glycerol-3-phosphate dehydrogenase (GPDH) activity. Oil red O staining and electron microscopy were performed to visualize the accumulated triacylglycerol. Gene transcript levels were measured using SYBR green quantitative real-time PCR. Insulin promoted preadipocytes proliferation, stimulated cell differentiation and decreased lipolysis of mature adipocytes. TNFα and DHA inhibited cell proliferation and differentiation. While TNFα stimulated mature adipocyte lipolysis, DHA showed no lipolytic effect on adipocytes. The expressions of adipose triglyceride lipase (ATGL), fatty acid synthase (FAS), lipoprotein lipase (LPL) and peroxisome proliferator-activated receptor α, γ (PPARα, PPARγ) were quantified during preadipocytes differentiation and adipocytes lipolysis to partly explain the regulation mechanisms. In summary, the results of this study indicated that although preadipocytes proliferation and the differentiation process in large yellow croaker are similar to these processes in mammals, the effects of critical factors such as insulin, TNFα and DHA on fish adipocytes development are not exactly the same. Our findings fill in the gaps in the basic data regarding the effects of critical factors on adiposity development in fish

  18. A biomimetic hydrogel functionalized with adipose ECM components as a microenvironment for the 3D culture of human and murine adipocytes.

    PubMed

    Louis, Fiona; Pannetier, Pauline; Souguir, Zied; Le Cerf, Didier; Valet, Philippe; Vannier, Jean-Pierre; Vidal, Guillaume; Demange, Elise

    2017-08-01

    The lack of relevant in vitro models for adipose tissue makes necessary the development of a more physiological environment providing spatial and chemical cues for the effective maturation of adipocytes. We developed a biofunctionalized hydrogel with components of adipose extracellular matrix: collagen I, collagen VI, and the cell binding domain of fibronectin and we compared it to usual 2D cultures on plastic plates. This scaffold allowed 3D culture of mature adipocytes from the preadipocytes cell lines 3T3-L1 and 3T3-F442A, as well as primary Human White Preadipocytes (HWP), acquiring in vivo-like organization, with spheroid shaped adipocytes forming multicellular aggregates. The size of these aggregates increased with time up to 120 μm in diameter after 4 weeks of maturation, with good viability. Significantly higher lipogenic activity (up to 20-fold at day 28 for HWP cultures) and differentiation rates were also observed compared to 2D. Gene expression analyses highlighted earlier differentiation and complete maturation of 3D HWP compared to 2D, reinforced by the expression of Perilipin protein after 21 days of nutrition. This increase in adipocytes phenotypic and genotypic markers made this scaffold-driven culture as a robust adipose 3D model. Retinoic acid inhibition of lipogenesis in HWP or isoprenalin and caffeine induction of lipolysis performed on mouse 3T3-F442A cells, showed higher doses of molecules than typically used in 2D, underlying the physiologic relevance of this 3D culture system. Biotechnol. Bioeng. 2017;114: 1813-1824. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Prenatal Exposure to the Environmental Obesogen Tributyltin Predisposes Multipotent Stem Cells to Become Adipocytes

    PubMed Central

    Kirchner, Séverine; Kieu, Tiffany; Chow, Connie; Casey, Stephanie; Blumberg, Bruce

    2010-01-01

    The environmental obesogen hypothesis proposes that pre- and postnatal exposure to environmental chemicals contributes to adipogenesis and the development of obesity. Tributyltin (TBT) is an agonist of both retinoid X receptor (RXR) and peroxisome proliferator-activated receptor γ (PPARγ). Activation of these receptors can elevate adipose mass in adult mice exposed to the chemical in utero. Here we show that TBT sensitizes human and mouse multipotent stromal stem cells derived from white adipose tissue [adipose-derived stromal stem cells (ADSCs)] to undergo adipogenesis. In vitro exposure to TBT, or the PPARγ activator rosiglitazone increases adipogenesis, cellular lipid content, and expression of adipogenic genes. The adipogenic effects of TBT and rosiglitazone were blocked by the addition of PPARγ antagonists, suggesting that activation of PPARγ mediates the effect of both compounds on adipogenesis. ADSCs from mice exposed to TBT in utero showed increased adipogenic capacity and reduced osteogenic capacity with enhanced lipid accumulation in response to adipogenic induction. ADSCs retrieved from animals exposed to TBT in utero showed increased expression of PPARγ target genes such as the early adipogenic differentiation gene marker fatty acid-binding protein 4 and hypomethylation of the promoter/enhancer region of the fatty acid-binding protein 4 locus. Hence, TBT alters the stem cell compartment by sensitizing multipotent stromal stem cells to differentiate into adipocytes, an effect that could likely increase adipose mass over time. PMID:20160124

  20. Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes.

    PubMed

    Kirchner, Séverine; Kieu, Tiffany; Chow, Connie; Casey, Stephanie; Blumberg, Bruce

    2010-03-01

    The environmental obesogen hypothesis proposes that pre- and postnatal exposure to environmental chemicals contributes to adipogenesis and the development of obesity. Tributyltin (TBT) is an agonist of both retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARgamma). Activation of these receptors can elevate adipose mass in adult mice exposed to the chemical in utero. Here we show that TBT sensitizes human and mouse multipotent stromal stem cells derived from white adipose tissue [adipose-derived stromal stem cells (ADSCs)] to undergo adipogenesis. In vitro exposure to TBT, or the PPARgamma activator rosiglitazone increases adipogenesis, cellular lipid content, and expression of adipogenic genes. The adipogenic effects of TBT and rosiglitazone were blocked by the addition of PPARgamma antagonists, suggesting that activation of PPARgamma mediates the effect of both compounds on adipogenesis. ADSCs from mice exposed to TBT in utero showed increased adipogenic capacity and reduced osteogenic capacity with enhanced lipid accumulation in response to adipogenic induction. ADSCs retrieved from animals exposed to TBT in utero showed increased expression of PPARgamma target genes such as the early adipogenic differentiation gene marker fatty acid-binding protein 4 and hypomethylation of the promoter/enhancer region of the fatty acid-binding protein 4 locus. Hence, TBT alters the stem cell compartment by sensitizing multipotent stromal stem cells to differentiate into adipocytes, an effect that could likely increase adipose mass over time.

  1. Cannabidiol promotes browning in 3T3-L1 adipocytes.

    PubMed

    Parray, Hilal Ahmad; Yun, Jong Won

    2016-05-01

    Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity. Thus, a wide variety of dietary agents that contribute to browning of white adipocytes have been identified. The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes. CBD enhanced expression of a core set of brown fat-specific marker genes (Ucp1, Cited1, Tmem26, Prdm16, Cidea, Tbx1, Fgf21, and Pgc-1α) and proteins (UCP1, PRDM16, and PGC-1α). Increased expression of UCP1 and other brown fat-specific markers contributed to the browning of 3T3-L1 adipocytes possibly via activation of PPARγ and PI3K. In addition, CBD increased protein expression levels of CPT1, ACSL, SIRT1, and PLIN while down-regulating JNK2, SREBP1, and LPL. These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis. In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism. Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity.

  2. Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade.

    PubMed

    Tsukuda, Kana; Mogi, Masaki; Iwanami, Jun; Kanno, Harumi; Nakaoka, Hirotomo; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Higaki, Akinori; Yamauchi, Toshifumi; Min, Li-Juan; Horiuchi, Masatsugu

    2016-01-01

    Browning of white adipose tissue (WAT) has been highlighted as a new possible therapeutic target for obesity, diabetes and lipid metabolic disorders, because WAT browning could increase energy expenditure and reduce adiposity. The new clusters of adipocytes that emerge with WAT browning have been named 'beige' or 'brite' adipocytes. Recent reports have indicated that the renin-angiotensin system (RAS) plays a role in various aspects of adipose tissue physiology and dysfunction. The biological effects of angiotensin II, a major component of RAS, are mediated by two receptor subtypes, angiotensin II type 1 receptor (AT1R) and type 2 receptor (AT2R). However, the functional roles of angiotensin II receptor subtypes in WAT browning have not been defined. Therefore, we examined whether deletion of angiotensin II receptor subtypes (AT1aR and AT2R) may affect white-to-beige fat conversion in vivo. AT1a receptor knockout (AT1aKO) mice exhibited increased appearance of multilocular lipid droplets and upregulation of thermogenic gene expression in inguinal white adipose tissue (iWAT) compared to wild-type (WT) mice. AT2 receptor-deleted mice did not show miniaturization of lipid droplets or alteration of thermogenic gene expression levels in iWAT. An in vitro experiment using adipose tissue-derived stem cells showed that deletion of the AT1a receptor resulted in suppression of adipocyte differentiation, with reduction in expression of thermogenic genes. These results indicate that deletion of the AT1a receptor might have some effects on the process of browning of WAT and that blockade of the AT1 receptor could be a therapeutic target for the treatment of metabolic disorders.

  3. A mechanically activated TRPC1-like current in white adipocytes.

    PubMed

    El Hachmane, Mickaël F; Olofsson, Charlotta S

    2018-04-15

    Ca 2+ impacts a large array of cellular processes in every known cell type. In the white adipocyte, Ca 2+ is involved in regulation of metabolic processes such as lipolysis, glucose uptake and hormone secretion. Although the importance of Ca 2+ in control of white adipocyte function is clear, knowledge is still lacking regarding the control of dynamic Ca 2+ alterations within adipocytes and mechanisms inducing intracellular Ca 2+ changes remain elusive. Own work has recently demonstrated the existence of store-operated Ca 2+ entry (SOCE) in lipid filled adipocytes. We defined stromal interaction molecule 1 (STIM1) and the calcium release-activated calcium channel protein 1 (ORAI1) as the key players involved in this process and we showed that the transient receptor potential (TRP) channel TRPC1 contributed to SOCE. Here we have aimed to further characterised SOCE in the white adipocyte by use of single cell whole-cell patch clamp recordings. The electrophysiological measurements show the existence of a seemingly constitutively active current that is inhibited by known store-operated Ca 2+ channel (SOCC) blockers. We demonstrate that the mechanical force applied to the plasma membrane upon patching leads to an elevation of the cytoplasmic Ca 2+ concentration and that this elevation can be reversed by SOCC antagonists. We conclude that a mechanically activated current with properties similar to TRPC1 is present in white adipocytes. Activation of TRPC1 by membrane tension/stretch may be specifically important for the function of this cell type, since adipocytes can rapidly increase or decrease in size. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Cytoprotective role of the fatty acid binding protein 4 against oxidative and endoplasmic reticulum stress in 3T3-L1 adipocytes

    PubMed Central

    Kajimoto, Kazuaki; Minami, Yoshitaka; Harashima, Hideyoshi

    2014-01-01

    The fatty acid binding protein 4 (FABP4), one of the most abundant proteins in adipocytes, has been reported to have a proinflammatory function in macrophages. However, the physiological role of FABP4, which is constitutively expressed in adipocytes, has not been fully elucidated. Previously, we demonstrated that FABP4 was involved in the regulation of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) production in 3T3-L1 adipocytes. In this study, we examined the effects of FABP4 silencing on the oxidative and endoplasmic reticulum (ER) stress in 3T3-L1 adipocytes. We found that the cellular reactive oxygen species (ROS) and 8-nitro-cyclic GMP levels were significantly elevated in the differentiated 3T3-L1 adipocytes transfected with a small interfering RNA (siRNA) against Fabp4, although the intracellular levels or enzyme activities of antioxidants including reduced glutathione (GSH), superoxide dismutase (SOD) and glutathione S-transferase A4 (GSTA4) were not altered. An in vitro evaluation using the recombinant protein revealed that FABP4 itself functions as a scavenger protein against hydrogen peroxide (H2O2). FABP4-knockdown resulted in a significant lowering of cell viability of 3T3-L1 adipocytes against H2O2 treatment. Moreover, four kinds of markers related to the ER stress response including the endoplasmic reticulum to nucleus signaling 1 (Ern1), the signal sequence receptor α (Ssr1), the ORM1-like 3 (Ormdl3), and the spliced X-box binding protein 1 (Xbp1s), were all elevated as the result of the knockdown of FABP4. Consequently, FABP4 might have a new role as an antioxidant protein against H2O2 and contribute to cytoprotection against oxidative and ER stress in adipocytes. PMID:25161868

  5. The role of Rpgrip1l, a component of the primary cilium, in adipocyte development and function.

    PubMed

    Carli, Jayne F Martin; LeDuc, Charles A; Zhang, Yiying; Stratigopoulos, George; Leibel, Rudolph L

    2018-02-21

    Genetic variants within the FTO (α-ketoglutarate-dependent dioxygenase) gene have been strongly associated with a modest increase in adiposity as a result of increased food intake. These risk alleles are associated with decreased expression of both FTO and neighboring RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein 1 like). RPGRIP1L encodes a protein that is critical to the function of the primary cilium, which conveys extracellular information to the cell. Rpgrip1l +/- mice exhibit increased adiposity, in part, as a result of hyperphagia. Here, we describe the effects of Rpgrip1l in adipocytes that may contribute to the adiposity phenotype observed in these animals and possibly in humans who segregate for FTO risk alleles. Loss of Rpgrip1l in 3T3-L1 preadipocytes increased the number of cells that are capable of differentiating into mature adipocytes. Knockout of Rpgrip1l in mature adipocytes using Adipoq-Cre did not increase adiposity in mice that were fed chow or a high-fat diet. We also did not observe any effects of Rpgrip1l knockdown in mature 3T3-L1 adipocytes. Thus, to the extent that Rpgrip1l affects cell-autonomous adipose tissue function, it may do so as a result of the effects conveyed in preadipocytes in which the primary cilium is functionally important. We propose that decreased RPGRIP1L expression in preadipocytes in humans who segregate for FTO obesity risk alleles may increase the storage capacity of adipose tissue.-Martin Carli, J. F., LeDuc, C. A., Zhang, Y., Stratigopoulos, G., Leibel, R. L. The role of Rpgrip1l, a component of the primary cilium, in adipocyte development and function.

  6. Prostaglandin E2 signals white-to-brown adipogenic differentiation

    PubMed Central

    García-Alonso, Verónica; Clària, Joan

    2014-01-01

    The formation of new adipocytes from precursor cells is a crucial aspect of normal adipose tissue function. During the adipogenic process, adipocytes differentiated from mesenchymal stem cells give rise to two main types of fat: white adipose tissue (WAT) characterized by the presence of adipocytes containing large unilocular lipid droplets, and brown adipose tissue (BAT) composed by multilocular brown adipocytes packed with mitochondria. WAT is not only important for energy storage but also as an endocrine organ regulating whole body homeostasis by secreting adipokines and other mediators, which directly impact metabolic functions in obesity. By contrast, BAT is specialized in dissipating energy in form of heat and has salutary effects in combating obesity and associated disorders. Unfortunately, WAT is the predominant fat type, whereas BAT is scarce and located in discrete pockets in adult humans. Luckily, another type of brown adipocytes, called beige or brite (brown-in-white) adipocytes, with similar functions to those of “classical” brown adipocytes has recently been identified in WAT. In this review, a close look is given into the role of bioactive lipid mediators in the regulation of adipogenesis, with a special emphasis on the role of the microsomal prostaglandin E (PGE) synthase-1, a terminal enzyme in PGE2 biosynthesis, as a key regulator of white-to-brown adipogenesis in WAT. PMID:26317053

  7. Invited review: Pre- and postnatal adipose tissue development in farm animals: from stem cells to adipocyte physiology.

    PubMed

    Louveau, I; Perruchot, M-H; Bonnet, M; Gondret, F

    2016-11-01

    Both white and brown adipose tissues are recognized to be differently involved in energy metabolism and are also able to secrete a variety of factors called adipokines that are involved in a wide range of physiological and metabolic functions. Brown adipose tissue is predominant around birth, except in pigs. Irrespective of species, white adipose tissue has a large capacity to expand postnatally and is able to adapt to a variety of factors. The aim of this review is to update the cellular and molecular mechanisms associated with pre- and postnatal adipose tissue development with a special focus on pigs and ruminants. In contrast to other tissues, the embryonic origin of adipose cells remains the subject of debate. Adipose cells arise from the recruitment of specific multipotent stem cells/progenitors named adipose tissue-derived stromal cells. Recent studies have highlighted the existence of a variety of those cells being able to differentiate into white, brown or brown-like/beige adipocytes. After commitment to the adipocyte lineage, progenitors undergo large changes in the expression of many genes involved in cell cycle arrest, lipid accumulation and secretory functions. Early nutrition can affect these processes during fetal and perinatal periods and can also influence or pre-determinate later growth of adipose tissue. How these changes may be related to adipose tissue functional maturity around birth and can influence newborn survival is discussed. Altogether, a better knowledge of fetal and postnatal adipose tissue development is important for various aspects of animal production, including neonatal survival, postnatal growth efficiency and health.

  8. IL-6-Type Cytokine Signaling in Adipocytes Induces Intestinal GLP-1 Secretion.

    PubMed

    Wueest, Stephan; Laesser, Céline I; Böni-Schnetzler, Marianne; Item, Flurin; Lucchini, Fabrizio C; Borsigova, Marcela; Müller, Werner; Donath, Marc Y; Konrad, Daniel

    2018-01-01

    We recently showed that interleukin (IL)-6-type cytokine signaling in adipocytes induces free fatty acid release from visceral adipocytes, thereby promoting obesity-induced hepatic insulin resistance and steatosis. In addition, IL-6-type cytokines may increase the release of leptin from adipocytes and by those means induce glucagon-like peptide 1 (GLP-1) secretion. We thus hypothesized that IL-6-type cytokine signaling in adipocytes may regulate insulin secretion. To this end, mice with adipocyte-specific knockout of gp130, the signal transducer protein of IL-6, were fed a high-fat diet for 12 weeks. Compared with control littermates, knockout mice showed impaired glucose tolerance and circulating leptin, GLP-1, and insulin levels were reduced. In line, leptin release from isolated adipocytes was reduced, and intestinal proprotein convertase subtilisin/kexin type 1 ( Pcsk1 ) expression, the gene encoding PC1/3, which controls GLP-1 production, was decreased in knockout mice. Importantly, treatment with the GLP-1 receptor antagonist exendin 9-39 abolished the observed difference in glucose tolerance between control and knockout mice. Ex vivo, supernatant collected from isolated adipocytes of gp130 knockout mice blunted Pcsk1 expression and GLP-1 release from GLUTag cells. In contrast, glucose- and GLP-1-stimulated insulin secretion was not affected in islets of knockout mice. In conclusion, adipocyte-specific IL-6 signaling induces intestinal GLP-1 release to enhance insulin secretion, thereby counteracting insulin resistance in obesity. © 2017 by the American Diabetes Association.

  9. Microarray profiling of gene expression in human adipocytes in response to anthocyanins.

    PubMed

    Tsuda, Takanori; Ueno, Yuki; Yoshikawa, Toshikazu; Kojo, Hitoshi; Osawa, Toshihiko

    2006-04-14

    Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine secretion or the adipocyte specific gene expression is one of the most important targets for the prevention of obesity and amelioration of insulin sensitivity. Recently, we demonstrated that anthocyanins, which are pigments widespread in the plant kingdom, have the potency of anti-obesity in mice and the enhancement adipocytokine secretion and its gene expression in adipocytes. In this study, we have shown the gene expression profile in human adipocytes treated with anthocyanins (cyanidin 3-glucoside; C3G or cyanidin; Cy). The human adipocytes were treated with 100 microM C3G, Cy or vehicle for 24 h. The total RNA from the adipocytes was isolated and carried out GeneChip microarray analysis. Based on the gene expression profile, we demonstrated the significant changes of adipocytokine expression (up-regulation of adiponectin and down-regulation of plasminogen activator inhibitor-1 and interleukin-6). Some of lipid metabolism related genes (uncoupling protein2, acylCoA oxidase1 and perilipin) also significantly induced in both common the C3G or Cy treatment groups. These studies have provided an overview of the gene expression profiles in human adipocytes treated with anthocyanins and demonstrated that anthocyanins can regulate adipocytokine gene expression to ameliorate adipocyte function related with obesity and diabetes that merit further investigation.

  10. 18{beta}-Glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer 18{beta}-GA inhibits adipogenic differentiation in 3T3-L1 preadipocytes and stimulates lipolysis in differentiated adipocytes. Black-Right-Pointing-Pointer Anti-adipogenic effect of 18{beta}-GA is caused by down-regulation of PPAR{gamma} and inactivation of Akt signalling. Black-Right-Pointing-Pointer Lipolytic effect of 18{beta}-GA is mediated by up-regulation of HSL, ATGL and perilipin and activation of HSL. -- Abstract: 18{beta}-Glycyrrhetinic acid (18{beta}-GA) obtained from the herb liquorice has various pharmacological properties including anti-inflammatory and anti-bacterial activities. However, potential biological anti-obesity activities are unclear. In this study, novel biological activities of 18{beta}-GA in the adipogenesis of 3T3-L1 preadipocytes and in lipolysis of differentiated adipocytes were identified. Mouse 3T3-L1 cellsmore » were used as an in vitro model of adipogenesis and lipolysis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. The amount of lipid droplet accumulation was determined by an AdipoRed assay. The expression of several adipogenic transcription factors and enzymes was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. 18{beta}-GA dose-dependently (1-40 {mu}M) significantly decreased lipid accumulation in maturing preadipocytes. In 3T3-L1 preadipocytes, 10 {mu}M of 18{beta}-GA down-regulated the transcriptional levels of the peroxisome proliferator-activated receptor {gamma}, CCAAT/enhancer-binding protein {alpha} and adiponectin, which are markers of adipogenic differentiation via Akt phosphorylation. Also, in differentiated adipocytes, 18{beta}-GA increased the level of glycerol release and up-regulated the mRNA of hormone-sensitive lipase, adipose TG lipase and perilipin, as well as the phosphorylation of hormone-sensitive lipase at Serine 563. The results indicate that 18

  11. Low-dose radiation pretreatment improves survival of human ceiling culture-derived proliferative adipocytes (ccdPAs) under hypoxia via HIF-1 alpha and MMP-2 induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adachi, Naoki; Kubota, Yoshitaka, E-mail: kubota-cbu@umin.ac.jp; Kosaka, Kentarou

    2015-08-07

    Poor survival is a major problem of adipocyte transplantation. We previously reported that VEGF and MMPs secreted from transplanted adipocytes are essential for angiogenesis and adipogenesis. Pretreatment with low-dose (5 Gy) radiation (LDR) increased VEGF, MMP-2, and HIF-1 alpha mRNA expression in human ceiling culture-derived proliferative adipocytes (hccdPAs). Gene expression after LDR differed between adipose-derived stem cells (hASCs) and hccdPAs. Pretreatment with LDR improved the survival of hccdPAs under hypoxia, which is inevitable in the early stages after transplantation. Upregulation of VEGF and MMP-2 after LDR in hccdPAs is mediated by HIF-1 alpha expression. Our results suggest that pretreatment with LDRmore » may improve adipocyte graft survival in a clinical setting through upregulation of VEGF and MMP-2 via HIF-1 alpha. - Highlights: • Ceiling culture-derived proliferative adipocytes (ccdPAs) react to radiation. • Low-dose radiation (LDR) pretreatment improves survival of ccdPAs under hypoxia. • Gene expression after LDR differs between ccdPAs and adipose-derived stem cells. • LDR-induced increase in MMP-2 and VEGF is dependent on HIF-1 alpha induction. • LDR pretreatment may improve the adipocyte graft survival rate in clinical settings.« less

  12. White Tea extract induces lipolytic activity and inhibits adipogenesis in human subcutaneous (pre)-adipocytes

    PubMed Central

    Söhle, Jörn; Knott, Anja; Holtzmann, Ursula; Siegner, Ralf; Grönniger, Elke; Schepky, Andreas; Gallinat, Stefan; Wenck, Horst; Stäb, Franz; Winnefeld, Marc

    2009-01-01

    Background The dramatic increase in obesity-related diseases emphasizes the need to elucidate the cellular and molecular mechanisms underlying fat metabolism. To investigate how natural substances influence lipolysis and adipogenesis, we determined the effects of White Tea extract on cultured human subcutaneous preadipocytes and adipocytes. Methods For our in vitro studies we used a White Tea extract solution that contained polyphenols and methylxanthines. Utilizing cultured human preadipocytes we investigated White Tea extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. In vitro studies on human adipocytes were performed aiming to elucidate the efficacy of White Tea extract solution to stimulate lipolytic activity. To characterize White Tea extract solution-mediated effects on a molecular level, we analyzed gene expression of essential adipogenesis-related transcription factors by qRT-PCR and determined the expression of the transcription factor ADD1/SREBP-1c on the protein level utilizing immunofluorescence analysis. Results Our data show that incubation of preadipocytes with White Tea extract solution significantly decreased triglyceride incorporation during adipogenesis in a dose-dependent manner (n = 10) without affecting cell viability (n = 10). These effects were, at least in part, mediated by EGCG (n = 10, 50 μM). In addition, White Tea extract solution also stimulated lipolytic activity in adipocytes (n = 7). Differentiating preadipocytes cultivated in the presence of 0.5% White Tea extract solution showed a decrease in PPARγ, ADD1/SREBP-1c, C/EBPα and C/EBPδ mRNA levels. Moreover, the expression of the transcription factor ADD1/SREBP-1c was not only decreased on the mRNA but also on the protein level. Conclusion White Tea extract is a natural source that effectively inhibits adipogenesis and stimulates lipolysis-activity. Therefore, it can be utilized to modulate different

  13. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    PubMed

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism.

  14. Decreased serum estrogen improves fat graft retention by enhancing early macrophage infiltration and inducing adipocyte hypertrophy.

    PubMed

    Mok, Hsiaopei; Feng, Jingwei; Hu, Wansheng; Wang, Jing; Cai, Junrong; Lu, Feng

    2018-06-18

    Fat grafting is a commonly used procedure; however, the mechanisms that regulate graft outcomes are not clear. Estrogen has been associated with vascularization, inflammation and fat metabolism, yet its role in fat grafting is unclear. Mice were implanted with 17β-estradiol pellets (high estrogen, HE), underwent ovariectomy (low estrogen level, OVX) or sham surgery (normal estrogen level, CON). 45 days later, inguinal fat of mice was autografted subcutaneously. At 1, 2, 4, and 12 weeks post-transplantation, grafts were dissected, weighed, and assessed for histology, angiogenesis and inflammation level. Serum estrogen level correlated to estrogen manipulation. 12 weeks after autografting, the retention rate was significantly higher in the OVX (79% ± 30%) than in the HE (16% ± 8%) and CON (35% ± 13%) groups. OVX-grafts had the least necrosis and most hypertrophic fat. OVX recruited the most pro-inflammatory macrophages and demonstrated a faster dead tissue removal process, however a higher fibrogenic tendency was found in this group. HE grafts had the most Sca1+ local stem cells and CD31  +  capillary content; however, with a low level of acute inflammation and insufficient adipokine PPAR-γ expression, their retention rate was impaired. Elevated serum estrogen increased stem cell density and early vascularization; however, by inhibiting the early inflammation, it resulted in delayed necrotic tissue removal and finally led to impaired adipose restoration. A low estrogen level induced favorable inflammation status and adipocyte hypertrophy to improve fat graft retention, but a continuing decreased estrogen level led to fat graft fibrosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Relationship between epicardial adipose tissue adipocyte size and MCP-1 expression.

    PubMed

    Eiras, Sonia; Teijeira-Fernández, Elvis; Salgado-Somoza, Antonio; Couso, Elena; García-Caballero, Tomás; Sierra, Juan; Juanatey, José Ramón González

    2010-08-01

    Adipocyte size has been associated to increase in inflammatory cytokines expression that can be related to the cardiovascular risk of obesity. Epicardial adipose tissue (EAT) was discovered to play a key role in cardiovascular diseases by producing several inflammatory adipokines. We sought to study whether EAT and subcutaneous adipose tissue (SAT) mean adipocyte sizes are related to the expression of adipokines in patients with cardiovascular diseases. We collected EAT, SAT and blood samples from 22 patients aged 70.9 (s.d. 10.3) undergoing heart surgery. Monocyte chemoattractant protein (MCP)-1, interleukin (IL)-10 and tumor necrosis factor (TNF)-alpha were analyzed by real time RT-PCR, ELISA or immunohistochemistry. Hematoxylin-eosin staining was used for adipocyte area calculations. Adipocyte size is negatively correlated to MCP-1 expression (r=-0.475; p=0.034) in EAT and positively correlated in SAT (r=0.438; p=0.047). These trends persisted after stratification for sex and coronary artery disease (CAD), but only the relationship between EAT MCP-1 and adipocyte size reached statistical significance in the larger group of men with CAD. We have observed that SAT adipocyte size is correlated to BMI (r=0.601; p=0.003); whereas only a non-statistically significant trend was observed in EAT. IL-10 and TNF-alpha expression were not associated to adipocyte size in EAT nor SAT. Secondarily, we found that EAT IL-10 expression is higher in patients with CAD. These results suggest that adipocyte size is a negative determinant of MCP-1 expression in EAT and a positive determinant in SAT. These data might partly explain the different implications of EAT and SAT in cardiovascular diseases. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress.

    PubMed

    Sautin, Yuri Y; Nakagawa, Takahiko; Zharikov, Sergey; Johnson, Richard J

    2007-08-01

    Uric acid is considered a major antioxidant in human blood that may protect against aging and oxidative stress. Despite its proposed protective properties, elevated levels of uric acid are commonly associated with increased risk for cardiovascular disease and mortality. Furthermore, recent experimental studies suggest that uric acid may have a causal role in hypertension and metabolic syndrome. All these conditions are thought to be mediated by oxidative stress. In this study we demonstrate that differentiation of cultured mouse adipocytes is associated with increased production of reactive oxygen species (ROS) and uptake of uric acid. Soluble uric acid stimulated an increase in NADPH oxidase activity and ROS production in mature adipocytes but not in preadipocytes. The stimulation of NADPH oxidase-dependent ROS by uric acid resulted in activation of MAP kinases p38 and ERK1/2, a decrease in nitric oxide bioavailability, and an increase in protein nitrosylation and lipid oxidation. Collectively, our results suggest that hyperuricemia induces redox-dependent signaling and oxidative stress in adipocytes. Since oxidative stress in the adipose tissue has recently been recognized as a major cause of insulin resistance and cardiovascular disease, hyperuricemia-induced alterations in oxidative homeostasis in the adipose tissue might play an important role in these derangements.

  17. ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity.

    PubMed

    de Haan, Willeke; Bhattacharjee, Alpana; Ruddle, Piers; Kang, Martin H; Hayden, Michael R

    2014-03-01

    Adipose tissue contains one of the largest reservoirs of cholesterol in the body. Adipocyte dysfunction in obesity is associated with intracellular cholesterol accumulation, and alterations in cholesterol homeostasis have been shown to alter glucose metabolism in cultured adipocytes. ABCA1 plays a major role in cholesterol efflux, suggesting a role for ABCA1 in maintaining cholesterol homeostasis in the adipocyte. However, the impact of adipocyte ABCA1 on adipose tissue function and glucose metabolism is unknown. Our aim was to determine the impact of adipocyte ABCA1 on adipocyte lipid metabolism, body weight, and glucose metabolism in vivo. To address this, we used mice lacking ABCA1 specifically in adipocytes (ABCA1(-ad/-ad)). When fed a high-fat, high-cholesterol diet, ABCA1(-ad/-ad) mice showed increased cholesterol and triglyceride stores in adipose tissue, developed enlarged fat pads, and had increased body weight. Associated with these phenotypic changes, we observed significant changes in the expression of genes involved in cholesterol and glucose homeostasis, including ldlr, abcg1, glut-4, adiponectin, and leptin. ABCA1(-ad/-ad) mice also demonstrated impaired glucose tolerance, lower insulin sensitivity, and decreased insulin secretion. We conclude that ABCA1 in adipocytes influences adipocyte lipid metabolism, body weight, and whole-body glucose homeostasis.

  18. Arginine-vasopressin directly promotes a thermogenic and pro-inflammatory adipokine expression profile in brown adipocytes.

    PubMed

    Küchler, Sebastian; Perwitz, Nina; Schick, Rafael Reinhold; Klein, Johannes; Westphal, Sören

    2010-09-24

    Arginine-vasopressin (AVP) - via activation of the hypothalamic-pituitary-adrenal (HPA) axis - may play a role in the regulation of energy homeostasis and related cardiovascular complications. Brown adipose tissue (BAT) - via dissipation of energy in the form of heat - contributes to whole body energy balance. BAT expresses vasopressin receptors. We investigated direct effects of AVP on brown adipose endocrine and metabolic functions. UCP-1 protein expression in differentiated brown adipocytes was induced after acute exposure of adipocytes to AVP. This effect was time-dependent with a maximum increase after 8h. AVP also induced a time- and dose-dependent increase in p38 MAP kinase phosphorylation. Pharmacological inhibition of p38 MAP kinase with SB 202190 abolished the induction of UCP-1 protein expression. Furthermore, while acute AVP treatment enhanced mRNA expression of MCP-1 and IL-6, adiponectin mRNA expression was reduced. Yet, on the level of intracellular glucose uptake, there was no AVP-induced change of adipose insulin-induced glucose uptake. Finally, there was no difference in lipid accumulation between control and AVP-treated cells. Taken together, our data demonstrate direct effects of AVP on thermogenic, inflammatory, and glucoregulatory gene expression in brown adipocytes, thus expanding the hitherto known spectrum of this neuropeptides's biological effects and suggesting a direct adipotropic role as a stress-promoting factor. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Ectodermal Differentiation of Wharton's Jelly Mesenchymal Stem Cells for Tissue Engineering and Regenerative Medicine Applications.

    PubMed

    Jadalannagari, Sushma; Aljitawi, Omar S

    2015-06-01

    Mesenchymal stem cells (MSCs) from Wharton's jelly (WJ) of the human umbilical cord are perinatal stem cells that have self-renewal ability, extended proliferation potential, immunosuppressive properties, and are accordingly excellent candidates for tissue engineering. These MSCs are unique, easily accessible, and a noncontroversial cell source of regeneration in medicine. Wharton's jelly mesenchymal stem cells (WJMSCs) are multipotent and capable of multilineage differentiation into cells like adipocytes, bone, cartilage, and skeletal muscle upon exposure to appropriate conditions. The ectoderm is one of the three primary germ layers found in the very early embryo that differentiates into the epidermis, nervous system (spine, peripheral nerves, brain), and exocrine glands (mammary, sweat, salivary, and lacrimal glands). Accumulating evidence shows that MSCs obtained from WJ have an ectodermal differentiation potential. The current review examines this differentiation potential of WJMSC into the hair follicle, skin, neurons, and sweat glands along with discussing the potential utilization of such differentiation in regenerative medicine.

  20. Generation of human adipose stem cells through dedifferentiation of mature adipocytes in ceiling cultures.

    PubMed

    Lessard, Julie; Côté, Julie Anne; Lapointe, Marc; Pelletier, Mélissa; Nadeau, Mélanie; Marceau, Simon; Biertho, Laurent; Tchernof, André

    2015-03-07

    Mature adipocytes have been shown to reverse their phenotype into fibroblast-like cells in vitro through a technique called ceiling culture. Mature adipocytes can also be isolated from fresh adipose tissue for depot-specific characterization of their function and metabolic properties. Here, we describe a well-established protocol to isolate mature adipocytes from adipose tissues using collagenase digestion, and subsequent steps to perform ceiling cultures. Briefly, adipose tissues are incubated in a Krebs-Ringer-Henseleit buffer containing collagenase to disrupt tissue matrix. Floating mature adipocytes are collected on the top surface of the buffer. Mature cells are plated in a T25-flask completely filled with media and incubated upside down for a week. An alternative 6-well plate culture approach allows the characterization of adipocytes undergoing dedifferentiation. Adipocyte morphology drastically changes over time of culture. Immunofluorescence can be easily performed on slides cultivated in 6-well plates as demonstrated by FABP4 immunofluorescence staining. FABP4 protein is present in mature adipocytes but down-regulated through dedifferentiation of fat cells. Mature adipocyte dedifferentiation may represent a new avenue for cell therapy and tissue engineering.

  1. Sphingolipids Are Required for Efficient Triacylglycerol Loss in Conjugated Linoleic Acid Treated Adipocytes

    PubMed Central

    Wang, Wei; Fromm, Michael

    2015-01-01

    Conjugated linoleic acid (CLA) reduces adiposity in human and mouse adipocytes. This outcome is achieved through a variety of biological responses including increased energy expenditure and fatty acid oxidation, increased inflammation, repression of fatty acid biosynthesis, attenuated glucose transport, and apoptosis. In the current study, profiling of 261 metabolites was conducted to gain new insights into the biological pathways responding to CLA in 3T3-L1 adipocytes. Sphinganine and sphingosine levels were observed to be highly elevated in CLA treated adipocytes. Exogenous chemicals that increased endogenous ceramide levels decreased lipid levels in adipocytes, and activated AMP-activated protein kinase (AMPK) as well as NF-κB, both of which are typically activated in CLA treated adipocytes. Concurrent inhibition of ceramide de novo biosynthesis and recycling from existing sphingolipid pools attenuated the lipid lowering effect normally associated with responses to CLA, implicating ceramides as an important component of the lipid lowering response in CLA treated adipocytes. PMID:25906159

  2. Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes.

    PubMed

    Liu, Ping; Kong, Feng; Wang, Jue; Lu, Qinghua; Xu, Haijia; Qi, Tonggang; Meng, Juan

    2015-02-01

    Perivascular adipocyte (PVAC) proliferation and differentiation were closely involved in cardiovascular disease. We aimed to investigate whether phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways enhance PVAC functions activated by insulin-like growth factor 1(IGF-1) and suppressed by mesenchyme homeobox 2 (MEOX2). In this study, PVACs from primary culture were cultured and induced to differentiate. Cell viability assays demonstrated that IGF-1 promoted PVAC proliferation and differentiation. However MEOX2 counteracted these IGF-1-mediated actions. Flow Cytometry revealed that IGF-1 increased S phase cells and decreased apoptosis; however, MEOX2 decreased S phase cells, increased G0-G1 phase cells, and promoted apoptosis. During PVAC proliferation and differentiation, IGF-1 activated PI3K/Akt1/2 and ERK1/2 signaling pathways, upregulated the expression of these signaling proteins and FAS, and increased PVAC lipid content. In contrast, MEOX2 constrained the phosphorylation of ERK1/2 and Akt1/2 protein, down-regulated these signaling molecules and FAS, and decreased PVAC lipid content. Instead, MEOX2 knockdown enhanced the ERK1/2 and Akt1/2 phosphorylation, augmented the expression of these signaling molecules and FAS, and increased PVAC lipid content. Our findings suggested that PI3K/Akt1/2 and ERK1/2 activation mediated by IGF-1 is essential for PVAC proliferation and differentiation, and MEOX2 is a promising therapeutic gene to intervene in the signaling pathways and inhibit PVAC functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Metformin induces oxidative stress in white adipocytes and raises uncoupling protein 2 levels.

    PubMed

    Anedda, Andrea; Rial, Eduardo; González-Barroso, M Mar

    2008-10-01

    Metformin is a drug widely used to treat type 2 diabetes. It enhances insulin sensitivity by improving glucose utilization in tissues like liver or muscle. Metformin inhibits respiration, and the decrease in cellular energy activates the AMP-activated protein kinase that in turn switches on catabolic pathways. Moreover, metformin increases lipolysis and beta-oxidation in white adipose tissue, thereby reducing the triglyceride stores. The uncoupling proteins (UCPs) are transporters that lower the efficiency of mitochondrial oxidative phosphorylation. UCP2 is thought to protect against oxidative stress although, alternatively, it could play an energy dissipation role. The aim of this work was to analyse the involvement of UCP2 on the effects of metformin in white adipocytes. We studied the effect of this drug in differentiating 3T3-L1 adipocytes and found that metformin causes oxidative stress since it increases the levels of reactive oxygen species (ROS) and lowers the aconitase activity. Variations in UCP2 protein levels parallel those of ROS. Metformin also increases lipolysis in these cells although only when the levels of ROS and UCP2 have decreased. Hence, UCP2 does not appear to be needed to facilitate fatty acid oxidation. Furthermore, treatment of C57BL/6 mice with metformin also augmented the levels of UCP2 in epididymal white adipose tissue. We conclude that metformin treatment leads to the overexpression of UCP2 in adipocytes to minimize the oxidative stress that is probably due to the inhibition of respiration caused by the drug.

  4. A Novel Human Adipocyte-derived Basement Membrane for Tissue Engineering Applications

    NASA Astrophysics Data System (ADS)

    Damm, Aaron

    Tissue engineering strategies have traditionally focused on the use of synthetic polymers as support scaffolds for cell growth. Recently, strategies have shifted towards a natural biologically derived scaffold, with the main focus on decellularized organs. Here, we report the development and engineering of a scaffold naturally secreted by human preadipocytes during differentiation. During this differentiation process, the preadipocytes remodel the extracellular matrix by releasing new extracellular proteins. Finally, we investigated the viability of the new basement membrane as a scaffold for tissue engineering using human pancreatic islets, and as a scaffold for soft tissue repair. After identifying the original scaffold material, we sought to improve the yield of material, treating the cell as a bioreactor, through various nutritional and cytokine stimuli. The results suggest that adipocytes can be used as bioreactors to produce a designer-specified engineered human extracellular matrix scaffold for specific tissue engineering applications.

  5. The amine oxidase inhibitor phenelzine limits lipogenesis in adipocytes without inhibiting insulin action on glucose uptake.

    PubMed

    Carpéné, Christian; Grès, Sandra; Rascalou, Simon

    2013-06-01

    The antidepressant phenelzine is a monoamine oxidase inhibitor known to inhibit various other enzymes, among them semicarbazide-sensitive amine oxidase (currently named primary amine oxidase: SSAO/PrAO), absent from neurones but abundant in adipocytes. It has been reported that phenelzine inhibits adipocyte differentiation of cultured preadipocytes. To further explore the involved mechanisms, our aim was to study in vitro the acute effects of phenelzine on de novo lipogenesis in mature fat cells. Therefore, glucose uptake and incorporation into lipid were measured in mouse adipocytes in response to phenelzine, other hydrazine-based SSAO/PrAO-inhibitors, and reference agents. None of the inhibitors was able to impair the sevenfold activation of 2-deoxyglucose uptake induced by insulin. Phenelzine did not hamper the effect of lower doses of insulin. However, insulin-stimulated glucose incorporation into lipids was dose-dependently inhibited by phenelzine and pentamidine, but not by semicarbazide or BTT2052. In contrast, all these SSAO/PrAO inhibitors abolished the transport and lipogenesis stimulation induced by benzylamine. These data indicate that phenelzine does not inhibit glucose transport, the first step of lipogenesis, but inhibits at 100 μM the intracellular triacylglycerol assembly, consistently with its long-term anti-adipogenic effect and such rapid action was not found with all the hydrazine derivatives tested. Therefore, the alterations of body weight control consecutive to the use of this antidepressant drug might be not only related to central effects on food intake/energy expenditure, but could also depend on its direct action in adipocytes. Nonetheless, phenelzine antilipogenic action is not merely dependent on SSAO/PrAO inhibition.

  6. An siRNA-based method for efficient silencing of gene expression in mature brown adipocytes.

    PubMed

    Isidor, Marie S; Winther, Sally; Basse, Astrid L; Petersen, M Christine H; Cannon, Barbara; Nedergaard, Jan; Hansen, Jacob B

    2016-01-01

    Brown adipose tissue is a promising therapeutic target for opposing obesity, glucose intolerance and insulin resistance. The ability to modulate gene expression in mature brown adipocytes is important to understand brown adipocyte function and delineate novel regulatory mechanisms of non-shivering thermogenesis. The aim of this study was to optimize a lipofection-based small interfering RNA (siRNA) transfection protocol for efficient silencing of gene expression in mature brown adipocytes. We determined that a critical parameter was to deliver the siRNA to mature adipocytes by reverse transfection, i.e. transfection of non-adherent cells. Using this protocol, we effectively knocked down both high- and low-abundance transcripts in a model of mature brown adipocytes (WT-1) as well as in primary mature mouse brown adipocytes. A functional consequence of the knockdown was confirmed by an attenuated increase in uncoupled respiration (thermogenesis) in response to β-adrenergic stimulation of mature WT-1 brown adipocytes transfected with uncoupling protein 1 siRNA. Efficient gene silencing was also obtained in various mouse and human white adipocyte models (3T3-L1, primary mouse white adipocytes, hMADS) with the ability to undergo "browning." In summary, we report an easy and versatile reverse siRNA transfection protocol to achieve specific silencing of gene expression in various models of mature brown and browning-competent white adipocytes, including primary cells.

  7. Chilean Native Fruit Extracts Inhibit Inflammation Linked to the Pathogenic Interaction Between Adipocytes and Macrophages

    PubMed Central

    Reyes-Farias, Marjorie; Vasquez, Karla; Ovalle-Marin, Angelica; Fuentes, Francisco; Parra, Claudia; Quitral, Vilma; Jimenez, Paula

    2015-01-01

    Abstract Obesity is characterized by an increase in the infiltration of monocytes into the adipose tissue, causing an inflammatory condition associated with, for example, the development of insulin resistance. Thus, anti-inflammatory-based treatments could emerge as a novel and interesting approach. It has been reported that Chilean native fruits maqui (Aristotelia chilensis) and calafate (Berberis microphylla) present high contents of polyphenols, which are known for their antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the ability of extracts of these fruits to block the pathogenic interaction between adipocytes and macrophages in vitro and to compare its effect with blueberry (Vaccinium corymbosum) extract treatment, which has been already described to possess several biomedical benefits. RAW264.7 macrophages were treated with 5 μg/mL lipopolysaccharides (LPS), with conditioned media (CM) from fully differentiated 3T3-L1 adipocytes, or in a coculture (CC) with 3T3-L1 adipocytes, in the presence or absence of 100 μM [total polyphenolic content] of each extract for 24 h. The gene expression and secretion profile of several inflammatory markers were evaluated. Nitric oxide secretion induced by LPS, CM, and CC was reduced by the presence of maqui (−12.2%, −45.6%, and −14.7%, respectively) and calafate (−27.6%, −43.9%, and −11.8%, respectively) extracts. Gene expression of inducible nitric oxide synthase and TNF-α was inhibited and of IL-10 was induced by maqui and calafate extract incubation. In conclusion, the extracts of these fruits present important inhibitory-like features over the inflammatory response of the interaction between adipocytes and macrophages, comprising a potential therapeutic tool against comorbidities associated with obesity development. PMID:25302660

  8. Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Takeshi, E-mail: thashimo@fc.ritsumei.ac.jp; Yokokawa, Takumi; Endo, Yuriko

    2013-10-11

    Highlights: •Long-term hypoxia decreased the size of LDs and lipid storage in 3T3-L1 adipocytes. •Long-term hypoxia increased basal lipolysis in 3T3-L1 adipocytes. •Hypoxia decreased lipid-associated proteins in 3T3-L1 adipocytes. •Hypoxia decreased basal glucose uptake and lipogenic proteins in 3T3-L1 adipocytes. •Hypoxia-mediated lipogenesis may be an attractive therapeutic target against obesity. -- Abstract: Background: A previous study has demonstrated that endurance training under hypoxia results in a greater reduction in body fat mass compared to exercise under normoxia. However, the cellular and molecular mechanisms that underlie this hypoxia-mediated reduction in fat mass remain uncertain. Here, we examine the effects of modestmore » hypoxia on adipocyte function. Methods: Differentiated 3T3-L1 adipocytes were incubated at 5% O{sub 2} for 1 week (long-term hypoxia, HL) or one day (short-term hypoxia, HS) and compared with a normoxia control (NC). Results: HL, but not HS, resulted in a significant reduction in lipid droplet size and triglyceride content (by 50%) compared to NC (p < 0.01). As estimated by glycerol release, isoproterenol-induced lipolysis was significantly lowered by hypoxia, whereas the release of free fatty acids under the basal condition was prominently enhanced with HL compared to NC or HS (p < 0.01). Lipolysis-associated proteins, such as perilipin 1 and hormone-sensitive lipase, were unchanged, whereas adipose triglyceride lipase and its activator protein CGI-58 were decreased with HL in comparison to NC. Interestingly, such lipogenic proteins as fatty acid synthase, lipin-1, and peroxisome proliferator-activated receptor gamma were decreased. Furthermore, the uptake of glucose, the major precursor of 3-glycerol phosphate for triglyceride synthesis, was significantly reduced in HL compared to NC or HS (p < 0.01). Conclusion: We conclude that hypoxia has a direct impact on reducing the triglyceride content and lipid droplet

  9. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles

    PubMed Central

    Durcin, Maëva; Fleury, Audrey; Taillebois, Emiliane; Hilairet, Grégory; Krupova, Zuzana; Henry, Céline; Truchet, Sandrine; Trötzmüller, Martin; Köfeler, Harald; Mabilleau, Guillaume; Hue, Olivier; Andriantsitohaina, Ramaroson; Martin, Patrice; Le Lay, Soazig

    2017-01-01

    ABSTRACT Extracellular vesicles (EVs) are biological vectors that can modulate the metabolism of target cells by conveying signalling proteins and genomic material. The level of EVs in plasma is significantly increased in cardiometabolic diseases associated with obesity, suggesting their possible participation in the development of metabolic dysfunction. With regard to the poor definition of adipocyte-derived EVs, the purpose of this study was to characterise both qualitatively and quantitatively EVs subpopulations secreted by fat cells. Adipocyte-derived EVs were isolated by differential centrifugation of conditioned media collected from 3T3-L1 adipocytes cultured for 24 h in serum-free conditions. Based on morphological and biochemical properties, as well as quantification of secreted EVs, we distinguished two subpopulations of adipocyte-derived EVs, namely small extracellular vesicles (sEVs) and large extracellular vesicles (lEVs). Proteomic analyses revealed that lEVs and sEVs exhibit specific protein signatures, allowing us not only to define novel markers of each population, but also to predict their biological functions. Despite similar phospholipid patterns, the comparative lipidomic analysis performed on these EV subclasses revealed a specific cholesterol enrichment of the sEV population, whereas lEVs were characterised by high amounts of externalised phosphatidylserine. Enhanced secretion of lEVs and sEVs is achievable following exposure to different biological stimuli related to the chronic low-grade inflammation state associated with obesity. Finally, we demonstrate the ability of primary murine adipocytes to secrete sEVs and lEVs, which display physical and biological characteristics similar to those described for 3T3-L1. Our study provides additional information and elements to define EV subtypes based on the characterisation of adipocyte-derived EV populations. It also underscores the need to distinguish EV subpopulations, through a combination of

  10. Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism.

    PubMed

    Lu, Xiaodan; Altshuler-Keylin, Svetlana; Wang, Qiang; Chen, Yong; Henrique Sponton, Carlos; Ikeda, Kenji; Maretich, Pema; Yoneshiro, Takeshi; Kajimura, Shingo

    2018-04-24

    Beige adipocytes are an inducible form of mitochondria-enriched thermogenic adipocytes that emerge in response to external stimuli, such as chronic cold exposure. We have previously shown that after the withdrawal of external stimuli, beige adipocytes directly acquire a white fat-like phenotype through autophagy-mediated mitochondrial degradation. We investigated the upstream pathway that mediates mitochondrial clearance and report that Parkin-mediated mitophagy plays a key role in the beige-to-white adipocyte transition. Mice genetically deficient in Park2 showed reduced mitochondrial degradation and retained thermogenic beige adipocytes even after the withdrawal of external stimuli. Norepinephrine signaling through the PKA pathway inhibited the recruitment of Parkin protein to mitochondria in beige adipocytes. However, mitochondrial proton uncoupling by uncoupling protein 1 (UCP1) was dispensable for Parkin recruitment and beige adipocyte maintenance. These results suggest a physiological mechanism by which external cues control mitochondrial homeostasis in thermogenic fat cells through mitophagy. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. The Novel Endocrine Disruptor Tolylfluanid Impairs Insulin Signaling in Primary Rodent and Human Adipocytes through a Reduction in Insulin Receptor Substrate-1 Levels

    PubMed Central

    Sargis, Robert M.; Neel, Brian A.; Brock, Clifton O.; Lin, Yuxi; Hickey, Allison T.; Carlton, Daniel A.; Brady, Matthew J.

    2012-01-01

    Emerging data suggest that environmental endocrine disrupting chemicals (EDCs) may contribute to the pathophysiology of obesity and diabetes. In prior work, the phenylsulfamide fungicide tolylfluanid (TF) was shown to augment adipocyte differentiation, yet its effects on mature adipocyte metabolism remain unknown. Because of the central role of adipose tissue in global energy regulation, the present study tested the hypothesis that TF modulates insulin action in primary rodent and human adipocytes. Alterations in insulin signaling in primary mammalian adipocytes were determined by the phosphorylation of Akt, a critical insulin signaling intermediate. Treatment of primary murine adipose tissue in vitro with 100 nM TF for 48 h markedly attenuated acute insulin-stimulated Akt phosphorylation in a strain- and species-independent fashion. Perigonadal, perirenal, and mesenteric fat were all sensitive to TF-induced insulin resistance. A similar TF-induced reduction in insulin-stimulated Akt phosphorylation was observed in primary human subcutaneous adipose tissue. TF-treatment led to a potent and specific reduction in insulin receptor substrate-1 (IRS-1) mRNA and protein levels, a key upstream mediator of insulin’s diverse metabolic effects. In contrast, insulin receptor-β, phosphatidylinositol 3-kinase, and Akt expression were unchanged, indicating a specific abrogation of insulin signaling. Additionally, TF-treated adipocytes exhibited altered endocrine function with a reduction in both basal and insulin-stimulated leptin secretion. These studies demonstrate that TF induces cellular insulin resistance in primary murine and human adipocytes through a reduction of IRS-1 expression and protein stability, raising concern about the potential for this fungicide to disrupt metabolism and thereby contribute to the pathogenesis of diabetes. PMID:22387882

  12. Effect of ambient temperature on the proliferation of brown adipocyte progenitors and endothelial cells during postnatal BAT development in Syrian hamsters.

    PubMed

    Nagaya, Kazuki; Okamatsu-Ogura, Yuko; Nio-Kobayashi, Junko; Nakagiri, Shohei; Tsubota, Ayumi; Kimura, Kazuhiro

    2018-04-02

    In Syrian hamsters, brown adipose tissue (BAT) develops postnatally through the proliferation and differentiation of brown adipocyte progenitors. In the study reported here, we investigated how ambient temperature influenced BAT formation in neonatal hamsters. In both hamsters raised at 23 or 30 °C, the interscapular fat changed from white to brown coloration in an age-dependent manner and acquired the typical morphological features of BAT by day 16. However, the expression of uncoupling protein 1, a brown adipocyte marker, and of vascular endothelial growth factor α were lower in the group raised at 30 °C than in that raised at 23 °C. Immunofluorescent staining revealed that the proportion of Ki67-expressing progenitors and endothelial cells was lower in the 30 °C group than in the 23 °C group. These results indicate that warm ambient temperature suppresses the proliferation of brown adipocyte progenitors and endothelial cells and negatively affects the postnatal development of BAT in Syrian hamsters.

  13. Adipocyte Size and Leptin Receptor Expression in Human Subcutaneous Adipose Tissue After Roux-en-Y Gastric Bypass.

    PubMed

    Tamez, Martha; Ramos-Barragan, Victoria; Mendoza-Lorenzo, Patricia; Arrieta-Joffe, Pablo; López-Martínez, Sergio; Rojano-Rodríguez, Martín E; Moreno-Portillo, Mucio; Frigolet, María E

    2017-12-01

    The molecular mechanisms implicated in pronounced weight loss and metabolic benefits after bariatric surgery are still unknown. Adipocyte phenotype and metabolism have not been entirely explored. However, some features of adipocyte function have been studied, such as adipocyte size and inflammation, which are both reduced after bariatric surgery. Adipocyte fat metabolism, which is partly regulated by leptin, is likely modified, since adipocyte area is decreased. Here, we show that leptin receptor expression is increased, while adipocyte size is decreased 8 months after Roux-en-Y gastric bypass. Thus, adipocyte function is possibly modified by improved leptin signaling after bariatric surgery.

  14. Subcutaneous white adipocytes express a light sensitive signaling pathway mediated via a melanopsin/TRPC channel axis.

    PubMed

    Ondrusova, Katarina; Fatehi, Mohammad; Barr, Amy; Czarnecka, Zofia; Long, Wentong; Suzuki, Kunimasa; Campbell, Scott; Philippaert, Koenraad; Hubert, Matthew; Tredget, Edward; Kwan, Peter; Touret, Nicolas; Wabitsch, Martin; Lee, Kevin Y; Light, Peter E

    2017-11-27

    Subcutaneous white adipose tissue (scWAT) is the major fat depot in humans and is a central player in regulating whole body metabolism. Skin exposure to UV wavelengths from sunlight is required for Vitamin D synthesis and pigmentation, although it is plausible that longer visible wavelengths that penetrate the skin may regulate scWAT function. In this regard, we discovered a novel blue light-sensitive current in human scWAT that is mediated by melanopsin coupled to transient receptor potential canonical cation channels. This pathway is activated at physiological intensities of light that penetrate the skin on a sunny day. Daily exposure of differentiated adipocytes to blue light resulted in decreased lipid droplet size, increased basal lipolytic rate and alterations in adiponectin and leptin secretion. Our results suggest that scWAT function may be directly under the influence of ambient sunlight exposure and may have important implications for our current understanding of adipocyte biology. (150 words).

  15. Regulation of lipoprotein lipase in primary cultures of isolated human adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kern, P.A.; Marshall, S.; Eckel, R.H.

    1985-01-01

    To study the regulation of adipose tissue lipoprotein lipase (LPL) in human adipocytes, omental adipose tissue was obtained from healthy subjects and digested in collagenase. The isolated adipocytes thus obtained were suspended in Medium 199 and cultured at 37 degrees C. Cell viability was demonstrated in adipocytes cultured for up to 72 h by constancy of cell number, cell size, trypan-blue exclusion, and specific /sup 125/I-insulin binding. In addition, chloroquine induced an increase in cell-associated /sup 125/I-insulin at 24, 48, and 72 h after preparation. Thus, isolated adipocytes retained their ability to bind, internalize, and degrade insulin. LPL was measuredmore » as activity secreted into the culture medium (CM), released from cells by heparin (HR), and extracted from cell digests. A broad range of heparin concentrations produced a prompt release of LPL from a rapidly replenishable pool of cellular activity. When cells were cultured in medium containing 10% fetal bovine serum, there was a marked stimulation of CM and HR. The secretory response to serum (CM) correlated strongly with HR 24 h after preparation. In addition, HR was found to correlate logarithmically and inversely with body mass index. Insulin, at 400 ng/ml only, increased HR by 36 +/- 10%, an effect simulated by lower concentrations of insulin-like growth factor-1 (IGF1). Thus, LPL is produced and regulated in isolated human adipocytes. The degree of adiposity and serum are important regulators of HR activity, whereas insulin is stimulatory only at a pharmacologic concentration. This effect of insulin may be mediated through the IGF1 receptor. Isolated human adipocytes represent a novel and useful system for the study of LPL and lipid metabolism as well as for other aspects of adipocyte biology.« less

  16. Direct Evidence of Brown Adipocytes in Different Fat Depots in Children

    PubMed Central

    Rockstroh, Denise; Landgraf, Kathrin; Wagner, Isabel Viola; Gesing, Julia; Tauscher, Roy; Lakowa, Nicole; Kiess, Wieland; Bühligen, Ulf; Wojan, Magdalena; Till, Holger; Blüher, Matthias; Körner, Antje

    2015-01-01

    Recent studies suggested the persistence of brown adipocytes in adult humans, as opposed to being exclusively present in infancy. In this study, we investigated the presence of brown-like adipocytes in adipose tissue (AT) samples of children and adolescents aged 0 to 18 years and evaluated the association with age, location, and obesity. For this, we analysed AT samples from 131 children and 23 adults by histological, immunohistochemical and expression analyses. We detected brown-like and UCP1 positive adipocytes in 10.3% of 87 lean children (aged 0.3 to 10.7 years) and in one overweight infant, whereas we did not find brown adipocytes in obese children or adults. In our samples, the brown-like adipocytes were interspersed within white AT of perirenal, visceral and also subcutaneous depots. Samples with brown-like adipocytes showed an increased expression of UCP1 (>200fold), PRDM16 (2.8fold), PGC1α and CIDEA while other brown/beige selective markers, such as PAT2, P2RX5, ZIC1, LHX8, TMEM26, HOXC9 and TBX1 were not significantly different between UCP1 positive and negative samples. We identified a positive correlation between UCP1 and PRDM16 within UCP1 positive samples, but not with any other brown/beige marker. In addition, we observed significantly increased PRDM16 and PAT2 expression in subcutaneous and visceral AT samples with high UCP1 expression in adults. Our data indicate that brown-like adipocytes are present well beyond infancy in subcutaneous depots of non-obese children. The presence was not restricted to typical perirenal locations, but they were also interspersed within WAT of visceral and subcutaneous depots. PMID:25706927

  17. Selection of Aptamers for Mature White Adipocytes by Cell SELEX Using Flow Cytometry

    PubMed Central

    Kim, Eun Young; Kim, Ji Won; Kim, Won Kon; Han, Baek Soo; Park, Sung Goo; Chung, Bong Hyun; Lee, Sang Chul; Bae, Kwang-Hee

    2014-01-01

    Background Adipose tissue, mainly composed of adipocytes, plays an important role in metabolism by regulating energy homeostasis. Obesity is primarily caused by an abundance of adipose tissue. Therefore, specific targeting of adipose tissue is critical during the treatment of obesity, and plays a major role in overcoming it. However, the knowledge of cell-surface markers specific to adipocytes is limited. Methods and Results We applied the CELL SELEX (Systematic Evolution of Ligands by EXponential enrichment) method using flow cytometry to isolate molecular probes for specific recognition of adipocytes. The aptamer library, a mixture of FITC-tagged single-stranded random DNAs, is used as a source for acquiring molecular probes. With the increasing number of selection cycles, there was a steady increase in the fluorescence intensity toward mature adipocytes. Through 12 rounds of SELEX, enriched aptamers showing specific recognition toward mature 3T3-L1 adipocyte cells were isolated. Among these, two aptamers (MA-33 and 91) were able to selectively bind to mature adipocytes with an equilibrium dissociation constant (Kd) in the nanomolar range. These aptamers did not bind to preadipocytes or other cell lines (such as HeLa, HEK-293, or C2C12 cells). Additionally, it was confirmed that MA-33 and 91 can distinguish between mature primary white and primary brown adipocytes. Conclusions These selected aptamers have the potential to be applied as markers for detecting mature white adipocytes and monitoring adipogenesis, and could emerge as an important tool in the treatment of obesity. PMID:24844710

  18. Design, synthesis and characterization of novel binary V(V)-Schiff base materials linked with insulin-mimetic vanadium-induced differentiation of 3T3-L1 fibroblasts to adipocytes. Structure-function correlations at the molecular level.

    PubMed

    Halevas, E; Tsave, O; Yavropoulou, M P; Hatzidimitriou, A; Yovos, J G; Psycharis, V; Gabriel, C; Salifoglou, A

    2015-06-01

    Among the various roles of vanadium in the regulation of intracellular signaling, energy metabolism and insulin mimesis, its exogenous activity stands as a contemporary challenge currently under investigation and a goal to pursue as a metallodrug against Diabetes mellitus II. In this regard, the lipogenic activity of vanadium linked to the development of well-defined anti-diabetic vanadodrugs has been investigated through: a) specifically designing and synthesizing Schiff base organic ligands L, bearing a variable number of terminal alcohols, b) a series of well-defined soluble binary V(V)-L compounds synthesized and physicochemically characterized, c) a study of their cytotoxic effect and establishment of adipogenic activity in 3T3-L1 fibroblasts toward mature adipocytes, and d) biomarker examination of a closely-linked molecular target involving or influenced by the specific V(V) forms, cumulatively delineating factors involved in potential pathways linked to V(V)-induced insulin-like activity. Collectively, the results a) project the importance of specific structural features in Schiff ligands bound to V(V), thereby influencing the emergence of its (a)toxicity and for the first time its insulin-like activity in pre-adipocyte differentiation, b) contribute to the discovery of molecular targets influenced by the specific vanadoforms seeking to induce glucose uptake, and c) indicate an interplay of V(V) structural speciation and cell-differentiation biological activity, thereby gaining insight into vanadium's potential as a future metallodrug in Diabetes mellitus. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Protein Malnutrition Induces Bone Marrow Mesenchymal Stem Cells Commitment to Adipogenic Differentiation Leading to Hematopoietic Failure

    PubMed Central

    Cunha, Mayara Caldas Ramos; Lima, Fabiana da Silva; Vinolo, Marco Aurélio Ramirez; Hastreiter, Araceli; Curi, Rui; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-01-01

    Protein malnutrition (PM) results in pathological changes that are associated with peripheral leukopenia, bone marrow (BM) hypoplasia and alterations in the BM microenvironment leading to hematopoietic failure; however, the mechanisms involved are poorly understood. In this context, the BM mesenchymal stem cells (MSCs) are cells intimately related to the formation of the BM microenvironment, and their differentiation into adipocytes is important because adipocytes are cells that have the capability to negatively modulate hematopoiesis. Two-month-old male Balb/c mice were subjected to protein-energy malnutrition with a low-protein diet containing 2% protein, whereas control animals were fed a diet containing 12% protein. The hematopoietic parameters and the expression of CD45 and CD117 positive cells in the BM were evaluated. MSCs were isolated from BM, and their capability to produce SCF, IL-3, G-CSF and GM-CSF were analyzed. The expression of PPAR-γ and C/EBP-α as well as the expression of PPAR-γ and SREBP mRNAs were evaluated in MSCs together with their capability to differentiate into adipocytes in vitro. The malnourished animals had anemia and leukopenia as well as spleen and bone marrow hypoplasia and a reduction in the expression of CD45 and CD117 positive cells from BM. The MSCs of the malnourished mice presented an increased capability to produce SCF and reduced production of G-CSF and GM-CSF. The MSCs from the malnourished animals showed increased expression of PPAR-γ protein and PPAR-γ mRNA associated with an increased capability to differentiate into adipocytes. The alterations found in the malnourished animals allowed us to conclude that malnutrition committed MSC differentiation leading to adipocyte decision and compromised their capacity for cytokine production, contributing to an impaired hematopoietic microenvironment and inducing the bone marrow failure commonly observed in protein malnutrition states. PMID:23516566

  20. ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity[S

    PubMed Central

    de Haan, Willeke; Bhattacharjee, Alpana; Ruddle, Piers; Kang, Martin H.; Hayden, Michael R.

    2014-01-01

    Adipose tissue contains one of the largest reservoirs of cholesterol in the body. Adipocyte dysfunction in obesity is associated with intracellular cholesterol accumulation, and alterations in cholesterol homeostasis have been shown to alter glucose metabolism in cultured adipocytes. ABCA1 plays a major role in cholesterol efflux, suggesting a role for ABCA1 in maintaining cholesterol homeostasis in the adipocyte. However, the impact of adipocyte ABCA1 on adipose tissue function and glucose metabolism is unknown. Our aim was to determine the impact of adipocyte ABCA1 on adipocyte lipid metabolism, body weight, and glucose metabolism in vivo. To address this, we used mice lacking ABCA1 specifically in adipocytes (ABCA1−ad/−ad). When fed a high-fat, high-cholesterol diet, ABCA1−ad/−ad mice showed increased cholesterol and triglyceride stores in adipose tissue, developed enlarged fat pads, and had increased body weight. Associated with these phenotypic changes, we observed significant changes in the expression of genes involved in cholesterol and glucose homeostasis, including ldlr, abcg1, glut-4, adiponectin, and leptin. ABCA1−ad/−ad mice also demonstrated impaired glucose tolerance, lower insulin sensitivity, and decreased insulin secretion. We conclude that ABCA1 in adipocytes influences adipocyte lipid metabolism, body weight, and whole-body glucose homeostasis. PMID:24443560

  1. XBtg2 is required for notochord differentiation during early Xenopus development.

    PubMed

    Sugimoto, Kaoru; Hayata, Tadayoshi; Asashima, Makoto

    2005-09-01

    The notochord is essential for normal vertebrate development, serving as both a structural support for the embryo and a signaling source for the patterning of adjacent tissues. Previous studies on the notochord have mostly focused on its formation and function in early organogenesis but gene regulation in the differentiation of notochord cells itself remains poorly defined. In the course of screening for genes expressed in developing notochord, we have isolated Xenopus homolog of Btg2 (XBtg2). The mammalian Btg2 genes, Btg2/PC3/TIS21, have been reported to have multiple functions in the regulation of cell proliferation and differentiation but their roles in early development are still unclear. Here we characterized XBtg2 in early Xenopus laevis embryogenesis with focus on notochord development. Translational inhibition of XBtg2 resulted in a shortened and bent axis phenotype and the abnormal structures in the notochord tissue, which did not undergo vacuolation. The XBtg2-depleted notochord cells expressed early notochord markers such as chordin and Xnot at the early tailbud stage, but failed to express differentiation markers of notochord such as Tor70 and 5-D-4 antigens in the later stages. These results suggest that XBtg2 is required for the differentiation of notochord cells such as the process of vacuolar formation after determination of notochord cell fate.

  2. The early effects of stavudine compared with tenofovir on adipocyte gene expression, mitochondrial DNA copy number and metabolic parameters in South African HIV-infected patients: a randomized trial.

    PubMed

    Menezes, C N; Duarte, R; Dickens, C; Dix-Peek, T; Van Amsterdam, D; John, M-A; Ive, P; Maskew, M; Macphail, P; Fox, M P; Raal, F; Sanne, I; Crowther, N J

    2013-04-01

    Stavudine is being phased out because of its mitochondrial toxicity and tenofovir (TDF) is recommended as part of first-line highly active antiretroviral therapy (HAART) in South Africa. A prospective, open-label, randomized controlled trial comparing standard- and low-dose stavudine with TDF was performed to assess early differences in adipocyte mtDNA copy number, gene expression and metabolic parameters in Black South African HIV-infected patients. Sixty patients were randomized 1:1:1 to either standard-dose (30-40 mg) or low-dose (20-30 mg) stavudine or TDF (300 mg) each combined with lamivudine and efavirenz. Subcutaneous fat biopsies were obtained at weeks 0 and 4. Adipocyte mtDNA copies/cell and gene expression were measured using quantitative polymerase chain reaction (qPCR). Markers of inflammation and lipid and glucose metabolism were also assessed. A 29% and 32% decrease in the mean mtDNA copies/cell was noted in the standard-dose (P < 0.05) and low-dose stavudine (P < 0.005) arms, respectively, when compared with TDF at 4 weeks. Nuclear respiratory factor-1 (NRF1) and mitochondrial cytochrome B (MTCYB) gene expression levels were affected by stavudine, with a significantly (P < 0.05) greater fall in expression observed with the standard, but not the low dose compared with TDF. No significant differences were observed in markers of inflammation and lipid and glucose metabolism. These results demonstrate early mitochondrial depletion among Black South African patients receiving low and standard doses of stavudine, with preservation of gene expression levels, except for NRF1 and MTCYB, when compared with patients on TDF. © 2012 British HIV Association.

  3. Bone marrow adipocytes promote the regeneration of stem cells and hematopoiesis by secreting SCF

    PubMed Central

    Zhou, Bo O.; Yu, Hua; Yue, Rui; Zhao, Zhiyu; Rios, Jonathan J.; Naveiras, Olaia; Morrison, Sean J.

    2017-01-01

    Endothelial cells and Leptin Receptor+ (LepR+) stromal cells are critical sources of haematopoietic stem cell (HSC) niche factors, including Stem Cell Factor (SCF), in bone marrow. After irradiation or chemotherapy, these cells are depleted while adipocytes become abundant. We discovered that bone marrow adipocytes synthesize SCF. They arise from Adipoq-Cre/ER+ progenitors, which represent ~5% of LepR+ cells, and proliferate after irradiation. Scf deletion using Adipoq-Cre/ER inhibited hematopoietic regeneration after irradiation or 5-fluorouracil treatment, depleting HSCs and reducing mouse survival. Scf from LepR+ cells, but not endothelial, hematopoietic, or osteoblastic cells, also promoted regeneration. In non-irradiated mice, Scf deletion using Adipoq-Cre/ER did not affect HSC frequency in long bones, which have few adipocytes, but depleted HSCs in tail vertebrae, which have abundant adipocytes. A-ZIP/F1 ‘fatless” mice exhibited delayed hematopoietic regeneration in long bones but not in tail vertebrae, where adipocytes inhibited vascularization. Adipocytes are a niche component that promotes hematopoietic regeneration. PMID:28714970

  4. Up-regulation of aldolase A and methylglyoxal production in adipocytes.

    PubMed

    Liu, Jianghai; Desai, Kaushik; Wang, Rui; Wu, Lingyun

    2013-04-01

    We previously reported that up-regulation of aldolase B, a key enzyme in fructose metabolism, was mainly responsible for vascular methylglyoxal (MG) overproduction under different pathological conditions. Here we investigated whether aldolase A, an enzyme of the glycolytic pathway, also caused MG overproduction in insulin-sensitive adipocytes. The relative contributions of different metabolic pathways or enzymes to MG generation were evaluated in cultured 3T3-L1 adipocytes. Glucose (25 mM) had no effect on aldolase A gene expression, but insulin (100 nM) up-regulated aldolase A mRNA and protein levels in the absence or presence of 25 mM glucose in adipocytes. Treatment with insulin increased levels of basal or glucose (25 mM)-induced MG and glucose 6-phosphate. However, insulin, glucose (25 mM) or their combination had no effect on cellular levels of sorbitol and fructose, but down-regulated gene expression of aldolase B to a similar extent, when compared with the control group. Incubation of 3T3-L1 adipocytes with fructose, acetone, acetol, threonine or glycine (25 mM), with or without insulin did not alter cellular MG levels. The elevated MG levels induced by insulin, glucose (25 mM) or their combination in adipocytes was completely reduced by siRNA knock down of aldolase A or application of 2-deoxy-D-glucose (a non-specific inhibitor of glucose uptake and glycolysis), but not by knock down of aldolase B. Insulin enhanced MG overproduction in insulin-sensitive adipocytes by up-regulating aldolase A, a mechanism that could be involved in the development of insulin resistance and obesity. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  5. Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow.

    PubMed

    Liao, L; Yang, X; Su, X; Hu, C; Zhu, X; Yang, N; Chen, X; Shi, S; Shi, S; Jin, Y

    2013-04-18

    During the process of aging, especially for postmenopausal females, the cell lineage commitment of mesenchymal stem cells (MSCs) shift to adipocyte in bone marrow, resulting in osteoporosis. However, the cell-intrinsic mechanism of this cell lineage commitment switch is poorly understood. As the post-transcription regulation by microRNAs (miRNAs) has a critical role in MSCs differentiation and bone homeostasis, we performed comprehensive miRNAs profiling and found miR-705 and miR-3077-5p were significantly enhanced in MSCs from osteoporosis bone marrow. Both miR-705 and miR-3077-5p acted as inhibitors of MSCs osteoblast differentiation and promoters of adipocyte differentiation, by targeting on the 3'untranslated region (3'UTR) of HOXA10 and RUNX2 mRNA separately. Combined inhibition of miR-705 and miR-3077-5p rescued the cell lineage commitment disorder of MSCs through restoring HOXA10 and RUNX2 protein level. Furthermore, we found excessive TNFα and reactive oxygen species caused by estrogen deficiency led to the upregulation of both miRNAs through NF-κB pathway. In conclusion, our findings showed that redundant miR-705 and miR-3077-5p synergistically mediated the shift of MSCs cell lineage commitment to adipocyte in osteoporosis bone marrow, providing new insight into the etiology of osteoporosis at the post-transcriptional level. Moreover, the rescue of MSCs lineage commitment disorder by regulating miRNAs expression suggested a novel potential therapeutic target for osteoporosis as well as stem cell-mediated regenerative medicine.

  6. Phloretin and phlorizin promote lipolysis and inhibit inflammation in mouse 3T3-L1 cells and in macrophage-adipocyte co-cultures.

    PubMed

    Huang, Wen-Chung; Chang, Wei-Tien; Wu, Shu-Ju; Xu, Pei-Yin; Ting, Nai-Chun; Liou, Chian-Jiun

    2013-10-01

    Previous studies found that phloretin (PT) and phlorizin (PZ) could inhibit glucose transport, with PT being a better inhibitor of lipid peroxidation. This study aimed to evaluate the antiobesity effects of PT and PZ in 3T3-L1 cells and if they can modulate the relationship between adipocytes and macrophages. Differentiated 3T3-L1 cells were treated with PT or PZ. Subsequently, transcription factors of adipogenesis and lipolysis proteins were measured. In addition, RAW 264.7 macrophages treated with PT or PZ were cultured in differentiated media from 3T3-L1 cells to analyze inflammatory mediators and signaling pathways. PT significantly enhanced glycerol release and inhibited the adipogenesis-related transcription factors. PT also promoted phosphorylation of AMP-activated protein kinase and increased activity of adipose triglyceride lipase and hormone-sensitive lipase. PT suppressed the nuclear transcription factor kappa-B and mitogen-activated protein kinase pathways when RAW 264.7 cells were cultured in differentiated media from 3T3-L1 cells. PZ improved lipolysis and inhibited the macrophage inflammatory response less effectively than PT. This study suggests that PT is more effective than PZ at increasing lipolysis in adipocytes. In addition, PT also suppresses inflammatory response in macrophage that is stimulated by differentiated media from 3T3-L1 cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced Toll-like receptor 4 (TLR4) activity via 67 kDa laminin receptor (67LR) in 3T3-L1 adipocytes.

    PubMed

    Bao, Suqing; Cao, Yanli; Zhou, Haicheng; Sun, Xin; Shan, Zhongyan; Teng, Weiping

    2015-03-18

    Obesity-related insulin resistance is associated with chronic systemic low-grade inflammation, and toll-like receptor 4 (TLR4) regulates inflammation. We investigated the pathways involved in epigallocatechin gallate (EGCG) modulation of insulin and TLR4 signaling in adipocytes. Inflammation was induced in adipocytes by lipopolysaccharide (LPS). An antibody against the 67 kDa laminin receptor (67LR, to which EGCG exclusively binds) was used to examine the effect of EGCG on TLR4 signaling, and a TLR4/MD-2 antibody was used to inhibit TLR4 activity and to determine the insulin sensitivity of differentiated 3T3-L1 adipocytes. We found that EGCG dose-dependently inhibited LPS stimulation of adipocyte inflammation by reducing inflammatory mediator and cytokine levels (IKKβ, p-NF-κB, TNF-α, and IL-6). Pretreatment with the 67LR antibody prevented EGCG inhibition of inflammatory cytokines, decreased glucose transporter isoform 4 (GLUT4) expression, and inhibited insulin-stimulated glucose uptake. TLR4 inhibition attenuated inflammatory cytokine levels and increased glucose uptake by reversing GLUT4 levels. These data suggest that EGCG suppresses TLR4 signaling in LPS-stimulated adipocytes via 67LR and attenuates insulin-stimulated glucose uptake associated with decreased GLUT4 expression.

  8. Ononitol monohydrate enhances PRDM16 & UCP-1 expression, mitochondrial biogenesis and insulin sensitivity via STAT6 and LTB4R in maturing adipocytes.

    PubMed

    Subash-Babu, P; Alshatwi, Ali A

    2018-03-01

    Ononitol monohydrate (OMH), a glycoside was originally isolated from Cassia tora (Linn.). Glycosides regulate lipid metabolism but scientific validation desired. Hence, we aimed to evaluate the effect of OMH on enhancing mitochondrial potential, mitochondrial biogenesis, upregulate the expression of brown adipogenesis specific genes in maturing adipocytes. In addition, we observed the inter-relation between adipocyte and T-lymphocyte; whether, OMH treated adipocyte-condition medium stimulate T-cell chemokine linked with insulin resistance. In a dose dependent manner OMH treated to preadipocyte significantly inhibited maturation and enhanced mitochondrial biogenesis, it was confirmed by Oil red 'O and Nile red stain without inducing cytotoxicity. The mRNA levels of adipocyte browning related genes such as, PR domain containing 16 (PRDM16), peroxisome proliferator activated receptor gamma coactivator 1 alpha (PPARγC1α) and uncoupling protein-1 (UCP-1) have been significantly upregulated. In addition, adipogenic transcription factors [such as proliferator activated receptor γ (PPARγ), CCAAT/enhancer binding protein (C/EBPα) and sterol regulatory element binding protein-1c (SREBP-1c)] and adipogenic genes were significantly down-regulated by treatment with OMH when compared to control cells. Protein expression levels of adiponectin have been increased; leptin, C/EBPα and leukotriene B4 receptor (LTB4R) were down regulated by OMH in mature adipocytes. In addition, adipocyte condition medium and OMH treated T-lymphocyte, significantly increased insulin signaling pathway related mRNAs, such as interlukin-4 (IL-4), signal transducer and activator of transcription 6 (STAT 6 ) and decreased leukotriene B4 (LTB 4 ). The present findings suggest that OMH increased browning factors in differentiating and maturing preadipocyte also decreased adipose tissue inflammation as well as the enhanced insulin signaling. Copyright © 2018. Published by Elsevier Masson SAS.

  9. Analysis for apoptosis and necrosis on adipocytes, stromal vascular fraction, and adipose-derived stem cells in human lipoaspirates after liposuction.

    PubMed

    Wang, Wei Z; Fang, Xin-Hua; Williams, Shelley J; Stephenson, Linda L; Baynosa, Richard C; Wong, Nancy; Khiabani, Kayvan T; Zamboni, William A

    2013-01-01

    Adipose-derived stem cells have become the most studied adult stem cells. The authors examined the apoptosis and necrosis rates for adipocyte, stromal vascular fraction, and adipose-derived stem cells in fresh human lipoaspirates. Human lipoaspirate (n = 8) was harvested using a standard liposuction technique. Stromal vascular fraction cells were separated from adipocytes and cultured to obtain purified adipose-derived stem cells. A panel of stem cell markers was used to identify the surface phenotypes of cultured adipose-derived stem cells. Three distinct stem cell subpopulations (CD90/CD45, CD105/CD45, and CD34/CD31) were selected from the stromal vascular fraction. Apoptosis and necrosis were determined by annexin V/propidium iodide assay and analyzed by flow cytometry. The cultured adipose-derived stem cells demonstrated long-term proliferation and differentiation evidenced by cell doubling time and positive staining with oil red O and alkaline phosphatase. Isolated from lipoaspirates, adipocytes exhibited 19.7 ± 3.7 percent apoptosis and 1.1 ± 0.3 percent necrosis; stromal vascular fraction cells revealed 22.0 ± 6.3 percent of apoptosis and 11.2 ± 1.9 percent of necrosis; stromal vascular fraction cells had a higher rate of necrosis than adipocytes (p < 0.05). Among the stromal vascular fraction cells, 51.1 ± 3.7 percent expressed CD90/CD45, 7.5 ± 1.0 percent expressed CD105/CD45, and 26.4 ± 3.8 percent expressed CD34/CD31. CD34/CD31 adipose-derived stem cells had lower rates of apoptosis and necrosis compared with CD105/CD45 adipose-derived stem cells (p < 0.05). Adipose-derived stem cells had a higher rate of apoptosis and necrosis than adipocytes. However, the extent of apoptosis and necrosis was significantly different among adipose-derived stem cell subpopulations.

  10. Specific visible radiation facilitates lipolysis in mature 3T3-L1 adipocytes via rhodopsin-dependent β3-adrenergic signaling.

    PubMed

    Park, Phil June; Cho, Jae Youl; Cho, Eun-Gyung

    2017-06-01

    The regulation of fat metabolism is important for maintaining functional and structural tissue homeostasis in biological systems. Reducing excessive lipids has been an important concern due to the concomitant health risks caused by metabolic disorders such as obesity, adiposity and dyslipidemia. A recent study revealed that unlike conventional care regimens (e.g., diet or medicine), low-energy visible radiation (VR) regulates lipid levels via autophagy-dependent hormone-sensitive lipase (HSL) phosphorylation in differentiated human adipose-derived stem cells. To clarify the underlying cellular and molecular mechanisms, we first verified the photoreceptor and photoreceptor-dependent signal cascade in nonvisual 3T3-L1 adipocytes. For a better understanding of the concomitant phenomena that result from VR exposure, mature 3T3-L1 adipocytes were exposed to four different wavelengths of VR (410, 505, 590 and 660nm) in this study. The results confirmed that specific VR wavelengths, especially 505nm than 590nm, increase intracellular cyclic adenosine monophosphate (cAMP) levels and decrease lipid droplets. Interestingly, the mRNA and protein levels of the Opn2 (rhodopsin) photoreceptor increased after VR exposure in mature 3T3-L1 adipocytes. Subsequent treatment of mature 3T3-L1 adipocytes at a specific VR wavelength induced rhodopsin- and β3-adrenergic receptor (AR)-dependent lipolytic responses that consequently led to increases in intracellular cAMP and phosphorylated HSL protein levels. Our study indicates that photoreceptors are expressed and exert individual functions in nonvisual cells, such as adipocytes. We suggest that the VR-induced photoreceptor system could be a potential therapeutic target for the regulation of lipid homeostasis in a non-invasive manner. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Peroxisome Proliferator-Activated Receptor γ Target Gene Encoding a Novel Angiopoietin-Related Protein Associated with Adipose Differentiation

    PubMed Central

    Yoon, J. Cliff; Chickering, Troy W.; Rosen, Evan D.; Dussault, Barry; Qin, Yubin; Soukas, Alexander; Friedman, Jeffrey M.; Holmes, William E.; Spiegelman, Bruce M.

    2000-01-01

    The nuclear receptor peroxisome proliferator-activated receptor γ regulates adipose differentiation and systemic insulin signaling via ligand-dependent transcriptional activation of target genes. However, the identities of the biologically relevant target genes are largely unknown. Here we describe the isolation and characterization of a novel target gene induced by PPARγ ligands, termed PGAR (for PPARγ angiopoietin related), which encodes a novel member of the angiopoietin family of secreted proteins. The transcriptional induction of PGAR follows a rapid time course typical of immediate-early genes and occurs in the absence of protein synthesis. The expression of PGAR is predominantly localized to adipose tissues and placenta and is consistently elevated in genetic models of obesity. Hormone-dependent adipocyte differentiation coincides with a dramatic early induction of the PGAR transcript. Alterations in nutrition and leptin administration are found to modulate the PGAR expression in vivo. Taken together, these data suggest a possible role for PGAR in the regulation of systemic lipid metabolism or glucose homeostasis. PMID:10866690

  12. A nonmagnetic differentiated early planetary body

    NASA Astrophysics Data System (ADS)

    Weiss, Benjamin P.; Wang, Huapei; Sharp, Thomas G.; Gattacceca, Jérôme; Shuster, David L.; Downey, Brynna; Hu, Jinping; Fu, Roger R.; Kuan, Aaron T.; Suavet, Clément; Irving, Anthony J.; Wang, Jun; Wang, Jiajun

    2017-06-01

    Paleomagnetic studies of meteorites have shown that the solar nebula was likely magnetized and that many early planetary bodies generated dynamo magnetic fields in their advecting metallic cores. The surface fields on these bodies were recorded by a diversity of chondrites and achondrites, ranging in intensity from several μT to several hundred μT. In fact, an achondrite parent body without evidence for paleomagnetic fields has yet to be confidently identified, hinting that early solar system field generation and the dynamo process in particular may have been common. Here we present paleomagnetic measurements of the ungrouped achondrite NWA 7325 indicating that it last cooled in a near-zero field (<∼1.7 μT), estimated to have occurred at 4563.09 ± 0.26 million years ago (Ma) from Al-Mg chronometry. Because NWA 7325 is highly depleted in siderophile elements, its parent body nevertheless underwent large-scale metal-silicate differentiation and likely formed a metallic core. This makes NWA 7325 the first recognized example of an essentially unmagnetized igneous rock from a differentiated early solar system body. These results indicate that all magnetic fields, including those from any core dynamo on the NWA 7325 parent body, the solar nebula, young Sun, and solar wind, were <1.7 μT at the location of NWA 7325 at 4563 Ma. This supports a recent conclusion that the solar nebula had dissipated by ∼4 million years after solar system formation. NWA 7325 also serves as an experimental control that gives greater confidence in the positive identification of remanent magnetization in other achondrites.

  13. Suppression of inflammation-associated factors by indole-3-carbinol in mice fed high-fat diets and in isolated, co-cultured macrophages and adipocytes.

    PubMed

    Chang, H-P; Wang, M-L; Hsu, C-Y; Liu, M-E; Chan, M-H; Chen, Y-H

    2011-12-01

    This study investigated the effects of indole-3-carbinol (I3C), a compound from cruciferous vegetables, on various parameters related to obesity, in particular, the parameters of infiltration by macrophages and of inflammatory cytokines expressed during the co-culture of adipocytes and macrophages. Male C57BL/6 mice were fed with a control diet (C group), high-fat diet (HF group) and HF+5 mg kg(-1) I3C (HFI group). The I3C was intraperitoneally injected (HFI group) for 12 weeks. Epididymal adipose tissue (AT) was collected and stained for F4/80, a marker of macrophages. The immunohistochemical staining for F4/80 indicated a greater presence of macrophages in the HF group than in AT from the control and HFI groups. Furthermore, I3C treatment, in an in vitro cell culture system, decreased expression of inducible nitric oxide synthase (iNOS), decreased nitrite content and enhanced expression of peroxisome proliferator-activated receptor (PPAR-γ). Moreover, in vitro cell culture studies revealed that I3C inhibited intracellular lipid accumulation in hypertrophied adipocytes. In macrophage and primary adipocyte co-culture, I3C inhibited expression of interleukin-6 (IL-6). In vivo treatment with I3C reduced the infiltration of macrophages in AT, and in vitro addition of I3C to co-cultured macrophages and adipocytes reduced nitrite production and IL-6 expression. With cultures of adipocytes only, I3C inhibited accumulation of intracellular lipid, either by disrupting differentiation, or by directly inhibiting triglyceride synthesis.

  14. Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway

    PubMed Central

    Toriuchi, Yuriko; Aki, Yuka; Mizuno, Yuto; Kawakami, Takashige; Nakaya, Tomoko; Sato, Masao; Suzuki, Shinya

    2017-01-01

    Knockout of metallothionein (MT) genes contributes to a heavier body weight in early life and the potential to become obese through the intake of a high fat diet (HFD) in mice. It has thus been suggested that MT genes regulate the formation of adipose tissue, which would become the base for later HFD-induced obesity. We evaluated the fat pads of mice during the lactation stage. The fat mass and adipocyte size of MT1 and MT2 knockout mice were greater than those of wild type mice. Next, we assayed the ability of small interfering RNA (siRNA) to silence MT genes in the 3T3-L1 cell line. The expressions of MT1 and MT2 genes were transiently upregulated during adipocyte differentiation, and the siRNA pretreatment led to the suppression of the expression of both MT mRNAs and proteins. The MT siRNA promoted lipid accumulation in adipocytes and caused proliferation of post-confluent preadipocytes; these effects were suppressed by an inhibitor of phosphatidylinositol 3-kinase (LY294002). In addition, MT siRNA promoted insulin-stimulated phosphorylation of Akt, a downstream kinase of the insulin signaling pathway. Enhanced lipid accumulation in 3T3-L1 cells resulting from MT-gene silencing was inhibited by pretreatment with an antioxidant, N-acetylcysteine, used as a substitute for antioxidant protein MTs. These results suggest that interference in MT expression enhanced the activation of the insulin signaling pathway, resulting in higher lipid accumulation in 3T3-L1 adipocytes. PMID:28426713

  15. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF.

    PubMed

    Zhou, Bo O; Yu, Hua; Yue, Rui; Zhao, Zhiyu; Rios, Jonathan J; Naveiras, Olaia; Morrison, Sean J

    2017-08-01

    Endothelial cells and leptin receptor + (LepR + ) stromal cells are critical sources of haematopoietic stem cell (HSC) niche factors, including stem cell factor (SCF), in bone marrow. After irradiation or chemotherapy, these cells are depleted while adipocytes become abundant. We discovered that bone marrow adipocytes synthesize SCF. They arise from Adipoq-Cre/ER + progenitors, which represent ∼5% of LepR + cells, and proliferate after irradiation. Scf deletion using Adipoq-Cre/ER inhibited haematopoietic regeneration after irradiation or 5-fluorouracil treatment, depleting HSCs and reducing mouse survival. Scf from LepR + cells, but not endothelial, haematopoietic or osteoblastic cells, also promoted regeneration. In non-irradiated mice, Scf deletion using Adipoq-Cre/ER did not affect HSC frequency in long bones, which have few adipocytes, but depleted HSCs in tail vertebrae, which have abundant adipocytes. A-ZIP/F1 'fatless' mice exhibited delayed haematopoietic regeneration in long bones but not in tail vertebrae, where adipocytes inhibited vascularization. Adipocytes are a niche component that promotes haematopoietic regeneration.

  16. Inhibition of master transcription factors in pluripotent cells induces early stage differentiation

    PubMed Central

    De, Debojyoti; Jeong, Myong-Ho; Leem, Young-Eun; Svergun, Dmitri I.; Wemmer, David E.; Kang, Jong-Sun; Kim, Kyeong Kyu; Kim, Sung-Hou

    2014-01-01

    The potential for pluripotent cells to differentiate into diverse specialized cell types has given much hope to the field of regenerative medicine. Nevertheless, the low efficiency of cell commitment has been a major bottleneck in this field. Here we provide a strategy to enhance the efficiency of early differentiation of pluripotent cells. We hypothesized that the initial phase of differentiation can be enhanced if the transcriptional activity of master regulators of stemness is suppressed, blocking the formation of functional transcriptomes. However, an obstacle is the lack of an efficient strategy to block protein–protein interactions. In this work, we take advantage of the biochemical property of seventeen kilodalton protein (Skp), a bacterial molecular chaperone that binds directly to sex determining region Y-box 2 (Sox2). The small angle X-ray scattering analyses provided a low resolution model of the complex and suggested that the transactivation domain of Sox2 is probably wrapped in a cleft on Skp trimer. Upon the transduction of Skp into pluripotent cells, the transcriptional activity of Sox2 was inhibited and the expression of Sox2 and octamer-binding transcription factor 4 was reduced, which resulted in the expression of early differentiation markers and appearance of early neuronal and cardiac progenitors. These results suggest that the initial stage of differentiation can be accelerated by inhibiting master transcription factors of stemness. This strategy can possibly be applied to increase the efficiency of stem cell differentiation into various cell types and also provides a clue to understanding the mechanism of early differentiation. PMID:24434556

  17. Reciprocal regulation of adipocyte and osteoblast differentiation of mesenchymal stem cells by Eupatorium japonicum prevents bone loss and adiposity increase in osteoporotic rats.

    PubMed

    Kim, Min-Ji; Jang, Woo-Seok; Lee, In-Kyoung; Kim, Jong-Keun; Seong, Ki-Seung; Seo, Cho-Rong; Song, No-Joon; Bang, Min-Hyuk; Lee, Young Min; Kim, Haeng Ran; Park, Ki-Moon; Park, Kye Won

    2014-07-01

    Pathological increases in adipogenic potential with decreases in osteogenic differentiation occur in osteoporotic bone marrow cells. Previous studies have shown that bioactive materials isolated from natural products can reciprocally regulate adipogenic and osteogenic fates of bone marrow cells. In this study, we showed that Eupatorium japonicum stem extracts (EJE) suppressed lipid accumulation and inhibited the expression of adipocyte markers in multipotent C3H10T1/2 and primary bone marrow cells. Conversely, EJE stimulated alkaline phosphatase activity and induced the expression of osteoblast markers in C3H10T1/2 and primary bone marrow cells. Daily oral administration of 50 mg/kg of EJE for 6 weeks to ovariectomized rats prevented body weight increase and bone mineral density decrease. Finally, activity-guided fractionation led to the identification of coumaric acid and coumaric acid methyl ester as bioactive anti-adipogenic and pro-osteogenic components in EJE. Taken together, our data indicate a promising possibility of E. japonicum as a functional food and as a therapeutic intervention for preventing osteoporosis and bone fractures.

  18. Corn silk maysin ameliorates obesity in vitro and in vivo via suppression of lipogenesis, differentiation, and function of adipocytes.

    PubMed

    Lee, Chang Won; Seo, Jeong Yeon; Kim, Sun-Lim; Lee, Jisun; Choi, Ji Won; Park, Yong Il

    2017-09-01

    Present study was aimed to investigate the potential anti-obesity effects of maysin, a major flavonoid of corn silk, in vitro and in vivo using 3T3-L1 preadipocyte cells and C57BL/6 mice. Maysin decreased the levels of intracellular lipid droplets and triglycerides (TG), and down-regulated the protein expression levels of C/EBP-β, C/EBP-α, PPAR-γ, and aP2 in 3T3-L1 preadipocyte cells, suggesting that maysin inhibits lipid accumulation and adipocyte differentiation. In addition, maysin was shown to induce the apoptotic cell death in 3T3-L1 preadipocyte cells via activation of caspase cascades and mitochondrial dysfunction, which may ultimately lead to reduction of adipose tissue mass. Furthermore, oral administration of maysin (25mg/kg body weight) decreased weight gain and epididymal fat weight in high-fat diet (HFD)-fed C57BL/6 mice. Administration of maysin also reduced serum levels of TG, total-cholesterol, LDL-cholesterol, and glucose. Taken collectively, these results suggest for the first time that the purified maysin exerts an anti-obesity effect in vitro and in vivo. These observations may support the applicability of maysin as a potent functional ingredient in health-beneficial foods or as a therapeutic agent to prevent or treat obesity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Zanthoxylum piperitum DC ethanol extract suppresses fat accumulation in adipocytes and high fat diet-induced obese mice by regulating adipogenesis.

    PubMed

    Gwon, So Young; Ahn, Ji Yun; Kim, Tae Wan; Ha, Tae Youl

    2012-01-01

    This study was conducted to determine the anti-obesity effects of Zanthoxylum piperitum DC fruit ethanol extract (ZPE) in 3T3-L1 adipocytes and obese mice fed a high-fat diet. We evaluated the influence of the addition of ZPE to a high-fat diet on body weight, adipose tissue weight, serum and hepatic lipids in C57BL/6 mice. In addition, adipogenic gene expression was determined by Western blot and real-time reverse transcription-PCR analysis. We assessed the effect of ZPE on 3T3-L1 preadipocyte differentiation. ZPE reduced weight gain, white adipose tissue mass, and serum triglyceride and cholesterol levels (p<0.05) in high-fat diet-fed C57BL/6 mice. ZPE decreased lipid accumulation and PPARγ, C/EBPα, SREBP-1, and FAS protein and mRNA levels in the liver. ZPE inhibited in vitro adipocyte differentiation in a dose-dependent manner and significantly attenuated adipogenic transcription factors, such as PPARγ, C/EBPα, and SREBP-1 in 3T3L1 cells. These findings suggest that Z. piperitum DC exerts an anti-obesity effect by inhibiting adipogenesis through the downregulation of genes involved in the adipogenesis pathway.

  20. Browning of human adipocytes requires KLF11 and reprogramming of PPARγ superenhancers.

    PubMed

    Loft, Anne; Forss, Isabel; Siersbæk, Majken Storm; Schmidt, Søren Fisker; Larsen, Ann-Sofie Bøgh; Madsen, Jesper Grud Skat; Pisani, Didier F; Nielsen, Ronni; Aagaard, Mads Malik; Mathison, Angela; Neville, Matt J; Urrutia, Raul; Karpe, Fredrik; Amri, Ez-Zoubir; Mandrup, Susanne

    2015-01-01

    Long-term exposure to peroxisome proliferator-activated receptor γ (PPARγ) agonists such as rosiglitazone induces browning of rodent and human adipocytes; however, the transcriptional mechanisms governing this phenotypic switch in adipocytes are largely unknown. Here we show that rosiglitazone-induced browning of human adipocytes activates a comprehensive gene program that leads to increased mitochondrial oxidative capacity. Once induced, this gene program and oxidative capacity are maintained independently of rosiglitazone, suggesting that additional browning factors are activated. Browning triggers reprogramming of PPARγ binding, leading to the formation of PPARγ "superenhancers" that are selective for brown-in-white (brite) adipocytes. These are highly associated with key brite-selective genes. Based on such an association, we identified an evolutionarily conserved metabolic regulator, Kruppel-like factor 11 (KLF11), as a novel browning transcription factor in human adipocytes that is required for rosiglitazone-induced browning, including the increase in mitochondrial oxidative capacity. KLF11 is directly induced by PPARγ and appears to cooperate with PPARγ in a feed-forward manner to activate and maintain the brite-selective gene program. © 2015 Loft et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Fisetin induces Sirt1 expression while inhibiting early adipogenesis in 3T3-L1 cells.

    PubMed

    Kim, Sang Chon; Kim, Yoo Hoon; Son, Sung Wook; Moon, Eun-Yi; Pyo, Suhkneung; Um, Sung Hee

    2015-11-27

    Fisetin (3,7,3',4'-tetrahydroxyflavone) is a naturally found flavonol in many fruits and vegetables and is known to have anti-aging, anti-cancer and anti-viral effects. However, the effects of fisetin on early adipocyte differentiation and the epigenetic regulator controlling adipogenic transcription factors remain unclear. Here, we show that fisetin inhibits lipid accumulation and suppresses the expression of PPARγ in 3T3-L1 cells. Fisetin suppressed early stages of preadipocyte differentiation, and induced expression of Sirt1. Depletion of Sirt1 abolished the inhibitory effects of fisetin on intracellular lipid accumulation and on PPARγ expression. Mechanistically, fisetin facilitated Sirt1-mediated deacetylation of PPARγ and FoxO1, and enhanced the association of Sirt1 with the PPARγ promoter, leading to suppression of PPARγ transcriptional activity, thereby repressing adipogenesis. Lowering Sirt1 levels reversed the effects of fisetin on deacetylation of PPARγ and increased PPARγ transactivation. Collectively, our results suggest the effects of fisetin in increasing Sirt1 expression and in epigenetic control of early adipogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. A Synergistic Antiobesity Effect by a Combination of Capsinoids and Cold Temperature Through Promoting Beige Adipocyte Biogenesis

    PubMed Central

    Ohyama, Kana; Nogusa, Yoshihito; Shinoda, Kosaku; Suzuki, Katsuya

    2016-01-01

    Beige adipocytes emerge postnatally within the white adipose tissue in response to certain environmental cues, such as chronic cold exposure. Because of its highly recruitable nature and relevance to adult humans, beige adipocytes have gained much attention as an attractive cellular target for antiobesity therapy. However, molecular circuits that preferentially promote beige adipocyte biogenesis remain poorly understood. We report that a combination of mild cold exposure at 17°C and capsinoids, a nonpungent analog of capsaicin, synergistically and preferentially promotes beige adipocyte biogenesis and ameliorates diet-induced obesity. Gain- and loss-of-function studies show that the combination of capsinoids and cold exposure synergistically promotes beige adipocyte development through the β2-adrenoceptor signaling pathway. This synergistic effect on beige adipocyte biogenesis occurs through an increased half-life of PRDM16, a dominant transcriptional regulator of brown/beige adipocyte development. We document a previously unappreciated molecular circuit that controls beige adipocyte biogenesis and suggest a plausible approach to increase whole-body energy expenditure by combining dietary components and environmental cues. PMID:26936964

  3. Role for early-differentiated natural killer cells in infectious mononucleosis

    PubMed Central

    Azzi, Tarik; Lünemann, Anna; Murer, Anita; Ueda, Seigo; Béziat, Vivien; Malmberg, Karl-Johan; Staubli, Georg; Gysin, Claudine; Berger, Christoph; Münz, Christian

    2014-01-01

    A growing body of evidence suggests that the human natural killer (NK)-cell compartment is phenotypically and functionally heterogeneous and is composed of several differentiation stages. Moreover, NK-cell subsets have been shown to exhibit adaptive immune features during herpes virus infection in experimental mice and to expand preferentially during viral infections in humans. However, both phenotype and role of NK cells during acute symptomatic Epstein-Barr virus (EBV) infection, termed infectious mononucleosis (IM), remain unclear. Here, we longitudinally assessed the kinetics, the differentiation, and the proliferation of subsets of NK cells in pediatric IM patients. Our results indicate that acute IM is characterized by the preferential proliferation of early-differentiated CD56dim NKG2A+ immunoglobulin-like receptor- NK cells. Moreover, this NK-cell subset exhibits features of terminal differentiation and persists at higher frequency during at least the first 6 months after acute IM. Finally, we demonstrate that this NK-cell subset preferentially degranulates and proliferates on exposure to EBV-infected B cells expressing lytic antigens. Thus, early-differentiated NK cells might play a key role in the immune control of primary infection with this persistent tumor-associated virus. PMID:25205117

  4. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix

    PubMed Central

    Barneda, David; Planas-Iglesias, Joan; Gaspar, Maria L; Mohammadyani, Dariush; Prasannan, Sunil; Dormann, Dirk; Han, Gil-Soo; Jesch, Stephen A; Carman, George M; Kagan, Valerian; Parker, Malcolm G; Ktistakis, Nicholas T; Klein-Seetharaman, Judith; Dixon, Ann M; Henry, Susan A; Christian, Mark

    2015-01-01

    Maintenance of energy homeostasis depends on the highly regulated storage and release of triacylglycerol primarily in adipose tissue, and excessive storage is a feature of common metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown adipocytes promoting the enlargement of LDs, which are dynamic, ubiquitous organelles specialized for storing neutral lipids. We demonstrate an essential role in this process for an amphipathic helix in CIDEA, which facilitates embedding in the LD phospholipid monolayer and binds phosphatidic acid (PA). LD pairs are docked by CIDEA trans-complexes through contributions of the N-terminal domain and a C-terminal dimerization region. These complexes, enriched at the LD–LD contact site, interact with the cone-shaped phospholipid PA and likely increase phospholipid barrier permeability, promoting LD fusion by transference of lipids. This physiological process is essential in adipocyte differentiation as well as serving to facilitate the tight coupling of lipolysis and lipogenesis in activated brown fat. DOI: http://dx.doi.org/10.7554/eLife.07485.001 PMID:26609809

  5. Human 'brite/beige' adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice.

    PubMed

    Min, So Yun; Kady, Jamie; Nam, Minwoo; Rojas-Rodriguez, Raziel; Berkenwald, Aaron; Kim, Jong Hun; Noh, Hye-Lim; Kim, Jason K; Cooper, Marcus P; Fitzgibbons, Timothy; Brehm, Michael A; Corvera, Silvia

    2016-03-01

    Uncoupling protein 1 (UCP1) is highly expressed in brown adipose tissue, where it generates heat by uncoupling electron transport from ATP production. UCP1 is also found outside classical brown adipose tissue depots, in adipocytes that are termed 'brite' (brown-in-white) or 'beige'. In humans, the presence of brite or beige (brite/beige) adipocytes is correlated with a lean, metabolically healthy phenotype, but whether a causal relationship exists is not clear. Here we report that human brite/beige adipocyte progenitors proliferate in response to pro-angiogenic factors, in association with expanding capillary networks. Adipocytes formed from these progenitors transform in response to adenylate cyclase activation from being UCP1 negative to being UCP1 positive, which is a defining feature of the beige/brite phenotype, while displaying uncoupled respiration. When implanted into normal chow-fed, or into high-fat diet (HFD)-fed, glucose-intolerant NOD-scid IL2rg(null) (NSG) mice, brite/beige adipocytes activated in vitro enhance systemic glucose tolerance. These adipocytes express neuroendocrine and secreted factors, including the pro-protein convertase PCSK1, which is strongly associated with human obesity. Pro-angiogenic conditions therefore drive the proliferation of human beige/brite adipocyte progenitors, and activated beige/brite adipocytes can affect systemic glucose homeostasis, potentially through a neuroendocrine mechanism.

  6. A nonmagnetic differentiated early planetary body

    DOE PAGES

    Weiss, Benjamin P.; Wang, Huapei; Sharp, Thomas G.; ...

    2017-06-19

    Paleomagnetic studies of meteorites have shown that the solar nebula was likely magnetized and that many early planetary bodies generated dynamo magnetic fields in their advecting metallic cores. The surface fields on these bodies were recorded by a diversity of chondrites and achondrites, ranging in intensity from several μT to several hundred μT. In fact, an achondrite parent body without evidence for paleomagnetic fields has yet to be confidently identified, hinting that early solar system field generation and the dynamo process in particular may have been common. Here we present paleomagnetic measurements of the ungrouped achondrite NWA 7325 indicating thatmore » it last cooled in a near-zero field (<~1.7μT), estimated to have occurred at 4563.09 ± 0.26 million years ago (Ma) from Al–Mg chronometry. Because NWA 7325 is highly depleted in siderophile elements, its parent body nevertheless underwent large-scale metal-silicate differentiation and likely formed a metallic core. This makes NWA 7325 the first recognized example of an essentially unmagnetized igneous rock from a differentiated early solar system body. These results indicate that all magnetic fields, including those from any core dynamo on the NWA 7325 parent body, the solar nebula, young Sun, and solar wind, were <1.7 μT at the location of NWA 7325 at 4563 Ma. Finally, this supports a recent conclusion that the solar nebula had dissipated by ~4 million years after solar system formation. NWA 7325 also serves as an experimental control that gives greater confidence in the positive identification of remanent magnetization in other achondrites.« less

  7. A Nonmagnetic Differentiated Early Planetary Body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Benjamin P.; Wang, Jun

    2017-06-15

    Paleomagnetic studies of meteorites have shown that the solar nebula was likely magnetized and that many early planetary bodies generated dynamo magnetic fields in their advecting metallic cores. The surface fields on these bodies were recorded by a diversity of chondrites and achondrites, ranging in intensity from several μT to several hundred μT. In fact, an achondrite parent body without evidence for paleomagnetic fields has yet to be confidently identified, hinting that early solar system field generation and the dynamo process in particular may have been common. Here we present paleomagnetic measurements of the ungrouped achondrite NWA 7325 indicating thatmore » it last cooled in a near-zero field (<∼1.7μT), estimated to have occurred at 4563.09 ± 0.26 million years ago (Ma) from Al–Mg chronometry. Because NWA 7325 is highly depleted in siderophile elements, its parent body nevertheless underwent large-scale metal-silicate differentiation and likely formed a metallic core. This makes NWA 7325 the first recognized example of an essentially unmagnetized igneous rock from a differentiated early solar system body. These results indicate that all magnetic fields, including those from any core dynamo on the NWA 7325 parent body, the solar nebula, young Sun, and solar wind, were <1.7 μT at the location of NWA 7325 at 4563 Ma. This supports a recent conclusion that the solar nebula had dissipated by ∼4 million years after solar system formation. NWA 7325 also serves as an experimental control that gives greater confidence in the positive identification of remanent magnetization in other achondrites.« less

  8. Microparticles release by adipocytes act as "find-me" signals to promote macrophage migration.

    PubMed

    Eguchi, Akiko; Mulya, Anny; Lazic, Milos; Radhakrishnan, Deepa; Berk, Michael P; Povero, Davide; Gornicka, Agnieszka; Feldstein, Ariel E

    2015-01-01

    Macrophage infiltration of adipose tissue during weight gain is a central event leading to the metabolic complications of obesity. However, what are the mechanisms attracting professional phagocytes to obese adipose tissue remains poorly understood. Here, we demonstrate that adipocyte-derived microparticles (MPs) are critical "find-me" signals for recruitment of monocytes and macrophages. Supernatants from stressed adipocytes stimulated the attraction of monocyte cells and primary macrophages. The activation of caspase 3 was required for release of these signals. Adipocytes exposed to saturated fatty acids showed marked release of MPs into the supernatant while common genetic mouse models of obesity demonstrate high levels of circulating adipocyte-derived MPs. The release of MPs was highly regulated and dependent on caspase 3 and Rho-associated kinase. Further analysis identified these MPs as a central chemoattractant in vitro and in vivo. In addition, intravenously transplanting circulating MPs from the ob/ob mice lead to activation of monocytes in circulation and adipose tissue of the wild type mice. These data identify adipocyte-derived MPs as novel "find me" signals that contributes to macrophage infiltration associated with obesity.

  9. An Hsp20-FBXO4 Axis Regulates Adipocyte Function through Modulating PPARγ Ubiquitination.

    PubMed

    Peng, Jiangtong; Li, Yutian; Wang, Xiaohong; Deng, Shan; Holland, Jenna; Yates, Emily; Chen, Jing; Gu, Haitao; Essandoh, Kobina; Mu, Xingjiang; Wang, Boyu; McNamara, Robert K; Peng, Tianqing; Jegga, Anil G; Liu, Tiemin; Nakamura, Takahisa; Huang, Kai; Perez-Tilve, Diego; Fan, Guo-Chang

    2018-06-19

    Exposure to cold temperature is well known to upregulate heat shock protein (Hsp) expression and recruit and/or activate brown adipose tissue and beige adipocytes in humans and animals. However, whether and how Hsps regulate adipocyte function for energy homeostatic responses is poorly understood. Here, we demonstrate a critical role of Hsp20 as a negative regulator of adipocyte function. Deletion of Hsp20 enhances non-shivering thermogenesis and suppresses inflammatory responses, leading to improvement of glucose and lipid metabolism under both chow diet and high-fat diet conditions. Mechanistically, Hsp20 controls adipocyte function by interacting with the subunit of the ubiquitin ligase complex, F-box only protein 4 (FBXO4), and regulating the ubiquitin-dependent degradation of peroxisome proliferation activated receptor gamma (PPARγ). Indeed, Hsp20 deficiency mimics and enhances the pharmacological effects of the PPARγ agonist rosiglitazone. Together, our findings suggest a role of Hsp20 in mediating adipocyte function by linking β-adrenergic signaling to PPARγ activity. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Sinensetin enhances adipogenesis and lipolysis by increasing cyclic adenosine monophosphate levels in 3T3-L1 adipocytes.

    PubMed

    Kang, Seong-Il; Shin, Hye-Sun; Kim, Se-Jae

    2015-01-01

    Sinensetin is a rare polymethoxylated flavone (PMF) found in certain citrus fruits. In this study, we investigated the effects of sinensetin on lipid metabolism in 3T3-L1 cells. Sinensetin promoted adipogenesis in 3T3-L1 preadipocytes growing in incomplete differentiation medium, which did not contain 3-isobutyl-1-methylxanthine. Sinensetin up-regulated expression of the adipogenic transcription factors peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein (C/EBP) α, and sterol regulatory element-binding protein 1c. It also potentiated expression of C/EBPβ and activation of cAMP-responsive element-binding protein. Sinensetin enhanced activation of protein kinase A and increased intracellular cAMP levels in 3T3-L1 preadipocytes. In mature 3T3-L1 adipocytes, sinensetin stimulated lipolysis via a cAMP pathway. Taken together, these results suggest that sinensetin enhances adipogenesis and lipolysis by increasing cAMP levels in adipocytes.

  11. Adipocyte property evaluation with photoacoustic spectrum analysis: a feasibility study on human tissues

    NASA Astrophysics Data System (ADS)

    Cao, Meng; Zhu, Yunhao; O'Rourke, Robert; Wang, Huaideng; Yuan, Jie; Cheng, Qian; Xu, Guan; Wang, Xueding; Carson, Paul

    2017-03-01

    Photoacoustic spectrum analysis (PASA) offers potential advantages in identifying optically absorbing microstructures in biological tissues. Working at high ultrasound frequency, PASA is capable of identifying the morphological features of cells based on their intrinsic optical absorption. Adipocyte size is correlated with metabolic disease risk in the form of diabetes mellitus, thus it can be adopted as a pathology predictor to evaluate the condition of obese patient, and can be helpful for assessing the patient response to bariatric surgery. In order to acquire adipocyte size, usually adipose tissue biopsy is performed and histopathology analysis is conducted. The whole procedure is not well tolerated by patients, and is also labor and cost intensive. An unmet need is to quantify and predict adipocyte size in a mild and more efficient way. This work aims at studying the feasibility to analyze the adipocyte size of human fat tissue using the method of PASA. PA measurements were performed at the optical wavelength of 1210 nm where lipid has strong optical absorption, enabling the study of adipocyte without need of staining. Both simulation and ex vivo experiments have been completed. Good correlation between the quantified photoacoustic spectral parameter slope and the average adipocyte size obtained by the gold-standard histology has been established. This initial study suggests the potential opportunity of applying PASA to future clinical management of obesity.

  12. Pycnogenol® inhibits lipid accumulation in 3T3-L1 adipocytes with the modulation of reactive oxygen species (ROS) production associated with antioxidant enzyme responses.

    PubMed

    Lee, Ok-Hwan; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-03-01

    Pycnogenol® is a group of flavonoids with antioxidant effects. Adipogenesis is the process of adipocyte differentiation. It causes the increase of lipids as well as ROS (reactive oxygen species). Lipid accumulation and ROS production were determined in 3 T3-L1 adipocyte, and the effect of Pycnogenol® was evaluated. Lipid accumulation was elevated in adipocyte treated with hydrogen peroxide, one of the ROS. Pycnogenol® showed an inhibitory effect on the lipid accumulation and ROS production during the adipogenesis. We also investigated the molecular events associated with ROS production and lipid accumulation. Our results showed that Pycnogenol® inhibited the mRNA expression of pro-oxidant enzymes, such as NOX4 (NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) oxidase 4), and the NADPH-producing G6PDH (glucose-6-phosphate dehydrogenase) enzyme. In addition, Pycnogenol® suppressed the mRNA abundance of adipogenic transcription factors, PPAR-γ (peroxisome proliferator-activated receptor γ) and C/EBP-α (CCAAT/enhancer binding protein α), and their target gene, aP2 (adipocyte protein 2) responsible for fatty acid transportation. On the other hand, Pycnogenol® increased the abundance of antioxidant proteins such as Cu/Zn-SOD (copper-zinc superoxide dismutase), Mn-SOD (manganese superoxide dismutase), GPx (glutathione peroxidase) and GR (glutathione reductase). Our results suggest that Pycnogenol® inhibits lipid accumulation and ROS production by regulating adipogenic gene expression and pro-/antioxidant enzyme responses in adipocytes. Copyright © 2011 John Wiley & Sons, Ltd.

  13. 2,4,5-TMBA, a natural inhibitor of cyclooxygenase-2, suppresses adipogenesis and promotes lipolysis in 3T3-L1 adipocytes.

    PubMed

    Wu, Man-Ru; Hou, Ming-Hon; Lin, Ya-Lin; Kuo, Chia-Feng

    2012-07-25

    Obesity is a global health problem. Because of the high costs and side effects of obesity-treatment drugs, the potential of natural products as alternatives for treating obesity is under exploration. 2,4,5-Trimethoxybenzaldehyde (2,4,5-TMBA) present in plant roots, seeds, and leaves was reported to be a significant inhibitor of cyclooxygenase-2 (COX-2) activity at the concentration of 100 μg/mL. Because COX-2 is associated with differentiation of preadipocytes, the murine 3T3-L1 cells were cultured with 100 μg/mL of 2,4,5-TMBA during differentiation and after the cells were fully differentiated to study the effect of 2,4,5-TMBA on adipogenesis and lipolysis. Oil Red O staining and triglyceride assay revealed that 2,4,5-TMBA inhibited the formation of lipid droplets during differentiation; moreover, 2,4,5-TMBA down-regulated the protein levels of adipogenic signaling molecules and transcription factors MAP kinase kinase (MEK), extracellular signal-regulated kinase (ERK), CCAAT/enhancer binding protein (C/EBP)α, β, and δ, peroxisome proliferator-activated receptor (PPAR)γ, adipocyte determination and differentiation-dependent factor 1 (ADD1), and the rate-limiting enzyme for lipid synthesis acetyl-CoA carboxylase (ACC). In fully differentiated adipocytes, treatment with 2,4,5-TMBA for 72 h significantly decreased lipid accumulation by increasing the hydrolysis of triglyceride through suppression of perilipin A (lipid droplet coating protein) and up-regulation of hormone-sensitive lipase (HSL). The results of this in vitro study will pioneer future in vivo studies on antiobesity effects of 2,4,5-TMBA and selective COX-2 inhibitors.

  14. Deletion of Rab GAP AS160 modifies glucose uptake and GLUT4 translocation in primary skeletal muscles and adipocytes and impairs glucose homeostasis.

    PubMed

    Lansey, Melissa N; Walker, Natalie N; Hargett, Stefan R; Stevens, Joseph R; Keller, Susanna R

    2012-11-15

    Tight control of glucose uptake in skeletal muscles and adipocytes is crucial to glucose homeostasis and is mediated by regulating glucose transporter GLUT4 subcellular distribution. In cultured cells, Rab GAP AS160 controls GLUT4 intracellular retention and release to the cell surface and consequently regulates glucose uptake into cells. To determine AS160 function in GLUT4 trafficking in primary skeletal muscles and adipocytes and investigate its role in glucose homeostasis, we characterized AS160 knockout (AS160(-/-)) mice. We observed increased and normal basal glucose uptake in isolated AS160(-/-) adipocytes and soleus, respectively, while insulin-stimulated glucose uptake was impaired and GLUT4 expression decreased in both. No such abnormalities were found in isolated AS160(-/-) extensor digitorum longus muscles. In plasma membranes isolated from AS160(-/-) adipose tissue and gastrocnemius/quadriceps, relative GLUT4 levels were increased under basal conditions and remained the same after insulin treatment. Concomitantly, relative levels of cell surface-exposed GLUT4, determined with a glucose transporter photoaffinity label, were increased in AS160(-/-) adipocytes and normal in AS160(-/-) soleus under basal conditions. Insulin augmented cell surface-exposed GLUT4 in both. These observations suggest that AS160 is essential for GLUT4 intracellular retention and regulation of glucose uptake in adipocytes and skeletal muscles in which it is normally expressed. In vivo studies revealed impaired insulin tolerance in the presence of normal (male) and impaired (female) glucose tolerance. Concurrently, insulin-elicited increases in glucose disposal were abolished in all AS160(-/-) skeletal muscles and liver but not in AS160(-/-) adipose tissues. This suggests AS160 as a target for differential manipulation of glucose homeostasis.

  15. The Role of Cellular Proliferation in Adipogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    PubMed

    Marquez, Maribel P; Alencastro, Frances; Madrigal, Alma; Jimenez, Jossue Loya; Blanco, Giselle; Gureghian, Alex; Keagy, Laura; Lee, Cecilia; Liu, Robert; Tan, Lun; Deignan, Kristen; Armstrong, Brian; Zhao, Yuanxiang

    2017-11-01

    Mitotic clonal expansion has been suggested as a prerequisite for adipogenesis in murine preadipocytes, but the precise role of cell proliferation during human adipogenesis is unclear. Using adipose tissue-derived human mesenchymal stem cells as an in vitro cell model for adipogenic study, a group of cell cycle regulators, including Cdk1 and CCND1, were found to be downregulated as early as 24 h after adipogenic initiation and consistently, cell proliferation activity was restricted to the first 48 h of adipogenic induction. Cell proliferation was either further inhibited using siRNAs targeting cell cycle genes or enhanced by supplementing exogenous growth factor, basic fibroblast growth factor (bFGF), at specific time intervals during adipogenesis. Expression knockdown of Cdk1 at the initiation of adipogenic induction resulted in significantly increased adipocytes, even though total number of cells was significantly reduced compared to siControl-treated cells. bFGF stimulated proliferation throughout adipogenic differentiation, but exerted differential effect on adipogenic outcome at different phases, promoting adipogenesis during mitotic phase (first 48 h), but significantly inhibiting adipogenesis during adipogenic commitment phase (days 3-6). Our results demonstrate that cellular proliferation is counteractive to adipogenic commitment in human adipogenesis. However, cellular proliferation stimulation can be beneficial for adipogenesis during the mitotic phase by increasing the population of cells capable of committing to adipocytes before adipogenic commitment.

  16. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation[S

    PubMed Central

    Haka, Abigail S.; Barbosa-Lorenzi, Valéria C.; Lee, Hyuek Jong; Falcone, Domenick J.; Hudis, Clifford A.; Dannenberg, Andrew J.

    2016-01-01

    Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages. PMID:27044658

  17. Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function

    PubMed Central

    Berry, Daniel C.; Jiang, Yuwei; Graff, Jonathan M.

    2016-01-01

    Cold temperatures induce formation of beige adipocytes, which convert glucose and fatty acids to heat, and may increase energy expenditure, reduce adiposity and lower blood glucose. This therapeutic potential is unrealized, hindered by a dearth of genetic tools to fate map, track and manipulate beige progenitors and ‘beiging'. Here we examined 12 Cre/inducible Cre mouse strains that mark adipocyte, muscle and mural lineages, three proposed beige origins. Among these mouse strains, only those that marked perivascular mural cells tracked the cold-induced beige lineage. Two SMA-based strains, SMA-CreERT2 and SMA-rtTA, fate mapped into the majority of cold-induced beige adipocytes and SMA-marked progenitors appeared essential for beiging. Disruption of the potential of the SMA-tracked progenitors to form beige adipocytes was accompanied by an inability to maintain body temperature and by hyperglycaemia. Thus, SMA-engineered mice may be useful to track and manipulate beige progenitors, beige adipocyte formation and function. PMID:26729601

  18. Lactate metabolism and cytosolic NADH reducing equivalents in ovine adipocytes.

    PubMed

    Yang, Y T; White, L S; Muir, L A

    1982-01-01

    1. Isolated ovine adipocytes, unlike rat adipose tissue, could utilize lactate at a high rate. 2. When the rate of fatty acid synthesis was attenuated with 5-(tetradecyloxy)-2-furoic acid, a fatty acid synthesis inhibitor, there was a good positive correlation between the rates of lactate oxidation to CO2 and lactate incorporation into fatty acids. 3. Addition of 2,4-dinitrophenol enhanced lactate oxidation to CO2 independent of fatty acid synthesis. Under this condition, estimated cytosolic NADH formation from lactate dehydrogenation exceeded the need of NADH for cytosolic oxaloacetate reduction and for glyceride glycerol formation. 4. Mitochondria isolated from ovine adipocytes oxidized added NADH rapidly in a reconstituted alpha-glycerophosphate shuttle system. 5. It is possible that the ability of ovine adipocytes to utilize lactate may be related to the active alpha-glycerophosphate shuttle for cytosolic NADH reoxidation.

  19. Role for early-differentiated natural killer cells in infectious mononucleosis.

    PubMed

    Azzi, Tarik; Lünemann, Anna; Murer, Anita; Ueda, Seigo; Béziat, Vivien; Malmberg, Karl-Johan; Staubli, Georg; Gysin, Claudine; Berger, Christoph; Münz, Christian; Chijioke, Obinna; Nadal, David

    2014-10-16

    A growing body of evidence suggests that the human natural killer (NK)-cell compartment is phenotypically and functionally heterogeneous and is composed of several differentiation stages. Moreover, NK-cell subsets have been shown to exhibit adaptive immune features during herpes virus infection in experimental mice and to expand preferentially during viral infections in humans. However, both phenotype and role of NK cells during acute symptomatic Epstein-Barr virus (EBV) infection, termed infectious mononucleosis (IM), remain unclear. Here, we longitudinally assessed the kinetics, the differentiation, and the proliferation of subsets of NK cells in pediatric IM patients. Our results indicate that acute IM is characterized by the preferential proliferation of early-differentiated CD56(dim) NKG2A(+) immunoglobulin-like receptor(-) NK cells. Moreover, this NK-cell subset exhibits features of terminal differentiation and persists at higher frequency during at least the first 6 months after acute IM. Finally, we demonstrate that this NK-cell subset preferentially degranulates and proliferates on exposure to EBV-infected B cells expressing lytic antigens. Thus, early-differentiated NK cells might play a key role in the immune control of primary infection with this persistent tumor-associated virus. © 2014 by The American Society of Hematology.

  20. Synchrotron FTIR microspectroscopy reveals early adipogenic differentiation of human mesenchymal stem cells at single-cell level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhixiao; University of Chinese Academy of Science, Beijing 100049; Tang, Yuzhao

    Human mesenchymal stem cells (hMSCs) have been used as an ideal in vitro model to study human adipogenesis. However, little knowledge of the early stage differentiation greatly hinders our understanding on the mechanism of the adipogenesis processes. In this study, synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy was applied to track the global structural and compositional changes of lipids, proteins and nucleic acids inside individual hMSCs along the time course. The multivariate analysis of the SR-FTIR spectra distinguished the dynamic and significant changes of the lipids and nucleic acid at early differentiation stage. Importantly, changes of lipid structure during early daysmore » (Day 1–3) of differentiation might serve as a potential biomarker in identifying the state in early differentiation at single cell level. These results proved that SR-FTIR is a powerful tool to study the stem cell fate determination and early lipogenesis events. - Highlights: • Molecular events occur in the early adipogenic differentiation stage of hMSCs are studied by SR-FTIR. • SR-FTIR data suggest that lipids may play an important role in hMSCs determination. • As potential biomarkers, lipids peaks can identify the state of cell in early differentiation stage at single-cell level.« less

  1. Omentum and bone marrow: how adipocyte-rich organs create tumour microenvironments conducive for metastatic progression

    PubMed Central

    Gusky, H. Chkourko; Diedrich, J.; MacDougald, O. A.; Podgorski, I.

    2016-01-01

    Summary A number of clinical studies have linked adiposity with increased cancer incidence, progression and metastasis, and adipose tissue is now being credited with both systemic and local effects on tumour development and survival. Adipocytes, a major component of benign adipose tissue, represent a significant source of lipids, cytokines and adipokines, and their presence in the tumour microenvironment substantially affects cellular trafficking, signalling and metabolism. Cancers that have a high predisposition to metastasize to the adipocyte-rich host organs are likely to be particularly affected by the presence of adipocytes. Although our understanding of how adipocytes influence tumour progression has grown significantly over the last several years, the mechanisms by which adipocytes regulate the meta-static niche are not well-understood. In this review, we focus on the omentum, a visceral white adipose tissue depot, and the bone, a depot for marrow adipose tissue, as two distinct adipocyte-rich organs that share common characteristic: they are both sites of significant metastatic growth. We highlight major differences in origin and function of each of these adipose depots and reveal potential common characteristics that make them environments that are attractive and conducive to secondary tumour growth. Special attention is given to how omental and marrow adipocytes modulate the tumour microenvironment by promoting angiogenesis, affecting immune cells and altering metabolism to support growth and survival of metastatic cancer cells. PMID:27432523

  2. A Microfluidic Interface for the Culture and Sampling of Adiponectin from Primary Adipocytes

    PubMed Central

    Godwin, Leah A.; Brooks, Jessica C.; Hoepfner, Lauren D.; Wanders, Desiree; Judd, Robert L.; Easley, Christopher J.

    2014-01-01

    Secreted from adipose tissue, adiponectin is a vital endocrine hormone that acts in glucose metabolism, thereby establishing its crucial role in diabetes, obesity, and other metabolic disease states. Insulin exposure to primary adipocytes cultured in static conditions has been shown to stimulate adiponectin secretion. However, conventional, static methodology for culturing and stimulating adipocytes falls short of truly mimicking physiological environments. Along with decreases in experimental costs and sample volume, and increased temporal resolution, microfluidic platforms permit small-volume flowing cell culture systems, which more accurately represent the constant flow conditions through vasculature in vivo. Here, we have integrated a customized primary tissue culture reservoir into a passively operated microfluidic device made of polydimethylsiloxane (PDMS). Fabrication of the reservoir was accomplished through unique PDMS “landscaping” above sampling channels, with a design strategy targeted to primary adipocytes to overcome issues of positive cell buoyancy. This reservoir allowed three-dimensional culture of primary murine adipocytes, accurate control over stimulants via constant perfusion, and sampling of adipokine secretion during various treatments. As the first report of primary adipocyte culture and sampling within microfluidic systems, this work sets the stage for future studies in adipokine secretion dynamics. PMID:25423362

  3. Differential actions of PPAR-α and PPAR-β/δ on beige adipocyte formation: A study in the subcutaneous white adipose tissue of obese male mice

    PubMed Central

    Rachid, Tamiris Lima; Silva-Veiga, Flavia Maria; Graus-Nunes, Francielle; Bringhenti, Isabele; Mandarim-de-Lacerda, Carlos Alberto

    2018-01-01

    Background and aims Obesity compromises adipocyte physiology. PPARs are essential to adipocyte plasticity, but its isolated role in the browning phenomenon is not clear. This study aimed to examine whether activation of PPAR-α or PPAR-β/δ could induce beige cell depots in the subcutaneous white adipose tissue of diet-induced obese mice. Material and methods Sixty animals were randomly assigned to receive a control diet (C, 10% lipids) or a high-fat diet (HF, 50% lipids) for ten weeks. Then each group was re-divided to begin the treatments that lasted 4 weeks, totalizing six groups: C, C-α (C plus PPAR-α agonist, 2.5 mg/kg BM), C-β (C plus PPAR-β/δ agonist, 1 mg/kg BM), HF, HF-α (HF plus PPAR-α agonist), HF-β (HF plus PPAR-β/δ agonist). Results HF animals presented with overweight, glucose intolerance and subcutaneous white adipocyte hypertrophy. Both treatments significantly attenuated these parameters. Browning, verified by UCP1 positive beige cells and enhanced body temperature, was just observed in PPAR-α treated groups. PPAR-α agonism also elicited an enhanced gene expression of the thermogenesis effector UCP1, the beige-selective gene TMEM26 and the PRDM16, an essential gene for brown-like phenotype maintenance in the beige adipocytes when compared to their counterparts. The enhanced CIDEA and the reduced UCP1 gene levels might justify the white phenotype predominance after the treatment with the PPAR-β/δ agonist. Conclusions This work provides evidence that the PPAR-β/δ agonist ameliorated metabolic disorders through enhanced beta-oxidation and better tolerance to glucose, whereas the PPAR-α agonism was confirmed as a promising therapeutic target for treating metabolic diseases via beige cell induction and enhanced thermogenesis. PMID:29351550

  4. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmentedmore » inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may

  5. Cell-mediated remodeling of biomimetic encapsulating hydrogels triggered by adipogenic differentiation of adipose stem cells.

    PubMed

    Clevenger, Tracy N; Luna, Gabriel; Boctor, Daniel; Fisher, Steven K; Clegg, Dennis O

    2016-01-01

    One of the most common regenerative therapies is autologous fat grafting, which frequently suffers from unexpected volume loss. One approach is to deliver adipose stem cells encapsulated in the engineered hydrogels supportive of cell survival, differentiation, and integration after transplant. We describe an encapsulating, biomimetic poly(ethylene)-glycol hydrogel, with embedded peptides for attachment and biodegradation. Poly(ethylene)-glycol hydrogels containing an Arg-Gly-Asp attachment sequence and a matrix metalloprotease 3/10 cleavage site supported adipose stem cell survival and showed remodeling initiated by adipogenic differentiation. Arg-Gly-Asp-matrix metalloprotease 3/10 cleavage site hydrogels showed an increased number and area of lacunae or holes after adipose stem cell differentiation. Image analysis of adipose stem cells in Arg-Gly-Asp-matrix metalloprotease 3/10 cleavage site hydrogels showed larger Voronoi domains, while cell density remained unchanged. The differentiated adipocytes residing within these newly remodeled spaces express proteins and messenger RNAs indicative of adipocytic differentiation. These engineered scaffolds may provide niches for stem cell differentiation and could prove useful in soft tissue regeneration.

  6. Cell-mediated remodeling of biomimetic encapsulating hydrogels triggered by adipogenic differentiation of adipose stem cells

    PubMed Central

    Clevenger, Tracy N; Luna, Gabriel; Boctor, Daniel; Fisher, Steven K; Clegg, Dennis O

    2016-01-01

    One of the most common regenerative therapies is autologous fat grafting, which frequently suffers from unexpected volume loss. One approach is to deliver adipose stem cells encapsulated in the engineered hydrogels supportive of cell survival, differentiation, and integration after transplant. We describe an encapsulating, biomimetic poly(ethylene)-glycol hydrogel, with embedded peptides for attachment and biodegradation. Poly(ethylene)-glycol hydrogels containing an Arg–Gly–Asp attachment sequence and a matrix metalloprotease 3/10 cleavage site supported adipose stem cell survival and showed remodeling initiated by adipogenic differentiation. Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed an increased number and area of lacunae or holes after adipose stem cell differentiation. Image analysis of adipose stem cells in Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed larger Voronoi domains, while cell density remained unchanged. The differentiated adipocytes residing within these newly remodeled spaces express proteins and messenger RNAs indicative of adipocytic differentiation. These engineered scaffolds may provide niches for stem cell differentiation and could prove useful in soft tissue regeneration. PMID:27733898

  7. Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity

    PubMed Central

    Díaz-Ruiz, Alberto; Guzmán-Ruiz, Rocío; Moreno, Natalia R.; García-Rios, Antonio; Delgado-Casado, Nieves; Membrives, Antonio; Túnez, Isaac; El Bekay, Rajaa; Fernández-Real, José M.; Tovar, Sulay; Diéguez, Carlos; Tinahones, Francisco J.; Vázquez-Martínez, Rafael; López-Miranda, José

    2015-01-01

    Abstract Aims: Obesity is characterized by a low-grade systemic inflammatory state and adipose tissue (AT) dysfunction, which predispose individuals to the development of insulin resistance (IR) and metabolic disease. However, a subset of obese individuals, referred to as metabolically healthy obese (MHO) individuals, are protected from obesity-associated metabolic abnormalities. Here, we aim at identifying molecular factors and pathways in adipocytes that are responsible for the progression from the insulin-sensitive to the insulin-resistant, metabolically unhealthy obese (MUHO) phenotype. Results: Proteomic analysis of paired samples of adipocytes from subcutaneous (SC) and omental (OM) human AT revealed that both types of cells are altered in the MUHO state. Specifically, the glutathione redox cycle and other antioxidant defense systems as well as the protein-folding machinery were dysregulated and endoplasmic reticulum stress was increased in adipocytes from IR subjects. Moreover, proteasome activity was also compromised in adipocytes of MUHO individuals, which was associated with enhanced accumulation of oxidized and ubiquitinated proteins in these cells. Proteasome activity was also impaired in adipocytes of diet-induced obese mice and in 3T3-L1 adipocytes exposed to palmitate. In line with these data, proteasome inhibition significantly impaired insulin signaling in 3T3-L1 adipocytes. Innovation: This study provides the first evidence of the occurrence of protein homeostasis deregulation in adipocytes in human obesity, which, together with oxidative damage, interferes with insulin signaling in these cells. Conclusion: Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity. Antioxid. Redox Signal. 23, 597–612. PMID:25714483

  8. Human ‘brite / beige’ adipocytes develop from capillary networks and their implantation improves metabolic homeostasis in mice

    PubMed Central

    Min, So Yun; Kady, Jamie; Nam, Minwoo; Rojas-Rodriguez, Raziel; Berkenwald, Aaron; Kim, Jong Hun; Noh, Hye-Lim; Kim, Jason K.; Cooper, Marcus P.; Fitzgibbons, Timothy; Brehm, Michael A.; Corvera, Silvia

    2015-01-01

    The uncoupling protein 1 (UCP1) is highly expressed in brown adipose tissue, where it generates heat by uncoupling electron transport from ATP production. UCP1 is also found outside classical brown adipose tissue depots1–4, in adipocytes termed ‘brite’ (brown-in-white) or ‘beige’. In humans, the presence of ‘brite/beige’ adipocytes correlates with a lean, metabolically healthy phenotype5–8, but whether a causal relationship exists is not clear. Here we report that human ‘brite/beige’ adipocyte progenitors proliferate in response to pro-angiogenic factors, in association with expanding capillary networks. Adipocytes formed from these progenitors transform from being UCP1-negative to UCP1-positive in response to adenylate cyclase activation, a defining feature of the ‘beige/brite’ phenotype, and display uncoupled respiration. When implanted into normal or high fat diet-fed, glucose intolerant NOD-scid IL2rgnull mice, activated ‘brite/beige’ adipocytes enhance systemic glucose tolerance. These adipocytes express neuroendocrine and secreted factors, including the pro-protein convertase PCSK1, which is strongly associated with human obesity. Thus, pro-angiogenic conditions drive proliferation of human ‘beige/brite’ adipocyte progenitors, and activated ‘beige/brite’ adipocytes can affect systemic glucose homeostasis, potentially through a neuroendocrine mechanism. PMID:26808348

  9. Repressive effects of oat extracts on intracellular lipid-droplet formation in adipocytes and a three-dimensional subcutaneous adipose tissue model.

    PubMed

    Kato, Shinya; Kato, Yuko; Shibata, Hiroki; Saitoh, Yasukazu; Miwa, Nobuhiko

    2015-04-01

    We assessed the repression of lipid-droplet formation in mouse mesenchymal stromal preadipocytes OP9 by specified oat extracts (Hatomugi, Coix lacryma-jobi var. ma-yuen) named "SPH" which were proteolytically and glucosyl-transferredly prepared from finely-milled oat whole-grain. Stimulation of OP9 preadipocytes with insulin-containing serum-replacement promoted differentiation to adipocytes, concurrently with an increase in the intracellular lipid droplets by 51.5%, which were repressed by SPH-bulk or SPH-water-extract at 840ppm, to 33.5% or 46.9%, respectively, but not by SPH-ethanol-extract at the same dose, showing the hydrophilic property of the anti-adipogenetic ingredients. The intracellular lipid droplets were scanty for intact preadipocytes, small-sized but abundant for the SPH-unadministered adipocytes, and large-sized but few for SPH-bulk-administered adipocytes being coexistent with many lipid-droplet-lacking viable cells, suggesting "the all-or-none rule" for lipid-droplet generation in cell-to-cell. Hydrogen-peroxide-induced cell death in human epidermal keratinocytes HaCaT was prevented by SPH-bulk at 100 or 150ppm by 5.6-8.1%, being consistent with higher viabilities of SPH-bulk-administered OP9 cells, together with repressions of both cell shrinkage and cell detachment from the culture substratum. In three-dimensional subcutaneous adipose tissue models reconstructed with HaCaT-keratinocytes and OP9-preadipocytes, lipid droplets were accumulated in dermal OP9-cell-parts, and repressed to 43.5% by SPH-bulk at 840ppm concurrently with marked diminishment of huge aggregates of lipid droplets. Thus SPH-bulk suppresses adipogenesis-associated lipid-droplet accumulation during differentiation of OP9 preadipocytes together with lowered cytotoxicity to either HaCaT keratinocytes or the preadipocytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Characterization of Dedifferentiating Human Mature Adipocytes from the Visceral and Subcutaneous Fat Compartments: Fibroblast-Activation Protein Alpha and Dipeptidyl Peptidase 4 as Major Components of Matrix Remodeling

    PubMed Central

    Lessard, Julie; Pelletier, Mélissa; Biertho, Laurent; Biron, Simon; Marceau, Simon; Hould, Frédéric-Simon; Lebel, Stéfane; Moustarah, Fady; Lescelleur, Odette; Marceau, Picard; Tchernof, André

    2015-01-01

    Mature adipocytes can reverse their phenotype to become fibroblast-like cells. This is achieved by ceiling culture and the resulting cells, called dedifferentiated fat (DFAT) cells, are multipotent. Beyond the potential value of these cells for regenerative medicine, the dedifferentiation process itself raises many questions about cellular plasticity and the pathways implicated in cell behavior. This work has been performed with the objective of obtaining new information on adipocyte dedifferentiation, especially pertaining to new targets that may be involved in cellular fate changes. To do so, omental and subcutaneous mature adipocytes sampled from severely obese subjects have been dedifferentiated by ceiling culture. An experimental design with various time points along the dedifferentiation process has been utilized to better understand this process. Cell size, gene and protein expression as well as cytokine secretion were investigated. Il-6, IL-8, SerpinE1 and VEGF secretion were increased during dedifferentiation, whereas MIF-1 secretion was transiently increased. A marked decrease in expression of mature adipocyte transcripts (PPARγ2, C/EBPα, LPL and Adiponectin) was detected early in the process. In addition, some matrix remodeling transcripts (FAP, DPP4, MMP1 and TGFβ1) were rapidly and strongly up-regulated. FAP and DPP4 proteins were simultaneously induced in dedifferentiating mature adipocytes supporting a potential role for these enzymes in adipose tissue remodeling and cell plasticity. PMID:25816202

  11. Adrenaline is a critical mediator of acute exercise-induced AMP-activated protein kinase activation in adipocytes

    PubMed Central

    Koh, Ho-Jin; Hirshman, Michael F.; He, Huamei; Li, Yangfeng; Manabe, Yasuko; Balschi, James A.; Goodyear, Laurie J.

    2007-01-01

    Exercise increases AMPK (AMP-activated protein kinase) activity in human and rat adipocytes, but the underlying molecular mechanisms and functional consequences of this activation are not known. Since adrenaline (epinephrine) concentrations increase with exercise, in the present study we hypothesized that adrenaline activates AMPK in adipocytes. We show that a single bout of exercise increases AMPKα1 and α2 activities and ACC (acetyl-CoA carboxylase) Ser79 phosphorylation in rat adipocytes. Similarly to exercise, adrenaline treatment in vivo increased AMPK activities and ACC phosphorylation. Pre-treatment of rats with the β-blocker propranolol fully blocked exercise-induced AMPK activation. Increased AMPK activity with exercise and adrenaline treatment in vivo was accompanied by an increased AMP/ATP ratio. Adrenaline incubation of isolated adipocytes also increased the AMP/ATP ratio and AMPK activities, an effect blocked by propranolol. Adrenaline incubation increased lipolysis in isolated adipocytes, and Compound C, an AMPK inhibitor, attenuated this effect. Finally, a potential role for AMPK in the decreased adiposity associated with chronic exercise was suggested by marked increases in AMPKα1 and α2 activities in adipocytes from rats trained for 6 weeks. In conclusion, both acute and chronic exercise are significant regulators of AMPK activity in rat adipocytes. Our findings suggest that adrenaline plays a critical role in exercise-stimulated AMPKα1 and α2 activities in adipocytes, and that AMPK can function in the regulation of lipolysis. PMID:17253964

  12. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance.

    PubMed

    Arai, Chikako; Arai, Norie; Mizote, Akiko; Kohno, Keizo; Iwaki, Kanso; Hanaya, Toshiharu; Arai, Shigeyuki; Ushio, Simpei; Fukuda, Shigeharu

    2010-12-01

    Trehalose has been shown to evoke lower insulin secretion than glucose in oral saccharide tolerance tests in humans. Given this hypoinsulinemic effect of trehalose, we hypothesized that trehalose suppresses adipocyte hypertrophy by reducing storage of triglyceride and mitigates insulin resistance in mice fed a high-fat diet (HFD). Mice were fed an HFD and given drinking water containing 2.5% saccharide (glucose [Glc], trehalose [Tre], maltose [Mal], high-fructose corn syrup, or fructose [Fru]) ad libitum. After 7 weeks of HFD and saccharide intake, fasting serum insulin levels in the Tre/HFD group were significantly lower than in the Mal/HFD and Glc/HFD groups (P < .05). Furthermore, the Tre/HFD group showed a significantly suppressed elevation of homeostasis model assessment-insulin resistance compared with the Mal/HFD group (P < .05) and showed a trend toward lower homeostasis model assessment-insulin resistance than the Glc/HFD group. After 8 weeks of feeding, mesenteric adipocyte size in the Tre/HFD group showed significantly less hypertrophy than the Glc/HFD, Mal/HFD, high-fructose corn syrup/HFD, or Fru/HFD group. Analysis of gene expression in mesenteric adipocytes showed that no statistically significant difference in the expression of monocyte chemoattractant protein-1 (MCP-1) messenger RNA (mRNA) was observed between the Tre/HFD group and the distilled water/standard diet group, whereas a significant increase in the MCP-1 mRNA expression was observed in the Glc/HFD, Mal/HFD, Fru/HFD, and distilled water/HFD groups. Thus, our data indicate that trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in HFD-fed mice by reducing insulin secretion and down-regulating mRNA expression of MCP-1. These findings further suggest that trehalose is a functional saccharide that mitigates insulin resistance. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity.

    PubMed

    Luisa Bonet, M; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2015-04-15

    A novel perspective of the function of carotenoids and carotenoid-derived products - including, but not restricted to, the retinoids - is emerging in recent years which connects these compounds to the control of adipocyte biology and body fat accumulation, with implications for the management of obesity, diabetes and cardiovascular disease. Cell and animal studies indicate that carotenoids and carotenoids derivatives can reduce adiposity and impact key aspects of adipose tissue biology including adipocyte differentiation, hypertrophy, capacity for fatty acid oxidation and thermogenesis (including browning of white adipose tissue) and secretory function. Epidemiological studies in humans associate higher dietary intakes and serum levels of carotenoids with decreased adiposity. Specifically designed human intervention studies, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. The objective of this review is to summarize recent findings in this area, place them in physiological contexts, and provide likely regulatory schemes whenever possible. The focus will be on the effects of carotenoids as nutritional regulators of adipose tissue biology and both animal and human studies, which support a role of carotenoids and retinoids in the prevention of abdominal adiposity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Early Earth differentiation [rapid communication

    NASA Astrophysics Data System (ADS)

    Walter, Michael J.; Trønnes, Reidar G.

    2004-09-01

    The birth and infancy of Earth was a time of profound differentiation involving massive internal reorganization into core, mantle and proto-crust, all within a few hundred million years of solar system formation ( t0). Physical and isotopic evidence indicate that the formation of iron-rich cores generally occurred very early in planetesimals, the building blocks of proto-Earth, within about 3 million years of t0. The final stages of terrestrial planetary accretion involved violent and tremendously energetic giant impacts among core-segregated Mercury- to Mars-sized objects and planetary embryos. As a consequence of impact heating, the early Earth was at times partially or wholly molten, increasing the likelihood for high-pressure and high-temperature equilibration among core- and mantle-forming materials. The Earth's silicate mantle harmoniously possesses abundance levels of the siderophile elements Ni and Co that can be reconciled by equilibration between iron alloy and silicate at conditions comparable to those expected for a deep magma ocean. Solidification of a deep magma ocean possibly involved crystal-melt segregation at high pressures, but subsequent convective stirring of the mantle could have largely erased nascent layering. However, primitive upper mantle rocks apparently have some nonchondritic major and trace element refractory lithophile element ratios that can be plausibly linked to early mantle differentiation of ultra-high-pressure mantle phases. The geochemical effects of crystal fractionation in a deep magma ocean are partly constrained by high-pressure experimentation. Comparison between compositional models for the primitive convecting mantle and bulk silicate Earth generally allows, and possibly favors, 10-15% total fractionation of a deep mantle assemblage comprised predominantly of Mg-perovskite and with minor but geochemically important amounts of Ca-perovskite and ferropericlase. Long-term isolation of such a crystal pile is generally

  15. Biological effects of adipocytes in sulfur mustard induced toxicity.

    PubMed

    Xu, Hua; Gao, Zhongcai; Wang, Peng; Xu, Bin; Zhang, Yajiao; Long, Long; Zong, Cheng; Guo, Lei; Jiang, Weijian; Ye, Qinong; Wang, Lili; Xie, Jianwei

    2018-01-15

    Sulphur mustard (2,2'-dichloroethyl sulfide; SM) is a vesicant chemical warfare agent whose mechanism of acute or chronic action is not known with any certainty and to date there is no effective antidote. SM accumulation in adipose tissue (AT) has been originally verified in our previous study. To evaluate the biological effect caused by the presence of abundant SM in adipocyte and assess the biological role of AT in SM poisoning, in vitro and in vivo experiments were performed. High content analysis revealed multi-cytotoxicity in SM exposed cells in a time and dose dependent manner, and adipocytes showed a relative moderate damage compared with non-adipocytes. Cell co-culture model was established and revealed the adverse effect of SM-exposed adipocyte supernatant on the growth of co-cultured cells. The pathological changes in AT from 10mg/kg SM percutaneously exposed rats were checked and inflammation phenomena were observed. The mRNA and protein levels of inflammation-related adipokines secreted from AT in rats exposed to 1, 3 and 10mg/kg doses of SM were determined by reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assays. The expressions of proinflammatory and anti-inflammatory adipokines together promoted the inflammation development in the body. The positive correlations between AT and serum adipokine levels were explored, which demonstrated a substantial role of AT in systemic inflammation responding to SM exposure. Thus, AT is not only a target of SM but also a modulator in the SM toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Adipocyte-derived factors in age-related dementia and their contribution to vascular and Alzheimer pathology.

    PubMed

    Ishii, Makoto; Iadecola, Costantino

    2016-05-01

    Age-related dementia is increasingly recognized as having a mixed pathology, with contributions from both cerebrovascular factors and pathogenic factors associated with Alzheimer's disease (AD). Furthermore, there is accumulating evidence that vascular risk factors in midlife, e.g., obesity, diabetes, and hypertension, increase the risk of developing late-life dementia. Since obesity and changes in body weight/adiposity often drive diabetes and hypertension, understanding the relationship between adiposity and age-related dementia may reveal common underlying mechanisms. Here we offer a brief appraisal of how changes in body weight and adiposity are related to both AD and dementia on vascular basis, and examine the involvement of two key adipocyte-derived hormones: leptin and adiponectin. The evidence suggests that in midlife increased body weight/adiposity and subsequent changes in adipocyte-derived hormones may increase the long-term susceptibility to dementia. On the other hand, later in life, decreases in body weight/adiposity and related hormonal changes are early manifestations of disease that precede the onset of dementia and may promote AD and vascular pathology. Understanding the contribution of adiposity to age-related dementia may help identify the underlying pathological mechanisms common to both vascular dementia and AD, and provide new putative targets for early diagnosis and therapy. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The Effects of Perfluorinated Chemicals on Adipoctye Differentiation In Vitro

    EPA Science Inventory

    The 3T3-L1 preadipocyte culture system has been used to examine numerous compounds that influence adipocyte differentiation or function. The perfluoroalkyl acids (PFAAs), used as surfactants in a variety of industrial applications, are of concern as environmental contaminants tha...

  18. Butein induction of HO-1 by p38 MAPK/Nrf2 pathway in adipocytes attenuates high-fat diet induced adipose hypertrophy in mice.

    PubMed

    Wang, Zheng; Ka, Sun-O; Lee, Youngyi; Park, Byung-Hyun; Bae, Eun Ju

    2017-03-15

    Adipose tissue inflammation and oxidative stress are key components in the development of obesity and insulin resistance. Heme oxygenase (HO)-1 in adipocytes protects against obesity and adipose dysfunction. In this study, we report the identification of butein, a flavonoid chalcone, as a novel inducer of HO-1 expression in adipocytes in vitro and in vivo. Butein upregulated HO-1 mRNA and protein expression in 3T3-L1 adipocytes, accompanied by Kelch-Like ECH-Associated Protein (Keap) 1 degradation and increase in the nuclear level of nuclear factor erythroid 2-related factor 2 (Nrf2). Butein modulation of Keap1 and Nrf2 as well as HO-1 upregulation was reversed by pretreatment with p38 MAPK inhibitor SB203580, indicating the involvement of p38 MAPK in butein activation of Nrf2 in adipocytes. In addition, HO-1 activation by butein led to the inhibitions of reactive oxygen species and adipocyte differentiation, as evidenced by the fact that butein repression of reactive oxygen species and adipogenesis was reversed by pretreatment with HO-1 inhibitor SnPP. Induction of HO-1 expression by butein was also demonstrated in the adipose tissue of C57BL/6 mice fed a high-fat diet administered along with butein for three weeks, and correlated with the inhibitions of adiposity and adipose tissue inflammation, which were reversed by co-administration of SnPP. Altogether, our results demonstrate that butein activates the p38 MAPK/Nrf2/HO-1 pathway to act as a potent inhibitor of adipose hypertrophy and inflammation in a diet-induced obesity model and thus has potential for suppressing obesity-linked metabolic syndrome. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Ghrelin action in the brain controls adipocyte metabolism

    PubMed Central

    Theander-Carrillo, Claudia; Wiedmer, Petra; Cettour-Rose, Philippe; Nogueiras, Ruben; Perez-Tilve, Diego; Pfluger, Paul; Castaneda, Tamara R.; Muzzin, Patrick; Schürmann, Annette; Szanto, Ildiko; Tschöp, Matthias H.; Rohner-Jeanrenaud, Françoise

    2006-01-01

    Many homeostatic processes, including appetite and food intake, are controlled by neuroendocrine circuits involving the CNS. The CNS also directly regulates adipocyte metabolism, as we have shown here by examining central action of the orexigenic hormone ghrelin. Chronic central ghrelin infusion resulted in increases in the glucose utilization rate of white and brown adipose tissue without affecting skeletal muscle. In white adipocytes, mRNA expression of various fat storage–promoting enzymes such as lipoprotein lipase, acetyl-CoA carboxylase α, fatty acid synthase, and stearoyl-CoA desaturase–1 was markedly increased, while that of the rate-limiting step in fat oxidation, carnitine palmitoyl transferase–1α, was decreased. In brown adipocytes, central ghrelin infusion resulted in lowered expression of the thermogenesis-related mitochondrial uncoupling proteins 1 and 3. These ghrelin effects were dose dependent, occurred independently from ghrelin-induced hyperphagia, and seemed to be mediated by the sympathetic nervous system. Additionally, the expression of some fat storage enzymes was decreased in ghrelin-deficient mice, which led us to conclude that central ghrelin is of physiological relevance in the control of cell metabolism in adipose tissue. These results unravel the existence of what we believe to be a new CNS-based neuroendocrine circuit regulating metabolic homeostasis of adipose tissue. PMID:16767221

  20. Metabolic remodeling of human skeletal myocytes by cocultured adipocytes depends on the lipolytic state of the system.

    PubMed

    Kovalik, Jean-Paul; Slentz, Dorothy; Stevens, Robert D; Kraus, William E; Houmard, Joseph A; Nicoll, James B; Lea-Currie, Y Renee; Everingham, Karen; Kien, C Lawrence; Buehrer, Benjamin M; Muoio, Deborah M

    2011-07-01

    Adipocyte infiltration of the musculoskeletal system is well recognized as a hallmark of aging, obesity, and type 2 diabetes. Intermuscular adipocytes might serve as a benign storage site for surplus lipid or play a role in disrupting energy homeostasis as a result of dysregulated lipolysis or secretion of proinflammatory cytokines. This investigation sought to understand the net impact of local adipocytes on skeletal myocyte metabolism. Interactions between these two tissues were modeled using a coculture system composed of primary human adipocytes and human skeletal myotubes derived from lean or obese donors. Metabolic analysis of myocytes was performed after coculture with lipolytically silent or activated adipocytes and included transcript and metabolite profiling along with assessment of substrate selection and insulin action. Cocultured adipocytes increased myotube mRNA expression of genes involved in oxidative metabolism, regardless of the donor and degree of lipolytic activity. Adipocytes in the basal state sequestered free fatty acids, thereby forcing neighboring myotubes to rely more heavily on glucose fuel. Under this condition, insulin action was enhanced in myotubes from lean but not obese donors. In contrast, when exposed to lipolytically active adipocytes, cocultured myotubes shifted substrate use in favor of fatty acids, which was accompanied by intracellular accumulation of triacylglycerol and even-chain acylcarnitines, decreased glucose oxidation, and modest attenuation of insulin signaling. The effects of cocultured adipocytes on myocyte substrate selection and insulin action depended on the metabolic state of the system. These findings are relevant to understanding the metabolic consequences of intermuscular adipogenesis. © 2011 by the American Diabetes Association.

  1. Metabolic Remodeling of Human Skeletal Myocytes by Cocultured Adipocytes Depends on the Lipolytic State of the System

    PubMed Central

    Kovalik, Jean-Paul; Slentz, Dorothy; Stevens, Robert D.; Kraus, William E.; Houmard, Joseph A.; Nicoll, James B.; Lea-Currie, Y. Renee; Everingham, Karen; Kien, C. Lawrence; Buehrer, Benjamin M.; Muoio, Deborah M.

    2011-01-01

    OBJECTIVE Adipocyte infiltration of the musculoskeletal system is well recognized as a hallmark of aging, obesity, and type 2 diabetes. Intermuscular adipocytes might serve as a benign storage site for surplus lipid or play a role in disrupting energy homeostasis as a result of dysregulated lipolysis or secretion of proinflammatory cytokines. This investigation sought to understand the net impact of local adipocytes on skeletal myocyte metabolism. RESEARCH DESIGN AND METHODS Interactions between these two tissues were modeled using a coculture system composed of primary human adipocytes and human skeletal myotubes derived from lean or obese donors. Metabolic analysis of myocytes was performed after coculture with lipolytically silent or activated adipocytes and included transcript and metabolite profiling along with assessment of substrate selection and insulin action. RESULTS Cocultured adipocytes increased myotube mRNA expression of genes involved in oxidative metabolism, regardless of the donor and degree of lipolytic activity. Adipocytes in the basal state sequestered free fatty acids, thereby forcing neighboring myotubes to rely more heavily on glucose fuel. Under this condition, insulin action was enhanced in myotubes from lean but not obese donors. In contrast, when exposed to lipolytically active adipocytes, cocultured myotubes shifted substrate use in favor of fatty acids, which was accompanied by intracellular accumulation of triacylglycerol and even-chain acylcarnitines, decreased glucose oxidation, and modest attenuation of insulin signaling. CONCLUSIONS The effects of cocultured adipocytes on myocyte substrate selection and insulin action depended on the metabolic state of the system. These findings are relevant to understanding the metabolic consequences of intermuscular adipogenesis. PMID:21602515

  2. Early differential processing of material images: Evidence from ERP classification.

    PubMed

    Wiebel, Christiane B; Valsecchi, Matteo; Gegenfurtner, Karl R

    2014-06-24

    Investigating the temporal dynamics of natural image processing using event-related potentials (ERPs) has a long tradition in object recognition research. In a classical Go-NoGo task two characteristic effects have been emphasized: an early task independent category effect and a later task-dependent target effect. Here, we set out to use this well-established Go-NoGo paradigm to study the time course of material categorization. Material perception has gained more and more interest over the years as its importance in natural viewing conditions has been ignored for a long time. In addition to analyzing standard ERPs, we conducted a single trial ERP pattern analysis. To validate this procedure, we also measured ERPs in two object categories (people and animals). Our linear classification procedure was able to largely capture the overall pattern of results from the canonical analysis of the ERPs and even extend it. We replicate the known target effect (differential Go-NoGo potential at frontal sites) for the material images. Furthermore, we observe task-independent differential activity between the two material categories as early as 140 ms after stimulus onset. Using our linear classification approach, we show that material categories can be differentiated consistently based on the ERP pattern in single trials around 100 ms after stimulus onset, independent of the target-related status. This strengthens the idea of early differential visual processing of material categories independent of the task, probably due to differences in low-level image properties and suggests pattern classification of ERP topographies as a strong instrument for investigating electrophysiological brain activity. © 2014 ARVO.

  3. Beta(3)-adrenergic signaling acutely down regulates adipose triglyceride lipase in brown adipocytes.

    PubMed

    Deiuliis, Jeffrey A; Liu, Li-Fen; Belury, Martha A; Rim, Jong S; Shin, Sangsu; Lee, Kichoon

    2010-06-01

    Mice exposed to cold rely upon brown adipose tissue (BAT)-mediated nonshivering thermogenesis to generate body heat using dietary glucose and lipids from the liver and white adipose tissue. In this report, we investigate how cold exposure affects the PI3 K/Akt signaling cascade and the expression of genes involved in lipid metabolism and trafficking in BAT. Cold exposure at an early time point led to the activation of the PI3 K/Akt, insulin-like signaling cascade followed by a transient decrease in adipose triglyceride lipase (ATGL) gene and protein expression in BAT. To further investigate how cold exposure-induced signaling altered ATGL expression, cultured primary brown adipocytes were treated with the beta(3)-adrenergic receptor (beta(3)AR) agonist CL 316,243 (CL) resulting in activation of PI3 K/Akt, ERK 1/2, and p38 signaling pathways and significantly decreased ATGL protein levels. ATGL protein levels decreased significantly 30 min post CL treatment suggesting protein degradation. Inhibition of PKA signaling by H89 rescued ATGL levels. The effects of PKA signaling on ATGL were shown to be independent of relevant pathways downstream of PKA such as PI3 K/Akt, ERK 1/2, and p38. However, CL treatment in 3T3-L1 adipocytes did not decrease ATGL protein and mRNA expression, suggesting a distinct response in WAT to beta3-adrenergic agonism. Transitory effects, possibly attributed to acute Akt activation during the early recruitment phase, were noted as well as stable changes in gene expression which may be attributed to beta3-adrenergic signaling in BAT.

  4. The anti-obesity effects of a tuna peptide on 3T3-L1 adipocytes are mediated by the inhibition of the expression of lipogenic and adipogenic genes and by the activation of the Wnt/β-catenin signaling pathway.

    PubMed

    Kim, Young-Min; Kim, In-Hye; Choi, Jeong-Wook; Lee, Min-Kyeong; Nam, Taek-Jeong

    2015-08-01

    The differentiation of 3T3-L1 cells into adipocytes involves the activation of an organized system of obesity-related genes, of which those encoding CCAAT/enhancer-binding proteins (C/EBPs) and the Wnt-10b protein may play integral roles. In a previous study of ours, we found that a specific peptide found in tuna (sequence D-I-V-D-K-I-E-I; termed TP-D) inhibited 3T3-L1 cell differentiation. In the present study, we observed that the expression of expression of C/EBPs and Wnt-10b was associated with obesity. The initial step of 3T3-L1 cell differentiation involved the upregulation of C/EBP-α expression, which in turn activated various subfactors. An upstream effector of glycogen synthase kinase-3β (GSK-3β) inhibited Wnt-10b expression in 3T3-L1 adipocytes. In a previous study of ours, we sequenced the tuna peptide via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and quadrupole time-of-flight mass spectrometry (Q-TOF MS/MS) and confirmed the anti-obesity effects thereof in 3T3-L1 adipocytes. In the present study, we demonstrate that TP-D inhibits C/EBP and promotes Wnt-10b mRNA expression, thus activating the Wnt pathway. The inhibition of lipid accumulation was measured using a glucose and triglyceride (TG) assay. Our results confirmed that TP-D altered the expression levels of C/EBP-related genes in a dose-dependent manner and activated the Wnt signaling pathway. In addition, we confirmed that total adiponectin and high-molecular weight (HMW) adiponectin levels were reduced by treatment with TP-D. These data indicate that TP-D inhibits adipocyte differentiation through the inhibition of C/EBP genes and the subsequent activation of the Wnt/β-catenin signaling pathway.

  5. Dietary fat saturation and endurance exercise alter lipolytic sensitivity of adipocytes isolated from Yucatan miniature swine.

    PubMed

    Meservey, C M; Carey, G B

    1994-12-01

    This study examined the effects of dietary fat saturation and endurance exercise on lipolytic sensitivity of adipocytes isolated from Yucatan miniature swine. Twenty-four female swine had free access to a high fat diet with a polyunsaturated to saturated fat ratio (P:S) of 0.3 or 1.0, and were treadmill-exercised or remained sedentary. After 3 months, biopsies were taken, adipocytes were isolated and lipolytic activity was determined. Adipocytes were incubated with adenosine deaminase followed by epinephrine, isoproterenol, or epinephrine plus phenylisopropyladenosine, and glycerol release was measured. Backfat thickness was measured by ultrasonography. Our findings revealed that 1) adipocytes from 1.0 P:S diet-fed swine released 30% more glycerol than adipocytes from 0.3 P:S diet-fed swine when stimulated by 1 micromol/L isoproterenol; 2) adipocytes from exercised swine released 45% more glycerol than adipocytes from sedentary swine when stimulated by 1 micromol/L epinephrine; 3) body weight of exercised swine was significantly lower than sedentary swine; and 4) backfat thickness was less in exercised swine than in sedentary swine (2.39 vs. 2.95 cm, P = 0.002). We conclude that ad libitum consumption of diet with a P:S of 1.0, combined with endurance exercise, increases lipolytic sensitivity, lowers body weight gain, and reduces fat accumulation in female Yucatan miniature swine.

  6. Calorie restriction-induced changes in the secretome of human adipocytes, comparison with resveratrol-induced secretome effects.

    PubMed

    Renes, Johan; Rosenow, Anja; Roumans, Nadia; Noben, Jean-Paul; Mariman, Edwin C M

    2014-09-01

    Obesity is characterized by dysfunctional white adipose tissue (WAT) that ultimately may lead to metabolic diseases. Calorie restriction (CR) reduces the risk for age and obesity-associated complications. The impact of CR on obesity has been examined with human intervention studies, which showed alterations in circulating adipokines. However, a direct effect of CR on the human adipocyte secretome remains elusive. Therefore, the effect of a 96h low glucose CR on the secretion profile of in vitro cultured mature human SGBS adipocytes was investigated by using proteomics technology. Low-glucose CR decreased the adipocyte triglyceride contents and resulted in an altered secretion profile. Changes in the secretome indicated an improved inflammatory phenotype. In addition, several adipocyte-secreted proteins related to insulin resistance showed a reversed expression after low-glucose CR. Furthermore, 6 novel CR-regulated adipocyte-secreted proteins were identified. Since resveratrol (RSV) mimics CR we compared results from this study with data from our previous RSV study on the SGBS adipocyte secretome. The CR and RSV adipocyte secretomes partly differed from each other, although both treatment strategies lead to secretome changes indicating a less inflammatory phenotype. Furthermore, both treatments induced SIRT1 expression and resulted in a reversed expression of detrimental adipokines associated with metabolic complications. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis.

    PubMed

    Sydor, Svenja; Sowa, Jan-Peter; Megger, Dominik A; Schlattjan, Martin; Jafoui, Sami; Wingerter, Lena; Carpinteiro, Alexander; Baba, Hideo A; Bechmann, Lars P; Sitek, Barbara; Gerken, Guido; Gulbins, Erich; Canbay, Ali

    2017-05-01

    Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD). Acid sphingomyelinase (ASM) converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1 -/- ) genotype affects diet-induced NAFLD. Smpd1 -/- mice and wild type controls were fed either a standard or Western diet (WD) for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Although Smpd1 -/- mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1 -/- , we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1 -/- mice indicated a reduction in Rictor (mTORC2) activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation.

  8. Adenovirus Protein E4-ORF1 Activation of PI3 Kinase Reveals Differential Regulation of Downstream Effector Pathways in Adipocytes.

    PubMed

    Chaudhary, Natasha; Gonzalez, Eva; Chang, Sung-Hee; Geng, Fuqiang; Rafii, Shahin; Altorki, Nasser K; McGraw, Timothy E

    2016-12-20

    Insulin activation of phosphatidylinositol 3-kinase (PI3K) regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but not regulation of Glut4. This uncoupling of PI3K effects occurs despite E4-ORF1 activating PI3K and downstream signaling to levels achieved by insulin. Although E4-ORF1 does not fully recapitulate insulin's effects on Glut4, it enhances insulin-stimulated insertion of Glut4-containing vesicles to the plasma membrane independent of Rab10, a key regulator of Glut4 trafficking. E4-ORF1 also stimulates plasma membrane translocation of ubiquitously expressed Glut1 glucose transporter, an effect that is likely essential for E4-ORF1 to promote an anabolic metabolism in a broad range of cell types. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes.

    PubMed

    Gormand, Amélie; Henriksson, Emma; Ström, Kristoffer; Jensen, Thomas Elbenhardt; Sakamoto, Kei; Göransson, Olga

    2011-05-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes remains elusive. Previous studies have identified LKB1 as a major AMPK kinase in muscle, liver, and other tissues. In certain cell types, Ca(2+) /calmodulin-dependent protein kinase kinase β (CaMKKβ) has been shown to activate AMPK in response to increases of intracellular Ca(2+) levels. Our aim was to investigate if LKB1 and/or CaMKK function as AMPK kinases in adipocytes. We used adipose tissue and isolated adipocytes from mice in which the expression of LKB1 was reduced to 10-20% of that of wild-type (LKB1 hypomorphic mice). We show that adipocytes from LKB1 hypomorphic mice display a 40% decrease in basal AMPK activity and a decrease of AMPK activity in the presence of the AMPK activator phenformin. We also demonstrate that stimulation of 3T3L1 adipocytes with intracellular [Ca(2+) ]-raising agents results in an activation of the AMPK pathway. The inhibition of CaMKK isoforms, particularly CaMKKβ, by the inhibitor STO-609 or by siRNAs, blocked Ca(2+) -, but not phenformin-, AICAR-, or forskolin-induced activation of AMPK, indicating that CaMKK activated AMPK in response to Ca(2+) . Collectively, we show that LKB1 is required to maintain normal AMPK-signaling in non-stimulated adipocytes and in the presence of phenformin. In addition, we demonstrate the existence of a Ca(2+) /CaMKK signaling pathway that can also regulate the activity of AMPK in adipocytes. Copyright © 2011 Wiley-Liss, Inc.

  10. The natural compound, formononetin, extracted from Astragalus membranaceus increases adipocyte thermogenesis by modulating PPARγ activity.

    PubMed

    Nie, Tao; Zhao, Shiting; Mao, Liufeng; Yang, Yiting; Sun, Wei; Lin, Xiaoliang; Liu, Shuo; Li, Kuai; Sun, Yirong; Li, Peng; Zhou, Zhiguang; Lin, Shaoqiang; Hui, Xiaoyan; Xu, Aimin; Ma, Chung Wah; Xu, Yong; Wang, Cunchuan; Dunbar, P Rod; Wu, Donghai

    2018-05-01

    Increasing energy expenditure through adipocyte thermogenesis is generally accepted as a promising strategy to mitigate obesity and its related diseases. However, few clinically effective and safe agents are known to promote adipocyte thermogenesis. In this study, 20 traditional Chinese herbal medicines were screened to examine whether they induced adipocyte thermogenesis. The effects of Chinese herbal medicines or components isolated from extracts of A. membranaceus, on adipocyte thermogenesis were analysed by assessing expression of uncoupling protein 1 (UCP1) by qPCR. Eight-week-old C57BL6/J male mice were fed a high-fat diet for 8 weeks and then randomized to two groups treated with vehicle or formononetin for another 8 weeks. Glucose tolerance tests and staining of adipose tissue with haematoxylin and eosin were carried out. Whole-body oxygen consumption was measured with an open-circuit indirect calorimetry system. Extracts of A. membranaceus increased expression of Ucp1 in primary cultures of mouse adipocytes. Formononetin was the only known component of A. membranaceus extracts to increase adipocyte Ucp1 expression. Diet-induced obese mice treated with formononetin gained less weight and showed higher energy expenditure than untreated mice. In addition, formononetin binds directly with PPARγ. Taken together, our study demonstrates that the Chinese herbal medicine from A. membranaceus and its constituent formononetin have the potential to reduce obesity and associated metabolic disorders. Our results suggest that formononetin regulates adipocyte thermogenesis as a non-classical PPARγ agonist. © 2018 The British Pharmacological Society.

  11. The blubber adipocyte index: A nondestructive biomarker of adiposity in humpback whales (Megaptera novaeangliae).

    PubMed

    Castrillon, Juliana; Huston, Wilhelmina; Bengtson Nash, Susan

    2017-07-01

    The ability to accurately evaluate the energetic health of wildlife is of critical importance, particularly under conditions of environmental change. Despite the relevance of this issue, currently there are no reliable, standardized, nonlethal measures to assess the energetic reserves of large, free-roaming marine mammals such as baleen whales. This study investigated the potential of adipocyte area analysis and further, a standardized adipocyte index (AI), to yield reliable information regarding humpback whale ( Megaptera novaeangliae ) adiposity. Adipocyte area and AI, as ascertained by image analysis, showed a direct correlation with each other but only a weak correlation with the commonly used, but error prone, blubber lipid-percent measure. The relative power of the three respective measures was further evaluated by comparing humpback whale cohorts at different stages of migration and fasting. Adipocyte area, AI, and blubber lipid-percent were assessed by binary logistic regression revealing that adipocyte area had the greatest probability to predict the migration cohort with a high level of redundancy attributed to the AI given their strong linear relationship (r = -.784). When only AI and lipid-percent were assessed, the performance of both predictor variables was significant but the power of AI far exceeded lipid-percent. The sensitivity of adipocyte metrics and the rapid, nonlethal, and inexpensive nature of the methodology and AI calculation validate the inclusion of the AI in long-term monitoring of humpback whale population health, and further raises its potential for broader wildlife applications.

  12. Evaluation of markers of beige adipocytes in white adipose tissue of the mouse

    USDA-ARS?s Scientific Manuscript database

    Beige or brite (brown in white) adipocytes are cells that arise in white adipose tissue (WAT) in response to stimuli like excess energy, exercise, or cold exposure. The induction of beige adipocytes (beigeing) confers resistance to obesity and type-2 diabetes in animal models. There is a growing int...

  13. Lactate production by swine adipocytes: effects of age, nutritional status, glucose concentration, and insulin.

    PubMed

    Heckler, B K; Carey, G B

    1997-06-01

    To develop an alternative model in which to study the relationship between adipose tissue lactate production, obesity, and non-insulin-dependent diabetes mellitus (NIDDM), we investigated lactate production by swine adipocytes. Subcutaneous adipocytes from fasted 3-wk-old, fasted 7-mo-old, and fed 7-mo-old Yucatan minIature swine were isolated and incubated with 0.2, 1, 5, 10, or 25 mM glucose +/- 1 mU/ml insulin. Total glucose metabolism (TGM) was estimated by product summation. Results showed that 1) TGM was threefold greater in cells from fasted 7-mo- vs. 3-wk-old swine (P < 0.05), 2) TGM was 2.7-fold greater in cells from fed 7-mo-old vs. fasted 7-mo-old swine (P < 0.05), 3) insulin failed to stimulate TGM in adipocytes from swine of either age and either nutritional status, and 4) lactate and pyruvate accounted for 34 and 30% of TGM, respectively, in adipocytes from swine of both ages. Similarities in glucose metabolism and lactate production in adipocytes from swine and obese NIDDM humans make the swine a potentially valuable model for studying lactate production associated with obesity and NIDDM.

  14. MiR-27a is Essential for the Shift from Osteogenic Differentiation to Adipogenic Differentiation of Mesenchymal Stem Cells in Postmenopausal Osteoporosis.

    PubMed

    You, Li; Pan, Ling; Chen, Lin; Gu, Wensha; Chen, Jinyu

    2016-01-01

    Osteoporosis is a progressive bone disease characterized by a decrease in bone mass and density, which results in an increased risk of fractures. Mesenchymal stem cells (MSCs) are progenitor cells that can differentiate into osteoblasts, osteocytes and adipocytes in bone and fat formation. A reduction in the differentiation of MSCs into osteoblasts contributes to the impaired bone formation observed in osteoporosis. MicroRNAs (miRNAs) play a regulatory role in osteogenesis and MSC differentiation. MiR-27a has been reported to be down-regulated in the development of osteoporosis and during adipogenic differentiation. In this study, a miRNA microarray analysis was used to investigate expression profiles of miRNA in the serum of osteoporotic patients and healthy controls and this data was validated by quantitative real-time PCR (qRT-PCR). MSCs isolated from human and mice with miR-27a inhibition or overexpression were induced to differentiate into osteoblasts or adipocytes. TargetScan and PicTar were used to predict the target gene of miR-27a. The mRNA or protein levels of several specific proteins in MSCs were detected using qRT-PCR or western blot analysis. Ovariectomized mice were used as in vivo model of human postmenopausal osteoporosis for bone mineral density measurement, micro-CT analysis and histomorphometric analysis. Here, we analyzed the role of miR-27a in bone metabolism. Microarray analysis indicated that miR-27a expression was significantly reduced in osteoporotic patients. Analysis on MSCs derived from patients with osteoporosis indicated that osteoblastogenesis was reduced, whereas adipogenesis was increased. MSCs that had undergone osteoblast induction showed a significant increase in miR-27a expression, whereas cells that had undergone adipocyte induction showed a significant decrease in miR-27a expression, indicating that miR-27a was essential for MSC differentiation. We demonstrated that myocyte enhancer factor 2 c (Mef2c), a transcription factor

  15. [The dynamic mitochondria-nuclear redistribution of FKBP51 during the process of adipocyte differentiation is regulated by PKA].

    PubMed

    Toneatto, Judith; Charó, Nancy L; Susperreguy, Sebastián; Piwien-Pilipuk, Graciela

    2013-01-01

    Glucocorticoids play an important role in adipogenesis via the glucocorticoid receptor (GR) that forms a heterocomplex with Hsp90-Hsp70 and a high molecular weight immunophilin FKBP51 or FKBP52. We have found that FKBP51 level of expression progressively increases, FKBP52 decreases, whereas Hsp90, Hsp70, and p23 remain unchanged when 3T3-L1 preadipocytes differentiate. Interestingly, FKBP51 translocates from mitochondria to the nucleus at the onset of adipogenesis. FKBP51 transiently concentrates in the nuclear lamina, at a time that this nuclear compartment undergoes its reorganization. FKBP51 nuclear localization is transient, after 48 h it cycles back to mitochondria. We found that the dynamic FKBP51 mitochondrial-nuclear shuttling is regulated by glucocorticoids and mainly on cAMP-PKA signaling since PKA inhibition by myristoilated-PKI, abrogated FKBP51 nuclear translocation induced by 3-isobutyl-1-methylxanthine (IBMX). It has been reported that PKA interacts with GR in a ligand dependent manner potentiating its transcriptional capacity. GR transcriptional capacity is reduced when cells are incubated in the presence of IBMX, forskolin or dibutyryl-cAMP, compounds that induced nuclear translocation of FKBP51, therefore PKA may exert a dual role in the control of GR. In summary, the presence of FKBP51 in the nucleus may be critical for GR transcriptional control, and possibly for the control of other transcription factors that are not members of the nuclear receptor family but are regulated by PKA signaling pathway, when transcription has to be strictly controlled to succeed in the acquisition of the adipocyte phenotype.

  16. SENP1-mediated NEMO deSUMOylation in adipocytes limits inflammatory responses and type-1 diabetes progression

    PubMed Central

    Shao, Lan; Zhou, Huanjiao Jenny; Zhang, Haifeng; Qin, Lingfeng; Hwa, John; Yun, Zhong; Ji, Weidong; Min, Wang

    2015-01-01

    Adipocyte dysfunction correlates with the development of diabetes. Here we show that mice with a adipocyte-specific deletion of the SUMO-specific protease SENP1 gene develop symptoms of type-1 diabetes mellitus (T1DM), including hyperglycaemia and glucose intolerance with mild insulin resistance. Peri-pancreatic adipocytes from SENP1-deficient mice exhibit heightened NF-κB activity and production of proinflammatory cytokines, which induce CCL5 expression in adjacent pancreatic islets and direct cytotoxic effects on pancreatic islets. Mechanistic studies show that SENP1 deletion in adipocytes enhances SUMOylation of the NF-κB essential molecule, NEMO, at lysine 277/309, leading to increased NF-κB activity, cytokine production and pancreatic inflammation. We further show that NF-κB inhibitors could inhibit pre-diabetic cytokine production, β-cell damages and ameliorate the T1DM phenotype in SENP1-deficient mice. Feeding a high-fat diet augments both type-1 and type-2 diabetes phenotypes in SENP1-deficient mice, consistent with the effects on adipocyte-derived NF-κB and cytokine signalling. Our study reveals previously unrecognized mechanism regulating the onset and progression of T1DM associated with adipocyte dysfunction. PMID:26596471

  17. SENP1-mediated NEMO deSUMOylation in adipocytes limits inflammatory responses and type-1 diabetes progression.

    PubMed

    Shao, Lan; Zhou, Huanjiao Jenny; Zhang, Haifeng; Qin, Lingfeng; Hwa, John; Yun, Zhong; Ji, Weidong; Min, Wang

    2015-11-24

    Adipocyte dysfunction correlates with the development of diabetes. Here we show that mice with a adipocyte-specific deletion of the SUMO-specific protease SENP1 gene develop symptoms of type-1 diabetes mellitus (T1DM), including hyperglycaemia and glucose intolerance with mild insulin resistance. Peri-pancreatic adipocytes from SENP1-deficient mice exhibit heightened NF-κB activity and production of proinflammatory cytokines, which induce CCL5 expression in adjacent pancreatic islets and direct cytotoxic effects on pancreatic islets. Mechanistic studies show that SENP1 deletion in adipocytes enhances SUMOylation of the NF-κB essential molecule, NEMO, at lysine 277/309, leading to increased NF-κB activity, cytokine production and pancreatic inflammation. We further show that NF-κB inhibitors could inhibit pre-diabetic cytokine production, β-cell damages and ameliorate the T1DM phenotype in SENP1-deficient mice. Feeding a high-fat diet augments both type-1 and type-2 diabetes phenotypes in SENP1-deficient mice, consistent with the effects on adipocyte-derived NF-κB and cytokine signalling. Our study reveals previously unrecognized mechanism regulating the onset and progression of T1DM associated with adipocyte dysfunction.

  18. 5-hydroxytryptamine actions in adipocytes: involvement of monoamine oxidase-dependent oxidation and subsequent PPARγ activation.

    PubMed

    Grès, Sandra; Gomez-Zorita, Saioa; Gomez-Ruiz, Ana; Carpéné, Christian

    2013-06-01

    Serotonin (5-HT) is a brain neurotransmitter instrumental for the antidepressant action of selective inhibitors of serotonin reuptake (SSRIs) while it also plays important roles in peripheral organs. Recently, the 5-HT oxidation products, 5-hydroxyindoleacetate and 5-methoxy-indoleacetate, have been shown to bind to peroxisome proliferator-activated receptor γ (PPARγ) and to enhance lipid accumulation in preadipocytes. Since we already reported that adipocytes exhibit elevated monoamine oxidase (MAO) and primary amine oxidase activities, we verified how adipocytes readily oxidize 5-HT, with the objective to determine whether such oxidation promotes PPARγ activation and lipid storage. To this aim, serotonin was tested on cultured 3T3 F442A preadipocytes and on human adipocytes. Results showed that 5-HT was oxidized by MAO in both models. Daily treatment of 3T3 F442A preadipocytes for 8 days with 100-500 μM 5-HT promoted triglyceride accumulation and emergence of adipogenesis markers. At 250 μM, 5-HT alone reproduced half of 50 nM insulin-induced adipogenesis, and exhibited an additive differentiating effect when combined with insulin. Moreover, the 5-HT-induced expression of PPARγ-responsive genes (PEPCK, aP2/FABP4) was blocked by GW 9662, a PPARγ-inhibitor, or by pargyline, a MAO-inhibitor. In human fat cells, 6-h exposure to 100 μM 5-HT increased PEPCK expression as did the PPARγ-agonist rosiglitazone. Since hydrogen peroxide, another amine oxidation product, did not reproduce such enhancement, we propose that serotonin can promote PPARγ activation in fat cells, via the indoleacetate produced during MAO-dependent oxidation. Such pathway could be involved in the adverse effects of several antidepressant SSRIs on body weight gain.

  19. Adipocyte aminopeptidases in obesity and fasting.

    PubMed

    Alponti, Rafaela Fadoni; Silveira, Paulo Flavio

    2015-11-05

    This study checked the existence of a diverse array of aminopeptidase (AP) enzymes in high (HDM) and low (LDM) density microsomal and plasma membrane (MF) fractions from adipocytes of control, monosodium glutamate obese and food deprived rats. Gene expression was detected for ArgAP, AspAP, MetAP, and two AlaAP (APM and PSA). APM and PSA had the highest catalytic efficiency, whereas AspAP the highest affinity. Subcellular distribution of AP activities depended on metabolic status. Comparing catalytic levels, AspAP in HDM, LDM and MF was absent in obese and control under food deprivation; PSA in LDM was 3.5-times higher in obese than in normally fed control and control and obese under food deprivation; MetAP in MF was 4.5-times higher in obese than in food deprived obese. Data show new AP enzymes genetically expressed in subcellular compartments of adipocytes, three of them with altered catalytic levels that respond to whole-body energetic demands. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Bone marrow adipocytes resist lipolysis and remodeling in response to β-adrenergic stimulation.

    PubMed

    Scheller, Erica L; Khandaker, Shaima; Learman, Brian S; Cawthorn, William P; Anderson, Lindsay M; Pham, H A; Robles, Hero; Wang, Zhaohua; Li, Ziru; Parlee, Sebastian D; Simon, Becky R; Mori, Hiroyuki; Bree, Adam J; Craft, Clarissa S; MacDougald, Ormond A

    2018-01-26

    Bone marrow adipose tissue (BMAT) is preserved or increased in states of caloric restriction. Similarly, we found that BMAT in the tail vertebrae, but not the red marrow in the tibia, resists loss of neutral lipid with acute, 48-hour fasting in rats. The mechanisms underlying this phenomenon and its seemingly distinct regulation from peripheral white adipose tissue (WAT) remain unknown. To test the role of β-adrenergic stimulation, a major regulator of adipose tissue lipolysis, we examined the responses of BMAT to β-adrenergic agonists. Relative to inguinal WAT, BMAT had reduced phosphorylation of hormone sensitive lipase (HSL) after treatment with pan-β-adrenergic agonist isoproterenol. Phosphorylation of HSL in response to β3-adrenergic agonist CL316,243 was decreased by an additional ~90% (distal tibia BMAT) or could not be detected (tail vertebrae). Ex vivo, adrenergic stimulation of lipolysis in purified BMAT adipocytes was also substantially less than iWAT adipocytes and had site-specific properties. Specifically, regulated bone marrow adipocytes (rBMAs) from proximal tibia and femur underwent lipolysis in response to both CL316,243 and forskolin, while constitutive BMAs from the tail responded only to forskolin. This occurred independently of changes in gene expression of β-adrenergic receptors, which were similar between adipocytes from iWAT and BMAT, and could not be explained by defective coupling of β-adrenergic receptors to lipolytic machinery through caveolin 1. Specifically, we found that whereas caveolin 1 was necessary to mediate maximal stimulation of lipolysis in iWAT, overexpression of caveolin 1 was insufficient to rescue impaired BMAT signaling. Lastly, we tested the ability of BMAT to respond to 72-hour treatment with CL316,243 in vivo. This was sufficient to cause beiging of iWAT adipocytes and a decrease in iWAT adipocyte cell size. By contrast, adipocyte size in the tail BMAT and distal tibia remained unchanged. However, within the

  1. N-acetylaspartate catabolism determines cytosolic acetyl-CoA levels and histone acetylation in brown adipocytes

    PubMed Central

    Prokesch, A.; Pelzmann, H. J.; Pessentheiner, A. R.; Huber, K.; Madreiter-Sokolowski, C. T.; Drougard, A.; Schittmayer, M.; Kolb, D.; Magnes, C.; Trausinger, G.; Graier, W. F.; Birner-Gruenberger, R.; Pospisilik, J. A.; Bogner-Strauss, J. G.

    2016-01-01

    Histone acetylation depends on the abundance of nucleo-cytoplasmic acetyl-CoA. Here, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. N-acetylaspartate (NAA) is a highly abundant brain metabolite catabolized by aspartoacylase yielding aspartate and acetate. The latter can be further used for acetyl-CoA production. Prior to this work, the presence of NAA has not been described in adipocytes. Here, we show that accumulation of NAA decreases the brown adipocyte phenotype. We increased intracellular NAA concentrations in brown adipocytes via media supplementation or knock-down of aspartoacylase and measured reduced lipolysis, thermogenic gene expression, and oxygen consumption. Combinations of approaches to increase intracellular NAA levels showed additive effects on lipolysis and gene repression, nearly abolishing the expression of Ucp1, Cidea, Prdm16, and Ppara. Transcriptome analyses of aspartoacylase knock-down cells indicate deficiencies in acetyl-CoA and lipid metabolism. Concordantly, cytoplasmic acetyl-CoA levels and global histone H3 acetylation were decreased. Further, activating histone marks (H3K27ac and H3K9ac) in promoters/enhancers of brown marker genes showed reduced acetylation status. Taken together, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. Thereby, we mechanistically connect the NAA pathway to the epigenomic regulation of gene expression, modulating the phenotype of brown adipocytes. PMID:27045997

  2. Insulin resistance and GLUT-4 glucose transporter in adipocytes from hypertensive rats.

    PubMed

    Chiappe De Cingolani, Gladys E; Caldiz, Claudia I

    2004-03-01

    To investigate the mechanisms that cause insulin resistance in hypertension, experiments were performed to study the effect of insulin on glucose transport, GLUT-4 translocation from intracellular to plasma membranes and GLUT-4 phosphorylation in isolated adipocytes from normotensive Wistar (W) and spontaneously hypertensive rats (SHR). Glucose transport was measured in adipocytes incubated with 3-O-d[Methyl-(3)H] glucose with and without insulin (0.1 to 5 nmol/L). GLUT-4 protein was determined by Western blot immunoanalysis with GLUT-4 antibody. Phosphorylation of GLUT-4 was measured by immunoprecipitation with GLUT-4 antibody followed by immunoanalysis with phosphoserine or phosphothreonine antibodies. Compared with adipocytes from W, insulin-stimulated glucose transport was lower in the SHR (P <.05). GLUT-4 protein expression was similar in adipocytes from W and SHR. Insulin increased GLUT-4 translocation from intracellular to plasma membranes in both groups. This effect was lower in the SHR (P <.05). The effect of insulin on GLUT-4 serine phosphorylation showed no changes in plasma membranes from W and decreased in the SHR (P <.05). In intracellular membranes, insulin increased specific GLUT-4 serine phosphorylation in both groups (P <.05), but the increase was lower in the SHR (P <.05). The results suggest that a deficient GLUT-4 translocation to plasma membranes in response to insulin shown in adipocytes from SHR, which was accompanied by a decrease in GLUT-4 phosphorylation at serine site, could be one of the causes of insulin resistance in hypertension.

  3. Androgens inhibit adipogenesis during human adipose stem cell commitment to predipocyte formation

    PubMed Central

    Chazenbalk, Gregorio; Singh, Prapti; Irge, Dana; Shah, Amy; Abbott, David H; Dumesic, Daniel A

    2013-01-01

    Androgens play a pivotal role in the regulation of body fat distribution. Adipogenesis is a process whereby multipotent adipose stem cells (ASCs) initially become preadipocytes (ASC commitment to preadipocytes) before differentiating into adipocytes. Androgens inhibit human (h) subcutaneous (SC) abdominal preadipocyte differentiation in both sexes, but their effects on hASC commitment to preadipocyte formation is unknown. We therefore examined whether androgen exposure to human (h) ASCs, isolated from SC abdominal adipose of nonobese women, impairs their commitment to preadipocyte formation and/or subsequent differentiation into adipocytes. For this, isolated hASCs from SC abdominal lipoaspirate were cultured in adipogenesis-inducing medium for 0.5–14 days in the presence of testosterone (T, 0–100 nM) or dihydrotestosterone (DHT, 0–50 nM). Adipogenesis was determined by immunofluorescence microscopy and by quantification of adipogenically relevant transcriptional factors, PPARγ, C/EBPα and C/EBPβ. We found that a 3-day exposure of hASCs to T (50 nM) or DHT (5 nM) in adipogenesis-inducing medium impaired lipid acquisition and decreased PPARγ, C/EBPα and C/EBPβ gene expression. The inhibitory effects of T and DHT at this early-stage of adipocyte differentiation, were partially and completely reversed by flutamide (F, 100 nM), respectively. The effect of androgens on hASC commitment to a preadipocyte phenotype was examined via activation of BMP4 signaling. T (50 nM) and DHT (5nM) significantly inhibited the stimulatory effect of BMP4-induced ASC commitment to the preadipocyte phenotype, as regards PPARγ and C/EBPα gene expression. Our findings indicate that androgens, in part through androgen receptor action, impair BMP4-induced commitment of SC hASCs to preadipocytes and also reduce early-stage adipocyte differentiation, perhaps limiting adipocyte numbers and fat storage in SC abdominal adipose. PMID:23707571

  4. Monoterpene limonene induces brown fat-like phenotype in 3T3-L1 white adipocytes.

    PubMed

    Lone, Jameel; Yun, Jong Won

    2016-05-15

    Several dietary compounds that are able to induce the brown fat-like phenotype in white adipocytes have been considered for treatment of obesity due to their ability to increase energy expenditure. Here, we report that limonene induces the brown fat-like phenotype in 3T3-L1 adipocytes by increasing expression of brown adipocyte-specific genes and proteins. Limonene-induced browning in white adipocytes was investigated by determining expression levels of brown fat-specific genes and proteins by real-time RT-PCR, immunoblot analysis, and immunocytochemical staining. Limonene enhanced mitochondrial biogenesis, as evidenced by increased mitochondrial content and immunofluorescent intensity. Limonene also significantly elevated protein levels of HSL, PLIN, p-AMPK, p-ACC, ACO, COX4, CPT1, and CYT C, suggesting its possible role in enhancement of lipolysis and lipid catabolism. Increased expression of PRDM16, UCP1, C/EBPβ, and other brown fat-specific markers by limonene was possibly mediated by activation of β3-adnergenic receptor (β3-AR), as inhibition of β3-AR inhibited up-regulation of brown fat-specific markers. Similarly, limonene-mediated activation of ERK and up-regulation of key brown adipocyte specific markers were eliminated by treatment with ERK antagonist. Taken together, these results suggest that limonene induces browning of 3T3-L1 adipocytes via activation of β3-AR and the ERK signaling pathway. In conclusion, our findings suggest that limonene plays a dual modulatory role in induction of the brown adipocyte-like phenotype as well as promotion of lipid metabolism and thus may have potential therapeutic implications for treatment of obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Selective Insulin Resistance in Adipocytes*

    PubMed Central

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  6. Family history of type 2 diabetes, abdominal adipocyte size and markers of the metabolic syndrome.

    PubMed

    Anthanont, P; Ramos, P; Jensen, M D; Hames, K C

    2017-11-01

    A major risk factor of type 2 diabetes mellitus (T2DM) is a positive family history of diabetes. First degree relatives (FDR) of patients with T2DM are more insulin resistant and are reported to have larger abdominal subcutaneous adipocytes than adults without a family history. Our objectives were to assess whether FDR of T2DM are associated with larger abdominal adipocytes independent of age, sex and abdominal subcutaneous fat and to assess whether a family history of T2DM is also independently related to femoral adipocyte size, as well as visceral fat and fasting plasma triglyceride (TG) concentrations. We extracted adipocyte size, body composition, plasma TG and demographic data of non-diabetic research participants of previous studies conducted in our laboratory. We ascertained the family history of T2DM from the electronic medical records. Multivariate regression analysis was used to assess whether FDR of T2DM are more likely to have other risk factors after adjusting for known covariates. Of 604 participants, 148 were FDR of T2DM. Although abdominal and femoral adipocyte size was greater in FDR of T2DM than those without a family history (0.74±0.33 vs 0.63±0.33 μg lipid per cell, P<0.001; 0.81±0.29 vs 0.72±0.33 μg lipid per cell, P=0.01, respectively), this was confounded by FDR of T2DM being older, having greater body mass index and percent body fat. A family history of T2DM was a significant predictor of abdominal adipocyte size after adjustment for age and body fat distribution parameters in females (total R 2 =0.5, P<0.0001), but not in males. A family history of T2DM was not independently predictive of femoral adipocyte size, visceral fat area or TG. Female FDR of T2DM have larger abdominal, but not femoral, adipocytes, even after accounting for age and body fat distribution.

  7. Buckwheat (Fagopyrum esculentum M.) Sprout Treated with Methyl Jasmonate (MeJA) Improved Anti-Adipogenic Activity Associated with the Oxidative Stress System in 3T3-L1 Adipocytes

    PubMed Central

    Lee, Young-Jun; Kim, Kui-Jin; Park, Kee-Jai; Yoon, Bo-Ra; Lim, Jeong-Ho; Lee, Ok-Hwan

    2013-01-01

    Buckwheat sprouts contain various bioactive compounds including rutin which have a number of biological activities. We have previously shown that buckwheat sprouts (TBWE) treated with methyl jasmonate (MeJA) significantly increased the amount of phenolics and the antioxidant activity. The aim of this study was to demonstrate the effect of TBWE on anti-adipogenesis and pro-oxidant enzyme in 3T3-L1 adipocytes. We also evaluated the anti-oxidative activity of TBWE in adipocytes by using the nitroblue tetrazolium assay. Our data showed that TBWE markedly inhibited adipocyte differentiation and ROS production in 3T3-L1 cells compared with control groups. Moreover, TBWE has strongly shown the inhibition of adipogenic transcription factor as well as pro-oxidant enzymes. Together, we demonstrate that the MeJA treatment significantly increased the amount of phenolic compound, resulting in the suppression of adipogenesis and ROS production in the 3T3-L1 cells. These findings indicate that TBWE has the potential for anti-adipogenesis activity with anti-oxidative properties. PMID:23344050

  8. Adipocyte Glucocorticoid Receptor Deficiency Attenuates Aging- and HFD-Induced Obesity and Impairs the Feeding-Fasting Transition.

    PubMed

    Mueller, Kristina M; Hartmann, Kerstin; Kaltenecker, Doris; Vettorazzi, Sabine; Bauer, Mandy; Mauser, Lea; Amann, Sabine; Jall, Sigrid; Fischer, Katrin; Esterbauer, Harald; Müller, Timo D; Tschöp, Matthias H; Magnes, Christoph; Haybaeck, Johannes; Scherer, Thomas; Bordag, Natalie; Tuckermann, Jan P; Moriggl, Richard

    2017-02-01

    Glucocorticoids (GCs) are important regulators of systemic energy metabolism, and aberrant GC action is linked to metabolic dysfunctions. Yet, the extent to which normal and pathophysiological energy metabolism depend on the GC receptor (GR) in adipocytes remains unclear. Here, we demonstrate that adipocyte GR deficiency in mice significantly impacts systemic metabolism in different energetic states. Plasma metabolomics and biochemical analyses revealed a marked global effect of GR deficiency on systemic metabolite abundance and, thus, substrate partitioning in fed and fasted states. This correlated with a decreased lipolytic capacity of GR-deficient adipocytes under postabsorptive and fasting conditions, resulting from impaired signal transduction from β-adrenergic receptors to adenylate cyclase. Upon prolonged fasting, the impaired lipolytic response resulted in abnormal substrate utilization and lean mass wasting. Conversely, GR deficiency attenuated aging-/diet-associated obesity, adipocyte hypertrophy, and liver steatosis. Systemic glucose tolerance was improved in obese GR-deficient mice, which was associated with increased insulin signaling in muscle and adipose tissue. We conclude that the GR in adipocytes exerts central but diverging roles in the regulation of metabolic homeostasis depending on the energetic state. The adipocyte GR is indispensable for the feeding-fasting transition but also promotes adiposity and associated metabolic disorders in fat-fed and aged mice. © 2017 by the American Diabetes Association.

  9. Abnormal cation transport in uremia. Mechanisms in adipocytes and skeletal muscle from uremic rats.

    PubMed

    Druml, W; Kelly, R A; May, R C; Mitch, W E

    1988-04-01

    The cause of the abnormal active cation transport in erythrocytes of some uremic patients is unknown. In isolated adipocytes and skeletal muscle from chronically uremic chronic renal failure rats, basal sodium pump activity was decreased by 36 and 30%, and intracellular sodium was increased by 90 and 50%, respectively, compared with pair-fed control rats; insulin-stimulated sodium pump activity was preserved in both tissues. Lower basal NaK-ATPase activity in adipocytes was due to a proportionate decline in [3H]ouabain binding, while in muscle, [3H]ouabain binding was not changed, indicating that the NaK-ATPase turnover rate was decreased. Normal muscle, but not normal adipocytes, acquired defective Na pump activity when incubated in uremic sera. Thus, the mechanism for defective active cation transport in CRF is multifactorial and tissue specific. Sodium-dependent amino acid transport in adipocytes closely paralleled diminished Na pump activity (r = 0.91), indicating the importance of this defect to abnormal cellular metabolism in uremia.

  10. Abnormal cation transport in uremia. Mechanisms in adipocytes and skeletal muscle from uremic rats.

    PubMed Central

    Druml, W; Kelly, R A; May, R C; Mitch, W E

    1988-01-01

    The cause of the abnormal active cation transport in erythrocytes of some uremic patients is unknown. In isolated adipocytes and skeletal muscle from chronically uremic chronic renal failure rats, basal sodium pump activity was decreased by 36 and 30%, and intracellular sodium was increased by 90 and 50%, respectively, compared with pair-fed control rats; insulin-stimulated sodium pump activity was preserved in both tissues. Lower basal NaK-ATPase activity in adipocytes was due to a proportionate decline in [3H]ouabain binding, while in muscle, [3H]ouabain binding was not changed, indicating that the NaK-ATPase turnover rate was decreased. Normal muscle, but not normal adipocytes, acquired defective Na pump activity when incubated in uremic sera. Thus, the mechanism for defective active cation transport in CRF is multifactorial and tissue specific. Sodium-dependent amino acid transport in adipocytes closely paralleled diminished Na pump activity (r = 0.91), indicating the importance of this defect to abnormal cellular metabolism in uremia. PMID:2832446

  11. Murine Mesenchymal Stem Cell Commitment to Differentiation is Regulated by Mitochondrial Dynamics

    PubMed Central

    Forni, Maria Fernanda; Peloggia, Julia; Trudeau, Kyle; Shirihai, Orian; Kowaltowski, Alicia J.

    2015-01-01

    Mouse skin mesenchymal stem cells (msMSCs) are dermis CD105+CD90+CD73+CD29+CD34− mesodermal precursors which, after in vitro induction, undergo chondro, adipo and osteogenesis. Extensive metabolic reconfiguration has been found to occur during differentiation, and the bioenergetic status of a cell is known to be dependent on the quality and abundance of the mitochondrial population, which may be regulated by fusion and fission. However, little is known regarding the impact of mitochondrial dynamics on the differentiation process. We addressed this knowledge gap by isolating MSCs from Swiss female mice, inducing these cells to differentiate into osteo, chondro and adipocytes and measuring changes in mass, morphology, dynamics and bioenergetics. Mitochondrial biogenesis was increased in adipogenesis, as evaluated through confocal microscopy, citrate synthase activity and mtDNA content. The early steps of adipo and osteogenesis involved mitochondrial elongation, as well as increased expression of mitochondrial fusion proteins Mfn1 and 2. Chondrogenesis involved a fragmented mitochondrial phenotype, increased expression of fission proteins Drp1, Fis1 and 2 and enhanced mitophagy. These events were accompanied by profound bioenergetic alterations during the commitment period. Moreover, knockdown of Mfn2 in adipo and osteogenesis and the overexpression of a dominant negative form of Drp1 during chondrogenesis resulted in a loss of differentiation ability. Overall, we find that mitochondrial morphology and its regulating processes of fission/fusion are modulated early on during commitment, leading to alterations in the bioenergetic profile that are important for differentiation. We thus propose a central role for mitochondrial dynamics in the maintenance/commitment of mesenchymal stem cells. PMID:26638184

  12. Branched short-chain fatty acids modulate glucose and lipid metabolism in primary adipocytes

    PubMed Central

    Heimann, Emilia; Nyman, Margareta; Pålbrink, Ann-Ki; Lindkvist-Petersson, Karin; Degerman, Eva

    2016-01-01

    ABSTRACT Short-chain fatty acids (SCFAs), e.g. acetic acid, propionic acid and butyric acid, generated through colonic fermentation of dietary fibers, have been shown to reach the systemic circulation at micromolar concentrations. Moreover, SCFAs have been conferred anti-obesity properties in both animal models and human subjects. Branched SCFAs (BSCFAs), e.g., isobutyric and isovaleric acid, are generated by fermentation of branched amino acids, generated from undigested protein reaching colon. However, BSCFAs have been sparsely investigated when referring to effects on energy metabolism. Here we primarily investigate the effects of isobutyric acid and isovaleric acid on glucose and lipid metabolism in primary rat and human adipocytes. BSCFAs inhibited both cAMP-mediated lipolysis and insulin-stimulated de novo lipogenesis at 10 mM, whereas isobutyric acid potentiated insulin-stimulated glucose uptake by all concentrations (1, 3 and 10 mM) in rat adipocytes. For human adipocytes, only SCFAs inhibited lipolysis at 10 mM. In both in vitro models, BSCFAs and SCFAs reduced phosphorylation of hormone sensitive lipase, a rate limiting enzyme in lipolysis. In addition, BSCFAs and SCFAs, in contrast to insulin, inhibited lipolysis in the presence of wortmannin, a phosphatidylinositide 3-kinase inhibitor and OPC3911, a phosphodiesterase 3 inhibitor in rat adipocytes. Furthermore, BSCFAs and SCFAs reduced insulin-mediated phosphorylation of protein kinase B. To conclude, BSCFAs have effects on adipocyte lipid and glucose metabolism that can contribute to improved insulin sensitivity in individuals with disturbed metabolism. PMID:27994949

  13. A Review of Recent Studies on Differential Reinforcement during Skill Acquisition in Early Intervention

    ERIC Educational Resources Information Center

    Vladescu, Jason C.; Kodak, Tiffany

    2010-01-01

    Although the use of differential reinforcement has been recommended in previous investigations and in early intervention curriculum manuals, few studies have evaluated the best method for providing differential reinforcement to maximize independent responding. This paper reviews previous research on the effectiveness of differential reinforcement…

  14. Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagasaki, Haruka; Yoshimura, Takeshi; Aoki, Naohito, E-mail: n-aoki@bio.mie-u.ac.jp

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Inflammation status in adipocytes can be monitored by the new assay system. Black-Right-Pointing-Pointer Only an aliquot of conditioned medium is required without cell lysis. Black-Right-Pointing-Pointer Inflammation-attenuating compounds can be screened more conveniently. -- Abstract: We have established 3T3-L1 cells possessing a secretory Gaussia luciferase (GLuc) gene under the control of nuclear factor-kappa B (NF-{kappa}B) response element. The 3T3-L1 cells named 3T3-L1-NF-{kappa}B-RE-GLuc could differentiate into adipocyte as comparably as parental 3T3-L1 cells. Inflammatory cytokines such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-1{beta} induced GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes in a concentration- and time-dependent manner. GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLucmore » adipocytes was also induced when cultured with RAW264.7 macrophages and was dramatically enhanced by lipopolysaccharide (LPS)-activated macrophages. An NF-{kappa}B activation inhibitor BAY-11-7085 and an antioxidant N-acetyl cysteine significantly suppressed GLuc secretion induced by macrophages. Finally, we found that rosemary-derived carnosic acid strongly suppressed GLuc secretion induced by macrophages and on the contrary up-regulated adiponectin secretion. Collectively, by using 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes, inflammation status can be monitored in real time and inflammation-attenuating compounds can be screened more conveniently.« less

  15. Function of FEZF1 during early neural differentiation of human embryonic stem cells.

    PubMed

    Liu, Xin; Su, Pei; Lu, Lisha; Feng, Zicen; Wang, Hongtao; Zhou, Jiaxi

    2018-01-01

    The understanding of the mechanism underlying human neural development has been hampered due to lack of a cellular system and complicated ethical issues. Human embryonic stem cells (hESCs) provide an invaluable model for dissecting human development because of unlimited self-renewal and the capacity to differentiate into nearly all cell types in the human body. In this study, using a chemical defined neural induction protocol and molecular profiling, we identified Fez family zinc finger 1 (FEZF1) as a potential regulator of early human neural development. FEZF1 is rapidly up-regulated during neural differentiation in hESCs and expressed before PAX6, a well-established marker of early human neural induction. We generated FEZF1-knockout H1 hESC lines using CRISPR-CAS9 technology and found that depletion of FEZF1 abrogates neural differentiation of hESCs. Moreover, loss of FEZF1 impairs the pluripotency exit of hESCs during neural specification, which partially explains the neural induction defect caused by FEZF1 deletion. However, enforced expression of FEZF1 itself fails to drive neural differentiation in hESCs, suggesting that FEZF1 is necessary but not sufficient for neural differentiation from hESCs. Taken together, our findings identify one of the earliest regulators expressed upon neural induction and provide insight into early neural development in human.

  16. The production of coagulation factor VII by adipocytes is enhanced by tumor necrosis factor-α or isoproterenol.

    PubMed

    Takahashi, N; Yoshizaki, T; Hiranaka, N; Kumano, O; Suzuki, T; Akanuma, M; Yui, T; Kanazawa, K; Yoshida, M; Naito, S; Fujiya, M; Kohgo, Y; Ieko, M

    2015-05-01

    A relationship has been reported between blood concentrations of coagulation factor VII (FVII) and obesity. In addition to its role in coagulation, FVII has been shown to inhibit insulin signals in adipocytes. However, the production of FVII by adipocytes remains unclear. We herein investigated the production and secretion of FVII by adipocytes, especially in relation to obesity-related conditions including adipose inflammation and sympathetic nerve activation. C57Bl/6J mice were fed a low- or high-fat diet and the expression of FVII messenger RNA (mRNA) was then examined in adipose tissue. 3T3-L1 cells were used as an adipocyte model for in vitro experiments in which these cells were treated with tumor necrosis factor-α (TNF-α) or isoproterenol. The expression and secretion of FVII were assessed by quantitative real-time PCR, Western blotting and enzyme-linked immunosorbent assays. The expression of FVII mRNA in the adipose tissue of mice fed with high-fat diet was significantly higher than that in mice fed with low-fat diet. Expression of the FVII gene and protein was induced during adipogenesis and maintained in mature adipocytes. The expression and secretion of FVII mRNA were increased in the culture medium of 3T3-L1 adipocytes treated with TNF-α, and these effects were blocked when these cells were exposed to inhibitors of mitogen-activated kinases or NF-κB activation. The β-adrenoceptor agonist isoproterenol stimulated the secretion of FVII from mature adipocytes via the cyclic AMP/protein kinase A pathway. Blockade of secreted FVII with the anti-FVII antibody did not affect the phosphorylation of Akt in the isoproterenol-stimulated adipocytes. Obese adipose tissue produced FVII. The production and secretion of FVII by adipocytes was enhanced by TNF-α or isoproterenol via different mechanisms. These results indicate that FVII is an adipokine that plays an important role in the pathogenesis of obesity.

  17. Nuclear phosphoproteome analysis of 3T3-L1 preadipocyte differentiation reveals system-wide phosphorylation of transcriptional regulators.

    PubMed

    Rabiee, Atefeh; Schwämmle, Veit; Sidoli, Simone; Dai, Jie; Rogowska-Wrzesinska, Adelina; Mandrup, Susanne; Jensen, Ole N

    2017-03-01

    Adipocytes (fat cells) are important endocrine and metabolic cells critical for systemic insulin sensitivity. Both adipose excess and insufficiency are associated with adverse metabolic function. Adipogenesis is the process whereby preadipocyte precursor cells differentiate into lipid-laden mature adipocytes. This process is driven by a network of transcriptional regulators (TRs). We hypothesized that protein PTMs, in particular phosphorylation, play a major role in activating and propagating signals within TR networks upon induction of adipogenesis by extracellular stimulus. We applied MS-based quantitative proteomics and phosphoproteomics to monitor the alteration of nuclear proteins during the early stages (4 h) of preadipocyte differentiation. We identified a total of 4072 proteins including 2434 phosphorylated proteins, a majority of which were assigned as regulators of gene expression. Our results demonstrate that adipogenic stimuli increase the nuclear abundance and/or the phosphorylation levels of proteins involved in gene expression, cell organization, and oxidation-reduction pathways. Furthermore, proteins acting as negative modulators involved in negative regulation of gene expression, insulin stimulated glucose uptake, and cytoskeletal organization showed a decrease in their nuclear abundance and/or phosphorylation levels during the first 4 h of adipogenesis. Among 288 identified TRs, 49 were regulated within 4 h of adipogenic stimulation including several known and many novel potential adipogenic regulators. We created a kinase-substrate database for 3T3-L1 preadipocytes by investigating the relationship between protein kinases and protein phosphorylation sites identified in our dataset. A majority of the putative protein kinases belong to the cyclin-dependent kinase family and the mitogen-activated protein kinase family including P38 and c-Jun N-terminal kinases, suggesting that these kinases act as orchestrators of early adipogenesis. © 2016 WILEY

  18. SOCS3 promotes apoptosis of mammary differentiated cells.

    PubMed

    Le Provost, Fabienne; Miyoshi, Keiko; Vilotte, Jean-Luc; Bierie, Brian; Robinson, Gertraud W; Hennighausen, Lothar

    2005-12-30

    Growth and function of the mammary gland is regulated by cytokines and modulated by suppressor of cytokine signalling (SOCS) proteins. In vitro experiments demonstrated that SOCS3 can inhibit PRL induction of milk protein gene expression and STAT5 activation. We explored the SOCS3 expression pattern during mouse mammary development and its regulation by PRL and GH in wild-type and STAT5a-null mammary tissue. Our results suggest that, in vivo, PRL stimulates SOCS3 expression in stromal adipocytes, independently of STAT5a stimulation. In mammary epithelial cells, SOCS3 expression appears to be related to STAT3 activation. Together, our results are consistent with a role of SOCS3 in the mammary gland by promoting apoptosis of differentiated cells (adipocytes during gestation and epithelial cells during involution).

  19. Ginsenoside Rb1 promotes browning through regulation of PPARγ in 3T3-L1 adipocytes.

    PubMed

    Mu, Qianqian; Fang, Xin; Li, Xiaoke; Zhao, Dandan; Mo, Fangfang; Jiang, Guangjian; Yu, Na; Zhang, Yi; Guo, Yubo; Fu, Min; Liu, Jun-Li; Zhang, Dongwei; Gao, Sihua

    2015-10-23

    Browning of white adipocyte tissue (WAT) has received considerable attention due to its potential implication in preventing obesity and related comorbidities. Ginsenoside Rb1 is reported to improve glycolipid metabolism and reduce body weight in obese animals. However whether the body reducing effect mediates by browning effect remains unclear. For this purpose, 3T3-L1 adipocytes were used to study the effect of ginsenoside Rb1 on browning adipocytes specific genes and oxygen consumptions. The results demonstrate that 10 μM of ginsenoside Rb1 increases basal glucose uptake and promoted browning evidenced by significant increases in mRNA expressions of UCP-1, PGC-1α and PRDM16 in 3T3-L1 mature adipocytes. Further, ginsenoside Rb1 also increases PPARγ activity. And the browning effect is abrogated by GW9692, a PPARγ antagonist. In addition, ginsenoside Rb1 increases basal respiration rate, ATP production and uncoupling capacity in 3T3-L1 adipocytes. Those effects are also blunted by GW9692. The results suggest that ginsenoside Rb1 promote browning of 3T3-L1 adipocytes through induction of PPARγ. Our finding offer a new source to discover browning agonists and also useful to understand and extend the applications of ginseng and its constituents. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Wnt inhibition enhances browning of mouse primary white adipocytes.

    PubMed

    Lo, Kinyui Alice; Ng, Pei Yi; Kabiri, Zahra; Virshup, David; Sun, Lei

    2016-01-01

    The global epidemic in obesity and metabolic syndrome requires novel approaches to tackle. White adipose tissue, traditionally seen as a passive energy-storage organ, can be induced to take on certain characteristics of brown fat in a process called browning. The "browned" white adipose tissue, or beige fat, is a potential anti-obesity target. Various signaling pathways can enhance browning. Wnt is a key regulator of adipocyte biology, but its role in browning has not been explored. In this study, we found that in primary mouse adipocytes derived from the inguinal depot, Wnt inhibition by both chemical and genetic methods significantly enhanced browning. The effect of Wnt inhibition on browning most likely targets the beige precursor cells in selected adipose depots.