Sample records for early archean seafloor-hydrothermal

  1. Mathematical Models of Seafloor Hydrothermal Systems Driven by Serpentinization of Peridotite

    NASA Astrophysics Data System (ADS)

    Lowell, R. P.; Rona, P. A.; Germanovich, L. N.

    2001-12-01

    Most seafloor hydrothermal systems are driven by heat transfer from subsurface magma bodies. At slow spreading ridges of the Atlantic and Indian oceans, however, magma supply is low; and tectonic activity brings mantle rocks to shallow depths in the crust. Then, the heat of formation released upon serpentinization of peridotite provides the energy source for hydrothermal circulation. This latter class of system has been relatively unstudied, but recent discoveries of peridotite-hosted hydrothermal systems along the Mid-Atlantic Ridge suggest that such systems may play an important role in geochemical cycling and biogeochemical processes. The likelihood that peridotite-hosted hydrothermal systems was more prevalent during the Archean further suggests that such systems may have played a role in the origin of life. We present the first mathematical models of seafloor hydrothermal systems driven by heat released upon serpentinization of peridotite. We assume seawater circulates through a major crack network in the host-peridotite and that cooling of the host-rock leads to the formation of microcracks through which the fluid infiltrates. Reaction of the fluid in microcracks with the host rock results in serpentinization and the heat released upon serpentinization is transported to the seafloor by the fluid circulating in the main crack network. The temperature and heat output of the resulting hydrothermal system is a function of the main network permeability and the rate at which the serpentinization reaction proceeds via diffusion and propagation of the microcracks. Although the temperature of such a system can be quite variable, vent temperatures between 10° C and 100° C are likely for typical crustal parameters.

  2. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2017-12-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  3. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents.

    PubMed

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2017-12-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H 2 and CO 2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  4. Hydrothermal mineralization at seafloor spreading centers

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.

    1984-01-01

    ) discrete spreading centers in back-arc basins represented by hydrothermal deposits at sites in marginal seas of the western Pacific. Ore-forming processes appear to be least efficient in the axial zone of volcanic extrusion of oceanic ridges at an advanced stage of opening irrespective of spreading rate, where tight hydrothermal systems dissipate a major portion of contained metals by precipitation and dispersion in particulate form from "black smokers" that discharge into the water column. Ore-forming processes appear to be most efficient at sites in basins at linear sections of the axial zone of volcanic extrusion near transform faults during an early stage of opening, and at marginal zones of active extension along linear sections of a spreading center during an advanced stage of opening, irrespective of spreading rate, where both tight and leaky hydrothermal systems may conserve their contained metals to concentrate large sulfide deposits. Resemblances in mineralization between stockwork sulfides at seafloor spreading centers and porphyry copper-type deposits in volcanogenic rocks on land suggest the possibility for the occurrence of large tonnage, low-grade porphyry copper-like deposits concentrated by leaky hydrothermal systems at spreading centers. Systematic application of composite exploration procedures is leading to the discovery of numerous additional deposits. It is inferred from the limited data base available that the occurrence of hydrothermal mineral deposits is more frequent at intermediate-to-fast-than at slow-spreading centers, but the potential for the accumulation of large hydrothermal mineral deposits is greater at slow-spreading centers. Current knowledge of the distribution of hydrothermal mineral deposits at seafloor spreading centers is limited to about 55 sites at this early stage of exploration. Estimates of the distribution of either fields of hydrothermal mineral deposits or high-intensity ore-forming hydrothermal systems at seafloor

  5. Evaluating the earliest traces of Archean sub-seafloor life by NanoSIMS

    NASA Astrophysics Data System (ADS)

    Mcloughlin, N.; Grosch, E. G.; Kilburn, M.; Wacey, D.

    2012-12-01

    depleted δ34SVCDT values of -39.8 to +3.2‰ (n= 32). The magnitude, range and spatial heterogeneity of these δ34S values are consistent with an early microbial origin (McLoughlin et al. 2012). In contrast, sulfides cross-cutting the microtextures related to later veining have positive δ34S of +6.7 to +18.0‰ (n=20). These data can be compared to magmatic sulfides (δ34S = +3±3‰), Archean seawater (δ34S ca. +5‰) and Archean sedimentary sulfides (δ34S = +8 to -23‰). We propose that the Hooggenoeg sulfides probably formed during early fluid-rock-microbe interaction involving sulfate-reducing microbes (c.f. Rouxel et al. 2008). The pillow lavas were then metamorphosed, the glass transformed to a greenschist facies assemblage and titanite growth encapsulated the microbial sulfides. In summary, the extreme sulfur isotope fractionations reported here independently point towards the potential involvement of microbes in the alteration of Archean volcanic glass. In situ sulfur isotope analysis of basalt-hosted sulfides may provide an alternative approach to investigating the existence of an Archean sub-seafloor biosphere that does not require the mineralization of early microbial microborings with organic linings.

  6. Cryptic oxygen oases: Hypolithic photosynthesis in hydrothermal areas and implications for Archean surface oxidation

    NASA Astrophysics Data System (ADS)

    Havig, J. R.; Hamilton, T. L.

    2017-12-01

    Mounting geochemical evidence suggests microorganisms capable of oxygenic photosynthesis (e.g., Cyanobacteria) colonized Archean continental surfaces, driving oxidative weathering of detrital pyrites prior to the 2.5 Ga great oxidation event. Modern terrestrial environments dominated by single-celled phototrophs include hydrothermal systems (e.g., Yellowstone National Park) and hypolithic communities found in arid to hyper-arid deserts (e.g., McMurdo Dry Valleys of Antarctica, Atacama Desert of Chile). Recent work indicates terrestrial hydrothermal systems date back at least as far as 3.5 Ga. Here, we explore phototrophic communities in both hypolithic (sub-sinter) and hydrothermal (subaqueous and subaerial) environments in Yellowstone National Park as potential analogs to Archean continental surfaces. Hydrothermal sub-sinter environments provide ideal conditions for phototrophic microbial communities, including blocking of harmful UV radiation, trapping and retention of moisture, and protection from erosion by rain and surface runoff. Hypolithic communities in geothermal settings were similar in both composition and carbon uptake rates to nearby hot spring communities. We hypothesize that hydrothermal area hypolithic communities represent modern analogs of phototrophic microbial communities that colonized Archean continental surfaces, producing oxygen locally and facilitating microbially-mediated pyrite oxidation prior to the presence of free oxygen in the global atmosphere. These results have implications for oxidation of the early Earth surface, the search for biosignatures in the rock record, as well as for potential harbors of past life on Mars and the search for life on Exoplanets.

  7. Anhydrite precipitation in seafloor hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Theissen-Krah, Sonja; Rüpke, Lars H.

    2016-04-01

    The composition and metal concentration of hydrothermal fluids venting at the seafloor is strongly temperature-dependent and fluids above 300°C are required to transport metals to the seafloor (Hannington et al. 2010). Ore-forming hydrothermal systems and high temperature vents in general are often associated with faults and fracture zones, i.e. zones of enhanced permeabilities that act as channels for the uprising hydrothermal fluid (Heinrich & Candela, 2014). Previous numerical models (Jupp and Schultz, 2000; Andersen et al. 2015) however have shown that high permeabilities tend to decrease fluid flow temperatures due to mixing with cold seawater and the resulting high fluid fluxes that lead to short residence times of the fluid near the heat source. A possible mechanism to reduce the permeability and thereby to focus high temperature fluid flow are mineral precipitation reactions that clog the pore space. Anhydrite for example precipitates from seawater if it is heated to temperatures above ~150°C or due to mixing of seawater with hydrothermal fluids that usually have high Calcium concentrations. We have implemented anhydrite reactions (precipitation and dissolution) in our finite element numerical models of hydrothermal circulation. The initial results show that the precipitation of anhydrite efficiently alters the permeability field, which affects the hydrothermal flow field as well as the resulting vent temperatures. C. Andersen et al. (2015), Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge, Geology, 43(1), 51-54. M. D. Hannington et al. (2010), Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential, in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries, edited by R. J. Goldfarb, E. E. Marsh and T. Monecke, pp. 317-338, Society of Economic Geologists

  8. Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere

    PubMed Central

    Ventura, Gregory T.; Kenig, Fabien; Reddy, Christopher M.; Schieber, Juergen; Frysinger, Glenn S.; Nelson, Robert K.; Dinel, Etienne; Gaines, Richard B.; Schaeffer, Philippe

    2007-01-01

    Highly cracked and isomerized archaeal lipids and bacterial lipids, structurally changed by thermal stress, are present in solvent extracts of 2,707- to 2,685-million-year-old (Ma) metasedimentary rocks from Timmins, ON, Canada. These lipids appear in conventional gas chromatograms as unresolved complex mixtures and include cyclic and acyclic biphytanes, C36–C39 derivatives of the biphytanes, and C31–C35 extended hopanes. Biphytane and extended hopanes are also found in high-pressure catalytic hydrogenation products released from solvent-extracted sediments, indicating that archaea and bacteria were present in Late Archean sedimentary environments. Postdepositional, hydrothermal gold mineralization and graphite precipitation occurred before metamorphism (≈2,665 Ma). Late Archean metamorphism significantly reduced the kerogen's adsorptive capacity and severely restricted sediment porosity, limiting the potential for post-Archean additions of organic matter to the samples. Argillites exposed to hydrothermal gold mineralization have disproportionately high concentrations of extractable archaeal and bacterial lipids relative to what is releasable from their respective high-pressure catalytic hydrogenation product and what is observed for argillites deposited away from these hydrothermal settings. The addition of these lipids to the sediments likely results from a Late Archean subsurface hydrothermal biosphere of archaea and bacteria. PMID:17726114

  9. Stable isotopes in seafloor hydrothermal systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes

    USGS Publications Warehouse

    Shanks, Wayne C.

    2001-01-01

    The recognition of abundant and widespread hydrothermal activity and associated unique life-forms on the ocean floor is one of the great scientific discoveries of the latter half of the twentieth century. Studies of seafloor hydrothermal processes have led to revolutions in understanding fluid convection and the cooling of the ocean crust, the chemical and isotopic mass balance of the oceans, the origin of stratiform and statabound massive-sulfide ore-deposits, the origin of greenstones and serpentinites, and the potential importance of the subseafloor biosphere. Stable isotope geochemistry has been a critical and definitive tool from the very beginning of the modern era of seafloor exploration.

  10. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life.

    PubMed

    Pons, Marie-Laure; Quitté, Ghylaine; Fujii, Toshiyuki; Rosing, Minik T; Reynard, Bruno; Moynier, Frederic; Douchet, Chantal; Albarède, Francis

    2011-10-25

    The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81-3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100-300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids.

  11. Near-Seafloor Magnetic Exploration of Submarine Hydrothermal Systems in the Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Caratori Tontini, F.; de Ronde, C. E. J.; Tivey, M.; Kinsey, J. C.

    2014-12-01

    Magnetic data can provide important information about hydrothermal systems because hydrothermal alteration can drastically reduce the magnetization of the host volcanic rocks. Near-seafloor data (≤70 m altitude) are required to map hydrothermal systems in detail; Autonomous Underwater Vehicles (AUVs) are the ideal platform to provide this level of resolution. Here, we show the results of high-resolution magnetic surveys by the ABE and Sentry AUVs for selected submarine volcanoes of the Kermadec arc. 3-D magnetization models derived from the inversion of magnetic data, when combined with high resolution seafloor bathymetry derived from multibeam surveys, provide important constraints on the subseafloor geometry of hydrothermal upflow zones and the structural control on the development of seafloor hydrothermal vent sites as well as being a tool for the discovery of previously unknown hydrothermal sites. Significant differences exist between the magnetic expressions of hydrothermal sites at caldera volcanoes ("donut" pattern) and cones ("Swiss cheese" pattern), respectively. Subseafloor 3-D magnetization models also highlight structural differences between focused and diffuse vent sites.

  12. Seafloor weathering buffering climate: numerical experiments

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Archer, D. E.; Abbot, D. S.

    2013-12-01

    Continental silicate weathering is widely held to consume atmospheric CO2 at a rate controlled in part by temperature, resulting in a climate-weathering feedback [Walker et al., 1981]. It has been suggested that weathering of oceanic crust of warm mid-ocean ridge flanks also has a CO2 uptake rate that is controlled by climate [Sleep and Zahnle, 2001; Brady and Gislason, 1997]. Although this effect might not be significant on present-day Earth [Caldeira, 1995], seafloor weathering may be more pronounced during snowball states [Le Hir et al., 2008], during the Archean when seafloor spreading rates were faster [Sleep and Zahnle, 2001], and on waterworld planets [Abbot et al., 2012]. Previous studies of seafloor weathering have made significant contributions using qualitative, generally one-box, models, and the logical next step is to extend this work using a spatially resolved model. For example, experiments demonstrate that seafloor weathering reactions are temperature dependent, but it is not clear whether the deep ocean temperature affects the temperature at which the reactions occur, or if instead this temperature is set only by geothermal processes. Our goal is to develop a 2-D numerical model that can simulate hydrothermal circulation and resulting alteration of oceanic basalts, and can therefore address such questions. A model of diffusive and convective heat transfer in fluid-saturated porous media simulates hydrothermal circulation through porous oceanic basalt. Unsteady natural convection is solved for using a Darcy model of porous media flow that has been extensively benchmarked. Background hydrothermal circulation is coupled to mineral reaction kinetics of basaltic alteration and hydrothermal mineral precipitation. In order to quantify seafloor weathering as a climate-weathering feedback process, this model focuses on hydrothermal reactions that influence carbon uptake as well as ocean alkalinity: silicate rock dissolution, calcium and magnesium leaching

  13. Ancient hydrothermal seafloor deposits in Eridania basin on Mars

    NASA Astrophysics Data System (ADS)

    Michalski, Joseph R.; Dobrea, Eldar Z. Noe; Niles, Paul B.; Cuadros, Javier

    2017-07-01

    The Eridania region in the southern highlands of Mars once contained a vast inland sea with a volume of water greater than that of all other Martian lakes combined. Here we show that the most ancient materials within Eridania are thick (>400 m), massive (not bedded), mottled deposits containing saponite, talc-saponite, Fe-rich mica (for example, glauconite-nontronite), Fe- and Mg-serpentine, Mg-Fe-Ca-carbonate and probable Fe-sulphide that likely formed in a deep water (500-1,500 m) hydrothermal setting. The Eridania basin occurs within some of the most ancient terrain on Mars where striking evidence for remnant magnetism might suggest an early phase of crustal spreading. The relatively well-preserved seafloor hydrothermal deposits in Eridania are contemporaneous with the earliest evidence for life on Earth in potentially similar environments 3.8 billion years ago, and might provide an invaluable window into the environmental conditions of early Earth.

  14. Ancient hydrothermal seafloor deposits in Eridania basin on Mars

    PubMed Central

    Michalski, Joseph R.; Dobrea, Eldar Z. Noe; Niles, Paul B.; Cuadros, Javier

    2017-01-01

    The Eridania region in the southern highlands of Mars once contained a vast inland sea with a volume of water greater than that of all other Martian lakes combined. Here we show that the most ancient materials within Eridania are thick (>400 m), massive (not bedded), mottled deposits containing saponite, talc-saponite, Fe-rich mica (for example, glauconite-nontronite), Fe- and Mg-serpentine, Mg-Fe-Ca-carbonate and probable Fe-sulphide that likely formed in a deep water (500–1,500 m) hydrothermal setting. The Eridania basin occurs within some of the most ancient terrain on Mars where striking evidence for remnant magnetism might suggest an early phase of crustal spreading. The relatively well-preserved seafloor hydrothermal deposits in Eridania are contemporaneous with the earliest evidence for life on Earth in potentially similar environments 3.8 billion years ago, and might provide an invaluable window into the environmental conditions of early Earth. PMID:28691699

  15. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life

    PubMed Central

    Pons, Marie-Laure; Quitté, Ghylaine; Fujii, Toshiyuki; Rosing, Minik T.; Reynard, Bruno; Moynier, Frederic; Douchet, Chantal; Albarède, Francis

    2011-01-01

    The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81–3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100–300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids. PMID:22006301

  16. Molybdenum isotopes in modern marine hydrothermal Fe/Mn deposits: Implications for Archean and Paleoproterozoic Mo cycles

    NASA Astrophysics Data System (ADS)

    Goto, K. T.; Hein, J. R.; Shimoda, G.; Aoki, S.; Ishikawa, A.; Suzuki, K.; Gordon, G. W.; Anbar, A. D.

    2016-12-01

    Molybdenum isotope (δ98/95Mo) variations recorded in Archean and Paleoproterozoic Fe/Mn-rich sediments have been used to constrain ocean redox conditions at the time of deposition (Canfield et al., 2013 PNAS; Planavsky et al., 2014 Nat. Geo.; Kurzweil et al., 2015 GCA). However, except for hydrogenous Fe-Mn crusts (Siebert et al., 2003), δ98/95Mo variation of modern Fe and Mn oxide deposits has been poorly investigated. Marine hydrothermal systems are thought to be the major source of Fe and Mn in Archean and Paleoproterozoic Fe- and Mn-rich sediments. Hence, to accurately interpret Mo isotope data of those ancient sedimentary rocks, it is important to evaluate the possible influence of hydrothermally derived Mo on δ98/95Mo of modern Fe- and Mn-rich sediments. In this study, we analyzed Mo isotopic compositions of one hydrothermal Fe oxide and 15 Mn oxides from five different hydrothermal systems in the modern ocean. The Fe oxide is composed mainly of goethite, and has a δ98/95Mo of 0.7‰, which is 1.4‰ lighter than that of present-day seawater. The observed offset is similar to isotope fractionation observed during adsorption experiments of Mo on goethite (Δ98/95Mogoethite-solution = -1.4 ± 0.5%; Goldberg et al., 2009 GCA). The 15 hydrothermal Mn oxides show large variations in δ98/95Mo ranging from -1.7 to 0.5‰. However, most of the values are similar to those of modern hydrogenous Fe-Mn crusts (Siebert et al., 2003 EPSL), and fall within the range of estimated δ98/95Mo of Mn oxides precipitated from present-day seawater using the isotope offset reported from adsorption experiments (Δ98/95Mo = -2.7 ± 0.3‰; Wasylenki et al., 2008 GCA). These findings indicate that seawater is the dominant source of Mo for modern hydrothermal Fe and Mn deposits. However, the observed large variation indicates that the contribution Mo from local hydrothermal systems is not negligible. The oceanic Mo inventory during the Archean and Paleoproterozoic is thought to be

  17. Archean sedimentary styles and early crustal evolution

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1986-01-01

    The distinctions between and implications of early and late Archean sedimentary styles are presented. Early Archean greenstone belts, such as the Barberton of South Africa and those in the eastern Pilbar Block of Australia are characterized by fresh or slightly reworked pyroclastic debris, orthochemical sediments such as carbonates, evaporites, and silica, and biogenic deposits including cherts and stromatolitic units. Terrigenous deposits are rare, and it is suggested that early Archean sediments were deposited on shallow simatic platforms, with little or no components derived from sialic sources. In contrast, late Archean greenstone belts in the Canadian Shield and the Yilgarn Block of Australia contain coarse terrigenous clastic rocks including conglomerate, sandstone, and shale derived largely from sialic basement. Deposition appears to have taken place in deepwater, tectonically unstable environments. These observations are interpreted to indicate that the early Archean greenstone belts formed as anorogenic, shallow water, simatic platforms, with little or no underlying or adjacent continental crust, an environment similar to modern oceanic islands formed over hot spots.

  18. Piston core record of Late Paleogene (31 Ma) to recent seafloor hydrothermal activity in the Southwest Pacific Basin

    NASA Astrophysics Data System (ADS)

    Stancin, Andrea M.; Gleason, James D.; Owen, Robert M.; Rea, David K.; Blum, Joel D.

    2008-03-01

    A large diameter piston core containing 8.35 m of metalliferous sediment has been recovered from a small abyssal valley in the remote Southwest Pacific Basin (31° 42.194'S, 143° 30° 331'W; 5082 m water depth), providing unique insight into hydrothermal activity and eolian sedimentation there since the early Oligocene. A combination of fish-teeth Sr-isotope stratigraphy and INAA geochemical data reveals an exponentially decreasing hydrothermal flux 31 Ma to the present. Although hydrothermal sedimentation related to seafloor spreading explains this trend, a complex history of late Eocene/early Oligocene ridge jumps, propagating rifts and plate tectonic reorganization of South Pacific seafloor could have also played a role. A possible hiatus in deposition, as recorded by changes in core composition just below 2 m depth, is beyond the resolution of the fish teeth Sr isotope dating method employed here; however, the timing of this interval may be coincident with extinction of the Pacific-Farallon Ridge at ˜20 Ma. A low flux eolian component accumulating at this site shows an increase relative to the hydrothermal component above 2 m depth, consistent with dust-generating continental sources far to the west (Australia/New Zealand). This is the first long-term paleoceanographic record obtained from within the South Pacific "bare zone" (Rea et al., 2006), an anomalous region where Pacific seafloor has largely escaped sediment accumulation since the Late Cretaceous.

  19. Reconciling atmospheric temperatures in the early Archean

    NASA Astrophysics Data System (ADS)

    Pope, E. C.; Rosing, M.; Bird, D. K.; Albarede, F.

    2012-12-01

    Average surface temperatures of Earth in the Archean remain unresolved despite decades of diverse approaches to the problem. As in the present, early Earth climates were complex systems dependent on many variables. With few constraints on such variables, climate models must be relatively simplistic, and consider only one or two factors that drive Archean climate (e.g. a fainter young sun, a low albedo, the extent and effect of cloud cover, or the presence and abundance of a wide array of greenhouse and icehouse gasses). Compounded on the limitations of modeling is the sparse and often ambiguous Archean rock record. The goal of this study is to compile and reconcile Archean geologic and geochemical features that are in some way controlled by surface temperature and/or atmospheric composition, so that at the very least paleoclimate models can be checked by physical limits. Data used to this end include the oxygen isotope record of chemical sediments and ancient ocean crust, chemical equilibria amongst primary phases in banded iron formations (BIFs), sedimentary features indicative of temperate or glacial environments, and paleosol indicators of atmospheric CO2. Further, we explore the extent to which hydrogen isotopes contribute to the geologic record as a signal for glaciations, continental growth and atmospheric methane levels. Oceanic serpentinites and subduction-related volcanic and hydrothermal environments obtain their hydrogen isotope signature from seawater, and thus may be used to calculate secular variation in δDSEAWATER which may fluctuate significantly due to hydrogen escape, continental growth and large-scale glaciation events. Further, ancient records of low-δD meteoric fluids signal both cooler temperatures and the emergence of large continents (increasing the effects of continental weathering on climate). Selective alteration of δD in Isua rocks to values of -130 to -100‰ post-dates ca. 3.55Ga Ameralik dikes, but may be associated with a poorly

  20. Exploring the Hydrothermal System in the Chicxulub Crater and Implications for the Early Evolution of Life on Earth

    NASA Astrophysics Data System (ADS)

    Kring, D. A.; Schmieder, M.; Tikoo, S.; Riller, U. P.; Simpson, S. L.; Osinski, G.; Cockell, C. S.; Coolen, M.; Gulick, S. P. S.; Morgan, J. V.

    2017-12-01

    Impact cratering, particularly large basin-size craters with diameters >100 km, have the potential to generate vast subsurface hydrothermal systems. There were dozens of such impacts during the Hadean and early Archean, some of which vaporized seas for brief periods of time, during which the safest niches for early life may have been in those subsurface hydrothermal systems. The Chicxulub crater can serve as a proxy for those events. New IODP-ICDP core recovered by Expedition 364 reveals a high-temperature (>300 degree C) system that may have persisted for more than 100,000 years. Of order 105 to 106 km3 of crust was structurally deformed, melted, and vaporized within about 10 minutes of the impact. The crust had to endure immense strain rates of 104/s to 106/s, up to 12 orders of magnitude greater than those associated with igneous and metamorphic processes. The outcome is a porous, permeable region that is a perfect host for hydrothermal circulation across the entire diameter of the crater to depths up to 5 or 6 km. The target rocks at Chicxulub are composed of an 3 km-thick carbonate platform sequence over a crystalline basement composed of igneous granite, granodiorite, and a few other intrusive components, such as dolerite, and metamorphic assemblages composed, in part, of gneiss and mica schist. Post-impact hydrothermal alteration includes Ca-Na- and K-metasomatism, pervasive hydration to produce layered silicates, and lower-temperature vug-filling zeolites as the system cycled from high temperatures to low temperatures. While the extent of granitic crust on early Earth is still debated and, thus, the direct application of those mineral reactions to the Hadean and early Archean can be debated, the thermal evolution of the system should be applicable to diverse crustal compositions. It is important to point out that pre-impact thermal conditions of Hadean and early Archean crust can affect the size of an impact basin and, in turn, the proportion of that basin

  1. NanoSIMS Sheds Light on the Origin and Significance of Early Archean Organic Microstructures from the Pilbara of Australia

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Robert, Francois; Meibom, Anders; Mostefaoui, Smail; Selo, Madeleine; Walter, Malcolm, R.; Sugitani, Kenichiro; Allwood, Abigail; Gibson, Everett K.

    2008-01-01

    NanoSIMS was used to characterize sub-micron scale morphology and elemental composition (C, N, S, Si, O) of organic microstructures in Early Archean (3 - 3.4 Ga) charts from the Pilbara of Western Australia. Three categories of structures were analyzed: small spheroids in clusters; spindle-shaped remains; and large spheroids. All are relatively poorly preserved and occur within the chert matrix of the samples. Carbonaceous material in a secondary hydrothermal vein also was analyzed, as an example of non-indigenous organic matter. Comparisons were made of NanoSIMS characteristics of the Archean samples and those from well-preserved, biogenic microfossils in the 0.8 Ga Bitter Springs Formation. The comparisons show that the Pilbara microstructures are generally distinct from material in the hydrothermal vein but similar in morphology and elemental composition to the Bitter Springs microfossils. In addition, the Pilbara structures exhibit a spatial relationship to silicon and oxygen that seemingly reflects silica nucleation on organic surfaces; this argues that the organic frameworks of the Archean structures were present in the sediment during crystallization of the silica matrix. The structures are thus interpreted as being indigenous to the enclosing sediment. While these results are suggestive of Early Archean biogenicity and are consistent with a growing body of data suggesting that life on Earth was well established by 3 to 3.4 Ga, work is continuing to determine the N/C and 13C ratios of individual forms, and this should provide additional insight into the derivation and significance of these ancient organic remains.

  2. Rapid growth of mineral deposits at artificial seafloor hydrothermal vents

    PubMed Central

    Nozaki, Tatsuo; Ishibashi, Jun-Ichiro; Shimada, Kazuhiko; Nagase, Toshiro; Takaya, Yutaro; Kato, Yasuhiro; Kawagucci, Shinsuke; Watsuji, Tomoo; Shibuya, Takazo; Yamada, Ryoichi; Saruhashi, Tomokazu; Kyo, Masanori; Takai, Ken

    2016-01-01

    Seafloor massive sulphide deposits are potential resources for base and precious metals (Cu-Pb-Zn ± Ag ± Au), but difficulties in estimating precise reserves and assessing environmental impacts hinder exploration and commercial mining. Here, we report petrological and geochemical properties of sulphide chimneys less than 2 years old that formed where scientific boreholes vented hydrothermal fluids in the Iheya-North field, Okinawa Trough, in East China Sea. One of these infant chimneys, dominated by Cu-Pb-Zn-rich sulphide minerals, grew a height of 15 m within 25 months. Portions of infant chimneys are dominated by sulphate minerals. Some infant chimneys are sulphide-rich similar to high-grade Cu-Pb-Zn bodies on land, albeit with relatively low As and Sb concentrations. The high growth rate reaching the 15 m height within 25 months is attributed to the large hydrothermal vent more than 50 cm in diameter created by the borehole, which induced slow mixing with the ambient seawater and enhanced efficiency of sulphide deposition. These observations suggest the possibility of cultivating seafloor sulphide deposits and even controlling their growth and grades through manipulations of how to mix and quench hydrothermal fluids with the ambient seawater. PMID:26911272

  3. Acoustic Seafloor Classification near the Duanqiao hydrothermal field at the Southwest Indian Ridge from Multibeam Backscatter Data

    NASA Astrophysics Data System (ADS)

    Wang, A.; Tao, C.; Xu, Y.; Zhang, G.; Liao, S.

    2016-12-01

    The inactive Duanqiao hydrothermal field is located on the 50.5°E SWIR axial high with a shallow depth of about 1700 meters. Seafloor morphology of the area surrounding the field is relatively flat, which exerts less influence on multibeam backscatter data than rugged terrains do. Therefore, it is an ideal experimental area to conduct seafloor classification utilizing multibeam sonar. This paper dealt with a backscatter analysis of Simrad EM120 multibeam sonar data, acquired during the Chinese DY115-34 cruise near the Duanqiao hydrothermal field, and comprehensively studied types and distribution characteristics of seafloor substrate by combining with visual interpretations and TV-Grab Samples. Firstly, a mosaic was built to analyze backscatter distribution after multibeam backscatter data were fully processed using Geocoder engine on CARIS HIPS&SIPS software. Prior information was gained by analyzing the link between the processed backscatter data and the visual interpretations of two deep-tow video survey lines. Among the two survey lines, one corresponds to sediment-dominated seafloor and the other corresponds to pillow basalt-dominated seafloor. Then, backscatter data of the mosaic were classified statistically to identify three types of seafloor: soft substrate, medium-hard substrate and hard substrate. Compared with visual interpretations and TV-Grab Samples, these three seafloor types were interpreted as sediment, breccia and pillow basalt, respectively. Finally, a seafloor classification map was generated. According to the results, we discovered two distinguished distribution characteristics of seafloor substrate: 1. there is a transition from pillow basalt-dominated seafloor to sediment-dominated seafloor away from the SWIR axis; 2. the Duanqiao hydrothermal field is mostly outcropped by pillow basalts and locally covered by breccias and sediments, the reason of which is probably that this field is a relatively recent volcanic area.

  4. Organic compounds in fluid inclusions of Archean quartz-Analogues of prebiotic chemistry on early Earth.

    PubMed

    Schreiber, Ulrich; Mayer, Christian; Schmitz, Oliver J; Rosendahl, Pia; Bronja, Amela; Greule, Markus; Keppler, Frank; Mulder, Ines; Sattler, Tobias; Schöler, Heinz F

    2017-01-01

    The origin of life is still an unsolved mystery in science. Hypothetically, prebiotic chemistry and the formation of protocells may have evolved in the hydrothermal environment of tectonic fault zones in the upper continental crust, an environment where sensitive molecules are protected against degradation induced e.g. by UV radiation. The composition of fluid inclusions in minerals such as quartz crystals which have grown in this environment during the Archean period might provide important information about the first organic molecules formed by hydrothermal synthesis. Here we present evidence for organic compounds which were preserved in fluid inclusions of Archean quartz minerals from Western Australia. We found a variety of organic compounds such as alkanes, halocarbons, alcohols and aldehydes which unambiguously show that simple and even more complex prebiotic organic molecules have been formed by hydrothermal processes. Stable-isotope analysis confirms that the methane found in the inclusions has most likely been formed from abiotic sources by hydrothermal chemistry. Obviously, the liquid phase in the continental Archean crust provided an interesting choice of functional organic molecules. We conclude that organic substances such as these could have made an important contribution to prebiotic chemistry which might eventually have led to the formation of living cells.

  5. Particle Geochemistry of Hydrothermal Systems and Implications for Mining Seafloor Massive Sulfides

    NASA Astrophysics Data System (ADS)

    Gartman, A.; Hein, J. R.

    2016-12-01

    Seafloor massive sulfide deposits form due to high-temperature hydrothermal venting that occurs globally, in every ocean basin, along plate boundaries and intra-plate hotspots. At these sites, the rapid mixing of hot, metal- and sulfur-rich reduced fluids into cold, oxygenated ocean water results in abundant mineral precipitation. The mining of seafloor massive sulfides is likely to occur in the near future and will generate a new class of mainly inorganic particulates, different from those formed in hydrothermal `black smoke.' While the major components of both black smoke & SMS tailings are Cu, Fe and Zn sulfides, many other minerals, including those containing technology critical elements, especially tellurium, are present. A comparison of these two classes of particulates will be presented, including chemical composition and reactivity to oxidative dissolution.

  6. The deep structure of a sea-floor hydrothermal deposit

    USGS Publications Warehouse

    Zierenberg, R.A.; Fouquet, Y.; Miller, D.J.; Bahr, J.M.; Baker, P.A.; Bjerkgard, T.; Brunner, C.A.; Duckworth, R.C.; Gable, R.; Gieskes, J.; Goodfellow, W.D.; Groschel-Becker, H. M.; Guerin, G.; Ishibashi, J.; Iturrino, G.; James, R.H.; Lackschewitz, K.S.; Marquez, L.L.; Nehlig, P.; Peter, J.M.; Rigsby, C.A.; Schultheiss, P.; Shanks, Wayne C.; Simoneit, B.R.T.; Summit, M.; Teagle, D.A.H.; Urbat, M.; Zuffa, G.G.

    1998-01-01

    Hydrothermal circulation at the crests of mid-ocean ridges plays an important role in transferring heat from the interior of the Earth. A consequence of this hydrothermal circulation is the formation of metallic ore bodies known as volcanic-associated massive sulphide deposits. Such deposits, preserved on land, were important sources of copper for ancient civilizations and continue to provide a significant source of base metals (for example, copper and zinc). Here we present results from Ocean Drilling Program Leg 169, which drilled through a massive sulphide deposit on the northern Juan de Fuca spreading centre and penetrated the hydrothermal feeder zone through which the metal-rich fluids reached the sea floor. We found that the style of feeder-zone mineralization changes with depth in response to changes in the pore pressure of the hydrothermal fluids and discovered a stratified zone of high-grade copper-rich replacement mineralization below the massive sulphide deposit. This copper-rich zone represents a type of mineralization not previously observed below sea-floor deposits, and may provide new targets for land-based mineral exploration.

  7. Sub-seafloor Processes and the Composition of Diffuse Hydrothermal Fluids

    NASA Astrophysics Data System (ADS)

    Butterfield, D. A.; Lilley, M. D.; Huber, J. A.; Baross, J. A.

    2002-12-01

    High-temperature water/rock reactions create the primary hydrothermal fluids that are diluted with cool, "crustal seawater" to produce low-temperature, diffuse hydrothermal vent fluids. By knowing the composition of each of the components that combine to produce diffuse fluids, one can compare the composition of calculated mixtures with the composition of sampled fluids, and thereby infer what chemical constituents have been affected by processes other than simple conservative mixing. Although there is always uncertainty in the composition of fluids from the sub-seafloor, some processes are significant enough to alter diffuse fluid compositions from the expected conservative mixtures of hot,primary fluid and "crustal seawater." When hydrothermal vents with a wide range of temperature are sampled, processes occurring in different thermal and chemical environments potentially can be discerned. At Axial Volcano (AV) on the Juan de Fuca ridge, methane clearly is produced in warm sub-seafloor environments at temperatures of ~ 100° or less. Based on culturing and phylogenetic analysis from the same water samples at AV, hyperthermophilic methanogens are present in water samples taken from vents ranging in temperature from 15 to 78° C. Ratios of hydrogen sulfide to pseudo-conservative tracers (dissolved silica or heat) at AV decrease when primary fluids are highly diluted with oxygenated seawater. Phylogenetic signatures of microbes closely related to sulfide-oxidizers are present in these same fluids. Hydrogen sulfide oxidation represents the dominant source of energy for chemosynthesis at AV, as in most hydrothermal systems, but a relatively small proportion of the total hydrogen sulfide available is actually oxidized, except at the very lowest temperatures.

  8. Oxidative Weathering and Microbial Diversity of an Inactive Seafloor Hydrothermal Sulfide Chimney

    PubMed Central

    Li, Jiangtao; Cui, Jiamei; Yang, Qunhui; Cui, Guojie; Wei, Bingbing; Wu, Zijun; Wang, Yong; Zhou, Huaiyang

    2017-01-01

    When its hydrothermal supply ceases, hydrothermal sulfide chimneys become inactive and commonly experience oxidative weathering on the seafloor. However, little is known about the oxidative weathering of inactive sulfide chimneys, nor about associated microbial community structures and their succession during this weathering process. In this work, an inactive sulfide chimney and a young chimney in the early sulfate stage of formation were collected from the Main Endeavor Field of the Juan de Fuca Ridge. To assess oxidative weathering, the ultrastructures of secondary alteration products accumulating on the chimney surface were examined and the presence of possible Fe-oxidizing bacteria (FeOB) was investigated. The results of ultrastructure observation revealed that FeOB-associated ultrastructures with indicative morphologies were abundantly present. Iron oxidizers primarily consisted of members closely related to Gallionella spp. and Mariprofundus spp., indicating Fe-oxidizing species likely promote the oxidative weathering of inactive sulfide chimneys. Abiotic accumulation of Fe-rich substances further indicates that oxidative weathering is a complex, dynamic process, alternately controlled by FeOB and by abiotic oxidization. Although hydrothermal fluid flow had ceased, inactive chimneys still accommodate an abundant and diverse microbiome whose microbial composition and metabolic potential dramatically differ from their counterparts at active vents. Bacterial lineages within current inactive chimney are dominated by members of α-, δ-, and γ-Proteobacteria and they are deduced to be closely involved in a diverse set of geochemical processes including iron oxidation, nitrogen fixation, ammonia oxidation and denitrification. At last, by examining microbial communities within hydrothermal chimneys at different formation stages, a general microbial community succession can be deduced from early formation stages of a sulfate chimney to actively mature sulfide

  9. The formation of magnetite in the early Archean oceans

    NASA Astrophysics Data System (ADS)

    Li, Y. L.

    2017-12-01

    Banded iron formations are iron- and silica-rich chemical sedimentary rocks that were deposited throughout much of the Precambrian. It is generally accepted that biological oxidation of dissolved Fe(II) led to the precipitation of a ferric oxyhydroxide phase, such as ferrihydrite, in the marine photic zone. Upon burial, ferrihydrite was either transformed into hematite through dehydration or it was reduced to magnetite via biological or abiological Fe(III) reduction coupled to the oxidation of buried microbial biomass. However, it has always been intriguing as to why the oldest BIFs are characteristically magnetite-rich, while BIFs formed after the Neoarchean are dominated by hematite. Here, we propose that some magnetite in early Archean BIF could have precipitated directly from seawater through the reaction of settling ferrihydrite and hot, Fe(II)-rich hydrothermal fluids that vented directly into the photic zone. We conducted experiments that showed the reaction of Fe(II) with biogenic ferric iron mats under strict anoxic conditions led to the formation of a metastable green rust phase that within hours transformed into magnetite at relatively high temperatures. At lower temperatures magnetite does not form. Our model further posits that with the progressive cooling of the Earth's oceans through Archean, the above reaction shut off, and magnetite was subsequently restricted to reactions associated with diagenesis and metamorphism.

  10. Comparative analyses of the bacterial community of hydrothermal deposits and seafloor sediments across Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Wang, Long; Yu, Min; Liu, Yan; Liu, Jiwen; Wu, Yonghua; Li, Li; Liu, Jihua; Wang, Min; Zhang, Xiao-Hua

    2018-04-01

    As an ideal place to study back-arc basins and hydrothermal eco-system, Okinawa Trough has attracted the interests of scientists for decades. However, there are still no in-depth studies targeting the bacterial community of the seafloor sediments and hydrothermal deposits in Okinawa Trough. In the present study, we reported the bacterial community of the surface deposits of a newly found hydrothermal field in the southern Okinawa Trough, and the horizontal and vertical variation of bacterial communities in the sediments of the northern Okinawa Trough. The hydrothermal deposits had a relatively high 16S rRNA gene abundance but low bacterial richness and diversity. Epsilonproteobacteria and Bacteroidetes were predominant in hydrothermal deposits whereas Deltaproteobacteria, Gammaproteobacteria and Chloroflexi were abundant across all samples. The bacterial distribution in the seafloor of Okinawa Trough was significantly correlated to the content of total nitrogen, and had consistent relationship with total carbon. Gradual changes of sulfur-oxidizing bacteria were found with the distance away from hydrothermal fields, while the hydrothermal activity did not influence the distribution of the major clades of sulfate-reducing bacteria. Higher abundance of the sulfur cycle related genes (aprA and dsrB), and lower abundance of the bacterial ammonia-oxidizing related gene (amoA) were quantified in hydrothermal deposits. In addition, the present study also compared the inter-field variation of Epsilonproteobacteria among multi-types of hydrothermal vents, revealing that the proportion and diversity of this clade were quite various.

  11. Distribution, structure and temporal variability of hydrothermal outflow at a slow-spreading hydrothermal field from seafloor image mosaics.

    NASA Astrophysics Data System (ADS)

    Barreyre, Thibaut; Escartin, Javier; Cannat, Mathilde; Garcia, Rafael; Science Party, Momar'08; Science Party, Bathyluck'09

    2010-05-01

    The Lucky Strike hydrothermal site, located South of the Azores along the Mid-Atlantic Ridge, is one of the largest and best-known active hydrothermal fields along the ridge system. This site within the MoMAR area is also the target for the installation in 2010 of a pilot deep-sea observatory with direct telemetry to land, to be part of the European Seafloor Observatory Network (ESONET). The Lucky Strike hydrothermal site has seen extensive high-resolution, near-bottom geophysical surveys in 1996 (Lustre'96), 2006 (Momareto06), 2008 (MOMAR08) and 2009 (Bathyluck09). Vertically acquired black-and-white electronic still camera images have been projected and georeferenced to obtain 3 image mosaics covering the zone of active venting, extending ~ 700x800 m2, and with full image resolution (~10 mm pixels). These data allow us to study how hydrothermal outflow is structured, including the relationships between the zones of active high-temperature venting, areas of diffuse outflow, and the geological structure (nature of the substrate, faults and fissures, sediments, etc.). Hydrothermal outflow is systematically associated with bacterial mats that are easily identified in the imagery, allowing us to study temporal variability at two different scales. Over the 13-year period we can potentially track changes in both the geometry and intensity of hydrothermal activity throughout the system; our preliminary study of the Eiffel Tower, White Castle and Mt Segur indicate that activity has been sustained in recent times, with small changes in the detailed geometry of the diffuse outflow and its intensity. At longer times scales (hundreds to 1000 years?) imagery also shows evidence of areas of venting that are no longer active, often associated with the active structures. In combination with the high-resolution bathymetry, the imagery data thus allow us to characterize the shallow structure of hydrothermal outflow at depth, the structural and volcanic control, and ultimately

  12. Bacterial community under the hydrothermal system on the Suiyo Seamount: A model for archean and exo-biota

    NASA Astrophysics Data System (ADS)

    Yamagishi, A.

    Microbial community in hydrothermal area at seafloor has been analyzed by culture-independent methods. Hydrothermal fluid from natural vents and vent chimneys have been analyzed by PCR (1-2). Hyperthermophilic microbes have been isolated from these environments (3-4). Though the analysis of these samples can provide the window to penetrate the microbial community under the seafloor, more direct analysis is desired for better understanding of the sub-seafloor microbial community In the ``Archaean Park Project'' supported by Special Coordination Fund, several holes were drilled and the holes were supported by casing pipes in the crater of the Suiyo seamount on the Izu-Bonin arc, West Pacific Ocean (about 1,400 m depth) in 2001 and 2002. Hydrothermal fluids were sampled from cased holes. The fluids were filtered to collect the microbial cells. The DNA was extracted and used to amplify 16S rDNA fragments by PCR (polymerase chain reaction) using a bacteria and an archaea specific primer sets. The PCR fragments were cloned and sequenced. FISH analysis revealed from 6 x103 to 2.5 x 106 bactrerial cells/ml in these hydrothermal fluids. PCR clone-analysis showed significant variation in bacterial sequences found in these samples. The species-patterns suggest that the contamination of ambient seawater to hydrothermal fluid samples is negligible. Difference in the dominant species depending on the location was found, suggesting that the bacterial community at sub-sea floor is not monotonous but has gradual shift from the hydrothermal center to peripheral area. The results suggest that there is chemo-autotrophic microbe-dependent biota under the hydrothermal system. References 1) Takai et al. Genetics 152: 1285-1297 (1999) 2) Takai et al. Appl. Environ. Microbioi. 67: 3618-3629 (2001) 3) Summit et al. Proc. Natl. Acad. Sci. 98: 2158-2163 (2001) 4) Amend, J. P. and Shodk, E. L. FEMS Microbiol. Rev. 25: 175-243 (2002)

  13. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats.

    PubMed

    Dick, Gregory J; Anantharaman, Karthik; Baker, Brett J; Li, Meng; Reed, Daniel C; Sheik, Cody S

    2013-01-01

    Hydrothermal plumes are an important yet understudied component of deep-sea vent microbial ecosystems. The significance of plume microbial processes can be appreciated from three perspectives: (1) mediation of plume biogeochemistry, (2) dispersal of seafloor hydrothermal vent microbes between vents sites, (3) as natural laboratories for understanding the ecology, physiology, and function of microbial groups that are distributed throughout the pelagic deep sea. Plume microbiology has been largely neglected in recent years, especially relative to the extensive research conducted on seafloor and subseafloor systems. Rapidly advancing technologies for investigating microbial communities provide new motivation and opportunities to characterize this important microbial habitat. Here we briefly highlight microbial contributions to plume and broader ocean (bio)geochemistry and review recent work to illustrate the ecological and biogeographic linkages between plumes, seafloor vent habitats, and other marine habitats such as oxygen minimum zones (OMZs), cold seeps, and oil spills. 16S rRNA gene surveys and metagenomic/-transcriptomic data from plumes point to dominant microbial populations, genes, and functions that are also operative in OMZs (SUP05, ammonia-oxidizing Archaea, and SAR324 Deltaproteobacteria) and hydrocarbon-rich environments (methanotrophs). Plume microbial communities are distinct from those on the seafloor or in the subsurface but contain some signatures of these habitats, consistent with the notion that plumes are potential vectors for dispersal of microorganisms between seafloor vent sites. Finally, we put forward three pressing questions for the future of deep-sea hydrothermal plume research and consider interactions between vents and oceans on global scales.

  14. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats

    PubMed Central

    Dick, Gregory J.; Anantharaman, Karthik; Baker, Brett J.; Li, Meng; Reed, Daniel C.; Sheik, Cody S.

    2013-01-01

    Hydrothermal plumes are an important yet understudied component of deep-sea vent microbial ecosystems. The significance of plume microbial processes can be appreciated from three perspectives: (1) mediation of plume biogeochemistry, (2) dispersal of seafloor hydrothermal vent microbes between vents sites, (3) as natural laboratories for understanding the ecology, physiology, and function of microbial groups that are distributed throughout the pelagic deep sea. Plume microbiology has been largely neglected in recent years, especially relative to the extensive research conducted on seafloor and subseafloor systems. Rapidly advancing technologies for investigating microbial communities provide new motivation and opportunities to characterize this important microbial habitat. Here we briefly highlight microbial contributions to plume and broader ocean (bio)geochemistry and review recent work to illustrate the ecological and biogeographic linkages between plumes, seafloor vent habitats, and other marine habitats such as oxygen minimum zones (OMZs), cold seeps, and oil spills. 16S rRNA gene surveys and metagenomic/-transcriptomic data from plumes point to dominant microbial populations, genes, and functions that are also operative in OMZs (SUP05, ammonia-oxidizing Archaea, and SAR324 Deltaproteobacteria) and hydrocarbon-rich environments (methanotrophs). Plume microbial communities are distinct from those on the seafloor or in the subsurface but contain some signatures of these habitats, consistent with the notion that plumes are potential vectors for dispersal of microorganisms between seafloor vent sites. Finally, we put forward three pressing questions for the future of deep-sea hydrothermal plume research and consider interactions between vents and oceans on global scales. PMID:23720658

  15. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew Fowler

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  16. On the photosynthetic potential in the very Early Archean oceans.

    PubMed

    Avila, Daile; Cardenas, Rolando; Martin, Osmel

    2013-02-01

    In this work we apply a mathematical model of photosynthesis to quantify the potential for photosynthetic life in the very Early Archean oceans. We assume the presence of oceanic blockers of ultraviolet radiation, specifically ferrous ions. For this scenario, our results suggest a potential for photosynthetic life greater than or similar to that in later eras/eons, such as the Late Archean and the current Phanerozoic eon.

  17. Geochemical Tracers of Processes Affecting the Formation of Seafloor Hydrothermal Fluids and Deposits in the Manus Back-Arc Basin

    DTIC Science & Technology

    2009-02-01

    21 ° N East Pacific Rise . In Hydrothermal Processes at Seafloor Spreading Centers (ed. P. Rona, K. Boström, L. Laubier, and K. L. Smith), pp... hydrothermal fluids ( 21 ° N East Pacific Rise ) are taken from Mitra et al (1994) and Klinkhammer et al. (1994). The chemical composition...Measures C. I., Walden B., and Weiss R. F. (1985) Chemistry of submarine hydrothermal solutions at 21 ° N , East

  18. Archean komatiite volcanism controlled by the evolution of early continents.

    PubMed

    Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John

    2014-07-15

    The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.

  19. Development of a mixed seawater-hydrothermal fluid geochemical signature during alteration of volcanic rocks in the Archean (∼2.7 Ga) Abitibi Greenstone Belt, Canada

    NASA Astrophysics Data System (ADS)

    Brengman, Latisha A.; Fedo, Christopher M.

    2018-04-01

    conclude that seafloor silicification in hydrothermal depositional settings is capable of producing rocks that resemble marine chemical precipitates such as banded iron formation, and could be a process that is widespread in the Archean. Consequently, because silicified volcanic rocks from the HMG possess mixed seawater and hydrothermal rare-earth element characteristics similar to Archean iron formations and cherts, we suggest caution must be exercised when interpreting the geochemical information preserved in metamorphosed rocks where original genesis is unknown.

  20. Archean sedimentary systems and crustal evolution

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1985-01-01

    Current knowledge of preserved Archean sedimentary rocks suggests that they accumulated in at least three major depositional settings. These are represented generally by sedimentary units: (1) in early Archean, pre-3.0 Ga old greenstone belts, (2) on late Archean sialic cratons, and (3) in late Archean, post-3.0 Ga old greenstone belts. Research suggests that the Archean was characterized by at least two distinctive and largely diachronous styles of crustal evolution. Thick, stable early Archean simatic platforms, perhaps analogous to modern oceanic islands formed over hot spots, underwent a single cycle of cratonization to form stable continental blocks in the early Archean. Later formed Archean continents show a two stage evolution. The initial stage is reflected in the existence of older sialic material, perhaps representing incompletely cratonized areas or microcontinents of as yet unknown origin. During the second stage, late Archean greenstone belts, perhaps analogous to modern magmatic arcs or back arc basins, developed upon or adjacent to these older sialic blocks. The formation of this generation of Archean continents was largely complete by the end of the Archean. These results suggest that Archean greenstone belts may represent a considerable range of sedimentological and tectonic settings.

  1. Reactions between komatiite and CO2-rich seawater at 250 and 350 °C, 500 bars: implications for hydrogen generation in the Hadean seafloor hydrothermal system

    NASA Astrophysics Data System (ADS)

    Ueda, Hisahiro; Shibuya, Takazo; Sawaki, Yusuke; Saitoh, Masafumi; Takai, Ken; Maruyama, Shigenori

    2016-12-01

    To understand the chemical nature of hydrothermal fluids in the komatiite-hosted seafloor hydrothermal system in the Hadean, we conducted two hydrothermal serpentinization experiments involving synthetic komatiite and a CO2-rich acidic NaCl fluid at 250 and 350 °C, 500 bars. During the experiments, the komatiites were strongly carbonated to yield iron-rich dolomite (3-9 wt.% FeO) at 250 °C and calcite (<0.8 wt.% FeO) at 350 °C, respectively. The carbonation of komatiites suppressed H2 generation in the fluids. The steady-state H2 concentrations in the fluid were approximately 0.024 and 2.9 mmol/kg at 250 and 350 °C, respectively. This correlation between the Fe content in carbonate mineral and the H2 concentration in the fluid suggests that the incorporation of ferrous iron into the carbonate mineral probably limited magnetite formation and consequent generation of hydrogen during the serpentinization of komatiites. The H2 concentration of the fluid at 350 °C corresponds to that of modern H2-rich seafloor hydrothermal systems, such as the Kairei hydrothermal field, where hydrogenotrophic methanogens dominate in the prosperous microbial ecosystem. Accordingly, the high-temperature serpentinization of komatiite would provide the H2-rich hydrothermal environments that were necessary for the emergence and early evolution of life in the Hadean ocean. In contrast, H2-rich fluids may not have been generated by serpentinization at temperatures below 250 °C because carbonate minerals become more stable with decreasing temperature in the komatiite-H2O-CO2 system.

  2. The formation of magnetite in the early Archean oceans

    NASA Astrophysics Data System (ADS)

    Li, Yi-Liang; Konhauser, Kurt O.; Zhai, Mingguo

    2017-05-01

    Banded iron formations (BIFs) are iron- and silica-rich chemical sedimentary rocks that were deposited throughout much of the Precambrian. The biological oxidation of dissolved Fe(II) led to the precipitation of a ferric oxyhydroxide phase, such as ferrihydrite, in the marine photic zone. Upon burial, ferrihydrite was either transformed into hematite through dehydration or it was reduced to magnetite via biological or abiological Fe(III) reduction coupled to the oxidation of buried microbial biomass. However, it has always been intriguing as to why the oldest BIFs are characteristically magnetite-rich, while BIFs formed after the Neoarchean are dominated by hematite. Here, we propose that some magnetite in early Archean BIF could have precipitated directly from seawater through the reaction of settling ferrihydrite and hot, Fe(II)-rich hydrothermal fluids that existed in the deeper waters. We conducted experiments that showed the reaction of Fe(II) with biogenic ferric iron mats under strict anoxic conditions lead to the formation of a metastable green rust phase that within hours transformed into magnetite. Our model further posits that with the progressive cooling and oxidation of the Earth's oceans, the above reaction shuts off, and magnetite was subsequently restricted to reactions associated with diagenesis and metamorphism.

  3. EAG Eminent Speaker: Two types of Archean continental crust: plume and plate tectonics on early Earth

    NASA Astrophysics Data System (ADS)

    Van Kranendonk, M. J.

    2012-04-01

    Over 4.5 billion years, Earth has evolved from a molten ball to a cooler planet with large continental plates, but how and when continents grew and plate tectonics started remain poorly understood. In this paper, I review the evidence that 3.5-3.2 Ga continental nuclei of the Pilbara (Australia) and Kaapvaal (southern Africa) cratons formed as thick volcanic plateaux over hot, upwelling mantle and survived due to contemporaneous development of highly depleted, buoyant, unsubductable mantle roots. This type of crust is distinct from, but complimentary to, high-grade gneiss terranes, as exemplified by the North Atlantic Craton of West Greenland, which formed through subduction-accretion tectonics on what is envisaged as a vigorously convecting early Earth with small plates. Thus, it is proposed that two types of crust formed on early Earth, in much the same way as in modern Earth, but with distinct differences resulting from a hotter Archean mantle. Volcanic plateaux provided a variety of stable habitats for early life, including chemical nutrient rich, shallow-water hydrothermal systems and shallow marine carbonate platforms.

  4. Archean komatiite volcanism controlled by the evolution of early continents

    PubMed Central

    Mole, David R.; Fiorentini, Marco L.; Thebaud, Nicolas; Cassidy, Kevin F.; McCuaig, T. Campbell; Kirkland, Christopher L.; Romano, Sandra S.; Doublier, Michael P.; Belousova, Elena A.; Barnes, Stephen J.; Miller, John

    2014-01-01

    The generation and evolution of Earth’s continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50–30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean–Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits. PMID:24958873

  5. Seafloor hydrothermal activity and spreading rates - The Eocene carbon dioxide greenhouse revisited

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Richardson, S. M.

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Eocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.

  6. Seafloor hydrothermal activity and spreading rates: the Eocene carbon dioxide greenhouse revisted

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Richardson, S. M.

    1985-01-01

    A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Ecocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.

  7. S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides

    USGS Publications Warehouse

    Ono, Shuhei; Shanks, Wayne C.; Rouxel, O.J.; Rumble, D.

    2007-01-01

    Sulfide sulfur in mid-oceanic ridge hydrothermal vents is derived from leaching of basaltic-sulfide and seawater-derived sulfate that is reduced during high temperature water rock interaction. Conventional sulfur isotope studies, however, are inconclusive about the mass-balance between the two sources because 34S/32S ratios of vent fluid H2S and chimney sulfide minerals may reflect not only the mixing ratio but also isotope exchange between sulfate and sulfide. Here, we show that high-precision analysis of S-33 can provide a unique constraint because isotope mixing and isotope exchange result in different ??33S (?????33S-0.515 ??34S) values of up to 0.04??? even if ??34S values are identical. Detection of such small ??33S differences is technically feasible by using the SF6 dual-inlet mass-spectrometry protocol that has been improved to achieve a precision as good as 0.006??? (2??). Sulfide minerals (marcasite, pyrite, chalcopyrite, and sphalerite) and vent H2S collected from four active seafloor hydrothermal vent sites, East Pacific Rise (EPR) 9-10??N, 13??N, and 21??S and Mid-Atlantic Ridge (MAR) 37??N yield ??33S values ranging from -0.002 to 0.033 and ??34S from -0.5??? to 5.3???. The combined ??34S and ??33S systematics reveal that 73 to 89% of vent sulfides are derived from leaching from basaltic sulfide and only 11 to 27% from seawater-derived sulfate. Pyrite from EPR 13??N and marcasite from MAR 37??N are in isotope disequilibrium not only in ??34S but also in ??33S with respect to associated sphalerite and chalcopyrite, suggesting non-equilibrium sulfur isotope exchange between seawater sulfate and sulfide during pyrite precipitation. Seafloor hydrothermal vent sulfides are characterized by low ??33S values compared with biogenic sulfides, suggesting little or no contribution of sulfide from microbial sulfate reduction into hydrothermal sulfides at sediment-free mid-oceanic ridge systems. We conclude that 33S is an effective new tracer for interplay among

  8. Deposition of talc - kerolite-smectite - smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies

    USGS Publications Warehouse

    Dekov, V.M.; Cuadros, J.; Shanks, Wayne C.; Koski, R.A.

    2008-01-01

    Talc, kerolite-smectite, smectite, chlorite-smectite and chlorite samples from sediments, chimneys and massive sulfides from six seafloor hydrothermal areas have been analyzed for mineralogy, chemistry and oxygen isotopes. Samples are from both peridotite- and basalt-hosted hydrothermal systems, and basaltic systems include sediment-free and sediment-covered sites. Mg-phyllosilicates at seafloor hydrothermal sites have previously been described as talc, stevensite or saponite. In contrast, new data show tri-octahedral Mg-phyllosilicates ranging from pure talc and Fe-rich talc, through kerolite-rich kerolite-smectite to smectite-rich kerolite-smectite and tri-octahedral smectite. The most common occurrence is mixed-layer kerolite-smectite, which shows an almost complete interstratification series with 5 to 85% smectitic layers. The smectite interstratified with kerolite is mostly tri-octahedral. The degree of crystal perfection of the clay sequence decreases generally from talc to kerolite-smectite with lower crystalline perfection as the proportion of smectite layers in kerolite-smectite increases. Our studies do not support any dependence of the precipitated minerals on the type/subtype of hydrothermal system. Oxygen isotope geothermometry demonstrates that talc and kerolite-smectite precipitated in chimneys, massive sulfide mounds, at the sediment surface and in open cracks in the sediment near seafloor are high-temperature (> 250????C) phases that are most probably the result of focused fluid discharge. The other end-member of this tri-octahedral Mg-phyllosilicate sequence, smectite, is a moderate-temperature (200-250????C) phase forming deep within the sediment (??? 0.8??m). Chlorite and chlorite-smectite, which constitute the alteration sediment matrix around the hydrothermal mounds, are lower-temperature (150-200????C) phases produced by diffuse fluid discharge through the sediment around the hydrothermal conduits. In addition to temperature, other two

  9. Cool seafloor hydrothermal springs reveal global geochemical fluxes

    NASA Astrophysics Data System (ADS)

    Wheat, C. Geoffrey; Fisher, Andrew T.; McManus, James; Hulme, Samuel M.; Orcutt, Beth N.

    2017-10-01

    We present geochemical data from the first samples of spring fluids from Dorado Outcrop, a basaltic edifice on 23 M.y. old seafloor of the Cocos Plate, eastern Pacific Ocean. These samples were collected from the discharge of a cool hydrothermal system (CHS) on a ridge flank, where typical reaction temperatures in the volcanic crust are low (2-20 °C) and fluid residence times are short. Ridge-flank hydrothermal systems extract 25% of Earth's lithospheric heat, with a global discharge rate equivalent to that of Earth's river discharge to the ocean; CHSs comprise a significant fraction of this global flow. Upper crustal temperatures around Dorado Outcrop are ∼15 °C, the calculated residence time is <3 y, and the composition of discharging fluids is only slightly altered from bottom seawater. Many of the major ions concentrations in spring fluids are indistinguishable from those of bottom seawater; however, concentrations of Rb, Mo, V, U, Mg, phosphate, Si and Li are different. Applying these observed differences to calculated global CHS fluxes results in chemical fluxes for these ions that are ≥15% of riverine fluxes. Fluxes of K and B also may be significant, but better analytical resolution is required to confirm this result. Spring fluids also have ∼50% less dissolved oxygen (DO) than bottom seawater. Calculations of an analytical model suggest that the loss of DO occurs primarily (>80%) within the upper basaltic crust by biotic and/or abiotic consumption. This calculation demonstrates that permeable pathways within the upper crust can support oxic water-rock interactions for millions of years.

  10. Metasomatic alteration of an early Archean komatiite sequence into chert: field and petrographic evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchac, K.C.; Hanor, J.S.

    Stratiform units of pervasively silicified ultramafic rock occur near the top of the Onverwacht group, Barberton Mountian Land, South Africa. The origin of these units has been variously ascribed to early Archean subaerial weathering, submarine weathering, cataclastic metamorphism, and the alteration of silicic tuffs at the top of mafic to felsic volcanic sequences. The authors have studied a 40 m thick stratigraphic sequence that is exceptionally well-exposed for 1.5 km within the Skokohla River valley. Well-preserved ghosts of spinifex- and cumulate-olivines and pyroxenes establish the komatiitic ancestry of these rocks. The entire sequence has been pervasively altered, however, to chertsmore » dominated by quartz and Cr-rich muscovite and containing lesser and variable amounts of chlorite, dolomite, rutile, and chrome spinel. The present Skokohla rocks can be divided into five distinct correlatable facies of laterally variable thickness which probably represent different flow units. Alteration apparently occurred early, prior to any significant tectonic deformation. The observed pervasive sericitization is inconsistent with an origin by subaerial weathering. It is most likely that the sequence was altered by large volumes of ascending hydrothermal fluids.« less

  11. Application of AUVs in the Exploration for and Characterization of Arc Volcano Seafloor Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    de Ronde, C. E. J.; Walker, S. L.; Caratori Tontini, F.; Baker, E. T.; Embley, R. W.; Yoerger, D.

    2014-12-01

    The application of Autonomous Underwater Vehicles (AUVs) in the search for, and characterization of, seafloor hydrothermal systems associated with arc volcanoes has provided important information at a scale relevant to the study of these systems. That is, 1-2 m resolution bathymetric mapping of the seafloor, when combined with high-resolution magnetic and water column measurements, enables the discharge of hydrothermal vent fluids to be coupled with geological and structural features, and inferred upflow zones. Optimum altitude for the AUVs is ~70 m ensuring high resolution coverage of the area, maximum exposure to hydrothermal venting, and efficency of survey. The Brothers caldera and Clark cone volcanoes of the Kermadec arc have been surveyed by ABE and Sentry. At Brothers, bathymetric mapping shows complex features on the caldera walls including embayment's, ridges extending orthogonal to the walls and the location of a dominant ring fault. Water column measurements made by light scattering, temperature, ORP and pH sensors confirmed the location of the known vent fields on the NW caldera wall and atop the two cones, and discovered a new field on the West caldera wall. Evidence for diffuse discharge was also seen on the rim of the NW caldera wall; conversely, there was little evidence for discharge over an inferred ancient vent site on the SE caldera wall. Magnetic measurements show a strong correlation between the boundaries of vent fields determined by water column measurements and observed from manned submersible and towed camera surveys, and donut-shaped zones of magnetic 'lows' that are focused along ring faults. A magnetic low was also observed to cover the SE caldera site. Similar surveys over the NW edifice of Clark volcano also show a strong correlation between active hydrothermal venting and magnetic lows. Here, the survey revealed a pattern resembling Swiss cheese of magnetic lows, indicating more widespread permeability. Moreover, the magnetic survey

  12. Hydrothermal Processes

    NASA Astrophysics Data System (ADS)

    German, C. R.; von Damm, K. L.

    2003-12-01

    What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater

  13. Tracking the Archean-Proterozoic suture zone in the northeastern Great Basin, Nevada and Utah

    USGS Publications Warehouse

    Rodriguez, B.D.; Williams, J.M.

    2008-01-01

    It is important to know whether major mining districts in north-central Nevada are underlain by crust of the Archean Wyoming craton, known to contain major orogenic gold deposits or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between these provinces is also important because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. The suture zone is exposed in northeastern Utah and south-western Wyoming and exhibits a southwest strike. In the Great Basin, the suture zone strike is poorly constrained because it is largely concealed below a Neoproterozoic-Paleozoic miogeocline and Cenozoic basin fill. Two-dimensional resistivity modeling of three regional north-south magnetotelluric sounding profiles in western Utah, north-central Nevada, and northeastern Nevada, and one east-west profile in northeastern Nevada, reveals a deeply penetrating (>10 km depth), broad (tens of kilometers) conductor (1-20 ohm-meters) that may be the Archean-Proterozoic suture zone, which formed during Early Proterozoic rifting of the continent and subsequent Proterozoic accretion. This major crustal conductor changes strike direction from southwest in Utah to northwest in eastern Nevada, where it broadens to ???100 km width that correlates with early Paleozoic rifting of the continent. Our results suggest that the major gold belts may be over-isolated blocks of Archean crust, so Phanerozoic mineral deposits in this region may be produced, at least in part, from recycled Archean gold. Future mineral exploration to the east may yield large gold tonnages. ?? 2008 Geological Society of America.

  14. Defining boundaries for the distribution of microbial communities beneath the sediment-buried, hydrothermally active seafloor

    PubMed Central

    Yanagawa, Katsunori; Ijiri, Akira; Breuker, Anja; Sakai, Sanae; Miyoshi, Youko; Kawagucci, Shinsuke; Noguchi, Takuroh; Hirai, Miho; Schippers, Axel; Ishibashi, Jun-ichiro; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2017-01-01

    Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ13C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106–198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field. PMID:27754478

  15. Defining boundaries for the distribution of microbial communities beneath the sediment-buried, hydrothermally active seafloor.

    PubMed

    Yanagawa, Katsunori; Ijiri, Akira; Breuker, Anja; Sakai, Sanae; Miyoshi, Youko; Kawagucci, Shinsuke; Noguchi, Takuroh; Hirai, Miho; Schippers, Axel; Ishibashi, Jun-Ichiro; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2017-02-01

    Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ 13 C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106-198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field.

  16. Mantle redox evolution and the oxidation state of the Archean atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Eggler, D. H.; Raeburn, S. P.

    1993-01-01

    Current models predict that the early atmosphere consisted mostly of CO2, N2, and H2O, along with traces of H2 and CO. Such models are based on the assumption that the redox state of the upper mantle has not changed, so that volcanic gas composition has remained approximately constant with time. We argue here that this assumption is probably incorrect: the upper mantle was originally more reduced than today, although not as reduced as the metal arrest level, and has become progressively more oxidized as a consequence of the release of reduced volcanic gases and the subduction of hydrated, oxidized seafloor. Data on the redox state of sulfide and chromite inclusions in diamonds imply that the process of mantle oxidation was slow, so that reduced conditions could have prevailed for as much as half of the earth's history. To be sure, other oxybarometers of ancient rocks give different results, so the question of when the mantle redox state has changed remains unresolved. Mantle redox evolution is intimately linked to the oxidation state of the primitive atmosphere: A reduced Archean atmosphere would have had a high hydrogen escape rate and should correspond to a changing mantle redox state; an oxidized Archean atmosphere should be associated with a constant mantle redox state. The converses of these statements are also true. Finally, our theory of mantle redox evolution may explain why the Archean atmosphere remained oxygen-deficient until approximately 2.0 billion years ago (Ga) despite a probable early origin for photosynthesis.

  17. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model.

    PubMed

    Krissansen-Totton, Joshua; Arney, Giada N; Catling, David C

    2018-04-17

    The early Earth's environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0-50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from [Formula: see text] (2σ) at 4.0 Ga to [Formula: see text] (2σ) at the Archean-Proterozoic boundary, and to [Formula: see text] (2σ) at the Proterozoic-Phanerozoic boundary. This evolution is driven by the secular decline of pCO 2 , which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering. Copyright © 2018 the Author(s). Published by PNAS.

  18. Tracing Archean sulfur across stitched lithospheric blocks

    NASA Astrophysics Data System (ADS)

    LaFlamme, Crystal; Fiorentini, Marco; Lindsay, Mark; Wing, Boswell; Selvaraja, Vikraman; Occhipinti, Sandra; Johnson, Simon; Bui, Hao Thi

    2017-04-01

    Craton margins are loci for volatile exchange among lithospheric geochemical reservoirs during crust formation processes. Here, we seek to revolutionise the current understanding of the planetary flux and lithospheric transfer of volatiles during supercontinent formation by tracing sulfur from the atmosphere-hydrosphere through to the lithosphere during crust formation. To do so, we trace the transfer of sulfur by following mass independently fractionated sulfur at ancient tectonic boundaries has the potential to. Mass independent fractionation of sulfur (MIF-S) is a signature (quantified as Δ33S and Δ36S) that is unique to the Archean sedimentary rock record and imparted to sulfur reservoirs that interacted with the oxygen-poor atmosphere before the Great Oxidation Event (GOE) at ca. 2.4 Ga. Here we present multiple sulfur isotopes from across a Proterozoic post-GOE orogenic belt, formed when Archean cratons were stitched together during supercontinent amalgamation. For the first time, multiple sulfur isotope data are presented spatially to elucidate volatile pathways across lithospheric blocks. Across the orogenic belt, the Proterozoic granitoid and hydrothermal rock records proximal to Archean cratons preserve values of Δ33S up to +0.8\\permil and a Δ33S-Δ36S array of -1.2, whereas magmatic and hydrothermal systems located more distally from the margin do not display any evidence of MIF-S. This is the first study to identify MIF-S in a Proterozoic orogen indicates that tectonic processes controlling lithospheric evolution and crust formation at tectonic boundaries are able to transfer sulfur from Archean supracrustal rock reservoirs to newly formed Proterozoic granitoid crust. The observation of MIF-S in the Proterozoic granitoid rock record has the potential to revolutionise our understanding of secular changes in the evolution of crust formation mechanisms through time.

  19. The early Earth -- A perspective on the Archean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, W.B.

    1993-04-01

    Dominant models of Archean tectonics and magmatism involve plate-tectonic mechanisms. Common tenets of geochemistry (e.g., model ages) and petrology visualize a cold-accreted Earth in which primitive mantle gradually fractionated to produce crust during and since Archean time. These popular assumptions appear to be incompatible with cosmologic and planetologic evidence and with Archean geology. All current quantitative and semiquantitative theories agree that the Earth was largely or entirely melted (likely superheated) by giant impacts, including the Mars-size impact which splashed out the Moon, and by separation of the core. The Earth at [approximately]4.5 Ga was a violently convecting anhydrous molten ball.more » Both this history and solar-system position indicate the bulk Earth to be more refractory than chondrite. The outer part of whatever sold shell developed was repeatedly recycled by impacts before 3.9 Ga. Water and CO[sub 2] were added by impactors after the Moon-forming event; the mantle is not a source of primordial volatiles, but rather is a sink that has depleted the hydrosphere. Voluminous liquidus ultramafic lava (komatiite) indicates that much Archean upper mantle was above its solidus. Only komatiitic and basaltic magma entered Archean crust from the mantle. Variably hydrous contamination, secondary melting, and fractionation in the crust produced intermediate and felsic melts. Magmatism was concurrent over vast tracts. Within at least the small sample of Archean crust that has not been recycled into the mantle, heat loss was primarily by voluminous, dispersed magmatism, not, as in the modern Earth, primarily through spreading windows through the crust. Only in Proterozoic time did plate-tectonic mechanisms become prevalent.« less

  20. Direct observation of the evolution of a seafloor 'black smoker' from vapor to brine

    USGS Publications Warehouse

    Von Damm, Karen L.; Buttermore, L.G.; Oosting, S.E.; Bray, A.M.; Fornari, D.J.; Lilley, M.D.; Shanks, Wayne C.

    1997-01-01

    A single hydrothermal vent, 'F' vent, occurring on very young crust at 9??16.8???N, East Pacific Rise, was sampled in 1991 and 1994. In 1991, at the measured temperature of 388??C and seafloor pressure of 258 bar, the fluids from this vent were on the two-phase curve for seawater. These fluids were very low in chlorinity and other dissolved species, and high in gases compared to seawater and most sampled seafloor hydrothermal vent fluids. In 1994, when this vent was next sampled, it had cooled to 351??C and was venting fluids ???1.5 times seawater chlorinity. This is the first reported example of a single seafloor hydrothermal vent evolving from vapor to brine. The 1991 and 1994 fluids sampled from this vent are compositionally conjugate pairs to one another. These results support the hypothesis that vapor-phase fluids vent in the early period following a volcanic eruption, and that the liquid-phase brines are stored within the oceanic crust, and vent at a later time, in this case 3 years. These results demonstrate that the venting of brines can occur in the same location, in fact from the same sulfide edifice, where the vapor-phase fluids vented previously.

  1. Petrochronology in constraining early Archean Earth processes and environments: Barberton greenstone belt, South Africa

    NASA Astrophysics Data System (ADS)

    Grosch, Eugene

    2017-04-01

    Analytical and petrological software developments over the past decade have seen rapid innovation in high-spatial resolution petrological techniques, for example, laser-ablation ICP-MS, secondary ion microprobe (SIMS, nano-SIMS), thermodynamic modelling and electron microprobe microscale mapping techniques (e.g. XMapTools). This presentation will focus on the application of petrochronology to ca. 3.55 to 3.33 billion-year-old metavolcanic and sedimentary rocks of the Onverwacht Group, shedding light on the earliest geologic evolution of the Paleoarchean Barberton greenstone belt (BGB) of South Africa. The field, scientific drilling and petrological research conducted over the past 8 years, aims to illustrate how: (a) LA-ICP-MS and SIMS U-Pb detrital zircon geochronology has helped identify the earliest tectono-sedimentary basin and sediment sources in the BGB, as well as reconstructing geodynamic processes as early as ca. 3.432 billion-years ago; (b) in-situ SIMS multiple sulphur isotope analysis of sulphides across various early Archean rock units help to reconstruct atmospheric, surface and subsurface environments on early Archean Earth and (c) the earliest candidate textural traces for subsurface microbial life can be investigated by in-situ LA-ICP-MS U-Pb dating of titanite, micro-XANES Fe-speciation analysis and metamorphic microscale mapping. Collectively, petrochronology combined with high-resolution field mapping studies, is a powerful multi-disciplinary approach towards deciphering petrogenetic and geodynamic processes preserved in the Paleoarchean Barberton greenstone belt of South Africa, with implications for early Archean Earth evolution.

  2. Evidence for early life in Earth's oldest hydrothermal vent precipitates.

    PubMed

    Dodd, Matthew S; Papineau, Dominic; Grenne, Tor; Slack, John F; Rittner, Martin; Pirajno, Franco; O'Neil, Jonathan; Little, Crispin T S

    2017-03-01

    Although it is not known when or where life on Earth began, some of the earliest habitable environments may have been submarine-hydrothermal vents. Here we describe putative fossilized microorganisms that are at least 3,770 million and possibly 4,280 million years old in ferruginous sedimentary rocks, interpreted as seafloor-hydrothermal vent-related precipitates, from the Nuvvuagittuq belt in Quebec, Canada. These structures occur as micrometre-scale haematite tubes and filaments with morphologies and mineral assemblages similar to those of filamentous microorganisms from modern hydrothermal vent precipitates and analogous microfossils in younger rocks. The Nuvvuagittuq rocks contain isotopically light carbon in carbonate and carbonaceous material, which occurs as graphitic inclusions in diagenetic carbonate rosettes, apatite blades intergrown among carbonate rosettes and magnetite-haematite granules, and is associated with carbonate in direct contact with the putative microfossils. Collectively, these observations are consistent with an oxidized biomass and provide evidence for biological activity in submarine-hydrothermal environments more than 3,770 million years ago.

  3. Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics?

    NASA Astrophysics Data System (ADS)

    Kerrich, Robert; Polat, Ali

    2006-03-01

    Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone-granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then "resurfaced" by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41-65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111-124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite-basalt plateau sequences erupted from deep mantle plumes and bimodal basalt-dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites-Mg andesites- and Nb-enriched basalts. Archean cratons

  4. Seismological evidence for an along-axis hydrothermal flow at the Lucky Strike hydrothermal vents site

    NASA Astrophysics Data System (ADS)

    Rai, A.; Wang, H.; Singh, S. C.; Crawford, W. C.; Escartin, J.; Cannat, M.

    2010-12-01

    Hydrothermal circulation at ocean spreading centres plays fundamental role in crustal accretion process, heat extraction from the earth and helps to maintain very rich ecosystem in deep Ocean. Recently, it has been suggested that hydrothermal circulation is mainly along the ridge axis at fast spreading centres above along axis melt lens (AMC). Using a combination of micro-earthquake and seismic reflection data, we show that the hydrothermal circulation at the Lucky Strike segment of slow spreading Mid-Atlantic Ridge is also along axis in a narrow (~1 km) zone above a wide (2-3 km) AMC. We find that the seismicity mainly lies above the seismically imaged 3 km wide 7 km long melt lens at 3.2 km depth. We observe a vertical plume of seismicity above a weak AMC reflection just north of the hydrothermal vent fields that initiates just above the AMC and continues to the seafloor. This zone is collocated with active rifting of the seafloor in the neo-volcanic zone. Beneath the hydrothermal vents sites, where a strong melt lens is imaged, the seismicity initiates at 500 m above the AMC and continues to the seafloor. Just south of the hydrothermal field, where the AMC is widest and strongest, the seismicity band lies 500 m above the melt lens in a 800 m thick zone, which does not continue to the seafloor. The presence the weak melt lens reflection could be due to a cooled and crystallised AMC (mush) that permits the penetration of hydrothermal fluids down to the top of the AMC indicated by seismicity plume and might be the in-flow zone for hydrothermal circulation. The strong AMC reflection could be due to fresh supply of melt in the AMC (pure melt), which has pushed the cracking front 500 m above the AMC. Beneath the hydrothermal fields, the strong AMC reflection and seismicity 500 above the AMC to the seafloor could represent cracking along the up-flow zone. The 800 m thick zone of seismicity above the pure melt zone could be the zone of hydrothermal cracking zone. We do

  5. Evidence for reactive reduced phosphorus species in the early Archean ocean

    PubMed Central

    Pasek, Matthew A.; Harnmeijer, Jelte P.; Buick, Roger; Gull, Maheen; Atlas, Zachary

    2013-01-01

    It has been hypothesized that before the emergence of modern DNA–RNA–protein life, biology evolved from an “RNA world.” However, synthesizing RNA and other organophosphates under plausible early Earth conditions has proved difficult, with the incorporation of phosphorus (P) causing a particular problem because phosphate, where most environmental P resides, is relatively insoluble and unreactive. Recently, it has been proposed that during the Hadean–Archean heavy bombardment by extraterrestrial impactors, meteorites would have provided reactive P in the form of the iron–nickel phosphide mineral schreibersite. This reacts in water, releasing soluble and reactive reduced P species, such as phosphite, that could then be readily incorporated into prebiotic molecules. Here, we report the occurrence of phosphite in early Archean marine carbonates at levels indicating that this was an abundant dissolved species in the ocean before 3.5 Ga. Additionally, we show that schreibersite readily reacts with an aqueous solution of glycerol to generate phosphite and the membrane biomolecule glycerol–phosphate under mild thermal conditions, with this synthesis using a mineral source of P. Phosphite derived from schreibersite was, hence, a plausible reagent in the prebiotic synthesis of phosphorylated biomolecules and was also present on the early Earth in quantities large enough to have affected the redox state of P in the ocean. Phosphorylated biomolecules like RNA may, thus, have first formed from the reaction of reduced P species with the prebiotic organic milieu on the early Earth. PMID:23733935

  6. Physiological and isotopic characteristics of nitrogen fixation by hyperthermophilic methanogens: Key insights into nitrogen anabolism of the microbial communities in Archean hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Nishizawa, Manabu; Miyazaki, Junichi; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2014-08-01

    Hyperthermophilic hydrogenotrophic methanogens are considered to be one of the most predominant primary producers in hydrogen (H2)-abundant hydrothermal environments in the present-day ocean and throughout the history of the Earth. However, the nitrogen sources supporting the development of microbial communities in hydrothermal environments remain poorly understood. We have investigated, for the first time, methanogenic archaea commonly found in deep-sea hydrothermal environments to understand their physiological properties (growth kinetics, energetics, and metal requirements) and isotopic characteristics during the fixation of dinitrogen (N2), which is an abundant but less-bioavailable compound in hydrothermal fluids. Culture experiments showed that Methanocaldococcus strain (Mc 1-85N) (Topt = 85 °C) and Methanothermococcus strain (Mt 5-55N) (Topt = 55 °C) assimilated N2 and ammonium, but not nitrate. Previous phylogenetic studies have predicted that the Methanocaldococcus and Methanothermococcus lineages have nitrogenases, key enzymes for N2 fixation, with biochemically uncharacterised active site metal cofactors. We showed that Mt 5-55N required molybdenum for the nitrogenase to function, implying a molybdenum-bearing cofactor in the strain. Molybdenum also stimulated diazotrophic (i.e., N2-fixing) growth of Mc 1-85N, though further experiments are required to test whether the strain contains a molybdenum-dependent nitrogenase. Importantly, Mc 1-85N exhibited an apparently lower requirement of and higher tolerance to molybdenum and iron than Mt 5-55N. Furthermore, both strains produced more 15N-depleted biomass (-4‰ relative to N2) than that previously reported for diazotrophic photosynthetic prokaryotes. These results demonstrate that diazotrophic hyperthermophilic methanogens can be broadly distributed in seafloor and subseafloor hydrothermal environments, where the availability of transition metals is variable and where organic carbon, organic nitrogen

  7. Imaging Seafloor Massive Sulphides at the TAG hydrothermal fields, from the Blue Mining seismic project

    NASA Astrophysics Data System (ADS)

    Gil de la Iglesia, Alba; Vardy, Mark; Bialas, Jörg; Dannowski, Anke; Schröder, Henning; Minshull, Tim; Chidlow, Kasia; Murton, Bramly

    2017-04-01

    The Trans-Atlantic Geotraverse (TAG) hydrothermal field, located at the Mid-Atlantic Ridge (26°N), is known for the existence of Seafloor Massive Sulphides (SMS) discovered by the Trans-Atlantic Geotraverse cruise (Rona et al., 1986). The TAG comprises a low-temperature alteration zone, five inactive, high-temperature hydrothermal deposits, and the hydrothermal active TAG mound. TAG is also known for being one of the eight known SMS with a size larger than 2M tones (Hannington et al., 2011). The known SMS deposits do not have the same dimensions as the Massive Sulphides (MS) found on land, covering areas from 10s-100s m2 and their accessibility is more complicated, being located at 800-6000 m water depth. Although they do not seem to be economically exploitable at present, those deep-sea mineral resources could be important targets in the near future. One of the aims of the European-funded Blue Mining project is to identify the SMS deposit dimensions for the future environmentally sustainable and clean deep-sea mining. The Blue Mining project is focused on the extinct Seafloor Massive Sulphides (eSMS) in the TAG hydrothermal field, in particular Shinkai, Southern and Shimmering mounds. In May/June 2016 the German RV METEOR carried out a seismic refraction/reflection wide-angle (WA) experiment acquiring thirty multichannel seismic (MCS) profiles crossing the TAG hydrothermal field. GEOMAR's 2-unit air-gun array with a total volume of 760 cubic-inches was used, triggering seismic pulses every 12 s along the MCS profiles. Reflected and refracted events from the shallow-towed sources were recorded by 20 Ocean Bottom Seismometers (OBS) and 5 Ocean Bottom Hydrophones (OBH). To obtain the internal velocities and gross geometries of these deposits, 10 of 20 OBS were located on top of the eSMS, Shinaki and Southern mounds, while the other 10 instruments were located in extension of the profiles, covering Shimmering mounds and regional targets. In this presentation, we

  8. Evidence for early life in Earth’s oldest hydrothermal vent precipitates

    USGS Publications Warehouse

    Dodd, Matthew S.; Papineau, Dominic; Grenne, Tor; Slack, John F.; Rittner, Martin; Pirajno, Franco; O’Neil, Jonathan; Little, Crispin T.S.

    2017-01-01

    Although it is not known when or where life on Earth began, some of the earliest habitable environments may have been submarine-hydrothermal vents. Here we describe putative fossilized microorganisms that are at least 3,770 million and possibly 4,280 million years old in ferruginous sedimentary rocks, interpreted as seafloor-hydrothermal vent-related precipitates, from the Nuvvuagittuq belt in Quebec, Canada. These structures occur as micrometre-scale haematite tubes and filaments with morphologies and mineral assemblages similar to those of filamentous microorganisms from modern hydrothermal vent precipitates and analogous microfossils in younger rocks. The Nuvvuagittuq rocks contain isotopically light carbon in carbonate and carbonaceous material, which occurs as graphitic inclusions in diagenetic carbonate rosettes, apatite blades intergrown among carbonate rosettes and magnetite–haematite granules, and is associated with carbonate in direct contact with the putative microfossils. Collectively, these observations are consistent with an oxidized biomass and provide evidence for biological activity in submarine-hydrothermal environments more than 3,770 million years ago.

  9. Emerged Oceanic Plateaux and Their Role in Regulating Archean Ocean and Atmosphere Composition

    NASA Astrophysics Data System (ADS)

    Kamber, B. S.

    2009-05-01

    A geologist associates the Earth's surface division into land and oceans instinctively with continents and oceanic plates. Here I propose that for the Archean eon, we need to break with this concept. As an alternative I propose a three-fold division. Continental land, relatively thin oceanic plates covered by water and also much thicker oceanic plateaux that were at least episodically emerged and contributed ca. 50% of the total land mass. The rationale for this proposal is a long-standing conundrum locked up in ancient hydrogenous sediments precipitated from seawater. They contain elemental and isotopic records with mutually exclusive conclusions regarding the supply of elements. Namely, isotopic data, particularly Sr, are interpreted to imply a preponderance of hydrothermal flux to the ocean. The elemental abundance of Eu, however, apparently requires a much greater flux from land. Yet a higher flux from continental land mass would be visible in the Sr- isotope record. I will present additional evidence from the origin of the marine rare earth element (REE) pattern that deepens the conundrum, which can be solved if the Archean landmass included emerged oceanic plateaux in addition to the continents. The appeal of the idea is that the marine REE inventory, including Eu, is only influenced by relative fluxes from hydrothermal vents and land, regardless of the nature of the land. Strontium isotopes, on the other hand, cannot discriminate between hydrothermal flux and riverine input draining juvenile oceanic plateaux. Using this concept, I will present a simple quantitative model that explains the evidence with a landmass at the end of the Archean that was comparable in area to that of today but made up to ca. 60% by oceanic plateaux. My proposal has implications far beyond the REE and Sr fluxes to the ocean. In particular, it requires the Archean upper mantle to have been relatively cool, potentially allowing for subduction of the thin oceanic lithosphere along

  10. Microfossils of the Early Archean Apex chert - New evidence of the antiquity of life

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1993-01-01

    Eleven taxa (including eight heretofore undescribed species) of cellularly preserved filamentous microbes, among the oldest fossils known, have been discovered in a bedded chert unit of the Early Archean Apex Basalt of northwestern Western Australia. This prokaryotic assemblage establishes that trichomic cyanobacteriumlike microorganisms were extant and morphologically diverse at least as early as about 3465 million years ago and suggests that oxygen-producing photoautotrophy may have already evolved by this early stage in biotic history.

  11. Assessing the Role of Seafloor Weathering in Global Geochemical Cycling

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Abbot, D. S.; Archer, D. E.

    2015-12-01

    Low-temperature alteration of the basaltic upper oceanic crust, known as seafloor weathering, has been proposed as a mechanism for long-term climate regulation similar to the continental climate-weathering negative feedback. Despite this potentially far-reaching impact of seafloor weathering on habitable planet evolution, existing modeling frameworks do not include the full scope of alteration reactions or recent findings of convective flow dynamics. We present a coupled fluid dynamic and geochemical numerical model of low-temperature, off-axis hydrothermal activity. This model is designed to explore the the seafloor weathering flux of carbon to the oceanic crust and its responsiveness to climate fluctuations. The model's ability to reproduce the seafloor weathering environment is evaluated by constructing numerical simulations for comparison with two low-temperature hydrothermal systems: A transect east of the Juan de Fuca Ridge and the southern Costa Rica Rift flank. We explore the sensitivity of carbon uptake by seafloor weathering on climate and geology by varying deep ocean temperature, seawater dissolved inorganic carbon, continental weathering inputs, and basaltic host rock in a suite of numerical experiments.

  12. Controls on Atmospheric O2: The Anoxic Archean and the Suboxic Proterozoic

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.

    2015-12-01

    Geochemists have now reached consensus that the Archean atmosphere was mostly anoxic, that a Great Oxidation Event (GOE) occurred at around 2.5 Ga, and that the ensuing Proterozoic atmosphere was consistently oxidized [1,2]. Evidence for this broad-scale change in atmospheric composition comes from a variety of sources, most importantly from multiple sulfur isotopes [3,4]. The details of both the Archean and Proterozoic environments remain controversial, however, as does the underlying cause of the GOE. Evidence of 'whiffs' of oxygen during the Archean [5] now extend back as far as 3.0 Ga, based on Cr isotopes [6]. This suggests that O2 was being produced by cyanobacteria well before the GOE and that the timing of this event may have been determined by secular changes in O2 sinks. Catling et al. [7] emphasized escape of hydrogen to space, coupled with progressive oxidation of the continents and a concomitant decrease in the flux of reduced gases from metamorphism. But hydrogen produced by serpentinization of seafloor could also have been a controlling factor [8]. Higher mantle temperatures during the Archean should have resulted in thicker, more mafic seafloor and higher H2 production; decreasing mantle temperatures during the Proterozoic should have led to seafloor more like that of today and a corresponding decrease in H2 production, perhaps by enough to trigger the GOE. Once the atmosphere became generally oxidizing, it apparently remained that way during the rest of Earth's history. But O2 levels in the mid-Proterozoic could have been as low at 10-3 times the Present Atmospheric Level (PAL) [9]. The evidence, once again, is based on Cr isotopes. Possible mechanisms for maintaining such a 'suboxic' Proterozoic atmosphere will be discussed. Refs: 1. H. D. Holland, Geochim. Cosmochim. Acta 66, 3811 (2002). 2. H. D. Holland, Philosophical Transactions of the Royal Society B-Biological Sciences 361, 903 (Jun 29, 2006). 3. J. Farquhar, H. Bao, M. Thiemans, Science

  13. Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor.

    PubMed

    Edwards, Katrina J; Bach, Wolfgang; McCollom, Thomas M

    2005-09-01

    Oceanography is inherently interdisciplinary and, since its inception, has included the study of microbe-mineral interactions. From early studies of manganese nodules, to the discovery of hydrothermal vents, it has been recognized that microorganisms are involved at various levels in the transformation of rocks and minerals at and below the seafloor. Recent studies include mineral weathering at low temperatures and microbe-mineral interactions in the subseafloor "deep biosphere". A common characteristic of seafloor and subseafloor geomicrobiological processes that distinguishes them from terrestrial or near-surface processes is that they occur in the dark, one or more steps removed from the sunlight that fuels the near-surface biosphere on Earth. This review focuses on geomicrobiological studies and energy flow in dark, deep-ocean and subseafloor rock habitats.

  14. ESR dating of barite in sulphide deposits formed by the sea-floor hydrothermal activities.

    PubMed

    Toyoda, Shin; Fujiwara, Taisei; Uchida, Ai; Ishibashi, Jun-ichiro; Nakai, Shun'ichi; Takamasa, Asako

    2014-06-01

    Barite is a mineral newly found to be practically useful for electron spin resonance (ESR) dating of sulphide deposits formed by the sea-floor hydrothermal activities. The recent studies for the properties of the ESR dating signal in barite are summarised in the present paper as well as the formulas for corrections for accurate dose-rate estimation are developed including the dose-rate conversion factors, shape correction for gamma-ray dose and decay of (226)Ra. Although development of the techniques for ESR dating of barite has been completed, further comparative studies with other dating techniques such as U-Th and (226)Ra-(210)Pb dating are necessary for the technique to be widely used. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Geochemistry of precambrian carbonates. II. Archean greenstone belts and Archean sea water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veizer, J.; Hoefs, J.; Lowe, D.R.

    1989-04-01

    Carbonate rocks with geological attributes of marine sediments are a minor component of the Archean greenstone belts. Despite their relative scarcity, these rocks are important because they record chemical and isotopic properties of coeval oceans. The greenstones containing such carbonates appear to cluster at {approximately}2.8 {plus minus} 0.2 and {approximately}3.5 {plus minus} 0.1 Ga ago. The samples for the younger group are from the Abitibi, Yellowknife, Wabigoon, Michipicoten and Uchi greenstone belts of Canada and the Upper Greenstones of Zimbabwe. The older group includes the Swaziland Supergroup of South Africa, Warrawoona Group of Australia and the Sargur marbles of India.more » Mineralogically, the carbonates of the younger greenstones are mostly limestones and of the older ones, ferroan dolomites (ankerites); the latter with some affinities to hydrothermal carbonates. In mineralized areas with iron ores, the carbonate minerals are siderite {plus minus} ankerite, irrespective of the age of the greenstones. Iron-poor dolomites represent a later phase of carbonate generation, related to post-depositional tectonic faulting. The original mineralogy of limestone sequences appears to have been an Sr-rich aragonite. The Archean carbonates yield near-mantle Sr isotopic values, with ({sup 87}Sr/{sup 86}Sr){sub o} of 0.7025 {plus minus} 0.0015 and 0.7031 {plus minus} 0.0008 for younger and older greenstones, respectively. The mineralogical and chemical attributes of Archean carbonates are consistent with the proposition that the composition of the coeval oceans may have been buffered by a pervasive interaction with the mantle, that is, with the oceanic crust and the coeval ubiquitous volcanosedimentary piles derived from mantle sources.« less

  16. Field occurrence and lithology of Archean hydrothermal systems in the 3.2Ga Dixon Island Formation, Western Australia

    NASA Astrophysics Data System (ADS)

    Aihara, Y.; Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Horie, K.; Sakamoto, R.; Miki, T.

    2013-12-01

    Stratigraphic transition of black chert to iron-rich sedimentary rocks above volcanic sequences with hydrothermal systems is common and characteristic feature of Archean greenstone belts. The 3.2 Ga Dixon Island Formation, exposed along the northern coast of Dixon Island located in the coastal Pilbara terrane, Western Australia, is one of such units and the focus of our study. We introduce field occurrence and lithology of the Dixon Island Formation that preserves features of paleohydrohermal environment in the Mesoarchean ocean. The Dixon Island Formation is composed of the following three members (in ascending order): Komatiite-Rhyolite Tuff, Black Chert, and Varicolored Chert members (Kiyokawa and Taira, 1998). Here we focus on the Komatiite-Rholite Tuff member. It preserves two cycles of highly altered komatiite lavas and well-stratified rhyolite tuff. Komatiite lavas include dendritic crystals of chrome spinel and ghosts of spinifex, euhedral and sheet-like olivines and pyroxenes. These rocks are now composed of granular microcrystalline quartz with chromian muscovite, chrome spinel and chrorite that formed by intense silicification. Its upper part contains hydrothermal veining and alteration (i.e., many vein swarms composed of veins of quartz and organic carbon-rich black chert). Most black chert veins intrude vertically into overlying layers, and contain barite, pyrite, monazite and clay minerals which were least affected by silicificatio. Based on the cross-cutting relationship seen in the outcrops, we recognized two generations of black chert veins (type 1 and type 2 veins; Kiyokawa et al., 2006). Type 1 veins are mainly composed of carbonaceous peloids in a microcrystalline quartz matrix. Euhedral and xenocrystic tourmaline are found only in Type1 veins. Type 2 veins are organic carbon-poor and contain fragments of black chert and siliceous volcanic breccia (Kiyokawa et al., 2006). Intense silicification of komatiitic volcaniclastics and lava, enriched in

  17. Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits: a case study at the Zouyu-1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Tao, Chunhui; Chen, Sheng; Baker, Edward T.; Li, Huaiming; Liang, Jin; Liao, Shili; Chen, Yongshun John; Deng, Xianming; Zhang, Guoyin; Gu, Chunhua; Wu, Jialin

    2017-06-01

    Seafloor hydrothermal polymetallic sulfide deposits are a new type of resource, with great potential economic value and good prospect development. This paper discusses turbidity, oxidation-reduction potential, and temperature anomalies of hydrothermal plumes from the Zouyu-1 and Zouyu-2 hydrothermal fields on the southern Mid-Atlantic Ridge. We use the known location of these vent fields and plume data collected in multiple years (2009, 2011, 2013) to demonstrate how real-time plume exploration can be used to locate active vent fields, and thus associated sulfide deposits. Turbidity anomalies can be detected 10 s of km from an active source, but the location precision is no better than a few kilometers because fine-grained particles are quasi-conservative over periods of many days. Temperature and oxidation-reduction potential anomalies provide location precision of a few hundred meters. Temperature anomalies are generally weak and difficult to reliably detect, except by chance encounters of a buoyant plume. Oxidation-reduction potential is highly sensitive (nmol concentrations of reduced hydrothermal chemicals) to discharges of all temperatures and responds immediately to a plume encounter. Real-time surveys using continuous tows of turbidity and oxidation-reduction potential sensors offer the most efficient and precise surface ship exploration presently possible.

  18. Very early Archean crustal-accretion complexes preserved in the North Atlantic craton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutman, A.P.; Collerson, K.D.

    1991-08-01

    The North Atlantic craton contains very early Archean supracrustal rocks, orthogneisses, and massive ultramafic rocks. Most units of supracrustal rocks are dominated by mafic volcanic rocks, layered gabbros, and banded iron formations, bust some also contain abundant felsic volcanic-sedimentary rocks, quartzites, and marbles. Some quartzites contain detrital zircons derived from rocks identical in age to felsic volcanic-sedimentary rocks in these sequences (ca. 3800 Ma) and also from older (ca. 3850 Ma) sources. The presence of the ca. 3850 Ma detrital zircons suggests that the supracrustal units containing them were deposited on, or close to, ca. 3850 Ma sialic crust. Themore » massive ultramafic rocks have chemical affinities to upper mantle rocks. The voluminous suites of tonalitic gneisses are dominated by 3700-3730 Ma bodies that intrude the supracrustal sequences, but they also locally contain components with ages between 3820 and 3920 Ma. The diverse supracrustal units, upper mantle rocks, and {ge} 3820 Ma components in the gneisses were tectonically interleaved in very early Archean convergent plate boundaries, giving rise to accretion complexes. In the period 3700-3730 Ma, voluminous tonalitic magmas produced by partial melting of predominantly mafic rocks in the base of the accretion complexes were emplaced at higher levels, forming juvenile continental crust and leaving behind a refractory lower crustal to upper mantle substrate.« less

  19. Sulfate was a trace constituent of Archean seawater.

    PubMed

    Crowe, Sean A; Paris, Guillaume; Katsev, Sergei; Jones, CarriAyne; Kim, Sang-Tae; Zerkle, Aubrey L; Nomosatryo, Sulung; Fowle, David A; Adkins, Jess F; Sessions, Alex L; Farquhar, James; Canfield, Donald E

    2014-11-07

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (>20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of δ(34)S values. Using models informed by sulfur cycling in Lake Matano, we infer Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 10(3) to 10(4) years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans. Copyright © 2014, American Association for the Advancement of Science.

  20. Analysis of the archaeal sub-seafloor community at Suiyo Seamount on the Izu-Bonin Arc.

    PubMed

    Hara, Kurt; Kakegawa, Takeshi; Yamashiro, Kan; Maruyama, Akihiko; Ishibashi, Jun-Ichiro; Marumo, Katsumi; Urabe, Tetsuro; Yamagishi, Akihiko

    2005-01-01

    A sub-surface archaeal community at the Suiyo Seamount in the Western Pacific Ocean was investigated by 16S rRNA gene sequence and whole-cell in situ hybridization analyses. In this study, we drilled and cased holes at the hydrothermal area of the seamount to minimize contamination of the hydrothermal fluid in the sub-seafloor by penetrating seawater. PCR clone analysis of the hydrothermal fluid samples collected from a cased hole indicated the presence of chemolithoautotrophic primary biomass producers of Archaeoglobales and the Methanococcales-related archaeal HTE1 group, both of which can utilize hydrogen as an electron donor. We discuss the implication of the microbial community on the early history of life and on the search for extraterrestrial life. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  1. Earth's early atmosphere as seen from carbon and nitrogen isotopic analysis of Archean sediments

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Carr, L. P.; Gilmour, I.; Pillinger, C. T.

    1986-01-01

    The origin and evolution of the Earth's early atmosphere has long been a topic of great interest but determination of actual compositions over geologic time is a difficult problem. However, recent systematic studies of stromatolite deposits (Precambrian Paleobiology Research Group) has extended our knowledge of Archean ecosystems. It has been shown that many stromatolite deposits have undergone negligible alteration since their time of formation. The discovery of primary fluid inclusions within unaltered 3.5 b.y. old Archiean sediments and the observation that the 3.3 b.y. old Barberton cherts have remained closed to argon loss and have not been subjected to thermal metamorphism suggests that an opportunity exists for the direct measurement of the volatile constituents present at their time of formation. Of primary interest to this study was the possibility that the stromatolites and other Archean sediments might retain a vestige of the atmosphere and thus afford an indication of the variations in carbon dioxide and nitrogen isotopic compositions with time. A suite of essentially unaltered Archean stromatolites and the cherts of different ages and geologic sites have been analyzed for their trapped carbon dioxide and nitrogen compositions by the stepped combustion extraction tech nique utilizing static mass spectrometers for the isotope measurements.

  2. Surface mapping and drilling of extinct seafloor massive sulphide deposits (eSMS) from the TAG Hydrothermal Field, 26oN: A tale of two `Jaspers'

    NASA Astrophysics Data System (ADS)

    Stobbs, I. J.; Lusty, P.; Petersen, S.; Murton, B. J.

    2017-12-01

    Two extinct seafloor massive sulphide (eSMS) deposits within the TAG hydrothermal field, 26oN, mid-Atlantic ridge, were mapped and drilled: Southern Mound and the newly discovered `Rona Mound'. Surface mapping was undertaken by combining high definition video footage and high resolution bathymetry to interpret surface geological and geomorphological features. Drill core was recovered using the BGS RD2 robotic drilling rig. Surface mapping of the mounds revealed a superficial cover of carbonate and iron-oxyhydroxides sediments, observed to directly overly oxide coated sulphide material within fault scarps, which dissect the flanks of both mounds. Drilling at the summits of the mounds revealed similar stratigraphy to the mapping, with the addition of a coherent and dense layer of red-coloured silica-rich `jasper', up to 3m thick, underlying the sediments and overlying unoxidised massive sulphides. The jasper mineralogy is dominated by silica, with minor iron oxides and rare disseminated sulphides. It displays a range of complex textures including filamentous and dendritic iron oxides often coated in silica. Drill core samples show the material to be porous, but relatively impermeable. Strong and positive Eu (REE) anomalies indicates a hydrothermal origin with little evidence of a seawater signature (lack of negative Ce anomaly). Silica precipitation is associated with low temperature hydrothermal activity, chert and jasper materials are locally present within the nearby hydrothermally active TAG mound and are more widespread at low-temperature diffuse hydrothermal sites such as within the MESO field. We interpret the `jasper' layers to be a common product, formed during the waning, low temperature, stage of the hydrothermal cycle which may form an impermeable and resistant `cap' that protects the underlying massive sulphide ore body from oxidation and dissolution. The formation of a `jasper cap' could act automatically to preserve eSMS deposits when hydrothermal

  3. Archean Pb Isotope Evolution: Implications for the Early Earth.

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.; Thorpe, R.; Albarede, F.; Blichert-Toft, J.

    2008-12-01

    .728 Ga (Normetal) to 2.70 Ga (Noranda). The Pb isotopic compositions from these galenas, when normalized to a common age of 2.7 Ga, define a highly linear array in 207Pb/204Pb vs. 206Pb/204Pb. This array is nearly coincident with the 2.7 Ga geochron with a slope that corresponds to an age of ~4.4 Ga and with an extraordinary large range of 207Pb/204Pb, about the same magnitude as modern MORB. These data have important implications for the evolution of the Archean mantle. First, the slope of the Abitibi Pb-Pb array and its coincidence with the 2.7 Ga geochron suggests widespread U-Pb differentiation within the first hundred million years of Earth's history. This may have been due to either core formation or silicate/melt differentiation due to widespread melting of the mantle (e.g., formation of a magma ocean). Second, variations in μ in the Abitibi mantle and the subsequent Pb isotopic heterogeneities, whatever their cause, have not been significantly changed from 4.4 until 2.7 Ga. This implies that changes in μ in the Abitibi mantle source between 4.4 and 2.7 Ga, such as would be caused by crust extraction or recycling of older crust into this region of the mantle, were insufficient to destroy the original μ variations created at 4.4 Ga. Therefore, it appears that this portion of the mantle had essentially remained isolated and undisturbed from the early Hadean until the late Archean.

  4. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model

    PubMed Central

    Krissansen-Totton, Joshua; Arney, Giada N.

    2018-01-01

    The early Earth’s environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0–50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from 6.6−0.4+0.6 (2σ) at 4.0 Ga to 7.0−0.5+0.7 (2σ) at the Archean–Proterozoic boundary, and to 7.9−0.2+0.1 (2σ) at the Proterozoic–Phanerozoic boundary. This evolution is driven by the secular decline of pCO2, which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering. PMID:29610313

  5. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model

    NASA Astrophysics Data System (ADS)

    Krissansen-Totton, Joshua; Arney, Giada N.; Catling, David C.

    2018-04-01

    The early Earth’s environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0–50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from 6.6‑0.4+0.6 (2σ) at 4.0 Ga to 7.0‑0.5+0.7 (2σ) at the Archean–Proterozoic boundary, and to 7.9‑0.2+0.1 (2σ) at the Proterozoic–Phanerozoic boundary. This evolution is driven by the secular decline of pCO2, which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering.

  6. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy

    NASA Astrophysics Data System (ADS)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid

    2013-08-01

    Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda-Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite-martite-goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in `least-altered' hematite-magnetite-metachert-BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe-Ca-Mg-Ni-Co-P-REE metasomatism that produced local Ni-REE-rich Fe-dolomite-magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle-ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni-Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite-hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)-Fe-dolomite-quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides

  7. Archean microfossils: a reappraisal of early life on Earth.

    PubMed

    Altermann, Wladyslaw; Kazmierczak, Józef

    2003-11-01

    The oldest fossils found thus far on Earth are c. 3.49- and 3.46-billion-year-old filamentous and coccoidal microbial remains in rocks of the Pilbara craton, Western Australia, and c. 3.4-billion-year-old rocks from the Barberton region, South Africa. Their biogenicity was recently questioned and they were reinterpreted as contaminants, mineral artefacts or inorganic carbon aggregates. Morphological, geochemical and isotopic data imply, however, that life was relatively widespread and advanced in the Archean, between 3.5 and 2.5 billion years ago, with metabolic pathways analogous to those of recent prokaryotic organisms, including cyanobacteria, and probably even eukaryotes at the terminal Archean.

  8. Study of hydrothermal channels based on near-bottom magnetic prospecting: Application to Longqi hydrothermal area

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tao, C.; Li, H.; Zhaocai, W.; Jinhui, Z.; Qinzhu, C.; Shili, L.

    2014-12-01

    Mid-ocean ridges, largely present far from the continental plates, are characterized by complex geological structures and numerous hydrothermal systems with complex controlling factors. Exploring seafloor sulfide resources for industrial and scientific applications is a challenge. With the advent of geophysical surveys for seabed investigation, near-bottom magnetic prospecting, which yields shallow geological structure, is an efficient method for investigating active and inactive hydrothermal fields and for researching the structure of hydrothermal systems (Tivey et al., 1993, 1996;German et al., 2008). We collected near-bottom magnetic data in the Longqi hydrothermal area, located in the southwest Indian ridge (49.6° E; Zhu et al., 2010; Tao et al., 2014), using the autonomous benthic explorer, an autonomous underwater vehicle, during the second leg of the Chinese cruise DY115-19 on board R/V DaYangYiHao. Based on the results of the intensity of the spatial differential vector method (Seaman et al., 1993), we outline the hydrothermal alternation zone. By building models, we subsequently infer a fault along the discovered hydrothermal vents; this fault line may be connected to a detachment fault (Zhao et al., 2013). In addition, we discuss the channels of the hydrothermal circulation system (Figure 1), and presume that heat was conducted to the sea subsurface by the detachment fault; the aqueous fluid that infiltrated the fault is heated and conveyed to the seafloor, promoting the circulation of the hydrothermal system.

  9. In search of early life: Carbonate veins in Archean metamorphic rocks as potential hosts of biomarkers

    NASA Astrophysics Data System (ADS)

    Peters, Carl A.; Piazolo, Sandra; Webb, Gregory E.; Dutkiewicz, Adriana; George, Simon C.

    2016-11-01

    The detection of early life signatures using hydrocarbon biomarkers in Precambrian rocks struggles with contamination issues, unspecific biomarkers and the lack of suitable sedimentary rocks due to extensive thermal overprints. Importantly, host rocks must not have been exposed to temperatures above 250 °C as at these temperatures biomarkers are destroyed. Here we show that Archean sedimentary rocks from the Jeerinah Formation (2.63 billion yrs) and Carawine Dolomite (2.55 billion yrs) of the Pilbara Craton (Western Australia) drilled by the Agouron Institute in 2012, which previously were suggested to be suitable for biomarker studies, were metamorphosed to the greenschist facies. This is higher than previously reported. Both the mineral assemblages (carbonate, quartz, Fe-chlorite, muscovite, microcline, rutile, and pyrite with absence of illite) and chlorite geothermometry suggest that the rocks were exposed to temperatures higher than 300 °C and probably ∼400 °C, consistent with greenschist-facies metamorphism. This facies leads to the destruction of any biomarkers and explains why the extraction of hydrocarbon biomarkers from pristine drill cores has not been successful. However, we show that the rocks are cut by younger formation-specific carbonate veins containing primary oil-bearing fluid inclusions and solid bitumens. Type 1 veins in the Carawine Dolomite consist of dolomite, quartz and solid bitumen, whereas type 2 veins in the Jeerinah Formation consist of calcite. Within the veins fluid inclusion homogenisation temperatures and calcite twinning geothermometry indicate maximum temperatures of ∼200 °C for type 1 veins and ∼180 °C for type 2 veins. Type 1 veins have typical isotopic values for reprecipitated Archean sea-water carbonates, with δ13CVPDB ranging from - 3 ‰ to 0‰ and δ18OVPDB ranging from - 13 ‰ to - 7 ‰, while type 2 veins have isotopic values that are similar to hydrothermal carbonates, with δ13CVPDB ranging from - 18

  10. Early Archean spherule layers from the Barberton Greenstone Belt, South Africa: Mineralogy and geochemistry of the spherule beds in the CT3 drill core

    NASA Astrophysics Data System (ADS)

    Ozdemir, Seda; Schulz, Toni; Koeberl, Christian; Reimold, Wolf Uwe; Mohr-Westheide, Tanja; Hoehnel, Desiree; Schmitt, Ralf Thomas

    2017-12-01

    Little is known about the Hadean and the Archean impact record on Earth. In the CT3 drill core from the Fig Tree Group of the northern Barberton Greenstone Belt, 17 spherule layer intersections occur, which, provide an outstanding new opportunity to gain insights into meteorite bombardment of the early Earth. CT3 spherules, as primary features, mostly exhibit textural patterns similar to those of the other Barberton spherule layers, but locally mineralogical and chemical compositional differences are observed, likely as a result of various degrees of alteration. The observed mineralogy of the spherule layers is of secondary origin and comprises K-feldspar, phyllosilicates, carbonates, sulfides, and oxides, with the exception of secondary Ni-Cr spinel that is of primary origin. Our petrographic investigations suggest alteration by K-metasomatism, sericitization, silicification, and carbonatization. Siderophile element contents of bulk samples show significant enrichments in Ni (up to 2 wt%) and Ir (up to 3 ppm), similar to previously studied Archean spherule layers. These values are indicative of the presence of a meteoritic component. On the other hand, lithophile and chalcophile element abundances indicate hydrothermal overprint on the CT3 samples; this may also have influenced the redistribution of the meteoritic component(s). Last, we group the CT3 spherule layers, which occur in three intervals (A, B, and C), according to their petrographic and geochemical features, which indicate evidence for at least three distinct impact events before tectonic overprint that affected the original deposits.

  11. Constraining the location of the Archean--Proterozoic suture in the Great Basin based on magnetotelluric soundings

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sampson, Jay A.

    2012-01-01

    It is important to understand whether major mining districts in north-central Nevada are underlain by Archean crust, known to contain major orogenic gold deposits, or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between the Archean crust and Mojave province is also critical because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. In the Great Basin, the attitude of the suture zone is unknown because it is concealed below cover. A regional magnetotelluric sounding profile along the Utah-Nevada State line reveals a deeply penetrating, broad electrical conductor that may be the Archean-Proterozoic suture zone in the northwest corner of Utah. This major crustal conductor's strike direction is northwest, where it broadens to about 80 km wide below about 3-km depth. These results suggest that the southwestern limit of intact Archean crust in this part of the Great Basin is farther north than previously reported. These results also suggest that the major gold belts in north-central Nevada are located over the Paleoproterozoic Mojave province, and the Archean terrain lies northeast in the northwest corner of Utah. Rifted Archean crust segments south and west of the suture suggest that future mineral exploration northeast of current mineral trends may yield additional gold deposits.

  12. Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9-10°N

    USGS Publications Warehouse

    Rouxel, O.; Shanks, Wayne C.; Bach, W.; Edwards, K.J.

    2008-01-01

    In this study, we report on coupled Fe- and S-isotope systematics of hydrothermal fluids and sulfide deposits from the East Pacific Rise at 9–10°N to better constrain processes affecting Fe-isotope fractionation in hydrothermal environments. We aim to address three fundamental questions: (1) Is there significant Fe-isotope fractionation during sulfide precipitation? (2) Is there significant variability of Fe-isotope composition of the hydrothermal fluids reflecting sulfide precipitation in subsurface environments? (3) Are there any systematics between Fe- and S-isotopes in sulfide minerals? The results show that chalcopyrite, precipitating in the interior wall of a hydrothermal chimney displays a limited range of δ56Fe values and δ34S values, between − 0.11 to − 0.33‰ and 2.2 to 2.6‰ respectively. The δ56Fe values are, on average, slightly higher by 0.14‰ relative to coeval vent fluid composition while δ34S values suggest significant S-isotope fractionation (− 0.6 ± 0.2‰) during chalcopyrite precipitation. In contrast, systematically lower δ56Fe and δ34S values relative to hydrothermal fluids, by up to 0.91‰ and 2.0‰ respectively, are observed in pyrite and marcasite precipitating in the interior of active chimneys. These results suggest isotope disequilibrium in both Fe- and S-isotopes due to S-isotopic exchange between hydrothermal H2S and seawater SO42− followed by rapid formation of pyrite from FeS precursors, thus preserving the effects of a strong kinetic Fe-isotope fractionation during FeS precipitation. In contrast, δ56Fe and δ34S values of pyrite from inactive massive sulfides, which show evidence of extensive late-stage reworking, are essentially similar to the hydrothermal fluids. Multiple stages of remineralization of ancient chimney deposits at the seafloor appear to produce minimal Fe-isotope fractionation. Similar affects are indicated during subsurface sulfide precipitation as demonstrated by the lack of systematic

  13. U enrichment and Th/U fractionation in Archean boninites: Implications for paleo-ocean oxygenation and U cycling at juvenile subduction zones

    NASA Astrophysics Data System (ADS)

    Manikyamba, C.; Said, Nuru; Santosh, M.; Saha, Abhishek; Ganguly, Sohini; Subramanyam, K. S. V.

    2018-05-01

    Phanerozoic boninites record enrichments of U over Th, giving Th/U: 0.5-1.6, relative to intraoceanic island arc tholeiites (IAT) where Th/U averages 2.6. Uranium enrichment is attributed to incorporation of shallow, oxidized fluids, U-rich but Th-poor, from the slab into the melt column of boninites which form in near-trench to forearc settings of suprasubduction zone ophiolites. Well preserved Archean komatiite-tholeiite, plume-derived, oceanic volcanic sequences have primary magmatic Th/U ratios of 4.4-3.6, and Archean convergent margin IAT volcanic sequences, having REE and HFSE compositions similar to Phanerozoic IAT equivalents, preserve primary Th/U of 4-3.6. The best preserved Archean boninites of the 3.0 Ga Olondo and 2.7 Ga Gadwal greenstone belts, hosted in convergent margin ophiolite sequences, also show relative enrichments of U over Th, with low average Th/U ∼3 relative to coeval IAT, and Phanerozoic counterparts which are devoid of crustal contamination and therefore erupted in an intraoceanic setting, with minimal contemporaneous submarine hydrothermal alteration. Later enrichment of U is unlikely as Th-U-Nb-LREE patterns are coherent in these boninites whereas secondary effects induce dispersion of Th/U ratios. The variation in Th/U ratios from Archean to Phanerozoic boninites of greenstone belts to ophiolitic sequences reflect on genesis of boninitic lavas at different tectono-thermal regimes. Consequently, if the explanation for U enrichment in Phanerozoic boninites also applies to Archean examples, the implication is that U was soluble in oxygenated Archean marine water up to 600 Ma before the proposed great oxygenation event (GOE) at ∼2.4 Ga. This interpretation is consistent with large Ce anomalies in some hydrothermally altered Archean volcanic sequences aged 3.0-2.7 Ga.

  14. Potassium Isotopes as a New Tracer of Seafloor Hydrothermal Alteration: The Bay of Islands Ophiolite

    NASA Astrophysics Data System (ADS)

    Parendo, C. A.; Jacobsen, S. B.; Wang, K.

    2016-12-01

    Hydrothermal circulation at and around oceanic spreading ridges results in elemental exchange between seawater and oceanic crust, with profound implications for both the ionic composition of seawater and the elemental composition of various solid-Earth reservoirs over geological time. Potassium is among the elements known to be mobile during hydrothermal alteration. Here we investigate the isotopic character of this K exchange by obtaining high-precision 41K/39K data for 6 samples from the Bay of Islands Ophiolite, Newfoundland, Canada—a piece of ca. 485 Ma oceanic crust that was affected by seafloor hydrothermal alteration prior to being obducted. Our 41K/39K analyses are generated using an Isoprobe-P MC-ICPMS equipped with a hexapole collision and reaction cell, which essentially eliminates interferences from the K-isotope mass spectrum. The analyses have an external reproducibility of about 0.07‰ (2SD). We find that the 41K/39K ratios of the ophiolite rocks span a range of approximately 0.70‰ and covary with previously determined 87Sr/86Sr ratios. The stratigraphically deepest, least-altered sample (an olivine gabbro) has a 41K/39K ratio within error of that typically observed in common igneous rocks. The stratigraphically higher, more-altered samples (which include hornblende gabbro, plagiogranite, diabase, and basalt) have 41K/39K ratios that are markedly heavier. This variability in 41K/39K ratios is interpreted to reflect variable addition of seawater K to the rocks. A simple open-system water-rock interaction calculation shows that the covariation between 41K/39K and 87Sr/86Sr can be plausibly explained as the result of hydrothermal alteration. The simplest scenario assumes that the 41K/39K ratio of seawater at the time of interest was similar to its present-day value, in which case the calculation suggests that isotopically heavy seawater K is added to oceanic crust with little fractionation—i.e., an effective fractionation factor near 0.0‰. The

  15. Seafloor Topographic Analysis in Staged Ocean Resource Exploration

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Okawa, M.; Osawa, K.; Kadoshima, K.; Asakawa, E.; Sumi, T.

    2017-12-01

    J-MARES (Research and Development Partnership for Next Generation Technology of Marine Resources Survey, JAPAN) has been designing a low-expense and high-efficiency exploration system for seafloor hydrothermal massive sulfide deposits in "Cross-ministerial Strategic Innovation Promotion Program (SIP)" granted by the Cabinet Office, Government of Japan since 2014. We designed a method to focus mineral deposit prospective area in multi-stages (the regional survey, semi-detail survey and detail survey) by extracted topographic features of some well-known seafloor massive sulfide deposits from seafloor topographic analysis using seafloor topographic data acquired by the bathymetric survey. We applied this procedure to an area of interest more than 100km x 100km over Okinawa Trough, including some known seafloor massive sulfide deposits. In Addition, we tried to create a three-dimensional model of seafloor topography by SfM (Structure from Motion) technique using multiple image data of Chimney distributed around well-known seafloor massive sulfide deposit taken with Hi-Vision camera mounted on ROV in detail survey such as geophysical exploration. Topographic features of Chimney was extracted by measuring created three-dimensional model. As the result, it was possible to estimate shape of seafloor sulfide such as Chimney to be mined by three-dimensional model created from image data taken with camera mounted on ROV. In this presentation, we will discuss about focusing mineral deposit prospective area in multi-stages by seafloor topographic analysis using seafloor topographic data in exploration system for seafloor massive sulfide deposit and also discuss about three-dimensional model of seafloor topography created from seafloor image data taken with ROV.

  16. Mineralization, alteration, and hydrothermal metamorphism of the ophiolite-hosted Turner-Albright sulfide deposit, southwestern Oregon

    USGS Publications Warehouse

    Zierenberg, R.A.; Shanks, Wayne C.; Seyfried, W.E.; Koski, R.A.; Strickler, M.D.

    1988-01-01

    The Turner-Albright sulfide deposit, part of the Josephine ophiolite, formed on and below the seafloor during Late Jurassic volcanism at a back arc spreading center. Ore fluids were probably localized by faults which were active on the seafloor at the time of sulfide deposition. The uppermost massive sulfide formed on the seafloor at hydrothermal vents. The bulk of the sulfide mineralization formed below the seafloor within olivine basalt hyaloclastite erupted near the time of mineralization. Infiltration of hydrothermal fluid into the hyaloclastite altered the rock. The fluid responsible for the hydrothermal alteration was evolved seawater with low pH and Mg and high Fe. The average value of sulfide and the difference between sulfide and contemporaneous seawater sulfate values are similar to ophiolite-hosted sulfide deposits in Cyprus. Mudstone and clinopyroxene basalt above the sulfide horizons were not altered by the ore-transporting hydrothermal fluid, but these rocks were hydrothermally metamorphosed by altered seawater heated by deep circulation into hot oceanic crust. This subseafloor metamorphism produced a mineral assemblage typical of prehnite-pumpellyite facies metamorphism. Exchange with altered seawater increased the whole-rock ??18O of the basalts to values of 9.4-11.2%. -from Authors

  17. 3.5-Ga hydrothermal fields and diamictites in the Barberton Greenstone Belt—Paleoarchean crust in cold environments

    PubMed Central

    de Wit, Maarten J.; Furnes, Harald

    2016-01-01

    Estimates of ocean temperatures on Earth 3.5 billion years ago (Ga) range between 26° and 85°C. We present new data from 3.47- to 3.43-Ga volcanic rocks and cherts in South Africa suggesting that these temperatures reflect mixing of hot hydrothermal fluids with cold marine and terrestrial waters. We describe fossil hydrothermal pipes that formed at ~200°C on the sea floor >2 km below sea level. This ocean floor was uplifted tectonically to sea level where a subaerial hydrothermal system was active at 30° to 270°C. We also describe shallow-water glacial diamictites and diagenetic sulfate mineral growth in abyssal muds. These new observations reveal that both hydrothermal systems operated in relatively cold environments and that Earth’s surface temperatures in the early Archean were similar to those in more recent times. PMID:26933677

  18. Fiskenaesset Anorthosite Complex: Stable isotope evidence for shallow emplacement into Archean ocean crust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peck, W.H.; Valley, J.W.

    1996-06-01

    Oxygen and hydrogen isotope ratios indicate that unusual rocks at the upper contact of the Archean Fiskenaesset Anorthosite Complex at Fiskenaesset Harbor (southwest Greenland) are the products of hydrothermal alteration by seawater at the time of anorthosite intrusion. Subsequent granulite-facies metamorphism of these Ca-poor and Al- and Mg-rich rocks produced sapphirine- and kornerupine-bearing assemblages. Because large amounts of surface waters cannot penetrate to depths of 30 km during granulite-facies metamorphism, the isotopic signature of the contact rocks must have been obtained prior to regional metamorphism. The stable isotope and geochemical characteristics of the contact rocks support a model of shallowmore » emplacement into Archean ocean crust for the Fiskenaesset Anorthosite Complex. 45 refs., 3 figs., 2 tabs.« less

  19. Electrochemistry of Prebiotic Early Earth Hydrothermal Chimney Systems

    NASA Astrophysics Data System (ADS)

    Hermis, N.; Barge, L. M.; Chin, K. B.; LeBlanc, G.; Cameron, R.

    2017-12-01

    Hydrothermal chimneys are self-organizing chemical garden precipitates generated from geochemical disequilibria within sea-vent environments, and have been proposed as a possible setting for the emergence of life because they contain mineral catalysts and transect ambient pH / Eh / chemical gradients [1]. We simulated the growth of hydrothermal chimneys in early Earth vent systems by using different hydrothermal simulants such as sodium sulfide (optionally doped with organic molecules) which were injected into an early Earth ocean simulant containing dissolved ferrous iron, nickel, and bicarbonate [2]. Chimneys on the early Earth would have constituted flow-through reactors, likely containing Fe/Ni-sulfide catalysts that could have driven proto-metabolic electrochemical reactions. The electrochemical activity of the chimney system was characterized non-invasively by placing electrodes at different locations across the chimney wall and in the ocean to analyze the bulk properties of surface charge potential in the chimney / ocean / hydrothermal fluid system. We performed in-situ characterization of the chimney using electrochemical impedance spectroscopy (EIS) which allowed us to observe the changes in physio-chemical behavior of the system through electrical spectra of capacitance and impedance over a wide range of frequencies during the metal sulfide chimney growth. The electrochemical properties of hydrothermal chimneys in natural systems persist due to the disequilibria maintained between the ocean and hydrothermal fluid. When the injection in our experiment (analogous to fluid flow in a vent) stopped, we observed a corresponding decline in open circuit voltage across the chimney wall, though the impedance of the precipitate remained lor. Further work is needed to characterize the electrochemistry of simulated chimney systems by controlling response factors such as electrode geometry and environmental conditions, in order to simulate electrochemical reactions

  20. Early Archean (approximately 3.4 Ga) prokaryotic filaments from cherts of the apex basalt, Western Australia: The oldest cellularly preserved microfossils now known

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1991-01-01

    In comparison with that known from later geologic time, the Archean fossil record is miniscule: although literally hundreds of Proterozoic formations, containing more that 2800 occurrences of bona fide microfossils are now known, fewer than 30 units containing some 43 categories of putative microfossils (the vast majority of which are of questionable authenticity) have been reported from the Archean. Among the oldest known fossils are Early Archean filaments reported from cherts of the Towers Formation and the Apex Basalt of the 3.3-3.6 Ga-old Warrawoona Group of Western Australia. The paleobiologic significance of the Towers Formation microstructures is open to question: thin aggregated filaments are properly regarded as dubiomicrofossils (perhaps biogenic, but perhaps not); therefore, they cannot be regarded as firm evidence of Archean life. Although authentic, filamentous microfossiles were reported from a second Towers Formation locality, because the precise layer containing the fossiliferous cherts was not relocated, this discovery can neither be reconfirmed by the original collector nor confirmed independently by other investigators. Discovery of microfossils in bedded cherts of the Apex Basalt, the stratigraphic unit immediately overlying the Towers Formation, obviates the difficulties stored above. The cellularly preserved filaments of the Apex Basalt meet all of the criteria required of a bona fide Archean microfossils. Recent studies indicate that the Apex assemblage includes at least six morphotypes of uniseriate filaments, composed of barrel-shaped, discoidal, or quadrate cells and exhibiting rounded or conical terminal cells and medial bifurcated and paired half-cells that reflect the occurrence of prokaryotic binary cell division. Interestingly, the majority of these morphotypes are morphologically more similar to extant cyanobacteria than to modern filamentous bacteria. Prokaryotes seem clearly to have been hypobradytelic, and the evidence suggests

  1. Geology and tectonics of the Archean Superior Province, Canadian Shield

    NASA Technical Reports Server (NTRS)

    Card, K. D.

    1986-01-01

    Superior Province consists mainly of Late Archean rocks with Middle Archean gneisses in the south, and possibly in the north. The Late Archean supracrustal sequences are of island arc and interarc affinity and are cut by abundant plutonic rocks, including early arc-related intrusions, late synorogenic intrusions, and post-orogenic plutons that are possibly the product of crustal melting caused by thermal blanketing of newly-thickened continental crust combined with high mantle heat flux. The contemporaneity of magmatic and deformational events along the lengths of the belts is consistent with a subduction-dominated tectonic regime for assembly of the Kenoran Orogen. Successive addition of volcanic arcs accompanied and followed by voluminous plutonism resulted in crustal thickening and stabilization of the Superior craton prior to uplift of Kapuskasing granulites, emplacement of the Matachewan diabase dykes, and Early Proterozoic marginal rifting.

  2. Tectonic and magmatic controls on hydrothermal activity in the Woodlark Basin

    NASA Astrophysics Data System (ADS)

    Laurila, T. E.; Petersen, S.; Devey, C. W.; Baker, E. T.; Augustin, N.; Hannington, M. D.

    2012-09-01

    The Woodlark Basin is one of the rare places on earth where the transition from continental breakup to seafloor spreading can be observed. The potential juxtaposition of continental rocks, a large magmatic heat source, crustal-scale faulting, and hydrothermal circulation has made the Woodlark Basin a prime target for seafloor mineral exploration. However, over the past 20 years, only two locations of active hydrothermalism had been found. In 2009 we surveyed 435 km of the spreading axis for the presence of hydrothermal plumes. Only one additional plume was found, bringing the total number of plumes known over 520 km of ridge axis to only 3, much less than at ridges with similar spreading rates globally. Particularly the western half of the basin (280 km of axis) is apparently devoid of high temperature plumes despite having thick crust and a presumably high magmatic budget. This paucity of hydrothermal activity may be related to the peculiar tectonic setting at Woodlark, where repeated ridge jumps and a re-location of the rotation pole both lead to axial magmatism being more widely distributed than at many other, more mature and stable mid-ocean ridges. These factors could inhibit the development of both a stable magmatic heat source and the deeply penetrating faults needed to create long-lived hydrothermal systems. We conclude that large seafloor massive sulfide deposits, potential targets for seafloor mineral exploration, will probably not be present along the spreading axis of the Woodlark Basin, especially in its younger, western portion.

  3. Peptide synthesis in early earth hydrothermal systems

    USGS Publications Warehouse

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  4. Organic synthesis during fluid mixing in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Shock, Everett L.; Schulte, Mitchell D.

    1998-12-01

    Hydrothermal circulation can lead to fluid mixing on any planet with liquid water and a source of heat. Aqueous fluids with differing compositions, especially different oxidation states, are likely to be far from thermodynamic equilibrium when they mix, and provide a source of free energy that can drive organic synthesis from CO2 and H2, and/or supply a source of geochemical energy to chemolithoautotrophic organisms. Results are presented that quantify the potential for organic synthesis during unbuffered fluid mixing in present submarine hydrothermal systems, as well as hypothetical systems that may have existed on the early Earth and Mars. Dissolved hydrogen, present in submarine hydrothermal fluids owing to the high-temperature reduction of H2O as seawater reacts with oceanic crustal rocks, provides the reduction potential and the thermodynamic drive for organic synthesis from CO2 (or bicarbonate) as hydrothermal fluids mix with seawater. The potential for organic synthesis is a strong function of the H2 content of the hydrothermal fluid, which is, in turn, a function of the prevailing oxidation state controlled by the composition of the rock that hosts the hydrothermal system. Hydrothermal fluids with initial oxidation states at or below those set by the fayalite-magnetite-quartz mineral assemblage show the greatest potential for driving organic synthesis. These calculations show that it is thermodynamically possible for 100% of the carbon in the mixed fluid to be reduced to a mixture of carboxylic acids, alcohols, and ketones in the range 250-50°C as cold seawater mixes with the hydrothermal fluid. As the temperature drops, larger organic molecules are favored, which implies that fluid mixing could drive the geochemical equivalent of a metabolic system. This enormous reduction potential probably drives a large portion of the primary productivity around present seafloor hydrothermal vents and would have been present in hydrothermal systems on the early Earth

  5. A revised, hazy methane greenhouse for the Archean Earth.

    PubMed

    Haqq-Misra, Jacob D; Domagal-Goldman, Shawn D; Kasting, Patrick J; Kasting, James F

    2008-12-01

    Geological and biological evidence suggests that Earth was warm during most of its early history, despite the fainter young Sun. Upper bounds on the atmospheric CO2 concentration in the Late Archean/Paleoproterozoic (2.8-2.2 Ga) from paleosol data suggest that additional greenhouse gases must have been present. Methanogenic bacteria, which were arguably extant at that time, may have contributed to a high concentration of atmospheric CH4, and previous calculations had indicated that a CH4-CO2-H2O greenhouse could have produced warm Late Archean surface temperatures while still satisfying the paleosol constraints on pCO2. Here, we revisit this conclusion. Correction of an error in the CH4 absorption coefficients, combined with the predicted early onset of climatically cooling organic haze, suggest that the amount of greenhouse warming by CH4 was more limited and that pCO2 must therefore have been 0.03 bar, at or above the upper bound of the value obtained from paleosols. Enough warming from CH4 remained in the Archean, however, to explain why Earth's climate cooled and became glacial when atmospheric O2 levels rose in the Paleoproterozoic. Our new model also shows that greenhouse warming by higher hydrocarbon gases, especially ethane (C2H6), may have helped to keep the Late Archean Earth warm.

  6. Water column imaging on hydrothermal vent in Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Koh, J.; Park, Y.

    2017-12-01

    Water column imaging with Multibeam echosounder systems (MBES) is recently becoming of increasing interest for oceanographic studies. Especially gas bubbles and hot water exposed from hydrothermal vents make acoustic impedance anomalies in cold seawater, water column imaging is very useful for the researchers who want to detect some kinds of hydrothermal activity. We conducted a hydrothermal exploration program, called "INVENT17", using the MBES system, KONGBERG EM122 (12kHz, 1°×1°), mounted on R/V ISABU and we deployed other equipments including video guided hydraulic grab, tow-yo CTD and general CTD with MAPR (Miniature Autonomous Plume Recorder) in 2017. First, to evaluate its capabilities of detection of hydrothermal vent, the surveys using the MBES were conducted at the Solitaire Field, previously identified hydrothermal area of the Central Indian Ridge. The bathymetric data obtained from MBES provided information about detailed morphology of seafloor, but we were not able to achieve the information from the water column imaging data. But the clue of existence of active hydrothermal vent was detected through the values of ΔNTU, dEh/dt, and OPR gained from MAPR, the data means that the hydrothermal activity affects 100m from the seafloor. It could be the reason that we can't find the hydrothermal activity because the range resolution of water column imaging is pretty rough so that the size of 100m-scaled activity has low possibility to distinguish from seafloor. The other reason is there are no sufficient objects to cause strong scattering like as CO2 bubbles or droplets unlike in the mid-Okinawa Trough. And this suggests that can be a important standard to identify properties of hydrothermal vent sites depending on the presence of scattering objects in water mass. To justify this, we should perform more chemical analysis of hot water emanating from hydrothermal vent and collected several bottles of water sample to do that.

  7. Mineralogical and geochemical evidence for hydrothermal activity at the west wall of 12°50′N core complex (Mid-Atlantic ridge): a new ultramafic-hosted seafloor hydrothermal deposit?

    USGS Publications Warehouse

    Dekov, Vesselin; Boycheva, Tanya; Halenius, Ulf; Billstrom, Kjell; Kamenov, George D.; Shanks, Wayne C.; Stummeyer, Jens

    2011-01-01

    Dredging along the west wall of the core complex at 12°50′N Mid-Atlantic Ridge sampled a number of black oxyhydroxide crusts and breccias cemented by black and dark brown oxyhydroxide matrix. Black crusts found on top of basalt clasts (rubble) are mainly composed of Mn-oxides (birnessite, 10-Å manganates) with thin films of nontronite and X-ray amorphous FeOOH on their surfaces. Their chemical composition (low trace- and rare earth-element contents, high Li and Ag concentrations, rare earth element distribution patterns with negative both Ce and Eu anomalies), Sr–Nd–Pb-isotope systematic and O-isotope data suggest low-temperature (~ 20 °C) hydrothermal deposition from a diffuse vent area on the seafloor. Mineralogical, petrographic and geochemical investigations of the breccias showed the rock clasts were hydrothermally altered fragments of MORBs. Despite the substantial mineralogical changes caused by the alteration the Sr–Nd–Pb-isotope ratios have not been significantly affected by this process. The basalt clasts are cemented by dark brown and black matrix. Dark brown cement exhibits geochemical features (very low trace- and rare earth- element contents, high U concentration, rare earth element distribution pattern with high positive Eu anomaly) and Nd–Pb-isotope systematics (similar to that of MORB) suggesting that the precursor was a primary, high-temperature Fe-sulfide, which was eventually altered to goethite at ambient seawater conditions. The data presented in this work points towards the possible existence of high- and low-temperature hydrothermal activity at the west wall of the core complex at 12°50′N Mid-Atlantic Ridge. Tectonic setting at the site implies that the proposed hydrothermal field is possibly ultramafic-hosted.

  8. A Geological Model for the Evolution of Early Continents (Invited)

    NASA Astrophysics Data System (ADS)

    Rey, P. F.; Coltice, N.; Flament, N. E.; Thébaud, N.

    2013-12-01

    Geochemical probing of ancient sediments (REE in black shales, strontium composition of carbonates, oxygen isotopes in zircons...) suggests that continents were a late Archean addition at Earth's surface. Yet, geochemical probing of ancient basalts reveals that they were extracted from a mantle depleted of its crustal elements early in the Archean. Considerations on surface geology, the early Earth hypsometry and the rheology and density structure of Archean continents can help solve this paradox. Surface geology: The surface geology of Archean cratons is characterized by thick continental flood basalts (CFBs, including greenstones) emplaced on felsic crusts dominated by Trondhjemite-Tonalite-Granodiorite (TTG) granitoids. This simple geology is peculiar because i/ most CFBs were emplaced below sea level, ii/ after their emplacement, CFBs were deformed into relatively narrow, curviplanar belts (greenstone basins) wrapping around migmatitic TTG domes, and iii/ Archean greenstone belts are richly endowed with gold and other metals deposits. Flat Earth hypothesis: From considerations on early Earth continental geotherm and density structure, Rey and Coltice (2008) propose that, because of the increased ability of the lithosphere to flow laterally, orogenic processes in the Archean produced only subdued topography (Archean CFB were emplaced on flooded continents, Flament et al. (2008) proposed a theory for the hypsometry of the early Earth showing that, until the late Archean, most continents were flooded and Earth was largely a water world. From this, a model consistent with many of the peculiar attributes of Archean geology, can be proposed: 1/ Continents appeared at Earth's surface at an early stage during the Hadean/Archean. However, because they were i/ covered by continental flood basalts, ii/ below sea level, and iii/ deprived of modern-style mountain belts and orogenic plateaux, early felsic

  9. Alteration of submarine volcanic rocks in oxygenated Archean oceans

    NASA Astrophysics Data System (ADS)

    Ohmoto, H.; Bevacqua, D.; Watanabe, Y.

    2009-12-01

    Most submarine volcanic rocks, including basalts in diverging plate boundaries and andesites/dacites in converging plate boundaries, have been altered by low-temperature seawater and/or hydrothermal fluids (up to ~400°C) under deep oceans; the hydrothermal fluids evolved from shallow/deep circulations of seawater through the underlying hot igneous rocks. Volcanogenic massive sulfide deposits (VMSDs) and banded iron formations (BIFs) were formed by mixing of submarine hydrothermal fluids with local seawater. Therefore, the behaviors of various elements, especially of redox-sensitive elements, in altered submarine volcanic rocks, VMSDs and BIFs can be used to decipher the chemical evolution of the oceans and atmosphere. We have investigated the mineralogy and geochemistry of >500 samples of basalts from a 260m-long drill core section of Hole #1 of the Archean Biosphere Drilling Project (ABDP #1) in the Pilbara Craton, Western Australia. The core section is comprised of ~160 m thick Marble Bar Chert/Jasper Unit (3.46 Ga) and underlying, inter-bedded, and overlying submarine basalts. Losses/gains of 65 elements were quantitatively evaluated on the basis of their concentration ratios against the least mobile elements (Ti, Zr and Nb). We have recognized that mineralogical and geochemical characteristics of many of these samples are essentially the same as those of hydrothermally-altered modern submarine basalts and also those of altered volcanic rocks that underlie Phanerozoic VMSDs. The similarities include, but are not restricted to: (1) the alteration mineralogy (chlorite ± sericite ± pyrophyllite ± carbonates ± hematite ± pyrite ± rutile); (2) the characteristics of whole-rock δ18O and δ34S values; (3) the ranges of depletion and enrichment of Si, Al, Mg, Ca, K, Na, Fe, Mn, and P; (4) the enrichment of Ba (as sulfate); (5) the increases in Fe3+/Fe2+ ratios; (6) the enrichment of U; (7) the depletion of Cr; and (8) the negative Ce anomalies. Literature data

  10. Strontium and neodymium isotopic variations in early Archean gneisses affected by middle to late Archean high-grade metamorphic processes: West Greenland and Labrador

    NASA Technical Reports Server (NTRS)

    Collerson, K. D.; Mcculloch, M. T.; Bridgwater, D.; Mcgregor, V. R.; Nutman, A. P.

    1986-01-01

    Relicts of continental crust formed more than 3400 Ma ago are preserved fortuitously in most cratons. The cratons provide the most direct information about crust and mantle evolutionary processes during the first billion years of Earth history. In view of their polymetamorphic character, these terrains are commonly affected by subsequent tectonothermal events. Hence, their isotope systematics may be severely disturbed as a result of bulk chemical change or local isotopic homogenization. This leads to equivocal age and source information for different components within these terrains. The Sr and Nd isotopic data are presented for early Archean gneisses from the North Atlantic Craton in west Greenland and northern Labrador which were affected by younger metamorphic events.

  11. Multiple sulfur isotopes monitor fluid evolution of an Archean orogenic gold deposit

    NASA Astrophysics Data System (ADS)

    LaFlamme, Crystal; Sugiono, Dennis; Thébaud, Nicolas; Caruso, Stefano; Fiorentini, Marco; Selvaraja, Vikraman; Jeon, Heejin; Voute, François; Martin, Laure

    2018-02-01

    The evolution of a gold-bearing hydrothermal fluid from its source to the locus of gold deposition is complex as it experiences rapid changes in thermochemical conditions during ascent through the crust. Although it is well established that orogenic gold deposits are generated during time periods of abundant crustal growth and/or reworking, the source of fluid and the thermochemical processes that control gold precipitation remain poorly understood. In situ analyses of multiple sulfur isotopes offer a new window into the relationship between source reservoirs of Au-bearing fluids and the thermochemical processes that occur along their pathway to the final site of mineralisation. Whereas δ34S is able to track changes in the evolution of the thermodynamic conditions of ore-forming fluids, Δ33S is virtually indelible and can uniquely fingerprint an Archean sedimentary reservoir that has undergone mass independent fractionation of sulfur (MIF-S). We combine these two tracers (δ34S and Δ33S) to characterise a gold-bearing laminated quartz breccia ore zone and its sulfide-bearing alteration halo in the (+6 Moz Au) structurally-controlled Archean Waroonga deposit located in the Eastern Goldfields Superterrane of the Yilgarn Craton, Western Australia. Over 250 analyses of gold-associated sulfides yield a δ34S shift from what is interpreted as an early pre-mineralisation phase, with chalcopyrite-pyrrhotite (δ34S = +0.7‰ to +2.9‰) and arsenopyrite cores (δ34S = ∼-0.5‰), to a syn-mineralisation stage, reflected in Au-bearing arsenopyrite rims (δ34S = -7.6‰ to +1.5‰). This shift coincides with an unchanging Δ33S value (Δ33S = +0.3‰), both temporally throughout the Au-hosting hydrothermal sulfide paragenesis and spatially across the Au ore zone. These results indicate that sulfur is at least partially recycled from MIF-S-bearing Archean sediments. Further, the invariant nature of the observed MIF-S signature demonstrates that sulfur is derived from a

  12. Beyond the vent: New perspectives on hydrothermal plumes and pelagic biology

    NASA Astrophysics Data System (ADS)

    Phillips, Brennan T.

    2017-03-01

    Submarine hydrothermal vent fields introduce buoyant plumes of chemically altered seawater to the deep-sea water column. Chemoautotrophic microbes exploit this energy source, facilitating seafloor-based primary production that evidence suggests may transfer to pelagic consumers. While most hydrothermal plumes have relatively small volumes, there are recent examples of large-scale plume events associated with periods of eruptive activity, which have had a pronounced effect on water-column biology. This correlation suggests that hydrothermal plumes may have influenced basin-scale ocean chemistry during periods of increased submarine volcanism during the Phanerozoic eon. This paper synthesizes a growing body of scientific evidence supporting the hypothesis that hydrothermal plumes are the energetic basis of unique deep-sea pelagic food webs. While many important questions remain concerning the biology of hydrothermal plumes, this discussion is not present in ongoing management efforts related to seafloor massive sulfide (SMS) mining. Increased research efforts, focused on high-resolution surveys of midwater biology relative to plume structures, are recommended to establish baseline conditions and monitor the impact of future mining-based disturbances to the pelagic biosphere.

  13. Similarities and Differences in the Distributions of Hydrothermal Venting and the Formation of Seafloor Massive Sulfide Deposits at the Tui Malila and Mariner Vent Fields, Valu Fa Ridge

    NASA Astrophysics Data System (ADS)

    Tivey, M. K.; Evans, G. N.; Ferrini, V. L.; Spierer, H.

    2016-12-01

    High-resolution bathymetric mapping and recovery and study of samples from precisely known locations relative to local tectonic and volcanic features provide insight into the formation of seafloor massive sulfide deposits. Additional insight comes from repeat mapping efforts in 2005 and 2016 that provide details of relations and changes that may have occurred over time. Located 21 km apart on the Valu Fa Ridge, the Tui Malila and Mariner vent fields exhibit contrasting vent fluid chemistry, mineral deposit composition, deposit morphology, and seafloor morphology. At the Tui Malila vent field, near-neutral pH fluids with low metal contents vent from Zn- and Ba-rich, but Cu-poor deposits. The highest temperature fluids are found near the intersection of two faults and between volcanic domes. In contrast, acidic, metal-rich hydrothermal fluids at the Mariner vent field vent from Cu-rich, Zn-poor deposits. No discernable faults are present. At both the Tui Malila and Mariner vent fields, intermediate temperature fluids were sampled emanating from barite-rich deposits. At the Tui Malila vent field, intermediate fluids vent from flange-dominated edifices that are located on brecciated lava flow that overlays one of the two faults. Intermediate fluids at the Mariner vent field vent from squat terrace-like edifices located peripheral (10-15 m) to high-temperature chimney edifices, and seafloor morphology is dominated by brecciated lava flows. Thermodynamic models of mixing between high-temperature hydrothermal fluids and seawater that consider subsurface deposition of sulfide minerals and iron oxyhydroxide were used to reproduce the chemistry of intermediate fluids. This study suggests that the porous, brecciated lavas characteristic of these two vent fields provide sites for subsurface mixing and contribute to mineral deposition, with the faults at the Tui Malila vent field providing a pathway for subsurface fluid flow.

  14. Rare earth element patterns in Archean high-grade metasediments and their tectonic significance

    NASA Technical Reports Server (NTRS)

    Taylor, Stuart Ross; Rudnick, Roberta L.; Mclennan, Scott M.; Eriksson, Kenneth A.

    1986-01-01

    REE data on metasedimentary rocks from two different types of high-grade Archean terrains are presented and analyzed. The value of REEs as indicators of crustal evolution is explained; the three geologic settings (in North America, Southern Africa, and Australia) from which the samples were obtained are described; and the data are presented in extensive tables and graphs and discussed in terms of metamorphic effects, the role of accessory phases, provenance, and tectonic implications (recycling, the previous extent of high-grade terrains, and a model of Archean crustal growth). The diversity of REE patterns in shallow-shelf metasediments is attributed to local provenance, while the Eu-depleted post-Archean patterns are associated with K-rich plutons from small, stable early Archean terrains.

  15. Characteristics of Hydrothermal Mineralization in Ultraslow Spreading Ridges

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.

    2014-12-01

    Hydrothermal activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of hydrothermal systems are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining hydrothermal activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of hydrothermal mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag hydrothermal field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in hydrothermal fields. Structures formed by lower temperature activities in active and dead hydrothermal fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in hydrothermal chimneys. Distribution of diverse low temperature hydrothermal activities is consistence with the deep heating mechanisms and hydrothermal circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the

  16. The Archean geology of the Godthabsfjord Region, southern west Greenland (includes excursion guide)

    NASA Technical Reports Server (NTRS)

    Mcgregor, V. R.; Nutman, A. P.; Friend, C. R. L.

    1986-01-01

    The part of the West Greenland Archean gneiss complex centered around Godthabsfjord and extending from Isukasia in the north to south Faeringehavn is studied. Extensive outcrops of 3800 to 3400 Ma rocks can provide some direct evidence of conditions and processes that operated on the Earth in the early Archean. However, the ways in which primary characteristics have been modified by later deformation, metamorphism, and chemical changes are first taken into account. The rocks exposed are the products of two major phases of accretion of continental crust, at 3800 to 3700 Ma and 3100 to 29 Ma. The main features of these two accretion phases are similar, but careful study of the least modified rocks may reveal differences related to changes in the Earth in the intervening period. The combination of excellent exposure over an extensive area, relatively detailed geological mapping of much of the region, and a considerable volume of isotopic and other geochemical data gives special insights into processes that operated at moderately deep levels of the crust in the Archean. Of particular interest is the effect of late Archean granulite facies metamorphism on early Archean rocks, especially the extent to which isotope systems were disturbed. Similar processes may well have partly or wholly destroyed evidence of more ancient components of other high grade terrains. This account does not attempt to be an exhaustive review of all work carried out on the geology of the region. Rather, it attempts to summarize aspects of the geology and some interest in the context of early crustal genesis.

  17. Post-Drilling Changes in Seabed Landscape and Megabenthos in a Deep-Sea Hydrothermal System, the Iheya North Field, Okinawa Trough

    PubMed Central

    Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken

    2015-01-01

    There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, ‘artificially’ creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area

  18. Post-drilling changes in seabed landscape and megabenthos in a deep-sea hydrothermal system, the Iheya North field, Okinawa Trough.

    PubMed

    Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken

    2015-01-01

    There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, 'artificially' creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has

  19. Magnetotelluric survey to locate the Archean/Proterozoic suture zone north of Wells, Nevada

    USGS Publications Warehouse

    Williams, Jackie M.; Rodriguez, Brian D.

    2006-01-01

    It is important to know whether major mining districts in the Northern Nevada Gold Province are underlain by rocks of the Archean Wyoming craton, which are known to contain orogenic gold deposits, or by accreted rocks of the Paleoproterozoic Mojave province. It is also important to know the location and orientation of the Archean/Proterozoic suture zone between these provinces as well as major basement structures within these terranes because they may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. The Archean was the main gold-mineralization period, and Archean lode-gold deposits were formed at mid-crustal depths along major shear zones. The nature of the crystalline basement below the Northern Nevada Gold Province and the location of major faults within it are relevant to Rodinian reconstructions, crustal development, and ore deposit models (e.g., Hofstra and Cline, 2000; Grauch and others, 2003). According to Whitmeyer and Karlstrom (2004), the Archean cratons of the northwestern United States and Canada had stabilized as continental lithosphere by 2.5 Ga, and were rifted and assembled into a large continental mass by 1.8 Ga, to which the 1.73-1.68 Ga Mohave province was accreted by 1.65 Ga. The Archean/Proterozoic suture zone has a west-southwest strike where it is exposed (Reed, 1993) at the eastern Utah and southwestern Wyoming border (Cheyenne Belt) where it is characterized by an up to 7-km-thick mylonite zone (Smithson and Boyd, 1998). In the Great Basin, the strike of the Archean/Proterozoic suture zone is poorly constrained because it is largely concealed below a Neoproterozoic-Paleozoic miogeocline and basin fill. East-west and southwest-northeast strikes for the Archean/Proterozoic suture zone have been inferred based on Sr, Nd, and Pb isotopic compositions of granitoid intrusions (Tosdal and others, 2000). To better constrain the location and strike of the Archean/Proterozoic suture zone below cover

  20. First hydrothermal active vent discovered on the Galapagos Microplate

    NASA Astrophysics Data System (ADS)

    Tao, C.; Li, H.; Wu, G.; Su, X.; Zhang, G.; Chinese DY115-21 Leg 3 Scientific Party

    2011-12-01

    The Galapagos Microplate (GM) lies on the western Gaplapagos Spreading Center (GSC), representing one of the classic Ridge-Ridge-Ridge (R-R-R) plate boundaries of the Nazca, Cocos, and Pacific plates. The presence of the 'black smoke' and hydrothermal vent community were firstly confirmed on the GSC. Lots of hydrothermal fields were discovered on the center and eastern GSC, while the western GSC has not been well investigated. During 17th Oct. to 9th Nov. 2009, the 3rd leg of Chinese DY115-21 cruise with R/V Dayangyihao has been launched along 2°N-5°S near equatorial East Pacific Rise (EPR). Two new hydrothermal fields were confirmed. One is named 'Precious Stone Mountain', which is the first hydrothermal field on the GM. The other is found at 101.47°W, 0.84°S EPR. The 'Precious Stone Mountain' hydrothermal field (at 101.49°W, 1.22°N) is located at an off-axial seamount on the southern GM boundary, with a depth from 1,450 to 1,700m. Hydrothermal fluids emitting from the fissures and hydrothermal fauna were captured by deep-tow video. Few mineral clasts of pyrite and chalcopyrite were separated from one sediment sample, but no sulfide chimney was found yet. Hydrothermal fauna such as alive mussels, crabs, shrimps, tubeworms, giant clams, as well as rock samples were collected by TV-Grab. The study of the seafloor classification with Simrad EM120 multi-beam echosounder has been conducted on the 'Precious Stone Mountain' hydrothermal field. The result indicates that seafloor materials around the hydrothermal field can be characterized into three types, such as the fresh lava, hydrothermal sediment, and altered rock.

  1. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere

    PubMed Central

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-01-01

    Sulfur isotopic anomalies (∆33S and ∆36S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ34S values at ∼+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆33S between −1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ34S peak at +9‰ is associated with non–33S-anomalous barites displaying negative ∆36S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere. PMID:27330111

  2. Amino Acid Synthesis in Seafloor Environments on Icy Worlds

    NASA Astrophysics Data System (ADS)

    Flores, Erika; Barge, Laura; VanderVelde, David; Kallas, Kayo; Baum, Marc M.; Russell, Michael J.; Kanik, Isik

    2016-10-01

    In 2005, the Cassini mission detected plumes erupting from Enceladus' surface, containing carbon dioxide, methane, silica, and possibly ammonia. Subsequent laboratory experiments indicated that the silica particles in the plumes were generated under alkaline conditions and at moderate temperatures of ~90°C (Hsu et al., 2015); one scenario for such conditions would be the existence of alkaline (serpentinization-driven) hydrothermal activity within Enceladus. Alkaline vents are significant since they have been proposed as a likely environment for the emergence of metabolism on the early Earth (Russell et al. 2014) and thus could also provide a mechanism for origin of life on ocean worlds with a water-rock interface. Alkaline vents in an acidic, iron-containing ocean could produce mineral precipitates that could act as primitive enzymes or catalysts mediating organic reactions; for example, metal sulfides can catalyze the reductive amination of pyruvate to alanine (Novikov and Copley 2013). We have conducted experiments testing the synthesis of amino acids catalyzed by other iron minerals that might be expected to precipitate on the seafloor of early Earth or Enceladus. Preliminary results indicate that amino acids as well as other organic products can be synthesized in 1-3 days under alkaline hydrothermal conditions. We also find that the yield and type of organic products is highly dependent on pH and temperature, implying that understanding the specifics of the geochemical hydrothermal gradients on Enceladus (or other ocean worlds) will be significant in determining their potential for synthesizing building blocks for life.Hsu, H.-W. et al. (2015), Nature 519, 207-210.Russell, M. J. et al. (2014), Astrobiology, 14, 308-43.Novikov Y. and Copley S. D. (2013) PNAS 110, 33, 13283-13288.

  3. High Ni in Archean tholeiites

    NASA Astrophysics Data System (ADS)

    Arndt, Nicholas T.

    1991-03-01

    Archean tholeiites generally have higher Ni, Co. Cr and Fe than most younger tholeiites with similar MgO contents. These characteristics cannot be attributed to high T or P batch melting in the Archean mantle, because, although such melts are enriched in siderophile elements, they have higher MgO than normal tholeiites. As primary melts fractionate to lower MgO, they lose Ni, Co and Cr. Nor can the differences between Archean and younger tholeiites be attributed to secular variation in mantle compositions because Archean komatiites have Ni, Co, Cr contents similar to modern (Gorgona) komatiites. It is suggested that the high siderophile element content of Archean tholeiites results from mixing of either komatiitic with basaltic magmas, as might occur in an ascending, melting mantle plume or column, or of komatiite and more evolved rocks, as may take place when komatiite encounters and assimilates crustal rocks.

  4. Hydrothermal impacts on trace element and isotope ocean biogeochemistry.

    PubMed

    German, C R; Casciotti, K A; Dutay, J-C; Heimbürger, L E; Jenkins, W J; Measures, C I; Mills, R A; Obata, H; Schlitzer, R; Tagliabue, A; Turner, D R; Whitby, H

    2016-11-28

    Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2015 The Authors.

  5. Hydrothermal impacts on trace element and isotope ocean biogeochemistry

    PubMed Central

    Dutay, J.-C.; Heimbürger, L. E.; Jenkins, W. J.; Measures, C. I.; Mills, R. A.; Obata, H.; Turner, D. R.; Whitby, H.

    2016-01-01

    Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035265

  6. Tourmaline mineralization in the Barberton greenstone belt, South Africa: early Archean metasomatism by evaporite-derived boron.

    PubMed

    Byerly, G R; Palmer, M R

    1991-05-01

    shallow-marine or subaerial sites, mineralizing algal stromatolites. The stromatolite-forming algae preferentially may have lived near the sites of hydrothermal discharge in Archean times.

  7. Building Archean Cratons From Hadean Crust

    NASA Astrophysics Data System (ADS)

    O'Neil, J.; Carlson, R.

    2016-12-01

    Geologic processing of Earth's surface has removed most of the evidence concerning the nature of Earth's first crust. The largest volumes of ancient crust, the so-called Archean cratons, are dominated by felsic Tonalite-Trondhjemite-Granodiorite (TTG) rocks. These felsic rocks, however, are most likely derived by melting of an older mafic precursor. Although in part dictated by survivability, the scarcity of Hadean zircons also suggests that felsic rocks may have not been a prominent component of the earliest crust. Both points raise questions about the nature of the primordial crust and how, or if, it was involved in the formation of stable Archean cratons. The Hudson Bay Terrane of the Northeastern Superior Province is one of such Archean cratons, mainly composed of 2.88 to 2.69 Ga TTG. New data show these Neoarchean granitoids to be the youngest to yield significantly low 142Nd/144Nd, down to 15 ppm lower than that of the terrestrial Nd standard. 142Nd is the decay product of short-lived radioactive 146Sm and because of the short 103 Ma half-life of 146Sm, deviations in 142Nd/144Nd ratio can only be produced by Sm-Nd fractionation prior to 4 Ga. The variability in 142Nd/144Nd ratios in 2.7 Ga felsic rocks from the Hudson Bay Terrane shows conclusively that this large block of Archean crust was formed by reworking of much older > 4.2 Ga crust over a 1.5 billion year interval of early Earth history. Reworking of pre-existing crust likely is an important mechanism contributing to the stabilization of Earth's first continents.

  8. In-situ Eh sensor measurement and calibration: application to seafloor observatories

    NASA Astrophysics Data System (ADS)

    Ding, K.; Seyfried, W. E.; Tan, C.

    2013-12-01

    Eh measurement is often used with manned submersible and AUV assets as an effective way to detect and locate seafloor hydrothermal activity. Eh can be fundamentally and sensitively linked to dissolved H 2 , which, in turn, serves as a key constraint on subseafloor redox reactions. Moreover, Eh is now being increasingly relied on for event detection and process monitoring efforts intrinsic to cabled seafloor observatories. Due to seawater interaction with electrochemical components fundamental to the operation of the Eh sensor, however, the quality and reliability of the measurements are often compromised by signal drift, especially when the sensor is used for long term deployment. To solve this problem, a calibration protocol was developed and added to our previously constructed pH 'calibrator'. Thus, the integrated electrochemical system now permits the combined in-situ measurement and calibration of pH and Eh of seafloor hydrothermal fluids. Key aspects of the design for this calibration system are: (1) the sensing electrodes can be kept preserved in fluid of known pH, Eh and NaCl concentration prior to use, thereby preventing deterioration of electrode response characteristics by chemical and biological activity; (2) the system consists of valves and pumps for flow control, and therefore can be operated remotely with power from the seafloor cabled observatory, or as a stand-alone device, using battery power for shorter-term deployments. In both cases, standardization with on-board fluids of known redox, pH, and NaCl activity can be activated at any time, providing enhanced reliability (3) the current development is aimed at deep sea environments, cold seeps, and hydrothermal diffuse flow fluids at the temperatures up to 100°C and depths up to 4500 m. The in-situ operation is especially well-suited for use with cabled observatory for real time intervention and event response owing to enabled power supply and two way communications. Field tests have been

  9. Luxuriant life on the Galápagos seafloor

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Marine life found unexpectedly in 1977 in the vicinity of hydrothermal vents along the Galápagos Rift has proven to be of considerable interest because of newly discovered growth mechanisms. Among the life forms observed were giant tube worms, clams, mussels, and plantlike animals. If the sizes alone were beyond belief, the hostility of the living environment—noxious, hydrogen sulfide-rich warm pockets—appeared bizarre. Even though life at depths of 2.5 km on the seafloor is known normally to be sparse in comparison with shallow-water biological systems, the heated water pockets seem to account for the localized contradictions. What was difficult to explain was the toxic environment and the apparent lack of nutrients. Furthermore, the tube worms had no mouths, not even digestive systems. Recent reports in Science (November 20, 1981), and by the Smithsonian Institution (Research Reports), describe findings on bivalves studied at the hydrothermal vents and tube worms returned to the laboratory by the U.S. Navy research submersible Alvin. The growth rates are among the highest known for deep-sea life. The way the deep seafloor marine life are understood to ‘eat’ (absorb nutrients would be a better description) involves mechanisms never observed before that breakdown hydrogen sulfide with bacteria.

  10. Exploration Method Development for hydrothermal plume hunting by XCTD

    NASA Astrophysics Data System (ADS)

    Kitagawa, Y.; Ikeda, M.; Kadoshima, K.; Koizumi, Y.; Nakano, J.; Asakawa, E.; Sumi, T.

    2017-12-01

    J-MARES (Research and Development Partnership for Next Generation Technology of Marine Resources Survey, JAPAN) has been designing a low-cost and high-efficiency exploration system for seafloor hydrothermal massive sulfide deposits in "Cross-ministerial Strategic Innovation Promotion Program (SIP)" granted by the Cabinet Office, Government of Japan since 2014. We proposed hydrothermal plume hunting by XCTD (eXpendables Conductivity, Temperature and Depth). We applied this method to an area of interest more than 100km x 100km over Okinawa Trough, including some known seafloor massive sulfide deposits. Generally, hydrothermal plume exploration has been by ship mounted with MBES (Multi Beam Echo Sounder) or AUV with sound anomaly observation. However, these methods have to charter the sophisticated ship costly. On the other hand, throw-in type water quality meters (eg. XCTD and XBT) can be low-cost and easily operable. Moreover, that can make a quick look at seawater temperature and conductivity even in rough waters.Firstly, we confirmed XCTD probes position on the seafloor by ROV mounted deep-sea high vision camera. As a result of the test, probes swept downstream about 40 m in horizontal distance from throwing positions with about 1,600m in water depth. Following the previous test results, we had performed to the next test that confirmed detection range of hydrothermal plume at the chimney of North Mound in Izena Cauldron, so we had caught anomaly of seawater temperature and conductivity successfully which could be possibly derived from hydrothermal activities. Although averaged seawater temperature at a depth of 1500 m or more was about 3.95 degrees C, near the chimney was about 4.93 degrees C. The temperature anomalies originated from the hydrothermal plumes could be distributed at most 30m in horizontal distance and became smaller away from the chimney. Moreover, temperature anomaly mass of sea water tended to move upward in depth with distance away from the

  11. Archean Microbial Mat Communities

    NASA Astrophysics Data System (ADS)

    Tice, Michael M.; Thornton, Daniel C. O.; Pope, Michael C.; Olszewski, Thomas D.; Gong, Jian

    2011-05-01

    Much of the Archean record of microbial communities consists of fossil mats and stromatolites. Critical physical emergent properties governing the evolution of large-scale (centimeters to meters) topographic relief on the mat landscape are (a) mat surface roughness relative to the laminar sublayer and (b) cohesion. These properties can be estimated for fossil samples under many circumstances. A preliminary analysis of Archean mat cohesion suggests that mats growing in shallow marine environments from throughout this time had cohesions similar to those of modern shallow marine mats. There may have been a significant increase in mat strength at the end of the Archean.

  12. Hydrothermal Upflow, Serpentinization and Talc Alteration Associated with a High Angle Normal Fault Cutting an Oceanic Detachment, Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Alt, J.; Crispini, L.; Gaggero, L.; Shanks, W. C., III; Gulbransen, C.; Lavagnino, G.

    2017-12-01

    Normal faults cutting oceanic core complexes are observed at the seafloor and through geophysics, and may act as flow pathways for hydrothermal fluids, but we know little about such faults in the subsurface. We present bulk rock geochemistry and stable isotope data for a fault that acted as a hydrothermal upflow zone in a seafloor ultramafic-hosted hydrothermal system in the northern Apennines, Italy. Peridotites were exposed on the seafloor by detachment faulting, intruded by MORB gabbros, and are overlain by MORB lavas and pelagic sediments. North of the village of Reppia are fault shear zones in serpentinite, oriented at a high angle to the detachment surface and extending 300 m below the paleo-seafloor. The paleo-seafloor strikes roughly east-west, dipping 30˚ to the north. At depth the fault zone occurs as an anticlinal form plunging 40˚ to the west. A second fault strikes approximately north-south, with a near vertical dip. The fault rock outcrops as reddish weathered talc + sulfide in 0.1-2 m wide anastomosing bands, with numerous splays. Talc replaces serpentinite in the fault rocks, and the talc rocks are enriched in Si, metals (Fe, Cu, Pb), Light Rare Earth Elements (LREE), have variable Eu anomalies, and have low Mg, Cr and Ni contents. In some cases gabbro dikes are associated with talc-alteration and may have enhanced fluid flow. Sulfide from a fault rock has d34S=5.7‰. The mineralogy and chemistry of the fault rocks indicate that the fault acted as the upflow pathway for high-T black-smoker type fluids. Traverses away from the fault (up to 1 km) and with depth below the seafloor (up to 500 m) reveal variable influences of hydrothermal fluids, but there are no consistent trends with distance. Background serpentinites 500 m beneath the paleoseafloor have LREE depleted trends. Other serpentinites exhibit correlations of LREE with HFSE as the result of melt percolation, but there is significant scatter, and hydrothermal effects include LREE enrichment

  13. Hydrothermal plumes over spreading-center axes: Global distributions and geological inferences

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; German, Christopher R.; Elderfield, Henry

    Seafloor hydrothermal circulation is the principal agent of energy and mass exchange between the ocean and the earth's crust. Discharging fluids cool hot rock, construct mineral deposits, nurture biological communities, alter deep-sea mixing and circulation patterns, and profoundly influence ocean chemistry and biology. Although the active discharge orifices themselves cover only a minuscule percentage of the ridge-axis seafloor, the investigation and quantification of their effects is enhanced as a consequence of the mixing process that forms hydrothermal plumes. Hydrothermal fluids discharged from vents are rapidly diluted with ambient seawater by factors of 104-105 [Lupton et al., 1985]. During dilution, the mixture rises tens to hundreds of meters to a level of neutral buoyancy, eventually spreading laterally as a distinct hydrographic and chemical layer with a spatial scale of tens to thousands of kilometers [e.g., Lupton and Craig, 1981; Baker and Massoth, 1987; Speer and Rona, 1989].

  14. Identification of an Archean marine oxygen oasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riding, Dr Robert E; Fralick, Dr Philip; Liang, Liyuan

    2014-01-01

    The early Earth was essentially anoxic. A number of indicators suggest the presence of oxygenic photosynthesis 2700 3000 million years (Ma) ago, but direct evidence for molecular oxygen (O2) in seawater has remained elusive. Here we report rare earth element (REE) analyses of 2800 million year old shallowmarine limestones and deep-water iron-rich sediments at Steep Rock Lake, Canada. These show that the seawater from which extensive shallow-water limestones precipitated was oxygenated, whereas the adjacent deeper waters where iron-rich sediments formed were not. We propose that oxygen promoted limestone precipitation by oxidative removal of dissolved ferrous iron species, Fe(II), to insolublemore » Fe(III) oxyhydroxide, and estimate that at least 10.25 M oxygen concentration in seawater was required to accomplish this at Steep Rock. This agrees with the hypothesis that an ample supply of dissolved Fe(II) in Archean oceans would have hindered limestone formation. There is no direct evidence for the oxygen source at Steep Rock, but organic carbon isotope values and diverse stromatolites in the limestones suggest the presence of cyanobacteria. Our findings support the view that during the Archean significant oxygen levels first developed in protected nutrient-rich shallow marine habitats. They indicate that these environments were spatially restricted, transient, and promoted limestone precipitation. If Archean marine limestones in general reflect localized oxygenic removal of dissolved iron at the margins of otherwise anoxic iron-rich seas, then early oxygen oases are less elusive than has been assumed.« less

  15. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation

    PubMed Central

    Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Tivey, Margaret K.; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032

  16. Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments

    NASA Astrophysics Data System (ADS)

    Avila-Alonso, Dailé; Baetens, Jan M.; Cardenas, Rolando; de Baets, Bernard

    2017-07-01

    In this work, the photosynthesis model presented by Avila et al. in 2013 is extended and more scenarios inhabited by ancient cyanobacteria are investigated to quantify the effects of ultraviolet (UV) radiation on their photosynthetic potential in marine environments of the Archean eon. We consider ferrous ions as blockers of UV during the Early Archean, while the absorption spectrum of chlorophyll a is used to quantify the fraction of photosynthetically active radiation absorbed by photosynthetic organisms. UV could have induced photoinhibition at the water surface, thereby strongly affecting the species with low light use efficiency. A higher photosynthetic potential in early marine environments was shown than in the Late Archean as a consequence of the attenuation of UVC and UVB by iron ions, which probably played an important role in the protection of ancient free-floating bacteria from high-intensity UV radiation. Photosynthetic organisms in Archean coastal and ocean environments were probably abundant in the first 5 and 25 m of the water column, respectively. However, species with a relatively high efficiency in the use of light could have inhabited ocean waters up to a depth of 200 m and show a Deep Chlorophyll Maximum near 60 m depth. We show that the electromagnetic radiation from the Sun, both UV and visible light, could have determined the vertical distribution of Archean marine photosynthetic organisms.

  17. Hydrothermal systems in small ocean planets.

    PubMed

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).

  18. Ridge-trench collision in Archean and Post-Archean crustal growth: Evidence from southern Chile

    NASA Technical Reports Server (NTRS)

    Nelson, E. P.; Forsythe, R. D.

    1988-01-01

    The growth of continental crust at convergent plate margins involves both continuous and episodic processes. Ridge-trench collision is one episodic process that can cause significant magmatic and tectonic effects on convergent plate margins. Because the sites of ridge collision (ridge-trench triple junctions) generally migrate along convergent plate boundaries, the effects of ridge collision will be highly diachronous in Andean-type orogenic belts and may not be adequately recognized in the geologic record. The Chile margin triple junction (CMTJ, 46 deg S), where the actively spreading Chile rise is colliding with the sediment-filled Peru-Chile trench, is geometrically and kinematically the simplest modern example of ridge collision. The south Chile margin illustrates the importance of the ridge-collision tectonic setting in crustal evolution at convergent margins. Similarities between ridge-collision features in southern Chile and features of Archean greenstone belts raise the question of the importance of ridge collision in Archean crustal growth. Archean plate tectonic processes were probably different than today; these differences may have affected the nature and importance of ridge collision during Archean crustal growth. In conclusion, it is suggested that smaller plates, greater ridge length, and/or faster spreading all point to the likelihood that ridge collision played a greater role in crustal growth and development of the greenstone-granite terranes during the Archean. However, the effects of modern ridge collision, and the processes involved, are not well enough known to develop specific models for the Archean ridge collison.

  19. K isotopes as a tracer of seafloor hydrothermal alteration

    NASA Astrophysics Data System (ADS)

    Parendo, Christopher A.; Jacobsen, Stein B.; Wang, Kun

    2017-02-01

    At ocean spreading ridges, circulation of seawater through rock at elevated temperatures alters the chemical and isotopic composition of oceanic crust. Samples obtained from drilling into ocean floor and from ophiolites have demonstrated that certain isotope systems, such as 18O/16O and 87Sr/86Sr, are systematically modified in hydrothermally altered oceanic crust. Although K is known to be mobile during hydrothermal alteration, there have not yet been any K-isotope analyses of altered oceanic crustal materials. Moreover, the 41K/39K of seawater was recently found to be significantly higher than that of igneous rocks, so the addition of seawater K to oceanic crust would be expected to generate 41K/39K variations in affected rocks. Here, we report high-precision 41K/39K measurements for samples from the Bay of Islands ophiolite, and we document large variations in 41K/39K, covarying with previous determinations of 87Sr/86Sr. Our data indicate that analytically resolvable 41K/39K effects arise in oceanic crust as a result of hydrothermal alteration. This finding raises the possibility that 41K/39K can be used as an effective tracer of oceanic crust recycled into the mantle, as a diagnostic criterion by which to identify ancient fragments of oceanic crust, and as a constraint on the flux of K between oceanic crust and seawater.

  20. The rock components and structures of Archean greenstone belts: An overview

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.; Byerly, G. R.

    1986-01-01

    Knowledge of the character and evolution of the Earth's early crust is derived from the studies of the rocks and structures in Archean greenstone belts. Ability to resolve the petrologic, sedimentological and structural histories of greenstone belts, however, hinges first on an ability to apply the concepts and procedures of classical stratigraphy. Unfortunately, early Precambrian greenstone terrains present particular problems to stratigraphic analysis. Many current controversies of greenstone belt petrogenesis, sedimentology, tectonics and evolution arise more from an inability to develop a clear stratigraphic picture of the belts than from ambiguities in interpretation. Four particular stratigraphic problems that afflict studies of Archean greenstone belts are considered: determination of facing directions, correlation of lithologic units, identification of primary lithologies and discrimination of stratigraphic versus structural contacts.

  1. Seafloor Uplift in Middle Valley, Juan de Fuca Ridge: New High-Resolution Pressure Data

    NASA Astrophysics Data System (ADS)

    Inderbitzen, K. E.; Becker, K.; Davis, E. E.

    2011-12-01

    Currently, in-situ seafloor and basement pressures are continuously monitored and recorded by an ODP subseafloor hydrogeological observatory (CORK) located in Middle Valley, Juan de Fuca Ridge. Hole 857D was drilled in 1991 in thickly sedimented crust to a depth of 936 mbsf and instrumented with an original CORK that was replaced in 1996. A large hydrothermal field (Dead Dog) lies roughly 1.7 km north of the hole, and two isolated chimneys and several diffuse flow sites are located ~800 meters northeast. The borehole and the vent fields have been visited periodically by submersible/ROV since 1999. Recent results from the CORK at 857D have shown apparent seafloor uplift, supported by depth records from the submersible Alvin. A constant rate of pressure change of ~6 kPa/yr, from its initiation in 2005 to the visit in 2010, has reduced mean seafloor pressure by ~28 kPa, equivalent to nearly 3 meters of head. This uplift rate is several times the typical pre-eruption inflation rates observed at Axial Seamount further south along the Juan de Fuca Ridge. Initially, the apparent uplift at 857D did not seem to have any effect on local high-temperature hydrothermal venting, however recent operations in Middle Valley revealed distinct changes at not only the hydrothermal field to the northeast, but also a shutdown of high-temperature venting to the north of 857D. We will present new data from Middle Valley, including the first year of data collected by a high-resolution pressure data logger deployed at 857D in June, 2010.

  2. Origin of magnetic highs at ultramafic hosted hydrothermal systems: Insights from the Yokoniwa site of Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Fujii, Masakazu; Okino, Kyoko; Sato, Taichi; Sato, Hiroshi; Nakamura, Kentaro

    2016-05-01

    High-resolution vector magnetic measurements were performed on an inactive ultramafic-hosted hydrothermal vent field, called Yokoniwa Hydrothermal Field (YHF), using a deep-sea manned submersible Shinkai6500 and an autonomous underwater vehicle r2D4. The YHF has developed at a non-transform offset massif of the Central Indian Ridge. Dead chimneys were widely observed around the YHF along with a very weak venting of low-temperature fluids so that hydrothermal activity of the YHF was almost finished. The distribution of crustal magnetization from the magnetic anomaly revealed that the YHF is associated with enhanced magnetization, as seen at the ultramafic-hosted Rainbow and Ashadze-1 hydrothermal sites of the Mid-Atlantic Ridge. The results of rock magnetic analysis on seafloor rock samples (including basalt, dolerite, gabbro, serpentinized peridotite, and hydrothermal sulfide) showed that only highly serpentinized peridotite carries high magnetic susceptibility and that the natural remanent magnetization intensity can explain the high magnetization of Yokoniwa. These observations reflect abundant and strongly magnetized magnetite grains within the highly serpentinized peridotite. Comparisons with the Rainbow and Ashadze-1 suggest that in ultramafic-hosted hydrothermal systems, strongly magnetized magnetite and pyrrhotite form during the progression of hydrothermal alteration of peridotite. After the completion of serpentinization and production of hydrogen, pyrrhotites convert into pyrite or nonmagnetic iron sulfides, which considerably reduces their levels of magnetization. Our results revealed origins of the magnetic high and the development of subsurface chemical processes in ultramafic-hosted hydrothermal systems. Furthermore, the results highlight the use of near-seafloor magnetic field measurements as a powerful tool for detecting and characterizing seafloor hydrothermal systems.

  3. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA

    USGS Publications Warehouse

    Slack, J.F.; Grenne, Tor; Bekker, A.; Rouxel, O.J.; Lindberg, P.A.

    2007-01-01

    A current model for the evolution of Proterozoic deep seawater composition involves a change from anoxic sulfide-free to sulfidic conditions 1.8??Ga. In an earlier model the deep ocean became oxic at that time. Both models are based on the secular distribution of banded iron formation (BIF) in shallow marine sequences. We here present a new model based on rare earth elements, especially redox-sensitive Ce, in hydrothermal silica-iron oxide sediments from deeper-water, open-marine settings related to volcanogenic massive sulfide (VMS) deposits. In contrast to Archean, Paleozoic, and modern hydrothermal iron oxide sediments, 1.74 to 1.71??Ga hematitic chert (jasper) and iron formation in central Arizona, USA, show moderate positive to small negative Ce anomalies, suggesting that the redox state of the deep ocean then was at a transitional, suboxic state with low concentrations of dissolved O2 but no H2S. The presence of jasper and/or iron formation related to VMS deposits in other volcanosedimentary sequences ca. 1.79-1.69??Ga, 1.40??Ga, and 1.24??Ga also reflects oxygenated and not sulfidic deep ocean waters during these time periods. Suboxic conditions in the deep ocean are consistent with the lack of shallow-marine BIF ??? 1.8 to 0.8??Ga, and likely limited nutrient concentrations in seawater and, consequently, may have constrained biological evolution. ?? 2006 Elsevier B.V. All rights reserved.

  4. Diversification in the Archean Biosphere: Insight from NanoSIMS of Microstructures in the Farrel Quartzite of Australia

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Robert, F.; Walter, M. R.; Sugitani, K.; Meibom, A.; Mostefaoui, S.; Gibson, E. K.

    2010-01-01

    The nature of early life on Earth is difficult to assess because potential Early Archean biosignatures are commonly poorly preserved. Interpretations of such materials have been contested, and abiotic or epigenetic derivations have been proposed (summarized in [1]). Yet, an understanding of Archean life is of astrobiological importance, as knowledge of early evolutionary processes on Earth could provide insight to development of life on other planets. A recently-discovered assemblage of organic microstructures in approx.3 Ga charts of the Farrel Quartzite (FQ) of Australia [2-4] includes unusual spindle-like forms and a variety of spheroids. If biogenicity and syngeneity of these forms could be substantiated, the FQ assemblage would provide a new view of Archean life. Our work uses NanoSIMS to further assess the biogenicity and syngeneity of FQ microstructures. In prior NanoSIMS studies [5-6], we gained an understanding of nano-scale elemental distributions in undisputed microfossils from the Neoproterozoic Bitter Springs Formation of Australia. Those results provide a new tool with which to evaluate poorly preserved materials that we might find in Archean sediments and possibly in extraterrestrial materials. We have applied this tool to the FQ forms.

  5. Reappraisal of hydrocarbon biomarkers in Archean rocks

    PubMed Central

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-01-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387

  6. Vertical Cable Seismic Survey for Hydrothermal Deposit

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2012-04-01

    The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have, however, also confirmed that the uncertainty in the locations of the source and of the hydrophones could lower the quality of subsurface image. It is, therefore, strongly necessary to develop a total survey system that assures a accurate positioning and a deployment techniques

  7. Detecting deep sea hydrothermal vents with a split-beam echosounder

    NASA Astrophysics Data System (ADS)

    Gray, L. M.; Jerram, K.

    2016-12-01

    In May 2016, the NOAA Office of Exploration and Research exploration vessel, Okeanos Explorer, conducted a remotely operated vehicle (ROV) dive on a series of active `black smoker' hydrothermal vents at 3,300 m depth in the western Pacific Ocean near the Mariana Trench. The ROV system traversed 800 m along the seafloor and detected three distinct vent sites. The vent chimneys ranged in heights from 5 m to 30 m above the seafloor and vent fluid temperatures were measured as high as 337 °C. Immediately following the ROV dive, the Okeanos Explorer mapped the vent field with an 18 kHz split-beam echosounder traditionally used for fishery research and a 30 kHz multibeam echosounder with midwater capability. Six passes were made over the field, transiting at 4-5 knots on various headings. There was a clear and repeatable signal in the split-beam echogram from the venting but less obvious indication in the multibeam data. `Black smokers' have traditionally been detected using repeat conductivity-temperature-depth (CTD) `tow-yo' casts. Our field observations suggest an alternative, and potentially more efficient, method of detecting hydrothermal vent plumes within the beamwidth of the split-beam echosounder to inform ROV dive plans. Methods previously applied for locating marine gas seeps on the seafloor with split-beam echosounders can be applied to estimate the hydrothermal vent positions in this dataset and compared to the recorded ROV positions at each site. Additionally, assuming relatively stable venting and ambient conditions, the ROV position and CTD data recorded from the vehicles can be used to better understand the observed midwater acoustic backscatter signatures of the hydrothermal vent plumes.

  8. Building Archean cratons from Hadean mafic crust

    NASA Astrophysics Data System (ADS)

    O'Neil, Jonathan; Carlson, Richard W.

    2017-03-01

    Geologic processing of Earth’s surface has removed most of the evidence concerning the nature of Earth’s first crust. One region of ancient crust is the Hudson Bay terrane of northeastern Canada, which is mainly composed of Neoarchean felsic crust and forms the nucleus of the Northeastern Superior Province. New data show these ~2.7-billion-year-old rocks to be the youngest to yield variability in neodymium-142 (142Nd), the decay product of short-lived samarium-146 (146Sm). Combined 146-147Sm-142-143Nd data reveal that this large block of Archean crust formed by reworking of much older (>4.2 billion-year-old) mafic crust over a 1.5-billion-year interval of early Earth history. Thus, unlike on modern Earth, mafic crust apparently could survive for more than 1 billion years to form an important source rock for Archean crustal genesis.

  9. The characteristics of hydrothermal plumes observed in the Precious Stone Mountain hydrothermal field, the Galapagos spreading center

    NASA Astrophysics Data System (ADS)

    Chen, S.; Tao, C.; Li, H.; Zhou, J.; Deng, X.; Tao, W.; Zhang, G.; Liu, W.; He, Y.

    2014-12-01

    The Precious Stone Mountain hydrothermal field (PSMHF) is located on the southern rim of the Galapagos Microplate. It was found at the 3rd leg of the 2009 Chinese DY115-21 expedition on board R/V Dayangyihao. It is efficient to learn the distribution of hydrothermal plumes and locate the hydrothermal vents by detecting the anomalies of turbidity and temperature. Detecting seawater turbidity by MAPR based on deep-tow technology is established and improved during our cruises. We collected data recorded by MAPR and information from geological sampling, yielding the following results: (1)Strong hydrothermal turbidity and temperature anomalies were recorded at 1.23°N, southeast and northwest of PSMHF. According to the CTD data on the mooring system, significant temperature anomalies were observed over PSMHF at the depth of 1,470 m, with anomalies range from 0.2℃ to 0.4℃, which gave another evidence of the existence of hydrothermal plume. (2)At 1.23°N (101.4802°W/1.2305°N), the nose-shaped particle plume was concentrated at a depth interval of 1,400-1,600 m, with 200 m thickness and an east-west diffusion range of 500 m. The maximum turbidity anomaly (0.045 △NTU) was recorded at the depth of 1,500 m, while the background anomaly was about 0.01△NTU. A distinct temperature anomaly was also detected at the seafloor near 1.23°N. Deep-tow camera showed the area was piled up by hydrothermal sulfide sediments. (3) In the southeast (101.49°W/1.21°N), the thickness of hydrothermal plume was 300 m and it was spreading laterally at a depth of 1,500-1,800 m, for a distance about 800 m. The maximum turbidity anomaly of nose-shaped plume is about 0.04 △NTU at the depth of 1,600 m. Distinct temperature anomaly was also detected in the northwest (101.515°W/1.235°N). (4) Terrain and bottom current were the main factors controlling the distribution of hydrothermal plume. Different from the distribution of hydrothermal plumes on the mid-ocean ridges, which was mostly

  10. Diversity in the Archean Biosphere: New Insights from NanoSIMS

    NASA Astrophysics Data System (ADS)

    Oehler, Dorothy Z.; Robert, François; Walter, Malcolm R.; Sugitani, Kenichiro; Meibom, Anders; Mostefaoui, Smail; Gibson, Everett K.

    2010-05-01

    The origin of organic microstructures in the ˜3 Ga Farrel Quartzite is controversial due to their relatively poor state of preservation, the Archean age of the cherts in which they occur, and the unusual spindle-like morphology of some of the forms. To provide more insight into the significance of these microstructures, nano-scale secondary ion mass spectrometry (NanoSIMS) maps of carbon, nitrogen, sulfur, silicon, and oxygen were obtained for spheroidal and spindle-shaped constituents of the Farrel Quartzite assemblage. Results suggest that the structures are all bona fide ˜3 Ga microfossils. The spindles demonstrate an architecture that is remarkable for 3 Ga organisms. They are relatively large, robust, and morphologically complex. The NanoSIMS element maps corroborate their complexity by demonstrating an intricate, internal network of organic material that fills many of the spindles and extends continuously from the body of these structures into their spearlike appendages. Results from this study combine with previous morphological and chemical analyses to argue that the microstructures in the Farrel Quartzite comprise a diverse assemblage of Archean microfossils. This conclusion adds to a growing body of geochemical, stromatolitic, and morphological evidence that indicates the Archean biosphere was varied and well established by at least ˜3 Ga. Together, the data paint a picture of Archean evolution that is one of early development of morphological and chemical complexity. The evidence for Archean evolutionary innovation may augur well for the possibility that primitive life on other planets could adapt to adverse conditions by ready development of diversity in form and biochemistry.

  11. Geochemistry of hydrothermal vent fluids and its implications for subsurface processes at the active Longqi hydrothermal field, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Ji, Fuwu; Zhou, Huaiyang; Yang, Qunhui; Gao, Hang; Wang, Hu; Lilley, Marvin D.

    2017-04-01

    The Longqi hydrothermal field at 49.6°E on the Southwest Indian Ridge was the first active hydrothermal field found at a bare-rock ultra-slow spreading mid-ocean ridge. Here we report the chemistry of the hydrothermal fluids, for the first time, that were collected from the S zone and the M zone of the Longqi field by gas-tight isobaric samplers by the HOV "Jiaolong" diving cruise in January 2015. According to H2, CH4 and other chemical data of the vent fluid, we suggest that the basement rock at the Longqi field is dominantly mafic. This is consistent with the observation that the host rock of the active Longqi Hydrothermal field is dominated by extensively distributed basaltic rock. It was very interesting to detect simultaneously discharging brine and vapor caused by phase separation at vents DFF6, DFF20, and DFF5 respectively, in a distance of about 400 m. Based on the end-member fluid chemistry and distance between the vents, we propose that there is a single fluid source at the Longqi field. The fluid branches while rising to the seafloor, and two of the branches reach S zone and M zone and phase separate at similar conditions of about 28-30.2 MPa and 400.6-408.3 °C before they discharge from the vents. The end-member fluid compositions of these vents are comparable with or within the range of variation of known global seafloor hydrothermal fluid chemical data from fast, intermediate and slow spreading ridges, which confirms that the spreading rate is not the key factor that directly controls hydrothermal fluid chemistry. The composition of basement rock, water-rock interaction and phase separation are the major factors that control the composition of the vent fluids in the Longqi field.

  12. A geodynamic constraint on Archean continental geotherms

    NASA Astrophysics Data System (ADS)

    Bailey, R. C.

    2003-04-01

    Dewey (1988) observed that gravitational collapse appears to currently limit the altitudes of large plateaus on Earth to about 3 to 5 km above sea level. Arndt (1999) summarized the evidence for the failure of large parts of the continental crust to reach even sea-level during the Archean. If this property of Archean continental elevations was also enforced by gravitational collapse, it permits an estimation of the geothermal gradient in Archean continental crust. If extensional (collapse) tectonics is primarily a balance between gravitational power and the power consumed by extensional (normal) faulting in the upper brittle crust, as analysed by Bailey (1999), then it occurs when continental elevations above ocean bottoms exceed about 0.4 times the thickness of the brittle crust (Bailey, 2000). Assuming an Archean oceanic depth of about 5 km, it follows that that the typical thickness of Archean continental brittle crustal must have been less than about 12 km. Assuming the brittle-ductile transition to occur at about 350 degrees Celsius, this suggests a steep geothermal gradient of at least 30 degrees Celsius per kilometer for Archean continents, during that part of the Archean when continents were primarily submarine. This result does not help resolve the Archean thermal paradox (England and Bickle, 1984) whereby the high global heat flow of the Archean conflicts with the rather shallow crustal Archean geotherms inferred from geobarometry. In fact, the low elevation of Archean continental platforms raises another paradox, a barometric one: that continents were significantly below sea-level implies, by isostasy, that continental crustal thicknesses were significantly less than 30 km, yet the geobarometric data utilized by England and Bickle indicated burial pressures of Archean continental material of up to 10 kb. One resolution of both paradoxes (as discussed by England and Bickle) would be to interpret such deep burials as transient crustal thickening events of

  13. Comparison of some sediment-hosted, stratiform barite deposits in China, the United States, and India

    USGS Publications Warehouse

    Clark, S.H.B.; Poole, F.G.; Wang, Z.

    2004-01-01

    Shifts in world barite production since the 1980s have resulted in China becoming the world's largest barite-producing country followed by the US and India. Most barite produced for use in drilling fluids is derived from black shale- and chert-hosted, stratiform marine deposits. In China, Late Proterozoic to Early Cambrian marine barite deposits occur on the oceanic margins of the Yangtze platform, in the Qinling region in the north and the Jiangnan region in the south. Most US ore-grade deposits are in the Nevada barite belt; most commercial deposits occur in Ordovician and Devonian marine rocks along the western margin of the early Paleozoic North American continent. Production in India is predominantly from a single Middle Proterozoic deposit in a sedimentary basin located on Archean basement in Andrah Pradesh.The geologic and geochemical characteristics of the deposits are consistent with origins from a variety of sedimentary-exhalative processes, with biogenic processes contributing to the concentration of some seafloor barite. Linear distributions of clusters of lenticular deposits suggest a geographic relationship to syndepositional seafloor fault zones. Sulfur isotope data of the barite deposits range from values that are similar to coeval seawater sulfate to significantly higher ??34S values. Strontium isotope values of continental-margin-type deposits in Nevada and China are less radiogenic than those of cratonic-rift deposits (e.g. Meggen and Rammelsberg). Comparison of Lan/ Cen ratios of barite in the Qinling region of China with marine chert ratios suggests a relationship to hydrothermal fluids, whereas ratios from the Jiangnan region and Nevada can be interpreted as reflecting a biogenic influence.The California Borderland provides a potential modern analog where hydrothermal barium is being deposited on the seafloor in fault-block-bounded basins. Anoxic to dysaerobic conditions on some marine basin floors result from upwelling, nutrient-rich currents

  14. Microbial Biogeochemistry of Seafloor Fluid Flow on Earth and Implications for Biological Potential on Enceladus

    NASA Astrophysics Data System (ADS)

    Huber, J. A.

    2017-12-01

    The interaction between liquid water and the rocky seafloor provides high potential for release of chemical energy, thus seafloor fluid flow is viewed an essential driver of subseafloor microbial life in Earth's oceans. Given predictions that Enceladus hosts a global-scale ocean underlain by a rocky seafloor, and new data suggesting on-going hydrothermal activity on Enceladus based on detection of hydrogen by Cassini, it is timely to investigate those subseafloor Earth analogs that may be informative when developing future missions to and interpreting mission data from Enceladus. Over the last 35 years, the breadth of seafloor fluid flow regimes that have been discovered and studied on Earth has expanded to include a wide spectrum of geological settings, geochemical characteristics, and microorganisms, including environments that were not previously known to exist, e.g. hydrogen-rich mafic systems, ridge-flank oxic systems, etc. This presentation will provide an overview of the latest and most exciting findings on the microbial biogeochemistry of seafloor fluid flow in Earth's oceans and place these findings in the context of biological potential for Enceladus.

  15. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics.

    PubMed

    Tang, Ming; Chen, Kang; Rudnick, Roberta L

    2016-01-22

    The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago. Copyright © 2016, American Association for the Advancement of Science.

  16. Ultramafics-Hydrothermalism-Hydrogenesis-HyperSLiME (UltraH3) Linkage is a key for Occurrence of Last Universal Common Ancestral (LUCA) Community: Where is it, Lost City or Kairei (Rainbow)?

    NASA Astrophysics Data System (ADS)

    Takai, K.; Inagaki, F.; Nakamura, K.; Suzuki, K.; Kumagai, H.

    2005-12-01

    Deep-sea hydrothermal system has been recognized one of the most plausible places for origin of life in this planet. This hypothesis has been supported by evidences from multidisciplinary scientific fields. In geology, it has been demonstrated that the potentially most ancient microbial fossils are retrieved from the paleoenvironment, that might be related with deep-sea hydrothermal systems in the Archean. Chemical reactions suggesting prebiotic chemical evolution (synthesis of amino acids, nucleic acids and hydrocarbon, and polymerization of these molecules) are observed under the simulated physical and chemical conditions of the deep-sea hydrothermal vents in the laboratory. In addition, phylogenetic analyses of all the lives in this planet have clearly revealed that hyperthermophiles inhabiting deep-sea hydrothermal systems represent the deepest lineage of the life. Supposed that the Archean deep-sea hydrothermal system hosted the origin of life, what was the first life? We are pursuing the energy metabolism of our last universal common ancestor (LUCA) and the environmental settings hosting the LUCA. It is definitely expected that the genesis of LUCA occurred at high temperatures of locally organics-rich microenvironment around deep-sea hydrothermal field and the first energy metabolism depended on fermentation of simple amino acids, organic acids and sugars. However, these organics were immediately consumed by the hyperthermophilic LUCA activity. Inheritance of the LUCA needed to evolve the energy and carbon acquisitions to more stable and efficient mode. Chemolithoautotrophy might be the best because a plenty of reductive gas components were always provided by the hydrothermal activity. Hyperthermophilic chemolithoautotrophs could serve as the primary producers and could foster the heterotrophic fellows. This was the genesis of the last universal common ancestral (LUCA) community of life. We hypothesize that the LUCA community was metabolically approximated to

  17. Modeling mid-ocean ridge hydrothermal response to earthquakes, tides, and ocean currents: a case study at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, G.; Bemis, K. G.

    2014-12-01

    Seafloor hydrothermal systems feature intricate interconnections among oceanic, geological, hydrothermal, and biological processes. The advent of the NEPTUNE observatory operated by Ocean Networks Canada at the Endeavour Segment, Juan de Fuca Ridge enables scientists to study these interconnections through multidisciplinary, continuous, real-time observations. The multidisciplinary observatory instruments deployed at the Grotto Mound, a major study site of the NEPTUNE observatory, makes it a perfect place to study the response of a seafloor hydrothermal system to geological and oceanic processes. In this study, we use the multidisciplinary datasets recorded by the NEPTUNE Observatory instruments as observational tools to demonstrate two different aspects of the response of hydrothermal activity at the Grotto Mound to geological and oceanic processes. First, we investigate a recent increase in venting temperature and heat flux at Grotto observed by the Benthic and Resistivity Sensors (BARS) and the Cabled Observatory Vent Imaging Sonar (COVIS) respectively. This event started in Mar 2014 and is still evolving by the time of writing this abstract. An initial interpretation in light of the seismic data recorded by a neighboring ocean bottom seismometer on the NEPTUNE observatory suggests the temperature and heat flux increase is probably triggered by local seismic activities. Comparison of the observations with the results of a 1-D mathematical model simulation of hydrothermal sub-seafloor circulation elucidates the potential mechanisms underlying hydrothermal response to local earthquakes. Second, we observe significant tidal oscillations in the venting temperature time series recorded by BARS and the acoustic imaging of hydrothermal plumes by COVIS, which is evidence for hydrothermal response to ocean tides and currents. We interpret the tidal oscillations of venting temperature as a result of tidal loading on a poroelastic medium. We then invoke poroelastic

  18. Geochemistry of Archean Mafic Amphibolites from the Amsaga Area, West African Craton, Mauritania: Occurrence of Archean oceanic plateau

    NASA Astrophysics Data System (ADS)

    El Atrassi, Fatima; Debaille, Vinciane; Mattielli, Nadine; Berger, Julien

    2015-04-01

    While Archean terrains are mainly composed of a TTG (Tonalite-trondhjemite-granodiorite) suite, more mafic lithologies such as amphibolites are also a typical component of those ancient terrains. Although mafic rocks represent only ~10% of the Archean cratons, they may provide key evidence of the role and nature of basaltic magmatism in the formation of the Archean crust as well as the evolution of the Archean mantle. This study focuses on the Archean crust from the West African craton in Mauritania (Amsaga area). The Amsaga Archean crust mainly consists of TTG and thrust-imbricated slices of mafic volcanic rocks, which have been affected by polymetamorphic events from the amphibolite to granulite facies. We report the results of a combined petrologic, Sm-Nd isotopic, major element and rare earth element (REE) study of the Archean amphibolites in the West African craton. This study was conducted in order to characterize these rocks, to constrain the time of their formation and to evaluate their tectonic setting and their possible mantle source. Our petrological observations show that these amphibolites have fine to medium granoblastic and nematoblastic textures. They are dominated by amphibolite-facies mineral assemblages (mainly amphibole and plagioclase), but garnet and clinopyroxene occur in a few samples. These amphibolites have tholeiitic basalt composition. On a primitive mantle-normalized diagram, they display fairly flat patterns without negative anomalies for either Eu or Nb-Ta. We have shown using Sm-Nd whole rock isotopic data that these amphibolites formed at 3.3 ±0.075 Ga. They have positive ɛNdi values (+5.2 ± 1.6). These samples show isotopically juvenile features, which rule out the possibility of significant contamination of the protolith magmas by ancient continental crust. Based on these geochemical data we propose that the tholeiitic basalts were formed in an oceanic plateau tectonic setting from a mantle plume source and that they have a

  19. Controls on development and diversity of Early Archean stromatolites

    PubMed Central

    Allwood, Abigail C.; Grotzinger, John P.; Knoll, Andrew H.; Burch, Ian W.; Anderson, Mark S.; Coleman, Max L.; Kanik, Isik

    2009-01-01

    The ≈3,450-million-year-old Strelley Pool Formation in Western Australia contains a reef-like assembly of laminated sedimentary accretion structures (stromatolites) that have macroscale characteristics suggestive of biological influence. However, direct microscale evidence of biology—namely, organic microbial remains or biosedimentary fabrics—has to date eluded discovery in the extensively-recrystallized rocks. Recently-identified outcrops with relatively good textural preservation record microscale evidence of primary sedimentary processes, including some that indicate probable microbial mat formation. Furthermore, we find relict fabrics and organic layers that covary with stromatolite morphology, linking morphologic diversity to changes in sedimentation, seafloor mineral precipitation, and inferred microbial mat development. Thus, the most direct and compelling signatures of life in the Strelley Pool Formation are those observed at the microscopic scale. By examining spatiotemporal changes in microscale characteristics it is possible not only to recognize the presence of probable microbial mats during stromatolite development, but also to infer aspects of the biological inputs to stromatolite morphogenesis. The persistence of an inferred biological signal through changing environmental circumstances and stromatolite types indicates that benthic microbial populations adapted to shifting environmental conditions in early oceans. PMID:19515817

  20. Absolute Magnetization Distribution on Back-arc Spreading Axis Hosting Hydrothermal Vents; Insight from Shinkai 6500 Magnetic Survey

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Okino, K.; Honsho, C.; Mochizuki, N.; Szitkar, F.; Dyment, J.

    2013-12-01

    Near-bottom magnetic profiling using submersible, deep-tow, Remotely Operated Vehicle (ROV) and Autonomous Underwater Vehicle (AUV) make possible to conduct high-resolution surveys and depict detailed magnetic features reflecting, for instance, the presence of fresh lavas or hydrothermal alteration, or geomagnetic paleo-intensity variations. We conducted near-bottom three component magnetic measurements onboard submersible Shinkai 6500 in the Southern Mariana Trough, where five active hydrothermal vent fields (Snail, Yamanaka, Archean, Pica, and Urashima sites) have been found in both on- and off-axis areas of the active back-arc spreading center, to detect signals from hydrothermally altered rock and to distinguish old and new submarine lava flows. Fourteen dives were carried out at an altitude of 1-40 m during the R/V Yokosuka YK10-10 and YK10-11 cruises in 2010. We carefully corrected the effect of the induced and permanent magnetizations of the submersible by applying the correction method for the shipboard three-component magnetometer measurement modified for deep-sea measurement, and subtracted the IGRF values from the corrected data to obtain geomagnetic vector anomalies along the dive tracks. We then calculated the synthetic magnetic vector field produced by seafloor, assumed to be uniformly magnetized, using three dimensional forward modeling. Finally, values of the absolute magnetizations were estimated by using a linear transfer function in the Fourier domain from the observed and synthetic magnetic anomalies. The distribution of estimated absolute magnetization generally shows low values around the five hydrothermal vent sites. This result is consistent with the equivalent magnetization distribution obtained from previous AUV survey data. The areas of low magnetization are also consistent with hydrothermal deposits identified in video records. These results suggest that low magnetic signals are due to hydrothermal alteration zones where host rocks are

  1. Constraining Δ33S signatures of Archean seawater sulfate with carbonate-associated sulfate

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Bao, H.; Bekker, A.; Hofmann, A.

    2017-12-01

    Non-mass dependent sulfur isotope deviation of S-bearing phases in Archean sedimentary strata, and expressed as Δ33S, has a consistent pattern, i.e., sulfide (pyrite) predominantly bear positive Δ33S values, while Paleoarchean sulfate (barite) has negative Δ33S values. This pattern was later corroborated by observations of negative Δ33S values in Archean volcanogenic massive sulfide deposits and negative Δ33S values in early diagenetic nodular pyrite with a wide range of δ34S values, which is thought to be due to microbial sulfate reduction. These signatures have provided a set of initial conditions for a mechanistic interpretation at physical chemistry level. Unlike the younger geological times when large bodies of seawater evaporite deposits are common, to expand seawater sulfate records, carbonate-associated sulfate (CAS) was utilized as a proxy for ancient seawater sulfate. CAS extracted from the Archean carbonates carries positive Δ33S values. However, CAS could be derived from pyrite oxidation following exposure to modern oxidizing conditions and/or during laboratory extraction procedures. It is, therefore, important for us understanding context of the overall early earth atmospheric condition to empirically confirm whether Archean seawater sulfate was generally characterized by negative Δ33S signatures. Combined δ18O, Δ17O, δ34S, and Δ33S analyses of sequentially extracted water-leachable sulfate (WLS) and acid-leachable sulfate (ALS = CAS) and δ34S and Δ33S analyses of pyrite can help to identify the source of extracted sulfate. We studied drill-core samples of Archean carbonates from the 2.55 Ga Malmani and Campell Rand supgroups, South Africa. Our preliminary results show that 1) neither WLS nor ALS were extracted from samples with extremely low pyrite contents (less than 0.05 wt.%); 2) extractable WLS and ALS is present in samples with relatively high pyrite contents (more than 1 wt.%), and that δ34S and Δ33S values of WLS, ALS, and

  2. Lipid biomarker production and preservation in acidic ecosystems: Relevance to early Earth and Mars

    NASA Astrophysics Data System (ADS)

    Jahnke, L. L.; Parenteau, M. N.; Harris, R.; Bristow, T.; Farmer, J. D.; Des Marais, D. J.

    2013-12-01

    Compared to relatively benign carbonate buffered marine environments, terrestrial Archean and Paleoproterozoic life was forced to cope with a broader range of pH values. In particular, acidic terrestrial ecosystems arose from the oxidation of reduced species in hydrothermal settings and crustal reservoirs of metal sulfides, creating acid sulfate conditions. While oxidation of reduced species is facilitated by reactions with molecular oxygen, acidic conditions also arose in Archean hydrothermal systems before the rise of oxygen (Van Kranendonk, 2006), expanding the range of time over which acidophiles could have existed on the early Earth. Acidic terrestrial habitats would have included acidic hydrothermal springs, acid sulfate soils, and possibly lakes and streams lacking substantial buffering capacity with sources of acidity in their catchments. Although acidic hot springs are considered extreme environments on Earth, robust and diverse microbial communities thrive in these habitats. Such acidophiles are found across all three domains of life and include both phototrophic and chemotrophic members. In this presentation, we examine hopanes and sterols that are characteristic of microbial communities living in acidic hydrothermal environments. Moreover we discuss taphonomic processes governing the capture and preservation of these biosignatures in acid environments. In particular, we discuss the production and early preservation of hopanoids and sterols in the following geological/mineralogical settings: 1) rapid entombment of microbes and organic matter by predominantly fine-grained silica; 2) rapid burial of organic matter by clay-rich, silica poor sediments; 3) and the survival of organics in iron oxide and sulfate rich sediments. We discovered and isolated an acid-tolerant purple non-sulfur anoxygenic phototroph from Lassen Volcanic National Park that synthesizes 3methyl-bacteriohopanepolyols. These compounds were previously thought to be exclusively made by

  3. Linked hydro-thermo-chemo-microbiological processes within a cool hydrothermal circulation system in 18-24 M.y. old seafloor of the Cocos Plate

    NASA Astrophysics Data System (ADS)

    Fisher, A. T.; Wheat, C. G.; Lauer, R. M.; Villinger, H. W.; McManus, J.; Orcutt, B.

    2017-12-01

    We present results from surveys and studies of ridge-flank hydrothermal circulation in part of the Cocos Plate. Fluids flowing into and out of the crust in an area >104 km2 extract most of the lithospheric heat. Water moves in and out of the crust through a few mid-plate seamounts, which penetrate low-permeability sediments, and water flows laterally across tens of kilometers between seamounts. This kind of fluid circulation is common globally, extracting 20-25% of Earth's geothermal heat, but focused fluid discharge from these systems has not previously been found or sampled. Sites of discharge from this cool hydrothermal system (CHS) were found and sampled on Dorado Outcrop, a small volcanic edifice on 23 M.y. old seafloor, using deep-submergence vehicles. Seafloor measurements show that Dorado Outcrop is a local site of elevated geothermal heat flux, and temperatures recorded during outcrop surveys show a pattern of small bottom-water temperature anomalies (≤0.04°C, mainly above the central and southern part of the outcrop). Direct measurements of shimmering fluids discharging from patches of bare rock on Dorado Outcrop indicate temperatures up to 10.5°C warmer than bottom water, whereas heat flux and reflection seismic data show regional reaction temperatures in basement of 15-20 °C. Heat budget calculations and coupled fluid-heat simulations of regional circulation indicate that the net discharge from Dorado Outcrop is on the order of 1,000-5,000 L/s, and direct observations show that spring discharge rates vary with time, likely being modulated by ocean tides. Samples of Dorado Outcrop fluids have concentrations that are indistinguishable from bottom seawater for many major ions, but concentrations of minor and trace elements differ significantly, especially Mo, V, Rb, U, phosphate, Li, and silicate. In addition, CHS fluids discharging from Dorado Outcrop have about 50% of the dissolved oxygen (DO) found in bottom seawater, showing that DO is consumed as

  4. Biomarkers Indigenous to Late Archean Rocks

    NASA Astrophysics Data System (ADS)

    Eigenbrode, J. L.; Freeman, K. H.; Summons, R. E.; Love, G. D.; Snape, C. E.

    2003-12-01

    Two new lines of evidence support the authenticity of molecular fossils in late Archean rocks of the Hamersley Province, Western Australia. Specifically, they support 1) a syngenetic relationship between the kerogen and extractable biomarkers, and 2) a indigenous relationship between extractable compounds and the host rocks. Carbon skeletons released from kerogen via high-pressure hydropyrolysis match those found in associated extracted bitumen. Biomarker ratios indicate less mature steranes and terpanes (i.e. hopanes and tricyclic terpanes) are embedded in the kerogen matrix as compared to the highly mature steranes and terpanes in the extracts, which is similar to findings in other hydropyrolysis experiments. Lithology-associated variations in biomarker distributions are noteworthy and suggest environmental settings are associated with differing biotic ecosystems. The evidence reported here confirms the 2.7 Ga antiquity of diverse biosynthetic pathways. Molecular data, together with isotopic data, indicate aerobic and anaerobic respiration pathways were fundamental to the complex microbial biogeochemistry of the late Archean. The biomarkers in these rocks support an early radiation of the three domains of life and radiation within the bacteria, such that clades of cyanobacteria, green sulfur bacteria, and proteobacteria had been established.

  5. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece

    PubMed Central

    Kilias, Stephanos P.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N.; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J.; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe3+-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe2+-oxidation, dependent on microbially produced nitrate. PMID:23939372

  6. Biomarker evidence for Archean oxygen fluxes (Invited)

    NASA Astrophysics Data System (ADS)

    Hallmann, C.; Waldbauer, J.; Sherman, L. S.; Summons, R. E.

    2010-12-01

    Knowledge of deep-time organismic diversity may be gained from the study of preserved sedimentary lipids with taxonomic specificity, i.e. biomarker hydrocarbons (e.g. Brocks and Summons, 2003; Waldbauer et al., 2009). As a consequence of long residence times and high thermal maturities however, biomarker concentrations are extremely low in most ancient (Precambrian) sediment samples, making them exceptionally prone to contamination during drilling, sampling and laboratory workup (e.g. Brocks et al., 2008). Outcrop samples most always carry a modern overprint and deep-time biogeochemistry thus relies on drilling operations to retrieve ‘clean’ sediment cores. One such effort was initiated by NASA’s Astrobiology Institute (NAI): the Archean biosphere drilling project (ABDP). We here report on the lipids retrieved from sediment samples in drill hole ABDP-9. Strong heterogeneities of extractable organic matter - both on a spatial scale and in free- vs. mineral-occluded bitumen - provide us with an opportunity to distinguish indigenous lipids from contaminants introduced during drilling. Stratigraphic trends in biomarker data for mineral-occluded bitumens are complementary to previously reported data (e.g. S- and N-isotopes, molybdenum enrichments) from ABDP-9 sediments (Anbar et al., 2007; Kaufman et al., 2007; Garvin et al., 2009) and suggest periodic fluxes of oxygen before the great oxidation event. Anbar et al. A whiff of oxygen before the great oxidation event. Science 317 (2007), 1903-1906. Brocks & Summons. Sedimentary hydrocarbons, biomarkers for early life. In: Schlesinger (Ed.) Treatise on Geochemistry, Vol. 8 (2003), 63-115. Brocks et al. Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants. Geochimica et Cosmochimica Acta 72 (2008), 871-888. Garvin et al. Isotopic evidence for a aerobic nitrogen cycle in the latest Archean. Science 323 (2009), 1045-1048. Kaufman et al. Late Archean

  7. Multiple sources of selenium in ancient seafloor hydrothermal systems: Compositional and Se, S, and Pb isotopic evidence from volcanic-hosted and volcanic-sediment-hosted massive sulfide deposits of the Finlayson Lake District, Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Layton-Matthews, Daniel; Leybourne, Matthew I.; Peter, Jan M.; Scott, Steven D.; Cousens, Brian; Eglington, Bruce M.

    2013-09-01

    Volcanic-hosted massive sulfide (VHMS) and volcanic-sediment-hosted massive sulfide (VSHMS; i.e., hosted by both volcanic and sedimentary rocks) deposits in the Finlayson Lake District, Yukon, Canada, provide a unique opportunity to study the influence of seafloor and sub-seafloor hydrothermal processes on the formation of Se-poor (GP4F VHMS deposit; 7 ppm Se average), intermediate (Kudz Ze Kayah—KZK VHMS deposit; 200 ppm Se average), and Se-enriched (Wolverine VSHMS deposit; 1100 ppm Se average) mineralization. All three deposits are hosted by mid-Paleozoic (˜360-346 Ma) felsic volcanic rocks, but only the Wolverine deposit has voluminous coeval carbonaceous argillites (black shales) in the host rock package. Here we report the first application of Se isotope analyses to ancient seafloor mineralization and use these data, in conjunction with Pb and S isotope analyses, to better understand the source(s) and depositional process(es) of Se within VHMS and VSHMS systems. The wide range of δ82Se (-10.2‰ to 1.3‰, relative to NIST 3149), δ34S (+2.0‰ to +12.8‰ CDT), and elevated Se contents (up to 5865 ppm) within the Wolverine deposit contrast with the narrower range of δ82Se (-3.8‰ to -0.5‰), δ34S (9.8‰ to 13.0‰), and lower Se contents (200 ppm average) of the KZK deposit. The Wolverine and KZK deposits have similar sulfide depositional histories (i.e., deposition at the seafloor, with concomitant zone refining). The Se in the KZK deposit is magmatic (leaching or degassing) in origin, whereas the Wolverine deposit requires an additional large isotopically negative Se source (i.e. ˜-15‰ δ82Se). The negative δ82Se values for the Wolverine deposit are at the extreme light end for measured terrestrial samples, and the lightest observed for hypogene sulfide minerals, but are within calculated equilibrium values of δ82Se relative to NIST 3149 (˜30‰ at 25 °C between SeO4 and Se2-). We propose that the most negative Se isotope values at the

  8. Early Proterozoic activity on Archean faults in the western Superior province - evidence from pseudotachylite

    USGS Publications Warehouse

    Peterman, Z.E.; Day, W.

    1989-01-01

    Major transcurrent faults in the Superior province developed in the Late Archean at the close of the Kenoran orogeny. Reactivation of some of these faults late in the Early Proterozoic is indicated by Rb-Sr analyses of pseudotachylite from the Rainy Lake-Seine River and Quetico faults in the Rainy Lake region of Minnesota and Ontario. Fault veins of pseudotachylite and immediately adjacent country rock at two localities yielded subparallel isochrons that are pooled for an age of 1947??23 Ma. K-Ar and Rb-Sr biotite ages register earlier regional cooling of the terrane at about 2500 Ma with no evidence of younger thermal overprinting at temperatures exceeding 300??C. Accordingly, the 1947??23 Ma age is interpreted as dating the formation of the pseudotachylite. Reactivation of existing faults at this time was caused by stresses transmitted from margins of the Superior province where compressional tectonic events were occurring. -Authors

  9. Workshop on Early Crustal Genesis: Implications from Earth

    NASA Technical Reports Server (NTRS)

    Phinney, W. C. (Compiler)

    1981-01-01

    Ways to foster increased study of the early evolution of the Earth, considering the planet as a whole, were explored and recommendations were made to NASA with the intent of exploring optimal ways for integrating Archean studies with problems of planetary evolution. Major themes addressed include: (1) Archean contribution to constraints for modeling planetary evolution; (2) Archean surface conditions and processes as clues to early planetary history; and (3) Archean evidence for physical, chemical and isotopic transfer processes in early planetary crusts. Ten early crustal evolution problems are outlined.

  10. Microbial biofilms associated with fluid chemistry and megafaunal colonization at post-eruptive deep-sea hydrothermal vents

    NASA Astrophysics Data System (ADS)

    O'Brien, Charles E.; Giovannelli, Donato; Govenar, Breea; Luther, George W.; Lutz, Richard A.; Shank, Timothy M.; Vetriani, Costantino

    2015-11-01

    At deep-sea hydrothermal vents, reduced, super-heated hydrothermal fluids mix with cold, oxygenated seawater. This creates temperature and chemical gradients that support chemosynthetic primary production and a biomass-rich community of invertebrates. In late 2005/early 2006 an eruption occurred on the East Pacific Rise at 9°50‧N, 104°17‧W. Direct observations of the post-eruptive diffuse-flow vents indicated that the earliest colonizers were microbial biofilms. Two cruises in 2006 and 2007 allowed us to monitor and sample the early steps of ecosystem recovery. The main objective of this work was to characterize the composition of microbial biofilms in relation to the temperature and chemistry of the hydrothermal fluids and the observed patterns of megafaunal colonization. The area selected for this study had local seafloor habitats of active diffuse flow (in-flow) interrupted by adjacent habitats with no apparent expulsion of hydrothermal fluids (no-flow). The in-flow habitats were characterized by higher temperatures (1.6-25.2 °C) and H2S concentrations (up to 67.3 μM) than the no-flow habitats, and the microbial biofilms were dominated by chemosynthetic Epsilonproteobacteria. The no-flow habitats had much lower temperatures (1.2-5.2 °C) and H2S concentrations (0.3-2.9 μM), and Gammaproteobacteria dominated the biofilms. Siboglinid tubeworms colonized only in-flow habitats, while they were absent at the no-flow areas, suggesting a correlation between siboglinid tubeworm colonization, active hydrothermal flow, and the composition of chemosynthetic microbial biofilms.

  11. Hydrothermal nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea)

    USGS Publications Warehouse

    Dekov, V.M.; Kamenov, George D.; Stummeyer, Jens; Thiry, M.; Savelli, C.; Shanks, Wayne C.; Fortin, D.; Kuzmann, E.; Vertes, A.

    2007-01-01

    A sediment core containing a yellowish-green clay bed was recovered from an area of extensive hydrothermal deposition at the SE slope of the Eolo Seamount, Tyrrhenian Sea. The clay bed is composed of pure nontronite (described for the first time in the Tyrrhenian Sea), which appears to be the most aluminous nontronite ever found among the seafloor hydrothermal deposits. The high Al content suggests precipitation from Al-containing hydrothermal solutions. The REE distribution of the Eolo nontronite has a V-shape pattern. The heavy REE enrichment is in part due to their preferential partitioning in the nontronite structure. This enrichment was possibly further enhanced by the HREE preferential sorption on bacterial cell walls. The light REE enrichment is the result of scavenging uptake by one of the nontronite precursors, i.e., poorly-ordered Fe-oxyhydroxides, from the hydrothermal fluids. Oxygen isotopic composition of the nontronite yields a formation temperature of 30????C, consistent with a low-temperature hydrothermal origin. The relatively radiogenic Nd isotopic signature of the nontronite compared to the present-day Mediterranean seawater indicates that approximately half of Nd, and presumably the rest of the LREE, are derived from local volcanic sources. On the other hand, 87Sr/86Sr is dominated by present-day seawater Sr. Scanning electron microscopy investigation revealed that the nontronite is composed of aggregates of lepispheres and tube-like filaments, which are indicative of bacteria assisted precipitation. Bacteria inhabiting this hydrothermal site likely acted as reactive geochemical surfaces on which poorly-ordered hydrothermal Fe-oxyhydroxides and silica precipitated. Upon aging, the interactions of these primary hydrothermal precipitates coating bacterial filaments and cell walls likely led to the formation of nontronite. Finally, the well-balanced interlayer and layer charges of the crystal lattice of seafloor hydrothermal nontronite decrease its

  12. The Archean crust in the Wawa-Chapleau-Timmins region. A field guidebook prepared for the 1983 Archean Geochemistry-Early Crustal Genesis Field Conference

    NASA Technical Reports Server (NTRS)

    Percival, J. A.; Card, K. D.; Sage, R. P.; Jensen, L. S.; Luhta, L. E.

    1983-01-01

    This guidebook describes the characteristics and interrelationships of Archean greenstone-granite and high-grade gneiss terrains of the Superior Province. A 300-km long west to east transect between Wawa and Timmins, Ontario will be used to illustrate regional-scale relationships. The major geological features of the Superior Province are described.

  13. Geochemistry of the Archean Yellowknife Supergroup

    NASA Astrophysics Data System (ADS)

    Jenner, G. A.; Fryer, B. J.; McLennan, S. M.

    1981-07-01

    The Archean Yellowknife Supergroup (Slave Structural Province. Canada) is composed of a thick sequence of supracrustal rocks, which differs from most Archean greenstone belts in that it contains a large proportion ( ~ 80%) of sedimentary rocks. Felsic volcanics of the Banting Formation are characterized by HREE depletion without Eu-anomalies, indicating an origin by small degrees of partial melting of a mafic source, with minor garnet in the residua. Granitic rocks include synkinematic granites [HREE-depleted; low ( 87Sr /86Sr ) I], post-kinematic granites [negative Eu-anomalies, high ( 87Sr /86Sr ) I] and granitic gneisses with REE patterns similar to the post-kinematic granites. Sedimentary rocks (turbidites) of the Burwash and Walsh Formations have similar chemical compositions and were derived from 20% mafic-intermediate volcanics, 55% felsic volcanics and 25% granitic rocks. Jackson Lake Formation lithic wackes can be divided into two groups with Group A derived from 50% mafic-intermediate volcanics and 50% felsic volcanics and Group B, characterized by HREE depletion, derived almost exclusively from felsic volcanics. REE patterns of Yellowknife sedimentary rocks are similar to other Archean sedimentary REE patterns, although they have higher La N/Yb N. These patterns differ significantly from typical post-Archean sedimentary REE patterns, supporting the idea that Archean exposed crust had a different composition than the present day exposed crust.

  14. Early Archean Spherule Beds: Chromium Isotopes Confirm Origin Through Multiple Impacts of Projectiles of Carbonaceous Chondrite Type

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Shukolyukov, Alex; Lugmair, Guenter W.; Lowe, Donald R.; Byerly, Gary R.

    2003-01-01

    Three Early Archean spherule beds from Barberton, South Africa, have anomalous Cr isotope compositions in addition to large Ir anomalies, confirming the presence of meteoritic material with a composition similar to that in carbonaceous chondrites. The extra-terrestrial components in beds S2, S3, and S4 are estimated to be approx. l%, 50% - 60%, and 15% - 30%, respectively. These beds are probably the distal, and possibly global, ejecta from major large-body impacts. These impacts were probably much larger than the Cretaceous-Tertiary event, and all occurred over an interval of approx. 20 m.y., implying an impactor flux at 3.2 Ga that was more than an order of magnitude greater than the present flux.

  15. Powering prolonged hydrothermal activity inside Enceladus

    NASA Astrophysics Data System (ADS)

    Choblet, Gaël; Tobie, Gabriel; Sotin, Christophe; Běhounková, Marie; Čadek, Ondřej; Postberg, Frank; Souček, Ondřej

    2017-12-01

    Geophysical data from the Cassini spacecraft imply the presence of a global ocean underneath the ice shell of Enceladus1, only a few kilometres below the surface in the South Polar Terrain2-4. Chemical analyses indicate that the ocean is salty5 and is fed by ongoing hydrothermal activity6-8. In order to explain these observations, an abnormally high heat power (>20 billion watts) is required, as well as a mechanism to focus endogenic activity at the south pole9,10. Here, we show that more than 10 GW of heat can be generated by tidal friction inside the unconsolidated rocky core. Water transport in the tidally heated permeable core results in hot narrow upwellings with temperatures exceeding 363 K, characterized by powerful (1-5 GW) hotspots at the seafloor, particularly at the south pole. The release of heat in narrow regions favours intense interaction between water and rock, and the transport of hydrothermal products from the core to the plume sources. We are thus able to explain the main global characteristics of Enceladus: global ocean, strong dissipation, reduced ice-shell thickness at the south pole and seafloor activity. We predict that this endogenic activity can be sustained for tens of millions to billions of years.

  16. Massive Hydrothermal Flows of Fluids and Heat: Earth Constraints and Ocean World Considerations

    NASA Astrophysics Data System (ADS)

    Fisher, A. T.

    2018-05-01

    This presentation reviews the hydrogeologic nature of Earth's ocean crust and evidence for massive flows of low-temperature (≤70°C), seafloor hydrothermal circulation through ridge flanks, including the influence of crustal relief and crustal faults.

  17. Geochemistry and mineralogy of Early Archean spherule beds, Baberton Mountain Land, South Africa: Evidence for origin by impact doubtful

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Reimold, Wolf Uwe; Boer, Rudolf H.

    1993-09-01

    Spherule layers in the approximately 3.4 Ga Barberton Greenstone Belt, South Africa, have been interpreted as being the result of large asteroid or comet impacts on the early earth. This interpretation was based, among other arguments, on the enrichment of siderophile elements, especially the platinum group elements. We made a detailed mineralogical, petrological and geochemical study of spherule bed samples taken from drill cores and underground esposures at the Princeton, Mt. Morgan and Sheba gold mines, as well as surface localities. The macrostructure of each sample (from within different spherule layer units) shows evidence for multiple (more than five) events over about 30 cm. The mineralogy provides evidence for extensive hydrothermal and metasomatic alterations of the spherule beds. Geochemical analyses of alternating spherule, shale and chert layers show no correlation between the siderophile elements (e.g., Ir, Co, Ni and Au), contrary to that which would be expected if the siderophile elements had an extraterrestrial source. Furthermore, no significant variation in the content of the siderophile elements was detected between spherule layers and shale layers; however, siderophile element contents are high only in layers containing abundant sulphide minerals and having high As, Sb, Se and Cr contents. We suggest that complex mineralizations, similar to those that have formed the Barberton Archean gold deposits or the Bon Accord deposit, were responsible for the siderophile element enrichments in the spherule beds. Nowhere else in the world have such multiple (or even single) spherule beds been observed, and none of the numerous known impact craters (or the Cretaceous-Tertiary boundary) is associated with comparable spherule beds. Known impact debris usually contains less than 1% meteoritic component, if any at all, while Barberton spherules are anomalous in being extremely enriched compared to any known impact deposits.

  18. Helium and carbon gas geochemistry of pore fluids from the sediment-rich hydrothermal system in Escanaba Trough

    USGS Publications Warehouse

    Ishibashi, J.-I.; Sato, M.; Sano, Y.; Wakita, H.; Gamo, T.; Shanks, Wayne C.

    2002-01-01

    Ocean Drilling Program (ODP) Leg 169, which was conducted in 1996 provided an opportunity to study the gas geochemistry in the deeper part of the sediment-rich hydrothermal system in Escanaba Trough. Gas void samples obtained from the core liner were analyzed and their results were compared with analytical data of vent fluid samples collected by a submersible dive program in 1988. The gas geochemistry of the pore fluids consisted mostly of a hydrothermal component and was basically the same as that of the vent fluids. The He isotope ratios (R/RA = 5.6-6.6) indicated a significant mantle He contribution and the C isotopic compositions of the hydrocarbons [??13C(CH4) = -43???, ??13C(C2H6) = -20???] were characterized as a thermogenic origin caused by hydrothermal activity. On the other hand, the pore fluids in sedimentary layers away from the hydrothermal fields showed profiles which reflected lateral migration of the hydrothermal hydrocarbons and abundant biogenic CH4. Helium and C isotope systematics were shown to represent a hydrothermal component and useful as indicators for their distribution beneath the seafloor. Similarities in He and hydrocarbon signatures to that of the Escanaba Trough hydrothermal system were found in some terrestrial natural gases, which suggested that seafloor hydrothermal activity in sediment-rich environments would be one of the possible petroleum hydrocarbon generation scenarios in unconventional geological settings. ?? 2002 Elsevier Science Ltd. All rights reserved.

  19. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D.; Wooden, Joseph L.

    1989-01-01

    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  20. Hydrothermal activity, functional diversity and chemoautotrophy are major drivers of seafloor carbon cycling.

    PubMed

    Bell, James B; Woulds, Clare; Oevelen, Dick van

    2017-09-20

    Hydrothermal vents are highly dynamic ecosystems and are unusually energy rich in the deep-sea. In situ hydrothermal-based productivity combined with sinking photosynthetic organic matter in a soft-sediment setting creates geochemically diverse environments, which remain poorly studied. Here, we use comprehensive set of new and existing field observations to develop a quantitative ecosystem model of a deep-sea chemosynthetic ecosystem from the most southerly hydrothermal vent system known. We find evidence of chemosynthetic production supplementing the metazoan food web both at vent sites and elsewhere in the Bransfield Strait. Endosymbiont-bearing fauna were very important in supporting the transfer of chemosynthetic carbon into the food web, particularly to higher trophic levels. Chemosynthetic production occurred at all sites to varying degrees but was generally only a small component of the total organic matter inputs to the food web, even in the most hydrothermally active areas, owing in part to a low and patchy density of vent-endemic fauna. Differences between relative abundance of faunal functional groups, resulting from environmental variability, were clear drivers of differences in biogeochemical cycling and resulted in substantially different carbon processing patterns between habitats.

  1. Advances in detection of diffuse seafloor venting using structured light imaging.

    NASA Astrophysics Data System (ADS)

    Smart, C.; Roman, C.; Carey, S.

    2016-12-01

    Systematic, remote detection and high resolution mapping of low temperature diffuse hydrothermal venting is inefficient and not currently tractable using traditional remotely operated vehicle (ROV) mounted sensors. Preliminary results for hydrothermal vent detection using a structured light laser sensor were presented in 2011 and published in 2013 (Smart) with continual advancements occurring in the interim. As the structured light laser passes over active venting, the projected laser line effectively blurs due to the associated turbulence and density anomalies in the vent fluid. The degree laser disturbance is captured by a camera collecting images of the laser line at 20 Hz. Advancements in the detection of the laser and fluid interaction have included extensive normalization of the collected laser data and the implementation of a support vector machine algorithm to develop a classification routine. The image data collected over a hydrothermal vent field is then labeled as seafloor, bacteria or a location of venting. The results can then be correlated with stereo images, bathymetry and backscatter data. This sensor is a component of an ROV mounted imaging suite which also includes stereo cameras and a multibeam sonar system. Originally developed for bathymetric mapping, the structured light laser sensor, and other imaging suite components, are capable of creating visual and bathymetric maps with centimeter level resolution. Surveys are completed in a standard mowing the lawn pattern completing a 30m x 30m survey with centimeter level resolution in under an hour. Resulting co-registered data includes, multibeam and structured light laser bathymetry and backscatter, stereo images and vent detection. This system allows for efficient exploration of areas with diffuse and small point source hydrothermal venting increasing the effectiveness of scientific sampling and observation. Recent vent detection results collected during the 2013-2015 E/V Nautilus seasons will be

  2. Heat flow evidence for hydrothermal circulation in the volcanic basement of subducting plates

    NASA Astrophysics Data System (ADS)

    Harris, R. N.; Spinelli, G. A.; Fisher, A. T.

    2017-12-01

    We summarize and interpret evidence for hydrothermal circulation in subducting oceanic basement from the Nankai, Costa Rica, south central Chile, Haida Gwaii, and Cascadia margins and explore the influence of hydrothermal circulation on plate boundary temperatures in these settings. Heat flow evidence for hydrothermal circulation in the volcanic basement of incoming plates includes: (a) values that are well below conductive (lithospheric) predictions due to advective heat loss, and (b) variability about conductive predictions that cannot be explained by variations in seafloor relief or thermal conductivity. We construct thermal models of these systems that include an aquifer in the upper oceanic crust that enhances heat transport via a high Nusselt number proxy for hydrothermal circulation. At the subduction zones examined, patterns of seafloor heat flow are not well fit by purely conductive simulations, and are better explained by simulations that include the influence of hydrothermal circulation. This result is consistent with the young basement ages (8-35 Ma) of the incoming igneous crust at these sites as well as results from global heat flow analyses showing a significant conductive heat flow deficit for crustal ages less than 65 Ma. Hydrothermal circulation within subducting oceanic basement can have a profound influence on temperatures close to the plate boundary and, in general, leads to plate boundary temperatures that are cooler than those where fluid flow does not occur. The magnitude of cooling depends on the permeability structure of the incoming plate and the evolution of permeability with depth and time. Resolving complex relationships between subduction processes, the permeability structure in the ocean crust, and the dynamics of hydrothermal circulation remains an interdisciplinary frontier.

  3. Evidence for Microbial Activity in ~3.5 Ga Pillow Basalts From the Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Muehlenbachs, K.; Banerjee, N. R.; Furnes, H.; Staudigel, H.; de Wit, M.

    2004-05-01

    We have discovered biosignatures in the formerly glassy rims of pillow lavas from the Mesoarchean Barberton Greenstone Belt (BGB) in South Africa. Over the last decade, bioalteration of basaltic glass in pillow lavas and volcaniclastic rocks has been well documented from in-situ oceanic crust and well-preserved Phanerozoic ophiolites. Much of the debate regarding the biogenicity of purported microfossils of early life centers on the interpretation of the host rocks' protoliths. To date, most protoliths have been interpreted to be of sedimentary origin. Some workers have proposed alternate origins for these substrates, including hydrothermal and even volcanic derivation, to cast doubt on their putative biogenicity. Hence studies documenting evidence for early life have proven to be controversial. Here we document evidence for microbial activity in ~3.5 Ga subaqueous volcanic rocks that represent a new, unambiguous geological setting in the search for early life on Earth. The BGB magmatic sequence is dominated by mafic to ultramafic pillow lavas, sheet flows, and intrusions interpreted to represent 3480- to 3220-million-year-old oceanic crust and island arc assemblages. The BGB pillow lavas are exceptionally well-preserved and represent unequivocal evidence that these rocks were erupted in a subaqueous environment. The formerly glassy rims of the BGB pillow lavas contain micron-sized, microbially generated, tubular structures consisting of titanite. These structures are interpreted to have formed during microbial etching of the originally glassy pillow rims and were subsequently mineralized by titanite during greenschist facies seafloor hydrothermal alteration. Overlapping metamorphic and magmatic dates from the pillow lavas suggest this process occurred soon after eruption of the pillow lavas on the seafloor. X-ray mapping has revealed the presence of carbon along the margins of the tubular structures. Disseminated carbonates within the microbially altered BGB

  4. An archean suture zone in the Tobacco Root Mountains? (1984) Evolution of Archean Continental Crust, SW Montana (1985)

    NASA Technical Reports Server (NTRS)

    Mogk, D. W.; Kain, L.

    1985-01-01

    The Lake Plateau area of the Beartooth Mountains, Montana were mapped and geochemically sampled. The allochthonous nature of the Stillwater Complex was interpreted as a Cordilleran-style continental margin. The metamorphic and tectonic history of the Beartooth Mountains was addressed. The Archean geology of the Spanish Peaks area, northern Madison Range was addressed. A voluminous granulite terrain of supracrustal origin was identified, as well as a heretofore unknown Archean batholithic complex. Mapping, petrologic, and geochemical investigations of the Blacktail Mountains, on the western margin of the Wyoming Province, are completed. Mapping at a scale of 1:24000 in the Archean rocks of the Gravelly Range is near completion. This sequence is dominantly of stable-platform origin. Samples were collected for geothermometric/barometric analysis and for U-Pb zircon age dating. The analyses provide the basis for additional geochemical and geochronologic studies. A model for the tectonic and geochemical evolution of the Archean basement of SW Montana is presented.

  5. Geochemical and Visual Indicators of Hydrothermal Fluid Flow through a Sediment-Hosted Volcanic Ridge in the Central Bransfield Basin (Antarctica)

    PubMed Central

    Aquilina, Alfred; Connelly, Douglas P.; Copley, Jon T.; Green, Darryl R. H.; Hawkes, Jeffrey A.; Hepburn, Laura E.; Huvenne, Veerle A. I.; Marsh, Leigh; Mills, Rachel A.; Tyler, Paul A.

    2013-01-01

    In the austral summer of 2011 we undertook an investigation of three volcanic highs in the Central Bransfield Basin, Antarctica, in search of hydrothermal activity and associated fauna to assess changes since previous surveys and to evaluate the extent of hydrothermalism in this basin. At Hook Ridge, a submarine volcanic edifice at the eastern end of the basin, anomalies in water column redox potential (Eh) were detected close to the seafloor, unaccompanied by temperature or turbidity anomalies, indicating low-temperature hydrothermal discharge. Seepage was manifested as shimmering water emanating from the sediment and from mineralised structures on the seafloor; recognisable vent endemic fauna were not observed. Pore fluids extracted from Hook Ridge sediment were depleted in chloride, sulfate and magnesium by up to 8% relative to seawater, enriched in lithium, boron and calcium, and had a distinct strontium isotope composition (87Sr/86Sr  = 0.708776 at core base) compared with modern seawater (87Sr/86Sr ≈0.70918), indicating advection of hydrothermal fluid through sediment at this site. Biogeochemical zonation of redox active species implies significant moderation of the hydrothermal fluid with in situ diagenetic processes. At Middle Sister, the central ridge of the Three Sisters complex located about 100 km southwest of Hook Ridge, small water column Eh anomalies were detected but visual observations of the seafloor and pore fluid profiles provided no evidence of active hydrothermal circulation. At The Axe, located about 50 km southwest of Three Sisters, no water column anomalies in Eh, temperature or turbidity were detected. These observations demonstrate that the temperature anomalies observed in previous surveys are episodic features, and suggest that hydrothermal circulation in the Bransfield Strait is ephemeral in nature and therefore may not support vent biota. PMID:23359806

  6. Hydrothermal mineralization along submarine rift zones, Hawaii

    USGS Publications Warehouse

    Hein, J.R.; Gibbs, A.E.; Clague, D.A.; Torresan, M.

    1996-01-01

    Describes mineralization of midplate submarine rift zones and hydrothermal manganese oxide mineralization of midplate volcanic edifices. Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks; both deposit types are composed of todorokite and birnessite. Unlike most other hydrothermal Mn oxide deposits, those from Hawaiian rift zones are enriched in the trace metals Zn, Co, Ba, Mo, Sr, V, and especially Ni. Metals are derived from three sources: mafic and ultramafic rocks leached by circulating hydrothermal fluids, clastic material (in Mn-cemented sandstone), and seawater that mixed with the hydrothermal fluids. Precipitation of Mn oxide below the seafloor is indicated by its occurrence as cement, growth textures that show mineralizing fluids were introduced from below, and pervasive replacement of original matrix of clastic rocks.Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks. Both deposit types are composed of todorokite and birnessite. This article describes in detail the specific characteristics of these Mn oxides.

  7. Manganese Oxidizing Bacteria in Guaymas Basin Hydrothermal Fluids, Sediments, and Plumes

    NASA Astrophysics Data System (ADS)

    Dick, G. J.; Tebo, B. M.

    2002-12-01

    The active seafloor hydrothermal system at Guaymas Basin in the Gulf of California is unique in that spreading centers are covered with thick sediments, and hydrothermal fluids are injected into a semi-enclosed basin. This hydrothermal activity is the source of a large input of dissolved manganese [Mn(II)] into Guaymas Basin, and the presence of a large standing stock of particulate manganese in this basin has been taken as evidence for a short residence time of dissolved Mn(II) with respect to oxidation, suggestive of bacterial catalysis. During a recent Atlantis/Alvin expedition (R/V Atlantis Cruise #7, Leg 11, Jim Cowen Chief Scientist), large amounts of particulate manganese oxides were again observed in Guaymas Basin hydrothermal plumes. The goal of the work presented here was to identify bacteria involved in the oxidation of Mn(II) in Guaymas Basin, and to determine what molecular mechanisms drive this process. Culture-based methods were employed to isolate Mn(II)-oxidizing bacteria from Guaymas Basin hydrothermal fluids, sediments, and plumes, and numerous Mn(II)-oxidizing bacteria were identified based on the formation of orange, brown, or black manganese oxides on bacterial colonies on agar plates. The Mn(II)-oxidizing bacteria were able to grow at temperatures from 12 to 50°C, and a selection of the isolates were chosen for phylogenetic (16S rRNA genes) and microscopic characterization. Endospore-forming Bacillus species accounted for many of the Mn(II)-oxidizing isolates obtained from both hydrothermal sediments and plumes, while members of the alpha- and gamma-proteobacteria were also found. Mn(II)-oxidizing enzymes from previously characterized Bacillus spores are known to be active at temperatures greater than 50°C. The presence of Mn(II)-oxidizing spores - some of which are capable of growing at elevated temperatures - in hydrothermal fluids and sediments at Guaymas Basin suggests that Mn(II) oxidation may be occurring immediately or very soon

  8. Precipitation and growth of barite within hydrothermal vent deposits from the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Jamieson, John William; Hannington, Mark D.; Tivey, Margaret K.; Hansteen, Thor; Williamson, Nicole M.-B.; Stewart, Margaret; Fietzke, Jan; Butterfield, David; Frische, Matthias; Allen, Leigh; Cousens, Brian; Langer, Julia

    2016-01-01

    Hydrothermal vent deposits form on the seafloor as a result of cooling and mixing of hot hydrothermal fluids with cold seawater. Amongst the major sulfide and sulfate minerals that are preserved at vent sites, barite (BaSO4) is unique because it requires the direct mixing of Ba-rich hydrothermal fluid with sulfate-rich seawater in order for precipitation to occur. Because of its extremely low solubility, barite crystals preserve geochemical fingerprints associated with conditions of formation. Here, we present data from petrographic and geochemical analyses of hydrothermal barite from the Endeavour Segment of the Juan de Fuca Ridge, northeast Pacific Ocean, in order to determine the physical and chemical conditions under which barite precipitates within seafloor hydrothermal vent systems. Petrographic analyses of 22 barite-rich samples show a range of barite crystal morphologies: dendritic and acicular barite forms near the exterior vent walls, whereas larger bladed and tabular crystals occur within the interior of chimneys. A two component mixing model based on Sr concentrations and 87Sr/86Sr of both seawater and hydrothermal fluid, combined with 87Sr/86Sr data from whole rock and laser-ablation ICP-MS analyses of barite crystals indicate that barite precipitates from mixtures containing as low as 17% and as high as 88% hydrothermal fluid component, relative to seawater. Geochemical modelling of the relationship between aqueous species concentrations and degree of fluid mixing indicates that Ba2+ availability is the dominant control on mineral saturation. Observations combined with model results support that dendritic barite forms from fluids of less than 40% hydrothermal component and with a saturation index greater than ∼0.6, whereas more euhedral crystals form at lower levels of supersaturation associated with greater contributions of hydrothermal fluid. Fluid inclusions within barite indicate formation temperatures of between ∼120 °C and 240 °C during

  9. Archean Subduction or Not? The Archean Volcanic Record Re-assessed.

    NASA Astrophysics Data System (ADS)

    Pearce, Julian; Peate, David; Smithies, Hugh

    2013-04-01

    Methods of identification of volcanic arc lavas may utilize: (1) the selective enrichment of the mantle wedge by 'subduction-mobile' elements; (2) the distinctive preconditioning of mantle along its flow path to the arc front; (3) the distinctive combination of fluid-flux and decompression melting; and (4) the effects of fluids on crystallization of the resulting magma. It should then be a simple matter uniquely to recognise volcanic arc lavas in the Geological Record and so document past subduction zones. Essentially, this is generally true in the oceans, but generally not on the continents. Even in recent, fresh lavas and with a full battery of element and isotope tools at our disposal, there can be debate over whether an arc-like geochemical signature results from active subduction, an older, inherited subduction component in the lithosphere, or crustal contamination. In the Archean, metamorphism, deformation, a different thermal regime and potential non-uniformitarian tectonic scenarios make the fingerprinting of arc lavas particularly problematic. Not least, the complicating factor of crustal contamination is likely to be much greater given the higher magma and crustal temperatures and higher magma fluxes prevailing. Here, we apply new, high-resolution immobile element fingerprinting methods, based primarily on Th-Nb fractionation, to Archean lavas. In the Pilbara, for example, where there is a volcanic record extending for over >500 m.y., we note that lavas with high Th/Nb (negative Nb anomalies) are common throughout the lava sequence. Many older formations also follow a basalt-andesite-dacite-rhyolite (BADR) sequence resembling present-day arcs. However, back-extrapolation of their compositions to their primitive magmas demonstrates that these were almost certainly crustally-contaminated plume-derived lavas. By contrast, this is not the case in the uppermst part of the sequence where even the most primitive magmas have significant Nb anomalies. The

  10. A Global Assessment of Oceanic Heat Loss: Conductive Cooling and Hydrothermal Redistribution of Heat

    NASA Astrophysics Data System (ADS)

    Hasterok, D. P.; Chapman, D. S.; Davis, E. E.

    2011-12-01

    A new dataset of ~15000 oceanic heat flow measurements is analyzed to determine the conductive heat loss through the seafloor. Many heat flow values in seafloor younger than 60 Ma are lower than predicted by models of conductively cooled lithosphere. This heat flow deficit is caused by ventilated hydrothermal circulation discharging at crustal outcrops or through thin sedimentary cover. Globally filtering of heat flow data to retain sites with sediment cover >400 m thick and located >60 km from the nearest seamount minimizes the effect of hydrothermal ventilation. Filtered heat flow exhibit a much higher correlation coefficient with seafloor age (up to 0.95 for filtered data in contrast to 0.5 for unfiltered data) and lower variability (reduction by 30%) within an age bin. A small heat flow deficit still persists at ages <25 Ma, possibly as a result of global filtering limitations and incomplete thermal rebound following sediment burial. Detailed heat flow surveys co-located with seismic data can identify environments favoring conductive heat flow; heat flow collected in these environments is higher than that determined by the global dataset, and is more consistent with conductive cooling of the lithosphere. The new filtered data analysis and a growing number of site specific surveys both support estimates of global heat loss in the range 40-47 TW. The estimated hydrothermal deficit is consistent with estimates from geochemical studies ~7 TW, but is a few TW lower than previous estimates derived from heat flow determinations.

  11. Along-axis variations in seafloor spreading in the MARK area

    NASA Astrophysics Data System (ADS)

    Karson, J. A.; Thompson, G.; Humphris, S. E.; Bryan, W. B.; Edmond, J. M.

    1987-08-01

    Recent investigations with the manned submersible Alvin and the Angus deep-towed camera sled greatly extended the known range of variations in the style of seafloor spreading along the axis of the Mid-Atlantic Ridge. Five transects of the spreading center at intervals of 10-20 km south of the Kane Fracture Zone at 24 deg N latitude demonstate dramatic changes in the style and magnitude of tectonic extension, development of the neovolcanic zone, expression of hydrothermal venting, types of lithologic exposures, and morphology of the median valley.

  12. Stochastic Mapping for Chemical Plume Source Localization With Application to Autonomous Hydrothermal Vent Discovery

    DTIC Science & Technology

    2007-02-01

    rise froom the seafloor a buoyant hydrothermal plume will have expanded laterally fromn oil the order of a few centimeters at an...diameters of rise height [20]. Detections of buoyant plume effluent are likely when the vehicle passes near the plume centerline; however, the in...the vertical extent of the plume . I will refer to this figure, W0 = 0.1 m/s, subsequently as the "canonical rise rate" for buoyant hydrothermal plumes

  13. Early Archean sialic crust of the Siberian craton: Its composition and origin of magmatic protoliths

    NASA Astrophysics Data System (ADS)

    Vovna, G. M.; Mishkin, M. A.; Sakhno, V. G.; Zarubina, N. V.

    2009-12-01

    This study demonstrates that the base of the Archean deep-seated granulite complexes within the Siberian craton consists of a metabasite-enderbite association. The major and trace element distribution patterns revealed that the protoliths of this association are represented by calc-alkaline andesites and dacites, containing several minor sequences of komatiitic-tholeiitic volcanic rocks. The origin of the primary volcanic rocks of the metabasite-enderbite association is inferred on the basis of a model of mantle plume magmatism, which postulates that both andesitic and dacitic melts were derived from the primary basitic crust at the expense of heat generated by ascending mantle plumes. The formation of the protoliths of the Archen metabasite-enderbite association of the Siberian craton began at 3.4 Ga and continued until the late Archean.

  14. Mineralized iron oxidizing bacteria from hydrothermal vents: targeting biosignatures on Mars

    NASA Astrophysics Data System (ADS)

    Leveille, R. J.

    2010-12-01

    formation of an iron oxyhydroxide precipitate, either in direct association with the cells or within the growth medium, were observed. Preliminary analyses suggest that these precipitates are different from abiotic precipitates. Continuing work includes high-resolution TEM observations of cultured organisms and biogenic iron minerals, Raman and reflectance spectroscopy of precipitates, examination of seafloor incubation experiments, and bioreactor silicification experiments in order to better understand the Fe-Si fossilization process. Microaerophilic iron oxidation could have existed on the early Earth in environments containing small amounts of oxygen produced either by locally-concentrated photosynthetic microorganisms (e.g., cyanobacteria) or by chemical reactions. By analogy, similar subsurface or near-surface microaerophilic environments could have existed on Mars in the past, including in low-temperature hydrothermal systems. The distinctive morphologies and Fe-Si mineralization patterns of iron oxidizing bacteria could be a useful biosignature to search for on Mars. Deposits and features similar to those described here could be identified on Mars with existing technologies, and thus hydrothermal systems represent an attractive target for future surface and sample return missions.

  15. Evidence for a complex archean deformational history; southwestern Michipicoten Greenstone Belt, Ontario

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.; Shrady, Catherine H.

    1986-01-01

    The Michipicoten Greenstone Belt extends for about 150 km ENE from the northeastern angle of Lake Superior. In common with many other Archean greenstone belts, it is characterized by generally steep bedding dips and a distribution of major lithologic types suggesting a crudely synclinal structure for the belt as a whole. Detailed mapping and determination of structural sequence demonstrates that the structure is much more complex. The Archean history of the belt includes formation of at least three regionally significant cleavages, kilometer-scale overturning, extensive shearing, and diabase intrusion. Most well defined, mappable 'packages' of sedimentary rocks appear to be bounded by faults. These faults were active relatively early in the structural history of the belt, when extensive overturning also occurred. Steepening of dips, NW-SE shortening, development of steep NE cleavage, and pervasive shearing all postdate the early faulting and the regional overturning, obscuring much of the detail needed to define the geometry of the earlier structures. The results obtained so far suggest, however, that the Michipicoten Greenstone Belt underwent an early stage of thrusting and associated isoclinal folding, probably in a convergent tectonic environment.

  16. Si-Metasomatism During Serpentinization of Jurassic Ultramafic Sea-floor: a Comparative Study

    NASA Astrophysics Data System (ADS)

    Vogel, M.; Frueh-Green, G. L.; Boschi, C.; Schwarzenbach, E. M.

    2014-12-01

    The Bracco-Levanto ophiolitic complex (northwestern Italy) represents one of the largest and better-exposed ophiolitic successions in the Northern Apennines. It is considered to be a fragment of heterogeneous Jurassic lithosphere that records tectono-magmatic and alteration histories similar to those documented along the Mid-Atlantic Ridge (MAR), such as at the 15°20'N area and the Atlantis Massif at 30°N. Structural and petrological studies on these rocks provide constraints on metamorphic/deformation processes during formation and hydrothermal alteration of the Jurassic oceanic lithosphere. We present a petrological and geochemical study of serpentinization processes and fluid-rock interaction in the Bracco-Levanto ophiolitic complex and compare these to published data from modern oceanic hydrothermal systems, such as the Lost City hydrothermal field hosted in serpentinites on the Atlantis Massif. Major element and mineral compositional data allow us to distinguish a multiphase history of alteration characterized by: (1) widespread Si-metasomatism during progressive serpentinization, and (2) multiple phases of veining and carbonate precipitation associated with circulation of seawater in the shallow ultramafic-dominated portions of the Jurassic seafloor, resulting in the formation of ophicalcites. In detail, regional variations in Si, Mg and Al content are observed in zones of ophicalcite formation, indicating metasomatic reactions and Si-Al transport during long-lived fluid-rock interaction and channelling of hydrothermal fluids. Rare earth element and isotopic analysis indicate that the Si-rich fluids are derived from alteration of pyroxenes to talc and tremolite in ultramafic rocks at depth. Comparison with serpentinites from the Atlantis Massif and 15°20'N indicates a similar degree of Si-enrichment in the modern seafloor and suggests that Si-metasomatism may be a fundamental process associated with serpentinization at slow-spreading ridge environments

  17. Electromagnetic imaging of seafloor massive sulfide deposits at the Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Müller, Hendrik; Schwalenberg, Katrin

    2016-04-01

    Electromagnetics is considered to become a key method to evaluate the spatial extent, composition, and inner structure of Seafloor Massive Sulfide (SMS) deposits that contain potentially high grades of polymetallic minerals - essential ingredients for the growing high-tech industry. On land, airborne or ground electromagnetic methods are established as standard geophysical tools for locating and mapping massive sulfide deposits. In contrast to terrestrial systems, marine EM instrumentation to locate the heterogeneous and often sediment covered ore deposits are still in their infancy. To accomplish EM imaging of such complex deep sea environments, the GOLDEN EYE deep sea profiler has been developed at the University of Bremen by contract of the BGR, based on experiences with the MARUM NERIDIS benthic EM Profiler. GOLDEN EYE lands on the seafloor or glides with well constrained ground distance and is entirely controlled from the vessel. The rigid, circular fiberglass platform of 3.5 m in diameter hosts a frequency domain EM inloop sensor with horizontal transmitter of 3.34 m diameter and coaxial receiver and bucking coils. Operation frequencies between 10 and 20,000 Hz can be combined and jointly inverted to resolve the resistivity structure of the topmost 10 to 15 meters below seafloor with high lateral and near-surface resolution. We will present the concept and development state of this deep sea electromagnetic profiler, and first results from a recent cruise to the Edmond hydrothermal vent field in 3 km water depth. Preliminary analysis of the new data reveal electric conductivity values of more than 10 S/m associated with active and inactive SMS deposits. Simultaneously collected DC magnetic data indicate a local positive magnetic anomaly associated with the active Edmond hydrothermal vent field while nearby fossil deposits are characterized by negative magnetic anomalies. First 1D inversion results provide insights into the vertical extend and overburden

  18. Texture-specific Si isotope variations in Barberton Greenstone Belt cherts record low temperature fractionations in early Archean seawater

    NASA Astrophysics Data System (ADS)

    Stefurak, Elizabeth J. T.; Fischer, Woodward W.; Lowe, Donald R.

    2015-02-01

    Sedimentary cherts are unusually abundant in early Archean (pre-3.0 Ga) sequences, suggesting a silica cycle that was profoundly different than the modern system. Previously applied for the purpose of paleothermometry, Si isotopes in ancient cherts can offer broader insight into mass fluxes and mechanisms associated with silica concentration, precipitation, diagenesis, and metamorphism. Early Archean cherts contain a rich suite of sedimentological and petrographic textures that document a history of silica deposition, cementation, silicification, and recrystallization. To add a new layer of insight into the chemistry of early cherts, we have used wavelength-dispersive spectroscopy and then secondary ion mass spectrometry (SIMS) to produce elemental and Si and O isotope ratio data from banded black-and-white cherts from the Onverwacht Group of the Barberton Greenstone Belt, South Africa. This geochemical data is then interpreted in the framework of depositional and diagenetic timing of silica precipitation provided by geological observations. SIMS allows the comparison of Si and O isotope ratios of distinct silica phases, including black carbonaceous chert beds and bands (many including well-defined sedimentary grains), white relatively pure chert bands including primary silica granules, early cavity-filling cements, and later quartz-filled veins. Including all chert types and textures analyzed, the δ30Si dataset spans a range from -4.78‰ to +3.74‰, with overall mean 0.20‰, median 0.51‰, and standard deviation 1.30‰ (n = 1087). Most samples have broadly similar δ30Si distributions, but systematic texture-specific δ30Si differences are observed between white chert bands (mean +0.60‰, n = 750), which contain textures that represent primary and earliest diagenetic silica phases, and later cavity-filling cements (mean -1.41‰, n = 198). We observed variations at a ∼100 μm scale indicating a lack of Si isotope homogenization at this scale during

  19. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs

    PubMed Central

    Lesniewski, Ryan A; Jain, Sunit; Anantharaman, Karthik; Schloss, Patrick D; Dick, Gregory J

    2012-01-01

    Microorganisms mediate geochemical processes in deep-sea hydrothermal vent plumes, which are a conduit for transfer of elements and energy from the subsurface to the oceans. Despite this important microbial influence on marine geochemistry, the ecology and activity of microbial communities in hydrothermal plumes is largely unexplored. Here, we use a coordinated metagenomic and metatranscriptomic approach to compare microbial communities in Guaymas Basin hydrothermal plumes to background waters above the plume and in the adjacent Carmen Basin. Despite marked increases in plume total RNA concentrations (3–4 times) and microbially mediated manganese oxidation rates (15–125 times), plume and background metatranscriptomes were dominated by the same groups of methanotrophs and chemolithoautotrophs. Abundant community members of Guaymas Basin seafloor environments (hydrothermal sediments and chimneys) were not prevalent in the plume metatranscriptome. De novo metagenomic assembly was used to reconstruct genomes of abundant populations, including Marine Group I archaea, Methylococcaceae, SAR324 Deltaproteobacteria and SUP05 Gammaproteobacteria. Mapping transcripts to these genomes revealed abundant expression of genes involved in the chemolithotrophic oxidation of ammonia (amo), methane (pmo) and sulfur (sox). Whereas amo and pmo gene transcripts were abundant in both plume and background, transcripts of sox genes for sulfur oxidation from SUP05 groups displayed a 10–20-fold increase in plumes. We conclude that the biogeochemistry of Guaymas Basin hydrothermal plumes is mediated by microorganisms that are derived from seawater rather than from seafloor hydrothermal environments such as chimneys or sediments, and that hydrothermal inputs serve as important electron donors for primary production in the deep Gulf of California. PMID:22695860

  20. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs.

    PubMed

    Lesniewski, Ryan A; Jain, Sunit; Anantharaman, Karthik; Schloss, Patrick D; Dick, Gregory J

    2012-12-01

    Microorganisms mediate geochemical processes in deep-sea hydrothermal vent plumes, which are a conduit for transfer of elements and energy from the subsurface to the oceans. Despite this important microbial influence on marine geochemistry, the ecology and activity of microbial communities in hydrothermal plumes is largely unexplored. Here, we use a coordinated metagenomic and metatranscriptomic approach to compare microbial communities in Guaymas Basin hydrothermal plumes to background waters above the plume and in the adjacent Carmen Basin. Despite marked increases in plume total RNA concentrations (3-4 times) and microbially mediated manganese oxidation rates (15-125 times), plume and background metatranscriptomes were dominated by the same groups of methanotrophs and chemolithoautotrophs. Abundant community members of Guaymas Basin seafloor environments (hydrothermal sediments and chimneys) were not prevalent in the plume metatranscriptome. De novo metagenomic assembly was used to reconstruct genomes of abundant populations, including Marine Group I archaea, Methylococcaceae, SAR324 Deltaproteobacteria and SUP05 Gammaproteobacteria. Mapping transcripts to these genomes revealed abundant expression of genes involved in the chemolithotrophic oxidation of ammonia (amo), methane (pmo) and sulfur (sox). Whereas amo and pmo gene transcripts were abundant in both plume and background, transcripts of sox genes for sulfur oxidation from SUP05 groups displayed a 10-20-fold increase in plumes. We conclude that the biogeochemistry of Guaymas Basin hydrothermal plumes is mediated by microorganisms that are derived from seawater rather than from seafloor hydrothermal environments such as chimneys or sediments, and that hydrothermal inputs serve as important electron donors for primary production in the deep Gulf of California.

  1. Constraints on the source of Cu in a submarine magmatic-hydrothermal system, Brothers volcano, Kermadec island arc

    NASA Astrophysics Data System (ADS)

    Keith, Manuel; Haase, Karsten M.; Klemd, Reiner; Smith, Daniel J.; Schwarz-Schampera, Ulrich; Bach, Wolfgang

    2018-05-01

    Most magmatic-hydrothermal Cu deposits are genetically linked to arc magmas. However, most continental or oceanic arc magmas are barren, and hence new methods have to be developed to distinguish between barren and mineralised arc systems. Source composition, melting conditions, the timing of S saturation and an initial chalcophile element-enrichment represent important parameters that control the potential of a subduction setting to host an economically valuable deposit. Brothers volcano in the Kermadec island arc is one of the best-studied examples of arc-related submarine magmatic-hydrothermal activity. This study, for the first time, compares the chemical and mineralogical composition of the Brothers seafloor massive sulphides and the associated dacitic to rhyolitic lavas that host the hydrothermal system. Incompatible trace element ratios, such as La/Sm and Ce/Pb, indicate that the basaltic melts from L'Esperance volcano may represent a parental analogue to the more evolved Brothers lavas. Copper-rich magmatic sulphides (Cu > 2 wt%) identified in fresh volcanic glass and phenocryst phases, such as clinopyroxene, plagioclase and Fe-Ti oxide suggest that the surrounding lavas that host the Brothers hydrothermal system represent a potential Cu source for the sulphide ores at the seafloor. Thermodynamic calculations reveal that the Brothers melts reached volatile saturation during their evolution. Melt inclusion data and the occurrence of sulphides along vesicle margins indicate that an exsolving volatile phase extracted Cu from the silicate melt and probably contributed it to the overlying hydrothermal system. Hence, the formation of the Cu-rich seafloor massive sulphides (up to 35.6 wt%) is probably due to the contribution of Cu from a bimodal source including wall rock leaching and magmatic degassing, in a mineralisation style that is hybrid between Cyprus-type volcanic-hosted massive sulphide and subaerial epithermal-porphyry deposits.

  2. Exploring Archean seawater sulfate via triple S isotopes in carbonate associated sulfate.

    NASA Astrophysics Data System (ADS)

    Paris, G.; Fischer, W. W.; Sessions, A. L.; Adkins, J. F.

    2015-12-01

    Multiple sulfur isotope ratios in Archean sedimentary rocks provide powerful insights into the behavior of the ancient sulfur cycle, the redox state of fluid Earth, and the timing of the rise of atmospheric oxygen [1]. The Archean sulfur isotope record is marked by pronounced mass-independent fractionation (Δ33S≠0)—signatures widely interpreted as the result of SO2 photolysis from "short-wavelength" UV light resulting in a reduced phase carrying positive Δ33S values (ultimately recorded in pyrite) and an oxidized phase carrying negative Δ33S values carried by sulfate [2]. Support for this hypothesis rests on early laboratory experiments and observations of negative Δ33S from barite occurrences in mixed volcanic sedimentary strata in Mesoarchean greenstone terrains. Despite forming the framework for understanding Archean sulfur cycle processes, this hypothesis is still largely untested, notably due to the lack of sulfate minerals in Archean strata. Using a new MC-ICP-MS approach combined with petrography and X-ray spectroscopy we have generated a growing S isotope dataset from CAS extracted from Archean carbonates from a range of sedimentary successions, including: the 2.6 to 2.521 Ga Campbellrand-Malmani carbonate platform (Transvaal Supergroup, South Africa), 2.7 Ga Cheshire Formation (Zimbabwe), and 2.9 Ga Steep Rock Formation (Canada). Importantly, we observe positive δ34S and Δ33S values across a range of different lithologies and depositional environments. These results demonstrate that dissolved sulfate in seawater was characterized by positive Δ33S values—a result that receives additional support from recent laboratory and theoretical experiments [e.g. 4, 5]. [1] Farquhar et al., 2000, Science [2] Farquhar et al., 2001, Journal of Geophysical Research: Planets [3] Paris et al., 2014, Science. [4] Whitehill et al., 2013, Proceedings of the National Academy of Sciences. [5] Claire et al., 2014 Geochimica et Cosmochimica Acta

  3. Early Archean spherule beds of possible impact origin from Barberton, South Africa: A detailed mineralogical and geochemical study

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Reimold, Wolf Uwe; Boer, Rudolf H.

    1992-01-01

    The Barberton Greenstone belt is a 3.5- to 3.2-Ga-old formation situated in the Swaziland Supergroup near Barberton, northeast Transvaal, South Africa. The belt includes a lower, predominantly volcanic sequence, and an upper sedimentary sequence (e.g., the Fig Tree Group). Within this upper sedimentary sequence, Lowe and Byerly identified a series of different beds of spherules with diameters of around 0.5-2 mm. Lowe and Byerly and Lowe et al. have interpreted these spherules to be condensates of rock vapor produced by large meteorite impacts in the early Archean. We have collected a series of samples from drill cores from the Mt. Morgan and Princeton sections near Barberton, as well as samples taken from underground exposures in the Sheba and Agnes mines. These samples seem much better preserved than the surface samples described by Lowe and Byerly and Lowe et al. Over a scale of just under 30 cm, several well-defined spherule beds are visible, interspaced with shales and/or layers of banded iron formation. Some spherules have clearly been deposited on top of a sedimentary unit because the shale layer shows indentions from the overlying spherules. Although fresher than the surface samples (e.g., spherule bed S-2), there is abundant evidence for extensive alteration, presumably by hydrothermal processes. In some sections of the cores sulfide mineralization is common. For our mineralogical and petrographical studies we have prepared detailed thin sections of all core and underground samples (as well as some surface samples from the S-2 layer for comparison). For geochemical work, layers with thicknesses in the order of 1-5 mm were separated from selected core and underground samples. The chemical analyses are being performed using neutron activation analysis in order to obtain data for about 35 trace elements in each sample. Major elements are being determined by XRF and plasma spectrometry. To clarify the history of the sulfide mineralization, sulfur isotopic

  4. Experimental Investigation of Organic Synthesis in Hydrothermal Environments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1998-01-01

    Seafloor hydrothermal systems may be the most likely locations on the early Earth for the emergence of life. Because of the disequilibrium inherent in such dynamic, mixing environments, abundant chemical energy would have been available for formation of the building blocks of life. In addition, theoretical studies suggest that organic compounds in these conditions would reach metastable states, due to kinetic barriers to the formation of stable equilibrium products (CO2 and methane). The speciation of organic carbon in metastable states is highly dependent on the oxidation state, pH, temperature, pressure and bulk composition of the system. The goal of our research is to investigate the effects of a number external variables on the formation, transformation, and stability of organic compounds at hydrothermal conditions. We have begun experimental work to attempt to control the oxidation state of simulated hydrothermal systems by using buffers composed of mineral powders and gas mixtures. We are also beginning to test the stability of organic compounds under these conditions. The experiments are being performed using the hydrothermal bomb apparatus at the U.S. Geological Survey in Menlo Park, CA and the supercritical water oxidizer (SCWO) at NASA Ames Research Center in Moffet Field, CA. The amino acids decomposed rapidly. Even after the approximately 15 minutes between addition of the amino acids and the first sampling, no amino acids were detected in the PPM system by GC- MS, while in the FeFeO system the amino acids were present at a level of less than 50% of original. Carboxylic acids, ammonia, and CO2 were the main products, along with some unidentified compounds. The ratios of carboxylic acids and concentrations of other products seem to have remained stable during the experiments, consistent with observations of other metastable systems and theoretical predictions.

  5. Evolution of the Archean Mohorovičić discontinuity from a synaccretionary 4.5 Ga protocrust

    NASA Astrophysics Data System (ADS)

    Hamilton, Warren B.

    2013-12-01

    This review evaluates and rejects the currently dominant dogmas of geodynamics and geochemistry, which are based on 1950s-1970s assumptions of a slowly differentiating Earth. Evidence is presented for evolution of mantle, crust, and early Moho that began with fractionation of most crustal components, synchronously with planetary accretion, into mafic protocrust by ~ 4.5 Ga. We know little about Hadean crustal geology (> 3.9 Ga) except that felsic rocks were then forming, but analogy with Venus, and dating from the Moon, indicate great shallow disruption by large and small impact structures, including huge fractionated impact-melt constructs, throughout that era. The mantle sample and Archean (< 3.9 Ga) crustal geology integrate well. The shallow mantle was extremely depleted by early removal of thick mafic protocrust, which was the primary source of the tonalite, trondhjemite, and granodiorite (TTG) that dominate preserved Archean crust to its base, and of the thick mafic volcanic rocks erupted on that crust. Lower TTG crust, kept mobile by its high radioactivity and by insulating upper crust, rose diapirically into the upper crust as dense volcanic rocks sagged synformally. The mobile lower crust simultaneously flowed laterally to maintain subhorizontal base and surface, and dragged overlying brittler granite-and-greenstone upper crust. Petrologically required garnet-rich residual protocrust incrementally delaminated, sank through low-density high-mantle magnesian dunite, and progressively re-enriched upper mantle, mostly metasomatically. Archean and earliest Proterozoic craton stabilization and development of final Mohos followed regionally complete early delamination of residual protocrust, variously between ~ 2.9 and 2.2 Ga. Where some protocrust remained, Proterozoic basins, filled thickly by sedimentary and volcanic rocks, developed on Archean crust, beneath which delamination of later residual protocrust continued top-down enrichment of upper mantle. That

  6. Hydrothermal alteration of felsic volcanic rocks at the Helen Siderite Deposit, Wawa, Ontario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, R.L.; Nebel, M.L.

    1984-09-01

    Felsic lavas and pyroclastic rocks, underlying the Archean Helen iron-formation, have been variably altered by hydrothermal solutions which, when discharged onto the sea floor, formed the Helen siderite deposit. Within the footwall volcanic sequence five chemically and mineralogically distinct alteration types have been defined: least altered, sericite, chlorite chloritoid, and ankerite. Based on mineralogy and chemistry of the altered rocks and on the geometry of the alteration zones, an alteration model is proposed.

  7. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    NASA Astrophysics Data System (ADS)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  8. The nature of Archean terrane boundaries: an example from the northern Wyoming Province

    USGS Publications Warehouse

    Mogk, D.W.; Mueller, P.A.; Wooden, J.L.

    1992-01-01

    The Archean northern Wyoming Province can be subdivided into two geologically distinct terranes, the Beartooth-Bighorn magmatic terrane (BBMT) and the Montana metasedimentary terrane (MMT). The BBMT is characterized by voluminous Late Archean (2.90-2.74 Ga) magmatic rocks (primarily tonalite, trondhjemite, and granite); metasedimentary rocks are preserved only as small, rare enclaves in this magmatic terrane. The magmatic rocks typically have geochemical and isotopic signatures that suggest petrogenesis in a continental magmatic arc environment. The MMT, as exposed in the northern Gallatin and Madison Ranges, is dominated by Middle Archean trondhjemitic gneisses (3.2-3.0 Ga); metasedimentary rocks, however, are significantly more abundant than in the BBMT. Each terrane has experienced a separate and distinct geologic history since at least 3.6 Ga ago based on differences in metamorphic and structural styles, composition of magmatic and metasupracrustal rocks, and isotopic ages; consequently, these may be described as discrete terranes in the Cordilleran sense. Nonetheless, highly radiogenic and distinctive Pb-Pb isotopic signatures in rocks of all ages in both terranes indicate that the two terranes share a significant aspect of their history. This suggests that these two Early to Middle Archean crustal blocks, that initially evolved as part of a larger crustal province, experienced different geologic histories from at least 3.6 Ga until their juxtaposition in the Late Archean (between 2.75 to 2.55 Ga ago). Consequently, the boundary between the BBMT and MMT appears to separate terranes that are not likely to be exotic in the sense of their Phanerozoic counterparts. Other Archean provinces do appear to contain crustal blocks with different isotopic signatures (e.g. West Greenland, India, South Africa). The use of the term exotic, therefore, must be cautious in situations where geographic indicators such as paleontologic and/or paleomagnetic data are not available

  9. Decreasing µ142Nd Variation in the Archean Convecting Mantle from 4.0 to 2.5 Ga: Heterogeneous Domain Mixing or Crustal Recycling?

    NASA Astrophysics Data System (ADS)

    Brandon, A. D.; Debaille, V.

    2014-12-01

    The 146Sm-142Nd (t1/2=68 Ma) chronometer can be used to examine silicate differentiation in the first 400 Ma of Earth history. Early fractionation between Sm and Nd is recorded in cratonic Archean rocks in their 142Nd/144Nd ratios that that deviate up to ±20 ppm, or μ142Nd - ppm deviation relative to the present-day convecting mantle at 0. These values likely record early extraction of incompatible trace element (ITE) enriched material with -μ142Nd, either as crust or late stage residual melt from a magma ocean, and resulting in a complimentary ITE depleted residual mantle with +μ142Nd. If this early-formed ITE-enriched material was re-incorporated rapidly back into the convecting mantle, both ITE-enriched and ITE-depleted mantle domains would have been established in the Hadean. Alternatively, if it was early-formed crust that remained stable it could have slowly eroded and progressively remixed into the convecting mantle as subducted sediment during the Archean. Each of these scenarios could potentially explain the decrease in the maximum variation in µ142Nd from ±20 at 4.0 Ga to 0 at 2.5 Ga [1,2,3]. In the scenario where these variations reflect mixing of mantle domains, this implies long mantle mixing times of greater than 1 Ga in the Archean in order to preserve the early-formed heterogeneities. This can be achieved in a stagnant lid tectonic regime in the Archean with sporadic and short subduction cycles [2]. This scenario would also indicate that mixing times in the convecting mantle were much slower than the previously proposed 100 Ma in the Hadean and Archean. In the alternative scenario, sediment with -µ142Nd was progressively mixed into the mantle via subduction in the Archean [3]. This scenario doesn't require slow mantle mixing times or a stagnant-lid regime. It requires crustal resident times of up to 750 Ma to maintain a steady supply of ancient sediment recycling over the Archean. Each of these scenarios evoke very contrasting conditions for

  10. Magmatic @d^1^8O in 4400-3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean [rapid communication

    NASA Astrophysics Data System (ADS)

    Cavosie, A. J.; Valley, J. W.; Wilde, S. A.

    2005-07-01

    Ion microprobe analyses of δ 18O in 4400-3900 Ma igneous zircons from the Jack Hills, Western Australia, provide a record of the oxygen isotope composition of magmas in the earliest Archean. We have employed a detailed analysis protocol aimed at correlating spatially related micro-volumes of zircon concordant in U/Pb age with δ 18O and internal zoning. Simultaneous analysis of 18O and 16O with dual Faraday cup detectors, combined with frequent standardization, has yielded data with improved accuracy and precision over prior studies, and resulted in a narrower range of what is interpreted as magmatic δ 18O in > 3900 Ma zircons. Preserved magmatic δ 18O values from individual zircons (Zrc) range from 5.3‰ to 7.3‰ (VSMOW), and increasingly deviate from the mantle range of 5.3 ± 0.3‰ as zircons decrease in age from 4400 to 4200 Ma. Elevated δ 18O (Zrc) values up to 6.5‰ occur as early as 4325 Ma, which suggests that evolved rocks were incorporated into magmas within ˜230 Ma of Earth's accretion. Values of magmatic δ 18O (Zrc) as high as 7.3‰ are recorded in zircons by 4200 Ma, and are common thereafter. The protoliths of the magmas these zircons crystallized in were altered by low temperature interaction with liquid water near Earth's surface. These results provide the strongest evidence yet for the existence of liquid water oceans and supracrustal rocks by approximately 4200 Ma, and possibly as early as 4325 Ma. The range of magmatic δ 18O values in the 4400-3900 Ma zircons is indistinguishable from Archean igneous zircons, suggesting similar magmatic processes occurred over the first two billion years of recorded Earth history. Zircons with sub-solidus alteration histories, identified by the presence of disturbed internal zoning patterns, record δ 18O values both below (4.6‰) and above (10.3‰) the observed range for primary magmatic zircon, and are unreliable indicators of Early Archean magma chemistry.

  11. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, O.; Drake, J. J.; Kota, J.

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to themore » shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.« less

  12. Anomalous K-Pg-aged seafloor attributed to impact-induced mid-ocean ridge magmatism.

    PubMed

    Byrnes, Joseph S; Karlstrom, Leif

    2018-02-01

    Eruptive phenomena at all scales, from hydrothermal geysers to flood basalts, can potentially be initiated or modulated by external mechanical perturbations. We present evidence for the triggering of magmatism on a global scale by the Chicxulub meteorite impact at the Cretaceous-Paleogene (K-Pg) boundary, recorded by transiently increased crustal production at mid-ocean ridges. Concentrated positive free-air gravity and coincident seafloor topographic anomalies, associated with seafloor created at fast-spreading rates, suggest volumes of excess magmatism in the range of ~10 5 to 10 6 km 3 . Widespread mobilization of existing mantle melt by post-impact seismic radiation can explain the volume and distribution of the anomalous crust. This massive but short-lived pulse of marine magmatism should be considered alongside the Chicxulub impact and Deccan Traps as a contributor to geochemical anomalies and environmental changes at K-Pg time.

  13. Anomalous K-Pg–aged seafloor attributed to impact-induced mid-ocean ridge magmatism

    PubMed Central

    Byrnes, Joseph S.; Karlstrom, Leif

    2018-01-01

    Eruptive phenomena at all scales, from hydrothermal geysers to flood basalts, can potentially be initiated or modulated by external mechanical perturbations. We present evidence for the triggering of magmatism on a global scale by the Chicxulub meteorite impact at the Cretaceous-Paleogene (K-Pg) boundary, recorded by transiently increased crustal production at mid-ocean ridges. Concentrated positive free-air gravity and coincident seafloor topographic anomalies, associated with seafloor created at fast-spreading rates, suggest volumes of excess magmatism in the range of ~105 to 106 km3. Widespread mobilization of existing mantle melt by post-impact seismic radiation can explain the volume and distribution of the anomalous crust. This massive but short-lived pulse of marine magmatism should be considered alongside the Chicxulub impact and Deccan Traps as a contributor to geochemical anomalies and environmental changes at K-Pg time. PMID:29441360

  14. Discovery of a new hydrothermal vent based on an underwater, high-resolution geophysical survey

    NASA Astrophysics Data System (ADS)

    Nakamura, Kentaro; Toki, Tomohiro; Mochizuki, Nobutatsu; Asada, Miho; Ishibashi, Jun-ichiro; Nogi, Yoshifumi; Yoshikawa, Shuro; Miyazaki, Jun-ichi; Okino, Kyoko

    2013-04-01

    A new hydrothermal vent site in the Southern Mariana Trough has been discovered using acoustic and magnetic surveys conducted by the Japan Agency for Marine-Earth Science and Technology's (JAMSTEC) autonomous underwater vehicle (AUV), Urashima. The high-resolution magnetic survey, part of a near-bottom geophysical mapping around a previously known hydrothermal vent site, the Pika site, during the YK09-08 cruise in June-July 2009, found that a clear magnetization low extends ˜500 m north from the Pika site. Acoustic signals, suggesting hydrothermal plumes, and 10 m-scale chimney-like topographic highs were detected within this low magnetization zone by a 120 kHz side-scan sonar and a 400 kHz multibeam echo sounder. In order to confirm the seafloor sources of the geophysical signals, seafloor observations were carried out using the deep-sea manned submersible Shinkai 6500 during the YK 10-10 cruise in August 2010. This discovered a new hydrothermal vent site (12°55.30'N, 143°38.89'E; at a depth of 2922 m), which we have named the Urashima site. This hydrothermal vent site covers an area of approximately 300 m×300 m and consists of black and clear smoker chimneys, brownish-colored shimmering chimneys, and inactive chimneys. All of the fluids sampled from the Urashima and Pika sites have chlorinity greater than local ambient seawater, suggesting subseafloor phase separation or leaching from rocks in the hydrothermal reaction zone. End-member compositions of the Urashima and Pika fluids suggest that fluids from two different sources feed the two sites, even though they are located on the same knoll and separated by only ˜500 m. We demonstrate that investigations on hydrothermal vent sites located in close proximity to one another can provide important insights into subseafloor hydrothermal fluid flow, and also that, while such hydrothermal sites are difficult to detect by conventional plume survey methods, high-resolution underwater geophysical surveys provide an

  15. Mobility of nutrients and trace metals during weathering in the late Archean

    NASA Astrophysics Data System (ADS)

    Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.

    2017-08-01

    The evolution of the geosphere and biosphere depends on the availability of bio-essential nutrients and trace metals. Consequently, the chemical and isotopic variability of trace elements in the sedimentary record have been widely used to infer the existence of early life and fluctuations in the near-surface environment on the early Earth, particularly fluctuations in the redox state of the atmosphere. In this study, we applied late Archean weathering models (Hao et al., 2017), developed to estimate the behavior of major elements and the composition of late Archean world average river water, to explore the behavior of nutrient and trace metals and their potential for riverine transport. We focused on P, Mn, Cr, and Cu during the weathering of olivine basalt. In our standard late Archean weathering model (pCO2,g = 10-1.5 bars, pH2,g = 10-5.0 bars), crustal apatite was totally dissolved by the acidic rainwater during weathering. Our model quantitatively links the pCO2,g of the atmosphere to phosphate levels transported by rivers. The development of late Archean river water (pH = 6.4) resulted in riverine phosphate of at least 1.7 μmolar, much higher than at the present-day. At the end of the early Proterozoic snowball Earth event when pCO2,g could be 0.01-0.10 bars, river water may have transported up to 70 μmolar phosphate, depending on the availability of apatite, thereby stimulating high levels of oxygenic photosynthesis in the marine environment. Crustal levels of Mn in olivine dissolved completely during weathering, except at large extents of weathering where Mn was stored as a component of a secondary carbonate mineral. The corresponding Mn content of river water, about 1.2 μmolar, is higher than in modern river water. Whiffs of 10-5 mole O2 gas or HNO3 kg-1 H2O resulted in the formation of pyrolusite (MnO2) and abundant hematite and simultaneous dramatic decreases in the concentration of Mn(II) in the river water. Chromite dissolution resulted in negligible

  16. An Assessment of Magma-Hydrothermal Heat Output at the Costa Rica Rift

    NASA Astrophysics Data System (ADS)

    Lowell, R. P.; Morales Maqueda, M. A.; Banyte, D.; Zhang, L.; Tong, V.; Hobbs, R. W.; Harris, R. N.

    2016-12-01

    A joint geophysical/physical oceanographic investigation of the Costa Rica Ridge as part of the OSCAR (Oceanographic and Seismic Characterization of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge) research program enables us to estimate hydrothermal heat output and its likely link to a sub-axial magma lens (AML). In December 2014, a number of tow-yo casts were made along and near the ridge axis where seismic reflection data collected in 1994 showed the presence of seismic reflector interpreted to be an AML at a depth of about 2800 m below the seafloor. A decline in beam transmission in a ≈ 200 m thick region located approximately 800 to 900 meters above the seafloor indicated the presence of a hydrothermal plume. CTD data collected above the ridge yielded a weighted average buoyancy frequency of approximately 19.3 x 10-8 s-2. Assuming a mean hydrothermal vent temperature of 350°C, buoyant plume theory yields a heat output between 400 and 600 MW. Application of the single-pass modeling approach to the hydrothermal system, yields an estimated mass flow between 210 and 337 kg/s, and the mean product of crustal permeability x discharge area ranges between 6 and 10 x 10-9 m4. A multichannel seismic profile collected in 2015 indicates the presence of a reflector 5 km along-axis and < 100 m wide, in approximately the same location as the 1994 survey, suggesting that magma-driven hydrothermal heat output may have exhibited stability on a decadal time scale. The relatively small size of the inferred AML, when coupled to the heat output estimate and the single-pass model, suggests that the conductive boundary layer at the top the AML is 2m thick and that the AML must be frequently replenished to maintain stable heat output. Assuming the hydrothermal system is driven by magmatic latent heat, a 100 m thick AML could have powered a 100 MW hydrothermal system for 20 years, while inputting 5 x 107 m3 of melt into the axis. These results indicate

  17. Major off-axis hydrothermal activity on the northern Gorda Ridge

    USGS Publications Warehouse

    Rona, Peter A.; Denlinger, Roger P.; Fisk, M. R.; Howard, K. J.; Taghon, G. L.; Klitgord, Kim D.; McClain, James S.; McMurray, G. R.; Wiltshire, J. C.

    1990-01-01

    The first hydrothermal field on the northern Gorda Ridge, the Sea Cliff hydrothermal field, was discovered and geologic controls of hydrothermal activity in the rift valley were investigated on a dive series using the DSV Sea Cliff. The Sea Cliff hydrothermal field was discovered where predicted at the intersection of axis-oblique and axis-parallel faults at the south end of a linear ridge at mid-depth (2700 m) on the east wall. Preliminary mapping and sampling of the field reveal: a setting nested on nearly sediment-free fault blocks 300 m above the rift valley floor 2.6 km from the axis; a spectrum of venting types from seeps to black smokers; high conductive heat flow estimated to be equivalent to the convective flux of multiple black smokers through areas of the sea floor sealed by a caprock of elastic breccia primarily derived from basalt with siliceous cement and barite pore fillings; and a vent biota with Juan de Fuca Ridge affinites. These findings demonstrate the importance of off-axis hydrothermal activity and the role of the intersection of tectonic lineations in controlling hydrothermal sites at sea-floor spreading centers.

  18. Evidence for ancient atmospheric xenon in Archean rocks and implications for the early evolution of the atmosphere

    NASA Astrophysics Data System (ADS)

    Pujol, M.; Marty, B.; Burnard, P.; Hofmann, A.

    2012-12-01

    The initial atmospheric xenon isotopic composition has been much debated over the last 4 decades. A Non radiogenic Earth Atmospheric xenon (NEA-Xe) composition has been proposed to be the best estimate of the initial signature ([1]). NEA-Xe consists of modern atmospheric Xe without fission (131-136Xe) or radioactive decay (129Xe) products. However, the isotope composition of such non-radiogenic xenon is very different to that of potential cosmochemical precursors such as solar or meteoritic Xe, as it is mass-fractionated by up to 3-4 % per amu relative to the potential precursors, and it is also elementally depleted relative to other noble gases. Because the Xe isotopic composition of the Archean appears to be intermediate between that of these cosmochemical end-members and that of the modern atmosphere, we argued that isotopic fractionation of atmospheric xenon did not occur early in Earth's history by hydrodynamic escape, as postulated by all other models ([1], [2], [3]), but instead was a continuous, long term process that lasted during at least the Hadean and Archean eons. Taken at face value, the decrease of the Xe isotopic fractionation from 1.6-2.1 % amu-1 3.5 Ga ago ([4]) to 1 % amu-1 3.0 Ga ago (Ar-Ar age in fluid inclusions trapped in quartz from the same Dresser Formation, [5]) could reflect a secular variation of the atmospheric Xe signature. Nevertheless, up until now, all data showing an isotopic mass fractionation have been measured in rocks and fluids from the same formation (Dresser Formation, Western Australia, aged 3.5 Ga), and have yet to be confirmed in rocks from different locations. In order to better constrain xenon isotopic fractionation of the atmosphere through time, we decided to analyze barites from different ages, geological environments and metamorphism grade. We started this study with barite from the Fig Tree Formation (South Africa, aged 3.26 Ga). This barite was sampled in old mines so have negligible modern exposure time. It is

  19. Detailed magnetic and gravity surveys around the hydrothermal area off Kumejima Island in the Mid-Okinawa Trough, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Kitada, K.; Kasaya, T.; Iwamoto, H.; Nogi, Y.

    2017-12-01

    The Okinawa Trough is an active back-arc basin formed by the rifting associated with extension of the continental margin behind the Ryukyu trench. New hydrothermal sites were recently discovered off Kumejima Island in the Mid-Okinawa Trough and the hydrothermal mineral deposits were identified by seafloor surveys and rock samplings by ROV (e.g., JOGMEC, 2015). In order to characterize the sub-seafloor structures and the spatial distribution of the magmatic activity around the sites, we conducted the dense magnetic, gravity and bathymetric surveys with a line spacing of 0.5 nmi aboard the R/Vs Yokosuka and Kairei, operated by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) in 2016. The geophysical data collected during the previous cruises in the area by JAMSTEC were additionally used for this study. Magnetic anomaly was calculated by subtracting the IGRF model and the magnetization intensity was estimated by the method of Parker and Huestis (1974). Free-air gravity anomaly was calculated with subtracting the normal gravity field and with corrections of the drift and of the Eötvös effect. Bouguer gravity anomaly was calculated based on the method of Parker (1972). The magnetization intensity and the Bouguer gravity anomaly reveal three characteristics of the hydrothermal area off Kumejima Island: 1) The distribution of magnetization around the hydrothermal sites shows two different types of sub-seafloor magnetic features. One is corresponded to the submarine knolls with a relatively high magnetization of 4 A/M. The other is an ENE-WSW trending magnetization distribution with relatively high and low intensities, which is consistent with the trend of the bathymetric lineament. These features are considered to be formed by magmatism associated with submarine volcanoes and back-arc rifting. 2) The reduced magnetization zone corresponding to the hydrothermal area probably attributes to hydrothermal alteration of the host rock. 3) The hydrothermal

  20. Examining Archean methanotrophy

    NASA Astrophysics Data System (ADS)

    Slotznick, Sarah P.; Fischer, Woodward W.

    2016-05-01

    The carbon isotope ratios preserved in sedimentary rocks can be used to fingerprint ancient metabolisms. Organic carbon in Late Archean samples stands out from that of other intervals with unusually low δ13C values (∼-45 to -60‰). It was hypothesized that these light compositions record ecosystem-wide methane cycling and methanotrophy, either of the aerobic or anaerobic variety. To test this idea, we studied the petrography and carbon and oxygen isotope systematics of well-known and spectacular occurrences of shallow water stromatolites from the 2.72 Ga Tumbiana Formation of Western Australia. We examined the carbonate cements and kerogen produced within the stromatolites, because methanotrophy is expected to leave an isotopic fingerprint in these carbon reservoirs. Mathematical modeling of Archean carbonate chemistry further reveals that methanotrophy should still have a discernible signature preserved in the isotopic record, somewhat diminished from those observed in Phanerozoic sedimentary basins due to higher dissolved inorganic carbon concentrations. These stromatolites contain kerogen with δ13Corg values of ∼ - 50 ‰. By microsampling different regions and textures within the stromatolites, we determined that the isotopic compositions of the authigenic calcite cements show a low degree of variation and are nearly identical to values estimated for seawater at this time; the lack of low and variable δ13Ccarb values implies that methanotrophy does not explain the low δ13Corg seen in the coeval kerogen. These observations do not support a methanotrophy hypothesis, but instead hint that the Late Archean may constitute an interval wherein autotrophs employed markedly different biochemical processes of energy conservation and carbon fixation.

  1. Dating of barite and anhydrite in sea-floor hydrothermal deposits in the Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Taisei, F.; Toyoda, S.; Uchida, A.; Ishibashi, J. I.; Totsuka, S.; Shimada, K.; Nakai, S.

    2016-12-01

    Dating of submarine hydrothermal activities has been an important issue in the aspect of the ore formation (Urabe, 1995) and biological systems sustained by the chemical species arising from hydrothermal activities (Macdonald et al., 1980). For this purpose, dating methods using radioactive disequilibrium such as U-Th method (e.g. You and Bickle, 1998) for sulfide, 226Ra-210Pb and 228Ra-228Th (e.g. Noguchi et al., 2011), Ra/Ba, and ESR (Electron Spin Resonance) methods for barite (Okumura et al., 2010) have been employed. In this study, firstly, we will report the first successful dating results on anhydrite using 226Ra-210Pb and 228Ra-228Th methods. The anhydrite samples were taken from the Daiyon-Yonaguni knoll field and the Hatoma knoll field and the Iheya North Knoll field of the Okinawa Trough by research cruises operated by JAMSTEC. The anhydrite crystals were physically scratched out of the samples. 226Ra, 228Ra and daughter nuclei were measured in the same samples for the ESR method by the low background gamma ray spectrometry. From the activity ratios, disequilibrium ages were obtained to be about 7.3 years by 226Ra-210Pb method, and to be 0.6-2.5 years by 228Ra-228Th method. Secondly, the ESR ages of barite taken from hydrothermal areas in the Okinawa trough range from 4.1 to 16000 years, filling the age gap of the maximum age, 150 years, of 226Ra-210Pb method and the minimum age, several thousand years of U-Th method, being the most appropriate age range to discuss the evolution of the hydrothermal systems. Interestingly, the 226Ra-210Pb and 228Ra-228Th ages for the same samples are the same or younger than the ESR ages. As for the latter samples, the reason has already been discussed (Uchida et al., 2015) as the deposits had been formed by two or more hydrothermal events. In the present paper, the disequilibrium and ESR ages will be simulated with these multiple hydrothermal events so that the differences in the ages are explained.

  2. Life and Death of Deep-Sea Vents: Bacterial Diversity and Ecosystem Succession on Inactive Hydrothermal Sulfides

    PubMed Central

    Sylvan, Jason B.; Toner, Brandy M.; Edwards, Katrina J.

    2012-01-01

    ABSTRACT Hydrothermal chimneys are a globally dispersed habitat on the seafloor associated with mid-ocean ridge (MOR) spreading centers. Active, hot, venting sulfide structures from MORs have been examined for microbial diversity and ecology since their discovery in the mid-1970s, and recent work has also begun to explore the microbiology of inactive sulfides—structures that persist for decades to millennia and form moderate to massive deposits at and below the seafloor. Here we used tag pyrosequencing of the V6 region of the 16S rRNA and full-length 16S rRNA sequencing on inactive hydrothermal sulfide chimney samples from 9°N on the East Pacific Rise to learn their bacterial composition, metabolic potential, and succession from venting to nonventing (inactive) regimes. Alpha-, beta-, delta-, and gammaproteobacteria and members of the phylum Bacteroidetes dominate all inactive sulfides. Greater than 26% of the V6 tags obtained are closely related to lineages involved in sulfur, nitrogen, iron, and methane cycling. Epsilonproteobacteria represent <4% of the V6 tags recovered from inactive sulfides and 15% of the full-length clones, despite their high abundance in active chimneys. Members of the phylum Aquificae, which are common in active vents, were absent from both the V6 tags and full-length 16S rRNA data sets. In both analyses, the proportions of alphaproteobacteria, betaproteobacteria, and members of the phylum Bacteroidetes were greater than those found on active hydrothermal sulfides. These shifts in bacterial population structure on inactive chimneys reveal ecological succession following cessation of venting and also imply a potential shift in microbial activity and metabolic guilds on hydrothermal sulfides, the dominant biome that results from seafloor venting. PMID:22275502

  3. Constraints on hydrocarbon and organic acid abundances in hydrothermal fluids at the Von Damm vent field, Mid-Cayman Rise (Invited)

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Seewald, J.; German, C. R.; Sylva, S. P.

    2013-12-01

    The generation of organic compounds in vent fluids has been of interest since the discovery of seafloor hydrothermal systems, due to implications for the sustenance of present-day microbial populations and their potential role in the origin of life on early Earth. Possible sources of organic compounds in hydrothermal systems include microbial production, thermogenic degradation of organic material, and abiotic synthesis. Abiotic organic synthesis reactions may occur during active circulation of seawater-derived fluids through the oceanic crust or within olivine-hosted fluid inclusions containing carbon-rich magmatic volatiles. H2-rich end-member fluids at the Von Damm vent field on the Mid-Cayman Rise, where fluid temperatures reach 226°C, provide an exciting opportunity to examine the extent of abiotic carbon transformations in a highly reducing system. Our results indicate multiple sources of carbon compounds in vent fluids at Von Damm. An ultramafic-influenced hydrothermal system located on the Mount Dent oceanic core complex at 2350 m depth, Von Damm vent fluids contain H2, CH4, and C2+ hydrocarbons in high abundance relative to basalt-hosted vent fields, and in similar abundance to other ultramafic-hosted systems, such as Rainbow and Lost City. The CO2 content and isotopic composition in end-member fluids are virtually identical to bottom seawater, suggesting that seawater DIC is unchanged during hydrothermal circulation of seawater-derived fluids. Accordingly, end-member CH4 that is present in slightly greater abundance than CO2 cannot be generated from reduction of aqueous CO2 during hydrothermal circulation. We postulate that CH4 and C2+ hydrocarbons that are abundantly present in Von Damm vent fluids reflect leaching of fluids from carbon- and H2-rich fluid inclusions hosted in plutonic rocks. Geochemical modeling of carbon speciation in the Von Damm fluids suggests that the relative abundances of CH4, C2+ hydrocarbons, and CO2 are consistent with

  4. Earth's earliest biosphere-a proposal to develop a collection of curated archean geologic reference materials

    NASA Technical Reports Server (NTRS)

    Lindsay, John F.; McKay, David S.; Allen, Carlton C.

    2003-01-01

    The discovery of evidence indicative of life in a Martian meteorite has led to an increase in interest in astrobiology. As a result of this discovery, and the ensuing controversy, it has become apparent that our knowledge of the early development of life on Earth is limited. Archean stratigraphic successions containing evidence of Earth's early biosphere are well preserved in the Pilbara Craton of Western Australia. The craton includes part of a protocontinent consisting of granitoid complexes that were emplaced into, and overlain by, a 3.51-2.94 Ga volcanigenic carapace - the Pilbara Supergroup. The craton is overlain by younger supracrustal basins that form a time series recording Earth history from approximately 2.8 Ga to approximately 1.9 Ga. It is proposed that a well-documented suite of these ancient rocks be collected as reference material for Archean and astrobiological research. All samples would be collected in a well-defined geological context in order to build a framework to test models for the early evolution of life on Earth and to develop protocols for the search for life on other planets.

  5. High-resolution bathymetry as a primary exploration tool for seafloor massive sulfide deposits - lessons learned from exploration on the Mid-Atlantic and Juan de Fuca Ridges, and northern Lau Basin

    NASA Astrophysics Data System (ADS)

    Jamieson, J. W.; Clague, D. A.; Petersen, S.; Yeo, I. A.; Escartin, J.; Kwasnitschka, T.

    2016-12-01

    High-resolution, autonomous underwater vehicle (AUV)-derived multibeam bathymetry is increasingly being used as an exploration tool for delineating the size and extent of hydrothermal vent fields and associated seafloor massive sulfide deposits. However, because of the limited amount of seafloor that can be surveyed during a single dive, and the challenges associated with distinguishing hydrothermal chimneys and mounds from other volcanic and tectonic features using solely bathymetric data, AUV mapping surveys have largely been employed as a secondary exploration tool once hydrothermal sites have been discovered using other exploration methods such as plume, self-potential and TV surveys, or ROV and submersible dives. Visual ground-truthing is often required to attain an acceptable level of confidence in the hydrothermal origin of features identified in AUV-derived bathymetry. Here, we present examples of high-resolution bathymetric surveys of vent fields from a variety of tectonic environments, including slow- and intermediate-rate mid-ocean ridges, oceanic core complexes and back arc basins. Results illustrate the diversity of sulfide deposit morphologies, and the challenges associated with identifying hydrothermal features in different tectonic environments. We present a developing set of criteria that can be used to distinguish hydrothermal deposits in bathymetric data, and how AUV surveys can be used either on their own or in conjunction with other exploration techniques as a primary exploration tool.

  6. Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount

    NASA Astrophysics Data System (ADS)

    Rouxel, Olivier; Toner, Brandy; Germain, Yoan; Glazer, Brian

    2018-01-01

    isotopically heavy Fe-oxides rather than by the activity of dissimilatory Fe reduction in the subsurface. Overall, Fe-isotope compositions of microbial mats at Loihi Seamount display a remarkable range between -1.2‰ and +1.6‰ which indicate that Fe isotope compositions of hydrothermal Fe-oxide precipitates are particularly sensitive to local environmental conditions where they form, and are less sensitive to abiotic versus biotic origins. It follows that FeOx deposits at Loihi Seamount provides important modern analogues for ancient seafloor Fe-rich deposits allowing for testing hypotheses about the biogeochemical cycling of Fe isotopes on early Earth.

  7. SEAFLOOR MANIFESTATIONS OF GAS VENTING AND NEAR SEAFLOOR GAS HYDRATE OCCURRENCES

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Ussler, W.; Caress, D. W.; Thomas, H.; Lundsten, E.; Riedel, M.; Lapham, L.

    2009-12-01

    High-resolution multibeam bathymetry and chirp seismic profiles collected with an AUV complimented by ROV observations and sampling reveal the fine scale geomorphology and seafloor structures associated with gas venting and/or near subsurface gas hydrate accumulations along the Pacific North American continental margin. Sites from Santa Monica Basin, northern and southern Hydrate Ridge, Barkley Canyon, Bullseye Vent and three previously unexplored vent sites near Bullseye Vent have been recently investigated. The new AUV data allow the identification of features and seafloor textures that were previously undetected and reveal the impact of gas venting, gas hydrate development and related phenomena on the seafloor morphology. Distinct geomorphic characteristics are interpreted to represent different stages in the development and evolution of the seafloor in these areas. The more mature features include distinct (>10 m high) elevated features (e.g., Santa Monica Mounds and the Hydrate Ridge Pinnacle), widespread areas where methane-derived carbonates are exposed on the surrounding seafloor (e.g., both Hydrate Ridge sites, and an unnamed ridge north of Bullseye Vent), circular seafloor craters with diameters of 3 to 50 m that appear to be associated with missing sections of the original seafloor (e.g., Bullseye Vent, northern Hydrate Ridge, and an unnamed ridge north of Bullseye Vent). Smaller mound-like features (<10 m in diameter and 1-3 m higher than the surrounding seafloor occur at Barkley Canyon and a newly explored vent system called Spinnaker Vent 6 km NW of Bullseye vent. Solid lens of gas hydrate are occasionally exposed along fractures on the sides of these mounds and suggest that these are push-up features associated with gas hydrate growth within the near seafloor sediments. The existence of both extensive methane-derived carbonates and chemosynthetic biological communities characterized by Vesicomya clams and Lamellibrachia tubeworms (which are slow

  8. Age, compositional, and isotopic evidence for crustal recycling in a Late Archean arc, Beartooth Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooden, J.L.; Mueller, P.A.; Graves, M.A.

    1985-01-01

    Late Archean rocks of the eastern Beartooth Mountains range in composition from basaltic andesite to granite and were emplaced 2.73-2.80 Ga ago in a middle to early Archean terrane as indicated by U-Pb zircon studies. Although trace element abundances are extremely variable for this group of rocks, their initial Pb, Sr, and Nd isotopic compositions are remarkably homogenous. A composite Rb-Sr isochron (>30 samples) yield an age of 2.79/plus minus/0.04 Ga with an initial ratio of 0.7022/plus minus/2 while /epsilon/Nd 2.78 Ga ago ranges from -1.5 to -3.1 (av. -2.2). Whole-rock Pb data for these rocks scatter about a 2.75more » Ga isochron and feldspar Pb data suggest initial 206/204 = 13.88, 207/204 = 14.96, and 208/204 = 34.3. These values lie well above values for average crustal leads 2.78 Ga ago as modeled by Stacey and Kramer (1975) and would require development in a reservior with /mu/= 12 from 3.7-2.8 Ga (/mu/= 7.2, 4.5-3.7 Ga). The marked differences between these values and those of the late Archean mantle require that an early to middle Archean crust played a role in the genesis of these rocks. The compositional variety and isotopic homogeneity may have developed as the result of crust-mantle mixing similar to that observed in modern volcanic-plutonic arcs along continental margins where crustal materials can be subducted, and fluids derived from these materials added to the overlying mantle wedge and lower crust. During this period, contaminated mantle may have been generated on a regional scale as evidenced by the isotopic systematics of young mafic volcanics from the northwestern U.S. (e.g. Snake River Plain, Yellowstone, Columbia River).« less

  9. Seafloor doming driven by degassing processes unveils sprouting volcanism in coastal areas.

    PubMed

    Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Chiodini, Giovanni; Caliro, Stefano; Sacchi, Marco; Rizzo, Andrea Luca; Ventura, Guido

    2016-03-01

    We report evidences of active seabed doming and gas discharge few kilometers offshore from the Naples harbor (Italy). Pockmarks, mounds, and craters characterize the seabed. These morphologies represent the top of shallow crustal structures including pagodas, faults and folds affecting the present-day seabed. They record upraise, pressurization, and release of He and CO2 from mantle melts and decarbonation reactions of crustal rocks. These gases are likely similar to those that feed the hydrothermal systems of the Ischia, Campi Flegrei and Somma-Vesuvius active volcanoes, suggesting the occurrence of a mantle source variously mixed to crustal fluids beneath the Gulf of Naples. The seafloor swelling and breaching by gas upraising and pressurization processes require overpressures in the order of 2-3 MPa. Seabed doming, faulting, and gas discharge are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions.

  10. Seafloor doming driven by degassing processes unveils sprouting volcanism in coastal areas

    PubMed Central

    Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Chiodini, Giovanni; Caliro, Stefano; Sacchi, Marco; Rizzo, Andrea Luca; Ventura, Guido

    2016-01-01

    We report evidences of active seabed doming and gas discharge few kilometers offshore from the Naples harbor (Italy). Pockmarks, mounds, and craters characterize the seabed. These morphologies represent the top of shallow crustal structures including pagodas, faults and folds affecting the present-day seabed. They record upraise, pressurization, and release of He and CO2 from mantle melts and decarbonation reactions of crustal rocks. These gases are likely similar to those that feed the hydrothermal systems of the Ischia, Campi Flegrei and Somma-Vesuvius active volcanoes, suggesting the occurrence of a mantle source variously mixed to crustal fluids beneath the Gulf of Naples. The seafloor swelling and breaching by gas upraising and pressurization processes require overpressures in the order of 2–3 MPa. Seabed doming, faulting, and gas discharge are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions. PMID:26925957

  11. Seismic signatures of up- and down-going hydrothermal pathways along the East Pacific Rise 9ºN

    NASA Astrophysics Data System (ADS)

    Marjanovic, M.; Fuji, N.; Singh, S. C.; Belahi, T.

    2016-12-01

    Hydrothermal circulation along divergent plate boundaries plays an important role in the transfer of heat between Earth's lithosphere and deep ocean, evidenced by the presence of hydrothermal vents on the seafloor. Although the spatial distribution of different types of vents or fluid discharge zones is well documented, the distribution of fluid recharge zones and its flow pattern within the oceanic crust are still elusive. Here, we apply seismic elastic full waveform inversion techniques to extrapolated high-fidelity 2D along-axis seismic data collected in 2008 to characterise the nature of zero-age upper crust formed at the East Pacific Rise (EPR) within 9º15-57'N. The resulting velocity model shows prominent perturbation in background velocity in the northern part of the profile, where prolific hydrothermal and volcanic activities have been observed. This, 22 km wide region is represented by five low velocity anomalies (for 300 m/s lower) that are 3 km wide and can be tracked to up to 1 km below the seafloor. Two of the low velocity zones seem to underlay vent clusters centered at 9º47' and 9º50' that we relate to the presence of up-going pathways of the fluid. The three remaining low velocity zones (centered at 9º44', 9º48.5', 9º51') are more prominent and their extent roughly coincides with the previously identified fine-scale tectonic discontinuities. The results suggest these deviations of axial orientation observed in the seafloor, coupled with upper crustal fracturing that can be sustained for several 100s of years as ideal locations for seawater to penetrate more permeable crust on the ridge-axis and establish down-going pathway of hydrothermal flow. Similar scenario was suggested by micro-earthquakes within one small portion of the region during the last eruption. The presence of a strong axial melt lens and associated anomalous velocity zone indicate enhanced thermal regime within the area responsible for establishing and sustaining hydrothermal

  12. Some examples of deep structure of the Archean from geophysics

    NASA Technical Reports Server (NTRS)

    Smithson, S. B.; Johnson, R. A.; Pierson, W. R.

    1986-01-01

    The development of Archean crust remains as one of the significant problems in earth science, and a major unknown concerning Archean terrains is the nature of the deep crust. The character of crust beneath granulite terrains is especially fascinating because granulites are generally interpreted to represent a deep crustal section. Magnetic data from this area can be best modeled with a magnetized wedge of older Archean rocks (granulitic gneisses) underlying the younger Archean greenstone terrain. The dip of the boundary based on magnetic modeling is the same as the dip of the postulated thrust-fault reflection. Thus several lines of evidence indicate that the younger Archean greenstone belt terrain is thrust above the ancient Minnesota Valley gneiss terrain, presumably as the greenstone belt was accreted to the gneiss terrain, so that the dipping reflection represents a suture zone. Seismic data from underneath the granulite-facies Minnesota gneiss terrain shows abundant reflections between 3 and 6 s, or about 9 to 20 km. These are arcuate or dipping multicyclic events indicative of layering.

  13. Lithium isotopic systematics of submarine vent fluids from arc and back-arc hydrothermal systems in the western Pacific

    NASA Astrophysics Data System (ADS)

    Araoka, Daisuke; Nishio, Yoshiro; Gamo, Toshitaka; Yamaoka, Kyoko; Kawahata, Hodaka

    2016-10-01

    The Li concentration and isotopic composition (δ7Li) in submarine vent fluids are important for oceanic Li budget and potentially useful for investigating hydrothermal systems deep under the seafloor because hydrothermal vent fluids are highly enriched in Li relative to seawater. Although Li isotopic geochemistry has been studied at mid-ocean-ridge (MOR) hydrothermal sites, in arc and back-arc settings Li isotopic composition has not been systematically investigated. Here we determined the δ7Li and 87Sr/86Sr values of 11 end-member fluids from 5 arc and back-arc hydrothermal systems in the western Pacific and examined Li behavior during high-temperature water-rock interactions in different geological settings. In sediment-starved hydrothermal systems (Manus Basin, Izu-Bonin Arc, Mariana Trough, and North Fiji Basin), the Li concentrations (0.23-1.30 mmol/kg) and δ7Li values (+4.3‰ to +7.2‰) of the end-member fluids are explained mainly by dissolution-precipitation model during high-temperature seawater-rock interactions at steady state. Low Li concentrations are attributable to temperature-related apportioning of Li in rock into the fluid phase and phase separation process. Small variation in Li among MOR sites is probably caused by low-temperature alteration process by diffusive hydrothermal fluids under the seafloor. In contrast, the highest Li concentrations (3.40-5.98 mmol/kg) and lowest δ7Li values (+1.6‰ to +2.4‰) of end-member fluids from the Okinawa Trough demonstrate that the Li is predominantly derived from marine sediments. The variation of Li in sediment-hosted sites can be explained by the differences in degree of hydrothermal fluid-sediment interactions associated with the thickness of the marine sediment overlying these hydrothermal sites.

  14. Monitoring Endeavour vent field deep-sea ecosystem dynamics through NEPTUNE Canada seafloor observatory

    NASA Astrophysics Data System (ADS)

    Matabos, M.; NC Endeavour Science Team

    2010-12-01

    Mid-ocean ridges are dynamic systems where the complex linkages between geological, biological, chemical, and physical processes are not yet well understood. Indeed, the poor accessibility to the marine environment has greatly limited our understanding of deep-sea ecosystems. Undersea cabled observatories offer the power and bandwidth required to conduct long-term and high-resolution time-series observations of the seafloor. Investigations of mid-ocean ridge hydrothermal ecosystem require interdisciplinary studies to better understand the dynamics of vent communities and the physico-chemical forces that influence them. NEPTUNE Canada (NC) regional observatory is located in the Northeast Pacific, off Vancouver Island (BC, Canada), and spans ecological environments from the beach to the abyss. In September-October 2010, NC will be instrumenting its 5th node, including deployment of a multi-disciplinary suite of instruments in two vent fields on the Endeavour Segment of the Juan de Fuca Ridge. These include a digital camera, an imaging sonar for vent plumes and flow characteristics (i.e. COVIS), temperature resistivity probes, a water sampler and seismometers. In 2011, the TEMPO-mini, a new custom-designed camera and sensor package created by IFREMER for real-time monitoring of hydrothermal faunal assemblages and their ecosystems (Sarrazin et al. 2007), and a microbial incubator, will added to the network in the Main Endeavour and Mothra vent fields. This multidisciplinary approach will involve a scientific community from different institutions and countries. Significant experience aids in this installation. For example, video systems connected to VENUS and NC have led to the development of new experimental protocols for time-series observations using seafloor cameras, including sampling design, camera calibration and image analysis methodologies (see communication by Aron et al. and Robert et al.). Similarly, autonomous deployment of many of the planned instruments

  15. Laboratory simulation of hydrothermal petroleum formation from sediment in Escanaba Trough, offshore from northern California

    USGS Publications Warehouse

    Kvenvolden, K.A.; Rapp, J.B.; Hostettler, F.D.; Rosenbauer, R.J.

    1994-01-01

    Petroleum associated with sulfide-rich sediment is present in Escanaba Trough at the southern end of the Gorda Ridge spreading axis offshore from northern California within the Exclusive Economic Zone (EEZ) of the U.S. This location and occurrence are important for evaluation of the mineral and energy resource potential of the seafloor under U.S. jurisdiction. In Escanaba Trough, petroleum is believed to be formed by hydrothermal processes acting on mainly terrigenous organic material in Quaternary, river-derived sediment. To attempt to simulate these processes in the laboratory, portions of a Pleistocene gray-green mud, obtained from ??? 1.5 m below the seafloor at a water depth of ??? 3250 m in Escanaba Trough, were heated in the presence of water in four hydrous-pyrolysis experiments conducted at temperatures ranging from 250 to 350??C and at a pressure of 350 bar for 1.0-4.5 days. Distributions of n-alkanes, isoprenoid hydrocarbons, triterpanes, and steranes in the heated samples were compared with those in a sample of hydrothermal petroleum from the same area. Mud samples heated for less than 4.5 days at less than 350??C show changes in some, but not all, molecular marker ratios of organic compounds that are consistent with those expected during hydrothermal petroleum formation. Our results suggest that the organic matter in this type of sediment serves as one possible source for some of the compounds found in the hydrothermal petroleum. ?? 1994.

  16. ESR dating of barite in sea-floor hydrothermal sulfide deposits at Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Toyoda, S.; Uchida, A.; Ishibashi, J.; Nakai, S.; Takamasa, A.

    2013-12-01

    The temporal change of submarine hydrothermal activities has been an important issue in the aspect of the evolution of hydrothermal systems which is related with ore formation and biological systems sustained by the chemical species arising from hydrothermal activities (Macdonald et al., 1980). With this aspect, Okumura et al. (2010) made the first practical application of ESR (electron spin resonance) dating technique to a sample of submarine hydrothermal barite to obtain preliminary ages, while Kasuya et al. (1991) first pointed out that barite can be used for ESR dating. ESR is a method to observe radicals having unpaired electrons. As natural radiation creates unpaired electrons in minerals, the age is deduced by dividing the natural radiation dose (obtained from the amount of unpaired electrons) by the dose rate which is estimated by the amount of environmental radioactive elements. The samples were taken by the research cruises, NT12-10 and NT11-20 and NT12-06 operated by JAMSTEC from Hatoma, Yoron, Izena, North Iheya, and Yonaguni IV Knolls of Okinawa Trough. The blocks of sulfide deposits were cut into pieces, and about 2.0g was crushed. The samples were soaked in 12M hydrochloric acid, left for approximately 24 hours. Then, 13M nitric acid was added. Finally, after rinsing in distilled water, the sample was filtered and dried. Impurities were removed by handpicking. A X-ray diffraction study was made to confirm that the grains are pure barite. After γ-ray irradiation at Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, they were measured at room temperature with an ESR spectrometer (JES-PX2300) with a microwave power of 1mW, and the magnetic field modulation amplitude of 0.1mT. The equivalent natural radiation doses were obtained from the increase of ESR signal intensity of SO3- by irradiation. The bulk Ra concentration was measured by the low background pure Ge gamma ray spectrometer. Assuming that Ra is populated only in barite

  17. Numerical Modeling of Hydrothermal Circulation at the Longqi-1 Field: Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Lowell, R. P.; Tao, C.; Rupke, L.; Lewis, K. C.

    2017-12-01

    The Longqi-1(Dragon Flag) hydrothermal field is the first high-temperature hydrothermal system observed on the ultra-slow spreading Southwest Indian Ridge. Hydrothermal vents with temperatures near 380 °C are localized by detachment faulting within which extensional deformation likely increases permeability to provide preferred pathways for hydrothermal discharge. To better understand the Longqi-1 circulation system, we construct a 2-D numerical simulations in a NaCl- H2O fluid constrained by key observational data, such as vent temperature and heat output, crust structure derived from seismic data, and fault zone geometry deduced from seismicity. Heat output from AUV surveys is estimated to be » 300 ± 100 MW, and this value, in conjunction with vent temperature was used with the single-pass modeling approach to obtain an average permeability of 10-13 m-2 within the fault zone. In analogy with other fault-controlled hydrothermal systems such as Logatchev-1 we assume a lower background permeability of 10-14 m-2. The top boundary of the system is permeable and maintained at constant seafloor pressure, which is divided into two parts by the detachment fault. The pressure of the southern part is lower than the northern part to simulate the effect of the seafloor topography. The top boundary is upstream weighted to allow high temperature fluid to exit, while recharging fluid is maintained at 10°C. The bottom boundary is impermeable and is given a fixed temperature distribution at a depth of 7 km below the seafloor. The highest value Tmax is maintained over a distance given lateral distance and decreases linearly towards two ends to 300 °C. The salinity is set to 3.2 wt. % NaCl, and the simulations are assumed to be single phase. The results show that with a 7 km deep circulation system, Tmax = 550 oC gives a reasonable temperature and heat output of venting plume.We infer that the observed high salinity results from serpentinization reactions. Assuming all salinity

  18. Geological and Chemical Factors that Impacted the Biological Utilization of Cobalt in the Archean Eon

    NASA Astrophysics Data System (ADS)

    Moore, Eli K.; Hao, Jihua; Prabhu, Anirudh; Zhong, Hao; Jelen, Ben I.; Meyer, Mike; Hazen, Robert M.; Falkowski, Paul G.

    2018-03-01

    The geosphere and biosphere coevolved and influenced Earth's biological and mineralogical diversity. Changing redox conditions influenced the availability of different transition metals, which are essential components in the active sites of oxidoreductases, proteins that catalyze electron transfer reactions across the tree of life. Despite its relatively low abundance in the environment, cobalt (Co) is a unique metal in biology due to its importance to a wide range of organisms as the metal center of vitamin B12 (aka cobalamin, Cbl). Cbl is vital to multiple methyltransferase enzymes involved in energetically favorable metabolic pathways. It is unclear how Co availability is linked to mineral evolution and weathering processes. Here we examine important biological functions of Co, as well as chemical and geological factors that may have influenced the utilization of Co early in the evolution of life. Only 66 natural minerals are known to contain Co as an essential element. However, Co is incorporated as a minor element in abundant rock-forming minerals, potentially representing a reliable source of Co as a trace element in marine systems due to weathering processes. We developed a mineral weathering model that indicates that dissolved Co was potentially more bioavailable in the Archean ocean under low S conditions than it is today. Mineral weathering, redox chemistry, Co complexation with nitrogen-containing organics, and hydrothermal environments were crucial in the incorporation of Co in primitive metabolic pathways. These chemical and geological characteristics of Co can inform the biological utilization of other trace metals in early forms of life.

  19. Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons

    NASA Technical Reports Server (NTRS)

    Head, James W.; Hurwitz,D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil

    2008-01-01

    The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by insight from the Archean record of the Earth, to gain new insight into the evolution of Venus and Earth's Archean. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and the surface of Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. Elsewhere we have addressed the nature of the Earth's Archean, the similarities to and differences from Venus, and the specific Venus and Earth-Archean problems on which progress might be made through comparison. Here we present the major goals of the Venus-Archean comparison and show how preliminary mapping of the geology of the V-2 Fortuna Tessera quadrangle is providing insight on these problems. We have identified five key themes and questions common to both the Archean and Venus, the assessment of which could provide important new insights into the history and processes of both planets.

  20. Simulating Electrochemistry of Hydrothermal Vents on Enceladus and Other Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Barge, L. M.; Krause, F. C.; Jones, J. P.; Billings, K.; Sobron, P.

    2017-12-01

    Gradients generated in hydrothermal systems provide a significant source of free energy for chemosynthetic life, and may play a role in present-day habitability on ocean worlds such as Enceladus that are thought to host hydrothermal activity. Hydrothermal vents are similar in some ways to typical fuel cell devices: redox/pH gradients between seawater and hydrothermal fluid are analogous to the oxidant and fuel reservoirs; conductive natural mineral deposits are analogous to electrodes; and, in hydrothermal chimneys, the porous chimney wall can function as a separator or ion-exchange membrane. Electrochemistry, founded on quantitative study of redox and other chemical disequilibria as well as the chemistry of interfaces, is uniquely suited to studying these systems. We have performed electrochemical studies to better understand the catalytic potential of seafloor minerals and vent chimneys, using samples from a black smoker vent chimney as an initial demonstration. Fuel cell experiments with electrodes made from black smoker chimney material accurately simulated the redox reactions that occur in a geological setting with this particular catalyst. Similar methods with other geo-catalysts (natural or synthetic) could be utilized to test which redox reactions or metabolisms could be driven in other hydrothermal systems, including putative vent systems on other worlds.

  1. Paleobiological Perspectives on Early Microbial Evolution

    PubMed Central

    Knoll, Andrew H.

    2015-01-01

    Microfossils, stromatolites, and chemical biosignatures indicate that Earth became a biological planet more than 3.5 billion years ago, making most of life's history microbial. Proterozoic rocks preserve a rich record of cyanobacteria, including derived forms that differentiate multiple cell types. Stromatolites, in turn, show that microbial communities covered the seafloor from tidal flats to the base of the photic zone. The Archean record is more challenging to interpret, particularly on the question of cyanobacterial antiquity, which remains to be resolved. In the late Neoproterozoic Era, increasing oxygen and radiating eukaryotes altered the biosphere, with planktonic algae gaining ecological prominence in the water column, whereas seaweeds and, eventually, animals spread across shallow seafloors. From a microbial perspective, however, animals, algae, and, later, plants simply provided new opportunities for diversification, and, to this day, microbial metabolisms remain the only essential components of biogeochemical cycles. PMID:26134315

  2. Archean metamorphic sequence and surfaces, Kangerdlugssuaq Fjord, East Greenland

    NASA Technical Reports Server (NTRS)

    Kays, M. A.

    1986-01-01

    The characteristics of Archean metamorphic surfaces and fabrics of a mapped sequence of rocks older than about 3000 Ma provide information basic to an understanding of the structural evolution and metamorphic history in Kangerdlugssuaq Fjord, east Greenland. This information and the additional results of petrologic and geochemical studies have culminated in an extended chronology of Archean plutonic, metamorphic, and tectonic events. The basis for the chronology is considered, especially the nature of the metamorphic fabrics and surfaces in the Archean sequence. The surfaces, which are planar mineral parageneses, may prove to be mappable outside Kangerdlugssuaq Fjord, and if so, will be helpful in extending the events that they represent to other Archean sequences in east Greenland. The surfaces will become especially important reference planes if the absolute ages of their metamorphic assemblages can be determined in at least one location where strain was low subsequent to their recrystallization. Once an isochron is obtained, the dynamothermal age of the regionally identifiable metamorphic surface is determined everywhere it can be mapped.

  3. Constraining mechanisms of quartz precipitation in the Archean ocean using silicon isotopes

    NASA Astrophysics Data System (ADS)

    Brengman, L. A.; Fedo, C.; Martin, W.

    2017-12-01

    To constrain reservoir values for the Archean silica cycle we measured silicon isotope compositions (δ30Si) of 28 igneous, siliciclastic sedimentary, hydrothermal, and chemical sedimentary rock samples from three Archean greenstone belts representing different times (>3.7 - 2.7 Ga) and tectonic regimes. We posit that silicon isotope compositions of quartz (746 analyses measured in situ by secondary ion mass spectrometry at the NORDSIM facility) are linked to changes in key geochemical parameters that vary within local depositional environments, coupled with a dependency on size and δ30Si composition of the source reservoir. Collectively, siliceous precipitates from even a single basin span a 7‰ range in δ30Si values. Such heterogeneity, regardless of basinal position or presence of Fe-phases demonstrates that δ30Si values of chemical sediments are linked to neither a well-mixed water column representative of a single ocean composition, nor a specific time in Earth history. Combining data from all three greenstone belts we discern that all measured Algoma-type iron formation (IF) and about 50% of associated chert samples possess δ30Si values <0‰, while the majority of silicified volcanic rocks and the remaining 50% of chert samples have δ30Si values >0‰. Negative values of Algoma-type IF can be explained by rate-dependent fractionation during precipitation and/or adsorption to Fe/Al. Combined experimental and natural data for quartz precipitates suggest slow precipitation rates coupled with closed system, Rayleigh type distillation could produce the isotopically heavy values. Such results suggest the quartz-precipitating fluid for these rocks evolves from an open system in disequilibrium, to one that is closed, and in equilibrium with the host rock. In contrast to the static range of values through time for Algoma-type IF, associated cherts and silicified rocks, compiled data for Superior-type IF from 3 - 1.8 Ga record a systematic increasing trend from

  4. Petrogenesis of calcic plagioclase megacrysts in Archean rocks

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Morrison, D. A.

    1986-01-01

    Anorthositic complexes with large equidimensional plagioclase grains of highly calcic composition occur in nearly all Archean cratons. Similar plagioclase occur as megacrysts in many Archean sills, dikes, and volcanic flows. In the Canadian Shield these units occur throughout the Archean portions of the entire shield and are particularly common as dikes over an area of a few 100,000 sq km in Ontario and Manitoba during a period of at least 100 m.y. in many different rock types and metamorphic grades. The plagioclase generally occurs in three modes: as inclusions in mafic intrusions at various stages of fractionation, as crystal segregations in anorthosite complexes, or as megacrysts in fractionated sills, dikes, and flows. Most occurrences suggest that the plagioclase was formed elsewhere before being transported to its present location. The evidence seems to be quite clear that occurrences of these types of calcic plagioclase require: (1) ponding of a relatively undifferentiated Archean tholeiitic melt at some depth; (2) isothermal crystallization of large, equidimensional homogeneous plagioclase crystals; (3) separation of the plagioclase crystals from any other crystalline phases; (4) further fractionation of melt; (5)transport of various combinations of individual plagioclase crystals and clusters of crystals by variously fractionated melts; and (6) emplacement as various types of igneous intrusions or flows.

  5. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field.

    PubMed

    Singh, Satish C; Crawford, Wayne C; Carton, Hélène; Seher, Tim; Combier, Violaine; Cannat, Mathilde; Pablo Canales, Juan; Düsünür, Doga; Escartin, Javier; Miranda, J Miguel

    2006-08-31

    Crust at slow-spreading ridges is formed by a combination of magmatic and tectonic processes, with magmatic accretion possibly involving short-lived crustal magma chambers. The reflections of seismic waves from crustal magma chambers have been observed beneath intermediate and fast-spreading centres, but it has been difficult to image such magma chambers beneath slow-spreading centres, owing to rough seafloor topography and associated seafloor scattering. In the absence of any images of magma chambers or of subsurface near-axis faults, it has been difficult to characterize the interplay of magmatic and tectonic processes in crustal accretion and hydrothermal circulation at slow-spreading ridges. Here we report the presence of a crustal magma chamber beneath the slow-spreading Lucky Strike segment of the Mid-Atlantic Ridge. The reflection from the top of the magma chamber, centred beneath the Lucky Strike volcano and hydrothermal field, is approximately 3 km beneath the sea floor, 3-4 km wide and extends up to 7 km along-axis. We suggest that this magma chamber provides the heat for the active hydrothermal vent field above it. We also observe axial valley bounding faults that seem to penetrate down to the magma chamber depth as well as a set of inward-dipping faults cutting through the volcanic edifice, suggesting continuous interactions between tectonic and magmatic processes.

  6. Synthesis of hydrogen cyanide under simulated hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Pinedo-González, Paulina

    have been conducted with pyrite and quantified by headspace-gas chromatography-mass spectrometry. These results indicate that catalysis induced by the mineral surface under hydrothermal conditions does not stop with the production of HCN, but the reaction continues leading to more complex nitriles. The experiments also reveal a clear trend between time and the production of more complex molecules, which are measurable by the chromatographic method. Brandes, J.A., Boctor, N.Z., Cody, G.D., Cooper, B. A., Hazen, R. M. and Yoder Jr, H.S. (1998). Abiotic nitrogen reduction on the early Earth. Nature 395, 365-367. Kasting J.F. (1993) Earth's early atmosphere. Science 259, 920-926. Mather, T.A., Pyle, D.M., and Allen, A.G. (2004) Volcanic source of fixed nitrogen in the early Earth's atmosphere. Geology 32, 905-908. Navarro-Gonźlez, R., Molina, M.J. and. Molina, L.T. (1998) Nitrogen fixation by volcanic a lightning in the early Earth. Geophys. Res. Lett. 25, 3123-3126. Navarro-Gonźlez, R., McKay, C.P. and Nna Mvondo, D. ( 2001) A possible nitrogen crisis for a Archean life due to reduced nitrogen fixation by lightning. Nature 412, 61-64. Stribling, R., and Miller, S.L. (1987) Energy yields for the hydrogen cyanide and formaldehyde synthesis: the HCN and amino acid concentrations in the primitive ocean. Origins Life 17, 261-273.

  7. An investigation of the Archean climate using the NCAR CCm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, G.S.

    1991-01-01

    The Archean (2.5 to 3.8 billion years ago) is of interest climatically, because of the 'Faint-Young Sun Paradox', which can be characterized by the Sun's reduced energy output. This lower energy output leads to a frozen planet if the climate existed as it does today. But, the geologic record shows that water was flowing at the earth's surface 3.8 billion years ago. Energy Balance Models (EBMs) and one-dimensional radiative-convective (1DRC) models predict a frozen planet for this time period, unless large carbon dioxide (CO2) concentrations exist in the Archean atmosphere. The goal is to explore the Archean climate with themore » National Center for Atmospheric Research (NCAR), Community Climate Model (CCM). The search for negative feedbacks to explain the 'Faint-Young Sun Paradox' is the thrust of this study. This study undertakes a series of sensitivity simulations which first explores individual factors that may be important for the Archean. They include rotation rate, lower solar luminosity, and land fraction. Then, these climatic factors along with higher CO2 concentrations are combined into a set of experiments. A faster rotation rate may have existed in the Archean. The faster rotation rate simulations show warmer globally averaged surface temperatures that are caused by a 20 percent decrease in the total cloud fraction. The smaller cloud fraction is brought about by dynamical changes. A global ocean is a possibility for the Archean. A global ocean simulation predicts 4 K increase in global mean surface temperatures compared to the present-day climate control.« less

  8. Cameras on the NEPTUNE Canada seafloor observatory: Towards monitoring hydrothermal vent ecosystem dynamics

    NASA Astrophysics Data System (ADS)

    Robert, K.; Matabos, M.; Sarrazin, J.; Sarradin, P.; Lee, R. W.; Juniper, K.

    2010-12-01

    Hydrothermal vent environments are among the most dynamic benthic habitats in the ocean. The relative roles of physical and biological factors in shaping vent community structure remain unclear. Undersea cabled observatories offer the power and bandwidth required for high-resolution, time-series study of the dynamics of vent communities and the physico-chemical forces that influence them. The NEPTUNE Canada cabled instrument array at the Endeavour hydrothermal vents provides a unique laboratory for researchers to conduct long-term, integrated studies of hydrothermal vent ecosystem dynamics in relation to environmental variability. Beginning in September-October 2010, NEPTUNE Canada (NC) will be deploying a multi-disciplinary suite of instruments on the Endeavour Segment of the Juan de Fuca Ridge. Two camera and sensor systems will be used to study ecosystem dynamics in relation to hydrothermal discharge. These studies will make use of new experimental protocols for time-series observations that we have been developing since 2008 at other observatory sites connected to the VENUS and NC networks. These protocols include sampling design, camera calibration (i.e. structure, position, light, settings) and image analysis methodologies (see communication by Aron et al.). The camera systems to be deployed in the Main Endeavour vent field include a Sidus high definition video camera (2010) and the TEMPO-mini system (2011), designed by IFREMER (France). Real-time data from three sensors (O2, dissolved Fe, temperature) integrated with the TEMPO-mini system will enhance interpretation of imagery. For the first year of observations, a suite of internally recording temperature probes will be strategically placed in the field of view of the Sidus camera. These installations aim at monitoring variations in vent community structure and dynamics (species composition and abundances, interactions within and among species) in response to changes in environmental conditions at different

  9. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    DOE Data Explorer

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  10. Diffuse versus discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E. L.; Escartin, J.; Gracias, N.; Olive, J. L.; Barreyre, T.; Davaille, A. B.; Cannat, M.

    2010-12-01

    Two styles of fluid flow at the seafloor are widely recognized: (1) localized outflows of high temperature (>300°C) fluids, often black or grey color in color (“black smokers”) and (2) diffuse, lower temperature (<100°C), fluids typically transparent and which escape through fractures, porous rock, and sediment. The partitioning of heat flux between these two types of hydrothermal venting is debated and estimates of the proportion of heat carried by diffuse flow at ridge axes range from 20% to 90% of the total axial heat flux. Here, we attempt to improve estimates of this partitioning by carefully characterizing the heat fluxes carried by diffuse and discrete flows at a single vent site, Tour Eiffel in the Lucky Strike hydrothermal field along the Mid-Atlantic Ridge. Fluid temperature and video data were acquired during the recent Bathyluck’09 cruise to the Lucky Strike hydrothermal field (September, 2009) by Victor aboard “Pourquoi Pas?” (IFREMER, France). Temperature measurements were made of fluid exiting discrete vents, of diffuse effluents immediately above the seafloor, and of vertical temperature gradients within discrete hydrothermal plumes. Video data allow us to calculate the fluid velocity field associated with these outflows: for diffuse fluids, Diffuse Flow Velocimetry tracks the displacement of refractive index anomalies through time; for individual hydrothermal plumes, Particle Image Velocimetry tracks eddies by cross-correlation of pixels intensities between subsequent images. Diffuse fluids exhibit temperatures of 8-60°C and fluid velocities of ~1-10 cm s-1. Discrete outflows at 204-300°C have velocities of ~1-2 m s-1. Combined fluid flow velocities, temperature measurements, and full image mosaics of the actively venting areas are used to estimate heat flux of both individual discrete vents and diffuse outflow. The total integrated heat flux and the partitioning between diffuse and discrete venting at Tour Eiffel, and its

  11. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    USGS Publications Warehouse

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems

  12. Chemical environments of submarine hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  13. Developments of next generation of seafloor observatories in MARsite project

    NASA Astrophysics Data System (ADS)

    Italiano, Francesco; Favali, Paolo; Zaffuto, Alfonso; Zora, Marco; D'Anca, Fabio

    2015-04-01

    The development of new generation of autonomous sea-floor observatories is among the aims of the EC supersite project MARsite (MARMARA Supersite; FP7 EC-funded project, grant n° 308417). An approach based on multiparameter seafloor observatories is considered of basic importance to better understand the role of the fluids in an active tectonic system and their behaviour during the development of the seismogenesis. To continuously collect geochemical and geophysical data from the immediate vicinity of the submerged North Anatolian Fault Zone (NAFZ) is one of the possibilities to contribute to the seismic hazard minimization of the Marmara area. The planning of next generation of seafloor observatories for geo-hazard monitoring is a task in one of the MARsite Work Packages (WP8). The activity is carried out combining together either the experience got after years of investigating fluids and their interactions with the seafloor and tectonic structures and the long-term experience on the development and management of permanent seafloor observatories in the main frame of the EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org) Research Infrastructure. The new generation of seafloor observatories have to support the observation of both slow and quick variations, thus allow collecting low and high-frequency signals besides the storage of long-term dataset and/or enable the near-real-time mode data transmission. Improvements of some the seafloor equipments have been done so far within MARsite project in terms of the amount of contemporary active instruments, their interlink with "smart sensor" capacities (threshold detection, triggering), quality of the collected data and power consumption reduction. In order to power the multiparameter sensors the digitizer and the microprocessor, an electronic board named PMS (Power Management System) with multi-master, multi-slave, single-ended, serial bus Inter-Integrated Circuit (I²C) interface

  14. UAV Photogrammetry of Inflated Komatiite Flow Lobes in an Archean Bimodal Volcanic Terrane, Yilgarn Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Barnes, S. J.; Dering, G.

    2016-12-01

    Previous studies of large komatiite fields in Archean greenstone belts in Western Australia and elsewhere have led to the suggestion that komatiite lavas were emplaced by similar mechanisms to modern pahoehoe flows, notwithstanding the very low viscosities and sea-floor eruption setting. Of komatiites. We use UAV photogrammetry to identify and map inflation features characteristic of modern pahoehoe flows in Archean komatiites at the Gordon Sirdar Lake locality near Kalgoorlie. Komatiite lavas, forming part of the 2705 Ma old plume-related bimodal volcanic sequence of the Eastern Goldfields Superterrane, Yilgarn Craton, were emplaced within a sequence of dacitic lava flows and semi-consolidated tuffs. The sequence was tilted to the vertical on the flanks of a regional isoclinal fold, and is exposed as partially weathered outcrop in the bed of a playa lake. Komatiite lava lobes form characteristic lenticular cross sections ranging from 1-6 m thick and up to 20m long, in some cases with lower margins draped over pre-existing dacite flow tops, and in others showing invasive textures implying eruption onto or into wet sediment. Inflation features include tumuli, inflation clefts, breakouts, and terraced margins. Spinifex textures are preserved locally at flow tops and rarely at bases. High temperature (>1400 C) and low viscosities (<50 Pa s) of komatiites evidently do not preclude inflation as an emplacement mechanism of individual flows. Flow-top morphology has been used to identify inflation of basaltic lava flows in Martian environments. We suggest these criteria may be extended to the possible recognition of Martian komatiites.

  15. Microbial Communities on Seafloor Basalts at Dorado Outcrop Reflect Level of Alteration and Highlight Global Lithic Clades

    PubMed Central

    Lee, Michael D.; Walworth, Nathan G.; Sylvan, Jason B.; Edwards, Katrina J.; Orcutt, Beth N.

    2015-01-01

    Areas of exposed basalt along mid-ocean ridges and at seafloor outcrops serve as conduits of fluid flux into and out of a subsurface ocean, and microbe–mineral interactions can influence alteration reactions at the rock–water interface. Located on the eastern flank of the East Pacific Rise, Dorado Outcrop is a site of low-temperature (<20°C) hydrothermal venting and represents a new end-member in the current survey of seafloor basalt biomes. Consistent with prior studies, a survey of 16S rRNA gene sequence diversity using universal primers targeting the V4 hypervariable region revealed much greater richness and diversity on the seafloor rocks than in surrounding seawater. Overall, Gamma-, Alpha-, and Deltaproteobacteria, and Thaumarchaeota dominated the sequenced communities, together making up over half of the observed diversity, though bacterial sequences were more abundant than archaeal in all samples. The most abundant bacterial reads were closely related to the obligate chemolithoautotrophic, sulfur-oxidizing Thioprofundum lithotrophicum, suggesting carbon and sulfur cycling as dominant metabolic pathways in this system. Representatives of Thaumarchaeota were detected in relatively high abundance on the basalts in comparison to bottom water, possibly indicating ammonia oxidation. In comparison to other sequence datasets from globally distributed seafloor basalts, this study reveals many overlapping and cosmopolitan phylogenetic groups and also suggests that substrate age correlates with community structure. PMID:26779122

  16. Merging genomes with geochemistry in hydrothermal ecosystems.

    PubMed

    Reysenbach, Anna-Louise; Shock, Everett

    2002-05-10

    Thermophilic microbial inhabitants of active seafloor and continental hot springs populate the deepest branches of the universal phylogenetic tree, making hydrothermal ecosystems the most ancient continuously inhabited ecosystems on Earth. Geochemical consequences of hot water-rock interactions render these environments habitable and supply a diverse array of energy sources. Clues to the strategies for how life thrives in these dynamic ecosystems are beginning to be elucidated through a confluence of biogeochemistry, microbiology, ecology, molecular biology, and genomics. These efforts have the potential to reveal how ecosystems originate, the extent of the subsurface biosphere, and the driving forces of evolution.

  17. Phenols in hydrothermal petroleums and sediment bitumen from Guaymas Basin, Gulf of California

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Leif, R. N.; Ishiwatari, R.

    1996-01-01

    The aliphatic, aromatic and polar (NSO) fractions of seabed petroleums and sediment bitumen extracts from the Guaymas Basin hydrothermal system have been analyzed by gas chromatography and gas chromatography-mass spectrometry (free and silylated). The oils were collected from the interiors and exteriors of high temperature hydrothermal vents and represent hydrothermal pyrolyzates that have migrated to the seafloor by hydrothermal fluid circulation. The downcore sediments are representative of both thermally unaltered and thermally altered sediments. The survey has revealed the presence of oxygenated compounds in samples with a high degree of thermal maturity. Phenols are one class of oxygenated compounds found in these samples. A group of methyl-, dimethyl- and trimethyl-isoprenoidyl phenols (C27-C29) is present in all of the seabed NSO fractions, with the methyl- and dimethyl-isoprenoidyl phenols occurring as major components, and a trimethyl-isoprenoidyl phenol as a minor component. A homologous series of n-alkylphenols (C13-C33) has also been found in the seabed petroleums. These phenols are most likely derived from the hydrothermal alteration of sedimentary organic matter. The n-alkylphenols are probably synthesized under hydrothermal conditions, but the isoprenoidyl phenols are probably hydrothermal alteration products of natural product precursors. The suites of phenols do not appear to be useful tracers of high temperature hydrothermal processes.

  18. Hydrothermal activity in the Lau back-arc basin: Sulfides and water chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fouquet, Y.; Charlou, J.L.; Donval, J.P.

    1991-04-01

    The submersible Nautile completed 22 dives during the Nautilau cruise (R/V Nadir, April 17-May 10, 1989) for a detailed investigation of the southern Lau basin near Tonga. The objective of the scientific team from France, Germany, and Tonga was to understand the process of sea-floor ore formation associated with hydrothermal circulation along the Valu Fa back-arc ridge behind the Tonga-Kermadec trench. The four diving areas, between lat21{degree}25'S and 22{degree}40'S in water{approximately}2000 m deep, were selected on the basis of results from cruises of the R/V Jean Charcot and R/V Sonne. The Nadir cruise provided proof of hydrothermal activity-in all formore » areas, over more than 100 km-as indicated by the widespread occurence of hydrothermal deposits and by heat flow, conductivity, and temperature measurements near the sea bottom. The most spectacular findings were high-temperature white and black smokers and associated fauna and ore deposits. Hydrothermal water chemistry and sulfide composition data presented here indicate that this hydrothermal field is very different from the hydrothermal fields in oceanic ridges. This difference is seen in water chemistry of the hydrothermal fluid (pH=2 and high metal content) and the chemical composition of sulfides (enrichment in Ba, As, and Pb).« less

  19. Fossilized microorganisms associated with zeolite-carbonate interfaces in sub-seafloor hydrothermal environments.

    PubMed

    Ivarsson, M; Lindblom, S; Broman, C; Holm, N G

    2008-03-01

    In this paper we describe carbon-rich filamentous structures observed in association with the zeolite mineral phillipsite from sub-seafloor samples drilled and collected during the Ocean Drilling Program (ODP) Leg 197 at the Emperor Seamounts. The filamentous structures are approximately 5 microm thick and approximately 100-200 microm in length. They are found attached to phillipsite surfaces in veins and entombed in vein-filling carbonates. The carbon content of the filaments ranges between approximately 10 wt% C and 55 wt% C. They further bind to propidium iodide (PI), which is a dye that binds to damaged cell membranes and remnants of DNA. Carbon-rich globular microstructures, 1-2 microm in diameter, are also found associated with the phillipsite surfaces as well as within wedge-shaped cavities in phillipsite assemblages. The globules have a carbon content that range between approximately 5 wt% C and 55 wt% C and they bind to PI. Ordinary globular iron oxides found throughout the samples differ in that they contain no carbon and do not bind to the dye PI. The carbon-rich globules are mostly concentrated to a film-like structure that is attached to the phillipsite surfaces. This film has a carbon content that ranges between approximately 25 wt% C and 75 wt% C and partially binds to PI. EDS analyses show that the carbon in all structures described are not associated with calcium and therefore not bound in carbonates. The carbon content and the binding to PI may indicate that the filamentous structures could represent fossilized filamentous microorganisms, the globules could represent fossilized microbial cells and the film-like structures could represent a microbially produced biofilm. Our results extend the knowledge of possible habitable niches for a deep biosphere in sub-seafloor environments and suggests, as phillipsite is one of the most common zeolite mineral in volcanic rocks of the oceanic crust, that it could be a common feature in the oceanic crust

  20. A novel approach to imaging extinct seafloor massive sulphides (eSMS) by using ocean bottom seismometer data from the Blue Mining project

    NASA Astrophysics Data System (ADS)

    Gil, A.; Chidlow, K. L.; Vardy, M. E.; Bialas, J.; Schroeder, H.; Stobbs, I. J.; Gehrmann, R. A. S.; North, L. J.; Minshull, T. A.; Petersen, S.; Murton, B. J.

    2017-12-01

    Seafloor massive sulphide (SMS) deposits have generated great interest regarding their formation and composition, since their discovery in 1977. SMS deposits form through hydrothermal circulation and are therefore commonly found near hydrothermal vent sites. The high base (Cu, Zn) and precious metal (Au, Ag) content has interested mining companies, due to their potentially high economic value. Currently, the possibility of mining extinct seafloor massive sulphides (eSMS) deposits has opened a debate about their environmentally and economically sustainable exploitation. A major goal is the rapid exploration and assessment of deposit structure and volume. This is challenging due to their small dimensions (100s m diameter) and typically great water depths (> 3000 mbsl). Here we present a novel approach combining seismic reflection/refraction forward modelling to data acquired from the TAG hydrothermal field (26ºN, Mid-Atlantic Ridge, 3500mbsl) to image deep-water eSMS deposits. In May 2016, the RV METEOR shot 30, short (<10km) MSC profiles across the TAG area. The data were recorded on a dense cluster (<75 m apart) of ocean bottom seismometers (OBS) and were able to image the subsurface of several 300m diameter eSMS deposits. The results show that the eSMS deposits present high velocities (5.4-6.6 km/s) to depths 200m below the seafloor where they are hosted in a 500m thick low-velocity (3.0-3.7 km/s) layer of altered basalt. In contrast to active hydrothermal systems, we see no evidence in the eSMS of a low-velocity anhydrite layer. The velocity-depth models obtained from this innovative method have been combined with other methods to study these eSMS deposits, such as electromagnetics, rocks physics and drilling technics, and the results are shown to concur, yielding information about deposit structure at depth. For example, the high-velocity layer extends deeper than the conductive layer, indicating a deep stock work of low-connectivity sulphides beneath a main

  1. Manganese(II)-oxidizing Bacillus spores in Guaymas Basin hydrothermal sediments and plumes.

    PubMed

    Dick, Gregory J; Lee, Yifan E; Tebo, Bradley M

    2006-05-01

    Microbial oxidation and precipitation of manganese at deep-sea hydrothermal vents are important oceanic biogeochemical processes, yet nothing is known about the types of microorganisms or mechanisms involved. Here we report isolation of a number of diverse spore-forming Mn(II)-oxidizing Bacillus species from Guaymas Basin, a deep-sea hydrothermal vent environment in the Gulf of California, where rapid microbially mediated Mn(II) oxidation was previously observed. mnxG multicopper oxidase genes involved in Mn(II) oxidation were amplified from all Mn(II)-oxidizing Bacillus spores isolated, suggesting that a copper-mediated mechanism of Mn(II) oxidation could be important at deep-sea hydrothermal vents. Phylogenetic analysis of 16S rRNA and mnxG genes revealed that while many of the deep-sea Mn(II)-oxidizing Bacillus species are very closely related to previously recognized isolates from coastal sediments, other organisms represent novel strains and clusters. The growth and Mn(II) oxidation properties of these Bacillus species suggest that in hydrothermal sediments they are likely present as spores that are active in oxidizing Mn(II) as it emerges from the seafloor.

  2. On the early fate of hydrothermal iron at deep-sea vents: A reassessment after in situ filtration

    NASA Astrophysics Data System (ADS)

    Waeles, M.; Cotte, L.; Pernet-Coudrier, B.; Chavagnac, V.; Cathalot, C.; Leleu, T.; Laës-Huon, A.; Perhirin, A.; Riso, R. D.; Sarradin, P.-M.

    2017-05-01

    Deep-sea hydrothermal venting is now recognized as a major source of iron (Fe), an essential trace element that controls marine productivity. However, the reactions occurring during dispersal from buoyant plumes to neutrally buoyant hydrothermal plumes are still poorly constrained. Here we report for the first time on the dissolved-particulate partition of Fe after in situ filtration at the early stage of mixing at different hydrothermal discharges, i.e., Lucky Strike (37°N), TAG (26°N), and Snakepit (23°N) on the Mid-Atlantic Ridge. We found that hydrothermal iron is almost completely preserved (>90%) in the dissolved fraction, arguing for low iron-bearing sulfide precipitation of iron in basalt-hosted systems with low Fe:H2S ratios. This result can only be explained by a kinetically limited formation of pyrite. The small part of Fe being precipitated as sulfides in the mixing gradient (<10%) is restricted to the inclusion of Fe in minerals of high Cu and Zn content. We also show that secondary venting is a source of Fe-depleted hydrothermal solutions. These results provide new constrains on Fe fluxes from hydrothermal venting.

  3. Long-term tilt and acceleration data from the Logatchev Hydrothermal Vent Field, Mid-Atlantic Ridge, measured by the Bremen Ocean Bottom Tiltmeter

    NASA Astrophysics Data System (ADS)

    Fabian, Marcus; Villinger, Heinrich

    2008-07-01

    Long-term seafloor deformations in the Logatchev Hydrothermal Vent Field (LHF) at the Mid-Atlantic Ridge are largely unexplored and unknown, even though the LHF has been the focus of international research for many years. As seafloor tilt and vertical acceleration provide key information about seafloor deformations, the Bremen Ocean Bottom Tiltmeter (OBT) was deployed in May 2005 at position 14°45'11.7″N, 44°58'47.0″W, 3035 m water depth in the LHF. The OBT recorded 384 days and was recovered in January 2007. Strong tilt steps and strong gradual tilt changes over less than a minute to days in the range of some 10 mrad and aligned mostly with the topography possibly indicate nearby mass movements like avalanches of bulk material due to local uplift or subsidence or may show tectonic activity. A vertically aligned high-resolution microelectromechanical systems (MEMS) accelerometer of type Servo K-Beam in the sensor package seems to be helpful to distinguish between tilt signals caused by a true rotation and fake tilt related to a transient translational motion of the OBT in a horizontal direction. Hodographs show elliptic motion patterns with about 1 mrad total tilt amplitude and distinct orientations of tilt toward hydrothermal vents. It is up to speculation whether the latter signals are related to hydrothermal fluid circulation. The amplitude spectra of these tilt signals and acceleration show discrete lines mostly between 0.1 and 50 mHz. The spectra show the periodic character of those signals and also proof that tides or bottom currents, which are known to show lower signal frequencies, or tremor, which generally has higher frequencies, are most likely not the reason. Compared with studies onshore and offshore, the LHF is most likely an area of strong and highly variable seafloor deformations.

  4. Thiols in Hydrothermal Solution: Standard Partial Molal Properties and Their Role in the Organic Geochemistry of Hydrothermal Environments

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell D.; Rogers, Karyn L.; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Modern seafloor hydrothermal systems are locations where great varieties of geochemistry occur due to the enormous disequilibrium between vent fluids and seawater. The disequilibrium geochemistry has been hypothesized to include reactions to synthesize organic compounds. Despite the incomplete understanding of the carbon budget in hydrothermal systems, the organic geochemistry of these sites has received little attention. Experimental simulations of these environments, however, indicate that organic compounds may have difficulty forming in a purely aqueous environment. On the other hand, thiols, thioesters and disulfides have been implicated as reaction intermediates between CO or CO2 in experiments of carbon reduction in hydrothermal environments, as well as in a variety of biological processes and other abiotic reactions. The reduction of CO2 to thesis, for example, is observed using the FeS-H2S/FeS2 couple to provide the reducing power. We have used recent advances in theoretical geochemistry to estimate the standard partial moral thermodynamic properties and parameters for the revised Helgeson-Kirkham-Flowers equation of state for aqueous straight-chain alkyl thesis. With these data and parameters we have evaluated the role that organic sulfur compounds may play as reaction intermediates during organic compound synthesis. We conclude that organic sulfur compounds may hold the key to the organic chemistry leading to the origin of life in hydrothermal settings. These results may also explain the presence of sulfur in a number of biomolecules present in ancient thermophilic microorganisms.

  5. First Discovery and Investigation of a High-Temperature Hydrothermal Vent Field on the Ultra- Slow Spreading Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Tao, C.; Lin, J.; Guo, S.; Chen, Y. J.; Wu, G.; Han, X.; German, C. R.; Yoerger, D. R.; Zhu, J.; Zhou, N.; Su, X.; Baker, E. T.; Party, S.

    2007-12-01

    Two recent cruises on board the Chinese research vessel Dayang Yihao have successfully investigated the first active hydrothermal vent field to be located along the ultraslow spreading Southwest Indian Ridge (SWIR) and collected hydrothermal sulfide deposit samples. The newly discovered hydrothermal vent field is located on the western end of a magmatically robust spreading segment immediately west of the Gallieni transform fault. Preliminary evidence of strong turbidity anomalies was first measured during a Nov. 2005 cruise on board Dayang Yihao (InterRidge News, vol. 15, pp. 33-34, 2006). Color video footages of the seafloor in the vent-field area were first obtained by a deep-towed video camera in February 2007 during DY115-19 Leg 1, when significant water column turbidity anomalies, noticeable temperature anomalies and methane anomalies were also measured. The vent field was then precisely located, mapped, and photographed in great detail in February- March 2007 during the DY115-19 Leg 2, using the autonomous underwater vehicle ABE of the Woods Hole Oceanographic Institution. A high-resolution bathymetric map, more than 5,000 near-bottom color photos, and several types of water column data were all obtained during three phases of ABE dives. Within the approximately 120-m-long by 100-m-wide hydrothermal field, three groups of active high-temperature vents were identified and color images of black smokers and associated biological communities were obtained from ABE, flying 5 m above the seafloor. Hydrothermal sulfide deposits were then successfully obtained using a TV-guided grab.

  6. First Discovery and Investigation of a High-Temperature Hydrothermal Vent Field on the Ultra- Slow Spreading Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Tao, C.; Lin, J.; Guo, S.; Chen, Y. J.; Wu, G.; Han, X.; German, C. R.; Yoerger, D. R.; Zhu, J.; Zhou, N.; Su, X.; Baker, E. T.; Party, S.

    2004-12-01

    Two recent cruises on board the Chinese research vessel Dayang Yihao have successfully investigated the first active hydrothermal vent field to be located along the ultraslow spreading Southwest Indian Ridge (SWIR) and collected hydrothermal sulfide deposit samples. The newly discovered hydrothermal vent field is located on the western end of a magmatically robust spreading segment immediately west of the Gallieni transform fault. Preliminary evidence of strong turbidity anomalies was first measured during a Nov. 2005 cruise on board Dayang Yihao (InterRidge News, vol. 15, pp. 33-34, 2006). Color video footages of the seafloor in the vent-field area were first obtained by a deep-towed video camera in February 2007 during DY115-19 Leg 1, when significant water column turbidity anomalies, noticeable temperature anomalies and methane anomalies were also measured. The vent field was then precisely located, mapped, and photographed in great detail in February- March 2007 during the DY115-19 Leg 2, using the autonomous underwater vehicle ABE of the Woods Hole Oceanographic Institution. A high-resolution bathymetric map, more than 5,000 near-bottom color photos, and several types of water column data were all obtained during three phases of ABE dives. Within the approximately 120-m-long by 100-m-wide hydrothermal field, three groups of active high-temperature vents were identified and color images of black smokers and associated biological communities were obtained from ABE, flying 5 m above the seafloor. Hydrothermal sulfide deposits were then successfully obtained using a TV-guided grab.

  7. Ca isotope fractionation and Sr/Ca partitioning associated with anhydrite formation at mid-ocean ridge hydrothermal systems: An experimental approach

    NASA Astrophysics Data System (ADS)

    Syverson, D. D.; Scheuermann, P.; Pester, N. J.; Higgins, J. A.; Seyfried, W. E., Jr.

    2016-12-01

    The elemental and isotopic mass balance of Ca and Sr between seawater and basalt at mid-ocean ridge (MOR) hydrothermal systems is an integrated reflection of the various physiochemical processes, which induce chemical exchange, in the subseafloor. Specifically, the processes of anhydrite precipitation and recrystallization are recognized to be important controls on governing the Ca and Sr elemental and isotope compositions of high temperature vent fluids, however, few experimental data exist to constrain these geochemical effects. Thus, to better understand the associated Sr/Ca partitioning and Ca isotope fractionation and rate of exchange between anhydrite and dissolved constituents, anhydrite precipitation and recrystallization experiments were performed at 175, 250, and 350°C and 500 bar at chemical conditions indicative of active MOR hydrothermal systems. The experimental data suggest that upon entrainment of seawater into MOR hydrothermal systems, anhydrite will precipitate rapidly and discriminate against the heavy isotopes of Ca (Δ44/40Ca(Anh-Fluid) = -0.68 - -0.25 ‰), whereas Sr/Ca partitioning depends on the saturation state of the evolving hydrothermal fluid with respect to anhydrite at each PTX (KD(Anh-Fluid) = 1.24 - 0.55). Coupling experimental constraints with the temperature gradient inferred for high temperature MOR hydrothermal systems in the oceanic crust, data suggest that the Ca isotope and Sr elemental composition of anhydrite formed near the seafloor will be influenced by disequilibrium effects, while, at higher temperatures further into the oceanic crust, anhydrite will be representative of equilibrium Sr/Ca partitioning and Ca isotope fractionation conditions. These experimental observations are consistent with analyzed Sr/Ca and Ca isotope compositions of anhydrites and vent fluids sampled from modern MOR hydrothermal systems1,2 and can be used to further constrain the geochemical effects of hydrothermal circulation in the oceanic crust

  8. The magnetic signature of ultramafic-hosted hydrothermal systems (Invited)

    NASA Astrophysics Data System (ADS)

    Szitkar, F.; Dyment, J.; Honsho, C.; Horen, H.; Fouquet, Y.

    2013-12-01

    While the magnetic response of basalt-hosted hydrothermal sites is well known, that of ultramafic-hosted hydrothermal sites (UMHS) remains poorly documented. Here we present the magnetic signature of three of the six UMHS investigated to date on the Mid-Atlantic Ridge, i.e. sites Rainbow, Ashadze (1 and 2), and Logachev. Two magnetic signatures are observed. Sites Rainbow and Ashadze 1 are both characterized by a positive reduced-to-the-pole magnetic anomaly, i.e. a positive magnetization contrast. Conversely, sites Ashadze 2 and Logachev do not exhibit any clear magnetic signature. Rock-magnetic measurements on samples from site Rainbow reveal a strong magnetization (~30 A/m adding induced and remanent contributions) borne by sulfide-impregnated serpentinites; the magnetic carrier being magnetite. This observation can be explained by three (non exclusive) processes: (1) higher temperature serpentinization at the site resulting in the formation of more abundant / more strongly magnetized magnetite; (2) the reducing hydrothermal fluid protecting magnetite at the site from the oxidation which otherwise affects magnetite in contact with seawater; and (3) the formation of primary (hydrothermal) magnetite. We apply a new inversion method developed by Honsho et al. (2012) to the high-resolution magnetic anomalies acquired 10 m above seafloor at sites Rainbow and Ashadze 1. This method uses the Akaike Bayesian Information Criterion (ABIC) and takes full advantage of the near-seafloor measurements, avoiding the upward-continuation (i.e. loss of resolution) of other inversion schemes. This inversion reveals a difference in the intensity of equivalent magnetization obtained assuming a 100 m thick magnetic layer, ~30 A/m at site Rainbow and only 8A/m at site Ashadze, suggesting a thinner or less magnetized source for the latter. Hydrothermal sites at Ashadze 2 and Logachev are much smaller (of the order of 10 m) than the previous ones (several 100 m). These sites, known as

  9. Seasonal seafloor oxygen dynamics on the Romanian Black Sea Shelf

    NASA Astrophysics Data System (ADS)

    Friedrich, Jana; Balan, Sorin; van Beusekom, Justus E.; Naderipour, Celine; Secrieru, Dan

    2017-04-01

    The Black Sea suffers from the combined effects of anthropogenic eutrophication, overfishing and climate forcing. As a result, its broad and shallow western shelf in particular has a history of ecosystem collapse during the 1970s to the mid-1990s, which followed a slow recovery since the late 1990s due to reduction in anthropogenic pressures. Because of eutrophication, increased oxygen consumption caused recurrent widespread seasonal seafloor hypoxia in a system that is already naturally prone to decrease in bottom water oxygen during summer. On the shelf, reduced bottom water ventilation is a strong natural driver for seafloor hypoxia, due to strong seasonal thermohaline stratification as a result of freshwater inflow from the large rivers Danube, Dniester and Dniepro. To understand the present seasonal dynamics of seafloor oxygen on the Romanian shelf, a seafloor mooring was deployed in 2010 and 2016 during summer and autumn, for three and six months, respectively. The mooring, consisting of an Aanderaa SEAGUARD sensor package attached to an acoustic release, was deployed in 30 m water depth in the Portita region - north of Constanta and south of the Danube River Mouths. The in-situ time series of seafloor oxygen, temperature, turbidity, salinity, and current velocities and directions, combined with CTD profiles, benthic oxygen consumption rates based on ex-situ incubations of sediment cores, and pelagic oxygen respiration rates provide a set of information that allows biological and hydrophysical controls on seafloor oxygen to be identified. We observed the built-up of the thermohaline stratification during late spring and early summer, accompanied by steady decrease in bottom water oxygen. Superimposed settling of particles to the seafloor eventually led to the formation of seafloor hypoxia in late summer. Anticyclonic currents resemble diurnal tidal cycles, albeit low in magnitude. The effects of a strong rainstorm and a Danube flood event in late September

  10. Generation of felsic crust in the Archean: a geodynamic modeling perspective

    NASA Astrophysics Data System (ADS)

    Sizova, Elena; Gerya, Taras; Stüwe, Kurt; Brown, Michael

    2015-04-01

    The relevance of contemporary tectonics to the formation of the Archean terrains is a matter of vigorous debate. Higher mantle temperatures and higher radiogenic heat production in the past would have impacted on the thickness and composition of the oceanic and continental crust. As a consequence of secular cooling, there is generally no modern analog to assist in understanding the tectonic style that may have operated in the Archean. For this reason, well-constrained numerical modeling, based on the fragmentary evidence preserved in the geological record, is the most appropriate tool to evaluate hypotheses of Archean crust formation. The main lithology of Archean terrains is the sodic tonalite-trondhjemite-granodiorite (TTG) suite. Melting of hydrated basalt at garnet-amphibolite to eclogite facies conditions is considered to be the dominant process for the generation of the Archean TTG crust. Taking into account geochemical signatures of possible mantle contributions to some TTGs, models proposed for the formation of Archean crust include subduction, melting at the bottom of thickened continental crust and fractional crystallization of mantle-derived melts under water-saturated conditions. We evaluated these hypotheses using a 2D coupled petrological-thermomechanical numerical model with initial conditions appropriate to the Eoarchean-Mesoarchean. As a result, we identified three tectonic settings in which intermediate to felsic melts are generated by melting of hydrated primitive basaltic crust: 1) delamination and dripping of the lower primitive basaltic crust into the mantle; 2) local thickening of the primitive basaltic crust; and, 3) small-scale crustal overturns. In addition, we consider remelting of the fractionated products derived from underplated dry basalts as an alternative mechanism for the formation of some Archean granitoids. In the context of a stagnant lid tectonic regime which is intermittently terminated by short-lived subduction, we identified

  11. Convergent Plate Boundary Processes in the Archean: Evidence from Greenland

    NASA Astrophysics Data System (ADS)

    Polat, A.

    2014-12-01

    The structural, magmatic and metamorphic characteristics of Archean greenstone belts and associated TTG (tonalite, trondhjemite and granodiorite) gneisses in southern West Greenland are comparable to those of Phanerozoic convergent plate margins, suggesting that Archean continents grew mainly at subduction zones. These greenstone belts are composed mainly of tectonically juxtaposed fragments of oceanic crust including mafic to ultramafic rocks, with minor sedimentary rocks. Volcanic rocks in the greenstone belts are characterized mainly by island arc tholeiitic basalts, picrites, and boninites. The style of deformation and geometry of folds in 10 cm to 5 m wide shear zones are comparable to those occur on 1 to 50 km scale in the greenstone belts and TTG gneisses, suggesting that compressional tectonic processes operating at convergent plate boundaries were the driving force of Archean crustal accretion and growth. Field observations and trace element data suggest that Archean continental crust grew through accretion of mainly island arcs and melting of metamorphosed mafic rocks (amphibolites) in thickened arcs during multiple tectonothermal events. Fold patterns on cm to km scale are consistent with at least three phases of deformation and multiple melting events generating TTG melts that intruded mainly along shear zones in accretionary prism and magmatic arcs. It is suggested that Archean TTGs were produced by three main processes: (1) melting of thickened oceanic island arcs; (2) melting of subducted oceanic crust; and (3) differentiation of basaltic melts originating from metasomatized sub-arc mantle wedge peridotites.

  12. Availability of free oxygen in deep bottom water of some Archean-Early Paleoproterozoic ocean basins as derived from iron formation facies analyses

    NASA Astrophysics Data System (ADS)

    Beukes, N. J.; Smith, A.

    2013-12-01

    Archean to Early Paleoproterozoic ocean basins are commonly, although not exclusively, depicted as rather static systems; either permanently stratified with shallow mixed oxygenated water overlying anoxic deep water or with a totally anoxic water column. The anoxic water columns are considered enriched in dissolved ferrous iron derived from hydrothermal plume activity. These sourced deposition of iron formations through precipitation of mainly ferrihydrite via reaction with free oxygen in the stratified model or anaerobic iron oxidizing photoautotrophs in the anoxic model. However, both these models face a simple basic problem if detailed facies reconstructions of deepwater microbanded iron formations (MIFs) are considered. In such MIFs it is common that the deepest water and most distal facies is hematite rich followed shoreward by magnetite, iron silicate and siderite facies iron formation. Examples of such facies relations are known from jaspilitic iron formation of the ~3,2 Ga Fig Tree Group (Barberton Mountainland), ~ 2,95 Ga iron formations of the Witwatersrand-Mozaan basin and the ~2,5 Ga Kuruman Iron Formation, Transvaal Supergroup, South Africa. Facies relations of these MIFs with associated siliciclastics or carbonates also indicate that the upper water columns of the basins, down to below wave base, were depleted in iron favoring anoxic-oxic stratification rather than total anoxia. In the MIFs it can be shown that hematite in the distal facies represents the earliest formed diagenetic mineral; most likely crystallized from primary ferrihydrite. The problem is one of how ferrihydrite could have been preserved on the ocean floor if it was in direct contact with reducing ferrous deep bottom water. Rather dissolved ferrous iron would have reacted with ferrihydrite to form diagenetic magnetite. This dilemma is resolved if in the area of deepwater hematite MIF deposition, the anoxic ferrous iron enriched plume was detached from the basin floor due to buoyancy

  13. Seafloor massive sulfide deposits support unique megafaunal assemblages: Implications for seabed mining and conservation.

    PubMed

    Boschen, Rachel E; Rowden, Ashley A; Clark, Malcolm R; Pallentin, Arne; Gardner, Jonathan P A

    2016-04-01

    Mining of seafloor massive sulfides (SMS) is imminent, but the ecology of assemblages at SMS deposits is poorly known. Proposed conservation strategies include protected areas to preserve biodiversity at risk from mining impacts. Determining site suitability requires biological characterisation of the mine site and protected area(s). Video survey of a proposed mine site and protected area off New Zealand revealed unique megafaunal assemblages at the mine site. Significant relationships were identified between assemblage structure and environmental conditions, including hydrothermal features. Unique assemblages occurred at both active and inactive chimneys and are particularly at risk from mining-related impacts. The occurrence of unique assemblages at the mine site suggests that the proposed protected area is insufficient alone and should instead form part of a network. These results provide support for including hydrothermally active and inactive features within networks of protected areas and emphasise the need for quantitative survey data of proposed sites. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Pb, Sr, and Nd isotopic compositions of a suite of Late Archean, igneous rocks, eastern Beartooth Mountains: implications for crust-mantle evolution

    USGS Publications Warehouse

    Wooden, J.L.; Mueller, P.A.

    1988-01-01

    A series of compositionally diverse, Late Archean rocks (2.74-2.79 Ga old) from the eastern Beartooth Mountains, Montana and Wyoming, U.S.A., have the same initial Pb, Sr, and Nd isotopic ratios. Lead and Sr initial ratios are higher and Nd initial ratios lower than would be expected for rocks derived from model mantle sources and strongly indicate the involvement of an older crustal reservoir in the genesis of these rocks. Crustal contamination during emplacement can be ruled out for a variety of reasons. Instead a model involving subduction of continental detritus and contamination of the overlying mantle as is often proposed for modern subduction environments is preferred. This contaminated mantle would have all the isotopic characteristics of mantle enriched by internal mantle metasomatism but would require no long-term growth or changes in parent to daughter element ratios. This contaminated mantle would make a good source for some of the Cenozoic mafic volcanics of the Columbia River, Snake River Plain, and Yellowstone volcanic fields that are proposed to come from ancient, enriched lithospheric mantle. The isotopic characteristics of the 2.70 Ga old Stillwater Complex are a perfect match for the proposed contaminated mantle which provides an alternative to crustal contamination during emplacement. The Pb isotopic characteristics of the Late Archean rocks of the eastern Beartooth Mountains are similar to those of other Late Archean rocks of the Wyoming Province and suggest that Early Archean, upper crustal rocks were common in this terrane. The isotopic signatures of Late Archean rocks in the Wyoming Province are distinctive from those of other Archean cratons in North America which are dominated by a MORB-like, Archean mantle source (Superior Province) and/or a long-term depleted crustal source (Greenland). ?? 1988.

  15. Imaging hydrothermal roots along the Endeavour segment of the Juan de Fuca ridge using elastic full waveform inversion.

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G. M.

    2016-12-01

    The Endeavour segment is a 90 km-long, medium-spreading-rate, oceanic spreading center located on the northern Juan de Fuca ridge (JDFR). The central part of this segment forms a 25-km-long volcanic high that hosts five of the most hydrothermally active vent fields on the MOR system, namely (from north to south): Sasquatch, Salty Dawg, High Rise, Main Endeavour and Mothra. Mass, heat and chemical fluxes associated to vigorous hydrothermal venting are large, however the geometry of the fluid circulation system through the oceanic crust remains almost completely undefined. To produce high-resolution velocity/reflectivity structures along the axis of the Endeavour segment, here, we combined a synthetic ocean bottom experiment (SOBE), 2-D traveltime tomography, 2D elastic full waveform and reverse time migration (RTM). We present velocity and reflectivity sections along Endeavour segment at unprecedented spatial resolutions. We clearly image a set of independent, geometrically complex, elongated low-velocity regions linking the top of the magma chamber at depth to the hydrothermal vent fields on the seafloor. We interpret these narrow pipe-like units as focused regions of hydrothermal fluid up-flow, where acidic and corrosive fluids form pipe-like alteration zones as previously observed in Cyprus ophiolites. Furthermore, the amplitude of these low-velocity channels is shown to be highly variable, with the strongest velocity drops observed at Main Endeavour, Mothra and Salty Dawg hydrothermal vent fields, possibly suggesting more mature hydrothermal cells. Interestingly, the near-seafloor structure beneath those three sites is very similar and highlights a sharp lateral transition in velocity (north to south). On the other hand, the High-Rise hydrothermal vent field is characterized by several lower amplitudes up-flow zones and relatively slow near-surface velocities. Last, Sasquatch vent field is located in an area of high near-surface velocities and is not

  16. Terrestrial subaqueous seafloor dunes: Possible analogs for Venus

    USGS Publications Warehouse

    Neakrase, Lynn D.V.; Klose, Martina; Titus, Timothy N.

    2017-01-01

    Dunes on Venus, first discovered with Magellan Synthetic Aperture Radar (SAR) in the early 1990s, have fueled discussions about the viability of Venusian dunes and aeolian grain transport. Confined to two locations on Venus, the existence of the interpreted dunes provides evidence that there could be transportable material being mobilized into aeolian bedforms at the surface. However, because of the high-pressure high-temperature surface conditions, laboratory analog studies are difficult to conduct and results are difficult to extrapolate to full-sized, aeolian bedforms. Field sites of desert dunes, which are well-studied on Earth and Mars, are not analogous to what is observed on Venus because of the differences in the fluid environments. One potentially underexplored possibility in planetary science for Venus-analog dune fields could be subaqueous, seafloor dune fields on Earth. Known to the marine geology communities since the early 1960s, seafloor dunes are rarely cited in planetary aeolian bedform literature, but could provide a necessary thick-atmosphere extension to the classically studied aeolian dune environment literature for thinner atmospheres. Through discussion of the similarity of the two environments, and examples of dunes and ripples cited in marine literature, we provide evidence that subaqueous seafloor dunes could serve as analogs for dunes on Venus. Furthermore, the evidence presented here demonstrates the usefulness of the marine literature for thick-atmosphere planetary environments and potentially for upcoming habitable worlds and oceanic environment research program opportunities. Such useful cross-disciplinary discussion of dune environments is applicable to many planetary environments (Earth, Mars, Venus, Titan, etc.) and potential future missions.

  17. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study

    NASA Astrophysics Data System (ADS)

    Wohlgemuth-Ueberwasser, Cora C.; Viljoen, Fanus; Petersen, Sven; Vorster, Clarisa

    2015-06-01

    The key for understanding the trace metal inventory of currently explored VHMS deposits lies in the understanding of trace element distribution during the formation of these deposits on the seafloor. Recrystallization processes already occurring at the seafloor might liberate trace elements to later hydrothermal alteration and removement. To investigate the distribution and redistribution of trace elements we analyzed sulfide minerals from 27 black smoker samples derived from three different seafloor hydrothermal fields: the ultramafic-hosted Logatchev hydrothermal field on the Mid-Atlantic Ridge, the basaltic-hosted Turtle Pits field on the mid-atlantic ridge, and the felsic-hosted PACMANUS field in the Manus basin (Papua New Guinea). The sulfide samples were analyzed by mineral liberation analyser for the modal abundances of sulfide minerals, by electron microprobe for major elements and by laser ablation-inductively coupled plasma-mass spectrometry for As, Sb, Se, Te, and Au. The samples consist predominantly of chalcopyrite, sphalerite, pyrite, galena and minor isocubanite as well as inclusions of tetrahedrite-tennantite. Laser ablation spectra were used to evaluate the solubility limits of trace elements in different sulfide minerals at different textures. The solubility of As, Sb, and Au in pyrite decreases with increasing degree of recrystallization. When solubility limits are reached these elements occur as inclusions in the different sulfide phases or they are expelled from the mineral phase. Most ancient VHMS deposits represent felsic or bimodal felsic compositions. Samples from the felsic-hosted PACMANUS hydrothermal field at the Pual ridge (Papua New Guinea) show high concentrations of Pb, As, Sb, Bi, Hg, and Te, which is likely the result of an additional trace element contribution derived from magmatic volatiles. Co-precipitating pyrite and chalcopyrite are characterized by equal contents of Te, while chalcopyrite that replaced pyrite (presumably

  18. Siderite deposits in northern Italy: Early Permian to Early Triassic hydrothermalism in the Southern Alps

    NASA Astrophysics Data System (ADS)

    Martin, Silvana; Toffolo, Luca; Moroni, Marilena; Montorfano, Carlo; Secco, Luciano; Agnini, Claudia; Nimis, Paolo; Tumiati, Simone

    2017-07-01

    We present a minero-petrographic, geochemical and geochronological study of siderite orebodies from different localities of the Southern Alps (northern Italy). Siderite occurs as veins cutting the Variscan basement and the overlying Lower Permian volcano-sedimentary cover (Collio Fm.), and as both veins and conformable stratabound orebodies in the Upper Permian (Verrucano Lombardo and Bellerophon Fms.) and Lower Triassic (Servino and Werfen Fms.) sedimentary sequences of the Lombardian and the Venetian Alps. All types of deposits show similar major- and rare-earth (REE)-element patterns, suggesting a common iron-mineralizing event. The compositions of coexisting siderite, Fe-rich dolomite and calcite suggest formation from hydrothermal fluids at relatively high temperature conditions (≥ 250 °C). Geochemical modelling, supported by REE analyses and by literature and new δ13C and δ18O isotopic data, suggests that fluids responsible for the formation of siderite in the Variscan basement and in the overlying Lower Permian cover were derived from dominant fresh water, which leached Fe and C from volcanic rocks (mainly rhyolites/rhyodacites) and organic carbon-bearing continental sediments. On the basis of U-Th-Pb microchemical dating of uraninite associated with siderite in the Val Vedello and Novazza deposits (Lombardian Alps), the onset of hydrothermalism is constrained to 275 ± 13 Ma (Early-Mid Permian), i.e., it was virtually contemporaneous to the plutonism and the volcanic-sedimentary cycle reported in the same area (Orobic Basin). The youngest iron-mineralizing event is represented by siderite veins and conformable orebodies hosted in Lower Triassic shallow-marine carbonatic successions. In this case, the siderite-forming fluids contained a seawater component, interacted with the underlying Permian successions and eventually replaced the marine carbonates at temperatures of ≥ 250 °C. The absence of siderite in younger rocks suggests an Early Triassic

  19. The Archean Nickel Famine Revisited.

    PubMed

    Konhauser, Kurt O; Robbins, Leslie J; Pecoits, Ernesto; Peacock, Caroline; Kappler, Andreas; Lalonde, Stefan V

    2015-10-01

    Iron formations (IF) preserve a history of Precambrian oceanic elemental abundance that can be exploited to examine nutrient limitations on early biological productivity. However, in order for IF to be employed as paleomarine proxies, lumped-process distribution coefficients for the element of interest must be experimentally determined or assumed. This necessitates consideration of bulk ocean chemistry and which authigenic ferric iron minerals controlled the sorption reactions. It also requires an assessment of metal mobilization reactions that might have occurred in the water column during particle descent and during post-depositional burial. Here, we summarize recent developments pertaining to the interpretation and fidelity of the IF record in reconstructions of oceanic trace element evolution. Using an updated compilation, we reexamine and validate temporal trends previously reported for the nickel content in IF (see Konhauser et al., 2009 ). Finally, we reevaluate the consequences of methanogen Ni starvation in the context of evolving views of the Archean ocean-climate system and how the Ni famine may have ultimately facilitated the rise in atmospheric oxygen.

  20. Modeling Archean Subduction Initiation from Continental Spreading with a Free-Surface

    NASA Astrophysics Data System (ADS)

    Adams, A.; Thielmann, M.; Golabek, G.

    2017-12-01

    Earth is the only planet known to have plate tectonics, however the onset of plate tectonics and Earth's early tectonic environment are highly uncertain. Modern plate tectonics are characterized by the sinking of dense lithosphere at subduction zones; however this process may not have been feasible if Earth's interior was hotter in the Archean, resulting in thicker and more buoyant oceanic lithosphere than observed at present [van Hunen and van den Berg, 2008]. Previous studies have proposed gravitational spreading of early continents at passive margins as a mechanism to trigger early episodes of plate subduction using numerical simulations with a free-slip upper boundary condition [Rey et al., 2014]. This study utilizes 2D thermo-mechanical numerical experiments using the finite element code MVEP2 [Kaus, 2010; Thielmann et al., 2014] to investigate the viability of this mechanism for subduction initiation in an Archean mantle for both free-slip and free-surface models. Radiogenic heating, strain weakening, and eclogitization were systematically implemented to determine critical factors for modeling subduction initiation. In free-slip models, results show episodes of continent spreading and subduction initiation of oceanic lithosphere for low limiting yield stresses (100-150 MPa) and increasing continent width with no dependency on radiogenic heating, strain weakening, or eclogitization. For models with a free-surface, subduction initiation was observed at low limiting yield stresses (100-225 MPa) with increasing continent width and only in models with eclogitization. Initial lithospheric stress states were studied as a function of density and viscosity ratios between continent and oceanic lithosphere, and results indicate the magnitude of lithospheric stresses increases with increasing continental buoyancy. This work suggests continent spreading may trigger episodes of subduction in models with a free-surface with critical factors being low limiting yield stresses

  1. Tectonic implications of Archean anorthosite occurrences

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Morrison, D. A.; Maczuga, D. E.

    1988-01-01

    The occurrences of megacrystic anorthosite and basalt in a variety of geologic settings were reviewed and it was found that these rock types occur in a variety of tectonic settings. Anorthosites and megacrystic basalts are petrogenetically related and are found in oceanic volcanic crust, cratons, and shelf environments. Although megacrystic basalts are most common in Archean terranes, similar occurrences are observed in rocks of early Proterozoic age, and even in young terranes such as the Galapagos hotspot. Based on inferences from experimental petrology, all of the occurrences are apparently associated with similar parental melts that are relatively Fe-rich tholeiites. The megacrystic rocks exhibit a two- (or more)-stage development of plagioclase, with the megacrysts having relatively uniform composition produced under nearly isothermal and isochemical conditions over substantial periods of time. The anorthosites appear to have intruded various crustal levels from very deep to very shallow. The petrogenetic indicators, however, suggest that conditions of formation of the Precambrian examples were different from Phanerozoic occurrences.

  2. Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits

    NASA Astrophysics Data System (ADS)

    Smith, Abigail M.; Nelson, Campbell S.

    2003-10-01

    Cool-water shelf carbonates differ from tropical carbonates in their sources, modes, and rates of deposition, geochemistry, and diagenesis. Inorganic precipitation, marine cementation, and sediment accumulation rates are absent or slow in cool waters, so that temperate carbonates remain longer at or near the sea bed. Early sea-floor processes, occurring between biogenic calcification and ultimate deposition, thus take on an important role, and there is the potential for considerable taphonomic loss of skeletal information into the fossilised record of cool-water carbonate deposits. The physical breakdown processes of dissociation, breakage, and abrasion are mediated mainly by hydraulic regime, and are always destructive. Impact damage reduces the size of grains, removes structure and therefore information, and ultimately may transform skeletal material into anonymous particles. Abrasion is highly selective amongst and within taxa, their skeletal form and structure strongly influencing resistance to mechanical breakdown. Dissolution and precipitation are the end-members of a two-way chemical equilibrium operating in sea water. In cool waters, inorganic precipitation is rare. There is conflicting opinion about the importance of diagenetic dissolution of carbonate skeletons on the temperate sea floor, but test maceration and early loss of aragonite in particular are reported. Dissolution may relate to undersaturated acidic pore waters generated locally by a combination of microbial metabolisation of organic matter, strong bioturbation, and oxidation of solid phase sulphides immediately beneath the sea floor in otherwise very slowly accumulating skeletal deposits. Laboratory experiments demonstrate that surface-to-volume ratio and skeletal mineralogy are both important in determining skeletal resistance to dissolution. Biological processes on the sea floor include encrustation and bioerosion. Encrustation, a constructive process, may be periodic or seasonal, and can be

  3. Geology and geochronology of granitoid and metamorphic rocks of late Archean age in northwestern Wisconsin

    USGS Publications Warehouse

    Sims, P.K.; Peterman, Z.E.; Zartman, R.E.; Benedict, F.C.

    1985-01-01

    Granitoid rocks of the Puritan Quartz Monzonite and associated biotite gneiss and amphibolite in northwestern Wisconsin compose the southwestern part of the Puritan batholith of Late Archean age. They differ from rocks in the Michigan segment of the batholith in having been deformed by brittle-ductile deformation and partly recrystallized during shearing accompanying development of the midcontinent rift system of Keweenawan (Middle Proterozoic) age. Granitoid rocks ranging in composition from granite to tonalite are dominant in the Wisconsin part of the batholith. To the north of the Mineral Lake fault zone, they are massive to weakly foliated and dominantly of granite composition, whereas south of the fault zone they are more strongly foliated and mainly of tonalite composition. Massive granite, leucogranite, and granite pegmatite cut the dominant granitoid rocks. Intercalated with the granitoid rocks in small to large conformable bodies are biotite gneiss, amphibolite, and local tonalite gneiss. Metagabbro dikes of probable Early Proterozoic age as much as 15 m thick cut the Archean rocks. Rubidium-strontium whole-rock data indicate a Late Archean age for the granitoids and gneisses, but data points are scattered and do not define a single isochron. Zircon from two samples of tonalitic gneiss for uranium-thorium-Iead dating define a single chord on a concordia diagram, establishing an age of 2,735?16 m.y. The lower intercept age of 1,052?70 m.y. is in close agreement with rubidium-strontium and potassium-argon biotite ages from the gneisses. Two episodes of deformation and metamorphism are recorded in the Archean rocks. Deformation during the Late Archean produced a steep west-northwest-oriented foliation and gently plunging fold axes and was accompanied by low amphibolite-facies metamorphism of the bedded rocks. A younger deformation resulting from largely brittle fracture was accompanied by retrogressive metamorphism; this deformation is most evident adjacent

  4. Serpentinization and fluid-rock interaction in Jurassic mafic and ultramafic sea-floor: constraints from Ligurian ophiolite sequences

    NASA Astrophysics Data System (ADS)

    Vogel, Monica; Früh-Green, Gretchen L.; Boschi, Chiara; Schwarzenbach, Esther M.

    2014-05-01

    The Bracco-Levanto ophiolitic complex (Eastern Liguria) represents one of the largest and better-exposed ophiolitic successions in the Northern Apennines. It is considered to be a fragment of heterogeneous Jurassic lithosphere that records tectono-magmatic and alteration histories similar to those documented along the Mid-Atlantic Ridge, such as at the 15°20'N area and the Atlantis Massif at 30°N. Structural and petrological studies on these rocks provide constraints on metamorphic/deformation processes during formation and hydrothermal alteration of the Jurassic oceanic lithosphere. We present a petrological and geochemical study of deformation processes and fluid-rock interaction in the Bracco-Levanto ophiolitic complex and compare these to modern oceanic hydrothermal systems, such as the Lost City Hydrothermal Field hosted in ultramafic rocks on the Atlantis Massif. A focus is on investigating mass transfer and fluid flow paths during high and low temperature hydrothermal activity, and on processes leading to hydrothermal carbonate precipitation and the formation of ophicalcites, which are characteristic of the Bracco-Levanto sequences. Major element and mineral compositional data allow us to distinguish a multiphase history of alteration characterized by: (1) widespread SiO2 metasomatism during progressive serpentinization, and (2) multiple phases of veining and carbonate precipitation associated with circulation of seawater and high fluid-rock ratios in the shallow ultramafic-dominated portions of the Jurassic seafloor. We observe regional variations in MgO, SiO2 and Al2O3, suggesting Si-flux towards stratigraphically higher units. In general, the ophicalcites have higher Si, Al and Fe concentrations and lower Mg than the serpentinite basement rocks or serpentinites with minimal carbonate veins. Bulk rock trace element data and Sr isotope ratios indicate seawater reacting with rocks of more mafic composition, then channeled towards stratigraphically higher

  5. Geochemistry of seafloor hydrothermal vent fluids at EPR 9°50'N: Time series data from 2004-2016

    NASA Astrophysics Data System (ADS)

    Scheuermann, P.; Pester, N. J.; Tutolo, B. M.; Simmons, S. F.; Seyfried, W. E., Jr.

    2017-12-01

    Hydrothermal fluids were collected from vent sites along the East Pacific Rise (EPR) at 9°50'N in 2004, 2008 and 2016 in isobaric gas-tight titanium samplers. These dates bracket the seafloor eruption that occurred at EPR 9°50'N between 2005 and 2006. The reported data focus on P vent and Bio9, as these vents were active during all three sampling periods. The concentration of aqueous volatiles reached maxima at both vents in 2008. At P vent, CO2, H2, and H2S were 124 mM/kg, 0.55 mM/kg and 12.2 mM/kg, respectively. The concentrations at Bio9 in 2008 were, 106 mM/kg CO2, 1.1 mM/kg H2, and 12.6 mM/kg H2S. Fe and Mn concentrations were the highest at both vent sites in 2004, and then decreased in 2008 and again in 2016. The range at P vent was 1.5-6.3 mM/kg Fe and 315-1212 uM/kg Mn, while at Bio9 the concentrations were 1.6-3.7 mM/kg Fe and 301-650 uM/kg Mn. The trends in CO2, H2, and H2S at P vent (2008 and 2016) and Bio9 (all years) are consistent with changes in subsurface pressure and temperature as a result of the eruption that alter the conditions at which dissolved components partition between vapor and liquid phases in the NaCl-H2O system. The trend in Fe and Mn concentrations is surprising and highlights the complex partitioning behavior of these elements in systems in which the concentrations are controlled by fluid-mineral equilibria as well as phase separation. Between 2004 and 2008, fluids at P vent transitioned from single-phase (535 mM/kg Cl) to a low-density vapor (370 mM/kg). Upon phase separation, the concentrations of H2S and H2 increased, while Fe and Mn concentrations decreased considerably. These changes highlight the importance of phase separation on controlling mass transfer from the crust to overlying ocean. In contrast to the other aqueous volatiles, CH4 concentrations in 2008 (47 µM) were lower or equal to concentrations in 2004 or 2016, 50-100 µM. CH4 is decoupled from the effects of phase separation, and is likely extracted from fluid

  6. Temperature and volume estimation of under-seafloor fluid from the logging-while-drilling data beneath an active hydrothermal field

    NASA Astrophysics Data System (ADS)

    Hamada, Y.; Saito, S.; Sanada, Y.; Masaki, Y.; Moe, K.; Kido, Y. N.; Kumagai, H.; Takai, K.; Suzuki, K.

    2015-12-01

    In July of 2014, offshore drillings on Iheya-North Knoll, Okinawa Trough, was executed as part of Next-generation technology for ocean resources survey, which is a research program in Cross-ministerial Strategic Innovation Promotion Program (SIP). In this expedition, logging-while- drilling (LWD) and measuring-while-drilling (MWD) were inserted into 6 holes (C9011 - C9016) to investigate spatial distribution of hydrothermal deposit and geothermal fluid reservoir. Both of these tools included annular pressure-while-drilling (APWD). Annular pressure and temperature were monitored by the APWD to detect possible exceedingly-high-temperature geofluid. In addition, drilling fluid was continuously circulated at sufficient flow rate to protect LWD tools against high temperature (non-stop driller system). At C9012 and C9016, the LWD tool clearly detected pressure and temperature anomaly at 234 meter below the seafloor (mbsf) and 80 mbsf, respectively. Annular pressure and temperature quickly increases at that depth and it would reflect the injection of high-temperature fluid. During the drilling, however, drilling water was continuously circulated at high flow-rate (2600L/min) and the measured temperature is not exactly in-situ temperature. To investigate the detail of the heat source, such as in-situ temperature and quantity of heat, we performed numerical analyses of thermal fluid and energy-balance assuming injection of high-temperature fluid. We combined pressure loss theory of double cylinders and temperature equation to replicate the fluid flow and its temperature between borehole wall and drilling pipe during the thermofluid injection. As the result, we estimated the temperature and the volume of injected fluid to be 115oC~ and 17.3 m3, respectively (at C9012) from the calculation. This temperature is lower than that of a hydrothermall vent which had been found near the hole (300oC).

  7. The geology of the Morro Velho gold deposit in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil

    USGS Publications Warehouse

    Vial, Diogenes Scipioni; DeWitt, Ed; Lobato, Lydia Maria; Thorman, Charles H.

    2007-01-01

    The Morro Velho gold deposit, Quadrilátero Ferrífero region, Minas Gerais, Brazil, is hosted by rocks at the base of the Archean Rio das Velhas greenstone belt. The deposit occurs within a thick carbonaceous phyllite package, containing intercalations of felsic and intermediate volcaniclastic rocks and dolomites. Considering the temporal and spatial association of the deposit with the Rio das Velhas orogeny, and location in close proximity to a major NNW-trending fault zone, it can be classified as an orogenic gold deposit. Hydrothermal activity was characterized by intense enrichment in alteration zones of carbonates, sulfides, chlorite, white mica±biotite, albite and quartz, as described in other Archean lode-type gold ores. Two types of ore occur in the deposit: dark gray quartz veins and sulfide-rich gold orebodies. The sulfide-rich orebodies range from disseminated concentrations of sulfide minerals to massive sulfide bodies. The sulfide assemblage comprises (by volume), on average, 74% pyrrhotite, 17% arsenopyrite, 8% pyrite and 1% chalcopyrite. The orebodies have a long axis parallel to the local stretching lineation, with continuity down the plunge of fold axis for at least 4.8 km. The group of rocks hosting the Morro Velho gold mineralization is locally referred to as lapa seca. These were isoclinally folded and metamorphosed prior to gold mineralization. The lapa seca and the orebodies it hosts are distributed in five main tight folds related to F1 (the best examples are the X, Main and South orebodies, in level 25), which are disrupted by NE- to E-striking shear zones. Textural features indicate that the sulfide mineralization postdated regional peak metamorphism, and that the massive sulfide ore has subsequently been neither metamorphosed nor deformed. Lead isotope ratios indicate a model age of 2.82 ± 0.05 Ga for both sulfide and gold mineralization. The lapa seca are interpreted as the results of a pre-gold alteration process and may be

  8. Opposing authigenic controls on the isotopic signature of dissolved iron in hydrothermal plumes

    NASA Astrophysics Data System (ADS)

    Lough, A. J. M.; Klar, J. K.; Homoky, W. B.; Comer-Warner, S. A.; Milton, J. A.; Connelly, D. P.; James, R. H.; Mills, R. A.

    2017-04-01

    Iron is a scarce but essential micronutrient in the oceans that limits primary productivity in many regions of the surface ocean. The mechanisms and rates of Fe supply to the ocean interior are still poorly understood and quantified. Iron isotope ratios of different Fe pools can potentially be used to trace sources and sinks of the global Fe biogeochemical cycle if these boundary fluxes have distinct signatures. Seafloor hydrothermal vents emit metal rich fluids from mid-ocean ridges into the deep ocean. Iron isotope ratios have the potential to be used to trace the input of hydrothermal dissolved iron to the oceans if the local controls on the fractionation of Fe isotopes during plume dispersal in the deep ocean are understood. In this study we assess the behaviour of Fe isotopes in a Southern Ocean hydrothermal plume using a sampling program of Total Dissolvable Fe (TDFe), and dissolved Fe (dFe). We demonstrate that δ56Fe values of dFe (δ56dFe) within the hydrothermal plume change dramatically during early plume dispersal, ranging from -2.39 ± 0.05‰ to -0.13 ± 0.06‰ (2 SD). The isotopic composition of TDFe (δ56TDFe) was consistently heavier than dFe values, ranging from -0.31 ± 0.03‰ to 0.78 ± 0.05‰, consistent with Fe oxyhydroxide precipitation as the plume samples age. The dFe present in the hydrothermal plume includes stabilised dFe species with potential to be transported to the deep ocean. We estimate that stable dFe exported from the plume will have a δ56Fe of -0.28 ± 0.17‰. Further, we show that the proportion of authigenic iron-sulfide and iron-oxyhydroxide minerals precipitating in the buoyant plume exert opposing controls on the resultant isotope composition of dissolved Fe passed into the neutrally buoyant plume. We show that such controls yield variable dissolved Fe isotope signatures under the authigenic conditions reported from modern vent sites elsewhere, and so ought to be considered during iron isotope reconstructions of past

  9. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes.

    PubMed

    Forget, N L; Murdock, S A; Juniper, S K

    2010-12-01

    Seafloor iron oxide deposits are a common feature of submarine hydrothermal systems. Morphological study of these deposits has led investigators to suggest a microbiological role in their formation, through the oxidation of reduced Fe in hydrothermal fluids. Fe-oxidizing bacteria, including the recently described Zetaproteobacteria, have been isolated from a few of these deposits but generally little is known about the microbial diversity associated with this habitat. In this study, we characterized bacterial diversity in two Fe oxide samples collected on the seafloor of Volcanoes 1 and 19 on the South Tonga Arc. We were particularly interested in confirming the presence of Zetaproteobacteria at these two sites and in documenting the diversity of groups other than Fe oxidizers. Our results (small subunit rRNA gene sequence data) showed a surprisingly high bacterial diversity, with 150 operational taxonomic units belonging to 19 distinct taxonomic groups. Both samples were dominated by Zetaproteobacteria Fe oxidizers. This group was most abundant at Volcano 1, where sediments were richer in Fe and contained more crystalline forms of Fe oxides. Other groups of bacteria found at these two sites include known S- and a few N-metabolizing bacteria, all ubiquitous in marine environments. The low similarity of our clones with the GenBank database suggests that new species and perhaps new families were recovered. The results of this study suggest that Fe-rich hydrothermal sediments, while dominated by Fe oxidizers, can be exploited by a variety of autotrophic and heterotrophic micro-organisms. © 2010 Blackwell Publishing Ltd.

  10. Marine Subsurface Microbial Community Shifts Across a Hydrothermal Gradient in Okinawa Trough Sediments

    PubMed Central

    2016-01-01

    Sediments within the Okinawa back-arc basin overlay a subsurface hydrothermal network, creating intense temperature gradients with sediment depth and potential limits for microbial diversity. We investigated taxonomic changes across 45 m of recovered core with a temperature gradient of 3°C/m from the dynamic Iheya North Hydrothermal System. The interval transitions sharply from low-temperature marine mud to hydrothermally altered clay at 10 meters below seafloor (mbsf). Here, we present taxonomic results from an analysis of the 16S rRNA gene that support a conceptual model in which common marine subsurface taxa persist into the subsurface, while high temperature adapted archaeal taxa show localized peaks in abundances in the hydrothermal clay horizons. Specifically, the bacterial phylum Chloroflexi accounts for a major proportion of the total microbial community within the upper 10 mbsf, whereas high temperature archaea (Terrestrial Hot Spring Crenarchaeotic Group and methanotrophic archaea) appear in varying local abundances in deeper, hydrothermal clay horizons with higher in situ temperatures (up to 55°C, 15 mbsf). In addition, geochemical evidence suggests that methanotrophy may be occurring in various horizons. There is also relict DNA (i.e., DNA preserved after cell death) that persists in horizons where the conditions suitable for microbial communities have ceased. PMID:28096736

  11. A Hydrothermal-Sedimentary Context for the Origin of Life

    PubMed Central

    Hickman-Lewis, K.; Hinman, N.; Gautret, P.; Campbell, K.A.; Bréhéret, J.G.; Foucher, F.; Hubert, A.; Sorieul, S.; Dass, A.V.; Kee, T.P.; Georgelin, T.; Brack, A.

    2018-01-01

    Abstract Critical to the origin of life are the ingredients of life, of course, but also the physical and chemical conditions in which prebiotic chemical reactions can take place. These factors place constraints on the types of Hadean environment in which life could have emerged. Many locations, ranging from hydrothermal vents and pumice rafts, through volcanic-hosted splash pools to continental springs and rivers, have been proposed for the emergence of life on Earth, each with respective advantages and certain disadvantages. However, there is another, hitherto unrecognized environment that, on the Hadean Earth (4.5–4.0 Ga), would have been more important than any other in terms of spatial and temporal scale: the sedimentary layer between oceanic crust and seawater. Using as an example sediments from the 3.5–3.33 Ga Barberton Greenstone Belt, South Africa, analogous at least on a local scale to those of the Hadean eon, we document constant permeation of the porous, carbonaceous, and reactive sedimentary layer by hydrothermal fluids emanating from the crust. This partially UV-protected, subaqueous sedimentary environment, characterized by physical and chemical gradients, represented a widespread system of miniature chemical reactors in which the production and complexification of prebiotic molecules could have led to the origin of life. Key Words: Origin of life—Hadean environment—Mineral surface reactions—Hydrothermal fluids—Archean volcanic sediments. Astrobiology 18, 259–293. PMID:29489386

  12. Gas Production Within Stromatolites Across the Archean: Evidence For Ancient Microbial Metabolisms

    NASA Astrophysics Data System (ADS)

    Wilmeth, D.; Corsetti, F. A.; Berelson, W.; Beukes, N. J.; Awramik, S. M.; Petryshyn, V. A.

    2017-12-01

    Identifying the presence of specific microbial metabolisms in the Archean is a fundamental goal of deep-time geobiology. Certain fenestral textures within Archean stromatolites provide evidence for the presence of gas, and therefore gas-releasing metabolisms, within ancient microbial mats. Paleoenvironmental analysis indicates many of the stromatolites formed in shallow, agitated aqueous environments, with relatively rapid gas production and lithification of fenestrae. Proposed gases include oxygen, carbon dioxide, methane, hydrogen sulfide, and various nitrogen species, produced by appropriate metabolisms. This study charts the presence of gas-related fenestrae in Archean stromatolites over time, and examines the potential for various metabolisms to produce fenestral textures. Fenestral textures are present in Archean stromatolites on at least four separate cratons from 3.5 to 2.5 Ga. Fenestrae are preserved in carbonate and chert microbialites of various morphologies, including laminar, domal, and conical forms. Extensive fenestral textures, with dozens of fenestrae along individual laminae, are especially prevalent in Neoarchean stromatolites (2.8 -2.5 Ga). The volume of gas within Archean microbial mats was estimated by measuring fenestrae in ancient stromatolites and bubbles within modern mats. The time needed for metabolisms to produce appropriate gas volumes was calculated using modern rates obtained from the literature. Given the paleoenvironmental conditions, the longer a metabolism takes to make large amounts of gas, the less likely large bubbles will remain long enough to become preserved. Additionally, limiting reactants were estimated for each metabolism using previous Archean geochemical models. Metabolisms with limited reactants are less likely to produce large amounts of gas. Oxygenic photosynthesis can produce large amounts of gas within minutes, and the necessary reactants (carbon dioxide and water) were readily available in Archean environments

  13. Discovery of Fracture Networks in the Basal Part of Modern Hydrothermal System in Okinawa Tough, SW Japan

    NASA Astrophysics Data System (ADS)

    Saito, S.; Yamada, Y.; Sanada, Y.; Kido, Y. N.; Hamada, Y.; Shiraishi, K.; Hsiung, K. H.; Tsuji, T.; Eng, C.; Maeda, L.; Kumagai, H.; Nozaki, T.; Ishibashi, J. I.

    2017-12-01

    A scientific drilling expedition, CK16-01 was conducted by D/V Chikyu in an active hydrothermal field on the Iheya-North Knoll in Okinawa Trough in February-March, 2016 as a part of "Next-generation Technology for Ocean Resources Survey" of the Cross-ministerial Strategic Innovation Promotion Program (SIP). During the expedition logging while drilling (LWD) was deployed to uncover the architecture of modern hydrothermal deposits near the seafloor. A downhole sequence of fracture network (stock-work) was discovered by high resolution resistivity images at Site C9023 in the southern part of the knoll. More than 500 structural features were extracted from the borehole images down to 188 meter below the seafloor. Quantitative image analyses were performed and three types of conductive fractures were identified and classified as Generation 1 (G1), Generation 2 (G2), and Generation 3 (G3) based on the crossing or cutting relationship. The average thickness of fractures decrease with generation from G1 (78 mm), G2 (57 mm), to G3 (45 mm). G1 is developed in the entire interval, whereas G2 and G3 are commonly observed in the intervals of lower gamma ray and high resistivity ( 10 ohm-m) at 77-125 m and 167-186 m where sulfide minerals hosted in silicified rocks were observed in recovered core samples. Low angle fractures (<30°) are typically developed in the interval at 120 -125 m, suggesting possible lateral hydrothermal conduits. The quantitative analysis of fracture network based on borehole images shows the detailed formation process of stock-work in the basal part of modern hydrothermal system.

  14. Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass - the "hydrothermal pump hypothesis"

    NASA Astrophysics Data System (ADS)

    Duda, Jan-Peter; Thiel, Volker; Bauersachs, Thorsten; Mißbach, Helge; Reinhardt, Manuel; Schäfer, Nadine; Van Kranendonk, Martin J.; Reitner, Joachim

    2018-03-01

    Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic). In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia). Catalytic hydropyrolysis (HyPy) of this kerogen yielded n-alkanes up to n-C22, with a sharp decrease in abundance beyond n-C18. This distribution ( ≤ n-C18) is very similar to that observed in HyPy products of recent bacterial biomass, which was used as reference material, whereas it differs markedly from the unimodal distribution of abiotic compounds experimentally formed via Fischer-Tropsch-type synthesis. We therefore propose that the organic matter in the Archaean chert veins has a primarily microbial origin. The microbially derived organic matter accumulated in anoxic aquatic (surface and/or subsurface) environments and was then assimilated, redistributed and sequestered by the hydrothermal fluids (hydrothermal pump hypothesis).

  15. Ultraviolet radiation and the photobiology of earth's early oceans.

    PubMed

    Cockell, C S

    2000-10-01

    During the Archean era (3.9-2.5 Ga ago) the earth was dominated by an oceanic lithosphere. Thus, understanding how life arose and persisted in the Archean oceans constitutes a major challenge in understanding early life on earth. Using a radiative transfer model of the late Archean oceans, the photobiological environment of the photic zone and the surface microlayer is explored at the time before the formation of a significant ozone column. DNA damage rates might have been approximately three orders of magnitude higher in the surface layer of the Archean oceans than on the present-day oceans, but at 30 m depth, damage may have been similar to the surface of the present-day oceans. However at this depth the risk of being transported to surface waters in the mixed layer was high. The mixed layer may have been inhabited by a low diversity UV-resistant biota. But it could have been numerically abundant. Repair capabilities similar to Deinococcus radiodurans would be sufficient to survive in the mixed layer. Diversity may have been greater in the region below the mixed layer and above the light compensation point corresponding to today's 'deep chlorophyll maximum'. During much of the Archean the air-water interface was probably an uninhabitable extreme environment for neuston. The habitability of some regions of the photic zone is consistent with the evidence embodied in the geologic record, which suggests an oxygenated upper layer in the Archean oceans. During the early Proterozoic, as ozone concentrations increased to a column abundance above 1 x 10(17) cm-2, UV stress would have been reduced and possibly a greater diversity of organisms could have inhabited the mixed layer. However, nutrient upwelling from newly emergent continental crusts may have been more significant in increasing total planktonic abundance in the open oceans and coastal regions than photobiological factors. The phohobiological environment of the Archean oceans has implications for the potential

  16. Hydrothermal Activity Along the Central Indian Ridge: Ridges, Hotspots and Philately.

    NASA Astrophysics Data System (ADS)

    German, C. R.; Connelly, D. P.; Evans, A. J.; Murton, B. J.; Curewitz, D.; Okino, K.; Statham, P. J.; Parson, L. M.

    2001-12-01

    The global mid-ocean ridge crest extends 50-60,000km and the majority remains unexplored for hydrothermal activity. Even those areas which are reasonably familiar continue to spring surprises (e.g. the "Lost City" site found in late 2000). Within the confines of conceivable research budgets, therefore, choosing new areas for investigation and exploration demands an intelligent approach, beyond flicking through holiday brochures or identifying missing entries for the John Edmond Memorial Stamp Collection. With that caveat, the Southampton Oceanography Centre led a 10-week expedition to the Central Indian Ridge, earlier this year, based in and around Mauritius. During cruise CD127 (23 April-23 May) we conducted a systematic investigation of the ridge crest (seafloor and overlying water column) between 18 deg 16 min and 20 deg 49 min South. We chose this area to investigate the distribution of hydrothermal activity both close to, and away from, that section of the ridge crest which continues to reflect past influence of the migrating Rodrigues hot-spot. Our hypothesis was that the high incidence of hydrothermal activity we had located previously, near the Azores Triple Junction, may result from waning influence of the Azores Hot-Spot nearby and that similar effects might be found resulting from interaction of the CIR with the Rodrigues hot-spot. The primary scientific package we employed was the SOC's TOBI deep-tow sidescan vehicle, now up-graded with an extra Light Scattering Sensor string. In concert, this instrumentation allowed us to prospect for particle-laden hydrothermal plumes in the water column overlying the ridge-crest, in real-time, whilst simultaneously acquiring high-resolution sidescan images of the underlying seafloor. Using this approach, particle-rich anomalies were observed at 5 locations along ca. 300km of surveyed ridge-crest, including 4 sites all within the extended (hot-spot influenced) segment 15, which stretches from 18 deg 45 to 20 deg 14

  17. Oxidative Weathering of Archean Sulfides: Implications for the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Romaniello, S. J.; Reinhard, C.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2015-12-01

    The first widely accepted evidence for oxidation of Earth's atmosphere and oceans occurs ~2.45 Ga immediately prior to the Great Oxidation Event (GOE). A major line of evidence for this transition includes the abundances and isotopic variations of redox-sensitive transition metals in marine sediments (e.g., Fe, Mo, Re, Cr, and U). It is often assumed that oxidative weathering is required to liberate these redox-sensitive elements from sulfide minerals in the crust, and hence that their presence in early Archean marine sediments signifies that oxidative weathering was stimulated by small and/or transient "whiffs" of O2 in the environment.1 However, studies of crustal sulfide reactivity have not been conducted at O2 concentrations as low as those that would have prevailed when O2 began its rise during the late Archean (estimated at <10-5 present atmospheric O2).2 As a result, it is difficult to quantify O2 concentrations implied by observed trace metal variations. As a first step toward providing more quantitative constraints on late Archean pO2, we conducted laboratory studies of pyrite and molybdenite oxidation kinetics at the nanomolar O2 concentrations that are relevant to late Archean environments. These measurements were made using recently developed, highly sensitive optical O2 sensors to monitor the rates at which the powdered minerals consumed dissolved O2 in a range of pH-buffered solutions.3Our data extend the range of experimental pyrite oxidation rates in the literature by three orders of magnitude from ~10-3 present atmospheric O2 to ~10-6. We find that molybdenite and pyrite oxidation continues to <1 nM O2 (4 x 10-6 present atmospheric O2). This implies that oxidative weathering of sulfides could occur under conditions which preserve MIF S fractionation. Furthermore, our results indicate that the rate law and reaction order of pyrite oxidation kinetics change significantly at nanomolar concentrations of O2 when compared to previous compilations.2 Our

  18. Hydrothermal exploration of the Mariana Back Arc Basin: Chemical Characterization

    NASA Astrophysics Data System (ADS)

    Resing, J. A.; Chadwick, B.; Baker, E. T.; Butterfield, D. A.; Baumberger, T.; Buck, N. J.; Walker, S. L.; Merle, S. G.; Michael, S.

    2016-12-01

    In November and December 2015, we visited the Southern Mariana back-arc on R/V Falkor (cruise FK151121) to explore for hydrothermal and volcanic activity. We conducted our study using the SENTRY AUV, a CTD rosette designed to do tows and vertical casts into the deep back-arc, and a trace metal CTD-package for the upper 1000m of the water column to examine transport form the nearby arc. We conducted 7 SENTRY dives, 12 tow-yos, 7 vertical casts, and 14 trace metal casts. We also mapped 24,050 km2 of the seafloor using the Falkor EM 302 multibeam. We discovered four new hydrothermal vent sites, and at one of them we found that some of the venting was coming from recently erupted lava flows. That lava flow is the deepest contemporary eruption yet discovered (at 4100-4450 m), and the first to be documented on a slow-spreading ridge. In addition, we were able to map the previously known Alice Springs hydrothermal site in unprecedented detail with AUV Sentry. The distribution of hydrothermal activity as well as chemistry of the plumes above them will be discussed. Plume chemistry data will include , Fe, Mn, CH4, H2, and 3He. The ship time for this project was provided by the Schmidt Ocean Institute with science funding provided by NOAA-Ocean Exploration.

  19. [Chemical Potentials of Hydrothermal Systems and Formation of Coupled Modular Metabolic Pathways].

    PubMed

    Marakushev, S A; Belonogova, O V

    2015-01-01

    According to Gibbs J.W. the number of independent components is the least number of those chemical constituents, by combining which the compositions of all possible phases in the system can be obtained, and at the first stages of development of the primary metabolism of the three-component system C-H-O different hydrocarbons and molecular hydrogen were used as an energy source for, it. In the Archean hydrothermal conditions under the action of the phosphorus chemical potential the C-H-O system was transformed into a four-component system C-H-O-P setting up a gluconeogenic system, which became the basis of power supply for a protometabolism, and formation of a new cycle of CO2 fixation (reductive pentose phosphate pathway). It is shown that parageneses (association) of certain substances permitted the modular constructions of the central metabolism of the system C-H-O-P and the formed modules appear in association with each other in certain physicochemical hydrothermal conditions. Malate, oxaloacetate, pyruvate and phosphoenolpyruvate exhibit a turnstile-like mechanism of switching reaction directions.

  20. New developments in Seafloor observatory technologies: the SED Module developed in the MONSOON project

    NASA Astrophysics Data System (ADS)

    Italiano, Francesco; Caruso, Cinzia; Corbo, Andrea; Lazzaro, Gianluca; Nigrelli, Alessandra; Sprovieri, Mario; Oliveri, Elvira; Bagnato, Emanuela; Favali, Paolo

    2015-04-01

    In the main frame of the wide range of scientific and technological activities developed by EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org) Research Infrastructure. The MONSOON project (MONitoraggio SOttOmariNo for environmental and energetic purposes) is a FESR (i.e. European funds for social development) funded project by "Regione Siciliana" (industrial call). The final target of the project is to build up a prototype of a seafloor observatory named SED (Submarine Energy Device),.for which specific technological developments in terms of power consumption reduction, new data logger and new sensors have been planned. The SED observatory is planned to operate down to a water depth of 2000m in an extreme marine environment, with the presence of hydrothermal vents. SED is designed to operate as "stand-alone" or near-real-time observatory when connected to a buoy. The final version of the prototype it is planned to be released in June-July 2015 after tests completion. All the components of the observatory have been planned and laboratory-tested by the INGV and CNR public Research Institutions, while the executive plan and the manufacturing has been carried out by the industrial partnership (Eurobuilding SpA, Hitec2000 srl and Innova SpA). All the partners are going to take care of the tests in a real environment. The selected test site is located in the Aeolian islands where the shallow hydrothermal system off the coasts of the Panarea island provided an easy-to access extreme submarine environment with temperatures up to 140°C, pH less than 3 and electrical conductivity double of the normal sea-water. In this hostile environment we tested all the materials planned to be used to manufacture the different parts of the observatory, as well as all the sensors including those off-the-shelf and those planned within the MONSOON project: probes for acoustic signals, dissolved CO2 data, optical fibre-based temperature and pressure The

  1. Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks

    NASA Astrophysics Data System (ADS)

    Avice, G.; Marty, B.; Burgess, R.; Hofmann, A.; Philippot, P.; Zahnle, K.; Zakharov, D.

    2018-07-01

    We have analyzed ancient atmospheric gases trapped in fluid inclusions contained in minerals of Archean (3.3 Ga) to Paleozoic (404 Ma) rocks in an attempt to document the evolution of the elemental composition and isotopic signature of the atmosphere with time. Doing so, we aimed at understanding how physical and chemical processes acted over geological time to shape the modern atmosphere. Modern atmospheric xenon is enriched in heavy isotopes by 30-40‰ u-1 relative to Solar or Chondritic xenon. Previous studies demonstrated that, 3.3 Ga ago, atmospheric xenon was isotopically fractionated (enriched in the light isotopes) relative to the modern atmosphere, by 12.9 ± 1.2 (1σ) ‰ u-1, whereas krypton was isotopically identical to modern atmospheric Kr. Details about the specific and progressive isotopic fractionation of Xe during the Archean, originally proposed by Pujol et al. (2011), are now well established by this work. Xe isotope fractionation has evolved from 21‰ u-1 at 3.5 Ga to 12.9‰ u-1 at 3.3 Ga. The current dataset provides some evidence for stabilization of the Xe fractionation between 3.3 and 2.7 Ga. However, further studies will be needed to confirm this observation. After 2.7 Ga, the composition kept evolving and reach the modern-like atmospheric Xe composition at around 2.1 Ga ago. Xenon may be the second atmospheric element, after sulfur, to show a secular isotope evolution during the Archean that ended shortly after the Archean-Proterozoic transition. Fractionation of xenon indicates that xenon escaped from Earth, probably as an ion, and that Xe escape stopped when the atmosphere became oxygen-rich. We speculate that the Xe escape was enabled by a vigorous hydrogen escape on the early anoxic Earth. Organic hazes, scavenging isotopically heavy Xe, could also have played a role in the evolution of atmospheric Xe. For 3.3 Ga-old samples, Ar-N2 correlations are consistent with a partial pressure of nitrogen (pN2) in the Archean atmosphere

  2. Hydrothermal systems as environments for the emergence of life

    NASA Technical Reports Server (NTRS)

    Shock, E. L.

    1996-01-01

    Analysis of the chemical disequilibrium provided by the mixing of hydrothermal fluids and seawater in present-day systems indicates that organic synthesis from CO2 or carbonic acid is thermodynamically favoured in the conditions in which hyperthermophilic microorganisms are known to live. These organisms lower the Gibbs free energy of the chemical mixture by synthesizing many of the components of their cells. Primary productivity is enormous in hydrothermal systems because it depends only on catalysis of thermodynamically favourable, exergonic reactions. It follows that hydrothermal systems may be the most favourable environments for life on Earth. This fact makes hydrothermal systems logical candidates for the location of the emergence of life, a speculation that is supported by genetic evidence that modern hyperthermophilic organisms are closer to a common ancestor than any other forms of life. The presence of hydrothermal systems on the early Earth would correspond to the presence of liquid water. Evidence that hydrothermal systems existed early in the history of Mars raises the possibility that life may have emerged on Mars as well. Redox reactions between water and rock establish the potential for organic synthesis in and around hydrothermal systems. Therefore, the single most important parameter for modelling the geochemical emergence of life on the early Earth or Mars is the composition of the rock which hosts the hydrothermal system.

  3. Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin.

    PubMed

    Klein, Frieder; Humphris, Susan E; Guo, Weifu; Schubotz, Florence; Schwarzenbach, Esther M; Orsi, William D

    2015-09-29

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite-calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in (13)C (δ(13)C(TOC) = -19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments.

  4. Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin

    PubMed Central

    Klein, Frieder; Humphris, Susan E.; Guo, Weifu; Schubotz, Florence; Schwarzenbach, Esther M.; Orsi, William D.

    2015-01-01

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite−calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite−calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in 13C (δ13CTOC = −19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments. PMID:26324888

  5. Sulfur and oxygen isotope insights into sulfur cycling in shallow-sea hydrothermal vents, Milos, Greece

    PubMed Central

    2014-01-01

    Shallow-sea (5 m depth) hydrothermal venting off Milos Island provides an ideal opportunity to target transitions between igneous abiogenic sulfide inputs and biogenic sulfide production during microbial sulfate reduction. Seafloor vent features include large (>1 m2) white patches containing hydrothermal minerals (elemental sulfur and orange/yellow patches of arsenic-sulfides) and cells of sulfur oxidizing and reducing microorganisms. Sulfide-sensitive film deployed in the vent and non-vent sediments captured strong geochemical spatial patterns that varied from advective to diffusive sulfide transport from the subsurface. Despite clear visual evidence for the close association of vent organisms and hydrothermalism, the sulfur and oxygen isotope composition of pore fluids did not permit delineation of a biotic signal separate from an abiotic signal. Hydrogen sulfide (H2S) in the free gas had uniform δ34S values (2.5 ± 0.28‰, n = 4) that were nearly identical to pore water H2S (2.7 ± 0.36‰, n = 21). In pore water sulfate, there were no paired increases in δ34SSO4 and δ18OSO4 as expected of microbial sulfate reduction. Instead, pore water δ34SSO4 values decreased (from approximately 21‰ to 17‰) as temperature increased (up to 97.4°C) across each hydrothermal feature. We interpret the inverse relationship between temperature and δ34SSO4 as a mixing process between oxic seawater and 34S-depleted hydrothermal inputs that are oxidized during seawater entrainment. An isotope mass balance model suggests secondary sulfate from sulfide oxidation provides at least 15% of the bulk sulfate pool. Coincident with this trend in δ34SSO4, the oxygen isotope composition of sulfate tended to be 18O-enriched in low pH (<5), high temperature (>75°C) pore waters. The shift toward high δ18OSO4 is consistent with equilibrium isotope exchange under acidic and high temperature conditions. The source of H2S contained in hydrothermal fluids could not be

  6. Spatially resolved sampling reveals dynamic microbial communities in rising hydrothermal plumes across a back-arc basin.

    PubMed

    Sheik, Cody S; Anantharaman, Karthik; Breier, John A; Sylvan, Jason B; Edwards, Katrina J; Dick, Gregory J

    2015-06-01

    Within hydrothermal plumes, chemosynthetic processes and microbe-mineral interactions drive primary productivity in deep-ocean food webs and may influence transport of elements such as iron. However, the source of microorganisms in plumes and the factors governing how these communities assemble are poorly understood, in part due to lack of data from early stages of plume formation. In this study, we examined microbial community composition of rising hydrothermal plumes from five vent fields along the Eastern Lau Spreading Center. Seafloor and plume microbial communities were significantly dissimilar and shared few phylotypes. Plume communities were highly similar to each other with significant differences in community membership only between Kilo Moana and Mariner, two vents that are separated by extremes in depth, latitude and geochemistry. Systematic sampling of waters surrounding the vents revealed that species richness and phylogenetic diversity was typically highest near the vent orifice, implying mixing of microbial communities from the surrounding habitats. Above-plume background communities were primarily dominated by SAR11, SAR324 and MG-I Archaea, while SUP05, Sulfurovum, Sulfurimonas, SAR324 and Alteromonas were abundant in plume and near-bottom background communities. These results show that the ubiquitous water-column microorganisms populate plume communities, and that the composition of background seawater exerts primary influence on plume community composition, with secondary influence from geochemical and/or physical properties of vents. Many of these pervasive deep-ocean organisms are capable of lithotrophy, suggesting that they are poised to use inorganic electron donors encountered in hydrothermal plumes.

  7. Spatially resolved sampling reveals dynamic microbial communities in rising hydrothermal plumes across a back-arc basin

    PubMed Central

    Sheik, Cody S; Anantharaman, Karthik; Breier, John A; Sylvan, Jason B; Edwards, Katrina J; Dick, Gregory J

    2015-01-01

    Within hydrothermal plumes, chemosynthetic processes and microbe–mineral interactions drive primary productivity in deep-ocean food webs and may influence transport of elements such as iron. However, the source of microorganisms in plumes and the factors governing how these communities assemble are poorly understood, in part due to lack of data from early stages of plume formation. In this study, we examined microbial community composition of rising hydrothermal plumes from five vent fields along the Eastern Lau Spreading Center. Seafloor and plume microbial communities were significantly dissimilar and shared few phylotypes. Plume communities were highly similar to each other with significant differences in community membership only between Kilo Moana and Mariner, two vents that are separated by extremes in depth, latitude and geochemistry. Systematic sampling of waters surrounding the vents revealed that species richness and phylogenetic diversity was typically highest near the vent orifice, implying mixing of microbial communities from the surrounding habitats. Above-plume background communities were primarily dominated by SAR11, SAR324 and MG-I Archaea, while SUP05, Sulfurovum, Sulfurimonas, SAR324 and Alteromonas were abundant in plume and near-bottom background communities. These results show that the ubiquitous water-column microorganisms populate plume communities, and that the composition of background seawater exerts primary influence on plume community composition, with secondary influence from geochemical and/or physical properties of vents. Many of these pervasive deep-ocean organisms are capable of lithotrophy, suggesting that they are poised to use inorganic electron donors encountered in hydrothermal plumes. PMID:25489728

  8. Chemistry of sands from the modern Indus River and the Archean Witwatersrand basin: Implications for the composition of the Archean atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maynard, J.B.; Ritger, S.D.; Sutton, S.J.

    1991-03-01

    Both the Indus River and the Witwatersrand basin contain sand with grains of detrital uraninite. Because this mineral is easily oxidized, its presence in Archean strata as a detrital particle has been used as evidence for a low-oxygen atmosphere before 2.5 Ga. However, its presence in modern sand from the Indus River system has been used to argue that detrital uraninite does not provide information about the oxygen concentration of Earth's early atmosphere. Petrographic and chemical study of sand from these two sources reveals differences that suggest the modern Indus sand cannot be used as an analog for the Archeanmore » Witwatersrand occurrences. The Witwatersrand quartzites are depleted in Ca, Mg, and Na, indicating that the original sand from which they formed had been subjected to intense weathering. The chemical index of alteration (CIA), a commonly used indicator of degree of weathering, yields an average value of about 0.80 for Witwatersrand quartzites, comparable to modern tropical streams such as the Orinoco that drain deeply weathered terrains under tropical conditions (CIA=0.75). In contrast, the CIA for Indus sand is 0.45, indicating virtually no chemical weathering. The significance of Archean quartz-pebble conglomerates is not just that they contain unstable detrital phases like uraninite and pyrite, but that these particles are associated with rocks whose compositions suggest intense weathering. These conglomerates must have been subjected to intense weathering under tropical conditions, either in their source area or at the site of deposition, and the preservation of minerals like uraninite such conditions is indeed strong evidence for a low-oxygen atmosphere.« less

  9. A model for late Archean chemical weathering and world average river water

    NASA Astrophysics Data System (ADS)

    Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.

    2017-01-01

    Interpretations of the geologic record of late Archean near-surface environments depend very strongly on an understanding of weathering and resultant riverine transport to the oceans. The late Archean atmosphere is widely recognized to be anoxic (pO2,g =10-5 to 10-13 bars; pH2,g =10-3 to 10-5 bars). Detrital siderite (FeCO3), pyrite (FeS2), and uraninite (UO2) in late Archean sedimentary rocks also suggest anoxic conditions. However, whether the observed detrital minerals could have been thermodynamically stable during weathering and riverine transport under such an atmosphere remains untested. Similarly, interpretations of fluctuations recorded by trace metals and isotopes are hampered by a lack of knowledge of the chemical linkages between the atmosphere, weathering, riverine transport, and the mineralogical record. In this study, we used theoretical reaction path models to simulate the chemistry involved in rainwater and weathering processes under present-day and hypothetical Archean atmospheric boundary conditions. We included new estimates of the thermodynamic properties of Fe(II)-smectites as well as smectite and calcite solid solutions. Simulation of present-day weathering of basalt + calcite by world-average rainwater produced hematite, kaolinite, Na-Mg-saponite, and chalcedony after 10-4 moles of reactant minerals kg-1 H2O were destroyed. Combination of the resultant water chemistry with results for granitic weathering produced a water composition comparable to present-day world average river water (WARW). In contrast, under late Archean atmospheric conditions (pCO2,g =10-1.5 and pH2,g =10-5.0 bars), weathering of olivine basalt + calcite to the same degree of reaction produced kaolinite, chalcedony, and Na-Fe(II)-rich-saponite. Late Archean weathering of tonalite-trondhjemite-granodiorite (TTG) formed Fe(II)-rich beidellite and chalcedony. Combining the waters from olivine basalt and TTG weathering resulted in a model for late Archean WARW with the

  10. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth.

    PubMed

    Grosch, Eugene G; Hazen, Robert M

    2015-10-01

    Earth is the most mineralogically diverse planet in our solar system, the direct consequence of a coevolving geosphere and biosphere. We consider the possibility that a microbial biosphere originated and thrived in the early Hadean-Archean Earth subseafloor environment, with fundamental consequences for the complex evolution and habitability of our planet. In this hypothesis paper, we explore possible venues for the origin of life and the direct consequences of microbially mediated, low-temperature hydrothermal alteration of the early oceanic lithosphere. We hypothesize that subsurface fluid-rock-microbe interactions resulted in more efficient hydration of the early oceanic crust, which in turn promoted bulk melting to produce the first evolved fragments of felsic crust. These evolved magmas most likely included sialic or tonalitic sheets, felsic volcaniclastics, and minor rhyolitic intrusions emplaced in an Iceland-type extensional setting as the earliest microcontinents. With the further development of proto-tectonic processes, these buoyant felsic crustal fragments formed the nucleus of intra-oceanic tonalite-trondhjemite-granitoid (TTG) island arcs. Thus microbes, by facilitating extensive hydrothermal alteration of the earliest oceanic crust through bioalteration, promoted mineral diversification and may have been early architects of surface environments and microcontinents on young Earth. We explore how the possible onset of subseafloor fluid-rock-microbe interactions on early Earth accelerated metavolcanic clay mineral formation, crustal melting, and subsequent metamorphic mineral evolution. We also consider environmental factors supporting this earliest step in geosphere-biosphere coevolution and the implications for habitability and mineral evolution on other rocky planets, such as Mars.

  11. Estimating the Total Heat Flux from the ASHES Hydrothermal Vent Field Using the Sentry Autonomous Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Kinsey, J. C.; Mittelstaedt, E. L.

    2017-12-01

    Hydrothermal venting at mid-ocean ridges influences ocean chemistry, the thermal and chemical structure of the oceanic crust, and the evolution of unique and diverse autolithotrophically-supported ecosystems. Axially-hosted hydrothermal systems are responsible for 20-25% of the total heat flux out of Earth's interior, and likely play a large role in local as well as global biogeochemical cycles. Despite the importance of these systems, only a few studies have attempted to constrain the volume and heat flux of an entire hydrothermal vent field. In July of 2014 we used the Sentry autonomous underwater vehicle (AUV) to survey the water column over the ASHES hydrothermal vent field which is located within the caldera of Axial Seamount, an active submarine volcano located on the Juan de Fuca Ridge. To estimate the total heat and mass flux from this vent field, we equipped Sentry with a Nortek acoustic Doppler velocimeter (ADV), an inertial measurement unit (IMU), two acoustic Doppler current profilers (ADCPs), and two SBE3 temperature probes, allowing us to obtain precise measurements of fluid temperature and water velocity. The survey was designed using a control volume approach in which Sentry was pre-programmed to survey a 150-m-square centered over the vent field flying a grid pattern with 5-m track line spacing followed by a survey of the perimeter. This pattern was repeated multiple times during several 10-h dives at different altitudes, including 10, 20, 40, and 60 m above the seafloor, and during one 40-h survey at an altitude of 10 m. During the 40-h survey, the pattern was repeated nine times allowing us to obtain observations over several tidal cycles. Water velocity data obtained with Sentry were corrected for platform motion and then combined with the temperature measurements to estimate heat flux. The analysis of these data will likely provide the most accurate and highest resolution heat and mass flux estimates at a seafloor hydrothermal field to date.

  12. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N.

    PubMed

    Kelley, D S; Karson, J A; Blackman, D K; Früh-Green, G L; Butterfield, D A; Lilley, M D; Olson, E J; Schrenk, M O; Roe, K K; Lebon, G T; Rivizzigno, P

    2001-07-12

    Evidence is growing that hydrothermal venting occurs not only along mid-ocean ridges but also on old regions of the oceanic crust away from spreading centres. Here we report the discovery of an extensive hydrothermal field at 30 degrees N near the eastern intersection of the Mid-Atlantic Ridge and the Atlantis fracture zone. The vent field--named 'Lost City'--is distinctly different from all other known sea-floor hydrothermal fields in that it is located on 1.5-Myr-old crust, nearly 15 km from the spreading axis, and may be driven by the heat of exothermic serpentinization reactions between sea water and mantle rocks. It is located on a dome-like massif and is dominated by steep-sided carbonate chimneys, rather than the sulphide structures typical of 'black smoker' hydrothermal fields. We found that vent fluids are relatively cool (40-75 degrees C) and alkaline (pH 9.0-9.8), supporting dense microbial communities that include anaerobic thermophiles. Because the geological characteristics of the Atlantis massif are similar to numerous areas of old crust along the Mid-Atlantic, Indian and Arctic ridges, these results indicate that a much larger portion of the oceanic crust may support hydrothermal activity and microbial life than previously thought.

  13. The Biogeochemistry of Sulfur in Hydrothermal Systems

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell; Rogers, K. L.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in hydrothermal systems. The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in hydrothermal systems. Understanding how sulfur became prevalent in biochemical processes and many biomolecules requires knowledge of the reaction properties of sulfur-bearing compounds. We have previously estimated thermodynamic data for thiols, the simplest organic sulfur compounds, at elevated temperatures and pressures. If life began in hydrothermal environments, it is especially important to understand reactions at elevated temperatures among sulfur-bearing compounds and other organic molecules essential for the origin and persistence of life. Here we examine reactions that may have formed amino acids with thiols as reaction intermediates in hypothetical early Earth hydrothermal environments. (There are two amino acids, cysteine and methionine, that contain sulfur.) Our calculations suggest that significant amounts of some amino acids were produced in early Earth hydrothermal fluids, given reasonable concentrations H2, NH3, H2S and CO. For example, preliminary results indicate that glycine activities as high as 1 mmol can be reached in these systems at 100 C. Alanine formation from propanethiol is also a favorable reaction. On the other hand, the calculated equilibrium log activities of cysteine and serine from propanethiol are -21 and -19, respectively, at 100 C. These results

  14. Development of the archean crust in the medina mountain area, wind river range, wyoming (U.S.A.)

    USGS Publications Warehouse

    Koesterer, M.E.; Frost, C.D.; Frost, B.R.; Hulsebosch, T.P.; Bridgwater, D.; Worl, R.G.

    1987-01-01

    Evidence for an extensive Archean crustal history in the Wind River Range is preserved in the Medina Mountain area in the west-central part of the range. The oldest rocks in the area are metasedimentary, mafic, and ultramafic blocks in a migmatite host. The supracrustal rocks of the Medina Mountain area (MMS) are folded into the migmatites, and include semi-pelitic and pelitic gneisses, and mafic rocks of probable volcanic origin. Mafic dikes intrude the older migmatites but not the MMS, suggesting that the MMS are distinctly younger than the supracrustal rocks in the migmatites. The migmatites and the MMS were engulfed by the late Archean granite of the Bridger, Louis Lake, and Bears Ears batholiths, which constitutes the dominant rock of the Wind River Range. Isotopic data available for the area include Nd crustal residence ages from the MMS which indicate that continental crust existed in the area at or before 3.4 Ga, but the age of the older supracrustal sequence is not yet known. The upper age of the MMS is limited by a 2.7 Ga RbSr age of the Bridger batholith, which was emplaced during the waning stages of the last regional metamorphism. The post-tectonic Louis Lake and Bears Ears batholiths have ages of 2.6 and 2.5 Ga, respectively (Stuckless et al., 1985). At least three metamorphic events are recorded in the area: (1) an early regional granulite event (M1) that affected only the older inclusions within the migmatites, (2) a second regional amphibolite event (M2) that locally reached granulite facies conditions, and (3) a restricted, contact granulite facies event (M3) caused by the intrusion of charnockitic melts associated with the late Archean plutons. Results from cation exchange geobarometers and geothermometers yield unreasonablu low pressures and temperatures, suggesting resetting during the long late Archean thermal evenn. ?? 1987.

  15. Geochemistry of Archean Mafic Amphibolites from the Amsaga Area, West African Craton, Mauritania: What Is the Message?

    NASA Astrophysics Data System (ADS)

    El Atrassi, F.; Debaille, V.; Mattielli, N. D. C.; Berger, J.

    2014-12-01

    While Archean terrains are mainly composed of a TTG (Tonalite-trondhjemite-granodiorite) suite, more mafic lithologies such as amphibolites are also a typical component of those ancient terrains. Although mafic rocks represent only ~10% of the Archean cratons, they may provide key evidence of the role and nature of basaltic magmatism in the formation of the Archean crust as well as the evolution of the Archean mantle. This study focuses on the Archean crust from the West African Craton in Mauritania (Amsaga area). The Amsaga Archean Crust mainly consists of TTG and thrust-imbricated slices of mafic volcanic rocks, which have been affected by polymetamorphic events from the amphibolite to granulite facies. Our main objectives aim to the identification of the mafic lithology origin and a better understanding of their role in the continental crust emplacement. Our petrological observations show that these amphibolites have fine to medium granoblastic and nematoblastic textures. The amphibolites are dominated by amphibolite-facies mineral assemblages (mainly amphibole and plagioclase), but garnet and clinopyroxene occur in a few samples. Two groups are distinct in their geochemical characteristics (major and trace elements), although both have tholeiitic basalt composition. The first group show LREE-enriched patterns and negative Nb-Ta anomalies. The second group is characterized by near-flat LREE patterns and flat HREE patterns. This second group clearly shows no Nb-Ta anomalies. The first group could be related to arc-like basalts, as it is many similarities with some Archean amphibolites probably formed in a supra-subduction zone, for instance the volcanic rocks from the southern edge of the Isua Supracrustal Belt. On the contrary, the second group has a MORB-like signature which is more unusual during the Archean. Different scenarios will be discussed regards to the Archean geodynamics.

  16. Pulsations, interpulsations, and sea-floor spreading.

    NASA Technical Reports Server (NTRS)

    Pessagno, E. A., Jr.

    1973-01-01

    It is postulated that worldwide transgressions (pulsations) and regressions (interpulsations) through the course of geologic time are related to the elevation and subsidence of oceanic ridge systems and to sea-floor spreading. Two multiple working hypotheses are advanced to explain major transgressions and regressions and the elevation and subsidence of oceanic ridge systems. One hypothesis interrelates the sea-floor spreading hypothesis to the hypothesis of sub-Mohorovicic serpentinization. The second hypothesis relates the sea-floor spreading hypothesis to a hypothesis involving thermal expansion and contraction.

  17. Earth's Archean Impact Record In The ICDP Drilling "Barberton Mountain Land".

    NASA Astrophysics Data System (ADS)

    Fritz, Jörg; Schmitt, Ralf-Thomas; Reimold, Uwe; Koeberl, Christian; Mc Donald, Ian; Hofmann, Axel; Luais, Beatrice

    2013-04-01

    The marine meta-sedimentary successions in the "Barberton Mountain Land" are formed by Archean volcanic and sedimentary rocks including the oldest known impact ejecta layers on Earth. The chemical signature (high iridium concentrations, chromium isotopic ratios) of some of these up to tens of cm thick Archean spherule layers advocate that these ejecta deposits represent mainly extraterrestrial material [1]. These ejecta layers contain millimetre sized spherules that are larger and accumulated thicker layers compared to any impact ejecta layer known from Phanerozoic sediments, including the global ejecta layer of the Chicxulub impact catering event terminating the Mesozoic era of Earth's history [2]. The Archean spherule layers are interpreted as products of large impacts by 20 to >100 km diameter objects [3, 4]. Identifying traces of mega-impacts in Earth's ancient history could be of relevance for the evolution of atmosphere, biosphere, and parts of the Earth's crust during that time. In addition, recognizing global stratigraphic marker horizons is highly valuable for inter-correlating sedimentary successions between Archean cratons [5]. However estimates regarding size of the impact event and correlations between the different outcrops in the Barberton mountain land are complicated by post depositional alterations of the tectonically deformed sediments [6, 7]. The relatively fresh samples recovered from below the water table during the 2011-2012 ICDP drilling "Barberton Mountain Land" are promising samples to investigate and to discriminate primary and secondary features of these rare rocks. We plan to conduct 1) petrographic, micro-chemical and mineralogical characterization of the impact ejecta layers, 2) bulk chemical analyses of major and trace elements, and 3) LAICP- MS elemental mapping of platinum group element (PGE) distributions. and elemental analyses of moderately siderophile elements. This aims at 1) characterization of the ejecta layers, 2

  18. SQUID-SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle

    NASA Astrophysics Data System (ADS)

    Fischer, Woodward W.; Fike, David A.; Johnson, Jena E.; Raub, Timothy D.; Guan, Yunbin; Kirschvink, Joseph L.; Eiler, John M.

    2014-04-01

    Many aspects of Earth's early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood-in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes (32S, 33S, and 34S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (∼2.6-2.5 Ga) marine carbonate platform from South Africa. Coupled with petrography, these techniques can untangle the complex history of mineralization in samples containing diverse sulfur-bearing phases. We focused on pyrite nodules, precipitated in shallow sediments. These textures record systematic spatial differences in both mass-dependent and mass-anomalous sulfur-isotopic composition over length scales of even a few hundred microns. Petrography and magnetic imaging demonstrate that mass-anomalous fractionations were acquired before burial and compaction, but also show evidence of postdepositional alteration 500 million y after deposition. Using magnetic imaging to screen for primary phases, we observed large spatial gradients in Δ33S (>4‰) in nodules, pointing to substantial environmental heterogeneity and dynamic mixing of sulfur pools on geologically rapid timescales. In other nodules, large systematic radial δ34S gradients (>20‰) were observed, from low values near their centers increasing to high values near their rims. These fractionations support hypotheses that microbial sulfate reduction was an important metabolism in organic-rich Archean environments-even in an Archean ocean basin dominated by iron chemistry.

  19. The Hardwood Gneiss: Evidence for high P-T Archean metamorphism in the southern province of the Lake Superior region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, J.W.; Geiger, C.A.

    1990-03-01

    The Hardwood Gneiss is an areally small unit of Precambrian granulite-grade rocks exposed in the Archean gneiss terrane of the southern Lake Superior region. The rocks are located in the southwestern portion of the Upper Peninsula of Michigan and consist of a structurally conformable package of quartzitic, metapelitic, amphibolitic, and metabasic units. Three texturally distinct garnet types are present in the metabasites and are interpreted to represent two metamorphic events. Geothermobarometry indicates conditions of {approximately}8.2-11.6 kbar and {approximately}770C for M1, and conditions of {approximately}6.0-10.1 kbar and {approximately}610-740C for M2. It is proposed that M1 was Archean and contemporaneous with amore » high-grade metamorphic event recorded in the Minnesota River Valley. The M2 event was probably Early Proterozoic and pre-Penokean, with metamorphic conditions more intense than those generally ascribed to the Penokean Orogeny in Michigan, but similar to the conditions reported for the Kapuskasing zone of Ontario. The high paleopressures and temperatures of the M1 event make the Hardwood Gneiss distinct from any rocks previously described in the southern Lake Superior region, and suggest intense tectonic activity during the Archean.« less

  20. Exploring for Volcanic and Hydrothermal Activity Above Off-axis Melt Lenses near the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    White, S. M.; Lee, A. J.; Rubin, K. H.

    2015-12-01

    Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active

  1. Exploring for Volcanic and Hydrothermal Activity Above Off-axis Melt Lenses near the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    West, A. J.; Torres, M. A.; Nealson, K. H.

    2014-12-01

    Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active

  2. In situ study of the factors controlling Fe, Cu and Zn scavenging during the early mixing between hydrothermal fluids and seawater

    NASA Astrophysics Data System (ADS)

    Cathalot, C.; Laes-Huon, A.; Pelleter, E.; Maillard, L.; Chéron, S.; Boissier, A.; Waeles, M.; Cotte, L.; Pernet-Coudrier, B.; Gayet, N.; Sarrazin, J.; Sarradin, P. M.

    2016-12-01

    Despite the importance of trace metals for marine ecosystems and in the global carbon cycle, dissolved metal sources in the deep ocean and their export mechanism are, today, still unconstrained. The historical view that dissolved metals are largely removed from hydrothermal plumes through precipitation of a range of iron-bearing minerals is now being challenged. Several potential mechanisms for the delivery of hydrothermally sourced metals to the open ocean have been suggested and require a thorough documentation of the early mixing processes between the hydrothermal fluids and the ambient seawater. The geochemistry of a plume, and specially the rising plume, is dictated by the nature and composition of the host rock, fluid temperature, phase separation at depth and subsurface mixing processes, and thus can vary in temperature, pH, metal and dissolved gases content between spatially close hydrothermal vents. Here, we present in situ chemical conditions during the early mixing gradient between hydrothermal fluids and seawater at the Lucky Strike site (Mid-Atlantic Ridge), using a multi proxy approach targeting both the dissolved and particulate phase and combining in situ measurements and analysis back in the lab. Indeed, in situ O2, H2S and temperature measurements were performed at a 1Hz frequency, coupled to lower frequency analysis of in situ Fe2+. In addition, particulate material filtered in situ was analyzed using Inductive Coupled Plasma - Mass Spectrometry, X-Ray Diffraction, X-Ray Fluorescence and Scanning Electron Microscopy and provided useful insights regarding the reactivity of metals during the mixing processes. Our results show different behavior within the Lucky Strike vent field. Fe and S co-precipitation through chalcopyrite formation at the newly discovered Capelinhos site seem to be the main process. At the White Caste site, on the other hand, wurzite and sphalerite precipitation seems to dominate the dilution processes, H2S being rapidly

  3. Recycled Archean sulfur in the mantle wedge of the Mariana Forearc and microbial sulfate reduction within an extremely alkaline serpentine seamount

    NASA Astrophysics Data System (ADS)

    Aoyama, Shinnosuke; Nishizawa, Manabu; Miyazaki, Junichi; Shibuya, Takazo; Ueno, Yuichiro; Takai, Ken

    2018-06-01

    The identification of microbial activity under extreme conditions is important to define potential boundaries of the habitable and uninhabitable zones of terrestrial and extraterrestrial living forms. The subseafloor regimes of serpentinite seamounts in the Mariana Forearc are among the most extreme environments for life on earth owing to the widespread presence of highly alkaline fluids with pH values greater than 12. The potential activity of sulfate-reducing microorganisms has been suggested within the South Chamorro serpentinite seamounts on the basis of depletion of sulfate and enrichment of dissolved sulfide in pore water. However, the vertical distribution of sulfate-reducing microorganisms and the origin of sulfate are still uncertain. To address these issues, we analyzed quadruple sulfur isotopes of sulfide minerals and pore water sulfate in the upper 56 m of sedimentary sequences at the summit of the S. Chamorro Seamount and those of dissolved sulfate in upwelling fluids collected as deep as 202 mbsf (meters below the seafloor) in a cased hole near the summit of the same seamount. The depth profiles of the concentrations and the δ34S and Δ33S‧ values of sulfide minerals and pore water sulfate indicate microbial sulfate reduction as deep as 30 mbsf. Further, apparent isotopic fractionations (34ε) and exponents of mass dependent relationships (33λ) during sulfate reduction are estimated to be 62 ± 14‰ and 0.512 ± 0.002, respectively. The upwelling fluids show both the chlorine depletion relative to seawater and the negative δ15N values of ammonia (-4‰). Although these signatures point to dehydration of the subducting oceanic plate, the negative Δ33S‧ values of sulfate (-0.16‰ to -0.26‰ with analytical errors of ±0.01‰) are unlikely to originate from surrounding modern crusts. Instead, sulfate in the upwelling fluid likely possess non-mass-dependent (NMD) sulfur. Because NMD sulfur was produced primarily in the Archean atmosphere, our

  4. Evidence of early Archean crust in northwest Gondwana, from U-Pb and Hf isotope analysis of detrital zircon, in Ediacaran surpacrustal rocks of northern Spain

    NASA Astrophysics Data System (ADS)

    Naidoo, Thanusha; Zimmermann, Udo; Vervoort, Jeff; Tait, Jenny

    2018-03-01

    The Mora Formation (Narcea Group) is one of the oldest Precambrian supracrustal successions in northern Spain. Here, we use U-Pb and in situ Hf isotope analysis on detrital zircon to determine its age and provenance. The youngest U-Pb dates constrain the maximum depositional age of the Mora Formation at 565 ± 11 Ma. Results indicate: (1) a dominant Ediacaran zircon population (33%; 565-633 Ma, Cadomian) within a spectrum of Neoproterozoic ages (40%; 636-996 Ma); and (2) smaller Mesoproterozoic (5%; 1004-1240 Ma), Palaeoproterozoic (11%; 1890-2476 Ma) and Archean (11%; 2519-3550 Ma) populations. Results here do not point to one specific cratonic source area; instead, detritus may have been derived from the West African craton and Amazonia, or even the concealed Iberian basement. The lack of 1.3-1.8 Ga grains suggests exclusion of the Sahara Craton as a major source, but this is not certain. This mixed composition favours a complex source history with reworking of detritus across terrane/craton boundaries. Hafnium isotope compositions indicate a range of crustal and juvenile sources, with initial ɛHf values between -15.8 and 11.1, and Hf model ages from 0.8 to 3.7 Ga. For Neoproterozoic zircons (80%), juvenile components (ɛHf(i) +10) may be related to Rodinia fragmentation and the onset of an active margin setting leading to the Cadomian orogeny. Palaeoproterozoic to Paleoarchean grains (20%) all have negative ɛHf values and Meso- to Eoarchean Hf model ages. This indicates an early (Archean) sialic crustal component for northwestern Gondwana.

  5. Modeling Hydrothermal Activity on Enceladus

    NASA Astrophysics Data System (ADS)

    Stamper, T., Jr.; Farough, A.

    2017-12-01

    Cassini's mass spectrometer data and gravitational field measurements imply water-rock interactions around the porous core of Enceladus. Using such data we characterize global heat and fluid transport properties of the core and model the ongoing hydrothermal activity on Enceladus. We assume that within the global ocean beneath the surface ice, seawater percolates downward into the core where it is heated and rises to the oceanfloor where it emanates in the form of diffuse discharge. We utilize the data from Hsu et al., [2015] with models of diffuse flow in seafloor hydrothermal systems by Lowell et al., [2015] to characterize the global heat transport properties of the Enceladus's core. Based on direct observations the gravitational acceleration (g) is calculated 0.123 m s-2. We assume fluid's density (ρ) is 10­3 kg m-3 and the specific heat of the fluid (cf) is 4000 Jkg-1 °C-1. From these values effective thermal diffusivity (a*) is calculated as 10­-6 m2 s-1. We also assume the coefficient of thermal expansion of fluid (αf) and the kinematic viscosity of fluid (ν) to be 10-4 °C-1 and 10­-6 m2 s-1 respectively. The estimated Rayleigh number (Ra) ranges between 0.11-2468.0, for core porosity (φ) of 5-15%, permeability (k) between 10-12-10-8 m2 and temperature between 90-200 °C and the depth of fluid circulation of 100 m. High values of Rayleigh number, cause vigorous convection within the core of Enceladus. Numerical modeling of reactive transport in multicomponent, multiphase systems is required to obtain a full understanding of the characteristics and evolution of the hydrothermal system on Enceladus, but simple scaling laws can provide insight into the physics of water-rock interactions.

  6. Reconciling "Whiffs" of O2 with the Archean MIF S Record: Insights from Sulfide Oxidation Experiments

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Reinhard, C. T.; Romaniello, S. J.; Greaney, A. T.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2016-12-01

    The Archean-Proterozoic transition is marked by the first appreciable accumulation of O2 in Earth's oceans and atmosphere at 2.4 billion years ago (Ga). However, this Great Oxidation Event (GOE) is not the first evidence for O2 in Earth's surface environment. Paleoredox proxies preserved in ancient marine shales (Mo, Cr, Re, U) suggest transient episodes of oxidative weathering before the GOE, perhaps as early as 3.0 Ga. One marine shale in particular, the 2.5 Ga Mount McRae Shale of Western Australia, contains a euxinic interval with Mo enrichments up to 50 ppm. This enrichment is classically interpreted as the result of oxidative weathering of sulfides on the continental surface. However, prior weathering models based on experiments suggested that sulfides require large amounts of O2 [>10-4 present atmospheric level (PAL) pO2] to produce this weathering signature, in conflict with estimates of Archean pO2 from non-mass-dependent (NMD) sulfur isotope anomalies (<10-5 PAL pO2). To reconcile these datasets, we conducted aqueous oxidation experiments of pyrite and molybdenite from 3 - 700 nM O2 (equivalent at equilibrium to 10-5 - 10-3 PAL) to measure oxidation kinetics as a function of the concentration of dissolved O2. We measured rates by injecting oxygenated water at a steady flow rate and monitoring dissolved O2 concentrations with LUMOS sensors. Our data extend the O2 range explored in pyrite oxidation experiments by three orders of magnitude and provide the first rates for molybdenite oxidation at O2 concentrations potentially analogous to those characteristic of the Archean atmosphere. Our results show that pyrite and molybdenite oxidize significantly more rapidly at lower O2 levels than previously thought. As a result, our revised weathering model demonstrates that the Mo enrichments observed in late Archean marine shales are potentially attainable at extremely low atmospheric pO2 values (e.g., <10-5 PAL), reconciling large sedimentary Mo enrichments with co

  7. Fossils of hydrothermal vent worms from Cretaceous sulfide ores of the Samail ophiolite, Oman

    USGS Publications Warehouse

    Haymon, R.M.; Koski, R.A.; Sinclair, C.

    1984-01-01

    Fossil worm tubes of Cretaceous age preserved in the Bayda massive sulfide deposit of the Samail ophiolite, Oman, are apparently the first documented examples of fossils embedded in massive sulfide deposits from the geologic record. The geologic setting of the Bayda deposit and the distinctive mineralogic and textural features of the fossiliferous samples suggest that the Bayda sulfide deposit and fossil fauna are remnants of a Cretaceous sea-floor hydrothermal vent similar to modern hot springs on the East Pacific Rise and the Juan de Fuca Ridge.

  8. Zn isotopes in hydrothermal sulfides and their oxidation products along the south mid-Atlantic ridge: evidence of hydrothermal fluid deposition

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Lei, Jijiang; Wang, Hao; Li, Zhenggang

    2018-04-01

    Significant Zn isotope fractionation occurs during seafloor hydrothermal activities. Therefore, exploring variations in Zn isotope composition affected by hydrothermal fluids and oxidative processes would help to better understand hydrothermal fluid cycling and sulfide deposition on mid-ocean ridges. In this paper, the Zn isotope compositions of different types of sulfides and their oxidation products obtained from hydrothermal fields on the South Mid-Atlantic Ridge (13-15°S) were analyzed using a Neptune plus MC-ICP-MS. The δ66Zn ratios range from -0.14‰ to +0.38‰, and the average δ66Zn ratio is +0.12±0.06‰ ( n=21, 2 SD) for all the studied sulfides and oxidation products. The Cu-rich sulfides have a slightly heavier Zn isotope composition (average δ66Zn=+0.19±0.07‰, n=6) than the Zn-rich sulfides (average δ66Zn=-0.02±0.06‰, n=5). The Zn isotope compositions of the oxidation products are similar to those of the Cu-rich sulfides, with an average δ66Zn ratio of 0.14±0.06‰ ( n=10, 2 SD). The Zn isotope compositions of all the samples are generally within the ranges of sulfides from hydrothermal fields on other mid-ocean ridges, such as the East Pacific Rise (9°N, 21°N) and the Trans-Atlantic Geotraverse. However, the average Zn isotope composition indicates the presence of significantly lighter Zn isotopes relative to those reported in the literature (average δ66Zn=+0.39‰). The significant enrichment of the Zn-rich sulfides with light Zn isotopes reveals that kinetic fractionation likely occurs during mineral deposition. Furthermore, the Zn isotope compositions of the sulfides and their oxidation products (average δ66Zn=+0.12‰) are significantly lighter than the average Zn isotope composition of the ocean (δ66Zn=+0.5‰), which could further constrain the modern Zn isotope cycle in the ocean by serving as a sink for light Zn isotopes.

  9. Hazy Archean Earth as an Analog for Hazy Earthlike Exoplanets

    NASA Astrophysics Data System (ADS)

    Arney, Giada; Meadows, Victoria; Domagal-Goldman, Shawn; Claire, Mark; Schwieterman, Edward

    2015-01-01

    Hazy exoplanets may be common (Bean et al. 2010, Sing et al. 2011, Kreidberg et al 2014), and in our solar system, Venus and Titan have photochemically-produced hazes. There is evidence that Earth itself had a hydrocarbon haze in the Archean (Zerkle et al. 2012, Domagal-Goldman et al. 2008) with important climatic effects (Pavlov et al. 2001, Trainer et al. 2006, Haqq-Misra et al. 2008, Wolf and Toon 2012). We use a 1D coupled photochemical-climate model and a line-by-line radiative transfer model to investigate the climactic and spectral impacts of a fractal hydrocarbon haze on Archean Earth. The haze absorbs significantly at shorter wavelengths and can strongly suppress the Rayleigh scattering tail, a broadband effect that would be remotely detectable at low spectral resolution at wavelengths less than 0.5 μm. Hazes may have a more significant impact on transit transmission spectra. Using the transit transmission radiative transfer model developed by Misra et al. (2014) to generate hazy Archean spectra, we find that even a thin hydrocarbon haze masks the lower atmosphere from the visible into the near infrared where the haze optical depth exceeds unity. The transit transmission spectra we generate for hazy Archean Earth are steeply sloped like the Titan solar occultation spectrum observed by Robinson et al. (2014). Thick hazes can also cool the planet significantly: for example, the thick fractal haze generated around Archean Earth with 0.3% CH4, 1% CO2 and 1 ppm C2H6 cools the planet from roughly 290 K without the haze to below freezing with the haze. Finally, we investigate the impact of host star spectral type on haze formation, comparing the hazes generated around a solar-type star to those generated at an Earth analog planet around the M dwarf AD Leo. Our results indicate hazes around M dwarfs for the same initial atmospheric composition may be thinner due to decreased UV photolysis of methane and other hydrocarbons needed for haze formation. Earthlike

  10. Airborne electromagnetic detection of shallow seafloor topographic features, including resolution of multiple sub-parallel seafloor ridges

    NASA Astrophysics Data System (ADS)

    Vrbancich, Julian; Boyd, Graham

    2014-05-01

    The HoistEM helicopter time-domain electromagnetic (TEM) system was flown over waters in Backstairs Passage, South Australia, in 2003 to test the bathymetric accuracy and hence the ability to resolve seafloor structure in shallow and deeper waters (extending to ~40 m depth) that contain interesting seafloor topography. The topography that forms a rock peak (South Page) in the form of a mini-seamount that barely rises above the water surface was accurately delineated along its ridge from the start of its base (where the seafloor is relatively flat) in ~30 m water depth to its peak at the water surface, after an empirical correction was applied to the data to account for imperfect system calibration, consistent with earlier studies using the same HoistEM system. A much smaller submerged feature (Threshold Bank) of ~9 m peak height located in waters of 35 to 40 m depth was also accurately delineated. These observations when checked against known water depths in these two regions showed that the airborne TEM system, following empirical data correction, was effectively operating correctly. The third and most important component of the survey was flown over the Yatala Shoals region that includes a series of sub-parallel seafloor ridges (resembling large sandwaves rising up to ~20 m from the seafloor) that branch out and gradually decrease in height as the ridges spread out across the seafloor. These sub-parallel ridges provide an interesting topography because the interpreted water depths obtained from 1D inversion of TEM data highlight the limitations of the EM footprint size in resolving both the separation between the ridges (which vary up to ~300 m) and the height of individual ridges (which vary up to ~20 m), and possibly also the limitations of assuming a 1D model in areas where the topography is quasi-2D/3D.

  11. Chemistry of a serpentinization-controlled hydrothermal system at the Lost City hydrothermal vent field

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Kelley, D. S.; Butterfield, D. A.; Nelson, B. K.; Karson, J. A.

    2003-12-01

    The Lost City Hydrothermal Field (LCHF), at 30° N near the Mid-Atlantic Ridge, is an off-axis, low temperature, high-pH, ultramafic-hosted vent system. Within the field, carbonate chimneys tower up to 60 m above the seafloor, making them the tallest vent structures known. The chemistry of the vent structures and fluids at the LCHF is controlled by reactions between seawater and ultramafic rocks beneath the Atlantis massif. Mixing of warm alkaline vent fluids with seawater causes precipitation of calcium carbonate and growth of the edifaces, which range from tall, graceful pinnacles to fragile flanges and colloform deposits. Geochemical and petrological analyses of the carbonate rocks reveal distinct differences between the active and extinct structures. Actively venting chimneys and flanges are extremely porous, friable formations composed predominantly of aragonite and brucite. These structures provide important niches for well-developed microbial communities that thrive on and within the chimney walls. Some of the active chimneys may also contain the mineral ikaite, an unstable, hydrated form of calcium carbonate. TIMS and ICP-MS analyses of the carbonate chimneys show that the most active chimneys have low Sr isotope values and that they are low in trace metals (e.g., Mn, Ti, Pb). Active structures emit high-pH, low-Mg fluids at 40-90° C. The fluids also have low Sr values, indicating circulation of hydrothermal solutions through the serpentinite bedrock beneath the field. In contrast to the active structures, extinct chimneys are less porous, are well lithified, and they are composed predominantly of calcite that yields Sr isotopes near seawater values. Prolonged lower temperature seawater-hydrothermal fluid interaction within the chimneys results in the conversion of aragonite to calcite and in the enrichment of some trace metals (e.g., Mn, Ti, Co, Zn). It also promotes the incorporation of foraminifera within the outer, cemented walls of the carbonate

  12. SQUID–SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle

    PubMed Central

    Fischer, Woodward W.; Fike, David A.; Johnson, Jena E.; Raub, Timothy D.; Guan, Yunbin; Kirschvink, Joseph L.; Eiler, John M.

    2014-01-01

    Many aspects of Earth’s early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood—in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes (32S, 33S, and 34S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (∼2.6–2.5 Ga) marine carbonate platform from South Africa. Coupled with petrography, these techniques can untangle the complex history of mineralization in samples containing diverse sulfur-bearing phases. We focused on pyrite nodules, precipitated in shallow sediments. These textures record systematic spatial differences in both mass-dependent and mass-anomalous sulfur-isotopic composition over length scales of even a few hundred microns. Petrography and magnetic imaging demonstrate that mass-anomalous fractionations were acquired before burial and compaction, but also show evidence of postdepositional alteration 500 million y after deposition. Using magnetic imaging to screen for primary phases, we observed large spatial gradients in Δ33S (>4‰) in nodules, pointing to substantial environmental heterogeneity and dynamic mixing of sulfur pools on geologically rapid timescales. In other nodules, large systematic radial δ34S gradients (>20‰) were observed, from low values near their centers increasing to high values near their rims. These fractionations support hypotheses that microbial sulfate reduction was an important metabolism in organic-rich Archean environments—even in an Archean ocean basin dominated by iron chemistry. PMID:24706767

  13. The influence of seafloor hydrothermal activity on major and trace elements of the sediments from the South Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Chen, Shuai; Zeng, Zhigang; Pu, Xiaoqiang; Hou, Qinghua

    2017-10-01

    Sediment samples obtained from the South Mid-Atlantic Ridge were analyzed for the major and trace elements by inductively coupled plasma atomic emission spectroscopy and inductively coupled plasma mass spectrometry. Results revealed that the contents of elements (e.g., Fe, Mn, Cu, Zn, V, Co) were high in samples 22V-TVG10 and 26V-TVG05 from the sites near the hydrothermal areas, and low in sample 22V-TVG14, which was collected far from the hydrothermal areas. The contents of Ca, Sr and Ba in the samples showed opposite trends. A positive correlation between the concentrations of metallic elements (Cu, Zn, Co, Ni, Pb, V) and Fe in the samples were observed. These results are consistent with chemical evolution of the dispersing hydrothermal plume.

  14. Sedimentation patterns in the Barberton Mountain Land, South Africa, and the Pilbara Block, Australia: Evidence for Archean rifted continental margins

    NASA Astrophysics Data System (ADS)

    Eriksson, Kenneth A.

    1982-01-01

    Archean supracrustal sequences in the Barberton Mountain Land, South Africa, and the Pilbara Block, Australia, consist of lower volcanic and upper dominantly terrigenous clastic intervals. As evidenced by the paleoenvironments of intercalated sedimentary horizons, volcanism occurred mainly in shallow waters. The overlying ca 3.3 Ga sedimentary intervals contain various common as well as unique paleoenvironments, the understanding of which places significant constraints on Archean crustal models. Lateral and vertical associations of inferred paleoenvironments are used to interpret the geotectonic history of the Archean depositories. The early sedimentary history of the greenstone belts is characterized by terrestrial and subaqueous graben-fill associations of facies related to the initial rift stage of basin development. Continued rifting and initial spreading produced submarine grabens within which ironformations accumulated in response to waning volcanism. Source area uplift resulted in progradation of submarine fans across the basinal chemical sediments. The turbidites are gradational directly into braided alluvial sediments, in part of fan delta origin, suggesting that the continental to marine transition occurred along a narrow continental shelf. In the Barberton Mountain Land the steep-rift margin was succeeded by the development of a stable continental shelf or shelf rise margin through progradation of the turbidite wedge possibly in association with a eustatic rise in sea-level related to continued spreading. On this shelf extensive tidal, deltaic and barrier beach sediments accumulated. Sedimentation was terminated by closure of the passive margin oceans. The late-Archean Pongola Supergroup in South Africa is considered to be the late-orogenic molasse response to this closure and represents the completion of the Wilson cycle.

  15. Bridging Two Worlds: From the Archean to the Proterozoic

    NASA Technical Reports Server (NTRS)

    Schopf, J. William

    2000-01-01

    As now known, the Archean and Proterozoic appear to have been different worlds: the geology (tectonic style, basinal distribution, dominant rock types), atmospheric composition (O2, CO21, CH4), and surface environment (day-length, solar luminosity, ambient temperature) all appear to have changed over time. And virtually all paleobiologic indicators can be interpreted as suggesting there were significant biotic differences as well: (1) Stromatolites older than 2.5 Ga are rare relative to those of the Proterozoic; their biotic components are largely unknown; and the biogenicity of those older than approx. 3.2 Ga has been questioned. (2) Bona fide microfossils older than approx. 2.4 Ga are rare, poorly preserved, and of uncertain biological relations. Gaps of hundreds of millions of years in the known record make it impossible to show that Archean microorganisms are definitely part of the 2.4 Ga-to-present evolutionary continuum. and (3) In rocks older than approx. 2.2 Ga, the sulfur isotopic record is subject to controversy; phylogenetically distinctive bio-markers are unknown; and nearly a score of geologic units contain organic carbon anomalously light isotopically (relative to that of the Proterozoic and Phanerozoic) that may reflect the presence of Archaeans ("Archaebacteria of earlier classifications) but may not (since cellularly preserved Archean-age Archaeans have never been identified).

  16. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?

    NASA Technical Reports Server (NTRS)

    Sumner, D. Y.; Grotzinger, J. P.

    1996-01-01

    Archean carbonates commonly contain decimetre- to metre-thick beds consisting entirely of fibrous calcite and neomorphosed fibrous aragonite that precipitated in situ on the sea floor. The fact that such thick accumulations of precipitated carbonate are rare in younger marine carbonates suggests an important change in the modes of calcium carbonate precipitation through time. Kinetics of carbonate precipitation depend on the concentration of inhibitors to precipitation that reduce crystallization rates and crystal nuclei formation, leading to kinetic maintenance of supersaturated solutions. Inhibitors also affect carbonate textures by limiting micrite precipitation and promoting growth of older carbonate crystals on the sea floor. Fe2+, a strong calcite-precipitation inhibitor, is thought to have been present at relatively high concentrations in Archean seawater because oxygen concentrations were low. The rise in oxygen concentration at 2.2-1.9 Ga led to the removal of Fe2+ from seawater and resulted in a shift from Archean facies, which commonly include precipitated beds, to Proterozoic facies, which contain more micritic sediment and only rare precipitated beds.

  17. Heavy metals from Kueishantao shallow-sea hydrothermal vents, offshore northeast Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Xue-Gang; Lyu, Shuang-Shuang; Garbe-Schönberg, Dieter; Lebrato, Mario; Li, Xiaohu; Zhang, Hai-Yan; Zhang, Ping-Ping; Chen, Chen-Tung Arthur; Ye, Ying

    2018-04-01

    Shallow water hydrothermal vents are a source of heavy metals leading to their accumulation in marine organisms that manage to live under extreme environmental conditions. This is the case at Kueishantao (KST) shallow-sea vents system offshore northeast Taiwan, where the heavy metal distribution in vent fluids and ambient seawater is poorly understood. This shallow vent is an excellent natural laboratory to understand how heavy and volatile metals behave in the nearby water column and ecosystem. Here, we investigated the submarine venting of heavy metals from KST field and its impact on ambient surface seawater. The total heavy metal concentrations in the vent fluids and vertical plumes were 1-3 orders of magnitude higher than the overlying seawater values. When compared with deep-sea hydrothermal systems, the estimated KST end-member fluids exhibited much lower concentrations of transition metals (e.g., Fe and Mn) but comparable concentrations of toxic metals such as Pb and As. This may be attributed to the lower temperature of the KST reaction zone and transporting fluids. Most of the heavy metals (Fe, Mn, As, Y, and Ba) in the plumes and seawater mainly originated from hydrothermal venting, while Cd and Pb were largely contributed by external sources such as contaminated waters (anthropogenic origin). The spatial distribution of heavy metals in the surface seawater indicated that seafloor venting impacts ambient seawater. The measurable influence of KST hydrothermal activity, however, was quite localized and limited to an area of < 1 km2. The estimated annual fluxes of heavy metals emanating from the yellow KST hydrothermal vent were: 430-2600 kg Fe, 24-145 kg Mn, 5-32 kg Ba, 10-60 kg As, 0.3-1.9 kg Cd, and 2-10 kg Pb. This study provides important data on heavy metals from a shallow-sea hydrothermal field, and it helps to better understand the environmental impact of submarine shallow hydrothermal venting.

  18. Mid-ocean ridge serpentinite in the Puerto Rico Trench: Accretion, alteration, and subduction of Cretaceous seafloor in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Klein, F.; Marschall, H.; Bowring, S. A.; Horning, G.

    2016-12-01

    Serpentinite is believed to be one of the main carriers of water and fluid mobile elements into subduction zones, but direct evidence for serpentinite subduction has been elusive. The Antilles island arc is one of only two subduction zones worldwide that recycles slow-spreading oceanic lithosphere where descending serpentinite is both exposed by faulting and directly accessible on the seafloor. Here we examined serpentinized peridotites dredged from the North Wall of the Puerto Rico Trench (NWPRT) to assess their formation and alteration history and discuss geological ramifications resulting from their emplacement and subduction. Lithospheric accretion and serpentinization occurred, as indicated by U-Pb geochronology of hydrothermally altered zircon, at the Cretaceous Mid-Atlantic Ridge (CMAR). In addition to lizardite-rich serpentinites with pseudomorphic textures after olivine and pyroxene typical for static serpentinization at slow spreading mid-ocean ridges, recovered samples include non-pseudomorphic antigorite-rich serpentinites that are otherwise typically associated with peridotite at convergent plate boundaries. Antigorite-serpentinites have considerably lower Fe(III)/Fetot and lower magnetic susceptibilities than lizardite-serpentinites with comparable Fetot contents. Rare earth element (REE) contents of lizardite-serpentinites decrease linearly with increasing Fe(III)/Fetot of whole rock samples, suggesting that oxidation during seafloor weathering of serpentinite releases REEs to seawater. Serpentinized peridotites recorded multifaceted igneous and high- to low-temperature hydrothermal processes that involved extensive chemical, physical, and mineralogical modifications of their peridotite precursors with strong implications for our understanding of the accretion, alteration, and subduction of slow-spreading oceanic lithosphere.

  19. New Constraints on the Extent of Paleoproterozoic and Archean Basement in the Northwest U.S. Cordillera

    NASA Astrophysics Data System (ADS)

    Brewer, R. A.; Vervoort, J.; Lewis, R. S.; Gaschnig, R. M.; Hart, G.

    2008-12-01

    The Laurentian basement west of the Wyoming craton in southwest Montana and northern Idaho has been interpreted as a collage of Archean and Proterozoic terranes which accreted to the North American craton and incorporated into Laurentia at ~ 1.86 Ga [1]. This basement and the geometry of the Archean and Proterozoic crust are poorly understood due to coverage by metasediments of the Belt-Purcell Supergroup and are further obscured by Mesozoic magmatism (Idaho Batholith, sensu lato). Exposures of the basement are rare but have been documented in a few regions including the Priest River Complex in northern Idaho and the Sevier fold and thrust belt just northwest of the Wyoming craton in the Great Falls tectonic zone (Foster et al. 2006). New ages and isotopic data from orthogneisses in north-central Idaho provide evidence for previously undocumented exposures of both Paleoproterozoic and Archean basement that may place important constraints on the reconstruction of Laurentia and its tectonic setting. The orthogneisses analyzed in this study (all previously mapped as deformed Cretaceous plutons) fall into two distinct age groups of 1.86 Ga and 2.67 Ga. The zircons from both the Archean and Proterozoic rocks have simple systematics. The zircons from three Archean samples have ɛHf(i) values of 2.4 ± 2.1, 3.8 ± 1.8, and 5.2 ± 3.5 (average values based on 6 individual zircon Hf analyses per sample). Zircons from the Paleoproterozoic gneisses have different but internally consistent ɛHf(i) values of -8.0 ± 0.9 and -0.6 ± 1.4. In contrast, both Hf and Nd whole rock data are highly scattered in these samples especially in the Archean samples in which ɛHf(i) varies from -25 to +21 and ɛNd(i) varies from -8 to +11. These extreme values are implausible for initial compositions and indicate open system behavior in both Lu-Hf and Sm-Nd in the whole rocks. The zircons, in contrast, appear to be closed to significant Hf mobility on the scale of the laser analyses. The data

  20. Trace element geochemistry of Archean volcanic rocks

    NASA Technical Reports Server (NTRS)

    Jahn, B.-M.; Shih, C.-Y.; Murthy, V. R.

    1974-01-01

    The K, Rb, Sr, Ba and rare-earth-element contents of some Archean volcanic rocks from the Vermilion greenstone belt, northeast Minnesota, were determined by the isotopic dilution method. The characteristics of trace element abundances, supported by the field occurrences and major element chemistry, suggest that these volcanic rocks were formed in an ancient island arc system.

  1. Mapping the seafloor, with end users in mind

    NASA Astrophysics Data System (ADS)

    Lecours, V.

    2017-12-01

    In the last 25 years, as more seafloor data and user-friendly analysis tools have become available, the amount and diversity of applications making use of such data have considerably increased. While limitations in the utility of the data caused by the data collection and processing methods may be quite apparent to experts, such limitations may be less obvious to users with different background and expertise. For instance, it has been acknowledged many times in the literature that seafloor data are often treated as true representations of the seafloor rather that as models. This lack of understanding brings hidden dangers to unsuspecting end users misusing data, which may result in misleading outcomes/conclusions for different applications like marine geomorphology, marine habitat mapping, marine conservation, and management of marine resources. In this paper, I identify common practices of both data producers and users that can prevent a proper use of seafloor data. Using seafloor data from a variety of locations and sources, I demonstrate how the choice of soundings interpolator, elements of data quality, scale alterations, and backscatter representation can impact applications. I show how these elements propagate throughout analyses and directly influence outcomes, sometimes in predictable ways (e.g. in marine geomorphology) and sometimes in unpredictable ways (e.g. in marine habitat mapping). Regardless of the final use of seafloor data, better and more transparent error and uncertainty quantification and representation should be implemented at the data collection, processing, and analysis levels. Complete metadata should always be documented, with elements related to data provenance, survey, scale, error and uncertainty quantification, and any other information relevant to further use of seafloor data, in order to create a community of users aware of data quality and limitations. As the number of applications using seafloor data increases, some of the

  2. Active hydrothermal and non-active massive sulfide mound investigation using a new multiparameter chemical sensor

    NASA Astrophysics Data System (ADS)

    Han, C.; Wu, G.; Qin, H.; Wang, Z.

    2012-12-01

    Investigation of active hydrothermal mound as well as non-active massive sulfide mound are studied recently. However, there is still lack of in-situ detection method for the non-active massive sulfide mound. Even though Transient ElectroMagnetic (TEM) and Electric Self-potential (SP) methods are good, they both are labour, time and money cost work. We proposed a new multiparameter chemical sensor method to study the seafloor active hydrothermal mound as well as non-active massive sulfide mound. This sensor integrates Eh, S2- ions concentration and pH electrochemical electrodes together, and could found chemical change caused by the active hydrothermal vent, even weak chemical abnormalities by non-active massive sulfide hydrothermal mound which MARP and CTD sometimes cannot detect. In 2012, the 1st Leg of the Chinese 26th cruise, the multiparameter chemical sensor was carried out with the deepsea camera system over the Carlsberg Ridge in Indian Ocean by R/V DAYANGYIHAO. It was shown small Eh and S2- ions concentration abnormal around a site at Northwest Indian ridge. This site was also evidenced by the TV grab. In the 2nd Leg of the same cruise in June, this chemical sensor was carried out with TEM and SP survey system. The chemical abnormalities are matched very well with both TEM and SP survey results. The results show that the multiparameter chemical sensor method not only can detect active hydrothermal mound, but also can find the non-active massive sulfide hydrothermal mound.

  3. Microdistribution of Faunal Assemblages at Deep-Sea Hydrothermal Vents in the Southern Ocean

    PubMed Central

    Marsh, Leigh; Copley, Jonathan T.; Huvenne, Veerle A. I.; Linse, Katrin; Reid, William D. K.; Rogers, Alex D.; Sweeting, Christopher J.; Tyler, Paul A.

    2012-01-01

    Chemosynthetic primary production by microbes supports abundant faunal assemblages at deep-sea hydrothermal vents, with zonation of invertebrate species typically occurring along physico-chemical gradients. Recently discovered vent fields on the East Scotia Ridge (ESR) in the Southern Ocean represent a new province of vent biogeography, but the spatial dynamics of their distinct fauna have yet to be elucidated. This study determines patterns of faunal zonation, species associations, and relationships between faunal microdistribution and hydrothermal activity in a vent field at a depth of 2,400 m on the ESR. Remotely operated vehicle (ROV) dives obtained high-definition imagery of three chimney structures with varying levels of hydrothermal activity, and a mosaic image of >250 m2 of seafloor co-registered with temperature measurements. Analysis of faunal microdistribution within the mosaiced seafloor reveals a consistent pattern of faunal zonation with increasing distance from vent sources and peak temperatures. Assemblages closest to vent sources are visibly dominated by a new species of anomuran crab, Kiwa n. sp. (abundance >700 individuals m−2), followed by a peltospiroid gastropod (>1,500 individuals m−2), eolepadid barnacle (>1,500 individuals m−2), and carnivorous actinostolid anemone (>30 individuals m−2). Peripheral fauna are not dominated by a single taxon, but include predatory and scavenger taxa such as stichasterid seastars, pycnogonids and octopus. Variation in faunal microdistribution on chimneys with differing levels of activity suggests a possible successional sequence for vent fauna in this new biogeographic province. An increase in δ34S values of primary consumers with distance from vent sources, and variation in their δ13C values also indicate possible zonation of nutritional modes of the vent fauna. By using ROV videography to obtain a high-resolution representation of a vent environment over a greater extent than previous studies

  4. The Third Dimension of an Active Back-arc Hydrothermal System: ODP Leg 193 at PACMANUS

    NASA Astrophysics Data System (ADS)

    Binns, R.; Barriga, F.; Miller, D.

    2001-12-01

    This first sub-seafloor examination of an active hydrothermal system hosted by felsic volcanics, at a convergent margin, obtained drill core from a high-T "smoker" site (penetrated to sim200 mbsf) and a low-T site of diffuse venting (~400mbsf). We aimed to delineate the lateral and vertical variability in mineralisation and alteration patterns, so as to understand links between volcanological, structural and hydrothermal phenomena and the sources of fluids, and to establish the nature and extent of microbial activity within the system. Technological breakthroughs included deployment of a new hard-rock re-entry system, and direct comparison in a hardrock environment of structural images obtained by wireline methods and logging-while-drilling. The PACMANUS hydrothermal site, at the 1700m-deep crest of a 500m-high layered sequence of dacitic lavas, is notable for baritic massive sulfide chimneys rich in Cu, Zn, Au and Ag. Below an extensive cap 5-40m thick of fresh dacite-rhyodacite, we found unexpectedly pervasive hydrothermal alteration of vesicular and flow-banded precursors, accompanied by variably intense fracturing and anhydrite-pyrite veining. Within what appears one major hydrothermal event affecting the entire drilled sequence, there is much overprinting and repetition of distinctly allochemical argillaceous (illite-chlorite), acid-sulfate (pyrophyllite-anhydrite) and siliceous assemblages. The alteration profiles include a transition from metastable cristobalite to quartz at depth, and are similar under low-T and high-T vent sites but are vertically condensed in a manner suggesting higher thermal gradients beneath the latter. The altered rocks are surprisingly porous (average 25%). Retention of intergranular pore spaces and open vesicles at depth implies elevated hydrothermal pressures, whereas evidence from fluid inclusions and hydrothermal brecciation denotes local or sporadic phase separation. A maximum measured temperature of 313 degC measured 8 days

  5. Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Niles, Paul B.; Gibson, Everett K., Jr.; Romanek, Christopher S.; Zhang, Chuanlun L.; Bissada, Kadry K.

    2008-01-01

    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere.

  6. The origin or the Archean Jardine iron formation-hosted lode gold deposit. Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping, Liu.

    1992-06-09

    While there is considerable controversy concerning the origin of greenstone-hosted lode gold deposits of Archean age, there is a general consensus that these deposits are epigenetic. By contrast, iron formation-hosted lode gold deposits of Archean or Proterozoic age are considered either epigenetic or syngenetic. At least three genetic models have been proposed for these gold deposits: a syngenetic model involving simultaneous deposition of gold and the iron formation; an epigenetic model involving a later introduction of gold, arsenic, and sulfur into the iron formation; and a multistage model involving primary concentration of gold during deposition of iron formation followed bymore » remobilization and reconcentration of gold during later events. The Jardine district is one of only three Archean lode gold districts in the United States that have reserves of greater than 300,000 ounces of gold. The other two are the South Pass-Atlantic City district, Wyoming, and the Ropes mine, Michigan. The fact that two of the three districts are in the Wyoming province suggests that the province might be an Archean gold province similar to Archean provinces in Canada. Placer gold was discovered near Jardine in 1866, and gold quartz veins were mined in the 1880's at Mineral Hill. Exploration by the Jardine Joint Venture has concentrated on the Jardine area, including Crevasse Mountain, where minor lode gold mineralization occurs in quartz-biotite schists. In order to complement previous geochemical, mineralogical, petrological and structural studies, the present study has concentrated on fluid inclusion, stable isotope, and electron microprobe studies with the intention of determining: (1) the source of the ore-forming fluids and gold, and (2) the genetic relationship between gold mineralization and iron formation, alteration and metamorphism.« less

  7. The origin or the Archean Jardine iron formation-hosted lode gold deposit. Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping, Liu

    1992-06-09

    While there is considerable controversy concerning the origin of greenstone-hosted lode gold deposits of Archean age, there is a general consensus that these deposits are epigenetic. By contrast, iron formation-hosted lode gold deposits of Archean or Proterozoic age are considered either epigenetic or syngenetic. At least three genetic models have been proposed for these gold deposits: a syngenetic model involving simultaneous deposition of gold and the iron formation; an epigenetic model involving a later introduction of gold, arsenic, and sulfur into the iron formation; and a multistage model involving primary concentration of gold during deposition of iron formation followed bymore » remobilization and reconcentration of gold during later events. The Jardine district is one of only three Archean lode gold districts in the United States that have reserves of greater than 300,000 ounces of gold. The other two are the South Pass-Atlantic City district, Wyoming, and the Ropes mine, Michigan. The fact that two of the three districts are in the Wyoming province suggests that the province might be an Archean gold province similar to Archean provinces in Canada. Placer gold was discovered near Jardine in 1866, and gold quartz veins were mined in the 1880`s at Mineral Hill. Exploration by the Jardine Joint Venture has concentrated on the Jardine area, including Crevasse Mountain, where minor lode gold mineralization occurs in quartz-biotite schists. In order to complement previous geochemical, mineralogical, petrological and structural studies, the present study has concentrated on fluid inclusion, stable isotope, and electron microprobe studies with the intention of determining: (1) the source of the ore-forming fluids and gold, and (2) the genetic relationship between gold mineralization and iron formation, alteration and metamorphism.« less

  8. Thermodynamics of Strecker synthesis in hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell; Shock, Everett

    1995-01-01

    Submarine hydrothermal systems on the early Earth may have been the sites from which life emerged. The potential for Strecker synthesis to produce biomolecules (amino and hydroxy acids) from starting compounds (ketones, aldehydes, HCN and ammonia) in such environments is evaluated quantitatively using thermodynamic data and parameters for the revised Helgeson-Kirkham-Flowers (HKF) equation of state. Although there is an overwhelming thermodynamic drive to form biomolecules by the Strecker synthesis at hydrothermal conditions, the availability and concentration of starting compounds limit the efficiency and productivity of Strecker reactions. Mechanisms for concentrating reactant compounds could help overcome this problem, but other mechanisms for production of biomolecules may have been required to produce the required compounds on the early Earth. Geochemical constraints imposed by hydrothermal systems provide important clues for determining the potential of these and other systems as sites for the emergence of life.

  9. Hydrous pyrolysis of polycyclic aromatic hydrocarbons and implications for the origin of PAH in hydrothermal petroleum

    NASA Technical Reports Server (NTRS)

    McCollom, T. M.; Simoneit, B. R.; Shock, E. L.

    1999-01-01

    Polycyclic aromatic hydrocarbons (PAH) are found at high concentrations in thermally altered organic matter and hydrothermally generated petroleum from sediment-covered seafloor hydro-thermal systems. To better understand the factors controlling the occurrence of PAH in thermally altered environments, the reactivities of two PAH, phenanthrene and anthracene, were investigated in hydrothermal experiments. The compounds were heated with water at 330 degrees C in sealed reaction vessels for durations ranging from 1 to 17 days. Iron oxide and sulfide minerals, formic acid, or sodium for-mate were included in some experiments to vary conditions within the reaction vessel. Phenanthrene was unreactive both in water alone and in the presence of minerals for up to 17 days, while anthracene was partially hydrogenated (5-10%) to di- and tetrahydroanthracene. In the presence of 6-21 vol % formic acid, both phenanthrene and anthracene reacted extensively to form hydrogenated and minor methylated derivatives, with the degree of hydrogenation and methylation increasing with the amount of formic acid. Phenanthrene was slightly hydrogenated in sodium formate solutions. The hydrogenation reactions could be readily reversed; heating a mixture of polysaturated phenanthrenes resulted in extensive dehydrogenation (aromatization) after 3 days at 330 degrees C. While the experiments demonstrate that reaction pathways for the hydrogenation of PAH under hydrothermal conditions exist, the reactions apparently require higher concentrations of H2 than are typical of geologic settings. The experiments provide additional evidence that PAH may be generated in hydrothermal systems from progressive aromatization and dealkylation of biologically derived polycyclic precursors such as steroids and terpenoids. Furthermore, the results indicate that PAH initially present in sediments or formed within hydrothermal systems are resistant to further thermal degradation during hydrothermal alteration.

  10. Controls on the Archean climate system investigated with a global climate model.

    PubMed

    Wolf, E T; Toon, O B

    2014-03-01

    The most obvious means of resolving the faint young Sun paradox is to invoke large quantities of greenhouse gases, namely, CO2 and CH4. However, numerous changes to the Archean climate system have been suggested that may have yielded additional warming, thus easing the required greenhouse gas burden. Here, we use a three-dimensional climate model to examine some of the factors that controlled Archean climate. We examine changes to Earth's rotation rate, surface albedo, cloud properties, and total atmospheric pressure following proposals from the recent literature. While the effects of increased planetary rotation rate on surface temperature are insignificant, plausible changes to the surface albedo, cloud droplet number concentrations, and atmospheric nitrogen inventory may each impart global mean warming of 3-7 K. While none of these changes present a singular solution to the faint young Sun paradox, a combination can have a large impact on climate. Global mean surface temperatures at or above 288 K could easily have been maintained throughout the entirety of the Archean if plausible changes to clouds, surface albedo, and nitrogen content occurred.

  11. Sm-Nd isotopic data from Archean metavolcanic rocks at Holenarsipur, South India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drury, S.A.; Van Calsteren, P.C.; Reeves-Smith, G.J.

    1987-11-01

    Results of a Sm-Nd isotopic analysis of Archean metavolcanics in the Holenarsipur greenstone belt, Karnataka, South India, give a whole-rock isochron age of 2.62 Ga for lightly deformed metabasaltic amphibolites in the northern part of the belt. This is within error of the age of high-grade metamorphism and crustal thickening which affected areas further to the south during the late Archean. Together with the geochemical affinities of these and other metavolcanics in Karnataka, and results of regional structural analysis, this unexpected age supports a model relating volcanism and crustal thickening to northward subduction and crustal accretion during the late Archean.more » Data from basic and ultrabasic metavolcanics from the more strongly deformed and higher-grade southern arm of the Holenarsipur belt do not permit an age greater than 3.0 Ga. Previously, these rocks were regarded as part of an older supracrustal sequence that predated the local 3.0 to 3.3 Ga gneissic complex. The new dates therefore considerably simplify attempts at accounting for greenstone evolution in South India.« less

  12. GeoSEA: Geodetic Earthquake Observatory on the Seafloor

    NASA Astrophysics Data System (ADS)

    Kopp, Heidrun; Lange, Dietrich; Flueh, Ernst R.; Petersen, Florian; Behrmann, Jan-Hinrich; Devey, Colin

    2014-05-01

    Space geodetic observations of crustal deformation have contributed greatly to our understanding of plate tectonic processes in general, and plate subduction in particular. Measurements of interseismic strain have documented the active accumulation of strain, and subsequent strain release during earthquakes. However, techniques such as GPS cannot be applied below the water surface because the electromagnetic energy is strongly attenuated in the water column. Evidence suggests that much of the elastic strain build up and release (and particularly that responsible for both tsunami generation and giant earthquakes) occurs offshore. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. Here we report on first results of sea trials of a newly implemented seafloor geodesy array. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. Seafloor displacement occurs in the horizontal (x,y) and vertical direction (z). The vertical displacement is measured by monitoring pressure variations at the seafloor. Horizontal seafloor displacement can be measured either using an acoustic/GPS combination to provide absolute positioning (requiring a suitably equipped vessel to perform repeated cruises to provide the GPS fixes) or by long-term acoustic telemetry between different beacons fixed on the seafloor to determine relative distances by using the travel time observations to each other, which is the technique tested during our short sea trials. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distances. Vertical motion is obtained from pressure gauges. Integrated inclinometers

  13. Origin of microbial biomineralization and magnetotaxis during the Archean.

    PubMed

    Lin, Wei; Paterson, Greig A; Zhu, Qiyun; Wang, Yinzhao; Kopylova, Evguenia; Li, Ying; Knight, Rob; Bazylinski, Dennis A; Zhu, Rixiang; Kirschvink, Joseph L; Pan, Yongxin

    2017-02-28

    Microbes that synthesize minerals, a process known as microbial biomineralization, contributed substantially to the evolution of current planetary environments through numerous important geochemical processes. Despite its geological significance, the origin and evolution of microbial biomineralization remain poorly understood. Through combined metagenomic and phylogenetic analyses of deep-branching magnetotactic bacteria from the Nitrospirae phylum, and using a Bayesian molecular clock-dating method, we show here that the gene cluster responsible for biomineralization of magnetosomes, and the arrangement of magnetosome chain(s) within cells, both originated before or near the Archean divergence between the Nitrospirae and Proteobacteria This phylogenetic divergence occurred well before the Great Oxygenation Event. Magnetotaxis likely evolved due to environmental pressures conferring an evolutionary advantage to navigation via the geomagnetic field. Earth's dynamo must therefore have been sufficiently strong to sustain microbial magnetotaxis in the Archean, suggesting that magnetotaxis coevolved with the geodynamo over geological time.

  14. The Sound Generated by Mid-Ocean Ridge Black Smoker Hydrothermal Vents

    PubMed Central

    Crone, Timothy J.; Wilcock, William S.D.; Barclay, Andrew H.; Parsons, Jeffrey D.

    2006-01-01

    Hydrothermal flow through seafloor black smoker vents is typically turbulent and vigorous, with speeds often exceeding 1 m/s. Although theory predicts that these flows will generate sound, the prevailing view has been that black smokers are essentially silent. Here we present the first unambiguous field recordings showing that these vents radiate significant acoustic energy. The sounds contain a broadband component and narrowband tones which are indicative of resonance. The amplitude of the broadband component shows tidal modulation which is indicative of discharge rate variations related to the mechanics of tidal loading. Vent sounds will provide researchers with new ways to study flow through sulfide structures, and may provide some local organisms with behavioral or navigational cues. PMID:17205137

  15. Subseafloor fluid mixing and fossilized microbial life in a Cretaceous 'Lost City'-type hydrothermal system at the Iberian Margin

    NASA Astrophysics Data System (ADS)

    Klein, F.; Humphris, S. E.; Guo, W.; Schubotz, F.; Schwarzenbach, E. M.; Orsi, W.

    2015-12-01

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support autotrophic microorganisms in the hydrated oceanic mantle (serpentinite). Despite the potentially significant implications for the distribution of microbial life on Earth and other water-bearing planetary bodies, our understanding of such environments remains elusive. In the present study we examined fossilized microbial communities and fluid mixing processes in the subseafloor of a Cretaceous 'Lost City'-type hydrothermal system at the passive Iberia Margin (ODP Leg 149, Hole 897D). Brucite and calcite co-precipitated from mixed fluids ca. 65m below the Cretaceous palaeo-seafloor at temperatures of 32±4°C within steep chemical gradients (fO2, pH, CH4, SO4, ΣCO2, etc) between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity within the oceanic basement. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon but depleted in 13C. We detected a combination of bacterial diether lipid biomarkers, archaeol and archaeal tetraethers analogous to those found in brucite-carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin during the Cretaceous, possibly before the onset of seafloor spreading in the Atlantic. 'Lost City'-type serpentinization systems have been discovered at mid-ocean ridges, in forearc settings of subduction zones and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments as demonstrated in the present study. Because equivalent systems have likely existed throughout most of Earth

  16. Subseafloor fluid mixing and fossilized microbial life in a Cretaceous 'Lost City'-type hydrothermal system at the Iberian Margin

    NASA Astrophysics Data System (ADS)

    Klein, F.; Humphris, S. E.; Guo, W.; Schubotz, F.; Schwarzenbach, E. M.; Orsi, W.

    2014-12-01

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support autotrophic microorganisms in the hydrated oceanic mantle (serpentinite). Despite the potentially significant implications for the distribution of microbial life on Earth and other water-bearing planetary bodies, our understanding of such environments remains elusive. In the present study we examined fossilized microbial communities and fluid mixing processes in the subseafloor of a Cretaceous 'Lost City'-type hydrothermal system at the passive Iberia Margin (ODP Leg 149, Hole 897D). Brucite and calcite co-precipitated from mixed fluids ca. 65m below the Cretaceous palaeo-seafloor at temperatures of 32±4°C within steep chemical gradients (fO2, pH, CH4, SO4, ΣCO2, etc) between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity within the oceanic basement. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon but depleted in 13C. We detected a combination of bacterial diether lipid biomarkers, archaeol and archaeal tetraethers analogous to those found in brucite-carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin during the Cretaceous, possibly before the onset of seafloor spreading in the Atlantic. 'Lost City'-type serpentinization systems have been discovered at mid-ocean ridges, in forearc settings of subduction zones and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments as demonstrated in the present study. Because equivalent systems have likely existed throughout most of Earth

  17. Magnesium isotopic behavior during the formation of chlorite-rich hydrothermal sediment in the middle Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Shao, H.; Yang, S.; Teng, F. Z.; Cai, D.; Humphris, S. E.

    2016-12-01

    Chlorite is a common alteration product during water-rock reactions in seafloor hydrothermal systems. This chlorite is commonly characterized by high concentrations of magnesium. However, the source of the Mg and its behavior during hydrothermal alteration have yet to be clarified. Mg isotopes have been used in recent years to investigate a variety of geological processes, including low temperature weathering and metamorphism processes, and Mg cycling in sediments. In this study, we investigate the source of Mg and its behavior in chlorite-rich sediments collected during IODP Expedition 331 from the active hydrothermal Iheya North Knoll field in the middle Okinawa Trough — an intra-continental rift in continental crust. This area is characterized by hemipelagic muds with interbedded thick layers of felsic pumiceous volcanic material. Based on mineralogical, geochemical, and isotopic data, we have previously suggested that the chlorite-rich sediments resulted from hydrothermal alteration of the pumiceous layers at temperatures of 220-300°C. Prior to Mg isotope analysis, all selected samples were pretreated with 1N HCl in order to remove carbonates and other unstable minerals, and measurements were made on both the residues (mainly chlorite) and leachates, as well as on bulk samples. The residues are expected to show higher δ26Mg than the leachates reflecting the Mg isotopic signature of the pumiceous material precursor and provide insight into the behavior of Mg isotopes during the high-temperature hydrothermal processes.

  18. Marine Subsurface Microbial Communities Across a Hydrothermal Gradient in Okinawa Trough Sediments

    NASA Astrophysics Data System (ADS)

    Brandt, L. D.; Hser Wah Saw, J.; Ettema, T.; House, C. H.

    2015-12-01

    IODP Expedition 331 to the Okinawa backarc basin provided an opportunity to study the microbial stratigraphy within the sediments surrounding a hydrothermal vent. The Okinawa backarc basin is a sedimented region of the seafloor located on a continental margin, and also hosts a hydrothermal network within the subsurface. Site C0014 within the Iheya North hydrothermal field is located 450 m east of the active vent and has a surface temperature of 5°C with no evidence of hydrothermal alteration within the top 10 meters below sea floor (mbsf). Temperature increases with depth at an estimated rate of 3°C/m and transitions from non-hydrothermal margin sediments to a hydrothermally altered regime below 10 mbsf. In this study, we utilized deep 16S rRNA sequencing of DNA from IODP Expedition 331 Site C0014 sediment horizons in order to assess diversity throughout the sediment column as well as determine the potential limits of the biosphere. Analysis of the amplicon data shows a shift over 15 mbsf from a heterogeneous community of cosmopolitan marine subsurface taxa toward an archaeal-dominated community in the deepest horizons of the predicted biosphere. Notably, the phylum Chloroflexi represents a substantial taxon through most horizons, where it appears to be replaced below 10 mbsf by punctuations of thermophilic and methanotrophic Archaea and Miscellaneous Crenarchaeotic Group abundances. DNA from the aforementioned transition horizons was further analyzed using metagenomic sequencing. Preliminary taxonomic analysis of the metagenomic data agrees well with amplicon data in capturing the shift in relative abundance of Archaea increasing with depth. Additionally, reverse gyrase, a gene found exclusively in hyperthermophilic microorganisms, was recovered only in the metagenome of the deepest horizon. A BLAST search of this protein sequence against the GenBank non-redudnant protein database produced top hits with reverse gyrase from Thermococcus and Pyrococcus, which are

  19. Granite-hosted molybdenite mineralization from Archean Bundelkhand craton-molybdenite characterization, host rock mineralogy, petrology, and fluid inclusion characteristics of Mo-bearing quartz

    NASA Astrophysics Data System (ADS)

    Pati, J. K.; Panigrahi, M. K.; Chakarborty, M.

    2014-06-01

    The dominantly high-K, moderate to high SiO2 containing, variably fractionated, volcanic-arc granitoids (± sheared) from parts of Bundelkhand craton, northcentral India are observed to contain molybdenite (Mo) in widely separated 23 locations in the form of specks, pockets, clots and stringers along with quartz ± pyrite ± arsenopyrite ± chalcopyrite ± bornite ± covellite ± galena ± sphalerite and in invisible form as well. The molybdenite mineralization is predominantly associated with Bundelkhand Tectonic Zone, Raksa Shear Zone, and localized shear zones. The incidence of molybdenite is also observed within sheared quartz and tonalite-trondhjemite-granodiorite (TTG) gneisses. The fluid inclusion data show the presence of bi-phase (H2O-CO2), hypersaline and moderate temperature (100°-300°C) primary stretched fluid inclusions suggesting a possible hydrothermal origin for the Mo-bearing quartz occurring within variably deformed different granitoids variants of Archean Bundelkhand craton.

  20. Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox.

    PubMed

    Ueno, Yuichiro; Johnson, Matthew S; Danielache, Sebastian O; Eskebjerg, Carsten; Pandey, Antra; Yoshida, Naohiro

    2009-09-01

    Distributions of sulfur isotopes in geological samples would provide a record of atmospheric composition if the mechanism producing the isotope effects could be described quantitatively. We determined the UV absorption spectra of 32SO2, 33SO2, and 34SO2 and use them to interpret the geological record. The calculated isotopic fractionation factors for SO2 photolysis give mass independent distributions that are highly sensitive to the atmospheric concentrations of O2, O3, CO2, H2O, CS2, NH3, N2O, H2S, OCS, and SO2 itself. Various UV-shielding scenarios are considered and we conclude that the negative Delta33S observed in the Archean sulfate deposits can only be explained by OCS shielding. Of relevant Archean gases, OCS has the unique ability to prevent SO2 photolysis by sunlight at lambda >202 nm. Scenarios run using a photochemical box model show that ppm levels of OCS will accumulate in a CO-rich, reducing Archean atmosphere. The radiative forcing, due to this level of OCS, is able to resolve the faint young sun paradox. Further, the decline of atmospheric OCS may have caused the late Archean glaciation.

  1. Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox

    PubMed Central

    Ueno, Yuichiro; Johnson, Matthew S.; Danielache, Sebastian O.; Eskebjerg, Carsten; Pandey, Antra; Yoshida, Naohiro

    2009-01-01

    Distributions of sulfur isotopes in geological samples would provide a record of atmospheric composition if the mechanism producing the isotope effects could be described quantitatively. We determined the UV absorption spectra of 32SO2, 33SO2, and 34SO2 and use them to interpret the geological record. The calculated isotopic fractionation factors for SO2 photolysis give mass independent distributions that are highly sensitive to the atmospheric concentrations of O2, O3, CO2, H2O, CS2, NH3, N2O, H2S, OCS, and SO2 itself. Various UV-shielding scenarios are considered and we conclude that the negative Δ33S observed in the Archean sulfate deposits can only be explained by OCS shielding. Of relevant Archean gases, OCS has the unique ability to prevent SO2 photolysis by sunlight at λ >202 nm. Scenarios run using a photochemical box model show that ppm levels of OCS will accumulate in a CO-rich, reducing Archean atmosphere. The radiative forcing, due to this level of OCS, is able to resolve the faint young sun paradox. Further, the decline of atmospheric OCS may have caused the late Archean glaciation. PMID:19706450

  2. Development of Archean crust in the Wind River Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    Frost, C. D.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.

    1986-01-01

    The Wind River Mountains are a NW-SE trending range composed almost entirely of high-grade Archean gneiss and granites which were thrust to the west over Phanerozoic sediments during the Laramide orogeny. Late Archean granites make up over 50% of the exposed crust and dominates the southern half of the range, while older orthogneisses and magnatites form most of the northen half of the range. Locally these gneisses contain enclaves of supracrustal rocks, which appear to be the oldest preserved rocks in the range. Detailed work in the Medina Mountain area of the central Wind River Mountains and reconnaissance work throughout much of the northern part of the range has allowed definition of the sequence of events which marked crustal development in this area. The sequence of events are described.

  3. An Autonomous, Low Cost Platform for Seafloor Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Ericksen, T.; Foster, J. H.; Bingham, B. S.; Oshiro, J.

    2015-12-01

    The Pacific GPS Facility and the Field Robotics Laboratory at the University of Hawaii have developed an approach to significantly reduce the costs of accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure. Traditional ship-based methods of acquiring these measurements are often prohibitively expensive. Our goal has been to reduce the primary barrier preventing us from acquiring the observations we need to understand geodetic processes, and the hazards they present, at subduction zones, submarine volcanoes, and subsea landslides. To this end, we have designed a payload package for the University of Hawaii Wave Glider which incorporates an acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, meteorological sensors, processing computer, and cellular communications. The Wave Glider is able to interrogate high accuracy pressure sensors on the seafloor to maintain a near-continuous stream of ocean bottom pressure and temperature data. The Wave Glider also functions as an integral part of the seafloor geodetic observing system, recording accurate sea surface elevations and barometric pressure; direct measurements of two of the primary sources of seafloor pressure change. The seafloor geodetic monument seats a sensor capable of recording pressure, temperature, and sound velocity for a deployment duration of over 5 years with an acoustic modem for communications, and an integral acoustic release for recovery and replacement of batteries. The design of the geodetic monument allows for precise repositioning of the sensor to extend the pressure record beyond a single 5+ year deployment, and includes the capability to install a mobile pressure recorder for calibration of the linear drift of the continuous pressure sensor. We will present the results of our field tests and an assessment of our ability to determine cm-scale vertical seafloor motions by

  4. Morphology and shallow structure of seafloor mounds in the Canary Basin (Eastern Central Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Sanchez-Guillamón, O.; Vázquez, J. T.; Palomino, D.; Medialdea, T.; Fernández-Salas, L. M.; León, R.; Somoza, L.

    2018-07-01

    The increasing volume of high-resolution multibeam bathymetry data collected along continental margins and adjacent deep seafloor regions is providing further opportunities to study new morphological seafloor features in deep water environments. In this paper, seafloor mounds have been imaged in detail with multibeam echosounders and parametric sub-bottom profilers in the deep central area of the Canary Basin ( 350-550 km west off El Hierro Island) between 4800 and 5200 mbsl. These features have circular to elongated shapes with heights of 10 to 250 m, diameters of 2-24 km and with flank slopes of 2-50°. Based on their morphological features and the subsurface structures these mounds have been classified into five different types of mounds that follow a linear correlation between height and slope but not between height and size. The first, second (Subgroup A), and third mound-types show heights lower than 80 m and maximum slopes of 35° with extension ranging from 2 to 400 km2 and correspond to domes formed at the surface created by intrusions located at depth that have not outcropped yet. The second (Subgroup B), fourth, and fifth mound-types show higher heights up to 250 m high, maximum slopes of 47° and sizes between 10 and 20 km2 and are related to the expulsion of hot and hydrothermal fluids and/or volcanics from extrusive deep-seated systems. Based on the constraints on their morphological and structural analyses, we suggest that morphostructural types of mounds are intimately linked to a specific origin that leaves its footprint in the morphology of the mounds. We propose a growth model for the five morphostructural types of mounds where different intrusive and extrusive phenomena represent the dominant mechanisms for mound growth evolution. These structures are also affected by tectonics (bulge-like structures clearly deformed by faulting) and mass movements (slide scars and mass transport deposits). In this work, we report how intrusive and extrusive

  5. Acoustic measurement method of the volume flux of a seafloor hydrothermal plume

    NASA Astrophysics Data System (ADS)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2011-12-01

    Measuring fluxes (volume, chemical, heat, etc.) of the deep sea hydrothermal vents has been a crucial but challenging task faced by the scientific community since the discovery of the vent systems. However, the great depths and complexities of the hydrothermal vents make traditional sampling methods laborious and almost daunting missions. Furthermore, the samples, in most cases both sparse in space and sporadic in time, are hardly enough to provide a result with moderate uncertainty. In September 2010, our Cabled Observatory Vent Imaging Sonar System (COVIS, http://vizlab.rutgers.edu/AcoustImag/covis.html) was connected to the Neptune Canada underwater ocean observatory network (http://www.neptunecanada.ca) at the Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. During the experiment, the COVIS system produced 3D images of the buoyant plume discharged from the vent complex Grotto by measuring the back-scattering intensity of the acoustic signal. Building on the methodology developed in our previous work, the vertical flow velocity of the plume is estimated from the Doppler shift of the acoustic signal using geometric correction to compensate for the ambient horizontal currents. A Gaussian distribution curve is fitted to the horizontal back-scattering intensity profile to determine the back-scattering intensity at the boundary of the plume. Such a boundary value is used as the threshold in a window function for separating the plume from background signal. Finally, the volume flux is obtained by integrating the resulting 2D vertical velocity profile over the horizontal cross-section of the plume. In this presentation, we discuss preliminary results from the COVIS experiment. In addition, several alternative approaches are applied to determination of the accuracy of the estimated plume vertical velocity in the absence of direct measurements. First, the results from our previous experiment (conducted in 2000 at the same vent complex using a

  6. Lessons from Suiyo Seamount studies, for understanding extreme (ancient?) microbial ecosystems in the deep-sea hydrothermal fields

    NASA Astrophysics Data System (ADS)

    Maruyama, A.; Higashi, Y.; Sunamura, M.; Urabe, T.

    2004-12-01

    Deep-sea hydrothermal ecosystems are driven with various geo-thermally modified, mainly reduced, compounds delivered from extremely hot subsurface environments. To date, several unique microbes including thermophilic archaeons have been isolated from/around vent chimneys. However, there is little information about microbes in over-vent and sub-vent fields. Here, we report several new findings on microbial diversity and ecology of the Suiyo Seamount that locates on the Izu-Bonin Arc in the northwest Pacific Ocean, as a result of the Japanese Archaean Park project, with special concern to the sub-vent biosphere. At first, we succeeded to reveal a very unique microbial ecosystem in hydrothermal plume reserved within the outer rim of the seamount crater, that is, it consisted of almost all metabolically active microbes belonged to only two Bacteria phylotypes, probably of sulfur oxidizers. In the center of the caldera seafloor (ca. 1,388-m deep) consisted mainly of whitish sands and pumices, we found many small chimneys (ca. 5-10 cm) and bivalve colonies distributed looking like gray to black patches. These geo/ecological features of the seafloor were supposed to be from a complex mixing of hydrothermal venting and strong water current near the seafloor. Through quantitative FISH analysis for various environmental samples, one of the two representative groups in the plume was assessed to be from some of the bivalve colonies. Using the Benthic Multi-coring System (BMS), total 10 points were drilled and 6 boreholes were maintained with stainless or titanium casing pipes. In the following submersible surveys, newly developed catheter- and column-type in situ growth chambers were deployed in and on the boreholes, respectively, for collecting indigenous sub-vent microbes. Finally, we succeeded to detect several new phylotypes of microbes in these chamber samples, e.g., within epsilon-Proteobacteria, a photosynthetic group of alpha-Proteobacteria, and hyperthermophile

  7. Mind the seafloor

    NASA Astrophysics Data System (ADS)

    Boetius, Antje; Haeckel, Matthias

    2018-01-01

    As human use of rare metals has diversified and risen with global development, metal ore deposits from the deep ocean floor are increasingly seen as an attractive future resource. Japan recently completed the first successful test for zinc extraction from the deep seabed, and the number of seafloor exploration licenses filed at the International Seabed Authority (ISA) has tripled in the past 5 years. Seafloor-mining equipment is being tested, and industrial-scale production in national waters could start in a few years. We call for integrated scientific studies of global metal resources, the fluxes and fates of metal uses, and the ecological footprints of mining on land and in the sea, to critically assess the risks of deep-sea mining and the chances for alternative technologies. Given the increasing scientific evidence for long-lasting impacts of mining on the abyssal environment, precautionary regulations for commercial deep-sea mining are essential to protect marine ecosystems and their biodiversity.

  8. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea).

    PubMed

    Wang, Yong; Li, Jiang Tao; He, Li Sheng; Yang, Bo; Gao, Zhao Ming; Cao, Hui Luo; Batang, Zenon; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2015-01-01

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.

  9. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea)

    PubMed Central

    Wang, Yong; Li, Jiang Tao; He, Li Sheng; Yang, Bo; Gao, Zhao Ming; Cao, Hui Luo; Batang, Zenon; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2015-01-01

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin. PMID:26485717

  10. High-resolution Topography of PACMANUS and DESMOS Hydrothermal Fields in the Manus Basin through ROV "FAXIAN"

    NASA Astrophysics Data System (ADS)

    Luan, Z.; Ma, X.; Yan, J.; Zhang, X.; Zheng, C.; Sun, D.

    2016-12-01

    High-resolution topography can help us deeply understand the seabed and related geological processes (e.g. hydrothermal/cold spring systems) in the deep sea areas. However, such studies are rare in China due to the limit of deep-sea detection technology. Here, we report the advances of the application of ROV in China and the newly measured high-resolution topographical data in PACMANUS and DESMOS hydrothermal fields. In June 2015, the ROV "FAXIAN" with a multibeam system (Kongsberg EM2040) was deployed to measure the topography of PACMANUS and DESMOS hydrothermal fields in the Manus basin. A composite positioning system on the ROV provided long baseline (LBL) navigation and positioning during measurements, giving a high positioning accuracy (better than 0.5m). The raw bathymetric data obtained were processed using CARIS HIPS (version 8.1). Based on the high-resolution data, we can describe the topographical details of the PACMANUS and DESMOS hydrothermal fields. High-resolution terrain clearly shows the detailed characters of the topography in the PACMANUS hydrothermal field, and some cones are corresponding to the pre discovered hydrothermal points and volcanic area. Most hydrothermal points in the PACMANUS hydrothermal field mainly developed on the steep slopes with a gradient exceeding 30 °. In contrast, the DESMOS field is a caldera that is approximately 250 m deep in the center with an E-W diameter of approximately1 km and a N-S diameter of approximately 2 km. The seafloor is much steeper on the inner side of the circular fracture. Two highlands occur in the northern and the southern flanks of the caldera. Video record indicated that pillow lava, sulfide talus, breccia, anhydrite, outcrops, and sediment all appeared in the DESMOS field. This is the first time for the ROV "FAXIAN" to be used in near-bottom topography measurements in the hydrothermal fields, opening a window of deep-sea researches in China.

  11. Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia

    NASA Astrophysics Data System (ADS)

    McLennan, Scott M.; Taylor, S. R.; Eriksson, K. A.

    1983-07-01

    Archean clastic sedimentary rocks are well exposed in the Pilbara Block of Western Australia. Shales from turbidites in the Gorge Creek Group ( ca. 3.4 Ae) and shales from the Whim Creek Group ( ca. 2.7 Ae) have been examined. The Gorge Creek Group samples, characterized by muscovite-quartzchlorite mineralogy, are enriched in incompatible elements (K, Th, U, LREE) by factors of about two, when compared to younger Archean shales from the Yilgarn Block. Alkali and alkaline earth elements are depleted in a systematic fashion, according to size, when compared with an estimate of Archean upper crust abundances. This depletion is less notable in the Whim Creek Group. Such a pattern indicates the source of these rocks underwent a rather severe episode of weathering. The Gorge Creek Group also has fairly high B content (85 ± 29 ppm) which may indicate normal marine conditions during deposition. Rare earth element (REE) patterns for the Pilbara samples are characterized by light REE enrichment ( La N/Yb N ≥ 7.5 ) and no or very slight Eu depletion ( Eu/Eu ∗ = 0.82 - 0.99 ). A source comprised of about 80% felsic igneous rocks without large negative Eu-anomalies (felsic volcanics, tonalites, trondhjemites) and 20% mafic-ultramafic volcanics is indicated by the trace element data. Very high abundances of Cr and Ni cannot be explained by any reasonable provenance model and a secondary enrichment process is called for.

  12. Long-term hydrothermal temperature and pressure monitoring equipped with a Kuroko cultivation apparatus on the deep-sea artificial hydrothermal vent at the middle Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Nozaki, T.; Saruhashi, T.; Kyo, M.; Sakurai, N.; Yokoyama, T.; Akiyama, K.; Watanabe, M.; Kumagai, H.; Maeda, L.; Kinoshita, M.

    2017-12-01

    The middle Okinawa Trough, located along the Ryukyu- arc on the margin of the East China Sea, has several active hydrothermal fields. From February to March 2016, Cruise CK16-01 by D/V Chikyu targeted the Iheya-North Knoll and southern flank of the Iheya Minor Ridge to comprehend sub-seafloor geological structure and polymetallic sulfide mineralization. In this cruise, we installed two Kuroko cultivation apparatuses equipped with P/T sensors, flowmeter and load cell to monitor pressure, temperature and flow rate of hydrothermal fluid discharged from the artificial hydrothermal vent together with weight of hydrothermal precipitate. During Cruise KR16-17 in January 2017, two cultivation cells with sensor loggers were successfully recovered by ROV Kaiko MK-IV and R/V Kairei. We report these physical sensor data obtained by more than 10 months monitoring at two deep-sea artificial hydrothermal vents through many first and challenging operations.Hole C9017B at southern flank of the Iheya Minor Ridge (water depth of 1,500 mbsl), fluid temperature was constant ca. 75 ºC for 5 months from the beginning of monitoring. Then temperature gradually decrease to be 40 ºC. In November 2016, temperature and pressure suddenly dropped and quickly recovered due to the disturbance of subseafloor hydrology, induced by another drilling operation at Hole C9017A which is 10.8 meters northeastward from Hole C9017B during Cruise CK16-05. Temperature data exhibit conspicuous periodic 12.4hour cycles and this is attributable to oceanic tidal response. The amplitude of temperature variations increased along with decline of the temperature variations increased along with decline of the temperature. The average flow rate was 67 L/min for 9 hours from the onset of monitoring.Hole C9024A at the Iheya-North Knoll (water depth of 1,050 msl), the maximum temperature reached 308 ºC, which is similar to the maximum value of 311 ºC obtained from the ROV thermometer. The average flow rate was 289 L

  13. Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii

    PubMed Central

    Edwards, Katrina J; Glazer, B T; Rouxel, O J; Bach, W; Emerson, D; Davis, R E; Toner, B M; Chan, C S; Tebo, B M; Staudigel, H; Moyer, C L

    2011-01-01

    A novel hydrothermal field has been discovered at the base of Lōihi Seamount, Hawaii, at 5000 mbsl. Geochemical analyses demonstrate that ‘FeMO Deep', while only 0.2 °C above ambient seawater temperature, derives from a distal, ultra-diffuse hydrothermal source. FeMO Deep is expressed as regional seafloor seepage of gelatinous iron- and silica-rich deposits, pooling between and over basalt pillows, in places over a meter thick. The system is capped by mm to cm thick hydrothermally derived iron-oxyhydroxide- and manganese-oxide-layered crusts. We use molecular analyses (16S rDNA-based) of extant communities combined with fluorescent in situ hybridizations to demonstrate that FeMO Deep deposits contain living iron-oxidizing Zetaproteobacteria related to the recently isolated strain Mariprofundus ferroxydans. Bioenergetic calculations, based on in-situ electrochemical measurements and cell counts, indicate that reactions between iron and oxygen are important in supporting chemosynthesis in the mats, which we infer forms a trophic base of the mat ecosystem. We suggest that the biogenic FeMO Deep hydrothermal deposit represents a modern analog for one class of geological iron deposits known as ‘umbers' (for example, Troodos ophilolites, Cyprus) because of striking similarities in size, setting and internal structures. PMID:21544100

  14. Relationship between high- and low-grade Archean terranes: Implications for early Earth paleogeography

    NASA Technical Reports Server (NTRS)

    Eriksson, K. A.

    1986-01-01

    The Western Gneiss Terrain (WGT) of the Yilgarn Block, Western Australia was studied. The WGT forms an arcuate belt of Archean gneisses that flank the western margin of the Yilgarn Block. In general the WGT is composed of high-grade orthogneisses and paragneisses which contain supracrustal belts composed largely of siliciclastic metasediments and subordinate iron formation. The platformal nature of the metasedimentary belts and lack of obvious metavolcanic lithologies contrasts with the composition of typical Yilgarn greenstones to the east. Radiometric data from WGT rocks indicates that these rocks are significantly older than Yilgarn rocks to the east (less than 3.3 Ga) and this has led to the suggestion that the WGT represents sialic basement to Yilgarn granite-greenstone belts. The Mount Narryer region exposes the northernmost occurrence of high-grade metasediments within the WGT and consists of quartz-rich clastic metasediments at upper amphibolite to granulite grade. Most occurrences of supracrustal rocks in this region comprise isolated lenses within the gneissic basement. However, at Mount Narryer a unique sequence of metaclastics with preserved bedding provide an unusual window into the parentage of similar supracrustal bodies in this region.

  15. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems.

    PubMed

    McCollom, Thomas M

    2007-12-01

    Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (<20-30 degrees C), while anaerobes will dominate higher-temperature environments. Overall, aerobic metabolic reactions can supply up to approximately 7 kJ of energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.

  16. Development and field application of a 6-bottle serial gas-tight fluid sampler for collecting seafloor cold seep and hydrothermal vent fluids with autonomous operation capability

    NASA Astrophysics Data System (ADS)

    Wu, S.; Ding, K.; Yang, C.; Seyfried, W. E., Jr.; Tan, C.; Schaen, A. T.; Luhmann, A. J.

    2014-12-01

    A 6-bottle serial gas-tight sampler (so-called "six-shooter") was developed for application with deep-sea vent fluids. The new device is composed of a custom-made 6-channel valve manifold and six sampling bottles which are circularly distributed around the valve manifold. Each valve channel consists of a high-pressure titanium cartridge valve and a motor-driven actuator. A sampling snorkel is connected to the inlet of the manifold that delivers the incoming fluid to different bottles. Each sampling bottle has a 160 ml-volume chamber and an accumulator chamber inside where compressed nitrogen is used to maintain the sample at near in-situ pressure. An electronics chamber that is located at the center of the sampler is used to carry out all sampling operations, autonomously, if desired. The sampler is of a compact circular configuration with a diameter of 26 cm and a length of 54 cm. During the SVC cruise AT 26-12, the sampler was deployed by DSV2 Alvin at a cold seep site MC036 with a depth of 1090 m in the Gulf of Mexico. The sampler collected fluid samples automatically following the tidal cycle to monitor the potential impact of the tide cycle on the fluid chemistry of cold seep in a period of two day. During the cruise AT 26-17, the sampler was used with newly upgraded DSV2 Alvin three times at the hydrothermal vent sites along Axial Seamount and Main Endeavor Field on Juan de Fuca Ridge. During a 4-day deployment at Anemone diffuse site (Axial Caldera), the sampler was set to work in an autonomous mode to collect fluid samples according to the preset interval. During other dives, the sampler was manually controlled via ICL (Inductively Coupled Link) communication through the hull. Gas-tight fluid samples were collected from different hydrothermal vents with temperatures between 267 ℃ and 335 ℃ at the depth up to 2200 m. The field results indicate unique advantages of the design. It can be deployed in extended time period with remote operation or working

  17. Archean cherts: field, petrographic and geochemical criteria to determine their origin

    NASA Astrophysics Data System (ADS)

    Ledevin, Morgane; Arndt, Nicholas T.; Simionovici, Alexandre

    2013-04-01

    Archean cherts provide valuable information about conditions on the sea floor during the early history of Earth. We conducted field, petrological and geochemical studies on examples from different environments in the Barberton Greenstone Belt (3.2-3.5 Ga), South Africa, with the aim of improving our understanding of these enigmatic rocks. We distinguish three different origins for cherts: direct precipitation from seawater (C-cherts); precipitation in fractures from silica-rich fluids (F-cherts); and replacement of preexisting rocks (silicification) either at or near the surface (S-cherts). The three types were distinguished using a combination of sedimentary and deformation structures, petrological observations (RAMAN, electron microprobe, X-Ray microfluorescence, cathodoluminescence) and geochemical data. C-cherts best record the composition and physical conditions in primitive oceans and the depositional environment because they precipitated from seawater. Based on sedimentary structures, we show that the silica was deposited as a siliceous ooze or amorphous gel on the seafloor, with variable precipitation rates that depend on the amount and nature of co-precipitated phases (called here the "contaminant"), such as detrital grains, carbonates, carbonaceous matter and oxides. We observe a complex rheology of C-cherts, which show both ductile to brittle deformation structures, sometimes in the same layer. We infer that the cherts underwent extremely rapid diagenetic induration at or near the surface, a process that proceeded faster when contaminants are lacking. Geochemical data (ICP-MS/ICP-AES) indicate that whole rock chemistries are dominated by the contaminant phases. Detrital grains with continental signatures dominate the compositions of cherts in the turbidite sequence of the Komati River whereas carbonates preserving modern, seawater-like compositions control the compositions of cherts of Fig Tree Fm in the Barite Valley. The silica minerals do not

  18. High resolution mapping of hydrothermal plumes in the Mariana back-arc relate seafloor sources to above-bottom plumes

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.; Resing, J. A.; Chadwick, W. W., Jr.; Merle, S. G.; Kaiser, C. L.

    2016-12-01

    The Mariana backarc spreading center between 12.9°-18°N was systematically explored for hydrothermal activity in Nov-Dec 2015 (R/V Falkor cruise FK151121) by conducting long distance along-axis CTD tows (vertical range was 20-600 meters above bottom (mab)) followed by higher resolution, horizontal grid AUV Sentry surveys at 70 mab in some of the areas where plumes were found. In those areas, the combination of along-axis CTD tows and near-bottom AUV surveys provides a nearly 3-dimensional view of the above-bottom plume relative to the seafloor morphology and potential sources. In addition, photo surveys were run at 5 mab at two of the sites. At 15.4°N, strong ORP anomalies (ΔE=-39 mv) with weak to absent optical signals were aligned with a new (<3yr) lava flow, suggesting widespread diffuse venting was associated with still-cooling lava to create a broad, optically weak plume that extended to 500 mab. About 10 km north of the new lava flow (15.5°N) there were fewer, but more distinct instances where temperature, particle, and OPR anomalies were co-located at 70 mab, providing information for the likely locations where more focused, higher temperature venting generated an optically intense (dNTU=0.032) above-bottom plume (to 500 mab over the axial high). The plume over the backarc segment high at 17.0°N exhibited a significant optical anomaly (dNTU=0.023) with a very strong ORP anomaly (ΔE=-88 mv) that extended only 1.5 km along-axis. The near-bottom survey showed a broad area ( 3km2) with robust temperature, particle, and ORP signals. Directed by this information, and the high resolution bathymetry acquired from the AUV survey, several active chimneys (one being 30 m tall with temperatures up to 340°C) were found during NOAA Okeanos Explorer ROV dives in May 2016. At 18°N, anomalies seen in the 11 km2 AUV survey were generally located along the axis of the spreading center and, with one exception, were limited to areas of previously-known (1987) venting

  19. Contrasted hydrothermal activity along the South-East Indian Ridge (130°E-140°E): From crustal to ultramafic circulation

    NASA Astrophysics Data System (ADS)

    Boulart, Cédric; Briais, Anne; Chavagnac, Valérie; Révillon, Sidonie; Ceuleneer, Georges; Donval, Jean-Pierre; Guyader, Vivien; Barrere, Fabienne; Ferreira, Nicolas; Hanan, Barry; Hémond, Christophe; Macleod, Sarah; Maia, Marcia; Maillard, Agnès.; Merkuryev, Sergey; Park, Sung-Hyun; Ruellan, Etienne; Schohn, Alexandre; Watson, Sally; Yang, Yun-Seok

    2017-07-01

    Using a combined approach of seafloor mapping, MAPR and CTD survey, we report evidence for active hydrothermal venting along the 130°-140°E section of the poorly-known South-East Indian Ridge (SEIR) from the Australia-Antarctic Discordance (AAD) to the George V Fracture Zone (FZ). Along the latter, we report Eh and CH4 anomalies in the water column above a serpentinite massif, which unambiguously testify for ultramafic-related fluid flow. This is the first time that such circulation is observed on an intermediate-spreading ridge. The ridge axis itself is characterized by numerous off-axis volcanoes, suggesting a high magma supply. The water column survey indicates the presence of at least ten distinct hydrothermal plumes along the axis. The CH4:Mn ratios of the plumes vary from 0.37 to 0.65 denoting different underlying processes, from typical basalt-hosted to ultramafic-hosted high-temperature hydrothermal circulation. Our data suggest that the change of mantle temperature along the SEIR not only regulates the magma supply, but also the hydrothermal activity. The distribution of hydrothermal plumes from a ridge segment to another implies secondary controls such as the presence of fractures and faults along the axis or in the axial discontinuities. We conclude from these results that hydrothermal activity along the SEIR is controlled by magmatic processes at the regional scale and by the tectonics at the segment scale, which influences the type of hydrothermal circulation and leads to various chemical compositions. Such variety may impact global biogeochemical cycles, especially in the Southern Ocean where hydrothermal venting might be the only source of nutrients.

  20. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth.

    PubMed

    Arney, Giada; Domagal-Goldman, Shawn D; Meadows, Victoria S; Wolf, Eric T; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G

    2016-11-01

    Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8-2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ∼ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7-2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO 2 . Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets. Key Words: Haze-Archean Earth-Exoplanets-Spectra-Biosignatures-Planetary habitability

  1. Results of Physical Property Measurements Obtained during the CHIKYU Cruise CK16-01 to Hydrothermal Fields of the Middle Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Tanikawa, W.; Masaki, Y.; Komori, S.; Torimoto, J.; Makio, M.; Ohta, Y.; Nozaki, T.; Ishibashi, J. I.; Kumagai, H.; Maeda, L.; Hamada, Y.

    2016-12-01

    The middle Okinawa trough, along the Ryukyu-arc on the margin of the western Pacific, fosters several hydrothermal fields. The cruise CK16-01 of D/V CHIKYU targeted the Iheya-North Field and Noho hydrothermal site. More than ten-days extensive coring was carried out with Logging While Drilling (LWD) and deployment of Kuroko cultivation apparatus between February 29th to March 17th2016. Here we present the results of the physical property measurements obtained using Chikyu's on-board laboratory. Cores were sampled among three sites where the seafloor environments were quite different: the Noho site (C9017), a site between the Natsu and Aki sites of the Iheya-North field (C9021), and the Iheya-North Aki site (C9023). Site C9017 was near the center of the hydrothermal activity, and the obtained core was limited 36 m in length and 30 % in the recovery rate. At 70 mbsf (meters below seafloor), the grain density and bulk density of the sediment reached their maxim (3.7 g/m3 and 2.7 g/cm3, respectively), while thermal conductivity reached its lowest value (0.6 W/m·K). Site C9021 yielded a 54 m core, with a core recovery rate of 50 %. Coarse pumiceous layers were found at 68 mbsf, with a hydrothermally altered layer appearing below 68 mbsf. The mean grain density value was 2.4 g/cm3 and was uniform throughout the core. The mean bulk density value of the pumiceous layers was 1.3 g/cm3, and of the hydrothermally altered layer was 2.1 g/cm3. Site C9023 was close to the active hydrothermal chimneys of the Iheya-North Aki site, and yielded 33 m of core with a core recovery rate of 16 %. Massive sulfide layers were found below 48 mbsf with grain density and bulk density values varying between 2.8-4.7 g/cm3 and 1.5-3.9 g/cm3, respectively. Magnetic susceptibility exhibited a high anomaly in a sedimented anhydrite layer found between 95 and 135 mbsf, and a high porosity and low resistivity zone was found below 150 mbsf. Together, these data from drilling cores and onboard

  2. Re-Os, Sm-Nd, U-Pb, and stepwise lead leaching isotope systematics in shear-zone hosted gold mineralization: genetic tracing and age constraints of crustal hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Frei, R.; Nägler, Th. F.; Schönberg, R.; Kramers, J. D.

    1998-06-01

    A combined Re-Os, Sm-Nd, U-Pb, and stepwise Pb leaching (PbSL) isotope study of hydrothermal (Mo-W)-bearing minerals and base metal sulfides from two adjacent shear zone hosted gold deposits (RAN, Kimberley) in the Harare-Shamva greenstone belt (Zimbabwe) constrain the timing of the mineralizing events to two periods. During an initial Late Archean event (2.60 Ga) a first molybdenite-scheelite bearing paragenesis was deposited in both shear zone systems, followed by a local reactivation of the shear systems during an Early Proterozoic (1.96 Ga) tectono-thermal overprint, during which base metal sulfides and most of the gold was (re-)deposited. While PbSL has revealed an open-system behavior of the U-Pb systematics in molybdenite and wolframite from the RAN mine, initial Archean Re-Os ages are still preserved implying that this system in these minerals was more resistant to the overprint. A similar retentivity could be shown for the Sm-Nd system in scheelite and powellite associated with the above ore minerals. Re-Os isotopic data from the Proterozoic mineralization in the Kimberley mine point to a recent gain of Re, most pronouncedly affecting Fe-rich sulfides such as pyrrhotite. A significant Re-loss in powellitic scheelite (an alteration phase of molybdenite-bearing scheelite), coupled with a marked loss of U in W-Mo ore minerals, complements the observation of a major Re uptake in Fe-sulfides during oxidizing conditions in a weathering environment. Pyrrhotite under these conditions behaves as an efficient Re-sink. Lead isotope signatures from PbSL residues of molybdenite, powellite, and quartz indicate a continental crustal source and/or contamination for the mineralizing fluid by interaction of the fluids with older sedimentary material as represented by the direct host country rocks. Our investigation reveals the potential of the Re-Os isotopic system applied to crustal hydrothermal ore minerals for genetic tracing and dating purposes. The simplified chemical

  3. Decoding mass-independent fractionation of sulfur isotopes in modern atmosphere using cosmogenic 35S: A five-isotope approach and possible implications for Archean sulfur isotope records

    NASA Astrophysics Data System (ADS)

    Lin, M.; Thiemens, M. H.; Shen, Y.; Zhang, X.; Huang, X.; Chen, K.; Zhang, Z.; Tao, J.

    2017-12-01

    The signature of sulfur isotopic mass-independent fractionation (S-MIF) observed in Archean sediments have been interpreted as a proxy of the origins and evolution of atmospheric oxygen and early life on Earth [1]. Photochemistry of SOx in the short (< 290 nm) wavelength region accounts for much of the Archean record, but the S-MIF widely observed in modern tropospheric sulfate aerosols remains unexplained, indicating embedded uncertainties in interpreting Archean S-MIF records [2]. Here we present combined measurements of cosmogenic 35S (a stratospheric tracer) [3] and all four stable sulfur isotopes in the same modern atmospheric sulfate samples to define the mechanisms. The five-sulfur-isotope approach reveals that an altitude-dependent process (probably SOx photochemistry) mainly contributes to a positive Δ33S and a combustion-related process mainly leads to a negative Δ36S. After eliminating combustion impacts, the obtained Δ36S/Δ33S slope of -4.0 in the modern atmosphere is close to the Δ36S/Δ33S slope (-3.6) in some records from Paleoarchean [4], an era probably with active volcanism [5]. The significant role of volcanic OCS in the Archean atmosphere has been called for in terms of its ability to provide a continual SO2 high altitude source for photolysis [2]. The strong but previously underappreciated stratospheric signature of S-MIF in tropospheric sulfates suggests that a more careful investigation of wavelength-dependent sulfur isotopic fractionation at different altitudes are required. The combustion-induced negative Δ36S may be linked to recombination reactions of elemental sulfur [6], and relevant experiments are being conducted to test the isotope effect. Although combustion is unlikely in Archean, recombination reactions may occur in other previously unappreciated processes such as volcanism and may contribute in part to the heavily depleted 36S in some Paleoarchean records [5,7]. The roles of both photochemical and non

  4. Vapor-rich Hydrothermal Fluid Migration Within Pumiceous Sediment in the Iheya North Knoll, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Ishibashi, J.; Suzuki, R.; Hamasaki, H.; Yamanaka, T.; Chiba, H.; Tsunogai, U.; Ijiri, A.; Nakagawa, S.; Nunoura, T.; Takai, K.; Kinoshita, M.; Ashi, J.

    2007-12-01

    The newly developed ROV NSS (Navigable Sampling System) enabled pin-point piston core sampling from the active hydrothermal field. In the Iheya North hydrothermal field in the mid-Okinawa Trough (27°47.5'N, 126°53.8'E, depth = 1000m), animal colonies are observed not only around the central mound structure (named as NBC) which discharges vigrously high temperature (T=311°C) clear fluid, but also as Calyptogena colony at 200m east from the NBC mound and as tube-worm colony at 250m southeast from the NBC mound. During Leg 3 of KY05-14 cruise (R/V Kaiyo of JAMSTEC) in Jan. 2005, fourn piston cores were successfully recovered with length from 65cm to 250cm. Surface sediments from the Calyptogena colony and the tube-worm colony were revealed as mainly composed of pumiceous sediment. Pore fluids from the Calyptogena Field showed unusual chemistry characterized as very low salinity (Cl=420mM), low Mg concentration, significantly lower Na/Cl ratio than seawater and high methane concentration, which suggests contribution of a vapor-rich hydrothermal component migrating within the pumice layer from the activity center. Moreover, decrease of SO4 accompanied by increase of alkalinity is notable even less than one meter depth below the seafloor. In situ sulfate reduction in the surface sediment caused by entrainment of the hydrothermal component would be a source of hydrogen sulfide that supports Calyptogena colony.

  5. Reconstructed ancestral enzymes suggest long-term cooling of Earth's photic zone since the Archean

    NASA Astrophysics Data System (ADS)

    Garcia, Amanda K.; Schopf, J. William; Yokobori, Shin-ichi; Akanuma, Satoshi; Yamagishi, Akihiko

    2017-05-01

    Paleotemperatures inferred from the isotopic compositions (δ18O and δ30Si) of marine cherts suggest that Earth’s oceans cooled from 70 ± 15 °C in the Archean to the present ˜15 °C. This interpretation, however, has been subject to question due to uncertainties regarding oceanic isotopic compositions, diagenetic or metamorphic resetting of the isotopic record, and depositional environments. Analyses of the thermostability of reconstructed ancestral enzymes provide an independent method by which to assess the temperature history inferred from the isotopic evidence. Although previous studies have demonstrated extreme thermostability in reconstructed archaeal and bacterial proteins compatible with a hot early Earth, taxa investigated may have inhabited local thermal environments that differed significantly from average surface conditions. We here present thermostability measurements of reconstructed ancestral enzymatically active nucleoside diphosphate kinases (NDKs) derived from light-requiring prokaryotic and eukaryotic phototrophs having widely separated fossil-based divergence ages. The ancestral environmental temperatures thereby determined for these photic-zone organisms--shown in modern taxa to correlate strongly with NDK thermostability--are inferred to reflect ancient surface-environment paleotemperatures. Our results suggest that Earth's surface temperature decreased over geological time from ˜65-80 °C in the Archean, a finding consistent both with previous isotope-based and protein reconstruction-based interpretations. Interdisciplinary studies such as those reported here integrating genomic, geologic, and paleontologic data hold promise for providing new insight into the coevolution of life and environment over Earth history.

  6. Reconstructed ancestral enzymes suggest long-term cooling of Earth's photic zone since the Archean.

    PubMed

    Garcia, Amanda K; Schopf, J William; Yokobori, Shin-Ichi; Akanuma, Satoshi; Yamagishi, Akihiko

    2017-05-02

    Paleotemperatures inferred from the isotopic compositions (δ 18 O and δ 30 Si) of marine cherts suggest that Earth's oceans cooled from 70 ± 15 °C in the Archean to the present ∼15 °C. This interpretation, however, has been subject to question due to uncertainties regarding oceanic isotopic compositions, diagenetic or metamorphic resetting of the isotopic record, and depositional environments. Analyses of the thermostability of reconstructed ancestral enzymes provide an independent method by which to assess the temperature history inferred from the isotopic evidence. Although previous studies have demonstrated extreme thermostability in reconstructed archaeal and bacterial proteins compatible with a hot early Earth, taxa investigated may have inhabited local thermal environments that differed significantly from average surface conditions. We here present thermostability measurements of reconstructed ancestral enzymatically active nucleoside diphosphate kinases (NDKs) derived from light-requiring prokaryotic and eukaryotic phototrophs having widely separated fossil-based divergence ages. The ancestral environmental temperatures thereby determined for these photic-zone organisms--shown in modern taxa to correlate strongly with NDK thermostability--are inferred to reflect ancient surface-environment paleotemperatures. Our results suggest that Earth's surface temperature decreased over geological time from ∼65-80 °C in the Archean, a finding consistent both with previous isotope-based and protein reconstruction-based interpretations. Interdisciplinary studies such as those reported here integrating genomic, geologic, and paleontologic data hold promise for providing new insight into the coevolution of life and environment over Earth history.

  7. Accretionary history of the Archean Barberton Greenstone Belt (3.55-3.22 Ga), southern Africa

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1994-01-01

    The 3.55-3.22 Ga Barberton Greenstone Belt, South Africa and Swaziland, and surrounding coeval plutons can be divided into four tectono-stratigraphic blocks that become younger toward the northwest. Each block formed through early mafic to ultramafic volcanism (Onverwacht Group), probably in oceanic extensional, island, or plateau settings. Volcanism was followed by magmatic quiescence and deposition of fine-grained sediments, possibly in an intraplate setting. Late evolution involved underplating of the mafic crust by tonalitic intrusions along a subduction-related magmatic arc, yielding a thickened, buoyant protocontinental block. The growth of larger continental domains occurred both through magmatic accretion, as new protocontinental blocks developed along the margins of older blocks, and when previously separate blocks were amalgamated through tectonic accretion. Evolution of the Barberton Belt may reflect an Early Archean plate tectonic cycle that characterized a world with few or no large, stabilized blocks of sialic crust.

  8. Mineralizing Filamentous Bacteria from the Prony Bay Hydrothermal Field Give New Insights into the Functioning of Serpentinization-Based Subseafloor Ecosystems

    PubMed Central

    Pisapia, Céline; Gérard, Emmanuelle; Gérard, Martine; Lecourt, Léna; Lang, Susan Q.; Pelletier, Bernard; Payri, Claude E.; Monnin, Christophe; Guentas, Linda; Postec, Anne; Quéméneur, Marianne; Erauso, Gaël; Ménez, Bénédicte

    2017-01-01

    Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H2 and CH4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed to characterize the subsurface microbial ecology of this environment by focusing on the earliest stages of chimney construction, dominated by the discharge of hydrothermal fluids of subseafloor origin. By jointly examining the mineralogy and the microbial diversity of the conduits of juvenile edifices at the micrometric scale, we find a central role of uncultivated bacteria belonging to the Firmicutes in the ecology of the PHF. These bacteria, along with members of the phyla Acetothermia and Omnitrophica, are identified as the first chimneys inhabitants before archaeal Methanosarcinales. They are involved in the construction and early consolidation of the carbonate structures via organomineralization processes. Their predominance in the most juvenile and nascent hydrothermal chimneys, and their affiliation with environmental subsurface microorganisms, indicate that they are likely discharged with hydrothermal fluids from the subseafloor. They may thus be representative of endolithic serpentinization-based ecosystems, in an environment where DIC is limited. In contrast, heterotrophic and fermentative microorganisms may consume organic compounds from the abiotic by-products of serpentinization processes and/or from life in the deeper subsurface. We thus propose that

  9. Mineralizing Filamentous Bacteria from the Prony Bay Hydrothermal Field Give New Insights into the Functioning of Serpentinization-Based Subseafloor Ecosystems.

    PubMed

    Pisapia, Céline; Gérard, Emmanuelle; Gérard, Martine; Lecourt, Léna; Lang, Susan Q; Pelletier, Bernard; Payri, Claude E; Monnin, Christophe; Guentas, Linda; Postec, Anne; Quéméneur, Marianne; Erauso, Gaël; Ménez, Bénédicte

    2017-01-01

    Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H 2 and CH 4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed to characterize the subsurface microbial ecology of this environment by focusing on the earliest stages of chimney construction, dominated by the discharge of hydrothermal fluids of subseafloor origin. By jointly examining the mineralogy and the microbial diversity of the conduits of juvenile edifices at the micrometric scale, we find a central role of uncultivated bacteria belonging to the Firmicutes in the ecology of the PHF. These bacteria, along with members of the phyla Acetothermia and Omnitrophica , are identified as the first chimneys inhabitants before archaeal Methanosarcinales . They are involved in the construction and early consolidation of the carbonate structures via organomineralization processes. Their predominance in the most juvenile and nascent hydrothermal chimneys, and their affiliation with environmental subsurface microorganisms, indicate that they are likely discharged with hydrothermal fluids from the subseafloor. They may thus be representative of endolithic serpentinization-based ecosystems, in an environment where DIC is limited. In contrast, heterotrophic and fermentative microorganisms may consume organic compounds from the abiotic by-products of serpentinization processes and/or from life in the deeper subsurface. We thus propose

  10. Metal mobilisation in hydrothermal sediments at the TAG Hydrothermal Field (MAR, 26°N)

    NASA Astrophysics Data System (ADS)

    Dutrieux, A. M.; Lichtschlag, A.; Martins, S.; Barriga, F. J.; Petersen, S.; Murton, B. J.

    2017-12-01

    Metalliferous sediments in the vicinity of hydrothermal systems are enriched in base metals, but few studies have addressed their potential as mineral resources. These metalliferous sediments have been accumulated by different processes and reflect modifications of the primary mineral deposits by: oxidation of the chimney materials, in situ precipitation of low-temperature minerals and mass wasting. To understand the post-formation processes in metalliferous sediments, we investigated sub-seafloor metal mobilisation in different geological environments. This presentation focuses on the TAG Hydrothermal Field (Mid-Atlantic Ridge, 26°N) and explores sediment and pore water compositions using ICP-MS and ICP-OES. We use reactive transport modelling to interpret the degree of metal remobilisation and to identify the most important geochemical reactions in the different sediments. The pore water concentrations measured in sediments above inactive sulphide mounds present constant major elements composition that indicates this environment is dominated by complete exchange with seawater. The sediments, that are mainly composed of hematite and goethite formed during the oxidation of sulphides, have low Cu concentrations (< 0.1%) and the main part of their primary Cu and Zn content has likely been mobilized. Cu concentrations increase at the edges of the mounds (up to wt. 20%) or in distal depositionary channels (up to wt.10%) where sulphide minerals (e.g. pyrite, chalcopyrite and sphalerite) are still present in the sediments and capped by more recent sediment slumping. In the depositionary channels, pore waters show metal concentrations affected by diagenesis and redox-sensitive metals are released at depth (e.g. Mn2+ and Cu2+). The leaching of the primary sulphides (e.g. deprecated grains of chalcopyrite), and metal mobilisation lead to an enrichment of Cu and Zn at shallower depth. Here, some stratigraphic horizons scavenge metallic cations back into solid phases and

  11. Seafloor Control on Sea Ice

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.

    2011-01-01

    The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measurements are used to reveal the bathymetric control on sea ice growth and dynamics. Bathymetric effects on sea ice formation are clearly observed in the conformation between sea ice patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive ice-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea ice classes, including seasonal and perennial sea ice, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea ice cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum ice extent has decreased drastically. Because of the geologic control, the sea ice cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea ice patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea ice cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea ice distribution, which differentially modulates the latent heat flux through ice covered and open water areas.

  12. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  13. Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results

    NASA Technical Reports Server (NTRS)

    Plumlee, Geoffrey S.; Ridley, W. Ian

    1992-01-01

    Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.

  14. An authoritative global database for active submarine hydrothermal vent fields

    NASA Astrophysics Data System (ADS)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.; Maffei, Andrew

    2013-11-01

    The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.

  15. Numerical and Permeability Constraints on Simulation of Sill-Driven Hydrothermal Convection

    NASA Astrophysics Data System (ADS)

    Carr, P. M.; Cathles, L. M.; Barrie, C. T.; Manhardt, P.

    2004-05-01

    Volcanic-associated massive sulfide deposits are formed where seawater, heated to ~350oC by subsurface magma intrusions, is quenched by cold water at or near the seafloor. Many VMS districts, like the one at Matagami, Quebec, contain their zinc, lead, and copper in about a dozen discrete ore bodies, with one or two deposits containing more than half of the district's resources. We construct numerical models to investigate the causes of variations in deposit size. These models show that a process which stabilizes the location of hydrothermal venting plumes is required to numerically generate discrete VMS ore bodies by sill-driven hydrothermal convection. This is achieved in our models by increasing rock permeability in a fashion that makes vent plumes more permeable than their surroundings. Maintaining the Courant number ≤1 (so that a thermal anomaly traverses only one grid cell in one timestep of the simulation) is shown to be crucial to numerical convergence. If this rule is violated, visually compelling but incorrect hydrothermal vents result. Small hydrothermal convection cells over the interior of an areally-extensive sill with a tabular edge are smaller than those formed at the sill edge. However, for a sill with the geometry of that at Matagami, numerical simulations indicate that large ore deposits should form near the thickest part of the sill where metals extracted from the underside of the still-hot portions of the sill can optimally contribute. Thus it is essential to construct a model of the entire domain rather than slicing a portion local to the deposition. The numerical models replicate the ten-fold range in deposit size variation, and predict the largest deposits at Matagami will be discovered at 5 to 8 km depth between currently known deposits in the South Flank and Phelps Dodge areas.

  16. An Autonomous, Low Cost Platform for Seafloor Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Ericksen, T.; Foster, J. H.; Bingham, B. S.; Oshiro, J.

    2014-12-01

    The Pacific GPS Facility and the Field Robotics Laboratory at the University of Hawaii have developed an approach to significantly reduce costs below ship based methods of accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure. Our goal has been to reduce the primary barrier preventing us from acquiring the observations we need to understand geodetic processes, and the hazards they present, at subduction zones, submarine volcanoes, and subsea landslides. To this end, we have designed a payload package for one of the University of Hawaii Wave Gliders which incorporates an acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, meteorological sensors, processing computer, and cellular communications. The Wave Glider will interrogate high accuracy pressure sensors on the seafloor to maintain a near-continuous stream of pressure and temperature data. The seafloor geodetic monument seats a sensor capable of recording pressure, temperature, and sound velocity for a deployment duration of over 5 years with an acoustic modem for communications, and an integral acoustic release for recovery and replacement of batteries. The design of the geodetic monument allows for precise repositioning of the sensor to extend the pressure record beyond a single 5+ year deployment, and includes the capability to install a mobile pressure recorder for calibration of the linear drift of the continuous pressure sensor. We will present the design of the Wave Glider payload and seafloor geodetic monument, as well as a discussion of nearshore and offshore field tests and operational procedures. An assessment of our ability to determine cm-scale vertical seafloor motions will be made by integrating the seafloor pressure measurements recovered during field testing with independent measurements of sea surface pressure and sea surface height made by the sea surface payload.

  17. Hydrothermal activity lowers trophic diversity in Antarctic hydrothermal sediments

    NASA Astrophysics Data System (ADS)

    Bell, James B.; Reid, William D. K.; Pearce, David A.; Glover, Adrian G.; Sweeting, Christopher J.; Newton, Jason; Woulds, Clare

    2017-12-01

    Hydrothermal sediments are those in which hydrothermal fluid is discharged through sediments and are one of the least studied deep-sea ecosystems. We present a combination of microbial and biochemical data to assess trophodynamics between and within hydrothermal and background areas of the Bransfield Strait (1050-1647 m of depth). Microbial composition, biomass, and fatty acid signatures varied widely between and within hydrothermally active and background sites, providing evidence of diverse metabolic activity. Several species had different feeding strategies and trophic positions between hydrothermally active and inactive areas, and the stable isotope values of consumers were not consistent with feeding morphology. Niche area and the diversity of microbial fatty acids was lowest at the most hydrothermally active site, reflecting trends in species diversity. Faunal uptake of chemosynthetically produced organics was relatively limited but was detected at both hydrothermal and non-hydrothermal sites, potentially suggesting that hydrothermal activity can affect trophodynamics over a much wider area than previously thought.

  18. Active-passive data fusion algorithms for seafloor imaging and classification from CZMIL data

    NASA Astrophysics Data System (ADS)

    Park, Joong Yong; Ramnath, Vinod; Feygels, Viktor; Kim, Minsu; Mathur, Abhinav; Aitken, Jennifer; Tuell, Grady

    2010-04-01

    CZMIL will simultaneously acquire lidar and passive spectral data. These data will be fused to produce enhanced seafloor reflectance images from each sensor, and combined at a higher level to achieve seafloor classification. In the DPS software, the lidar data will first be processed to solve for depth, attenuation, and reflectance. The depth measurements will then be used to constrain the spectral optimization of the passive spectral data, and the resulting water column estimates will be used recursively to improve the estimates of seafloor reflectance from the lidar. Finally, the resulting seafloor reflectance cube will be combined with texture metrics estimated from the seafloor topography to produce classifications of the seafloor.

  19. Global seafloor geomorphic features map: applications for ocean conservation and management

    NASA Astrophysics Data System (ADS)

    Harris, P. T.; Macmillan-Lawler, M.; Rupp, J.; Baker, E.

    2013-12-01

    Seafloor geomorphology, mapped and measured by marine scientists, has proven to be a very useful physical attribute for ocean management because different geomorphic features (eg. submarine canyons, seamounts, spreading ridges, escarpments, plateaus, trenches etc.) are commonly associated with particular suites of habitats and biological communities. Although we now have better bathymetric datasets than ever before, there has been little effort to integrate these data to create an updated map of seabed geomorphic features or habitats. Currently the best available global seafloor geomorphic features map is over 30 years old. A new global seafloor geomorphic features map (GSGM) has been created based on the analysis and interpretation of the SRTM (Shuttle Radar Topography Mission) 30 arc-second (~1 km) global bathymetry grid. The new map includes global spatial data layers for 29 categories of geomorphic features, defined by the International Hydrographic Organisation. The new geomorphic features map will allow: 1) Characterization of bioregions in terms of their geomorphic content (eg. GOODS bioregions, Large Marine Ecosystems (LMEs), ecologically or biologically significant areas (EBSA)); 2) Prediction of the potential spatial distribution of vulnerable marine ecosystems (VME) and marine genetic resources (MGR; eg. associated with hydrothermal vent communities, shelf-incising submarine canyons and seamounts rising to a specified depth); and 3) Characterization of national marine jurisdictions in terms of their inventory of geomorphic features and their global representativeness of features. To demonstrate the utility of the GSGM, we have conducted an analysis of the geomorphic feature content of the current global inventory of marine protected areas (MPAs) to assess the extent to which features are currently represented. The analysis shows that many features have very low representation, for example fans and rises have less than 1 per cent of their total area

  20. Workshop on a Cross Section of Archean Crust

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D. (Editor); Card, K. D. (Editor)

    1983-01-01

    Various topics relevant to crustal genesis, especially the relationship between Archean low - and high-grade terrains, were discussed. The central Superior Province of the Canadian Shield was studied. Here a 120 km-wide transition from subgreenschist facies rocks of the Michipicoten greenstone belt to granulite facies rocks of the Kapuskasing structural zone represents an oblique cross section through some 20 km of crust, uplifted along a northwest-dipping thrust fault.

  1. Early Evolution of Earth's Geochemical Cycle and Biosphere: Implications for Mars Exobiology

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Carbon (C) has played multiple key roles for life and its environment. C has formed organics, greenhouse gases, aquatic pH buffers, redox buffers, and magmatic constituents affecting plutonism and volcanism. These roles interacted across a network of reservoirs and processes known as the biogeochemical C cycle. Changes in the cycle over geologic time were driven by increasing solar luminosity, declining planetary heat flow, and continental and biological evolution. The early Archean C cycle was dominated by hydrothermal alteration of crustal rocks and by thermal emanations of CO2 and reduced species (eg., H2, Fe(2+) and sulfides). Bioorganic synthesis was achieved by nonphotosynthetic CO2-fixing bacteria (chemoautotrophs) and, possibly, bacteria (organotrophs) utilizing any available nonbiological organic C. Responding both to abundant solar energy and to a longterm decline in thermal sources of chemical energy and reducing power, the blaspheme first developed anoxygenic photosynthesis, then, ultimately, oxygenic photosynthesis. O2-photosynthesis played a central role in transforming the ancient environment and blaspheme to the modem world. The geochemical C cycles of early Earth and Mars were quite similar. The principal differences between the modem C cycles of these planets arose during the later evolution of their heat flows, crusts, atmospheres and, perhaps, their blasphemes.

  2. Numerical Modeling of the Hydrothermal System at East Pacific Rise 9°50'N Including Anhydrite Precipitation

    NASA Astrophysics Data System (ADS)

    Kolandaivelu, K. P.; Lowell, R. P.

    2015-12-01

    To better understand the effects of anhydrite precipitation on mid-ocean ridge hydrothermal systems, we conducted 2-D numerical simulations of two-phase hydrothermal circulation in a NaCl-H2O fluid at the East Pacific Rise 9°50'N. The simulations were constrained by key observational thermal data and seismicity that suggests the fluid flow is primarily along axis with recharge focused into a small zone near a 4th order discontinuity. The simulations considered an open-top square box with a fixed seafloor pressure of 25 MPa, and nominal seafloor temperature of 10 °C. The sides of the box were assumed to be impermeable and insulated. We considered two models: a homogeneous model with a permeability of 10-13 m2 and a heterogeneous model in which layer 2A extrusives were given a higher permeability. Both models had a fixed bottom temperature distribution and initial porosity of 0.1. Assuming that anhydrite precipitation resulted from the decrease in solubility with increasing temperature as downwelling fluid gets heated, we calculated the rate of porosity decrease and sealing times in each cell at certain time snapshots in the simulations. The results showed that sealing would occur most rapidly in limited regions near the base of the high-temperature plumes, where complete sealing could occur on decadal time scales. Though more detailed analysis is needed, it appeared that the areas of rapid sealing would likely have negligible impact on the overall circulation pattern and hydrothermal vent temperatures. The simulations also indicated that sealing due to anhydrite precipitation would occur more slowly at the margins of the ascending plumes. The sealing times in the deep recharge zone determined in these simulations were considerably greater than estimated from 1D analytical calculations, suggesting that with a 2D model, focused recharge at the EPR 9°50'N site may occur, at least on a decadal time scale.

  3. Sulfur mass-independent fractionation during photolysis and photoexcitation of SO2 and CS2 and implications to the source reactions for Archean sulfur isotope anomaly

    NASA Astrophysics Data System (ADS)

    Ono, S.; Whitehill, A. R.; Oduro, H. D.

    2012-12-01

    Signatures of sulfur mass-independent fractionations (S-MIF) in Archean sedimentary rocks provide critical constraints on the atmospheric oxygen level of an early atmosphere and documents fundamental difference in early sulfur biogeochemical cycle from that of today. Archcean sulfide and sulfate minerals often yield correlated relationships among δ34S, Δ33S and Δ36S values. Our goal is to use this S-MIF pattern to pinpoint the S-MIF source reaction(s), and to constrain early atmospheric conditions beyond the oxygen level. Such an effort may lead to a new hypothesis about the cause of the Great Oxidation Event at 2.4 Billion years ago. We will present new results of laboratory photochemical experiments that are designed to calibrate the pattern of S-MIF during the photochemistry of SO2 and CS2 as a function of UV spectrum regions, partial pressure of SO2 and CS2 (0.1 mbar and above) and total N2 pressure (0.25 to 1.0 bar). Both SO2 and CS2 exhibit high energy absorption band (190 to 220 nm) that leads to direct photolysis (SO2 → SO + O or CS2 → CS + S), and low energy band (>240 nm for SO2 and 280 nm for CS2) that excites molecules to low lying electronic states under dissociation thresholds. Broadband UV light sources (Xenon or Deuterium arc lamps) are used in combination with a series of bandpass (200±35 nm), longpass (250 or 280 nm) filters to isolate specific electronic transitions. Excited state SO2 is trapped by acetylene and excited state CS2 polymerizes in the reactor, and are collected for sulfur isotope ratio analysis. Although SO2 photolysis under 190 to 220 nm is thought to be the main Archean S-MIF source reaction, its S-MIF is characterized by high δ34S values (up to 140 ‰) and relatively low Δ36S/Δ33S values (-3.3 to -5.9) compared to Archean data (-0.9 to -1.5). Strong pSO2 dependence suggests S-MIF is primarily due to isotopologue self-shielding at least under our experimental conditions. In contrast, SO2 photoexciation under >250 nm

  4. Iron isotopes in ancient and modern komatiites: Evidence in support of an oxidised mantle from Archean to present

    NASA Astrophysics Data System (ADS)

    Hibbert, K. E. J.; Williams, H. M.; Kerr, A. C.; Puchtel, I. S.

    2012-03-01

    The mantle of the modern Earth is relatively oxidised compared to the initially reducing conditions inferred for core formation. The timing of the oxidation of the mantle is not conclusively resolved but has important implications for the timing of the development of the hydrosphere and atmosphere. In order to examine the timing of this oxidation event, we present iron isotope data from three exceptionally well preserved komatiite localities, Belingwe (2.7 Ga), Vetreny (2.4 Ga) and Gorgona (0.089 Ga). Measurements of Fe isotope compositions of whole-rock samples are complemented by the analysis of olivine, spinel and pyroxene separates. Bulk-rock and olivine Fe isotope compositions (δ57Fe) define clear linear correlations with indicators of magmatic differentiation (Mg#, Cr#). The mean Fe isotope compositions of the 2.7-2.4 Ga and 0.089 Ga samples are statistically distinct and this difference can be explained by greater extent of partial melting represented by the older samples and higher mantle ambient temperatures in the Archean and early Proterozoic relative to the present day. Significantly, samples of all ages define continuous positive linear correlations between bulk rock δ57Fe and V/Sc and δ57Fe and V, and between V/Sc and V with TiO2, providing evidence for the incompatible behaviour of V (relative to Sc) and of isotopically heavy Fe. Partial melting models calculated using partition coefficients for V at oxygen fugacities (fO2s) of 0 and + 1 relative to the fayalite-magnetite-quartz buffer (FMQ) best match the data arrays, which are defined by all samples, from late Archean to Tertiary. These data, therefore, provide evidence for komatiite generation under moderately oxidising conditions since the late Archean, and argue against a change in mantle fO2 concomitant with atmospheric oxygenation at ~ 2.4 Ga.

  5. Ancient Hydrothermal Springs in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2008-01-01

    Hydrothermal springs are important astrobiological sites for several reasons: 1) On Earth, molecular phylogeny suggests that many of the most primitive organisms are hyperthermophiles, implying that life on this planet may have arisen in hydrothermal settings; 2) on Mars, similar settings would have supplied energy- and nutrient-rich waters in which early martian life may have evolved; 3) such regions on Mars would have constituted oases of continued habitability providing warm, liquid water to primitive life forms as the planet became colder and drier; and 4) mineralization associated with hydrothermal settings could have preserved biosignatures from those martian life forms. Accordingly, if life ever developed on Mars, then hydrothermal spring deposits would be excellent localities in which to search for morphological or chemical remnants of that life. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel which allows detailed analysis of geologic structure and geomorphology. Based on these new data, we report several features in Vernal Crater, Arabia Terra that we interpret as ancient hydrothermal springs.

  6. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Asimow, P. D.; Farley, K. A.; Rooney, T. O.; Seeley, E.; Jackson, E. W.; Durham, Z. M.

    2016-01-01

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges.

  7. Geotechnical and Geoacoustic Investigation of Seafloor Sediments on Boston Harbor Approaches

    DTIC Science & Technology

    2017-01-25

    Geoacoustic Investigation of Seafloor Sediments on Boston Harbor Approaches Andrei Abelev Marine Physics Branch Marine Geosciences Division Peter...LIMITATION OF ABSTRACT Geotechnical and Geoacoustic Investigation of Seafloor Sediments on Boston Harbor Approaches Andrei Abelev, Peter Herdic...sampling and analysis series for classification and characterization of the surficial seafloor sediment in the Boston Harbor approaches . 25-01-2017

  8. The Wisconsin magmatic terrane: An Early Proterozoic greenstone-granite terrane formed by plate tectonic processes

    NASA Technical Reports Server (NTRS)

    Schulz, K. J.; Laberge, G. L.

    1986-01-01

    The Wisconsin magmatic terrane (WMT) is an east trending belt of dominantly volcanic-plutonic complexes of Early Proterozoic age (approx. 1850 m.y.) that lies to the south of the Archean rocks and Early Proterozoic epicratonic sequence (Marquette Range Supergroup) in Michigan. It is separated from the epicratonic Marquette Range Supergroup by the high-angle Niagara fault, is bounded on the south, in central Wisconsin, by Archean gneisses, is truncated on the west by rocks of the Midcontinent rift system, and is intruded on the east by the post-orogenic Wolf river batholith. The overall lithologic, geochemical, metallogenic, metamorphic, and deformational characteristics of the WMT are similar to those observed in recent volcanic arc terranes formed at sites of plate convergence. It is concluded that the WMT represents an evolved oceanic island-arc terrane accreated to the Superior craton in the Early Proterozoic. This conclusion is strengthened by the apparent absence of Archean basement from most of the WMT, and the recent recognition of the passive margin character of the epicratonic Marquette Range Supergroup.

  9. On the global distribution of hydrothermal vent fields: One decade later

    NASA Astrophysics Data System (ADS)

    Beaulieu, S. E.; Baker, E. T.; German, C. R.

    2012-12-01

    Since the last global compilation one decade ago, the known number of active submarine hydrothermal vent fields has almost doubled. At the end of 2009, a total of 518 active vent fields was catalogued, with about half (245) visually confirmed and others (273) inferred active at the seafloor. About half (52%) of these vent fields are at mid-ocean ridges (MORs), 25% at volcanic arcs, 21% at back-arc spreading centers (BASCs), and 2% at intra-plate volcanoes and other settings. One third are in high seas, and the nations with the most known active vent fields within EEZs are Tonga, USA, Japan, and New Zealand. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. Here, we have comprehensively documented the percentage of strike length at MORs and BASCs that has been systematically explored for hydrothermal activity. As of the end of 2009, almost 30% of the ~60,000 km of MORs had been surveyed at least with spaced vertical profiles to detect hydrothermal plumes. A majority of the vents discovered at MORs in the past decade occurred at segments with < 60 mm/yr full spreading rate. Discoveries at ultra-slow MORs in the past decade included the deepest known vent (Beebe at Mid-Cayman Rise) and high-temperature black smoker vents (e.g., Dragon at SWIR and Loki's Castle at Mohns Ridge), and the highest temperature vent was measured at the slow-spreading S MAR (Turtle Pits). Using a previously published equation for the linear relationship between the number of active vent fields per 100 km strike length (F_s) vs. weighted-average full spreading rate (u_s), we predicted 676 vent fields remaining to be discovered at MORs. Even accounting for the lower F_s at slower spreading rates, almost half of the vents that are predicted remaining to be discovered at MORs are at ultra-slow to slow spreading rates (< 40 mm/yr) and about 1/3 at intermediate rates (40-80 mm

  10. Sedimentary manganese metallogenesis in response to the evolution of the Earth system

    NASA Astrophysics Data System (ADS)

    Roy, Supriya

    2006-08-01

    The concentration of manganese in solution and its precipitation in inorganic systems are primarily redox-controlled, guided by several Earth processes most of which were tectonically induced. The Early Archean atmosphere-hydrosphere system was extremely O 2-deficient. Thus, the very high mantle heat flux producing superplumes, severe outgassing and high-temperature hydrothermal activity introduced substantial Mn 2+ in anoxic oceans but prevented its precipitation. During the Late Archean, centered at ca. 2.75 Ga, the introduction of Photosystem II and decrease of the oxygen sinks led to a limited buildup of surface O 2-content locally, initiating modest deposition of manganese in shallow basin-margin oxygenated niches (e.g., deposits in India and Brazil). Rapid burial of organic matter, decline of reduced gases from a progressively oxygenated mantle and a net increase in photosynthetic oxygen marked the Archean-Proterozoic transition. Concurrently, a massive drawdown of atmospheric CO 2 owing to increased weathering rates on the tectonically expanded freeboard of the assembled supercontinents caused Paleoproterozoic glaciations (2.45-2.22 Ga). The spectacular sedimentary manganese deposits (at ca. 2.4 Ga) of Transvaal Supergroup, South Africa, were formed by oxidation of hydrothermally derived Mn 2+ transferred from a stratified ocean to the continental shelf by transgression. Episodes of increased burial rate of organic matter during ca. 2.4 and 2.06 Ga are correlatable to ocean stratification and further rise of oxygen in the atmosphere. Black shale-hosted Mn carbonate deposits in the Birimian sequence (ca. 2.3-2.0 Ga), West Africa, its equivalents in South America and those in the Francevillian sequence (ca. 2.2-2.1 Ga), Gabon are correlatable to this period. Tectonically forced doming-up, attenuation and substantial increase in freeboard areas prompted increased silicate weathering and atmospheric CO 2 drawdown causing glaciation on the Neoproterozoic Rodinia

  11. Seafloor geodesy: Measuring surface deformation and strain-build up

    NASA Astrophysics Data System (ADS)

    Kopp, Heidrun; Lange, Dietrich; Hannemann, Katrin; Petersen, Florian

    2017-04-01

    Seafloor deformation is intrinsically related to tectonic processes, which potentially may evolve into geohazards, including earthquakes and tsunamis. The nascent scientific field of seafloor geodesy provides a way to monitor crustal deformation at high resolution comparable to the satellite-based GPS technique upon which terrestrial geodesy is largely based. The measurements extract information on stress and elastic strain stored in the oceanic crust. Horizontal seafloor displacement can be obtained by acoustic/GPS combination to provide absolute positioning or by long-term acoustic telemetry between different beacons fixed on the seafloor. The GeoSEA (Geodetic Earthquake Observatory on the SEAfloor) array uses acoustic telemetry for relative positioning at mm-scale resolution. The transponders within an array intercommunicate via acoustic signals for a period of up to 3.5 years. The seafloor acoustic transponders are mounted on 4 m high tripod steel frames to ensure clear line-of-sight between the stations. The transponders also include high-precision pressure sensors to monitor vertical movements and dual-axis inclinometers in order to measure their level as well as any tilt of the seafloor. Sound velocity sensor measurements are used to correct for water sound speed variations. A further component of the network is GeoSURF, a self-steering autonomous surface vehicle (Wave Glider), which monitors system health and is able to upload the seafloor data to the sea surface and to transfer it via satellite. The GeoSEA array is capable of both continuously monitoring horizontal and vertical ground displacement rates along submarine fault zones and characterizing their behavior (locked or aseismically creeping). Seafloor transponders are currently installed along the Siliviri segment of the North Anatolian Fault offshore Istanbul for measurements of strain build-up along the fault. The first 18 month of baseline ranging were analyzed by a joint-least square inversion

  12. Boiling-induced formation of colloidal gold in black smoker hydrothermal fluids

    USGS Publications Warehouse

    Gartman, Amy; Hannington, Mark; Jamieson, John W.; Peterkin, Ben; Garbe-Schönberg, Dieter; Findlay, Alyssa J; Fuchs, Sebastian; Kwasnitschka, Tom

    2017-01-01

    Gold colloids occur in black smoker fluids from the Niua South hydrothermal vent field, Lau Basin (South Pacific Ocean), confirming the long-standing hypothesis that gold may undergo colloidal transport in hydrothermal fluids. Six black smoker vents, varying in temperature from 250 °C to 325 °C, were sampled; the 325 °C vent was boiling at the time of sampling and the 250 °C fluids were diffusely venting. Native gold particles ranging from <50 nm to 2 µm were identified in 4 of the fluid samples and were also observed to precipitate on the sampler during collection from the boiling vent. Total gold concentrations (dissolved and particulate) in the fluid samples range from 1.6 to 5.4 nM in the high-temperature, focused flow vents. Although the gold concentrations in the focused flow fluids are relatively high, they are lower than potential solubilities prior to boiling and indicate that precipitation was boiling induced, with sulfide lost upon boiling to exsolution and metal sulfide formation. Gold concentrations reach 26.7 nM in the 250 °C diffuse flow sample, and abundant native gold particles were also found in the fluids and associated sulfide chimney and are interpreted to be a product of colloid accumulation and growth following initial precipitation upon boiling. These results indicate that colloid-driven precipitation as a result of boiling, the persistence of colloids after boiling, and the accumulation of colloids in diffuse flow fluids are important mechanisms for the enrichment of gold in seafloor hydrothermal systems.

  13. Seafloor off Lighthouse Point Park, Santa Cruz, California

    USGS Publications Warehouse

    Storlazzi, Curt D.; Golden, Nadine E.; Gibbons, Helen

    2013-01-01

    The seafloor off Lighthouse Point Park, Santa Cruz, California, is extremely varied, with sandy flats, boulder fields, faults, and complex bedrock ridges. These ridges support rich marine ecosystems; some of them form the "reefs" that produce world-class surf breaks. Colors indicate seafloor depth, from red-orange (about 2 meters or 7 feet) to magenta (25 meters or 82 feet).

  14. Seafloor off Pleasure Point, Santa Cruz County, California

    USGS Publications Warehouse

    Storlazzi, Curt D.; Golden, Nadine E.; Gibbons, Helen

    2013-01-01

    The seafloor off Pleasure Point, Santa Cruz County, California, is extremely varied, with sandy flats, boulder fields, faults, and complex bedrock ridges. These ridges support rich marine ecosystems; some of them form the "reefs" that produce world-class surf breaks. Colors indicate seafloor depth, from red-orange (about 2 meters or 7 feet) to magenta (25 meters or 82 feet)

  15. Hydrothermal venting along Earth's fastest spreading center: East Pacific Rise, 27.5°-32.3°

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Hey, R. N.; Lupton, J. E.; Resing, J. A.; Feely, R. A.; Gharib, J. J.; Massoth, G. J.; Sansone, F. J.; Kleinrock, M.; Martinez, F.; Naar, D. F.; Rodrigo, C.; Bohnenstiehl, D.; Pardee, D.

    2002-07-01

    During March/April 1998 we conducted detailed mapping and sampling of hydrothermal plumes along six segments of Earth's fasting spreading mid-ocean ridge, 27.5°-32.3°S on the East Pacific Rise. We compared the distribution and chemistry of hydrothermal plumes to geological indicators of long-term (spreading rate) and moderate-term (ridge inflation) variations in magmatic budget. In this large-offset, propagating rift setting, these geological indices span virtually the entire range found along fast spreading ridges worldwide. Hydrothermal plumes overlaid ~60% of the length of superfast (>130 km/Myr) spreading axis surveyed and defined at least 14 separate vent fields. We observed no plumes over the slower spreading propagating segments. Finer-scale variations in the magmatic budget also correlated with hydrothermal activity, as the location of the five most intense plumes corresponded to subsegment peaks in ridge inflation. Along the entire ridge crest, the more inflated a ridge location the more likely it was to be overlain by a hydrothermal plume. Plume chemistry mostly reflected discharge from mature vent fields apparently unperturbed by magmatic activity within the last few years. Plume samples with high volatile/metal ratios, generally indicating recent seafloor volcanism, were scarce. Along-axis trends in both volatile (3He; CH4; ΔpH, a proxy for CO2; and particulate S) and nonvolatile (Fe, Mn) species showed a first-order agreement with the trend of ridge inflation. Nevertheless, a broad correspondence between the concentration of volatile species in plumes and geological proxies of magma supply identifies a pervasive magmatic imprint on this superfast spreading group of ridge segments.

  16. Hydrothermal and metamorphic berthierine from the Kidd Creek volcanogenic massive sulfide deposit, Timmins, Ontario

    USGS Publications Warehouse

    Slack, J.F.; Wei-Teh, Jiang; Peacor, D.R.; Okita, P.M.

    1992-01-01

    Berthierine, a 7 A?? Fe-Al member of the serpentine group, occurs in the footwall stringer zone of the Archean Kidd Creek massive sulfide deposit, associated with quartz, muscovite, chlorite, pyrite, sphalerite, chalcopyrite, and local tourmaline, cassiterite, and halloysite. Petrographic and scanning electron microscopic (SEM) studies reveal different types of berthierine occurrences, including interlayers within the rims on deformed chlorite, intergrowths with muscovite and halloysite, and discrete coarse grains. This is the first reported occurrence of berthierine from volcanogenic massive sulfide deposits. Textural relations suggest that most of the berthierine formed as a primary hydrothermal mineral at relatively high temperatures (~350??C) in the footwall stringer zone, probably by the replacement of a pre-existing aluminous phase such as muscovite or chlorite. However, the intergrowth textures observed by SEM and TEM suggest that some of the berthierine originated by syn- or post-metamorphic replacement of chlorite. -from Authors

  17. 3D Marine MT Modeling for a Topographic Seafloor

    NASA Astrophysics Data System (ADS)

    Zhang, B., Sr.; Yin, C.; Ren, X.; Liu, Y.; Huang, X.; Liu, L.

    2017-12-01

    As an effective geophysical tool, marine magnetotelluric (MMT) exploration has been widely used in offshore oil and gas exploration. Accordingly, the MMT forward modelling has made big progress. However, most of the researches are focused on a flat seafloor. In this paper, we present a 3D finite-element (FE) algorithm for marine MT forward modelling based on unstructured grids that can accurately model the MMT responses for a topographic seafloor. The boundary value problem for the forward modelling is described by an Helmholtz equation together with the boundary conditions derived by assuming the electrical polarizations respectively along the x- and y-direction on the top surface of the modelling domain. Applying the Galerkin method to the boundary value problem and substituting the unstructured finite-element vector shape function into the equation, we derive the final large linear system for the two polarizations, from which the EM fields is obtained for the calculation of impedance apparent resistivities and phases. To verify the effectiveness of our algorithm, we compare our modelling results with those by Key's (2013) 2D marine MT open source code of Scripps Institution of Oceanography (Figure 1). From Figure 1, one sees that the two agree well, implying that our 3D modelling method based unstructured FE is an effective modelling tool for topographic seafloor. From the MMT modelling responses for other topographic seafloor models (not shown here), we further observe that 1) the apparent resistivities have a similar profile pattern to the topography at the seafloor; 2) at the edges of the topography, there exist sharp changes; 3) the seafloor topography may dominate the responses from the abnormal bodies under the seafloor. This paper is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900)

  18. An Autonomous, Low Cost Platform for Seafloor Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Ericksen, T.; Foster, J. H.; Bingham, B. S.

    2013-12-01

    The high cost of acquiring geodetic data from the sea floor has limited the observations available to help us understand and model the behavior of seafloor geodetic processes. To address this problem, the Pacific GPS Facility at the University of Hawaii is developing a cost effective approach for accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure without the requirement for costly ship time. There is a recognized need to vastly increase our underwater geodetic observing capacity. Most of the largest recorded earthquakes and most devastating tsunamis are generated at subduction zones underwater. Similarly, many volcanoes are partly (e.g. Santorini) or completely (e.g. Loihi) submerged, and are not well observed and understood. Furthermore, landslide features ring many ocean basins, and huge debris deposits surround many volcanic oceanic islands. Our approach will lower the cost of collecting sea-floor geodetic data, reducing the barriers preventing us from acquiring the information we need to observe and understand these types of structures and provide a direct societal benefit in improving hazard assessment. The capability is being developed by equipping one of the University of Hawaii Wave Gliders with an integrated acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, processing unit, and cellular communications. The Wave Glider will interrogate high accuracy pressure sensors on the sea floor to maintain a near-continuous stream of pressure and temperature data, but seafloor pressure data includes contribution from a variety of sources and on its own may not provide the accuracy required for geodetic investigations. Independent measurements of sea surface pressure and sea surface height can be used to remove these contributions from the observed sea floor pressure timeseries. We will integrate our seafloor pressure measurements with air

  19. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth

    PubMed Central

    Domagal-Goldman, Shawn D.; Meadows, Victoria S.; Wolf, Eric T.; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G.

    2016-01-01

    Abstract Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8–2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ∼ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7–2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO2. Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets. Key Words: Haze—Archean Earth

  20. Extensive hydrothermal activity in the NE Lau basin revealed by ROV dives

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Resing, J. A.; Tebo, B.; Baker, E. T.; Butterfield, D. A.; Chadwick, B.; Davis, R.; de Ronde, C. E. J.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Rubin, K. H.; Shank, T. M.; Walker, S. L.; Arculus, R. J.; Bobbitt, A. M.; Buck, N. J.; Caratori Tontini, F.; Crowhurst, P. V.; Mitchell, E.; Olson, E. J.; Ratmeyer, V.; Richards, S.; Roe, K. K.; Kenner-Chavis, P.; Martinez-Lyons, A.; Sheehan, C.; Brian, R.

    2014-12-01

    Dives with the QUEST 4000 ROV (Remotely Operated Vehicle) in September 2012 discovered nine hydrothermal sites in the arc and rear-arc region of the NE Lau Basin in 1150 m to 2630 m depth. These sites, originally detected by water column and seafloor surveys conducted in 2008-2011, include: (1) a paired sulfur-rich/black smoker field on the summit of a tectonically deformed magmatic arc volcano (Niua), (2) fracture-controlled black smoker venting on several small en echelon seamounts (north Matas) that lie between the magmatic arc and the backarc spreading center and (3) a magmatic degassing site on the summit of a dacite cone within a large (~12 km diameter) caldera volcano (Niuatahi). Dives at West Mata Seamount, which was undergoing strombolian volcanic activity and effusive rift-zone eruptions from 2008 to 2010, revealed a dormant volcanic phase in September 2012, with continued low-temperature diffuse venting. The high-temperature venting is likely driven by magmatic heat indicative of underlying partial melt zones and/or melt pockets distributed through the region. The occurrence of the youngest known boninite eruptions on the Mata volcanoes is consistent with subduction fluid flux melting extending into the rear-arc zone. Extension related to the transition from subduction to strike-slip motion of the northern Tonga Arc over the active Subduction-Transform Edge Propagator (STEP) fault probably contributes to the enhanced volcanism/hydrothermal activity in the NE Lau Basin. Chemosynthetic ecosystems at these sites range from mostly motile, lower diversity ecosystems at the eruptive/magmatically-degassing sites to higher diversity ecosystems with less mobile faunal components at the black-smoker systems. The wide range of fluid chemistry, water depth and geologic settings of the hydrothermal systems in this area provides an intriguing template to study the interaction of hydrothermal fluid chemistry, chemosynthetic habitats and their geologic underpinning

  1. Hyperactive hydrothermal activity in the NE Lau basin revealed by ROV dives

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Resing, J. A.; Tebo, B.; Baker, E. T.; Butterfield, D. A.; Chadwick, B.; Davis, R.; de Ronde, C. E.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Rubin, K. H.; Shank, T. M.; Walker, S. L.; Arculus, R. J.; Bobbitt, A. M.; Buck, N.; Caratori Tontini, F.; Crowhurst, P. V.; Mitchell, E.; Olson, E. J.; Ratmeyer, V.; Richards, S.; Roe, K. K.; Keener, P.; Martinez Lyons, A.; Sheehan, C.; Brian, R.

    2013-12-01

    Dives with the QUEST 4000 ROV (Remotely Operated Vehicle) in September 2012 discovered nine hydrothermal sites in the arc and rear-arc region of the NE Lau Basin in 1150 m to 2630 m depth. These sites, originally detected by water column and seafloor surveys conducted in 2008-2011, include: (1) a paired sulfur-rich/black smoker field on the summit of a tectonically deformed magmatic arc volcano (Niua), (2) fracture-controlled black smoker venting on several small en echelon seamounts (north Matas) that lie between the magmatic arc and the backarc spreading center and (3) a magmatic degassing site on the summit of a dacite cone within a large (~12 km diameter) caldera volcano (Niuatahi). Dives at West Mata Seamount, which was undergoing strombolian volcanic activity and effusive rift-zone eruptions from 2008 to 2010, revealed a dormant volcanic phase in September 2012, with continued low-temperature diffuse venting. The high-temperature venting is likely driven by magmatic heat indicative of underlying partial melt zones and/or melt pockets distributed through the region. The occurrence of the youngest known boninite eruptions on the Mata volcanoes is consistent with subduction fluid flux melting extending into the rear-arc zone. Extension related to the transition from subduction to strike-slip motion of the northern Tonga Arc over the active Subduction-Transform Edge Propagator (STEP) fault probably contributes to the enhanced volcanism/hydrothermal activity in the NE Lau Basin. Chemosynthetic ecosystems at these sites range from mostly motile, lower diversity ecosystems at the eruptive/magmatically-degassing sites to higher diversity ecosystems with less mobile faunal components at the black-smoker systems. The wide range of fluid chemistry, water depth and geologic settings of the hydrothermal systems in this area provides an intriguing template to study the interaction of hydrothermal fluid chemistry, chemosynthetic habitats and their geologic underpinning

  2. Late Archean rise of aerobic microbial ecosystems

    PubMed Central

    Eigenbrode, Jennifer L.; Freeman, Katherine H.

    2006-01-01

    We report the 13C content of preserved organic carbon for a 150 million-year section of late Archean shallow and deepwater sediments of the Hamersley Province in Western Australia. We find a 13C enrichment of ≈10‰ in organic carbon of post-2.7-billion-year-old shallow-water carbonate rocks relative to deepwater sediments. The shallow-water organic-carbon 13C content has a 29‰ range in values (−57 to −28‰), and it contrasts with the less variable but strongly 13C-depleted (−40 to −45‰) organic carbon in deepwater sediments. The 13C enrichment likely represents microbial habitats not as strongly influenced by assimilation of methane or other 13C-depleted substrates. We propose that continued oxidation of shallow settings favored the expansion of aerobic ecosystems and respiring organisms, and, as a result, isotopic signatures of preserved organic carbon in shallow settings approached that of photosynthetic biomass. Facies analysis of published carbon-isotopic records indicates that the Hamersley shallow-water signal may be representative of a late Archean global signature and that it preceded a similar, but delayed, 13C enrichment of deepwater deposits. The data suggest that a global-scale expansion of oxygenated habitats accompanied the progression away from anaerobic ecosystems toward respiring microbial communities fueled by oxygenic photosynthesis before the oxygenation of the atmosphere after 2.45 billion years ago. PMID:17043234

  3. Decline of a Hydrothermal Vent Field - Escanaba Trough 12 Years Later

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Clague, D. A.; Davis, A. S.; Lilley, M. D.; McClain, J. S.; Olson, E. S.; Ross, S. L.; Von Damm, K. L.

    2001-12-01

    colonized by palm worms, limpets, and snails. Four other drill holes showed no hydrothermal flow nor visible evidence of down hole recharge. Mapping with Tiburon confirmed that the extent of hydrothermal venting at NESCA decreased dramatically since 1988. Formerly extensive colonies of Ridgia had vanished leaving no trace of their presence. Although hydrothermal venting has collapsed to a single mound, the temperature and composition of the fluids remained nearly unchanged. This is curious given that sediment pore fluids analyzed on Leg 169 included both high salinity and low salinity components of phase separated hydrothermal fluids in the shallow subsurface indicating that the hydrothermal field must have had a relatively recent (relative to the rate of pore fluid diffusion) high temperature history. Hydrothermal fluids presently venting at this site must be derived from an essentially homogeneous, approximately 215\\degC fluid reservoir that has declined in its fluid output on a decadal scale, but has not undergone significant changes in temperature and composition. Venting at the seafloor does not seem to have been affected by drilling in the hydrothermal field.

  4. Flow banding in basaltic pillow lavas from the Early Archean Hooggenoeg Formation, Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Robins, Brian; Sandstå, Nils Rune; Furnes, Harald; de Wit, Maarten

    2010-07-01

    Well-preserved pillow lavas in the uppermost part of the Early Archean volcanic sequence of the Hooggenoeg Formation in the Barberton Greenstone Belt exhibit pronounced flow banding. The banding is defined by mm to several cm thick alternations of pale green and a dark green, conspicuously variolitic variety of aphyric metabasalt. Concentrations of relatively immobile TiO2, Al2O3 and Cr in both varieties of lava are basaltic. Compositional differences between bands and variations in the lavas in general have been modified by alteration, but indicate mingling of two different basalts, one richer in TiO2, Al2O3, MgO, FeOt and probably Ni and Cr than the other, as the cause of the banding. The occurrence in certain pillows of blebs of dark metabasalt enclosed in pale green metabasalt, as well as cores of faintly banded or massive dark metabasalt, suggest that breakup into drops and slugs in the feeder channel to the lava flow initiated mingling. The inhomogeneous mixture was subsequently stretched and folded together during laminar shear flow through tubular pillows, while diffusion between bands led to partial homogenisation. The most common internal pattern defined by the flow banding in pillows is concentric. In some pillows the banding defines curious mushroom-like structures, commonly cored by dark, variolitic metabasalt, which we interpret as the result of secondary lateral flow due to counter-rotating, transverse (Dean) vortices induced by the axial flow of lava towards the flow front through bends, generally downward, in the tubular pillows. Other pillows exhibit weakly-banded or massive, dark, variolitic cores that are continuous with wedge-shaped apophyses and veins that intrude the flow banded carapace. These cores represent the flow of hotter and less viscous slugs of the dark lava type into cooled and stiffened pillows.

  5. Phase relations and adiabats in boiling seafloor geothermal systems

    USGS Publications Warehouse

    Bischoff, J.L.; Pitzer, Kenneth S.

    1985-01-01

    Observations of large salinity variations and vent temperatures in the range of 380-400??C suggest that boiling or two-phase separation may be occurring in some seafloor geothermal systems. Consideration of flow rates and the relatively small differences in density between vapors and liquids at the supercritical pressures at depth in these systems suggests that boiling is occurring under closed-system conditions. Salinity and temperature of boiling vents can be used to estimate the pressure-temperature point in the subsurface at which liquid seawater first reached the two-phase boundary. Data are reviewed to construct phase diagrams of coexisting brines and vapors in the two-phase region at pressures corresponding to those of the seafloor geothermal systems. A method is developed for calculating the enthalpy and entropy of the coexisting mixtures, and results are used to construct adiabats from the seafloor to the P-T two-phase boundary. Results for seafloor vents discharging at 2300 m below sea level indicate that a 385??C vent is composed of a brine (7% NaCl equivalent) in equilibrium with a vapor (0.1% NaCl). Brine constitutes 45% by weight of the mixture, and the fluid first boiled at approximately 1 km below the seafloor at 415??C, 330 bar. A 400??C vent is primarily vapor (88 wt.%, 0.044% NaCl) with a small amount of brine (26% NaCl) and first boiled at 2.9 km below the seafloor at 500??C, 520 bar. These results show that adiabatic decompression in the two-phase region results in dramatic cooling of the fluid mixture when there is a large fraction of vapor. ?? 1985.

  6. Imaging Small-scale Seafloor and Sub-seafloor Tectonic Fabric Using Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Sandwell, D. T.; Müller, D.; Matthews, K. J.; Smith, W. H. F.

    2017-12-01

    Marine gravity anomalies derived from satellite radar altimetry now provide an unprecedented resolution of about 7 km for mapping small-scale seafloor and sub-seafloor tectonic fabric. These gravity maps are improving rapidly because three satellite altimeters are currently collecting data with dense track coverage: (1) CryoSat-2 has routinely collected altimetry data over ice, land, and ocean since July 2010. The satellite has a long 369-day repeat cycle resulting in an average ground track spacing of 3.5 km at the equator. To date it has completed more than 7 geodetic mappings of the ocean surface. (2) The SARAL AltiKa altimeter began a non-repeat orbit phase in July 2016. AltiKa has a new Ka-band instrument with a factor of 2 better range precision than all previous altimeters. (3) Jason-2 was placed in a geodetic orbit starting July 2017. It has lower inclination coverage to provide improved gravity recovery for N-S trending anomalies. These data combined with sparse soundings will provide a dramatic improvement in predicted bathymetry and thus help guide future deep ocean surveys. The most recent global marine gravity anomaly map based on these geodetic mission data with 2-pass retracking for optimal range precision has an accuracy that is 2-4 times better than the maps derived from Geosat and ERS-1. The new data reveal the detailed fabric of fracture zones, previously unmapped, now extinct oceanic microplates in the central Pacific, and fault networks buried beneath thick sediments along continental margins. By combining satellite altimetry with marine magnetic anomalies and seafloor age dates from rock samples we are able to pinpoint the geometry and age of major plate reorganizations, particularly the enigmatic 100 Ma event, which occurred during the Cretaceous Magnetic Superchron.

  7. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45-52'N: direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991

    USGS Publications Warehouse

    Haymon, R.M.; Fornari, D.J.; Von Damm, Karen L.; Lilley, M.D.; Perfit, M.R.; Edmond, J.M.; Shanks, Wayne C.; Lutz, R.A.; Grebmeier, J.M.; Carbotte, S.; Wright, D.; McLaughlin, E.; Smith, M.; Beedle, N.; Olson, E.

    1993-01-01

    We suggest that, in April, 1991, intrusion of dikes in the eruption area to < 200 m beneath the ASC floor resulted in phase separation of fluids near the tops of the dikes and a large flux of vapor-rich hydrothermal fluids through the overlying rubbly, cavernous lavas. Low salinities and gas-rich compositions of hydrothermal fluids sampled in the eruption area are appropriate for a vapor phase in a seawater system undergoing subcritical liquid-vapor phase separation (boiling) and phase segregation. Hydrothermal fluids streamed directly from fissures and pits that may have been loci of lava drainback and/or hydrovolcanic explosions. These fissures and pits were lined with white mats of a unique fast-growing bacteria that was the only life associated with the brand-new vents. The prolific bacteria, which covered thousands of square meters on the ridge crest and were also abundant in subseafloor voids, may thrive on high levels of gases in the vapor-rich hydrothermal fluids initially escaping the hydrothermal system. White bacterial particulates swept from the seafloor by hydrothermal vents swirled in an unprecedented biogenic ‘blizzard’ up to 50 m above the bottom. The bacterial proliferation of April, 1991 is likely to be a transient bloom that will be checked quickly either by decline of dissolved gas concentrations in the fluids as rapid heat loss brings about cessation of boiling, and/or by grazing as other organisms are re-established in the biologically devastated area.

  8. Geochemistry of Precambrian carbonates: 3-shelf seas and non-marine environments of the Archean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veizer, J.; Clayton, R.N.; Hinton, R.W.

    1990-10-01

    A comprehensive whole-rock study of mineralogical, chemical, and isotopic attributes of Archean carbonates suggests that their lithologies and facies have been controlled by tectonic setting. In the first two papers of this series they have shown that the dominant lithology of sedimentary carbonates in greenstone belt settings is limestone. In this paper the authors suggest that the Archean shelf sequences are mostly dolostone, and the contemporaneous lacustrine playa lakes are characterized by limestone facies. The present study is of the shelf environments of the Archean, represented by the Pongola Supergroup of South Africa and the Hamersley Group of Australia. Themore » lacustrine playa examples have been sampled from the Ventersdorp Supergroup of South Africa and the Fortescue Group of Australia. Geological, trace element, and oxygen isotope considerations of the shelf carbonates suggest that their original mineralogy may have been aragonite and that the Pongola dolostones probably represent a direct dolomitization product of this precursor. In contrast, the stabilization of the Hamersley carbonates may have involved an additional step of transformation of a metastable precursor into limestone prior to dolomitization.« less

  9. Volcanic and Hydrothermal Activity of the North Su Volcano: New Insights from Repeated Bathymetric Surveys and ROV Observations

    NASA Astrophysics Data System (ADS)

    Thal, J.; Bach, W.; Tivey, M.; Yoerger, D.

    2013-12-01

    Bathymetric data from cruises in 2002, 2006, and 2011 were combined and compared to determine the evolution of volcanic activity, seafloor structures, erosional features and to identify and document the distribution of hydrothermal vents on North Su volcano, SuSu Knolls, eastern Manus Basin (Papua New Guinea). Geologic mapping based on ROV observations from 2006 (WHOI Jason-2) and 2011 (MARUM Quest-4000) combined with repeated bathymetric surveys from 2002 and 2011 are used to identify morphologic features on the slopes of North Su and to track temporal changes. ROV MARUM Quest-4000 bathymetry was used to develop a 10 m grid of the top of North Su to precisely depict recent changes. In 2006, the south slope of North Su was steeply sloped and featured numerous white smoker vents discharging acid sulfate waters. These vents were covered by several tens of meters of sand- to gravel-sized volcanic material in 2011. The growth of this new cone changed the bathymetry of the south flank of North Su up to ~50 m and emplaced ~0.014 km3 of clastic volcanic material. This material is primarily comprised of fractured altered dacite and massive fresh dacite as well as crystals of opx, cpx, olivine and plagioclase. There is no evidence for pyroclastic fragmentation, so we hypothesize that the fragmentation is likely related to hydrothermal explosions. Hydrothermal activity varies over a short (~50 m) lateral distance from 'flashing' black smokers to acidic white smoker vents. Within 2 weeks of observation time in 2011, the white smoker vents varied markedly in activity suggesting a highly episodic hydrothermal system. Based on ROV video recordings, we identified steeply sloping (up to 30°) slopes exposing pillars and walls of hydrothermal cemented volcaniclastic material representing former fluid upflow zones. These features show that hydrothermal activity has increased slope stability as hydrothermal cementation has prevented slope collapse. Additionally, in some places

  10. Two distinct origins for Archean greenstone belts

    NASA Astrophysics Data System (ADS)

    Smithies, R. Hugh; Ivanic, Tim J.; Lowrey, Jack R.; Morris, Paul A.; Barnes, Stephen J.; Wyche, Stephen; Lu, Yong-Jun

    2018-04-01

    Applying the Th/Yb-Nb/Yb plot of Pearce (2008) to the well-studied Archean greenstone sequences of Western Australia shows that individual volcanic sequences evolved through one of two distinct processes reflecting different modes of crust-mantle interaction. In the Yilgarn Craton, the volcanic stratigraphy of the 2.99-2.71 Ga Youanmi Terrane mainly evolved through processes leading to Th/Yb-Nb/Yb trends with a narrow range of Th/Nb ('constant-Th/Nb' greenstones). In contrast, the 2.71-2.66 Ga volcanic stratigraphy of the Eastern Goldfields Superterrane evolved through processes leading to Th/Yb-Nb/Yb trends showing a continuous range in Th/Nb ('variable-Th/Nb' greenstones). Greenstone sequences of the Pilbara Craton show a similar evolution, with constant-Th/Nb greenstone evolution between 3.13 and 2.95 Ga and variable-Th/Nb greenstone evolution between 3.49 and 3.23 Ga and between 2.77 and 2.68 Ga. The variable-Th/Nb trends dominate greenstone sequences in Australia and worldwide, and are temporally associated with peaks in granite magmatism, which promoted crustal preservation. The increasing Th/Nb in basalts correlates with decreasing εNd, reflecting variable amounts of crustal assimilation during emplacement of mantle-derived magmas. These greenstones are typically accompanied in the early stages by komatiite, and can probably be linked to mantle plume activity. Thus, regions such as the Eastern Goldfields Superterrane simply developed as plume-related rifts over existing granite-greenstone crust - in this case the Youanmi Terrane. Their Th/Nb trends are difficult to reconcile with modern-style subduction processes. The constant-Th/Nb trends may reflect derivation from a mantle source already with a high and constant Th/Nb ratio. This, and a lithological association including boninite-like lavas, basalts, and calc-alkaline andesites, all within a narrow Th/Nb range, resembles compositions typical of modern-style subduction settings. These greenstones are very

  11. Putative fossil life in a hydrothermal system of the Dellen impact structure, Sweden

    NASA Astrophysics Data System (ADS)

    Lindgren, Paula; Ivarsson, Magnus; Neubeck, Anna; Broman, Curt; Henkel, Herbert; Holm, Nils G.

    2010-07-01

    Impact-generated hydrothermal systems are commonly proposed as good candidates for hosting primitive life on early Earth and Mars. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is rarely reported in the literature. Here we present the occurrence of putative fossil microorganisms in a hydrothermal system of the 89 Ma Dellen impact structure, Sweden. We found the putative fossilized microorganisms hosted in a fine-grained matrix of hydrothermal alteration minerals set in interlinked fractures of an impact breccia. The putative fossils appear as semi-straight to twirled filaments, with a thickness of 1-2 μm, and a length between 10 and 100 μm. They have an internal structure with segmentation, and branching of filaments occurs frequently. Their composition varies between an outer and an inner layer of a filament, where the inner layer is more iron rich. Our results indicate that hydrothermal systems in impact craters could potentially be capable of supporting microbial life. This could have played an important role for the evolution of life on early Earth and Mars.

  12. Electromagnetic surveying of seafloor mounds in the northern Gulf of Mexico

    USGS Publications Warehouse

    Ellis, M.; Evans, R.L.; Hutchinson, D.; Hart, P.; Gardner, J.; Hagen, R.

    2008-01-01

    Seafloor controlled source electromagnetic data, probing the uppermost 30 m of seafloor sediments, have been collected with a towed magnetic dipole-dipole system across two seafloor mounds at approximately 1300 m water depth in the northern Gulf of Mexico. One of these mounds was the focus of??a recent gas hydrate research drilling program. Rather than the highly resistive response expected of massive gas hydrate within the confines of the mounds, the EM data are dominated by the effects of raised temperatures and pore fluid salinities that result in an electrically conductive seafloor. This structure suggests that fluid advection towards the seafloor is taking place beneath both mounds. Similar responses are seen at discrete locations away from the mounds in areas that might be associated with faults, further suggesting substantial shallow fluid circulation. Raised temperatures and salinities may inhibit gas hydrate formation at depth as has been suggested at other similar locations in the Gulf of Mexico. 

  13. Seafloor geology and benthic habitats, San Pedro Shelf, southern California

    USGS Publications Warehouse

    Wong, Florence L.; Dartnell, Peter; Edwards, Brian D.; Phillips, Eleyne L.

    2012-01-01

    Seafloor samples, videography, still photography, and real-time descriptions of geologic and biologic constituents at or near the seafloor of the San Pedro Shelf, southern California, advance the study of natural and man-made processes on this coastal area off the metropolitan Los Angeles area. Multibeam echo-sounder data collected by the U.S. Geological Survey in 1998 and 1999 guided sampling and camera work in 2004 resulting in a new seafloor character map that shows possible benthic habitats in much higher resolution (4- and 16-m pixels) than previously available. The seafloor is characterized by primarily muddy sand and sand with outcrops of Miocene and Pliocene bedrock along the Palos Verdes Fault Zone. Observed benthic populations indicate low abiotic complexity, low biotic complexity, and low biotic coverage. The data are provided for use in geographic information systems (GIS).

  14. Tracking Stress and Hydrothermal Activity Along Oceanic Spreading Centers Using Tomographic Images of Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Dunn, R. A.; Conder, J. A.; Canales, J. P.

    2014-12-01

    Marine controlled-source seismic tomography experiments now utilize 50+ ocean-bottom seismographs and source grids consisting of many tens of seismic lines with <500 m shot spacing. These dense experiments focus on the upper 10 km of the lithosphere over areas approaching 9000 sq-km. Because of the dense sampling and large azimuthal coverage of ray paths (200,000+ travel time measurements possible), it is now feasible to solve for 3-D images of P-wave azimuthal anisotropy with resolving lengths approaching 1km. Recent examples include the L-SCAN and MARINER experiments, performed at the Eastern Lau Spreading Center and Mid-Atlantic Ridge (36N), respectively. In each case, background anisotropy of ~4% is found in the upper 3-4 km of lithosphere and is consistent with pervasive stress-aligned cracks and microcracks. The fast axes are generally oriented parallel to the trend of the spreading center, as expected for cracks that form in association with seafloor spreading. Three-dimensional images of anisotropy magnitude and orientation reveal variations interpreted as arising from changes in the ambient stress field. Near the ends of ridge segments, where the ridge axis jumps from one spreading center to the next, anisotropy is high with orientations that are out of alignment relative to the background trend. This agrees with numerical models and seafloor morphology that suggest tensile stress concentration and brittle crack formation in these areas. Anisotropy also increases in areas along the ridges where the underlying magma supply and hydrothermal output are greater. This is opposite the trend expected if simple tectonic stress models govern anisotropy. Increased hydrothermal activity, due to increased magma supply, can explain higher anisotropy via increased pore pressure and hydrofracturing. These studies provide the first evidence that images of seismic anisotropy can be used to map variations in hydrologic activity along the crests of oceanic spreading centers.

  15. First hyperspectral survey of the deep seafloor: DISCOL area, Peru Basin

    NASA Astrophysics Data System (ADS)

    Dumke, Ines; Nornes, Stein M.; Ludvigsen, Martin

    2017-04-01

    Conventional hyperspectral seafloor surveys using airborne or satellite platforms are typically limited to shallow coastal areas. This limitation is due to the requirement for illumination by sunlight, which does not penetrate into deeper waters. For hyperspectral studies in deeper marine environments, such as the deep sea, a close-range, sunlight-independent survey approach is therefore required. Here, we present the first hyperspectral data from the deep seafloor. The data were acquired in 4200 m water depth in the DISCOL (disturbance-recolonization) area in the Peru Basin (SW Pacific). This area is characterized by seafloor manganese nodules and recolonization by benthic fauna after a seafloor disturbance experiment conducted in 1989, and was revisited in 2015 by the JPI Oceans cruise SO-242. The acquisition setup consisted of a new Underwater Hyperspectral Imager (UHI) mounted on a remotely operated vehicle (ROV), which provided illumination of the seafloor. High spatial and spectral resolution were achieved by an ROV altitude of 1 m and recording of 112 spectral bands between 380 nm and 800 nm (4 nm resolution). Spectral classification was performed to classify manganese nodules and benthic fauna and map their distribution in the study area. The results demonstrate the high potential of underwater hyperspectral imaging in mapping and classifying seafloor deposits and habitats.

  16. Seafloor Geodetic Monitoring of the Central Andean Subduction Zone: The Geosea Array

    NASA Astrophysics Data System (ADS)

    Kopp, H.; Lange, D.; Contreras Reyes, E.; Behrmann, J. H.; McGuire, J. J.; Flueh, E. R.

    2014-12-01

    Seafloor geodesy has been identified as one of the central tools in marine geosciences to monitor seafloor deformation at high resolution. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising a total of 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distance. Vertical motion is obtained from pressure gauges. Integrated inclinometers monitor station settlement in two horizontal directions. Travel time between instruments and the local water sound velocity will be recorded autonomously subsea without system or human intervention for up to 3.5 years. Data from the autonomous network on the seafloor can be retrieved via the integrated high-speed acoustic telemetry link without recovering the seafloor units. In late 2015 GeoSEA will be installed on the Iquique segment of the South America - Nazca convergent plate boundary to monitor crustal deformation. The Iquique seismic gap experienced the 2014 Mw 8.1 Pisagua earthquake, which apparently occurred within a local locking minimum. It is thus crucial to better resolve resolve strain in the forearc between the mainland and the trench in order to improve our understanding of forearc deformation required for hazard assessment. Mobile autonomous seafloor arrays for continuous measurement of active seafloor deformation in hazard zones have the potential to lead to transformative discoveries of plate boundary/fault zone tectonic processes and address a novel element of marine geophysical research.

  17. Quantifying Coseismic Normal Fault Rupture at the Seafloor: The 2004 Les Saintes Earthquake Along the Roseau Fault (French Antilles)

    NASA Astrophysics Data System (ADS)

    Olive, J. A. L.; Escartin, J.; Leclerc, F.; Garcia, R.; Gracias, N.; Odemar Science Party, T.

    2016-12-01

    While >70% of Earth's seismicity is submarine, almost all observations of earthquake-related ruptures and surface deformation are restricted to subaerial environments. Such observations are critical for understanding fault behavior and associated hazards (including tsunamis), but are not routinely conducted at the seafloor due to obvious constraints. During the 2013 ODEMAR cruise we used autonomous and remotely operated vehicles to map the Roseau normal Fault (Lesser Antilles), source of the 2004 Mw6.3 earthquake and associated tsunami (<3.5m run-up). These vehicles acquired acoustic (multibeam bathymetry) and optical data (video and electronic images) spanning from regional (>1 km) to outcrop (<1 m) scales. These high-resolution submarine observations, analogous to those routinely conducted subaerially, rely on advanced image and video processing techniques, such as mosaicking and structure-from-motion (SFM). We identify sub-vertical fault slip planes along the Roseau scarp, displaying coseismic deformation structures undoubtedly due to the 2004 event. First, video mosaicking allows us to identify the freshly exposed fault plane at the base of one of these scarps. A maximum vertical coseismic displacement of 0.9 m can be measured from the video-derived terrain models and the texture-mapped imagery, which have better resolution than any available acoustic systems (<10 cm). Second, seafloor photomosaics allow us to identify and map both additional sub-vertical fault scarps, and cracks and fissures at their base, recording hangingwall damage from the same event. These observations provide critical parameters to understand the seismic cycle and long-term seismic behavior of this submarine fault. Our work demonstrates the feasibility of extensive, high-resolution underwater surveys using underwater vehicles and novel imaging techniques, thereby opening new possibilities to study recent seafloor changes associated with tectonic, volcanic, or hydrothermal activity.

  18. Organic matter in hydrothermal metal ores and hydrothermal fluids

    USGS Publications Warehouse

    Orem, W.H.; Spiker, E. C.; Kotra, R.K.

    1990-01-01

    Massive polymetallic sulfides are currently being deposited around active submarine hydrothermal vents associated with spreading centers. Chemoautolithotrophic bacteria are responsible for the high production of organic matter also associated with modern submarine hydrothermal activity. Thus, there is a significant potential for organic matter/metal interactions in these systems. We have studied modern and ancient hydrothermal metal ores and modern hydrothermal fluids in order to establish the amounts and origin of the organic matter associated with the metal ores. Twenty-six samples from modern and ancient hydrothermal systems were surveyed for their total organic C contents. Organic C values ranged from 0.01% to nearly 4.0% in these samples. Metal ores from modern and ancient sediment-covered hydrothermal systems had higher organic C values than those from modern and ancient hydrothermal systems lacking appreciable sedimentary cover. One massive pyrite sample from the Galapagos spreading center (3% organic C) had stable isotope values of -27.4% (??13C) and 2.1% (??15N), similar to those in benthic siphonophors from active vents and distinct from seep sea sedimentary organic matter. This result coupled with other analyses (e.g. 13C NMR, pyrolysis/GC, SEM) of this and other samples suggests that much of the organic matter may originate from chemoautolithotrophic bacteria at the vents. However, the organic matter in hydrothermal metal ores from sediment covered vents probably arises from complex sedimentary organic matter by hydrothermal pyrolysis. The dissolved organic C concentrations of hydrothermal fluids from one site (Juan de Fuca Ridge) were found to be the same as that of background seawater. This result may indicate that dissolved organic C is effectively scavenged from hydrothermal fluids by biological activity or by co-precipitation with metal ores. ?? 1990.

  19. Li isotopes in archean zircons

    NASA Astrophysics Data System (ADS)

    Bouvier, A.; Ushikubo, T.; Kita, N.; Cavosie, A. J.; Kozdon, R.; Valley, J. W.

    2009-12-01

    Li is a fluid mobile, moderately incompatible element with a large mass difference between its two stable isotopes. Different processes can fractionate 7Li/6Li (fluid-rock interaction, metamorphic reactions, and Li diffusion), leading to variation by over 50‰ of δ7Li for common crustal material. These large variations make δ7Li a potential tracer of continental weathering and of the fluids affecting magma sources. Here, we report δ7Li and trace elements in Archean igneous zircons from TTG and sanukitoid granitoids from the Superior Province (Canada) in order to characterize Li in Archean zircons from well-described samples. These data are compared to detrital zircons from the Jack Hills (Western Australia) for which parent rock-type is uncertain. This study aims to better understand Li substitution in zircon and to evaluate the utility of δ7Li and [Li] for Archean petrogenesis. Zircons (n=71) were analyzed for δ7Li and trace elements (Li, P, Ca, Ti, V, Fe, Y, REE, U, Th) using an IMS-1280 ion microprobe. Most of the zircons display typical igneous REE patterns and zoning by CL. [Li] averages 13.1 ± 9 for TTG, 25.7 ± 19 for Sanukitoid and 31.0 ± 14 ppm for Jack Hills zircons, which are distinct from mantle-related zircons (<0.1 ppm). Values of δ7Li average 1.0 ± 4.5‰ for TTGs, 6.3 ± 4.4‰ for sanukitoids and -2.6 ± 8.8‰ for Jack Hills samples. Trace elements were analyzed from single spots in order to evaluate coupled substitutions. Atomic ratios (3Li+Y+REE)/P average 2.6, showing that Li and trivalent atoms are not charge-balanced by P, and suggesting that Li does not replace Zr, according to the xenotime substitution. However, (Y+REE)/(Li+P) atomic ratios average 1.0 ± 0.6, supporting the hypothesis that Li is interstitial and partly compensates trivalent cations. Several observations in this study suggest that [Li] is primary in the studied zircons: i) if Li is interstitial, charge-balance and slow diffusion of REE would control Li mobility

  20. Fossilization of Iron-Oxidizing Bacteria at Hydrothermal Vents: a Useful Biosignature on Mars?

    NASA Astrophysics Data System (ADS)

    Leveille, R. J.; Lui, S.

    2009-05-01

    -concentric growth bands. In the bioreactor cultures, constant conditions led to abundant microbial growth and formation of an iron oxyhydroxide precipitate, either in direct association with the cells or within the growth medium. This suggests that not all of the iron precipitation is biogenic in origin. Cells typically show a filamentous morphology reminiscent of the mineral-encrusted forms observed in the natural samples. Continuing work includes high-resolution TEM observations of cultured organisms, examination of 2-year long in situ seafloor incubation experiments, and bioreactor silicification experiments in order to better understand the roles of iron and silica in the fossilization process. Microaerophilic iron oxidation could have existed on the early Earth in environments containing small amounts of oxygen produced either by locally concentrated photosynthetic microorganisms (e.g., cyanobacteria) or abiotically, as proposed for the subsurface of the Fe-dominated Rio Tinto (Spain) basin system. By analogy, similar subsurface or near-surface microaerophilic environments could have existed on Mars in the past. The distinctive morphologies and mineralization patterns of iron oxidizing bacteria could be a useful biosignature to search for on Mars. Deposits and biogenic features similar to those described here could theoretically be identified on Mars with existing imaging and analytical technologies. Therefore, future missions to Mars should target ancient hydrothermal systems, some of which have been putatively identified already.

  1. Abyssal seafloor waste isolation: the concept

    NASA Astrophysics Data System (ADS)

    Valent, Philip J.; Young, David K.; Sawyer, William B.; Wright, Thomas D.

    1998-05-01

    The Naval Research Laboratory (NRL), with industry and university participation, conducted an assessment of the concept of isolating certain wastes (i.e., sewage sludge, fly ash from municipal incinerators, and contaminated dredged material) on the oceans' abyssal seafloor. In this assessment the advantages, disadvantages, and economic and environmental viability of potential engineering methods for achieving abyssal waste isolation were identified and compared. This paper presents background to the Abyssal Plains Waste Isolation (APWI) Project, describes the characteristics of the waste streams and quantities potentially available for disposal via the abyssal isolation concept, summarizes regulations affecting use of the abyssal seafloor for disposal of wastes, and introduces the technical and scientific premises underlying implementation of the concept.

  2. Diversity and Biogeography of Bathyal and Abyssal Seafloor Bacteria

    PubMed Central

    Bienhold, Christina; Zinger, Lucie; Boetius, Antje; Ramette, Alban

    2016-01-01

    The deep ocean floor covers more than 60% of the Earth’s surface, and hosts diverse bacterial communities with important functions in carbon and nutrient cycles. The identification of key bacterial members remains a challenge and their patterns of distribution in seafloor sediment yet remain poorly described. Previous studies were either regionally restricted or included few deep-sea sediments, and did not specifically test biogeographic patterns across the vast oligotrophic bathyal and abyssal seafloor. Here we define the composition of this deep seafloor microbiome by describing those bacterial operational taxonomic units (OTU) that are specifically associated with deep-sea surface sediments at water depths ranging from 1000–5300 m. We show that the microbiome of the surface seafloor is distinct from the subsurface seafloor. The cosmopolitan bacterial OTU were affiliated with the clades JTB255 (class Gammaproteobacteria, order Xanthomonadales) and OM1 (Actinobacteria, order Acidimicrobiales), comprising 21% and 7% of their respective clades, and about 1% of all sequences in the study. Overall, few sequence-abundant bacterial types were globally dispersed and displayed positive range-abundance relationships. Most bacterial populations were rare and exhibited a high degree of endemism, explaining the substantial differences in community composition observed over large spatial scales. Despite the relative physicochemical uniformity of deep-sea sediments, we identified indicators of productivity regimes, especially sediment organic matter content, as factors significantly associated with changes in bacterial community structure across the globe. PMID:26814838

  3. Deep Hydrothermal Circulation and Implications for the Early Crustal Compositional and Thermal Evolution of Mars

    NASA Astrophysics Data System (ADS)

    Parmentier, E. M.; Mustard, J. F.; Ehlmann, B. L.; Roach, L. H.

    2007-12-01

    of a low thermal conductivity regolith, thermal evolution models also indicate that crustal thickness variations created during the Noachian would not be preserved, even with a creep-resistant dry diabase rheology. Thus, a mechanism enhancing heat flux in the Noachian Martian crust is indicated. The studies to be reported will summarize these individual constraints on thermal structure and explore their combined implications for the depth and vigor of hydrothermal circulation during the early crustal evolution of Mars.

  4. Distinctive Geomorphology of Gas Venting and Near Seafloor Gas Hydrate-Bearing sites

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Caress, D. W.; Lundsten, E.; Anderson, K.; Gwiazda, R.; McGann, M. L.; Edwards, B. D.; Riedel, M.; Herguera, J.

    2012-12-01

    High-resolution multibeam bathymetry and chirp seismic-reflection profiles collected with an Autonomous Underwater Vehicle (AUV) complimented by Remotely Operated Vehicle (ROV) observations and sampling reveal the fine scale geomorphology associated with gas venting and/or near subsurface gas hydrate accumulations along the Pacific North American continental margin (Santa Monica Basin, Hydrate Ridge, Eel River, Barkley Canyon, and Bullseye Vent) and along the transform faults in the Gulf of California. At the 1 m multibeam grid resolution of the new data, distinctive features and textures that are undetectable at lower resolution, show the impact of gas venting, gas hydrate development, and related phenomena on the seafloor morphology. Together a suite of geomorphic characteristics illustrates different stages in the development of seafloor gas venting systems. The more mature and/or impacted areas are associated with widespread exposures of methane-derived carbonates, which form broken and irregular seafloor pavements with karst-like voids in between the cemented blocks. These mature areas also contain elevated features >10 m high and circular seafloor craters with diameters of 3-50 m that appear to be associated with missing sections of the original seafloor. Smaller mound-like features (<10 m in diameter and 1-3 m higher than the surrounding seafloor) occur at multiple sites. Solid lenses of gas hydrate are occasionally exposed along fractures on the sides of these mounds and suggest that these are push-up features associated with gas hydrate growth within the near seafloor sediments. The youngest appearing features are associated with more-subtle (<3 m in diameter and ~0.5 m high) seafloor mounds, the crests of which are crossed with small cracks lined with white bacterial mats. ROV-collected (<1.5 m long) cores obtained from these subtle mounds encountered a hard layer at 30-60 cm sub-bottom. When this layer was penetrated, methane bubbles gushed out and

  5. Observation and modeling of hydrothermal response to the 2015 eruption at Axial Seamount, Northeast Pacific: An OOI Cabled Observatory case study

    NASA Astrophysics Data System (ADS)

    Xu, G.; Chadwick, W. W., Jr.; Wilcock, W. S. D.; Bemis, K. G.; Nooner, S. L.; Sasagawa, G. S.; Zumberge, M. A.; Delaney, J. R.

    2017-12-01

    The 2015 eruption at Axial Seamount, an active volcano at a depth of 1500 m in the Northeast Pacific, marked the first time a seafloor eruption was detected and monitored by a cabled observatory - the Cabled Array operated by Ocean Observatories Initiative (OOI). Following the eruption, eight cabled and non-cabled instruments recorded a temperature increase across the southern half of the caldera and neighboring areas. These temperature signals were very different from those observed after the 2011 and 1998 Axial eruptions. The 2015 temperature increase occurred later (3.5 days after deflation started versus 6-18 hours) and had a larger amplitude ( 0.7°C versus 0.2-0.5°C), a much slower increase and decay and smaller short-term fluctuations. Most remarkably, the 2015 temperature signals were synchronous and uniform across the 3 x 4.5 km2 area covered by the eight instruments. We hypothesize that the eruption triggered the release of a hydrothermal brine stored in the crust. In this interpretation, the observed temperature increases were due to a dense, bottom-hugging layer of warm salty water that was created when hot brine in the crust was flushed out after the dike intersected the zone where the brine was stored. In the absence of near-bottom salinity observations, we test this hypothesis by using a numerical model of ocean flow and transport to simulate the thermal response within the vicinity of the caldera following a brine injection. We set up the model with realistic background flows, hydrography, and seafloor topography. We simulate brine release as seafloor heat and salt inputs at locations inferred from seismic and geologic observations. Comparison of model bottom temperature with measurements shows a reasonable match. If our interpretation is correct, this is the first time that the release of a hydrothermal brine has been observed due to a submarine eruption. Prior to the next eruption, the Cabled Array observatory should be enhanced to improve the

  6. Transition From Archean Plume-Arc Orogens to Phanerozoic Style Convergent Margin Orogens, and Changing Mantle Lithosphere

    NASA Astrophysics Data System (ADS)

    Kerrich, R.; Jia, Y.; Wyman, D.

    2001-12-01

    Mantle plume activity was more intense in the Archean and komatiite-basalt volcanic sequences are a major component of many Archean greenstone belts. Tholeiitic basalts compositionally resemble Phanerozoic and Recent ocean plateau basalts, such as those of Ontong Java and Iceland. However, komatiite-basalt sequences are tectonically imbricated with bimodal arc lavas and associated trench turbidites. Interfingering of komatiite flows with boninite series flows, and primitive to evolved arc basalts has recently been identified in the 2.7 Ga Abitibi greenstone belt, demonstrating spatially and temporally associated plume and arc magmatism. These observations are consistent with an intra-oceanic arc migrating and capturing an ocean plateau, where the plateau jams the arc and imbricated plateau-arc crust forms a greenstone belt orogen. Melting of shallowly subducted plateau basalt crust (high Ba, Th, LREE) accounts for the areally extensive and voluminous syntectonic tonalite batholiths. In contrast, the adakite-Mg-andesite-Niobium enriched basalt association found in Archean greenstone belts and Cenozoic arcs are melts of LREE depleted MORB slab. Buoyant residue from anomalously hot mantle plume melting at > 100km rises to couple with the composite plume-arc crust to form the distinctively thick and refractory Archean continental lithospheric mantle. New geochemical data for structurally hosted ultramafic units along the N. American Cordillera, from S. California to the Yukon, show that these are obducted slices of sub-arc lithospheric mantle. Negatively fractionated HREE with high Al2O3/TiO2 ratios signify prior melt extraction, and variably enriched Th and LREE with negative Nb anomalies a subduction component in a convergent margin. A secular decrease of mantle plume activity and temperature results in plume-arc dominated geodynamics in the Archean with shallow subduction and thick CLM, whereas Phanerozoic convergent margins are dominated by arc-continent, arc

  7. Seafloor off Natural Bridges State Beach, Santa Cruz, California

    USGS Publications Warehouse

    Storlazzi, Curt D.; Golden, Nadine E.; Gibbons, Helen

    2013-01-01

    The seafloor off Natural Bridges State Beach, Santa Cruz, California, is extremely varied, with sandy flats, boulder fields, faults, and complex bedrock ridges. These ridges support rich marine ecosystems; some of them form the "reefs" that produce world-class surf breaks. Colors indicate seafloor depth, from red-orange (about 2 meters or 7 feet) to magenta (25 meters or 82 feet).

  8. Keivy Paraschists (Archean-Early Proterozoic): Nanobacteria and Life

    NASA Astrophysics Data System (ADS)

    Astafieva, M. M.; Balaganskii, V. V.

    2018-05-01

    Nanobacteria, buried in situ, were discovered in the Early Precambrian paraschists (Keivy, Kola Peninsula). It is suggested that occurrence of nanobacteria indicates that a biological factor played a role in the formation of enclosing rocks.

  9. Primary hydrothermal input above nonbuoyant plume level in the water column.

    NASA Astrophysics Data System (ADS)

    Nakamura, K.

    2008-12-01

    discuss on internal structure of rising plume. The primary hydrothermal input above nonbuoyant plume level is important for vertical chemical and biological transport in the water column as well as exploration strategy to locate vents on the seafloor.

  10. Archean high δ18O Mg-diorite: crustal-derived melt hybridized with enriched mafic accumulated rocks

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Guo, Jing-Hui

    2016-04-01

    The genesis of Mg-diorite or sanukitoids has significances to understand the crustal growth and tectonic style in Archean. The chemical compositions of minerals and rocks, whole-rock Sm-Nd isotope, zircon SIMS U-Pb ages and Hf-O isotopes of Zhulagou (ZLG) Mg-diorite and their mafic enclaves (Yinshan Block, North China Craton) were studied to place constraints on their sources and genesis, and therefore provide information about dynamic processes. The ~2520 Ma ZLG diorites have intermediate SiO2 (59.4-65.5 wt.%), high Mg# (49-52), Cr (90.4-438 ppm), Ni (15.0-95.9 ppm), Sr (436-882 ppm) and Ba (237-1206 ppm) contents with fractionated rare earth elements (REE, LaN/YbN = 9.1-40.5) and depleted high field-strength element (HFSE, e.g. Nb, Ta and Ti). These geochemical signatures are similar to those Archean high-Mg diorites and sanukitoids. However, they are sodic with low K2O/Na2O (0.14-0.49) ratios, exhibiting an affinity with Archean trondhjemite-tonalite-granodiorite (TTG). Abundant coeval amphibole-bearing mafic enclaves (~2525 Ma) are enclosed within the ZLG diorites. They display low SiO2 (46.5-50.3 wt.%) contents but high concentrations of MgO (9.0-14.5 wt.%), Cr (647-1946 ppm) and Ni (197-280 ppm). They are enriched in K2O (0.64-3.43 wt.%) and large ion lithophile element (LILE), depleted in Nb, Ta and Ti. Combined with their concave REE patterns and prominent negative Eu anomaly, we suggest that they are cumulates of the melt which probably derived from subduction-related Archean metasomatized mantle source. Mineral trace element modelling results, similar ɛNd(t) (+0.6 to +2.3) and δ18O(Zrc) values (~8.6-9.0 ‰) of the diorites and mafic enclaves, strongly reflect that they had experienced intense interaction and hybridization. Evolved whole-rock Nd isotopes (TDM = 2.80-2.70 Ga), variable zircon ɛHf (t) (-1.6 to +6.0) and high δ18O (~9.0 ‰) values of the diorites indicate that they most likely originated from melting of an older continental crust (≥ 2

  11. Hydrothermal Activity on the Mid-Cayman Rise: ROV Jason sampling and site characterization at the Von Damm and Piccard hydrothermal fields

    NASA Astrophysics Data System (ADS)

    German, C. R.

    2012-12-01

    In January 2012 our multi-national and multi-disciplinary team conducted a series of 10 ROV Jason dives to conduct first detailed and systematic sampling of the Mid Cayman Rise hydrothermal systems at the Von Damm and Piccard hydrothermal fields. At Von Damm, hydrothermal venting is focused at and around a large conical structure that is approximately 120 m in diameter and rises at least 80m from the surrounding, largely sedimented seafloor. Clear fluids emitted from multiple sites around the flanks of the mound fall in the temperature range 110-130°C and fall on a common mixing line with hotter (>200°C) clear fluids emitted from an 8m tall spire at the summit which show clear evidence of ultramafic influence. Outcrop close to the vent-site is rare and the cone itself appear to consist of clay minerals derived from highly altered host rock. The dominant fauna at the summit of Von Damm are a new species of chemosynthetic shrimp but elsewhere the site also hosts two distinct species of chemosynthetic tube worm as well as at least one species of gastropod. The adjacent Piccard site, at ~5000m depth comprises 7 distinct sulfide mounds, 3 of which are currently active: Beebe Vents, Beebe Woods and Beebe Sea. Beebe Vents consists of 5 vigorous black smoker chimneys with maximum temperatures in the range 400-403°C while at Beebe Woods a more highly colonized thicket of up to 8m tall chimneys includes predominantly beehive diffusers with rare black smokers emitting fluids up to 353°C. Beebe Sea a diffuse site emitting fluids at 38°C Tmax, is the largest of the currently active mounds and immediately abuts a tall (8m) rift that strikes NE-SW bisecting the host Axial Volcanic Ridge. The fauna at Piccard are less diverse than at Von Damm and, predominantly, comprise the same species of MCR shrimp, a distinct gastropod species and abundant anemones.

  12. Development of the Earth's early crust: Implications from the Beartooth Mountains

    NASA Technical Reports Server (NTRS)

    Mueller, P. A.; Wooden, J. L.; Henry, D. J.; Mogk, D. W.

    1983-01-01

    The Beartooth Mountains of Montana and Wyoming are one of several major uplifts of Precambrian rocks in the northwestern of the Wyoming Province. The range is composed of a wide variety of rock types which record a complex geologic history that extends from early ( 3400 Ma) to late (approx 700 Ma) Precambrian time. The Archean geology of the range is complex and many areas remain unstudied in detail. In this discussion two areas are discussed for which there is considerable structural, geochemical and petrologic information. The easternmost portion of the range (EBT) and the northwesternmost portion, the North Snowy Block (NSB), contain rather extensive records of both early and late Archean geologic activity. These data are used to constrain a petrologic tectonic model for the development of continental crust in this area.

  13. Metabasalts from the Mid-Atlantic Ridge: new insights into hydrothermal systems in slow-spreading crust

    NASA Astrophysics Data System (ADS)

    Gillis, Kathryn M.; Thompson, Geoffrey

    1993-12-01

    is a continuum in alteration conditions while crustal segments remain in the ridge axis environment. The type II samples may be representative of the reaction zone where compositions of hydrothermal fluids actively venting at the seafloor today become fixed. This prediction necessitates interaction between hydrothermal fluids and intersertal glass and/or mafic phases, in addition to plagioclase, in order to produce the observed range in vented fluid pH.

  14. Can Life Begin on Enceladus? A Perspective from Hydrothermal Chemistry.

    PubMed

    Deamer, David; Damer, Bruce

    2017-09-01

    Enceladus is a target of future missions designed to search for existing life or its precursors. Recent flybys of Enceladus by the Cassini probe have confirmed the existence of a long-lived global ocean laced with organic compounds and biologically available nitrogen. This immediately suggests the possibility that life could have begun and may still exist on Enceladus. Here we will compare the properties of two proposed sites for the origin of life on Earth-hydrothermal vents on the ocean floor and hydrothermal volcanic fields at the surface-and ask whether similar conditions could have fostered the origin of life on Enceladus. The answer depends on which of the two sites would be more conducive for the chemical evolution leading to life's origin. A hydrothermal vent origin would allow life to begin in the Enceladus ocean, but if the origin of life requires freshwater hydrothermal pools undergoing wet-dry cycles, the Enceladus ocean could be habitable but lifeless. These arguments also apply directly to Europa and indirectly to early Mars. Key Words: Enceladus-Hydrothermal vents-Hydrothermal fields-Origin of life. Astrobiology 17, 834-839.

  15. Can Life Begin on Enceladus? A Perspective from Hydrothermal Chemistry

    PubMed Central

    Damer, Bruce

    2017-01-01

    Abstract Enceladus is a target of future missions designed to search for existing life or its precursors. Recent flybys of Enceladus by the Cassini probe have confirmed the existence of a long-lived global ocean laced with organic compounds and biologically available nitrogen. This immediately suggests the possibility that life could have begun and may still exist on Enceladus. Here we will compare the properties of two proposed sites for the origin of life on Earth—hydrothermal vents on the ocean floor and hydrothermal volcanic fields at the surface—and ask whether similar conditions could have fostered the origin of life on Enceladus. The answer depends on which of the two sites would be more conducive for the chemical evolution leading to life's origin. A hydrothermal vent origin would allow life to begin in the Enceladus ocean, but if the origin of life requires freshwater hydrothermal pools undergoing wet-dry cycles, the Enceladus ocean could be habitable but lifeless. These arguments also apply directly to Europa and indirectly to early Mars. Key Words: Enceladus—Hydrothermal vents—Hydrothermal fields—Origin of life. Astrobiology 17, 834–839. PMID:28682665

  16. 3D climate-carbon modelling of the early Earth

    NASA Astrophysics Data System (ADS)

    Charnay, B.; Le Hir, G.; Fluteau, F.; Forget, F.; Catling, D.

    2017-09-01

    We revisit the climate and carbon cycle of the early Earth at 3.8 Ga using a 3D climate-carbon model. Our resultsfavor cold or temperate climates with global mean temperatures between around 8°C (281 K) and 30°C (303 K) and with 0.1-0.36 bar of CO2 for the late Hadean and early Archean.

  17. Hydrothermal Circulation Within and Between Basement Outcrops on a Young Ridge Flank: Numerical Models and Thermal Constraints

    NASA Astrophysics Data System (ADS)

    Hutnak, M.; Fisher, A. T.; Stauffer, P.; Gable, C. W.

    2005-12-01

    We use two-dimensional, finite-element models of coupled heat and fluid flow to investigate local and large-scale heat and fluid transport around and between basement outcrops on a young ridge flank. System geometries and properties are based on observations and measurements on the 3.4-3.6 Ma eastern flank of the Juan de Fuca Ridge. A small area of basement exposure (Baby Bare outcrop) experiences focused hydrothermal discharge, whereas a much larger feature (Grizzly Bare outcrop) 50 km to the south is a site of hydrothermal recharge. Observations of seafloor heat flow, subseafloor pressures, and basement fluid geochemistry at and near these outcrops constrain acceptable model results. Single-outcrop simulations suggest that local convection alone (represented by a high Nusselt number proxy) cannot explain the near-outcrop heat flow patterns; rapid through-flow is required. Venting of at least 5 L/s through the smaller outcrop, a volumetric flow rate consistent with earlier estimates based on plume and outcrop measurements, is needed to match seafloor heat flow patterns. Heat flow patterns are more variable and complex near the larger, recharging outcrop. Simulations that include 5-20 L/s of recharge through this feature can replicate first-order trends in the data, but small-scale variations are likely to result from heterogeneous flow paths and vigorous, local convection. Two-outcrop simulations started with a warm hydrostatic initial condition, based on a conductive model, result in rapid fluid flow from the smaller outcrop to the larger outcrop, inconsistent with observations. Flow can be sustained in the opposite (correct) direction if it is initially forced, which generates a hydrothermal siphon between the two features. Free flow simulations maintain rapid circulation at rates consistent with observations (specific discharge of m/yr to tens of m/yr), provided basement permeability is on the order of 10-10 m2 or greater. Lateral flow rates scale inversely

  18. Benthic iron cycling in a high-oxygen environment: Implications for interpreting the Archean sedimentary iron isotope record.

    PubMed

    McCoy, V E; Asael, D; Planavsky, N

    2017-09-01

    The most notable trend in the sedimentary iron isotope record is a shift at the end of the Archean from highly variable δ 56 Fe values with large negative excursions to less variable δ 56 Fe values with more limited negative values. The mechanistic explanation behind this trend has been extensively debated, with two main competing hypotheses: (i) a shift in marine redox conditions and the transition to quantitative iron oxidation; and (ii) a decrease in the signature of microbial iron reduction in the sedimentary record because of increased bacterial sulfate reduction (BSR). Here, we provide new insights into this debate and attempt to assess these two hypotheses by analyzing the iron isotope composition of siderite concretions from the Carboniferous Mazon Creek fossil site. These concretions precipitated in an environment with water column oxygenation, extensive sediment pile dissimilatory iron reduction (DIR) but limited bacterial sulfate reduction (BSR). Most of the concretions have slightly positive iron isotope values, with a mean of 0.15‰ and limited iron isotope variability compared to the Archean sedimentary record. This limited variability in an environment with high DIR and low BSR suggests that these conditions alone are insufficient to explain Archean iron isotope compositions. Therefore, these results support the idea that the unusually variable and negative iron isotope values in the Archean are due to dissimilatory iron reduction (DIR) coupled with extensive water column iron cycling. © 2017 John Wiley & Sons Ltd.

  19. Reconstruction of Ancestral Hydrothermal Systems on Mount Rainier Using Hydrothermally Altered Rocks in Holocene Debris Flows and Tephras

    NASA Astrophysics Data System (ADS)

    John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.

    2005-12-01

    Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and

  20. Phosphate microaggregates in Archean sediments. [Abstract only

    NASA Technical Reports Server (NTRS)

    Mojzsis, S.; Fan, G. Y.; Arrhenius, G.

    1994-01-01

    Light microscopy conducted on samples of Archean sediments reveals phosphate microaggregates which are suggestive of a biotic origin (Arrhenius et al., 1993). These aggregates, typically 15 micrometers wide and 50 micrometers long, are thought to be the mineral remains of colonies of microorganisms that lived during the late Archean Eon (greater than or equal to 2.5 Ga). Confocal microscopy was used to study the structures of these microaggregates in three dimensions. Samples used in this study are from the lowermost section of drill core taken from the Dales Gorge Member of the Brockman Iron-Formation (Hamersley Basin) in Western Australia. These sediments are well-preserved and escaped extensive metamorphism typically experienced by older rocks of this type. Two types of samples were prepared for study under the microscope: thin sections (30 micrometers) for transmitted light microscopy to study the general rock texture and to locate the grains of interest, and thick sections (3mm) for confocal microscopy to determine the 3-D structure of the aggregates in situ. The samples have been carefully polished so that they may be directly placed on the oil-immersion lens without the use of a cover slip. No chemical treatments of the surfaces have been performed. The aggregates often form clusters, although isolated aggregates have also been found. The clusters tend to distribute along microbands in the rocks. Electron microprobe analyses show that the phosphate grains and their inclusions, besides calcium and phosphorus, contain no major elements heavier than sodium. The proportions of calcium to phosphorus, the absence of stoichiometric amounts of other cations such as magnesium and iron, as well as optical properties suggest apatite as the mineral form.

  1. Seafloor geomorphic manifestations of gas venting and shallow subbottom gas hydrate occurrences

    USGS Publications Warehouse

    Paull, C K; Caress, D W; Thomas, Hans; Lundsten, Eve M.; Anderson, Kayce; Gwiazda, Roberto; Riedel, M; McGann, Mary; Herguera, J C

    2015-01-01

    High-resolution multibeam bathymetry data collected with an autonomous underwater vehicle (AUV) complemented by compressed high-intensity radar pulse (Chirp) profiles and remotely operated vehicle (ROV) observations and sediment sampling reveal a distinctive rough topography associated with seafloor gas venting and/or near-subsurface gas hydrate accumulations. The surveys provide 1 m bathymetric grids of deep-water gas venting sites along the best-known gas venting areas along the Pacific margin of North America, which is an unprecedented level of resolution. Patches of conspicuously rough seafloor that are tens of meters to hundreds of meters across and occur on larger seafloor topographic highs characterize seepage areas. Some patches are composed of multiple depressions that range from 1 to 100 m in diameter and are commonly up to 10 m deeper than the adjacent seafloor. Elevated mounds with relief of >10 m and fractured surfaces suggest that seafloor expansion also occurs. Ground truth observations show that these areas contain broken pavements of methane-derived authigenic carbonates with intervening topographic lows. Patterns seen in Chirp profiles, ROV observations, and core data suggest that the rough topography is produced by a combination of diagenetic alteration, focused erosion, and inflation of the seafloor. This characteristic texture allows previously unknown gas venting areas to be identified within these surveys. A conceptual model for the evolution of these features suggests that these morphologies develop slowly over protracted periods of slow seepage and shows the impact of gas venting and gas hydrate development on the seafloor morphology.

  2. Fluctuations in seafloor spreading predicted by tectonic reconstructions and mantle convection models

    NASA Astrophysics Data System (ADS)

    Coltice, Nicolas; Seton, Maria; Rolf, Tobias; Müller, R. Dietmar; Tackley, Paul J.

    2013-04-01

    The theory of plate tectonics theory has enabled possible the reconstruction of the ancient seafloor and paleogeography. Over 50 years of data collection and kinematic reconstruction efforts, plate models have improved significantly (Seton et al., 2012) although reconstructions of ancient seafloor are naturally limited by the limited preservation of of very old seafloor. It is challenging to reconstruct ancient ocean basins and associated plate boundaries for times earlier than 200 Ma, since seafloor of this age is not preserved. This means we can merely reconstruct only 5% of the history of the planet in this fashion. However, geodynamic models can now help evaluate how seafloor spreading may evolve over longer time periods, since recent developments of numerical models of mantle convection with pseudo-plasticity can generate long-term solutions that simulate a form of seafloor spreading (Moresi and Solomatov, 1998; Tackley, 2000a; Tackley, 2000b). The introduction of models of continental lithosphere further improves the quality of the predictions: the computed distribution of seafloor ages reproduces the consumption of young seafloor as observed on the present-day Earth (Coltice et al., 2012). The time-dependence of the production of new seafloor has long been debated and there is no consensus on how much it has varied in the past 150My, and how it could have fluctuated over longer time-scales. Using plate reconstructions, Parsons (1982) and Rowley (2002) proposed the area vs. age distribution of the seafloor could have experienced limited fluctuations in the past 150My while others suggest stronger variations would fit the observations equally well (Seton et al., 2009. Here we propose to investigate the global dynamics of seafloor spreading using state-of-the-art plate reconstructions and geodynamic models. We focus on the evolution of the distribution of seafloor ages because fundamental geophysical observations like mantle heat flow or sea level provide

  3. First Archean Zircons Found in Oceanic Crustal Rocks of Mauritius

    NASA Astrophysics Data System (ADS)

    Ashwal, L. D.; Wiedenbeck, M.; Torsvik, T. H.

    2016-12-01

    A fragment of continental crust has been postulated to underlie the young plume-related lavas of the Indian Ocean island of Mauritius, on both the basis of inversion of gravity anomaly data (crustal thickness) and the recovery of Proterozoic zircons (660-1971 Ma) from basaltic beach sands (Torsvik et al., Nature Geosci. 6, 227, 2013). We recovered 13 zircon grains from a trachyte associated with the Older Series basalts (9.0-4.7 Ma) of Mauritius, the second youngest member of a hot-spot track extending from the active plume site of Réunion. Extreme care was taken to avoid contamination during sample processing. Ten of the 13 grains are featureless, with no internal structures, and SIMS analyses (Cameca 1280-HR instrument) yield 49 spots with Miocene U-Pb systematics and a mean age of 5.7 ± 0.2 Ma (1 sd), constraining the magmatic crystallization age of the trachyte. Three grains with partially resorbed magmatic zoning, partial metamictization and mineral inclusions (quartz, K-feldspar, monazite) show uniquely mid- to late-Archean systematics: 20 spot analyses give concordant to near-concordant ages of 3030 ± 5 Ma to 2766 ± 13 Ma. This suggests that during ascent, the trachytic magmas incorporated silicic continental crustal material that preserves a record of several hundred m.y. of Archean evolution. This is consistent with Sr-Nd isotope systematics of the Mauritian trachytes, which can be modelled as having been contaminated with 0.4-3.5% of ancient granitoid crustal components. Our new age results, combined with the Proterozoic ages of zircons recovered from Mauritian beach sands, are best correlated with continental crust of east-central Madagascar, presently 700 km west of Mauritius, where Archean gneisses and Neoproterozoic intrusive rocks are juxtaposed such that a 2000 km2 area could correspond to a fragment of continent presently underlying Mauritius. This, and other continental fragments formed during Gondwana break-up, may be scattered across the

  4. What Do We Really Know About the Earth's Early Atmosphere?

    NASA Astrophysics Data System (ADS)

    Catling, D. C.; Krissansen-Totton, J.; Zahnle, K. J.

    2016-12-01

    Theory suggests that oceans collapsed from a steam atmosphere and CO2 was lost into the seafloor by 108 yrs after the Moon-forming impact [1]. Afterwards, zircons suggest continents, oceans, and even life, but the Hadean atmosphere remains obscure. Gas proportions in modern outgassing tentatively suggest that Hadean air was probably N2 and CO2 with minor CO, H2 and CH4, but little direct evidence confirms this. In contrast, evidence for oceans, an atmosphere, and land becomes unambiguous by 3.8 Ga [2], with suggestive signs of life [3]. Biological modulation, a faint Sun, and a lack of O2 all circumscribe any model of Archean air. Glacial rocks (3.5, 2.9 and 2.7 Ga) indicate climates below a global mean 20°C. Even with little land, control of CO2 by seafloor weathering should have moderated climate. Probably CO2 was always an important greenhouse gas, as indicated by new paleosol estimates [4]. Estimates of pN2< 0.5 bar at 2.7 Ga [5] would lower pressure broadening of IR absorption, which demands high concentrations of greenhouse gases. Low pN2 could occur in an anoxic N cycle. Today, long-term N sources are outgassing and oxidative weathering of organics. In the Archean, the N source from oxidative weathering was absent, so pN2 was plausibly lower and would have risen at the Great Oxidation Event (GOE) [5]. Archean mass independent fractionation of S isotopes requires >20 ppmv CH4 [6]. But evidence of hydrogen escape to space (lighter ocean D/H [7] and Xe isotopes that become lighter in time [8]), suggest 2H2+CH4 levels 103 ppmv. Polar H escape that drags Xe+ions could explain the Xe isotope trend. The GOE relied upon long-term oxidation of the surface environment by removing reductants. We continue to argue that removal by H escape (the biggest net redox flux over time) pushed towards oxygenation by shifting the balance of oxygen sources and sinks [9]. [1] Zahnle K. et al. (2010) CSH Perspect. Biol. 2, doi: 10.1101/cshperspect.a004895. [2] Nutman A. P. (2006

  5. Archean Age Fossils from Northwestern Australia (Approximately 3.3 to 3.5 GA, Warrawoona Group, Towers Formation)

    NASA Technical Reports Server (NTRS)

    Smith, Penny A. Morris

    1999-01-01

    Archean aged rocks from the Pilbara Block area of western Australia (Warrawoona Group, Towers Formation, -3.3-3.5 Ga) contain microfossils that are composed of various sizes of spheres and filaments. The first descriptions of these microfossils were published in the late 1970's (Dunlop, 1978; Dunlop, et. al., 1978). The authenticity of the microfossils is well established. The small size of the microfossils prevents isotope dating, at least with the present technology. Microbiologists, however, have established guidelines to determine the authenticity of the Archean aged organic remains (Schopf, Walter, 1992).

  6. The origin and early evolution of life on earth

    NASA Technical Reports Server (NTRS)

    Oro, J.; Miller, Stanley L.; Lazcano, Antonio

    1990-01-01

    Results of the studies that have provided insights into the cosmic and primitive earth environments are reviewed with emphasis on those environments in which life is thought to have originated. The evidence bearing on the antiquity of life on the earth and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar-system bodies such as comets, dark asteroids, and carbonaceous chondrites are assessed. The environmental models of the Hadean and early Archean earth are discussed, as well as the prebiotic formation of organic monomers and polymers essential to life. The processes that may have led to the appearance in the Archean of the first cells are considered, and possible effects of these processes on the early steps of biological evolution are analyzed. The significance of these results to the study of the distribution of life in the universe is evaluated.

  7. Seafloor erosional processes offshore of the Chandeleur Islands, Louisiana

    USGS Publications Warehouse

    Twichell, David C.; Brock, John C.

    2011-01-01

    The Chandeleur Islands are a chain of barrier islands that lies along the eastern side of the modern Mississippi River Delta plain. The island chain is located near the seaward edge of the relict St. Bernard Delta, the part of the Mississippi Delta that formed between approximately 4,000 and 2,000 years before present and was later abandoned as sedimentation shifted southward. After abandonment of the St. Bernard Delta, deposits were reworked, and the sandy component was shaped into the Chandeleur Islands. With continued subsidence, the islands became separated from their original delta headland sources and presently are isolated from the mainland by the shallow Chandeleur Sound. Newly acquired geophysical data and vibracores provide an opportunity to better understand the processes that are shaping seafloor morphology (i.e., shape, geometry, and structure of the seafloor) on the inner shelf adjacent to the Chandeleur Islands. The inner shelf offshore of the Chandeleur Islands was mapped in 2006 and 2007 using swath bathymetry, sidescan sonar, and high-resolution seismic-reflection techniques. The detailed results of this study were published in December 2009 (Twichell and others, 2009) as part of a special issue of Geo-Marine Letters that documents early results from the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project. This study addresses questions and concerns related to limited sand resources along the Louisiana shelf and their implications to long-term relative sea-level rise and storm impacts.

  8. Engineering concepts for the placement of wastes on the abyssal seafloor

    NASA Astrophysics Data System (ADS)

    Valent, Philip J.; Palowitch, Andrew W.; Young, David K.

    1998-05-01

    The Naval Research Laboratory (NRL), with industry and academic participation, has completed a study of the concept of isolating industrial wastes (i.e., sewage sludge, fly ash from municipal incinerators, and dredged material) on the abyssal seafloor. This paper presents results of the technical and economic assessment of this waste management concept. The results of the environmental impacts portion of the study are presented in a companion paper. The technical assessment began with identification of 128 patents addressing waste disposal in the ocean. From these 128 patents, five methods for transporting wastes through the water column and emplacing wastes within an easily monitored area on the abyssal seafloor were synthesized for technical assessment. In one method waste is lowered to the seafloor in a bucket of 190 m 3. In a second method waste is pumped down to the seafloor in pipes, 1.37 m in diameter and 6100 m in length. In a third method waste is free-fallen from the ocean surface in 380-m 3 geosynthetic fabric containers (GFCs). In the fourth and fifth methods, waste is carried to near the seafloor in GFCs transported in (a) a 20,000 metric ton displacement (loaded), unpowered, unmanned submersible glider, or (b) a 2085 metric ton displacement (loaded) disk-shaped transporter traversing to and from the seafloor much like an untethered elevator. In the last two methods the transporter releases the GFCs to free-fall the last few hundred meters to the seafloor. Two reliability analyses, a Fault Tree Analysis (FTA), and a Failure Modes, Effects, and Criticality Analysis (FMECA), showed that the free-fall GFC method posed the least overall relative risk, provided that fabric container and transporter designs eliminate the potential for tearing of the containers on release from the surface transporter. Of the five methods, the three GFC methods were shown to offer cost-effective waste management options when compared with present-day waste management

  9. The Archean komatiite-hosted, PGE-bearing Ni-Cu sulfide deposit at Vaara, eastern Finland: evidence for assimilation of external sulfur and post-depositional desulfurization

    NASA Astrophysics Data System (ADS)

    Konnunaho, J. P.; Hanski, E. J.; Bekker, A.; Halkoaho, T. A. A.; Hiebert, R. S.; Wing, B. A.

    2013-12-01

    Archean komatiites host important resources of Ni, Cu, Co, and PGE, particularly in Western Australia and Canada. In Finland, several small, low-grade sulfide deposits have been found in komatiites, including the ca. 2.8 Ga Vaara deposit in the Archean Suomussalmi greenstone belt. It occurs in the central part of the serpentinized olivine cumulate zone of a komatiitic extrusive body and is composed of disseminated interstitial sulfides consisting of pyrite, pentlandite, millerite, violarite, and chalcopyrite accompanied by abundant magnetite. Although currently subeconomic, the mineralization is interesting due to the very high chalcophile element contents of the sulfide fraction (38 wt% Ni, 3.4 wt% Cu, 0.7 wt% Co, 22.4 ppm Pd, and 9.5 ppm Pt). The sulfides occur in relatively Cr-poor olivine cumulates suggesting involvement of a chromite-undersaturated magma. The parental magma was an Al-undepleted komatiite with an estimated MgO content of at least 24 wt%. In contrast to the common komatiite types in the eastern Finland greenstone belts, the Vaara rocks are moderately enriched in LREE relative to MREE, suggesting that crustal contamination played an important role in the genesis of the Vaara deposit. Multiple sulfur isotope data reveal considerable mass-independent sulfur isotope fractionation both in country rock sedimentary sulfides (Δ33S ranges from -0.50 to +2.37 ‰) and in the Vaara mineralization (Δ33S ranges from +0.53 to +0.66 ‰), which provides strong evidence for incorporation of crustal sulfur. Extensive replacement of interstitial sulfides by magnetite and the presence of millerite- and violarite-bearing, pyrrhotite-free sulfide assemblages indicate significant post-magmatic, low-temperature hydrothermal oxidation of the primary magmatic pyrrhotite-pentlandite-chalcopyrite assemblages and associated sulfur loss that led to a significant upgrading of the original metal tenors of the Vaara deposit.

  10. Archean inheritance in zircon from late Paleozoic granites from the Avalon zone of southeastern New England: an African connection

    USGS Publications Warehouse

    Zartman, R.E.; Don, Hermes O.

    1987-01-01

    In southeastern New England the Narragansett Pier Granite locally intrudes Carboniferous metasedimentary rocks of the Narragansett basin, and yields a monazite UPb Permian emplacement age of 273 ?? 2 Ma. Zircon from the Narragansett Pier Granite contains a minor but detectable amount of an older, inherited component, and shows modern loss of lead. Zircon from the late-stage, aplitic Westerly Granite exhibits a more pronounced lead inheritance -permitting the inherited component to be identified as Late Archean. Such old relict zircon has not been previously recognized in Proterozoic to Paleozoic igneous rocks in New England, and may be restricted to late Paleozoic rocks of the Avalon zone. We suggest that the Archean crustal component reflects an African connection, in which old Archean crust was underplated to the Avalon zone microplate in the late Paleozoic during collision of Gondwanaland with Avalonia. ?? 1987.

  11. Major components of seawater and hydrothermal plumes in the Okinawa Trough, East China Sea, and Yellow Sea

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Rong, K.; Chen, C. T. A.; Wang, X.; Qi, H.

    2017-12-01

    discharge of high Ca2+ and low Mg2+ fluid. The Ca2+and Mn2+ flux to seawater in the OT is about 1.04-326 and 1.30-76.4 ×1012 kg per year, respectively. The heat flux is about 0.159-1,973 ×105 W, which means that roughly 0.0006 % of ocean heat is supplied by seafloor hydrothermal plumes in the OT.

  12. Predicted seafloor facies of Central Santa Monica Bay, California

    USGS Publications Warehouse

    Dartnell, Peter; Gardner, James V.

    2004-01-01

    Summary -- Mapping surficial seafloor facies (sand, silt, muddy sand, rock, etc.) should be the first step in marine geological studies and is crucial when modeling sediment processes, pollution transport, deciphering tectonics, and defining benthic habitats. This report outlines an empirical technique that predicts the distribution of seafloor facies for a large area offshore Los Angeles, CA using high-resolution bathymetry and co-registered, calibrated backscatter from multibeam echosounders (MBES) correlated to ground-truth sediment samples. The technique uses a series of procedures that involve supervised classification and a hierarchical decision tree classification that are now available in advanced image-analysis software packages. Derivative variance images of both bathymetry and acoustic backscatter are calculated from the MBES data and then used in a hierarchical decision-tree framework to classify the MBES data into areas of rock, gravelly muddy sand, muddy sand, and mud. A quantitative accuracy assessment on the classification results is performed using ground-truth sediment samples. The predicted facies map is also ground-truthed using seafloor photographs and high-resolution sub-bottom seismic-reflection profiles. This Open-File Report contains the predicted seafloor facies map as a georeferenced TIFF image along with the multibeam bathymetry and acoustic backscatter data used in the study as well as an explanation of the empirical classification process.

  13. Acoustic Retrieval of Seafloor Geotechnics.

    DTIC Science & Technology

    1977-12-01

    from the seafloor and subbottom layer interfaces (e.g., Hastrup , 1969; Mackenzie , 1960; Bell and Porter , 1974). It is known that the physical...L. Inderbitzen , New York , Plenum Press, 1974 , pp 1-44. Hastrup , Ole (1969) “Digital analysis of acoustic reflectivity in the Tyrrhenia n A byssal

  14. The 2006 Pingtung Earthquake Doublet Triggered Seafloor Liquefaction: Revisiting the Evidence with Ultra-High-Resolution Seafloor Mapping

    NASA Astrophysics Data System (ADS)

    Su, C. C.; Chen, T. T.; Paull, C. K.; Gwiazda, R.; Chen, Y. H.; Lundsten, E. M.; Caress, D. W.; Hsu, H. H.; Liu, C. S.

    2017-12-01

    Since Heezen and Ewing's (1952) classic work on the 1929 Grand Banks earthquake, the damage of submarine cables have provided critical information on the nature of seafloor mass movements or sediment density flows. However, the understanding of the local conditions that lead to particular seafloor failures earthquakes trigger is still unclear. The Decemeber 26, 2006 Pingtung earthquake doublet which occurred offshore of Fangliao Township, southwestern Taiwan damaged 14 submarine cables between Gaoping slope to the northern terminus of the Manila Trench. Local fisherman reported disturbed waters at the head of the Fangliao submarine canyon, which lead to conjectures that eruptions of mud volcanoes which are common off the southwestern Taiwan. Geophysical survey were conducted to evaluate this area which revealed a series of faults, liquefied strata, pockmarks and acoustically transparent sediments with doming structures which may relate to the submarine groundwater discharge. Moreover, shipboard multi-beam bathymetric survey which was conducted at the east of Fangliao submarine canyon head shows over 10 km2 area with maximum depth around 40 m of seafloor subsidence after Pingtung earthquake. The north end of the subsidence is connected to the Fangliao submarine canyon where the first cable failed after Pingtung earthquake. The evidences suggests the earthquake triggered widespeard liquefaction and generated debris flows within Fangliao submarine canyon. In May 2017, an IONTU-MBARI Joint Survey Cruise (OR1-1163) was conducted on using MBARI Mapping AUV and miniROV to revisit the area where the cable damaged after Pingtung earthquake. From newly collected ultra-high-resolution (1-m lateral resolution) bathymetry data, the stair-stepped morphology is observed at the edge of canyon. The comet-shaped depressions are located along the main headwall of the seafloor failure. The new detailed bathymetry reveal details which suggest Fangliao submarine canyon head is

  15. Nitrogen Concentrations and Isotopic Compositions of Seafloor-Altered Terrestrial Basaltic Glass: Implications for Astrobiology

    PubMed Central

    Banerjee, N.R.; Izawa, M.R.M.; Kobayashi, K.; Lazzeri, K.; Ranieri, L.A.; Nakamura, E.

    2018-01-01

    Abstract Observed enrichments of N (and the δ15N of this N) in volcanic glasses altered on Earth's modern and ancient seafloor are relevant in considerations of modern global N subduction fluxes and ancient life on Earth, and similarly altered glasses on Mars and other extraterrestrial bodies could serve as valuable tracers of biogeochemical processes. Palagonitized glasses and whole-rock samples of volcanic rocks on the modern seafloor (ODP Site 1256D) contain 3–18 ppm N with δ15Nair values of up to +4.5‰. Variably altered glasses from Mesozoic ophiolites (Troodos, Cyprus; Stonyford volcanics, USA) contain 2–53 ppm N with δ15N of −6.3 to +7‰. All of the more altered glasses have N concentrations higher than those of fresh volcanic glass (for MORB, <2 ppm N), reflecting significant N enrichment, and most of the altered glasses have δ15N considerably higher than that of their unaltered glass equivalents (for MORB, −5 ± 2‰). Circulation of hydrothermal fluids, in part induced by nearby spreading-center magmatism, could have leached NH4+ from sediments then fixed this NH4+ in altering volcanic glasses. Glasses from each site contain possible textural evidence for microbial activity in the form of microtubules, but any role of microbes in producing the N enrichments and elevated δ15N remains uncertain. Petrographic analysis, and imaging and chemical analyses by scanning electron microscopy and scanning transmission electron microscopy, indicate the presence of phyllosilicates (smectite, illite) in both the palagonitized cracks and the microtubules. These phyllosilicates (particularly illite), and possibly also zeolites, are the likely hosts for N in these glasses. Key Words: Nitrogen—Nitrogen isotope—Palagonite—Volcanic glass—Mars. Astrobiology 18, 330–342. PMID:29106312

  16. Research of seafloor topographic analyses for a staged mineral exploration

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Kadoshima, K.; Koizumi, Y.; Yamakawa, T.; Asakawa, E.; Sumi, T.; Kose, M.

    2016-12-01

    J-MARES (Research and Development Partnership for Next Generation Technology of Marine Resources Survey, JAPAN) has been designing a low-cost and high-efficiency exploration system for seafloor hydrothermal massive sulfide (SMS) deposits in "Cross-ministerial Strategic Innovation Promotion Program (SIP)" granted by the Cabinet Office, Government of Japan since 2014. We proposed the multi-stage approach, which is designed from the regional scaled to the detail scaled survey stages through semi-detail scaled, focusing a prospective area by seafloor topographic analyses. We applied this method to the area of more than 100km x 100km around Okinawa Trough, including some well-known mineralized deposits. In the regional scale survey, we assume survey areas are more than 100 km x 100km. Then the spatial resolution of topography data should be bigger than 100m. The 500 m resolution data which is interpolated into 250 m resolution was used for extracting depression and performing principal component analysis (PCA) by the wavelength obtained from frequency analysis. As the result, we have successfully extracted the areas having the topographic features quite similar to well-known mineralized deposits. In the semi-local survey stage, we use the topography data obtained by bathymetric survey using multi-narrow beam echo-sounder. The 30m-resolution data was used for extracting depression, relative-large mounds, hills, lineaments as fault, and also for performing frequency analysis. As the result, wavelength as principal component constituting in the target area was extracted by PCA of wavelength obtained from frequency analysis. Therefore, color image was composited by using the second principal component (PC2) to the forth principal component (PC4) in which the continuity of specific wavelength was observed, and consistent with extracted lineaments. In addition, well-known mineralized deposits were discriminated in the same clusters by using clustering from PC2 to PC4.We

  17. Global Patterns and Predictions of Seafloor Biomass Using Random Forests

    PubMed Central

    Wei, Chih-Lin; Rowe, Gilbert T.; Escobar-Briones, Elva; Boetius, Antje; Soltwedel, Thomas; Caley, M. Julian; Soliman, Yousria; Huettmann, Falk; Qu, Fangyuan; Yu, Zishan; Pitcher, C. Roland; Haedrich, Richard L.; Wicksten, Mary K.; Rex, Michael A.; Baguley, Jeffrey G.; Sharma, Jyotsna; Danovaro, Roberto; MacDonald, Ian R.; Nunnally, Clifton C.; Deming, Jody W.; Montagna, Paul; Lévesque, Mélanie; Weslawski, Jan Marcin; Wlodarska-Kowalczuk, Maria; Ingole, Baban S.; Bett, Brian J.; Billett, David S. M.; Yool, Andrew; Bluhm, Bodil A.; Iken, Katrin; Narayanaswamy, Bhavani E.

    2010-01-01

    A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management. PMID:21209928

  18. Global patterns and predictions of seafloor biomass using random forests.

    PubMed

    Wei, Chih-Lin; Rowe, Gilbert T; Escobar-Briones, Elva; Boetius, Antje; Soltwedel, Thomas; Caley, M Julian; Soliman, Yousria; Huettmann, Falk; Qu, Fangyuan; Yu, Zishan; Pitcher, C Roland; Haedrich, Richard L; Wicksten, Mary K; Rex, Michael A; Baguley, Jeffrey G; Sharma, Jyotsna; Danovaro, Roberto; MacDonald, Ian R; Nunnally, Clifton C; Deming, Jody W; Montagna, Paul; Lévesque, Mélanie; Weslawski, Jan Marcin; Wlodarska-Kowalczuk, Maria; Ingole, Baban S; Bett, Brian J; Billett, David S M; Yool, Andrew; Bluhm, Bodil A; Iken, Katrin; Narayanaswamy, Bhavani E

    2010-12-30

    A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.

  19. Association among active seafloor deformation, mound formation, and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin, offshore California

    USGS Publications Warehouse

    Paull, C.K.; Normark, W.R.; Ussler, W.; Caress, D.W.; Keaten, R.

    2008-01-01

    Seafloor blister-like mounds, methane migration and gas hydrate formation were investigated through detailed seafloor surveys in Santa Monica Basin, offshore of Los Angeles, California. Two distinct deep-water (??? 800??m water depth) topographic mounds were surveyed using an autonomous underwater vehicle (carrying a multibeam sonar and a chirp sub-bottom profiler) and one of these was explored with the remotely operated vehicle Tiburon. The mounds are > 10??m high and > 100??m wide dome-shaped bathymetric features. These mounds protrude from crests of broad anticlines (~ 20??m high and 1 to 3??km long) formed within latest Quaternary-aged seafloor sediment associated with compression between lateral offsets in regional faults. No allochthonous sediments were observed on the mounds, except slumped material off the steep slopes of the mounds. Continuous streams of methane gas bubbles emanate from the crest of the northeastern mound, and extensive methane-derived authigenic carbonate pavements and chemosynthetic communities mantle the mound surface. The large local vertical displacements needed to produce these mounds suggests a corresponding net mass accumulation has occurred within the immediate subsurface. Formation and accumulation of pure gas hydrate lenses in the subsurface is proposed as a mechanism to blister the seafloor and form these mounds. ?? 2008 Elsevier B.V. All rights reserved.

  20. Deep seafloor arrivals: an unexplained set of arrivals in long-range ocean acoustic propagation.

    PubMed

    Stephen, Ralph A; Bolmer, S Thompson; Dzieciuch, Matthew A; Worcester, Peter F; Andrew, Rex K; Buck, Linda J; Mercer, James A; Colosi, John A; Howe, Bruce M

    2009-08-01

    Receptions, from a ship-suspended source (in the band 50-100 Hz) to an ocean bottom seismometer (about 5000 m depth) and the deepest element on a vertical hydrophone array (about 750 m above the seafloor) that were acquired on the 2004 Long-Range Ocean Acoustic Propagation Experiment in the North Pacific Ocean, are described. The ranges varied from 50 to 3200 km. In addition to predicted ocean acoustic arrivals and deep shadow zone arrivals (leaking below turning points), "deep seafloor arrivals," that are dominant on the seafloor geophone but are absent or very weak on the hydrophone array, are observed. These deep seafloor arrivals are an unexplained set of arrivals in ocean acoustics possibly associated with seafloor interface waves.

  1. Identifying early Earth microfossils in unsilicified sediments

    NASA Astrophysics Data System (ADS)

    Javaux, Emmanuelle J.; Asael, Dan; Bekker, Andrey; Debaille, Vinciane; Derenne, Sylvie; Hofmann, Axel; Mattielli, Nadine; Poulton, Simon

    2013-04-01

    The search for life on the early Earth or beyond Earth requires the definition of biosignatures, or "indices of life". These traditionally include fossil molecules, isotopic fractionations, biosedimentary structures and morphological fossils interpreted as remnants of life preserved in rocks. This research focuses on traces of life preserved in unsilicified siliciclastic sediments. Indeed, these deposits preserve well sedimentary structures indicative of past aqueous environments and organic matter, including the original organic walls of microscopic organisms. They also do not form in hydrothermal conditions which may be source of abiotic organics. At our knowledge, the only reported occurrence of microfossils preserved in unsilicified Archean sediments is a population of large organic-walled vesicles discovered in shales and siltstones of the 3.2 Ga Moodies Group, South Africa. (Javaux et al, Nature 2010). These have been interpreted as microfossils based on petrographic and geochemical evidence for their endogenicity and syngeneity, their carbonaceous composition, cellular morphology and ultrastructure, occurrence in populations, taphonomic features of soft wall deformation, and the geological context plausible for life, as well as lack of abiotic explanation falsifying a biological origin. Demonstrating that carbonaceous objects from Archaean rocks are truly old and truly biological is the subject of considerable debate. Abiotic processes are known to produce organics and isotopic signatures similar to life. Spheroidal pseudofossils may form as self-assembling vesicles from abiotic CM, e.g. in prebiotic chemistry experiments (Shoztak et al, 2001), from meteoritic lipids (Deamer et al, 2006), or hydrothermal fluids (Akashi et al, 1996); by artifact of maceration; by migration of abiotic or biotic CM along microfractures (VanZuilen et al, 2007) or along mineral casts (Brasier et al, 2005), or around silica spheres formed in silica-saturated water (Jones and

  2. A framework to quantify uncertainties of seafloor backscatter from swath mapping echosounders

    NASA Astrophysics Data System (ADS)

    Malik, Mashkoor; Lurton, Xavier; Mayer, Larry

    2018-06-01

    Multibeam echosounders (MBES) have become a widely used acoustic remote sensing tool to map and study the seafloor, providing co-located bathymetry and seafloor backscatter. Although the uncertainty associated with MBES-derived bathymetric data has been studied extensively, the question of backscatter uncertainty has been addressed only minimally and hinders the quantitative use of MBES seafloor backscatter. This paper explores approaches to identifying uncertainty sources associated with MBES-derived backscatter measurements. The major sources of uncertainty are catalogued and the magnitudes of their relative contributions to the backscatter uncertainty budget are evaluated. These major uncertainty sources include seafloor insonified area (1-3 dB), absorption coefficient (up to > 6 dB), random fluctuations in echo level (5.5 dB for a Rayleigh distribution), and sonar calibration (device dependent). The magnitudes of these uncertainty sources vary based on how these effects are compensated for during data acquisition and processing. Various cases (no compensation, partial compensation and full compensation) for seafloor insonified area, transmission losses and random fluctuations were modeled to estimate their uncertainties in different scenarios. Uncertainty related to the seafloor insonified area can be reduced significantly by accounting for seafloor slope during backscatter processing while transmission losses can be constrained by collecting full water column absorption coefficient profiles (temperature and salinity profiles). To reduce random fluctuations to below 1 dB, at least 20 samples are recommended to be used while computing mean values. The estimation of uncertainty in backscatter measurements is constrained by the fact that not all instrumental components are characterized and documented sufficiently for commercially available MBES. Further involvement from manufacturers in providing this essential information is critically required.

  3. Seafloor Dunes: Viability as an Analog to Venusian Dunes

    NASA Astrophysics Data System (ADS)

    Neakrase, L. D.; Titus, T. N.

    2016-12-01

    Dune fields on Venus have been limited to two potential sites discovered during the analysis of Magellan Synthetic Aperture Radar (SAR) data acquired in the 1990s. Several other potential locations could also contain possible dunes but are indistinguishable from other bedforms in the SAR data. Exact morphologies of Venusian dunes are in part speculation due to radar resolution limits that in turn mask the exact formation conditions based on radar data alone. However, near surface winds measured by the Soviet Venera landers were similar to seafloor current speeds (1-2 m s-1) responsible for ripple and dune formation on the seafloor. This similarity suggests that there is a potential for material to be moved on the Venusian surface if present, though most likely for different shear stress conditions. We examine the viability of using terrestrial seafloor dunes and ripples as a possible analog to Venus by comparison of fluid properties of traditional aeolian dune formation with that of the Venusian near-surface atmosphere and seafloor ocean current conditions throughout the literature. Typical surface materials could range in density from 2600 to 3000+ kg m-3 for carbonates or silica (seafloor) to basaltic sands (Venus?) with particle sizes on the order of 100 µm. Similarity of the flow regimes rests heavily on the density/viscosity of the flow medium as shown in historic wind tunnel studies of ripple and dune formation across planetary environments on Earth, Mars, and Venus. Kinematic velocity values could vary from 1.5x10-5 m2 s-1 for Earth atmosphere to values approaching 10-6 m2 s-1 for subaqueous or 2.5x10-7 m2 s-1 for Venus (or Venus analog wind tunnel studies). These values lead to particle Reynolds numbers (Re = Dp*u*t / nu; Dp-particle diameter, u*t-friction velocity, nu-kinematic velocity of fluid) on order of 1.7 for Earth air, 5 for water, and 10 for Venus. We plan to explore how these values affect the drag forces for a range of conditions pertaining to

  4. Microbial Community in the Hydrothermal System at Southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Kato, S.; Itahashi, S.; Kakegawa, T.; Utsumi, M.; Maruyama, A.; Ishibashi, J.; Marumo, K.; Urabe, T.; Yamagishi, A.

    2004-12-01

    There is unique ecosystem around deep-sea hydrothermal area. Living organisms are supported by chemical free energy provided by the hydrothermal water. The ecosystem is expected to be similar to those in early stage of life history on the earth, when photosynthetic organisms have not emerged. In this study, we have analyzed the microbial diversity in the hydrothermal area at southern Mariana trough. In the "Archaean Park Project" supported by special Coordination Fund, four holes were bored and cased by titanium pipes near hydrothermal vents in the southern Mariana trough in 2004. Hydrothermal fluids were collected from these cased holes and natural vents in this area. Microbial cells were collected by filtering the hydrothermal fluid in situ or in the mother sip. Filters were stored at -80C and used for DNA extraction. Chimneys at this area was also collected and stored at -80C. The filters and chimney samples were crushed and DNA was extracted. DNA samples were used for amplification of 16S rDNA fragments by PCR using archaea specific primers and universal primers. The PCR fragments were cloned and sequenced. These PCR clones of different samples will be compared. We will extend our knowledge about microbiological diversity at Southern Mariana trough to compare the results obtained at other area.

  5. Hydrogen isotope systematics of phase separation in submarine hydrothermal systems: Experimental calibration and theoretical models

    USGS Publications Warehouse

    Berndt, M.E.; Seal, R.R.; Shanks, Wayne C.; Seyfried, W.E.

    1996-01-01

    Hydrogen isotope fractionation factors were measured for coexisting brines and vapors formed by phase separation of NaCl/H2O fluids at temperatures ranging from 399-450??C and pressures from 277-397 bars. It was found that brines are depleted in D compared to coexisting vapors at all conditions studied. The magnitude of hydrogen isotope fractionation is dependent on the relative amounts of Cl in the two phases and can be empirically correlated to pressure using the following relationship: 1000 ln ??(vap-brine) = 2.54(??0.83) + 2.87(??0.69) x log (??P), where ??(vap-brine) is the fractionation factor and ??P is a pressure term representing distance from the critical curve in the NaCl/H2O system. The effect of phase separation on hydrogen isotope distribution in subseafloor hydrothermal systems depends on a number of factors, including whether phase separation is induced by heating at depth or by decompression of hydrothermal fluids ascending to the seafloor. Phase separation in most subseafloor systems appears to be a simple process driven by heating of seawater to conditions within the two-phase region, followed by segregation and entrainment of brine or vapor into a seawater dominated system. Resulting vent fluids exhibit large ranges in Cl concentration with no measurable effect on ??D. Possible exceptions to this include hydrothermal fluids venting at Axial and 9??N on the East Pacific Rise. High ??D values of low Cl fluids venting at Axial are consistent with phase separation taking place at relatively shallow levels in the oceanic crust while negative ??D values in some low Cl fluids venting at 9??N suggest involvement of a magmatic fluid component or phase separation of D-depleted brines derived during previous hydrothermal activity.

  6. Hydrothermal Origin for Carbonate Globules in Martian Meteorite ALH84001: A Terrestrial Analogue from Spitsbergen (Norway)

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Amundsen, Hans E. F.; Blake, David F.; Bunch, Ted

    2002-01-01

    Carbonate minerals in the ancient Martian meteorite ALH84001 are the only known solid phases that bear witness to the processing of volatile and biologically critical compounds (CO2, H2O) on early Mars. Similar carbonates have been found in xenoliths and their host basalts from Quaternary volcanic centers in northern Spitsbergen (Norway). These carbonates were deposited by hot (i.e., hydrothermal) waters associated with the volcanic activity. By analogy with the Spitsbergen carbonates, the ALH84001 carbonates were probably also deposited by hot water. Hydrothermal activity was probably common and widespread on Early Mars, which featured abundant basaltic rocks, water as ice or liquid, and heat from volcanos and asteroid impacts. On Earth, descendants of the earliest life forms still prefer hydrothermal environments, which are now shown to have been present on early Mars.

  7. Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields

    NASA Astrophysics Data System (ADS)

    Johannessen, Karen C.; Vander Roost, Jan; Dahle, Håkon; Dundas, Siv H.; Pedersen, Rolf B.; Thorseth, Ingunn H.

    2017-04-01

    Diffuse low-temperature hydrothermal vents on the seafloor host neutrophilic microaerophilic Fe-oxidizing bacteria that utilize the Fe(II) supplied by hydrothermal fluids and produce intricate twisted and branching extracellular stalks. The growth behavior of Fe-oxidizing bacteria in strongly opposing gradients of Fe(II) and O2 have been thoroughly investigated in laboratory settings to assess whether extracellular stalks and aligned biomineralized fabrics may serve as biosignatures of Fe-oxidizing bacteria and indications of palaeo-redox conditions in the rock record. However, the processes controlling the growth of biogenic Fe-oxyhydroxide deposits in natural, modern hydrothermal systems are still not well constrained. In this study, we aimed to establish how variations in the texture of stratified hydrothermal Fe-oxyhydroxide deposits are linked to the physicochemical conditions of the hydrothermal environment. We conducted 16S rRNA gene analyses, microscopy and geochemical analyses of laminated siliceous Fe-mounds from the Jan Mayen Vent Fields at the Arctic Mid-Ocean Ridge. Chemical analyses of low- and high-temperature hydrothermal fluids were performed to characterize the hydrothermal system in which the Fe-deposits form. Our results reveal synchronous inter-laminar variations in texture and major and trace element geochemistry. The Fe-deposits are composed of alternating porous laminae of mineralized twisted stalks and branching tubes, Mn-rich horizons with abundant detrital sediment, domal internal cavities and thin P- and REE-enriched lamina characterized by networks of ≪1 μm wide fibers. Zetaproteobacteria constitute one third of the microbial community in the surface layer of actively forming mounds, indicating that microbial Fe-oxidation is contributing to mound accretion. We suggest that Mn-oxide precipitation and detrital sediment accumulation take place during periodically low hydrothermal fluid discharge conditions. The elevated concentrations

  8. Seafloor identification in sonar imagery via simulations of Helmholtz equations and discrete optimization

    NASA Astrophysics Data System (ADS)

    Engquist, Björn; Frederick, Christina; Huynh, Quyen; Zhou, Haomin

    2017-06-01

    We present a multiscale approach for identifying features in ocean beds by solving inverse problems in high frequency seafloor acoustics. The setting is based on Sound Navigation And Ranging (SONAR) imaging used in scientific, commercial, and military applications. The forward model incorporates multiscale simulations, by coupling Helmholtz equations and geometrical optics for a wide range of spatial scales in the seafloor geometry. This allows for detailed recovery of seafloor parameters including material type. Simulated backscattered data is generated using numerical microlocal analysis techniques. In order to lower the computational cost of the large-scale simulations in the inversion process, we take advantage of a pre-computed library of representative acoustic responses from various seafloor parameterizations.

  9. Evolution of seafloor spreading rate based on Ar-40 degassing history

    NASA Astrophysics Data System (ADS)

    Tajika, Eiichi; Matsui, Takafumi

    1993-05-01

    A new degassing model of Ar-40 coupled with thermal evolution of the mantle is constructed to constrain the temporal variation of seafloor spreading rate. In this model, we take into account the effects of elemental partition and solubility during melt generation and bubble formation, and changes in both seafloor spreading rate and melt generation depth in the mantle. It is suggested that the seafloor spreading rate would have been almost the same as that of today over the history of the earth in order to explain the present amount of Ar-40 in the atmosphere. This result may also imply the mild degassing history of volatiles from the mantle.

  10. New Techniques for Hydrothermal Exploration: In Situ Chemical Sensors on AUVs - Preliminary Results From the Lau Basin

    NASA Astrophysics Data System (ADS)

    German, C. R.; Connelly, D. P.; Prien, R. D.; Yoerger, D.; Jakuba, M.; Bradley, A.; Shank, T. J.; Edmonds, H. N.; Langmuir, C. H.

    2004-12-01

    Less than one quarter of the global ridge-crest has yet received even cursory investigation for the presence or absence of hydrothermal activity. To improve exploration efficiency, particularly at high latitudes, new methodologies independent of tethered vehicles are required. To that end, we have begun the use of in situ chemical sensors allied to the increasing capabilities of autonomous underwater vehicles. Here, we present first results from our most recent efforts aboard the second R2K cruise to the Lau Basin (C.Langmuir, PI; Autumn 2004) to (a) map non-buoyant hydrothermal plumes, (b) intercept buoyant hydrothermal plumes and (c) locate and image novel hydrothermal fields on the seafloor. The AUV used for this work is ABE and the sensors deployed are direct extensions of the in situ Fe/Mn sensor deployed previously on SOC's AUTOSUB to investigate seasonally-reducing waters in Loch Etive, NW Scotland. Each in situ instrument comprises an electronics package that contains a tattletale control system with a flash memory card for on-board logging and a chemical manifold, consisting of a series of valves, pumps and a colorimetric cell. Analysis of iron is enabled by the determination of the coloured complex formed between iron II and ferrozine, manganese uses the colour change of PAN in the presence of reduced manganese. The system includes capacity for switching between sample, blank and two on-board samples for "in flight" calibrations with blanks and standards held in medical bags, outside of the pressure-balanced manifold, to attain in situ water-column temperatures. An in-line filter prevents large particle clogging and detection limits for both iron II and manganese II are ca.2nM.

  11. SHRIMP-RG U-Pb isotopic systematics of zircon from the Angel Lake orthogneiss, East Humboldt Range, Nevada: Is this really archean crust?

    USGS Publications Warehouse

    Premo, Wayne R.; Castineiras, Pedro; Wooden, Joseph L.

    2008-01-01

    New SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) data confirm the existence of Archean components within zircon grains of a sample from the orthogneiss of Angel Lake, Nevada, United States, previously interpreted as a nappe of Archean crust. However, the combined evidence strongly suggests that this orthogneiss is a highly deformed, Late Cretaceous monzogranite derived from melting of a sedimentary source dominated by Archean detritus. Zircon grains from the same sample used previously for isotope dilution-thermal ionization mass spectrometry (ID-TIMS) isotopic work were analyzed using the SHRIMP-RG to better define the age and origin of the orthogneiss. Prior to analysis, imaging revealed a morphological variability and intragrain, polyphase nature of the zircon population. The SHRIMP-RG yielded 207Pb/206Pb ages between ca. 2430 and 2580 Ma (a best-fit mean 207Pb/206Pb age of 2531 ± 19 Ma; 95% confidence) from mostly rounded to subrounded zircons and zircon components (cores). In addition, several analyses from rounded to subrounded cores or grains yielded discordant 207Pb/206Pb ages between ca. 1460 and ca. 2170 Ma, consistent with known regional magmatic events. All cores of Proterozoic to latest Archean age were encased within clear, typically low Th/U (206Pb/238U ages between 72 and 91 Ma, consistent with magmatic ages from Lamoille Canyon to the south. An age of ca. 90 Ma is suggested, the younger 206Pb/238U ages resulting from Pb loss. The Cretaceous and Precambrian zircon components also have distinct trace element characteristics, indicating that these age groups are not related to the same igneous source. These results support recent geophysical interpretations and negate the contention that the Archean-Proterozoic boundary extends into the central Great Basin area. They further suggest that the world-class gold deposits along the Carlin Trend are not underlain by Archean cratonal crust, but rather by the Proterozoic Mojave

  12. Seismic Signatures of Hydrothermal Pathways Along the East Pacific Rise Between 9°16' and 9°56'N

    NASA Astrophysics Data System (ADS)

    Marjanović, Milena; Fuji, Nobuaki; Singh, Satish C.; Belahi, Thomas; Escartín, Javier

    2017-12-01

    We apply wave equation-based techniques to 2-D seismic data to characterize the nature of zero-age upper crust at the East Pacific Rise from 9°16' to 9°56'N. The final velocity model reveals a number of low-velocity anomalies, complex in shape, extending down to 1 km below the seafloor. We attribute them to the presence of hydrothermal flow. Depending on their spatial correlation with the previously identified tectonic discontinuities in bathymetry and presence of venting, we classify them as downgoing and upgoing pathways, respectively. This distinction is not always clear; within the third-order discontinuities at 9°20' and 9°37'N, both pathways may be present. The region north of 9°44'N, known for its magmatic robustness and volcanic activity, is represented by five low-velocity perturbations. Three of these anomalies are spatially correlated with the fourth-order discontinuities and attributed to the presence of the on-axis recharge zones. The remaining two anomalies underlie two vent clusters, marked as hydrothermally active sites after the last documented eruption event. These velocity anomalies can be thus identified as the up-flow pathways or at least their remnants. By comparing our results to the available interdisciplinary data sets, we show that the interaction between the tectono-magmatic and hydrothermal processes is not straightforward due to different timescales at which they operate. However, for developing, maintaining, and driving vigorous, high-temperature hydrothermal flow, the high crustal permeability and high thermal regime must coexist in time and space.

  13. Age and composition of Archean crystalline rocks from the southern Madison Range, Montana. Implications for crustal evolution in the Wyoming craton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, P.A.; Shuster, R.D.; Wooden, J.L.

    1993-04-01

    The southern Madison Range of southwestern Montana contains two distinct Precambrian lithologic assemblages: (1) a complex of tonalitic to granitic gneisses that has been thrust over (2) a medium-grade metasupracrustal sequence dominated by pelitic schist. Crystallization ages for the protolith of a granodioritic gneiss that intruded the metasupracrustal sequence ([approximately]2.6 Ga)-along with an intercalated meta-andesite ([approximately]2.7 Ga) confirm the sequence as Archean. Chemical (major and trace element), isotopic (Rb-Sr, Sm-Nd, Pb-Pb), and geochronologic (U-Pb zircon) data for selected components of the gneiss complex indicate two groups of gneisses: an older, tonalitic to trondhjemitic group ([approximately]3.3 Ga) and a younger, mostlymore » granitic group ([approximately]2.7 Ga). Both groups of gneisses exhibit the radiogenic Pb and nonradiogenic Nd isotopic signature characteristic of Middle and Late Archean rocks from throughout the Wyoming province. The older gneisses, in particular, appear to be compositionally, isotopically, and chronologically comparable to other Middle Archean gneisses from the northern part of the province (for example, Beartooth Mountains). The Late Archean gneisses, however, exhibit some distinct differences relative to their temporal counterparts, including (1) trace-element patterns that are more suggestive of crustal melts than subduction activity and (2) higher initial Sr isotopic ratios that suggest more involvement of older crust in their petrogenesis. These comparisons suggest that the juxtaposition of Late Archean terranes in the northern Wyoming province was the result, at least in part, of intracratonic processes. 41 refs., 6 figs., 2 tabs.« less

  14. Phantom Archean crust in Mangaia hotspot lavas and the meaning of heterogeneous mantle

    NASA Astrophysics Data System (ADS)

    Herzberg, C.; Cabral, R. A.; Jackson, M. G.; Vidito, C.; Day, J. M. D.; Hauri, E. H.

    2014-06-01

    Lavas from Mangaia in the Cook-Austral island chain, Polynesia, define an HIMU (or high μ, where μ=U238/Pb204) global isotopic end-member among ocean island basalts (OIB) with the highest 206,207,208Pb/204Pb. This geochemical signature is interpreted to reflect a recycled oceanic crust component in the mantle source. Mass independently fractionated (MIF) sulfur isotopes indicate that Mangaia lavas sampled recycled Archean material that was once at the Earth's surface, likely hydrothermally-modified oceanic crust. Recent models have proposed that crust that is subducted and then returned to the surface in a mantle plume is expected to transform to pyroxenite/eclogite during transit through the mantle. Here we examine this hypothesis for Mangaia using high-precision electron microprobe analysis on olivine phenocrysts. Contrary to expectations of a crustal component and, hence pyroxenite, results show a mixed peridotite and pyroxenite source, with peridotite dominating. If the isotopic compositions were inherited from subduction of recycled oceanic crust, our work shows that this source has phantom-like properties in that it can have its lithological identity destroyed while its isotope ratios are preserved. This may occur by partial melting of the pyroxenite and injection of its silicic melts into the surrounding mantle peridotite, yielding a refertilized peridotite. Evidence from one sample reveals that not all pyroxenite in the melting region was destroyed. Identification of source lithology using olivine phenocryst chemistry can be further compromised by magma chamber fractional crystallization, recharge, and mixing. We conclude that the commonly used terms mantle “heterogeneities” and “streaks” are ambiguous, and distinction should be made of its lithological and isotopic properties.

  15. In situ chemical sensing for hydrothermal plume mapping and modeling

    NASA Astrophysics Data System (ADS)

    Fukuba, T.; Kusunoki, T.; Maeda, Y.; Shitashima, K.; Kyo, M.; Fujii, T.; Noguchi, T.; Sunamura, M.

    2012-12-01

    Detection, monitoring, and mapping of biogeochemical anomalies in seawater such as temperature, salinity, turbidity, oxidation-reduction potential, and pH are essential missions to explore undiscovered hydrothermal sites and to understand distribution and behavior of hydrothermal plumes. Utilization of reliable and useful in situ sensors has been widely accepted as a promised approach to realize a spatiotemporally resolved mapping of anomalies without water sampling operations. Due to remarkable progresses of sensor technologies and its relatives, a number of highly miniaturized and robust chemical sensors have been proposed and developed. We have been developed, evaluated, and operated a compact ISFET (Ion-Sensitive Field-Effect Transistor)-based chemical sensors for ocean environmental sensing purposes. An ISFET has advantages against conventional glass-based electrodes on its faster response, robustness, and potential on miniaturization, and thus variety of chemical sensors has been already on the market. In this study, ISFET-based standalone pH sensors with a solid-state Cl-ISE as a reference electrode were mounted on various platforms and operated to monitor the pH anomalies in deep-sea environment at the Kairei, Edmond, and surrounding hydrothermal sites in the southern Central Indian Ridge area during KH10-06 scientific cruise (Nov. 2010), supported by project TAIGA (Trans-crustal Advection and In situ biogeochemical processes of Global sub-seafloor Aquifer). Up to three pH sensors were mounted on a wire-lined CTD/RMS (Rosette Multiple Sampler), dredge sampler, a series of MTD plankton nets, and VMPS (Vertical Multiple-operating Plankton Sampler). A standalone temperature sensor was bundled and operated with the pH sensor when they were mounted on the dredge sampler, MTD plankton nets, and VMPS. An AUV equipped with the pH sensor was also operated for hydrothermal activity survey operations. As a result of Tow-Yo intersect operations of the CTD

  16. Early Archean stromatolites: Paleoenvironmental setting and controls on formation

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1991-01-01

    The earliest record of terrestrial life is contained in thin, silicified sedimentary layers within enormously thick, predominantly volcanic sequences in South Africa and Western Australia. This record includes bacteria-like microfossils, laminated carbonaceous structures resembling flat bacterial mats and stromatolites, and a morphologically diverse assemblage of carbonaceous particles. These structures and particles and their host sediments provide the only direct source of information on the morphology, paleoecology, and biogeochemistry of early life; the nature of interactions between organisms and surface systems on the early earth; and possible settings within which life might have evolved. The three known occurrences of 3.5 to 3.2 billion-year-old stromalites were evaluated in terms of depositional setting and biogenicity.

  17. Iron-Oxidizing Bacteria Found at Slow-Spreading Ridge: a Case Study of Capelinhos Hydrothermal Vent (Lucky Strike, MAR 37°N)

    NASA Astrophysics Data System (ADS)

    Henri, P. A.; Rommevaux, C.; Lesongeur, F.; Emerson, D.; Leleu, T.; Chavagnac, V.

    2015-12-01

    Iron-oxidizing bacteria becomes increasingly described in different geological settings from volcanically active seamounts, coastal waters, to diffuse hydrothermal vents near seafloor spreading centers [Emerson et al., 2010]. They have been mostly identified and described in Pacific Ocean, and have been only recently found in hydrothermal systems associated to slow spreading center of the Mid-Atlantic Ridge (MAR) [Scott et al., 2015]. During the MoMARSAT'13 cruise at Lucky Strike hydrothermal field (MAR), a new hydrothermal site was discovered at about 1.5 km eastward from the lava lake and from the main hydrothermal vents. This active venting site, named Capelinhos, is therefore the most distant from the volcano, features many chimneys, both focused and diffuses. The hydrothermal end-member fluids from Capelinhos are different from those of the other sites of Lucky Strike, showing the highest content of iron (Fe/Mn≈3.96) and the lowest chlorinity (270 mmol/l) [Leleu et al., 2015]. Most of the chimneys exhibit rust-color surfaces and bacterial mats near diffuse flows. During the MoMARSAT'15 cruise, an active chimney, a small inactive one, and rust-color bacterial mat near diffuse flow were sampled at Capelinhos. Observations by SEM of the hydrothermal samples revealed the presence of iron oxides in an assemblage of tubular "sheaths", assembled "stalks", helical "stalks" and amorphous aggregates. These features are similar to those described from the Loihi iron-mats deposits and argue for the occurrence of iron-oxidizing bacteria. Cultures under micro-aerobic and neutral pH conditions allowed us to isolate strains from the small inactive chimney. Pyrosequencing of the 16S rRNA gene of the isolates and environmental samples will soon be performed, which should confirm the presence of iron-oxidizing bacteria and reveal the organization of bacterial communities in this original and newly discovered hydrothermal site of the slow spreading Mid-Atlantic Ridge. Emerson

  18. Measurement of Seafloor Deformation in the Marine Sector of the Campi Flegrei Caldera (Italy)

    NASA Astrophysics Data System (ADS)

    Iannaccone, Giovanni; Guardato, Sergio; Donnarumma, Gian Paolo; De Martino, Prospero; Dolce, Mario; Macedonio, Giovanni; Chierici, Francesco; Beranzoli, Laura

    2018-01-01

    We present an assessment of vertical seafloor deformation in the shallow marine sector of the Campi Flegrei caldera (southern Italy) obtained from GPS and bottom pressure recorder (BPR) data, acquired over the period April 2016 to July 2017 in the Gulf of Pozzuoli by a new marine infrastructure, MEDUSA. This infrastructure consists of four fixed buoys with GPS receivers; each buoy is connected by cable to a seafloor multisensor module hosting a BPR. The measured maximum vertical uplift of the seafloor is about 4.2 ± 0.4 cm. The MEDUSA data were then compared to the expected vertical displacement in the marine sector according to a Mogi model point source computed using only GPS land measurements. The results show that a single point source model of deformation is able to explain both the GPS land and seafloor data. Moreover, we demonstrate that a network of permanent GPS buoys represents a powerful tool to measure the seafloor vertical deformation field in shallow water. The performance of this system is comparable to on-land high-precision GPS networks, marking a significant achievement and advance in seafloor geodesy and extending volcano monitoring capabilities to shallow offshore areas (up to 100 m depth). The GPS measurements of MEDUSA have also been used to confirm that the BPR data provide an independent measure of the seafloor vertical uplift in shallow water.

  19. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth

    NASA Astrophysics Data System (ADS)

    Arney, Giada; Domagal-Goldman, Shawn D.; Meadows, Victoria S.; Wolf, Eric T.; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G.

    2016-11-01

    Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8-2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ˜ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7-2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO2. Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets.

  20. Scattering of Acoustic Energy from Rough Deep Ocean Seafloor: a Numerical Modeling Approach.

    NASA Astrophysics Data System (ADS)

    Robertsson, Johan Olof Anders

    1995-01-01

    The highly heterogeneous and anelastic nature of deep ocean seafloor results in complex reverberation as acoustic energy incident from the overlaying water column interacts and scatters from it. To gain a deeper understanding of the mechanisms causing the reverberation in sonar and seafloor scattering experiments, we have developed numerical simulation techniques that are capable of modeling the principal physical properties of complex seafloor structures. A new viscoelastic finite-difference technique for modeling anelastic wave propagation in 2-D and 3-D heterogeneous media, as well as a computationally optimally efficient method for quantifying the anelastic properties in terms of viscoelastic mechanics are presented. A method for reducing numerical dispersion using a Galerkin-wavelet formulation that enables large computational savings is also presented. The widely different regimes of wave propagation occurring in ocean acoustic problems motivate the use of hybrid simulation techniques. HARVEST (Hybrid Adaptive Regime Visco-Elastic Simulation Technique) combines solutions from Gaussian beams, viscoelastic finite-differences, and Kirchhoff extrapolation, to simulate large offset scattering problems. Several scattering hypotheses based on finite -difference simulations of short-range acoustic scattering from realistic seafloor models are presented. Anelastic sediments on the seafloor are found to have a significant impact on the backscattered field from low grazing angle scattering experiments. In addition, small perturbations in the sediment compressional velocity can also dramatically alter the backscattered field due to transitions between pre- and post-critical reflection regimes. The hybrid techniques are employed to simulate deep ocean acoustic reverberation data collected in the vicinity of the northern mid-Atlantic ridge. In general, the simulated data compare well to the real data. Noise partly due to side-lobes in the beam-pattern of the receiver